

CICS Transaction Server for VSE/ESA IBM

Customization Guide
Release 1

 SC33-1652-00

CICS Transaction Server for VSE/ESA IBM

Customization Guide
Release 1

 SC33-1652-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 695.

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

The CICS for VSE/ESA Version 2.3 edition remains applicable and current for users of CICS for VSE/ESA Version 2.3.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make any comments, please use
one of the methods described there.

 Copyright International Business Machines Corporation 1977, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . vii
What this book is about . vii
Who this book is for . vii
What you need to know to understand this book vii
How to use this book . vii
Syntax notation and conventions used in this book vii

Road map . viii
Notes on terminology . ix

Part 1. Customizing with user exit programs . 1

Chapter 1. Global user exit programs . 3
Overview — what is a global user exit? . 3
Global user exit programs . 4
The global user exit points . 17

Chapter 2. Task-related user exit programs 203
Introduction to the task-related user exit mechanism (the adapter) 203
The stub program . 204
The task-related user exit program . 206
Adapter administration . 232

Chapter 3. The user exit programming interface (XPI) 235
Overview . 235
General form of an XPI call . 240
Global user exit XPI examples, showing the use of storage 246
The XPI functions . 253
Dispatcher functions . 255
Dump control functions . 268
Kernel domain functions . 272
Loader functions . 273
Monitoring functions . 281
Program management functions . 285
State data access functions . 302
Storage control functions . 310
Trace control function . 318
Transaction management functions . 319
User journaling function . 334

Part 2. Customizing with initialization and shutdown programs 337

Chapter 4. Writing initialization and shutdown programs 339
Initialization programs . 339
Shutdown programs . 341
General considerations . 342

 Copyright IBM Corp. 1977, 1999 iii

Part 3. Customizing with user-replaceable programs 345

Chapter 5. General notes about user-replaceable programs 347
Rewriting user-replaceable programs . 347
Assembling and link-editing user-replaceable programs 348
User-replaceable programs and the CICS storage protection facility 348

Chapter 6. Writing a program error program 351

Chapter 7. Writing a transaction restart program 355

Chapter 8. Writing a terminal error program 359
Background to error handling for sequential devices 359
The sample terminal error program . 361
User-written terminal error programs . 381

Chapter 9. Writing a node error program 391
Background to CICS-VTAM error handling . 392
When an abnormal condition occurs . 399
The sample node error program . 407
User-written node error programs . 417
Using the node error program with VTAM persistent sessions 423

Chapter 10. Writing a program to control autoinstall of terminals 425
Preliminary considerations . 425
The autoinstall control program at INSTALL 427
The autoinstall control program at DELETE 435
Naming, testing, and debugging your autoinstall control program 436
The sample programs and copy books . 437

Chapter 11. Writing a program to control autoinstall of APPC
connections . 445

Preliminary considerations . 445
The autoinstall control program at INSTALL 447
The autoinstall control program at DELETE 450
The sample autoinstall control program for APPC connections 450

Chapter 12. Writing a program to control autoinstall of shipped
terminals . 453

Installing shipped terminals and connections 453
The autoinstall control program at INSTALL 455
The autoinstall control program at DELETE 458
Default actions of the sample programs . 459

Chapter 13. Writing a program to control autoinstall of programs . . . 461
Preliminary considerations . 461
Benefits of autoinstall . 463
Requirements for autoinstall . 463
The autoinstall control program at INSTALL 464
The sample autoinstall control program for programs, DFHPGADX 466

Chapter 14. Writing a dynamic transaction routing program 471
Overview of dynamic transaction routing . 471

iv CICS Transaction Server for VSE/ESA Customization Guide

The dynamic transaction routing program, DFHDYP 472
Parameters passed to the dynamic transaction routing program 478
Naming your dynamic routing program . 485
Testing your dynamic routing program . 485
Dynamic transaction routing sample programs 486

Chapter 15. The user-replaceable journaling programs 487

Part 4. Customizing the XRF overseer program . 491

Chapter 16. The extended recovery facility overseer program 493
The sample XRF overseer program . 493
The DFHWOSM macros . 499
Customizing the sample overseer program . 508

Part 5. CICS journaling, monitoring, and statistics . 511

Chapter 17. CICS journaling . 513
Formatting a journal before output . 513
Opening, closing, and reading journals . 513
The structure and contents of journal records 515
Notes on CICS journaling . 529

Chapter 18. CICS monitoring . 531
Introduction to CICS monitoring . 531
CICS monitoring record formats . 536
Data produced by CICS monitoring . 546

Chapter 19. CICS statistics . 569
Introduction to CICS statistics . 569
CICS statistics record format . 573
Global user exit in the CICS statistics domain 578
Processing the output from CICS statistics . 578

Chapter 20. The user interface to DMF . 579
Introduction . 579
The DFHEWTM macro . 579
SMF headers . 581
Writing an interpretation program . 583

Part 6. Customizing CICS security processing . 585

Chapter 21. Invoking an external security manager 587
An overview of the CICS–ESM interface . 587
The VSE/ESA router . 587
How ESM exit programs access CICS-related information 590
CICS security control points . 592
Early verification processing . 594

Chapter 22. Writing a “good night” program 597
The sample “good night” program, DFH0GNIT 599

 Contents v

Part 7. Examining and modifying resource attributes 603

Chapter 23. User programs for the system definition utility program
(DFHCSDUP) . 605

An overview of DFHCSDUP . 605
DFHCSDUP as a batch program . 606
Invoking DFHCSDUP from a user program . 611

Chapter 24. The programmable interface to the RDO transaction, CEDA 621
Using DFHEDAP in a DTP environment . 622

Part 8. Appendixes . 625

Appendix A. Coding entries in the VTAM LOGON mode table 627
Overview . 627
TYPETERM device types and pointers to related LOGON mode data 629
VTAM MODEENT macro operands . 631
PSERVIC screen size values for LUTYPE0, LUTYPE2, and LUTYPE3 devices 636
Matching models and LOGON mode entries 637
LOGON mode definitions for CICS-supplied autoinstall models 649

Appendix B. Default actions of the node abnormal condition program 653
Default actions for terminal error codes . 653
CICS messages associated with VTAM errors 659
Default actions for system sense codes . 665
Action flag settings and meanings . 667

Appendix C. Transient data write-to-terminal program (DFH$TDWT) . . 669

Appendix D. Uppercase translation of national characters 671
Using the XZCIN global user exit . 671
Using DFHTCTDY . 671

Appendix E. The example program for the XTSEREQ global user exit,
DFH$XTSE . 673

Bibliography . 689
Books from VSE/ESA 2.4 base program libraries 690
Books from VSE/ESA 2.4 optional program libraries 692

Notices . 695
Programming interface information . 696
Trademarks and service marks . 696

Index . 697

vi CICS Transaction Server for VSE/ESA Customization Guide

 Preface

What this book is about
This book provides the information needed to extend and modify an IBM CICS
Transaction Server for VSE/ESA system to match your requirements. It
describes how you can tailor your system by coding exit programs, by replacing
specific CICS-supplied default programs with versions that you write yourself, and
by adapting sample programs.

Who this book is for
This book is for those responsible for extending and enhancing a CICS system to
meet the special processing needs of an installation.

What you need to know to understand this book
To use the information in this book, you need to be familiar with some of the
architecture of CICS and the programming interface to CICS. General-use
programming interface information is given in the CICS Application Programming
Reference manual and the CICS System Programming Reference manual.

Resource definition information is in the CICS Resource Definition Guide.

To use the following chapters you need to be familiar with telecommunications
access methods (for example, VTAM):

� “Chapter 8, Writing a terminal error program”
� “Chapter 9, Writing a node error program”
� “Chapter 10, Writing a program to control autoinstall of terminals”

If your task involves error processing, you may need to consult the VSE/ESA
Messages and Codes Volume 3 manual, the CICS User’s Handbook, or the CICS
Problem Determination Guide.

How to use this book
The parts and chapters of the book are self-contained. Use an individual part or
chapter as a guide when performing the task described in it.

Syntax notation and conventions used in this book
The symbols { }, [], and | are used in the syntax descriptions of the EXEC CICS
commands and macros referred to in this book. They are not part of the command
and you should not include them in your code. Their meanings are as follows:

� Braces { } enclose two or more alternatives, one of which you must code.
� Square brackets [] tell you that the enclosed is optional.
� The “or” symbol | separates alternatives.

 Copyright IBM Corp. 1977, 1999 vii

In addition to these symbols, the following conventions apply:

� Punctuation symbols and uppercase characters should be coded exactly as
shown.

� Lowercase characters indicate that user text should be coded as required.

� Default values are shown like this: DEFAULT.

� Options that are enclosed neither in braces { } nor in square brackets [] are
mandatory.

� The ellipsis ... means that the immediately preceding option can be coded one
or more times.

� All EXEC CICS commands require a delimiter appropriate to the language of
the application. For a COBOL program this is ‘END-EXEC’, for example.
Delimiters are not included in the syntax descriptions of the commands.

 Road map

Table 1. Getting started road map

If you want to... Refer to...

Learn how to write exit programs Part 1, “Customizing with user exit
programs” on page 1

Write programs to run at CICS startup
and shutdown

Part 2, “Customizing with initialization and
shutdown programs” on page 337

Replace some standard CICS programs
with your own versions

Part 3, “Customizing with
user-replaceable programs” on page 345

Write your own program to control XRF Part 4, “Customizing the XRF overseer
program” on page 491

Learn how to control and interpret the
records written by CICS journaling,
monitoring, and statistics

Part 5, “CICS journaling, monitoring, and
statistics” on page 511

Customize CICS security Part 6, “Customizing CICS security
processing” on page 585

Write programs to modify resource
definitions

Part 7, “Examining and modifying
resource attributes” on page 603

Refer to reference material that
supplements other sections of the book

“Appendixes” on page 625

viii CICS Transaction Server for VSE/ESA Customization Guide

Notes on terminology
The terms listed in Table 2 are commonly used in the CICS Transaction Server for
VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition
of terminology.

Table 2 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

$(the dollar symbol) In the programming examples in this
book, the dollar symbol ($) is used as a
national currency symbol. In countries
where the dollar is not the national
currency, the local currency should be
used.

BSM BSM is used to indicate the basic security
management supplied as part of the
VSE/ESA product. It is
RACROUTE-compliant, and provides the
following functions:

 � Signon security
� Transaction attach security

C The C programming language

CICSplex A CICSplex consists of two or more
regions that are linked using CICS
intercommunication facilities. Typically, a
CICSplex has at least one
terminal-owning region (TOR), more than
one application-owning region (AOR), and
may have one or more regions that own
the resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

CICS/VSE The CICS product running under the
VSE/ESA operating system, frequently
referred to as simply “CICS”

COBOL The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was
previously known as “SQL/DS”.

 Preface ix

Table 2 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or

LU6.2)
 � FEPI security.

FOR (file-owning region)—also known as
a DOR (data-owning region)

A CICS region whose primary purpose is
to manage VSAM and DAM files, and
VSAM data tables, through function
provided by the CICS file control program.

IBM C for VSE/ESA The Language Environment version of the
C programming language compiler.
Generally referred to as “C/VSE”.

IBM COBOL for VSE/ESA The Language Environment version of the
COBOL programming language compiler.
Generally referred to as “COBOL/VSE”.

IBM PL/I for VSE/ESA The Language Environment version of the
PL/I programming language compiler.
Generally referred to as “PL/I VSE”.

IBM Language Environment for VSE/ESA The common runtime interface for all
LE-conforming languages. Generally
referred to as “LE/VSE”.

PL/I The PL/I programming language

VSE/POWER Priority Output Writers Execution
processors and input Readers. The
VSE/ESA spooling subsystem which is
exploited by the report controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the
new security mechanisms in CICS TS for
VSE/ESA R1, generally referred to as
“SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced
Function (AF) component

VSE/VTAM “VTAM”

x CICS Transaction Server for VSE/ESA Customization Guide

 user exit programs

Part 1. Customizing with user exit programs

Table 3. User exit programs road map

If you want to... Refer to...

Write a program to take control at a
predefined point in CICS processing

Chapter 1, “Global user exit programs” on
page 3

Write an interface program to access a
non-CICS resource

Chapter 2, “Task-related user exit
programs” on page 203

Call some CICS-provided functions from a
user exit program

Chapter 3, “The user exit programming
interface (XPI)” on page 235

 Copyright IBM Corp. 1977, 1999 1

 user exit programs

2 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

Chapter 1. Global user exit programs

This chapter describes the global user exit points of CICS Transaction Server for
VSE/ESA Release 1, and how you can use them, in conjunction with programs of a
special type that you write yourself (global user exit programs), to customize your
CICS system. The chapter is divided into the following sections:

1. “Overview — what is a global user exit?” is an introduction to global user
exits, describing their main features and what they can be used for.

2. “Global user exit programs” on page 4 covers topics that you need to
consider when writing a global user exit program. It deals with the following:

� “Register conventions” on page 4
� “31-bit addressing implications” on page 5
� “Using CICS services” on page 5
� “Using EDF with global user exits” on page 6
� “The global work area” on page 6
� “Making trace entries” on page 7
� “Parameters passed to the global user exit program” on page 7
� “Returning values to CICS” on page 10
� “Restrictions on the use of fields as programming interfaces” on page 11
� “Exit programs and the CICS storage protection facility” on page 11
� “Errors in user exit programs” on page 12
� “Defining, enabling, and disabling an exit program” on page 13
� “Invoking more than one exit program at a single exit” on page 13
� “Invoking a single exit program at more than one exit” on page 14
� “Sample global user exit programs” on page 14

3. “The global user exit points” on page 17 contains detailed information about
each global user exit point, including the place in the CICS code at which it
occurs, and the specific (as distinct from the standard) parameters that are
passed to an exit program.

Overview — what is a global user exit?
A global user exit point (sometimes referred to simply as a “global user exit”) is a
place in a CICS module or domain1 at which CICS can transfer control to a
program that you have written (a global user exit program), and at which CICS can
resume control when your exit program has finished its work. You do not have to
use any of the global user exits, but you can use them to extend and customize the
function of your CICS system according to your own requirements. For a complete
list of the global user exit points, see pages 18 through 22.

Each global user exit point has a unique identifier, and is located at a point in the
module or domain at which it could be useful to do some extra processing. For
example, at exit point XSTOUT in the statistics domain, an exit program can be
given control before each statistics record is written to DMF, and can access the
relevant statistics record. You might want to use an exit program at this exit point
to examine the statistics record and suppress the writing of unwanted records.

1 A domain is an isolated functional unit of CICS Transaction Server for VSE/ESA Release 1 that communicates with the rest of
CICS and with other programs using a set of strictly defined and controlled interfaces.

 Copyright IBM Corp. 1977, 1999 3

 global user exit programs

Global user exit support is provided automatically by CICS. However, there are
several conventions that govern how you write your exit program, which are
described in “Global user exit programs” on page 4. Also in that section is a list of
the standard parameters that the calling modules and domains pass to an exit
program, and some information about returning values to the caller.

Because global user exit programs work as if they were part of the CICS module or
domain, there are limits on the use you can make of CICS services. Most global
user exit programs cannot use EXEC CICS commands. By contrast, most global
user exit programs can invoke some CICS services using the exit programming
interface (XPI). For more information, see “Using CICS services” on page 5.

Note: Neither source nor object compatibility of CICS management modules is
guaranteed from release to release. Any changes that affect exit programs are
documented in the appropriate manual.

Global user exit programs
A global user exit program must be written in assembler language and must be
quasireentrant. However, if your user exit program calls the XPI, it must be fully
reentrant.2 (For details about coding programs using XPI calls, refer to Chapter 3,
“The user exit programming interface (XPI)” on page 235.)

 Register conventions
The following register values are provided on entry to an exit program:

� Register 1 contains the address of the user exit parameter list DFHUEPAR.

Write-to-operator (WTO) commands use register 1. If your exit program uses
WTO commands, you should save the address of DFHUEPAR first.

� Register 13 contains the address of the standard register save area where your
exit program should store its own registers immediately after being invoked.
This address is also in the field UEPEPSA in the parameter list pointed to by
register 1.

If you want to issue operating system requests that use register 13 to point to a
save area, you must switch register 13 to point to another save area. You
must restore register 13 to its original contents before returning from your user
exit program to the caller.

� Register 14 contains the return address to which the exit program should
branch on completion of its work. You do this using the BR 14 instruction after
restoring the calling module’s registers, or using the RETURN macro.

� Register 15 contains the entry address of the exit program.

No other register values are guaranteed, and they should not be relied on. The exit
program should save and restore any registers that it modifies, using the save area
addressed by register 13.

2 A “reentrant” program is coded to allow one copy of itself to be used concurrently by several tasks; it does not modify itself while
running. A “quasireentrant” program is serially reusable by different tasks. When it receives control it must be in the same state
as when it relinquished control. Such a program can modify itself while running, and is therefore not fully reentrant.

4 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

31-bit addressing implications
� The global user exit is invoked in 31-bit AMODE.

� The global user exit may be either RMODE 24 or RMODE ANY.

� If you find it necessary to switch to 24-bit AMODE in the exit program, be sure
to return correctly in 31-bit AMODE.

� Ensure the exit program is in 31-bit AMODE for XPI calls.

� Some of the parameters passed in DFHUEPAR are addresses of storage
above the 16MB line.

Access register implications:

� The global user exit is invoked in primary-space translation mode. For
information about translation modes, see the IBM ESA/390 Principles of
Operation manual.

� The contents of the access registers are unpredictable.

� If the global user exit modifies any access registers, it must restore them before
returning control. CICS does not provide a save area for this purpose.

� The global user exit must return control in primary addressing mode.

For further information about access registers, see the IBM VSE/ESA Extended
Addressability manual.

Using CICS services
The rules governing the use of CICS services in exit programs vary, depending on
the exit point from which the exit program is being invoked. The following general
rules apply:

� No CICS services can be invoked from any exit point in the dispatcher domain
or the journal control program.

� CICS services can be invoked using the exit programming interface (XPI) from
most exits. If you use the XPI, note the rules and restrictions that are listed for
each exit and each of the XPI macros. The XPI is described in Chapter 3,
“The user exit programming interface (XPI)” on page 235.

� Some CICS services can be requested using EXEC CICS commands from
some exits. The valid commands are listed in the detailed descriptions of the
exits.

An exit program invoked at an exit that does not support the use of EXEC
CICS commands should not call a task-related user exit program (TRUE).
(Calling a TRUE is equivalent to issuing an EXEC CICS command.) TRUEs
are described in Chapter 2, “Task-related user exit programs” on page 203.

� All exit programs that issue EXEC CICS commands must first address the EIB.
This is not done automatically via the DFHEIENT macro, as is the case with
normal EXEC assembler-language programs. Therefore, the first EXEC
command to be issued from an exit program must be EXEC CICS ADDRESS
EIB (eib-register), where “eib-register” is the default register (R11) or the
register given as a parameter to the DFHEIENT macro.

All exit programs that issue EXEC CICS commands, and that use the
DFHEIENT macro, should use the DFHEIRET macro to set a return code and
return to CICS. See “Returning values to CICS” on page 10.

 Chapter 1. Global user exit programs 5

 global user exit programs

 Important

� If your global user exit program does not contain EXEC CICS commands,
do not use the CICS command-level translator when assembling the
program.

� Take care when making non-CICS (for example, VSE/ESA) system service
calls from global user exit programs. Do not use any non-CICS system
service calls that could result in an operating system wait or a request for
storage. If an operating system request causes a wait, your whole CICS
system will stop until the operating system request has been serviced.

Using EXEC CICS and XPI calls in the same exit program
There are a number of exits where you can use both EXEC CICS commands and
XPI calls, but you should ensure that there is no conflict on the usage of register
13. To avoid such conflict, use the DATAREG option on the DFHEIENT macro
(see “XPI register usage” on page 245 for information).

For an example of how to use EXEC CICS commands and XPI calls in the same
global user exit program, see Appendix E, “The example program for the
XTSEREQ global user exit, DFH$XTSE” on page 673.

Using EDF with global user exits
If you use the Execution Diagnostic Facility (EDF) to monitor your applications, you
must take care when compiling exit programs that issue EXEC CICS commands.

Normally, if an exit program issues EXEC CICS commands, these are displayed by
EDF, if the latter is active. They appear between the “Start of Command” and “End
of Command” screens for the command that caused the exit to be driven. If you
want to suppress the display of EXEC CICS commands issued by your exit
program, you must specify the NOEDF option when you translate the program.

Exits in the recovery modules
If an exit program invoked from one of the recovery modules listed in “Using CICS
services” on page 5 issues EXEC CICS commands, you must translate it with the
NOEDF option. Failure to do so may cause EDF to abend.

The global work area
When you enable an exit program, you can ask CICS to provide a global work area
for the exit program. An exit program can have its own global work area, or it can
share a work area that is owned by another exit program. Note that the work area
is associated with the exit program rather than with the exit point . For ease of
problem determination, the global work area should be shared only by exit
programs that are invoked from the same management module or domain. The
address and length of the global work area are addressed by parameters UEPGAA
and UEPGAL of the DFHUEPAR parameter list, which is described in “DFHUEPAR
standard parameters” on page 8. If a user exit program does not own a global
work area, UEPGAA is set to zero.

Application programs can communicate with user exit programs that use or share
the same global work area. The application program uses the EXEC CICS
EXTRACT EXIT command to obtain the address and length of the global work
area.

6 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

A work area is freed only when all of the exit programs that use it are disabled.
For examples of how to use a global work area, see the sample global user exit
programs. They are listed in “Sample global user exit programs” on page 14.

Making trace entries
If tracing is active, an entry in the CICS trace table can be made immediately
before and immediately after the execution of an exit program. To specify that
these entries are to be made, use the UE option of either:

� The CETR transaction
� The EXEC CICS SET TRACETYPE command

For global user exits in domains, extra trace calls giving more information are also
available if you have set the AP option of EXEC CICS SET TRACETYPE to level 1
or 2. For information about trace entries, refer to the CICS Problem Determination
Guide.

In some cases, when tracing is active, you can also make trace entries from within
a user exit program, using the XPI DFHTRPTX TRACE_PUT macro described in
Chapter 3, “The user exit programming interface (XPI)” on page 235. The
individual descriptions of the global user exit points show whether the XPI
DFHTRPTX macro can be used at each point.

Parameters passed to the global user exit program
The address of a parameter list is passed to the user exit program in register 1.
The list contains some standard parameters that are passed to all global user exit
programs, and may also contain some exit-specific parameters that are unique to
the exit point from which the exit program is being invoked. Not all of the exit
points have these extra parameters.

The exit-specific parameters are described with the individual exits in the section
“The global user exit points” on page 17. The standard parameter list is described
in the following section.

You can map the parameter list using the DSECT DFHUEPAR, which is generated
by the macro instruction

DFHUEXIT TYPE=EP,ID=exit_point_identifier

The ID parameter provides the extra data definitions that you need to map any
exit-specific parameters. For example, the macro instruction

DFHUEXIT TYPE=EP,ID=XJCWR

generates the DSECT to map the standard parameters followed by the parameters
that are specific to exit point XJCWR in the journal control program. If your exit
program is to be invoked at more than one exit point, you can code up to 256
characters of relevant exit identifiers on a single DFHUEXIT macro instruction. For
example:

DFHUEXIT TYPE=EP,ID=(XJCWR,XMNOUT,XSTOUT)

 Chapter 1. Global user exit programs 7

 global user exit programs

If your exit program is to be invoked at every global user exit point, you can code:

DFHUEXIT TYPE=EP,ID=ALL

If your user exit program is to be used both as a global user exit program and as a
task-related user exit program, you must code both:

DFHUEXIT TYPE=EP,ID=exit_point_identifier

and:

DFHUEXIT TYPE=RM

(in this order) to generate the DSECTs appropriate to both types of user exit.

If a global user exit program needs to use the DFHRMCAL macro to invoke an
external RMI, the DFHRMCAL macro instruction must follow the DFHUEXIT macro.

DFHUEPAR standard parameters

DFHUEPAR DSECT

\ STANDARD PARAMETERS

UEPEXN DS A ADDRESS OF EXIT NUMBER

UEPGAA DS A ADDRESS OF GLOBAL WORK AREA

\ (ZERO = NO WORK AREA)

UEPGAL DS A ADDRESS OF GLOBAL WORK AREA LENGTH

UEPCRCA DS A ADDRESS OF CURRENT RETURN-CODE

UEPTCA DS A RESERVED

UEPCSA DS A RESERVED

UEPEPSA DS A ADDRESS OF REGISTER SAVE AREA

\ FOR USE BY EXIT PROGRAM

UEPHMSA DS A ADDRESS OF SAVE AREA USED FOR

\ HOST MODULE'S REGISTERS

UEPGIND DS A ADDRESS OF CALLER'S TASK INDICATORS

UEPSTACK DS A ADDRESS OF KERNEL STACK ENTRY

UEPXSTOR DS A ADDRESS OF STORAGE FOR XPI PARAMETERS

UEPTRACE DS A ADDRESS OF TRACE FLAG

UEPEXN
points to a 1-byte binary field whose contents identify the global user exit point
from which the exit program is being invoked. You need this information if your
exit program can be invoked from more than one exit point.

DFHUEXIT TYPE=EP generates a list of equated values that relate the exit
names (exitids) to the exit numbers used internally by CICS to identify the exits.
You should always use the exitids, because the exit numbers may change in
any future releases of CICS.

UEPGAA
points to the global work area that was provided for the exit program when it
was enabled. This is set to zero if no global work area is provided.

UEPGAL
points to a halfword that contains the length of the global work area.

UEPCRCA
points to a halfword that is to contain the return code value from the exit
program. When more than one program is called at a user exit, this field

8 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

contains (on entry to the second and subsequent programs) the return code
that was set by the previously invoked program.

UEPTCA
points to fetch-protect storage. Use of this field results in an abend ASRD at
execution time.

UEPCSA
points to fetch-protect storage. Use of this field results in an abend ASRD at
execution time.

UEPEPSA
points to a save area in which the exit program should store its own registers
on entry. When the exit program is entered, register 13 is also pointing to this
area. The convention is to save registers 14, 15, 0–12 at offset 12 (decimal)
onward.

UEPHMSA
points to the save area containing the registers of the calling module. Values
for registers 14, 15, 0–13 are stored in this order from offset 12 (decimal) in this
area.

Apart from register 15, which contains the return code value from the exit
program, the values in this save area are used by CICS to reload the registers
when returning to the calling CICS module. They should not be corrupted.

This address is not passed to global user exit programs invoked from exit
points in CICS domains.

UEPGIND
points to a 1-byte field containing indicator bits for use in AP domain user exits.
The indicators are represented by two symbolic values, UEPGANY and
UEPGCICS, which you can test to determine whether data locations can be
above or below the 16MB line and whether the application’s storage is in
CICS-key or user-key storage. For non-AP domain user exits, the indicator bits
are always zero.

UEPGANY The application can accept addresses above the 16MB line. If the
symbolic value is not UEPGANY, the application must be returned
an address below the 16MB line.

UEPGCICS The application’s working storage and the task’s life-time storage
are in CICS-key storage (TASKDATAKEY(CICS) on the RDO
TRANSACTION resource definition). If the symbolic value is not
UEPGCICS, the application’s working storage and the task’s
life-time storage are in user-key storage (TASKDATAKEY(USER)
on the RDO TRANSACTION resource definition).

UEPSTACK
points to the kernel stack entry. This value must be moved to the exit
program’s register 13 before invoking the XPI. For more information, refer to
Chapter 3, “The user exit programming interface (XPI)” on page 235. The
storage addressed by this field must not be altered . If it is corrupted, your exit
program will have unpredictable effects on your CICS system.

 Chapter 1. Global user exit programs 9

 global user exit programs

UEPXSTOR
points to a 260-byte area of DFHUEH-owned LIFO storage that the exit
program should use when invoking the XPI. For more information, refer to
Chapter 3, “The user exit programming interface (XPI)” on page 235.

UEPTRACE
points to the trace flag, which indicates whether tracing is on in the calling
management module or domain. This enables you to control your use of the
XPI TRACE_PUT macro in line with the tracing in the CICS module or domain.
The XPI TRACE_PUT function should be used only when tracing is on. The
trace flag is a single byte, whose top bit is set on when tracing is switched on.
You test this setting using the symbolic value UEPTRON. The rest of the byte
addressed by UEPTRACE is reserved, and its contents should not be
corrupted.

Returning values to CICS
At some exit points, you can influence what CICS does on return from an exit
program by supplying a return code value. The return code value must be set in
register 15 before leaving the exit program. Character strings equating to valid
return code values are provided with the parameter list appropriate for each exit
point. Always use the equated values rather than using hard-coded values. For
example, at exit XMNOUT in the monitor domain, you are presented with the
address of a monitoring record. If you decide in your exit program that this record
should not be written to DMF, you can set the return code value UERCBYP
(meaning “bypass this record”) before returning to CICS, and CICS suppresses the
record.

You cannot influence CICS actions in this way at all exit points. If you supply a
return code value that is not expected at a particular exit point, the default return
code indicating a normal response (usually UERCNORM) is assumed, unless the
return code UERCPURG is set (see note below about UERCPURG). You are
strongly advised not to let the return code default to the normal response as the
result can be unpredictable. The normal response tells CICS to continue
processing as if the exit program had not been invoked, and it is a valid option at
most global user exit points. The exceptions are shown in the list of return codes
provided with each exit description.

The return code currently established for an exit is addressed by parameter
UEPCRCA of DFHUEPAR, and it is needed when two or more exit programs are
used at one exit. For more information, see “Invoking more than one exit program
at a single exit” on page 13.

The return codes that are valid at each of the global user exit points are described
in “The global user exit points” on page 17.

10 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

 Important

� At some exit points, the return code UERCPURG is valid. These exits are
identified in the following tables. To prevent unpredictable results, you must
not set the return code UERCPURG except as described on page 244.

� Exit programs that issue EXEC CICS commands, and that use the
DFHEIENT macro, should use the DFHEIRET macro to set a return code
and return to CICS. The DFHEIRET macro:
 – Restores registers

– Places a return code in register 15 after the registers are restored
– Returns control to the address in register 14

For example:

DFHEIRET RCREG=nn

where “nn” is the number of any register (other than 13) that contains the
return code to be placed in register 15 after the registers are restored.

Restrictions on the use of fields as programming interfaces
The CICS Data Areas manual contains definitions of the control block fields that
form part of the Product-sensitive and General-use programming interfaces of
CICS. Fields that are not defined in the CICS Data Areas manual as either
Product-sensitive programming interface or General-use programming interface
fields are not intended for your use as part of a CICS programming interface.

Exit programs and the CICS storage protection facility
When you are running CICS with the storage protection facility, there are two points
you need to consider for global user exits:

1. The execution key in which your user exit programs run
2. The storage key of data storage obtained for your exit programs

Execution key for global user exit programs
When you are running with storage protection active, CICS always invokes global
user exit programs in CICS key. Even if you specify EXECKEY(USER) on the
RDO PROGRAM resource definition, CICS forces CICS key when it passes control
to the exit program. However, if a global user exit program itself passes control to
another program (via a link or transfer-control command), the program thus invoked
is executed according to the execution key (EXECKEY) defined in its program
resource definition.

 Important

You are strongly recommended to specify EXECKEY(CICS) when defining both
global user exit programs and programs to which an exit program passes
control.

 Chapter 1. Global user exit programs 11

 global user exit programs

Data storage key for global user exit programs
The storage key of storage used by global user exit programs depends on how the
storage is obtained:

� The CICS-supplied storage addressed by the UEPXSTOR parameter of
DFHUEPAR, and any global work area specified when an exit program is
enabled, are always in CICS key.

� Global user exit programs that can issue EXEC CICS commands can obtain
storage by:

– Explicit EXEC CICS GETMAIN commands
– Implicit storage requests as a result of EXEC CICS commands that use the

SET option

The default storage key for storage obtained by EXEC CICS commands is set
by the TASKDATAKEY of the transaction under which the exit program is
invoked.

As an example, consider a transaction defined with TASKDATAKEY(USER)
that issues a file control request, which causes an XFCREQ global user exit
program to be invoked. In this case, any implicit or explicit storage acquired by
the exit program by means of an EXEC CICS command is, by default, in
user-key storage. However, on an EXEC CICS GETMAIN command, the exit
program can override the TASKDATAKEY option by specifying either
CICSDATAKEY or USERDATAKEY.

� When an exit program obtains storage by means of an XPI GETMAIN call, the
storage key depends on the value specified on the STORAGE_CLASS option,
which is mandatory, and which overrides the value of TASKDATAKEY.

Errors in user exit programs
Because global user exit programs are an extension to CICS code, they are subject
to the environment that CICS is running in when they are called. If an error is
detected at an exit point, CICS issues messages indicating which exit program was
in error, the place in the program at which the error occurred, and the name of the
associated exit point. The detection of an error is not guaranteed, because it
depends on the CICS environment at the time of error, and on the nature of the
error. For example, CICS might not recognize a looping user exit program, since
the detection mechanism may have been turned off. Also, an abend in one of the
exits XPCABND, XPCTA, or XSRAB may cause CICS to terminate abnormally,
because an abend during abend processing causes CICS to terminate.

Exit programs invoked at some exit points (for example, XTSEREQ, XTSEREQC,
XICEREQ, XICEREQC, XTDEREQ, or XTDEREQC) can enter a loop by issuing a
recursive command (such as a TS command at exit point XTSEREQ). The exits
most likely to be affected provide a recursion count parameter, UEPRECUR, that
you can use to prevent such loops.

Warning: When coding user exit programs, you should bear in mind that the code
is executed as an extension of CICS code, rather than as a transaction, and any
errors could have disastrous results.

12 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

Defining, enabling, and disabling an exit program
When you have written an exit program, you must define it to CICS using the
CEDA DEFINE PROGRAM command. (Note that you must specify RELOAD(NO).)

Having defined the exit program, you must also enable it. You do this using the
EXEC CICS ENABLE command3 . When you have finished using the exit program,
you should disable it, using the EXEC CICS DISABLE command.

Note: If a global user exit program is enabled before it has been installed, CICS
scans the SVA for the program and may issue message DFHLD0107I, meaning
that it was unable to find the program in the SVA and is using the version found in
the LIBDEF library search chain for the CICS job.

For programming information about the EXEC CICS ENABLE and DISABLE
commands, see the CICS System Programming Reference manual. For examples
of how to enable and disable global user exit programs, see the sample programs
listed on page 14.

Invoking more than one exit program at a single exit
There may be times when you want to invoke more than one exit program from a
single global user exit point. For example, you might have two or more application
packages that supply programs for the same CICS exit. Although such programs
may work independently, you should note the following points:

� An exit program is only called at an exit if it has been made available for
execution with the START option of the EXEC CICS ENABLE command. The
order of invocation, when more than one exit program has been started at an
exit point, is the order in which the programs were activated (that is, the order
in which the EXEC CICS ENABLE commands associated them with the exit
point). When programs work on the same data area, you should consider the
order in which they are invoked. For example, in a terminal control output exit,
an exit program might manipulate the same message in different ways,
depending on the way an earlier exit program acted.

� Return code management is more complicated than it is for single programs.
Each exit program sets a return code in register 15 as usual. The second and
subsequent programs invoked from a single exit point can access the return
code value set by the preceding program (the “current return code”) using the
parameter UEPCRCA of DFHUEPAR.

The following rules apply to return codes if a second user exit program sets a
different return code value from that selected by the previous program:

– If the new program supplies the same return code value as the current
return code (addressed by UEPCRCA), then CICS acts on that value.

– If the new program supplies a different return code value from the current
value addressed by UEPCRCA, CICS ignores both values and resets the
“current return code” to the default value, usually UERCNORM, before
calling any further exit programs for that exit point.

3 Exit programs for exits in the transaction backout programs can also be enabled using the TBEXITS system initialization
parameter.

 Chapter 1. Global user exit programs 13

 global user exit programs

– If the new program sets an eligible value in register 15 and changes the
“current value” field to match (as addressed by UEPCRCA), the new value
is adopted and passed on to the next program (if any), or back to the
calling CICS module or domain.

Invoking a single exit program at more than one exit
To invoke a single exit program from more than one exit point, you must issue an
ENABLE command for each of the exit points. For programming information about
how to issue an ENABLE command, see the CICS System Programming
Reference manual. Be careful to specify GALENGTH or GAENTRYNAME on only
the first ENABLE command, otherwise ‘INVEXITREQ’ may be returned.

Take into account the restrictions that apply to the use of CICS services, because
these are dictated by the exit point itself rather than by the exit program. A
command that can be issued from one exit point may cause problems when issued
from a different exit point.

The global work area is associated with the exit program , rather than with the exit
point : this means that the same global work area is used at each of the exit points
at which the exit program is invoked.

Sample global user exit programs
CICS supplies a set of sample programs that show you how to:

� Enable a global user exit program and allocate a global work area (GWA).

� Obtain the address of an exit program’s GWA.

� Access CICS system information, and make that information available to user
exit programs.

� Share a GWA between global user exit programs, thereby making the
information it contains available to more than one program, and overcoming
limitations on the size of GWAs.

� Access information held in a global user exit program’s GWA.

� Write a program to be invoked from a specific exit, to do a specific task. For
example, the DFH$SXP4 sample program shows you how to use the XMEOUT
exit to reroute a console message to a transient data queue.

The supplied programs and copy books are:

DFH$DTAD A sample global user exit program, designed to be invoked from the
XDTAD exit.

DFH$DTLC A sample global user exit program, designed to be invoked from the
XDTLC exit.

DFH$DTRD A sample global user exit program, designed to be invoked from the
XDTRD exit.

DFH$PCPI This is designed to be invoked as part of program list table post
initialization (PLTPI) processing, and is described in detail in “The
DFH$PCPI program” on page 15.

DFH$PCPL A dummy program, invoked by DFH$PCPI, that causes the
XPCFTCH user exit to be driven.

DFH$PCEX A sample global user exit program, designed to be invoked from the
XPCFTCH exit.

DFH$PCGA Copy book of the DFH$PCEX global work area.

14 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit programs

DFH$PCTA A sample global user exit program, designed to be invoked from the
XPCTA exit. It is described on page 121.

DFH$SXPn A set of sample global user exit programs designed to be invoked
from the XMEOUT exit (where ‘n’ is 1 through 6).

DFH$XDRQ A sample global user exit program, designed to be invoked from the
XDUREQ exit.

DFH$XZIQ A sample global user exit program, designed to be invoked from the
XZIQUE exit.

DFH$ZCAT A sample global user exit program, designed to be invoked from the
XZCATT exit.

DFH$ZCGA Copy book of the DFH$ZCAT global work area.
DFHXIS A sample global user exit program, designed to be invoked from the

XISCONA exit.
DFHXTENF A sample global user exit program, designed to be invoked from the

XALTENF or XICTENF exit. It is listed on page 166.

The source of all the sample programs and copy books is supplied, in assembler
language, in the PRD1.BASE library. You should use the supplied programs as
models upon which to base your own versions.

The DFH$PCPI program
DFH$PCPI consists of three main sections:

1. Section 1 obtains and processes any parameters passed to DFH$PCPI on the
INITPARM system initialization parameter.

2. Section 2 shows how to use standard CICS facilities to obtain system
information, and make that information available to a global user exit program.
It performs the following processing:

� Uses the EXEC CICS ENABLE command to enable the XPCFTCH sample
user exit program, DFH$PCEX, and allocate it a global work area.

� Uses the EXEC CICS EXTRACT EXIT command to obtain the address of
DFH$PCEX’s global work area.

� Obtains CICS system information, and places it in DFH$PCEX’s global
work area. The information obtained includes:

 – Job name
 – Applid
 – Sysid
 – CICS release

– Date in various formats, including DATFORM
– The address of the common work area (CWA)
– CICS startup type (COLD, WARM)

Most of the above information is obtained using EXEC CICS API
commands such as:

 – INQUIRE SYSTEM
 – ASSIGN
 – ADDRESS
 – ASKTIME
 – FORMATTIME

� Uses the START option of the EXEC CICS ENABLE command to make
DFH$PCEX available for execution. This causes DFH$PCEX to be driven
for all LINKs and XCTLs.

 Chapter 1. Global user exit programs 15

 global user exit programs

� Links to the dummy program, DFH$PCPL, in order to drive DFH$PCEX.

� Uses the STOP option of the EXEC CICS DISABLE command to make
DFH$PCEX unavailable for execution. Note that this leaves DFH$PCEX’s
global work area still allocated and accessible through the EXEC CICS
EXTRACT EXIT command.

3. Section 3 of DFH$PCPI shows how to share the system information in an exit
program’s global work area with other exit programs. (In doing so it
demonstrates how application programs can access the same information by
means of the EXEC CICS EXTRACT EXIT command.) It shows too how to
use CICS shared storage to overcome the limitation of 32KB on the size of a
GWA. The program obtains an area of 64KB below the 16MB line and an area
of 128KB above it (using EXEC CICS GETMAIN). The use of shared storage
enables the second user exit program (DFH$ZCAT) to use a global work area
of only 12 bytes below 16MB.

The section performs the following processing:

� Uses EXEC CICS ENABLE to enable the DFH$ZCAT user exit program,
and allocate it a global work area

� Uses EXEC CICS EXTRACT EXIT to obtain the address of DFH$ZCAT’s
global work area

� Stores the address of DFH$PCEX’s global work area in DFH$ZCAT’s
global work area

� Uses EXEC CICS GETMAIN to obtain the shared storage above and below
the 16MB line, and stores the addresses in DFH$ZCAT’s global work area.

Sample program definitions
The following are examples of the RDO definitions required to define the sample
programs to the CSD:

DEFINE PROGRAM(DFH$PCEX) GROUP(EXITGRP)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USESVACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)

 EXECKEY(CICS)
DEFINE PROGRAM(DFH$PCPI) GROUP(EXITGRP)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USESVACOPY(NO) STATUS(ENABLED) CEDF(NO) DATALOCATION(ANY)

 EXECKEY(CICS)
DEFINE PROGRAM(DFH$PCPL) GROUP(EXITGRP)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USESVACOPY(NO) STATUS(ENABLED) CEDF(NO) DATALOCATION(ANY)

 EXECKEY(CICS)
DEFINE PROGRAM(DFH$ZCAT) GROUP(EXITGRP)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USESVACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)

 EXECKEY(CICS)

DFH$PCPI is designed to be run as a PLT program. If you write a similar program,
you should define it in the second part of the PLTPI list (after the
PROGRAM=DFHDELIM entry) so that it executes in the third stage of CICS
initialization. Information about how to do this is in the CICS Resource Definition
Guide.

16 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit points

 Example program
As well as the sample programs supplied in source code, there is an example
listing, DFH$XTSE, that shows you how to:

� Use EXEC CICS commands in a global user exit program

� Use EXEC CICS commands and XPI calls in the same exit program

� Modify the command parameter list in EXEC interface exits such as XTSEREQ
and XICEREQ

DFH$XTSE is listed on page 673.

The global user exit points
The following table lists the exits in alphabetical order, giving a brief description and
a page reference at which more information about each exit can be found. After
the table, the following detailed information is provided for each of the global user
exit points:

� The exit identifier
� The location of the exit
� The DFHUEPAR parameters, if any, that are unique to the exit
� The return codes that are valid for this exit point
� XPI calls that can be issued
� API and SPI commands that can be issued

In the detailed part of this section, the exit points are grouped according to their
functional relationships. This usually means according to the CICS module or
domain in which they occur. However, where exit points in different modules share
the same identifier and set of parameters (as with XRCINIT in the DL/I backout
program and the file control backout program, for example), or where exit points in
different modules serve a similar function (XALTENF in the terminal allocation
program and XICTENF in the interval control program, for example), the exits are
grouped under a generic name (for example, “Exits in the transaction backout
programs”). The groups of exits are presented in alphabetical order of module or
generic name.

Accessing fields in CICS control blocks

When writing a program to be invoked from any of the global user exit points,
note the warning contained in “Restrictions on the use of fields as programming
interfaces” on page 11 about the use of control block fields as programming
interfaces.

 Chapter 1. Global user exit programs 17

 global user exit points

Table 4 (Page 1 of 5). Alphabetical list of global user exit points

Exit name Module or
domain

Where or when invoked Page

XAKUSER Activity
keypoint
program

Immediately before the ‘end of keypoint’
record is written.

23

XALCAID Terminal
allocation
program

Whenever an AID with data is canceled. 156

XALTENF When an ATI request from transient data or
interval control requires a terminal that is
unknown in this system.

162

XBMIN Basic
Mapping
Support

When an input mapping operation
completes successfully.

25

XBMOUT When a page of output has been built
successfully.

25

XDBDERR Dynamic
transaction
backout
program

When the DL/I backout routine detects an
error.

39

XDBFERR If the dynamic transaction backout program
or the file control program detects an error.

37

XDBIN Each time CICS reads a non-DL/I dynamic
log record.

36

XDBINIT On entry to the dynamic transaction backout
program.

36

XDSAWT Dispatcher
domain

After an operating system wait. 29

XDSBWT Before an operating system wait. 29

XDTAD Shared data
tables
management
program

When a write request is issued to a data
table.

131

XDTLC At the completion of loading of a data table. 132

XDTRD During the loading of a data table, whenever
a record is retrieved from the source data
set.

129

XDUCLSE Dump
domain

After the domain closes a transaction dump
data set.

34

XDUOUT Before the domain writes a record to the
transaction dump data set.

34

XDUREQ Before the domain takes a system or
transaction dump.

30

XDUREQC After a system or transaction dump has
been taken (or failed or been suppressed).

32

XEIIN EXEC
interface
program

Before the execution of an EXEC CICS
command.

41

XEIOUT After the execution of an EXEC CICS
command.

42

XFCAREQ File control
EXEC
interface
program

Before CICS processes a file control SPI
request.

57

XFCAREQC After a file control SPI request has
completed.

57

18 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit points

Table 4 (Page 2 of 5). Alphabetical list of global user exit points

Exit name Module or
domain

Where or when invoked Page

XFCNREC File control
open/close
program

When a mismatch is detected between the
backout recovery setting for a file and its
associated dataset during file open
processing.

44

XFCREQ File control
EXEC
interface
program

Before CICS processes a file control API
request.

54

XFCREQC After a file control API request has
completed.

55

XFCSREQ File control
file state
program

Before a file OPEN, CLOSE, ENABLE, or
DISABLE command is attempted.

71

XFCSREQC After a file OPEN, CLOSE, ENABLE, or
DISABLE command has been completed.

71

XGMTEXT “Good
morning”
message
program

Before the “good morning” message is sent. 79

XICEREQ Interval
control EXEC
interface
program

Before CICS processes an interval control
API request.

88

XICEREQC After an interval control API request has
completed.

89

XICEXP Interval
control
program

After expiry of an interval control time
interval.

86

XICREQ At the start of the interval control program,
before request analysis.

85

XICTENF When an EXEC CICS START command
requires a terminal that is unknown in this
system.

164

XISCONA Intersystem
communication
program

After an attempt to allocate a session for
function shipping fails because no sessions
are immediately available.

80

XISLCLQ After an attempt to allocate a session for a
function shipped START NOCHECK request
fails because the remote system is not in
service, a connection to the remote system
cannot be established, or no sessions are
immediately available and your XISCONA
exit program has specified that the request
is not to be queued in the issuing region.

84

XJCWB Journal
control
program

Before each physical WRITE to each
non-DMF journal.

100

XJCWR After building a journal record in the buffer,
but before writing it.

100

XKCREQ Task control
program

Before an ENQUEUE or DEQUEUE
request.

143

 Chapter 1. Global user exit programs 19

 global user exit points

Table 4 (Page 3 of 5). Alphabetical list of global user exit points

Exit name Module or
domain

Where or when invoked Page

XLDLOAD Loader
domain

After an instance of a program is brought
into storage, and before the program is
made available for use.

101

XLDELETE After an instance of a program is released
by CICS and just before the program is
freed from storage.

102

XMEOUT Message
domain

Before a message is sent from the message
domain to its destination.

105

XMNOUT Monitoring
domain

Before a record is either written to DMF or
buffered before a write to DMF.

107

XPCABND Program
control
program

Before a dump call is made. 122

XPCFTCH Before an application program is given
control.

116

XPCHAIR Before a HANDLE ABEND routine is given
control.

118

XPCREQ Before a LINK request is processed. 109

XPCREQC After a LINK request has been completed. 110

XPCTA After an abend occurs, and before the
environment is modified.

120

XRCDBER DL/I backout
program

When PSB schedule, PSB termination, or
DB backout failures occur.

170

XRCINIT DL/I backout
program

At the beginning and end of the DL/I
backout program.

170

File control
backout
program

At the beginning and end of the file control
backout program.

171

Message and
ISC state
recovery
program

At the beginning and end of the message
and ISC state recovery program.

171

User backout
program

At the beginning and end of the user
backout program.

172

XRCINPT File control
backout
program

Whenever a non-DL/I record is read from
the restart data set.

172

Message and
ISC state
recovery
program

Whenever a non-DL/I record is read from
the restart data set.

173

User backout
program

Whenever a non-DL/I record is read from
the restart data set.

173

XRCFCER File control
backout
program

When the file control program returns an
error during backout processing.

174

XRCOPER If an error occurs while opening a file
control data set.

174

20 CICS Transaction Server for VSE/ESA Customization Guide

 global user exit points

Table 4 (Page 4 of 5). Alphabetical list of global user exit points

Exit name Module or
domain

Where or when invoked Page

XRMIIN Resource
manager
interface
program

Before execution of an EXEC DLI, EXEC
SQL, or RMI command.

123

XRMIOUT After execution of an EXEC DLI, EXEC
SQL, or RMI command.

123

XRSINDI Resource
management
modules

Immediately after a successful install or
discard of a resource.

125

XSNOFF Security
manager
domain

After a terminal user signs off. 134

XSNON After a terminal user signs on. 133

XSRAB System
recovery
program

When the system recovery program finds a
match for a VSE/ESA abend code in the
SRT.

137

XSTERM System
termination
program

During a normal system shutdown,
immediately before TD buffers are cleared.

140

XSTOUT Statistics
domain

Before a statistics record is written to DMF. 135

XSZARQ Front End
Programming
Interface

After a FEPI request has completed. 78

XSZBRQ Before a FEPI request is actioned. 78

XTCATT Terminal
control
program

Before task attach. 159

XTCIN After an input event. 158

XTCOUT Before an output event. 158

XTDEREQ Transient
data EXEC
interface
program

Before CICS processes a transient data API
request.

182

XTDEREQC After a transient data API request has
completed.

183

XTDIN Transient
data program

After receiving data from SAM
(extrapartition) or VSAM (intrapartition).

179

XTDOUT Before passing data to a SAM
(extrapartition) or VSAM (intrapartition)
user-defined transient data queue.

180

XTDREQ Before request analysis. 179

XTSEREQ Temporary
storage
EXEC
interface
program

Before CICS processes a temporary storage
API request.

147

XTSEREQC After a temporary storage API request has
completed.

148

XTSIN Temporary
storage
control
program

After an input event. 144

XTSOUT Before an output event. 145

XTSREQ Before request analysis. 144

XXMATT Transaction
manager
domain

When a user transaction is attached. 177

 Chapter 1. Global user exit programs 21

 global user exit points

Table 4 (Page 5 of 5). Alphabetical list of global user exit points

Exit name Module or
domain

Where or when invoked Page

XXRSTAT Takeover
request
processing
program

After a VTAM failure or a predatory
takeover.

141

XZCATT VTAM
terminal
management
program

Before task attach. 189

XZCIN VTAM
working set
module

After an input event. 190

XZCOUT Before an output event. 190

XZCOUT1 Before a message is broken into RUs. 191

XZIQUE 1. When an allocate request for a session
is about to be queued.

2. When an allocate request succeeds
following previous suppression of
queuing.

192

22 CICS Transaction Server for VSE/ESA Customization Guide

 activity keypoint program exit

Activity keypoint program exit XAKUSER
The XAKUSER exit is invoked during the activity keypointing process. This exit
should be used to record, on the system log, user data that must be restored
following an emergency restart. For further information about the use of the exit,
see the CICS Recovery and Restart Guide.

For best performance, journal control requests should not specify WAIT or
STARTIO. CICS will force the records by writing a synchronous end of keypoint
record upon return from the exit program.

Your exit program should be translated with the NOEDF option. Any program it
links to should also be translated with this option. It is not possible to link to
programs written in PL/I.

To ensure that it is called during every keypoint, including the one taken at CICS
startup, your exit program should be enabled by means of a first phase PLTPI
program (that is, a program that is invoked during the second stage of CICS
initialization—see “Initialization programs” on page 339). However, if it is enabled
at this stage, your program should not attempt to link to any program coded in
COBOL or C, as it may be invoked before these are initialized.

 Important

Only the listed EXEC CICS commands are allowed in the XAKUSER exit. The
exit should link only to other programs with the same restrictions.

Table 5. Exit XAKUSER

When
invoked

During the activity keypointing process.

Exit-specific
parameters

None.

Return codes UERCNORM Continue processing.

XPI calls XPI must not be used.

API and SPI
commands

The following commands are supported:

 ADDRESS CWA
 ADDRESS EIB

LINK (but only to local programs; distributed program links may
not be used).

 RETURN
 WRITE JOURNALNUM

 Chapter 1. Global user exit programs 23

 Basic Mapping Support exits

Basic Mapping Support exits XBMIN and XBMOUT
The XBMIN exit allows you to intercept a RECEIVE MAP request after BMS has
successfully processed the request. The XBMOUT exit allows you to intercept a
SEND MAP request after BMS has successfully processed the request; or, if
cumulative mapping is in progress, on completion of each page of output.

The XBMIN exit is called, if enabled, when all the following are true:

� A RECEIVE MAP command has been successfully processed.

� The map referenced in the command contains at least one field specified as
VALIDN=USEREXIT.

� At least one USEREXIT field has been returned in the inbound datastream and
has been mapped into the application data structure.

Using XBMIN, you can:

� Analyze each field defined as VALIDN=USEREXIT mapped to the application
on this request

� Use the mapset name, map name, and field length defined in the map, and the
actual length of field data returned in the inbound datastream

� Modify the data in each field.

The XBMOUT exit is called, if enabled, when all the following are true:

� A SEND MAP command has been successfully processed.

� The map referenced in the command contains at least one field specified as
VALIDN=USEREXIT.

� At least one USEREXIT field has been generated in the outbound datastream.

Using XBMOUT, you can:

� Analyze each field defined as VALIDN=USEREXIT which has been generated
in the outbound datastream

� Use the mapset name, map name, and field length defined in the map, and the
actual length of field data placed in the outbound datastream

� Modify the data in each field

� Modify the attributes sent with each field.

Both exits are passed four exit-specific parameters:

1. The address of the TCTTE associated with the mapping request
2. The address of the system EIB associated with the task issuing the mapping

request
3. The address of a halfword binary count of the number of elements in the field

element table
4. The address of the field element table.

24 CICS Transaction Server for VSE/ESA Customization Guide

 Basic Mapping Support exits

Example program, DFH$BMXT

CICS supplies an example program, DFH$BMXT, that shows how mapped input
and output data can be modified with reference to the information provided in
the “field element” table. A copybook, DFHXBMDS, is also supplied. This
copybook is a DSECT which defines the structure of the field element.

Table 6. Exit XBMIN

When
invoked

After BMS has successfully processed an input mapping operation.

Exit-specific
parameters

UEPBMTCT Address of the TCTTE associated with the mapping
request.

UEPEXECB Address of the system EIB associated with the task.

UEPBMCNT Address of the halfword binary number of “field
elements” in the field element table.

UEPBMTAB Address of the field element table.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

Table 7. Exit XBMOUT

When
invoked

After BMS has successfully completed a page of output during an
output mapping operation.

Exit-specific
parameters

UEPBMTCT Address of the TCTTE associated with the mapping
request.

UEPEXECB Address of the system EIB associated with the task.

UEPBMCNT Address of the halfword binary number of “field
elements” in the field element table.

UEPBMTAB Address of the field element table.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

The field element table structure
The field element table contains one or more elements which provide information
about each “field of interest” passed to the exit. A “field of interest” is a field which
has been defined as VALIDN=USEREXIT in the map source file used to create the
mapset referenced in the mapping operation.

 Chapter 1. Global user exit programs 25

 Basic Mapping Support exits

Each field element has the following structure:

BMXMAPST
is an 8-byte area which contains the name of the mapset associated with this
field. If terminal or alternate suffixes are used with mapset names in your CICS
installation, the mapset name may have a suffix appended to the name
specified in the mapping request.

BMXMAP
is a 7-byte area which contains the name of the map associated with this field.

BMXFDFB
is a one-byte field copied from the field specification in the map load module. It
contains indicators as follows:

X'80' CASE=MIXED
X'40' Group field entry
X'20' Group field descriptor
X'10' ATTRB=DET
X'08' JUSTIFY=ZERO
X'04' JUSTIFY=RIGHT
X'02' INITIAL,XINIT, or GINIT specified
X'01' Named field (DSECT entry exists)

BMXMAPLN
is a halfword binary value which contains the field length defined in the
LENGTH option of the DFHMDF macro.

BMXACTLN
is a halfword binary value which contains the actual length of the data received
or transmitted in this field.

BMXDATA
is the address of the field data.

In the XBMIN exit, BMXDATA points into a work area which BMS has obtained
for input mapping purposes. When the exit returns control, this work area is
copied to the application data structure associated with this map.

In the XBMOUT exit, BMXDATA points into a terminal input/output area (TIOA)
in which BMS has generated an output datastream. When the exit returns
control, the TIOA is disposed of in accordance with the disposition of the
TERMINAL (the default), SET, or PAGING option specified on the SEND MAP
request.

BMXATTR
is only relevant in the XBMOUT exit. It is the address of the attributes (if any)
which BMS has placed in the output datastream preceding this field.

BMXMAPOF
is the offset of the field in the map. For example, if a map is defined as

MYMAP DFHMDI SIZE=(12,4ð)

and a field in this map is defined as

FLDA DFHMDF POS=(5,1)

the offset of this field (relative to zero) is 160 in decimal notation. In this
example, BMXMAPOF would contain the value X'00A0'.

26 CICS Transaction Server for VSE/ESA Customization Guide

 Basic Mapping Support exits

BMXBUF
is the offset of the field in the device buffer. Usually—that is, when the map
dimensions are the same as the current screensize in use by the device—this
value will be the same as that of BMXMAPOF. However, using the example
given in the BMXMAPOF description above, if MYMAP is sent to a device
currently using a 24 by 80 screensize, the offset of the field in the device buffer
(again relative to zero) is 320 in decimal notation. In this example, BMXBUF
would contain the value X'0140'.

Programming the XBMIN exit
This section contains some considerations specific to the XBMIN exit.

The actual data length (in BMXACTLN) may be less than the length defined in the
map (in BMXMAPLN). This could happen, for example, if a terminal operator does
not completely fill a data entry field. In this case, BMS will have right- or
left-justified the data in the field and padded the field with blank or zero characters.
This justification and padding occurs before the exit is invoked. Your exit program
can, by checking the bit settings in the BMXFDFB field, determine how BMS
performed justification and padding for the field.

The actual data length (in BMXACTLN) may be greater than the length defined in
the map (in BMXMAPLN). This could happen, for example, if a map contains an
unprotected field which is not immediately followed by another field. This allows
the terminal operator to enter data past the end of the field. When this occurs, the
data field is truncated by BMS according to the length defined for the field in the
map. However, BMXACTLN contains the length of data found in the inbound
datastream.

When modifying data in the XBMIN exit, the safest method is to use the length
provided in BMXMAPLN, but to ensure that any pad characters added by BMS are
preserved.

BMXATTR must be ignored in the XBMIN exit; it always contains binary zeroes.

Programming the XBMOUT exit
This section contains some considerations specific to the XBMOUT exit.

The actual data length (in BMXACTLN) may be less than the length defined in the
map (in BMXMAPLN). This occurs due to the compression of trailing nulls
performed by BMS for each output field.

The actual length of data cannot be changed in the exit program. The exit is
invoked after the output datastream has been generated; consequently, an attempt
to alter the data length could result in an invalid datastream. Therefore, if an
XBMOUT exit program modifies data, it must do so with reference to the length
value in BMXACTLN.

BMXDATA may contain a null value. This can be caused by a SEND MAP request
with the MAPONLY option when the map has fields without default data; this
causes BMS to send an attribute sequence for the field but no data.

BMXATTR may contain a null value. This can be caused by a SEND MAP request
with the DATAONLY option, when the application is updating the data in a field and
not the attributes.

 Chapter 1. Global user exit programs 27

 Basic Mapping Support exits

Cumulative mapping operations: When an application is performing cumulative
mapping—that is, issuing a sequence of SEND MAP commands with the ACCUM
option—BMS builds a composite display in which a single page of output might be
constructed from multiple SEND MAP requests. When cumulative mapping occurs,
the XBMOUT exit is called when a page has been built, not as each SEND MAP
request is processed.

Message routing: When an application builds a routing message—for example, it
issues a ROUTE command followed by one or more SEND MAP commands with
the SET or PAGING option specified—the XBMOUT exit is invoked in the same
way as for a non-routed mapping request.

However, the UEPBMTCT parameter is passed as a null value for a routed
message. This is because a routed message may be destined for multiple devices,
and BMS has optimized the features supported by the devices targeted by the
routed message. When processing a routed message in the XBMOUT exit,
referencing the TCTTE for any of these devices would probably not be relevant.

28 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher domain exits

Dispatcher domain exits XDSBWT and XDSAWT
The XDSBWT and XDSAWT exit points are located before and after an operating
system wait. CICS services cannot be used in any exit program invoked from
these exit points.

 XDSBWT
Table 8. Exit XDSBWT

When
invoked

Before an operating system wait issued by the quasireentrant CICS
TCB.

Exit-specific
parameters

None.

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
commands

Must not be used.

 XDSAWT
Table 9. Exit XDSAWT

When
invoked

After an operating system wait issued by the quasireentrant CICS
TCB.

Exit-specific
parameters

None

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 29

 dump domain exits

Dump domain exits XDUREQ, XDUREQC, XDUCLSE, and XDUOUT
There are four exits in the dump domain.

 XDUREQ
Table 10 (Page 1 of 2). Exit XDUREQ

When
invoked

Immediately before a system or transaction dump is taken.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPDUMPC Address of copy of the 8-byte dump code.

UEPDUMPT Address of the 1-byte dump-type identifier, which
contains one of the following values:

UEPDTRAN A transaction dump was requested.

UEPDSYST A system dump was requested.

Note: The dump-type identifier indicates the type of
dump request that was passed to the dump domain. It
does not reflect any modification that may have been
made to the original request by a user entry in the
dump table.

UEPABCDE Address of a copy of the 8-byte Kernel error code in
the format xxx/yyyy. xxx denotes the 3-digit
hexadecimal VSE/ESA completion code (for example
0C1). If a VSE/ESA completion code is not applicable,
xxx is three hyphens. The 4-digit code yyyy is a user
abend code produced either by CICS or by another
product on your system. UEPABCDE is completed
only for abend codes corresponding to the following
dump codes:

 AP0001
 SR0001
 ASRA
 ASRB
 ASRD

Otherwise this field contains null characters.

UEPXDSCP 4-byte reserved field.

UEPXDTXN Address of a 1-byte field which represents the current
dump table TRANDUMP setting. It contains one of the
following values:

UEPXDYES A transaction dump was taken.

UEPXDNO A transaction dump was not taken.

This field may be modified by the exit to update the
dump table TRANDUMP setting.

Note: This field is only valid if UEPDUMPT contains
the value UEPDTRAN.

30 CICS Transaction Server for VSE/ESA Customization Guide

 dump domain exits

Table 10 (Page 2 of 2). Exit XDUREQ

UEPXDSYS Address of a 1-byte field which represents the current
dump table SYSDUMP setting. It contains one of the
following values:

UEPXDYES A system dump was taken.
UEPXDNO A system dump was not taken.

This field may be modified by the exit to update the
dump table SYSDUMP setting.

UEPXDTRM Address of a 1-byte field which represents the current
dump table SHUTDOWN setting. It contains one of
the following values:

UEPXDYES The CICS system is to shutdown.
UEPXDNO The CICS system is not to shutdown.

This field may be modified by the exit to update the
dump table SHUTDOWN setting.

UEPXDMAX Address of a 4-byte field which contains the current
dump table MAXIMUM setting. This field may be
modified by the exit to change the current dump table
MAXIMUM setting. A change to the MAXIMUM setting
will not suppress this dump request. A return code of
UERCBYP may be used to suppress the current dump
request.

UEPXDCNT Address of a 4-byte field which contains the current
dump table CURRENT setting.

UEPXDTST Address of a 16-byte field which contains the current
dump table statistics for this dumpcode. The
addressed field consists of four 4-byte fields containing
binary integers:

Number of transaction dumps taken
Number of transaction dumps suppressed
Number of system dumps taken
Number of system dumps suppressed

Note: Statistics for transactions dumps are only valid
if UEPDUMPT contains the value UEPDTRAN.

UEPXDDAE 4-byte reserved field.

UEPDMPID Address of a 9-character field in the format xxxx/xxxx,
containing the dump identifier. The dump ID is in the
same format as that output by the corresponding dump
message.

Return codes UERCNORM Continue processing.

UERCBYP Suppress dump.

UERCPURG Task purged during XPI call.

XPI calls WAIT_EXTERNAL can be used only when UEPDUMPT indicates
that a transaction dump is being taken. Do not use any other calls .

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 31

 dump domain exits

The sample program for the XDUREQ exit, DFH$XDRQ
CICS supplies a sample program for the XDUREQ exit, which shows you how to
manipulate the dump table entry, and how to permit or suppress the dump.

 XDUREQC
Table 11 (Page 1 of 2). Exit XDUREQC

When
invoked

Immediately after a system or transaction dump has been taken (or
has failed or been suppressed).

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPDUMPC Address of copy of the 8-byte dump code.

UEPDUMPT Address of the 1-byte dump-type identifier, which
contains one of the following values:

UEPDTRAN A transaction dump was requested.
UEPDSYST A system dump was requested.

Note: The dump-type identifier indicates the type of
dump request that was passed to the dump domain. It
does not reflect any modification that may have been
made to the original request by a user entry in the
dump table.

UEPABCDE Address of a copy of the 8-byte Kernel error code in
the format xxx/yyyy. xxx denotes the 3-digit
hexadecimal VSE/ESA completion code (for example
X'0C1'). If a VSE/ESA completion code is not
applicable, xxx is three hyphens. The 4-digit code
yyyy is a user abend code produced either by CICS or
by another product on your system. UEPABCDE is
completed only for abend codes corresponding to the
following dump codes:

 AP0001
 SR0001
 ASRA
 ASRB
 ASRD

Otherwise this field contains null characters.

UEPXDSCP 4-byte reserved field.

UEPXDTXN Address of a 1-byte field indicating the current dump
table TRANDUMP setting. It contains one of the
following values:

UEPXDYES A transaction dump was taken.
UEPXDNO A transaction dump was not taken.

This field may be modified by the exit to update the
dump table TRANDUMP setting.

Note: This field is only valid if UEPDUMPT contains
the value UEPDTRAN.

32 CICS Transaction Server for VSE/ESA Customization Guide

 dump domain exits

Table 11 (Page 2 of 2). Exit XDUREQC

 UEPXDSYS Address of a 1-byte field indicating the current dump
table SYSDUMP setting. It contains one of the
following values:

UEPXDYES A system dump was taken.
UEPXDNO A system dump was not taken.

This field may be modified by the exit to update the
dump table SYSDUMP setting.

UEPXDTRM Address of a 1-byte field indicating the current dump
table SHUTDOWN setting. It contains one of the
following values:

UEPXDYES The CICS system is to shutdown.
UEPXDNO The CICS system is not to shutdown.

This field may be modified by the exit to update the
dump table SHUTDOWN setting.

UEPXDMAX Address of a 4-byte field which contains the current
dump table MAXIMUM setting. This field may be
modified by the exit to change the current dump table
MAXIMUM setting.

UEPXDCNT Address of a 4-byte field which contains the current
dump table CURRENT setting.

UEPXDTST Address of a 16-byte field which contains the current
dump table statistics for this dumpcode. The
addressed field consists of four 4-byte fields containing
binary integers:

Number of transaction dumps taken
Number of transaction dumps suppressed
Number of system dumps taken
Number of system dumps suppressed

Note: Statistics for transactions dumps are valid only
if UEPDUMPT contains the value UEPDTRAN.

UEPXDDAE 4-byte reserved field.

UEPDMPID Address of a 9-character field in the format xxxx/xxxx,
containing the dump identifier. The dump ID is the
same as that output by the corresponding dump
message.

UEPDRESP Address of the 2-byte dump response code.

UEPDREAS Address of the 2-byte dump reason code.

 Return
codes

UERCNORM Continue processing.

XPI calls WAIT_EXTERNAL can be used only when UEPDUMPT indicates that
a transaction dump is being taken. Do not use any other calls.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 33

 dump domain exits

 XDUCLSE
Table 12. Exit XDUCLSE

When
invoked

Immediately after a transaction dump data set has been closed.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPDMPDD Address of an 8-byte field containing the 7-byte dump
data set ddname, padded with a blank.

UEPDMPDSN Address of the 44-byte dump data set dsname.

Return codes UERCNORM Continue processing.

UERCSWCH The autoswitch flag is set on.

XPI calls WAIT_EXTERNAL can be used. Do not use any other calls .

API and SPI
commands

Must not be used.

 XDUOUT
Table 13. Exit XDUOUT

When
invoked

Before a record is written to the transaction dump data set.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPDMPFC Address of the 1-byte function code. The equated
values are:

UEPDMPWR Buffer is about to be written.
UEPDMPRE Dump is about to restart after

autoswitch.
UEPDMPAB Abnormal termination of dump.
UEPDMPDY Buffer is about to be written, and the

CICS dump data set is a dummy file or
is closed.

UEPDMPBF Address of the dump buffer, whose length is
addressed by the parameter UEPDMPLEN.

UEPDMPLEN Address of the 2-byte dump-buffer length.

Return codes UERCNORM Continue processing.

UERCBYP Suppress dump record output.

XPI calls WAIT_EXTERNAL can be used. Do not use any other calls .

API and SPI
commands

Must not be used.

34 CICS Transaction Server for VSE/ESA Customization Guide

 dynamic transaction backout program exits

Dynamic transaction backout program exits XDBINIT, XDBIN,
XDBFERR, and XDBDERR

For guidance information about the exits in the dynamic transaction backout
program, refer to the CICS Recovery and Restart Guide.

Coding the exit programs
You can modify recoverable resources in dynamic transaction backout exit
programs, but note the following:

� CICS services can be invoked from exit programs at any of these exits using
the XPI or EXEC CICS commands, but there are restrictions on the use of
EXEC CICS:

– Your exit program must not issue EXEC CICS commands if recovery is as
the result of an EXEC CICS SYNCPOINT ROLLBACK request. (You can
discover whether this is the case by examining the UEPDBTYP exit-specific
parameter passed to the XDBINIT exit, which is invoked on entry to the
dynamic transaction backout program.)

– It is unwise to issue any file control requests when backing out file
resources. If your exit program does issue file control requests, note that:

- A READ UPDATE should be properly unlocked, either implicitly or
explicitly, or backout may be locked out.

- In the XDBFERR exit, do not disable or close files, or you could cause
further error conditions.

– In the XDBINIT exit, avoid changes to recoverable transient data and
temporary storage because they will back out immediately.

– In the XDBINIT exit, the current DL/I PSB should be left scheduled; it
should not be terminated.

– Exit programs that issue EXEC CICS commands must first address the
EIB. See “Using CICS services” on page 5.

– Exit programs which issue EXEC CICS requests cannot link to a program
running AMODE 24.

– Exit programs that issue EXEC CICS commands, and that use the
DFHEIENT macro, should use the DFHEIRET macro to set a return code
and return to CICS. See “Returning values to CICS” on page 10.

– If they issue EXEC CICS commands, programs invoked from these exits
must be translated with the NOEDF option. See “Using EDF with global
user exits” on page 6.

� File control operations are performed by the dynamic transaction backout
program and changes made to files (including those performed in user exits)
are recorded in the system log by the file control program.

� In the XDBIN exit, you can set a return code to ignore a file-related record if,
for example, backout for a particular file is to be suppressed for some reason.

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when a dynamic
transaction backout request is issued from any of these exits.

Use of the recursion counter UEPRECUR is recommended.

 Chapter 1. Global user exit programs 35

 dynamic transaction backout program exits

 XDBINIT
Table 14. Exit XDBINIT

When
invoked

On entry to the dynamic transaction backout program.

Exit-specific
parameters

UEPDBTYP 1-byte flag indicating why dynamic backout was
invoked:

UEPROLLB SYNCPOINT ROLLBACK request
UEPABEND Abend processing.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYPD Suppress all DL/I backout.

UERCBYPA Suppress all backout.

UERCPURG Task purged during XPI call.

Return code values of ‘UERCBYPD’ and ‘UERCBYPA’ cause any
databases updated by DL/I to be closed by DL/I backout failure
processing.

XPI calls All can be used.

API and SPI
commands

Most can be used. See page 35 for restrictions.

 XDBIN
Table 15. Exit XDBIN

When
invoked

Each time a non-DL/I dynamic log record is read in.

Exit-specific
parameters

UEPDLOGR Address of dynamic log record. The dynamic log
record can be mapped using the DSECT DFHDBRDS.
You can determine the type of dynamic log record
read by testing field DBRMODFN (defined in
DFHDBRDS) with values provided by copy book
DFHFMIDS.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP The dynamic transaction backout program should
ignore this dynamic log record.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Most can be used. See page 35 for restrictions.

36 CICS Transaction Server for VSE/ESA Customization Guide

 dynamic transaction backout program exits

 XDBFERR
Table 16 (Page 1 of 2). Exit XDBFERR

When
invoked

The dynamic transaction backout program invokes the file control
program to perform backout. Exit XDBFERR is invoked if the file
control program returns with an error, or if the dynamic transaction
backout program itself detects an error during its file backout
processing.

Exit-specific
parameters

UEPDLOGR The address of the dynamic log record. The dynamic
log record can be mapped using the DSECT
DFHDBRDS.

This parameter is followed by a 4-byte reserved field in the parameter
list.

UEPFCTE The address of the file control table (FCT) entry, if any.
(See the note that follows this parameter list.) The
FCT can be mapped using the DSECT DFHFCTDS.

UEPFCRSP The address of the file control response byte. This
can have one of the following values:

UENORESP Normal response.
UEFILERR File not found.
UEINVREQ Invalid request.
UEILOGIC VSAM illogical error.
UENOTOPN Not open.
UEDISAB Disabled.
UEENDFIL End of file.
UEIOEROR I/O error.
UENOTFND Record not found.
UEDUPREC Duplicate record.
UENOSPAC No space available.
UELENGER Length error.
UEDUPKEY Duplicate key in alternate index (AIX).
UEPURGED Transaction canceled.
UEDISAST Disastrous error detected.

A value of UEPFCRSP other than one of those listed
above indicates that File Control detected an invalid
request.

UEPERR The address of a one-byte field containing the error
type. The values of the error-byte and their meanings
are described in “Values of the error byte pointed to by
UEPERR” on page 38, and are defined using copy
book DFHDBRDS.

UEPFDATA Address of a variable-length field containing the data in
the file control request.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

 Chapter 1. Global user exit programs 37

 dynamic transaction backout program exits

Table 16 (Page 2 of 2). Exit XDBFERR

UEPFLEN Address of a fullword containing the length of the data
in the file control request.

Note: UEPFCTE, UEPFDATA, and UEPFLEN contain valid values
depending on the type of error reported by UEPFCRSP. For
example, if the byte addressed by UEPFCRSP contains ‘UEFILERR’
(file not found), then UEPFCTE and UEPFDATA are zero.

Return codes UERCNORM Continue processing and invoke CICS backout failure
control.

UERCBYP Ignore the error (do not invoke CICS backout failure
control) and continue.

UERCRTRY Retry the request or, if the error type (UEPERR) is
DBFEWA, reapply the record.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Most can be used. See page 35 for restrictions.

Values of the error byte pointed to by UEPERR
Field UEPERR in the XDBFERR parameter list points to the error byte in the
dynamic log record. The error byte can contain one of the following values:

DBFEGU
An error response has been returned from the file control program (DFHFCVS)
while servicing a GET UPDATE request. DFHDBP has attempted to retrieve
the existing copy of the record before backing it out. Parameter UEPFCRSP
(which gives the address of the byte containing the response to the file control
request) in combination with the type of dynamic log record pointed to by
UEPDLOGR (“read for update” or “write add”) can be used in the exit to
determine the specific problem.

DBFELE
The area acquired in DFHFCVS is not large enough to receive the before-copy
data picked up from the dynamic log to perform the backout. The parameter
UEPFDATA points to the record. Parameter UEPFLEN points to a field
containing the length of the record. Parameter UEPFCRSP does not apply to
this error.

DBFEPU
An error response has been returned from DFHFCVS while servicing a PUT
UPDATE request. DFHDBP has attempted to replace the existing copy of the
record on the file with the “before-copy” held in the dynamic log record pointed
to by UEPDLOGR. Use parameter UEPFCRSP to determine which error
occurred.

DBFEPN
An error response has been returned from DFHFCVS while servicing a PUT
NEW request. DFHDBP has attempted to add the “before-copy” of a deleted
VSAM KSDS record. Use parameter UEPFCRSP to determine the specific
error.

38 CICS Transaction Server for VSE/ESA Customization Guide

 dynamic transaction backout program exits

DBFEWA
If the record read from the restart data set is a WRITE ADD, the record is read
in from the file using a GET UPDATE. For DAM and VSAM-ESDS data sets,
no delete function exists. Because DFHDBP does not attempt to delete the
record that has been added, you may, in your exit program, “mark” the existing
record on the file as deleted according to application-dependent logic. Mark
the version of the record to which UEPFDATA points. If you want to reapply
this version, specify return code ‘UERCRTRY’. UEPFLEN points to a field
containing the length of the record.

Parameter UEPFCRSP does not apply; it contains a normal response from the
READ UPDATE.

DBFEVD
An error response has been returned from the DFHFCVS while servicing a
VSAM-DELETE request. DFHDBP has attempted to delete a new record
added to a VSAM key-sequenced data set or a VSAM relative-record data set.
Use parameter UEPFCRSP to determine the specific error.

 XDBDERR
Table 17. Exit XDBDERR

When
invoked

When the DL/I backout routine detects an error, its error message is
routed to CSMT and exit XDBDERR is given control.

Exit-specific
parameters

UEPDLOGR Address of dynamic log record. The dynamic log
record can be mapped using the DSECT DFHDBRDS.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

Note: Any databases updated by DL/I are now closed
by DL/I backout failure control.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Most can be used. See page 35 for restrictions.

 Chapter 1. Global user exit programs 39

 EXEC interface program exits

EXEC interface program exits XEIIN and XEIOUT
There are two global user exit points in the EXEC interface program. XEIIN is
invoked before the execution of an EXEC CICS command. The sequence is:

TRACE – XEIIN – EDF – command

XEIOUT is invoked after execution of an EXEC CICS command. The sequence is:

command – EDF – XEIOUT – TRACE

Note: Asynchronous processing of XEIIN and XEIOUT may occur if the
transaction is suspended (for example, during file I/O wait). This situation
may also occur under CEDF because it issues its own EXEC CICS
commands between the application’s XEIIN and XEIOUT exits.

Thus if the same GWA is shared between the XEIIN and XEIOUT exits,
these possibilities must be allowed for to ensure integrity of the data and to
prevent unpredictable results.

On entry to the exits, the exit-specific parameter UEPARG contains the address of
the command parameter list.

The command parameter list
The first parameter in the list points to a string of data known as argument 0 . The
other parameters point to the values specified for the parameters passed on the
command.

Argument 0 begins with a 2-byte function code that identifies the command.
(Function codes are documented in Appendix A of the CICS Application
Programming Reference manual.) The function code is followed by a 2-byte field
containing “existence bits”, that indicate whether arguments are passed on the
command. For example, consider the command:

EXEC CICS LINK PROGRAM(‘MYPROG’)

Here, argument 0 begins with the function code X'0E02' (LINK). Existence bit 1 is
set, indicating that there is an argument 1 (namely, ‘MYPROG’).

The correspondence between command parameters (such as PROGRAM) and
their positions and values in the parameter list (in this case, argument 1,
‘MYPROG’) can be deduced from the translated code for the particular command.

40 CICS Transaction Server for VSE/ESA Customization Guide

 EXEC interface program exits

Warning: Modifying CICS commands by tampering with argument 0 is not
supported, and leads to unexpected errors or results.

For example, if an application program is written in assembler or PL/I and you
modify argument 0, you will be writing to program storage (that is, storage occupied
by the program itself), which could cause protection exception abends.
Furthermore, modifying argument 0 not only alters the CICS command for this
execution of the command in the application program, it changes the CICS
command in the virtual storage copy of the application program. This means that
the next task to invoke the same copy of the program will also execute the modified
command.

This particular example of the danger of tampering with argument 0 does not apply
to COBOL or C application programs, but nevertheless you should not modify CICS
commands for application programs written in any supported language.

 Bypassing commands
Your XEIIN exit program can bypass execution of a command by setting the
UERCBYP return code. If you do this, EDF is not invoked, but XEIOUT and exit
trace are invoked if they are active.

Before setting UERCBYP, your program should check the value pointed to by
UEPPGM, to ensure that it is not bypassing an EXEC CICS command issued by
CICS.

 XEIIN
Table 18. Exit XEIIN

When
invoked

Before the execution of an EXEC CICS command.

Exit-specific
parameters

UEPARG Address of the EXEC command parameter list.

UEPEXECB Address of the system EIB.

UEPUSID Address of the 8-character userid.

UEPPGM Address of the 8-character application program name.

UEPLOAD Address of the application program’s load-point.

UEPRSA Address of the application’s register save area. This
contains the contents of the registers at the point when
the program issued the EXEC CICS command.

Return codes UERCNORM Continue processing.

UERCBYP Bypass the execution of this command.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 41

 EXEC interface program exits

 XEIOUT
Table 19. Exit XEIOUT

When
invoked

After the execution of an EXEC CICS command.

Exit-specific
parameters

UEPARG Address of the EXEC command parameter list.

UEPEXECB Address of the system EIB.

UEPUSID Address of the 8-character userid.

UEPPGM Address of the 8-character application program name.

UEPLOAD Address of the application program’s load-point.

UEPRSA Address of the application’s register save area. This
contains the contents of the registers at the point when
the program issued the EXEC CICS command.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

42 CICS Transaction Server for VSE/ESA Customization Guide

 file control open/close program exit

File control open/close program exit XFCNREC
You can use XFCNREC to suppress the open failure that occurs when a mismatch
is detected between the backout recovery setting for the file and its associated data
set.

XFCNREC is invoked only if a mismatch is detected.

It is intended for use by those who wish to continue with open processing even
though the backout recovery settings for different files associated with the same
base data set are not consistent.

After an open failure has been suppressed, CICS can no longer guarantee the
integrity of the data set and will mark it accordingly. Any subsequent EXEC CICS
INQUIRE DSNAME or CEMT INQUIRE DSNAME RECOVSTATUS returns
NOTRECOVABLE. Logging continues for the data set for requests using any file
that has BACKOUT on its definitions, but not for those that do not have BACKOUT.

The mismatch state of the data set survives until the next EXEC CICS or CEMT
SET DSNAME REMOVE or COLD START (if the associated data set is not in
backout failed state).

At the point at which the mismatch is accepted, CICS issues a message to warn
that integrity can no longer be guaranteed.

The order in which files are opened for the same base data set will determine the
content of the message received on suppression of an open failure using
XFCNREC. If the base cluster block is set as unrecoverable and a mismatch has
been allowed, access may be allowed to the data set, through an unrecoverable
file, before the data set is fully recovered.

To provide a means of selecting which mismatches to accept and which to reject,
three parameters are passed to the exit. These are the address of the filename,
the address of the base data set name, and the address of a byte containing the
file backout indicator. Because the exit is driven only if there is a mismatch, the
data set backout indicator can be derived from the setting for the file.

Note: If XFCNREC is used to suppress an open failure due to a mismatch, the
global user exit XFCSREQC will pass the base data set backout setting as the exit
parameter UEFBCLOG, and not the file backout setting, which may be different.

 Chapter 1. Global user exit programs 43

 file control open/close program exit

Table 20. Exit XFCNREC

When
invoked

Before file open when a mismatch is detected between the backout
recovery setting for the file and its associated data set.

Exit-specific
parameters

UEFILE Address of an 8-byte field containing the 7-byte file
name. CICS pads the field with blanks.

UEDSETN Address of the 44-byte base data set name. If the
data set name is less than 44 characters in length, it
will be padded with blanks.

UEPFRCV Address of a 1-byte field containing the backout
recovery setting for the file. Possible values are:

UEFBCLOG Backout specified for file.

Return codes UERCNORM Fail open as normal.

UERCBYP Bypass open failure—accept mismatch.

XPI calls Must not be used.

API and SPI
calls

Must not be used.

44 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

File control EXEC interface API exits XFCREQ and XFCREQC
The XFCREQ exit allows you to intercept a file control application programming
interface (API) request before any action has been taken on it by file control. The
XFCREQC exit allows you to intercept a file control API request after file control
has completed its processing.

Note: For information about the XFCAREQ and XFCAREQC exits that are
invoked for file control SPI requests, see “File control EXEC interface SPI exits
XFCAREQ and XFCAREQC” on page 57.

The API commands affected are:

 � READ
 � WRITE
 � REWRITE
 � DELETE
 � UNLOCK
 � STARTBR
 � READNEXT
 � READPREV
 � ENDBR
 � RESETBR

Using XFCREQ, you can:

� Analyze the request, to determine its type, the keywords specified, and their
values.

� Modify any value specified by the request before the command is executed.

� Set return codes to specify that either:

– CICS should continue with the (possibly modified) request.

– CICS should bypass the request. (Note that if you set this return code, you
must also set up return codes for the EXEC interface block (EIB), as if you
had processed the request yourself.)

Using XFCREQC, you can:

� Analyze the request, to determine its type, the keywords specified, and their
values.

� Set return codes for the EIB.

Both exits are passed seven parameters as follows:

� The address of the command-level parameter structure

� The address of a token (UEPFCTOK) used to pass 4 bytes of data from
XFCREQ to XFCREQC

� The addresses of copies of three pieces of return code information from the
EIB

� The address of a token (UEPTSTOK) that is valid throughout the life of a task

� The address of a recursion count field

 Chapter 1. Global user exit programs 45

 file control EXEC interface API exits

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of a bit string
that describes the type of request and identifies each keyword specified with the
request. The remaining addresses point to pieces of data associated with the
request. (For example, the second address always points to the file name.)

Only the first 8 addresses and the last address can be referenced by the user
exit. Addresses nine through eleven are reserved for CICS internal use .

You can examine the EID to determine the type of request and the keywords
specified. You can examine the other parameters in the list to determine the
values of the keywords. You can also modify values of keywords specified on the
request. (For example, you could change the name of the file involved in the
request.)

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first six addresses
(FC_ADDR0, the address of the EID, to FC_ADDR5, the address of the
KEYLENGTH), the high-order bit is set on in FC_ADDR5. If you extend the
parameter list by setting the address of a SYSID in FC_ADDR7, you must unset
the high-order bit in FC_ADDR5 and set it on in FC_ADDR7 instead.

The original parameter list, as it was before XFCREQ was invoked, is restored after
the completion of XFCREQC. It follows that the execution diagnostic facility (EDF)
displays the original command before and after execution. EDF does not display
any changes made by the exit .

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
included in both exit XFCREQ and exit XFCREQC. The command-level parameter
structure contains 12 addresses, FC_ADDR0 through FC_ADDRB. It is defined in
the DSECT FC_ADDR_LIST, which you should copy into your exit program by
including the statement COPY DFHFCEDS.

The command-level parameter list is made up as follows:

FC_ADDR0
is the address of a 9-byte area called the EID, which is made up as follows:

 FC_GROUP
 FC_FUNCT
 FC_BITS1
 FC_BITS2
 FC_EIDOPT5
 FC_EIDOPT6
 FC_EIDOPT7
 FC_EIDOPT8

46 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

The name of the DSECT mapping the EID is FC_EID.

FC_GROUP Always X'06', indicating that this is a file control request.

FC_FUNCT One byte that defines the type of request:

X'02' READ
X'04' WRITE
X'06' REWRITE
X'08' DELETE
X'0A' UNLOCK
X'0C' STARTBR
X'0E' READNEXT
X'10' READPREV
X'12' ENDBR
X'14' RESETBR

FC_BITS1 Existence bits that define which keywords that contain
values were specified. To obtain the value associated with
a keyword, you need to use the appropriate address from
the command-level parameter structure. Before using this
address, you must check the associated existence bit. If
the existence bit is set off, the keyword was not specified in
the request and the address should not be used.

X'80' Set if the request contains the keyword FILE. If
set, FC_ADDR1 is meaningful.

X'40' Set if the request contains any of the keywords
INTO, SET, or FROM. If set, FC_ADDR2 is
meaningful.

X'20' Set if the request specifies LENGTH or
NUMREC, or if a STARTBR, RESETBR, or
ENDBR request specifies REQID. If set,
FC_ADDR3 is meaningful.

X'10' Set if the request specifies RIDFLD. If set,
FC_ADDR4 is meaningful.

X'08' Set if the request specifies KEYLENGTH. If set,
FC_ADDR5 is meaningful.

X'04' Set if the request is READNEXT or READPREV
and specifies REQID. If set, FC_ADDR6 is
meaningful.

X'02' Set if the request specifies SYSID. If set,
FC_ADDR7 is meaningful.

X'01' Not used by file control.

FC_BITS2 Second set of existence bits.

X'20' Set if the request specifies TOKEN. If set,
FC_ADDRB is meaningful.

FC_EIDOPT5 Indicates whether certain keywords that do not take values
were specified on the request.

X'04' MASSINSERT specified.
X'02' RRN specified.
X'01' SET (and not INTO) was specified.

 Chapter 1. Global user exit programs 47

 file control EXEC interface API exits

Note: Your program must test for keywords at the bit
level, because there may be more than one of these
keywords present.

FC_EIDOPT6 Indicates whether certain keywords that do not take values
were specified on the request.

X'80' RBA specified.
X'40' GENERIC specified.
X'20' GTEQ specified.

Note: Your program must test for keywords at the bit
level, because there may be more than one of these
keywords present.

FC_EIDOPT7 Indicates whether certain keywords that do not take values
were specified on the request.

X'04' UPDATE specified.
X'01' Either DEBREC or DEBKEY specified. (See

FC_EIDOPT8)

Note: Your program must test for keywords at the bit
level, because there may be more than one of these
keywords present.

FC_EIDOPT8 Indicates whether certain keywords that do not take values
were specified on the request.

X'80' DEBKEY specified.
X'40' DEBREC specified.
X'20' TOKEN specified.

FC_ADDR1
is the address of an 8-byte area containing the name from FILE.

FC_ADDR2
is the address of one of the following:

� A 4-byte address returned for SET (if the request is READ, READNEXT, or
READPREV, and if FC_EIDOPT5 indicates that this is SET).

� Data returned for INTO (if the request is READ, READNEXT, or
READPREV, and if FC_EIDOPT5 indicates that this is not SET).

� Data from FROM (if the request is WRITE or REWRITE).

FC_ADDR3
is the address of one of the following:

� The halfword value of LENGTH (if the request is READ, WRITE,
REWRITE, READNEXT, or READPREV).

Warning: For requests that specify INTO, do not change the value of
LENGTH to a value greater than that specified by the application. To do so
causes a storage overlay in the application.

� The returned halfword value of NUMREC (if the request is DELETE).

� The halfword value of REQID (if the request is STARTBR, RESETBR, or
ENDBR).

48 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

FC_ADDR4
is the address of an area containing the value of the RIDFLD keyword.

FC_ADDR5
is the address of the halfword value of KEYLENGTH.

FC_ADDR6
is the address of the halfword value of REQID (if the request is READNEXT or
READPREV).

FC_ADDR7
is the address of an area containing the value of SYSID.

FC_ADDR8
is the address of a value intended for CICS internal use only. It must not be
used.

FC_ADDR9
is the address of a value intended for CICS internal use only. It must not be
used.

FC_ADDRA
is the address of a value intended for CICS internal use only. It must not be
used.

FC_ADDRB
is the address of the fullword value of TOKEN (if the request is READ,
REWRITE, DELETE, or UNLOCK).

Modifying fields in the command-level parameter structure
Some fields that are passed to file control are used as input to the request, some
are used as output fields, and some are used for both input and output. The
method your user exit program uses to modify a field depends on the usage of the
field.

A list of input and output fields: The following are always input fields:

 FILE
 FROM
 KEYLENGTH
 REQID
 SYSID

The following are always output fields:

 INTO
 NUMREC
 SET

Whether LENGTH and RIDFLD are input or output fields depends on the request,
as shown in Table 21. A dash (—) means that the keyword cannot be specified on
the request.

 Chapter 1. Global user exit programs 49

 file control EXEC interface API exits

Notes:

1. Normally, this is an input field. However, if UPDATE is specified and the file is
a DAM file using extended key search, RIDFLD is used for both input and
output.

2. The use of RIDFLD on a WRITE request depends on the file type. For a
VSAM KSDS or RRDS, or a fixed-format DAM file, RIDFLD is an input field.
For all other file types, it is used either for output only, or for both input and
output, and should be treated like an output field.

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command-level parameter list to
point to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command-level parameter list. To do so would corrupt storage belonging
to the application program and would cause a failure when the program attempted
to reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field, you can modify the
application’s data in place, because the application is expecting the field to be
modified anyway.

Modifying fields used for both input and output: An example of a field that is
used for both input and output is LENGTH on a READ request that specifies INTO.
You can treat such fields in the same way as output fields, and they are considered
to be the same.

Table 21. LENGTH and RIDFLD as input and output fields

Request LENGTH RIDFLD

READ Output See Note 1.

WRITE Input See Note 2.

REWRITE Input —

DELETE — Input

UNLOCK — —

STARTBR — Input

READNEXT Output Output

READPREV Output Output

ENDBR — —

RESETBR — Input

50 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not
possible, for example, to change a WRITE request to a READ request.

However, you can make minor changes to requests, such as to turn on the
existence bit for SYSID so that the request can be changed into one that is shipped
to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

FC_BITS1

X'20' The existence bit for LENGTH, NUMREC, or REQID.
X'08' The existence bit for KEYLENGTH.
X'04' The existence bit for REQID if the request is READNEXT or

READPREV.
X'02' The existence bit for SYSID.

FC_EIDOPT5

X'04' MASSINSERT specified.

FC_EIDOPT6

X'40' GENERIC specified.
X'20' GTEQ specified.

Bits in the EID should be modified in place. You should not modify the pointer to
the EID: any attempt to do so is ignored by CICS.

The EID is reset to its original value before return to the application program. That
is, changes made to the EID are retained for the duration of the file control request
only.

Warning: Your user exit program is prevented from making major changes to the
EID. However, you must take great care when making the minor modifications that
are permitted. For instance, it is possible to change a DELETE into a GENERIC
DELETE, but to make such a change may be dangerous.

Use of the task token UEPTSTOK
UEPTSTOK provides the address of a 4-byte area that you can use to pass
information between successive file control requests in the same task. (By
contrast, UEPFCTOK is usable only for the duration of a single file control request,
because its contents may be destroyed at the end of the request.) For example, if
you need to pass information between successive invocations of the XFCREQ exit,
UEPTSTOK provides a means of doing this.

 Chapter 1. Global user exit programs 51

 file control EXEC interface API exits

Use of the parameter UEPFSHIP
UEPFSHIP contains the address of a 16-byte area. This area consists of 4
characters, followed by 3 fullwords. If the first byte contains 'Y', this request has
been function shipped to this region. In this case, if your exit program wants to
bypass file control (by setting a return code of UERCBYP), it must set the 3
fullwords as follows:

Fullword 1 The length of the buffer area.
Fullword 2 The length of the record.
Fullword 3 The length of the modified RIDFLD.

Doing this ensures that the data and RIDFLD are correctly shipped back.

 The EIB
Copies of EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit, so that
you can:

� Modify or set completion information in XFCREQ and XFCREQC.
� Examine completion information in XFCREQC.

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are
given in the parameter list. File Control copies your values into the real EIB after
the completion of XFCREQC; or if you specify a return code of ‘bypass’ in
XFCREQ.

You must set valid file control responses. You must set all three of EIBRCODE,
EIBRESP, and EIBRESP2 to a consistent set of values, such as would be set by
File Control to describe a valid completion. File Control does not police the
consistency of EIBRCODE, EIBRESP, and EIBRESP2 . To aid you in setting the
values of EIBRCODE, EIBRESP, and EIBRESP2, the values used by File Control
are specified in DFHFCEDS.

Example of how XFCREQ and XFCREQC can be used
XFCREQ and XFCREQC can be used for a variety of purposes. One example of a
possible use is given below.

In this example, XFCREQ and XFCREQC are used to obtain a record containing
compressed data, to decompress the data, and to return it to the area specified by
the user program as INTO. The example shows only the capabilities of the exits; it
is not intended to indicate an ideal way of achieving the function.

In XFCREQ:

1. Issue an EXEC CICS GETMAIN to obtain an area large enough to
hold the decompressed data.

2. Change the INTO pointer to point to this new area, so that File
Control uses it when it processes the request. (The decompressed
data is copied to the user’s INTO area, and the INTO pointer reset,
before return to the application program—see stages 4 on page 53
and 7 on page 53 of the processing to be done by XFCREQC.)

3. Set UEPFCTOK to be the address of the new area so that
XFCREQC can also use this area.

4. Return to CICS.

52 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

In XFCREQC:

1. Check ‘UEPRCODE’ to make sure that the file control request
completed without error.

2. Use UEPFCTOK to find the address of the area. This area now
holds the compressed data.

3. Decompress the data in place.

4. Copy the data from the new area to the user’s INTO area. Use the
user-specified LENGTH (from the command-level parameter list) to
ensure that the data fits and that the copy does not cause a storage
violation.

5. Set ‘LENGERR’ in UEPRESP, UEPRESP2, and UEPRCODE if the
data does not fit.

6. Use EXEC CICS FREEMAIN to free the work area pointed to by
UEPFCTOK.

7. At this point the command-level parameter list points to the now free
area as the address for INTO. This is not a problem, because after
completion of XFCREQC File Control restores this pointer to point to
the area supplied by the user program.

8. Return to CICS.

 Chapter 1. Global user exit programs 53

 file control EXEC interface API exits

 XFCREQ

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when a file
control request is issued from the XFCREQ exit. Use of the recursion counter
UEPRECUR is recommended.

Notes:

1. Exit programs that issue EXEC CICS commands must first address the EIB.
See “Using CICS services” on page 5.

2. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT
macro, should use the DFHEIRET macro to set a return code and return to
CICS. See “Returning values to CICS” on page 10.

Table 22. Exit XFCREQ

When
invoked

Before CICS processes a file control API request.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 46.

UEPFCTOK Address of the 4-byte token to be passed to
XFCREQC. This allows you, for example, to pass a
work area to exit XFCREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Use of the task token UEPTSTOK”
on page 51.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

UEPFSHIP Address of a 16 byte area. See “Use of the parameter
UEPFSHIP” on page 52.

Return codes UERCNORM Continue processing.

UERCBYP The file control EXEC interface program should ignore
this request.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

54 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface API exits

 XFCREQC

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when a file
control request is issued from the XFCREQC exit.

Use of the recursion counter UEPRECUR is recommended.

Notes:

1. Exit programs that issue EXEC CICS commands must first address the EIB.
See “Using CICS services” on page 5.

2. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT
macro, should use the DFHEIRET macro to set a return code and return to
CICS. See “Returning values to CICS” on page 10.

Table 23. Exit XFCREQC

When
invoked

After a file control API request has completed, and before return from
the file control EXEC interface program.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 46.

UEPFCTOK Address of the 4-byte token to be passed to
XFCREQC. This allows you, for example, to pass a
work area to exit XFCREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Use of the task token UEPTSTOK”
on page 51.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 55

 file control EXEC interface API exits

 Example program

CICS supplies—in hardcopy only—an example program, DFH$XTSE, that
shows how to modify fields in the command-level parameter structure passed to
EXEC interface exits. DFH$XTSE is listed on page 673.

56 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

File control EXEC interface SPI exits XFCAREQ and XFCAREQC
The XFCAREQ exit allows you to intercept a file control system programming
interface (SPI) request before any action has been taken it by file control. The
XFCAREQC exit allows you to intercept the response after a file control SPI
request has completed.

Note: For information about the XFCREQ and XFCREQC exits that are invoked
for file control API requests, see “File control EXEC interface API exits XFCREQ
and XFCREQC” on page 45.

The SPI requests affected are:

� EXEC CICS INQUIRE FILE
� EXEC CICS SET FILE.

Using XFCAREQ, you can:

� Analyze the SPI parameter list (function, keywords, argument values, and
responses)

� Modify any input parameter prior to execution of the request

� Prevent execution of a request and set appropriate responses.

Using XFCAREQC, you can:

� Analyze the SPI parameter list
� Modify any output parameter value and set responses after execution.

You can also:

� Pass data between your XFCAREQ and XFCAREQC exit programs when they
are invoked for the same request.

� Pass data between your file control exit programs when they are invoked within
the same task. You can pass data between successive invocations of
XFCAREQ and XFCAREQC and also between invocations of other
EXEC-enabled user exits.

If you make changes to file states (that is, if you open, close, enable, or disable a
file) it is possible that exits in the file state change program (XFCSREQ and
XFCSREQC) could modify situations set up by XFCAREQ. Therefore you must
consider the order in which the exits are invoked. If all four exits are enabled, the
order of invocation is as follows:

� For the SET FILE command:

 1. XFCAREQ
 2. XFCSREQ
 3. XFCSREQC
 4. XFCAREQC

� For the INQUIRE FILE command, only the XFCAREQ and XFCAREQC exits
are invoked:

 1. XFCAREQ
 2. XFCAREQC

 Chapter 1. Global user exit programs 57

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of a bit string
that describes the type of request and identifies each keyword specified with the
request. The remaining addresses point to pieces of data associated with the
request.

You can examine the EID to determine the type of request and the keywords
specified. You can examine the other parameters in the list to determine the
values of the keywords. You can also modify values of keywords specified on the
request.

Note: The relationship between arguments, keywords, data types, and input/output
types on the file control SPI commands is summarized in the following tables:

� For INQUIRE FILE, see Table 24 on page 65.
� For SET FILE, see Table 25 on page 66.

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first seven addresses
(FC_ADDR0, the address of the EID, to FC_ADDR6, the address of the
LSRPOOLID), the high-order bit is set on in FC_ADDR6. If you extend the
parameter list by setting the address of ACCESSMETHOD in FC_ADDR17, you
must unset the high-order bit in FC_ADDR6 and set it on in FC_ADDR17
instead.

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
passed to both XFCAREQ and XFCAREQC. It is the address of the
command-level parameter structure. The command-level parameter list contains 58
addresses, FC_ADDR0 through FC_ADDR57. These are described in DSECT
DFHFAUED, which you should copy into your program by including the statement
COPY DFHFAUED.

The command-level parameter list is made up as follows:

FC_ADDR0
is the address of a 13-byte area called the EID which is made up as follows:

 FC_GROUP
 FC_FUNCT
 FC_BITS1
 FC_BITS2
 FC_EIDOPT4
 FC_EIDOPT5
 FC_EIDOPT6
 FC_BITS3
 FC_BITS4
 FC_BITS5

58 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

 FC_BITS6
 FC_BITS7
 FC_BITS8

FC_GROUP Always X'4C', indicating that this is a file control SPI
request.

FC_FUNCT One byte that defines the type of request:

X'02' INQUIRE FILE
X'04' SET FILE.

FC_BITS1 Existence bits which specify which arguments were
specified. To obtain the argument associated with a
keyword, you need to obtain the appropriate address from
the command-level parameter structure. Before using this
address you must check the associated existence bit. If
the existence bit is set off, the argument was not specified
in the request and the address should not be used.

X'80' Set if the request contains an argument for the
FILE keyword. If set, FC_ADDR1 is meaningful.

X'40' Set if the request contains an argument for the
DSNAME keyword. If set, FC_ADDR2 is
meaningful.

X'20' Set if the request contains an argument for the
FWDRECSTATUS keyword. If set, FC_ADDR3
is meaningful.

X'10' Set if the request contains an argument for the
STRINGS keyword. If set, FC_ADDR4 is
meaningful.

X'08' Set if the request contains an argument for the
BASEDSNAME keyword. If set, FC_ADDR5 is
meaningful.

X'04' Set if the request contains an argument for the
LSRPOOLID keyword. If set, FC_ADDR6 is
meaningful.

X'02' Set if the request contains an argument for the
READ keyword. If set, FC_ADDR7 is
meaningful.

X'01' Set if the request contains an argument for the
UPDATE keyword. If set, FC_ADDR8 is
meaningful.

FC_BITS2 Existence bits which specify which arguments were
specified. The comments below FC_BITS1 also apply to
FC_BITS2.

X'80' Set if the request contains an argument for the
BROWSE keyword. If set, FC_ADDR9 is
meaningful.

X'40' Set if the request contains an argument for the
ADD keyword. If set, FC_ADDR10 is
meaningful.

 Chapter 1. Global user exit programs 59

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

X'20' Set if the request contains an argument for the
DELETE keyword. If set, FC_ADDR11 is
meaningful.

X'10' Not used by file control.

X'08' Set if the request contains an argument for the
EMPTYSTATUS keyword. If set, FC_ADDR13
is meaningful.

X'04' Set if the request contains an argument for the
OPENSTATUS keyword. If set, FC_ADDR14 is
meaningful.

X'02' Set if the request contains an argument for the
ENABLESTATUS keyword. If set, FC_ADDR15
is meaningful.

X'01' Set if the request contains an argument for the
RECOVSTATUS keyword. If set, FC_ADDR16
is meaningful.

FC_EIDOPT4 Not used by file control

FC_EIDOPT5 Not used by file control

FC_EIDOPT6 Not used by file control

FC_BITS3 Existence bits which specify which arguments were
specified. The comments below FC_BITS1 also apply to
FC_BITS3.

X'80' Set if the request contains an argument for the
ACCESSMETHOD keyword. If set,
FC_ADDR17 is meaningful.

X'40' Set if the request contains an argument for the
TYPE keyword. If set, FC_ADDR18 is
meaningful.

X'20' Set if the request contains an argument for the
OBJECT keyword. If set, FC_ADDR19 is
meaningful.

X'10' Set if the request contains an argument for the
REMOTESYSTEM keyword. If set,
FC_ADDR20 is meaningful.

X'08' Set if the request contains an argument for the
REMOTENAME keyword. If set, FC_ADDR21 is
meaningful.

X'04' Set if the request contains an argument for the
RECORDFORMAT keyword. If set,
FC_ADDR22 is meaningful.

X'02' Set if the request contains an argument for the
BLOCKFORMAT keyword. If set, FC_ADDR23
is meaningful.

X'01' Set if the request contains an argument for the
KEYLENGTH keyword. If set, FC_ADDR24 is
meaningful.

60 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

FC_BITS4 Existence bits which specify which arguments were
specified. The comments below FC_BITS1 also apply to
FC_BITS4.

X'80' Set if the request contains an argument for the
KEYPOSITION keyword. If set, FC_ADDR25 is
meaningful.

X'40' Set if the request contains an argument for the
RECORDSIZE keyword. If set, FC_ADDR26 is
meaningful.

X'20' Set if the request contains an argument for the
RELTYPE keyword. If set, FC_ADDR27 is
meaningful.

X'10' Set if the request contains an argument for the
EXCLUSIVE keyword. If set, FC_ADDR28 is
meaningful.

X'08' Set if the request contains an argument for the
BLOCKKEYLEN keyword. If set, FC_ADDR29
is meaningful.

X'04' Set if the request contains an argument for the
BLOCKSIZE keyword. If set, FC_ADDR30 is
meaningful.

X'02' Not used by file control.

X'01' Set if the request contains an argument for the
BUSY keyword. If set, FC_ADDR32 is
meaningful.

FC_BITS5 Existence bits which specify which arguments were
specified. The comments below FC_BITS1 also apply to
FC_BITS5.

X'80' Set if the request contains an argument for the
TABLE keyword. If set, FC_ADDR33 is
meaningful.

X'40' Set if the request contains an argument for the
MAXNUMRECS keyword. If set, FC_ADDR34
is meaningful.

X'20' Not used by file control.

X'10' Not used by file control.

X'08' Not used by file control.

X'04' Not used by file control.

X'02' Not used by file control.

X'01' Not used by file control.

FC_BITS6 Specifies whether certain keywords were specified on the
File control SPI command.

X'80' Set if the request contains the START keyword.

X'40' Set if the request contains the NEXT keyword.

 Chapter 1. Global user exit programs 61

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

X'20' Set if the request contains the END keyword.

X'10' Set if the request contains the WAIT keyword.

X'08' Set if the request contains the NOWAIT
keyword.

X'04' Set if the request contains the FORCE keyword.

X'02' Set if the request contains the ENABLED
keyword.

X'01' Set if the request contains the DISABLED
keyword.

FC_BITS7 Specifies whether certain keywords were specified on the
File control SPI command. Also contains the existence bit
for JOURNALNUM, which seems to be far from home.

X'80' Set if the request contains the OPEN keyword.

X'40' Set if the request contains the CLOSED
keyword.

X'20' Set if the request contains the EMPTY keyword.

X'10' Set if the request contains an argument for the
JOURNALNUM keyword. If set, FC_ADDR52 is
meaningful.

X'08' Not used by file control.

X'04' Not used by file control.

X'02' Not used by file control.

X'01' Not used by file control.

FC_BITS8 Existence bits which specify which arguments were
specified. The comments below FC_BITS1 also apply to
FC_BITS8.

X'80' Set if the request contains the REMOTETABLE
keyword. If set, FC_ADDR57 is meaningful.

X'40' Set if the request contains the CATNAME
keyword. If set, FC_ADDR58 is meaningful.

X'20' Not used by file control.

X'10' Not used by file control.

X'08' Not used by file control.

X'04' Not used by file control.

X'02' Not used by file control.

X'01' Not used by file control.

FC_ADDR1
is the address of an 8-byte area containing the name from FILE.

FC_ADDR2
is the address of a 44-byte area containing the name from DSNAME.

62 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

FC_ADDR3
is the address of a 4-byte area containing the CVDA from
FWDRECOVSTATUS.

FC_ADDR4
is the address of a 4-byte area containing the data from STRINGS.

FC_ADDR5
is the address of a 44-byte area containing the name from BASEDSNAME.

FC_ADDR6
is the address of a 4-byte area containing the data from LSRPOOLID.

FC_ADDR7
is the address of a 4-byte area containing the CVDA from READ.

FC_ADDR8
is the address of a 4-byte area containing the CVDA from UPDATE.

FC_ADDR9
is the address of a 4-byte area containing the CVDA from BROWSE.

FC_ADDR10
is the address of a 4-byte area containing the CVDA from ADD.

FC_ADDR11
is the address of a 4-byte area containing the CVDA from DELETE.

FC_ADDR12
is not used by file control.

FC_ADDR13
is the address of a 4-byte area containing the CVDA from EMPTYSTATUS.

FC_ADDR14
is the address of a 4-byte area containing the CVDA from OPENSTATUS.

FC_ADDR15
is the address of a 4-byte area containing the CVDA from ENABLESTATUS.

FC_ADDR16
is the address of a 4-byte area containing the CVDA from RECOVSTATUS.

FC_ADDR17
is the address of a 4-byte area containing the CVDA from ACCESSMETHOD.

FC_ADDR18
is the address of a 4-byte area containing the CVDA from TYPE.

FC_ADDR19
is the address of a 4-byte area containing the CVDA from OBJECT.

FC_ADDR20
is the address of a 4-byte area containing the name from REMOTESYSTEM.

FC_ADDR21
is the address of an 8-byte area containing the name from REMOTENAME.

FC_ADDR22
is the address of a 4-byte area containing the CVDA from RECORDFORMAT.

 Chapter 1. Global user exit programs 63

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

FC_ADDR23
is the address of a 4-byte area containing the CVDA from BLOCKFORMAT.

FC_ADDR24
is the address of a 4-byte area containing the CVDA from KEYLENGTH.

FC_ADDR25
is the address of a 4-byte area containing the data from KEYPOSITION.

FC_ADDR26
is the address of a 4-byte area containing the data from RECORDSIZE.

FC_ADDR27
is the address of a 4-byte area containing the CVDA from RELTYPE.

FC_ADDR28
is the address of a 4-byte area containing the CVDA from EXCLUSIVE.

FC_ADDR29
is the address of a 4-byte area containing the data from BLOCKKEYLEN.

FC_ADDR30
is the address of a 4-byte area containing the data from BLOCKSIZE.

FC_ADDR31
is not used by file control.

FC_ADDR32
is the address of a 4-byte area containing the CVDA from BUSY.

FC_ADDR33
is the address of a 4-byte area containing the CVDA from TABLE.

FC_ADDR34
is the address of a 4-byte area containing the data from MAXNUMRECS.

FC_ADDR35 to FC_ADDR51
are not used by file control.

FC_ADDR52
is the address of a 4-byte area containing the data from JOURNALNUM.

FC_ADDR53 to FC_ADDR56
Not used by file control.

FC_ADDR57
is the address of a 4-byte area containing the CVDA from REMOTETABLE.

FC_ADDR58
is the address of a 7-byte area containing data from CATNAME.

Modifying fields in the command-level parameter structure
Some fields that are passed to file control SPI requests are used as input to the
request and some are used as output to the request. The method that your user
exit program uses to modify a field depends upon the usage of the field. As a
general rule:

� On INQUIRE FILE requests, all fields except FILE are output fields.
� On SET FILE requests, all fields are input fields.

64 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

For a full description of the parameters to INQUIRE FILE, see Table 24. For a full
description of the parameters to SET FILE, see Table 25 on page 66.

Table 24 (Page 1 of 2). INQUIRE FILE requests. The relationship between
arguments, keywords, data types, and input/output types.

Argument Keyword Data Type Input/Output

Arg1 FILE CHAR(8) See note.

Arg2 DSNAME CHAR(44) Output

Arg3 FWDRECSTATUS BIN(31) Output

Arg4 STRINGS BIN(31) Output

Arg5 BASEDSNAME CHAR(44) Output

Arg6 LSRPOOLID BIN(31) Output

Arg7 READ BIN(31) Output

Arg8 UPDATE BIN(31) Output

Arg9 BROWSE BIN(31) Output

Arg10 ADD BIN(31) Output

Arg11 DELETE BIN(31) Output

Arg12 * * *

Arg13 EMPTYSTATUS BIN(31) Output

Arg14 OPENSTATUS BIN(31) Output

Arg15 ENABLESTATUS BIN(31) Output

Arg16 RECOVSTATUS BIN(31) Output

Arg17 ACCESSMETHOD BIN(31) Output

Arg18 TYPE BIN(31) Output

Arg19 OBJECT BIN(31) Output

Arg20 REMOTESYSTEM CHAR(4) Output

Arg21 REMOTENAME CHAR(8) Output

Arg22 RECORDFORMAT BIN(31) Output

Arg23 BLOCKFORMAT BIN(31) Output

Arg24 KEYLENGTH BIN(31) Output

Arg25 KEYPOSITION BIN(31) Output

Arg26 RECORDSIZE BIN(31) Output

Arg27 RELTYPE BIN(31) Output

Arg28 EXCLUSIVE BIN(31) Output

Arg29 BLOCKKEYLEN BIN(31) Output

Arg30 BLOCKSIZE BIN(31) Output

Arg31 * * *

Arg32 * * *

Arg33 TABLE BIN(31) Output

Arg34 MAXNUMRECS BIN(31) Output

Arg35 to
Arg51

* * *

 Chapter 1. Global user exit programs 65

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

Note: The file parameter on INQUIRE FILE commands is:

� An input field if the request does not specify START, NEXT, or END.
� An output field if the request specifies NEXT.
� Omitted if the request specifies START or END.

Table 24 (Page 2 of 2). INQUIRE FILE requests. The relationship between
arguments, keywords, data types, and input/output types.

Argument Keyword Data Type Input/Output

Arg52 JOURNALNUM BIN(15) Output

Arg53 to
Arg56

* * *

Arg57 REMOTETABLE BIN(31) Output

Arg58 CATNAME CHAR(7) Output

Table 25 (Page 1 of 2). SET FILE requests. The relationship between arguments,
keywords, data types, and input/output types.

Argument Keyword Data Type Input/Output

Arg1 FILE CHAR(8) Input

Arg2 DSNAME CHAR(44) Input

Arg3 FWDRECSTATUS BIN(31) Input

Arg4 STRINGS BIN(31) Input

Arg5 * * *

Arg6 LSRPOOLID BIN(31) Input

Arg7 READ BIN(31) Input

Arg8 UPDATE BIN(31) Input

Arg9 BROWSE BIN(31) Input

Arg10 ADD BIN(31) Input

Arg11 DELETE BIN(31) Input

Arg12 * * *

Arg13 EMPTYSTATUS BIN(31) Input

Arg14 OPENSTATUS BIN(31) Input

Arg15 ENABLESTATUS BIN(31) Input

Arg16 RECOVSTATUS BIN(31) Input

Arg17 * * *

Arg18 * * *

Arg19 * * *

Arg20 * * *

Arg21 * * *

Arg22 * * *

Arg23 * * *

Arg24 * * *

Arg25 * * *

66 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command-level parameter list to
point to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command-level parameter list. To do so would corrupt storage belonging
to the application program and would cause a failure when the program attempted
to reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field, you can modify the
application’s data in place, because the application is expecting the field to be
modified anyway.

Table 25 (Page 2 of 2). SET FILE requests. The relationship between arguments,
keywords, data types, and input/output types.

Argument Keyword Data Type Input/Output

Arg26 * * *

Arg27 * * *

Arg28 EXCLUSIVE BIN(31) Input

Arg29 * * *

Arg30 * * *

Arg31 * * *

Arg32 BUSY BIN(31) Input

Arg33 TABLE BIN(31) Input

Arg34 MAXNUMRECS BIN(31) Input

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not
possible, for example, to change an INQUIRE FILE request to a SET FILE request.
However, you can make minor changes to requests, such as to turn on the
existence bit for a variable that had not been specified on the current request. The
following paragraph lists the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

Your exit program can modify any bit in FC_BITS1, FC_BITS2, FC_BITS3,
FC_BITS4, FC_BITS5, FC_BITS6, FC_BITS7, and FC_BITS8 except for:

� The existence bit for the FILE keyword.

� The bits for the START, NEXT, and END keywords.

� Any bits described as “not used by file control”.

� Any bit corresponding to a keyword that is not applicable to the command
being executed. For example, the bit for the CLOSED keyword can be
modified on a SET FILE request but not on an INQUIRE FILE request, because

 Chapter 1. Global user exit programs 67

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

CLOSED has meaning only for a SET FILE request. See the descriptions in
Table 24 on page 65 and Table 25 on page 66.

Your program can provide its own command-level parameter structure and EID, in
which case you should modify UEPCLPS and FC_ADDR0 respectively to point to
the new structures.

The EID is reset to its original value before return to the application program. That
is, changes to the EID are retained for the duration of the file control SPI request
only.

Warning: If you modify the EID, you must be careful not to create inconsistent
parameters. For example, if the original request specified SET FILE OPEN and
your exit turned on the EID bit for CLOSED, the resulting SET FILE request would
specify both OPEN and CLOSED. In this case, the results of the command would
be unpredictable.

Use of the task token UEPTSTOK
UEPTSTOK provides the address of a 4-byte area that you can use to pass
information between successive file control SPI requests in the same task. (By
contrast, UEPFATOK is usable only for the duration of a single file control SPI
request, because its contents may be destroyed at the end of the request.) For
example, if you need to pass information between successive invocations of
XFCAREQ exit, UEPTSTOK provides a means of doing this.

Modifying user arguments
User exit programs can modify user arguments as follows:

� For input arguments, your exit program should obtain sufficient storage to hold
the modified argument, set up the required value, and set the associated
pointer in the parameter list to the address of the newly acquired area.

� For output and input/output arguments, your exit program can update the
argument in place, because the area of storage is represented in the
application by a variable that is expected to receive a value from CICS.

Adding user arguments: Your exit program can add user arguments, provided
that it is allowed to modify the corresponding existence bit in the EID. Assuming
that the argument to be added does not already exist, your exit program must:

1. Obtain storage for the argument to be added.
2. Initialize the storage to the required value.
3. Select and set up the appropriate pointer from the parameter list.
4. Select and set up the appropriate existence bit in Arg0.
5. If necessary, modify the parameter list to reflect the new end-of-list indicator.

Removing user arguments: Your exit program can remove user arguments,
provided that it is allowed to modify the corresponding existence bit in the EID.
Assuming that the argument to be removed exists, your exit program must:

1. Switch the corresponding argument existence bit in Arg0 to zero.
2. Modify the parameter list to reflect the new end-of-list indicator.

68 CICS Transaction Server for VSE/ESA Customization Guide

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

 XFCAREQ

Warning: Care should be taken when using recursive commands. For example,
you must avoid entering a loop when issuing a file control SPI request from the
XFCAREQ exit. Use of the recursion counter UEPRECUR is recommended.

Table 26. Exit XFCAREQ

When
invoked

Before CICS processes a file control SPI request.

Exit-specific
parameters

UEPCLPS Address of a copy of the SPI command parameter list.
See “The command-level parameter structure” on
page 58.

UEPFATOK Address of a 4-byte area that can be used to pass
information between XFCAREQ and XFCAREQC on a
single file control SPI request.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code EIBRCODE. For details of EIB return
codes, see the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code EIBRESP.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code EIBRESP2.

UEPTSTOK Address of a 4-byte token which can be used to pass
information between successive file control SPI
requests within the same task (for example, between
successive invocations of the XFCAREQC exit).

UEPRECUR Address of a halfword recursion counter. The counter
is set to zero when the exit is first invoked and is
incremented for each recursive call.

Return codes UERCBYP Bypass this request.

UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI
commands

All can be used.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 69

 file control EXEC interface SPI exits XFCAREQ and XFCAREQC

 XFCAREQC

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are
given in the parameter list. If you update the values, file control copies the new
values into the application program’s EXEC interface block (EIB) after the
completion of XFCAREQC or if you specify a return code of UERCBYP in
XFCAREQ.

You must set valid file control responses. You must set all three of EIBRCODE,
EIBRESP, and EIBRESP2 to a consistent set of values, such as would be set by
file control to describe a valid completion. CICS does not check the consistency of
the values you set. If EIBRCODE is set to a non-zero value and EIBRESP is set to
zero, CICS overrides EIBRESP with a non-zero value. To help you set values for
EIBRCODE, EIBRESP, and EIBRESP2, the values used by file control for SPI
requests are specified in DSECT DFHFAUED.

Warning: Care should be taken when using recursive commands. For example,
you must avoid entering a loop when issuing a file control SPI request from the
XFCAREQ exit. Use of the recursion counter UEPRECUR is recommended.

Table 27. Exit XFCAREQC

When
invoked

After a file control SPI request has completed, before return from the
file control SPI EXEC interface program.

Exit specific
parameters:

UEPCLPS Address of a copy of the SPI command parameter list.
See “The command-level parameter structure” on
page 58.

UEPFATOK Address of a 4-byte area that can be used to pass
information between XFCAREQ and XFCAREQC on a
single file control SPI request.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code EIBRCODE. For details of EIB return
codes, see the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code EIBRESP.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code EIBRESP2.

UEPTSTOK Address of a 4-byte token which can be used to pass
information between successive file control SPI
requests within the same task (for example, between
successive invocations of the XFCAREQC exit).

UEPRECUR Address of a halfword recursion counter. The counter
is set to zero when the exit is first invoked and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI
commands

All can be used.

API and SPI
commands

All can be used.

70 CICS Transaction Server for VSE/ESA Customization Guide

 file control file state program exits

File control file state program exits XFCSREQ and XFCSREQC
Two user exits are provided in the file control state program. You can use
XFCSREQ, which is invoked before a file ENABLE, DISABLE, OPEN, or CLOSE
request is acted on, to gather information about the state of the file—for example,
which file requests (SERVREQs) are valid, which journaling options are set. Based
on this information, you can suppress the request, if appropriate. (See return code
UERCBYP on page 73.)

You can use XFCSREQC, which is invoked after the file request has been acted
on, to gather information about the data set associated with the file—for example,
which recovery options are set. Note that XFCSREQC is invoked even if you have
used XFCSREQ to suppress the file request.

For ENABLE, DISABLE, and OPEN requests, each exit is invoked only once.
However, for CLOSE requests, because a file can be quiesced before actual
closure, the exits might be invoked more than once.

For a single CLOSE request, XFCSREQ and XFCSREQC are invoked more than
once if closure is attempted while the file is being accessed by other tasks. For
example, the result of a CLOSE NOWAIT command in these circumstances is that
XFCSREQ is invoked before the closure is attempted. Because there are still
users of the file, the closure is delayed. However, because it specified NOWAIT,
the CLOSE request completes, and invokes XFCSREQC with UEPFSRSP set to
‘UEFSPEND’, meaning closure is pending. When all activity against the file is
complete, the file is closed, and XFCSREQ and XFCSREQC are invoked under the
task that actually closed it.

For a CLOSE WAIT command, the exits are invoked as follows. XFCSREQ is
invoked, the task requests a closure of the file and waits for the closure to happen.
When all activity against the file is complete, the file is closed, and XFCSREQ and
XFCSREQC are invoked under the task that closed it. Finally, because the closure
has now been completed, the task that issued the CLOSE WAIT is resumed,
completes its CLOSE request, and invokes XFCSREQC.

Note: There are three occasions when the user exits XFCSREQ and XFCSREQC
are not invoked during a close request:

1. On a controlled, non-immediate shutdown of CICS, when CICS closes all files.

2. After an I/O error has been encountered on a VSAM file. (For an I/O error the
file is not closed immediately. CICS quiesces the file, setting the status to
‘close pending’. When all activity against the file, including the task receiving
the I/O error is complete, CICS issues a subsequent close request and
XFCSREQ and XFCSREQC are invoked.)

3. After loading a user maintained data table. When the data table load has
completed the source dataset is no longer required. CICS subsequently closes
and de-allocates the file, leaving the data table open.

 Chapter 1. Global user exit programs 71

 file control file state program exits

 XFCSREQ
Table 28 (Page 1 of 2). Exit XFCSREQ

When
invoked

Before a file ENABLE, DISABLE, OPEN, or CLOSE is attempted.

Exit-specific
parameters

UEPFSREQ Address of a 2-byte field that indicates the type of file
request. The first byte contains one of the following
values:

UEPFSOPN Open request.
UEPFSCLS Close request.
UEPFSENB Enable request.
UEPFSDIS Disable request.

If the first byte indicates a close request (UEPFSCLS),
the second byte shows the type of close:

UEPFSNC Normal close.
UEPFSCP Close pending.
UEPFSELM End of load mode close.

UEPFILE Address of an 8-character field containing the 7-byte
file name.

UEPFINFO Address of a storage area containing information about
the file. The area can be mapped using the DSECT
DFHUEFDS, which contains the following fields:

UEFLNAME An 8-character field containing the
7-character file name.

UEDSNAME The 44-character dsname (file-id) of the
data set associated with the file, if this
has been set before the file request was
issued.

UEFSERV One byte indicating the SERVREQ
settings for this file. The possible
values are:

UEFRDIM Read valid.
UEFUPDIM Update valid.
UEFADDIM Add valid.
UEFDELIM Delete valid.
UEFBRZIM Browse valid.

UEFDSJL One byte indicating the automatic
journaling options set for this file. The
possible values are:

UEFJRO Journal read-only.
UEFJRU Journal read for update.
UEFJWU Journal write update.
UEFJWA Journal write add.
UEFJDSN Dsname has been

journaled.
UEFJSYN Journal read

synchronously.
UEFJASY Journal write

asynchronously.

72 CICS Transaction Server for VSE/ESA Customization Guide

 file control file state program exits

Table 28 (Page 2 of 2). Exit XFCSREQ

UEFDSVJL One byte indicating a further automatic
journaling option which applies to VSAM
files only. The value is:

UEFJWAC Write add complete.

UEFDSJID One byte containing the number of the
journal to be used for automatic
journaling, if any.

UEFDSACC One byte indicating the access method
of the file. The possible values are:

UEFVSAM VSAM file
UEFBDAM DAM file.

UEFBCRV Set to nulls for this exit.

UEFFRLOG Set to nulls for this exit.

UEFCDATE Set to nulls for this exit.

UEFCTIME Set to nulls for this exit.

UEFBCBS Set to nulls for this exit.

UEFACBCP Set to nulls for this exit.

Note: Only the first seven fields of UEPFINFO are set
for this exit. The remaining fields are set to nulls.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP Suppress the file request. The specific effect of setting
UERCBYP depends on the type of file request. In the
case of a file ENABLE, DISABLE, or CLOSE request,
the request is ignored; that is, the state of the file is
not changed. In the case of a file OPEN request, the
file is set to a closed, unenabled state. In either case,
CICS issues message DFHFC0996:

OPEN/CLOSE/ENABLE/DISABLE of file filename

suppressed due to intervention of user exit

Note that, in one special case, setting UERCBYP to
suppress a file request has no effect. If a file is to be
closed as a result of backout failure processing, CICS
does not allow the CLOSE request to be suppressed,
as this would cause a failure in backout failure
processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 73

 file control file state program exits

Warning:

Care should be taken when issuing recursive commands not to cause a loop. For
example, it is your responsibility to avoid entering a loop when a file control request
is issued from the XFCSREQ exit. Use of the recursion counter UEPRECUR is
recommended.

Notes:

1. Exit programs that issue EXEC CICS commands must first address the EIB.
See “Using CICS services” on page 5.

2. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT
macro, should use the DFHEIRET macro to set a return code and return to
CICS. See “Returning values to CICS” on page 10.

 XFCSREQC
Table 29 (Page 1 of 4). Exit XFCSREQC

When
invoked

After a file ENABLE, DISABLE, OPEN, or CLOSE command has
completed.

Exit-specific
parameters

UEPFSREQ Address of a 2-byte field that indicates the type of file
request. The first byte contains one of the following
values:

UEPFSOPN Open request.
UEPFSCLS Close request.
UEPFSENB Enable request.
UEPFSDIS Disable request.

If the first byte indicates a close request (UEPFSCLS),
the second byte shows the type of close:

UEPFSNC Normal close.
UEPFSCP Close pending.
UEPFSELM End of load mode close.

UEPFILE Address of an 8-byte field containing the 7-byte file
name.

UEPFINFO Address of a storage area containing information about
the file. The area can be mapped using the DSECT
DFHUEFDS, which contains the following fields:

UEFLNAME An 8-character field containing the
7-character file name.

UEDSNAME The 44-character dsname (file-id) of the
data set associated with the file.

UEFSERV One byte indicating the SERVREQ
settings for this file. The possible
values are:

UEFRDIM Read valid.
UEFUPDIM Update valid.
UEFADDIM Add valid.
UEFDELIM Delete valid.
UEFBRZIM Browse valid.

4 A VSAM sphere consists of a base cluster, and all the associated components that refer to it.

74 CICS Transaction Server for VSE/ESA Customization Guide

 file control file state program exits

Table 29 (Page 2 of 4). Exit XFCSREQC

UEFDSJL One byte indicating the automatic
journaling options set for this file. The
possible values are:

UEFJRO Journal read-only.
UEFJRU Journal read for update.
UEFJWU Journal write update.
UEFJWA Journal write add.
UEFJDSN Dsname has been

journaled.
UEFJSYN Journal read

synchronously.
UEFJASY Journal write

asynchronously.

UEFDSVJL One byte indicating a further automatic
journaling option which applies to VSAM
files only. The value is:

UEFJWAC Write add complete.

UEFDSJID One byte containing the number of the
journal to be used for automatic
journaling, if any.

UEFDSACC One byte indicating the access method
of the file. The possible values are:

UEFVSAM VSAM file.
UEFBDAM DAM file.

UEFBCRV One byte indicating the recovery
attributes of the data set associated
with this file. The possible values are:

UEFBCFR Forward recovery specified.
UEFBCLOG Logging specified.
UEFBCVAL Flag indicating that

recovery attributes are
valid.

UEFFRLOG One byte containing the number of the
journal to be used for forward recovery,
if any.

UEFCDATE A date (YYYYDDD+) in packed decimal
format. This field is set only when the
file is the last file to close against the
VSAM sphere4 with which it is
associated. It contains the date when
activity against the VSAM sphere was
quiesced.

 Chapter 1. Global user exit programs 75

 file control file state program exits

Table 29 (Page 3 of 4). Exit XFCSREQC

UEFCTIME A time (HHMMSST+) in packed decimal
format. This field is set only when the
file is the last file to close against the
VSAM sphere4 with which it is
associated. It contains the time when
activity against the VSAM sphere was
quiesced.

UEFBCBS A byte containing flags indicating the
backout failure status of this data set.
The possible values are:

UEFBCBF Backout failed.
UEFBCBE Backout failure complete.

UEFACBCP Address of a readonly copy of the ACB
(for a VSAM file) or the DTF (for a DAM
file).

UEPFSRSP Address of a byte containing the return codes for the
request. This has one of the following values:

UEFSNORM Normal response.
UEFSWARN Warning response.
UEFSFAIL Failure response.
UEFSPEND Pending response. The ‘Pending’

response can be returned only after a
CLOSE request. It indicates that, as a
result of the CLOSE request, a closure
is pending on the file, the file is being
quiesced. When all activity against the
file has completed, it is closed. Note
that, if enabled, the XFCSREQ and
XFCSREQC exits are driven again,
when the actual closure takes place.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Notes:

1. The first seven fields of UEPFINFO (UEFLNAME through
UEFDSACC) are set for all requests; that is, following an OPEN,
CLOSE, ENABLE, or DISABLE request.

2. The next two fields (UEFBCRV and UEFFRLOG) are set only
after a successful OPEN request. After all other requests, or if
the OPEN fails, these fields are set to nulls.

3. Fields UEFCDATE through UEFBCBS are set only after a
successful CLOSE request. After all other requests, if the file is
already closed, if the closure fails, or if the closure is pending,
these fields are set to nulls.

4. Field UEFACBCP is set only after a successful OPEN request.
After all other requests, or if the OPEN fails, the field is set to
nulls.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

76 CICS Transaction Server for VSE/ESA Customization Guide

 file control file state program exits

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when a file
control request is issued from the XFCSREQC exit. Use of the recursion counter
UEPRECUR is recommended.

Notes:

1. Exit programs that issue EXEC CICS commands must first address the EIB.
See “Using CICS services” on page 5.

2. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT
macro, should use the DFHEIRET macro to set a return code and return to
CICS. See “Returning values to CICS” on page 10.

Table 29 (Page 4 of 4). Exit XFCSREQC

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 77

 Front End Programming Interface exits

Front End Programming Interface exits XSZARQ and XSZBRQ
Exits XSZARQ and XSZBRQ are invoked from the CICS Transaction Server for
VSE/ESA Front End Programming Interface (FEPI), if FEPI is installed. For details
of these exits, see the CICS Front End Programming Interface User’s Guide.

78 CICS Transaction Server for VSE/ESA Customization Guide

 good morning message program exit

“Good morning” message program exit XGMTEXT
Table 30. Exit XGMTEXT

When
invoked

Before the “good morning” message is transmitted.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 79

 intersystem communication program exits

Intersystem communication program exits XISCONA and XISLCLQ
The two exits in the intersystem communication program allow you to control the
queuing of function shipping requests.

Note: There are several methods that you can use to control the length of
intersystem queues. For a description of the available methods, see the CICS
Intercommunication Guide.

The XISCONA exit
 Important

It is recommended that you use the XZIQUE exit, in the VTAM working-set
module, to control the length of intersystem queues, rather than XISCONA.
(XZIQUE is described on page 192.) XZIQUE provides more functions, and is
of more general use than XISCONA (it is driven for transaction routing, DPL,
and distributed transaction processing requests, as well as for function shipping,
whereas XISCONA is driven only for function shipping). If you enable both
exits, XZIQUE and XISCONA could both be driven for function shipping
requests, which is not recommended.

The purpose of XISCONA is to help you prevent the performance problems that
can occur when function shipping requests awaiting free sessions for a connection
are queued in the issuing region. The exit permits you to control the number of
outstanding ALLOCATE requests by allowing you to reject any function shipping
request that would otherwise be queued.

Requests that are to be function shipped to a resource-owning region are queued
by default if all bound contention winner5 sessions are busy, so that no sessions
are immediately available. If the resource-owning region is unresponsive (for
example, if it is a file-owning region, it may be waiting for a system journal to be
archived), the queue can become so long that the performance of the issuing
region is severely impaired. Further, if the issuing region is an application-owning
region, its impaired performance can spread back to the terminal-owning region.

To control the queuing of function shipping requests, use the XISCONA exit to tell
CICS, whenever a session cannot be allocated immediately, whether to queue the
request, or to return ‘SYSIDERR’ to the application. The exit works like this:

1. If the XISCONA exit program is not active, CICS queues the request when
necessary.

2. If the exit program is active, it is invoked only if all bound contention winner
sessions are in use. For other failures (for example, ‘Mode name not found’ or
‘Out of service’), CICS bypasses the exit and returns to the application.

3. If it is invoked, your exit program must decide whether or not to queue the
request by analyzing the statistics provided through the user exit parameter list.
Your exit program could:

5 “Contention winner” is the terminology used for LU6.2 connections. The XISCONA exit applies also to MRO and LU6.1
connections: in these, the SEND sessions (defined in the session definitions) are used first for ALLOCATE requests; when all
SEND sessions are in use, queuing starts.

80 CICS Transaction Server for VSE/ESA Customization Guide

 intersystem communication program exits

� Stipulate that queuing is never to be used. This is the simplest way to
code the exit, and avoids complexities of tuning. It should be effective if
you define enough contention winner sessions to handle the peak
transaction load for the connection. If you suppress all queuing, you must
specify AUTOCONNECT(YES) on the SESSIONS definition, because the
queuing mechanism no longer binds sessions for you.

With this approach, a danger arises if you base your estimate of required
sessions on average conditions and the transaction load subsequently
varies widely; when CICS cannot use queuing to cope with the variation,
users may suffer transaction abends when there is no significant problem in
the resource-owning region.

� Examine the number of requests currently in the queue. The program
could, for example, stop queuing when the number exceeds 120% of the
maximum number of sessions. You could use this approach to cope with
intermittent stoppages in the resource-owning region.

You could use a table of thresholds for the connections in your system,
with values determined from previous experience of queuing problems.
Alternatively, you could use the EXEC CICS interface in a separate
program to inquire about the state of the connection, and pass the
information in a work area to the XISCONA exit program.

� Examine the type of request and the resource being accessed (which can
be discovered by examining the request parameter list). The program
could, for example, reject file read requests but queue file updates.

Warning: Because a failure of the exit program could affect system
availability, it is recommended that you make the logic of your program as
simple as possible, thus reducing the possibility of errors.

There are some function shipping problems that XISCONA cannot solve. For
example, if you have specified both a large number of sessions and a large value
for MXT, CICS may develop the short-on-storage (SOS) condition before XISCONA
is invoked because there are no further sessions available.

The sample XISCONA global user exit program, DFHXIS
Note that there is a CICS-supplied sample exit program, DFHXIS, that shows one
way of limiting the queue of ALLOCATE requests, based on the information passed
to the program. For more information about the sample global user exit programs,
see “Sample global user exit programs” on page 14.

 Chapter 1. Global user exit programs 81

 intersystem communication program exits

Table 31 (Page 1 of 2). Exit XISCONA

When
invoked

After an attempt to function ship a request to a remote system has
failed because all bound contention winner sessions are in use.

Exit-specific
parameters

UEPISPCA Address of a parameter list containing the following
fields. You can map the parameter list using the
DSECT DFHXISDS.

UEPCONST
Address of the Connection statistics record.

Connection statistics records are of type
STICONSR (STID value 52). Your exit program
can map the record using the DSECT
DFHA14DS. See notes below.

UEPMODST
Address of the Mode Entry statistics record, or
zero. A Mode Entry statistics record is built only
if:

� The connection-type is LU6.2 (see field
UEPCONTY).

� The profile DFHCICSF (which is always used
for function shipping) defines a specific
MODENAME to be used in the allocation of
LU6.2 sessions.

Mode Entry statistics records are of type
STICONMR (STID value 76). Your exit program
can map the record (if present) using the DSECT
DFHA20DS. See notes below.

UEPEIPPL
Address of the request parameter list.

UEPCONTY
A 1-byte field indicating the connection-type.
Possible values are:

UEPMRO (X'80')
Request for an MRO connection.

UEPLU6 (X'40')
Request for an LU6.1 connection.

UEPLUC (X'20')
Request for an LU6.2 connection.

82 CICS Transaction Server for VSE/ESA Customization Guide

 intersystem communication program exits

 Important

There is no ‘UERCNORM’ return code at this exit point, because the exit is
invoked after a failure. The choice is whether or not to take the system default
action of queuing the request.

Table 31 (Page 2 of 2). Exit XISCONA

UEPNETNM
An 8-character field containing the NETNAME for
the connection– that is, the identifier (applid) of
the remote CICS region or system.

Notes:

1. The general format of statistics records is described in “CICS
statistics record format” on page 573.

2. For a list of statistics record-types and their associated copy
books, see Figure 68 on page 577.

3. For a description of the fields in Connection and Mode Entry
statistics records, see the CICS Performance Guide.

Return codes UERCAQUE Queue the request. This is the default.

UERCAPUR Do not queue the request, unless local queuing is
possible.

XPI calls All can be used.

API and SPI
commands

Must not be used.

The XISLCLQ exit
XISLCLQ enables you to specify what action to take after a function shipping
request fails to allocate a session with a remote system for one of the following
reasons:

� The remote system is not in service.
� A connection to the remote system cannot be established.
� No sessions are immediately available, and your XISCONA exit program has

specified that the request is not to be queued in the issuing region.

Note that this exit is invoked only if the request to be shipped is of type EXEC
CICS START NOCHECK. For EXEC CICS requests other than those with the
NOCHECK option (which is only available on EXEC CICS START commands) the
‘SYSIDERR’ condition is raised in the application program.

You can use the exit to specify whether or not the failed request is to be locally
queued, to be executed when the connection is reestablished.

 Chapter 1. Global user exit programs 83

 intersystem communication program exits

 Important

There is no ‘UERCNORM’ return code at this exit point, because the exit is
invoked after a failure. The choice is whether to take the system default action
or to handle the error in some other way.

Table 32. Exit XISLCLQ

When
invoked

After a function shipping request of type EXEC CICS START
NOCHECK has failed because the remote system is not in service, a
connection to the remote system cannot be established, or no
sessions are immediately available, and your XISCONA exit program
has specified that the request is not to be queued in the issuing
region.

Exit-specific
parameters

UEPISPP Address of a parameter list that contains:

UEPTCTSE Address of the relevant terminal control
table system entry. The TCT system entry
can be mapped using the DSECT
DFHTCTTE.

UEPXXTE Address of the local transaction name, or
0 if SYSID was specified in the command.

Note: Your program can use the
transaction manager XPI call
INQUIRE_TRANDEF to obtain details of
the local transaction (see page 323).

UEPPLIST Address of the parameter list for the
command.

Note: No DSECT is provided for the above parameter list. You
have to code your own DSECT to access the named fields.

Return codes UERCSYS Take the system action. This is determined by the
value of the LOCALQ attribute in the local
TRANSACTION definition for the remote transaction:

LOCALQ(YES) The request is queued locally.
LOCALQ(NO) ‘SYSIDERR’ is returned to the

application program.

UERCQUE Queue the request locally (overriding the
LOCALQ(NO) attribute, if specified).

UERCIGN Override the LOCALQ(YES) attribute, if specified, and
return with ‘SYSIDERR’.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

84 CICS Transaction Server for VSE/ESA Customization Guide

 interval control program exits

Interval control program exits XICREQ, XICEXP, and XICTENF
You can use some XPI calls in exit programs invoked from the interval control
program. However, when any of these exits are invoked for expiry analysis, any
actions that delay the execution of the interval control program can have adverse
effects on other transactions that are waiting for intervals to expire. You can
determine whether the exits have been invoked for expiry analysis by examining
the type-of-request field, TCAICTR, a copy of which is pointed to by the UEPICRQ1
exit-specific parameter.

Note: The XICREQ exit is invoked by internal requests made by CICS code, as
well as by requests made by applications. For example, if you use the CICS
extended recovery facility (XRF), the XRF surveillance program uses interval
control services. DFHXRSP issues an interval control WAIT every 2 seconds; this
means that any interval control exit programs are also invoked every 2 seconds.

 XICREQ
Table 33 (Page 1 of 2). Exit XICREQ

When
invoked

At the beginning of the interval control program, before request
analysis.

Exit-specific
parameters

UEPICQID Address of an 8-byte field containing the request ID
parameter on request. See notes below.

UEPICTID Address of a 4-byte field containing the terminal ID, if
any, specified on an EXEC CICS START command.
See notes below.

UEPICTI Address of 4 bytes containing the transaction ID
specified on an EXEC CICS START command. See
notes below.

UEPICRQ1 Address of a 1-byte field containing a copy of
TCAICTR, the first request code field for requests to
the interval control program.

UEPICRQ2 Address of a 1-byte field containing a copy of
TCAICTR2, the second request code field for requests
to the interval control program.

UEPICRT Address of a 4-byte field containing the expiry time or
interval, in packed decimal format. The value is in the
form 0HHMMSSF, where H=hours, M=minutes,
S=seconds, and F is a positive sign.

Notes:

1. The contents of the fields addressed by UEPICQID and
UEPICTID are unpredictable if the associated data items were not
specified on the request. You must test the copy of TCAICTR to
determine whether they contain meaningful values.

2. Your exit program can change the values of the fields addressed
by UEPICQID, UEPICTID UEPICTI, and UEPICRT. Changing
the values of the fields addressed by UEPICRQ1 or UEPICRQ2
has no effect.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

 Chapter 1. Global user exit programs 85

 interval control program exits

Table 33 (Page 2 of 2). Exit XICREQ

XPI calls The following must not be used:

 ADD_SUSPEND
 DELETE_SUSPEND
 RESUME
 SUSPEND
 WAIT_EXTERNAL

API and SPI
commands

Must not be used.

 XICEXP
Table 34. Exit XICEXP

When
invoked

After an interval control time interval has expired.

Exit-specific
parameters

UEPICE Address of the interval control element (ICE) that has
just expired. The ICE can be mapped using the
DSECT DFHICEDS.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls The following must not be used:

 ADD_SUSPEND
 DELETE_SUSPEND
 RESUME
 SUSPEND
 WAIT_EXTERNAL

API and SPI
commands

Must not be used.

 XICTENF
Table 35. Exit XICTENF

When
invoked

Exit XICTENF is also invoked from the interval control program.
However, this exit relates to the ‘terminal not known’ condition and so
is considered in detail in “‘Terminal not known’ condition exits
XALTENF and XICTENF” on page 160.

86 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

Interval control EXEC interface program exits XICEREQ and
XICEREQC

XICEREQ is invoked on entry to the interval control program before CICS
processes an interval control request. Using XICEREQ, you can:

� Analyze the request to determine its type, the keywords specified, and their
values.

� Modify any value specified by the request before the command is executed.

� Set return codes to specify that either:

– CICS should continue with the request, modified or unmodified.

– CICS should bypass the request. (Note that if you set this return code, you
must also set up return codes for the EXEC interface block (EIB), as if you
had processed the request yourself.)

XICEREQC is invoked after the interval control program request is completed.
Using XICEREQC, you can:

� Analyze the request, to determine its type, the keywords specified, and their
values.

� Set return codes for the EIB.

CICS passes seven parameters to these exits as follows:

� The address of the command-level parameter structure (UEPCLPS)

� The address of a token (UEPICTOK) used to pass 4 bytes of data from
XICEREQ to XICEREQC

� The addresses of copies of three pieces of return code information from the
EIB (UEPRCODE, UEPRESP, and UEPRESP2)

� The address of a token (UEPTSTOK) that is valid throughout the life of a task

� The address of an exit recursion count (UEPRECUR)

Note: The XICEREQ exit is invoked by internal requests made by CICS code, as
well as by requests made by applications.

 Chapter 1. Global user exit programs 87

 interval control EXEC interface program exits

 XICEREQ

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when an interval
control request is issued from the XICEREQ exit. Use of the recursion counter
UEPRECUR is recommended.

Table 36. Exit XICEREQ

When
invoked

Before CICS processes an interval control API request.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 91.

UEPICTOK Address of a 4-byte token to be passed to XICEREQC.
This allows you, for example, to pass a work area to
exit XICEREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Using the task token UEPTSTOK”
on page 98.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP The interval control EXEC interface program should
ignore this request.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, you are recommended to use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

88 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

 XICEREQC

Warning: Care should be taken when issuing recursive commands. For example,
you must avoid entering a loop when issuing an interval control request from the
XICEREQC exit. Use of the recursion counter UEPRECUR is recommended.

Table 37. Exit XICEREQC

When
invoked

After an interval control API request has completed, and before return
from the interval control EXEC interface program.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 91.

UEPICTOK Address of a 4-byte token passed from XICEREQ.
This allows XICEREQ to, for example, pass a work
area to XICEREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Using the task token UEPTSTOK”
on page 98.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, you are recommended to use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 89

 interval control EXEC interface program exits

The command-level parameter structure

X'02' ASKTIME X'80' INTERVAL|TIME X'80' RTERMID
X'04' DELAY - REQID (cancel) X'40' QUEUE
X'06' POST - A(INTO)|SET (retrieve) X'20' HOURS
X'08' START X'40' REQID X'10' MINUTES
X'0A' RETRIEVE - LENGTH (retrieve) X'08' SECONDS
X'0C' CANCEL X'04' USERID

X'20' TRANSID (cancel|start)
- SET|INTO

X'10' FROM
X'08' LENGTH X'01' SET (not INTO)
X'04' TERMID
X'02' SYSID
X'01' RTRANSID

X'20' HOURS
X'10' FMH
X'08' SECONDS
X'04' MINUTES
X'02' PROTECT
X'01' NOCHECK

IC_ 10 08
ADDR0

IC_ interval|time|reqid|A(into)|set X'13' ASKTIME
ADDR1 X'20' DELAY

X'30' POST
IC_ reqid|length X'40' START(without data)
ADDR2 X'50' START(with FROM)

X'70' START(with RTRANSID|RTERMID
IC_ transid|set|into QUEUE or FMH)
ADDR3 X'82' RETRIEVE

X'08' WAIT(retrieve) or TIME
IC_ A(from) X'04' REQID
ADDR4 X'01' TERMID

IC_ data length
ADDR5

X'80' - FOR|AFTER
IC_ termid X'40' AT|UNTIL
ADDR6

IC_ sysid
ADDR7

IC_ rtransid
ADDR8

IC_ rtermid
ADDR9

IC_ queue
ADDRA

IC_ hours
ADDRB

IC_ minutes
ADDRC

IC_ seconds
ADDRD

IC_ userid
ADDRE

IC_ system netname
ADDRF

Figure 1. The command-level parameter structure for interval control

The command-level parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of a 9-byte
area that describes the type of request and identifies each keyword specified with
the request. The remaining addresses point to pieces of data associated with the

90 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

request. For example, the second address points to the interval for START
requests.

You can examine the EID to determine the type of request and the keywords
specified. You can examine the other parameters in the list to determine the
values of the keywords. You can also modify values of keywords specified on the
request. For example, you could change the SYSID specified in the request.

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first four addresses
(IC_ADDR0, the address of the EID, to IC_ADDR3, the address of the name of
the transaction named in a START request), the high-order bit is set on in
IC_ADDR3. If you extend the parameter list by setting the address of a SYSID
in IC_ADDR7, you must unset the high-order bit in IC_ADDR3 and set it on in
IC_ADDR7 instead.

The maximum size of parameter list is supplied to the exit, thus allowing your exit
program to add any parameters not already specified without needing to first obtain
more storage.

The original parameter list, as it was before XICEREQ was invoked, is restored
after the completion of XICEREQC. It follows that the execution diagnostic facility
(EDF) displays the original command before and after execution: EDF does not
display any changes made by the exit .

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
included in both exit XICEREQ and exit XICEREQC. It is the address of the
command-level parameter structure. The command-level parameter structure
contains 16 addresses, IC_ADDR0 through IC_ADDRF. It is defined in the DSECT
IC_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHICUED.

The command-level parameter list is made up as follows:

IC_ADDR0
is the address of a 9-byte area called the EXEC interface descriptor (EID),
which is made up as follows:

 IC_GROUP
 IC_FUNCT
 IC_BITS1
 IC_BITS2
 IC_EIDOPT5
 IC_EIDOPT6
 IC_EIDOPT7
 IC_EIDOPT8
 IC_EIDOPT9

 Chapter 1. Global user exit programs 91

 interval control EXEC interface program exits

 IC_EIDOPT10
 IC_EIDOPT11
 IC_EIDOPT12
 IC_EIDOPT13

IC_GROUP Always X'10', indicating that this is an interval control
request.

IC_FUNCT One byte that defines the type of request:

X'02' ASKTIME.
X'04' DELAY.
X'06' POST.
X'08' START.
X'0A' RETRIEVE.
X'0C' CANCEL.

IC_BITS1 Existence bits that define which arguments were specified.
To obtain the argument associated with a keyword, you
need to use the appropriate address from the
command-level parameter structure. Before using this
address, you must check the associated existence bit. If
the existence bit is set off, the argument was not specified
in the request and the address should not be used.

X'80' Set if the request contains INTERVAL or TIME
arguments, or if a CANCEL request specifies
REQID, or if a RETRIEVE request specifies SET
or INTO. If set, IC_ADDR1 is meaningful.

X'40' Set if the request other than CANCEL specifies
REQID or if a RETRIEVE request specifies
LENGTH. If set, IC_ADDR2 is meaningful.

X'20' Set if the request specifies TRANSID or if a
request other than RETRIEVE specifies SET or
INTO. If set, IC_ADDR3 is meaningful.

X'10' Set if the request specifies FROM. If set,
IC_ADDR4 is meaningful.

X'08' Set if a request other than RETRIEVE specifies
LENGTH. If set, IC_ADDR5 is meaningful.

X'04' Set if the request specifies TERMID. If set,
IC_ADDR6 is meaningful.

X'02' Set if the request specifies SYSID. If set,
IC_ADDR7 is meaningful.

X'01' Set if the request specifies RTRANSID. If set,
IC_ADDR8 is meaningful.

IC_BITS2 Further argument existence bits.

X'80' Set if the request specifies RTERMID. If set,
IC_ADDR9 is meaningful.

X'40' Set if the request specifies QUEUE. If set,
IC_ADDRA is meaningful.

X'20' Set if the request specifies HOURS. If set,
IC_ADDRB is meaningful.

X'10' Set if the request specifies MINUTES. If set,
IC_ADDRC is meaningful.

92 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

X'08' Set if the request specifies SECONDS. If set,
IC_ADDRD is meaningful.

X'04' Set if the request specifies USERID. If set,
IC_ADDRE is meaningful.

IC_BITS3 One byte not used by interval control.

IC_EIDOPT5 Indicates whether certain keywords were specified on the
request.

X'01' On a RETRIEVE command, SET (and not
INTO) was specified. On a START command,
ATTACH was specified. You cannot modify this
field in your user exit.

IC_EIDOPT6 Indicates whether certain keywords were specified on the
request.

X'02' HOURS specified.
X'04' FMH specified.
X'06' SECONDS specified.
X'08' MINUTES specified.
X'0A' PROTECT specified.
X'0C' NOCHECK specified.

IC_EIDOPT7 Indicates whether certain functions or keywords were
specified on the request.

X'F0' CANCEL specified.
X'82' RETRIEVE specified.
X'40' START specified.
X'30' POST specified.
X'20' DELAY, RTRANSID, RTERMID, or QUEUE

specified, and/or FMH.
X'13' ASKTIME specified.
X'10' FROM, RTRANSID, or RTERMID specified,

and/or QUEUE.
X'08' TIME or WAIT specified.
X'04' REQID specified.
X'01' TERMID specified.

IC_EIDOPT8 Indicates whether certain keywords were specified on the
request.

X'80' FOR or AFTER specified.
X'40' AT or UNTIL specified.

 Chapter 1. Global user exit programs 93

 interval control EXEC interface program exits

IC_ADDR1
is the address of one of the following:

� An 8-byte area containing the value of the INTERVAL keyword (or TIME
keyword if IC_EIDOPT7 indicates that TIME is specified).

� An 8-byte area containing the value of REQID (if the request is CANCEL).

� Data returned for INTO (if the request is RETRIEVE, and if IC_EIDOPT5
indicates that this is not SET).

� A 4-byte address returned for SET (if the request is RETRIEVE and
IC_EIDOPT5 indicates that this is SET).

IC_ADDR2
is the address of one of the following:

� An 8-byte area containing the value of REQID (if the request is DELAY,
POST or START).

� A halfword containing the value of LENGTH (if the request is RETRIEVE).

Warning: For requests that specify INTO, do not change the value of
LENGTH to a value greater than that specified by the application. To do so
causes a storage overlay in the application.

IC_ADDR3
is the address of one of the following:

� An area containing the value of TRANSID (if the request is CANCEL or
START).

� A 4-byte address returned for SET (if the request is START or POST and
IC_EIDOPT5 indicates that this is SET).

IC_ADDR4
is the address of an area containing the data from FROM.

IC_ADDR5
is the address of the halfword value of LENGTH.

Warning: For requests that specify INTO, do not change the value of LENGTH
to a value greater than that specified by the application. To do so causes a
storage overlay in the application.

IC_ADDR6
is the address of an area containing the value of TERMID.

IC_ADDR7
is the address of an area containing the value of SYSID.

IC_ADDR8
is the address of an area containing the value of RTRANSID.

IC_ADDR9
is the address of an area containing the value of RTERMID.

IC_ADDRA
is the address of an area containing the value of QUEUE.

IC_ADDRB
is the address of an area containing the value of HOURS.

94 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

IC_ADDRC
is the address of an area containing the value of MINUTES.

IC_ADDRD
is the address of an area containing the value of SECONDS.

IC_ADDRE
is the address of an area containing the value of USERID.

IC_ADDRF
is the address of an area containing the value of the system netname.

Modifying fields in the command-level parameter structure: Some fields that
are passed to interval control are used as input to the request, some are used as
output fields, and some are used for both input and output. The method your user
exit program uses to modify a field depends on the usage of the field.

The following are always input fields:

 INTERVAL
 TIME
 REQID
 FROM
 TERMID
 SYSID
 HOURS
 MINUTES
 SECONDS
 USERID

The following are always output fields:

 INTO
 SET

The following are input fields on a START request and output fields on a
RETRIEVE request:

 RTRANSID
 RTERMID
 QUEUE

LENGTH is an input field on a START request, an output field on a RETRIEVE with
SET specified, and an input/output field on a RETRIEVE with INTO specified.

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command-level parameter list to
point to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command-level parameter list. To do so would corrupt storage belonging
to the application program and would cause a failure when the program attempted
to reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

 Chapter 1. Global user exit programs 95

 interval control EXEC interface program exits

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field, you can modify the
application’s data in place, because the application is expecting the field to be
modified anyway.

Modifying the EID: It is not possible to modify the EID to make major changes to
requests, such as changing a DELAY request to a START request.

However, you can make minor changes to requests, such as turning on the
existence bit for SYSID so that the request can be changed into one that is shipped
to a remote system.

Some interval control commands use 2 bits in the EID to indicate a single keyword;
the EXEC CICS START command, for example, uses 2 bits to indicate TERMID.
The first bit, in IC_BITS1, indicates that ADDR6 in the command parameter list is
valid (ADDR6 points to TERMID) and the second, in IC_EIDOPT7, is the keyword
existence bit to show that the TERMID keyword was specified on the command.

Where this occurs you must ensure that both bit settings are changed (consistently)
if you wish to modify these commands from within a user exit program, or the
results will be unpredictable.

The list that follows shows the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

IC_BITS1

X'80' The existence bit for REQID (if the request is CANCEL).
X'40' The existence bit for REQID (if the request is DELAY, POST, or

START).
X'20' The existence bit for TRANSID (if the request is CANCEL).
X'10' The existence bit for FROM (if the request is START).
X'08' The existence bit for LENGTH (if the request is START).
X'04' The existence bit for TERMID (if the request is START).
X'02' The existence bit for SYSID (if the request is START or CANCEL).
X'01' The existence bit for RTRANSID (if the request is START or

RETRIEVE).

IC_BITS2

X'80' The existence bit for RTERMID (if the request is START or
RETRIEVE).

X'40' The existence bit for QUEUE (if the request is START or
RETRIEVE).

X'20' The existence bit for HOURS (if the request is DELAY, POST. or
START).

X'10' The existence bit for MINUTES (if the request is DELAY, POST. or
START).

X'08' The existence bit for SECONDS (if the request is DELAY, POST. or
START).

IC_EIDOPT6

X'20' Secondary existence bit for HOURS.

96 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

X'10' Existence bit for FMH.
X'08' Secondary existence bit for SECONDS.
X'04' Secondary existence bit for MINUTES.
X'02' Existence bit for PROTECT.
X'01' Existence bit for NOCHECK.

IC_EIDOPT7
Bits in IC_EIDOPT7 should only be modified within the same functional group –
that is, only those existence bits defined as valid for a START request should
be set on a START request.

ASKTIME requests

X'13' ASKTIME request. This value is fixed for all ASKTIME requests, and
should not be modified.

DELAY requests

X'20' DELAY request.
X'08' TIME specified.
X'04' REQID specified.

POST requests

X'30' POST request.
X'08' TIME specified.
X'04' REQID specified.

START requests

X'40' START request (without DATA).
X'50' START with DATA request.
X'70' START with one or more of RTRANSID, RTERMID, QUEUE, or FMH

specified.
X'08' TIME specified.
X'04' REQID specified.
X'01' TERMID specified.

RETRIEVE requests

X'82' RETRIEVE request.

CANCEL requests

X'F0' CANCEL request.
X'04' REQID specified.

The EID is reset to its original value before return to the application program. That
is, changes made to the EID are retained for the duration of the interval control
request only.

Warning: Your user exit program is prevented from making major changes to the
EID. However, you must take great care when making the minor modifications that
are permitted.

Using the interval control request token UEPICTOK: UEPICTOK provides the
address of a 4-byte area that you can use to pass information between the
XICEREQ and XICEREQC user exits for the same interval control request. For

 Chapter 1. Global user exit programs 97

 interval control EXEC interface program exits

example, the address of a piece of storage obtained by the XICEREQ user exit,
which is to be freed by the XICEREQC exit, can be passed in the UEPICTOK field.

Using the task token UEPTSTOK: UEPTSTOK provides the address of a 4-byte
area that you can use to pass information between successive interval control
requests in the same task. (By contrast, UEPICTOK is usable only for the duration
of a single interval control request, because its contents may be destroyed at the
end of the request.) For example, if you need to pass information between
successive invocations of the XICEREQ exit, UEPTSTOK provides a means of
doing this.

The EIB: Copies of EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit,
so that you can:

� Modify or set completion information in XICEREQ and XICEREQC
� Examine completion information in XICEREQC.

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are
given in the parameter list. Interval control copies your values into the real EIB
after the completion of XICEREQC; or if you specify a return code of ‘bypass’ in
XICEREQ.

You must set valid interval control responses. You must set all three of
EIBRCODE, EIBRESP, and EIBRESP2 to a consistent set of values, such as would
be set by CICS interval control to describe a valid completion. CICS does not
police the consistency of EIBRCODE, EIBRESP, and EIBRESP2 . However, if
EIBRCODE is set to a non–zero value and EIBRESP is set to zero, CICS overrides
EIBRESP with a non–zero value. To aid you in setting the values of EIBRCODE,
EIBRESP, and EIBRESP2, the values used by interval control are specified in
DFHICUED.

Example of how XICEREQ and XICEREQC can be used: XICEREQ and
XICEREQC can be used for a variety of purposes. One example of a possible use
is given below.

In this example, XICEREQ and XICEREQC are used to route START requests to a
number of different CICS regions to provide a simple load balancing mechanism.
The example shows only the capabilities of the exits; it is not intended to indicate
an ideal way of achieving the function.

In XICEREQ:

1. Scan the global work area (GWA) to locate a suitable CICS region
(for example, the region currently processing the least number of
START requests).

2. Having decided which system to route the request to, increment the
use count for this system.

3. Obtain a 4-byte area in which to store the SYSID for this request.
This can be allocated from the GWA to avoid issuing a GETMAIN.
If the area is obtained by issuing a GETMAIN, set UEPICTOK to the
address of the storage obtained.

4. Set IC_ADDR7 to be the address of the 4–byte area so that
XICEREQC can also use this area.

98 CICS Transaction Server for VSE/ESA Customization Guide

 interval control EXEC interface program exits

5. If setting IC_ADDR7 now makes it the last address, set the
high-order bit in the address, and reset the high-order bit in what
was previously the last address.

6. Set the X'02' existence bit on in IC_BITS1 to indicate that a SYSID
is specified.

7. Return to CICS.

In XICEREQC:

1. Scan the global work area (GWA) and locate the entry for the CICS
region specified in the SYSID parameter.

2. Decrement the use count for this system.

3. If a GETMAIN was issued in XICEREQ to obtain an area to hold the
SYSID, issue a FREEMAIN for the address held in UEPICTOK.

4. Return to CICS.

 Example program

CICS supplies—in hardcopy only—an example program, DFH$XTSE, that
shows how to modify fields in the command-level parameter structure passed to
EXEC interface exits. DFH$XTSE is listed on page 673.

 Chapter 1. Global user exit programs 99

 journal control program exits

Journal control program exits XJCWR and XJCWB
There are two global user exits in the journal control program. CICS invokes
XJCWR after building a journal record in the buffer, but before writing it to its target
journal. XJCWB is invoked before each physical WRITE to each
non-DMF-controlled journal. It could be used, for example, to pass copies of CICS
log records to another system to aid in recovery of the prime-site system after a
disaster.

 XJCWR
Table 38. Exit XJCWR

When
invoked

After a journal record is built in the buffer and before it is written to its
target journal.

Exit-specific
parameters

UEPJCTE Address of the JCT entry of the journal being written
to. The JCT entry can be mapped using the DSECT
DFHJCTTE.

UEPJREC Address of the journal record. The journal control
record can be mapped using the information supplied
in Chapter 17, “CICS journaling” on page 513.

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
commands

Must not be used.

 XJCWB
Table 39. Exit XJCWB

When
invoked

Before each physical WRITE to each non-DMF-controlled journal.

Exit-specific
parameters

UEPJCJID Address of a halfword containing the number (ID) of
the journal being written to. The value of the journal
ID is restricted to the range 1 through 99.

UEPJCSFX Address of an area containing the single character
suffix of the journal being written to. The suffix is
either ‘A’ or ‘B’.

UEPJCDCB Address of the SAM DTF of the journal data set.

UEPJCBUF Address of the journal data block. This is the 31-bit
address of the current block of journal records.

UEPJCBFL Address of a fullword containing the length of the
journal data block.

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
commands

Must not be used.

100 CICS Transaction Server for VSE/ESA Customization Guide

 loader domain exits

Loader domain exits XLDLOAD and XLDELETE
There are two global user exits in the loader domain. XLDLOAD is invoked when a
new instance of a program is loaded into storage, before the program is made
available for use.

XLDELETE is invoked after an instance of a program is released by CICS and
before the program is freed from storage.

For LPA-resident programs, the exits are still invoked when a program is acquired
or released, even though the program is not physically loaded or freed.

These are both information-only exits. Any changes made to the exit parameters
by the exit program are ignored by CICS, as is any return code which it sets.

Table 40. Exit XLDLOAD

When
invoked

After an instance of a program is brought into storage, and before the
program is made available for use.

Exit-specific
parameters

UEPPROGN Address of an 8-character field containing the name of
the program that is being loaded.

UEPPROGL Address of a 4-byte field containing the length, in
bytes, of the program that is being loaded.

UEPLDPT Address of a 4-byte field containing the address at
which the program has been loaded.

UEPENTRY Address of a 4-byte field containing the address of the
program’s entry point.

UEPTRANID Zero, or the address of a 4-byte field containing the
transaction ID which applied when the exit was
invoked.

UEPUSER Zero, or the address of an 8-byte field containing the
userid in control at the time the exit was invoked.

UEPTERM Zero, or the address of a 4-byte field containing the
terminal name associated with the transaction under
which the exit was invoked.

UEPPROG Zero, or the address of an 8-character field containing
the name of the program that was in control at the
time the exit was invoked.

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
calls

Must not be used.

 Chapter 1. Global user exit programs 101

 loader domain exits

Table 41. Exit XLDELETE

When
invoked

After an instance of a program is released by CICS, and before the
program is freed from storage.

Exit-specific
parameters

UEPPROGN Address of an 8-character field containing the name of
the program that is being freed.

UEPPROGL Address of a 4-byte field containing the length, in
bytes, of the program that is being freed.

UEPLDPT Address of a 4-byte field containing the address at
which the program resides in storage.

UEPENTRY Address of a 4-byte field containing the address of the
program’s entry point.

UEPTRANID Zero, or the address of a 4-byte field containing the
transaction ID which applied when the exit was
invoked.

UEPUSER Zero, or the address of an 8-byte field containing the
userid in control at the time the exit was invoked.

UEPTERM Zero, or the address of a 4-byte field containing the
terminal name associated with the transaction under
which the exit was invoked.

UEPPROG Zero, or the address of an 8-character field containing
the name of the program that was in control at the
time the exit was invoked.

Return codes UERCNORM Continue processing.

XPI calls Must not be used.

API and SPI
calls

Must not be used.

102 CICS Transaction Server for VSE/ESA Customization Guide

 message domain exit

Message domain exit XMEOUT
The XMEOUT exit allows you to suppress or reroute CICS messages that use the
message domain.

Note that your exit program is subject to certain restrictions:

� It can only suppress or reroute messages that use the message domain. You
can deduce which messages this applies to from the VSE/ESA Messages and
Codes Volume 3 manual: the description of each message that causes
XMEOUT to be driven contains a list of “XMEOUT parameters”; if no XMEOUT
parameters are listed for a message, the latter does not cause the exit to be
driven. For example, message ‘DFHAC2008’ causes XMEOUT to be invoked,
but message ‘DFHDU0205’ does not.

� It cannot change the text of a message, nor the message inserts. (If it tries to
do so, CICS ignores the changes.)

� It cannot suppress or reroute messages issued during the first phase of CICS
initialization (because the exit cannot be enabled before the second phase).

� It cannot reroute a message to transient data queues during CICS shutdown
unless the original message destination included one or more transient data
queues. If it attempts to do so, the message in question is routed to its original
destination, and message DFHME0120I is issued to the console. Message
DFHME0120I cannot be re-routed by the user exit program but it may be
suppressed.

This restriction is necessary because the message domain is required to
handle messages during CICS shutdown even after the transient data queue
function has ended.

To discover whether CICS shutdown has started, your exit program can check
for the first instance of message DFHME0120. It can stop rerouting messages
to TD queues after DFHME0120 has been issued.

� It cannot suppress or reroute messages sent to terminal operators, but only
those sent to the system console or to transient data queues. (XMEOUT is not
invoked for the former type of message.)

Note: If a message is being rerouted to a transient data queue and the transient
data request fails, the message is lost. The MEME exception trace point ID X'0328'
is written. The interpretation string of this trace entry provides an explanation of
why the transient data request failed.

 Chapter 1. Global user exit programs 103

 message domain exit

 Important

Because of the danger of recursion, your XMEOUT exit program should not try
to reroute:

� Any DFHTDxxxx messages, produced by the transient data program.

� User domain messages in the range DFHUS0002–DFHUS0006, plus
message DFHUS0150.

� Transaction manager messages DFHXM0212, DFHXM0213, DFHXM0304
and DFHXM0308.

� Application messages DFHAP0001, DFHAP0002, DFHAP0004,
DFHAP0601, DFHAP0602, and DFHAP0603.

� Any user domain (DFHUSxxxx) messages to an intrapartition queue defined
with a TRIGLEV value of anything other than zero, if the messages are
produced while the user domain is performing error recovery processing.

The message definition template contains an indicator called “noreroute”. This
indicator is set on if the message being issued cannot be rerouted to a transient
data queue by the XMEOUT exit program. The address of the indicator is
passed to XMEOUT in the UEPNRTE exit-specific parameter. Your exit
program can check the value of the indicator before deciding whether or not to
reroute a particular message.

Note: If the exit program tries to reroute an ineligible message, the message
domain inhibits the rerouting and issues the message to the console instead,
along with message DFHME0137.

Each of the messages affected by this restriction is identified by a note in the
VSE/ESA Messages and Codes Volume 3 manual.

Your exit program can suppress or reroute messages by altering the values held in
the addresses pointed to by the UEPMROU, UEPMNRC, UEPMTDQ, and
UEPMNTD fields of the parameter list. These four sets of values (route codes,
number of route codes, transient data queue names, and number of TDQs) are the
only ones that your program can change.

104 CICS Transaction Server for VSE/ESA Customization Guide

 message domain exit

Table 42 (Page 1 of 2). Exit XMEOUT

When
invoked

Before the message domain sends a CICS message to its
destination.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte ID of the terminal under which
the current transaction is running. If the current
transaction is not associated with a terminal, the
addressed field contains hexadecimal zeroes.

UEPPROG Address of the 8-byte application program name.

UEPMNUM Address of a 4-byte field containing the message
number.

UEPMDOM Address of a 2-byte field containing the domain
identifier of the CICS message.

UEPMROU Address of an array of up to 28 route codes. Route
codes must be numbers in the range 1 through 28.

UEPMNRC Address of a halfword containing the number of route
codes in the route code array.

UEPMTDQ Address of an array of up to 25 transient data queue
names to which the message is to be sent. TD queue
names must consist of 4 alphanumeric characters.

UEPMNTD Address of a halfword containing the number of TD
queues in the queues array.

UEPINSN Address of a 2-byte field containing the number of
message inserts.

 Chapter 1. Global user exit programs 105

 message domain exit

Table 42 (Page 2 of 2). Exit XMEOUT

 UEPINSA Address of an array, each element of which contains
information about a single message insert. The size of
the array depends on the number of inserts. Each
array element has the following structure:

INSERT_FORMAT_P DS A Address of the 1-byte insert

type-code, which has one of

the following hexadecimal values:

 ð Not present

 1 Character

 2 Hexadecimal

 3 Decimal

4 The insert is a number

representing one item in

a list of options.

(See the example below.)

INSERT_P DS A Address of the message insert

INSERT_LENGTH_P DS A Address of a fullword contain-

ing the length of the insert

INSERT_TYPE_P DS A Reserved.

You can find the order of the inserts in the array from the entry for
the particular message in the VSE/ESA Messages and Codes
Volume 3 manual. For example,

DFHJC4512 date time applid CICS {System Log | Journal}
nn no longer available - output volume-switch

 failure

The XMEOUT inserts are date, time, applid, a number, and nn. The
fourth insert (number) has a value of 1 or 2, representing ‘System
Log’ or ‘Journal’ respectively.

UEPNRTE Address of 1-character flag indicating whether or not
the message can be rerouted by XMEOUT. The
possible values are:

X'0' The message can be routed.

X'1' The message cannot be routed.

Return codes UERCNORM Continue processing.

UERCBYP Suppress the message for all destinations.

XPI calls WAIT_EXTERNAL can be used. Do not use any other calls .

API and SPI
commands

Must not be used.

The sample XMEOUT global user exit programs
CICS supplies the following sample programs, which show you how to use the
XMEOUT exit to suppress or reroute messages:

DFH$SXP1 Suppress a message by message number.
DFH$SXP2 Suppress a message by destination route code.
DFH$SXP3 Suppress a message destined for the CSCS transient data queue

(which receives signon and sign-off messages).
DFH$SXP4 Reroute a console message to a TDQ.
DFH$SXP5 Reroute a TDQ message to another TDQ.
DFH$SXP6 Reroute a TDQ message to a console.

106 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring domain exit

Monitoring domain exit XMNOUT
XMNOUT is invoked before an exception class monitoring record is passed to
DMF, and before a performance class monitoring record is written to the
performance record buffer. You can use this exit to examine the record, to
suppress its output to DMF, or to change the data it contains. You must ensure
that any changes you make do not conflict with the dictionary description of the
data.

You can also add data to performance class data records. To do this you need to
define dummy user event-monitoring points (EMPs) in the monitoring control table
(MCT) to reserve data fields of the required size and type.

Table 43 (Page 1 of 2). Exit XMNOUT

When
invoked

Before an exception class monitoring record is written to DMF, and
before a performance class monitoring record is buffered for a later
write to DMF.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID. This field is not
available at task termination.

UEPUSER Address of the 8-byte user ID. This field is not
available at task termination.

UEPTERM Address of the 4-byte terminal ID. This field is not
available at task termination.

UEPPROG Address of the 8-byte application program name. This
field is not available at task termination.

UEPDICT Address of the dictionary. The sequence of dictionary
entries is mapped by the DSECT generated from the
macro DFHMCTDR. This field only has meaning for
performance class records. If the monitoring record
type is exception class (refer to parameter
UEPMRTYP), this field is set to 0.

UEPDICTE Address of the fullword number of dictionary entries.
This field only has meaning for performance class
records. If the monitoring record type is exception
class (refer to parameter UEPMRTYP), this field is set
to 0.

UEPFCL Address of the field connector list, containing a series
of halfword connector values. This field only has
meaning for performance class records. If the
monitoring record type is exception class (refer to
parameter UEPMRTYP), this field is set to 0.

UEPFCLNO Address of the fullword number of field connectors.
This field only has meaning for performance class
records. If the monitoring record type is exception
class (refer to parameter UEPMRTYP), this field is set
to 0.

 Chapter 1. Global user exit programs 107

 monitoring domain exit

Table 43 (Page 2 of 2). Exit XMNOUT

UEPMRTYP Address of the halfword monitoring record type. If the
value is 4, the type is exception class. If the value is
3, the type is performance class.

UEPMRLEN Address of the fullword monitoring record length.

UEPMREC Address of monitoring record, whose length is
addressed by the parameter UEPMRLEN.

Return codes UERCNORM Continue processing.

UERCBYP Suppress monitor record output.

UERCPURG Task purged during XPI call.

XPI calls WAIT_EXTERNAL can be used. Do not use any other calls .

API and SPI
commands

Must not be used.

108 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

Program control program exits XPCREQ, XPCREQC, XPCFTCH,
XPCHAIR, XPCTA, and XPCABND

There are six user exit points in the program control program.

XPCREQ and XPCREQC
XPCREQ is invoked by the EXEC interface program before a link request is
processed. If the request is a distributed program link, the XPCREQ exit is driven
on both sides of the link; that is, in both the client and the server regions. The exit
program is passed the address of the application’s parameter list (in UEPCLPS),
and can modify this as required. For example, you can use this exit to modify the
SYSID at the time of a distributed program link request. One way you can achieve
this is to write an application program to manage a list of SYSIDs in a global work
area (GWA). The global user exit program can obtain access to the GWA, and use
the information stored there to redirect DPL requests.

XPCREQC is invoked after the link request is completed. You can use this exit to
pass back a response to the application via the EIBRESP or EIBRESP2 fields.
Such responses could be used to keep status information about a link request
up-to-date. For example, if a link request fails because a connection is unavailable,
XPCREQC could set EIBRESP=500 (a response code not used by CICS) to
indicate the failure, enabling the application, in conjunction with the other exit,
XPCREQ, to determine a suitable course of action.

Table 44. Exit XPCREQ

When
invoked

By the EXEC interface program before a link request is processed.

Exit-specific
parameters

UEPCLPS Address of the command parameter list.

UEPPCTOK Address of a 4-byte token to be passed to XPCREQC.
This allows you, for example, to pass a work area to
exit XPCREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of EIBRCODE.

UEPRESP Address of a 4-byte copy of EIBRESP.

UEPRESP2 Address of a 4-byte copy of EIBRESP2.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Using the task token UEPTSTOK”
on page 114.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCBYP Program control is to ignore the request.

UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 109

 program control program exits

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when a program
control request is issued from the XPCREQ or XPCREQC exits.

Use of the recursion counter UEPRECUR is recommended.

Table 45. Exit XPCREQC

When
invoked

On completion of a program control link request.

Exit-specific
parameters

UEPCLPS Address of the command parameter list.

UEPPCTOK Address of a 4-byte token passed from XPCREQ.
This allows XPCREQ to, for example, pass a work
area to XPCREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of EIBRCODE.

UEPRESP Address of a 4-byte copy of EIBRESP.

UEPRESP2 Address of a 4-byte copy of EIBRESP2.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Using the task token UEPTSTOK”
on page 114.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

The command parameter structure
The command parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of a bit string
that describes the type of request and identifies each keyword specified with the
request. The remaining addresses point to pieces of data associated with the
request; for instance, the second address always points to the program name. You
can examine the parameters in the list to determine the values of the keywords.
You can also modify values of parameters specified on the request. For example,
you could change the name of the program involved in the request, or add the
SYSID to route the link request to a remote system.

110 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first two addresses
(PC_ADDR0, the address of the EID, and PC_ADDR1, the address of the name
of the program named in the link request), the high-order bit is set on in
PC_ADDR1. If you extend the parameter list by setting the address of a SYSID
in PC_ADDR7, you must unset the high-order bit in PC_ADDR1 and set it on in
PC_ADDR7 instead.

The original parameter list, as it was before XPCREQ was invoked, is restored after
the completion of XPCREQC. It follows that EDF will display the original command
before and after execution: EDF will not display any changes made by the exit .

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
included in both exit XPCREQ and exit XPCREQC. It is the address of the
command-level parameter structure. The command-level parameter structure
contains 9 addresses, PC_ADDR0 through PC_ADDR8. It is defined in the DSECT
PC_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHPCEDS.

The command-level parameter list is made up as follows:

PC_ADDR0
is the address of a 7-byte area called the EXEC interface descriptor (EID),
which is made up as follows:

 PC_GROUP
 PC_FUNCT
 PC_BITS1
 PC_BITS2
 PC_EIDOPT5
 PC_EIDOPT6

PC_GROUP Always X'0E', indicating that this is a program control
request.

PC_FUNCT One byte which defines the type of request, which for
XPCREQ and XPCREQC is always X'02', indicating a
LINK request.

PC_BITS1 Existence bits that define which keywords that contain
values were specified. To obtain the value associated with
a keyword, you need to use the appropriate address from
the command-level parameter list. Before using this
address you must check the associated existence bit to
ensure that the address is valid. If the existence bit is set
off, the keyword was not specified in the request and the
address should not be used. The symbolic and
hexadecimal values of the existence bits are as follows:

 Chapter 1. Global user exit programs 111

 program control program exits

PC_EXIST1 (X'80 ')
Set if the request contains the keyword
PROGRAM. If set, PC_ADDR1 is meaningful.
(This bit should always be set for a LINK
request.)

PC_EXIST2 (X'40 ')
Set if the request specifies the COMMAREA
parameter. If set, PC_ADDR2 is meaningful.

PC_EXIST3 (X'20 ')
Set if the request specifies the LENGTH
parameter. If set, PC_ADDR3 is meaningful.

PC_EXIST4 (X'10 ')
Set if the request specifies the INPUTMSG
parameter. If set, PC_ADDR4 is meaningful.

PC_EXIST5 (X'08 ')
Set if the request specifies the INPUTMSGLEN
parameter. If set, PC_ADDR5 is meaningful.

PC_EXIST6 (X'04 ')
Set if the request specifies the DATALENGTH
parameter. If set, PC_ADDR6 is meaningful.

PC_EXIST7 (X'02 ')
Set if the request specifies the SYSID
parameter. If set, PC_ADDR7 is meaningful.

PC_EXIST8 (X'01 ')
Set if the request specifies the TRANSID
parameter. If set, PC_ADDR8 is meaningful.

PC_BITS2 Two bytes not used by program control.

PC_EIDOPT5 Not used by program control.

PC_EIDOPT6 Indicates whether the request specifies the
SYNCONRETURN option. If it does, X'80' is set.

PC_ADDR1
is the address of an 8-byte area containing the program name from the
PROGRAM parameter.

PC_ADDR2
is the address of the COMMAREA data.

PC_ADDR3
is the address of a 2-byte area containing the length of the COMMAREA, as a
half-word binary value.

PC_ADDR4
is the address of the INPUTMSG data.

PC_ADDR5
is the address of a 2-byte area containing the length of the INPUTMSG, as a
half-word binary value.

PC_ADDR6
is the address of a 2-byte area containing the length specified on the
DATALENGTH parameter, defining how much data is to be sent from the
COMMAREA. The length is held as a half-word binary value.

112 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

PC_ADDR7
is the address of the 4-byte name of the remote system the LINK request is to
be shipped to, as specified on the SYSID parameter.

PC_ADDR8
is the address of the 4-byte name of the mirror transaction to be attached in the
remote system, as specified on the TRANSID parameter.

Modifying fields in the command parameter structure
Some fields that are passed to program control are used as input to the request,
some are used as output fields, and some are used for both input and output. The
method your user exit program uses to modify a field depends on the usage of the
field.

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command parameter list to point
to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command parameter list. To do so would corrupt storage belonging to the
application program and could cause a failure when the program attempted to
reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field you can modify the
application’s data in place, because the application is expecting the field to be
modified anyway.

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not
possible, for example, to change a LINK request to a different type of Program
Control request.

However, you can make minor changes to requests, such as to turn on the
existence bit for SYSID so that the request can be changed into one that is shipped
to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

PC_BITS1

X'40' The existence bit for the COMMAREA.
X'20' The existence bit for LENGTH.
X'10' The existence bit for INPUTMSG.
X'08' The existence bit for INPUTMSGLEN.
X'04' The existence bit for DATALENGTH.
X'02' The existence bit for SYSID.
X'01' The existence bit for TRANSID.

 Chapter 1. Global user exit programs 113

 program control program exits

PC_EIDOPT5
Not used for a PC link request.

Bits in the EID should be modified in place. You should not modify the pointer to
the EID. (Any attempt to do so is ignored by CICS.)

The EID is reset to its original value before return to the application program. That
is, changes made to the EID are retained for the duration of the program control
request only.

Your user exit program is prevented from making major changes to the EID.

Using the program control request token, UEPPCTOK
UEPPCTOK provides the address of a 4-byte area that you can use to pass
information between the XPCREQ and XPCREQC user exits for the same program
control request. For example, the address of a piece of storage obtained by the
XPCREQ user exit, which has to be freed by the XPCREQC user exit, can be
passed in the UEPPCTOK field.

Using the task token UEPTSTOK
UEPTSTOK provides the address of a 4-byte area that you can use to pass
information between successive program control requests in the same task. (By
contrast, UEPPCTOK is usable only for the duration of a single program control
request, because its contents may be destroyed at the end of the request.) For
example, if you need to pass information between successive invocations of the
XPCREQ exit, UEPTSTOK provides a means of doing this.

 The EIB
Copies of EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit, so that
you can:

� Modify or set completion information in XPCREQ and XPCREQC.
� Examine completion information in XPCREQC.

You can update the copies of EIBRCODE, EIBRESP and EIBRESP2 that you are
given in the parameter list. Program Control copies your values into the real EIB
after the completion of XPCREQC; or if you specify a return code of ‘bypass’ in
XPCREQ.

You must set valid program control responses. You must set all three of
EIBRCODE, EIBRESP, and EIBRESP2 to a consistent set of values, such as would
be set by Program Control to describe a valid completion. Program Control does
not police the consistency of EIBRCODE, EIBRESP, and EIBRESP2 . To aid
you in setting the values of EIBRCODE, EIBRESP, and EIBRESP2, the values
used by Program Control are specified in DFHPCEDS.

Example of how XPCREQ and XPCREQC can be used
XPCREQ and XPCREQC can be used for a variety of purposes. One example of a
possible use is given below.

In this example, XPCREQ and XPCREQC are used to route LINK requests to a
number of different CICS regions to provide a simple load balancing mechanism.
The example shows only the capabilities of the exits; it is not intended to indicate
an ideal way of achieving the load balancing function. For the purpose of this

114 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

example, it is assumed that a global work area (GWA) already exists, and that it
contains a list of available SYSIDs together with a count of the number of LINK
requests currently being processed by each SYSID.

 In XPCREQ:

1. Scan the global work area (GWA) to locate a suitable CICS region—for
example, the region currently processing the least number of LINK requests.

2. Having decided which system to route the request to, increment the use count
for this system.

3. Obtain a 4-byte area in which to store the SYSID for this request (this can be
allocated from the GWA to avoid issuing a GETMAIN). If the area is obtained
by issuing a GETMAIN, set UEPPCTOK to the address of the storage obtained.

4. Set PC_ADDR7 to the address of the 4-byte area.

5. If setting PC_ADDR7 now makes it the last address, set the high-order bit in
the address, and unset the high-order bit in what was previously the last
address.

6. Set the X'02' existence bit on in PC_BITS1 to indicate that a SYSID is
specified.

7. Return to CICS.

 In XPCREQC:

1. Scan the global work area (GWA) and locate the entry for the CICS region
specified in the SYSID parameter.

2. Decrement the use count for this system.

3. If a GETMAIN was issued in XPCREQ to obtain an area to hold the SYSID,
issue a FREEMAIN for the address held in UEPPCTOK.

4. Return to CICS.

 Chapter 1. Global user exit programs 115

 program control program exits

 XPCFTCH
XPCFTCH is invoked before a PPT-defined program (including internal CICS
modules) receives control, which could be because it is the first program in a
transaction, or as a result of a LINK, XCTL, or HANDLE ABEND PROGRAM
request. You can use this exit to modify the entry address used when linking to the
program. If the exit sets a return code of zero, or a modified address of zero, the
entry address of the original application program is used.

The exit is intended to allow you to pass control to an application program or
routine before the original program is invoked. This first program, after it has
finished its processing, should pass control back to the entry point of the original
program. You should not use the exit to cause a program to be invoked instead of
the original program. If you do so, the results are unpredictable.

If a modified entry address is supplied, the program that is invoked receives control
in the execution key that the original application program would have received
control in—that is, as specified on the EXECKEY option of the original program’s
resource definition.

Table 46 (Page 1 of 2). Exit XPCFTCH

When
invoked

Before an application program receives control.

Exit-specific
parameters

UEPPCDS Address of a storage area that contains program- and
terminal-related information, and that can be mapped
using the DSECT DFHPCUE. When XPCFTCH is
invoked, the following DFHPCUE fields are significant:

PCUE_CONTROL_BITS
1-byte flag field. A setting of PCUECBTE (X'80')
indicates that the transaction is linked to a
terminal. A setting of PCUENOTX (X'40')
indicates that the program is not command level.

PCUE_TASK_NUMBER
3-character packed decimal field containing the
task number.

PCUE_TRANSACTION_ID
4-character field containing the transaction ID.

PCUE_TERMINAL_ID
4-character field containing the terminal ID (if
any).

116 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

Table 46 (Page 2 of 2). Exit XPCFTCH

PCUE_PROGRAM_NAME
8-character field containing the name of the
program that is to receive control.

PCUE_PROGRAM_LANGUAGE
3-character field containing the language of the
program that is to receive control.

PCUE_LOAD_POINT
The program’s load point.

PCUE_ENTRY_POINT
The program’s entry point.

PCUE_PROGRAM_SIZE
Fullword containing the size of the program, in
bytes.

PCUE_COMMAREA_ADDRESS
Address of the program’s communication area.

PCUE_COMMAREA_SIZE
Fullword containing the length of the program’s
communication area.

PCUE_LOGICAL_LEVEL
Fullword containing the logical link level.

PCUE_BRANCH_ADDRESS
Fullword. Use this field to supply an alternative
entry address. To specify that the alternative
program is to run AMODE (31), set the top bit
(use the equated value
PCUE_BRANCH_AMODE).

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

UERCMEA Entry address has been modified.

XPI calls All can be used.

API and SPI
commands

Must not be used.

The sample XPCFTCH global user exit program, DFH$PCEX
Note that there is a CICS-supplied sample exit program, DFH$PCEX, that is
designed to be driven by the XPCFTCH exit. For more information about
DFH$PCEX, see “Sample global user exit programs” on page 14.

 Chapter 1. Global user exit programs 117

 program control program exits

 XPCHAIR
XPCHAIR is invoked before a HANDLE ABEND LABEL routine is given control.
Note that this occurs only when a program abend causes a branch to an internal
abend routine. (When the HANDLE ABEND request specifies PROGRAM, exit
XPCFTCH is invoked, as described above.) You can use this exit to supply an
alternative handle-abend address. If the exit sets a return code of zero, or an
alternative address of zero, CICS passes control to the application program’s
specified internal routine.

If a modified entry address is supplied, the code that is invoked receives control in
the execution key that the internal abend routine would have received control
in—that is, the key in force when the EXEC CICS HANDLE ABEND LABEL
command was issued.

Table 47 (Page 1 of 2). Exit XPCHAIR

When
invoked

Before a HANDLE ABEND routine is given control.

Exit-specific
parameters

UEPPCDS Address of a storage area that contains program- and
terminal-related information, and that can be mapped
using the DSECT DFHPCUE. When XPCHAIR is
invoked, the following DFHPCUE fields are significant:

PCUE_CONTROL_BITS
1-byte flag field. A setting of PCUECBTE
indicates that the transaction is linked to a
terminal.

PCUE_TASK_NUMBER
3-character packed decimal field containing the
task number.

PCUE_TRANSACTION_ID
4-character field containing the transaction ID.

PCUE_TERMINAL_ID
4-character field containing the terminal ID (if
any).

PCUE_PROGRAM_NAME
8-character field containing the name of the
program that issued the HANDLE ABEND LABEL
command.

PCUE_LOGICAL_LEVEL
Fullword containing the logical link level.

PCUE_BRANCH_ADDRESS
Fullword. Use this field to supply the address of
an alternate abend routine. To specify that the
alternative program is to run AMODE (31), set the
top bit (use the equated value
PCUE_BRANCH_AMODE).

UEPTACB Address of the transaction abend control block (TACB)
for the abend. If the abend occurred because of a
program check, the information in the TACB includes:

� The program status word (PSW)
� The registers at the time of the abend
� Details of the access registers current at the time

of the abend

You can map the TACB using the DFHTACB
TYPE=DSECT macro.

118 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

Table 47 (Page 2 of 2). Exit XPCHAIR

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

UERCMEA The address of an alternate abend routine has been
supplied.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 119

 program control program exits

 XPCTA
XPCTA is invoked immediately after a transaction abend, and before any
processing that might modify the existing environment so that the task could not be
resumed. You can use it to set a resume address, instead of letting CICS process
the abend. If a resume address is passed back, registers 0 through 13 and 15 are
restored to their values at the time of the abend. Register 14 is used to branch to
the resume address. If the exit sets a return code of zero, or a resume address of
zero, CICS processes the abend.

Note: If the transaction abend occurs as a result of a program check or an
operating system abend, it is possible that the XDUREQ dump domain exit may be
invoked before XPCTA. (For details of XDUREQ, see page 30.)

Table 48 (Page 1 of 2). Exit XPCTA

When
invoked

After an abend and before the environment is modified.

Exit-specific
parameters

UEPPCDS Address of a storage area that contains program- and
terminal-related information, and that can be mapped
using the DSECT DFHPCUE. When XPCTA is
invoked, the following DFHPCUE fields are significant:

PCUE_CONTROL_BITS
1-byte flag field. A setting of PCUECBTE
indicates that the transaction is linked to a
terminal.

PCUE_TASK_NUMBER
3-character packed decimal field containing the
task number.

PCUE_TRANSACTION_ID
4-character field containing the transaction ID.

PCUE_TERMINAL_ID
4-character field containing the terminal ID (if
any).

PCUE_PROGRAM_NAME
8-character field containing the name of the failing
program.

PCUE_LOGICAL_LEVEL
Fullword containing the logical link level.

PCUE_BRANCH_ADDRESS
Fullword. You can use this field to supply a
resume address. To specify that the alternative
program is to run AMODE (31), set the top bit
(use the equated value
PCUE_BRANCH_AMODE).

120 CICS Transaction Server for VSE/ESA Customization Guide

 program control program exits

Table 48 (Page 2 of 2). Exit XPCTA

PCUE_BRANCH_EXECKEY
If storage protection is active, you can use this
1-byte field to specify the execution key of the
resumed task. The possible values are:
PCUE_BRANCH_USER User key.
PCUE_BRANCH_CICS CICS key.

If storage protection is active, and you do not
specify a value, the resumed task executes in
User key.

If storage protection is not active, the resumed
task executes in CICS key.

UEPTACB Address of the transaction abend control block (TACB)
for the abend. If the abend occurred because of a
program check, the information in the TACB includes:

� The program status word (PSW)
� The registers at the time of the abend
� The execution key at the time of the abend
� Details of the access registers current at the time

of the abend

You can map the TACB using the DFHTACB
TYPE=DSECT macro.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

UERCMEA A resume address has been supplied.

XPI calls All can be used.

API and SPI
commands

Must not be used.

The sample XPCTA global user exit program, DFH$PCTA
The sample program tests whether the abend was caused by the application
program trying to overwrite CICS-key storage in the CDSA or ECDSA, while
running in user key. If this was the case, the sample changes the execution key to
CICS, and retries the failing instruction.

You can use the sample program to identify, without abending, those programs that
need to be defined with EXECKEY(CICS), because they intentionally modify a
CICS-key DSA. For details of how to do this, see the prolog of DFH$PCTA.

 Chapter 1. Global user exit programs 121

 program control program exits

 XPCABND
XPCABND is invoked before a transaction dump call: you can use it to suppress
the dump.

Table 49. Exit XPCABND

When
invoked

Before a transaction dump call is made.

Exit-specific
parameters

UEPPCDS Address of a storage area that contains
program-related and terminal-related information. The
storage area is mapped by the DSECT DFHPCUE.

When XPCABND is invoked, the following DFHPCUE
fields are significant:

PCUE_CONTROL_BITS
A 1-byte flag field. A setting of PCUECBTE
indicates that the transaction is linked to a
terminal.

PCUE_TASK_NUMBER
A 3-character packed decimal field containing the
task number.

PCUE_TRANSACTION_ID
A 4-character field containing the transaction ID.

PCUE_TERMINAL_ID
A 4-character field containing the terminal ID (if
any).

PCUE_PROGRAM_NAME
An 8-character field containing the name of the
program that is abending.

PCUE_LOGICAL_LEVEL
A fullword containing the logical link level.

UEPTACB Address of the transaction abend control block (TACB)
for the abend. If the abend occurred because of a
program check, the information in the TACB includes:

� The program status word (PSW)

� The registers at the time of the abend.

� Details of the subspace and access registers
current at the time of the abend.

You can map the TACB using the DFHTACB
TYPE=DSECT macro.

Return codes UERCNORM Continue processing – make the dump call.

UERCBYP Suppress the dump call.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

122 CICS Transaction Server for VSE/ESA Customization Guide

 resource manager interface program exits

Resource manager interface program exits XRMIIN and XRMIOUT

 XRMIIN
Table 50. Exit XRMIIN

When
invoked

Before a task-related user exit program is invoked due to an
application program issuing an RMI API request.

Exit-specific
parameters

UEPTRUEN Address of the name of the task-related user exit
program.

UEPTRUEP Address of the parameter list to be passed to the
task-related user exit program. See note.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Note: The task-related user exit program’s parameter list is mapped
by a DFHUEPAR DSECT that shares common field names
with the global user exit program’s DFHUEPAR parameter list.
To include both DSECT definitions in your exit program, you
must code:

DFHUEXIT TYPE=EP,ID=XRMIIN

DFHUEXIT TYPE,TYPE=RM

The statements must be coded in this order.

The two DFHUEPAR parameter lists, the global user exit’s
and the task-related user exit’s, occupy separate areas of
storage. The task-related user exit’s parameter list is
provided for information only; you should not amend it in any
way.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Most can be used. However, CALLDLI, EXEC DLI, or EXEC SQL
commands must not be used.

 Chapter 1. Global user exit programs 123

 resource manager interface program exits

 XRMIOUT

Warning: It is not recommended that your exit program make calls to other
external resource managers that use the RMI, because this causes recursion, and
may result in a loop. It is your exit program’s responsibility to avoid entering a
loop. It could use the recursion counter field UEPRECUR to guard against this.

Table 51. Exit XRMIOUT

When
invoked

After a task-related user exit program has returned from handling an
RMI API request.

Exit-specific
parameters

UEPTRUEN Address of the name of the task-related user exit
program.

UEPTRUEP Address of the parameter list passed to the
task-related user exit program. See note.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Note: The task-related user exit program’s parameter list is mapped
by a DFHUEPAR DSECT that shares common field names
with the global user exit program’s DFHUEPAR parameter list.
To include both DSECT definitions in your exit program, you
must code:

DFHUEXIT TYPE=EP,ID=XRMIOUT

DFHUEXIT TYPE,TYPE=RM

The statements must be coded in this order.

The two DFHUEPAR parameter lists, the global user exit’s
and the task-related user exit’s, occupy separate areas of
storage. The task-related user exit’s parameter list is
provided for information only; you should not amend it in any
way.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Most can be used. However, CALLDLI, EXEC DLI, or EXEC SQL
commands must not be used.

124 CICS Transaction Server for VSE/ESA Customization Guide

 resource management module exit

Resource management install and discard exit XRSINDI
The XRSINDI global user exit is driven, if it is enabled, immediately after CICS
successfully installs or discards a resource definition.

The install and discard activities that drive the exit are as follows:

� The install function of the group list on a cold start of CICS

� A CEDA INSTALL command

� An EXEC CICS CREATE command

� All autoinstall operations, as follows:

– The autoinstall of a terminal, connection, program, mapset, or partitionset

– The automatic discard of an unused terminal, controlled by the AILDELAY
system initialization parameter and the SIGNOFF parameter on the
TYPETERM resource definition

� A CEMT DISCARD or EXEC CICS DISCARD command

� The front-end programming interface (FEPI) install and discard operations: the
EXEC CICS FEPI INSTALL command and EXEC CICS FEPI DISCARD
command

The parameter list is designed to pass the names of more than one resource
installed or discarded, in field UEPIDNAM. When designing your global user exit
program, do not assume that the number of resource names passed is always one.
You are recommended to analyze the resources within a loop based on the value
referenced by UEPIDNUM.

Note that the names of modegroups are prefixed with the corresponding connection
name. There is no separator between the two names: the first four characters form
the connection name, followed by eight characters for the modegroup. The parts of
the concatenated name are fixed length—if connection names are defined with less
than four characters, they are padded with blanks in the concatenated names.
Similarly, the connection names for a front-end programming interface (FEPI)
connection is a concatenation of a FEPI node name and a FEPI target name, each
of which is 8 characters long (fixed length) with no separator.

The exit is driven once for each individual resource in a group list installed during a
CICS cold start. If you are concerned about the performance overhead on a cold
start, you should not enable the exit until after the group list is installed. To obtain
the information about resources installed prior to enabling the exit, you can write a
program to scan the tables of installed resources, using the EXEC CICS INQUIRE
resource_name browse function.

 Chapter 1. Global user exit programs 125

 resource management module exit

Table 52. Exit XRSINDI

When
invoked

Whenever CICS installs or discards a resource definition.

Exit-specific
parameters

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPIDREQ Address of the 1-byte install or discard identifier. The
values are:

UEIDINS This request is for an install.
UEIDDIS This request is for a discard.

UEPIDNAM Address of a variable-length list containing the names
of the individual resources reported by this call.

UEPIDLEN Address of the length of an individual resource name,
as a full-word binary value.

UEPIDNUM Address of the number of resources reported by this
call, as a full-word binary value.

UEPIDTYP Address of the 1-byte type of resource. The values
are:

UEIDTRAN A transaction.
UEIDPROF A profile.
UEIDPROG A program.
UEIDMAP A mapset.
UEIDPSET A partitionset.
UEIDTERM A terminal.
UEIDCONN A connection.
UEIDMODE A modegroup.
UEIDSESS A session.
UEIDFILE A file.
UEIDPART A partner.
UEIDTCLS A transaction class.
UEIDAITM An autoinstall terminal model.
UEIDFECO A FEPI connection.
UEIDFENO A FEPI node.
UEIDFEPO A FEPI pool.
UEIDFEPS A FEPI propertyset.
UEIDFETA A FEPI target.

UEPIDREC Address of a 1-byte identifier indicating whether
resources are recovered at a warm or emergency
restart. The values are:

UEIDKEEP The resources are recoverable at a warm
or emergency restart.

UEIDLOSE The resources are not recoverable.

Note: The exit is not driven during a CICS restart.

Return codes UERCNORM Continue processing. This is the default.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

126 CICS Transaction Server for VSE/ESA Customization Guide

 resource management module exit

 Important

Abends in a program enabled at the XRSINDI exit point may cause CICS to
terminate, because for some resources the exit is driven during syncpoint. If
the exit returns code UERCPURG during syncpoint for these resources, abend
code AUEP is produced and CICS terminates.

 Chapter 1. Global user exit programs 127

 shared data tables program exits

Shared data tables management program exits XDTRD, XDTAD, and
XDTLC

XDTRD and XDTAD allow you to control the selection of records for inclusion in a
data table, XDTRD being used to make such selections during loading, and XDTAD
being invoked when records are subsequently added. XDTRD also allows the
contents of records that are included in a user-maintained table to be modified
before they are added. XDTLC enables you to take action based on the fact that a
data table has completed loading, which might be to end some restrictions that you
have decided to place on access to the data table during loading, or to cater for an
unsuccessful completion of the loading.

Note that a program invoked from any of these exit points must declare a DSECT
defining the data tables user exit parameter list pointed to by field UEPDTPL.
(Although UEPDTPL is defined by a DFHUEXIT call, the parameter list that it
addresses is not.) To do this, your program can include the copybook DFHXDTDS,
which defines the DT_UE_PLIST DSECT.

If the RDO FILE definitions for any tables specify OPENTIME(STARTUP)6 or any
tables are opened implicitly, you should provide a program list table
post-initialization (PLTPI) program to activate the user exits. Otherwise, the data
tables may start loading before the exits can be enabled. For more details about
PLTPI programs, see Chapter 4, “Writing initialization and shutdown programs” on
page 339.

 XDTRD
The XDTRD user exit is invoked just before CICS attempts to add to the data table
a record that has been retrieved from the source data set.

This normally occurs when the loading process retrieves a record during the
sequential copying of the source data set. However, it can also occur when an
application retrieves a record that is not in the data table and:

� For a user-maintained data table, loading is still in progress, or

� For a CICS-maintained data table, loading terminated before the end of the
source data set was reached (because, for example, the data table was full).

The record retrieved from the source data set is passed as a parameter to the user
exit program—see fields UEPDTRA and UEPDTRL. Your exit program can choose
(depending, for example, on the key value—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not.

Alternatively, if you are using CICS shared data tables support, the exit program
can request that all subsequent records up to a specified key are skipped—see
field UEPDTSKA; these records are not passed to the exit program. This facility is
available only during loading. You can specify the key as a complete key, or you
can specify just the leading characters by padding the skip-key area with binary
zeros.

For a user-maintained data table, the program can also modify the data in the
record to reduce the storage needed for the data table. Application programs that

6 Equivalent to FILSTAT=OPENED on a DFHFCT macro.

128 CICS Transaction Server for VSE/ESA Customization Guide

 shared data tables program exits

use the data table must be aware of any changes made to the record format by the
exit program. If the record length is changed, the exit program must set the new
length in the parameter list—see field UEPDTRL. The new length must not exceed
the data buffer length—see field UEPDTRBL.

Table 53 (Page 1 of 2). Exit XDTRD

When
invoked

Just before CICS tries to add to the data table a record that has been
retrieved from the source data set.

Exit-specific
parameters

UEPDTPL Address of the data table user exit parameter list,
which contains:

UEPDTNAM An 8-byte field containing the
7-character data table name. CICS
pads the name with blanks.

UEPDTFLG A 1-byte flag field. The possible bit
settings are:

UEPDTSDT (X'80')
The exit has been invoked by
CICS shared data table support.

UEPDTCMT (X'40')
This is a CICS-maintained table.

UEPDTOPT (X'20')
The exit has been invoked for table
loading. This means that
optimization by skipping can be
requested.

UEPDTRA The address of the data record.

UEPDTRBL The fullword length of the data table
buffer.

UEPDTRL The fullword length of the data record.

For user-maintained tables, the exit
program can set a new length in this
field, if it amends the record.

UEPDTKA The address of the data table key.

UEPDTKL The fullword length of the data table
key.

UEPDTDSL The fullword length of the name of the
source data set.

UEPDTDSN A 44-character field containing the
name of the source data set.

 Chapter 1. Global user exit programs 129

 shared data tables program exits

Table 53 (Page 2 of 2). Exit XDTRD

 UEPDTSKA The address of a skip-key area. When
invoked for table loading, your exit
program can return a key of length
UEPDTKL in this area, and request load
optimization by setting a return code of
UERCDTOP.

Note: The data table user exit parameter list is mapped by DSECT
DT_UE_PLIST in copybook DFHXDTDS.

Return codes UERCDTAC Add the record to the data table.

UERCDTRJ Reject the record: that is, do not add it to the table.

UERCDTOP Skip this and the following records until a key is found
that is equal to or greater than the key specified in the
skip-key area.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 XDTAD
The XDTAD user exit is invoked when a write request is issued to a data table.

� For a user-maintained data table, the user exit is invoked once—before the
record is added to the data table.

� For a CICS-maintained data table, the user exit is invoked twice—before the
record is added to the source data set and then again before the record is
added to the data table.

The record written by the application is passed as a parameter to the user exit
program—see fields UEPDTRA and UEPDTRL. Your exit program can choose
(depending on the key value, for example—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not. This decision is indicated by
setting the return code.

The XDTAD exit must not modify the data in the record. If you used XDTRD to
truncate the data records when the user-maintained data table was loaded, you
must code your application so that it only tries to write records of the correct format
for the data table.

130 CICS Transaction Server for VSE/ESA Customization Guide

 shared data tables program exits

Table 54. Exit XDTAD

When
invoked

One or more times during the processing of a write request to a data
table.

Exit-specific
parameters

UEPDTPL Address of the data table user exit parameter list,
which contains:

UEPDTNAM An 8-byte field containing the
7-character data table name. CICS
pads the name with blanks.

UEPDTFLG A 1-byte flag field. The possible bit
settings are:

UEPDTSDT (X'80')
The exit has been invoked by
CICS shared data table support.

UEPDTCMT (X'40')
This is a CICS-maintained table.

UEPDTRA The address of the data record.

UEPDTRBL The fullword length of the data table
buffer.

UEPDTRL The fullword length of the data record.

UEPDTKA The address of the data table key.

UEPDTKL The fullword length of the data table
key.

UEPDTDSL The fullword length of the name of the
source data set.

UEPDTDSN A 44-character field containing the
name of the source data set.

Note: The data table user exit parameter list is mapped by DSECT
DT_UE_PLIST in copybook DFHXDTDS.

Return codes UERCDTAC Add the record to the data table.

UERCDTRJ Reject the record: that is, do not add it to the table.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 131

 shared data tables program exits

 XDTLC
The XDTLC user exit is invoked at the completion of data table loading—whether
successful or not. The user exit is not invoked if the data table is closed for
any reason before loading is complete.

The exit program is informed if the loading did not complete successfully—see field
UEPDTORC. This could occur, for example, if the maximum number of records
was reached or there was insufficient virtual storage. In this case, the exit program
can request that the file is closed immediately, by setting the return code.

Table 55. Exit XDTLC

When
invoked

At the completion of table loading. It is not invoked if the loading
process was terminated because the data table had been closed.

Exit-specific
parameters

UEPDTPL Address of the data table user exit parameter list,
which contains:

UEPDTNAM An 8-byte field containing the
7-character data table name. CICS
pads the name with blanks.

UEPDTFLG A 1-byte flag field. The possible bit
settings are:

UEPDTSDT (X'80')
The exit has been invoked by
CICS shared data table support.

UEPDTCMT (X'40')
This is a CICS-maintained table.

UEPDTORC Data table open result code. The
possible values are:

X'00' Load successful
X'80' Load unsuccessful.

UEPDTDSL The fullword length of the name of the
source data set.

UEPDTDSN A 44-character field containing the
name of the source data set.

Return codes UERCDTOK Accept the data table in its present state

UERCDTCL Close the data table.

XPI calls All can be used.

API and SPI
commands

Must not be used.

132 CICS Transaction Server for VSE/ESA Customization Guide

 sign on and sign off exits

Signon and signoff exits XSNON and XSNOFF
Exit XSNON is invoked after a terminal user signs on, and exit XSNOFF is invoked
after a terminal user signs off (whether the signon or sign-off is successful or not).
XSNON and XSNOFF do not make any security decisions; they are merely a
means of tracking users logging on and off a CICS system.

The activities which drive the exits are:

� Invocation of an EXEC CICS SIGNON command for a terminal (when, for
example, the terminal user enters the CICS-supplied CESN, or an equivalent,
user-written, signon transaction)

� Invocation of an EXEC CICS SIGNON command for a surrogate terminal (that
is, a terminal attached by the CRTE routing transaction, or by dynamic
transaction routing)

� Invocation of an EXEC CICS SIGNOFF command for a terminal

� When a 'CANCEL' command is entered to terminate a CRTE routing session

� A timeout sign-off

 XSNON
Table 56. Exit XSNON

When
invoked

When a user signs on.

Exit-specific
parameters

UEPUSRID Address of the terminal userid.

UEPUSRLN Address of the terminal userid length.

UEPGRPID Address of the group ID. If the signon was successful,
the group ID is that which the user is associated with
in this signon session. If the signon was unsuccessful,
it is that specified by the user when he or she tried to
sign on.

UEPGRPLN Address of the group ID length.

UEPNETN Address of the terminal’s netname.

UEPTRMID Address of the terminal id.

UEPTCTUA Address of the TCT user area.

UEPTCTUL Address of the TCT user area length.

UEPTRMTY Address of the terminal-type byte.

UEPSNFLG Address of a 2-byte field containing flags:

UEPSNOK Signon was successful.
UEPSNFL Signon failed.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 133

 sign on and sign off exits

 XSNOFF
Table 57. Exit XSNOFF

When
invoked

When a user signs off.

Exit-specific
parameters

UEPUSRID Address of the terminal userid.

UEPUSRLN Address of the terminal userid length.

UEPGRPID Address of the group ID.

UEPGRPLN Address of the group ID length.

UEPNETN Address of the terminal’s netname.

UEPTRMID Address of the terminal id.

UEPTCTUA Address of the TCT user area.

UEPTCTUL Address of the TCT user area length.

UEPTRMTY Address of the terminal-type byte.

UEPSNFLG Address of a 2-byte field containing flags:

UEPSNOK Sign-off was successful.
UEPSNFL Sign-off failed.
UEPSNNML Normal sign-off.
UEPSNTIM Timeout sign-off.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

134 CICS Transaction Server for VSE/ESA Customization Guide

 statistics domain exit

Statistics domain exit XSTOUT
On invocation, XSTOUT is passed the address of a buffer containing one or more
statistics records. The buffer can contain records for various resource types (for
example, connections and modenames), and both specific and global information
(for example, loader statistics for individual programs, and loader statistics for all
programs).

Your exit program can identify the types of records in the buffer by their STID
values. (STID values are described in “CICS statistics data section” on page 576.)

You can use XSTOUT to prevent the contents of the statistics data buffer being
written to DMF. Note that you cannot use it to selectively suppress individual
records within the buffer. Your exit program should not modify the values of any of
the exit-specific parameters.

Table 58 (Page 1 of 2). Exit XSTOUT

When
invoked

Before a statistics record is written to DMF.

Exit-specific
parameters

Fields UEPTRANID, UEPUSER, UEPTERM, and UEPPROG have
meaning only for requested statistics (when using CEMT PERFORM
STATISTICS RECORD or the EXEC CICS PERFORM STATISTICS
RECORD command).

UEPTRANID Address of the 4-byte transaction ID.

UEPUSER Address of the 8-byte user ID.

UEPTERM Address of the 4-byte terminal ID.

UEPPROG Address of the 8-byte application program name.

UEPSTATS Address of a buffer containing one or more statistics
records. For unsolicited statistics, the buffer always
contains one record; for other types of statistics, it may
contain several records. The length of the buffer is
addressed by the UEPSRLEN parameter.

UEPSRLEN Address of the 4-byte hexadecimal length of the
statistics record.

UEPSTYPE Address of the 3-byte character field statistics type.
The values of the types are:

INT Interval statistics.
EOD End-of-day statistics.
REQ Requested statistics.
RRT Requested reset statistics.
USS Unsolicited statistics.

 Chapter 1. Global user exit programs 135

 statistics domain exit

Table 58 (Page 2 of 2). Exit XSTOUT

 UEPSDATE Address of a 6-byte character field containing the
collection date (MMDDYY).

UEPSTIME Address of a 6-byte character field containing the
collection time (HHMMSS).

UEPSIVAL Address of a 6-byte character field containing the
interval time (HHMMSS). This field has meaning only
for interval statistics.

UEPSIVN Address of the 4-byte interval number. This field has
meaning only for interval statistics.

UEPSCLD Address of an 8-character field containing the
collection date (MMDDYYYY).

Return codes UERCNORM Continue processing.

UERCBYP Suppress output of statistics data buffer to DMF.

XPI calls WAIT_EXTERNAL can be used. Note, however, that the wait
cannot be purged using CEMT or SPI . Do not use any other
calls .

API and SPI
commands

Must not be used.

136 CICS Transaction Server for VSE/ESA Customization Guide

 system recovery program exit

System recovery program exit XSRAB
Table 59 (Page 1 of 3). Exit XSRAB

When
invoked

When the system recovery program (DFHSRP) finds a match in the
SRT for a VSE/ESA abend or cancel code. For information about
defining entries in the SRT, refer to the CICS Resource Definition
Guide.

Exit-specific
parameters

UEPERROR Address of the error data structure,
SRP_ERROR_DATA, which contains the following
fields:

SRP_ERROR_TYPE
The 4-character error type—always ‘ASRB’.

SRP_SYS_ABCODE
2 bytes containing the system abend code XXX in
binary format (for example, 0C4). See note 5 on
page 139.

SRP_USER_ABCODE
2 bytes containing the user abend code NNNN in
binary format (for example, 0999).

SRP_ERROR_TRANID
4-character field containing the ID of the abending
transaction.

SRP_ERROR_STACK_NAME
8-character field containing the name of the
current kernel stack entry for the transaction at
the time of the abend.

SRP_ERROR_PPT_NAME
8-character field containing the name of the
current PPT entry for the transaction, if one
exists. This field contains a value only if flag
SRP_PPT_ENTRY is set.

SRP_ERROR_OFFSET
Fullword containing the offset into the program
that abended, as follows:
� If flag SRP_PPT_ENTRY is set, gives the

offset in SRP_ERROR_PPT_NAME
� Otherwise, gives the offset in

SRP_ERROR_STACK_NAME.
This field contains a value only if flag
SRP_VALID_OFFSET is set.

SRP_ERROR_FLAGS
1 byte containing flags:
SRP_CICS_CODE

The abend occurred while running CICS
code.

SRP_USER_CODE
The abend occurred while running user
application code.

 Chapter 1. Global user exit programs 137

 system recovery program exit

Table 59 (Page 2 of 3). Exit XSRAB

SRP_PPT_ENTRY
The abend occurred while running
SRP_ERROR_PPT_NAME. If this flag is not
set, the abend occurred while running
SRP_ERROR_STACK_NAME.

SRP_VALID_OFFSET
A meaningful offset could be determined.

SRP_VALID_REASON
VSE/ESA has supplied a reason code for the
abend.

SRP_CICS_ERROR_REASON
4-character field containing the VSE/ESA abend
reason code. It contains a value only if flag
SRP_VALID_REASON is set. See note 5 on
page 139.

SRP_CICS_ERROR_DATA
An area describing the last thing that CICS did,
prior to the abend. It contains the following:
SRP_CICS_EC_PSW

8-character field containing the extended
control (EC) mode program status word
(PSW).

SRP_CICS_EC_INT
8-character field containing the interrupt code
and ILC.

SRP_CICS_REGST
64-character field containing the contents of
the general-purpose (GP) registers.

SRP_CICS_EXEC_KEY
1 byte containing the PSW key, in the form
X'0n'.

SRP_ERROR_FP_REGS
An area describing the contents of the floating
point registers at the time of the abend. It
contains:
SRP_FP_REG_0

FP register 0.
SRP_FP_REG_2

FP register 2.
SRP_FP_REG_4

FP register 4.
SRP_FP_REG_6

FP register 6.

Note: The format of SRP_ERROR_DATA is shown in the CICS
Data Areas manual.

Return codes UERCNOCA Abnormally terminate the task with abend code
‘ASRB’. Do not cancel any program-level abend exits
that are associated with this task.

UERCCANC Abnormally terminate the task with abend code
‘ASRB’. Cancel any program-level abend exits that
are associated with this task.

UERCCICS Abnormally terminate CICS.

138 CICS Transaction Server for VSE/ESA Customization Guide

 system recovery program exit

 Important

Notes:

1. Take care when coding a program to run at the XSRAB exit point. If your
exit program causes the system recovery program to be reentered (if, for
example, a program check occurs) then CICS terminates abnormally, with a
DFHSR06xx message.

2. The default return code is ‘UERCNOCA’. This ensures that the task abends
if the exit is in error.

3. There is no ‘UERCNORM’ return code at this exit point, because the exit is
invoked after a failure.

4. The exit should not set the return code ‘UERCPURG’.

5. A value of X'2C5' in field SRP_SYS_ABCODE is a special case; it means
that a native VSE/ESA cancel condition has occurred (rather than a system
abend condition generated by the VSE/ESA OS/390 API support). In this
case, field SRP_CICS_ERROR_REASON contains further information. The
first byte of SRP_CICS_ERROR_REASON is the VSE/ESA cancel code.
The remaining three bytes may contain further information. For example, a
value of X'2C5' in SRP_SYS_ABCODE and X'210000ss' in
SRP_CICS_ERROR_REASON indicates that an invalid SVC has occurred.
ss is the SVC number.

Table 59 (Page 3 of 3). Exit XSRAB

XPI calls Because CICS invokes the exit XSRAB in an error environment, you
can only use a subset of the XPI calls.

Only TRACE_PUT is available for general use.

You can use WAIT_EXTERNAL, but only after the exit program has
determined (from the SRP_CICS_CODE and SRP_USER_CODE
fields) that the abend has occurred in user application code, and not
in CICS code.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 139

 system termination program exit

System termination program exit XSTERM
The XSTERM exit could be used to output final statistics to your statistics DMF
data sets. (Note that CICS VSAM and DAM data sets have already been closed by
CICS file control before the exit is invoked.)

Table 60. Exit XSTERM

When
invoked

During the second quiesce stage of a normal system shutdown,
immediately before the transient data and temporary storage buffers
are cleared. The exit is not invoked during an IMMEDIATE
shutdown.

Exit-specific
parameters

None .

Return codes UERCNORM Continue processing.

XPI calls All XPI calls except WRITE_JOURNAL_DATA can be used.
However, their use is not recommended, because they could cause
the task to lose control, thus allowing another task to write more
monitoring data.

API and SPI
commands

Must not be used.

140 CICS Transaction Server for VSE/ESA Customization Guide

 takeover request-processing program exit

Takeover request-processing program exit XXRSTAT
XXRSTAT enables you to decide whether to terminate CICS when either of the
following occurs:

� CICS is notified of a VTAM failure by the TPEND exit.

� A persistent sessions predatory takeover . A “predatory takeover” can occur if
a VTAM application with the same APPLID as that of the executing CICS
system assumes control of all the sessions of the executing CICS system.

XXRSTAT gives you the choice of allowing the system which has suffered the
takeover to continue or to terminate.

To avoid potential integrity exposures, CICS default action after a predatory
takeover is to terminate without a dump. If you want CICS to terminate with a
dump, your exit program should return UERCABDU. CICS terminates with the
abend code specified by your exit program.

If you want CICS to continue after a predatory takeover, your exit program
must return UERCCOIG. Message DFHZC0101 is issued and CICS continues
processing without VTAM support. The predatory application assumes control
of all VTAM sessions.

Warning: Allowing CICS to continue after a predatory takeover could cause
integrity problems and is not recommended. You are also recommended to
use an external security manager to protect your CICS APPLIDs.

For more information about this exit and the circumstances in which you can use it,
refer to the CICS XRF Guide.

Table 61 (Page 1 of 2). Exit XXRSTAT

When
invoked

After either of the following:

� CICS is notified of a VTAM failure by the TPEND exit.
� A VTAM persistent sessions predatory takeover.

Exit-specific
parameters

UEPERRA Address of parameter list containing:

UEPGAPLD Address of the 8-byte generic applid.

UEPSAPLD Address of the 8-byte specific applid.

UEPDOMID Address of the 4-byte domain ID.

UEPERRID Address of the 4-byte error ID.

Notes:

1. No DSECT is provided for the above parameter list. You need to
code your own DSECT to access the named fields.

2. When VTAM has failed, the domain ID is ‘ZC ’ (uppercase Z,
uppercase C, and two blanks), and the error ID is the character
string ‘3443’.

 Chapter 1. Global user exit programs 141

 takeover request-processing program exit

Table 61 (Page 2 of 2). Exit XXRSTAT

Return codes UERCNORM Take the system action. The system action depends
on the reason why the exit was invoked:

� For XRF, in the event of a VTAM failure: CICS
continues processing as if the exit program had
not been invoked.

� For VTAM persistent sessions, in the event of a
predatory takeover: CICS abends without a dump.

UERCCOIG Ignore.

UERCABNO Abend CICS without a dump.

UERCABDU Abend CICS with a dump.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

142 CICS Transaction Server for VSE/ESA Customization Guide

 task control program exit

Task control program exit XKCREQ

Note: Some requests that caused this exit to be driven in previous releases of
CICS are passed directly to the dispatcher domain in CICS Transaction Server for
VSE/ESA Release 1, and therefore do not cause the exit to be driven.

Table 62. Exit XKCREQ

When
invoked

Before ENQUEUE and DEQUEUE requests are actioned.

Exit-specific
parameters

UEPENQFN A 1-byte field indicating the type of function—either
ENQUEUE or DEQUEUE—which caused the exit
program to be invoked. The equated values are:

UEPENQ ENQUEUE.
UEPDEQ DEQUEUE.

UEPENQA The address of the resource name that is the object of
the ENQUEUE or DEQUEUE request.

UEPENQL The length of the resource name.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 143

 temporary storage control program exits

Temporary storage control program exits XTSREQ, XTSIN, and
XTSOUT

 XTSREQ
Table 63. Exit XTSREQ

When
invoked

Before analysis of a temporary storage request.

Exit-specific
parameters

UEPTSIOA Address of the TSIOAVRL field in the temporary
storage input/output area (TSIOA). The TSIOA can be
mapped using the DSECT DFHTSIOA. Note that
UEPTSIOA does not point to the start of the
DFHTSIOA DSECT.

UEPTSDI Name of the temporary storage queue ID.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 XTSIN
Table 64. Exit XTSIN

When
invoked

After an input event.

Exit-specific
parameters

UEPTSIOA Address of the TSIOAVRL field in the temporary
storage input/output area (TSIOA). The TSIOA can be
mapped using the DSECT DFHTSIOA. Note that
UEPTSIOA does not point to the start of the
DFHTSIOA DSECT.

UEPTSGID Address of the first temporary storage group
identification control block (TSGID). The TSGID is
mapped by the DSECT DFHTSGID. However, field
TSGIDSA is not a programming interface.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

144 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage control program exits

 XTSOUT
Table 65. Exit XTSOUT

When
invoked

Before an output event.

Exit-specific
parameters

UEPTSIOA Address of the TSIOAVRL field in the temporary
storage input/output area (TSIOA). The TSIOA can be
mapped using the DSECT DFHTSIOA. Note that
UEPTSIOA does not point to the start of the
DFHTSIOA DSECT.

UEPTSGID Address of the first temporary storage group
identification control block (TSGID). The TSGID is
mapped by the DSECT DFHTSGID. However, field
TSGIDSA is not a programming interface.

UEPTSREC Address of the record prefix. The record prefix is
mapped by the DSECT DFHTSCI. However, field
TSCISA is not a programming interface.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 145

 temporary storage EXEC interface program exits

Temporary storage EXEC interface program exits XTSEREQ and
XTSEREQC

The XTSEREQ exit allows you to intercept temporary storage API requests before
any action has been taken on the request. The XTSEREQC exit allows you to
intercept the response after a temporary storage API request has completed.

The API requests affected are:

� EXEC CICS WRITEQ TS
� EXEC CICS READQ TS
� EXEC CICS DELETEQ TS

Using XTSEREQ, you can:

� Analyze the API parameter list (function, keywords, argument values, and
responses).

� Modify any input parameter value prior to execution of a request.

� Prevent execution of a request.

Using XTSEREQC, you can:

� Analyze the API parameter list.

� Modify any output parameter value after request completion.

You can also:

� Pass data between your XTSEREQ and XTSEREQC exit programs when they
are invoked for the same request.

� Pass data between your temporary storage exit programs when they are
invoked within the same task.

It is possible that programs invoked from the exits in the temporary storage control
program (XTSOUT, XTSIN, and XTSREQ) could modify situations set up by
XTSEREQ; therefore you must consider the order in which the exits are invoked.

If all five exits are enabled, the order of invocation is as follows:

� For the WRITEQ temporary storage command:

 1. XTSEREQ
 2. XTSREQ
 3. XTSOUT
 4. XTSEREQC

� For the READQ temporary storage command:

 1. XTSEREQ
 2. XTSREQ
 3. XTSIN
 4. XTSEREQC

� For the DELETEQ temporary storage command:

 1. XTSEREQ
 2. XTSREQ
 3. XTSEREQC

146 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage EXEC interface program exits

 XTSEREQ

Warning: Care should be taken when issuing recursive commands. For example,
you must avoid entering a loop when issuing a temporary storage request from the
XTSEREQ exit. Use of the recursion counter UEPRECUR is recommended.

Table 66. Exit XTSEREQ

When
invoked

Before CICS processes a temporary storage API request.

Exit-specific
parameters

UEPCLPS Address of a copy of the command parameter list.
See “The command-level parameter structure” on
page 149.

UEPTQTOK Address of a 4-byte area which can be used to pass
information between XTSEREQ and XTSEREQC for a
single temporary storage request.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code EIBRCODE. For details of EIB return
codes, see the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code EIBRESP.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code EIBRESP2.

UEPTSTOK Address of a 4-byte token which can be used to pass
information between successive temporary storage
requests within the same task (for example, between
successive invocations of the XTSEREQ exit).

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCBYP Bypass this request

UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 147

 temporary storage EXEC interface program exits

 XTSEREQC

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when issuing a
temporary storage request from the XTSEREQC exit. Use of the recursion counter
UEPRECUR is recommended.

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are
given in the parameter list. If you update the values, temporary storage copies the
new values into the application program’s EIB after the completion of XTSEREQC
or if you specify a return code of UERCBYP in XTSEREQ.

You must set valid temporary storage responses. You must set all three of
EIBRCODE, EIBRESP, and EIBRESP2 to a consistent set of values, such as would
be set by temporary storage to describe a valid completion. CICS does not check
the consistency of EIBRCODE, EIBRESP, and EIBRESP2. If EIBRCODE is set to
a non-zero value and EIBRESP is set to zero, CICS will override EIBRESP with a
non-zero value. To help you set values for EIBRCODE, EIBRESP, and EIBRESP2,
the values used by temporary storage are specified in DSECT DFHTSUED.

Table 67. Exit XTSEREQC

When
invoked

After a temporary storage API request has completed, before return
from the temporary storage EXEC interface program.

Exit-specific
parameters

UEPCLPS Address of a copy of the command parameter list.
See “The command-level parameter structure” on
page 149.

UEPTQTOK Address of a 4-byte area which can be used to pass
information between XTSEREQ and XTSEREQC for a
single temporary storage request.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code EIBRCODE. For details of EIB return
codes, see the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code EIBRESP.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code EIBRESP2.

UEPTSTOK Address of a 4-byte token which can be used to pass
information between successive temporary storage
requests within the same task (for example, between
successive invocations of the XTSEREQC exit).

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

API and SPI
commands

All can be used.

148 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage EXEC interface program exits

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of a bit string
that describes the type of request and identifies each keyword specified with the
request. The remaining addresses point to pieces of data associated with the
request.

You can examine the EID to determine the type of request and the keywords
specified. You can examine the other parameters in the list to determine the
values of the keywords. You can also modify values of keywords specified on the
request.

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first four addresses
(TS_ADDR0, the address of the EID, to TS_ADDR3, the address of the
halfword LENGTH), the high-order bit is set on in TS_ADDR3. If you extend
the parameter list by setting the address of a SYSID in TS_ADDR7, you must
unset the high-order bit in TS_ADDR3 and set it on in TS_ADDR7 instead.

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
included in both exit XTSEREQ and exit XTSEREQC. It is the address of the
command-level parameter structure. The command-level parameter structure
contains 8 addresses, TS_ADDR0 through TS_ADDR7. It is defined in the DSECT
TS_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHTSUED.

The command-level parameter list is made up as follows.

Note: The relationship between arguments, keywords, data types, and input/output
types is summarized for the temporary storage commands in the following tables:

Command See

WRITEQ TS Table 68 on page 153.

READQ TS Table 69 on page 153.

DELETEQ TS Table 70 on page 154.

TS_ADDR0
is the address of an 8-byte area called the EID, which is made up as follows:

 TS_GROUP
 TS_FUNCT
 TS_BITS1
 TS_BITS2
 TS_EIDOPT5
 TS_EIDOPT6
 TS_EIDOPT7

 Chapter 1. Global user exit programs 149

 temporary storage EXEC interface program exits

TS_GROUP Always X'0A', indicating that this is a temporary storage
request.

TS_FUNCT One byte that defines the type of request:

X'02' WRITEQ.
X'04' READQ.
X'06' DELETEQ.

TS_BITS1 Existence bits that define which arguments were specified.
To obtain the argument associated with a keyword, you
need to use the appropriate address from the
command-level parameter structure. Before using this
address, you must check the associated existence bit. If
the existence bit is set off, the argument was not specified
in the request and the address should not be used.

X'80' Set if the request contains an argument for the
QUEUE keyword. If set, TS_ADDR1 is
meaningful.

X'40' Set if the request contains an argument for any
of the FROM, INTO, or SET keywords. If set,
TS_ADDR2 is meaningful.

X'20' Set if the request contains an argument for the
LENGTH keyword. If set, TS_ADDR3 is
meaningful.

X'10' Set if the request contains an argument for the
NUMITEMS keyword. If set, TS_ADDR4 is
meaningful.

X'08' Set if the request contains an argument for the
NUMITEMS or ITEM keyword. If set,
TS_ADDR5 is meaningful.

X'02' Set if the request contains an argument for the
SYSID keyword. If set, TS_ADDR7 is
meaningful.

TS_BITS2 Two bytes not used by temporary storage.

TS_EIDOPT5 Indicates whether certain keywords were specified on the
request.

X'01' Set if SET was specified (not set if INTO
specified). You cannot modify this bit from your
user exit.

TS_EIDOPT6 One byte not used by temporary storage.

TS_EIDOPT7 Indicates whether certain functions and/or keywords were
specified on the request.

X'10' WRITEQ NOSUSPEND specified.
X'80' WRITEQ MAIN or READQ ITEM specified.
X'04' WRITEQ REWRITE or READQ NUMITEMS

specified.

150 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage EXEC interface program exits

TS_EIDOPT8 Indicates whether certain keywords were specified on the
request.

X'80' Set if ITEM was specified (not set if NUMITEMS
specified).

TS_ADDR1
is the address of an 8-byte area containing the name from QUEUE.

TS_ADDR2
is the address of one of the following:

� A 4-byte address from SET (if the request is READQ and TS_EIDOPT5
indicates that this is SET).

� Data from INTO (if the request is READQ and TS_EIDOPT5 indicates that
this is not SET).

� Data from FROM (if the request is WRITEQ).

TS_ADDR3
is the address of the halfword value of LENGTH (if the request is READQ or
WRITEQ).

Warning: For requests that specify INTO, do not change the value of
LENGTH to a value greater than that specified by the application. To do so
causes a storage overlay in the application.

TS_ADDR4
is the address of the halfword value of NUMITEMS (if the request is READQ).

TS_ADDR5
is the address of one of the following:

� The halfword value of NUMITEMS (if the request is WRITEQ).
� The halfword value of ITEM (if the request is READQ or WRITEQ).

TS_ADDR6
is the address of a value intended for CICS internal use only. It must not be
used.

TS_ADDR7
is the address of an area containing the value of SYSID.

Modifying fields in the command-level parameter structure: Some fields that
are passed to temporary storage are used as input to the request, some are used
as output fields, and some are used for both input and output. The method your
user exit program uses to modify a field depends on the usage of the field.

The following are always input fields:

 QUEUE
 FROM
 SYSID

The following are always output fields:

 INTO
 NUMITEMS
 SET

 Chapter 1. Global user exit programs 151

 temporary storage EXEC interface program exits

LENGTH is an input field on a WRITEQ request, and an output field on a READQ
request that specifies SET. It is both an input and an output field on a READQ
request that specifies INTO.

ITEM is an input field on a READQ request, and on a WRITEQ request that
specifies REWRITE. It is both an input and an output field on a WRITEQ request
that does not specify REWRITE.

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command-level parameter list to
point to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command-level parameter list. To do so would corrupt storage belonging
to the application program and would cause a failure when the program attempted
to reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field, you can modify the
application’s data in place, because the application is expecting the field to be
modified anyway.

Modifying fields used for both input and output: An example of a field that is
used for both input and output is LENGTH on a READQ request that specifies
INTO. You can treat such fields in the same way as output fields, and they are
considered to be the same.

Modifying the EID: It is not possible to modify the EID to make major changes to
requests. It is not possible, for example, to change a READQ request to a
WRITEQ request.

However, you can make minor changes to requests, such as to turn on the
existence bit for SYSID so that the request can be changed into one that is shipped
to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

TS_BITS1

X'02' The existence bit for SYSID.

TS_EIDOPT7
A user exit program at XTSEREQ can set the following on or off for all
WRITEQ TS commands:

X'10' The existence bit for NOSUSPEND.
X'08' The existence bit for MAIN.

152 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage EXEC interface program exits

The EID is reset to its original value before return to the application program. That
is, changes made to the EID are retained for the duration of the temporary storage
request only.

Warning: Your user exit program is prevented from making major changes to the
EID. However, you must take great care when making the minor modifications that
are permitted.

Use of the task token UEPTSTOK: UEPTSTOK provides the address of a 4-byte
area that you can use to pass information between successive temporary storage
requests in the same task. (By contrast, UEPTQTOK is usable only for the
duration of a single temporary storage request, because its contents may be
destroyed at the end of the request.) For example, if you need to pass information
between successive invocations of the XTSEREQ exit, UEPTSTOK provides a
means of doing this.

Table 68. WRITEQ TS: User arguments and associated keywords, data types, and
input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg2 FROM DATA-AREA input

Arg3 LENGTH BIN(15) input

Arg4 * * *

Arg5 ITEM BIN(15) input/output

Arg5 NUMITEMS BIN(15) output

Arg6 * * *

Arg7 SYSID CHAR(4) input

Note: The different uses of Arg5 are shown, because Arg5 is used by the ITEM and
NUMITEMS keywords which are alternatives and the argument to the ITEM keyword is
an input field when REWRITE is specified.

Table 69. READQ TS: User arguments and associated keywords, data types, and
input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg2 SET DATA-AREA, PTR output

Arg2 INTO DATA-AREA output

Arg3 LENGTH BIN(15) input/output

Arg4 NUMITEMS BIN(15) output

Arg5 ITEM BIN(15) input

Arg6 * *

Arg7 SYSID CHAR(4) input

 Chapter 1. Global user exit programs 153

 temporary storage EXEC interface program exits

Modifying user arguments: User exit programs can modify user arguments, as
follows:

For input arguments, the user exit program should obtain sufficient storage to hold
the modified argument, set up that storage to the required value, and set the
associated pointer in the parameter list to the address of the newly acquired area.

For output arguments, and for input/output arguments, the user exit program can
update the argument in place, because the area of storage is represented by a
variable in the application which is expected to receive a value from CICS.

Notes:

1. CICS does not check changes to argument values, so any changes must be
verified by the user exit program making the changes.

2. It is not advisable for XTSEREQ to modify output arguments or for XTSEREQC
to modify input arguments.

Adding user arguments: Global user exit programs can add arguments
associated with the SYSID keyword. You must ensure that the arguments you
specify or modify in your exit programs are valid.

Assuming that the argument to be added does not already exist, the user exit
program must:

1. Obtain storage for the argument to be added.
2. Initialize the storage to the required value.
3. Select and set up the appropriate pointer from the parameter list.
4. Select and set up the appropriate argument existence bit in the EID.
5. Modify the parameter list to reflect the new end of list indicator.

Removing user arguments: User exit programs can remove arguments (for
which the program is totally responsible) associated with the SYSID keyword:

Assuming that the argument to be removed exists, the user exit program must:

1. Switch the corresponding argument existence bit to '0'b in the EID
2. Modify the parameter list to reflect the new end of list indicator.

Table 70. DELETEQ TS: User arguments and associated keywords, data types, and
input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg2 * * *

Arg3 * * *

Arg4 * * *

Arg5 * * *

Arg6 * * *

Arg7 SYSID CHAR(4) input

154 CICS Transaction Server for VSE/ESA Customization Guide

 temporary storage EXEC interface program exits

 Example program

CICS supplies—in hardcopy only—an example program, DFH$XTSE, that
shows how temporary storage requests can be modified. See Appendix E,
“The example program for the XTSEREQ global user exit, DFH$XTSE” on
page 673.

 Chapter 1. Global user exit programs 155

 terminal allocation program exit

Terminal allocation program exit XALCAID
XALCAID is driven when an AID with data is canceled in one of the following ways:

� By means of the CEMT transaction
� During execution of a SET TERMINAL or SET CONNECTION command
� During reinstallation of a terminal or connection

XALCAID is invoked only if there is data associated with the AID.

Table 71 (Page 1 of 2). Exit XALCAID

When
invoked

Whenever an AID with data is canceled.

Note: It is not possible for the exit to prevent the request from being
canceled.

Exit-specific
parameters

UEPALTSD Address of a 4-byte field containing the symbolic
identifier of the transaction which was to be started
by this request.

UEPALTRM Address of a 4-byte field containing the identifier of
the terminal or connection to which this request was
directed.

UEPALDAT Address of an area of storage containing the data
specified in the FROM option; or hexadecimal zeros,
if the AID was created by a START request without
a FROM option.

UEPALLEN Address of a fullword binary field containing the
length of the FROM data; or hexadecimal zeros, if
the FROM option was not specified.

UEPALRQD Address of an 8-byte field containing the value of
the REQID associated with the FROM data. The
data was stored in a temporary storage queue with
this name. This value was either specified explicitly
using the REQID option on the START command, or
created internally by CICS.

UEPALQUE Address of an 8-byte field containing the value
specified in the QUEUE option on the START
command, or hexadecimal zeros if QUEUE was not
specified.

UEPALRTE Address of a 4-byte field containing the value
specified in the RTERMID option on the START
command, or hexadecimal zeros if RTERMID was
not specified.

UEPALRTA Address of a 4-byte field containing the value
specified in the RTRANSID option on the START
command, or hexadecimal zeros if RTRANSID was
not specified.

UEPALFMH Address of a 1-byte field containing the value X'FF'
if the data contains FMHs, as specified by the FMH
option on the associated START command; or
hexadecimal zeros otherwise.

UEPALSTC Address of a 2-byte field containing the start code.
This is 'SZ' for FEPI starts; otherwise it is 'SD'.

Return codes UERCNORM No other return codes are supplied. The value of
the return code is not inspected.

156 CICS Transaction Server for VSE/ESA Customization Guide

 terminal allocation program exit

Note: The XALTENF exit, used to handle the “terminal not known” condition, is
also invoked from the terminal allocation program. XALTENF is described on page
160.

Table 71 (Page 2 of 2). Exit XALCAID

XPI calls You can use:

 INQ_APPLICATION_DATA
 INQUIRE_SYSTEM

No other XPI calls should be used.

API and SPI
commands

No EXEC CICS commands can be used.

 Chapter 1. Global user exit programs 157

 terminal control program exits

Terminal control program exits XTCIN, XTCOUT, and XTCATT

 XTCIN
Table 72. Exit XTCIN

When
invoked

After an input event for a sequential device.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). Your
exit program should not change the address. The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

UEPTCTLE Address of the terminal control table line entry
(TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

Return codes UERCNORM Continue processing.

XPI calls All can be used. However, note that you cannot use a GETMAIN call
to obtain terminal-class storage for use as a replacement TIOA.

API and SPI
commands

Must not be used.

 XTCOUT
Table 73. Exit XTCOUT

When
invoked

Before an output event for a sequential device.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). Your
exit program should not change the address. The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

UEPTCTLE Address of the terminal control table line entry
(TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

Return codes UERCNORM Continue processing.

XPI calls All can be used. However, note that you cannot use a GETMAIN call
to obtain terminal-class storage for use as a replacement TIOA.

API and SPI
commands

Must not be used.

158 CICS Transaction Server for VSE/ESA Customization Guide

 terminal control program exits

 XTCATT
Table 74. Exit XTCATT

When
invoked

Before task attach.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

UEPTCTLE Address of the terminal control table line entry
(TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

UEPTRAN Address of the 4-byte transaction id.

Return codes UERCNORM Continue processing.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 159

 ‘terminal not known’ condition exits

‘Terminal not known’ condition exits XALTENF and XICTENF
The ‘terminal not known’ condition can occur when intercommunicating CICS
regions use both SHIPPABLE terminal definitions and automatic transaction
initiation (ATI). The condition is especially likely to arise if autoinstall is used.

SHIPPABLE attribute
Terminals defined with the SHIPPABLE attribute in a terminal-owning region
(TOR) do not need a definition in a connected application-owning region (AOR).
If necessary to support transaction routing, CICS ships a copy of the definition
from the TOR to the AOR. For further information, refer to the CICS Resource
Definition Guide.

Automatic transaction initiation (ATI)
ATI occurs when an internally generated request leads to the initiation of a
transaction. For example, when:

� An application issues an EXEC CICS START command, or
� The transient data trigger level is reached.

Two CICS modules handle ATI requests:

The interval control program processes a START command, checks that the
terminal is known in the local system, and (when any START time interval
elapses) calls the terminal allocation program.

The terminal allocation program is called by the interval control program or
by the transient data triggering mechanism, and checks that the terminal is
known in the local system. If the requested terminal is remote, the terminal
allocation program ships an ATI request to the remote system, which initiates
transaction routing back to the local system.

For guidance information about ATI, refer to the CICS Intercommunication
Guide.

‘Terminal not known’ condition
The ‘terminal not known’ condition arises when an ATI request is made for a
terminal not known in the region. An ATI request can occur in the AOR for a
SHIPPABLE terminal before any transaction routing has taken place for the
terminal, and so before the definition of the terminal can have been shipped
from the TOR to the AOR.

If the ‘terminal not known’ condition occurs, both the interval control program
and the terminal allocation program reject the transaction-initiation request as
‘TERMIDERR’.

The exits: To deal with the ‘terminal not known’ condition, CICS provides global
user exits in the interval control and terminal allocation programs:

XICTENF In the interval control program.
XALTENF In the terminal allocation program.

CICS drives the XICTENF exit when the ‘terminal not known’ condition occurs after
the interval control program has been invoked by an EXEC CICS START
command. CICS drives the XALTENF exit when the ‘terminal not known’ condition
occurs after the terminal allocation program has been invoked by the transient data
trigger level or the interval control program. Note that an EXEC CICS START
command could result in both exits being invoked.

160 CICS Transaction Server for VSE/ESA Customization Guide

 ‘terminal not known’ condition exits

The exit program must indicate whether the terminal exists on another system and,
if so, on which one. CICS passes data to the exit program to help establish this
information. You can use the same exit program at both exit points. CICS supplies
a sample exit program, DFHXTENF (see Figure 2 on page 166), that can be used
at both exits and that can deal unchanged with some typical situations.

The exits are designed to deal with ‘terminal not known’ conditions that occur in
CICS regions other than the TOR. For a TOR/AOR pair, enable the exit program in
the AOR. The exits cannot deal with a ‘terminal not known’ condition in the TOR
and the exit program should not normally be enabled there. However, if more than
one TOR exists, you may need to enable the exit program in each TOR to deal
with requests for terminals owned by other TORs. In this case, the exit program
must recognize terminals that should be owned by this system and reject the
requests (‘UERCTEUN’). Although the exit provides as much data as possible, the
logic of your program depends entirely on your system design. A simple solution to
the most complex case would be to make the name of each terminal reflect the
netname or sysid of its owning region.

Data returned by exit: The exit program must set a return code in register 15 as
follows:

UERCTEUN Terminal does not exist.
UERCNETN Netname returned.
UERCSYSI Sysid returned.

For return codes 4 and 8, the program must place the netname or sysid in fields
UEPxxNTO or UEPxxSYO (where xx is AL or IC).

 Chapter 1. Global user exit programs 161

 ‘terminal not known’ condition exits

 XALTENF
Table 75 (Page 1 of 2). Exit XALTENF

When
invoked

By the terminal allocation program when the terminal that an ATI
request from transient data or interval control requires is unknown in
this system. The exit program is expected to give a return code
indicating whether the terminal exists on another connected CICS
system and, if so, on which one.

Exit-specific
parameters

UEPALEVT Address of 2 bytes containing the type of request. The
equated values of the types are:

UEPALESD START command with data.

UEPALES START command without data.

UEPALETD Transient data trigger level reached.

UEPALTR Address of 1 byte containing an indication of whether
the task issuing the START command was started by
transaction routing. The equated values are:

UEPALTY A START command was being
processed and the task issuing the
command was transaction routed to.

UEPALTN A START command was not being
processed or a START command was
being processed but the task issuing
the command was not transaction
routed to.

UEPALFS Address of 1 byte containing an indication of whether
the START command was function shipped. The
equated values are:

UEPALFY A START command was being
processed and the START was function
shipped.

UEPALFN A START command was not being
processed or a START was being
processed but it was not function
shipped.

UEPALTRN Address of 4 bytes containing the name of the
transaction to be run.

UEPALRTR Address of 4 bytes containing the name of the terminal
on which the transaction should run. (If a transient
data trigger level was reached and the DCT entry
specified DESTFAC=(SYSTEM,sysidnt), then this
would contain a sysid).

162 CICS Transaction Server for VSE/ESA Customization Guide

 ‘terminal not known’ condition exits

Table 75 (Page 2 of 2). Exit XALTENF

UEPALCTR Address of 4 bytes containing, for START commands,
the name of the current terminal if the command was
transaction routed, or the name of the session if the
command was function shipped.

For other START commands and for transient data
trigger events, the field pointed to contains blanks.

UEPALNTI Address of 8 bytes containing, for function-shipped
START commands, the netname of the last system
from which the request came.

For START commands issued in this system by
transaction routing to a task, the netname of the last
system from which the task was routed.

For other START command situations and for transient
data trigger level events, the field pointed to contains
blanks.

UEPALSYI Address of 4 bytes containing, if UEPALNTI contains a
netname, the corresponding sysid.

If UEPALNTI does not contain a netname, the field
pointed to is blank.

UEPALNTO Address of 8 bytes containing the contents of
UEPALNTI.

If it sets a return code of ‘UERCNETN’, your exit
program must place in this field the netname of the
system to which the ATI request should be sent .

UEPALSYO Address of 4 bytes containing the contents of
UEPALSYI.

If it sets a return code of ‘UERCSYSI’, your exit
program must place in this field the sysid of the
system to which the ATI request should be sent .

Return codes UERCTEUN Terminal unknown, reject request.

UERCNETN Terminal known, netname returned in UEPALNTO.

UERCSYSI Terminal known, sysid returned in UEPALSYO.

XPI calls You can use:

 INQ_APPLICATION_DATA
 INQUIRE_SYSTEM

No other XPI calls should be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 163

 ‘terminal not known’ condition exits

 XICTENF
Table 76 (Page 1 of 2). Exit XICTENF

When
invoked

By the interval control program when the terminal that an EXEC CICS
START command requires is unknown in this system. The exit
program is expected to give a return code indicating whether the
terminal exists on another connected CICS system and, if so, on
which one.

Exit-specific
parameters

UEPICEVT Address of 2 bytes containing the type of request. The
equated values of the types are:

UEPICESD START command with data.

UEPICES START command without data.

UEPICTR Address of 1 byte containing an indication of whether
the task issuing the START command was started by
transaction routing. The equated values are:

UEPICTY A START command was being
processed and the task issuing the
command was transaction routed to.

UEPICTN A START command was not being
processed or a START command was
being processed but the task issuing
the command was not transaction
routed to.

UEPICFS Address of 1 byte containing an indication of whether
the START command was function shipped. The
equated values are:

UEPICFY A START command was being
processed and the START was function
shipped.

UEPICFN A START command was not being
processed or a START was being
processed but it was not function
shipped.

UEPICTRN Address of 4 bytes containing the name of the
transaction to be run.

UEPICRTR Address of 4 bytes containing the name of the terminal
on which the transaction should run.

UEPICCTR Address of 4 bytes containing, for START commands,
the name of the current terminal if the command was
transaction routed, or the name of the session if the
command was function shipped.

For other START commands, the field pointed to
contains blanks.

164 CICS Transaction Server for VSE/ESA Customization Guide

 ‘terminal not known’ condition exits

Table 76 (Page 2 of 2). Exit XICTENF

UEPICNTI Address of 8 bytes containing, for function-shipped
START commands, the netname of the last system
from which the request came.

For START commands issued in this system by
transaction routing to a task, the netname of the last
system from which the task was routed.

For other START command situations, the field pointed
to contains blanks.

UEPICSYI Address of 4 bytes containing, if UEPICNTI contains a
netname, the corresponding SYSID.

If UEPICNTI does not contain a netname, the field
pointed to is blank.

UEPICNTO Address of 8 bytes containing the contents of
UEPICNTI.

If it sets a return code of ‘UERCNETN’, your exit
program must place in this field the netname of the
system to which the ATI request should be sent .

UEPICSYO Address of 4 bytes containing the contents of
UEPICSYI.

If it sets a return code of ‘UERCSYSI’, your exit
program must place in this field the sysid of the
system to which the ATI request should be sent .

Return codes UERCTEUN Terminal unknown, reject request.

UERCNETN Terminal known, netname returned in UEPICNTO.

UERCSYSI Terminal known, sysid returned in UEPICSYO.

UERCPURG Task purged during XPI call.

XPI calls The following must not be used:

 ADD_SUSPEND
 DELETE_SUSPEND
 RESUME
 SUSPEND
 WAIT_EXTERNAL.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 165

 ‘terminal not known’ condition exits

The sample program for the XALTENF and XICTENF exits,
DFHXTENF
One program can be used for both exits, or a separate program can be written for
each. Figure 2 shows the executable code from the supplied sample program
DFHXTENF, which can be used for both exits. DFHXTENF rejects transient data
requests, because the action in this case is very much installation-dependent.

 Important

The example is intended purely as a demonstration of some of the possibilities
available, and would be impractical in a production environment.

DFHXTENF CSECT

 DFHVM XTENF

 ENTRY DFHXTENA

DFHXTENA DS ðH

 STM R14,R12,12(R13) save registers

BALR R11,ð set up base register

 USING \,R11

\

USING DFHUEPAR,R1 DFHUEH parameter list

\

\ Could check the terminal ID at this point. In this

\ program we assume it is valid. We also choose to accept

\ START requests and reject Transient Data trigger level

\ events.

\

L R2,UEPICEVT access type of request

 CLC ð(2,R2),START START command?

 BE STARTCMD yes

\

CLC ð(2,R2),STARTDAT START command with data?

BNE NOTSTART no, must be Transient Data

\

STARTCMD DS ðH

\

\ Accept the default netname if we are Function Shipping.

\ Otherwise build a netname.

\

L R2,UEPICFS access FS information

 CLI ð(R2),UEPICFY Function Shipping?

BNE BLDNETNM no, build a netname

\

LH R15,NETNAME accept the default netname

 B EXIT

\

Figure 2 (Part 1 of 2). Sample program for XALTENF and XICTENF exits

166 CICS Transaction Server for VSE/ESA Customization Guide

 ‘terminal not known’ condition exits

BLDNETNM DS ðH

\

\ Build a netname by taking the first character of the

\ terminal ID and appending it to the characters 'CICS'.

\

L R2,UEPICNTO access the output netname field

L R3,UEPICRTR access ID of requested terminal

 MVC ð(8,R2),=C'CICS '

MVC 4(1,R2),ð(R3) first character of terminal ID

 LH R15,NETNAME netname returned

 B EXIT

\

NOTSTART DS ðH

LH R15,UNKNOWN reject Transient Data trigger \

 level events

\

EXIT DS ðH

L R14,12(R13) restore registers except 15

LM Rð,R12,2ð(R13) which contains the return code

 BR R14

\

\\\

\ Local constants

\\\

START DC AL2(UEPICES)

STARTDAT DC AL2(UEPICESD)

NETNAME DC AL2(UERCNETN)

UNKNOWN DC AL2(UERCTEUN)

\

 DFHEND DFHXTENF

Figure 2 (Part 2 of 2). Sample program for XALTENF and XICTENF exits

 Chapter 1. Global user exit programs 167

 transaction backout programs exits

Transaction backout programs exits XRCDBER, XRCINIT, XRCINPT,
XRCOPER, and XRCFCER

At emergency restart, updates made to recoverable CICS resources that were not
committed when the system failed must be backed out. Six programs are involved
in the backout process, and they run in parallel under their own CICS tasks. There
are global user exit points in four of the backout programs. These backout
programs are:

� The DL/I backout program
� The file control backout program
� The message and ISC state recovery program
� The user backout program, for backing out user-written system log entries.

Five global user exits can be invoked from these backout programs. These are
XRCDBER, XRCINIT, XRCINPT, XRCOPER, and XRCFCER. XRCDBER is
invoked from the DL/I backout program only. XRCINIT is invoked at both
initialization and termination of each of the four recovery programs. XRCINPT is
invoked from the file control backout program, the user backout program, and the
message and ISC state recovery program. XRCOPER and XRCFCER are invoked
from the file control backout program only.

For further guidance information about exits in the transaction backout programs,
refer to the CICS Recovery and Restart Guide.

Coding the exit programs
CICS services can be used in exit programs invoked from these exits using the XPI
or EXEC CICS commands. However, you need to consider the following:

� There is a restriction on using the XPI early during initialization: do not invoke
exit programs that use the XPI functions TRANSACTION_DUMP,
WRITE_JOURNAL_DATA, MONITOR and INQUIRE_MONITOR_DATA until the
second phase of PLTPI processing.

� There are also restrictions on the use of EXEC CICS commands in these exits:

– You cannot use EXEC CICS commands to access terminal control
services.

– You are strongly advised not to use temporary storage, transient data, file
control, journal control, or DL/I services, because the resources that you try
to access may also be in a state of recovery and therefore “not open for
business”. Attempting to access resources in these circumstances causes,
at best, serialization of the recovery tasks and, at worst, a deadlock.

If you do issue file control requests in programs invoked from these exits,
note that:

- If an exit program acquires an area as a result of a file control request,
it is the responsibility of the program to release that area.

- An exit program must not attempt to make any file control requests to a
file referring to a VSAM data set with a string number of 1, unless no
action is specified for that file during the initialization exit.

- An XRCFCER exit program must not disable or close files, because
this could cause further error conditions.

– Your exit program must not issue EXEC CICS commands if the recovery is
as the result of an EXEC CICS SYNCPOINT ROLLBACK request.

168 CICS Transaction Server for VSE/ESA Customization Guide

 transaction backout programs exits

– Exit programs that issue EXEC CICS commands must first address the
EIB. See “Using CICS services” on page 5.

– Exit programs that issue EXEC CICS commands, and that use the
DFHEIENT macro, should use the DFHEIRET macro to set a return code
and return to CICS. See “Returning values to CICS” on page 10.

– Exit programs invoked from these exits must be translated with the NOEDF
option, if they issue EXEC CICS commands. See “Using EDF with global
user exits” on page 6.

� Task-chained storage acquired in an exit program is released at the completion
of emergency restart processing. However, the exit program should attempt to
release the storage as soon as its contents are no longer needed.

� No exit program should reset either the absent or no-action indicators set by
the file control backout program.

Warning: Care should be taken when issuing recursive commands not to cause a
loop. For example, it is your responsibility to avoid entering a loop when an RC
request is issued from any of the transaction backout program exits. Use of the
recursion counter UEPRECUR is recommended.

Enabling the exit programs
To enable these exits, you must either specify the system initialization parameter
TBEXITS=(name1,name2,name3,name4), where name1, name2, name3, and
name4 are the names of your user exit programs for XRCINIT, XRCINPT,
XRCFCER, and XRCOPER, or enable them during the first stage of initialization
using a PLTPI program. If you use the TBEXITS parameter to enable these exits,
a global work area of 4 bytes is provided. If you use a PLTPI program, you can
select the size of the global work area. You can also enable more than one exit
program for use at each exit point; the TBEXITS parameter allows only one exit
program at each exit point. PLTPI processing is described in Chapter 4, “Writing
initialization and shutdown programs” on page 339.

 Chapter 1. Global user exit programs 169

 transaction backout programs exits

XRCDBER from the DL/I backout program
Table 77. Exit XRCDBER invoked from the DL/I backout program

When
invoked

When an error condition has been returned from the DL/I program.

Exit-specific
parameters

UEPDBOTE Address of the DL/1 backout (DBO) table. The DBO
table can be mapped using the DSECT DFHDBODS.

UEPTREQ Address of a 1-byte flag indicating the reason for the
call.

UEPLOGRC Address of the entire log record.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

When UEPTREQ has a value of UEDBUNSC, the exit has been
invoked because of a PSB scheduling error; when UEPTREQ has a
value of UEDBUNBO, the exit has been invoked because of a failure
during the backout of a data base update; when UEPTREQ has a
value of UEDBUNTR, the exit has been invoked because of a PSB
termination (unschedule) error.

Return codes UERCNORM Accept error and continue processing.

UERCBYP Ignore error and continue processing.

XPI calls All can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

XRCINIT from the DL/I backout program
Table 78. Exit XRCINIT invoked from the DL/I backout program

When
invoked

At the beginning and at the end of the DL/I backout program.

Exit-specific
parameters

UEPDBOTE Address of the DL/1 backout (DBO) table. The DBO
table can be mapped using the DSECT DFHDBODS.

UEPTREQ Address of a 1-byte flag indicating the reason for the
call.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

When UEPTREQ has a value of UEDLINIT, the exit has been
invoked at the start of recovery, and when UEPTREQ has a value of
UEDLTERM, the exit has been invoked at the end of recovery.

Return codes UERCNORM Continue processing. No other return codes are
supported.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

170 CICS Transaction Server for VSE/ESA Customization Guide

 transaction backout programs exits

XRCINIT from the file control backout program
Table 79. Exit XRCINIT invoked from the file control backout program

When
invoked

At the beginning and at the end of the file control backout program.

Exit-specific
parameters

UEPFBOTE Address of the start of the file backout (FBO) table.
The FBO table can be mapped using DSECT
DFHFBODS. All of the fields in DSECT DFHFBODS
are product-sensitive programming interfaces, except
for bit TBFBFAIL of byte TBFBFLG1, which is not a
programming interface.

UEPTREQ Address of a 1-byte flag indicating the reason for the
call. When UEPTREQ has a value of UEFCINIT, the
exit has been invoked at the start of file recovery, and
when UEPTREQ has a value of UEFCTERM, the exit
has been invoked at the end of file recovery.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing. No other return codes are
supported.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

XRCINIT from the message and ISC SRP
Table 80. Exit XRCINIT invoked from the message and ISC SRP

When
invoked

At the beginning and at the end of the message and ISC state
recovery program.

Exit-specific
parameters

UEPMBOTE Address of the message backout (MBO) table. The
MBO table can be mapped using the DSECT
DFHMBODS.

UEPTREQ Address of a 1-byte flag indicating the reason for the
call. When UEPTREQ has a value of UEMEINIT, the
exit has been invoked at the start of message
recovery, and when UEPTREQ has a value of
UEMETERM, the exit has been invoked at the end of
message recovery.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing. No other return codes are
supported.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

 Chapter 1. Global user exit programs 171

 transaction backout programs exits

XRCINIT from the user backout program
Table 81. Exit XRCINIT invoked from the user backout program

When
invoked

At the beginning and at the end of the user backout program.

Exit-specific
parameters

UEPTBOTE Address of the transaction backout (TBO) table. The
TBO table can be mapped using the DSECT
DFHTBODS.

UEPTREQ Address of a 1-byte flag indicating the reason for the
call. When UEPTREQ has a value of UEUSINIT, the
exit has been invoked at the start of user recovery,
and when UEPTREQ has a value of UEUSTERM, the
exit has been invoked at the end of user recovery.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing. No other return codes are
supported.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

XRCINPT from the file control backout program
Table 82. Exit XRCINPT invoked from the file control backout program

When
invoked

From the file control backout program whenever a file control record
has been read from the restart data set.

Exit-specific
parameters

UEPFBOTE Address of the entry in the file backout (FBO) table
corresponding to the CICS file involved. The FBO
table can be mapped using the DSECT DFHFBODS.
All of the fields in DSECT DFHFBODS are
product-sensitive programming interfaces, except for
bit TBFBFAIL of byte TBFBFLG1, which is not a
programming interface.

UEPLGREC Address of the log record just read. The journal
control record can be mapped using the DSECT
DFHJCRDS, which is described in Chapter 17, “CICS
journaling” on page 513. The type of file control
record read from the restart data set can be
determined by testing field JCRSTRID (defined in
DFHJCRDS) with values provided by copy book
DFHFMIDS. Copy book DFHJFCDS defines the file
control layout of the variable part of the system prefix
section of the log record.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP Bypass this record.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

172 CICS Transaction Server for VSE/ESA Customization Guide

 transaction backout programs exits

XRCINPT from the message and ISC SRP
Table 83. Exit XRCINPT invoked from the message and ISC SRP

When
invoked

From the message and ISC state recovery program whenever a
terminal control record has been read from the restart data set.

Exit-specific
parameters

UEPMBOTE Address of the message backout (MBO) table. The
MBO table can be mapped using the DSECT
DFHMBODS.

UEPLGREC Address of the log record just read. The journal
control record can be mapped using the information
supplied in Chapter 17, “CICS journaling” on
page 513.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP Bypass this record.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

XRCINPT from the user backout program
Table 84. Exit XRCINPT invoked from the user backout program

When
invoked

From the user backout program whenever a user-journaled record
has been read from the restart data set.

Exit-specific
parameters

This parameter is preceded by a 4-byte reserved field in the
parameter list.

UEPLGREC Address of the log record just read. The journal
control record can be mapped using the information
supplied in Chapter 17, “CICS journaling” on
page 513.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP Bypass this record.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

 Chapter 1. Global user exit programs 173

 transaction backout programs exits

XRCOPER from the file control backout program
Table 85. Exit XRCOPER invoked from the file control backout program

When
invoked

From the file control backout program if an error occurs while opening
a file control data set.

Exit-specific
parameters

UEPFBOTE Address of the entry in the file backout (FBO) table
corresponding to the CICS file involved. The FBO
table can be mapped using the DSECT DFHFBODS.
All of the fields in DSECT DFHFBODS are
product-sensitive programming interfaces, except for
bit TBFBFAIL of byte TBFBFLG1, which is not a
programming interface.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

XRCFCER from the file control backout program
Table 86 (Page 1 of 2). Exit XRCFCER invoked from the file control backout program

When
invoked

From the file control backout program when the file control program
returns an error during backout processing, or when the file control
backout program itself detects an error.

Exit-specific
parameters

UEPFBOTE Address of the entry in the file backout (FBO) table
corresponding to the CICS file involved. The FBO
table can be mapped using the DSECT DFHFBODS.
All of the fields in DSECT DFHFBODS are
product-sensitive programming interfaces, except for
bit TBFBFAIL of byte TBFBFLG1, which is not a
programming interface.

UEPLGREC Address of the log record just read. The journal
control record can be mapped using the information
supplied in Chapter 17, “CICS journaling” on
page 513.

UEPFCTE Address of the entry in the file control table (FCT), if
any (see note below). The FCT entry can be mapped
using the DSECT DFHFCTDS.

174 CICS Transaction Server for VSE/ESA Customization Guide

 transaction backout programs exits

Table 86 (Page 2 of 2). Exit XRCFCER invoked from the file control backout program

UEPFCRSP The address of the file control response byte. This
can have one of the following values:

UENORESP Normal response.
UEFILERR File not found.
UEINVREQ Invalid request.
UEILOGIC VSAM illogical error.
UENOTOPN Not open.
UEDISAB Disabled.
UEENDFIL End of file.
UEIOEROR I/O error.
UENOTFND Record not found.
UEDUPREC Duplicate record.
UENOSPAC No space available.
UELENGER Length error.
UEDUPKEY Duplicate key in alternate index (AIX).
UEPURGED Transaction canceled.
UEDISAST Disastrous error detected.

Note: A value of UEPFCRSP other than one of those
listed above indicates that File Control detected an
invalid request.

UEPERR Address of a one-byte field containing the error type.
The system log record can be mapped using the
information supplied in Chapter 17, “CICS journaling”
on page 513.

The values of the error byte and their meanings are
described in “Values of the error byte pointed to by
UEPERR” on page 176, and are defined in the
DSECT DFHFBODS. All of the fields in DFHFBODS
are product-sensitive programming interfaces, except
for bit TBFBFAIL of byte TBFBFLG1, which is not a
programming interface.

UEPFDATA Address of a variable-length field containing the data in
the file control request.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

UEPFLEN Address of a fullword containing the length of the data
in the file control request.

Note: UEPFCTE, UEPFDATA, and UEPFLEN contain valid values,
depending on the type of error reported by UEPFCRSP. For
example, if the byte addressed by UEPFCRSP contains ‘UEFILERR’
(file not found), then UEPFCTE and UEPFDATA are zero.

Return codes UERCNORM Continue processing and invoke CICS backout failure
control.

UERCBYP Ignore the error (do not invoke CICS backout failure
control) and continue.

UERCRTRY Retry the request, or reapply the record if the error is
‘TBFEWA’.

XPI calls Most can be used. See page 168 for details of restrictions.

API and SPI
commands

Most can be used. See page 168 for details of restrictions.

 Chapter 1. Global user exit programs 175

 transaction backout programs exits

Values of the error byte pointed to by UEPERR
Field UEPERR in the XRCFCER parameter list points to an error byte which
contains one of the following values:

TBFEGU
An error response has been returned from the file control program (DFHFCVS)
while servicing a GET UPDATE request. DFHFCBP has attempted to retrieve
the existing copy of the record before backing it out. Use parameter
UEPFCRSP in combination with the type of record pointed to by parameter
UEPLGREC (before copy of a “read for update” record or new copy of a “write
add” to be deleted) to determine the specific problem.

TBFELE
The area acquired in DFHFCVS is not large enough to receive the before-copy
data picked up from the restart data set to perform the backout. Parameter
UEPFDATA points to the data. UEPFLEN points to a field containing the
length. Parameter UEPFCRSP does not apply to this error.

TBFEPU
An error response has been returned from DFHFCVS while servicing a PUT
UPDATE request. DFHFCBP has attempted to replace the existing copy of the
record on the file with the “before-copy” held in the log record pointed to by
UEPLGREC. Use parameter UEPFCRSP to determine which error occurred.

TBFEPN
An error response has been returned from DFHFCVS while servicing a PUT
NEW request. DFHFCBP has attempted to add the “before-copy” of a deleted
VSAM KSDS record. Use parameter UEPFCRSP to determine which error
occurred.

TBFEWA
If the record read from the restart data set is a WRITE ADD, the record is also
read in from the file through a GET UPDATE. For DAM and VSAM–ESDS data
sets, no delete function exists. Because DFHFCBP does not attempt to delete
the record that has been added, you are given the opportunity in your exit
program to “mark” the existing record on the file as deleted according to
application-dependent logic. Mark the record at the address pointed to by
UEPFDATA. If you want this version to be reapplied, specify return code
‘UERCRTRY’.

Parameter UEPFCRSP does not apply to this sort of error, and will contain a
normal response from the READ UPDATE. Parameter UEPFDATA points to
the unmatched record. UEPFLEN points to the length of this record.

TBFEVD
An error response has been returned from DFHFCVS while servicing a VSAM
DELETE request. DFHFCBP has attempted to delete a new record added to a
VSAM key-sequenced data set. Use parameter UEPFCRSP to determine
which error occurred.

176 CICS Transaction Server for VSE/ESA Customization Guide

 transaction manager domain exit

Transaction manager domain exit XXMATT
Table 87. Exit XXMATT

When
invoked

During transaction attach. This exit is able to change some of the
attributes of the transaction that is being attached.

Exit-specific
parameters

UEPTRANID The address of transaction id (see Notes).

UEPUSER The address of the userid associated with the
transaction if the current task is a user task (see
Notes).

UEPTERM The address of the terminal id associated with the
transaction, if any (see Notes).

UEPPROG The address of the application program name for this
transaction, if any (see Notes).

UEPATPTI The address of a 4-byte field containing the primary
transaction id. You can change the primary
transaction id by modifying the addressed field.

UEPATOTI The address of the 4-byte attach transaction id. A
transid of X'00000000' indicates that a transid was
not supplied on the attach.

UEPATTPL The address of an area containing the length of the
attach TPName. A length of zero indicates that a
TPName was not supplied on the attach.

UEPATTPA The address of a fullword containing the address of
the attach TPName. The attach TPName can be 1
through 64 bytes long, as defined by UEPTTPL.

UEPATLOC The address of a 1-byte field indicating whether the
transaction was found. Equated values are:

UEATFND The transaction was found.
UEATNFND The transaction was not found.

UEPATTST The address of a one-byte transaction definition state.
Equated values for the definition state are:

UEATENAB Transaction is enabled.
UEATDISA Transaction is disabled.

UEPATTTK The address of a doubleword containing a transaction
token. Note that some of the transaction manager XPI
calls require this token to identify the transaction that is
being attached.

Return codes UERCNORM Continue attach processing.

XPI calls The user exit can inquire on the transaction being attached using the
UEPATTTK transaction token as input to the XMIQ
INQUIRE_TRANSACTION XPI call.

The exit can also set the total priority and TCLASS using the XMIQ
SET_TRANSACTION XPI call.

Most of the XPI calls can be used, but with caution since typically this
exit is invoked under the TCP task. Thus it is advisable not to issue
any XPI calls that might cause the TCP task to wait.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 177

 transaction manager domain exit

Notes:

1. The following XPI calls can be useful for obtaining information that could be
used to modify the attach of a transaction:

 INQUIRE_TRANSACTION
 INQUIRE_MXT
 INQUIRE_TCLASS
 INQUIRE_TRANDEF
 INQUIRE_SYSTEM

2. The fields UEPTRANID, UEPUSER, UEPTERM, and UEPPROG are common
to many of the domain global user exit points, and normally return values
associated with the current user task. In the case of XXMATT, however, the
user task that is being attached is not the current task when the exit is invoked.
Until task attach is complete, the current task is the CICS task that is
performing the attach.

When the task being attached is for a task started by an immediate START
command; that is, a START without an interval, the current task is the task that
issues the START command, and the fields contain values associated with that
task.

178 CICS Transaction Server for VSE/ESA Customization Guide

 transient data program exits

Transient data program exits XTDREQ, XTDIN, and XTDOUT

 XTDREQ
Table 88. Exit XTDREQ

When
invoked

Before request analysis.

Exit-specific
parameters

UEPTDQUE Address of 4-byte TD queue name.

UEPTDTYP Address of 1-byte TD request type. Values are:

UEPTDPUT PUT request.
UEPTDGET GET request.
UEPTDPUR PURGE request.

Return codes UERCNORM Continue TD processing.

UERCTDOK Quit TD processing – returning ‘NORMAL’ to the caller.

UERCTDNA Quit TD processing – returning ‘NOTAUTH’ to the
caller.

UERCPURG Task purged during XPI call.

XPI calls You can use:

 INQ_APPLICATION_DATA
 INQUIRE_SYSTEM
 WAIT_EXTERNAL

Do not use any other calls .

API and SPI
commands

Must not be used.

 XTDIN
Table 89. Exit XTDIN

When
invoked

After receiving data from SAM (for extrapartition) or VSAM (for
intrapartition).

Exit-specific
parameters

UEPTDQUE Address of the 4-byte TD queue name.

UEPTDAUD Address of the unmodified TD data.

UEPTDLUD Address of the fullword length of the unmodified TD
data.

UEPTDAMD Address of the TD data modified by the exit program.

UEPTDLMD Address of the fullword length of the TD data modified
by the exit program.

Return codes UERCNORM Continue TD processing.

UERCPURG Task purged during XPI call.

XPI calls You can use:

 INQ_APPLICATION_DATA
 INQUIRE_SYSTEM
 WAIT_EXTERNAL

Do not use any other calls .

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 179

 transient data program exits

 XTDOUT
Table 90. Exit XTDOUT

When
invoked

Before passing the data to a SAM (for extrapartition) or VSAM (for
intrapartition) user-defined transient data queue.

Exit-specific
parameters

UEPTDQUE Address of the 4-byte TD queue name.

UEPTDAUD Address of the unmodified TD data.

UEPTDLUD Address of the fullword length of the unmodified TD
data.

UEPTDAMD Address of the TD data modified by the exit program.

UEPTDLMD Address of the fullword length of TD data modified by
the exit program.

UEPTDNUM Address of the fullword containing the number of items
in the list.

UEPTDCUR Address of the fullword containing the number of the
current item.

Return codes UERCNORM Continue TD processing.

UERCTDOK Quit TD processing – returning ‘NORMAL’ to the caller.

UERCPURG Task purged during XPI call.

XPI calls You can use:

 INQ_APPLICATION_DATA
 INQUIRE_SYSTEM
 WAIT_EXTERNAL

Do not use any other calls .

API and SPI
commands

Must not be used.

180 CICS Transaction Server for VSE/ESA Customization Guide

 transient data EXEC interface program exits

Transient data EXEC interface program exits XTDEREQ and
XTDEREQC

The XTDEREQ exit allows you to intercept a transient data request before any
action has been taken on it by transient data. The XTDEREQC exit allows you to
intercept a transient data request after transient data has completed its processing.

Using XTDEREQ, you can:

� Analyze the request to determine its type, the keywords specified, and their
values.

� Modify any value specified by the request before the command is executed.

� Set return codes to specify that either:

– CICS should continue with the (possibly modified) request.

– CICS should bypass the request. (Note that if you set this return code, you
must also set up return codes for the EXEC interface block (EIB), as if you
had processed the request yourself.)

Using XTDEREQC, you can:

� Analyze the request, to determine its type, the keywords specified, and their
values.

� Set return codes for the EIB.

Both exits are passed seven parameters as follows:

� The address of the command-level parameter structure

� The address of a token (UEPTDTOK) used to pass 4 bytes of data from
XTDEREQ to XTDEREQC

� The addresses of copies of three pieces of return code information from the
EIB

� The address of a token (UEPTSTOK) that is valid throughout the life of a task

� The address of an exit recursion count (UEPRECUR)

 Example program

CICS supplies—in hardcopy only—an example program, DFH$XTSE, that
shows how to modify fields in the command-level parameter structure passed to
EXEC interface exits. DFH$XTSE is listed on page 673.

 Chapter 1. Global user exit programs 181

 transient data EXEC interface program exits

 XTDEREQ

Warning: Care should be taken when issuing recursive commands. For example,
you must avoid entering a loop when issuing a transient data request from the
XTDEREQ exit. Use of the recursion counter UEPRECUR is recommended.

Table 91. Exit XTDEREQ

When
invoked

Before CICS processes a transient data API request.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 185.

UEPTDTOK Address of the 4-byte token to be passed to
XTDEREQC. This allows you, for example, to pass a
work area to exit XTDEREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Use of the task token UEPTSTOK”
on page 188.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCBYP The transient data EXEC interface program should
ignore this request.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

182 CICS Transaction Server for VSE/ESA Customization Guide

 transient data EXEC interface program exits

 XTDEREQC

Warning: Care should be taken when issuing recursive commands. For example,
you must avoid entering a loop when issuing a transient data request from the
XTDEREQC exit. Use of the recursion counter UEPRECUR is recommended.

Table 92. Exit XTDEREQC

When
invoked

After a transient data API request has completed, and before return
from the transient data EXEC interface program.

Exit-specific
parameters

UEPCLPS Address of the command-level parameter structure.
See “The UEPCLPS exit-specific parameter” on
page 185.

UEPTDTOK Address of the 4-byte token to be passed to
XTDEREQC. This allows you, for example, to pass a
work area to exit XTDEREQC.

UEPRCODE Address of a 6-byte hexadecimal copy of the EIB
return code ‘EIBRCODE’. For details of EIB return
codes, refer to the CICS Application Programming
Reference manual.

UEPRESP Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP’.

UEPRESP2 Address of a 4-byte binary copy of the EIB response
code ‘EIBRESP2’.

UEPTSTOK Address of a 4-byte token that is valid throughout the
life of a task. See “Use of the task token UEPTSTOK”
on page 188.

UEPRECUR Address of a halfword recursion counter. The counter
is set to 0 when the exit is first invoked, and is
incremented for each recursive call.

Return codes UERCNORM Continue processing.

UERCPURG Task purged during XPI call.

XPI calls All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN
calls, we recommend that you use the EXEC CICS GETMAIN and
FREEMAIN commands instead.

API and SPI
commands

All can be used.

 Chapter 1. Global user exit programs 183

 transient data EXEC interface program exits

The command-level parameter structure

X'02' WRITEQ X'80' QUEUE X'01' SET
X'04' READQ X'40' FROM|SET|INTO
X'06' DELETEQ X'20' LENGTH

X'10' X'40' WRITEQ
X'08' X'80' READQ
X'04' X'C0' READQ(nosuspend)
X'02' SYSID X'04' DELETEQ
X'01'

08 00 08 .. 00 .. 00
TD_ADDR0

TD_ADDR1 queue name char(4)

TD_ADDR2
set address or data fullword/char(*)

TD_ADDR3

TD_ADDR4 data length halfword

TD_ADDR5 dummy args

TD_ADDR6

TD_ADDR7 system id char(4)

Figure 3. The command-level parameter structure for transient data

The command-level parameter structure consists of a series of addresses. The first
address points to the EXEC interface descriptor (EID), which consists of an 8-byte
area that describes the type of request and identifies each keyword specified with
the request. The remaining addresses point to pieces of data associated with the
request. (For example, the second address points to the queue name.)

You can examine the EID to determine the type of request and the keywords
specified. You can examine the other parameters in the list to determine the
values of the keywords. You can also modify values of keywords specified on the
request. (For example, you could change the sysid specified in the request.)

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to
indicate that it is the last one in the list. On return from your user exit program,
CICS scans the parameter list for the high-order bit to find the last parameter.
Therefore, if you modify the length of the parameter list, you must also reset the
high-order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first two addresses
(TD_ADDR0, the address of the EID, and TD_ADDR1, the address of the name
of the queue named in a DELETEQ request), the high-order bit is set on in
TD_ADDR1. If you extend the parameter list by setting the address of a SYSID
in TD_ADDR7, you must reset the high-order bit in TD_ADDR1 and set it on in
TD_ADDR7 instead.

184 CICS Transaction Server for VSE/ESA Customization Guide

 transient data EXEC interface program exits

The maximum size of parameter list is supplied to the exit, thus allowing your exit
program to add any parameters not already specified without needing to first obtain
more storage.

The original parameter list, as it was before XTDEREQ was invoked, is restored
after the completion of XTDEREQC. It follows that the execution diagnostic facility
(EDF) displays the original command before and after execution. EDF does not
display any changes made by the exit .

The UEPCLPS exit-specific parameter: The UEPCLPS exit-specific parameter is
included in both exit XTDEREQ and exit XTDEREQC. It is the address of the
command-level parameter structure. The command-level parameter structure
contains 8 addresses, TD_ADDR0 through TD_ADDR7. It is defined in the DSECT
TD_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHTDUED.

The command-level parameter list is made up as follows:

TD_ADDR0
is the address of an 8-byte area called the EID, which is made up as follows:

 TD_GROUP
 TD_FUNCT
 TD_BITS1
 TD_BITS2
 TD_EIDOPT5
 TD_EIDOPT6
 TD_EIDOPT7

TD_GROUP Always X'08', indicating that this is a transient data
request.

TD_FUNCT One byte that defines the type of request:

X'02' WRITEQ.
X'04' READQ.
X'06' DELETEQ.

TD_BITS1 Existence bits that define which arguments were specified.
To obtain the argument associated with a keyword, you
need to use the appropriate address from the
command-level parameter structure. Before using this
address, you must check the associated existence bit. If
the existence bit is set off, the argument was not specified
in the request and the address should not be used.

X'80' Set if the request contains an argument for the
QUEUE keyword. If set, TD_ADDR1 is
meaningful.

X'40' Set if the request contains an argument for any
of the INTO, SET, or FROM keywords. If set,
TD_ADDR2 is meaningful.

X'20' Set if the request contains an argument for the
LENGTH keyword. If set, TD_ADDR3 is
meaningful.

 Chapter 1. Global user exit programs 185

 transient data EXEC interface program exits

X'02' Set if the request contains an argument for the
SYSID keyword. If set, TD_ADDR7 is
meaningful.

TD_BITS2 Two bytes not used by transient data.

TD_EIDOPT5 Indicates whether certain keywords were specified on the
request.

X'01' SET (and not INTO) was specified.

TD_EIDOPT6 One byte not used by transient data.

TD_EIDOPT7 Indicates whether certain functions and/or keywords were
specified on the request:

X'40' WRITEQ specified.
X'80' READQ specified.
X'C0' READQ(nosuspend) specified.
X'04' DELETEQ specified.

TD_ADDR1
is the address of a 4-byte area containing the name from QUEUE.

TD_ADDR2
is the address of one of the following:

� A 4-byte address from SET (if the request is READQ and TD_EIDOPT5
indicates that this is SET).

� Data from INTO (if the request is READQ and TD_EIDOPT5 indicates that
this is not SET). You cannot modify this bit in your user exit.

� Data from FROM (if the request is WRITEQ).

TD_ADDR3
is the address of one of the following:

� The halfword value of LENGTH (if the request is READQ or WRITEQ).
Warning: For requests that specify INTO, do not change the value of
LENGTH to a value greater than that specified by the application. To do so
causes a storage overlay in the application.

TD_ADDR4
is the address of a value intended for CICS internal use only. It must not be
used.

TD_ADDR5
is the address of a value intended for CICS internal use only. It must not be
used.

TD_ADDR6
is the address of a value intended for CICS internal use only. It must not be
used.

TD_ADDR7
is the address of an area containing the value of SYSID.

TD_ADDR8
is the address of a value intended for CICS internal use only. It must not be
used.

186 CICS Transaction Server for VSE/ESA Customization Guide

 transient data EXEC interface program exits

Modifying fields in the command-level parameter structure: Some fields that
are passed to transient data are used as input to the request, some are used as
output fields, and some are used for both input and output. The method your user
exit program uses to modify a field depends on the usage of the field.

The following are always input fields:

 QUEUE
 FROM
 SYSID

The following are always output fields:

 INTO
 SET

LENGTH is an input field on a WRITEQ request, and an output field on a READQ
request that specifies SET. It is both an input and an output field on a READQ
request that specifies INTO.

Modifying input fields: The correct method of modifying an input field is to create
a new copy of it, and to change the address in the command-level parameter list to
point to your new data.

Warning: You must never modify an input field by altering the data that is pointed
to by the command-level parameter list. To do so would corrupt storage belonging
to the application program and would cause a failure when the program attempted
to reuse the field.

Modifying output fields: The technique described in “Modifying input fields” is not
suitable for modifying output fields. (The results would be returned to the new area
instead of the application’s area, and would be invisible to the application.)

An output field is modified by altering the data that is pointed to by the
command-level parameter list. In the case of an output field, you can modify the
application’s data in place, because the application is expecting the field to be
modified.

Modifying fields used for both input and output: An example of a field that is
used for both input and output is LENGTH on a READQ request that specifies
INTO. You can treat such fields in the same way as output fields, and they are
considered to be the same.

Modifying the EID: It is not possible to modify the EID to make major changes to
requests, such as changing a READQ request to a WRITEQ request.

However, you can make minor changes to requests, such as turning on the
existence bit for SYSID so that the request can be changed into one that is shipped
to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to
modify any other part of the EID is ignored.

TD_BITS1

X'20' The existence bit for LENGTH.

 Chapter 1. Global user exit programs 187

 transient data EXEC interface program exits

X'02' The existence bit for SYSID.

TD_EIDOPT5

X'01' Existence bit for SET keyword. You cannot modify this bit from your
user exit.

TD_EIDOPT7

Changes to TD_EIDOPT7 are limited to READQ requests. X'80'–READQ is
interchangeable with X'C0'–READQ(nosuspend). No other changes may be
made to this byte.

The EID is reset to its original value before return to the application program. That
is, changes made to the EID are retained for the duration of the transient data
request only.

Warning: Your user exit program is prevented from making major changes to the
EID. However, you must take great care when making the minor modifications that
are permitted.

Use of the task token UEPTSTOK: UEPTSTOK provides the address of a 4-byte
area that you can use to pass information between successive transient data
requests in the same task. (By contrast, UEPTDTOK is usable only for the duration
of a single transient data request, because its contents may be destroyed at the
end of the request.) For example, if you need to pass information between
successive invocations of the XTDEREQ exit, UEPTSTOK provides a means of
doing this.

The EIB: Copies of EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit,
so that you can:

� Modify or set completion information in XTDEREQ and XTDEREQC
� Examine completion information in XTDEREQC.

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are
given in the parameter list. Transient data copies your values into the real EIB
after the completion of XTDEREQC; or if you specify a return code of ‘ bypass’ in
XTDEREQ.

You must set valid transient data responses. You must set all three of EIBRCODE,
EIBRESP, and EIBRESP2 to a consistent set of values, such as would be set by
CICS transient data to describe a valid completion. CICS does not police the
consistency of EIBRCODE, EIBRESP, and EIBRESP2 . However, if EIBRCODE
is set to a non–zero value and EIBRESP is set to zero then CICS will override
EIBRESP with a non–zero value. To aid you in setting the values of EIBRCODE,
EIBRESP, and EIBRESP2, the values used by transient data are specified in
DFHTDUED.

188 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM terminal management program exit

VTAM terminal management program exit XZCATT
Table 93. Exit XZCATT

When
invoked

Before task attach for terminal tasks.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

UEPTPN Address of the APPC transaction process name (TPN),
or the LU6.1 process name (DPN), whose length is
addressed by the parameter UEPTPNL.

UEPTPNL Address of a 1-byte field containing the length of the
TPN or DPN.

UEPTRAN Address of the 4-byte transaction ID.

Note: The exit program must not change the
TRANSID of tasks started by automatic transaction
initiation (ATI). (This is because CICS needs to match
the TRANSID in its program control table with the
TRANSID in the automatic initiate descriptor (AID) that
was created in the AOR.)

Return codes UERCNORM Continue processing.

XPI calls All can be used.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 189

 VTAM working-set module exits

VTAM working-set module exits XZCIN, XZCOUT, XZCOUT1, and
XZIQUE

Note: None of the exits in the VTAM working-set module is available for advanced
program-to-program communication (APPC, or LUTYPE6.2) links.

 XZCIN
Table 94. Exit XZCIN

When
invoked

After an input event.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). Your
exit program should not change the address. The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

Return codes UERCNORM Continue processing.

XPI calls All can be used. However, we do not recommend that you use a
GETMAIN call to obtain terminal-class storage for use as a
replacement TIOA. This is because there are several internal
pointers to the TIOA, and if any one of these is not updated the
application may experience problems.

API and SPI
commands

Must not be used.

 XZCOUT
Table 95. Exit XZCOUT

When
invoked

Before an output event.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). Your
exit program should not change the address. The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

Note: In certain circumstances—for example, when
XZCOUT is invoked before the send of a NULL
RU—UEPTIOA contains zeroes.

Return codes UERCNORM Continue processing.

XPI calls All can be used. However, we do not recommend that you use a
GETMAIN call to obtain terminal-class storage for use as a
replacement TIOA. This is because there are several internal
pointers to the TIOA, and if any one of these is not updated the
application may experience problems.

API and SPI
commands

Must not be used.

190 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

 XZCOUT1
Table 96. Exit XZCOUT1

When
invoked

Before a message is broken into RUs.

Exit-specific
parameters

UEPTCTTE Address of the terminal control table terminal entry
(TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA Address of the terminal input/output area (TIOA). Your
exit program should not change the address. The
TIOA can be mapped using the DSECT DFHTIOA.
However, fields TIOASAL and TIOASCA are not
programming interfaces.

Return codes UERCNORM Continue processing.

XPI calls All can be used. However, we do not recommend that you use a
GETMAIN call to obtain terminal-class storage for use as a
replacement TIOA. This is because there are several internal
pointers to the TIOA, and if any one of these is not updated the
application may experience problems.

API and SPI
commands

Must not be used.

 Chapter 1. Global user exit programs 191

 VTAM working-set module exits

XZIQUE exit for managing intersystem queues
You can use the XZIQUE exit to control the number of queued requests for
sessions on intersystem links (allocate queues).

Note: There are several methods that you can use to control the length of
intersystem queues. For a description of the various methods, see the CICS
Intercommunication Guide.

The XZIQUE exit enables you to detect queuing problems (bottlenecks) early. It
provides more function than the XISCONA global user exit (described on page 80),
which is invoked only for function shipping requests. XZIQUE is invoked for
transaction routing, DPL, asynchronous processing, and distributed transaction
processing requests, as well as for function shipping. Compared with XISCONA, it
receives more detailed information on which to base its decisions.

XZIQUE enables allocate requests to be queued or rejected, depending on the
length of the queue. It also allows a connection on which there is a bottleneck to
be terminated and then re-established.

Interaction with the XISCONA exit
There is no interaction between the XZIQUE and XISCONA global user exits. If
you enable both exits, XISCONA and XZIQUE could both be invoked for function
shipping requests, which is not recommended. You should ensure that only one of
these exits is enabled. Because it provides more function and greater flexibility, it
is recommended that you use XZIQUE rather than XISCONA.

When the XZIQUE exit is invoked
The XZIQUE global user exit is invoked, if it is enabled, at the following times:

� Whenever CICS tries to acquire a session with a remote system and there is
no free session available. It is invoked whether or not you have specified the
QUEUELIMIT option on the CONNECTION definition, and whether or not the
limit has been exceeded. It is not invoked if the allocate request specifies
NOQUEUE or NOSUSPEND.

Requests for sessions can arise in a number of ways, such as explicit EXEC
CICS ALLOCATE commands issued by DTP programs, or by transaction
routing or function shipping requests.

� Whenever an allocate request succeeds in finding a free session, after the
queue on the connection has been purged by a previous invocation of the exit
program. In this case, your exit program can indicate that CICS is to continue
processing normally, resuming queuing when necessary.

Using an XZIQUE global user exit program
When the exit is enabled, your XZIQUE global user exit program is able to check
on the state of the allocate queue for a particular connection in the local system.
Information is passed to the exit program in a parameter list, that is structured to
provide data about non-specific allocate requests, or requests for specific
modegroups, depending on the session request. Non-specific allocate requests are
for MRO, LU6.1, and APPC sessions that do not specify a modegroup.

Using the information passed in the parameter list, your global user exit program
can decide (based on queue length, for example) whether CICS is to queue the

192 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

allocate request. Your program communicates its decision to CICS by means of
one of the return codes CICS provides. These are:

UERCAQUE
This return code indicates that CICS is to queue the allocate request.

The total number of allocate requests queued against the connection is
provided in field A14ESTAQ of the system entry statistics (for all non-specific
allocates) or A20ESTAQ of the mode entry statistics (for specific modegroup
allocates). See DSECTs DFHA14DS or DFHA20DS for details. CICS passes
to the exit program, in the exit specific parameter UEPQUELIM, the
QUEUELIMIT parameter from the connection definition.

If the limit has not been reached, you can return control to CICS with return
code UERCAQUE.

UERCAPUR
This return code indicates that CICS is to reject the allocate request and return
SYSIDERR to the application program, but leave the existing queue
unchanged.

If the number of queued allocate requests has reached the limit set on the
QUEUELIMIT parameter for the connection, you can request that CICS rejects
the request. However, you should first check whether the state of the link is
satisfactory. This means checking that the rate of allocation of sessions is
acceptable. Use the time the queue was started, the current time, and the total
number of allocates processed since the queue began, to determine the rate at
which CICS is processing requests. The relevant fields are:

� UEPSAQTS and UEPSACNT, for non-specific allocate requests
� UEPMAQTS and UEPMACNT, for specific modegroup requests.

You can compare the calculated time with either:

1. The parameter from the connection definition, MAXQTIME, which is passed
in the exit specific parameter UEPEMXQT, or

2. Some other preset time value

to determine whether CICS is allocating requests for sessions on this
connection at an acceptable rate. If the processing time using this kind of
formula is acceptable, return control to CICS with return code UERCAPUR to
purge only this request.

UERCAKLL or UERCAKLM
These return codes indicate that you want CICS to deal with the request as
follows:

� UERCAKLL—reject this request, purge all other queued allocate requests
on this connection, and send an information message to the operator
console.

� UERCAKLM—reject this request, purge all other queued modegroup
allocate requests on this connection, and send an information message to
the operator console.

 Chapter 1. Global user exit programs 193

 VTAM working-set module exits

If the queue limit has been reached but the performance of allocate processing
against the queue is below the acceptable limits defined in your user exit
program, you can return control to CICS as follows:

� For non-specific allocate requests, use return code UERCAKLL.
UERCAKLL also returns SYSIDERR to all application programs waiting on
the purged allocate requests. CICS sets the UEPFLAG parameter to
UEPRC8 on subsequent calls to your XZIQUE exit program to indicate that
UERCAKLL was returned previously to purge the queue.

� For specific modegroup allocate requests, use return code UERCAKLM.
UERCAKLM also returns SYSIDERR to all application programs waiting on
the purged allocate requests. CICS sets the UEPFLAG parameter to
UEPRC12 on subsequent calls to your XZIQUE exit program to indicate
that UERCAKLM was returned previously to purge the queue.

Purging a queue that is causing congestion in the flow of tasks frees task slots
that are needed to prevent the system becoming clogged. The more you allow
a session queue to grow, the more likely you are to reach the task ceiling set
by the MXT system initialization parameter, and then cause a queue of
incoming tasks in the local region that cannot be attached. Note that some
internal CICS requests (such as those for the LU services model transactions
CLS1, CLS2, and CLS3) are not purged by return codes UERCAKLL and
UERCAKLM.

If a queue has been purged previously (with UERCAKLL or UERCAKLM) but
there are no queued requests currently, check the number of successful
allocates since the queue was last purged. For non-specific allocate requests,
this number is in UEPSARC8, and for specific modegroup requests, this
number is in UEPMAR12. If no requests of this type have been allocated on
this connection since the queue was last purged, the problem that caused the
purge previously has not been resolved, and this request should be rejected
with UERCAPUR.

If the UEPSARC8 or UEPMAR12 parameters show that allocates are being
processed, you should use UERCAQUE to resume queuing of requests. If you
return with UERCAQUE in this case, CICS issues an information message to
the console to signal that queuing has been resumed.

Note: The address of the system entry statistics record, UEPCONST, is supplied
for both non-specific and specific modegroup allocate requests.

The address of the modegroup statistics record, UEPMODST, is set to
zeros for non-specific allocate requests. This address is supplied only if the
request is for a specific modegroup.

If the exit is invoked after a successful allocate following the suppression of
queuing, you can use the following return code:

UERCNORM
This return code indicates that CICS is to resume normal processing on the
link, including queuing of requests.

194 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

Statistics fields in DFHA14DS and DFHA20DS
There are some statistics fields that your XZIQUE global user exit program can use
to control queues.

A14EALRJ: Each time an XZIQUE global user exit program returns with a request
to reject a request, CICS increments a field in the system entry connection
statistics. This is A14EALRJ (allocate rejected) in DSECT DFHA14DS. This field
is provided to help you to tune the queue limit. Normally, if the number of sessions
and the queue limit defined for a link are correctly balanced, and there has been no
abnormal congestion on the link, the A14EALRJ should be zero. If the rejected
allocates field is non-zero it probably indicates that some action is needed.

A14EQPCT and A20EQPCT: Each time an XZIQUE global user exit program
returns with a request to purge a queue, CICS increments a field in either the
system entry or mode entry connection statistics. These fields are:

A14EQPCT The count of the number of times the queue has been purged for the
connection as a whole.

A20EQPCT The count of the number of times the mode group queue has been
purged.

For detailed information about statistics fields, what they contain and how they are
updated, see the CICS Performance Guide.

 Chapter 1. Global user exit programs 195

 VTAM working-set module exits

Table 97 (Page 1 of 3). Exit XZIQUE

When
invoked

Whenever:

1. An allocate request for a session is about to be queued
2. An allocate request succeeds following previous suppression of

queuing.

Exit-specific
parameters

UEPZDATA Address of the 70-byte area containing the
information listed below. This area is mapped by
the DSECT in copybook DFHXZIDS.

Area
addressed by
UEPZDATA

UEPSYSID The 4-byte SYSID of the connection.

UEPREQ A 2-byte origin-of-request code, which can have the
following values:

TR Transaction routing.

FS Function shipping (includes distributed program
link).

AL Other kinds of intercommunication (for
example, distributed transaction processing
(DTP) or CPI Communications).

UEPREQTR The 4-byte identifier of the requesting transaction
(applicable only when the origin-of-request code is
FS or AL).

UEPTRANR The 4-byte identifier of the transaction being routed
(applicable only when origin of request is TR).

UEPFLAG A 1-byte flag indicating whether a return code 8 or
return code 12 was issued last time the exit was
invoked.

UEPRC8 The exit program returned control to
CICS on the previous invocation with
return code 8.

UEPRC12 The exit program returned control to
CICS on the previous invocation with
return code 12.

UEPPAD A 1-byte padding field.

UEPFSPL Address of the 10-byte function shipping parameter
list.

UEPCONST Address of the 98-byte system entry statistics record
(this can be mapped using DSECT DFHA14DS).

UEPMODST Address of the 70-byte modegroup statistics record
for the modegroup specified in the relevant CICS
profile. This field applies only to APPC connections
for a specific allocate. For LU61, IRC, or
non-specific APPC allocates, it contains zero.

The statistics record can be mapped using DSECT
DFHA20DS. The modegroup name field
(A20MODE) may contain blanks. The record is
followed by a fullword of X'FFFFFFFF'.

196 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

Table 97 (Page 2 of 3). Exit XZIQUE

Area
addressed by
UEPZDATA
(continued)

UEPSTEX A 6-byte area containing additional current statistics
for APPC that are not already in the modegroup
statistics record (DFHA20DS). For specific
allocates, the numbers refer to the specified
modegroup only. For non-specific allocates, they
refer to the whole connection—that is, they are the
totals of each modegroup.

The 6-byte area contains:

UEPEBND A halfword binary field containing the
number of bound sessions.

UEPEWWT A halfword binary field containing the
number of contention winners with
tasks.

UEPELWT A halfword binary field containing the
number of contention losers with
tasks.

UEPEMXQT A halfword binary field containing the maximum
queuing time specified for the connection
(MAXQTIME on the CONNECTION resource
definition).

UEPMDGST Address of a set of 70-byte modegroup statistics
records—one for each user modegroup for the
connection. This field applies only to APPC
connections for a non-specific allocate. For LU61,
IRC, and APPC specific allocates, it contains zero.

Each statistics record can be mapped using DSECT
DFHA20DS. The modegroup name field
(A20MODE) may contain blanks. The end of the set
of records is indicated by a fullword of
X'FFFFFFFF'.

Non-specific allocates data:
The following three fields contain data relating to MRO, LU6.1, and
non-specific APPC allocates:

UEPSAQTS A double-word binary field containing the time stamp
from the TCT system entry indicating the time the
queue of non-specific requests was started.

UEPSACNT A half-word binary field containing the number of all
non-specific allocates processed since the queue
was started (see UEPSAQTS for the start time).

UEPSARC8 A half-word binary field containing the number of
sessions freed since the queue was last purged as
a result of a UEPCAKLL return code to CICS.

 Chapter 1. Global user exit programs 197

 VTAM working-set module exits

Table 97 (Page 3 of 3). Exit XZIQUE

Specific allocates data:
The following three fields contain data relating to specific modegroup
allocates. They are applicable only when UEPMODST is non-zero
(that is, it contains the address of the relevant modegroup statistics).

UEPMAQTS A double-word binary field containing the time stamp
from the TCT mode entry indicating the time that the
modegroup queue was started for this specific
modegroup.

UEPMACNT A half-word binary field containing the number of all
specific allocates for this modegroup processed
since the queue was started (see UEPMAQTS for
the start time).

UEPMAR12 A half-word binary field containing the number of
modegroup sessions freed since the queue was last
purged as a result of a UEPCAKLL return code to
CICS.

UEPQUELM A half-word binary field containing the queue limit
specified for this connection (QUEUELIMIT on the
CONNECTION definition).

Return codes In the case of an allocate that is about to be queued, use one of the
following:

UERCAQUE Queue the allocate request.

UERCAPUR Reject the allocate request with SYSIDERR.

UERCAKLL Reject this allocate request with SYSIDERR. Purge
all other queued allocate requests and send an
information message to the operator console. CICS
also returns SYSIDERR to all application programs
waiting on the purged allocate requests.

UERCAKLM Reject this allocate request for the modegroup and
return SYSIDERR. Purge all other queued allocate
requests for the modegroup specified on this
allocate request and send an information message
to the operator console. Retry the modegroup after
an interval.

UERCPURG Task purged during XPI call.

In the case of a successful allocate following the use of UERCAKLL
or UERCAKLM, on a previous invocation of the exit, use one of the
following:

UERCNORM Resume normal operation of the link or modegroup.

UERCAPUR Reject the allocate request with SYSIDERR.

XPI calls All can be used.

API and SPI
commands

Must not be used.

198 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

Designing an XZIQUE global user exit program
The functions of your XZIQUE exit should be designed:

1. To control of the number of tasks (and the amount of associated resource) that
are waiting in a queue for a free intersystem session. Waiting tasks can
degrade the performance of the local system.

2. To detect poor response from the receiving (remote) system and to notify the
operator (or automatic operations program).

3. To cause CICS to issue a message when the link resumes normal operation.

The XZIQUE global user exit parameter list is designed to support these objectives.

 Design considerations
The information passed at XZIQUE is designed to enable your XZIQUE global user
exit program to:

� Avoid false diagnosis of problems on the connection by distinguishing poor
response times from a complete bottleneck

� Ensure that a link resumes normal operation quickly and without operator
intervention once any problem in a remote system is resolved.

Some guidance on the use of IRC/ISC statistics
CICS adds an entry for unsatisfied allocate requests to the following queues:

Non-specific (generic) allocate queue
All non-specific allocate requests are queued in this single queue. CICS makes
the total number of entries in this queue available in the system entry statistics
field A14ESTAQ, to which your global user exit program has access by means
of the address of the system entry statistics, which is passed in UEPCONST.

Specific modegroup allocate queues
Specific allocate requests are queued in the appropriate modegroup
queue—one queue for each specific modegroup name. CICS makes the total
number of entries in all these queues available, as a single total, in the mode
entry statistics field A20ESTAQ, to which your global user exit program has
access by means of the address of the mode entry statistics, which is passed
in UEPMODST.

Sample exit program design
A sample XZIQUE exit program is provided with CICS Transaction Server for
VSE/ESA Release 1 as a base for you to design your own global user exit
program. It is called DFH$XZIQ, and is supplied in the VSE/ESA sublibrary
PRD1.BASE. The DSECT used by the sample program to map the area
addressed by UEPZDATA is called DFHXZIDS, and this too is supplied in the
PRD1.BASE sublibrary.

As supplied, the sample exit program implements the same basic function as
described for the QUEUELIMIT and MAXQTIME parameters on the RDO
CONNECTION resource definition. If the XZIQUE exit is not enabled, CICS uses
these parameters to control the existence and length of the queue of allocate
requests. If you enable the exit, the parameters from the connection definition are
passed to your XZIQUE global user exit program, which can change the way in
which these parameters are used.

 Chapter 1. Global user exit programs 199

 VTAM working-set module exits

The exit program also demonstrates how to control allocate requests for a particular
modegroup, based on the same QUEUELIMIT and MAXQTIME parameters.

For information about creating RDO CONNECTION definitions, see the CICS
Resource Definition Guide.

Overview of the sample exit program: The program uses the exit-specific
parameters passed by CICS to determine the state of the connection, and to
request the appropriate action, as follows:

1. The connection is operating normally; a queue may exist, but is of short length.

In this case, the exit program returns with UERCAQUE to indicate that CICS is
to queue the request .

2. The response from the partner system is slower than the rate of requests
demands, and the queue length has grown to the limit specified on the
QUEUELIMIT parameter. The partner system is still operating normally, but is
overloaded.

In this case, the exit program returns with UERCAPUR to indicate that CICS is
to purge the request .

3. The queue has reached the limit specified by the QUEUELIMIT parameter, and
requests that join the queue are expected to take longer to be satisfied than the
time defined by the MAXQTIME parameter. (The estimated time for a request
to complete is calculated by dividing the number of successful requests since
the queue first formed by the time elapsed since it formed. These statistics are
passed to the exit in the parameter list.)

These criteria are used to determine that the connection is not operating
correctly, and that continued queuing of tasks is not helpful. In this case:

� The exit returns with UERCAKLL requesting CICS to purge all queued
user requests from the connection. The SYSIDERR condition is returned to
the application program.

� CICS issues message DFHZC2300 to warn that a connection is not
performing as expected.

4. The queue has been purged as a result of a previous invocation of the global
user exit program, there are still no free sessions, and the request is about to
be queued.

In this case, the exit program returns with UERCAPUR to indicate that CICS is
to purge the request . This also leaves the UEPRC8 flag set.

5. The queue has been purged as a result of a previous invocation of the global
user exit program. A new allocate request has been received and is about to
be allocated because a session has become free.

CICS invokes the exit program to enable it to indicate that normal processing
can continue.

In this case, the exit program returns with UERCNORM to indicate that CICS is
to continue processing normally . This also causes the UEPRC8 flag to be
unset following this invocation, and CICS to issue message DFHZC2301.

The sample program also monitors the length of queues for modegroup-specific
allocate requests and controls these—in the same way as the queue for the whole
connection—using the QUEUELIMIT parameter and MAXQTIME parameters.

200 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM working-set module exits

If both UEPRC8 and UEPRC12 are set, UERCNORM is required twice to resume
normal operation. The UEPRC8 condition is reset first in this case.

Extensions to the sample program: The sample exit program does not attempt
to control the queue length, or detect poor response for a particular modegroup
differently from the whole connection. This kind of enhancement is something you
might want to add to your own exit program if your applications request specific
modegroups via the allocate command (or via a transaction profile) and you think it
would be useful to control the modegroups individually.

You can also use more complex decisions (such as adding time delays to lessen
the risk of false diagnosis) to decide when to issue the return codes that purge the
queue, and allow queuing to restart.

 Chapter 1. Global user exit programs 201

 VTAM working-set module exits

202 CICS Transaction Server for VSE/ESA Customization Guide

 the adapter

Chapter 2. Task-related user exit programs

General-use programming interface

This chapter describes a special kind of user exit called a task-related user exit .
A task-related user exit allows you to write your own program to access a resource,
such as a database, that would not otherwise be available to your CICS system.
Such a resource is known as a non-CICS resource. The exit is said to be
task-related because it becomes part of the task that invoked it and because, unlike
a global user exit, it is not associated with an exit point. You do not have to use
any of the task-related user exits, but you can use them to extend and customize
the function of your CICS system according to your own requirements.

The most common use of a task-related user exit is to communicate with a
resource manager external to CICS, for example, a file or database manager. The
CICS interface modules that handle the communication between the task-related
user exit and the resource manager are usually referred to as the resource
manager interface (RMI) or the task-related user exit interface.

The chapter is divided into the following sections:

1. “Introduction to the task-related user exit mechanism (the adapter)”
2. “The stub program” on page 204
3. “The task-related user exit program” on page 206
4. “Adapter administration” on page 232

Introduction to the task-related user exit mechanism (the adapter)
The task-related user exit mechanism is known as an adapter because it provides
the connection between an application program that needs to access a non-CICS
resource and the manager of that resource. Figure 4 on page 204 illustrates the
adapter concept.

The adapter is made up of three or more locally-written programs. These are a
“stub” program, a task-related user exit program, and one or more administration
routines or programs.

The stub program intercepts a request (for example, to access data held on an
external database manager) issued by the calling application program. The stub
can be used to resolve a locally-defined high-level language command into a
task-related user exit macro call, DFHRMCAL, which then causes CICS to pass
control to the task-related user exit program.

The task-related user exit program translates commands for accessing a
non-CICS resource into a form acceptable to the resource manager. The program
must be written in assembler language, and can reside above or below the 16MB
line. For more guidance information about addressing and residency modes, refer
to “Addressing-mode implications” on page 219. The program must not alter the
contents of any access registers. It is executed in response to a specific
application program request, for example, to read data from an external database.
In this instance, it may be passed application data, such as a search argument for

 Copyright IBM Corp. 1977, 1999 203

 the stub program

a required record. Responses from the resource manager are passed back to the
calling program by the task-related user exit program.

Application
program

Stub
program Task-

related
user

Administration program Resource Non-CICS
routines manager resource

THE ADAPTER

Figure 4. The adapter concept

The task-related user exit program is provided with a parameter list (DFHUEPAR)
by the CICS management module that handles task-related user exits. This
parameter list gives the task-related user exit access to information such as the
addresses and sizes of its own work areas.

The task-related user exit program may be invoked by the CICS task manager and
the CICS syncpoint manager, as well as by an application program. It may also be
invoked at CICS termination or by the Execution Diagnostic Facility (EDF). The
parameter list serves to distinguish between these various callers, and gives access
to a register save area containing the caller’s registers.

The administration routines contain the EXEC CICS ENABLE and DISABLE
commands that you use to install and withdraw the task-related user exit program.
The administration routines may also contain commands to retrieve information
about one of the exit program’s work areas (the EXEC CICS EXTRACT EXIT
command), and to resolve any inconsistency between CICS and a non-CICS
resource manager after a system failure (the EXEC CICS RESYNC command).
For programming information about the EXEC CICS RESYNC command, refer to
the CICS System Programming Reference manual.

The remainder of this chapter discusses each of these parts of the adapter in turn.

The stub program
The purpose of the stub program is to shield your application programmers from
the mechanics of non-CICS resource managers. It is written in assembler
language. After assembly, the stub is link-edited to each application program that
wants to use it. See Figure 5 on page 205.

204 CICS Transaction Server for VSE/ESA Customization Guide

 the stub program

Application program
.
CALL statname
.
.

Stub
ENTRY statname Task-related
. user exit
.

statname DFHRMCAL TO=ename ename
.

END

Figure 5. The stub concept

statname is a label that can be referenced externally. It should conform to the
requirements of an assembler-language ENTRY statement, and typically
resolves a V-type address constant, or the target of a high-level
language CALL. A single stub may contain several such labels.

ename is the entry name (specified on the EXEC CICS ENABLE command) of
the task-related user exit program that you want to handle resource
manager requests.

You can define high-level language commands for your programmers to use when
they want to access a non-CICS resource. If you do this, you must use a translator
to convert a locally-defined high-level language command into a conventional CALL
to the required entry point of the stub program. Alternatively, the application
program can issue a CALL naming the stub entry point, as shown in Figure 5. For
example, to read a record from a non-CICS resource, an application program can
use the COBOL statement:

CALL 'XYZ' USING PARM1 PARM2...

XYZ is an entry point (the statname) in your stub program. The stub converts the
command into a macro call (DFHRMCAL) to the task-related user exit program,
specified in the TO= operand. Return from the task-related user exit program is to
the calling application program, not to the stub program.

The application can use a parameter to determine whether the resource manager
was called. For example, if the application sets a parameter to zero and the
resource manager sets it to nonzero, the parameter value on return indicates
whether the resource manager was invoked.

Returning control to the application program: If you specify RTNABND=YES in
the DFHRMCAL macro, control returns to the application program when the
task-related user exit is not available, for example, because it is not enabled or
started. Note that for assembler-language application programs, a negative value
in register 15 signals to the application program that control has returned because
the exit is not available. The task-related user exit program can use positive values
(including zero) in register 15 to pass resource manager response codes to the
application program.

If you do not specify RTNABND=YES and the task-related user exit is not available,
the application program terminates abnormally with the abend code ‘AEY9’.

 Chapter 2. Task-related user exit programs 205

 the task-related user exit program

Task-related user exits and EDF: When a task-related user exit (TRUE) is
invoked for a call to a non-CICS resource manager from an application that is being
monitored by EDF, EDF’s default action is to display the parameters that are
addressed by the parameter list passed by the DFHRMCAL macro. However, the
parameter list can be transformed into a more meaningful display by the TRUE
itself. This is done by specifying FORMATEDF on the EXEC CICS ENABLE
command that enables the TRUE. The latter is then invoked several times, before
and after the invocation to satisfy the call to the resource manager, to format the
data to be displayed by EDF and to deal with any changes made by the user to the
data on the EDF screen.

For more information about how to format screens for EDF, refer to “CICS EDF
build parameters” on page 214 and “Using EDF with your task-related user exit
program” on page 231.

If a task-related user exit program contains EXEC CICS commands, EDF may be
useful in debugging the TRUE itself. If you want EDF to display commands from
the TRUE, you must specify the EDF option when the TRUE program is translated.
The standard EDF screens for the CICS commands are then displayed between
the “About to Execute” and “Command Execution Complete” screens for the call to
the resource manager. However, as EDF is primarily an application debugging tool
and the CICS commands within the TRUE would not generally be of interest to the
application programmer, the TRUE program is normally translated with the
“NOEDF” option; in this case, screens for CICS commands within the TRUE are
suppressed.

Note: If you specify SUPPEDF=YES on the DFHRMCAL macro, the “About to
Execute” and “Command Execution Complete” screens relating to DFHRMCAL’s
invocation of the TRUE are suppressed; in other words, DFHRMCAL becomes
“invisible” to EDF. (Specifying SUPPEDF=YES has no effect in determining
whether EDF displays EXEC CICS commands within the TRUE—the factors
governing this are as described above—but it does suppress the display of
parameters passed to the TRUE.)

The task-related user exit program
The main function of the task-related user exit program is to translate the calling
program’s parameters into a form acceptable to your non-CICS resource manager,
and then to pass control to the resource manager. You therefore need to be
familiar with your resource manager’s syntax requirements. The calling program’s
parameters are described on page 210.

This section describes the user exit parameter lists, the schedule flag word, which
is used by the exit program to register its need to be invoked by CICS management
services, and register-handling in the task-related user exit program. This section
also discusses the use of the CICS syncpoint manager and the CICS task
manager.

206 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

User exit parameter lists
When a task-related user exit is invoked, the CICS management module that
handles task-related user exits provides the exit with a parameter list. The address
of this parameter list is passed in register 1. The list contains the following
information:

� The identity of the caller

� Addresses and sizes of any work areas that are available to the task-related
user exit program

� The address of the register save area of the caller

� The address of an EXEC interface block (EIB) that is for use by the
task-related user exit program during this invocation

� The address of the identifier of the current unit of recovery

� The address of the schedule flag word

� The address of the kernel stack entry

� The address of the APPC unit of work (UOW) identifier

� The address of the user security block flag

� The address of the user security block

� The address of the resource manager qualifier name

� The address of the resource manager’s “single-update” and “read-only”
indicator byte

� The address of the caller’s AMODE indicator byte

� The address of the application’s DATALOC and TASKDATAKEY indicator byte

To enable your exit program to access this parameter list, you must include in it the
macro:

DFHUEXIT TYPE=RM

The DFHUEXIT TYPE=RM macro causes the assembler to create the storage
definitions (DSECTs) DFHUEPAR and DFHUERTR. If you want your task-related
user exit to be able to format screens for EDF, you must include in it the macro:

DFHUEXIT TYPE=RM,DSECT=EDF

This causes the assembler to create the UEPEDFRM DSECT, which is described
in “CICS EDF build parameters” on page 214. All of the user exit parameter lists
are summarized in Figure 7 on page 216.

The format and the purpose of these definitions are described below.

 DFHUEPAR
DFHUEPAR gives you the following symbolic names for address parameters:

UEPEXN Address of the function definition, which tells the task-related user
exit program why it is being called. See “DFHUERTR (the function
definition)” on page 210 for more details.

 Chapter 2. Task-related user exit programs 207

 the task-related user exit program

UEPGAA Address of the global work area requested in the EXEC CICS
ENABLE command. The global work area is described on page
222. CICS initializes this work area to X'00' when the task-related
user exit program is enabled.

UEPGAL Address of a halfword containing the length (binary value) of the
global work area.

UEPTCA This field is retained for historical reasons. It should not be
referenced by your exit program.

UEPCSA This field is retained for historical reasons. It should not be
referenced by your exit program.

UEPHMSA Address of the register save area (RSA) of the caller. It is an
18-word save area, with the contents of registers 14 through 12
stored in the fourth and subsequent words. Its fifth word,
representing the calling program’s register 15, is cleared by CICS
before the task-related user exit program is invoked, so that it can
be used to convey response codes from the resource manager to
the calling program. For this reason you cannot use register 15 to
send data to the task-related user exit program. The seventh word
of the save area contains the caller’s register 1. Register 1
addresses the caller’s parameter list if the exit program is being
invoked by the CICS task manager or the CICS syncpoint manager,
by EDF, or at CICS termination. When the caller is an application
program, the contents of register 1 are determined by the linkage
conventions of the adapter’s language interface.

UEPTAA Address of the local work area requested in the EXEC CICS
ENABLE command. The local work area is described on page 222.
CICS initializes the work area to X'00' throughout on first acquiring
the area; that is, when the task first invokes the task-related user
exit program.

UEPTAL Address of a halfword containing the binary length of the local work
area.

UEPEIB Address of the EXEC interface block (EIB) created by CICS for the
task-related user exit program. The EIB exists only for the duration
of the call and it allows the task-related user exit program to request
CICS services through the command-level interface. This is not the
same EIB that is available to the calling program, so you cannot
access the calling program’s environment other than by UEPHMSA
(see above), which provides the address of the calling program’s
register save area (RSA).

UEPURID Address of CICS unit of recovery identifier. This field contains the
8-byte date and time value that is generated by an STCK
instruction, and it identifies the current logical unit of work.

UEPFLAGS Address of the schedule flag word. This is a fullword that the
task-related user exit program uses to register its need for CICS
management programs’ services. For more information, see “The
schedule flag word” on page 217.

UEPRMSTK Address of the kernel stack entry.

UEPUOWDS Address of the APPC unit of work (UOW) identifier.

208 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

UEPSECFLG Address of the user security flag. The user security flag is a 1-byte
field that can take the following values:

UEPNOSEC (X'80')
Security is not active for this CICS system.

UEPSEC (X'20')
Security is active for this CICS system. Only in this case
is the address of the “user security block” set.

UEPSECBLK Address of a fullword that addresses the “user security block”—that
is, the ACEE.

UEPRMQUA Address of an 8-byte field into which the task-related user exit can
move the qualifier name of the resource manager on each API
request. Where different resource manager qualifiers are returned
on the responses to various API requests within an LUW, it is the
resource manager qualifier returned on the final API request
immediately before a prepare or backout invocation that is used
when recording any in-doubt information. For programming
information about the purpose of the qualifier name, refer to the
CICS System Programming Reference manual.

UEPCALAM Address of caller’s AMODE indication byte.

X'80' Indicates that the original caller was in AMODE 31. If the
bit is not set, then the caller was in AMODE 24.

UEPSYNCA Address of the single-update and read-only indication byte. This
field contains flags that your exit program can set to indicate that
the resource manager “understands” the single-update protocol, and
to record the status of the current logical unit of work (LUW). See
“Increasing efficiency—single-update and read-only protocols” on
page 222.

UEPSUPDR (X'80')
The resource manager understands the single-update
protocol. That is, your exit program can instruct the
resource manager to perform a single-phase commit, in
appropriate circumstances.

UEPREADO (X'40')
The resource manager understands the read-only
protocol, and has been in read-only mode for this LUW
so far. (If this flag is not set, it means either that the
LUW contains updates for this resource manager, or that
the LUW may be read-only but the resource manager
does not understand the read-only protocol.)

UEPTIND Address of a 1-byte field containing indicator bits. The indicators
are represented by two symbolic values, UEPTANY and
UEPTCICS, which you can test to determine whether data locations
can be above or below the 16MB line, and whether the application’s
storage is in CICS-key or user-key storage.

UEPTANY (X'80')
The application can accept addresses above the 16MB
line. If the symbolic value is not UEPTANY, the
application must be returned an address below the
16MB line.

 Chapter 2. Task-related user exit programs 209

 the task-related user exit program

UEPTCICS (X'40')
The application’s working storage and task life-time
storage are in CICS-key storage (that is, if
TASKDATAKEY=CICS is specified on the RDO
TRANSACTION definition). If the symbolic value is not
UEPTCICS, the application’s working storage and the
task’s life-time storage are in user-key storage
(TASKDATAKEY=USER).

DFHUERTR (the function definition)
The function definition identifies the caller of the task-related user exit program.
The DSECT contains two symbolic definitions (fields).

UERTFGP A single byte that is set to X'00'. The zero setting shows that this is a
task-related user exit invocation and that the parameter list therefore
includes the fields UEPTAA, UEPTAL, UEPEIB, UEPURID, and
UEPFLAGS.

UERTFID A single-byte identifier that shows whether this call has been made by
an application program, the CICS syncpoint manager, the CICS task
manager, or EDF, or whether this is a CICS termination call. It can
have one of the following five settings:

UERTAPPL (X'02') The calling program is an application program.
UERTSYNC (X'04') The calling program is the syncpoint manager.
UERTTASK (X'08') The calling program is the CICS task manager.
UERTCTER (X'0A') This is a CICS termination call.
UERTFEDF (X'0C') The calling program is EDF.

It is important to know which type of program has made the call because it affects
how the calling program’s parameter list is interpreted by the task-related user exit
program.

Caller parameter lists
In addition to the DSECTs DFHUEPAR and DFHUERTR, the inclusion of
DFHUEXIT TYPE=RM in the task-related user exit program provides some field
definitions that are specific to the caller of the task-related user exit. The calling
program’s parameter list is normally addressed by R1 in the calling program’s RSA.
This RSA is addressed by field UEPHMSA of DFHUEPAR. These parameters are
described below.

Application program parameters: If the caller is an application program, the
format and addressing of its parameter list are decided locally.

CICS syncpoint manager parameters: The CICS syncpoint manager’s
parameter list contains ten entries, although on most invocations only parameters 1
and 10 contain values. The operation bytes pointed to by parameters 1 and 10
contain flags which, when combined, form an operation code that tells the TRUE
why it has been invoked.

Parameters 2 through 9 contain values only when the syncpoint manager makes a
“Commit Unconditionally” or “Backout” call to the TRUE, for resynchronization
purposes after a session or system failure. These extra parameters point to fields
that identify the task, the transaction that started the task, the terminal from which it
was initiated, the identity of the terminal operator, the date and time of the failing

210 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

syncpoint, and (if there are no further units of recovery associated with the task) the
next transaction code. Typically, you would use these values to create meaningful
messages for resource recovery. They are presented explicitly because, after a
system failure, the task driving the exit is not the task that originally scheduled the
recoverable work. These additional parameters describe the original task’s
environment and are accessed directly.

The full parameter list is as follows:

Parameter 1
The address of operation byte 1, which contains the following flags:

UERTPREP
(X'80') Prepare to commit (that is, perform the first phase of a
two-phase commit).

UERTCOMM
(X'40') Commit unconditionally (perform the second phase of a
two-phase commit).

UERTBACK
(X'20') Backout.

UERTDGCS
(X'10') Unit of recovery is lost to CICS cold start.

UERTDGNK
(X'08') Resource manager should not be in doubt about this unit of
recovery.

UERTRSYN
(X'02') This syncpoint request was generated as the result of an
EXEC CICS RESYNC command.

UERTLAST
(X'01') There are no further units of recovery associated with this
task. Note that when this bit is not set, there may or may not be
further units of recovery. For this reason, it is not recommended
that you rely on this bit to signal end-of-task. You should instead
schedule the CICS task manager to drive you at end-of-task by
setting the task manager bit in the schedule flag word. If you do
use UERTLAST to signal end-of-task, and if at that stage you can
complete your clean-up process, you can set the task manager bit
off in the schedule flag word when the clean-up process is finished,
to avoid an unnecessary invocation by the CICS task manager.

The only valid bit combinations are those produced by combining one of
UERTPREP, UERTCOMM, UERTBACK, UERTDGCS, and UERTDGNK with
either UERTLAST or UERTRSYN, or both.

Your exit program should examine the flags set both in this byte and in
operation byte 2 (see parameter 10), to determine what action is expected of it.

Parameter 2
If not zero, the address of a 4-byte, packed-decimal field identifying the original
task. But note that, on many invocations of the exit program, parameters 2
through 9 do not contain values. See note 1.

Parameter 3
Address of a 4-character field identifying the transaction that started the original
task. See note 1.

 Chapter 2. Task-related user exit programs 211

 the task-related user exit program

Parameter 4
Address of a 4-character field identifying the terminal from which the original
task was initiated. See note 1.

Parameter 5
Address of a 4-character field containing the identity of the terminal operator
(OPID) who initiated the original task. See note 1.

Parameter 6
Address of a 4-byte, packed-decimal field containing the date of the failing
syncpoint, in the format 0Cyyddd+. See note 1.

Parameter 7
Address of a 4-byte, packed-decimal field containing the time of the failing
syncpoint, in the format 0hhmmss+. See note 1.

Parameter 8
Address of an 8-byte field containing the resource manager qualifier. See note
1.

Parameter 9
Address of a 4-character field containing the next transaction code. If the
transaction ended with an EXEC CICS RETURN without specifying the next
transaction code, the addressed field is set to nulls; otherwise, it is set to the
value specified by the application. See note 2.

Parameter 10
The address of operation byte 2, which contains the following flags:

UERTONLY
(X'80') Perform a single-phase commit. (No recoverable resources
other than those owned by the resource manager being invoked
have been updated during the current LUW.)

UERTELUW
(X'40') Perform a single-phase commit. (The resource manager
was in read-only mode throughout the current LUW.)

Your exit program should examine the flags set both in this byte and in
operation byte 1 (see parameter 1), to determine what action is expected of it.

Notes:

1. Parameters 2 through 8 contain values only if the CICS syncpoint manager call
is prompted by the issue of an EXEC CICS RESYNC command after a session
or system failure, and operation byte 1 contains the bit settings UERTCOMM or
UERTBACK. Otherwise, they are set to X'00' (hexadecimal zero). For
programming information about the EXEC CICS RESYNC command and about
the completion of the syncpointing procedure following a system failure, refer to
the CICS System Programming Reference manual.

Note that parameters 2 through 8 describe the environment of the original task
(not of the task that is currently driving the TRUE).

2. Unless the UERTLAST bit is set in operation byte 1, parameter 9 is a zero
address. Although for a call prompted by an EXEC CICS RESYNC call, the
UERTLAST bit will be set on, in this case the next transaction code does not
apply and so parameter 9 addresses a field set to nulls.

212 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

CICS task manager parameters: There are either one or two entries in the CICS
task manager’s parameter list, depending on the reason for the call to the TRUE:
on start-of-task calls, the parameter list contains one entry, while on end-of-task
calls, it contains two. Each entry consists of an address, and the end of the
parameter list is indicated by the top bit of the address being set.

The significance of the parameters is as follows:

Parameter 1
The address of a single byte with bit definitions indicating the reason for the
call:

UERTSOTR (X'40') Start of CICS task
UERTEOTR (X'80') End of CICS task

Parameter 2
This parameter is passed only on end-of-task calls. It is the address of a
4-character field which contains the next transaction code specified on the
EXEC CICS RETURN command. If the transaction ends with an EXEC CICS
RETURN without specifying a next transaction, this field is set to nulls.

The schedule flag word should be set during the start-of-task call if you want your
task-related user exit program to be invoked unconditionally by the CICS syncpoint
manager.

CICS termination manager parameters: All task-related user exit programs that
have been enabled with the SHUTDOWN option of the EXEC CICS ENABLE
command, and started, are invoked at CICS termination to allow them to do the
clean-up processing that is appropriate to the type of termination. At CICS
termination, the address of a one-byte termination code is passed to your exit
program. The code may consist of any of the following bit settings:

UERTCORD (X'80') CICS orderly shutdown.
UERTCIMM (X'40') CICS immediate shutdown.
UERTCABY (X'20') CICS abend, retry possible, TCBs dispatchable.
UERTCABN (X'10') CICS abend, retry not possible, TCBs dispatchable.
UERTOPCA (X'01') CICS abend, retry not possible, TCBs not dispatchable.

For further information about shutdown TRUEs, see “Coding a program to be
invoked at CICS termination” on page 227.

 Chapter 2. Task-related user exit programs 213

 the task-related user exit program

CICS EDF build parameters: On EDF invocations, the address contained in
register 1 of the calling program’s RSA points to the UEPEDFRM DSECT.
This contains the following fields:

UEPEDFR1 The address of the application’s R1 parameter list.

UEPEDFFI The input flag byte. When a task-related user exit is invoked by EDF,
UEPEDFFI can take the following bit settings:

UEPEDFRQ (X'80') “About to Execute” invocation.
UEPEDFRS (X'40') “Command Execution Complete” invocation.
UEPEDFRA (X'20') About to display command to EDF.
UEPEDFRC (X'10') Command has been displayed to EDF.
UEPEDFSC (X'08') EDF user has changed the screen.
UEPEDFWS (X'04') EDF user has changed working storage.
UEPEDFNO (X'01') EDF user has requested NOOP.

UEPEDFFO The output flag byte. If the task-related user exit requires, it can set
the UEPEDFFO flag byte to indicate to EDF what action the task-related
user exit wants EDF to take. It can take the following values:

UEPEDFDF (X'80') Take default CICS action. (EDF screen contains
the uninterpreted caller’s R1 parameter list.)

UEPEDFND (X'40') Do not display command to EDF.
UEPEDFRD (X'20') Redisplay command to EDF.

UEPEDFDL EDF screen attributes. These are for information only: the task-related
user exit program cannot change these fields.

UEPEDFPS (halfword binary) Page size (number of lines).
UEPEDFLS (halfword binary) Line size.
UEPEDFMP (halfword binary) Maximum number of pages.

UEPEDFPA The address of the EDF display data parameter list, supplied by the
task-related user exit. The display data parameter list is composed of
alternating pairs of attribute-byte addresses and data-field addresses.
Attribute bytes refer to the line of display data pointed to by the
data-field addresses. The data field must be the same size as the value
specified in UEPEDFLS. The display data is in the format shown in
Figure 6 on page 215.

214 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

DISPLAY DATA
UEPEDFPA

Address of
attribute byte

Address of
data field

Address of
attribute byte

.

.

.

Address of
attribute byte

Address of
data field

Figure 6. Display data parameter list

Notes:

1. CICS provides a list of named standard attribute bytes that you may
want to use. These standard attribute bytes are contained within
DFHBMSCA, which must be copied into your program. For
programming information, including a list of the attribute bytes and
their meanings, refer to the CICS Application Programming
Reference manual.

2. The high-order bit must be set on in the last address, to indicate to
EDF that this is the last address.

Summary of the task-related user exit parameter lists
Figure 7 on page 216 shows, in diagrammatic form, the relationships between the
parameter lists that are discussed in the preceding sections.

 Chapter 2. Task-related user exit programs 215

 the task-related user exit program

Application
program call

Task manager
call

Syncpoint
manager call

Termination
manager call

CICS EDF
call

DFHUEPAR DFHUEPAR DFHUEPAR DFHUEPAR DFHUEPAR

UEPEXN UEPEXN UEPEXN UEPEXN UEPEXN
UEPGAA UEPGAA UEPGAA UEPGAA UEPGAA
UEPGAL UEPGAL UEPGAL UEPGAL UEPGAL
UEPHMSA UEPHMSA UEPHMSA UEPHMSA UEPHMSA
UEPTAA UEPTAA UEPTAA UEPTAA UEPTAA
UEPTAL UEPTAL UEPTAL UEPTAL UEPTAL
UEPEIB UEPEIB UEPEIB UEPEIB UEPEIB
UEPURID UEPURID UEPURID UEPURID UEPURID
UEPFLAGS UEPFLAGS UEPFLAGS UEPFLAGS UEPFLAGS
UEPRMSTK UEPRMSTK UEPRMSTK UEPRMSTK UEPRMSTK
UEPUOWDS UEPUOWDS UEPUOWDS UEPUOWDS UEPUOWDS
UEPSECFLG UEPSECFLG UEPSECFLG UEPSECFLG UEPSECFLG
UEPSECBLK UEPSECBLK UEPSECBLK UEPSECBLK UEPSECBLK
UEPRMQUA UEPRMQUA UEPRMQUA UEPRMQUA UEPRMQUA
UEPCALAM UEPCALAM UEPCALAM UEPCALAM UEPCALAM
UEPSYNCA UEPSYNCA UEPSYNCA UEPSYNCA UEPSYNCA
UEPTIND UEPTIND UEPTIND UEPTIND UEPTIND

DFHUERTR DFHUERTR DFHUERTR DFHUERTR DFHUERTR

UERTFGP UERTFGP UERTFGP UERTFGP UERTFGP
(X'00') (X'00') (X'00') (X'00') (X'00')
UERTFID UERTFID UERTFID UERTFID UERTFID
(X'02') (X'04') (X'08') (X'0A') (X'0C')

RSA (R1) RSA (R1) RSA (R1) RSA (R1) RSA (R1)

Resource Syncpoint Task Address of UEPEDFRM
manager- manager manager Termination
dependent parmlist parmlist code
parmlist

Operation Reason Termination
byte 1 code code

UERTPREP UERTSOTR UERTCORD
UERTCOMM UERTEOTR UERTCIMM
UERTBACK UERTCABY
UERTDGCS UERTCABN
UERTDGNK Next tran UERTOPCA
UERTRSYN code
UERTLAST

'Extra'
parameters

2 - 9

Operation
byte 2

UERTONLY
UERTELUW

Figure 7. Task-related user exit parameter lists

216 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

The schedule flag word
The schedule flag word is a fullword indicator that the task-related user exit
program uses to control its own invocation. It is also used by CICS to schedule the
first invocation of a task-related user exit program. The schedule flag word is
accessed by the address parameter UEPFLAGS of DFHUEPAR. There is a unique
schedule flag word for each association between a CICS task and the
ENTRYNAME specified when a task-related user exit program is enabled.

The default setting of the schedule flag word is for application program requests
(that is, the last two bytes are set to X'0004').

The format of the schedule flag word is shown in Table 98.

The bit settings of the schedule flag word show which programs invoke your
task-related user exit program. For example, if an exit program is to be invoked by
the CICS task manager, the CICS syncpoint manager, and an application program,
then the last two bytes of the schedule flag word are set to X'0114'. If an exit
program is to be called by the CICS task manager and an application program only,
the last two bytes of the flag word are set to X'0104'. Before the exit program is
first called by a task, CICS sets the API flag bit on.

Before returning from any call, the task-related user exit can change the bit settings
of the flag word to register its need to be invoked by a different CICS management
service, or to register lack of interest in a service by setting the relevant flag bit to
zero.

For example, a task-related user exit may be called by an application program that
needs to access a non-CICS recoverable resource. When the exit program is first
called, the API bit is set on by CICS. If the calling program then issues a request
to update a record, the exit program sets the syncpoint manager bit on in the
schedule flag word. When the calling application program subsequently issues a
syncpoint command, or when end-of-task is reached, the CICS syncpoint manager
calls the exit program.

Note: CICS sets the syncpoint manager bit off after every call to the syncpoint
manager. This is to avoid the CICS syncpoint manager invoking the task-related
user exit program for a unit of recovery during which the exit program did no

Table 98. Format of the schedule flag word

Byte Setting Comments

0 — Reserved.

1 — Reserved.

2

UEFDFEDF

UEFDTASK

UEFMFEDF (X'10')

UEFMTASK (X'01')

Bit mask for EDF invocation.

Bit mask for task manager exit.

3

UEFDSYNC

UEFDAPPL

UEFMSYNC (X'10')

UEFMAPPL (X'04')

Bit mask for syncpoint manager exit.

Bit mask for application program exit.

 Chapter 2. Task-related user exit programs 217

 the task-related user exit program

recoverable work. The syncpoint manager bit must therefore be set on whenever
the exit program performs any recoverable work.

If you set the task manager bit in the schedule flag word on, CICS invokes your
task-related exit program at the end of this task. (Note that, if you want your exit
program to be called at the start as well as at the end of a task, you must specify
TASKSTART on the EXEC CICS ENABLE command for the TRUE. This causes
the TRUE to be invoked at the start and end of every task.)

If the last two bytes of the schedule flag word are set to X'1000', this indicates
that the task-related user exit is interested in being invoked by EDF to format
requests for display. This schedule flag bit UEFDFEDF is set on either by the
EXEC CICS ENABLE FORMATEDF command, or by the task-related user exit.
Unlike other schedule flag bits, there are restrictions on when the task-related user
exit can register a lack of interest in EDF (that is, restrictions on when UEFEDFDF
can be set off). Once a task-related user exit has formatted the initial screen for
EDF to display on “About to Execute” or “Command Execution Complete”, CICS
does not allow it to set the EDF bit UEFDFEDF off until the screen build cycle is
complete.

Register handling in the task-related user exit program
In this section, two sets of registers are discussed:

1. The registers belonging to the CICS management module that handles
task-related user exits. These are referred to as the CICS registers .

2. The registers belonging to the calling program and that are addressed by
parameter UEPHMSA of DFHUEPAR. These are referred to as the calling
program’s registers .

Saving CICS registers
Your task-related user exit program should begin by saving the contents of the
CICS registers. Register 13 addresses an 18-word area into whose 4th and
subsequent words your exit program should store registers 14 through 12. Three
of the saved values have significance, as follows:

� The saved contents of register 14 contain the address within CICS to which the
task-related user exit program returns control.

� The saved contents of register 15 contain the address at which the task-related
user exit program has just been entered.

� The saved contents of register 1 address the parameter list (DFHUEPAR) that
is provided by CICS for the task-related user exit program.

Note: As a general rule, if you fail to understand the origin or the purpose of a
call, you should:

1. Restore any registers that you have used to the state they were in on
entry to your code

2. Return to the address contained in CICS register 14.

218 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

The calling program’s registers
The calling program’s registers are stored at the address specified by UEPHMSA of
DFHUEPAR. Where the calling program is a CICS management program, for
example the syncpoint manager, the only caller registers that have significance are
registers 1 and 15. Register 1 addresses the calling program’s parameter list.
CICS sets the calling program’s register 15 to zero before the task-related user exit
program is invoked. The calling program’s register 15 can sometimes be used to
pass responses back to the calling program from the task-related user exit
program, depending on the identity of the caller. If the calling program is a CICS
management program, and the register is still zero on return, CICS assumes that
its call was not understood. If the calling program is an application program, the
significance of register settings on return are either described in your resource
manager’s documentation, or defined locally.

 Addressing-mode implications
The task-related user exit is invoked in the AMODE of the caller, unless the exit
has been enabled with the LINKEDITMODE option of the EXEC CICS ENABLE
command. This option enables the task-related user exit in its link-edit AMODE.
Therefore, if the TRUE has been link-edited AMODE 31 and is enabled with the
LINKEDITMODE option, it can be placed above the 16MB line. For programming
information about the LINKEDITMODE option of the EXEC CICS ENABLE
command, refer to the CICS System Programming Reference manual.

 Important

You should avoid the use of the LINKEDITMODE option where the TRUE has
been link-edited AMODE 24. This combination forces the TRUE always to run
AMODE 24, which is unwise because:

� An AMODE 24 TRUE cannot be invoked from a transaction running with
TASKDATALOC(ANY). This results in an ‘AEZB’ abend.

� Enabling an AMODE 24 TRUE for task start causes CICS to force all
transactions to run with TASKDATALOC(BELOW).

� On a CICS termination call, CICS ignores LINKEDITMODE and invokes the
TRUE in AMODE 31, if it detects that the TCA it is running under is above
the 16MB line. (This is because, for some types of termination, such as a
cancel, the TCA under which the TRUE will run is not predetermined.)

It is recommended that TRUEs are:

� Written so that they can always run AMODE 31
� Link-edited AMODE 31
� Enabled with the LINKEDITMODE option

If the task-related user exit has not been enabled with the LINKEDITMODE option
of EXEC CICS ENABLE, it is invoked in the AMODE of the caller. For example, in
the case of an application request, if the application is AMODE 24 at the time of the
DFHRMCAL, the task-related user exit is invoked in AMODE 24. For this reason,
task-related user exits which have been enabled without the LINKEDITMODE
option must reside below the 16MB line.

 Chapter 2. Task-related user exit programs 219

 the task-related user exit program

Exit programs and the CICS storage protection facility
When you are running CICS with the storage protection facility, there are two points
you need to consider for task-related user exits:

1. The execution key in which your task-related user exit programs run
2. The storage key of data storage obtained for your exit programs

Execution key for task-related user exit programs
When you are running with storage protection active, CICS always invokes
task-related user exit programs in CICS key. Even if you specify EXECKEY(USER)
on the program resource definition, CICS forces CICS key when it passes control to
the TRUE. However, if a task-related user exit program itself passes control to
another program (via a link or transfer-control command), the program thus invoked
executes according to the execution key (EXECKEY) defined in its program
resource definition.

 Important

You are strongly recommended to specify EXECKEY(CICS) when defining both
task-related user exit programs, and programs to which an exit program passes
control.

Data storage key for task-related user exit programs
The storage key of storage used by task-related user exit programs depends on
how the storage is obtained:

� Global or local work areas specified when an exit program is enabled, are
always in CICS key.

� Any working storage obtained for the exit program is in the key set by the
TASKDATAKEY of the transaction under which the exit program is invoked.

� Task-related user exit programs can use EXEC CICS commands to obtain
storage by issuing:

– Explicit EXEC CICS GETMAIN commands

– Implicit storage requests as a result of EXEC CICS commands that use the
SET option

The default storage key for storage obtained by EXEC CICS commands is
CICSDATAKEY. However, on an EXEC CICS GETMAIN command, the exit
program can override the CICSDATAKEY by specifying USERDATAKEY.

Recursion within a task-related user exit program
The task-related user exit has the ability to invoke itself recursively. It can do this,
for example, by issuing a DFHRMCAL call to its own entry name (as specified on
the EXEC CICS ENABLE command). It can also be entered recursively if it
performs an EXEC CICS SYNCPOINT when it is interested in SYNCPOINT
invocations.

220 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

Using CICS services in your task-related user exit program
You might find some CICS services useful in your exit program. These can be
invoked using EXEC CICS commands. However, you should take note of the
following:

� If your program is invoked because of a CICS abend, it must not use any CICS
services. See “Coding a program to be invoked at CICS termination” on
page 227.

� DFHEIENT and DFHEIRET must be in your program. But see the note about
not using DFHEIENT in abend invocations, on page 228 . For further details of
the DFHEIENT and DFHEIRET macros, see the CICS Application Programming
Reference manual.

� If your exit program entry point is immediately followed by an occurrence of a
DFHEIENT macro, inserted either implicitly by CICS or explicitly in the program,
then the expansion of the DFHEIENT macro stores incorrect values at
DFHEIBP and DFHEICAP. Your code can subsequently correct this by
copying UEPEIB into DFHEIBP, reloading the EIB base register (DFHEIBR)
from UEPEIB, and setting DFHEICAP to X'80000000'. For example,

TESTPROG DFHEIENT CODEREG=2,EIBREG=11,DATAREG=1ð

 USING DFHUEPAR,1

MVC DFHEIBP,UEPEIB Get correct EIB address

L DFHEIBR,UEPEIB Reload EIB base register

 MVC DFHEICAP,=X'8ððððððð'

Note that the entry point of a program does not have to be at the start of the
program and can be positioned after the DFHEIENT macro.

� The DFHEIENT macro allocates dynamic storage to be mapped by the
DFHEISTG DSECT. You must return to CICS by means of the DFHEIRET
macro, which frees the dynamic storage.

� Command-level calls use registers 0, 1, 14, and 15.

� Do not issue a syncpoint in start-of-task, end-of-task, or syncpoint invocations.

� On each invocation of a task-related user exit program, a new EXEC
environment is created, even when the program is being invoked from the
same task. This means that CICS operations, such as browse of a resource
definition table, cannot be continued from one invocation of the exit program to
the next.

 Work areas
When you use the EXEC CICS ENABLE command to identify a task-related user
exit program to CICS, you may specify that the program must have access to one
local and one global work area. The EXEC CICS ENABLE command allows you to
specify the size, in bytes, of the work areas to be acquired for your task-related
user exit program. CICS acquires storage for the areas and initializes pointers to
them. The user exit parameter list, DFHUEPAR, gives you access to the pointers.
For more information, see the description of DFHUEPAR under “User exit
parameter lists” on page 207.

 Chapter 2. Task-related user exit programs 221

 the task-related user exit program

The global work area
A global work area is associated with an exit program. Whenever the exit program
is invoked, it has access to the area through the parameter UEPGAA of
DFHUEPAR. The global work area may be shared by a number of exit programs.
You must have specified the size of the global work area using the GALENGTH
parameter or the GAENTRYNAME parameter of the EXEC CICS ENABLE
command.

The local work area
A local work area is associated with a single task and lasts only for the duration of
the task. It is for the use of a single task-related user exit program. It can be
thought of as a logical extension to the transaction work area (TWA, TWACOBA)
that is exclusively for the exit program’s use. It is specified using the TALENGTH
option of the EXEC CICS ENABLE command and is accessed using the UEPTAA
parameter of DFHUEPAR.

Coding a program to be invoked by the CICS syncpoint manager
All task-related user exit programs can be invoked by the CICS syncpoint manager.
An exit program must “schedule” the syncpoint manager by setting the syncpoint
manager bit-mask in the schedule flag word (addressed by the UEPFLAGS
parameter). The format of the schedule flag word is described in Table 98 on
page 217. The bit-mask must be set after every piece of recoverable work to
ensure that the CICS syncpoint manager calls the exit program during syncpoint
processing. (The identification of the current unit of recovery—or logical unit of
work—is addressed by the 8-byte field UEPURID. This is available on all
invocations of your exit program in which recoverable actions are possible, for
example, application calls and subsequent syncpoint manager calls.)

Increasing efficiency—single-update and read-only protocols
If your resource manager is capable of performing a single-phase commit, you can
increase the efficiency of your system by means of CICS single-update and
read-only protocols.

Single-update protocol: Many CICS transactions use only one external resource
manager. In this case, a single-phase commit is in order. The benefits of a
single-phase commit are:

� The resource manager can reduce from two to one the number of log forces
required for transactions.

� The number of transaction-related log records written by CICS is reduced.

� A path length reduction is achieved, because the TRUE is invoked only once at
the syncpoint, rather than twice.

To take advantage of these benefits, your task-related user exit program must
indicate to CICS that the resource manager understands the single-update protocol,
and that it (the TRUE) can process a syncpoint call to perform a single-phase
commit. It indicates this by setting the UEPSUPDR flag in the field pointed to by
UEPSYNCA in the DFHUEPAR parameter list. It must do this every time it sets the
syncpoint manager bit in the schedule flag word.

If the exit program has set the UEPSUPDR flag, then, when the syncpoint manager
next invokes the TRUE, it informs it whether the resource manager is the only one
to have updated resources in the current LUW. It does this by means of the

222 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

UERTONLY bit (in operation byte 2 of the syncpoint manager’s parameter list); if
this is set on, then the resource manager can be asked to perform a single-phase
commit.

Read-only protocol: Similar gains in efficiency can be made if the resource
manager is in read-only mode throughout the current LUW. Again, a single-phase
commit is in order. To benefit, the resource manager must return to the TRUE a
flag indicating whether the LUW is read-only or not. The flag may show either the
“history” of the LUW so far (for example, so far it is read-only), or simply whether
the current request is read-only. In turn, the TRUE must update the UEPREADO
flag in the DFHUEPAR parameter list with the history of the LUW so far. That is, it
must set UEPREADO initially, but unset it as soon as the LUW contains updates.
(Once UEPREADO has been unset, CICS ignores any subsequent setting of the
flag during the current LUW, and treats the LUW as containing updates.)

At the end of the LUW, if the UEPREADO flag is still set, the syncpoint manager
invokes the TRUE with instructions to issue a single-phase commit to the resource
manager (by setting the UERTELUW bit on).

 Return codes
When a task-related user exit program is invoked by the CICS syncpoint manager,
the return codes it is able to set depend on the reason for the invocation. Table 99
shows the relationship between the request flags in the syncpoint manager’s
parameter list and the TRUE return codes. (The CICS syncpoint manager
parameters are described on page 210.)

Table 99. Valid return codes for a TRUE invoked by the CICS syncpoint manager

Request-type Return codes Meaning

UERTPREP
UERFPREP Phase 1 of 2-phase commit successful

UERFBACK Phase 1 of 2-phase commit unsuccessful

UERTCOMM
UERFDONE Phase 2 of 2-phase commit successful

UERFHOLD Phase 2 of 2-phase commit unsuccessful

UERTBACK
UERFDONE Backout successful

UERFHOLD Backout unsuccessful

UERTONLY

UERFOK Single-phase commit successful

UERFBOUT
Single-phase commit failed and backed
out

UERTELUW None Not applicable

What is expected of your resource manager
If every request from the syncpoint manager prompts a meaningful response from
the resource manager, CICS ensures that changes to recoverable resources (such
as databases) can be synchronized. That is, either all the changes take effect or
all are backed out, even across system failures.

 Chapter 2. Task-related user exit programs 223

 the task-related user exit program

 Limitations
Do not update a recoverable CICS resource during a syncpoint call because any
changes will not be seen by the CICS syncpoint manager.

Sample code for a TRUE invoked by the CICS syncpoint
manager
The pseudocode given in Figure 8 is only an example. It is not complete, and
includes only some of the conditions that a task-related user exit invoked at a
syncpoint might be required to check.

if UERTFID = UERTSYNC then /\ Caller is CICS syncpoint manager \/

select; /\ Type of syncpoint manager request \/

when (UERTONLY) /\ ONLY resource manager \/

invoke RM for single-phase commit /\ Single-phase commit \/

if RM single-phase commit succeeded then

give CICS syncpoint manager 'YES' vote (UERFOK)

else /\ Single-phase commit failed \/

/\ If RM completed backout \/

if RM single-phase commit failed and backed out

give CICS syncpoint manager 'NO' vote (UERFBOUT)

else /\ Don't know what happened \/

put out message and issue transaction abend

 endif

 endif

when (UERTELUW) /\ RM read-only for current LUW \/

invoke RM for single-phase commit /\ Single-phase commit \/

when (UERTPREP) /\ Not ONLY resource manager, nor read-only \/

invoke RM for PREPARE /\ Prepare - phase 1 of 2-phase commit \/

select (resource manager vote)

when (YES) /\ Phase 1 completed \/

give CICS syncpoint manager 'YES' vote (UERFPREP)

 otherwise

give CICS syncpoint manager 'NO' vote (UERFBACK)

 endselect

when (UERTCOMM) /\ Commit - phase 2 of 2-phase commit \/

invoke RM for commit phase 2

if RM commit succeeded then

tell CICS sync manager OK (UERFDONE)

 else

tell CICS sync manager remember could not commit (UERFHOLD)

 endif

when (UERTBACK) /\ Backout request \/

invoke RM for backout

if RM backout succeeded then

tell CICS sync manager OK (UERFDONE)

 else

tell CICS sync manager remember could not backout (UERFHOLD)

 endif

 endselect

endif

Figure 8. Sample pseudocode for a task-related user exit program to be invoked by the
CICS syncpoint manager

As described in “Increasing efficiency—single-update and read-only protocols” on
page 222, if the UERTONLY bit is set (indicating that the resource manager is the
only one to have updated resources) the exit program should cause the resource

224 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

manager to perform a single-phase commit. If the commit is successful, the exit
program should return ‘UERFOK’ in register 15; if not, it should return
‘UERFBOUT’, meaning that the commit was unsuccessful and the resources were
backed out. If the exit program is unsure about the outcome of a single-phase
commit, it must abend the task, having saved or displayed any diagnostic
information that it considers necessary.

Note that “register 15” in this section refers to the syncpoint manager’s register 15,
the fifth word of the area addressed by UEPHMSA.

Similarly, when the UERTELUW bit is set (indicating that the resource manager
was in read-only mode throughout this LUW), the exit program should cause the
resource manager to perform a single-phase commit. There are no return codes
for a UERTELUW call. Because no updates were made, data integrity is not at
risk, and therefore no action is taken if the commit fails.

On receiving a request to perform the first phase of a two-phase commit, the
resource manager is expected to get into a state where recoverable changes made
since the last syncpoint can be either committed or backed out on demand, even if
there is an intervening system failure. For example, buffer contents must be moved
to nonvolatile storage. If the resource manager is unable to get into this state, the
exit program should return ‘UERFBACK’ in register 15, to request backout.
Normally, it should return ‘UERFPREP’, to indicate a successful phase 1 of a
2-phase commit.

On receiving a request to perform the second phase of a two-phase commit, or a
request to back out, your resource manager should take the corresponding
irreversible step, and have the exit program send the syncpoint manager a return
code: either ‘UERFDONE’, meaning that the commit or abend process is complete;
or ‘UERFHOLD’, meaning that the commit or abend must be resolved later. These
return code constants are available to you when you code the macro DFHUEXIT
TYPE=RM in your exit program.

If a resource manager cannot understand a call, it should not change the contents
of the caller’s register 15 before returning to the caller, because it cannot anticipate
how the caller will interpret the change.

Resynchronization after failure
If a failure occurs between returning from the exit after performing phase 1 of a
2-phase commit and the subsequent phase 2 or back out call, the resource
manager must be ready, on restart, to discover the state of the unit of recovery,
and to act accordingly. For programming information about restart
resynchronization using the EXEC CICS RESYNC command, see the CICS System
Programming Reference manual.

Information about in-doubt units of work is retained across CICS warm starts.
CICS initialization and keypoint management routines recover from the system log
all information associating resource managers with outstanding units of recovery,
which are resolved automatically when CICS reconnects to the resource managers
concerned.

 Chapter 2. Task-related user exit programs 225

 the task-related user exit program

However, if for any reason CICS has to be cold started after a failure, information
about in-doubt units of work is lost. In these circumstances, the outstanding units
of recovery have to be resolved manually. You can use the CICS-supplied sample
program, DFH$INDB, to help you do this. DFH$INDB produces a list of in-doubt
external resource records, with the action needed to resolve each one. Each list
relates to a single, specified resource manager, so you may need to execute
DFH$INDB more than once. You can write your own version of DFH$INDB by
modifying the source code supplied in the VSE/ESA sublibrary PRD1.BASE. For
more information about DFH$INDB, see the CICS Operations and Utilities Guide.

Coding a program to be invoked by the CICS task manager
If your exit program sets the task manager bit in the schedule flag word, it is
invoked at end-of-task. If you specify TASKSTART on the EXEC CICS ENABLE
command for the TRUE, it is invoked at start-of-task, and (providing it does not
unset the task manager bit), at end-of-task too. To determine whether a particular
invocation is at start- or end-of-task, you can examine the CICS task manager
parameters described in “CICS task manager parameters” on page 213. Typically,
your program shows interest in task manager events if it needs to save task-related
information, such as performance or accounting data, before the task ends.

 Limitations
If your exit program is invoked at end-of-task, you must be alert to possible
limitations on exit program activity at task-detach. For example:

� Do not update any CICS resources at all during a task-detach exit call,
because the CICS syncpoint manager is not invoked again for that task. Note
also that all resources (terminals, and so on) except task-storage have been
released by end-of-task.

Note: You should also be aware that transactions with resource security or
command security defined may not run successfully after the terminal has been
released. Failure to observe this limitation can result in an ABENDAEY7 -
NOTAUTH condition arising.

� It is possible to schedule a new CICS task from your exit program using the
EXEC CICS START command and to pass data to a new task. However, you
should note that EXEC CICS START uses a temporary storage queue to pass
data to the new transaction. If this queue is recoverable (DFHTST
TYPE=RECOVERY), it is locked to the detaching task. It is never unlocked,
because, when the task-detach exit call is made, the resources of the
detaching task have already been freed. Use of the PROTECT option would
cause a different problem: the new task could not be scheduled until the next
syncpoint of the detaching task, but there will be no such syncpoint.

� It is recommended that you do not access remote resources using a
task-related user exit program. However, if you do so, then you must
understand fully the circumstances in which the function shipping conversation
may be terminated.

226 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

Coding a program to be invoked at CICS termination
If you specify the SHUTDOWN option when enabling your task-related user exit
program, it is invoked at system termination. The CICS system termination
manager passes the exit program the address of a one-byte code that identifies the
type of termination (see “CICS termination manager parameters” on page 213).
You can use this invocation of your program to do processing appropriate to the
type of termination. For example, at an orderly shutdown you could use it, rather
than a PLT program, to shut down the adapter; at a CICS abend you could use it to
take special actions, related to the seriousness of the abend.

 Limitations
Note that, due to the nature of CICS abends and operator cancels, there is no
guarantee that CICS will be able to invoke your exit program at system termination,
even if you have specified SHUTDOWN; it may be too impaired to do so.

The limitations on what your program can do, if invoked, depend on the type of
termination:

Orderly shutdown (UERTCORD)
Your exit program must follow the rules for programs that execute during
the first quiesce stage of CICS shutdown—that is, all CICS services are
available, but programs must not start any new tasks.

Immediate shutdown (UERTCIMM)
As for orderly shutdown, except that your exit program should do the
minimum required and return control, so that shutdown can proceed.

CICS abend, retry possible, TCBs dispatchable (UERTCABY)
VSE/ESA has flagged the failure as being “eligible for retry”.

Subtasks in the region (that is, task control blocks (TCBs) in addition to
the CICS job-step TCB) are still dispatchable, and your exit program can
execute code under them.

You must not use any CICS services.

CICS abend, retry not possible, TCBs dispatchable (UERTCABN)
VSE/ESA has flagged the failure as “not eligible for retry”. Note that
your exit program is invoked from code within the OS/390 extended
subtask abend exit (ESTAEX). VSE/ESA imposes more restrictions on
ESTAEX code than on non-ESTAEX code.

Subtasks in the region are still dispatchable, and your exit program can
execute code under them.

You must not use any CICS services.

CICS abend, retry not possible, TCBs not dispatchable (UERTOPCA)
As for UERTCABN, except that subtasks in the region are not
dispatchable; your exit program must not try to execute code under any
TCBs that it may have attached.

 Chapter 2. Task-related user exit programs 227

 the task-related user exit program

 Important

In the abend invocations (UERTCABY through UERTOPCA), your exit program
must not use any CICS services. This includes the DFHEIENT call, which
performs a CICS GETMAIN. To prevent a DFHEIENT call being issued
automatically on each invocation of your program, specify the NOPROLOG
translator option; but include in the program source your own DFHEIENT call to
be issued on non-abend invocations only. An example of how to code a
task-related user exit program to be invoked at CICS termination is given in
Figure 9 on page 229. For further information about coding a DFHEIENT call,
see the CICS Application Programming Reference manual.

Sample code for a TRUE invoked at CICS termination
Note that the sample in Figure 9 on page 229 is a multipurpose program—that is,
it is coded to be invoked at many task-related user exit points. However, to avoid
the need to test for CICS abends in all of your multipurpose TRUEs, it is
recommended that you use a separate program for termination invocations.

228 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

JTRUE1A CSECT TERMINATION TRUE ENTRYPOINT

 STM 14,12,12(13) Save registers

 USING JTRUE1A,R3

LR R3,R15 Use R3 as base register

USING DFHUEPAR,R1 Address DFHUEPAR parameter list

 L R2,UEPEXN

 USING DFHUERTR,R2

CLI UERTFID,UERTCTER CICS Termination call?

BNE CONT No, so continue

L R1ð,UEPHMSA Address Host register save area

 USING SA,R1ð

L R5,RSAR1 Get Caller's R1

 USING DFHCTERM,R5

L R5,CTERML Get termination type

 USING CTERMLIST,R5

TM CTERMTYPE,UERTCORD CICS orderly shutdown?

BO CONT Yes, so can use CICS services

TM CTERMTYPE,UERTCIMM CICS immediate shutdown?

BO CONT Yes, so can use CICS services

\ ...

\ ...

\ Insert code here for any processing when CICS is abending

\ (No CICS services should be used)

\ ...

\ ...

LM 14,12,12(13) Restore caller's registers

BSM ð,14 Return to caller

CONT DS ðH Continue in new CSECT

LM 14,12,12(13) Restore callers's registers

 DROP R3

USING JTRUE1A,R15 Use R15 as temporary base register

L R15,=V(JTRUE1B) Get address of new CSECT

BR R15 Branch to new CSECT

 DROP R1,R2,R5,R1ð,R15

 LTORG

JTRUE1B CSECT POST TEST CSECT

 DFHEIENT

LR R4,R1 Use R4 to address parm list

USING DFHUEPAR,R4 Address parm list

 L R5,UEPEXN

 USING DFHUERTR,R5

Figure 9 (Part 1 of 2). Sample code for a task-related user exit program to be invoked at
CICS termination

 Chapter 2. Task-related user exit programs 229

 the task-related user exit program

 MVC DFHEIBP,UEPEIB

 MVC DFHEICAP,=X'8ððððððð'

\

\ Insert code here for all types of call other than when CICS

\ is abending

\ (CICS services can be used)

\

EXIT DS ðH

 DFHEIRET

 DROP R4,R5

\

 LTORG

\

DFHCTERM DSECT

CTERML DS A

\

CTERMLIST DSECT

CTERMTYPE DS CL1

\

DFHEISTG DSECT

\

\ Local working storage for CSECT JTRUE1B

\

RSA DS 18F Register save area

SA DSECT Register save area DSECT

 DS F

\

RSACB DS F +ðð4

RSACF DS F +ðð8

RSAR14 DS F +ððC

RSAR15 DS F +ð1ð

RSARð DS F +ð14

RSAR1 DS F +ð18

RSAR2 DS F

RSAR3 DS F

RSAR4 DS F

RSAR5 DS F

RSAR6 DS F

RSAR7 DS F

RSAR8 DS F

RSAR9 DS F

RSAR1ð DS F

RSAR11 DS F

RSAR12 DS F

 DFHREGS

 DFHUEXIT TYPE=RM

 DFHEISTG

 DFHEIEND

 PRINT NOGEN

 PRINT GEN

 END

Figure 9 (Part 2 of 2). Sample code for a task-related user exit program to be invoked at
CICS termination

230 CICS Transaction Server for VSE/ESA Customization Guide

 the task-related user exit program

Using EDF with your task-related user exit program
If your exit program sets the EDF bit in the schedule flag word and EDF is active,
the exit program is invoked before and after each API request to format screens for
EDF to display.

Communication between the task-related user exit and EDF is controlled by the
task-related user exit interface. The command flow between this interface, EDF,
and the task-related user exit is summarized in Figure 10.

Task-related user
exit interface Task-related user exit (T1)

Prepare 'About to Execute' EDF screen
EDF (E1) Display screen

Task-related user exit (T2)
Response EDF user
Task-related user exit (T3)
Access resource manager
Task-related user exit (T4)
Prepare 'Command Execution Complete' EDF screen
EDF (E2) Display screen

Task-related user exit (T5)
Response EDF user

Figure 10. Interface between the task-related user exit and EDF

Table 100 describes each stage of the interface between the task-related user exit
and EDF, relating the descriptions to the (Tn) and (En) expressions in Figure 10.

Table 100. Description of each stage of the task-related user exit/EDF interface

Invocation Description

(T1) Task-related user exit invoked to set up its EDF requirements. At this
stage the task-related user exit prepares the “About to Execute”
screen based on the application request.

(E1) Using information passed back from the task-related user exit at
invocation T1, the task-related user exit interface invokes EDF to
display the “About to Execute” screen. EDF sets up the EDF user
response, for example, if the user has changed the screen.

(T2) Task-related user exit is invoked with the EDF user response to the
“About to Execute” screen.

(T3) Task-related user exit invoked to access external resource manager
for application request.

(T4) Task-related user exit invoked to prepare a “Command Execution
Complete” screen, based on the result of the application request.

(E2) Using information passed back from the task-related user exit at
invocation T4, the task-related user exit interface invokes EDF to
display the “Command Execution Complete” screen. EDF sets up the
EDF user response, for example, if the user has changed the screen.

(T5) Task-related user exit is invoked with the EDF user response to the
“Command Execution Complete” screen.

 Chapter 2. Task-related user exit programs 231

 adapter administration

 Important

The E1/T2 and E2/T5 cycles can be used repeatedly. This may occur, for
example, if the EDF user changes the screen a number of times.

 Adapter administration
Careful use of task-related user exits can allow your application programmers to be
unaffected by the invocation of non-CICS resource managers from CICS application
programs. Enabling and disabling task-related user exit programs for an installation
should be the responsibility of one or more supervisory or master terminal
operators. This section lists what you must do before you can use the adapter, and
describes the commands used by the supervisor to administer task-related user exit
programs.

For programming information about the use of commands in CICS application
programs, see the CICS Application Programming Reference manual.

What you must do before using the adapter
1. A task-related user exit program must be defined to the system using the

CEDA INSTALL PROGRAM command.

2. If you want to use CICS syncpoint management in task-related user exits, your
CICS system must contain the supplied module DFHDBP.

3. To enable the task-related user exit program and to define its working storage
needs, you must use the EXEC CICS ENABLE command. A task-related user
exit program must be both enabled and started before it is available for
execution. For example:

EXEC CICS ENABLE PROGRAM('EP9')

TALENGTH(75ð) GALENGTH(2ðð) SHUTDOWN

EXEC CICS ENABLE PROGRAM('EP9')

 START

The first command loads the task-related user exit program EP9, and causes a
200-byte work area to be obtained and associated with it. The first command
also schedules the allocation of a further 750-byte work area for each task that
subsequently invokes EP9, and the invocation of EP9 at CICS termination.
The second command starts the exit program, that is, it makes its entry point
capable of being invoked.

Note: If a task-related user exit program is enabled before it has been
installed, CICS scans the SVA for the program and may issue message
DFHLD0107I, meaning that it was unable to find the program in the SVA and is
using a version found in the LIBDEF library search chain for the CICS job.

For programming information about the EXEC CICS commands, refer to the
CICS System Programming Reference manual.

232 CICS Transaction Server for VSE/ESA Customization Guide

 adapter administration

The administration routines
As well as being enabled before they can be used, task-related user exit programs
should be disabled when you have finished using them. You should prepare
procedures (the administration routines) for enabling and disabling your task-related
user exit programs, using the EXEC CICS ENABLE and DISABLE commands, and
for resynchronizing between sessions or after a system failure. Your enabling
routines could be PLT initialization programs or online programs. Your disabling
routines could, for example, be started by a TRUE invoked at CICS termination.

The EXTRACT EXIT command obtains the address and the length of a global work
area that is owned by, or shared by, a named task-related user exit program.

For programming information about these commands and the rules governing them,
and also about resynchronization, refer to the CICS System Programming
Reference manual.

Tracing a task-related user exit program
CICS outputs a trace entry just before control is passed to the task-related user exit
and just after returning from the exit. You can control these trace entries using the
EI option of the CETR trace control transaction or the EXEC CICS SET
TRACETYPE command.

End of General-use programming interface

 Chapter 2. Task-related user exit programs 233

 adapter administration

234 CICS Transaction Server for VSE/ESA Customization Guide

 user exit programming interface

Chapter 3. The user exit programming interface (XPI)

This chapter describes the user exit programming interface (XPI) of CICS
Transaction Server for VSE/ESA Release 1. It is divided into the following
sections:

� “Overview” is an introduction to the XPI.

� “General form of an XPI call” on page 240 contains information that applies
to all the XPI calls.

� “Global user exit XPI examples, showing the use of storage” on page 246
contains two pieces of sample code.

� “The XPI functions” on page 253 describes the syntax of the individual XPI
calls. The calls are grouped according to the type of function they perform (for
example, dump control, storage control). The functional groups are ordered
alphabetically.

 Overview
The user exit programming interface provides global user exit programs with access
to some CICS services. It consists of a set of macro function calls that you can
use in your user exit programs. It provides opportunities to extend CICS functions
beyond the facilities provided in the standard CICS system, but it must be used
with care. Any exit programs you write that use the interface must be written
following the guidance in this chapter, and they must be carefully tested to ensure
that they cannot cause system errors.

The user exit programs must be in assembler language; the XPI is not provided for
other languages. You should also note that programs containing XPI calls must be
written to 31-bit standards, and must be reentrant.

You must be in primary-space translation mode when you invoke the XPI.

XPI calls sorted by function
This section lists all the XPI calls, sorted into their functional areas.

� Using the XPI dispatcher functions , you can:

– Obtain a suspend token for a task—see “The ADD_SUSPEND call” on
page 257.

– Suspend execution of the issuing task—see “The SUSPEND call” on
page 259.

– Resume execution of a suspended task—see “The RESUME call” on
page 262.

– Release a suspend token associated with a task—see “The
DELETE_SUSPEND call” on page 263.

– Request a wait on one or more VSE/ESA event control blocks (ECBs)—see
“The WAIT_EXTERNAL call” on page 264.

– Change the priority of the issuing task—see “The CHANGE_PRIORITY
call” on page 267.

 Copyright IBM Corp. 1977, 1999 235

 user exit programming interface

� Using the XPI dump control functions , you can:

– Request a system dump—see “The SYSTEM_DUMP call” on page 268.

– Request a transaction dump—see “The TRANSACTION_DUMP call” on
page 269.

� Using the XPI kernel domain functions , you can:

– Inhibit purge for the current task—see “The
START_PURGE_PROTECTION function” on page 272.

– Reenable purge for the current task—see “The
STOP_PURGE_PROTECTION function” on page 272.

� Using the XPI loader functions , you can:

– Define a new program to the loader domain—see “The
DEFINE_PROGRAM call” on page 273.

– Load a program or, if it is already loaded, obtain its load and entry-point
addresses—see “The ACQUIRE_PROGRAM call” on page 277.

– Release the storage occupied by a program, or decrement its use count by
one—see “The RELEASE_PROGRAM call” on page 279.

– Delete a program definition from the list of current programs—see “The
DELETE_PROGRAM call” on page 280.

� Using the XPI monitoring functions , you can:

– Process a user event-monitoring point—see “The MONITOR call” on
page 281.

– Retrieve the current monitoring data for the issuing task—see “The
INQUIRE_MONITORING_DATA call” on page 284.

� Using the XPI program management functions , you can:

– Inquire about the attributes of a specified program—see “The
INQUIRE_PROGRAM call” on page 286.

– Inquire about the attributes of the program that is currently running—see
“The INQUIRE_CURRENT_PROGRAM call” on page 291.

– Set selected attributes in the definition of a specified program—see “The
SET_PROGRAM call” on page 294.

– Browse through program definitions, optionally starting at the definition of a
specified program—see “The START_BROWSE_PROGRAM call” on
page 297, “The GET_NEXT_PROGRAM call” on page 298, and “The
END_BROWSE_PROGRAM call” on page 299.

– Inquire about the settings of the autoinstall function for programs, mapsets,
and partitionsets—see “The INQUIRE_AUTOINSTALL call” on page 300.

– Change the settings of the autoinstall function for programs, mapsets, and
partitionsets—see “The SET_AUTOINSTALL call” on page 301.

� Using the XPI state data access functions , you can:

– Inquire on application system data in the AP domain—see “The
INQ_APPLICATION_DATA call” on page 302.

– Inquire on CICS system data in the AP domain—see “The
INQUIRE_SYSTEM call” on page 305.

236 CICS Transaction Server for VSE/ESA Customization Guide

 user exit programming interface

– Set CICS system data values in the AP domain—see “The SET_SYSTEM
call” on page 309.

� Using the XPI storage control functions , you can:

– Obtain and initialize storage—see “The GETMAIN call” on page 311.

– Release storage—see “The FREEMAIN call” on page 314.

– Inquire about the access-key of an element of storage—see “The
INQUIRE_ACCESS call” on page 314.

– Obtain the start address and length of an element of task-lifetime
storage—see “The INQUIRE_ELEMENT_LENGTH call” on page 315.

– Discover whether CICS is short on storage—see “The
INQUIRE_SHORT_ON_STORAGE call” on page 316.

– Inquire about a task’s task-lifetime storage—see “The
INQUIRE_TASK_STORAGE call” on page 317.

� Using the XPI trace control function , you can:

– Write a trace entry to the active trace destinations—see “The TRACE_PUT
call” on page 318.

� Using the XPI transaction management functions , you can:

– Discover the name of the dynamic transaction routing transaction
definition—see “The INQUIRE_DTRTRAN call” on page 319.

– Discover the current value of the MXT system initialization parameter—see
“The INQUIRE_MXT call” on page 320.

– Inquire about a specified transaction class—see “The INQUIRE_TCLASS
call” on page 321.

– Inquire about a specified transaction definition—see “The
INQUIRE_TRANDEF call” on page 323

– Inquire about an attached transaction—see “The INQUIRE_TRANSACTION
call” on page 329.

– Change the task priority and transaction class of the current task—see “The
SET_TRANSACTION call” on page 333.

� Using the XPI user journaling function , you can:

– Write a record to a CICS journal—see “The WRITE_JOURNAL_DATA call”
on page 335.

XPI calls sorted alphabetically
Table 101 on page 238 lists all the XPI calls in alphabetical order.

 Chapter 3. The user exit programming interface (XPI) 237

 user exit programming interface

Table 101 (Page 1 of 2). Alphabetical list of XPI calls

Name of call Functional
area

Purpose Page

ACQUIRE_PROGRAM Loader Load a program or, if it is already loaded,
obtain its load and entry-point addresses.

277

ADD_SUSPEND Dispatcher Obtain a suspend token for a task. 257

CHANGE_PRIORITY Dispatcher Change the priority of the issuing task. 267

DEFINE_PROGRAM Loader Define a new program to the loader domain. 273

DELETE_PROGRAM Loader Delete a program definition from the list of
current programs.

280

DELETE_SUSPEND Dispatcher Release a suspend token associated with a
task.

263

END_BROWSE_PROGRAM Program
management

End a browse of program definitions. 299

FREEMAIN Storage
control

Release storage. 314

GETMAIN Storage
control

Obtain and initialize storage. 311

GET_NEXT_PROGRAM Program
management

Inquire on the next program definition in a
browse sequence.

298

INQUIRE_ACCESS Storage
control

Inquire about the access-key of an element of
storage.

314

INQUIRE_APPLICATION_DATA State data
access

Inquire on application system data in the AP
domain.

302

INQUIRE_AUTOINSTALL Program
management

Inquire about the settings of the autoinstall
function for programs, mapsets, and
partitionsets.

300

INQUIRE_CURRENT_PROGRAM Program
management

Inquire about the attributes of the program that
is currently running.

291

INQUIRE_DTRTRAN Transaction
management

Discover the name of the dynamic transaction
routing transaction definition.

319

INQUIRE_ELEMENT_LENGTH Storage
control

Obtain the start address and length of an
element of task-lifetime storage.

315

INQUIRE_MONITORING_DATA Monitoring Retrieve the current monitoring data for the
issuing task.

284

INQUIRE_MXT Transaction
management

Discover the current value of the MXT system
initialization parameter.

320

INQUIRE_PROGRAM Program
management

Inquire about the attributes of a specified
program.

286

INQUIRE_SHORT_ON_STORAGE Storage
control

Discover whether CICS is short on storage. 316

INQUIRE_SYSTEM State data
access

Inquire on CICS system data in the AP
domain.

305

INQUIRE_TASK_STORAGE Storage
control

Inquire about a task’s task-lifetime storage. 317

INQUIRE_TCLASS Transaction
management

Inquire about a specified transaction class. 321

238 CICS Transaction Server for VSE/ESA Customization Guide

 user exit programming interface

Table 101 (Page 2 of 2). Alphabetical list of XPI calls

Name of call Functional
area

Purpose Page

INQUIRE_TRANDEF Transaction
management

Inquire about a specified transaction definition. 323

INQUIRE_TRANSACTION Transaction
management

Inquire about an attached transaction. 329

MONITOR Monitoring Process a user event-monitoring point. 281

RELEASE_PROGRAM Loader Release the storage occupied by a program,
or decrement its use count by one.

279

RESUME Dispatcher Resume execution of a suspended task. 262

SET_AUTOINSTALL Program
management

Change the settings of the autoinstall function
for programs, mapsets, and partitionsets.

301

SET_PROGRAM Program
management

Set selected attributes in the definition of a
specified program.

294

SET_SYSTEM State data
access

Set CICS system data values in the AP
domain.

309

SET_TRANSACTION Transaction
management

Change the task priority and transaction class
of the current task.

333

START_BROWSE_PROGRAM Program
management

Begin browsing through program definitions. 297

START_PURGE_PROTECTION Kernel
domain

Inhibit purge for the current task. 272

STOP_PURGE_PROTECTION Kernel
domain

Reenable purge for the current task. 272

SUSPEND Dispatcher Suspend execution of the issuing task. 259

SYSTEM_DUMP Dump
control

Request a system dump. 268

TRACE_PUT Trace
control

Write a trace entry to the active trace
destinations.

318

TRANSACTION_DUMP Dump
control

Request a transaction dump. 269

WAIT_EXTERNAL Dispatcher Request a wait on one or more VSE/ESA
event control blocks (ECBs).

264

WRITE_JOURNAL_DATA User
journaling

Write a record to a CICS journal. 335

 Chapter 3. The user exit programming interface (XPI) 239

 form of an XPI call

 Important

1. You cannot use all of these calls at every global user exit point. You will
find an indication of when these calls cannot be used both with the
description of each function call, and in the lists of exit points in Chapter 1,
“Global user exit programs” on page 3.

Warning: These XPI calls are used to invoke CICS services; using them in
the wrong exits causes unpredictable errors in your CICS system.

2. There is a restriction on using the XPI early during initialization. Do not
start exit programs that use the XPI functions INQUIRE_MONITOR_DATA,
MONITOR, TRANSACTION_DUMP, and WRITE_JOURNAL_DATA until the
second phase of the PLTPI. For further information about the PLTPI, refer
to Chapter 4, “Writing initialization and shutdown programs” on page 339.

3. These XPI functions are likely to cause the task executing the user exit
program to lose control to another task while the XPI function is being
executed. Therefore the use of XPI functions must be very carefully
considered, as interrupting the flow of CICS functions could cause
problems, such as lockouts, to occur.

General form of an XPI call
If you make an XPI call, it must be in the form described below. It consists of two
sets of parameters:

� Input parameters, including the XPI function call and the parameters passed to
the call

� Output parameters, by which CICS can return values to you, including
response and reason codes that tell you whether the call was successful.

To use an XPI macro call, you must include a copy book that defines the input and
output parameters. The name of the macro is always of the form DFHxxyyX, and
the associated copy book has the name DFHxxyyY. For example, the GETMAIN
call is part of the storage control XPI. The macro you would use is DFHSMMCX
and the associated copy book is DFHSMMCY.

240 CICS Transaction Server for VSE/ESA Customization Guide

 form of an XPI call

The general format (omitting the assembler-language continuation character) of all
XPI calls is:

 macro-name [CALL],

 [CLEAR],

 [IN,

 FUNCTION(call_name),

 mandin1(value),

 mandin2(value),

 ...

 [optin1(value),]

 [optin2(value),]

 ...]

 [OUT,

 mandout1(value),

 mandout2(value),

 ...

 [optout1(value),]

 [optout2(value),]

 ...

 RESPONSE,

 REASON]

XPI calls follow assembler-language coding conventions:

� The “macro-name” must begin before column 16.

� The continuation lines must begin in column 16.

� There must be no embedded blanks apart from the blank between the
macro-name and the first keyword (usually CALL).

� Entries on lines other than the final line must end with a comma.

� Lines other than the final line must have a continuation character in column 72.

� Parentheses around the input and output values are required—and if you use a
register reference as an input or output value, it must be enclosed in an inner
pair of parentheses, thus: ((R6)).

� For details about how to set the values of the XPI options, refer to “The XPI
functions” on page 253.

There are three uses of these XPI functions. You can:

� Clear the parameter list used by the XPI call.
� Set up the input parameters.
� Make the call to the CICS function.

You can code all of these individually (see “An example showing how to build a
parameter list incrementally” on page 252), or include them in a single statement.

Some options are common to all uses of the XPI. They are included in all of the
syntax descriptions, but their explanation is given here. The options are CALL,
CLEAR, IN, FUNCTION, OUT, RESPONSE, and REASON.

CALL causes code generation that issues a call to the XPI function. If you
specify CALL, IN, FUNCTION, and OUT, then code is generated to
perform the whole operation of building the parameter list, invoking the
function, and receiving the result. You can omit the CALL, but specify
IN to build your parameter list incrementally; later you can use CALL

 Chapter 3. The user exit programming interface (XPI) 241

 form of an XPI call

with that list, coding CALL, IN, FUNCTION, OUT, and all required
options. You can then represent the values of the preset options by an
asterisk (*) to show that the value is already present in the list.

Warning: If you build your parameter list incrementally, do not specify
CLEAR when you finally issue the call, because the CLEAR option sets
the parameter list to zeros, which will cause you to lose the preset
values.

CLEAR sets the existence bits in the parameter list (both mandatory and
optional parameters) to binary zeros. Each macro has a COPY code,
which defines the parameter list by a DSECT consisting of a header
section, followed by a set of existence bits, and the parameters
themselves. For performance reasons, the header section and the
existence bits only are cleared. The rest of the parameter list is left
unchanged.

Warning: Failure to clear the parameter list can cause unpredictable
results, such as program checks or storage violations. If you are
building the parameter list incrementally, specify CLEAR before
specifying any parameters. If you are not building the parameter
incrementally, specify CLEAR when the CALL is issued.

IN tells CICS that any parameter following the IN option and preceding the
OUT option is an input value. It must be specified when CALL is
specified. If you use the function without CALL to build a parameter list,
you can specify IN and some parameter values to store values into your
list.

FUNCTION
specifies which function of the macro you require; for instance,
GETMAIN or FREEMAIN. It must be specified when CALL is specified,
and unlike other options, it must always be explicit—you cannot code
“FUNCTION(*)”.

mandin(value)
“mandin” represents an option that becomes mandatory if CALL is
specified. “value” may be represented by an asterisk (*) to show that a
previous use of the macro has already set the value in the parameter list
(see above under “CALL”). For further details about how to complete
“value”, refer to the specific function calls in “The XPI functions” on
page 253.

OUT tells CICS that any parameter following the OUT option is a receiver
field. It must be specified when CALL is specified.

Note: The use of the following output parameters with values other
than an asterisk (*) is invalid if CALL is not specified.

mandout(value)
“mandout” represents an option that becomes mandatory if CALL is
specified. The output is placed in the parameter list if an asterisk (*) is
coded, or in the location that you have specified in “value”. RESPONSE
is a special case of a mandout option (see below). For further details
about how to complete “value”, refer to the specific function calls (see
“The XPI functions” on page 253).

242 CICS Transaction Server for VSE/ESA Customization Guide

 form of an XPI call

optin1,2...; optout1,2....
represent items that are completely optional for all forms of the macro;
in particular, they do not have to be specified when CALL is specified.

RESPONSE
is a mandatory data area that you define to receive the response from
your XPI call. You can use an asterisk (*) to indicate to CICS that the
RESPONSE value is to be placed in the parameter list, or you can
specify the name of a field in which you want the RESPONSE value to
be placed. You need not code the RESPONSE option if you are using
the macro without CALL to build a parameter list.

The response from any XPI call is always one of ‘OK’, ‘EXCEPTION’,
‘DISASTER’, ‘INVALID’, ‘KERNERROR’, and ‘PURGED’. There are
standardized names (EQU symbols) for the response code values
provided by CICS:

xxyy_OK, xxyy_EXCEPTION, xxyy_DISASTER, xxyy_INVALID,

xxyy_KERNERROR, and xxyy_PURGED,

where “xxyy” is a prefix derived from the four letters of the relevant
macro-name following the string ‘DFH’. Thus for DFHSMMCX the prefix
is SMMC; for DFHLDLDX the prefix is LDLD. Equate values with these
names are generated when you include the copy book DFHxxyyY for
the macro DFHxxyyX. You cannot assume that the arithmetic values of
corresponding RESPONSE codes are the same for all macro calls. The
meanings of the RESPONSE codes are as follows:

OK
The XPI request was completed successfully.

EXCEPTION
The function was not completed successfully for a reason
which could be expected to happen, and which may be coded
for by a program (for example, TRANSACTION_DUMP,
EXCEPTION = SUPPRESSED_BY_DUMPTABLE). Any
REASON value may provide more information.

DISASTER
The request has failed completely. You cannot recover from
this failure within the user exit program. When this failure
occurs, CICS takes a system dump, issues an error message,
and sets a ‘DISASTER’ response. On receiving this, your user
exit program should exit without attempting any further
processing. The REASON value for this response, shown only
in the trace, may provide more information. There is no
REASON value returned to the calling program.

INVALID
You have omitted a mandatory value, or you have supplied an
invalid value for an option. You cannot recover from this failure
within the user exit program. When this failure occurs, CICS
takes a system dump, issues an error message, and sets an
‘INVALID’ response. On receiving this response, your user exit
program should return to the caller without attempting any
further processing. The REASON value for this response,
shown only in the trace, may provide more information. This

 Chapter 3. The user exit programming interface (XPI) 243

 form of an XPI call

may help you to correct any error in your exit program. There
is no REASON value returned to the calling program.

KERNERROR
The kernel has detected an error with the CICS function you
are trying to invoke. Either the function you have requested is
unavailable or not valid, or there is an error within CICS.

PURGED
The task has been purged, or an interval specified on your XPI
call has expired. Examine the REASON code.

Note that if an XPI call other than DFHDSSRX SUSPEND or
WAIT_EXTERNAL gets this RESPONSE, your exit program
should set the return code to ‘UERCPURG’ and return to the
caller.

If a DFHDSSRX SUSPEND or WAIT_EXTERNAL call specifies
an INTERVAL and gets this RESPONSE with a REASON of
‘TIMED_OUT’, it indicates that the INTERVAL you specified
has passed. It is up to you to decide what you do next.

If a DFHDSSRX SUSPEND or WAIT_EXTERNAL call specifies
an INTERVAL and gets this RESPONSE with a REASON of
‘TASK_CANCELLED’, this indicates that the INTERVAL you
specified has not passed but that the task has been purged by
an operator or an application. In this case, you must set a
return code of ‘UERCPURG’ and return.

If a DFHDSSRX SUSPEND or WAIT_EXTERNAL call does not
specify an INTERVAL, and gets this RESPONSE with a
REASON of ‘TASK_CANCELLED’ or ‘TIMED_OUT’, it indicates
that the task has been purged by an operator or an application,
or by the deadlock time-out facility. In this case, you must set
a return code of ‘UERCPURG’ and return.

You must not return the response code ‘UERCPURG’ to CICS
for any other reason. If you attempt to do so, your program will
have unpredictable results.

REASON This is a mandatory data area that you define in order to receive more
information about the RESPONSE value. You can use (*) to indicate to
CICS that the REASON value is to be placed in the parameter list. On
most XPI calls, standardized reason names (EQU symbols) are provided
only for RESPONSE values of ‘EXCEPTION’ and ‘PURGED’. The
REASON values that accompany responses vary from one XPI function
to another, so details are provided with the descriptions of the XPI calls.

REASON is not applicable where RESPONSE was ‘OK’. In these
circumstances, you should not test the REASON field.

Note: For examples of how to initialize the parameter list, set up parameters,
make the call, and receive output parameters, refer to “Global user exit XPI
examples, showing the use of storage” on page 246. That section includes both a
complete example, and also an example in which each step is executed separately.

244 CICS Transaction Server for VSE/ESA Customization Guide

 form of an XPI call

Setting up the XPI environment
The exit programming interface (XPI) does not require the usual CICS transaction
environment, but you do need to set up a special exit programming environment
before you can use any XPI calls. If you are going to use any of the XPI functions
in an exit program, you must include in your program, at a point before you issue
any XPI calls, the macro:

DFHUEXIT TYPE=XPIENV

The expansion of this macro provides the DSECTs that are used in all XPI calls. It
also provides a list of register equates (R0 EQU 0, R1 EQU 1, and so on), that you
can use in your exit program. The other fields generated by the macro are used by
CICS to perform the XPI call processing. You must not use any of these fields: if
you do so, your user exit program will have unpredictable results.

The user exit program should be in 31-bit addressing mode.

XPI register usage
Before you can issue an XPI call from a global user exit program, you must move
the contents of the parameter UEPSTACK (the kernel stack entry) of DFHUEPAR
to the exit program’s register 13.

The XPI function expansion uses registers 0, 1, 14, and 15, so the exit program
must save and restore them if necessary around an XPI call.

For an example of how to use EXEC CICS commands and XPI calls in the same
exit program, see Appendix E, “The example program for the XTSEREQ global
user exit, DFH$XTSE” on page 673.

The XPI copy books
There is a copy book for each XPI function, to provide the DSECTs associated with
that function. These DSECTs allow you to map the parameters and the response
and reason codes of an XPI call. You must include in your exit program a COPY
statement for each XPI function that you are going to use. The copy book name is
the same as the macro name, except that the final letter “X” becomes a letter “Y”.

For example, to include the copy book for the XPI function DFHSMMCX, you must
include the statement:

COPY DFHSMMCY

Trace entries for your XPI calls show these parameter lists if you have tracing on
for the function you are using.

Reentrancy considerations resulting from XPI calls
During an XPI call, CICS may give control to another task while processing the XPI
call. This second task could also cause the same exit program to be invoked and
the same XPI call to be made, but perhaps this time with different parameter
values. It is your responsibility to ensure that lockout situations do not
occur.

While processing an XPI call, CICS may encounter another user exit point that
uses the same user exit program. Therefore the XPI parameter lists must be built
in storage associated with a single invocation of the exit program.

 Chapter 3. The user exit programming interface (XPI) 245

 XPI examples

If your exit program is a global user exit, CICS provides it with 260 bytes of LIFO
storage, which is exclusive to a single invocation of your exit program. Your exit
program can access this storage using parameter UEPXSTOR of the DFHUEPAR
parameter list. Use this storage to base the DSECT provided by the DFHxxyyY
copy book when building the XPI parameter list. In this way, the parameters are
not corrupted if the exit program is reentered.

Parameter lists for the XPI services provided here do not exceed 256 bytes. The
remaining 4 bytes of the UEPXSTOR storage can be used to store the address of
some additional storage that relates to the invocation of the exit program. This
storage could be obtained by a DFHSMMCX FUNCTION (GETMAIN) macro.

A suggested standard would be to use the first 4 bytes to hold the address of the
additional storage, and to keep the following 256 bytes for XPI parameter lists.

Information to be kept across invocations of an exit program can be stored in the
global work area that you can define for an exit program (or group of exit
programs). The 260 bytes of LIFO storage cannot be used for this purpose
because it is dynamic.

Global user exit XPI examples, showing the use of storage
The example in Figure 11 on page 247 illustrates the use of the XPI and storage
in a global user exit program. It is not a complete program, but merely an example
of entry and exit code for any global user exit program, and the use of the XPI
function.

The options of the DFHSMMCX macro used in the example are described in
“Storage control functions” on page 310.

The example uses the technique of obtaining some storage for this invocation of
the program using the XPI GETMAIN call, and then saving the address of this
storage in the first 4 bytes of the LIFO storage addressed by UEPXSTOR. In this
example, the initialization of the parameter list (using the CLEAR option), the
building of the parameter list, and the GETMAIN call occur in a single macro. For
details of how to build the parameter list incrementally, and how to separate the
CLEAR and the GETMAIN call, refer to “An example showing how to build a
parameter list incrementally” on page 252.

246 CICS Transaction Server for VSE/ESA Customization Guide

 XPI examples

TITLE 'GUEXPI - GLOBAL USER EXIT PROGRAM WITH XPI'

\\\

\ The first three instructions set up the global user exit \

\ environment, identify the user exit point, prepare for the use of \

\ the exit programming interface, and copy in the definitions that \

\ are to be used by the XPI function. \

\\\

\

DFHUEXIT TYPE=EP,ID=XFCREQ PROVIDE DFHUEPAR PARAMETER

\ LIST FOR XFCREQ IN THE FILE

\ CONTROL PROGRAM AND LIST

\ OF EXITID EQUATES

\

DFHUEXIT TYPE=XPIENV SET UP ENVIRONMENT FOR

\ EXIT PROGRAMMING INTERFACE --

\ MUST BE ISSUED BEFORE ANY

\ XPI MACROS ARE ISSUED

\

COPY DFHSMMCY DEFINE PARAMETER LIST FOR

\ USE BY DFHSMMCX MACRO

\

\\\

\ The following DSECT maps a storage area you can use to make the \

\ exit program reentrant by storing the address of the storage you \

\ acquire in the first four bytes of the 26ð-byte area provided by \

\ the user exit handler (DFHUEH) and addressed by UEPXSTOR. \

\\\

\

TRANSTOR DSECT DSECT FOR STORAGE OBTAINED BY

\ GETMAIN
...

storage declarations
...

\

Figure 11 (Part 1 of 6). Global user exit program with XPI

 Chapter 3. The user exit programming interface (XPI) 247

 XPI examples

\\\

\ The next seven instructions form the normal start of a global user \

\ exit program, setting the program addressing mode to 31-bit, saving \

\ the calling program's registers, establishing base addressing, and \

\ establishing the addressing of the user exit parameter list. \

\\\

\

GXPI CSECT

GXPI AMODE 31 SET TO 31-BIT ADDRESSING

\

SAVE (14,12) SAVE CALLING PROGRAM'S REGISTERS

\

LR R11,R15 SET UP USER EXIT PROGRAM'S

 USING GXPI,R11 BASE REGISTER

\

LR R2,R1 SET UP ADDRESSING FOR USER

USING DFHUEPAR,R2 EXIT PARAMETER LIST -- USE

\ REGISTER 2 AS XPI CALLS USE

\ REGISTER 1

\

\

\\\

\ Before issuing an XPI function call, set up addressing to XPI \

\ parameter list. \

\\\

\

L R5,UEPXSTOR SET UP ADDRESSING FOR XPI

\ PARAMETER LIST

\

USING DFHSMMC_ARG,R5 MAP PARAMETER LIST

\

\\\

\ Before issuing an XPI function call, you must ensure that register \

\ 13 addresses the kernel stack. \

\\\

\

L R13,UEPSTACK ADDRESS KERNEL STACK

\

Figure 11 (Part 2 of 6). Global user exit program with XPI

248 CICS Transaction Server for VSE/ESA Customization Guide

 XPI examples

\\\

\ Issue the DFHSMMCX macro call, specifying: \

\ \

\ CALL -- the macro is to be called immediately \

\ \

\ CLEAR -- initialize the parameter list before inserting values. \

\ \

\ IN -- input values follow. \

\ \

\ FUNCTION(GETMAIN) -- acquire storage \

\ GET_LENGTH(12ð) -- 12ð bytes of it \

\ SUSPEND(NO) -- don't suspend if storage not available \

\ INITIAL_IMAGE(X'ðð') -- clear acquired storage \

\ to hex zero throughout. \

\ STORAGE_CLASS(USER) -- class of storage to be \

\ acquired is user storage \

\ above the 16MB line. \

\ \

\ OUT -- output values follow \

\ \

\ ADDRESS((R6)) -- put address of acquired storage in \

\ register 6. \

\ RESPONSE(\) -- put response at SMMC_RESPONSE in \

\ macro parameter list. \

\ REASON(\) -- put reason at SMMC_REASON in macro \

\ parameter list. \

\ \

\\\

\

 DFHSMMCX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(GETMAIN), \

 GET_LENGTH(12ð), \

 SUSPEND(NO), \

 INITIAL_IMAGE(X'ðð'), \

 STORAGE_CLASS(USER), \

 OUT, \

 ADDRESS((R6)), \

 RESPONSE(\), \

 REASON(\)

\ \

Figure 11 (Part 3 of 6). Global user exit program with XPI

 Chapter 3. The user exit programming interface (XPI) 249

 XPI examples

\\\

\ Test SMMC_RESPONSE -- if OK, then branch round error handling. \

\\\

\ \

CLI SMMC_RESPONSE,SMMC_OK CHECK RESPONSE AND...

BE STOK ...IF OK, BYPASS ERROR ROUTINES

\ \

...

 error-handling routines

...

\

\\\

\ The next section maps TRANSTOR on the acquired storage. \

\\\

\

STOK DS ðH

USING TRANSTOR,R6 MAP ACQUIRED STORAGE

ST R6,ð(R5) SAVE STORAGE ADDRESS IN FIRST

\ 4 BYTES OF STORAGE ADDRESSED

\ BY UEPXSTOR

\

LA R5,4(R5) ADDRESS 4-BYTE OFFSET

DROP R5 REUSE REGISTER 5 TO BASE ALL

USING DFHxxyy_ARG,R5 FOLLOWING XPI PARAMETER LISTS

\ AT 4-BYTE OFFSET INTO STORAGE

\ ADDRESSED BY UEPXSTOR
...

rest of user exit program
...

\

\\\

\ When the rest of the exit program is completed, free the storage

\ and return.

\\\

\

DROP R5 REUSE REGISTER 5 TO MAP DFHSMMC

USING DFHSMMC_ARG,R5 XPI PARAMETER LIST

\

L R13,UEPSTACK ADDRESS KERNEL STACK

\

Figure 11 (Part 4 of 6). Global user exit program with XPI

250 CICS Transaction Server for VSE/ESA Customization Guide

 XPI examples

\\\

\ Issue the DFHSMMCX macro call, specifying: \

\ \

\ CALL -- the macro is to be called immediately. \

\ \

\ CLEAR -- initialize the parameter list before inserting values. \

\ \

\ IN -- input values follow. \

\ \

\ FUNCTION(FREEMAIN) -- release storage \

\ ADDRESS((R6)) -- address of storage is in register 6. \

\ STORAGE_CLASS(USER) -- class of acquired storage was \

\ 31-bit user storage. \

\ \

\ OUT -- output values follow \

\ \

\ RESPONSE(\) -- put response at SMMC_RESPONSE in \

\ macro parameter list. \

\ REASON(\) -- put reason at SMMC_REASON in macro \

\ parameter list. \

\ \

\\\

\

 DFHSMMCX CALL, +

 CLEAR, +

 IN, +

 FUNCTION(FREEMAIN), +

 ADDRESS((R6)), +

 STORAGE_CLASS(USER), +

 OUT, +

 RESPONSE(\), +

 REASON(\)

\ \

Figure 11 (Part 5 of 6). Global user exit program with XPI

 Chapter 3. The user exit programming interface (XPI) 251

 XPI examples

\\\

\ Test SMMC_RESPONSE -- if OK, then branch round error handling. \

\\\

\ \

CLI SMMC_RESPONSE,SMMC_OK CHECK RESPONSE AND...

BE STEND ...IF OK, BYPASS ERROR ROUTINES

\ \

...

 error-handling routines

...

\

\\\

\ Restore registers, set return code, and return to user exit handler \

\\\

\ \

STEND DS ðH

 L R13,UEPEPSA

 RETURN (14,12),RC=UERCNORM

 LTORG

 END GXPI

Figure 11 (Part 6 of 6). Global user exit program with XPI

An example showing how to build a parameter list incrementally
In the following example, the parameter list is built incrementally. The initialization
of the parameter list (using the CLEAR option), the building of the parameter list,
and the GETMAIN call are separated into discrete steps.

 DFHSMMCX CLEAR
...

 DFHSMMCX GET_LENGTH(1ðð)
...

 DFHSMMCX CALL, \

 IN, \

 FUNCTION(GETMAIN), \

 GET_LENGTH(\), \

 SUSPEND(NO), \

 INITIAL_IMAGE(X'ðð'), \

 STORAGE_CLASS(USER), \

 OUT, \

 ADDRESS((R6)), \

 RESPONSE(\), \

 REASON(\)

 Important

You must set your parameters using only the XPI functions.

252 CICS Transaction Server for VSE/ESA Customization Guide

 the XPI functions

The XPI functions
The following sections of the chapter provide details of the individual XPI function
calls. The description of each function defines only the options that are specific to
that call. Options that are applicable to all function calls are described in “General
form of an XPI call” on page 240. The following argument types are used:

name1, name2,....
Each of these refers to the name of a field of the given size in bytes.
“name1” means that the name you specify should be that of a 1-byte
field.

literalconst
A number in the form of a literal, for example B'00000000', X'FF',
X'FCF4', '0', or an equate symbol with a similar value.

expression
A valid assembler-language expression: a decimal integer, or any
arithmetic expression (including symbolic values) valid in assembler
language; for example:

2ð; L'AREA; L'AREA+1ð; L'AREA+X'22'; SYMB/3+2ð .

(Rn)
A register reference. The parentheses shown here are required in
addition to those that surround the argument. For example:
OPTION((R5)).

block-descriptor
Represents a source of both the data address and the data length fields.
A block-descriptor can be either a single value or a double value. The
following is the single-value form:

OPTION(blkdname)

blkdname The name of a block-descriptor. A pair of contiguous
fullwords, in which the first word contains the address of the
data, and the second word contains the length in bytes of the
data, as a fullword binary value. Register notation is not
accepted for this single-value form.

The following is the double-value form:

OPTION(addr,len)

addr The data address as {namea | (Ra) | aliteral}:
namea The name of a location containing the data

address.
(Ra) A register containing the data address.
aliteral An address constant literal; for example: A(data).

 Chapter 3. The user exit programming interface (XPI) 253

 the XPI functions

len The data length as {namel | (Rn) | expression}:
namel The name of a location containing a binary

fullword giving the data length in bytes.
(Rn) A register, the contents of which specify in

fullword binary the number of bytes of data.
expression A decimal integer, or any arithmetic expression,

including symbolic values, valid in assembler
language; for example:

L'AREA ; L'AREA+1ð ; L'AREA+X'22' ; SYMB/3+2ð .

buffer-descriptor
Represents a source of both the data address and the maximum data
length fields. Parts of the buffer-descriptor are also reserved to act as
receiving fields for output information. A buffer-descriptor can be either
a single value or a multiple value. The following is the single-value
form:

OPTION(bufdname)

bufdname The name of a buffer-descriptor. A group of four contiguous
fullwords, in which:

� The first word contains the address of the data (input).

� The second word is reserved to receive the current
length in bytes of the data, as a fullword binary value
(output).

� The third word contains the maximum length in bytes of
the data, as a fullword binary value (input).

� The fourth word is reserved for use by the XPI.

Register notation is not accepted for this single-value form.

The following is the multiple-value form:

OPTION(addr,maxlen,\)

addr The data address as {namea | (Ra) | aliteral}:
namea The name of a location containing the data

address.
(Ra) A register containing the data address.
aliteral An address constant literal, for example, A(data).

maxlen The maximum data length as {namel | (Rn) | expression}:
namel The name of a location containing a binary

fullword giving the maximum data length in bytes.
(Rn) A register, the contents of which specify in

fullword binary the maximum number of bytes of
data.

254 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

expression A decimal integer, or any arithmetic expression,
including symbolic values, valid in assembler
language; for example:

L'AREA ; L'AREA+1ð ; L'AREA+X'22' ; SYMB/3+2ð .

* A required parameter to indicate that the parameter list is to
be used for the reserved fields.

 Dispatcher functions
There are six XPI dispatcher functions. These are the DFHDSSRX calls
ADD_SUSPEND, SUSPEND, RESUME, DELETE_SUSPEND, and
WAIT_EXTERNAL, and the DFHDSATX call CHANGE_PRIORITY.

Usage of these dispatcher calls is very limited. Check the details supplied for each
exit in Chapter 1, “Global user exit programs” on page 3 before using any
functions.

Notes:

1. You must issue an ADD_SUSPEND call to create a suspend token before you
issue a SUSPEND or RESUME call.

2. If a suspended task is canceled, the SUSPEND fails with a RESPONSE value
of ‘PURGED’ and a REASON value of ‘TASK_CANCELLED’. A corresponding
RESUME call returns with a RESPONSE value of ‘EXCEPTION’ and a
REASON value of ‘TASK_CANCELLED’.

3. If a suspended task is timed out, the SUSPEND fails with a RESPONSE value
of ‘PURGED’ and a REASON value of ‘TIMED_OUT’. A corresponding
RESUME call returns with a RESPONSE value of ‘EXCEPTION’ and a
REASON value of ‘TIMED_OUT’.

4. Dispatcher protocols require that you issue a RESUME even if the SUSPEND
was purged (due to task cancel or time-out). You must issue one and only one
RESUME for each SUSPEND call.

Synchronization protocols for SUSPEND and RESUME processing
This section describes the protocols that must be observed by users of XPI
SUSPEND and RESUME processing, so that task purging can be handled
effectively.

The normal synchronization protocol
In the normal case, synchronization involves two tasks and three operations. In the
following sample operations, the tasks are A (the task that requests a service) and
B (the task that processes a request from task A).

1. Task A starts the request by:

� Setting the parameters to be used by task B
� Resuming task B
� Issuing the SUSPEND call

 Chapter 3. The user exit programming interface (XPI) 255

 dispatcher functions

2. Task B performs the action by:

� Getting the parameters
� Performing the action
� Setting the results
� Terminating (or waiting for new work)

3. Task A ends the interaction by:

� Getting the results left by task B

This sequence looks like:

Task A: Set parameters Resume task B Suspend Get results

Task B: Get parameters Process request Set results Resume Detach
task A

Ignoring the Resume and Suspend, the execution amounts to:

Set parameters; Get parameters; Process request; Set results; Get results

where these actions are always sequential .

The synchronization protocol and task purge
If one of the tasks is to be purged, it is task A, because task A is the one
suspended. In this case, execution of task A after the failed SUSPEND would be in
parallel with task B; the proper serialization would be lost. If the program were left
unchanged, Process request and Set results would be taking place at the same
time as Get results, with unpredictable results.

One way of preventing this problem is to ensure that task A, if it is to be purged,
does not do anything that could interfere with task B . (This may well mean
that A must not detach, if doing so releases storage that B needs to access.)
Because the only task that is now involved is task B, B is left with the responsibility
of cleaning up for both tasks.

The sequence is:

Task A: Set parameters; Resume task B; Suspend-fail

Task B: Get parameters; Process request; Resume-fail; Clean up both

Because task-purging is effective only if performed between SUSPEND and
RESUME, Suspend-fail precedes Resume-fail. This means that, with the same
constraints on serialization as in the normal synchronization protocol, the
task-purge protocol can be logically reduced to:

Set parameters; Get parameters; Process request; Clean up

The difference is that Set results and Get results are replaced by Clean up. It is
vital that only these two sequences can happen; this means that both programs

256 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

must be coded correctly. CICS ensures that both tasks are told either that
SUSPEND and RESUME processing worked, or that it failed.

The following shows the programming steps that conform to these rules:

Program for Task A Program for Task B
SET PARAMETERS;

GET PARAMETERS;
RESUME B; PROCESS REQUEST;
SUSPEND A; RESUME A;
if if
RESPONSE = OK RESPONSE ¬= OK

then then
GET RESULTS; CLEAN UP

endif endif

If both the SUSPEND and RESUME return ‘OK’, the example follows the rules for
the normal synchronization; processing finishes at Get results. If neither SUSPEND
nor RESUME returns ‘OK’, the example follows the rules for the task-purge
protocol, and processing finishes at Clean up.

For further information about SUSPEND and RESUME processing, see the CICS
Problem Determination Guide.

Alternative approach to task purge

The sequence described above is one method for dealing with the problem of
task purge. Using this method, task B does not know, when it is processing the
request, whether or not task A has been purged; this means that B must take
great care in its use of resources owned by A (in case A has been purged). In
some situations, this restriction may cause difficulties.

A different approach is as follows; if task A is to be purged:

1. A communicates to B that it is no longer available, thus informing B not to
use any resources owned by A.

2. A performs its own clean-up processing (including issuing the RESUME call
for the purged SUSPEND, as required by the dispatcher protocols), and
abends.

3. B performs its own clean-up processing.

The ADD_SUSPEND call
ADD_SUSPEND acquires a suspend token that can later be used to identify a
SUSPEND/RESUME pair.

 Chapter 3. The user exit programming interface (XPI) 257

 dispatcher functions

 ADD_SUSPEND

DFHDSSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(ADD_SUSPEND),

[RESOURCE_NAME(name8 | string | 'string'),]

[RESOURCE_TYPE(name8 | string | 'string'),]]

 [OUT,

SUSPEND_TOKEN(name4 | (Rn)),

RESPONSE(name1 | \),

REASON(name1 | \)]

RESOURCE_NAME(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

name8 The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it is extended with blanks or truncated as required.
'string ' A string of characters enclosed in quotation marks. Blanks are

permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Note: RESOURCE_NAME on ADD_SUSPEND supplies a default value which
is used if RESOURCE_NAME is not specified on a SUSPEND call.

RESOURCE_TYPE(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

name8 The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it is extended with blanks or truncated as required.
'string ' A string of characters enclosed in quotation marks. Blanks are

permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Note: RESOURCE_TYPE on ADD_SUSPEND supplies a default value which
is used if RESOURCE_TYPE is not specified on a SUSPEND call.

SUSPEND_TOKEN(name4 | (Rn))
returns a token assigned by the system to identify the SUSPEND/RESUME pair
of operations used on the task.

name4 The name of a 4-byte field where the token is stored.
(Rn) A register into which the token value is loaded.

RESPONSE and REASON values for ADD_SUSPEND:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None

258 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The SUSPEND call
SUSPEND suspends execution of a running task. The task can be resumed in one
of two ways. You can issue the XPI RESUME call, or the task is resumed
automatically if the INTERVAL value that you specify on the DFHDSSRX macro
expires. Suspended tasks can also be purged by the operator, or by an
application, or by the deadlock time-out facility.

 SUSPEND

DFHDSSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SUSPEND),

 PURGEABLE(YES|NO),

SUSPEND_TOKEN(name4 | (Rn)),

[DELAY(name4 | (Rn)),]

[INTERVAL(name4 | (Rn)),]

[RESOURCE_NAME(name8 | string | 'string'),]

[RESOURCE_TYPE(name8 | string | 'string'),]

 [RETRY(YES|NO),]
 [TIME_UNIT(SECOND|MILLI_SECOND),]
 [WLM_WAIT_TYPE,]]

 [OUT,

[COMPLETION_CODE(name1 | (Rn)),]

RESPONSE(name1 | \),

REASON(name1 | \)]

COMPLETION_CODE(name1 | (Rn))
returns a user-defined “reason for action” code during suspend and resume
processing.

name1 The name of a 1-byte area that contains the code.
(Rn) A register, in which the low-order byte contains the completion

code and the other bytes are zero.

DELAY(name4 | (Rn))
Ensures that the issuing task is not dispatched more often than the specified
delay interval. DELAY postpones the addition of a task that has been posted
(or resumed) to the dispatchable queue, and adds it instead to the
delay_queue, where it remains until the delay interval is complete. The delay
interval, which starts from the time the SUSPEND request is issued, is specified
in seconds or milliseconds, depending on the setting of the TIME_UNIT option.

name4 The name of a 4-byte area, which is interpreted as a binary
fullword.

(Rn) A register containing the interval value, a binary fullword.

 Chapter 3. The user exit programming interface (XPI) 259

 dispatcher functions

INTERVAL(name4 | (Rn))
specifies in seconds or milliseconds the time after which the task is
automatically resumed and given a RESPONSE value of ‘PURGED’ and a
REASON value of ‘TIMED_OUT’. The time unit used on the INTERVAL option
depends on the setting of the TIME_UNIT option. The INTERVAL value
overrides any time-out (DTIMOUT) value specified for the transaction.

name4 The name of a 4-byte area, which is interpreted as a binary
fullword.

(Rn) A register containing the interval value, a binary fullword.

PURGEABLE(YES|NO)
specifies whether your code can cope with the request being abnormally
terminated as a result of a purge. There are four types of purge, as shown in
Table 102. Specifying PURGEABLE(NO) tells the dispatcher:

� To reject any attempt to PURGE the task.
� To suppress the deadlock time-out (DTIMOUT) facility (if applicable to this

task) for the duration of this request.

Note: A FORCEPURGE always assumes that the user wants the task to be
purged, and so overrides the PURGEABLE(NO) option. If the user has set an
INTERVAL, then this, too, overrides the PURGEABLE(NO) option.

RESOURCE_NAME(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

name8 The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it is extended with blanks or truncated as required.
'string ' A string of characters enclosed in quotation marks. Blanks are

permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Notes:

1. CICS does not use the RESOURCE_NAME information but includes it in
trace entries, and displays it on appropriate CEMT screens to help you to
see what your task is doing. CICS internal requests specify values, and
you should use different values to avoid ambiguity. CICS internal request
values are documented in the CICS Problem Determination Guide.

2. If RESOURCE_NAME is not specified, the default value, if any, from
ADD_SUSPEND is used.

Table 102. SUSPEND call – RESPONSE(PURGED)

REASON TASK_CANCELLED TIMED_OUT

CONDITION PURGE FORCEPURGE DTIMOUT INTERVAL

PURGEABLE
(NO)

Canceled Proceeds
normally

Canceled Proceeds
normally

PURGEABLE
(YES)

Proceeds
normally

Proceeds
normally

Proceeds
normally

Proceeds
normally

260 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

RESOURCE_TYPE(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

name8 The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it is extended with blanks or truncated as required.
'string ' A string of characters enclosed in quotation marks. Blanks are

permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Notes:

1. CICS does not use the RESOURCE_TYPE information but includes it in
trace entries, and displays it on appropriate CEMT screens to help you to
see what your task is doing. CICS internal requests specify values, and
you should use different values to avoid ambiguity. CICS internal request
values are documented in the CICS Problem Determination Guide.

2. If RESOURCE_TYPE is not specified, the default value, if any, from
ADD_SUSPEND is used.

RETRY(YES | NO)
Specifying RETRY(YES) continues the DTIMOUT interval started on the last
SUSPEND or WAIT that did not specify RETRY(YES). This allows DTIMOUT to
work even if a legitimate loop keeps resuming and then resuspending the task.

SUSPEND_TOKEN(name4 | (Rn))
specifies a token previously assigned by the system to identify the
SUSPEND/RESUME pair of operations used on the task.

name4 The name of a location where you have a 4-byte token
previously obtained as output from an ADD_SUSPEND call.

(Rn) A register containing the token value.

TIME_UNIT(SECOND | MILLI_SECOND)
specifies the time unit used on the INTERVAL option.

SECOND The INTERVAL option specifies the number of seconds before
timeout.

MILLI_SECOND The INTERVAL option specifies the number of milliseconds
before timeout.

WLM_WAIT_TYPE
This parameter is retained for compatibility with CICS for MVS/ESA 4.1.

RESPONSE and REASON values for SUSPEND:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID None
KERNERROR None
PURGED TASK_CANCELLED
 TIMED_OUT

 Chapter 3. The user exit programming interface (XPI) 261

 dispatcher functions

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. After a ‘PURGED’ response, the suspend token must not be reused in another
SUSPEND until it has been reset by a RESUME corresponding to the purged
SUSPEND.

3. ‘TASK_CANCELLED’ means that the task has been canceled by operator
action or by an application command.

4. ‘TIMED_OUT’ means that the task has been automatically resumed because
the specified INTERVAL (or the time-out value specified at task attach) has
expired. The token, however, remains suspended and must be the object of a
RESUME before it can be the object of a DELETE_SUSPEND.

The RESUME call
RESUME restarts execution of a task that is suspended or timed out. There must
be only one RESUME request for each SUSPEND. However, because this is an
asynchronous interface, a SUSPEND can be received either before or after its
corresponding RESUME. You must ensure that you keep account of the
SUSPEND and RESUME requests issued from your exit program.

 RESUME

DFHDSSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(RESUME),

SUSPEND_TOKEN(name4 | (Rn)),

[COMPLETION_CODE(name1 | (Rn)),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

COMPLETION_CODE (name1 | (Rn))
specifies a user-defined “reason for RESUME” code.

name1 The name of a 1-byte area that contains the code. The value in
this field is user-defined, and is ignored by CICS.

(Rn) A register in which the low-order byte contains the completion
code and the other bytes are zero.

SUSPEND_TOKEN(name4 | (Rn))
specifies a token previously assigned by the system to identify the
SUSPEND/RESUME pair of operations used on the task.

name4 The name of a location where you have a 4-byte token
previously obtained as output from an ADD_SUSPEND call.

(Rn) A register containing the token value.

262 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

RESPONSE and REASON values for RESUME:

RESPONSE REASON

OK None
EXCEPTION TASK_CANCELLED
 TIMED_OUT
DISASTER None
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘TASK_CANCELLED’ means that the task was canceled by operator action
while it was suspended, and that the suspend token is available for use.

The DELETE_SUSPEND call
DELETE_SUSPEND releases a suspend token associated with this task.

 DELETE_SUSPEND

DFHDSSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(DELETE_SUSPEND),

SUSPEND_TOKEN(name4 | (Rn)),]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

SUSPEND_TOKEN(name4 | (Rn))
specifies a token previously assigned by the system to identify the
SUSPEND/RESUME pair of operations used on the task.

name4 The name of a 4-byte field, where the token obtained by an
ADD_SUSPEND call has been stored.

(Rn) A register containing the token value previously obtained.

RESPONSE and REASON values for DELETE_SUSPEND:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

 Chapter 3. The user exit programming interface (XPI) 263

 dispatcher functions

The WAIT_EXTERNAL call
WAIT_EXTERNAL requests a wait on a VSE/ESA event control block (ECB) or on
a list of VSE/ESA ECBs. For example, you could issue the WAIT_EXTERNAL to
wait for completion of a VSE/ESA task for which you have issued ATTACH and
provided a task-completion ECB.

The dispatcher does not clear the ECBs when a WAIT_EXTERNAL request is
received. If any ECB is already posted, control is returned immediately to the exit
program with a response of ‘OK’.

A WAIT_EXTERNAL ECB can be posted using either a VSE POST macro or
“hand-posting”.

 WAIT_EXTERNAL

DFHDSSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(WAIT_EXTERNAL),

{ECB_ADDRESS(name4 | (Ra)) | ECB_LIST_ADDRESS(name4 | (Ra)),}

 PURGEABLE(YES|NO),

[DELAY(name4 | (Rn)),]

[INTERVAL(name4 | (Rn)),]

[RESOURCE_NAME(name8 | string | 'string'),]

[RESOURCE_TYPE(name8 | string | 'string'),]]

 [RETRY(YES|NO),]
 [TIME_UNIT(SECOND|MILLI_SECOND),]
 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

DELAY(name4 | (Rn))
Ensures that the issuing task is not dispatched more often than the specified
delay interval. DELAY postpones the addition of a task that has been posted
(or resumed) to the dispatchable queue, and adds it instead to the
delay_queue, where it remains until the delay interval is complete. The delay
interval, which starts from the time the SUSPEND request is issued, is specified
in seconds or milliseconds, depending on the setting of the TIME_UNIT option.

name4 The name of a 4-byte area, which is interpreted as a binary
fullword.

(Rn) A register containing the interval value, a binary fullword.

ECB_ADDRESS(name4 | (Ra))
specifies the address of the ECB to be waited on.

name4 The name of a location that contains an ECB address.
(Ra) A register that contains the address of an ECB.

ECB_LIST_ADDRESS(name4 | (Ra))
specifies the address of a list of ECB addresses to be waited on.

name4 The name of a location that contains an ECB address, possibly
followed by more ECB addresses. The last address word in the
list has the high-order bit set to 1.

(Ra) A register pointing to an address list as described above.

264 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

INTERVAL(name4 | (Rn))
specifies in seconds or milliseconds the time after which the task is
automatically resumed and given a RESPONSE value of ‘PURGED’ and a
REASON value of ‘TIMED_OUT’. The time unit used on the INTERVAL option
depends on the setting of the TIME_UNIT option.

The INTERVAL value overrides any time-out (DTIMOUT) value specified for the
transaction.

name4 The name of a 4-byte area, which is interpreted as a binary
fullword

(Rn) A register containing the interval value, a binary fullword.

PURGEABLE(YES|NO)
specifies whether your code can cope with the request being abnormally
terminated as a result of a purge. There are four types of purge, as shown in
Table 103. Specifying PURGEABLE(NO) tells the dispatcher:

� To reject any attempt to PURGE the task
� To suppress the deadlock time-out (DTIMOUT) facility (if applicable to this

task) for the duration of this request

Note: A FORCEPURGE always assumes that the user wants the task to be
purged, and so overrides the PURGEABLE(NO) option. If the user has set an
INTERVAL, then this, too, overrides the PURGEABLE(NO) option.

RESOURCE_NAME(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

name8 The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it is extended with blanks or truncated as required.
'string ' A string of characters enclosed in quotation marks. Blanks are

permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Note: CICS does not use the RESOURCE_NAME information but includes it
in trace entries, and displays it on appropriate CEMT screens to help you to
see what your task is doing. CICS internal requests specify values, and you
should use different values to avoid ambiguity. CICS internal request values
are documented in the CICS Problem Determination Guide.

RESOURCE_TYPE(name8 | string | 'string ')
specifies an 8-character string that can be used to document and trace the
resource involved in suspend and resume processing. You cannot use register
notation to specify the address of the string.

Table 103. WAIT_EXTERNAL call – RESPONSE(PURGED)

REASON TASK_CANCELLED TIMED_OUT

CONDITION PURGE FORCEPURGE DTIMOUT INTERVAL

PURGEABLE
(NO)

Canceled Proceeds
normally

Canceled Proceeds
normally

PURGEABLE
(YES)

Proceeds
normally

Proceeds
normally

Proceeds
normally

Proceeds
normally

 Chapter 3. The user exit programming interface (XPI) 265

 dispatcher functions

name The name of the location where an 8-byte value is stored.
string A string of characters without intervening blanks; if it is not 8

bytes long, it will be extended with blanks or truncated as
required.

'string ' A string of characters enclosed in quotation marks. Blanks are
permitted in the enclosed string. If you want to document a
name (label) in your program, use this form.

Note: CICS does not use the RESOURCE_TYPE information but includes it in
trace entries, and displays it on appropriate CEMT screens to help you to see
what your task is doing. CICS internal requests specify values, and you should
use different values to avoid ambiguity. CICS internal request values are
documented in the CICS Problem Determination Guide.

RETRY(YES | NO)
Specifying RETRY(YES) continues the DTIMOUT interval started on the last
SUSPEND or WAIT that did not specify RETRY(YES). This allows DTIMOUT to
work even if a legitimate loop keeps resuming and then resuspending the task.

TIME_UNIT(SECOND | MILLI_SECOND)
specifies the time unit used on the INTERVAL option.

SECOND The INTERVAL option specifies the number of seconds before
timeout.

MILLI_SECOND The INTERVAL option specifies the number of milliseconds
before timeout.

RESPONSE and REASON values for WAIT_EXTERNAL:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID None
KERNERROR None
PURGED TASK_CANCELLED
 TIMED_OUT

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘TIMED_OUT’ is returned if the INTERVAL expires, or if a deadlock time-out
interval expires.

3. ‘TASK_CANCELLED’ means that the task has been canceled by operator
action or by an application command.

266 CICS Transaction Server for VSE/ESA Customization Guide

 dispatcher functions

The CHANGE_PRIORITY call
CHANGE_PRIORITY allows the issuing task to change its own priority. It cannot
be used to change the priority of another task. This command causes the issuing
task to release control, and so provide other tasks with the opportunity to run.

 CHANGE_PRIORITY

DFHDSATX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(CHANGE_PRIORITY),

PRIORITY(name1 | (Rn) | decimalint | literalconst),]

 [OUT,

[OLD_PRIORITY(name1 | (Rn)),]

RESPONSE(name1 | \),

REASON(name1 | \)]

OLD_PRIORITY(name1 | (Rn))
returns the previous priority of the issuing task.

name1 The name of a 1-byte field where the task’s previous priority is
stored.

(Rn) A register in which the low-order byte receives the previous
priority value and the other bytes are set to zero.

PRIORITY(name1 | (Rn) | decimalint | literalconst)
specifies the new priority to be assigned to the issuing task.

name1 The name of a 1-byte field, with a value in the range 0 through
255.

(Rn) A register with the low-order byte containing the new priority
value.

decimalint A decimal integer not exceeding 255 in value. Neither an
expression nor hexadecimal notation is allowed.

literalconst A number in the form of a literal, for example B'00000000',
X'FF', X'FCF4', '0' or an equate symbol with a similar value.

RESPONSE and REASON values for CHANGE_PRIORITY:

RESPONSE REASON

OK None
DISASTER None
INVALID None
KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

 Chapter 3. The user exit programming interface (XPI) 267

 dump control functions

Dump control functions
There are two XPI dump control functions. These are the DFHDUDUX macro calls
SYSTEM_DUMP and TRANSACTION_DUMP.

DFHDUDUX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Statistics domain
 � Monitor domain
 � Dump domain
 � Dispatcher domain
� Journal control program
� Transient data program

The SYSTEM_DUMP call
SYSTEM_DUMP causes a system dump to be taken. If the system dump code
that you supply on input is in the system dump code table, the dump may be
suppressed. For information about the dump table and how it works, refer to the
CICS Problem Determination Guide and the CICS System Programming Reference
manual.

 SYSTEM_DUMP

DFHDUDUX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SYSTEM_DUMP),

SYSTEM_DUMPCODE(name8 | string | 'string'),

 [CALLER(block-descriptor),]

 [TITLE(block-descriptor),]]

 [OUT,

DUMPID(name9 | \),

RESPONSE(name1 | \),

REASON(name1 | \)]

CALLER(block-descriptor)
specifies the source of a system dump request. The information that you
supply here appears in the dump header, so you could use it to identify the exit
program that initiated the system dump request. For a description of valid
block-descriptors, see page 253.

DUMPID(name9 | *)
returns the dump identifier.

name9 The name of a 9-byte field to receive the assigned ID.

SYSTEM_DUMPCODE(name8 | string | 'string ')
specifies the code corresponding to the error that caused this system dump
call. System dump codes are held in the dump table; for information about the
dump table and how it works, refer to the CICS Problem Determination Guide
and the CICS System Programming Reference manual.

name8 The name of a location containing an 8-byte string.

268 CICS Transaction Server for VSE/ESA Customization Guide

 dump control functions

string A string of characters without intervening blanks. The macro
generates, from the string, a literal constant of length 8 bytes,
extending with blanks or truncating as required.

'string ' A string, enclosed in quotation marks and possibly containing
blanks. This value is processed in the same way as the “string”
above.

TITLE(block-descriptor)
specifies an area containing the text you want to appear in the dump header
when the system dump is printed.

RESPONSE and REASON values for SYSTEM_DUMP:

RESPONSE REASON

OK None
EXCEPTION FESTAE_FAILED
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 NO_DATASET
 PARTIAL_SYSTEM_DUMP
 SDUMP_FAILED
 SDUMP_LIBRARY_FULL
 SDUMP_NOT_AUTHORIZED
 SUPPRESSED_BY_DUMPOPTION
 SUPPRESSED_BY_DUMPTABLE
 SUPPRESSED_BY_USEREXIT
DISASTER None
INVALID INVALID_SVC_CALL
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The TRANSACTION_DUMP call
TRANSACTION_DUMP causes a transaction dump to be taken. If the transaction
dump code that you supply on input is in the transaction dump code table, the
dump may be suppressed and, optionally, a system dump may be taken. For
information about the dump table and how it works, refer to the CICS Problem
Determination Guide and the CICS System Programming Reference manual.

 Important

There is a restriction in using the XPI early during initialization. Do not start exit
programs that use the XPI functions TRANSACTION_DUMP,
WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA until
the second phase of the PLTPI. For further information about the PLTPI, refer
to Chapter 4, “Writing initialization and shutdown programs” on page 339.

 Chapter 3. The user exit programming interface (XPI) 269

 dump control functions

 TRANSACTION_DUMP

DFHDUDUX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(TRANSACTION_DUMP),

TRANSACTION_DUMPCODE(name4 | string | 'string')

 [CSA(YES| NO),]
 [PROGRAM(YES| NO),]
 [SEGMENT(block-descriptor),]

 [SEGMENT_LIST(block-descriptor),]

 [TCA(YES| NO),]
 [TERMINAL(YES| NO),]
 [TRANSACTION(YES| NO),]
 [TRT(YES| NO),]]
 [OUT,

DUMPID(name9 | \),

RESPONSE(name1 | \),

REASON(name1 | \)]

CSA(YES| NO)
specifies whether the common system area (CSA) is to be included in the
transaction dump. The default is NO.

DUMPID(name9 | *)
returns the dump identifier.

name9 The name of a 9-byte field to receive the assigned ID.

PROGRAM(YES| NO)
specifies whether all program storage areas associated with this task are to be
included in the transaction dump. The default is NO.

SEGMENT(block-descriptor)
specifies the address and the length of a single block of storage that is to be
dumped. See page 253 for a description of valid block-descriptors. SEGMENT
and SEGMENT_LIST are mutually exclusive.

SEGMENT_LIST(block-descriptor)
specifies the address and length of a set of contiguous word pairs. The first
word in each pair specifies the length in bytes of a storage segment to be
dumped; the second word contains the address of the storage segment. The
end of the list must be marked by a word containing X'FFFFFFFF'.
SEGMENT and SEGMENT_LIST are mutually exclusive.

TCA(YES| NO)
specifies whether the task control area (TCA) is to be included in the
transaction dump. The default is NO.

TERMINAL(YES| NO)
specifies whether all terminal storage areas associated with the task are to be
included in the transaction dump. The default is NO.

TRANSACTION(YES| NO)
specifies whether all transaction storage areas associated with the task are to
be included in the transaction dump. The default is NO.

270 CICS Transaction Server for VSE/ESA Customization Guide

 dump control functions

TRANSACTION_DUMPCODE(name4 | string | 'string ')
specifies the code corresponding to the error that caused this transaction dump
call. Transaction dump codes are held in the dump table; for information about
the dump table and how it works, refer to the CICS Problem Determination
Guide and the CICS System Programming Reference manual.

name4 The name of a location containing a 4-byte string.
string A string of characters without intervening blanks. The macro

generates a literal constant of length 4 bytes from the string,
extending with blanks or truncating as required.

'string ' A string, enclosed in quotation marks and possibly containing
blanks. This value is processed in the same way as the “string”
above.

TRT(YES| NO)
specifies whether the trace table (TRT) is to be included in the transaction
dump. The default is NO.

RESPONSE and REASON values for TRANSACTION_DUMP:

RESPONSE REASON

OK None
EXCEPTION FESTAE_FAILED
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 NOT_OPEN
 OPEN_ERROR
 PARTIAL_SYSTEM_DUMP
 PARTIAL_TRANSACTION_DUMP
 SDUMP_FAILED
 SDUMP_LIBRARY_FULL
 SDUMP_NOT_AUTHORIZED
 SUPPRESSED_BY_DUMPOPTION
 SUPPRESSED_BY_DUMPTABLE
 SUPPRESSED_BY_USEREXIT
DISASTER None
INVALID INVALID_SVC_CALL
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘NOT_OPEN’ means that the CICS dump data set is closed.

3. ‘OPEN_ERROR’ means that an error occurred while a CICS dump data set
was being opened.

4. ‘PARTIAL’ means that the transaction dump resulting from this request is
incomplete.

 Chapter 3. The user exit programming interface (XPI) 271

 kernel domain functions

Kernel domain functions

The START_PURGE_PROTECTION function
The START_PURGE_PROTECTION function is provided on the DFHKEDSX macro
call. It inhibits purge, but not force-purge, for the current task. This function can be
used by all global user exit programs if they want to inhibit purge during a global
user exit call.

In general, each START_PURGE_PROTECTION call should have a corresponding
STOP_PURGE_PROTECTION function call to end the purge protection period on
completion of any program logic that needs such protection.

 START_PURGE_PROTECTION

DFHKEDSX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(START_PURGE_PROTECTION),]

 [OUT,

RESPONSE (name1 | \)]

There are no input or output parameters on this call, only a RESPONSE.

RESPONSE values for START_PURGE_PROTECTION:

RESPONSE REASON

OK None
DISASTER None
INVALID None

The STOP_PURGE_PROTECTION function
The STOP_PURGE_PROTECTION function is provided on the DFHKEDSX macro
call. It re-enables purge for the current task after purge has been suspended by a
preceding START_PURGE_PROTECTION function call.

 STOP_PURGE_PROTECTION

DFHKEDSX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(STOP_PURGE_PROTECTION),]

 [OUT,

RESPONSE (name1 | \)]

There are no input or output parameters on this call, only a RESPONSE.

272 CICS Transaction Server for VSE/ESA Customization Guide

 loader functions

RESPONSE values for STOP_PURGE_PROTECTION:

RESPONSE REASON

OK None
DISASTER None
INVALID None

Nesting purge protection calls
Note that the START_ and STOP_PURGE_PROTECTION functions can be nested.
You should ensure that, if multiple START_PURGE_PROTECTION calls are issued
for a task, that the correct number of STOP_PURGE_PROTECTION calls are
issued to cancel the purge protection. If you issue two starts and only one stop,
purge protection is left on for the current task.

For example, for any current task, more than one global user exit program may be
driven. You must design your exit programs to ensure that purge protection is
correctly cancelled. An example of nesting is shown as follows:

 XEIIN:

EXIT_PROG1: Calls START_PURGE_PROTECTION

 XFCREQ:

EXIT_PROG2: Calls START_PURGE_PROTECTION

 XFCREQC:

EXIT_PROG3: Calls STOP_PURGE_PROTECTION

 XEIOUT:

EXIT_PROG4: Calls STOP_PURGE_PROTECTION

 Loader functions
There are four XPI loader functions. These are the DFHLDLDX calls
ACQUIRE_PROGRAM, RELEASE_PROGRAM, DEFINE_PROGRAM, and
DELETE_PROGRAM.

DFHLDLDX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Statistics domain
 � Monitor domain
 � Dump domain
 � Dispatcher domain
� Journal control program
� Transient data program

The DEFINE_PROGRAM call
DEFINE_PROGRAM allows you to define new programs to the loader domain, or to
change the details of programs that have already been defined. The details that
you provide are recorded on the local catalog, and become immediately available.
They are used on all subsequent ACQUIRE requests for the named program.
However, note that program definitions made in this way are not retained over an
XRF takeover.

 Chapter 3. The user exit programming interface (XPI) 273

 loader functions

 DEFINE_PROGRAM

DFHLDLDX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(DEFINE_PROGRAM),

PROGRAM_NAME(name8 | string | 'string'),

 [EXECUTION_KEY(CICS|USER),]

 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]

 [PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY),]

 [REQUIRED_AMODE(24|31|AMODE_ANY),]

 [REQUIRED_RMODE(24|RMODE_ANY),]]

 [OUT,

 [NEW_PROGRAM_TOKEN(name4),]

RESPONSE(name1 | \),

REASON(name1 | \)]

EXECUTION_KEY(CICS|USER)
specifies, in conjunction with other program attributes, the type of dynamic
storage area (DSA) into which the loader is to load the program.

CICS For non-reentrant programs, means that the program is to be loaded
into a CICS DSA, above or below the 16MB line; that is, the CDSA
or ECDSA. The choice of CICS DSA is dependent on the residence
mode (RMODE) attribute of the program as defined to the
linkage-editor.

For reentrant RMODE(24) programs, means that the program is to
be loaded into the CDSA.

USER For non-reentrant programs, means that the program is to be loaded
into a user DSA, above or below the 16MB line; that is, the UDSA or
EUDSA. The choice of user DSA is dependent on the residence
mode (RMODE) attribute of the program as defined to the
linkage-editor.

For reentrant RMODE(24) programs, means that the program is to
be loaded into the UDSA.

Reentrant programs If a program is link-edited as reentrant (with the SVA
link-edit option), the EXECUTION_KEY option is ignored, and it is loaded into a
read-only DSA (the RDSA or ERDSA). For details of the type of storage
allocated for read-only DSAs, see the RENTPGM system initialization
parameter.

See Table 104 on page 275 for a summary of the effect of the
EXECUTION_KEY option in conjunction with other factors.

274 CICS Transaction Server for VSE/ESA Customization Guide

 loader functions

NEW_PROGRAM_TOKEN(name4)
returns the token supplied for the newly-defined program.

name4 The name of a location to receive the 4-byte token.

PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)
specifies the residency status of the program.

RELOAD Every ACQUIRE_PROGRAM request for this program is
satisfied by loading a new copy into storage. When a
RELEASE request is issued for a copy, it is removed from
storage.

Note: Do not use this attribute when defining an exit program.
RESIDENT There is a single copy of the program that is not removed from

storage unless deleted. RESIDENT programs must be at least
quasireentrant.

REUSABLE The program is at least quasireentrant; a single copy in storage
can be used by several tasks in the system. A REUSABLE
program becomes eligible for removal from storage as part of
the normal dynamic program compression scheme when its use
count reaches zero.

TRANSIENT Similar to REUSABLE, except that the program is removed from
storage immediately its use count reaches zero. This should be
specified only for less-frequently used programs, or for
programs in systems that are critically short on storage.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program to be defined.

name8 The name of a location where there is an 8-byte program name.
string A string of characters, without intervening blanks, naming the

program.
'string ' A string of characters within quotation marks. The string length

is set to 8 by padding with blanks or by truncation.

Table 104. Summary of attributes defining DSA eligibility

EXECUTION_KEY
option

Reentrant Above or below
16MB line

Dynamic storage
area (DSA)

CICS No Below CDSA

CICS Yes Below RDSA

CICS No Above ECDSA

CICS Yes Above ERDSA

USER No Below UDSA

USER Yes Below RDSA

USER No Above EUDSA

USER Yes Above ERDSA

 Chapter 3. The user exit programming interface (XPI) 275

 loader functions

PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY)
specifies where to load the program from.

PRIVATE The program is in the LIBDEF sublibrary concatenation. A
PRIVATE program need not be reentrant, and is given only
limited protection from unauthorized overwriting. The degree of
protection depends on the type of dynamic storage area (DSA)
into which the program is loaded (see the EXECUTION_KEY
option):

DSA Protection from unauthorized overwriting

CDSA Cannot be overwritten by USER-key tasks.
ECDSA Cannot be overwritten by USER-key tasks.
ERDSA Complete—cannot be overwritten by

USER-key tasks nor by CICS-key tasks.
EUDSA None.
RDSA Complete—cannot be overwritten by

USER-key tasks nor by CICS-key tasks.
UDSA None.

SHARED The program is located in the shared virtual area (SVA), is
reentrant, and is protected.

TYPE_ANY Either the LIBDEF sublibrary concatenation or the SVA copy of
the program may be used, though preference is given to the
SVA copy.

REQUIRED_AMODE(24|31|AMODE_ANY)
specifies the addressing mode of the program. If, during subsequent
ACQUIRE_PROGRAM processing, no copy of the program that meets the
defined addressing requirement can be found, the ACQUIRE_PROGRAM call
receives an ‘EXCEPTION’ response and the REASON value
‘PROGRAM_NOT_FOUND’.

Notes:

1. AMODE_ANY and AMODE 31 have identical meanings for this function.

2. You cannot use this option to override the link-edited addressing mode of
the program.

REQUIRED_RMODE(24|RMODE_ANY)
specifies the residency mode of the program. If, during subsequent
ACQUIRE_PROGRAM processing, no copy of the program that meets the
defined addressing requirement can be found, the ACQUIRE_PROGRAM call
receives an ‘EXCEPTION’ response and the REASON value
‘PROGRAM_NOT_FOUND’.

Note: You cannot use this option to override the link-edited residence mode of
the program.

276 CICS Transaction Server for VSE/ESA Customization Guide

 loader functions

RESPONSE and REASON values for DEFINE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL
 INVALID_PROGRAM_NAME
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The ACQUIRE_PROGRAM call
ACQUIRE_PROGRAM returns the entry and load point addresses, the length, and
a new program token for a usable copy of the named program, which can be
identified by either its name or a program token.

 ACQUIRE_PROGRAM

DFHLDLDX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(ACQUIRE_PROGRAM),

{PROGRAM_NAME(name8 | string | 'string')|

 PROGRAM_TOKEN(name4)},

 [SUSPEND(YES|NO),]]

 [OUT,

ENTRY_POINT(name4 | (Ra)),

[PROGRAM_ATTRIBUTE(name1 | (Rn)),]

[LOAD_POINT(name4 | (Ra)),]

 [NEW_PROGRAM_TOKEN(name4),]

[PROGRAM_LENGTH(name4 | (Rn)),]

RESPONSE(name1 | \),

REASON(name1 | \)]

ENTRY_POINT(name4 | (Ra))
returns the program’s entry point address.

name4 The name of a 4-byte location to receive the 31-bit entry
address.

(Ra) A register to receive the entry address.

LOAD_POINT(name4 | (Ra))
returns the program’s load point address.

name4 The name of a 4-byte location to receive the loaded address.
(Ra) A register that is to contain the load address.

 Chapter 3. The user exit programming interface (XPI) 277

 loader functions

NEW_PROGRAM_TOKEN(name4)
returns the new program token for a usable copy of the named program.

name4 The name of a location to receive a 4-byte token that identifies
this program and instance.

PROGRAM_ATTRIBUTE(name1 | (Rn))
returns the program attribute.

name1 The name of a 1-byte location to receive the program attribute.
(Rn) A register in which the low-order byte receives the program

attribute and the other bytes are set to zero. It can have the
values RELOAD, RESIDENT, REUSABLE, or TRANSIENT.
RELOAD The program is not reusable, and therefore

several copies of the program may be loaded.
A copy is removed from storage when a
RELEASE_PROGRAM call (for that copy) is
issued.

RESIDENT There is a single copy of the program that is not
removed from storage unless deleted.
RESIDENT programs must be at least
quasireentrant. Any program of
PROGRAM_TYPE(SHARED) has the
RESIDENT attribute by default. The
DELETE_PROGRAM call has no effect on this
type of RESIDENT program.

REUSABLE Similar to RESIDENT, except that a REUSABLE
program that is not in use can be removed from
storage by CICS, for storage optimization
reasons.

TRANSIENT Similar to RESIDENT, except that a
TRANSIENT program is removed from storage
as soon as its use count drops to zero.

PROGRAM_LENGTH(name4 | (Rn))
returns the length of the named program.

name4 The name of a 4-byte location that is to receive the length in
bytes, expressed in binary.

(Rn) A register to contain the length in bytes, expressed in binary.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program to be acquired.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string in quotation marks. The string length is set to 8 by

padding with blanks or truncating.

PROGRAM_TOKEN(name4),
specifies a token identifying the program whose details are to be acquired.

name4 The name of a location containing a 4-byte token obtained by a
previous DEFINE_PROGRAM or ACQUIRE_PROGRAM call.

278 CICS Transaction Server for VSE/ESA Customization Guide

 loader functions

SUSPEND(YES|NO)
specifies whether execution is to be suspended until the request can be
granted.

RESPONSE and REASON values for ACQUIRE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION NO_STORAGE (if SUSPEND(NO))
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_FOUND
DISASTER NO_STORAGE (if SUSPEND(YES))
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. A REASON of ‘NO_STORAGE’ with a RESPONSE of ‘EXCEPTION’ means
that there was insufficient storage to satisfy this request, and SUSPEND(NO)
was specified.

3. A REASON of ‘PROGRAM_NOT_FOUND’ is returned if the program has not
been included in the library concatenation, or if the link-edit failed. In such a
case, the program is marked as “not executable”; it must be re-linked before it
can be successfully acquired.

The RELEASE_PROGRAM call
RELEASE_PROGRAM decrements the use count of a currently loaded program by
one.

If the program has been defined with the RELOAD attribute, the storage occupied
by this copy of the program is released.

You should issue the ACQUIRE_PROGRAM and RELEASE_PROGRAM requests
for a single program during the same execution of the exit program. If you do not
want to do this, you should acquire the program once during CICS initialization, and
leave it resident until CICS termination.

 RELEASE_PROGRAM

DFHLDLDX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(RELEASE_PROGRAM),

 ENTRY_POINT(pointer),

{PROGRAM_NAME(name8 | string | 'string')|

 PROGRAM_TOKEN(name4)},]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

 Chapter 3. The user exit programming interface (XPI) 279

 loader functions

ENTRY_POINT(pointer)
specifies the address of the entry point of this copy of the named program.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program to be released.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string in quotation marks. The string length is set to 8 by

padding with blanks or truncating.

PROGRAM_TOKEN(name4),
specifies a token identifying the program to be released.

name4 The name of a location containing an 4-byte token obtained by
a previous DEFINE_PROGRAM or ACQUIRE_PROGRAM call.

RESPONSE and REASON values for RELEASE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION PROGRAM_NOT_DEFINED
 PROGRAM_NOT_IN_USE
DISASTER None
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘PROGRAM_NOT_DEFINED’ is returned if the program that you name is not
known to the system.

3. ‘PROGRAM_NOT_IN_USE’ is returned when the use count for the named
program is already zero.

The DELETE_PROGRAM call
DELETE_PROGRAM removes the definition of a named program from the catalog
and from the list of current programs. When this request executes successfully,
subsequent ACQUIRE_PROGRAM requests fail with a REASON value of
‘PROGRAM_NOT_DEFINED’.

 DELETE_PROGRAM

DFHLDLDX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(DELETE_PROGRAM),

PROGRAM_NAME(name8 | string | 'string'),]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

280 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring functions

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program to be deleted.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string in quotation marks. The string length is set to 8 by

padding with blanks or truncating.

RESPONSE and REASON values for DELETE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION PROGRAM_NOT_DEFINED
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

 Monitoring functions
There are two XPI monitoring functions. These are the DFHMNMNX calls
MONITOR and INQUIRE_MONITORING_DATA.

DFHMNMNX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Dispatcher domain
 � Dump domain
� Journal control program (DFHJCP)

 � Monitor domain
 � Statistics domain
� Transient data program

INQUIRE_MONITORING_DATA calls cannot be used in any exit program invoked
from any global user exit point in DFHTCP or DFHZCP (that is, at any of the exit
points named “XTCx...” or “XZCx...”).

The MONITOR call
The MONITOR XPI call is similar to the EXEC CICS MONITOR command. It
enables you to invoke user event-monitoring points (EMPs) in your exit programs.
The user event-monitoring points must be defined in the usual way in the
monitoring control table (MCT). For more information about CICS monitoring, read
Chapter 18, “CICS monitoring” on page 531.

At a user EMP, you can add your own data (up to 256 counters, up to 256 clocks,
and a single character string of up to 256 bytes) to fields reserved unconditionally
for you in performance class monitoring data records.

 Chapter 3. The user exit programming interface (XPI) 281

 monitoring functions

 MONITOR

DFHMNMNX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(MONITOR),

POINT(expression | name2 | (Rn)),

[DATA1(expression | name4 | (Ra) | \),]

[DATA2(expression | name4 | (Rn) | \),]

[ENTRYNAME(name8 | string | 'string'),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

 Important

There is a restriction in using the XPI early during initialization. Do not start exit
programs that use the XPI functions TRANSACTION_DUMP,
WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA until
the second phase of the PLTPI. For further information about the PLTPI, refer
to Chapter 4, “Writing initialization and shutdown programs” on page 339.

DATA1(expression | name4 | (Ra) | *)
specifies a fullword binary variable whose contents depend on the type of user
EMP being used:

� If the MCT user EMP definition contains an ADDCNT, SUBCNT, NACNT,
EXCNT, or ORCNT option, the DATA1 variable is an area used as defined
by the user EMP definition.

� If the MCT user EMP definition contains an MLTCNT option, the DATA1
variable is an area with the address of a series of adjacent fullwords
containing the values to be added to the user count fields defined in the
user EMP definition.

� If the MCT user EMP definition contains a MOVE option, the DATA1
variable is an area with the address of the character string to be moved.

For details of the user EMP options, see the CICS Resource Definition Guide.

expression A valid assembler-language expression giving the fullword
binary variable for this EMP.

name4 The name of a 4-byte field containing the fullword binary
variable for this EMP.

(Ra) A register containing the fullword binary variable for this EMP.
* The value of this option is already present in the parameter list,

or the option is not specified for this EMP.

DATA2(expression | name4 | (Rn) | *)
specifies a fullword binary variable whose contents depend on the type of user
EMP being used:

� If the MCT user EMP definition contains an ADDCNT, SUBCNT, NACNT,
EXCNT, or ORCNT option, the DATA2 variable is an area used as defined
by the user EMP definition.

282 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring functions

� If the MCT user EMP definition contains an MLTCNT option, the DATA2
variable is an area with the number of user count fields to be updated.

The number specified in DATA2 overrides the default value defined in the
MCT for the operation. A value of 0 instructs monitoring to use the default.
Not specifying a value for DATA2 does not prevent the MLTCNT operation
from being successful; but, if it is, an exception response of
‘DATA2_NOT_SPECIFIED’ is returned. See note 5 on page 284.

� If the MCT user EMP definition contains a MOVE option, the DATA2
variable is an area with the length of the character string to be moved.

The length specified in DATA2 overrides the default value defined in the
MCT for the operation. A value of 0 instructs monitoring to use the default.
Not specifying a value for DATA2 does not prevent the MOVE operation
from being successful; but, if it is, an exception response of
‘DATA2_NOT_SPECIFIED’ is returned. See note 5 on page 284.

For details of the user EMP options, see the CICS Resource Definition Guide.

expression A valid assembler-language expression giving the fullword
binary variable for this EMP.

name4 The name of a 4-byte field containing the fullword binary
variable for this EMP.

(Rn) A register containing the fullword binary variable for this EMP.
* The value of this option is already present in the parameter list,

or the option is not specified for this EMP.

ENTRYNAME(name8 | string | 'string ')
specifies the monitoring point entry name, which qualifies the POINT value and
which is defined in the monitoring control table (MCT).

name8 The name of a location containing an 8-byte string.
string A string of characters without intervening blanks. The macro

generates, from the string, a literal constant of length 8 bytes,
extending with blanks or truncating as required.

'string ' A string, enclosed in quotation marks, and possibly containing
blanks. This value is processed in the same way as the “string”
above.

Note: If, when defining the EMP in the MCT, you do not specify an entry
name, the entry name defaults to ‘USER’. ENTRYNAME likewise defaults to
‘USER’ if not specified.

POINT(expression | name2 | (Rn))
specifies the monitoring point identifier as defined in the MCT, and is in the
range 0 through 255. Note, however, that point identifiers in the range 200
through 255 are reserved for use by IBM program products.

expression A valid assembler-language expression that can be expressed
in 2 bytes.

name2 The name of a 2-byte source of point data.
(Rn) A register containing the point data in the low-order 2 bytes.

 Chapter 3. The user exit programming interface (XPI) 283

 monitoring functions

RESPONSE and REASON values for MONITOR:

RESPONSE REASON

OK None
EXCEPTION DATA1_NOT_SPECIFIED
 DATA2_NOT_SPECIFIED
 INVALID_DATA1_VALUE
 INVALID_DATA2_VALUE
 POINT_NOT_DEFINED
DISASTER None
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘POINT_NOT_DEFINED’ means that the EMP you have specified was not
defined in the MCT.

3. ‘INVALID_DATA1_VALUE’ and ‘INVALID_DATA2_VALUE’ are most likely to
have been caused by provision of bad addresses; this causes a program
check.

4. DATA1_NOT_SPECIFIED and DATA2_NOT_SPECIFIED mean that you have
not specified DATA1 or DATA2 respectively when the operation required them.
See the description of DATA2.

5. Any error response terminates processing of the EMP. Operations defined to
execute before the point of failure will have done so; later operations are
canceled.

The INQUIRE_MONITORING_DATA call
The INQUIRE_MONITORING_DATA function returns to the exit program the
performance class monitoring data that has been accumulated for the issuing task.

The DFHMNTDS DSECT that maps the data is of fixed format. Note that:

� All the CICS system-defined fields in the performance records (including fields
that you have specified for exclusion using the EXCLUDE option of the
DFHMCT TYPE=RECORD macro) are listed.

� No user-defined data fields are listed.

 INQUIRE_MONITORING_DATA

DFHMNMNX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_MONITORING_DATA),

 DATA_BUFFER(buffer-descriptor),]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

284 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

 Important

There is a restriction in using the XPI early during initialization. Do not start exit
programs that use the XPI functions TRANSACTION_DUMP,
WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA until
the second phase of the PLTPI. For further information about the PLTPI, refer
to Chapter 4, “Writing initialization and shutdown programs” on page 339.

DATA_BUFFER(buffer-descriptor)
specifies the address and the length of a buffer to contain the returned
monitoring data; see page 254 for a full definition of a buffer-descriptor. The
DSECT DFHMNTDS maps the monitoring data.

RESPONSE and REASON values for INQUIRE_MONITORING_DATA:

RESPONSE REASON

OK None
EXCEPTION LENGTH_ERROR
 MONITOR_DATA_UNAVAILABLE
DISASTER None
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘LENGTH_ERROR’ means that the length specified in the buffer-descriptor was
too short for the monitoring data returned from the XPI call.

Program management functions
There are eight XPI program management functions. These are the DFHPGISX
calls:

 INQUIRE_PROGRAM
 INQUIRE_CURRENT_PROGRAM
 SET_PROGRAM
 START_BROWSE_PROGRAM
 GET_NEXT_PROGRAM
 END_BROWSE_PROGRAM

and the DFHPGAQX calls:

 INQUIRE_AUTOINSTALL
 SET_AUTOINSTALL.

Used with the Loader functions DEFINE_PROGRAM, ACQUIRE_PROGRAM,
RELEASE_PROGRAM, and DELETE_PROGRAM, these calls give you a
comprehensive set of tools for manipulating programs. (Note, however, that the
tokens returned in the NEW_PROGRAM_TOKEN fields of DFHPGISX calls are

 Chapter 3. The user exit programming interface (XPI) 285

 program management functions

different from those returned by DFHLDLDX Loader calls. You should not use a
token obtained from a DFHPGISX call in a DFHLDLDX call, or vice versa.)

The INQUIRE_PROGRAM call
INQUIRE_PROGRAM returns information about the attributes of a specified
program.

 INQUIRE_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_PROGRAM),

{PROGRAM_NAME(name8 | string | 'string')|

 PROGRAM_TOKEN(name8)},]

 [OUT,

 [ACCESS(CICS|NONE|READ_ONLY|USER),]

 [AVAIL_STATUS(DISABLED|ENABLED),]

 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]

 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]

 [ENTRY_POINT(name4),]

 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]

 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]

 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]

 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]

 [LANGUAGE_DEDUCED(ASSEMBLER|C|COBOL|COBOL_LE|

 COBOL2|NOT_APPLIC|NOT_DEDUCED|PLI),]

 [LANGUAGE_DEFINED(ASSEMBLER|C|COBOL|

 NOT_APPLIC|NOT_DEFINED|PLI),]

 [LOAD_POINT(name4),]

 [LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED),]

 [LOCATION(CDSA|ECDSA|ERDSA|ESDSA|ESVA|NONE|RDSA|SDSA|SVA),]

 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]

 [NEW_PROGRAM_TOKEN(name8),]

 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]

 [PROGRAM_LENGTH(name4),]

 [PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY),]

 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]

 [PROGRAM_USE_COUNT(name4),]

 [PROGRAM_USER_COUNT(name4),]

 [REMOTE_DEFINITION(LOCAL|REMOTE),]

 [REMOTE_PROGID(name8),]

 [REMOTE_SYSID(name4),]

 [REMOTE_TRANID(name4),]

 [SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED),]

 [SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED),]

RESPONSE(name1 | \),

REASON(name1 | \)]

ACCESS(CICS|NONE|READ_ONLY|USER)
returns a value indicating the type of storage into which the program has been
loaded.

CICS CICS-key.
NONE The program has not been loaded.
READ_ONLY Readonly.

286 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

USER User-key.

AVAIL_STATUS(DISABLED|ENABLED)
returns a value indicating whether the program can be used—that is, whether
or not it has been enabled.

CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC)
returns the EDF status of the program.

CEDF When the program is running under the control of the CICS
execution diagnostic facility (EDF), EDF diagnostic screens are
displayed.

NOCEDF EDF diagnostic screens are not displayed.
NOT_APPLIC Not applicable. This is a mapset, partitionset, or a remote

program.

DATA_LOCATION(ANY|BELOW|NOT_APPLIC)
returns a value indicating whether or not the program can access data located
above the 16MB line.

ANY The program can handle 31-bit addresses, and can therefore be
passed data located above or below the 16MB line.

BELOW The program can handle only 24-bit addresses, and must
therefore only be passed data located below the 16MB line.

NOT_APPLIC Not applicable. This is a mapset, partitionset, or a remote
program.

ENTRY_POINT(name4)
returns the program’s entry point address, as it would be returned by a Loader
domain ACQUIRE_PROGRAM call.

EXECUTION_KEY(CICS|NOT_APPLIC|USER)
returns the key in which CICS gives control to the program, which determines
whether the program can modify CICS-key storage.

CICS CICS gives control to the program in CICS key. The program is
loaded into a CICS dynamic storage area (DSA), above or
below the 16MB line; that is, the CDSA or ECDSA, depending
on its residency mode (RMODE) attribute as defined to the
linkage-editor.

NOT_APPLIC Not applicable. This is a mapset, partitionset, or a remote
program.

USER CICS gives control to the program in user key. The program is
loaded into a user DSA, above or below the 16MB line; that is,
the UDSA or EUDSA, depending on its residency mode
(RMODE) attribute as defined to the linkage-editor.

EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC)
returns a value indicating whether CICS links to and runs the program as if it
were running in a remote CICS region.

DPLSUBSET CICS links to and runs the program with the API restrictions of
a remote DPL program. The program can use only a subset of
the CICS API.

FULLAPI CICS links to and runs the program without the API restrictions
of a remote DPL program. The program can use the full CICS
API.

 Chapter 3. The user exit programming interface (XPI) 287

 program management functions

NOT_APPLIC Not applicable. This is a mapset, partitionset, or a remote
program. (The EXECUTIONSET option of DEFINE PROGRAM
applies only to local program definitions. Its purpose is to test
programs in a local CICS environment as if they were running
as DPL programs.)

HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE)
returns a value indicating how long the program is to remain loaded.

CICS_LIFE The program remains loaded until CICS is shut down.
NOT_APPLIC Not applicable. The program is not loaded, or is remote.
TASK_LIFE The program remains loaded for the lifetime of the task.

INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO)
returns the method that was used to install the PROGRAM resource definition.

AUTO Autoinstall.
CATALOG The CICS global catalog, after a restart.
GROUPLIST A CICS startup grouplist.
MANUAL The program is a CICS internal module explicitly defined to the

Program Manager by another CICS component.
RDO RDO commands.
SYSAUTO System autoinstall (that is, autoinstalled by CICS without calling

the autoinstall user program). The program may be a CICS
internal module or, for example, a first phase PLTPI program.

LANGUAGE_DEDUCED(ASSEMBLER|C|COBOL|COBOL2|COBOL_LE|
 NOT_APPLIC|NOT_DEDUCED|PLI)
returns the language deduced by CICS for the program.

LANGUAGE_DEFINED(ASSEMBLER|C|COBOL|
 NOT_APPLIC|NOT_DEFINED|PLI)
returns the programming language specified on the resource definition.

LOAD_POINT(name4)
returns the program’s load point address, as it would be returned by a Loader
domain ACQUIRE_PROGRAM call.

LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED)
returns a value indicating whether or not the program can be loaded.

LOADABLE The program is loadable.
NOT_APPLIC Not applicable. The program is remote.
NOT_LOADABLE CICS has tried to load the program and failed; the program

is not in the library.
NOT_LOADED CICS has not yet tried to load the program.

LOCATION(CDSA|ECDSA|ERDSA|ESDSA|ESVA|NONE|RDSA|SDSA|SVA)
returns a value indicating where the most recently loaded copy of the program
resides.

CDSA The CICS dynamic storage area.
ECDSA The extended CICS dynamic storage area.
ERDSA The extended readonly dynamic storage area.
ESDSA The extended shared dynamic storage area.
ESVA The shared virtual area above 16M.
NONE The program has not been loaded.
RDSA The readonly dynamic storage area.

288 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

SDSA The shared dynamic storage area.
SVA The shared virtual area.

MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM)
returns the kind of program resource.

NEW_PROGRAM_TOKEN(name8)
returns a token that can be used to identify the named program.

name8 The name of a location to receive a 8-byte token that identifies
this program.

If PROGRAM_NAME is specified on the request, NEW_PROGRAM_TOKEN is
set to a program token that can be used on subsequent requests for the same
program. If PROGRAM_TOKEN is specified on the request,
NEW_PROGRAM_TOKEN is set to the same value.

PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)
returns the residency status of the program—that is, when its storage is
released.

RELOAD The program is not reusable, and therefore several copies may
be loaded. A copy is removed from storage when a
RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT There is a single copy of the program that is not removed from
storage unless deleted. RESIDENT programs must be at least
quasireentrant. Any program of PROGRAM_TYPE SHARED is
RESIDENT by default.

REUSABLE Similar to RESIDENT, except that a REUSABLE program that is
not in use can be removed from storage by CICS, for storage
optimization reasons.

TRANSIENT Similar to RESIDENT, except that a TRANSIENT program is
removed from storage as soon as its user count drops to zero.

PROGRAM_LENGTH(name4)
returns the length of the program, in bytes, expressed in binary.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program to be queried.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string of characters in quotation marks. The string length is

set to 8 by padding with blanks or truncating.

PROGRAM_TOKEN(name8)
specifies a token identifying the program to be queried.

name8 The name of a location containing an 8-byte token obtained
from a previous INQUIRE_PROGRAM call.

PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY)
returns a value indicating where the next new copy of the program is to be
loaded from.

NOT_APPLIC Not applicable. The program is remote.
PRIVATE The program is to be loaded from the CICS library

concatenation. A PRIVATE program need not be reentrant, and
is given only limited protection against unauthorized overwriting.

 Chapter 3. The user exit programming interface (XPI) 289

 program management functions

The degree of protection depends on the type of dynamic
storage area into which the program is loaded (see the
description of the PROGRAM_TYPE option of the
DEFINE_PROGRAM call).

SHARED The program is to be loaded from the shared virtual area (SVA).
SHARED programs must be reentrant, and are protected.

The next time a NEWCOPY or PHASEIN is received, an SVA
copy of the program is used if it is available. If no SVA version
is available, the program is loaded from the LIBDEF search
chain for the CICS job.

TYPE_ANY Either the CICS library concatenation or the SVA copy of the
program can be used, though preference is given to the SVA
copy.

PROGRAM_USAGE(APPLICATION|NUCLEUS)
returns a value indicating whether the program is used as a CICS nucleus
program or as a user application program.

PROGRAM_USE_COUNT(name4)
returns the current number of users of the program.

PROGRAM_USER_COUNT(name4)
returns the number of different users that have invoked the program.

REMOTE_DEFINITION(LOCAL|REMOTE)
returns a value indicating whether this program is a local or a remote resource.
If it is a remote resource, CICS treats requests to link to the program as
distributed program link (DPL) requests, and ships them to the remote region.

REMOTE_PROGID(name8)
returns the name by which the program is known in the remote CICS region, if
the program is a remote resource. If REMOTESYSTEM was specified on the
PROGRAM definition, and REMOTENAME omitted, the remote name will be
the same as the local name (that is, REMOTE_PROGID will default to the
value of PROGRAM_NAME).

REMOTE_SYSID(name4)
returns the name of the remote CICS region that owns the program, if the
program is a remote resource.

REMOTE_TRANID(name4)
returns the name of the transaction that the remote CICS attaches, and under
which it runs the program, if the program is a remote resource.

SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED)
returns the addressing mode specified on a DEFINE_PROGRAM call.

SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED)
returns the residency mode (that is, whether the program should be loaded
above or below the 16MB line) specified on a DEFINE_PROGRAM call.

290 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

RESPONSE and REASON values for INQUIRE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION PROGRAM_NOT_DEFINED_TO_LD
 PROGRAM_NOT_DEFINED_TO_PG
DISASTER ABEND
 LOCK_ERROR
INVALID INVALID_PROGRAM_TOKEN
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_CURRENT_PROGRAM call
INQUIRE_CURRENT_PROGRAM returns information about the attributes of the
program that is currently running. If this call is issued from within a global or
task-related user exit, it returns the attributes of the global or task-related user exit
program itself.

 Chapter 3. The user exit programming interface (XPI) 291

 program management functions

 INQUIRE_CURRENT_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_CURRENT_PROGRAM),]

 [OUT,

 [AVAIL_STATUS(DISABLED|ENABLED),]

 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]

 [CURRENT_AMODE(24|31),]

 [CURRENT_CEDF_STATUS(CEDF|NOCEDF),]

 [CURRENT_ENTRY_POINT(name4),]

 [CURRENT_ENVIRONMENT(EXEC|GLUE|PLT|SYSTEM|TRUE|URM),]

 [CURRENT_EXECUTION_SET(DPLSUBSET|FULLAPI),]

 [CURRENT_LOAD_POINT(name4),]

 [CURRENT_PROGRAM_LENGTH(name4),]

 [CURRENT_PROGRAM_NAME(name8),]

 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]

 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]

 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]

 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]

 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]

 [INVOKING_ENVIRONMENT (EXEC|GLUE|PLT|SYSTEM|TRUE|URM),]

 [INVOKING_PROGRAM_NAME(name8),]

 [LANGUAGE_DEDUCED(ASSEMBLER|C|COBOL|COBOL_LE|

 COBOL2|NOT_APPLIC|NOT_DEDUCED|PLI),]

 [LANGUAGE_DEFINED(ASSEMBLER|C|COBOL|

 NOT_APPLIC|NOT_DEFINED|PLI),]

 [LOAD_STATUS(LOADABLE|NOT_LOADABLE|NOT_LOADED|NOT_APPLIC),]

 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]

 [NEW_PROGRAM_TOKEN(name8),]

 [REMOTE_DEFINITION(LOCAL|REMOTE),]

 [REMOTE_PROGID(name8),]

 [REMOTE_SYSID(name4),]

 [REMOTE_TRANID(name4),]

 [RETURN_PROGRAM_NAME(name8),]

RESPONSE(name1 | \),

REASON(name1 | \)]

Note: The options not described in the following list are identical to the equivalent
options of the INQUIRE_PROGRAM call.

CURRENT_AMODE(24|31)
returns the addressing mode which the running program is currently using.

CURRENT_CEDF_STATUS(CEDF|NOCEDF)
returns the EDF status of the current instance of the program. The value
returned is the same as for CEDF_STATUS, which is the EDF status specified
on the program definition. See the CEDF_STATUS option of
INQUIRE_PROGRAM.

CURRENT_ENTRY_POINT(name4)
returns the entry point address of the current program.

CURRENT_ENVIRONMENT(EXEC|GLUE|PLT|SYSTEM|TRUE|URM)
returns the environment in which the current program is running—that is, the
type of program it is.

292 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

EXEC User application program.
GLUE Global user exit program.
PLT Program list table program.
SYSTEM CICS system code.
TRUE Task-related user exit program.
URM User-replaceable program.

CURRENT_EXECUTION_SET(DPLSUBSET|FULLAPI)
returns the API execution set used by the current instance of the program. The
value returned is the same as for EXECUTION_SET (which is the API
execution set specified on the program definition) unless this is the first
program in a transaction, when the value may be different. This is because the
DPLSUBSET attribute applies only to linked-to programs. It is ignored for the
first program in a transaction, because this cannot be the target of a DPL call.
Therefore, for the first program in a transaction, if EXECUTION_SET returns
DPLSUBSET CURRENT_EXECUTION_SET nevertheless returns FULLAPI.
See the EXECUTION_SET option of INQUIRE_PROGRAM.

CURRENT_LOAD_POINT(name4)
returns the load point address of the current program.

CURRENT_PROGRAM_LENGTH(name4)
returns the length of the current program, in bytes, expressed in binary.

CURRENT_PROGRAM_NAME(name8)
returns the name of the program that is currently running.

INVOKING_ENVIRONMENT (EXEC|GLUE|PLT|SYSTEM|TRUE|URM)
returns the environment from which the current program was invoked. The
values are as described for CURRENT_ENVIRONMENT.

INVOKING_PROGRAM_NAME(name8)
returns the name of the most recent program to invoke the current program,
which was not itself a global user exit or task-related user exit program.

RETURN_PROGRAM_NAME(name8)
returns the name of the program to which control will be returned, after any
intermediate global user exit or task-related user exit programs have completed.

RESPONSE and REASON values for INQUIRE_CURRENT_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION NO_CURRENT_PROGRAM
DISASTER LOCK_ERROR
 ABEND
INVALID None
KERNERROR None
PURGED None

 Chapter 3. The user exit programming interface (XPI) 293

 program management functions

The SET_PROGRAM call
SET_PROGRAM allows you to set selected attributes in the definition of a specified
program.

 SET_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SET_PROGRAM),

{PROGRAM_NAME(name8 | string | 'string')|

 PROGRAM_TOKEN(name8)},]

 [AVAIL_STATUS(DISABLED|ENABLED),]

 [CEDF_STATUS(CEDF|NOCEDF),]

 [EXECUTION_KEY(CICS|USER),]

 [EXECUTION_SET(DPLSUBSET|FULLAPI),]

 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]

 [PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY),]

 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]

 [REQUIRED_AMODE(24|31|AMODE_ANY),]

 [REQUIRED_RMODE(24|RMODE_ANY),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

AVAIL_STATUS(DISABLED|ENABLED)
specifies whether the program can be used—that is, whether or not it is
enabled.

CEDF_STATUS(CEDF|NOCEDF)
specifies whether, when the program is running under the control of the CICS
execution diagnostic facility (EDF), EDF diagnostic screens are displayed.

EXECUTION_KEY(CICS|USER)
specifies the key in which CICS is to give control to the program, which
determines whether the program can modify CICS-key storage.

CICS CICS gives control to the program in CICS key. The program is
loaded into a CICS dynamic storage area (DSA), above or
below the 16MB line; that is, the CDSA or ECDSA, depending
on its residency mode (RMODE) attribute as defined to the
linkage-editor.

USER CICS gives control to the program in user key. The program is
loaded into a user DSA, above or below the 16MB line; that is,
the UDSA or EUDSA, depending on its residency mode
(RMODE) attribute as defined to the linkage-editor.

Note: If the program has been link-edited as reentrant with
AMODE(31),RMODE(ANY), the EXECUTION_KEY option is ignored, and it is
loaded into the extended readonly DSA (ERDSA). For details of the type of
storage allocated for the ERDSA, see the RENTPGM system initialization
parameter.

EXECUTION_SET(DPLSUBSET|FULLAPI)
specifies whether CICS is to link to and run the program as if it were running in
a remote CICS region.

294 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

Note: EXECUTION_SET applies only to local program definitions. Its purpose
is to test programs in a local CICS environment as if they were running as DPL
programs.

DPLSUBSET CICS links to and runs the program with the API restrictions of
a remote DPL program. The program can use only a subset of
the CICS API.

FULLAPI CICS links to and runs the program without the API restrictions
of a remote DPL program. The program can use the full CICS
API.

PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT)
specifies the residency status of the program—that is, when its storage is to be
released.

RELOAD The program is not reusable, and therefore several copies may
be loaded. A copy is removed from storage when a
RELEASE_PROGRAM call (for that copy) is issued.

RESIDENT At any one time there will be no more than a single copy of the
program in storage, and this will not be removed unless deleted.
RESIDENT programs must be at least quasireentrant. Any
program of PROGRAM_TYPE SHARED is RESIDENT by
default.

REUSABLE Similar to RESIDENT, except that a REUSABLE program that is
not in use can be removed from storage by CICS, for storage
optimization reasons.

TRANSIENT Similar to RESIDENT, except that a TRANSIENT program is
removed from storage as soon as its user count drops to zero.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program whose attributes are to be changed.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string of characters in quotation marks. The string length is

set to 8 by padding with blanks or truncating.

PROGRAM_TOKEN(name8)
specifies a token identifying the program.

name8 The name of a location containing an 8-byte token obtained
from a previous INQUIRE_PROGRAM,
INQUIRE_CURRENT_PROGRAM,
START_BROWSE_PROGRAM, or GET_NEXT_PROGRAM
call.

PROGRAM_TYPE(PRIVATE|SHARED|TYPE_ANY)
specifies where the program is to be loaded from.

PRIVATE The program is in the LIBDEF search chain for the CICS job. A
PRIVATE program need not be reentrant, and is given only
limited protection against unauthorized overwriting. The degree
of protection depends on the type of dynamic storage area into
which the program is loaded (see the description of the
PROGRAM_TYPE option of the DEFINE_PROGRAM call).

SHARED The program is located in the shared virtual area (SVA), is
reentrant, and is protected.

 Chapter 3. The user exit programming interface (XPI) 295

 program management functions

TYPE_ANY Either the LIBDEF search chain or the SVA copy of the program
can be used, though preference is given to the SVA copy.

PROGRAM_USAGE(APPLICATION|NUCLEUS)
specifies whether the program is used as a CICS nucleus program or as a user
application program.

REQUIRED_AMODE(24|31|AMODE_ANY)
specifies the addressing mode of the program. If, during subsequent
processing, no copy of the program that meets the defined addressing
requirement can be found, an exception occurs.

Notes:

1. AMODE_ANY and 31 have identical meanings for this function.

2. You cannot use this option to override the link-edited addressing mode of
the program.

REQUIRED_RMODE(24|AMODE_ANY)
specifies the residency mode of the program (that is, whether it is to be loaded
above or below the 16MB line). If, during subsequent processing, no copy of
the program that meets the defined residency requirement can be found, an
exception occurs.

Note: You cannot use this option to override the link-edited residency mode of
the program.

RESPONSE and REASON values for SET_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION CEDF_STATUS_NOT_FOR_MAPSET
 CEDF_STATUS_NOT_FOR_PTNSET
 CEDF_STATUS_NOT_FOR_REMOTE
 EXEC_KEY_NOT_FOR_MAPSET
 EXEC_KEY_NOT_FOR_PTNSET
 EXEC_KEY_NOT_FOR_REMOTE
 EXEC_SET_NOT_FOR_MAPSET
 EXEC_SET_NOT_FOR_PTNSET
 EXEC_SET_NOT_FOR_REMOTE
 PROGRAM_NOT_DEFINED_TO_LD
 PROGRAM_NOT_DEFINED_TO_PG
 PROGRAM_TYPE_NOT_FOR_REMOTE
DISASTER ABEND
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL
 LOCK_ERROR
INVALID INVALID_MODE_COMBINATION
 INVALID_PROGRAM_NAME
 INVALID_PROGRAM_TOKEN
 INVALID_TYPE_ATTRIB_COMBIN
KERNERROR None
PURGED None

296 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The START_BROWSE_PROGRAM call
START_BROWSE_PROGRAM returns a token that enables you to begin browsing
through program definitions, optionally starting at the definition of a specified
program.

 START_BROWSE_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(START_BROWSE_PROGRAM),

[PROGRAM_NAME(name8 | string | 'string'),]]

 [OUT,

 BROWSE_TOKEN(name4)

RESPONSE(name1 | \),

REASON(name1 | \)]

BROWSE_TOKEN(name4)
returns a token to be used on a GET_NEXT_PROGRAM call, to initiate a
sequential browse of program definitions.

name4 The name of a location to receive a 4-byte token.

PROGRAM_NAME(name8 | string | 'string ')
specifies the name of the program whose definition you want to look at first.
The browsing sequence is alphabetical. If there is no program with the
specified name, CICS returns a token for the next definition in the alphabetic
sequence. If you do not specify a program, CICS returns a token for the first
definition.

name8 The name of a location containing an 8-byte program name.
string A string of characters naming the program.
'string ' A string of characters in quotation marks. The string length is

set to 8 by padding with blanks or truncating.

RESPONSE and REASON values for START_BROWSE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER ABEND
 INVALID_DIRECTORY
 LOCK_ERROR
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

 Chapter 3. The user exit programming interface (XPI) 297

 program management functions

The GET_NEXT_PROGRAM call
GET_NEXT_PROGRAM allows you to inquire on the next program definition during
a browse sequence initiated by START_BROWSE_PROGRAM. The browsing
sequence is alphabetical. The end of the alphabetic list of definitions is indicated
by an 'END_LIST' exception response.

 GET_NEXT_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(GET_NEXT_PROGRAM),

 BROWSE_TOKEN(name4),]

 [OUT,

 PROGRAM_NAME(name8),

 [ACCESS(CICS|NONE|READ_ONLY|USER),]

 [AVAIL_STATUS(DISABLED|ENABLED),]

 [CEDF_STATUS(CEDF|NOCEDF|NOT_APPLIC),]

 [DATA_LOCATION(ANY|BELOW|NOT_APPLIC),]

 [ENTRY_POINT(name4),]

 [EXECUTION_KEY(CICS|NOT_APPLIC|USER),]

 [EXECUTION_SET(DPLSUBSET|FULLAPI|NOT_APPLIC),]

 [HOLD_STATUS(CICS_LIFE|NOT_APPLIC|TASK_LIFE),]

 [INSTALL_TYPE(AUTO|CATALOG|GROUPLIST|MANUAL|RDO|SYSAUTO),]

 [LANGUAGE_DEDUCED(ASSEMBLER|C|COBOL|COBOL_LE|

 COBOL2|NOT_APPLIC|NOT_DEDUCED|PLI),]

 [LANGUAGE_DEFINED(ASSEMBLER|C|COBOL|

 NOT_APPLIC|NOT_DEFINED|PLI),]

 [LOAD_POINT(name4),]

 [LOAD_STATUS(LOADABLE|NOT_APPLIC|NOT_LOADABLE|NOT_LOADED),]

 [LOCATION(CDSA|ECDSA|ERDSA|ESDSA|ESVA|NONE|RDSA|SDSA|SVA),]

 [MODULE_TYPE(MAPSET|PARTITIONSET|PROGRAM),]

 [NEW_PROGRAM_TOKEN(name8),]

 [PROGRAM_ATTRIBUTE(RELOAD|RESIDENT|REUSABLE|TRANSIENT),]

 [PROGRAM_LENGTH(name4),]

 [PROGRAM_TYPE(NOT_APPLIC|PRIVATE|SHARED|TYPE_ANY),]

 [PROGRAM_USAGE(APPLICATION|NUCLEUS),]

 [PROGRAM_USE_COUNT(name4),]

 [PROGRAM_USER_COUNT(name4),]

 [REMOTE_DEFINITION(LOCAL|REMOTE),]

 [REMOTE_PROGID(name8),]

 [REMOTE_SYSID(name4),]

 [REMOTE_TRANID(name4),]

 [SPECIFIED_AMODE(24|31|AMODE_ANY|AMODE_NOT_SPECIFIED),]

 [SPECIFIED_RMODE(24|RMODE_ANY|RMODE_NOT_SPECIFIED),]

RESPONSE(name1 | \),

REASON(name1 | \)]

Note: The options not described in the following list are identical to the equivalent
options of the INQUIRE_PROGRAM call.

298 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

BROWSE_TOKEN(name4)
specifies a token identifying the definition to be browsed. This can be either
the token returned in the NEW_PROGRAM_TOKEN field of the last
GET_NEXT_PROGRAM call, or that in the BROWSE_TOKEN field of the
START_BROWSE_PROGRAM call (this token is updated after every
GET_NEXT_PROGRAM call).

name4 The name of a location containing a 4-byte token.

NEW_PROGRAM_TOKEN(name8)
returns a token that identifies the next definition in the browse sequence. You
can use it in the BROWSE_TOKEN field of your next GET_NEXT_PROGRAM
call (or END_BROWSE_PROGRAM call, if you want to end the sequence).
You can also use it in the PROGRAM_TOKEN field of INQUIRE_ and
SET_PROGRAM calls.

name8 The name of a location to receive an 8-byte token that identifies
the next program definition.

RESPONSE and REASON values for GET_NEXT_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION END_LIST
 INVALID_BROWSE_TOKEN
 PROGRAM_NOT_DEFINED_TO_LD
DISASTER ABEND
 LOCK_ERROR
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The END_BROWSE_PROGRAM call
END_BROWSE_PROGRAM allows you to end a browse of program definitions
initiated by START_BROWSE_PROGRAM.

 END_BROWSE_PROGRAM

DFHPGISX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(END_BROWSE_PROGRAM),

 BROWSE_TOKEN(name4),]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

BROWSE_TOKEN(name4)
specifies either the token returned in the NEW_PROGRAM_TOKEN field of the
last GET_NEXT_PROGRAM call, or that in the BROWSE_TOKEN field of the

 Chapter 3. The user exit programming interface (XPI) 299

 program management functions

START_BROWSE_PROGRAM call (this token is updated after every
GET_NEXT_PROGRAM call).

RESPONSE and REASON values for END_BROWSE_PROGRAM:

RESPONSE REASON

OK None
EXCEPTION INVALID_BROWSE_TOKEN
DISASTER ABEND
 LOCK_ERROR
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_AUTOINSTALL call
INQUIRE_AUTOINSTALL returns information about the current settings of the
autoinstall function for programs, mapsets, and partitionsets.

 INQUIRE_AUTOINSTALL

DFHPGAQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_AUTOINSTALL),]

 [OUT,

 [AUTOINSTALL_CATALOG (ALL|MODIFY|NONE),]

 [AUTOINSTALL_EXIT_NAME(name8),]

 [AUTOINSTALL_STATE (ACTIVE|INACTIVE),]

RESPONSE(name1 | \),

REASON(name1 | \)]

AUTOINSTALL_CATALOG(ALL|MODIFY|NONE)
returns the catalog status for autoinstalled program definitions.

ALL All autoinstalled program, map, and partitionset definitions are
cataloged.

MODIFY Autoinstalled program, map, and partitionset definitions are
recorded on the CICS global catalog only if they are modified by
a SET PROGRAM command after being autoinstalled.

NONE No autoinstalled program, map, or partitionset definitions are
cataloged.

AUTOINSTALL_EXIT_NAME(name8)
is the name of the user-replaceable autoinstall control program for programs,
mapsets, and partitionsets.

AUTOINSTALL_STATE(ACTIVE|INACTIVE)
returns the status of the program autoinstall function.

ACTIVE Autoinstall is enabled for programs, mapsets, and partitionsets.
INACTIVE Autoinstall is not enabled for programs, mapsets, and

partitionsets.

300 CICS Transaction Server for VSE/ESA Customization Guide

 program management functions

RESPONSE and REASON values for INQUIRE_AUTOINSTALL:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID INVALID_FUNCTION
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The SET_AUTOINSTALL call
SET_AUTOINSTALL enables you to change the settings of the autoinstall function
for programs, mapsets, and partitionsets.

 SET_AUTOINSTALL

DFHPGAQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SET_AUTOINSTALL),

 [AUTOINSTALL_CATALOG (ALL|MODIFY|NONE),]

 [AUTOINSTALL_EXIT_NAME(name8),]

 [AUTOINSTALL_STATE (ACTIVE|INACTIVE),]

 [LANGUAGES_AVAILABLE(YES|NO),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

AUTOINSTALL_CATALOG(ALL|MODIFY|ALL)
specifies the catalog status for autoinstalled program definitions.

ALL All autoinstalled program, map, and partitionset definitions are
to be cataloged.

MODIFY Autoinstalled program, map, and partitionset definitions are to
be recorded on the CICS global catalog only if they are
modified by a SET PROGRAM command after being
autoinstalled.

NONE No autoinstalled program, map, or partitionset definitions are to
be cataloged.

AUTOINSTALL_EXIT_NAME(name8)
specifies the name of the user-replaceable autoinstall control program for
programs, mapsets, and partitionsets.

AUTOINSTALL_STATE(ACTIVE|INACTIVE)
specifies the status of the program autoinstall function.

ACTIVE Enable autoinstall for programs, mapsets, and partitionsets.
INACTIVE Disable autoinstall for programs, mapsets, and partitionsets.

 Chapter 3. The user exit programming interface (XPI) 301

 state data access functions

LANGUAGES_AVAILABLE(YES|NO)
specifies whether the autoinstall control program can be called. It can only be
called after language establishment.

YES The control program can be called.
NO The control program cannot be called.

RESPONSE and REASON values for SET_AUTOINSTALL:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID INVALID_FUNCTION
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

State data access functions
The state data access functions allow you to inquire on and set certain system data
in the AP domain.

The INQ_APPLICATION_DATA call
The INQ_APPLICATION_DATA call enables you to inquire on application system
data in the AP domain.

 INQ_APPLICATION_DATA

 DFHAPIQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQ_APPLICATION_DATA),]

 [OUT,

[DSA(name4 | (Rn) | \),]

[EIB(name4 | (Rn) | \),]

[RSA(name4 | (Rn) | \),]

[SYSEIB(name4 | (Rn) | \),]

[TCTUA(name4 | (Rn) | \),]

[TCTUASIZE(name4 | \),]

[TWA(name4 | (Rn) | \),]

[TWASIZE(name4 | (Rn) | \),]

RESPONSE (name1 | \),

REASON (name1 | \)]

302 CICS Transaction Server for VSE/ESA Customization Guide

 state data access functions

DSA(name4 | (Rn | *)
returns the head of the chain of dynamic storage used by application programs
to make them reentrant (for example, for assembler programs, the DFHEISTG
storage).

name4 The name of a 4-byte area that is to receive the address of the
head of the dynamic storage chain.

(Rn) A register that is to receive the DSA address.
* The parameter list itself, in name APIQ_DSA, is used to hold

the address.

EIB(name4 | (Rn) | *)
returns the address of the EXEC interface block (EIB) for the current task.

name4 The name of a fullword area that is to receive the address of
the EIB.

(Rn) A register that is to receive the address of the EIB.
* The parameter list itself, in name APIQ_EIB, is used to hold the

address.

RSA(name4 | (Rn | *)
returns the address of the register save area for the current task.

name4 The name of a fullword area that is to receive the address of
the register save area.

(Rn) A register that is to receive the address of the register save
area.

* The parameter list itself, name APIQ_RSA, is used to hold the
address.

SYSEIB(name4 | (Rn) | *)
returns the address of the system EXEC interface block of the current task.

name4 The name of a fullword area that is to receive the address of
the system EXEC interface block.

(Rn) A register that is to receive the address of the system EXEC
interface block.

* The parameter list itself, name APIQ_SYSEIB, is used to hold
the address.

TCTUA(name4 | (Rn) | *)
returns the address of the terminal control table user area (TCTUA) for the
current task.

name4 The name of a fullword area that is to receive the address of
the TCTUA.

(Rn) A register that is to receive the address of the TCTUA.
* The parameter list itself, name APIQ_TCTUA, is used to hold

the address.

 Chapter 3. The user exit programming interface (XPI) 303

 state data access functions

TCTUASIZE(name4 | (Rn) | *)
returns the length in bytes of the TCTUA for the current task.

name4 The name of a 4-byte area that is to receive the length in bytes
of the TCTUA.

(Rn) A register that is to receive the length of the TCTUA.
* The parameter list itself, name APIQ_TCTUASIZE, is used to

hold the length of the TCTUA.

TWA(name4 | (Rn) | *)
returns the address of the transaction work area.

name4 The name of a fullword area that is to receive the address of
the TWA.

(Rn) A register that is to receive the address of the TWA.
* The parameter list itself, name APIQ_TWA, is used to hold the

address of the TWA.

TWASIZE(name4 | (Rn) | *)
returns the length, in bytes, of the transaction work area (TWA).

name4 The name of a 4-byte area that is to receive the length, in
bytes, of the TWA.

(Rn) A register that is to receive the length of the TWA.
* The parameter list itself, name APIQ_TWASIZE, is used to hold

the length of the TWA.

RESPONSE and REASON values for INQ_APPLICATION_DATA:

RESPONSE REASON

OK None
EXCEPTION DPL_PROGRAM
 NO_TRANSACTION_ENVIRONMENT
 TRANSACTION_DOMAIN_ERROR
DISASTER ABEND
 LOOP
 INQ_FAILED
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

304 CICS Transaction Server for VSE/ESA Customization Guide

 state data access functions

The INQUIRE_SYSTEM call
The INQUIRE_SYSTEM call gives you access to CICS system data in the AP
domain.

 INQUIRE_SYSTEM

 DFHSAIQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_SYSTEM),

 [GMMTEXT(name4),]]

 [OUT,

[AKP(name4 | \),]

[CICSREL(name4 | \),]

[CICSSTATUS(ACTIVE | FINALQUIESCE | FIRSTQUIESCE |

 INITIALIZING),]

[CICSSYS(name1 | \),]

[CICSTSLEVEL(name6 | \),]

[CWA(name4 | (Rn) | \),]

[CWALENGTH(name2 | \),]

 [DATE(name4|\),]

[DTRPRGRM(name8 | \),]

[GMMLENGTH(name2 | \),]

[GMMTRANID(name4 | \),]

[INITSTATUS(FIRSTINIT | INITCOMPLETE | SECONDINIT |

 THIRDINIT),]

[JOBNAME(name8 | \),]

[OPREL(name4 | \),]

[OPSYS(name1 | \),]

[PLTPI(name2 | \),]

[SECURITYMGR(EXTSECURITY | NOSECURITY),]

[SHUTSTATUS(CANCELLED | CONTROLSHUT | NOTSHUTDOWN | SHUTDOWN),]

[STARTUP(COLDSTART | EMERGENCY | WARMSTART),]

 [STARTUPDATE(name4| \),]

[TERMURM(name8 | \),]

 [TIMEOFDAY(name4| \),]

[XRFSTATUS(NOXRF | PRIMARY | TAKEOVER),]

RESPONSE (name1 | \),

REASON (name1 | \)]

AKP(name4 | *)
returns the activity keypointing frequency of the CICS region.

name4 The name of a 4-byte location that is to receive the frequency
value

CICSREL(name4 | *)
returns the release under which the CICS region is running.

name4 The name of a 4-byte location that is to receive the release
characters as hexadecimal values.

CICSSTATUS(ACTIVE|FINALQUIESE|FIRSTQUIESCE|INITIALIZING)
returns the status of the CICS region.

ACTIVE The CICS region is active and ready to receive work.

 Chapter 3. The user exit programming interface (XPI) 305

 state data access functions

FINALQUIESCE The CICS region is shutting down, and is in the final stage of
quiescing.

FIRSTQUIESCE The CICS region is shutting down, and is in the first stage of
quiescing.

INITIALIZING The CICS region is initializing.

CICSSYS(name1 | *)
returns the operating system for which the running CICS has been built.

name1 The name of a 1-byte area that is to receive the hexadecimal
character representing the operating system. A value of “F”
represents VSE/ESA.

CICSTSLEVEL(name6 | *)
returns the release of CICS Transaction Server under which CICS is running.

name6 The name of a 6-byte area that is to receive the release
characters as hexadecimal values. The value is in the form
vvrrmm. CICS Transaction Server for VSE/ESA Release 1
returns X'010100'.

CWA(name4 | (Rn) | *)
returns the address of the common work area.

name4 The name of a 4-byte field that is to receive the address of the
CWA.

(Rn) A register to receive the address of the CWA.

CWALENGTH(name2 | *)
returns the length in bytes of the CWA.

name2 The name of a 2-byte field that is to receive the length of the
CWA.

DATE(name4 | *)
returns today’s date in packed-decimal form—4-bytes 0iyydddc , where:

i is a century indicator. (0=1900, 1=2000, 2=2100, and so on.)
 yy=years
 ddd =days

c is the sign.

name4 The name of a 4-byte location that is to receive the date.

DTRPRGRM(name8 | *)
returns the name of the dynamic transaction routing program.

name8 The name of an 8-byte area that is to receive the name of the
dynamic transaction routing program.

GMMLENGTH(name2 | *)
returns the length in bytes of the “good morning” message.

name2 The name of a 2-byte area that is to receive the length of the
good morning message.

GMMTEXT(name4)
specifies the address of an area of storage, at least 244 bytes in length and
owned by the caller, into which CICS is to return the good morning message.

306 CICS Transaction Server for VSE/ESA Customization Guide

 state data access functions

name4 The address of an area of storage that is to receive the good
morning message.

Note: The GMMTEXT parameter must follow the IN statement as an input
parameter.

GMMTRANID(name4 | *)
returns the transaction identifier of the CICS good morning transaction.

name4 The name of a 4-byte area that is to receive the CICS good
morning transaction id.

INITSTATUS(FIRSTINIT|INITCOMPLETE|SECONDINIT|THIRDINIT)
returns a value indicating the stage reached during CICS initialization.

FIRSTINIT The first stage of CICS initialization.
INITCOMPLETE CICS initialization is complete.
SECONDINIT The second stage of CICS initialization. This stage

corresponds to the period when first phase PLTPI programs
are run; that is those programs in a PLT that are defined
before the DFHDELIM statement.

THIRDINIT The third stage of CICS initialization. This stage corresponds
to the period when second phase PLTPI programs are run;
that is those programs in a PLT that are defined after the
DFHDELIM statement.

JOBNAME(name8 | *)
returns the 8-character VSE/ESA job name under which the CICS region is
running.

name8 The name of a 8-byte area that is to receive the VSE/ESA job
name.

OPREL(name2 | *)
returns the release number of the currently running operating system

name2 The name of a 2-byte area that is to receive, as a half-word
binary value, the release number of the operating system.

OPSYS(name1 | *)
returns the type of operating system on which the CICS regions is running.

name1 The name of a 1-byte area that is to receive the hexadecimal
character representing the operating system on which CICS is
running. A value of “F” represents VSE/ESA.

PLTPI(name2 | *)
returns the suffix that identifies the program list table (PLT) containing the list of
programs to be run during CICS initialization—the program list table post
initialization (PLTPI) list.

name2 The name of a 2-byte area that is to receive the suffix.

SECURITYMGR(EXTSECURITY|NOSECURITY)
returns a value ndicating whether security is active.

EXTSECURITY CICS is using an external security manager.
NOSECURITY Security is not in use in the CICS region—SEC=NO is

specified as a system initialization parameter.

 Chapter 3. The user exit programming interface (XPI) 307

 state data access functions

SHUTSTATUS(CANCELLED|CONTROLSHUT|NOTSHUTDOWN|SHUTDOWN)
returns the shutdown status of the CICS region.

CANCELLED CICS has been cancelled.
CONTROLSHUT

CICS is performing a controlled shutdown; that is, a normal
shutdown with a warm keypoint.

NOTSHUTDOWN
CICS is not in shutdown mode.

SHUTDOWN CICS is performing an immediate shutdown.

STARTUP(COLDSTART|EMERGENCY|WARMSTART)
returns the type of startup the CICS region performed.

COLDSTART CICS performed a cold start, either because this was
explicitly specified on the system initialization parameter, or
because CICS forced a cold start because of the state of the
global catalog.

EMERGENCY CICS performed an emergency restart because the previous
run did not shut down normally with a warm keypoint.

WARMSTART CICS performed a warm restart following the normal
shutdown of the previous run.

STARTUPDATE(name4 | *)
returns the start-up-date of this CICS region in packed-decimal form—4-bytes
0iyydddc , where:

i is a century indicator. (0=1900, 1=2000, 2=2100, and so on.)
 yy=years
 ddd =days

c is the sign.

name4 The name of a 4-byte location that is to receive the startup date
of this CICS system.

TERMURM(name8 | *)
returns the name of the autoinstall user program for terminals.

name8 The name of an 8-byte area that is to receive the name of the
autoinstall user program for terminals.

TIMEOFDAY(name4 | *)
returns the current time-of-day in packed decimal form (4-bytes hhmmsstc
where hh=hours, mm=minutes, ss=seconds, t=tenths of a second, and c is the
sign).

name4 The name of a 4-byte location that is to receive the time.

XRFSTATUS(NOXRF|PRIMARY|TAKEOVER)
returns the XRF status of the CICS region.

NOXRF CICS was started with the system initialization parameter
XRF=NO specified. XRF is not active.

PRIMARY The CICS region was started as an active CICS in an XRF
environment.

TAKEOVER The CICS region was started as an alternate CICS, with the
START=STANDBY system initialization parameter.

308 CICS Transaction Server for VSE/ESA Customization Guide

 state data access functions

RESPONSE and REASON values for INQUIRE_SYSTEM

RESPONSE REASON

OK None
INVALID None
EXCEPTION LENGTH_ERROR
 UNKNOWN_DATA
DISASTER ABEND
 INQ_FAILED
 LOOP
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The SET_SYSTEM call
The SET_SYSTEM call allows you to set CICS system data values in the AP
domain.

 SET_SYSTEM

 DFHSAIQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SET_SYSTEM),

[AKP(name4 | (Rn)),]

[DTRPRGRM(name8 | string | 'string'),]

[GMMLENGTH(name2 | (Rn) | expression),]

[GMMTEXT(name8 | (Rn)),]]

 [OUT,

RESPONSE (name1 | \),

REASON (name1 | \)]

AKP(name4 | (Rn))
specifies the activity keypointing frequency of the CICS region.

name4 The name of a 4-byte location that contains the new frequency
value.

(Rn) A register that contains the new frequency value.

DTRPRGRM(name8 | string | 'string')
specifies the name of the dynamic transaction routing program.

name8 The name of an 8-byte area that contains the name of the
dynamic transaction routing program.

string A string of character, without intervening blanks, that defines
the name of the dynamic transaction routing program being set.

‘string’ A string of characters without intervening blanks. If you want to
document a name (label) in your program, use this form.

GMMLENGTH(name2 | (Rn))
specifies the length of the new “good morning” message supplied by the
GMMTEXT parameter.

 Chapter 3. The user exit programming interface (XPI) 309

 storage control functions

name2 The name of a 2-byte area that contains, as a half-word binary
value, the length of the new good morning message.

(Rn) A register that contains the length of the new good morning
message.

GMMTEXT(name4 | (Rn))
specifies the new good morning message.

name4 The name of a 4-byte location that contains the address of a
storage area (up to a maximum of 246 bytes long) that contains
the good morning message.

(Rn) A register that contains the address of a storage area (up to a
maximum of 246 bytes long) that contains the good morning
message.

RESPONSE and REASON values for SET_SYSTEM:

RESPONSE REASON

OK None
INVALID None
EXCEPTION AKP_SIZE_ERROR
 LENGTH_ERROR
 NO_KEYPOINTING
DISASTER ABEND
 LOOP
 SET_FAILED
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

Storage control functions
There are six XPI storage control functions. These are the DFHSMMCX macro
calls GETMAIN, FREEMAIN, INQUIRE_ELEMENT_LENGTH, and
INQUIRE_TASK_STORAGE, and the DFHSMSRX calls INQUIRE_ACCESS and
INQUIRE_SHORT_ON_STORAGE.

DFHSMMCX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Dispatcher domain
 � Dump domain
� Journal control program

 � Monitor domain
 � Statistics domain
� Transient data program

310 CICS Transaction Server for VSE/ESA Customization Guide

 storage control functions

The GETMAIN call
GETMAIN acquires an element of storage for use by your exit program. You can
ask for a particular CLASS of storage, and you can request that it be initialized to a
single-byte value.

Storage in the following classes, acquired by a GETMAIN call, is released by CICS
when the TCA being used at the time of the acquisition terminates:

 CICS
 CICS24
 USER
 USER24

In contrast, storage in the following classes is not released automatically at
task-end: you should use the FREEMAIN call to release it:

 SHARED_CICS24
 SHARED_CICS
 SHARED_USER24
 SHARED_USER
 TERMINAL

In addition, some user exits may be invoked from system tasks, and in these
circumstances storage is not released until the next CICS shutdown. Therefore you
should use FREEMAIN to release all storage areas acquired by GETMAIN as soon
as you have finished using them.

 GETMAIN

DFHSMMCX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(GETMAIN),

GET_LENGTH(name4 | (Rn) | expression),

 STORAGE_CLASS(CICS|CICS24|LINE|SHARED_CICS|SHARED_CICS24|

 SHARED_USER|SHARED_USER24|TERMINAL|USER|USER24),

 SUSPEND(YES|NO),

[INITIAL_IMAGE(name1 | literalconst),]

[TCTTE_ADDRESS(name4 | (Ra)),]]

 [OUT,

ADDRESS(name4 | (Rn) | \),

RESPONSE(name1 | \),

REASON(name1 | \)]

ADDRESS(name4 | (Rn) | *)
returns the address of the storage obtained by the call.

name4 The name of a fullword where the obtained storage address is
saved.

(Rn) A register that is set to point to the obtained storage.
* The parameter list itself, name SMMC_ADDRESS, is used to

keep the address.

GET_LENGTH(name4 | (Rn) | expression)
specifies the number of bytes of storage you want, expressed in any of the
following ways:

 Chapter 3. The user exit programming interface (XPI) 311

 storage control functions

name4 The name of a fullword specifying, in binary, the number of
bytes.

(Rn) A register containing, in binary, the number of bytes.
expression A valid assembler-language expression; for instance, a number,

a symbolic expression, or a combination of the two.

If you request TERMINAL storage, the length you specify should not include
the length of the storage accounting area (SAA), and the maximum length you
can specify is 65 515 bytes. CICS storage management adds an 8-byte SAA,
and the address returned by the XPI call is that of the start of the SAA.

If you request CICS24, CICS, USER24, USER, SHARED_CICS24,
SHARED_CICS, SHARED_USER24, or SHARED_USER storage, you need
only specify the length needed by your program. The address returned is that
of the start of your data storage. The maximum size of storage for these
storage classes is the same as the size of the DSA from which they are
allocated.

INITIAL_IMAGE(name1 | literalconst)
specifies the initializing pattern. For example, you might want to set the
acquired storage to binary zeros.

name1 The name of a location where the one-byte initializing pattern is
stored.

literalconst A number in the form of a literal, for example B'00000000',
X'FF', X'FC', '0', or an equate symbol with a similar value.

STORAGE_CLASS(CICS|CICS24|LINE|SHARED_CICS|SHARED_CICS24|
 SHARED_USER|SHARED_USER24|TERMINAL|USER|USER24)
specifies the class of the storage that is the subject of the call. The values you
can assign to this option, and the type of storage each represents, are listed in
Table 105.

You must specify a storage class on a GETMAIN request. On a FREEMAIN
request it is an optional parameter, and any value that you specify is not
checked by CICS.

Table 105. CICS storage classes

STORAGE_CLASS Type of storage

CICS Task-lifetime CICS-key storage above 16MB

CICS24 Task-lifetime CICS-key storage below 16MB

LINE Shared CICS-key storage below 16MB

SHARED_CICS Shared CICS-key storage above 16MB

SHARED_CICS24 Shared CICS-key storage below 16MB

SHARED_USER Shared user-key storage above 16MB

SHARED_USER24 Shared user-key storage below 16MB

TERMINAL Shared CICS-key storage below 16MB with an 8-byte
SAA

USER Task-lifetime user-key storage above 16MB

USER24 Task-lifetime user-key storage below 16MB

312 CICS Transaction Server for VSE/ESA Customization Guide

 storage control functions

SUSPEND(YES|NO)
specifies whether to suspend your request if there is less storage available than
you have asked for on the GET_LENGTH option.

TCTTE_ADDRESS(name4 | (Ra))
specifies the address of the terminal control table terminal entry (TCTTE). On
GETMAIN requests, you must code this option if, on the STORAGE_CLASS
option, you specify a class of TERMINAL. On FREEMAIN requests, you must
code it if you are freeing TERMINAL-class storage.

Note: Before obtaining TERMINAL class storage, ensure that the task is
running under a terminal. To do this, issue an INQUIRE_TRANSACTION XPI
call; the FACILITY_TYPE option returns the type of principal facility associated
with the task.

name4 The name of a fullword containing the address.
(Ra) A register that points to the TCTTE.

RESPONSE and REASON values for GETMAIN:

RESPONSE REASON

OK None
EXCEPTION INSUFFICIENT_STORAGE
DISASTER None
INVALID None
KERNERROR None
PURGED None

Notes:

1. For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

2. ‘INSUFFICIENT_STORAGE’ is returned if the GETMAIN request was specified
with SUSPEND(NO), and there was not enough storage available to satisfy the
request.

3. ‘PURGED’ is returned if the GETMAIN request was specified with SUSPEND
(YES), there was not enough storage to satisfy the request, and the task was
purged.

 Chapter 3. The user exit programming interface (XPI) 313

 storage control functions

The FREEMAIN call
FREEMAIN releases an area of storage that is currently allocated to your exit
program.

 FREEMAIN

DFHSMMCX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(FREEMAIN),

ADDRESS(name4 | (Rn) | \),

 [STORAGE_CLASS(CICS|CICS24|LINE|SHARED_CICS|SHARED_CICS24|

 SHARED_USER|SHARED_USER24|TERMINAL|USER|USER24),]

 [TCTTE_ADDRESS(pointer),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

The explanation of the options is the same as that given above for the GETMAIN
function.

RESPONSE and REASON values for FREEMAIN:

RESPONSE REASON

OK None
EXCEPTION None
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_ACCESS call
INQUIRE_ACCESS returns the access-key of an element of storage specified by
start address and length. If the element is not wholly contained within one of the
CICS dynamic storage areas (DSAs), CICS returns an exception response.

 INQUIRE_ACCESS

DFHSMSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_ACCESS),

ELEMENT_ADDRESS(name4 | (Rn) | \),

ELEMENT_LENGTH(name4 | (Rn) | \),]

 [OUT,

ACCESS(CICS | READ_ONLY | USER),

RESPONSE(name1 | \),

REASON(name1 | \)]

314 CICS Transaction Server for VSE/ESA Customization Guide

 storage control functions

ACCESS(CICS | READ_ONLY | USER)
returns the access-key of the storage element.

CICS CICS-key.
USER User-key.
READ_ONLY Readonly storage.

ELEMENT_ADDRESS(name4 | (Rn) | *)
specifies the address of the storage element.

ELEMENT_LENGTH(name4 | (Rn) | *)
specifies the length of the storage element, in bytes. A length of zero is treated
as a length of one.

RESPONSE and REASON values for INQUIRE_ACCESS:

RESPONSE REASON

OK None
EXCEPTION INVALID_ELEMENT
DISASTER None
INVALID None
KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_ELEMENT_LENGTH call
The INQUIRE_ELEMENT_LENGTH call’s purpose is to enable the caller to pass
the address of any part of an element of task-lifetime storage, and to obtain from
CICS the start address and the length of the storage element that contains the
passed address.

 INQUIRE_ELEMENT_LENGTH

DFHSMMCX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION (INQUIRE_ELEMENT_LENGTH),

ADDRESS (name4 | (Rn) | \),]

 [OUT,

[ELEMENT_ADDRESS(name4 | (Rn) | \),]

ELEMENT_LENGTH(name4 | (Rn) | \),

RESPONSE (name1 | \),

REASON (name1 | \)]

ADDRESS(name4 | (Rn) | *)
specifies an address that lies within an element of task-lifetime storage of the
current task.

CICS accepts addresses that reference the leading or trailing check zones as
being valid addresses for the element of storage you are inquiring upon.

 Chapter 3. The user exit programming interface (XPI) 315

 storage control functions

ELEMENT_ADDRESS(name4 | (Rn) | *)
returns the start address of the element of task-lifetime storage referenced by
the ADDRESS parameter. The start address returned does not include the
leading check zone.

ELEMENT_LENGTH(name4 | (Rn) | *)
returns the length of the element of task-lifetime storage referenced by the
ADDRESS parameter. The length returned does not include the leading or
trailing check zones.

RESPONSE and REASON values for INQUIRE_ELEMENT_LENGTH:

RESPONSE REASON

OK None
EXCEPTION INVALID_ADDRESS
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_SHORT_ON_STORAGE call
The INQUIRE_SHORT_ON_STORAGE call’s purpose is to enable the caller to
determine whether CICS is short on storage either above or below the 16MB line.

 INQUIRE_SHORT_ON_STORAGE

DFHSMSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_SHORT_ON_STORAGE),]

 [OUT,

 SOS_ABOVE_THE_LINE(YES|NO),

 SOS_BELOW_THE_LINE(YES|NO),

RESPONSE (name1 | \),

REASON (name1 | \)]

SOS_ABOVE_THE_LINE(YES|NO),
returns YES if CICS is currently short-on-storage in any of the DSAs above the
16MB line, and NO if not.

SOS_BELOW_THE_LINE(YES|NO),
returns YES if CICS is currently short-on-storage in any of the DSAs below the
16MB line, and NO if not.

RESPONSE and REASON values for INQUIRE_SHORT_ON_STORAGE:

RESPONSE REASON

OK None
DISASTER None
KERNERROR None

316 CICS Transaction Server for VSE/ESA Customization Guide

 storage control functions

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_TASK_STORAGE call
The INQUIRE_TASK_STORAGE call’s purpose is to enable the caller to request
details of all elements of task-lifetime storage belonging to a task. You can specify
the transaction number of the task explicitly on the call, or let it default to the
current task.

 INQUIRE_TASK_STORAGE

DFHSMMCX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION (INQUIRE_TASK_STORAGE),

 ELEMENT_BUFFER(buffer-descriptor),

 LENGTH_BUFFER(buffer-descriptor),

[TRANSACTION_NUMBER(name4 | (Rn) | \),]]

 [OUT,

NUMBER_OF_ELEMENTS(name4 | (Rn) | \),

RESPONSE (name1 | \),

REASON (name1 | \)]

ELEMENT_BUFFER(buffer-descriptor)
defines the address and length of a buffer into which CICS returns a list of start
addresses of all the elements of task-lifetime storage belonging to either the
specified task or, by default, the current task.

The start addresses returned do not include the leading check zone.

LENGTH_BUFFER(buffer-descriptor)
defines the address and length of a buffer into which CICS returns a list of the
lengths of the elements of task-lifetime storage belonging to either the specified
task or, by default, the current task. The lengths returned do not include the
leading or trailing check zones.

NUMBER_OF_ELEMENTS(name4 | (Rn) | *)
returns the number of entries in each of the two buffers, ELEMENT_BUFFER
and LENGTH_BUFFER, as a full-word binary value.

TRANSACTION_NUMBER(name4 | (Rn) | *)
specifies, as a 4-byte packed decimal value, the transaction number of the task
to whom the storage belongs.

If you omit the transaction (task) number, CICS assumes the current task.

RESPONSE and REASON values for INQUIRE_TASK_STORAGE:

RESPONSE REASON

OK None
EXCEPTION INSUFFICIENT_STORAGE
 NO_TRANSACTION_ENVIRONMENT
DISASTER None
INVALID None

 Chapter 3. The user exit programming interface (XPI) 317

 trace control function

KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

Trace control function
There is one XPI trace control function. This is the DFHTRPTX call TRACE_PUT.

DFHTRPTX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Dispatcher domain
 � Dump domain
� Journal control program

 � Monitor domain
 � Statistics domain
� Transient data program.

The TRACE_PUT call
TRACE_PUT writes a trace entry to the active trace destinations. You should only
make a TRACE_PUT call when UEPTRON indicates that tracing is active for the
function containing the exit program (see UEPTRON in DFHUEPAR). You may
prefer to make “exception” trace entries, in case of serious errors, without testing
UEPTRON.

If you use TRACE_PUT to write exception trace entries, you should identify these
so they are highlighted as exception trace entries by the trace formatting utility
program. To identify an exception trace entry, enter the literal string ‘USEREXC’ in
the DATA1 block descriptor field on the DFHTRPTX call. See the CICS Problem
Determination Guide for details of how an exception trace entry is interpreted.

 TRACE_PUT

DFHTRPTX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(TRACE_PUT),

POINT_ID(literalconst | name2 | (Rn)),

 [DATA1(block-descriptor),]

 [DATA2(block-descriptor),]

 [DATA3(block-descriptor),]

 [DATA4(block-descriptor),]

 [DATA5(block-descriptor),]

 [DATA6(block-descriptor),]

 [DATA7(block-descriptor),]

[RETURN_ADDR(expression | name4 | (Ra)),]]

 [OUT,

RESPONSE(name1 | \)]

DATAn(block-descriptor)
specifies up to seven areas to be included in the data section of the trace
entry. For a description of valid block-descriptors, see page 253. If you specify

318 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

any given DATAn, then DATA1 through DATA(n−1) must be coded before
DATAn. The specified DATA items are printed in the trace output in the order
specified, that is, in order of DATA1 through DATAn. A 2-byte length field is
printed before the data field itself. The maximum total length of the data that
can be traced in one call is 4040 – (2 * n) bytes, where n is the number of data
fields that you specify.

POINT_ID(literalconst | name2 | (Rn))
specifies the trace entries made as a result of this request. Every TRACE_PUT
call within a calling domain should specify a unique POINT_ID; this enables
you to locate the origin of a trace call when examining a formatted trace. The
POINT_IDs must be in the range decimal 256 through 511 (X'100' through
X'1FF'). This range is not used in CICS modules, but is reserved for user
exits.

literalconst A number in the form of a literal, containing the ID.
name2 The name of a 2-byte field containing the ID.
(Rn) A register, the two low-order bytes of which contain the ID.

RETURN_ADDR(expression | name4 | (Ra))
specifies the value that appears in the return address field of the trace entry.

expression A valid assembler-language expression that results in the
name4 The name of a fullword containing the address.
(Ra) A register containing the address.

RESPONSE values for TRACE_PUT: The RESPONSE field is never set for the
TRACE_PUT function. This is for performance reasons. It is not considered that
any useful purpose could be served by testing for this value. Note, however, that
the syntax requires that RESPONSE is always specified as a parameter on the call.
It is recommended that RESPONSE(*) is always used.

Transaction management functions
This section describes the transaction management XPI calls.

The INQUIRE_DTRTRAN call
The INQUIRE_DTRTRAN call returns the name of the dynamic transaction routing
(DTR) transaction definition.

The DTR transaction definition provides common attributes for transactions that are
to be dynamically routed and which do not have a specific transaction definition. It
is specified on the DTRTRAN system initialization parameter; the CICS-supplied
default definition is CRTX.

 INQUIRE_DTRTRAN

DFHXMSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_DTRTRAN),]

 [OUT,

 DTRTRAN(name4),

RESPONSE (name1 | \),

REASON (name1 | \)]

 Chapter 3. The user exit programming interface (XPI) 319

 transaction management functions

DTRTRAN(name4)
returns the name of the DTR transaction definition used for routing transactions
that are not defined by an explicit transaction resource definition.

name4 The name of a 4-byte location that is to receive the name of the
DTR transaction definition. If 'NO' was specified on the
DTRTRAN system initialization parameter, 'NO' will be placed
in this field.

RESPONSE and REASON values for INQUIRE_DTRTRAN:

RESPONSE REASON

OK None
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_MXT call
The INQUIRE_MXT function is provided on the DFHXMSRX macro call. Its
purpose is to provide current value of the MXT parameter.

 INQUIRE_MXT

DFHXMSRX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_MXT),]

 [OUT,

[CURRENT_ACTIVE(name4 | (Rn)),]

[MXT_LIMIT(name4 | (Rn)),]

[MXT_QUEUED(name4 | (Rn)),]

[TCLASS_QUEUED(name4 | (Rn)),]

RESPONSE (name1 | \),

REASON (name1 | \)]

CURRENT_ACTIVE(name4 | (Rn))
returns the current number of all active user tasks.

name4 The name of a 4-byte location that is to receive the current
number of active user tasks, expressed as a binary value.

(Rn) A register to receive the current number of active user tasks,
expressed as a binary value.

MXT_LIMIT(name4 | (Rn))
returns the current value of the MXT parameter.

name4 The name of a 4-byte location that is to receive the maximum
number of all user tasks currently allowed, expressed as a
binary value.

(Rn) A register to receive the maximum number of all tasks currently
allowed, expressed as a binary value.

320 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

MXT_QUEUED(name4 | (Rn))
returns the current number of user transactions that are queued as a result of
the maximum tasks (MXT) being reached.

name4 The name of a 4-byte location that is to receive the current
number of queued user tasks, expressed as a binary value.

(Rn) A register to receive the current number of queued user tasks,
expressed as a binary value.

TCLASS_QUEUED(name4 | (Rn))
returns the current number of all transactions that are queued for transaction
class membership.

name4 The name of a 4-byte location that is to receive the current
number of queued transaction class members, expressed as a
binary value.

(Rn) A register to receive the current number of queued transaction
class members, expressed as a binary value.

RESPONSE and REASON values for INQUIRE_MXT:

RESPONSE REASON

OK None
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_TCLASS call
The INQUIRE_TCLASS function is provided on the DFHXMCLX macro call. Its
purpose is to provide current information about the specified transaction class
(TCLASS).

 INQUIRE_TCLASS

DFHXMCLX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_TCLASS),

INQ_TCLASS_NAME(name8 | string | ‘string’),]

 [OUT,

[CURRENT_ACTIVE(name4 | (Rn)),]

[CURRENT_QUEUED(name4 | (Rn)),]

[MAX_ACTIVE(name4 | (Rn)),]

[PURGE_THRESHOLD(name4 | (Rn)),]

RESPONSE (name1 | \),

REASON (name1 | \)]

CURRENT_ACTIVE(name4 | (Rn))
returns the current number of active user tasks in this transaction class.

 Chapter 3. The user exit programming interface (XPI) 321

 transaction management functions

name4 The name of a 4-byte location that is to receive the current
number of active user tasks for this transaction class, expressed
as a binary value.

(Rn) A register to receive the current number of active user tasks for
this transaction class, expressed as a binary value.

CURRENT_QUEUED(name4 | (Rn))
returns the current number of queued user tasks.

name4 The name of a 4-byte location that is to receive the current
number of queued user tasks in this transaction class,
expressed as a binary value.

(Rn) A register to receive the current number of queued user tasks,
expressed as a binary value.

INQ_TCLASS_NAME(name8 | string | ‘string’)
specifies the name of the transaction class for this inquiry.

name8 The name of an 8-byte location that contains the name of the
transaction class being inquired on.

string A string of characters, without intervening blanks, naming the
transaction class.

‘string’ A string of characters, within quotation marks, naming the
transaction class. The string length is set to 8 by padding with
blanks within the quotation marks.

MAX_ACTIVE(name4 | (Rn))
returns the current maximum number of active tasks allowed for the transaction
class.

name4 The name of a 4-byte location that is to receive the current
maximum number of active tasks currently allowed for this
transaction class, expressed as a binary value.

(Rn) A register to receive the current maximum number of active
tasks currently allowed for this transaction class, expressed as
a binary value.

PURGE_THRESHOLD(name4 | (Rn))
returns the purge threshold limit for this transaction class.

name4 The name of a 4-byte location that is to receive the current
purge threshold limit for this transaction class, expressed as a
binary value.

(Rn) A register to receive the current purge threshold limit for this
transaction class, expressed as a binary value.

RESPONSE and REASON values for INQUIRE_TCLASS:

RESPONSE REASON

OK None
DISASTER LOGIC_ERROR
INVALID None
EXCEPTION UNKNOWN_TCLASS

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

322 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

The INQUIRE_TRANDEF call
The INQUIRE_TRANDEF function is provided on the DFHXMXDX macro call. Its
purpose is to allow you to obtain information about the specified transaction
definition. In general, this function call is equivalent to the EXEC CICS INQUIRE
TRANSACTION command, with some differences.

 INQUIRE_TRANDEF

DFHXMXDX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_TRANDEF),

INQ_TRANSACTION_ID(name4 | string

 | ‘string’),]

 [OUT,

 [CMDSEC(name1),]

 [CONFDATA(name1),]

[DTIMEOUT(name4 | (Rn)),]

 [DUMP(name1),]

 [DYNAMIC(name1),]

 [INDOUBT(name1),]

 [INITIAL_PROGRAM(name8),]

 [LOCAL_QUEUING(name1),]

 [PARTITIONSET(name1),]

 [PARTITIONSET_NAME(name8),]

 [PROFILE_NAME(name8),]

 [REMOTE(name1),]

 [REMOTE_NAME(name8),]

 [REMOTE_SYSTEM(name4),]

 [RESSEC(name1),]

 [RESTART(name1),]

[RUNAWAY_LIMIT(name4 | (Rn)),]

 [SHUTDOWN(name1),]

 [SPURGE(name1),]

 [STATUS(name1),]

 [STORAGE_CLEAR(name1),]

 [STORAGE_FREEZE(name1),]

 [SYSTEM_ATTACH(name1),]

 [SYSTEM_RUNAWAY(name1),]

 [TASKDATAKEY(name1),]

 [TASKDATALOC(name1),]

 [TCLASS(name1),[TCLASS_NAME(name8),]]

 [TPURGE(name1),]

 [TRACE(name1),]

[TRAN_PRIORITY(name1 | (Rn)),]

 [TRAN_ROUTING_PROFILE(name8),]

 [TRANSACTION_ID(name4),]

[TWASIZE(name4 | (Rn)),]

RESPONSE (name1 | \),

REASON (name1 | \)]

The following parameter descriptions explain briefly the possible values that can be
returned on an INQUIRE_TRANDEF call. For a more detailed explanation of some
of these parameters, see the corresponding parameter descriptions for the
TRANSACTION resource definition in the CICS Resource Definition Guide.

 Chapter 3. The user exit programming interface (XPI) 323

 transaction management functions

CMDSEC(name1)
returns, in a 1-byte location (name1), whether command security checking is
required for the transaction.

YES Command security checking is required.
NO Command security checking is not required.

CONFDATA(name1)
returns, in a 1-byte location (name1), whether CICS is to suppress user data
from CICS trace entries. transaction.

YES CICS suppresses user data from the CICS trace points.
NO CICS does not suppress user data from the CICS trace points.

Note: If the CONFDATA system initialization parameter specifies SHOW, the
CONFDATA option of the transaction definition is ignored.

DTIMEOUT(name4)
returns the deadlock time-out value for the transaction.

name4 The name of a 4-byte location that is to receive the deadlock
time-out value, expressed as a binary value.

(Rn) A register to receive the deadlock time-out value, expressed as
a binary value.

Note that a value of zero means that the transaction resource definition
specifies DTIMOUT(NO).

DUMP(name1)
returns, in a 1-byte location (name1), whether CICS is to take a transaction
dump if the transaction abends.

YES A transaction dump is required.
NO A transaction dump is not required.

DYNAMIC(name1)
returns, in a 1-byte location (name1), whether the transaction is defined for
dynamic transaction routing.

YES The transaction is to be dynamically routed to a remote CICS.
NO The transaction is not to be dynamically routed.

INDOUBT(name1)
returns, in a 1-byte location (name1), the action CICS is to take if the
transaction abends while using intercommunication, and syncpointing status is
in doubt.

BACKOUT Any changes made by the transaction to recoverable resources
are to be backed out.

COMMIT Any changes made by the transaction to recoverable resources
are to be committed.

WAIT Any changes made to recoverable temporary storage are locked
until the session is recovered.

INITIAL_PROGRAM(name8)
returns the name of the initial program to be given control for the transaction.

name8 The name of an 8-byte location to receive the initial program
name.

324 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

INQ_TRANSACTION_ID(name4 | string | ‘string’)
specifies the transaction identifier for this transaction definition inquiry.

name4 The name of a 4-byte location that contains the name of the
transaction identifier.

string A string of characters, without intervening blanks, naming the
transaction identifier.

‘string’ A string of characters, within quotation marks, naming the
transaction identifier. The string length is set to 4 by padding
with blanks within the quotation marks.

LOCAL_QUEUING(name1)
returns, in a 1-byte location (name1), whether a start request for this
transaction is eligible to queue locally if the transaction is to be started on
another system, and the remote system is not available.

YES The request can be queued locally.
NO The request is not to be queued locally.

PARTITIONSET(name1)
returns, in a 1-byte location (name1), the partitionset specified on the
transaction definition.

KEEP The reserved name KEEP is specified for the partitionset, which
means tasks running under this transaction definition use the
application partitionset for the terminal associated with the
transaction.

NONE There is no partitionset specified for the transaction definition.
NAMED The partitionset is named specifically on the transaction

definition. The name is returned on the PARTITIONSET_NAME
parameter.

OWN The reserved name OWN is specified for the partitionset, which
means tasks running under this transaction definition perform
their own partitionset management.

PARTITIONSET_NAME(name8)
returns the name of the partitionset defined on the transaction definition.

name8 The name of an 8-byte location that is to receive the name of
the partitionset.

PROFILE_NAME(name8)
returns the name of the profile definition that is associated with the transaction
definition.

name8 The name of an 8-byte location to receive the name of the
profile definition associated with the transaction definition.

REMOTE(name1)
returns, in a 1-byte location (name1), whether the transaction is defined as
remote.

YES The transaction is a remote transaction.
NO The transaction is not a remote transaction.

REMOTE_NAME(name8)
returns the name by which the transaction is known in a remote system.

 Chapter 3. The user exit programming interface (XPI) 325

 transaction management functions

name8 The name of an 8-byte location to receive the transaction's
remote name.

REMOTE_SYSTEM(name4)
returns the name of the remote system as specified on the transaction
definition.

If the DYNAMIC parameter returns YES, REMOTE_SYSTEM returns the
default name, which can be changed by the dynamic routing program.

If the DYNAMIC parameter returns NO, this is the actual remote system to
which the transaction is to be routed.

name4 The name of a 4-byte location to receive the defined name of
the remote system.

RESSEC(name1)
returns, in a 1-byte location (name1), whether resource security checking is
required for the transaction.

YES Resource security checking is required.
NO Resource security checking is not required.

RESTART(name1)
returns, in a 1-byte location (name1), whether the transaction restart is to be
considered for transaction restart.

YES The transaction can be restarted.
NO The transaction cannot be restarted.

RUNAWAY_LIMIT(name4 | (Rn))
returns the runaway-task time limit specified on the RDO TRANSACTION
definition. If SYSTEM_RUNAWAY is YES, the value returned is the value
defined by the ICVR system initialization parameter.

name4 The name of a 4-byte location that is to receive the task
runaway limit, expressed as a binary value.

(Rn) A register to receive the task runaway limit, expressed as a
binary value.

SHUTDOWN(name1)
returns, in a 1-byte location (name1), whether the transaction can be run during
CICS shutdown.

DISABLED The transaction is disabled from running during CICS shutdown.
ENABLED The transaction is enabled to run during CICS shutdown.

SPURGE(name1)
returns, in a 1-byte location (name1), whether the transaction is defined as
system-purgeable.

YES The transaction is system-purgeable.
NO The transaction is not system-purgeable.

STATUS(name1)
returns, in a 1-byte location (name1), the status of the transaction definition.

DISABLED The transaction definition is disabled.
ENABLED The transaction definition is enabled.

326 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

STORAGE_CLEAR(name1)
returns, in a 1-byte location (name1), whether task-lifetime storage, of tasks
associated with this transaction definition, is to be cleared before it is freed by a
FREEMAIN command.

YES Task-lifetime storage must be cleared before it's freed.
NO Task-lifetime storage need not be cleared before it's freed.

STORAGE_FREEZE(name1 | (Rn))
returns, in a 1-byte location (name1), whether storage freeze is defined for the
transaction by means of the STGFRZ option on the CICS-supplied field
engineering transaction, CSFE.

YES Storage that is normally freed during the running of a
transaction is frozen.

NO Storage is freed normally during the running of the transaction.

SYSTEM_ATTACH(name1)
returns, in a 1-byte location (name1), whether the tasks attached with this
tranid are always to be attached as system tasks.

YES A system task is being attached for this transaction.
NO A user task is being attached for this transaction.

SYSTEM_RUNAWAY(name1)
returns, in a 1-byte location (name1), whether the transaction definition
specifies the system default runaway-task time limit, which is specified on the
ICVR system initialization parameter.

YES The transaction definition specifies the system default runaway
limit.

NO The transaction is not governed by the system runaway limit.

TASKDATAKEY(name1)
returns, in a 1-byte location (name1), the storage key of task-lifetime storage
for tasks associated with this transaction definition.

CICS CICS key is specified for task-lifetime storage.
USER USER key is specified for task-lifetime storage.

TASKDATALOC(name1)
returns, in a 1-byte location (name1), the data location of task-lifetime storage
for tasks associated with this transaction definition.

ANY Task-lifetime storage can be located above 16MB in virtual
storage.

BELOW Task-lifetime storage must be located below 16MB in virtual
storage.

TCLASS(name1)
returns, in a 1-byte location (name1), whether the transaction belongs to a
transaction class.

YES The transaction is a member of the transaction class named in
the TCLASS_NAME parameter.

NO The transaction is not a member of a transaction class.

 Chapter 3. The user exit programming interface (XPI) 327

 transaction management functions

TCLASS_NAME(name8)
returns the name of the transaction class to which the transaction belongs.

name8 The name of an 8-byte location to receive transaction class
name to which the transaction belongs.

TPURGE(name1)
returns, in a 1-byte location (name1), whether the transaction is defined as
purgeable in the event of a VTAM terminal error.

YES The transaction can be purged if a terminal error occurs.
NO The transaction can not be purged if a terminal error occurs.

TRACE(name1)
returns, in a 1-byte location (name1), the level of tracing defined for the
transaction

SPECIAL CICS special-level trace This is the result of special trace being
set by means of an EXEC CICS SET TRANSACTION command.

STANDARD
CICS standard-level trace This equates to TRACE(YES) in the
TRANSACTION resource definition.

SUPPRESSED
Tracing is suppressed for the transaction This equates to
TRACE(NO) in the TRANSACTION resource definition.

TRAN_PRIORITY(name1 | (Rn))
returns the transaction priority specified on the transaction definition.

name1 The name of a 1-byte location to receive the transaction priority,
expressed as a binary value.

(Rn) A register to receive the transaction priority, expressed as a
binary value.

TRAN_ROUTING_PROFILE(name8)
returns the name of the profile that CICS is to use to route the transaction to a
remote system.

name8 The name of an 8-byte location to receive the
transaction-routing profile.

TRANSACTION_ID(name4)
returns the primary transaction identifier for this transaction definition inquiry.

name4 The name of a 4-byte location that contains the name of the
transaction identifier.

TWASIZE(name4 | (Rn))
returns the size of the transaction work area specified on the transaction
definition.

name4 The name of a 4-byte location to receive the size of the
transaction work area, expressed as a binary value.

(Rn) A register to receive the size of the transaction work area,
expressed as a binary value.

328 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

RESPONSE and REASON values for INQUIRE_TRANDEF:

RESPONSE REASON

OK None
EXCEPTION UNKNOWN_TRANSACTION_ID
INVALID None
DISASTER LOGIC_ERROR
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The INQUIRE_TRANSACTION call
The INQUIRE_TRANSACTION function is provided on the DFHXMIQX macro call.
Its purpose is to allow you to obtain information about a transaction that is attached
(task). In general, this call is equivalent to the EXEC CICS INQUIRE TASK
command, with some minor differences.

 Chapter 3. The user exit programming interface (XPI) 329

 transaction management functions

 INQUIRE_TRANSACTION

DFHXMIQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(INQUIRE_TRANSACTION),

 [TRANSACTION_TOKEN(name8),]]

 [OUT,

 [CICS_UOW_ID(name8),]

 [CMDSEC(name1),]

 [CONFDATA(name1),]

[DTIMEOUT(name4 | (Rn)),]

 [DUMP(name1),]

 [DYNAMIC(name1),]

 [FACILITY_NAME(name4),]

 [FACILITY_TYPE(name1),]

 [INDOUBT(name1),]

 [INITIAL_PROGRAM(name8),]

 [LOCAL_QUEUING(name1),]

 [NETNAME(name8),]

 [ORIGINAL_TRANSACTION_ID(name4),]

 [OUT_TRANSACTION_TOKEN(name8),]

 [PROFILE_NAME(name8),]

 [REMOTE(name1),]

 [REMOTE_NAME(name8),]

 [REMOTE_SYSTEM(name4),]

 [RESOURCE_NAME(name8),]

 [RESOURCE_TYPE(name8),]

 [RESSEC(name1),]

 [RESTART(name1),]

[RESTART_COUNT(name2 | (Rn)),]

[RUNAWAY_LIMIT(name4 | (Rn)),]

 [SPURGE(name1),]

 [START_CODE(name1),]

 [STATUS(name1),]

 [STORAGE_CLEAR(name1),]

[SUSPEND_TIME(name4 | (Rn)),]

 [SYSTEM_TRANSACTION(name1),]

 [TASKDATAKEY(name1),]

 [TASKDATALOC(name1),]

 [TASK_PRIORITY(name1),]

 [TCLASS(name1),[TCLASS_NAME(name8),]]

 [TPURGE(name1),]

 [TRACE(name1),]

[TRANNUM(name4 | string | ‘string’),]

 [TRAN_PRIORITY(name1),]

 [TRAN_ROUTING_PROFILE(name8),]

 [TRANSACTION_ID(name4),]

 [TWASIZE(name4),]

 [USERID(name8),]

RESPONSE (name1 | \),

REASON (name1 | \)]

330 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

The descriptions of the following parameters are the same as the corresponding
parameters on the INQUIRE_TRANDEF function call.

CMDSEC RUNAWAY_LIMIT

CONFDATA SPURGE

DTIMEOUT STATUS

DUMP STORAGE_CLEAR

DYNAMIC TASKDATAKEY

INDOUBT TASKDATALOC

INITIAL_PROGRAM TCLASS

LOCAL_QUEUING TCLASS_NAME

PROFILE_NAME TPURGE

REMOTE TRACE

REMOTE_NAME TRAN_PRIORITY

REMOTE_SYSTEM TRAN_ROUTING_PROFILE

RESSEC TRANSACTION_ID

RESTART TWASIZE

The parameter descriptions that follow explain briefly the possible values that can
be returned on an INQUIRE_TRANSACTION call. For a more detailed explanation
of these parameters, see the corresponding parameter descriptions for the
TRANSACTION resource definition in the CICS Resource Definition Guide.

CICS_UOW_ID(name8)
returns the CICS unit of work identifier for the task.

name8 The name of an 8-byte location to receive the unit of work id.

FACILITY_NAME(name4)
returns the name of the principal facility associated with the task.

name4 The name of a 4-byte location to receive the name of the
principal facility.

FACILITY_TYPE(name1)
returns, in a 1-byte location (name1), the type of principal facility associated
with the task.

NONE There is no principal facility.
START The principal facility is an interval control element.
TD The principal facility is a transient data queue.
TERMINAL The principal facility is a terminal.

NETNAME(name8)
returns the network name of the principal facility associated with this task.

name8 The name of an 8-byte location to receive the network name.

ORIGINAL_TRANSACTION_ID(name4)
returns the transaction id that was used to attach the transaction. For example,
if an alias was used at a terminal, this field returns the alias.

name4 The name of a 4-byte location to receive the name of the
original transaction identifier.

OUT_TRANSACTION_TOKEN(name8)
returns the token that represents the task.

name8 The name of an 8-byte location to receive the transaction token
for the task.

 Chapter 3. The user exit programming interface (XPI) 331

 transaction management functions

RESOURCE_NAME(name8)
returns the name of a resource that the (suspended) transaction is waiting for.

name8 The name of an 8-byte location to receive the name of the
resource on which the transaction is waiting.

RESOURCE_TYPE(name8)
returns the type of resource that the (suspended) transaction is waiting for.

name8 The name of an 8-byte location to receive the type of resource
on which the transaction is waiting.

RESTART_COUNT(name2 | (Rn))
returns the number of times this instance of the transaction has been restarted.

name2 The name of a 2-byte location to receive the number of times
the transaction has been restarted, expressed as a half-word
binary value.

(Rn) A register to receive the number of times the transaction has
been restarted, expressed as a half-word binary value.

START_CODE(name1)
returns, in a 1-byte location (name1), how the task was started:

C A CICS internal attach.
DF The start code is not yet known—to be set later.
QD A transient data trigger level attach.
S A START command without any data.
SD A START command with data.
SZ A front end programming interface (FEPI) attach.
T A terminal input attach.
TT A permanent transaction terminal attach.

SUSPEND_TIME(name4 | (Rn))
returns the length of time that the task has been in its current suspended state.

name4 The name of a 4-byte location to receive the number of
seconds, rounded down, the task has been suspended,
expressed as a binary value.

(Rn) A register to receive the number of seconds, rounded down, the
task has been suspended, expressed as a binary value.

SYSTEM_TRANSACTION(name1)
returns, in a 1-byte location (name1), whether the task is CICS system task.

YES The task is a CICS system task.
NO The task is not a CICS system task.

TASK_PRIORITY(name1)
returns the combined task priority, which is the sum of the priorities defined for
the terminal, transaction, and operator.

name1 The name of a 1-byte location to receive the task priority,
expressed as a binary number.

TRANNUM(name4)
returns the task number of the transaction.

name4 The name of a 4-byte location to receive the task number.

332 CICS Transaction Server for VSE/ESA Customization Guide

 transaction management functions

TRANSACTION_TOKEN(name8)
specifies the transaction token for the task being inquired upon. This
parameter is optional, and if omitted, the current task is assumed.

If you issue this call within an XXMATT global user exit program, the current
task may be a CICS system task. To inquire on the user task for which
XXMATT is invoked, you must specify the transaction token passed on the
XXMATT exit-specific parameter list.

name8 The name of an 8-byte location that contains the transaction
token.

USERID(name8)
returns the userid associated with this task.

name8 The name of an 8-byte location to receive the userid.

RESPONSE and REASON values for INQUIRE_TRANSACTION:

RESPONSE REASON

OK None
DISASTER ABEND
 LOOP
INVALID None
EXCEPTION NO_TRANSACTION_ENVIRONMENT
 BUFFER_TOO_SMALL
 INVALID_TRANSACTION_TOKEN
KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

The SET_TRANSACTION call
The SET_TRANSACTION function is provided on the DFHXMIQX macro call. Its
purpose is to allow you to change the task priority and transaction class of the
current task.

Note that you can use this call to change the TCLASS_NAME only when it is
invoked from an XXMATT global user exit program.

 SET_TRANSACTION

DFHXMIQX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(SET_TRANSACTION),

 [TASK_PRIORITY(name4),]

 [TCLASS_NAME(name8),]

 [TRANSACTION_TOKEN(name8),]]

 [OUT,

RESPONSE (name1 | \),

REASON (name1 | \)]

 Chapter 3. The user exit programming interface (XPI) 333

 user journaling function

TASK_PRIORITY(name4)
specifies the new task priority being set for the task identified by
TRANSACTION_TOKEN.

name4 The name of a 4-byte location that contains the new task
priority number, expressed as a binary value.

TCLASS_NAME(name8)
specifies the new transaction class name that you want to associate this task
with. To specify that the task is not to be in any transaction class, specify the
special default system name DFHTCL00.

name8 The name of an 8-byte location that contains the name of the
new transaction class. Set this field to DFHTCL00 for no
transaction class.

TRANSACTION_TOKEN(name8)
specifies the transaction token that represents the task being modified. If you
omit this parameter, the call defaults to the current task.

name8 The name of an 8-byte location that contains the transaction
token.

RESPONSE and REASON values for SET_TRANSACTION:

RESPONSE REASON

OK None
EXCEPTION NO_TRANSACTION_ENVIRONMENT
 INVALID_TRANSACTION_TOKEN
 UNKNOWN_TCLASS
DISASTER ABEND
 LOOP
INVALID None
KERNERROR None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

User journaling function
There is one XPI user journaling function, which is the DFHJCJCX call
WRITE_JOURNAL_DATA.

DFHJCJCX calls cannot be used in any exit program invoked from any global
user exit point in the:

 � Statistics domain
 � Monitor domain
 � Dump domain
 � Dispatcher domain
� Transient data program
� Journal control program (DFHJCP).

334 CICS Transaction Server for VSE/ESA Customization Guide

 user journaling function

The WRITE_JOURNAL_DATA call
WRITE_JOURNAL_DATA writes a single journal record to a named CICS journal
data set.

 WRITE_JOURNAL DATA

DFHJCJCX [CALL,]

 [CLEAR,]

 [IN,

 FUNCTION(WRITE_JOURNAL_DATA),

 FROM(block-descriptor),

JOURNAL_ID(name2 | (Rn) | expression),

JOURNAL_RECORD_ID(name2 | string | 'string'),

 WAIT(YES|NO),

 [RECORD_PREFIX(block-descriptor),]]

 [OUT,

RESPONSE(name1 | \),

REASON(name1 | \)]

 Important

There is a restriction in using the XPI early during initialization. Do not start exit
programs that use the XPI functions TRANSACTION_DUMP,
WRITE_JOURNAL_DATA, MONITOR, and INQUIRE_MONITOR_DATA until
the second phase of the PLTPI. For further information about the PLTPI, refer
to Chapter 4, “Writing initialization and shutdown programs” on page 339.

FROM(block-descriptor)
specifies the address and the length of the journal record.

JOURNAL_ID(name2 | (Rn) | expression)
specifies the number of the journal data set to which the journal record is to be
written.

name2 The name of a 2-byte location where the ID is held.
(Rn) A register with the low-order 2 bytes holding the ID.
expression Any arithmetic expression, valid in assembler language, that

yields a number that can be expressed in 2 bytes.

JOURNAL_RECORD_ID(name2 | string | 'string ')
specifies a 2-character value to be written to the journal record to identify its
origin.

name2 The name of a 2-byte location.
string A character string that is limited to a length of 2 in the

generated code.
'string ' A character string enclosed in quotation marks.

RECORD_PREFIX(block-descriptor)
specifies the optional user prefix.

WAIT(YES|NO)
specifies whether CICS is to wait until the record is written to auxiliary storage
before returning control to the exit program.

 Chapter 3. The user exit programming interface (XPI) 335

 user journaling function

RESPONSE and REASON values for WRITE_JOURNAL_DATA:

RESPONSE REASON

OK None
EXCEPTION IO_ERROR
 JOURNAL_NOT_FOUND
 JOURNAL_NOT_OPEN
 LENGTH_ERROR
 STATUS_ERROR
DISASTER None
INVALID None
KERNERROR None
PURGED None

Note: For more detail, refer to the explanation of RESPONSE and REASON in
“General form of an XPI call” on page 240.

336 CICS Transaction Server for VSE/ESA Customization Guide

 initialization and shutdown programs

Part 2. Customizing with initialization and shutdown
programs

Table 106. Initialization and shutdown road map

If you want to... Refer to...

Write a program to perform tasks during
CICS startup or shutdown

Chapter 4, “Writing initialization and
shutdown programs” on page 339

 Copyright IBM Corp. 1977, 1999 337

 initialization and shutdown programs

338 CICS Transaction Server for VSE/ESA Customization Guide

 initialization programs

Chapter 4. Writing initialization and shutdown programs

You can write programs to run during the initialization and shutdown phases of
CICS processing. Any program that is to run at these times must be defined to
CICS in a program list table (PLT). Information about how to code the PLT is
provided in the CICS Resource Definition Guide.

The chapter is divided into the following sections:

 1. “Initialization programs”
2. “Shutdown programs” on page 341
3. “General considerations” on page 342

 Initialization programs
There are three stages in CICS initialization processing and two phases of program
list table (PLT) execution. You can write programs to execute during the second
and the third stages of initialization, but not during the first. Any program that is to
execute during CICS initialization must be specified in a PLT, and the suffix of that
PLT must be named on the program list table post initialization (PLTPI) system
initialization parameter.

PLT programs for the second stage of initialization
During the second stage of CICS initialization processing, the only PLT programs
that can execute are those containing the enabling commands for global and
task-related user exit programs. These programs are specified in the first part of
the PLTPI list. This allows you to enable those exit programs that are needed
during recovery.

The following points apply to all first phase PLTPI programs:

� The programs must be written in assembler language.

� They must run AMODE 31.

� The only EXEC CICS commands they should contain are:

 – ENABLE
 – EXTRACT EXIT

Because this stage occurs before recovery when initialization is incomplete, no
other CICS services can be invoked.

� If a first phase PLTPI program enables an exit program that issues any of the
XPI calls INQUIRE_MONITORING_DATA, MONITOR, TRANSACTION_DUMP,
or WRITE_JOURNAL_DATA, it must not specify the START option on the
EXEC CICS ENABLE COMMAND.

� First phase PLTPI programs must not enable any task-related user exit
program with the TASKSTART option.

� You do not have to define first phase PLTPI programs to CICS. If you do not,
default definitions are installed automatically by CICS. Note that this happens
whether or not program autoinstall is specified as active on the PGAIPGM
system initialization parameter. The autoinstall user program is not invoked to

 Copyright IBM Corp. 1977, 1999 339

 initialization programs

allow the definitions to be modified. The programs are defined with the
following attributes:

LANGUAGE(Assembler)
RELOAD(No)
STATUS(Enabled)
CEDF(No)
DATALOCATION(Below)
EXECKEY(CICS)
EXECUTIONSET(Fullapi)

If any of the default attributes are unsuitable, you must define the programs
statically (by defining entries in the CSD and installing the definitions).

PLT programs for the third stage of initialization
During the third stage of CICS initialization, most CICS services are available to
PLT programs. These programs are specified in the second part of the PLTPI list.
The limitations on the services that are available to second phase PLTPI programs
are described below.

� Because interregion communication (IRC) and intersystem communication (ISC)
have pseudo-terminal entries associated with their function, you cannot run any
IRC or ISC functions during PLTPI processing. This includes performing
inquiries on those ISC/IRC functions.

� PLTPI programs may request services that could suspend the issuing task.
(But note that this affects the time at which control is given to CICS.) The
SUSPEND must not require the decision to resume to be taken by another
task.

� Although PLTPI programs can issue interval control START commands, the
requested transactions are not attached before the initialization stages have
completed. Because this cannot happen until after the PLTPI programs
themselves have been completed, the latter must not be dependent on
anything that the requested transactions might do.

� PLTPI programs must not issue dump requests.

� PLTPI programs must not use the EXEC CICS PERFORM SHUTDOWN
command, or a severe error will occur in DFHDMDM. The EXEC CICS
PERFORM SHUTDOWN IMMEDIATE command is allowed.

� You must define second phase PLTPI programs to CICS. You can either
define the programs statically, or use program autoinstall. (For general
information about program autoinstall, see the CICS Resource Definition Guide
(For information about how to write a program to control the autoinstall of
programs, see Chapter 13, “Writing a program to control autoinstall of
programs” on page 461.)

Rebuilding protected resources from second phase programs
When a protected resource is accessed, CICS normally enqueues on the resource
to ensure that the issuing task has exclusive control. The automatic dequeuing of a
protected resource is deferred until the task terminates or until the task issues an
EXEC CICS SYNCPOINT command.

When a second phase PLTPI program is involved in rebuilding a protected
resource during recovery, an enqueue occurs on each logical record. Because the
dequeues are deferred, you should declare syncpoints throughout the recovery

340 CICS Transaction Server for VSE/ESA Customization Guide

 shutdown programs

process to allow dequeues to occur. If you do not do this, dynamic storage fills up
with the CICS control blocks that control the enqueue and dequeue processes.
However, note that you must not issue a SYNCPOINT ROLLBACK command in a
PLTPI program. Also, you should ensure that no other task is attached that could
access the resource until the PLTPI program has completed its recovery work,
because the second task would be able to gain control of the resource whenever
the PLTPI program declared a syncpoint.

 Shutdown programs
A controlled CICS shutdown has three quiesce stages. You can write programs to
execute during the first two quiesce stages, but not during the third. Any program
that is to execute during CICS shutdown must be defined in a program list table
(PLT), and the PLT must be named on the program list table shutdown (PLTSD)
system initialization parameter. You can override the PLTSD value by providing a
PLT name on the CEMT PERFORM SHUTDOWN command, or on the EXEC
CICS PERFORM SHUTDOWN command. If a PLTSD program abends, syncpoint
rollback occurs.

PLT programs for first quiesce stage
Programs that are to execute during the first quiesce stage of CICS shutdown are
specified in the first half of the PLT.

You must define first stage PLTSD programs to CICS. You can either define the
programs statically, or use program autoinstall.

Although terminals are still available during the first quiesce stage, tasks that are
started by terminal input are rejected unless they are named in a shutdown
transaction list table (XLT), or are CICS-supplied transactions, such as CEMT,
CSAC, CSTE, and CSNE, that are defined as SHUTDOWN(ENABLED) in the
supplied definitions.

The first quiesce stage is complete when all of the first-stage PLT programs have
executed, and when there are no user tasks in the system.

PLT programs for the second quiesce stage
Programs that are to execute during the second quiesce stage of CICS shutdown
are specified in the second half of the PLT.

You do not have to define second stage PLTSD programs to CICS. If you do not,
default definitions are installed automatically by CICS, as described for first phase
PLTPI programs. If any of the default attributes are unsuitable, you must define the
programs statically.

During the second quiesce stage, no new tasks can start, and no terminals are
available. Because of this, second phase PLT programs must not cause other
tasks to be started, and they cannot communicate with terminals. Further, second
phase PLT programs must not cause any resource security checking to be
performed.

If a transaction abend occurs while the PLTSD program is running, CICS is left in a
permanent wait state. To avoid this happening, ensure that your PLTSD program
handles all abend conditions.

 Chapter 4. Writing initialization and shutdown programs 341

 PLT programs—general

The second quiesce stage is complete when all of the second phase PLT programs
have been executed.

The sample shutdown program, DFH$SDAP
CICS provides a sample shutdown program, DFH$SDAP, for use during the first
quiesce stage of shutdown.

DFH$SDAP’s function is to prevent CICS from becoming suspended for long
periods when doing a normal shutdown, because of long running tasks which have
not completed. The program is in four phases. Each phase issues one of the
following commands, with a delay between each one:

 � FORCE
 � FORCEPURGE
 � VTAM FORCECLOSE
 � SHUTDOWN IMMEDIATE.

Tasks which are purged during the first three of these instructions should be
backed out. If the system is successfully terminated before the SHUTDOWN
IMMEDIATE is issued, a warm keypoint is taken.

You may want to change the delay intervals to suit the level of activity in your
system. For example, the VTAM FORCECLOSE command should be given
sufficient time to work. If it is not, the warm keypoint is not taken.

The source code of the sample program is provided in assembler only. You must
translate, assemble, and link-edit it. You must then use RDO to define and install
DFH$SDAP and its associated transaction SDAP. You must define SDAP with the
SHUTDOWN attribute specified as ENABLED. Finally, to cause DFH$SDAP to be
invoked, put an entry in the first part of the PLT that is named on the PLTSD
system initialization parameter.

 General considerations
The comments in the remainder of the chapter apply to both initialization and
shutdown programs.

� It is recommended that you terminate all PLT programs with an EXEC CICS
RETURN command.

� PLT programs receive control in primary-space translation mode. They must
return control to CICS in the same mode, and must restore any general
purpose registers or access registers that they use.

Storage keys for PLT programs
You need to consider the following (whether or not you are running CICS with the
storage protection facility):

� The execution key in which your PLT programs are invoked
� The storage key of data storage obtained for your PLT programs.

342 CICS Transaction Server for VSE/ESA Customization Guide

 PLT programs—general

Execution key for PLT programs
CICS always gives control to PLT programs in CICS key. Even if you specify
EXECKEY(USER) on the program resource definition, CICS forces CICS key when
it passes control to any PLT programs invoked during initialization or shutdown.
However, if a PLT-defined shutdown program itself passes control to another
program (via a link or transfer-control command), the program thus invoked
executes according to the execution key (EXECKEY) defined in its program
resource definition.

 Important

You are strongly recommended to specify EXECKEY(CICS) when defining both
PLT programs and programs to which a PLT program passes control.

Data storage key for PLT programs
The storage key of storage used by PLT programs depends on how the storage is
obtained:

� Any working storage requested by the PLT program is in the key set by the
TASKDATAKEY of the transaction under which the PLT program is invoked. In
the case of those PLT programs that run during initialization (PLTPI programs),
the transaction is always an internal CICS transaction, in which case the
TASKDATAKEY is always CICS. In the case of those programs that run during
shutdown (PLTSD programs), it depends on the transaction you use to issue
the shutdown command. If you issue a CEMT PERFORM SHUTDOWN
command, the TASKDATAKEY is always CICS. If you run a user-defined
transaction, to invoke a program that issues an EXEC CICS PERFORM
SHUTDOWN command, the TASKDATAKEY can be either USER or CICS.

� PLT programs can use EXEC CICS commands to obtain storage by issuing:

– Explicit EXEC CICS GETMAIN commands
– Implicit storage requests as a result of EXEC CICS commands that use the

SET option

The default storage key for storage obtained by EXEC CICS commands is set
by the TASKDATAKEY of the transaction under which the PLT program is
invoked, exactly as described for working storage.

As an example, consider a transaction defined with TASKDATAKEY(USER)
that causes a PLT shutdown program to be invoked. In this case, any implicit
or explicit storage acquired by the PLT program by means of an EXEC CICS
command is, by default, in user-key storage. However, on an EXEC CICS
GETMAIN command, the PLT program can override the TASKDATAKEY option
by specifying either CICSDATAKEY or USERDATAKEY.

 Chapter 4. Writing initialization and shutdown programs 343

 PLT programs—general

344 CICS Transaction Server for VSE/ESA Customization Guide

 user-replaceable programs

Part 3. Customizing with user-replaceable programs

Table 107. User-replaceable programs road map

If you want to... Refer to...

Study guidelines that apply to all
user-replaceable programs

Chapter 5, “General notes about
user-replaceable programs” on page 347

Customize the supplied error-handling
program for user programs

Chapter 6, “Writing a program error
program” on page 351

Customize the supplied program that
decides whether failed transactions should
be restarted

Chapter 7, “Writing a transaction restart
program” on page 355

Customize the supplied error-handling
program for sequential terminal devices

Chapter 8, “Writing a terminal error
program” on page 359

Customize the supplied error-handling
program for VTAM terminals

Chapter 9, “Writing a node error program”
on page 391

Customize the supplied program that
controls the autoinstall of VTAM terminals

Chapter 10, “Writing a program to control
autoinstall of terminals” on page 425

Customize the supplied program that
controls the autoinstall of APPC
connections

Chapter 11, “Writing a program to control
autoinstall of APPC connections” on
page 445

Customize the supplied program that
controls the autoinstall of shipped
terminals and connections

Chapter 12, “Writing a program to control
autoinstall of shipped terminals” on
page 453

Customize the supplied program that
controls the autoinstall of programs,
mapsets, and partitionsets

Chapter 13, “Writing a program to control
autoinstall of programs” on page 461

Customize the supplied program that
controls the routing of dynamic
transactions

Chapter 14, “Writing a dynamic
transaction routing program” on page 471

Customize the supplied journaling
programs, DFHXJCO and DFHXJCCC

Chapter 15, “The user-replaceable
journaling programs” on page 487

 Copyright IBM Corp. 1977, 1999 345

 user-replaceable programs

346 CICS Transaction Server for VSE/ESA Customization Guide

 notes about user-replaceable programs

Chapter 5. General notes about user-replaceable programs

The comments in this chapter apply to all the user-replaceable programs described
in Part 3 of this book.

A user-replaceable program is a CICS-supplied program that is always invoked at a
particular point in CICS processing, as if it were part of the CICS code. You can
modify the supplied program by including your own logic, or replace it with a
version that you write yourself.

The chapter is divided into the following sections:

1. “Rewriting user-replaceable programs”
2. “Assembling and link-editing user-replaceable programs” on page 348
3. “User-replaceable programs and the CICS storage protection facility” on

page 348

Rewriting user-replaceable programs
There are some general considerations that you must bear in mind when creating
your own versions of user-replaceable programs:

� User-replaceable programs are all command-level programs (not user exits).

� With the exception of the journaling programs, DFHXJCO and DFHXJCC,
which must be written in assembler language, you can code user-replaceable
programs in any of the languages supported by CICS (that is, in assembler
language, COBOL, PL/I, or C). An assembler-language version of each
program is provided, in source form, in the VSE/ESA sublibrary PRD1.BASE.
In addition, COBOL, PL/I, or C versions are provided for some programs. The
relevant chapter lists the sample programs, copy books, and macros supplied
in each case.

� You can trap an abend in a user-replaceable program by making the program
issue an EXEC CICS HANDLE ABEND command. However, if no HANDLE
ABEND is issued, CICS does not abend the task but returns control to the
CICS module that called the program. The action taken by the CICS module
depends on the user-replaceable program concerned.

� User-replaceable programs, and any programs invoked by user-replaceable
programs, can be RMODE ANY but must be AMODE 31.

� You must ensure that user-replaceable programs are defined as local.
User-replaceable programs cannot be run in a remote region. This applies to
all user-replaceable programs, including the autoinstall control program and
the dynamic transaction routing program.

� User-replaceable programs produce only system dumps when a program check
occurs; they do not produce transaction dumps.

� You can use the CICS Execution Diagnostic Facility (EDF) to test
user-replaceable programs. However, EDF does not work if the initial
transaction is a CICS-supplied transaction.

 Copyright IBM Corp. 1977, 1999 347

 notes about user-replaceable programs

Assembling and link-editing user-replaceable programs
The source for the CICS-supplied user-replaceable programs is installed in the
VSE/ESA sublibrary PRD1.BASE. If you intend changing any of these programs,
take a copy of the supplied source file and update the copy only. If the original
production sublibrary is serviced, and a user-replaceable program is modified, you
may like to reflect the changes in your own version of the code.

To replace one of these CICS-supplied programs, assemble and link-edit your
version of the program. All programs are supplied as command-level programs,
and must be translated before assembly and link-edit. Note that the translator
options NOPROLOG and NOEPILOG should be coded with your versions of
DFHZNEP and DFHTEP.

If you have user-written versions of DFHZNEP, DFHPEP, DFHTEP, DFHXJCO, or
DFHXJCC from an earlier release of CICS, and they use macros, recode the
programs to use EXEC CICS commands.

When link-editing a user-replaceable program, you must link-edit it with the EXEC
interface module (stub). This stub enables the program to communicate with the
EXEC interface program (DFHEIP). For more information about the EXEC
interface stub, see the CICS System Definition Guide.

User-replaceable programs and the CICS storage protection facility
When you are running CICS with the storage protection facility, there are two points
you need to consider:

� The execution key in which your user-replaceable programs run

� The storage key of data storage obtained for your user-replaceable programs

Execution key for user-replaceable programs
When you are running with storage protection active, CICS always gives control to
user-replaceable programs in CICS key. Even if you specify EXECKEY(USER) on
the program resource definition, CICS forces CICS key when it invokes the
program. However, if a user-replaceable program itself passes control to another
program, the program thus invoked executes according to the execution key
(EXECKEY) defined in its program resource definition.

 Important

You are strongly recommended to specify EXECKEY(CICS) when defining both
user-replaceable programs and programs to which a user-replaceable program
passes control.

348 CICS Transaction Server for VSE/ESA Customization Guide

 notes about user-replaceable programs

Data storage key for user-replaceable programs
The storage key of storage used by user-replaceable programs depends on how
the storage is obtained:

� The communication area passed to the user-replaceable program by its caller is
always in CICS key.

� Any working storage obtained for the user-replaceable program is in the key set
by the TASKDATAKEY of the transaction under which the program is invoked.

� User-replaceable programs can use EXEC CICS commands to obtain storage,
by issuing:

– Explicit EXEC CICS GETMAIN commands

– Implicit storage requests as a result of EXEC CICS commands that use the
SET option

The default storage key for storage obtained by EXEC CICS commands is set
by the TASKDATAKEY of the transaction under which the user program is
invoked.

As an example, consider a transaction defined with TASKDATAKEY(USER)
that causes a user-replaceable program to be invoked. In this case, any
implicit or explicit storage acquired by the user program by means of an EXEC
CICS command is, by default, in user-key storage. However, on an EXEC
CICS GETMAIN command, the user program can override the TASKDATAKEY
option by specifying either CICSDATAKEY or USERDATAKEY.

 Chapter 5. General notes about user-replaceable programs 349

 notes about user-replaceable programs

350 CICS Transaction Server for VSE/ESA Customization Guide

 the program error program

Chapter 6. Writing a program error program

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

The CICS-supplied default program error program (DFHPEP) contains code to:

� Obtain program addressability
� Access the communication area
� Return control to DFHACP through an EXEC CICS RETURN command

The source of DFHPEP is provided in assembler-language and C versions; you can
modify one of these to include your own logic, or you can write your own program
error program in any of the languages supported by CICS. There is a discussion of
the reasons for using your own program error program in the CICS Recovery and
Restart Guide. Note, however, that when writing a program error program you are
subject to specific restrictions:

� Your program must be named DFHPEP.

� It must not issue any EXEC CICS commands that make use of MRO or ISC
facilities (such as distributed transaction processing or function shipping).

� It must not issue any commands that access recoverable resources.

� It cannot influence the taking of a transaction dump.

The default DFHPEP module is a dummy module. If you want to customize it, you
have to code the source yourself. To help you, a listing of DFHPEP is provided in
Figure 12 on page 353. When you have written your program error program,
translate and assemble it, and use it to replace the supplied dummy program. For
information about the job control statements necessary to assemble and link-edit
user-replaceable programs, refer to “Assembling and link-editing user-replaceable
programs” on page 348.

Information available to DFHPEP in the communication area includes:

� The current abend code, at PEP_COM_CURRENT_ABEND_CODE.

� The original abend code, at PEP_COM_ORIGINAL_ABEND_CODE. The
“original” and “current” abend codes are different if the transaction has suffered
more than one abend—for example, if the failing program abended while
handling a previous abend. In this case, the “original” abend is the first abend
that the transaction suffered.

� The EIB at the time of the last EXEC CICS command, at
PEP_COM_USERS_EIB.

� The name of the program that suffered the (current) abend, at
PEP_COM_ABPROGRAM. PEP_COM_ABPROGRAM identifies the program
as follows:

– If the abend occurred in a distributed program link (DPL) server program
running in a remote system, it identifies the server program.

 Copyright IBM Corp. 1977, 1999 351

 the program error program

– If the abend is a local ‘ASRA’, ‘ASRB’, or ‘ASRD’, it identifies the program
in which the program check or operating system abend occurred.

– In all other cases, it identifies the current PPT entry.

� The program status word (PSW) at the time of the (current) abend, at
PEP_COM_PSW. The full contents of PEP_COM_PSW are significant for
abend codes ‘ASRA’, ‘ASRB’, and ‘ASRD’ only; the last four characters (the
PSW address) apply also to code ‘AICA’.

� The general purpose (GP) registers (0–15) at the time of the (current) abend, at
PEP_COM_REGISTERS.

� The execution key of the program at the time it suffered the (current) abend, at
PEP_COM_KEY. The value of PEP_COM_KEY is significant for abend codes
‘ASRA’ and ‘ASRB’ only.

� Whether the (current) abend occurred as the result of a storage protection
exception, at PEP_COM_STORAGE_HIT. The value of
PEP_COM_STORAGE_HIT is significant for abend code ‘ASRA’ only, and
indicates which of the protected dynamic storage areas (the CDSA, ECDSA, or
ERDSA), if any, the failing program attempted to overwrite.

� Program status word interrupt information, at PEP_COM_INT.

Note that information about the PSW, registers, execution key, and type of storage
“hit” is meaningful only if the abend occurred in the local system; these fields are
set to zeros if the abend occurred in a DPL server program running in a remote
system.

In order to disable the transaction, you should assign the value
‘PEP_COM_RETURN_DISABLE’ to the field PEP_COM_RETURN_CODE.
Otherwise, you should allow the field to default to zero, or set it to the value
‘PEP_COM_RETURN_OK’. DFHACP does not allow CICS-supplied transactions to
be disabled; you should not, therefore, attempt to disable transactions whose IDs
begin with “C”.

The sample programs and copy books
Two source-level versions of the default program are provided: DFHPEP, coded in
assembler language, and DFHPEPD, coded in C. There is an assembler-language
macro, DFHPCOM, and a corresponding C copy book, DFHPCOMD, that you can
use to define the communication area. All samples are in the VSE/ESA sublibrary
PRD1.BASE.

You can code your program error program in any of the languages supported by
CICS, but you must always name it DFHPEP.

The assembler-language source code of the default program error program is
shown in Figure 12 on page 353.

352 CICS Transaction Server for VSE/ESA Customization Guide

 the program error program

DFHEISTG DSECT ,

\

\ Insert your own storage definitions here

\

 DFHPCOM TYPE=DSECT GENERATE DFHPEP_COMMAREA

\\\

\ \ \ \ \ P R O G R A M E R R O R \ \ \ \ \

\ \ \ \ \ P R O G R A M \ \ \ \ \

\\\

DFHPEP CSECT PROGRAM ERROR PROGRAM CSECT

DFHPEP RMODE ANY

 DFHREGS , EQUATE REGISTERS

 XR R1,R1

ICM R1,B'ðð11',EIBCALEN Get Commarea length

BZ RETURNX ...no Commarea; exit

EXEC CICS ADDRESS COMMAREA(R2) ,

 USING DFHPEP_COMMAREA,R2

\

\ Insert your own code here

\

 LA R1,PEP_COM_RETURN_OK

 B RETURN

 DFHEJECT

\

RETURNER DS ðH Return for error cases

 LA R1,PEP_COM_RETURN_DISABLE

RETURN DS ðH

 ST R1,PEP_COM_RETURN_CODE

RETURNX DS ðH

EXEC CICS RETURN ,

 END DFHPEP

Figure 12. Source code of the default program error program (DFHPEP)

The assembler-language version of the DFHPEP communication area is shown in
Figure 13.

DFHPEP_COMMAREA DSECT

\

\ Standard header section

\

PEP_COM_STANDARD DS ðF

PEP_COM_FUNCTION DS CL1 Always '1'

PEP_COM_COMPONENT DS CL2 Always 'PC'

PEP_COM_RESERVED DS C Reserved

\

Figure 13 (Part 1 of 2). Source of DFHPEP communication area (assembler-language)

 Chapter 6. Writing a program error program 353

 the program error program

\ Abend codes and EIB

\

PEP_COM_CURRENT_ABEND_CODE DS CL4 Current abend code

PEP_COM_ORIGINAL_ABEND_CODE DS CL4 Original abend code

PEP_COM_USERS_EIB DS CL(EIBRLDBK-EIBTIME+L'EIBRLDBK)

\ EIB at last EXEC CICS command

\

\ Debugging information (program, PSW, registers and execution key at

\ time of abend, hit storage indicator). If the abend occurred in a

\ DPL server program running remotely, only program is meaningful.

\

PEP_COM_DEBUG DS ðF

PEP_COM_ABPROGRAM DS CL8 Program causing abend

PEP_COM_PSW DS CL8 PSW at abend

\ (codes ASRA, ASRB, AICA, ASRD)

PEP_COM_REGISTERS DS CL64 GP registers at abend

\ (registers ð-15)

PEP_COM_KEY DS X Execution key at abend

\ in form X'ðn'

\ (ASRA and ASRB only)

When applicable (ASRA or ASRB), PEP_COM_KEY will contain the

execution key at the time of abend.

PEP_COM_USER_KEY EQU 9 User key

\

PEP_COM_STORAGE_HIT DS X Storage type hit by

\ protection exception

\ (ASRA only)

PEP_COM_NO_HIT EQU ð No hit, or not

\ protection exception

PEP_COM_CDSA_HIT EQU 1 CDSA hit

PEP_COM_ECDSA_HIT EQU 2 ECDSA hit

PEP_COM_ERDSA_HIT EQU 3 ERDSA hit

PEP_COM_RDSA_HIT EQU 4 RDSA hit

PEP_COM_EUDSA_HIT EQU 5 EUDSA hit

PEP_COM_UDSA_HIT EQU 6 EUDSA hit

\

PEP_COM_SPACE DS X Reserved

PEP_COM_PADDING DS X Reserved

\

\ Return code

\

PEP_COM_RETURN_CODE DS F

\

PEP_COM_RETURN_OK EQU ð

PEP_COM_RETURN_DISABLE EQU 4 Disable transaction

\

\ Additional Program status word information

\

PEP_COM_INT DS CL8 PSW interrupt codes

\

\ length of DFHPEP_COMMAREA

\

PEP_COM_LEN EQU \-PEP_COM_STANDARD

Figure 13 (Part 2 of 2). Source of DFHPEP communication area (assembler-language)

354 CICS Transaction Server for VSE/ESA Customization Guide

 the transaction restart program

Chapter 7. Writing a transaction restart program

The transaction restart user-replaceable program (DFHREST) enables you to
participate in the decision as to whether a transaction should be restarted or not.
The default program requests restart under certain conditions; for example, in the
event of a program isolation deadlock (that is, when two tasks each wait for the
other to release a particular DL/I database segment), one of the tasks is backed out
and automatically restarted, and the other is allowed to complete its update.

For general information about restarting transactions, see the CICS Recovery and
Restart Guide.

Notes:

1. CICS invokes DFHREST only when RESTART(YES) is specified in an RDO
TRANSACTION resource definition.

2. When transaction restart occurs, a new task is attached that invokes the initial
program of the transaction. This is true even if the task abended in the second
or subsequent LUW, and DFHREST requested a restart.

3. Statistics on the total number of restarts against each transaction are kept.

4. Emergency restart does not restart any tasks.

5. Making a transaction restartable involves slightly more overhead than dynamic
transaction backout because more items are logged; such items are logged
only on the dynamic log.

6. In some cases, the benefits of transaction restart can be obtained instead by
using the EXEC CICS SYNCPOINT ROLLBACK command. Although use of
the SYNCPOINT ROLLBACK command is not usually recommended, it does
keep all the executable code in the application programs (except for DFHDBP
exit code). For more information about the use of the ROLLBACK option when
working in an ISC or MRO environment, see the CICS Intercommunication
Guide.

When planning to replace the default DFHREST, check to see if the logic of any of
your transactions is inappropriate for restart.

� Transactions that execute as a single logical unit of work are safe. Those that
execute a loop, and on each pass reading one record from a recoverable
destination, updating other recoverable resources, and closing with a syncpoint,
are also safe.

� There are two types of transaction that need to be modified to avoid
erroneously repeating work done in the logical units of work that precede an
abend:

1. A transaction in which the first and subsequent logical units of work change
different resources

2. A transaction where the contents of the input data area are used in several
logical units of work

 Copyright IBM Corp. 1977, 1999 355

 the transaction restart program

All the following conditions must be true for CICS to invoke the transaction restart
program:

� A transaction must be terminating abnormally.

� The transaction abend which caused the transaction to be terminating
abnormally must have been detected before the commit point of the implicit
syncpoint at the end of the transaction has been reached.

� The transaction must be defined as restartable in its transaction definition.

� The transaction must be related to a principal facility.

If these conditions are satisfied, CICS invokes the transaction restart program,
which then decides whether or not to request that the transaction be restarted.
CICS can subsequently override the decision (for example, if dynamic backout
fails). Also, if the transaction restart program abends, the transaction is not
restarted.

If the above conditions are not satisfied, CICS does not invoke the transaction
restart program and the transaction is not restarted.

The DFHREST communications area
The CICS-supplied default transaction restart program is written in assembler and
contains logic to:

� Address the communications area passed to it by CICS
� Decide whether or not to request transaction restart
� Send a message to CSMT if restart is requested
� Return control to CICS using the EXEC CICS RETURN command

The communications area is mapped by the XMRS_COMMAREA DSECT, which is
supplied in the DFHXMRSD copybook. The equivalent structures for C, COBOL,
and PL/1 are contained in the copybooks DFHXMRSH, DFHXMRSO, and
DFHXMRSP, respectively.

The information passed in the communications area is as follows:

XMRS_FUNCTION
Indicates, in a 1-byte field, the function code for this call to the restart program.
This is always set to 1, which equates to XMRS_TRANSACTION_RESTART, which
means that DFHREST is called to handle transaction restart.

XMRS_COMPONENT_CODE
Indicates, in a 2-byte field, the component code of the caller. This is always
set to XM, which equates to XMRS_TRANSACTION_MANAGER. The transaction
manager is the CICS component that coordinates the decision whether or not
to restart a transaction.

356 CICS Transaction Server for VSE/ESA Customization Guide

 the transaction restart program

XMRS_READ
Indicates, in a 1-byte field, whether the transaction has issued any terminal
read requests, other than for initial input.

The equated values for this parameter are:

XMRS_READ_YES
Means a terminal read has been performed by the transaction.

XMRS_READ_NO
Means no terminal read has been performed.

XMRS_WRITE
Indicates, in a 1-byte field, whether the transaction has issued any terminal
write requests.

The equated values for this parameter are:

XMRS_WRITE_YES
Means a terminal write has been performed by the transaction.

XMRS_WRITE_NO
Means a terminal write has not been performed by the transaction.

XMRS_SYNCPOINT
Indicates, in a 1-byte field, whether the transaction has performed any
syncpoints.

The equated values for this parameter are:

XMRS_SYNCPOINT_YES
Means one or more syncpoints have been performed.

XMRS_SYNCPOINT_NO
Means no syncpoints have been performed.

XMRS_RESTART_COUNT
This indicates, as an unsigned, half-word binary value, the number of times the
transaction has been restarted.

It is zero if the transaction has not been restarted. It is not the total number of
restarts for the transaction definition. Rather it is the total number of restarts
for transactions that are attempting, for example, to process a single piece of
operator input.

XMRS_ORIGINAL_ABEND_CODE
Provides the first abend code recorded by the transaction.

XMRS_CURRENT_ABEND_CODE
Provides the current abend code. The values of the original abend code and
the current abend code can be different if, for example, a transaction handles
an abend and then abends later.

XMRS_RESTART
This is a 1-byte output field that the transaction restart program sets to indicate
whether it wants CICS to restart the transaction.

The equated values for this field are:

XMRS_RESTART_YES Requests a restart.
XMRS_RESTART_NO Requests no restart.

 Chapter 7. Writing a transaction restart program 357

 the transaction restart program

The CICS-supplied default transaction restart program requests that the
transaction be restarted if:

1. The transaction has not performed a terminal read (other than reading the
initial input data), terminal write or syncpoint, and

2. The restart count is less than 20 (to limit the number of restarts), and

3. The current abend code is ADLD, indicating that the transaction was
abended due to a program isolation deadlock.

The source of the CICS-supplied default transaction restart program, DFHREST, is
supplied in assembler language only. It and the assembler copybook for mapping
the communications area are in the VSE/ESA sublibrary PRD1.BASE.

358 CICS Transaction Server for VSE/ESA Customization Guide

 background

Chapter 8. Writing a terminal error program

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter contains information about the CICS terminal error program (TEP),
which handles error conditions for devices that use the sequential access method.
Note that node error programs, not terminal error programs, must be used for
VTAM-supported devices . The chapter is divided into three sections:

1. “Background to error handling for sequential devices” is an overview.

2. “The sample terminal error program” on page 361 describes the
CICS-supplied sample TEP. It contains:

� “Components of the sample terminal error program” on page 362
� “Structure of the sample terminal error program” on page 363
� “Sample terminal error program messages” on page 367
� “Generating the sample terminal error program” on page 368

3. “User-written terminal error programs” on page 381 discusses factors you
need to consider when writing your own terminal error program. It contains:

� “Why write your own terminal error program?” on page 382
� “Restrictions on the use of EXEC CICS commands” on page 382
� “Addressing the contents of the communication area” on page 382
� “Addressing the contents of the TACLE” on page 384
� “Example of a user-written terminal error program” on page 388

Background to error handling for sequential devices
CICS terminal error handling is based on the assumption that most users want to
modify CICS operations in response to terminal errors. Because CICS cannot
anticipate all possible courses of action, the error-handling facilities have been
designed to allow maximum freedom for users to create unique solutions for errors
that occur within a terminal network.

The following CICS components are involved in the detection and correction of
errors that occur when sequential devices are used:

� Terminal control program (DFHTCP)
� Terminal abnormal condition program (DFHTACP)
� Terminal error program (DFHTEP)

These components are discussed in the following sections. (The corresponding
CICS components for logical units are discussed in Chapter 9, “Writing a node
error program” on page 391.)

 Copyright IBM Corp. 1977, 1999 359

 background

When an abnormal condition occurs
When an abnormal condition associated with a particular terminal or line occurs,
the terminal control program puts the terminal out of service and passes control to
the terminal abnormal condition program (DFHTACP) which, in turn, passes control
to a version of the terminal error program (DFHTEP, either CICS-supplied or
user-written), so that it can take the appropriate action.

Terminal control program
When the terminal from which the error was detected has been put out of service,
the terminal control program creates a terminal abnormal condition line entry
(TACLE), which is chained off the real entry, the terminal control table line entry
(TCTLE) for the line on which the error occurred. The TACLE contains information
about the error.

Terminal abnormal condition program
After the TACLE has been established, a task that executes DFHTACP is attached
by the terminal control program and is provided with a pointer to the real line entry
(TCTLE) on which the error occurred. After performing basic error analysis and
establishing the default actions to be taken, DFHTACP gives control to DFHTEP,
and passes a communication area (DFHTEPCA) so that DFHTEP can examine the
error and provide an alternative course of action.

The communication area provides access to all the error information necessary for
correct evaluation of the error; and contains special action flags that can be
manipulated to alter the default actions previously set by DFHTACP.

After DFHTEP has performed the desired function, it returns control to DFHTACP
by issuing an EXEC CICS RETURN command. DFHTACP then performs the
actions dictated by the action flags within the communication area, and the
error-handling task terminates.

Notes:

1. DFHTACP default actions, message codes, error codes, and conditions are
listed in the CICS Problem Determination Guide.

2. If DFHTACP has more than eight errors on a line before action can be taken,
the line is put out of service to avoid system degradation.

Terminal error program
The terminal error program analyzes the cause of the terminal or line error that has
been detected by the terminal control program. The CICS-supplied version (the
sample terminal error program, DFHXTEP) is designed to attempt basic and
generalized recovery actions. A user-written version of this program can be
provided to handle specific application-dependent recovery actions. The
user-written terminal error program is linked-to in the same way as the
CICS-supplied version, by the terminal abnormal condition program. Information
relating to the error is carried in the communication area and the TACLE.

The macros that are provided for generating the sample terminal error program are
described in the sections that follow. The main steps are generating the sample
DFHTEP module and tables by means of the DFHTEPM and DFHTEPT macros,

360 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

respectively. You can select the appropriate options in this sample program, and
you can base your own version on it.

There is a description of the CICS-supplied sample terminal error program
(DFHXTEP), and advice about how to generate a user-written version, later in this
chapter.

Note: If DFHTEP abends, then the default actions specified in DFHTACP are
reinstated.

The communication area
The communication area is the basic interface used by the sample DFHTEP, and
should be used by a user-written DFHTEP to:

� Address the TACLE
� Indicate the course of action to be taken on return to DFHTACP

Before giving control to DFHTEP, DFHTACP establishes which default actions
should be taken. This depends on the particular error condition that has been
detected. The default actions are indicated by appropriate bit settings in the 1-byte
communication area field TEPCAACT. For details about communication area
fields, default actions, and bit settings, refer to “User-written terminal error
programs” on page 381.

Terminal abnormal condition line entry (TACLE)
The TACLE contains further information about the type of error, and about the type
of terminal that is in error.

The code indicating the detected error condition is passed to DFHTEP in the 1-byte
field of the TACLE labeled TCTLEPFL. (These DFHTACP error codes, message
codes, conditions, and default actions are also listed in the CICS Problem
Determination Guide.)

A format description of the terminal abnormal condition line entry (TACLE) DSECT
is provided under “User-written terminal error programs” on page 381.

The sample terminal error program
CICS provides a sample terminal error program that can be used as a generalized
program structure for handling terminal errors. Note that, although the source code
form of the sample TEP (DFHXTEP) is provided in assembler language only, you
can write your own terminal error program in any of the languages supported by
CICS.

After DFHXTEP has been assembled, it is link-edited as DFHTEP. For information
about the job control statements necessary to assemble and link-edit
user-replaceable programs, refer to “Assembling and link-editing user-replaceable
programs” on page 348.

You can generate and use the sample terminal error program with the default
options provided, or you can customize the terminal error support to the needs of
the operating environment by selecting the appropriate generation options and
variables. Because each error condition is processed by a separate routine, you

 Chapter 8. Writing a terminal error program 361

 the sample terminal error program

can replace a CICS-provided routine with a user-written one when the sample TEP
is generated.

Components of the sample terminal error program
The sample terminal error program consists of the terminal error program itself and
two terminal error program tables:

� The TEP error table
� The TEP default table

Both tables contain “thresholds” defined for the various error conditions to be
controlled and accounted for by the sample DFHTEP. A “threshold” may be
thought of as the number of error occurrences that are permitted for a given type of
error on a given terminal before the sample DFHTEP accepts the DFHTACP
default actions. Optionally, the number of occurrences can be controlled and
accounted for over prescribed time intervals (for example, if more than three of a
given type of error occur in an hour, the terminal is put out of service).

TEP error table
The terminal error program (TEP) error table maintains information about errors that
have occurred on a terminal. The table consists of two parts (shown in Figure 14):

� The TEP error table header (TETH), which contains addresses and constants
related to the location and size of the TEP error table components

� Terminal error blocks (TEBs), which can be either:

– Permanent (P-TEBs), each associated with a particular terminal
– Reusable (R-TEBs), not permanently associated with any particular terminal

TEP error table header (TETH)

Terminal error blocks (P TEBs and R TEBs)

Figure 14. TEP error table

TEBs maintain error information associated with terminals. You must specify the
total number of TEBs to be generated. The maximum number needed is one per
terminal. In this case the TEBs are permanent.

You can reduce the total amount of storage used for TEBs by allocating a pool of
reusable TEBs, that are not permanently associated with a particular terminal.
Reusable TEBs are assigned dynamically on the first occurrence of an error
associated with a terminal, and are released for reuse when the appropriate error
processor places the terminal out of service.

Note: It is your responsibility to ensure that the pool is large enough to hold the
maximum number of terminals for which errors are expected to be outstanding at
any one time. If the pool limit is exceeded, handling of terminal errors may become
intermittent. No warning is given of this condition .

You should assign permanent TEBs to terminals that are critical to the network.
For the remainder of the network, you can generate a pool of reusable TEBs.

362 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

Each TEB currently in use or permanently assigned contains the symbolic terminal
identifier of the terminal, and one or more error status elements (ESEs), as shown
in Figure 15.

SYMBOLIC TERMINAL ID

ERROR STATUS ELEMENT
. . .
. . .
. . .

COMMON ERROR BUCKET

Figure 15. Terminal error block (TEB)

An ESE records the occurrence of a particular type of error associated with the
terminal. The contents of an error status element are described in the TEPCD
DSECT (generated by the DFHTEPM TYPE=INITIAL macro) under the comment
“ERROR STATUS ELEMENT FORMAT”. The number of ESEs per TEB remains
constant for all TEBs. You specify the number when the TEP tables are generated.
If fewer than the maximum number of error types recognized by DFHTACP (25) are
specified, one additional ESE, referred to as the “common error bucket”, is
generated for each TEB.

You can permanently reserve ESE space in each TEB for specific error types.
Those not permanently reserved are considered reusable, and are assigned
dynamically on the first occurrence of a particular error type associated with the
terminal. If an error type occurs that is not currently represented by an ESE, and if
all reusable ESEs are assigned to other error types, the occurrence of this error is
recorded in the common error bucket. DFHTACP can recognize far more error
types than can occur in a typical terminal network. By specifying less than the
maximum and allowing the sample DFHTEP to assign ESEs dynamically, you can
minimize the table size, and still control and account for the types of errors relevant
to the network.

TEP default table
The terminal error program (TEP) default table contains the “number and time”
thresholds for each type of error to be controlled and accounted for. An index array
at the beginning of the default table serves a dual function. If the value in the index
is positive, then the error code has a permanently defined ESE in each TEB and
the index value is the displacement to the reserved ESE. If the index value is
negative, then an ESE must be assigned dynamically from a reusable ESE if one
has not already been created by a prior occurrence. The complement of the
negative index value is the displacement to the thresholds for the error type
retained in the TEP default table.

Structure of the sample terminal error program
The structure of the sample terminal error program (DFHXTEP) can be broken
down into six major areas as follows:

1. Entry and initialization
2. Terminal identification and error code lookup
3. Error processor selection
4. Error processing execution

 Chapter 8. Writing a terminal error program 363

 the sample terminal error program

 5. General exit
 6. Common subroutines

These areas are described in detail in the sections that follow.

Figure 16 on page 366 gives an overview of the structure of the sample terminal
error program.

Entry and initialization
On entry, the sample TEP uses DFHEIENT to establish base registers and
addressability to EXEC Interface components. It obtains addressability to the
communication area passed by DFHTACP by means of an EXEC CICS ADDRESS
COMMAREA, and addressability to the EXEC interface block with an EXEC CICS
ADDRESS EIB command. It gets the address of the TACLE from the
communication area, and establishes access to the TEP tables with an EXEC CICS
LOAD. If time support has been generated, the error is time-stamped for
subsequent processing. (Current time of day is passed in the communication
area.) The first entry into the sample TEP after the system is initialized causes the
TEP tables to be initialized.

Terminal ID and error code lookup
After the general entry processing, the TEP error table is scanned for a terminal
error block (TEB) entry for the terminal associated with the error. If no matching
entry is found, a new TEB is created. If all TEBs are currently in use (if no
reusable TEBs are available), the processing is terminated and a RETURN request
is issued, giving control back to DFHTACP, where default actions are taken.

After the terminal’s TEB has been located or created, a similar scan is made of the
error status elements (ESEs) in the TEB to determine whether the type of error
currently being processed has occurred before, or if it has permanently reserved
ESE space. If an associated ESE is not found, an ESE is assigned for the error
type from a reusable ESE. If a reusable ESE does not exist, the error is accounted
for in the terminal’s common error bucket. The addresses of the appropriate
control areas (TEB and ESE) are placed in registers for use by the appropriate
error processor.

Error processor selection
User-specified message options are selected and the messages are written to a
specified transient data destination. The type of error code is used as an index to
a table to determine the address of an error processor to handle this type of error.
If the error code is invalid, or the sample TEP was not generated to process this
type of error, the address points to a routine that optionally generates an error
message and returns control to DFHTACP, where default actions are taken. If an
address of a valid error processor is obtained from the table, control is passed to
that routine.

Error processing execution
The function of each error processor is to determine whether the default actions
established by DFHTACP for a given error, or the actions established by the error
processor, are to be performed. The common error bucket is processed by the
specific error processor. However, the thresholds of the common error bucket are
used in determining whether the limit has been reached. Subroutines are provided
in the sample TEP to maintain count and time threshold totals for each error
associated with a particular terminal to assist the error processor to make its

364 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

decision. Also available are subroutines for logging the status of the error and any
recovery action taken by the error processor.

You can replace any of the error processors supplied in the sample TEP with
user-written ones. Register linkage conventions, error conditions, DFHTACP
default actions, and sample TEP error processor actions are described in
comments given in the sample DFHXTEP source listing. However, sample
DFHXTEP actions, in many cases, can be altered by changing the thresholds when
generating the TEP tables.

 General exit
Control is passed to a general exit routine from each error processor. This routine
determines whether the terminal is to remain in service. If the terminal is to be put
out of service, the terminal error block and all error status elements for that terminal
are deleted from the TEP error table unless the terminal was defined as a
permanent entry. When the terminal is placed back in service, a new terminal error
block is assigned if a subsequent error occurs.

 Common subroutines
A number of subroutines are provided in the sample DFHXTEP for use by the error
processors. Each subroutine entry has a label of the form “TEPxxxxx” where
“xxxxx” is the subroutine name. All labels within a subroutine start with TEPx
where “x” is the first character of the subroutine name. All subroutines are
arranged within the module in alphabetical order in the subroutine section. Register
conventions and use of the subroutine are given as comments at the beginning of
each subroutine in the source listing.

The following subroutines are available for writing your own error processors:

TEPACT
Used to output the names of the action bits set by DFHTACP and the sample
DFHTEP in the communication area field TEPCAACT if appropriate PRINT
options are selected when the program is generated.

TEPDEL
Used to delete the terminal error block and error status elements for a terminal
from the TEP error table on exit from an error processor.

TEPHEXCN
Used by TEPPUTTD to convert a 4-bit hexadecimal value to its 8-bit printable
equivalent.

TEPINCR
Used to update and test the count and time threshold totals maintained in the
terminal’s error status element.

TEPLOC
Used to locate or assign terminal error blocks and error status elements for a
terminal ID.

TEPPUTTD
Used to output character or hexadecimal data to a user-defined transient data
destination.

TEPTMCHK
Used by TEPINCR to determine whether the time threshold has been passed.

 Chapter 8. Writing a terminal error program 365

 the sample terminal error program

TEPWGHT
Used to update the weight/time threshold values maintained in the terminal’s
error status elements.

DFHTACP

Entry and
initialization

Terminal ID
and error
code lookup

Error
processing
selection

Error Error ... Error Error
processor processor processor processor

General Common
exit subroutine

DFHTACP

Figure 16. Overview of the sample terminal error program (DFHXTEP)

366 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

Sample terminal error program messages
The messages logged to the transient data destination CSMT (or, optionally, to the
destination specified in the OPTIONS operand of DFHTEPM TYPE=INITIAL) are of
six types, each identified by a unique message prefix. You can control the
selection of each type of message by using the appropriate parameters specified
on the PRINT operand of DFHTEPM TYPE=INITIAL.

These messages are:

DFHTEP, ERROR – error text
During DFHTEP module generation, the PRINT parameter specified ERRORS.
This message can be suppressed by using the NOERRORS option. The error
text is one of the following:

Unsupported error code, “xx”
The error code presented to DFHTEP by DFHTACP is unknown to
DFHTEP.

“DFHTEPT” not defined in system
The DFHTEP table could not be loaded into storage.

Unknown error status message, “xxxx”
The error status message presented from a remote 3270 type device could
not be decoded.

None of these errors should occur.

DFHTEP, ACTION – action flag names
During DFHTEP module generation, the PRINT parameter specified
TACPACTION or TEPACTION or both. If both are specified, this message is
logged twice each time DFHTEP is called. The first message indicates the
action flags as set by DFHTACP on entry to DFHTEP. The second message
indicates the action flags as returned to DFHTACP by DFHTEP after error
processing. These messages can be suppressed by using the
NOTACPACTION and NOTEPACTION options.

The action flag names and descriptions are listed below. For further
information about the actions taken by DFHTACP, see the description of the
TEPCAACT field in “Addressing the contents of the communication area” on
page 382.

Flag name Description
LINEOS Place line out of service.
NONPRGT Nonpurgeable task exists on terminal.
TERMOS Place terminal out of service.
ABENDT Abend task on terminal.
ABORTWR Abort write, free terminal storage.
SIGNOFF Sign off terminal.

DFHTEP, TID – tid
During the DFHTEP module generation, the PRINT parameter specified TID.
This message contains the symbolic terminal ID of the device associated with
the error. This message can be suppressed by using the NOTID option.

DFHTEP, DECB – DECB information
During the DFHTEP module generation, the PRINT parameter specified DECB.
This two-line message contains the DECB (printed in hexadecimal format) of

 Chapter 8. Writing a terminal error program 367

 the sample terminal error program

the terminal causing the error. The DECB is contained in the TACLE
(displacement +16 [decimal]). See the TACLE DSECT described in
“User-written terminal error programs” on page 381. This message can be
suppressed by using the NODECB option.

DFHTEP, TACLE – TACLE information
During the DFHTEP module generation, the PRINT parameter specified
TACLE. This message (printed in hexadecimal format) contains the first 16
bytes of the TACLE passed to DFHTEP by DFHTACP. See the TACLE
DSECT described in “User-written terminal error programs” on page 381. This
message can be suppressed by using the NOTACLE option.

DFHTEP, ESE – ESE information
During the DFHTEP module generation, the PRINT parameter specified ESE.
This message contains the error status element. The message can be
suppressed by using the NOESE option.

An ESE is either 6 bytes or 12 bytes long, depending on whether the TIME
option was specified when generating the TEP tables. The formats are as
follows:

Table 108. Format of error status element on DFHTEP, ESE messages—NOTIME
specified

NOTIME

Display

Length
(bytes)

Significance

0 2 Error threshold counter or weight
value in binary format

2 2 Current error count or weight value in
binary

4 1 Error code

5 1 Not used

Table 109. Format of error status element on DFHTEP, ESE messages—TIME
specified

TIME

Display

Length
(bytes)

Significance

0 5 Error threshold counter or weight
value in binary format

5 3 Timed threshold value in hundredths
of a second

8 4 Time of first occurrence of this error.
Time given as binary integer in
hundredths of a second

Generating the sample terminal error program
For information about how to generate the sample terminal error program and the
sample terminal error table, refer to “Assembling and link-editing user-replaceable
programs” on page 348.

The sample program and tables provide you with default error processing for
terminal errors. If you want to replace the supplied error processors with

368 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

user-written error processors, you must use the DFHTEPM and DFHTEPT macros
to generate a sample error program and tables that include your user-written
routines. Some of the parameters specified in the DFHTEPM and DFHTEPT
macros are related and care must be taken to ensure compatibility. The
parameters concerned are identified in the descriptions of the macros later in this
chapter.

If you use the sample terminal error program (DFHXTEP), you can generate the
required program and transaction definitions by using the CEDA INSTALL
GROUP(DFHSTAND) command.

Generating the sample terminal error program
The generation of the sample terminal error program consists of two separate
assembly and link-edit steps, one to create the sample TEP module itself, and the
other to create the TEP tables. The names under which the components must be
link-edited are:

DFHTEP Sample TEP module, assembled from DFHXTEP.
DFHTEPT Sample TEPT table, assembled from DFHXTEPT.

For information about the job control statements necessary to assemble and
link-edit user-replaceable programs, refer to “Assembling and link-editing
user-replaceable programs” on page 348.

DFHTEPM–generating the sample DFHTEP module
The sample DFHTEP module is generated by the following macros:

� DFHTEPM TYPE=USTOR—to indicate the start of user storage definitions.

� DFHTEPM TYPE=USTOREND—to indicate the end of user storage definitions.

� DFHTEPM TYPE=INITIAL—to control the printing of CICS DSECTs, provide
optional routines, and indicate the type of information to be logged when errors
occur.

� DFHTEPM TYPE=ENTRY—to code a user “ENTRY” routine.

� DFHTEPM TYPE=EXIT—to code a user “EXIT” routine.

� DFHTEPM TYPE=ERRPROC—to allow you to replace the error processors
supplied with the sample terminal error program with user-written versions.

� DFHTEPM TYPE=FINAL—to indicate the end of the sample DFHTEP module.

Note: You must code the translator options NOPROLOG and NOEPILOG in your
error processors if you use these macros.

DFHTEPM TYPE=USTOR

This macro indicates the start of user storage definitions. It must be followed by
your storage definitions, and then by DFHTEPM TYPE=USTOREND. If you use
DFHTEPM TYPE=USTOR to define storage, then both it and DFHTEPM
TYPE=USTOREND must be coded before DFHTEPM TYPE=INITIAL.

DFHTEPM TYPE=USTOREND

 Chapter 8. Writing a terminal error program 369

 the sample terminal error program

This macro indicates the end of user storage definitions. Its use is mandatory if
DFHTEPM TYPE=USTOR has been coded. If you use DFHTEPM TYPE=USTOR
to define storage, then both it and DFHTEPM TYPE=USTOREND must be coded
before DFHTEPM TYPE=INITIAL.

DFHTEPM TYPE=INITIAL

 [,DSECTPR={YES|NO}]

 [,OPTIONS=([TD|(TD,destid)|NOTD]

 [,EXITS|,NOEXITS]

 [,TIME|,NOTIME]

 [,PRINT=([ERRORS|NOERRORS]

 [,TACPACTION|,NOTACPACTION]

 [,TEPACTION|,NOTEPACTION]

 [,TID|,NOTID]

 [,DECB|,NODECB]

 [,TACLE|,NOTACLE]

 [,ESE|,NOESE])]

TYPE=INITIAL
establishes the beginning of the generation of the sample DFHTEP module
itself.

DSECTPR={YES|NO}
controls the printing of CICS DSECTs on the sample DFHTEP assembly listing.
Its purpose is to reduce the size of the listing. The default is DSECTPR=YES.

YES
Printing of the DSECTs is allowed.

NO
Printing of selected CICS DSECTs is suppressed.

OPTIONS=optional-routines
includes or excludes optional routines in the DFHTEP module. The
parentheses are required even when only one option is specified. If this
operand is omitted, all default options are generated.

TD|(TD, destid)|NOTD
specifies whether information regarding the errors is to be written to a
transient data destination.

TD
The transient data output routine is to be generated. The implied
transient data destination is CSMT.

(TD, destid)
The transient data output routine is to be generated. The messages
are sent to the destination specified by “destid”, which must be defined
in the destination control table.

NOTD
No messages are to be written to a transient data destination.

EXITS|NOEXITS
specifies whether “ENTRY” and “EXIT” user routine support is to be
included.

370 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

EXITS
Branches are taken to ENTRY and EXIT routines before and after error
processing. Dummy routines are provided if user routines are not
used.

NOEXITS
No branches are taken to user routines.

TIME|NOTIME
specifies whether threshold tests are to be controlled over prescribed time
intervals. An example might be putting a terminal out of service if more
than three instances of a given type of error occur in one hour. The
parameter must be the same as the OPTIONS operand in the DFHTEPT
TYPE=INITIAL macro.

TIME
This type of threshold testing is supported.

NOTIME
This type of threshold testing is not supported.

PRINT=print-information
specifies which types of information are to be logged to the transient data
destination each time an error occurs. If NOTD is specified on the OPTIONS
operand, all PRINT parameters default to NO. All PRINT parameters require
the transient data output routine. The parentheses are required even when
only one parameter is specified.

ERRORS|NOERRORS
specifies whether unprocessable conditions detected by the sample
DFHTEP are to be recorded on the transient data destination.

ERRORS
Error messages are to be logged.

NOERRORS
No error messages are to be logged.

TACPACTION|NOTACPACTION
specifies whether DFHTACP default actions are to be recorded on the
transient data destination.

TACPACTION
The default actions are logged.

NOTACPACTION
No default actions are logged.

TEPACTION|NOTEPACTION
specifies whether the actions selected as a result of sample DFHTEP
processing are to be recorded on the transient data destination.

TEPACTION
The final actions are logged.

NOTEPACTION
No final actions are logged.

 Chapter 8. Writing a terminal error program 371

 the sample terminal error program

TID|NOTID
specifies whether the symbolic terminal ID of the terminal associated with
an error is to be recorded on the transient data destination.

TID
The terminal ID is to be logged.

NOTID
No terminal IDs are to be logged.

DECB|NODECB
specifies whether the DECB of the line associated with error is to be
recorded on the transient data destination.

DECB
The DECB is logged. The hexadecimal representation of the DECB is
logged as two 24-byte messages.

NODECB
No DECB logging occurs.

TACLE|NOTACLE
specifies whether the TACLE prefix is to be recorded on the transient data
destination.

TACLE
The 16-byte TACLE prefix as received from DFHTACP is logged.

NOTACLE
No TACLE prefix logging occurs.

ESE|NOESE
specifies whether the ESE associated with the error is to be recorded on
the transient data destination.

ESE
The ESE, after being updated, and before being deleted (if the action
puts the terminal out of service) is logged.

NOESE
No ESE logging occurs.

DFHTEPM TYPE=ENTRY and EXIT–for user entry and exit
routines
The sample DFHTEP provides guidance about how to prepare error processor
routines, particularly with regard to register and subroutine linkage conventions.
The routines must also observe the following restrictions:

� The error processor must be coded in assembler language.

� The first executable statement in the routine must be labeled TEPCDxx, where
“xx” is the error code specified in the DFHTEPM
TYPE=ERRPROC,CODE=errcode macro, which follows.

� Register usage conventions and restrictions are stated in the sample DFHTEP
source.

� The error processor must exit to the sample DFHTEP symbolic label TEPRET.

372 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

The macro required for a user “ENTRY” routine is:

DFHTEPM TYPE=ENTRY

This macro must be immediately followed by user “ENTRY” routine code, starting
with the label “TEPENTRY” and ending with a BR 14 instruction.

The macro required for a user “EXIT” routine is:

DFHTEPM TYPE=EXIT

This macro must be immediately followed by user “EXIT” routine code, starting with
the label “TEPEXIT” and ending with a BR 14 instruction.

DFHTEPM TYPE=ERRPROC–replacing error processors
The macro necessary to replace error processors supplied with the sample
DFHTEP with user-written error processors is:

DFHTEPM TYPE=ERRPROC

 ,CODE=errcode

(followed by the appropriate error

processor source statements)

TYPE=ERRPROC
indicates that a CICS-supplied error processor routine is to be replaced with the
user-written error processor that immediately follows the macro. This macro is
optional; if used, it must follow the DFHTEPM TYPE=INITIAL macro. One
DFHTEPM TYPE=ERRPROC macro must precede each user-written error
processor source routine.

CODE=errcode
is used to identify the error code assigned to the appropriate error condition.
These codes are listed in Figure 20 on page 386.

DFHTEPM TYPE=FINAL–ending the sample DFHTEP module
The macro to terminate the sample DFHTEP module is:

DFHTEPM TYPE=FINAL

This is followed by an END DFHTEPNA statement.

 Chapter 8. Writing a terminal error program 373

 the sample terminal error program

DFHTEPM macro examples
1. The following is an example of the minimum number of statements required to

generate a sample DFHTEP module:

 DFHTEPM TYPE=INITIAL

 DFHTEPM TYPE=FINAL

 END DFHTEPNA

This example generates a sample DFHTEP module with CICS-supplied error
processors and all default options. This is equivalent to the CICS-supplied
sample terminal error program, DFHXTEP.

2. Figure 17 on page 375 is an example of a more tailored sample DFHTEP
module. In this example, all default types of information except for TACP and
TEP actions are to be logged to the TEPQ transient data destination. The
CICS DSECTs are not printed on the sample DFHTEP assembler-language
listing. There are two error processor routines (codes ‘04’ and ‘81’
respectively).

374 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

\ GENERATE USER STORAGE

 DFHTEPM TYPE=USTOR

 USORFLD DS F

 DFHTEPM TYPE=USTOREND

\ MODULE SPECIFICATIONS

 DFHTEPM TYPE=INITIAL, \

 OPTIONS=((TD,TEPQ),EXITS), \

 PRINT=(NOTEPACTION,NOTACPACTION), \

 DSECTPR=NO

\ USER-SUPPLIED ERROR PROCESSORS

 DFHTEPM TYPE=ERRPROC,CODE=ð4

 TEPCD81 DS ðH

 -

- error processor "ð4" source statements

 -

 B TEPRET

 DFHTEPM TYPE=ERRPROC,CODE=81

 TEPCD9C DS ðH

 -

- error processor "81" source statements

 -

 B TEPRET

\ USER "EXIT" EXIT CODE

 DFHTEPM TYPE=EXIT

 TEPEXIT DS ðH

 -

 -

Additional user source statements to be executed after

 error processing:

 -

 -

 BR R14

\ CONCLUDE MODULE GENERATION

 DFHTEPM TYPE=FINAL

 END DFHTEPNA

Figure 17. Example of DFHTEPM macros used to generate a sample DFHTEP module

 Chapter 8. Writing a terminal error program 375

 the sample terminal error program

DFHTEPT–generating the sample DFHTEP tables
The following macros are required to generate the terminal error program tables:

� DFHTEPT TYPE=INITIAL—to establish the control section.

� DFHTEPT TYPE=PERMTID—to define permanently reserved terminal error
blocks (TEBs) for specific terminals.

� DFHTEPT TYPE=PERMCODE|ERRCODE—to define permanently reserved
error status elements (ESEs).

� DFHTEPT TYPE=BUCKET—to define specific error conditions to be accounted
for in the common error bucket.

� DFHTEPT TYPE=FINAL—to end the set of DFHTEPT macros.

DFHTEPT TYPE=INITIAL–establishing the control section
The DFHTEPT TYPE=INITIAL macro necessary to establish the control section for
the TEP tables is:

DFHTEPT TYPE=INITIAL

 ,MAXTIDS=number

 [,MAXERRS={25|number}]

 [,OPTIONS={TIME|NOTIME}]

TYPE=INITIAL
establishes the beginning of the generation of the TEP tables.

MAXTIDS=number
specifies the total number of permanent and reusable terminal error blocks to
be generated in the TEP error table. Permanent entries are defined by the
DFHTEPT TYPE=PERMTID macro described later in this section. Any entries
not defined as permanent are reused when the terminal is taken out of service,
or are deleted at the request of an error processor. If an error occurs, and no
TEB space is available, the error is not processed, and DFHTACP default
actions are taken. The minimum number of blocks is 1. A maximum number is
not checked for but should be no greater than the number of terminals in your
network.

MAXERRS=25|number
specifies the number of errors to be recorded for each terminal. This value
determines the number of permanent and reusable error status elements in
each TEB. The maximum number that can be specified is 25 (the default
value). If more are requested, only the maximum are generated. If fewer are
requested, one extra ESE is generated for each TEB. The extra ESE is the
common error bucket. Permanently reserved ESEs are defined by the
DFHTEPT TYPE=PERMCODE macro described later in this section. Any
ESEs not defined as permanent are dynamically assigned on the first
occurrence of a nonpermanent error type associated with the terminal. By
defining a number less than the maximum, and allowing the sample DFHTEP to
assign ESEs dynamically, you can minimize the size of the table and still
control and account for the error types relevant to the network. The minimum
number that can be specified is zero. In this case only a common error bucket
is generated.

376 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

OPTIONS={TIME|NOTIME}
specifies whether time threshold space is to be reserved in support of the TIME
option specified in the DFHTEPM TYPE=INITIAL macro. The default is
OPTIONS=TIME.

TIME
Time threshold space is reserved.

NOTIME
Time threshold space is not reserved.

DFHTEPT TYPE=PERMTID–assigning permanent terminal error
blocks
The DFHTEPT TYPE=PERMTID macro to define permanently reserved terminal
error blocks for specific terminals is:

DFHTEPT TYPE=PERMTID

 ,TRMIDNT=name

TYPE=PERMTID
defines permanently reserved terminal error blocks for specific terminals.
Permanent TEBs are defined for terminals that are critical to system operation
to ensure that error processors are always executed in the event of errors
associated with that terminal. If no permanent TEBs are to be defined, this
macro is not required. A separate macro must be issued for each permanently
reserved TEB. The maximum number of permanent TEBs is the number
specified in the MAXTIDS operand of the DFHTEPT TYPE=INITIAL macro.

TRMIDNT=name
is used to provide the symbolic terminal ID (1–4 characters) for a permanently
defined TEB. Only one terminal can be specified in each macro.

DFHTEPT TYPE=PERMCODE|ERRCODE–defining error status
elements
The DFHTEPT TYPE=PERMCODE|ERRCODE macro is used to change the
default threshold constants of the sample DFHTEP, and to define permanently
reserved error status elements:

DFHTEPT TYPE={PERMCODE|ERRCODE}

 ,CODE={errcode|BUCKET}

 [,COUNT=number]

 [,TIME=(number[,SEC|,MIN|,HRS])]

TYPE={PERMCODE|ERRCODE}
identifies whether the error code specified in the macro is to have a
permanently reserved or a dynamically assigned ESE. These macros are
required only if permanently reserved ESEs are to be defined, or if the sample
DFHTEP default threshold constants are to be overridden. These are listed in
Table 110 on page 379.

 Chapter 8. Writing a terminal error program 377

 the sample terminal error program

PERMCODE
Identifies the error code specified as having a permanently reserved ESE.
Each permanently reserved ESE must be identified by a separate
DFHTEPT TYPE=PERMCODE macro. All DFHTEPT TYPE=PERMCODE
macros must precede all DFHTEPT TYPE=ERRCODE macros.

ERRCODE
Indicates that the error code specified does not require a permanently
reserved ESE, but that the sample DFHTEP default threshold constants are
to be changed. Each error code requiring a threshold constant change,
other than those defined as permanently reserved, must be identified by a
separate DFHTEPT TYPE=ERRCODE macro. All DFHTEPT
TYPE=ERRCODE macros must follow all DFHTEPT TYPE=PERMCODE
macros.

CODE={errcode|BUCKET}
identifies the error code referred to by the TYPE=PERMCODE|ERRCODE
parameter. These codes are listed in Figure 20 on page 386.
CODE=BUCKET is only applicable to the DFHTEPT TYPE=ERRCODE macro.
It is used to override the default threshold constants established for the
common error bucket.

COUNT=number
can be used in either the DFHTEPT TYPE=PERMCODE or TYPE=ERRCODE
macro to override the sample DFHTEP default count threshold (see Table 110
on page 379). When the number of occurrences of the error type specified
reaches the threshold, an error processor normally takes a logic path that
causes DFHTACP default actions to be taken. If the number of occurrences is
less than the threshold, the error processor normally takes a logic path that
overrides the DFHTACP default actions. The updating and testing of the
current threshold counts are normally performed by a DFHTEP subroutine that
sets a condition code that the error processor can test to determine whether
the limit has been reached. If you specify 0 as the number in the COUNT
operand, you are not told when the threshold is reached .

TIME=(number[,SEC|,MIN|,HRS])
can be used in either the DFHTEPT TYPE=PERMCODE or TYPE=ERRCODE
macros to override the sample DFHTEP default time threshold (see Table 110
on page 379). This operand is only applicable when OPTIONS=TIME is
specified on both the DFHTEPM and DFHTEPT TYPE=INITIAL macros. When
the number of occurrences reaches the threshold specified on the COUNT
operand (above) within the interval specified on this parameter, an error
processor normally takes a logic path that causes DFHTACP default actions to
be taken. If the number of occurrences within the interval is less than the
threshold, the error processor normally takes a logic path that overrides the
DFHTACP default actions. If the time interval has expired, the sample
DFHTEP subroutine that normally updates and tests the current threshold count
resets the occurrence counts, and establishes a new expiration time. In this
case, the condition code set by the subroutine indicates that the thresholds had
not been reached.

Time control in the sample DFHTEP starts with the first occurrence of an error
type. Subsequent occurrences of the same error type do not establish new
starting times, but are accounted for as having occurred within the interval
started by the first occurrence. This continues until an error count reaches the
threshold within the interval started by the first occurrence, or until the interval

378 CICS Transaction Server for VSE/ESA Customization Guide

 the sample terminal error program

has expired. In the latter case, the error being processed becomes a first
occurrence, and a new interval is started. A time interval of 0 means that the
number of occurrences is to be accounted for and controlled without regard to
a time interval. Zero is the implied time interval if the value of the COUNT
operand is 0 or 1. It is also the implied time interval if the time options are not
generated.

The time interval can be expressed in any one of four units; hours, minutes,
seconds, or hundredths of a second. The maximum interval must be the
equivalent of less than 24 hours. A practical minimum would be 1 to 2
minutes. This allows for access method retries and the time required to create
the task to service each error. The four methods of expressing the threshold
time interval are:

number
The interval in units of one hundredth of a second. Parentheses are not
required if this method is used. The maximum number must be less than
8 640 000 (24 hours).

(number,SEC)
The interval in whole seconds, which must be enclosed in parentheses.
The maximum number must be less than 86 400 (24 hours).

(number,MIN)
The interval in whole minutes, which must be enclosed in parentheses.
The maximum number must be less than 1440 (24 hours).

(number,HRS)
The interval in whole hours, which must be enclosed in parentheses. The
maximum number must be less than 24.

Table 110 illustrates the default thresholds of the sample terminal error program,
referred to in the TYPE, COUNT, and TIME operands of the DFHTEPT
TYPE=PERMCODE|ERRCODE macro.

Table 110. Default thresholds of the sample TEP

CODE= COUNT= TIME=

81 3 (7,MIN)

85 1 0

88 1 0

8C 1 0

8D 1 0

8E 1 0

8F 1 0

BUCKET 5 (5,MIN)

 Chapter 8. Writing a terminal error program 379

 the sample terminal error program

DFHTEPT TYPE=BUCKET–using the error bucket for specific
errors
The DFHTEPT TYPE=BUCKET macro is used to ensure that specific error
conditions are always accounted for in the common error bucket:

DFHTEPT TYPE=BUCKET

 ,CODE=errcode

TYPE=BUCKET
generates the macro to account for specific error conditions in the common
error bucket. If MAXERR=25 on the DFHTEPT TYPE=INITIAL macro, this
macro cannot be used. This macro is not required if no error codes are to be
specifically accounted for in the common error bucket. Each error code must
be identified by a separate DFHTEPT TYPE=BUCKET macro.

CODE=errcode
identifies the error code to be specifically accounted for in the common error
bucket. The error code must not be specified in the DFHTEPT
TYPE=PERMCODE or TYPE=ERRCODE macro.

DFHTEPT TYPE=FINAL–terminating DFHTEPT entries
The DFHTEPT TYPE=FINAL macro terminates the generation of the DFHTEP
tables.

DFHTEPT TYPE=FINAL

DFHTEPT–examples of how the macros are used
1. The following is an example of the minimum number of statements required to

generate the TEP tables:

DFHTEPT TYPE=INITIAL,MAXTIDS=1ð

DFHTEPT TYPE=FINAL

END

This example generates 10 reusable terminal error blocks, each capable of
accounting for the maximum number of error types. Time threshold control is
supported, and all threshold values are the defaults supported by the sample
DFHTEP. This is equivalent to the CICS-supplied sample terminal error
program.

2. Figure 18 on page 381 is an example of a customized TEP table (continuation
character omitted).

380 CICS Transaction Server for VSE/ESA Customization Guide

 user-written terminal error programs

\ TABLE SPECIFICATIONS

 DFHTEPT TYPE=INITIAL,MAXTIDS=1ð,

 MAXERRS=5

\ PERMANENT TERMINAL DEFINITIONS

 DFHTEPT TYPE=PERMTID,TRMIDNT=TMð2

\ PERMANENT ERROR CODE DEFINITIONS

 DFHTEPT TYPE=PERMCODE,CODE=81

 DFHTEPT TYPE=PERMCODE,CODE=87,

 COUNT=2,TIME=(1,MIN)

\ OTHER THRESHOLD OVERRIDES

 DFHTEPT TYPE=ERRCODE,CODE=BUCKET,

 COUNT=3,TIME=(3,MIN)

\ CONCLUDE TABLE GENERATION

 DFHTEPT TYPE=FINAL

 END

Figure 18. Example of the use of DFHTEPT macros to generate DFHTEP tables

This example generates 10 terminal error blocks, one of which is reserved for
the terminal whose symbolic ID is TM02, and the other nine are reusable.
Each TEB has space for five error status elements plus a common error
bucket. Of the five ESEs, two are reserved for error codes ‘81’ and ‘87’; the
remaining ESEs are available to be assigned dynamically. The thresholds for
error code ‘87’ and the common error bucket are being changed. No specific
error code is to be accounted for in the common error bucket.

User-written terminal error programs
You can write your own terminal error program in any of the languages supported
by CICS. However, CICS-supplied code is provided in assembler language only, in
the VSE/ESA sublibrary PRD1.BASE. The names of the supplied source files and
macros are listed in Table 111.

Table 111. Supplied source files and macros

Name Type Description

DFHXTEP Source Sample terminal error program
(assembler-language)

DFHXTEPT CSECT Sample terminal error tables
(assembler-language)

DFHTEPM Macro Sample TEP program generator
(assembler-language)

DFHTEPT Macro TEP table generator (assembler-language)

DFHTEPCA Macro Assembler-language communication area

 Chapter 8. Writing a terminal error program 381

 user-written terminal error programs

The user-written DFHTEP receives control in the same manner as the
CICS-supplied sample DFHTEP, described in “The communication area” on
page 361. It should therefore use the communication area as its basic interface
with DFHTACP.

Why write your own terminal error program?
� There are some situations in which CICS may try to send a message to an

input-only terminal; for example, an ‘invalid transaction ID’ message, or a
message wrongly sent by an application program. You should provide a
terminal error program to reroute these messages to a system destination such
as CSMT or CSTL or other destinations, by means of transient data or interval
control facilities.

� There could be application-related activity to be carried out when a terminal
error occurs. For example, if a message is not delivered to a terminal because
of an error condition, it may be necessary to notify applications that the
message needs to be redirected.

� Not all errors represent communication-system failures—for example, SAM
end-of-data conditions.

Restrictions on the use of EXEC CICS commands
There are certain restrictions on the commands that a TEP can issue. The use of
any commands that require a principal facility causes unpredictable results,
and should be avoided . In particular, you should not use commands that invoke
the following functions:

� Terminal control (“CEMT-type” commands, such as EXEC CICS INQUIRE
TERMINAL, are permissible)

� BMS (except routing)

� ISC communication (including function shipping)

Addressing the contents of the communication area
After your terminal error program receives control from DFHTACP, it should obtain
the address of the communication area by means of an EXEC CICS ADDRESS
COMMAREA command.

382 CICS Transaction Server for VSE/ESA Customization Guide

 user-written terminal error programs

You generate the communication area DSECT by coding DFHTEPCA
TYPE=DSECT in your program. The layout of the communication area is as
follows:

 IN/OUT

 PARM

 ðXL4 Standard Header

TEPCALDS DS XL1 I Function Code Always '1'

TEPCAGDS DS XL2 I Component Code Always 'TC'

 DS XL1 Reserved

TEPCATCA DS A I Address of TACLE being processed

TEPCECIA DS A I Address of TCTUA

TEPCECIL DS H I Length of TCTUA

TEPCAACT DS XL1 I/O User action byte

TEPCATID DS CL4 I Terminal identity

TEPCATDB DS F I Current time of day binary

Figure 19. The DFHTACP/DFHTEP communication area

The parameter list contains the following information:

TEPCALDS Function Code. The function code is a printable character
representing the identity of the task within the TCP which invoked
DFHTEP. It always has the value ‘1’.

TEPCAGDS Component Code. This always has the value ‘TC’, representing a
component of the TCP.

TEPCATCA Contains the address of the TACLE being processed.

TEPCECIA Contains the address of the terminal control table user area (TCTUA).

TEPCECIL Contains the length of the TCTUA.

TEPCAACT The User action byte. One of the main uses of the communication
area is to transmit the actions that are to be taken for a terminal.
TEPCAACT contains the following flags, which can be reset within
DFHTEP:

LINEOS (X'80') Place line out of service.
NONPRGT (X'40') Nonpurgeable task exists on the terminal.
TERMOS (X'20') Place terminal out of service.
ABENDT (X'10') Abend the task on the terminal.
ABORTWR (X'08') Abend write, free terminal storage.
SIGNOFF (X'02') Call sign-off program.

On entry to DFHTEP, the above flags represent the default actions set
by DFHTACP. The write-abend bit (communication area field
ABORTWR) and the abend-task bit (communication area field
ABENDT) are always set if the place-line-out-of-service bit (X'80') is
set; but both bits are suppressed if “dummy terminal” is indicated (see
Resetting the flags in the user action byte, TEPCAACT).

On return to DFHTACP, the flags represent the actions as modified by
DFHTEP.

TEPCATID Contains the identity of the terminal in error.

TEPCATDB Contains the time of day when the error occurred, in binary format.

 Chapter 8. Writing a terminal error program 383

 user-written terminal error programs

Resetting the flags in the user action byte, TEPCAACT
The following factors should be considered when altering the action bits in
TEPCAACT:

� You should consider how to preserve data security. For example, if a terminal
is put out of service for some time (until the cause of the failure is removed) the
signon information is still in the TCTTE when the terminal is put back into
service, although the original operator may no longer be present. To prevent a
possible security violation, you can set the SIGNOFF bit to sign off the terminal.

� The dummy terminal indicator at TCTLEPF2 is set on errors from which no
specific terminal is indicated. Therefore, if a dummy terminal is indicated,
abend task and abend write are not set (see below). The dummy terminal is
only used to identify the line.

� The abend-task bit (X'10' in TEPCAACT) is always associated with two other
bits as part of TACP’s abend transaction processing. These other bits are
nonpurgeable task and abend write (X'40' and X'08' respectively, both in
TEPCAACT).

� Abend write is always set on at the same time as abend task. It has the effect
of clearing the TCTTE of the original write request indicators, if the error being
processed occurred on a TC WRITE.

� Nonpurgeable task is set on if a transaction is currently associated with the
terminal, and the transaction ID was specified with TPURGE=NO.

None of the abend-task, abend-write, or nonpurgeable-task bits is set if the dummy
terminal indicator is on, even if DFHTACP would normally set abend task as the
default for the error being processed. Therefore, the following remarks apply only
to errors related to a real terminal.

� Abend task has no effect if no transaction is associated with the terminal;
(except where a pseudoconversational task is associated with the terminal, in
which case, the next transid is cleared). Otherwise, if nonpurgeable task is
indicated, the transaction remains attached to the terminal (normally in
SUSPEND state) and DFHTACP writes the ‘DFHTC2522 INTERCEPT
REQUIRED’ message to CSMT; if the task is not marked nonpurgeable, it is
abended with code ‘AEXY’ or, rarely, ‘AEXZ’.

� Abend write has no effect if the TCTTE was associated with a READ request.
In this case the normal result is that, if the line and terminal remain in service,
the read is retried.

Addressing the contents of the TACLE
The TACLE is created by the terminal control program when the error occurs, and
contains all the I/O error information provided by SAM.

To address the contents of the TACLE, the user-written terminal error program
should contain the COPY DFHTACLE and COPY DFHTCTLE statements, in that
order. These define the complete DFHTCTLE DSECT. The symbolic names in
this DSECT are used to address fields in both the TACLE and the real line entry
associated with the error.

The TACLE consists of a 16-byte prefix (defined by COPY DFHTACLE) and a
further 48-byte section, which is a modified copy of the DECB of the real line entry
at the time the TACLE was created.

384 CICS Transaction Server for VSE/ESA Customization Guide

 user-written terminal error programs

To address the TACLE, the user-written terminal error program should therefore
contain the statements:

COPY DFHTACLE

COPY DFHTCTLE

L TCTLEAR,TEPCATCA POINT TO TACLE

USING DFHTCTLE,TCTLEAR

Note that fields normally part of the real line entry DECB have offsets increased by
16 in the TACLE.

The following fields in the DECB copy in the TACLE do not represent data copies
from the real line entry:

TCTLEDCB (Offset 24 in TACLE,

8 in real TCTLE)

This field in the TACLE points to the real line entry; in the real line entry, it points to
the SAM DTF for the line group.

TCTLECSW (Offsets 46, 48 in TACLE,

TCTLEALP 3ð, 32 in real TCTLE)

These are used in the TACLE for SAM error information.

The following statements give direct addressability to the real line entry:

COPY DFHTCTLE

COPY DFHTCTTE

L TCTLEAR,TEPCATCA POINT TO TACLE

USING DFHTCTLE,TCTLEAR

L TCTTEAR,TCTLEPTE POINT TO ERROR TCTTE

USING DFHTCTTE,TCTTEAR

DROP TCTLEAR

L TCTLEAR,TCTTELEA POINT TO TCTLE

USING DFHTCTLE,TCTLEAR

After you have carried out the required functions and, optionally, altered the default
actions scheduled by DFHTACP, the user-written DFHTEP must return control to
DFHTACP by issuing the EXEC CICS RETURN command. DFHTACP then
performs the actions specified in the TACLE and causes the error processing task
to terminate.

The format of the TACLE DSECT is shown in Figure 20 on page 386.

 Chapter 8. Writing a terminal error program 385

 user-written terminal error programs

TERMINAL ABNORMAL CONDITION LINE ENTRY

Dec Hex 4 BYTES

0 0
TCTLEPSA

STORAGE ACCOUNTING AREA
4 4

TCTLEPCH

ERROR CHAIN POINTER
8 8

TCTLEPFL TCTLEPF2
NOT USED

ERROR FLAGS SPECIAL IND
12 C

TCTLEPTE

TCTTE ADDRESS
16 10

Figure 20 (Part 1 of 2). Format description of the TACLE DSECT

386 CICS Transaction Server for VSE/ESA Customization Guide

 user-written terminal error programs

Displacement

Dec Hex Code Bytes Label Meaning

ð ð 4 TCTLEPSA Storage accounting

 RESERVED

8 8 1 TCTLEPFL Error flags

ð1 Terminal I/O error

81 Message too long

85 Write not valid

88 Input event rejected

8C Output event rejected

8D Output length of zero

8E No output area

8F Output area exceeded

 .

. (All codes not listed are reserved and are

. not intended for use by DFHTEP)

 .

9 9 1 TCTLEPF2 Special indicator flags

 ð1 Dummy terminal

 ð2 Repeating error

ð4 Control unit error

 ð8 Non-process error

1ð Error chain last entry

2ð Last TEP call

12 C 4 TCTLEPTE Address of terminal

entry for terminal

 in error

Figure 20 (Part 2 of 2). Format description of the TACLE DSECT

 Chapter 8. Writing a terminal error program 387

 user-written terminal error programs

Example of a user-written terminal error program
The “DFHTEP recursive retry routine” on page 389 is an example of the logic steps
necessary to design a portion of the terminal error program. In Figure 21, 10
retries are provided for each terminal; however, the logic could be used for any
number of retries. The following assumptions are made:

USER FIELD A
 (PCISAVE)

represents a 6-byte field in the process control information (PCI) area of the
TCTTE. This field is used to preserve the count of input and output from the
TCTTE when the first error occurs. These counts are contained in 3-byte fields
located at TCTTENI and TCTTENO within the TCTTE.

USER FIELD B
 (PCICNT)

represents a user-defined field used to accumulate the count of recursive
errors. It should be in the process control information (PCI) area of the TCTTE.

SYSTEM COUNT
 (TCTTENI)

represents the 6-byte field in the TCTTE that contains the terminal input and
output counts (TCTTENI+TCTTENO). In the example, these two adjacent
fields are considered as one 6-byte field.

Because this example requires access to the TCT terminal entry (TCTTE) to
examine the SYSTEM COUNT and to locate the process control information (PCI)
area, the DFHTCTTE symbolic storage definition is included so that fields can be
symbolically referenced.

Note that the code in Figure 21 is intended only as an illustration of a recursive
error handling technique and of the steps necessary to establish addressability to
the applicable control blocks.

388 CICS Transaction Server for VSE/ESA Customization Guide

 user-written terminal error programs

DFHTEP recursive retry routine

\ASM XOPTS(NOPROLOG NOEPILOG SP)

\\

\ \

\ DFHTEP RECURSIVE RETRY ROUTINE \

\ \

\\

 DFHEISTG

 DFHEIEND

DFHTEPCA TYPE=DSECT COMMAREA passed by TACP

 COPY DFHAð6DS Statistics DSECT

 USING DFHAð6DS,STATBAR

PCIAREA DSECT

PCISAVE DS XL6 User Field A

PCICNT DS PL2 User Field B

\

TCTLEAR EQU 2 Pointer to TACLE

STATBAR EQU 4 Pointer to statistics DSECT

TCTUABAR EQU 5 Pointer to TCTUA

COMMABAR EQU 12 Pointer to COMMAREA passed by TACP

 EJECT

DFHTEP CSECT

\\\

\ Establish addressability \

\\\

 DFHEIENT

\

EXEC CICS ADDRESS EIB(11)

\

EXEC CICS ADDRESS COMMAREA(COMMABAR)

\

 USING DFHTEPCA,COMMABAR

L TCTLEAR,TEPCATCA Load TACLE address

\

 USING PCIAREA,TCTUABAR

L TCTUABAR,TEPCECIA Load TCTUA address

\

\\\

\ Start processing \

\\\

TM PCICNT+1,X'ðC' Has User Field B been initialized

\ to a packed decimal number?

BO CKCOUNT YES so compare the system count

\ with the existing count in Field B

RESET DS ðH

MVC PCICNT,=PL2'+ð' NO so initialize field B to

\ packed zero.

\

Figure 21 (Part 1 of 2). DFHTEP recursive retry routine

 Chapter 8. Writing a terminal error program 389

 user-written terminal error programs

EXEC CICS COLLECT STATISTICS TERMINAL(TEPCATID) SET(STATBAR)

\ Get statistics for this terminal

\ using TERMID passed in Commarea

\

MVC PCISAVE,Að6TENI Save the current system counts. This

\ is a new error, or first time

\ through.

INCR DS ðH

AP PCICNT,=P'1' Increment the number of times this

\ error has occurred (recursive count)

\

CP PCICNT,=P'1ð' Has the maximum recursive error

\ limit been reached?

BNE RETRY NO set action

\

ZAP PCICNT,=P'ð' Clear and reset user fields for next

\ error set

EXEC CICS COLLECT STATISTICS TERMINAL(TEPCATID) SET(STATBAR)

\ Get statistics for this terminal

\ using TERMID passed in COMMAREA

\

MVC PCISAVE,Að6TENI Get current system counts

B NORETRY Action indicators for no retry

\

CKCOUNT DS ðH

EXEC CICS COLLECT STATISTICS TERMINAL(TEPCATID) SET(STATBAR)

\ Get statistics for this terminal

\ using TERMID passed in COMMAREA

\

CLC PCISAVE,Að6TENI Has system count changed since last

\ entry to TEP?

BNE RESET YES this is a new error since

\ some I/O activity has occurred on

\ terminal.

B INCR NO this is a recursive error,

\ so increment the recursive count and

\ check for retry.

RETRY DS ðH

\ The user would include here the code

\ necessary to alter the flags in the

\ COMMAREA so that a retry can be

\ performed on the terminal.

NORETRY DS ðH

\ The user would include here the code

\ necessary to allow DFHTACP to take

\ final actions on the terminal; that

\ is, abend task, put line out of

\ service, and others.

 LTORG ,

 END

Figure 21 (Part 2 of 2). DFHTEP recursive retry routine

390 CICS Transaction Server for VSE/ESA Customization Guide

 the node error program

Chapter 9. Writing a node error program

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter contains information about the node error program (NEP) of CICS
Transaction Server for VSE/ESA Release 1. Node error programs, not terminal
error programs, must be used for terminals and logical units supported through
VTAM.

The chapter is divided into the following sections:

1. “Background to CICS-VTAM error handling” is an overview. If you are not
familiar with the node error program, you should read this section. If you are
familiar with NEPs, you may be able to go straight to the detailed information in
the following sections, and look at the subjects that particularly interest you.

2. “When an abnormal condition occurs” on page 399 describes the CICS
components that are invoked when an abnormal condition is detected from a
VTAM logical unit.

3. “The sample node error program” on page 407 describes the CICS-supplied
sample NEP.

4. “User-written node error programs” on page 417 discusses the factors you
need to consider when writing your own node error program.

5. “Using the node error program with VTAM persistent sessions” on page
423.

Notes:

1. Like the terminal error program for non-VTAM devices, the node error program
for VTAM-attached terminals is available in three forms:

a. The default node error program
b. The CICS-supplied sample node error program

 c. User-written versions

All three types are discussed in the following sections.

2. In this chapter, “VTAM 3270” refers to a non-SNA 3270 connected through
VTAM, and “3270 compatibility mode” refers to an SNA 3270 connected
through VTAM.

3. If you code an EXEC CICS HANDLE CONDITION TERMERR command in
your application program, it is sometimes possible for the application program
to handle exceptional cases, rather than using a node error program. The
‘TERMERR’ condition is driven if the node abnormal condition program
(DFHZNAC) actions an ABTASK (‘ATNI’ abend). Note that ‘TERMERR’ is
application-related, and is not an alternative to the node error program, which
must be used for session-related problems. Dealing with errors in the
application program is particularly useful in an intersystem communication (ISC)
environment. For further information, refer to the CICS Intercommunication
Guide.

 Copyright IBM Corp. 1977, 1999 391

 background to VTAM error handling

Background to CICS-VTAM error handling
In general, errors detected by CICS-VTAM terminal control are queued for handling
by a special task, the CICS node error handler (transid CSNE). (Note that CICS
finds it convenient to use the same technique for some housekeeping work, such
as sending “good morning” messages, and logging session starts and ends, which
are not errors at all.)

In a few cases, exceptions signaled to CICS by VTAM are not treated as errors,
and are not passed to the node error handler. For example, CICS often sends an
SNA BID command as part of automatic transaction initiation. Rejection of the BID
with exception code ‘0813’ (wait) is a standard response, and CICS handles the
retry in terminal control without calling this an error. In the rest of this description,
only the errors are considered.

The CSNE task runs as a “background” task, meaning that it is not associated with
any one CICS terminal. At any time, there is at most one such task, working on
the single node error queue.

All node errors on the queue are analyzed in turn by a table-driven, CICS-supplied
program called DFHZNAC (node abnormal condition program). It is not intended
that you should ever modify this.

DFHZNAC links to a module called DFHZNEP (if present in the CICS system)
when processing most node errors. (It does not link to DFHZNEP for errors that
are not related to a specific node—for example, those caused by a VTAM
shutdown.) The interface for this link is described in “When an abnormal condition
occurs” on page 399. This formal DFHZNAC–DFHZNEP interface gives you the
opportunity to supply your own code to analyze error conditions, change default
actions by setting various “action flags”, and take additional actions specific to your
applications.

CICS supplies a pregenerated default DFHZNEP, which simply sets the “print
TCTTE” action flag if a VTAM storage problem is detected, and returns control to
DFHZNAC. Because it leaves all other action flags unchanged, DFHZNAC’s
default actions are not otherwise affected. (DFHZNAC’s default actions for different
error conditions are listed in Appendix B, “Default actions of the node abnormal
condition program” on page 653.)

Why use a NEP to supplement CICS default actions?
The following list gives some of the reasons why you might want to write your own
node error program to add to the default actions provided by CICS and VTAM.

� Not all errors represent communication system failures. Some errors (such as
trying to write zero-length data) may reflect special situations in applications,
needing special action.

� You might want to output extra data, in addition to the error messages sent by
DFHZNAC. (Note that you cannot use the node error program to suppress
messages from DFHZNAC.) All data output from DFHZNAC and DFHZNEP is
written to the transient data queue CSNE.

� In other cases, you might want to change the amount of diagnostic information
produced by CICS: the default varies with the error type. For example, the

392 CICS Transaction Server for VSE/ESA Customization Guide

 background to VTAM error handling

VTAM RPL associated with an error may be printed when you do not want it, or
not printed when you do.

� There could be application-related activity to be performed when a node error
occurs. For example, if a message fails to be delivered to a terminal, it may
need redirecting to another. With messages sent with exception-response only,
CICS may not have the data available to send it again, but the requesting
application might be able to re-create it. For example, if an error were signaled
during the sending of a document to a printer, it might be able to restart from
the beginning, or from a specific page.

� Some devices, such as the 3650 Retail Store System, return application-type
data in “User Sense Data” fields. This can only be retrieved in a NEP. The
NEP has to catch and save data for further application programs.

An overview of writing a NEP
Your DFHZNEP module must conform to the defined interface: that is, it must be a
linked-to program that uses defined communication area fields to analyze an error
and then returns to DFHZNAC. The source code of the default NEP provided by
CICS can be used as a skeleton on which to build a single NEP.

CICS also provides macros to help you generate more complex sample NEPs.
These are aids to help you develop your own NEPs; you do not have to use any of
them.

Your error-handling logic can be written as a number of modules, but the one that
receives control from DFHZNAC must be called DFHZNEP.

DFHZNEP code can use standard CICS functions (EXEC CICS LINK, XCTL) to
invoke other user modules. Each module thus requested must, of course, have an
installed CSD program definition. Installed definitions are also needed for
DFHZNAC and DFHZNEP themselves; these are contained in the supplied CSD
group DFHVTAM.

The key features of the DFHZNAC–DFHZNEP interface are as follows:

� DFHZNEP can be written in any of the CICS-supported languages.

Note: CICS-supplied NEP code is provided in assembler language only. The
communication area parameter list is supplied in assembler-language and C
versions.

� DFHZNEP is linked-to separately for each node-related error on the queue.
(Note that, because sense codes are always associated with an error,
DFHZNEP is not linked-to separately for these.)

� Communication between the two modules is through a communication area
(DFHNEPCA).

The structure of the communication area is described in “The communication area”
on page 400.

On each DFHZNEP invocation, one field in the communication area contains a
1-byte internal error code, assigned by DFHZNAC, which identifies the type of
error. Other fields identify the CICS TCTTE (LU) associated with the error, and any
SNA sense codes. There are also fields for DFHZNEP to pass back user
messages for subsequent logging by DFHZNAC.

 Chapter 9. Writing a node error program 393

 background to VTAM error handling

Further fields contain “action flags”. Each flag represents an action that DFHZNAC
may take when DFHZNEP returns control to it. These actions are of different
types:

� Reporting (dumps of control blocks, actions taken)
� Status changes (for example, of TCTTE)
� Clean-up work (cancel any associated transaction, end the VTAM session)

The action flags can be set or reset within DFHZNEP.

The action flags set by DFHZNAC for specific error codes and sense codes are
listed in Appendix B, “Default actions of the node abnormal condition program” on
page 653.

The default NEP
The CICS-supplied default NEP, DFHZNEP, sets the “print TCTTE” action flag
(TWAOTCTE in the user option byte TWAOPT1—see page 404) if a VTAM storage
problem is detected; otherwise it performs no processing, leaves the action flags
set by DFHZNAC unchanged, and returns control to DFHZNAC.

The sample NEP
The CICS sample node error program is a generalized program structure for
handling errors detected from logical units. None of its components is generated
as part of the standard CICS generation process, but instead may be optionally
generated as described in this section and in “The sample node error program” on
page 407.

The sample NEPs that CICS provides are designed with two main features:

� The samples assume that you want to invoke separate user-supplied error
processors to handle different “groups” of error types. You specify which of the
DFHZNAC internal error codes are to be regarded as a “group” for processing
by any one routine, and then supply the code for that routine. CICS has some
standard cases to help you. More information is given about them below.

� The samples may work in association with a separately generated module
called a node error table. This can be used to build up statistics for each error
group that the NEP processes. This table is analogous to the terminal error
table, DFHTEPT, used by the CICS sample terminal error program.

Some of the CICS-supplied error processors use the node error table—for
example, that for errors affecting 3270 LUs (GROUP=1) (see “DFHSNEP
TYPE=DEF3270—including error processors for 3270 LUs” on page 412).

The node error table
To understand the sample NEP, first look at the node error table structure in more
detail.

Node error table is often abbreviated to NET. You should not confuse this acronym
with “net” (as in “network”), or with a NETNAME.

You can generate a node error table using the CICS macro DFHSNET. See “Node
error table” on page 409 and “DFHSNET—generating the sample node error table”
on page 414. You choose how complex this table is to be.

394 CICS Transaction Server for VSE/ESA Customization Guide

 background to VTAM error handling

The node error table must be defined as a RESIDENT program. This makes it
easy for the NEP to find it (using a CICS LOAD request), and ensures that any
counters are not reset by reloading. You can give the table any name you like.
The default is DFHNET.

The table consists of sets of error-recording areas. Each set is called a node error
block (NEB) and is used to count node errors relating to a single LU. You can
dedicate specific NEBs to specific LUs throughout a CICS run; and you can leave
other, reusable NEBs for general use. If you expect to accumulate error statistics
about 10 LUs concurrently, you need 10–12 NEBs.

Each NEB may contain multiple recording areas, one being used for each group of
errors you want to distinguish. The error groups correspond to those in the NEP.
That is, they are groups of error types requiring separate processing logic.

Each recording area is known as an error status block (ESB). You specify the
space reserved for each ESB, and it typically includes space to count the errors, or
record when the first of the present series occurred. Note that in any one NEB the
counting is for one LU only.

Finally, you can specify a threshold count and a time limit in the table. These are
constants that can be used by code in the NEP to test an ESB, to see if a given
type of error has occurred more than the threshold number of times in the stated
interval. The time limit also affects the interval between using a general NEB for
one LU and then reusing it for another.

A minimal NET would simply consist of a handful of NEBs, each with just one ESB,
grouping together all types of error that are of interest.

Coding the sample NEP
The sample NEP is coded using the macro DFHSNEP. The basic form is as
follows:

DFHSNEP TYPE=INITIAL

Specific error handling code. For example:

DFHSNEP TYPE=DEF327ð

DFHSNEP TYPE=FINAL

END DFHNEPNA

By default, this generates a module called DFHZNEP, which works with a node
error table called DFHNET. If you want to use another table, you could code
NETNAME=MYTABLE after TYPE=INITIAL. Details of the DFHSNEP macro are
given in “Generating the sample node error program” on page 410.

To understand the sample code, generate a standard NEP, as with
TYPE=DEF3270, shown in “DFHSNEP TYPE=DEF3270—including error
processors for 3270 LUs” on page 412, and look at the resulting
assembler-language listing. Here is a description of the code.

The INITIAL and FINAL macros generate the basic skeleton of the NEP. This
comprises some initialization code and some common routines. All the code is built
round the assumption that you have a node error table as previously described.

 Chapter 9. Writing a node error program 395

 background to VTAM error handling

The initial code first tests the internal error code passed from DFHZNAC to see if it
belongs to a group that the NEP needs to handle. (The groups are identified by
the code you supply between the DFHSNEP INITIAL and FINAL macros. This is
described in “Generating the sample node error program” on page 410.) If the
particular error code is not of interest to the NEP, control is returned at once to
DFHZNAC, to take default actions.

Otherwise, the relevant node error table is located by a CICS LOAD request. (As
previously explained, this table should be resident in virtual storage.) The NEP
code will then locate the correct ESB within a selected NEB. The latter may be
permanently dedicated to the LU in error (a named NEB), or may be one taken
from the general pool.

The initial code then invokes the appropriate user logic for that error group. The
initial code also sets up pointers to the communication area, the NEB, and the
ESB. For details, see “Generating the sample node error program” on page 410.

The common routines in the NEP provide common services for your own logic.
They count and time stamp errors in the ESB, and test whether error thresholds
have been exceeded. They are not documented outside the sample listings. You
can generate a NEP without them if you prefer.

Your own code is inserted between the DFHSNEP TYPE=INITIAL and
TYPE=FINAL macros.

Note: If the user code you insert between the DFHSNEP macros contains EXEC
CICS commands, you must translate the commands, and enter the translated code
between the DFHSNEP macros.

Each section of user logic, intended to handle a particular group of error types, is
headed by a macro of the type:

DFHSNEP TYPE=ERRPROC,CODE=(ab,cd,...),GROUP=n

where X'ab', X'cd',... are the DFHZNAC internal error codes you want to process,
and n is the number of the error group, and therefore also of the corresponding
ESB, within a NEB, in the node error table. Successive DFHSNEP
TYPE=ERRPROC macros should use groups 1, 2, 3, and so on.

The DFHSNEP TYPE=ERRPROC macros serve several purposes. They:

� Inform the NEP generation how many error groups there are
� Show which error types are to be included in each group
� Introduce the code for each group

Note that any one DFHZNAC error code should only figure in one error group, and
that any code not mentioned is simply ignored by the NEP. You follow each
DFHSNEP TYPE=ERRPROC macro with your own logic. This should begin with
standard code to save registers, or set up addressability, which is best copied from
sample NEP listings.

CICS provides some standard error processors to handle specific errors on two
different types of LU. These are for non-SNA 3270s (BSC 3270s attached to
CICS-VTAM), and for interactive SNA logical units like a 3767. More information is
given in “When an abnormal condition occurs” on page 399.

396 CICS Transaction Server for VSE/ESA Customization Guide

 background to VTAM error handling

The code for non-SNA 3270s can be generated by coding

DFHSNEP TYPE=DEF327ð

where you would otherwise code a DFHSNEP TYPE=ERRPROC macro plus logic
of your own. In effect, TYPE=DEF3270 defines two error groups, and associates
each with an error processor. The first group comprises the four DFHZNAC error
codes X'D9', X'DC', X'DD', and X'F2'. The second group contains only error
code X'42', corresponding to the ‘unavailable printer’ condition, a specific
exception condition signaled when CICS cannot allocate a printer in response to a
3270 print request.

The 3270 sample code is not intended to cover all error conditions. Note that the
code is not suitable for SNA 3270s (LU session type 2). Error conditions arising
from these result in different DFHZNAC error codes and may require different
handling.

You may find that the CICS-supplied code is not sufficient for other,
application-related, reasons. Perhaps you want to try to reacquire lost sessions
after a time interval. The code supplied for the 3767 covers only one error group
with one DFHZNAC error code, X'DC', which may occur under contention
protocol.

You can use these CICS-supplied error processors to generate a valid DFHZNEP
listing, for tutorial purposes, without having to write any user code.

You should be aware of the following limitations of this NEP design:

� Any error types you have not allowed for are ignored by the NEP, and not
accumulated into error buckets.

� You may want to handle a particular situation whenever it arises, even though
DFHZNAC may assign it different error codes in different situations. For
example, on an SNA 3270, switching in and out of TEST state generates status
X'082B' (presentation-space integrity lost). This might result in one of several
DFHZNAC error codes.

In the sample NEP structure, you would need either to test for this last case in
separate error processors, or group all the DFHZNAC error codes together. If you
wrote your own NEP code from scratch, you would simply, on entry to your NEP,
test the communication area field containing the status.

 Multiple NEPs
CICS allows you to define a NEP transaction class that applies to every transaction
that uses a particular profile, session, or terminal-type. To do this you use the
NEPCLASS option of an RDO PROFILE, SESSIONS, or TYPETERM resource
definition. (Note that any value of NEPCLASS that you specify on the RDO
PROFILE definition overrides any specified on the corresponding RDO SESSIONS
or TYPETERM definition.) NEPCLASS is a 1-byte binary field containing a value in
the range 0–255. The purpose of NEPCLASS is that, while a transaction is running
on the LU, you can obtain a special version of node error handling, suitable for that
transaction. (This is sometimes called a “transaction-class error routine”.) The
default value NEPCLASS(0) indicates that no NEPCLASS is in effect.

The DFHZNEP that gets control from DFHZNAC must test the NEPCLASS in effect
at that time for the LU associated with the error. Then it either transfers control to

 Chapter 9. Writing a node error program 397

 background to VTAM error handling

a suitable module (the actual NEP), or branches to a specific bit of code within
itself.

The DFHZNEPI macros (see “DFHZNEPI macros” on page 420) generate a
DFHZNEP module that is purely a routing module. This inspects the NEPCLASS in
effect for the node error passed by DFHZNAC, and transfers control (links) to
another module, the real NEP, according to a NEPCLASS/name routing table built
up by the macros.

If no NEPCLASS is in effect (equivalent to RDO PROFILE NEPCLASS(0)), or the
NEPCLASS is not in the routing table, a default module is invoked. You must
specify the name of this in the DFHZNEPI TYPE=INITIAL macro. (See “DFHZNEPI
TYPE=INITIAL—specifying the default routine” on page 421.) If you do not specify
the name, no module is invoked.

You also have to provide the sub-NEPs for the various NEP transaction classes,
including, of course, one for the default NEPCLASS(0). Each of these sub-NEPs
needs a separate program definition. You have the same choice in coding each
sub-NEP as you had when there was just one; you can code your own, or use the
CICS sample macro DFHSNEP. If you use DFHSNEP, note that there is another
operand on the DFHSNEP TYPE=INITIAL macro, NAME=, which means that the
generated module can be given any name you choose (to match the DFHZNEPI
routing). You can use a different node error table with each sub-NEP.

Before you start using NEP routing, consider the following:

� The association of an LU (TCTTE) with a transaction NEPCLASS is only valid
for about the time that the CICS task exists. Errors detected after a CICS task
has ended (for example, because of a problem with a delayed output message)
may not be associated with the NEPCLASS of the creating transaction.

Another problem can occur when CICS is about to start a new task for the LU
as a result of an internal request from another CICS task (by an EXEC CICS
START request, for example). This is usually called automatic transaction
initiation. Before the task is started, CICS has to open a fresh session if none
exists, by issuing a VTAM SIMLOGON request, and then, as mentioned earlier,
send a BID command. The intended task is not attached until all this is
completed successfully. The NEPCLASS is not picked up from the transaction
definition until then. This means that any errors arising in the ATI process
(perhaps an error on BIND or BID) occur before the NEPCLASS is correctly
set, so they may get routed to the default NEP and not the one for the
NEPCLASS. This complicates the total node error handling for the application.

As an example, consider an application that contacts unattended programmable
controllers overnight in order to read in the day’s input. Recovery design in
such an application is fundamental, and has to allow for errors both in ATI and
in file transmission. To separate these into two NEPs could be an unnecessary
complication.

� The extra development effort for a NEP split on a NEPCLASS basis might not
be justified. Generally, if logic is to be split, it is on an LU basis (programmable
controllers may be running applications other than 3270).

To conclude this overview, remember that the CICS sample NEPs are a good
source of ideas for you to write your own NEPs, but they might not be the ideal

398 CICS Transaction Server for VSE/ESA Customization Guide

 when an abnormal condition occurs

framework for your particular needs. It is recommended that you write
straightforward NEPs at first.

When an abnormal condition occurs
The following CICS components are involved when an abnormal condition is
detected from a logical unit:

� The terminal control program VTAM section: DFHZCA, DFHZCB, DFHZCC,
DFHZCP, DFHZCQ, DFHZCW, DFHZCX, DFHZCY, and DFHZCZ.

� The node abnormal condition program, DFHZNAC.

� The CICS-supplied default node error program, DFHZNEP, or your own version
of it.

For logical units, all information concerning the processing state of the terminal is
contained in the TCTTE and the request parameter list (RPL). Consequently, when
a terminal error must be handled for a logical unit, the TCTTE itself is placed onto
the system error queue.

DFHZNAC assumes that system sense codes are available upon receipt of an
exception response from the logical unit. Thus, analysis is performed to determine
the reason for the response. Decisions, such as which action flags to set and
which requests are needed, are made based upon the system sense codes
received. If sense information is not available, default action flags are set, and
DFHZEMW is scheduled to send a negative response, if a response is outstanding,
with an error message to the terminal.

The action flags set by DFHZNAC on receipt of specific inbound system sense
codes are listed in Appendix B, “Default actions of the node abnormal condition
program” on page 653.

Before executing the specified routines, DFHZNAC links to DFHZNEP. You can
use DFHZNEP to perform additional error processing beyond that performed by
DFHZNAC; or to alter the default actions previously set by DFHZNAC. You need
to code a node error program only if you want to do either of these things.

The action flags, set by DFHZNAC to assist the node error program, are in field
TWAOPTL of the communication area.

If you want to modify DFHZNAC’s actions following an abnormal situation,
DFHZNEP can interrogate field TWAOPTL and modify the bit settings. If you agree
with DFHZNAC’s proposed actions, field TWAOPTL is left unaltered.

In most cases, DFHZNEP can modify DFHZNAC’s proposed actions. The only
time that DFHZNAC overrides DFHZNEP’s modification of field TWAOPTL is when
a logical unit is to be disconnected from CICS; that is, when DFHZNAC determines
that the abnormal situation requires that CICS issue the VTAM CLSDST macro for
a logical unit. In such a case, DFHZNAC disconnects the terminal and abnormally
terminates the task, even if DFHZNEP tries to block such actions.

Resetting of the task termination flag by the node error program is also ignored if a
negative response has been sent to a logical unit, or if DFHZEMW is to write an
error message to the logical unit.

 Chapter 9. Writing a node error program 399

 when an abnormal condition occurs

When the node error program has performed its functions, it returns control to
DFHZNAC by an EXEC CICS RETURN command.

When control is returned from DFHZNEP, DFHZNAC performs the actions specified
in field TWAOPTL (except when disconnecting logical units, as noted above),
issuing messages and setting error codes, as necessary.

The communication area
After DFHZNEP receives control from DFHZNAC, it obtains the address of the
communication area by means of an EXEC CICS ADDRESS COMMAREA
command. Figure 22 illustrates the general structure of the communication area.

Header

Error_being_processed

User option bytes

VTAM information

Additional information for NEP

Additional system parameters

Persistent session parameters

Figure 22. General structure of the communication area

The significance of each section of the communication area is described below:

Header A 4-byte header common to all user-replaceable
programs.

Error_being_processed Identifiers of the error code and the terminal
associated with the error.

User option bytes Flags that indicate the default actions set by
DFHZNAC, and that may be reset within
DFHZNEP.

VTAM information Sense and RPL codes.

Additional info. for NEP Other useful information for the NEP.

Additional system parameters Locations of indirect parameters, such as the
TCTTE, and other system information.

Persistent session parameters Recovery notification data.

A detailed listing of the communication area is given in Figure 23 on page 401.

400 CICS Transaction Server for VSE/ESA Customization Guide

 when an abnormal condition occurs

\\

\\ Header \\

\\ These fields are READ ONLY \\

\\

NEPCAHDR DS ðXL4 Standard Header

NEPCAFNC DS XL1 Function Code Always '1'

NEPCACMP DS XL2 Component Code Always 'ZC'

 DS XL1 Reserved

\\

\\ Error_being_processed \\

\\ Identity of terminal and the error code associated with it \\

\\ These fields are READ ONLY \\

\\

TWAEC DS XL1 Error Code

 DS CL3 Reserved

TWANID DS CL4 Terminal identity

TWANETN DS CL8 Netname

\\

\\ User option bytes \\

\\ Initially set to the default actions. \\

\\ DFHZNEP can change the defaults. \\

\\

TWAOPTL DS ðXL3 User option bytes

TWAOPT1 DS XL1 User option byte 1

TWAOPT2 DS XL1 User option byte 2

TWAOPT3 DS XL1 User option byte 3

 DS XL1 Reserved

\\

\\ VTAM information - Any VTAM sense and RPL codes \\

\\ These fields are READ ONLY \\

\\

TWAVTAM DS ðXL12 VTAM information

TWARPLCD DS H VTAM RPL feedback codes

 DS H Reserved

TWASENSS DS ðF Sense codes to be sent

TWASS1 DS XL1 System sense byte No 1

TWASS2 DS XL1 System sense byte No 2

TWAUS1 DS XL1 User sense byte No 1

TWAUS2 DS XL1 User sense byte No 2

\

TWASENSR DS ðF Sense codes received

TWASR1 DS X System sense byte No 1

TWASR2 DS X System sense byte No 2

TWAUR1 DS X User sense byte No 1

TWAUR2 DS X User sense byte No 2

\

Figure 23 (Part 1 of 3). The DFHZNAC/DFHZNEP communication area

 Chapter 9. Writing a node error program 401

 when an abnormal condition occurs

\\

\\ Additional information for the NEP \\

\\Except for TWANPFW, TWANLD, and TWANLDL these fields are READ ONLY\\

\\

TWAADINF DS ðXL22

 DS F Reserved

TWACTLB DS X General use control byte

\ EQU X'8ð' Reserved

\ EQU X'4ð' Reserved

TWACSC EQU X'2ð' Clear sense code indicator

TWAPSC EQU X'1ð' Print VTAM sense codes

TWATIOA EQU X'ð8' Print portion of I/O area

\ EQU X'ð4' Reserved

TWAVTRTC EQU X'ð2' VTAM return code available

TWANEPR DS XL1 NEP return code byte

TWANPFW EQU X'8ð' Retry write with FORCE=YES

TWAREASN DS XL1 VTAM reason code

TWASTAT DS XL1 VTAM status code

TWAXRSN DS H Exception response seq number recd

TWAR EQU \

TWAPFLG DS XL1 CLSDST pass flag

TWAPIP EQU X'8ð' CLSDST pass in progress

TWANEPC DS XL1 NEP class flag

TWAEISAB DS XL1 Stand-alone begin bracket indicator

TWAESAB EQU X'ð4' Stand-alone begin bracket

 DS XL3 Reserved

TWANLD DS A Address of data to be logged

TWANLDL DS H Length of data to be logged

Figure 23 (Part 2 of 3). The DFHZNAC/DFHZNEP communication area

402 CICS Transaction Server for VSE/ESA Customization Guide

 when an abnormal condition occurs

\\

\\ Additional system parameters \\

\\Except for TWAPNETN, TWAPNTID, TWAUPRRC these fields are READ ONLY\\

\\

TWASYSPM DS ðXL68

TWATCTA DS AL4 Address of TCTTE being processed

TWARPL DS AL4 Address of VTAM RPL

TWATIOAA DS AL4 Address of data portion of TIOA

TWATIOAL DS H Length of data portion of TIOA

TWACOMML DS H Length of commarea data for TCTTE

TWACOMMA DS CL4 Address of commarea data for TCTTE

TWATECIA DS AL4 Address of TCTTE user area

TWATECIL DS H Length of TCTTE user area

TWAPPNTN DS CL8 Primary 327ð printer netname

TWAPPTID DS CL4 Primary 327ð printer termid

TWAPPELG DS X Primary printer eligible indicator

TWAPPELY EQU X'ð1' Primary printer is eligible flag

TWASPNTN DS CL8 Secondary 327ð printer netname

TWASPTID DS CL4 Secondary 327ð printer termid

TWASPELG DS X Secondary printer eligible indicator

TWASPELY EQU X'ð1' Secondary printer is eligible flag

TWAPNETN DS CL8 Selected 327ð printer netname

TWAPNTID DS CL4 Selected 327ð printer termid

TWAUPRRC DS B Unavailable Printer return code

TWAUPRNP EQU X'ðð' No printer selected

TWAUPRPS EQU X'ð1' Printer selected

TWAUPRDD EQU X'FF' Data disposal complete

TWAUPRPE EQU X'FE' Error on Put request

TWAERRF1 DS B Error flag byte 1

TWALXS EQU X'8ð' Logon crossed simlogon

 DS XL2 Reserved

\\

\\ Persistent session parameters \\

\\ Recovery notification data \\

\\ DFHZNEP can change these default actions \\

\\

TWAXRNOT DS X Recovery notification options

TWAXRNON EQU X'8ð' Recov notification = none

TWAXRMSG EQU X'4ð' Recov notification = message

TWAXRTRN EQU X'2ð' Recov notification = transact.

 DS XL3 Reserved

TWAXMSTN DS CL8 Recovery mapset name

TWAXMAPN DS CL8 Recovery map name

TWAXTRAN DS CL4 Recovery transaction ID

\

Figure 23 (Part 3 of 3). The DFHZNAC/DFHZNEP communication area

The next sections describe fields in the parameter list that can be reset within
DFHZNEP. See also “Coding for the 3270 ‘unavailable printer’ condition” on
page 418, which describes the use of the flags in the “unavailable printer return
code” field.

 Chapter 9. Writing a node error program 403

 when an abnormal condition occurs

The user option bytes (TWAOPTL)
TWAOPTL contains the user option bytes TWAOPT1, TWAOPT2, and TWAOPT3,
each of which contains action flags. On entry to DFHZNEP, these flags represent
the default actions previously set by DFHZNAC. They can be reset by DFHZNEP.

TWAOPT1
User option byte 1. TWAOPT1 contains flags which are principally debugging
aids. The first five flags cause DFHZNAC to write the desired information to
the CSNE log if the appropriate bit is set. Setting the sixth flag (TWAODNTA)
on causes CICS to take a system dump when there is no task attached to the
terminal at the time of error detection, if the flag TWAOAT in TWAOPT2 is also
set on.

The flags are:

TWAOAF (X'80') Print action flags.
TWAORPL (X'40') Print VTAM RPL.
TWAOTCTE (X'20') Print TCTTE.
TWAOTIOA (X'10') Print TIOA.
TWAOBIND (X'08') Print BIND area.
TWAODNTA (X'04') System dump if no task attached.

TWAOPT2
User option byte 2. TWAOPT2 contains flags which are task-related.

The NEP can abend the task by setting TWAOAT, or cancel it by setting
TWAOCT. The difference is that abend task does not take effect until the task
requests or completes a terminal control operation: cancel task takes effect as
soon as system and data integrity can be maintained. Setting TWAOAT to
abend the task is normally sufficient, except where the task performs lengthy
processing (such as a database browse) between terminal requests. If both
TWAOAT and TWAOCT are set, TWAOCT (cancel task) takes priority.

If the task is to be abnormally terminated, sends and receives are purged. If
TWAOGMM is set, the next transid is cleared and any communication area
associated with the terminal is released—except in the case of permanent
transids (specified on the TERMINAL definition as TRANSACTION(name)),
when the communication area is not released. If the TYPETERM of the
terminal indicates that the “good morning” message is supported
(LOGONMSG(YES)), if TWAONINT is off, and if the terminal is not in a BMS
paging session, then the “good morning” message transaction is initiated (the
transaction specified by the system initialization parameter GMTRAN).

The flags are:

TWAOAS (X'80') Abandon any SEND for this terminal.
TWAOAR (X'40') Abandon any RECEIVE for this terminal.
TWAOAT (X'20') Abend any task attached to TCTTE.
TWAOCT (X'10') Cancel any task attached to TCTTE.
TWAOGMM (X'08') “good morning” message to be sent.
TWAOPBP (X'04') Purge any BMS pages for this session.
TWAOASM (X'02') SIMLOGON required.

404 CICS Transaction Server for VSE/ESA Customization Guide

 when an abnormal condition occurs

Notes:

1. If a definite response SEND has been performed, CICS has to issue a
RECEIVE in order to obtain the response. If the response is negative,
DFHZNAC is entered and sets flags TWAOAS (abandon the SEND) and
TWAOAR (abandon the RECEIVE). TWAOAR must be left on to ensure
that the RECEIVE for the response is abandoned.

2. If the request is to be retried, and the break connection action flag is off
(that is, if TWAOCN in TWAOPT3 is off), then one or more of TWAOAS,
TWAOAR, and TWAONEGR must be off as well as TWAOAT.

3. The abend code returned as a result of setting TWAOCT is unpredictable.

4. TWAOGMM forces TWAOAT only if set on by the node error program.

5. TWAOPBP forces TWAOAT to be set on.

6. For non-pipeline terminals, TWAOAT acts as a cancel request (TWAOCT) if
the task has not yet been dispatched for the first time.

TWAOPT3
User option byte 3. TWAOPT3 contains flags which are node-related.

The flags are:

TWAOINT (X'80') Internally generated logons (INTLOGs) allowed.
TWAONINT (X'40') No internally generated logons allowed.7

TWAONCN (X'10') Normal CLSDST (no reset allowed).
TWAOSCN (X'08') Normal CLSDST (reset allowed).
TWAONEGR (X'04') Send negative response.
TWAOOS (X'02') Keep node out of service.
TWAOCN (X'01') CLSDST node.7

TWAONINT forces TWAOCN.

TWAONEGR forces TWAOAR and TWAOAT.

TWAOOS forces TWAOCN.

TWAOCN forces TWAOAR, TWAOAS, and TWAOAT.

TWAOOS indicates that no further processing is to be done for this node. The
node is logically out of service.

For an LU6.1 intersystem communication session, TWAOOS or TWAONINT
causes the system entry to be put out of service if, as a result of the specified
action, there are no allocatable sessions left. (A session can also be put out of
service because of either an unknown modename being passed to VTAM
during an attempt to bind an APPC session, or an invalid logmode name for a
VTAM 3270-type terminal. However, the CICS default action resulting from this
condition cannot be overridden in the NEP.)

If TWAOCN is set, the task is abnormally terminated and communication with
the node is lost. Note that the NEP cannot reset this flag.

TWAOSCN provides the same function as TWAONCN, but the NEP can reset it
if the session is not to be closed.

7 Do not set this flag when processing error code X'49' (TCZCLSIN).

 Chapter 9. Writing a node error program 405

 when an abnormal condition occurs

If DFHZNAC is scheduled because of the receipt of an exception response, the
sense information in the TCTTE is available to DFHZNAC and DFHZNEP to
determine any necessary actions.

If DFHZNAC is scheduled because of loss of the connection between CICS
and a logical unit, DFHZNAC abnormally terminates any transaction in progress
at the time of the failure. DFHZNEP and transaction-class error routine
analysis and processing are permitted, but you should not attempt to retry the
message.

However, if the application program handles the ‘TERMERR’ condition, the
transaction is not abended. Control is returned to the program. In this
circumstance, no further use can be made of the failed session.

Additional information for the NEP (TWAADINF)
Fields TWANPFW, TWANLD, and TWANLDL can be reset by the NEP. For
information about the use of TWANPFW, see the supplied sample node error
program, and “Optional error processor for interactive logical units” on page 410.

TWANLD and TWANLDL — using the DFHZNAC logging facility: You can use
the logging facility available in DFHZNAC to aid in retrieving information. You
specify the address of the data that you want to examine in field TWANLD of the
communication area, and the length of the data in field TWANLDL. The data is
logged to the CSNE transient data queue for future inspection.

Note: No data in excess of 220 bytes is logged.

You can also send user-written messages to the CSNE log using the transient data
facility. To write your messages, you must code the EXEC CICS WRITEQ TD
instruction directly into the node error program.

TWAPIP — and application routing failure: The EXEC CICS ISSUE PASS
command passes control from CICS to another named VTAM application. For
programming information about the EXEC CICS ISSUE PASS command, see the
CICS Application Programming Reference manual. The ISSUE PASS command in
turn invokes the VTAM macro CLSDST with OPTCD=PASS, and, in addition, if
NOTIFY has been specified on the CLSDSTP system initialization parameter, with
PARMS=(THRDPTY=NOTIFY). CICS is then notified of the outcome of any
CLSDST request.

This notification results in an informative message being issued, and causes
DFHZNAC to invoke your NEP, whether the CLSDST request has failed or
succeeded. The NEP can discover that a CLSDST OPTCD=PASS request is in
progress by examining field TWAPFLG for the pass-in-progress indicator, TWAPIP.
The success or failure of the CLSDST OPTCD=PASS request can be determined
by examining the error code at TWAEC.

If the pass operation fails, DFHZNAC sets up a default set of recovery actions that
can be modified by your NEP. A possible recovery, when, for example, the target
application program is not active, would be to reestablish the session with the initial
application using a SIMLOGON request and for CICS to send its “good morning”
message to the terminal. The default action is to leave the session disconnected
and to make it NOCREATE.

If CLSDSTP=NONOTIFY has been specified, and autoinstall is being used, CICS
takes no action, even if the ISSUE PASS fails.

406 CICS Transaction Server for VSE/ESA Customization Guide

 the sample node error program

If persistent sessions support is active, autoinstall terminals are deleted after the
AIRDELAY, so any expected NEP processing as a result of CLSDSTP=NOTIFY
being coded does not take place.

The additional system parameters (TWASYSPM)
If a data element referenced in this section of the parameter list (for example, the
TIOA) does not exist when the NEP is driven, its address and length fields are set
to zero.

Fields TWAPNETN, TWAPNTID, and TWAUPRRC can be reset by the NEP. The
use of these fields is discussed in “Coding for the 3270 ‘unavailable printer’
condition” on page 418.

Persistent session parameters (TWAXRNOT)
These fields can be reset by the NEP.

The sample node error program
The sample node error program provides a general environment for the execution
of error processing routines (error processors), each of which is specific to certain
error codes generated by the node abnormal condition program. Sufficient optional
error processors for normal operation of VTAM 3270 or interactive logical unit
networks are provided; these can be easily supplemented or replaced by
user-supplied error processors.

There are three types of error that may occur in a VTAM network:

� Errors in the host system

� Communication errors, such as session failures

� Abnormal conditions at the terminal, such as intervention required and invalid
requests

A sample node error program is supplied with CICS, and can be used as the basis
of each subsequent node error program that you write. This provides you with:

� A general environment within which your error processing programs can be
added

� The default node error program in a system that has several node error
programs

The CICS-supplied sample node error program is described in greater detail below.

Compatibility with the sample terminal error program
Receipt of sense or status codes corresponds to error codes X'D9', X'DC',
X'DD', and X'F2'. Weighted counts of these messages are maintained against
numeric and time thresholds. If the numeric threshold is exceeded, default actions
are taken. If the time threshold is reached, the count is reset. This is equivalent to
the function in the sample TEP, except that sense or status arising out of the “from”
device on a COPY command is now presented to the node error program as an
error on the “to” device, thus exceeding the threshold, which causes the request to
be terminated, although the terminal remains in service. Some of the weights for
errors that occur on the 3270 display device have been revised, but otherwise the
weight and threshold values are the same as the defaults used in the sample TEP.

 Chapter 9. Writing a node error program 407

 the sample node error program

Time threshold maintenance for the sample NEP is mandatory, and not optional as
in the sample TEP.

For further information about time and threshold count limits, see the information
about the sample terminal error program in Chapter 8, “Writing a terminal error
program” on page 359.

The 3270 message ‘unavailable printer’ corresponds to error code X'42' (interval
control PUT request has failed). The algorithm used for printer selection differs in
VTAM support. The retry algorithm in the sample node error program is similar to
this new selection algorithm.

Components of the sample node error program
The sample node error program comprises the following components:

� An entry section.

� The routing mechanism.

� The node error table.

� Optional common subroutines.

� Optional error processors for 3270 or interactive logical units. A node error
program cannot be generated with both 3270 and interactive logical unit error
processors.

The components are described in the sections that follow.

 Entry section
On entry, the sample NEP uses DFHEIENT to establish base registers and
addressability to the EXEC interface. It uses an EXEC CICS LOAD PROGRAM
command to establish addressability to the node error table (NET) and, if included,
the common subroutine vector table (CSVT). It uses an EXEC CICS ADDRESS
COMMAREA command to obtain addressability to the communication area passed
by DFHZNAC, and an EXEC CICS ADDRESS EIB command to obtain
addressability to the EXEC interface block. If time support has been generated, the
error is time-stamped for subsequent processing.

 Routing mechanism
The routing mechanism invokes the appropriate error processor depending on the
error code provided by the node abnormal condition program.

Groups of one or more error codes are defined in the DFHSNEP macro (see
below). Each group is associated with an index (in the range X'01' through
X'FF') and an error processor. A translate table is generated and the group index
is placed at the appropriate offset for each error code. Error codes not defined in
groups have a zero value in the table. An error processor vector table (EPVT)
contains the addresses of the error group processors, positioned according to their
indexes. The vector table extends up to the maximum index defined; undefined
intermediate values are represented by zero addresses.

The error code is translated to obtain the error group index. A zero value causes
the node error program to take no further action; otherwise the index is used to
obtain the address of the appropriate error processor from the EPVT. A zero
address causes the node error program to take no further action; otherwise a call is

408 CICS Transaction Server for VSE/ESA Customization Guide

 the sample node error program

made to the error processor. This is entered with direct addressability to the NET
and CSVT areas. When the error processor has been executed, the node error
program returns control to the node abnormal condition program.

Node error table
The node error program may use a node error table (NET) that comprises the node
error blocks (NEBs) used to maintain error status information for individual nodes
(see Figure 24). Some or all of the NEBs can be permanently reserved for specific
nodes; others are dynamically assigned to nodes when errors occur. Dynamically
assigned NEBs are used exclusively for the nodes to which they are assigned until
they are explicitly released. All the NEBs have an identical structure of error status
blocks (ESBs). Each ESB is reserved for one error processor and associated with
it by means of the appropriate error group index. The ESB length and format can
be customized to the particular error processor that it serves.

Node Error Table Node Error Block

NODE ERROR NODE ERROR
TABLE HEADER BLOCK HEADER

NODE ERROR ERROR STATUS
BLOCK BLOCK

PERMANENTLY
ASSIGNED
NEBs

ESBs

DYNAMICALLY
ASSIGNED
NEBs

Figure 24. Format of node error table and node error block

Optional common subroutines
The common subroutines are addressed via the CSVT and provide error
processors with the following functions:

� Locate or assign NEBs and ESBs on the basis of node ID and error group
index.

� Time stamp an error, update an error count, and test an error count against
numeric and time threshold values.

� Release a dynamically assigned NEB from a particular node.

Optional error processors for 3270 logical units
Two error processors are supplied for 3270 LUs, as follows:

1. Group index 1, error codes X'D9', X'DC', X'DD', and X'F2'.

These error codes correspond to the receipt of sense or status bytes in the
user sense fields of the RPL. The error processor locates an ESB of the
standard format and updates a weighted error count. The weight, threshold,

 Chapter 9. Writing a node error program 409

 the sample node error program

and timer values are based on those used by the sample terminal error
program 3270 except as noted in the previous section. If the threshold is not
exceeded, the abend SEND, abend RECEIVE, abend transaction flags, and all
the print action flags are turned off. Otherwise the default actions are taken
and the NEB is released if it is reusable.

2. Group index 2, error code X'42'.

This code means that no 3270 printer was available to satisfy a print request
made at a 3270 screen. The error processor examines the printers defined for
this screen to determine why they were unavailable. If either is busy on a
previous PRINT or COPY request (that is, a task is attached with a transaction
ID of CSPP or CSCY) or is no longer unavailable, that printer address is
returned to the node abnormal condition program which retries the print request
with an IC PUT command. Otherwise the default actions are taken. (For more
details, see the section “Coding for the 3270 ‘unavailable printer’ condition” on
page 418.)

Optional error processor for interactive logical units
Only one error processor is supplied for interactive LUs: group index 1, with error
code X'DC'.

This error code, in combination with a user sense value of X'081B', indicates a
‘receiver in transmit mode’ condition. The action flags in TWANPFW are
manipulated to allow the failing SEND request to be retried.

Generating the sample node error program
The routing mechanism, common subroutines, CICS-supplied error processors, and
user-supplied error processors are generated by means of DFHSNEP macros.

The sample node error program and table need to be translated, assembled, and
link-edited. For information about the job control statements required to assemble
and link-edit user-replaceable programs, refer to “Assembling and link-editing
user-replaceable programs” on page 348.

Note that you should code the translator options NOPROLOG and NOEPILOG in
your node error program.

Note also that an extra 24 bytes are required for the common subroutines register
save area, and further space is required for the error processor save area. The
CICS sample processors use 4 bytes of this area.

The DFHSNEP macro to generate the sample node error program has seven types,
as follows:

TYPE=USTOR
to indicate the start of user storage definitions.

TYPE=USTOREND
to indicate the end of user storage definitions.

TYPE=INITIAL
to generate the routing mechanism and, optionally, the common subroutines.

TYPE=DEF3270
to generate the default CICS-supplied error processors for 3270 devices.

410 CICS Transaction Server for VSE/ESA Customization Guide

 the sample node error program

TYPE=DEFILU
to generate the default CICS-supplied error processor for interactive logical
units operating in contention mode.

TYPE=ERRPROC
to indicate the start of a user-supplied error processor.

TYPE=FINAL
to indicate the end of the sample node error program.

DFHSNEP TYPE=USTOR and USTOREND—defining user storage
The DFHSNEP TYPE=USTOR macro has the following format:

DFHSNEP TYPE=USTOR

This macro indicates the start of user storage definitions. It must be followed by
your storage definitions, and then by DFHSNEP TYPE=USTOREND. If you use
DFHSNEP TYPE=USTOR to define storage, then both it and DFHSNEP
TYPE=USTOREND must be coded before DFHSNEP TYPE=INITIAL.

The DFHSNEP TYPE=USTOREND macro has the following format:

DFHSNEP TYPE=USTOREND

This macro indicates the end of user storage definitions. Its use is mandatory if
DFHSNEP TYPE=USTOR has been coded. If you use DFHSNEP TYPE=USTOR
to define storage, then both it and DFHSNEP TYPE=USTOREND must be coded
before DFHSNEP TYPE=INITIAL.

DFHSNEP TYPE=INITIAL—generating the routing mechanism
One DFHSNEP TYPE=INITIAL macro must appear immediately after DFHSNEP
TYPE=USTOR and DFHSNEP TYPE=USTOREND (if they are coded) and before
the remaining macros.

DFHSNEP TYPE=INITIAL

 [,CS=NO]

 [,NAME=name]

 [,NETNAME=netname]

TYPE=INITIAL
indicates the start of the sample node error program and causes the routing
mechanism to be generated.

CS=NO
specifies that the generation of the common subroutines is to be suppressed.

NAME=name
specifies the name of the node error program module identifier. The name
must be a string of 1 through 8 characters. This operand is optional, and the
default is DFHZNEP0. If the interface module DFHZNEP (generated by the

 Chapter 9. Writing a node error program 411

 the sample node error program

DFHZNEPI macro) is used, this operand must be specified (with a name other
than DFHZNEP).

NETNAME=netname
specifies the name of the node error table to be loaded at initialization. The
name must be a string of 1 through 8 characters. This operand is optional, and
the default is DFHNET.

DFHSNEP TYPE=DEF3270—including error processors for 3270
LUs
The DFHSNEP TYPE=DEF3270 macro has the following format:

DFHSNEP TYPE=DEF327ð

TYPE=DEF3270
specifies that the CICS-supplied error processors for 3270 logical units are to
be included in the node error program. This macro causes the following source
code to be generated:

DFHSNEP TYPE=ERRPROC,GROUP=1,CODE=(D9,DC,DD,F2)

Sense/status error processor code.

DFHSNEP TYPE=ERRPROC,GROUP=2,CODE=42

Unavailable printer error processor code.

DFHSNEP TYPE=DEFILU—including error processors for INTLUs
The DFHSNEP TYPE=DEFILU macro has the following format:

DFHSNEP TYPE=DEFILU

TYPE=DEFILU
specifies that the CICS-supplied error processor for interactive logical units is to
be included in the node error program. This macro causes the following source
code to be generated:

DFHSNEP TYPE=ERRPROC,GROUP=1,CODE=DC

(receiver in transmit mode error processor code)

DFHSNEP TYPE=FINAL—terminating DFHSNEP entries
One DFHSNEP TYPE=FINAL macro must follow all the other DFHSNEP macros.
It has the following format:

DFHSNEP TYPE=FINAL

TYPE=FINAL
indicates the end of the node error program and causes the error processor
vector table (EPVT) to be generated.

412 CICS Transaction Server for VSE/ESA Customization Guide

 the sample node error program

DFHSNEP TYPE=ERRPROC—specifying a user error processor
The DFHSNEP TYPE=ERRPROC macro is used to indicate the start of a
user-supplied error processor. The actual error processor code should immediately
follow this macro. The assembly should be terminated by the statement: END
DFHNEPNA.

The following operands can be used on the DFHSNEP TYPE=ERRPROC macro:

DFHSNEP TYPE=ERRPROC

 ,CODE=(error-code,...)

 ,GROUP=error-group-index

TYPE=ERRPROC
indicates the start of a user-supplied error processor.

CODE=(error-code,...)
specifies the error codes that make up the error group, and which are therefore
handled by the error processor supplied. The operand is coded as a sublist of
2-character representations of 1-byte hexadecimal codes. (The parentheses
can be omitted for a single code.) For each code specified, the error group
index is placed at the equivalent offset in the translate table. Thus, when this
code occurs, the appropriate error processor can be identified.

GROUP=error-group-index
specifies an error group index for the error processor. This index is used to
name the error processor, locate its address from the error processor vector
table (EPVT), and optionally associate it with an ESB in each NEB. The index
specified must be a 2-character representation of a 1-byte hexadecimal number
in the range X'01' through X'FF' (a leading zero can be omitted). The error
processor name has the form NEPROCxx, where “xx” is the error group index.
A CSECT statement of this name is generated, which causes the error
processor code to be assembled at the end of the node error program module
and to have its own addressability.

If you intend to add your own error processors to the sample node error program,
you should consider the following factors:

� The layout of the communication area. The communication area is described
in detail in Figure 23 on page 401.

� The fact that certain functions cannot be used within DFHZNEP. (See
“Restrictions on the use of EXEC CICS commands” on page 417.)

� The register conventions used by the sample node error program. These are
described in Table 112 on page 414.

 Chapter 9. Writing a node error program 413

 the sample node error program

Notes:

1. Register 14 must be saved for return from error processors. The common
subroutine vector table (CSVT) is coded after the BALR to the error processor
and so this register is also the CSVT base.

2. Registers 1, 10, 12, 13, 14, and 15 are set up on entry to error processors.

3. Registers 14 through 11 can be saved by error processors in an area reserved
in EXEC interface storage at label NEPEPRS. Registers 15 through 11 do not
need to be restored before return from error processors.

4. Registers 4 through 9 can be saved by common subroutines in an area
reserved in EXEC interface storage at label NEPCSRS. They must be restored
before return from the subroutines.

Table 112. Register assignment

Register Use

0 Work register

1 Address of the EXEC parameter list

2 NEB base register (DFHSNEP only)

3 ESB base register (DFHSNEP only)
NEP error class register (DFHZNEPI only)

4 NEP name pointer register (DFHZNEPI only)

5 NEP interface base register (DFHZNEPI only)

6 Work register

7 Work register

8 Work register

9 Work register

10 Code base register

11 Address of the EIB

12 Address of the communication area

13 Address of DFHEISTG storage

14 CSVT base and error processor link register
Common subroutine link register

15 Error processor branch register
Common subroutine branch register

DFHSNET—generating the sample node error table
The DFHSNET macro is used to generate a node error table. Each sample node
error table that you generate must be defined to CICS.

DFHSNET [NAME=DFHNET|name]

 [,COUNT=1ðð|threshold]

 [,ESBS=1|(index,length,...)]

 [,NEBNAME=(name,...)]

 [,NEBS=1ð|number]

 [,TIME=(7,MIN)|(interval,units)]

414 CICS Transaction Server for VSE/ESA Customization Guide

 the sample node error program

NAME=DFHNET|name
specifies the identifier to be included in the NET header. It must be a 1–8
character string. This operand is optional, and the default is DFHNET.

COUNT=100|threshold
specifies the error count threshold that is to be stored in the NET header for
use by the common subroutines to update standard ESBs. If the threshold is
exceeded, the error processor that invoked the subroutine is informed by a
return code. The maximum value is 32 767. This operand is optional, and the
default is 100.

ESBS=1|(index,length,...)
specifies the ESB structure for each NEB. This operand is coded as a sublist.
Each element of the sublist comprises two values: “index” specifies an error
group index for which an ESB is to be included in the NEB; “length” specifies
the status area length, in bytes, for that ESB. The parentheses can be omitted
for a single element. The “index” must be specified as a 2-character
representation of a 1-byte hexadecimal number in the range X'01' through
X'FF' (a leading 0 can be omitted). The “length” is constrained only because
an 8-byte NEB header plus a 4-byte header for each ESB must be contained
within the maximum NEB length of 32 767 bytes. If a null value is specified, a
standard ESB with a status area length of 10 bytes is assumed. This is
suitable for use by the common subroutines in maintaining a time-stamped
error count.

This operand is optional and defaults to 1. This causes each NEB to be
generated with one ESB for error group 1 with a status area length of 6 bytes.

NEBNAME=(name,...)
specifies the names of nodes that are to have a permanently assigned NEB.
The names specified are assigned, in the order specified, to the set of NEBs
requested by the NEBS operand. Any remaining NEBs are available for
dynamic allocation to other nodes as errors occur. Each name must be a 1–4
character string. The parentheses can be omitted for a single name. This
operand is optional and has no default.

NEBS=10|number
specifies the number of NEBs required in the NET. The maximum valid
number is 32 767; the default is 10.

TIME=(7,MIN)|(interval,units)
specifies the time interval that is to be stored in the NET header for use by the
common subroutines to maintain error counts in standard ESBs. If the
threshold specified in the COUNT operand is not exceeded before this time
interval elapses, the error count is reset to 0. Specify “units” as SEC, MIN, or
HRS. The maximum values for “interval” are as follows: (86400,SEC),
(1440,MIN), or (24,HRS). This operand is optional, and the default is set to
(7,MIN).

 Chapter 9. Writing a node error program 415

 the sample node error program

 DSECTs
The following DSECTs are provided:

Node Error Table Header : This contains the table name and common information
relevant for all the node error blocks (NEBs) in the table.

DFHNETH DSECT

NETHNAM DS CL8 Table name

NETHNBN DS H Number of NEBs in table

NETHNBL DS H Length of NEBs in table

NETHTIM DS PL8 Error count time interval

NETHECT DS H Error count threshold

NETHFLG DS X Flag byte

NETHINI EQU X'ð1' Table initialized

 DS X Reserved

NETHFNB DS ðF First NEB

Node Error Block : The table contains node error blocks that are used for recording
error information for individual nodes. These can be permanently assigned to
specific nodes or dynamically assigned at the request of error processors.

DFHNETB DSECT

NEBNAM DS CL4 Node name

NEBFLG DS X Flag byte

NEBPERM EQU X'ð1' Permanently assigned NEB

 DS XL3 Reserved

NEBFESB DS ðX First NEB

Error Status Block : The NEBs can contain error status blocks. These are
reserved for specific error processors and are identified by the corresponding error
group index. An ESB can have a format defined by you, or can have a standard
format suitable for counting errors over a fixed time interval.

DFHNETE DSECT

ESBEGI DS X Error group index

ESBFLG DS X Flag byte

ESBSTAN EQU X'ð1' Standard format ESB

ESBTTE EQU X'ð2' Time threshold exceeded

ESBCTE EQU X'ð4' Count threshold exceeded

ESBSLEN DS XL2 Status area length

ESBHLEN EQU \-DFHNETE ESB header length

ESBSTAT DS ðX Status area

The following fields apply to the standard format:

ESBTIM DS PL8 Time stamp

ESBEC DS XL2 Error count

Common Subroutine Vector Table : The CSVT provides error processors with
addressability to the common subroutines. The error processor link register gives
addressability to the CSVT and so the first section of the DSECT overlies the code
required to branch around the actual table.

416 CICS Transaction Server for VSE/ESA Customization Guide

 user-written node error programs

DFHNEPC DSECT

 DS F Load instruction

 DS F Branch instruction

CSVTNEP DS A Node error program base address

CSVTESBL DS A NEPESBL - ESB locate routine

CSVTNEBD DS A NEPNEBD - NEB delete routine

CSVTECUP DS A NEPECUP - error count update

 routine

User-written node error programs
You can write your own NEP in any of the CICS-supported languages. However,
CICS-supplied NEP code is provided in assembler language only. The
communication area parameter list is supplied in assembler-language and C
versions. The names of the supplied source files, copy books, and macros, are
listed in Table 113. All are supplied in the VSE/ESA sublibrary PRD1.BASE.

If you code in assembler language, you can use the sample NEP as a framework
on which to construct your own node error program.

Table 113. Supplied source files, copy books, and macros

Name Type Description

DFHZNEP0 Program Default node error program (assembler
language)

DFHZNEPX Source Default NEP (embedded by DFHZNEP0 via
COPY statement)

DFHSNEP Macro Sample NEP program generator (assembler
language)

DFHZNEPI Macro NEP interface generator
(for multiple NEPs)

DFHNEPCA Macro Assembler-language communication area

DFHNEPCA Copy book C-language communication area

Restrictions on the use of EXEC CICS commands
There are certain restrictions on the commands that a NEP can issue. The use of
any commands which require a principal facility causes unpredictable results,
and should be avoided . In particular, you should not use commands which
invoke the following functions:

� Terminal control (“CEMT-type” commands, such as EXEC CICS INQUIRE
TERMINAL, are permissible).

� BMS (except routing).

� ISC communication (including function shipping). This includes START
requests for remote transactions. Such requests are not recommended
because CSNE (Node Abnormal Condition task) might become suspended
while doing an ALLOCATE to the remote system.

If you need to start a remote transaction, start a local transaction which starts a
remote one in turn.

 Chapter 9. Writing a node error program 417

 user-written node error programs

You should also note that you cannot use the NEP to suppress DFHZNAC
messages.

Entry and addressability
On entry, your NEP should issue the commands:

EXEC CICS ADDRESS COMMAREA
EXEC CICS ADDRESS EIB

These commands provide addressability to the communication area passed by
DFHZNAC, and to the EXEC interface block, respectively.

If you write your node error program in assembler language, you generate the
communication area DSECT by coding:

DFHNEPCA TYPE=DSECT

If you write your program in C, you include the communication area definitions by
coding:

#include <dfhnepca>

Coding for the 3270 ‘unavailable printer’ condition
The ‘unavailable printer’ condition arises when a print request is made using the
3270 print request facility, and there are no printers on the control unit, or when the
printers are in one of the following conditions:

� Out of service
� Not in TRANSCEIVE or RECEIVE status for automatic transaction initiation
� With a task currently attached
� Busy on a previous operation

 � Requiring intervention

The procedure is applicable to 3270 logical units or to the 3270 compatibility mode
logical unit when using the PRINTER and ALTPRINTER operands of the CEDA
DEFINE TERMINAL command.

The terminal control program recognizes this condition, and issues a READ
BUFFER request to collect the data into a terminal I/O area. The TIOA is of the
same format as it is when an application program has issued a terminal control
read buffer request.

The terminal control program VTAM section (DFHZCP) then queues the TCTTE to
the node abnormal condition program with error code X'42' (TCZCUNPRT). The
node abnormal condition program (DFHZNAC) writes to the CSNE transient data
queue:

� DFHZC2497 UNAVAILABLE PRINTER (device types 3270P and LUTYPE3)

� DFHZC3493 INVALID DEVICE TYPE FOR A PRINT REQUEST (all other
printer device types)

Before linking to the node error program, DFHZNAC inserts the primary and
secondary printer netnames and terminal IDs into the communication area,

418 CICS Transaction Server for VSE/ESA Customization Guide

 user-written node error programs

indicating also whether either printer is eligible for a print request. DFHZNAC links
to the node error program with no default actions set.

On return from the node error program, DFHZNAC checks the additional system
parameter TWAUPRRC in the communication area (see Figure 23 on page 401)
and, based on its contents, performs one of the following actions:

� If your NEP sets TWAUPRRC to X'FF' (−1), DFHZNAC assumes that the
node error program has disposed of the data to be printed and therefore takes
no further action.

� If your NEP sets TWAUPRRC to zero, DFHZNAC assumes that no printer is
available and takes no further action.

� If your NEP sets TWAUPRRC to neither zero nor −1, DFHZNAC assumes that
one of either field TWAPNETN or field TWAPNTID is set. (If both are set,
TWAPNTID(termid) takes precedence.) An interval control PUT is performed to
the provided terminal. The transaction to be initiated is CSPP (print program),
and the time interval is zero.

– If an error occurs on the interval control PUT, DFHZNAC writes the
‘DFHZC2496 IC FAILURE’ message to the destination CSNE. DFHZNAC
then links to the node error program again with the TWAUPRRC field set to
−2. This is done to give the node error program a last chance to dispose
of the data. On the second return from the node error program to
DFHZNAC, the latter reexamines TWAUPRRC. If TWAUPRRC is −1, then
the node error program has disposed of the data.

– If no error occurs on the interval control PUT, DFHZNAC checks for the
following printer conditions:

- ‘Out of service’
 - ‘Intervention required’

- Any condition other than RECEIVE or TRANSCEIVE status

If one of these conditions is true, DFHZNAC issues the ‘DFHZC2495
PRINTER OUTSERV/IR/INELIGIBLE-REQ QUEUED’ message to the
destination CSNE.

Finally, DFHZNAC terminates any print requests on the originating terminal and
performs normal action flag processing on that terminal.

Coding for session failures
Following some categories of error associated with logical unit or path failures, the
session between CICS and the logical unit may be lost. The default action taken
by DFHZNAC may be to put the TCTTE out of service.

A method of automatically reacquiring the session is for your node error program to
alter the default DFHZNAC actions and to keep the TCTTE in service. Your node
error program can then issue an EXEC CICS START TERMID(name) command
against that TCTTE for a transaction written in a similar manner to the CICS “good
morning” signon message (CSGM). When the transaction is initiated using
automatic transaction initiation (ATI), CICS tries to reacquire the session. If the
session fails again, DFHZNAC is reinvoked and the process is repeated.

The time specified on the EXEC CICS START command is determined by
installation-dependent expected-mean-time-to values.

 Chapter 9. Writing a node error program 419

 user-written node error programs

If used in this way, the initiated transaction can write an appropriate signon
message when the session has been acquired. Note, however, that if
LOGONMSG(YES) is specified on the RDO TYPETERM resource definition, the
CICS “good morning” message is also initiated when the session is opened. Refer
to “Restrictions on the use of EXEC CICS commands” on page 417.

Coding for specific VTAM sense codes
Figure 25 shows how your NEP error processors could test for the presence of
specific VTAM sense codes.

TEST1 EQU \

CLC TWASENSR(2),SNS1 SENSE CODE EQUAL TO NNNN

BNE TEST2 NO, THEN NEXT TEST

NI TWAOPT1,TWAOAF PRINT ACTION MESSAGES ONLY

OI TWAOPT2,TWAOAS+TWAOAR+TWAOAT ABANDON SEND,RECEIVE AND TASK

NI TWAOPT2,255-TWAOASM SET SIMLOGON OFF

OI TWAOPT3,TWAOINT SET INTLOG NOW ALLOWED

NI TWAOPT3,255-TWAONINT OR RESET NOINTLOG

 B END

 .

 .

 .

SNS1 DC X'NNNN'

Figure 25. Sample code, showing how your node error program could test for specific VTAM
sense codes

Writing multiple NEPs
You can write several node error programs, as described in “Multiple NEPs” on
page 397. When an error occurs, the node abnormal condition program passes
control to an interface module, DFHZNEPI, which determines the transaction class
and passes control to the appropriate node error program.

If only one node error program is used, the interface module (DFHZNEPI) is not
required. If the node error program is named DFHZNEP, the node abnormal
condition program branches directly to that. If more than one node error program is
used, the interface module (DFHZNEPI) is required. In this case, the node error
programs must be given names other than DFHZNEP. There must be an installed
program definition for every node error program generated.

 DFHZNEPI macros
The following macros are required to generate the node error program interface
module (DFHZNEPI):

� DFHZNEPI TYPE=INITIAL to specify the name of the default transaction-class
routine

� DFHZNEPI TYPE=ENTRY to associate a transaction-class with a
transaction-class error handling routine

� DFHZNEPI TYPE=FINAL to end the DFHZNEPI entries

The DFHZNEPI interface module must be generated when you require the node
abnormal condition program to pass control to the appropriate user-written node
error program for resolution of the error.

420 CICS Transaction Server for VSE/ESA Customization Guide

 user-written node error programs

DFHZNEPI TYPE=INITIAL—specifying the default routine
The DFHZNEPI TYPE=INITIAL macro specifies the name of the default
transaction-class routine to be used for the DFNZNEPI module.

DFHZNEPI TYPE=INITIAL

 [,DEFAULT=name]

DEFAULT=name
specifies the name of the default transaction-class routine to be used. A link is
made to this default routine if you specify for the transaction (using the CEDA
DEFINE PROFILE, CEDA DEFINE SESSIONS, or CEDA DEFINE TYPETERM
command) a NEPCLASS value of 0 (the default) or higher than 255, or if you
do not specify a transaction-class routine using the DFHZNEPI TYPE=ENTRY
macro for the class specified on the NEPCLASS operand.

If either of the preceding conditions is true, but you do not code the DEFAULT
operand, then no routine is invoked.

The DFHZNEPI TYPE=INITIAL macro must always be specified, and must be
placed before any other forms of the DFHZNEPI macro. Only one TYPE=INITIAL
macro can be specified.

DFHZNEPI TYPE=ENTRY—specifying a transaction-class routine
You use the DFHZNEPI TYPE=ENTRY macro to associate a transaction class
(NEPCLASS) with a transaction-class error handling routine. The format of this
macro is:

DFHZNEPI TYPE=ENTRY

 ,NEPCLAS=integer

 ,NEPNAME=name

NEPCLAS=integer
specifies the transaction-class, and must be in the range 1 through 255. No
value should be specified that has been specified in a previous DFHZNEPI
TYPE=ENTRY instruction.

NEPNAME=name
specifies a name for the transaction-class routine to be associated with the
specified transaction-class. An error condition results if the name is specified
either as DFHZNEP, or is longer than 8 characters.

Note: You can use the sample node error program (with a name other than
DFHZNEP) as a transaction-class routine for the interface module, DFHZNEPI.

 Chapter 9. Writing a node error program 421

 user-written node error programs

DFHZNEPI TYPE=FINAL—terminating DFHZNEPI entries

DFHZNEPI TYPE=FINAL

TYPE=FINAL
completes the definition of module DFHZNEPI and must be specified last. The
assembly should be terminated by an END statement with no entry name
specified, or by the statement: END DFHZNENA.

Handling shutdown hung terminals in the node error program
Error Code: X'6F'
Symbolic Name: TCZSDAS
Message Number: DFHZC2351

For error code X'6F', DFHZNAC passes the setting of TCSACTN and the
DFHZC2351 reason code to DFHZNEP, and DFHZNEP can modify the force-close
action for the current terminal.

How DFHZNAC passes the setting of TCSACTN to DFHZNEP
For error code X'6F', DFHZNAC passes the setting of the TCSACTN system
initialization parameter to DFHZNEP by setting TWAOSCN. TWAOSCN off (B'0')
indicates TCSACTN=NONE, and TWAOSCN on (B'1') indicates
TCSACTN=UNBIND.

How DFHZNAC passes the DFHZC2351 reason code to DFHZNEP
For error code X'6F', the DFHZC2351 reason code is passed to DFHZNEP in the
NEP communications area (NEPCA) field TWATRSN. TWATRSN is a 1-byte code
field. Note that, currently, TWATRSN overlays TWAREASN (also a 1-byte field).
The codes, and their meaning, are:

 ð1 Request in progress ð6 Waiting for RTR

 ð2 Task still active ð7 BID in progress

 ð3 Waiting for SHUTC ð8 Other TC work pending

 ð4 Waiting for BIS 99 (X'63') Undetermined

 ð5 Waiting for UNBIND

See Terminal Control message DFHZC2351 for further details.

How DFHZNEP can modify the force-close action for the current
terminal
For error code X'6F', DFHZNEP can modify the force-close action, for the current
terminal, by setting TWAOSCN. If DFHZNEP sets TWAOSCN off (B'0'),
DFHZNAC will not attempt to force-close the terminal (TCSACTN=NONE),
however, if DFHZNEP sets TWAOSCN on (B'1'), DFHZNAC will attempt to
force-close the terminal (TCSACTN=UNBIND). Internally, DFHZNAC achieves this
by converting the TWAOSCN normal close to a TWAOCN forced close. DFHZNEP
cannot modify either of the system initialization parameters TCSWAIT or
TCSACTN.

422 CICS Transaction Server for VSE/ESA Customization Guide

 the node error program and PSS

Using the node error program with VTAM persistent sessions
Persistent session support is described in the CICS Recovery and Restart Guide.

One of the steps in the conversation-restart process is to link to the node error
program with error code X'FD'. If you want to be able to change any of the
system-wide recovery notification options (whether terminal users are notified of a
recovery, the recovery message, or the recovery transaction) for some terminals,
you should write your own error processor to handle code X'FD'.

When using persistent sessions, note the following:

� When a session has been recovered, it may be a good idea to run NEP
processing equivalent to your normal “session started” (code X'48')
processing, because code X'48' is not passed on session recovery when
persistent sessions are used.

� In certain situations where sessions have persisted over a failure but have
been unbound on restart (for example, a COLD start occurs after a CICS
failure), the NEP is not driven. (In systems without persistent session support,
the NEP is always driven with code X'49', “session terminated”, when a VTAM
session terminates.) Conditions leading to the issuing of the following
messages do not drive the NEP. The messages appear on the system
console:

DFHZCð12ð DFHZCð124

DFHZCð121 DFHZCð129

DFHZCð122 DFHZCð13ð

DFHZCð123

Conditions leading to the issuing of messages DFHZCð125 and DFHZCð131 drive
the NEP with codes X'FB' and X'FC' respectively. It is recommended that
you run NEP processing equivalent to your normal “session terminated” NEP
processing for these conditions.

� If zero is specified on the AIRDELAY system initialization parameter,
autoinstalled terminals are not recovered after a restart. Similarly, if the delay
period specified on AIRDELAY expires before an autoinstalled terminal is used
after a restart, the terminal definition is deleted. In these circumstances, any
expected NEP processing as a result of CLSDSTP=NOTIFY being coded does
not take place.

Changing the recovery notification
The method of recovery notification for a terminal is defined using the
RECOVNOTIFY option of the RDO TYPETERM resource definition, which is
described in the CICS Resource Definition Guide. This is the most efficient way to
specify the recovery notification method for the whole network, because CICS
initiates the notification procedure during the early stages of takeover.

You can use the node error program to change the recovery notification method for
some of the switched terminals. For example, you may want most terminals of a
particular type to receive the recovery message at takeover, but the rest to get no
notification that service has been restored. To achieve this, you could code
RECOVNOTIFY(MESSAGE) in the RDO TYPETERM resource definition, and then
use the node error program to change the recovery notification to NONE for the
relatively few terminals that are not to be notified.

 Chapter 9. Writing a node error program 423

 the node error program and PSS

Changing the recovery message
If you define a terminal with RECOVNOTIFY(MESSAGE) in its RDO TYPETERM
definition, a recovery message is sent to the terminal after takeover. By default, for
a persistent session recovery, this is the following CICS-supplied message in BMS
map DFHXRC1 of map set DFHXMSG:

DFHZCð199 CICS has recovered after a system failure.

Execute recovery procedures.

You can specify your own map set in the node error program if you want to change
the recovery message for some of the switched terminals. This could be useful, for
example, if signon security is in force and you want to tell terminal users to sign on
again. The map set that you specify must have an installed program definition. If
you choose to change the recovery message for all terminals, it would be more
efficient to replace the CICS-supplied map with your own.

Changing the recovery transaction
The recovery transaction, to be started at a terminal after takeover, is specified
using the RMTRAN system initialization parameter. This is the most efficient way
of specifying a recovery transaction for the network. You can specify a different
transaction for some of the switched terminals by overwriting field TWAXTRAN in
the communication area. The transaction that you specify must have an installed
transaction definition, and the terminal must be defined with the option ATI(YES).

If the transaction specified in TWAXTRAN does not exist, CICS tries to start the
CSGM transaction. If this also fails, CICS terminates the session.

424 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for terminals

Chapter 10. Writing a program to control autoinstall of
terminals

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter describes the user-replaceable program that controls the automatic
installation of locally-attached VTAM terminals (including APPC single-session
devices). For information about controlling the automatic installation of local APPC
connections that are initiated by BIND requests, see Chapter 11. For information
about controlling the installation of shipped terminals and connections, see
Chapter 12.

The chapter is divided into the following sections:

 1. “Preliminary considerations” .

2. “The autoinstall control program at INSTALL” on page 427. This contains:

� “The communication area at INSTALL for terminals” on page 428
� “How CICS builds the list of autoinstall models” on page 429
� “Returning information to CICS” on page 430
� “CICS action on return from the control program” on page 433

3. “The autoinstall control program at DELETE” on page 435.

4. “Naming, testing, and debugging your autoinstall control program” on
page 436.

5. “The sample programs and copy books” on page 437.

 Preliminary considerations
You use DFHCSDUP or CEDA DEFINE command to define VTAM-connected
resources to your CICS system. This command puts your definitions onto the CICS
system definition file (CSD). Having defined your resources, you can allow CICS to
create entries in the TCT automatically, whenever VTAM resources request
connection to CICS. A particular advantage of automatic installation (autoinstall) is
that the resource occupies storage in the TCT only while it is connected to CICS.

You use the autoinstall control program to select some of the data needed to
automatically install your terminals—notably the CICS terminal name and the model
name to be used in each instance. You can use the CICS-supplied autoinstall
program, or extend it to suit your own purposes.

For an overview of autoinstall, see the CICS Resource Definition Guide. You
should also read the sections in the same manual that describe the CEDA
commands that create the environment in which your control program can work.

If you choose automatic installation for some or all of your terminals, you must:

� Create some model TERMINAL definitions.

 Copyright IBM Corp. 1977, 1999 425

 the autoinstall control program for terminals

� Define the terminals to VTAM, so that their definitions in VTAM match the
model TERMINAL definitions in CICS.

� If you are using VTAM model terminal support (MTS), define the MTS tables to
VTAM.

� Use the default autoinstall control program for terminals (DFHZATDX), or write
your own program, using the source-code of the default program and the
customization examples in this chapter as a basis. (You can write an entirely
new program if the default program does not meet your needs, but you are
recommended to try a default-based program first.) You can write your
program in any of the languages supported by CICS—the source of the default
program is provided in assembler language, COBOL, PL/I, and C in the
VSE/ESA sublibrary PRD1.BASE. You can rename your user-written program.

Note: You can have only one active autoinstall control program for terminals
and connections. You specify the name of the active program on the AIEXIT
system initialization parameter. The DFHZATDY program described in
Chapter 11 provides the same function for terminal autoinstall as DFHZATDX,
but in addition provides function to autoinstall APPC connections initiated by
BIND requests. Thus, if you want to autoinstall APPC connections as well as
terminals, you should use a customized version of DFHZATDY, rather than
DFHZATDX.

Coding entries in the VTAM LOGON mode table
CICS uses the logmode data in the VTAM LOGON mode table when processing an
autoinstall request. Autoinstall functions properly only if the logmode entries that
you define to VTAM have matches among the model TERMINAL definitions that
you specify to CICS.

The tables in Appendix A, “Coding entries in the VTAM LOGON mode table” on
page 627 show, for a variety of possible terminal devices, what you must have
coded on the VTAM MODEENT macros that define, in your logmode table, the
terminals that you want to install automatically. Between them, the tables show the
values that must be specified for each of the operands of the MODEENT macro.

Some of the examples in the appendix correspond exactly to entries in the
IBM-supplied logon mode table called ISTINCLM. Where this is so, the table gives
the name of the entry in ISTINCLM.

Using model terminal support (MTS)
CICS Transaction Server for VSE/ESA supports the model terminal support (MTS)
function of VTAM.

Using MTS, you can define the model name, the printer (PRINTER), and the
alternate printer (ALTPRINTER) for each terminal in a VTAM table. This
information is sent by VTAM in an extended CINIT RU. CICS captures it as part of
autoinstall processing at logon, and uses it to create a TCTTE for the terminal.

If you are using MTS, you must use the CICS Transaction Server for VSE/ESA
Release 1 version of DFHZATDX. If you write your own autoinstall control
program, you must ensure that it takes account of the extended data pointed to in
the communication area. (See “The autoinstall control program at INSTALL” on
page 427.)

426 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

Coding entries for MTS
You need to define model names (MDLTAB, MDLENT, and MDLPLU macros) and
printer and associated printer names (ASLTAB, ASLENT, and ASLPLU macros) to
VTAM.

The autoinstall control program for terminals, DFHZATDX
In addition to managing your resource definition, your autoinstall control program
can perform any other processes that you want at this time. Its access to the
command-level interface is that of a normal, nonterminal user task. Some possible
uses are listed on page 438.

The control program is invoked when:

1. An autoinstall INSTALL request is being processed

2. An autoinstall DELETE request has just been completed

3. An autoinstall request has previously been accepted by the user program, but
the subsequent INSTALL process has failed

On each invocation of the autoinstall control program, a parameter list is passed
(using a communication area), describing the function being performed (INSTALL or
DELETE), and providing data relevant to the particular event. (In case 3 above, the
control program is invoked as if for DELETE).

The INSTALL and DELETE events are now described in detail.

The autoinstall control program at INSTALL
If autoinstall is operative, the autoinstall control program is invoked at INSTALL for:

� Local VTAM terminals
� Local APPC single-session connections initiated by a CINIT
� Local APPC parallel-session connections initiated by a BIND
� Local APPC single-session connections initiated by a BIND
� Shipped terminals and connections

On each invocation, CICS passes a parameter list to the control program by means
of a communication area addressed by DFHEICAP. The parameter list passed at
INSTALL of APPC connections initiated by BIND requests is described in “The
communication area at INSTALL for APPC connections” on page 447. The
parameter list passed at INSTALL of shipped terminals and connections is
described in “The communications area at INSTALL for shipped terminals” on
page 456.

The control program is invoked at INSTALL for terminals (and APPC single-session
connections initiated by a CINIT) when both:

� A VTAM logon request has been received from a resource eligible for
automatic installation whose NETNAME is not in the TCT.

� Autoinstall processing has been completed to a point where information (a
terminal identifier and autoinstall model name) from the control program is
required to proceed.

 Chapter 10. Writing a program to control autoinstall of terminals 427

 autoinstall control program at INSTALL

The communication area at INSTALL for terminals
The layout of the communication area is shown in Figure 26.

Fullword 1 Standard Header

 Byte 1 Function Code (X'Fð' for INSTALL)

Bytes 2 - 3 Component Code Always 'ZC'

 Byte 4 Reserved Always X'ðð'

Fullword 2 Pointer to NETNAME_FIELD

Fullword 3 Pointer to MODELNAME_LIST

Fullword 4 Pointer to SELECTED_PARMS

Fullword 5 Pointer to CINIT_RU

Figure 26. Autoinstall control program’s communication area at INSTALL

The parameter list contains the following information:

1. Standard Header. Byte 1 indicates the request type (this is character ‘0’ for
INSTALL).

2. Pointer to a 2-byte length field, followed by the NETNAME of the resource
requesting LOGON.

3. Pointer to an array of names of eligible autoinstall models. The array is
preceded by a 2-byte field describing the number of 8-byte name elements in
the array. If there are no elements in the array, the number field is set to zero.

4. Pointer to the area of storage that you use to return information to CICS, and
where the MTS information from the VTAM CINIT is stored.

5. Pointer to VTAM LOGON data (the CINIT request unit). The data is preceded
by a 2-byte length field, indicating the length of the CINIT request unit, and
includes the 3-character NS header. The format of the CINIT request unit is
described in the SNA Network Product Formats manual.

CICS passes a list of eligible autoinstall models in the area addressed by fullword 3
of the parameter list.

If the model name is not supplied by MTS, the control program must select a model
from this list that is suitable for the device logging on, and move the model name to
the first 8 bytes of the area addressed by fullword 4 of the parameter list.

For example, if a 3270 printer attempts to autoinstall, the subset of matching
models includes all the types in VTAM category 2 that you have defined as models.
This subset could include any of the following:

 � DEVICE(3270) TERMMODEL(2)
 � DEVICE(3270) TERMMODEL(1)
 � DEVICE(3270P) TERMMODEL(2)
 � DEVICE(3270P) TERMMODEL(1)
 � DEVICE(3275) TERMMODEL(2)
 � DEVICE(3275) TERMMODEL(1)

The control program selects one model from this list, and CICS uses this model to
build the TCTTE for the device. The default autoinstall control program,
DFHZATDX, always selects the first model name in the list.

428 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

If you are not using MTS but need a printer ID or NETNAME (or an alternative
printer ID or NETNAME) associated with this terminal, then your control program
can supply this in the area addressed by fullword 4.

If you are using MTS, CICS passes the control program the printer and alternative
printer NETNAMEs specified on the VTAM ASLTAB macro.

Before returning to CICS, the control program must supply a CICS terminal name
for the device logging on, and must set the return code field to X'00' if the
autoinstall request is to be allowed.

Figure 27 shows all of these fields in their required order.

'FO' Z C

Fullword 2 LL LL Netname

Fullword 3
nn nn

Fullword 4
Autinstmodelname_1

Fullword 5

Autinstmodelname_n

LL LL Cinit_RU

Modelname i/o i/o i/o i/o i/o i/o i/o i/o

Terminal ID

Printer ID

Altprinter ID

Return code

Printer NETNAME i/o i/o i/o i/o i/o i/o i/o i/o

Altprinter NETNAME i/o i/o i/o i/o i/o i/o i/o i/o

Note: i/o designates an input/output field.
The other fields in SELECTED_PARMS are output only.
Input may be supplied by MTS from the MTS CINIT.

Figure 27. Autoinstall control program’s parameter list at INSTALL

How CICS builds the list of autoinstall models
If CICS finds an MTS model name (and the model is defined to CICS and is
compatible with the VTAM information describing the resource), it puts the model
name into the model name list (Autinstmodelname_1), and also into the model
name field (Modelname) in the selection list addressed by fullword 4 of the
parameter list.

 Chapter 10. Writing a program to control autoinstall of terminals 429

 autoinstall control program at INSTALL

If CICS is unable to find an MTS model name in the MTS Control Vector, or the
named model does not exist or is invalid, it builds the list of autoinstall models by
selecting from the complete list of terminal models those models that are
compatible with the VTAM information describing the resource. The complete list of
autoinstall models available to CICS at any time comprises all the definitions with
AUTINSTMODEL(YES) and AUTINSTMODEL(ONLY) that have been installed, both
by the GRPLIST on CICS cold start, and by INSTALL GROUP commands issued
by CEDA. The CICS Resource Definition Guide describes the definition of models.

Table 146 on page 629 gives you the information to work out which model types
could be included in the subset of models passed to the autoinstall control program
when a particular terminal attempts to install. The subset is determined by the
VTAM characteristics of the device attempting to log on. The number in the
right-hand column of the figure indicates the selection of the subset from the full
list. When a terminal with a given combination of DEVICE, SESSIONTYPE, and
TERMMODEL values attempts to logon, the subset of matching models passed to
the control program includes all the models with DEVICE, SESSIONTYPE, and
TERMMODEL values that have a corresponding VTAM category number in the
right-hand column of the table.

If CICS finds no model that exactly matches the BIND, and if the return code in the
area addressed by fullword 4 of the parameter list is nonzero, then CICS issues
error message ‘DFHZC6987’. This message contains a “best failure” model name,
which is provided for diagnostic purposes only. It is described in detail in “CICS
action on return from the control program” on page 433, and in the VSE/ESA
Messages and Codes Volume 3 manual.

Returning information to CICS
At the INSTALL event, the autoinstall control program is responsible for allowing or
denying the connection of a new terminal resource to the CICS system. This
decision can be based on a number of installation-dependent factors, such as
security, or the total number of connected terminals. CICS takes no part in any
such checking. You decide whether any such checking takes place, and how it is
done.

If the INSTALL request is to proceed, the control program must do the following:

� Return an autoinstall model name in the first 8 bytes of the area addressed by
fullword 4 of the parameter list, unless this has already been set by MTS
support.

If the control program returns a model name not in the subset passed to it by
CICS, CICS cannot guarantee what will happen when further processing takes
place. It is the user’s responsibility to determine the effect of associating any
particular logon request with a particular model name, because no interface is
provided to the in-storage “model” objects.

� Supply a CICS terminal name (TERMID) in the next four bytes of the return
area.

DFHZATDX takes the last four nonblank characters of the NETNAME
(addressed by fullword 2 of the parameter list) as the terminal name, so you
must code your own autoinstall program if this does not match your
installation’s naming conventions. See “Setting the TERMINAL name” on
page 432 for information on this.

430 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

Note that when processing an AUTOINSTALL request for an LU6.2 single
session terminal the four byte terminal identifier returned by the user program is
used to name a CONNECTION. It should therefore conform to the naming
standards for a CONNECTION (rather than a TERMINAL) as defined in the
CICS Resource Definition Guide. The user program could identify an LU6.2
AUTOINSTALL request in one of the following ways:

– Use a MODEL naming convention and examine the model name pointed to
by fullword 3.

– Test bytes 14 and 15 of the CINIT BIND which is pointed to by fullword 5
for X'0602' (LU6.2).

� Set the return code to X'00'.

On entry to the autoinstall control program, the return code always has a
nonzero value. If you do not change this, the autoinstall request is rejected.

If you are not using MTS, your control program can also supply or change any of
the optional values, such as PRINTER and ALTPRINTER IDs or NETNAMEs,
before returning to CICS. If you need information about the formats and acceptable
character ranges for any of the return values, refer to the CICS Resource Definition
Guide.

If you are using MTS, then VTAM supplies the PRINTER and ALTPRINTER
NETNAMEs, if specified.

The printers need not be installed at this stage; however, they must be installed
before you use print key support. PRINTER and ALTPRINTER IDs override
PRINTER and ALTPRINTER NETNAMEs.

Note that TERMID, PRINTER, and ALTPRINTER are the only attributes of the
TERMINAL definition that can be set by the autoinstall control program; all other
attributes must come from one of these sources:

� The VTAM LOGMODE entry (MODEENT)
� The autoinstall model TERMINAL definition
� The TYPETERM definition that it refers to
� The QUERY function
� Model names from VTAM MDLTAB MDLENT and printers’ NETNAMEs from

VTAM ASLTAB ASLENT (if you are using MTS)

Notes:

1. The QUERY function overrides any extended attributes specified in the
TYPETERM definition.

2. You cannot override information in the LOGMODE entry, with the model
TERMINAL and TYPETERM; they must match.

If your control program decides to reject the INSTALL request, it should return to
CICS with a nonzero value in the return code.

Having completed processing, the control program must return to CICS by issuing
an EXEC CICS RETURN command.

 Chapter 10. Writing a program to control autoinstall of terminals 431

 autoinstall control program at INSTALL

Selecting the autoinstall model
If you are using model terminal support to supply the model name (and the named
model exists and is valid), CICS passes the model name to your autoinstall control
program—you do not need to make any further selection.

As a general rule, all the models in the list passed to your program match the
VTAM data for the terminal. That is to say, a viable TCT entry usually results from
the use of any one of them. (The exception to this rule involves the VTAM
RUSIZE; if this value is incompatible, CICS issues an error message.) The default
autoinstall control program merely picks the first model in the list. However, this
model may not provide the attributes required in all cases. For instance, you do
not want a 3270 display device definition for a 3270 printer. Your control program
must be able to select the model that provides the characteristics you require for
this terminal—for example, security characteristics.

To save on storage, you should try to minimize the number of different models
available to the control program, and the number of different TYPETERM definitions
referenced by those models. If you are migrating your definitions from DFHTCT
macros, look carefully at them and eliminate those that are unnecessarily different
from others. Use the QUERY function for all devices that can support it. For
bisynchronous devices, which do not support QUERY, one approach is to make the
definition as straightforward as possible, with no special features.

If you need special models for special cases, you can use a simple mapping of, for
example, NETNAME (generic or specific) to AUTINSTNAME. Your control program
could go through a table of special case NETNAMEs, choosing the specified model
for each. The default model would be used for any terminal not in the table. (Note
that the list of models presented to the control program is in alphabetical order with
one exception which is described in the notes to Table 147 on page 631.)

Setting the TERMINAL name
The TERMINAL name must be unique, and one through four characters long. For
a list of the acceptable characters, see the CICS Resource Definition Guide. (The
TERMINAL name is the identifier CICS uses for the terminal. The NETNAME is
the identifier VTAM uses for the terminal.)

You may have transactions that depend on the terminals from which they are
initiated, or to which they will be attached, having particular TERMINAL names.
Some transactions are restricted to particular terminals and others behave in
different ways, depending on the terminal. In some cases, the transaction may
gather statistics about terminal use, using the TERMINAL name as a reference.
The TERMINAL name may have meaning to those managing, using, or maintaining
the network: it may, for instance, denote geographical location or departmental
function.

The NETNAME is really more suitable for these purposes than the TERMINAL
name, because it is eight characters in length. If you can use the NETNAME, the
TERMINAL name can be randomly assigned by the autoinstall control program, and
it does not matter if a terminal has a different TERMINAL name every time the user
logs on. The control program is required, in this case, only to make the TERMINAL
name unique within the system in which the terminal is to be autoinstalled. If the
control program attempts to install a TCT entry for a TERMINAL name that already
has a TCT entry, the installation is rejected, despite the fact that the terminal is

432 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

eligible and a suitable model has been found. (By contrast, if the NETNAME
already has a TCT entry, the terminal uses it and autoinstall can never be invoked.)

The default autoinstall control program creates the TERMINAL name from the last
four nonblank characters of the NETNAME. This may not satisfy the requirement
for uniqueness. One way of overcoming this problem is to use the EXEC CICS
INQUIRE command from the control program, to determine whether the TERMINAL
name is already in use. If it is, modify the last character and check again.

However, you may be in a situation where you must continue to use unique and
predictable TERMINAL names for your terminals. Your control program must be
able to assign the right TERMINAL name to each terminal, every time the user logs
on. Two possible approaches to this problem are:

� Devise another algorithm to generate predictable TERMINAL names from
NETNAMEs

� Use a table or file to map TERMINAL names to NETNAMEs.

Devising an algorithm avoids the disadvantages of using a table or a file, but it
might be difficult to ensure both uniqueness and predictability. If some of the
information in the NETNAME is not needed by CICS, it can be omitted from the
TERMINAL name. An algorithm is probably most appropriate in this situation.

Using a table has two disadvantages, each of which loses you some of the
benefits of autoinstall: it takes up storage and it must be maintained. You could
create a table in main temporary storage, so that it is placed in extended storage,
above the 16MB line. You could use a VSAM file rather than a table, to avoid the
storage problem. However, this might be slower, because of the I/O associated
with a file. The table or file can contain information such as PRINTER and
ALTPRINTER, and you can add information such as AUTINSTNAME for devices
that need particular autoinstall models. (See “Selecting the autoinstall model” on
page 432.)

CICS action on return from the control program
When CICS receives control back from the autoinstall control program, it examines
the return code field. If this is zero, and if the other required information supplied is
satisfactory, CICS schedules the new resource for OPNDST in order to complete
the logon request. If the installation process fails, then the control program is
driven again, as though a DELETE had occurred. (See the section “The autoinstall
control program at DELETE” on page 435 for details.) This is necessary to allow
the program to free any allocations (for example, terminal identifiers) made on the
assumption that this INSTALL request would succeed.

If the return code is not zero, then CICS rejects the connection request in the same
way as it rejects an attempt by an unknown terminal to log on to CICS when
autoinstall is not enabled.

For all autoinstall activity, messages are written to the transient data destination
CADL. If an INSTALL fails, a message is sent to CADL, with a reason code. You
can therefore check the output from CADL to find out why an autoinstall request
failed.

 Chapter 10. Writing a program to control autoinstall of terminals 433

 autoinstall control program at INSTALL

If an autoinstall attempt fails for lack of an exact match, then details of the “best
failure” match between a model and the BIND image are written to the CADL
transient data destination.

The message takes the following form:

DFHZC6987 BEST FAILURE FOR NETNAME: nnnnnnnn,

WAS MODEL_NAME: mmmmmmmm,

CINIT BIND: cccccccc...,

MODEL BIND: bbbbbbbb...,

MISMATCH BITS: xxxxxxxx...

where

� ‘nnnnnnnn’ is the netname of the LU which failed to log on.

� ‘mmmmmmmm’ is the name of model that gave the best failure. (That is, the
one that had the fewest bits different from the BIND image supplied by VTAM.)

� ‘cccccccc...’ is the CINIT BIND image.

� ‘bbbbbbbb...’ is the model BIND image.

� ‘xxxxxxxx...’ is a string of hexadecimal digits, where ‘xx’ represents one byte,
and each byte position represents the corresponding byte position in the BIND
image. A bit set to ‘1’ indicates a mismatch in that position between the BIND
image from VTAM and the BIND image associated with the model.

A suggested course of action is as follows :

1. Determine whether a model such as ‘mmmmmmmm’ is suitable. If there are
several models that have identical BIND images, differing only in end-user
options, then only the first such model is named in the above message. It will
be up to your control program to make the choice, when the logmode table
entry is corrected.

2. Identify the VTAM logmode table entry that is being used.

3. Check that this logmode table entry is not successfully in use with other
applications, so that to change it might cause this other use of it to fail.

4. Amend the logmode table entry by switching the bits corresponding to 1-bits in
the mismatch string. That is, if the bit in the VTAM BIND image corresponding
to the bit position set to ‘1’ in ‘xxxxxxxx...’ above is ‘1’, set it to ‘0’; if it is ‘0’, set
it to ‘1’.

More information about the meaning of the bits in a BIND image, and some more
references, may be found in the VTAM Programming manual.

434 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at DELETE

The autoinstall control program at DELETE
To provide symmetry of control over the autoinstall process, the autoinstall control
program is also invoked when:

� A session with a previously automatically-installed resource has been ended

� An autoinstall request was accepted by the user program, but the subsequent
INSTALL process failed for some reason

To make it easier for you to write your control program, these two events can be
considered to be identical. (There is no difference in the environment that exists, or
in the actions that might need to be performed.)

Invoking the control program at DELETE enables you to reverse the processes
carried out at the INSTALL event. For example, if the control program at INSTALL
incremented a count of the total number of automatically installed resources, then
the control program at DELETE would decrement that count.

The communication area at DELETE for terminals
Input to the program is via a communication area, addressed by DFHEICAP. The
layout of the communication area is shown in Figure 28.

Figure 28. Autoinstall control program’s communication area at DELETE. For terminals
(including APPC single-session devices).

Fullword 1 Standard Header

 Byte 1 Function Code (X'F1' for DELETE)

Bytes 2 - 3 Component Code Always 'ZC'

 Byte 4 Reserved Always X'ðð'

Fullword 2 Terminal ID of terminal to be deleted

Fullword 3 NETNAME of terminal to be deleted

Bytes 1-2 Delete netname length

Bytes 3-4 Start of Delete netname ID

Next 15 bytes Remainder of Delete netname ID

The parameter list contains the following information:

1. Standard Header. Byte 1 indicates the request type. For deletion of local
terminals (including APPC single-session devices installed via CINIT requests)
the value is X'F1'.

Note: A value of X'FA' or X'FB' represents the deletion of a shipped
terminal or connection—see page 458.

2. The terminal identifier of the deleted resource, as shown in Table 114 on
page 436.

 Chapter 10. Writing a program to control autoinstall of terminals 435

 naming and testing the control program

Note that the named resource has been deleted by the time the control program is
invoked, and is not therefore found by EXEC CICS INQUIRE commands.

Table 114. Autoinstall control program’s parameter list at DELETE

1st byte 2nd byte 3rd byte 4th byte

First fullword 'F1' 'Z' 'C' Reserved

Second fullword ID of terminal to be deleted

Third fullword Length of netname to be
deleted

First two bytes of netname

Next 15 bytes Remainder of netname

Naming, testing, and debugging your autoinstall control program

 Naming
The supplied, user-replaceable autoinstall control program for terminals and APPC
single-session connections initiated by CINIT is named DFHZATDX. If you write
your own version, you can name it differently.

After the system has been loaded, to find the name of the autoinstall control
program currently identified to CICS, use either the EXEC CICS INQUIRE
AUTOINSTALL command or the CEMT INQUIRE AUTOINSTALL command.

The default is DFHZATDX.

To change the current program:

� Use the AIEXIT system initialization parameter. For guidance information about
how to do this, refer to the CICS System Definition Guide.

� Make the change online using either the EXEC CICS SET AUTOINSTALL
command or the CEMT SET AUTOINSTALL command. For further information
about these commands, refer to the CICS System Programming Reference
manual, and the CICS-Supplied Transactions manual, respectively.

Testing and debugging
To help you test the operation of your autoinstall control program, you can run the
program as a normal terminal-related application. Define your program and initiate
it from a terminal. The parameter list passed to the program is described in “The
autoinstall control program at INSTALL” on page 427. You can construct a dummy
parameter list in your test program, upon which operations can be performed.
Running your program on a terminal before you use it properly means that you can
use the EDF transaction to help debug your program. You can also make the
program interactive, sending and receiving data from the terminal.

If you find that CICS does not offer any autoinstall models to your program, you
can create a test autoinstall program that forces the model name (AUTINSTNAME)
you want. With a VTAM buffer trace running, try to log the device on to CICS. If
CICS does not attempt to send a BIND, check the following:

� Does the model TERMINAL refer to the correct TYPETERM? (Or alternatively,
is the TYPETERM in question referred to by the correct TERMINAL definition?)

436 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

� Is the TERMINAL definition AUTINSTMODEL(YES or ONLY)?

� Have you installed the group containing the autoinstall models (TERMINAL and
TYPETERM definitions)?

If CICS attempts to BIND, compare the device’s CINIT RU to the CICS BIND, and
make corrections accordingly.

It is very important that you ensure that the VTAM LOGMODE table entries for your
terminals are correct, rather than defining new autoinstall models to fit incorrectly
coded entries. Bear in mind, while you are testing, that CICS autoinstall does not
work if a LOGMODE entry is incorrectly coded.

Note that you cannot force device attributes by specifying them in the TYPETERM
definition. For autoinstall, the attributes defined in the LOGMODE entry must
match those defined in the model; otherwise the model will not be selected. You
cannot define a terminal in one way to VTAM and in another way to CICS.

If your control program abends, CICS does not, by default, cause a transaction
dump to be written. To cause a dump to be taken after an abend, your program
must issue an EXEC CICS HANDLE ABEND command.

The sample programs and copy books
The CICS-supplied default autoinstall program is an assembler-language
command-level program, named DFHZATDX. The source of the default program is
provided in COBOL, PL/I, and C, as well as in assembler language. The names of
the supplied programs and their associated copy books are summarized in
Table 115. All the programs and copy books are in the VSE/ESA sublibrary
PRD1.BASE.

The module generated from the assembler-language source program is shipped in
the VSE/ESA sublibrary PRD1.BASE. You can use it without modification, or you
can customize it according to your own requirements. If you choose to alter the
code in the sample program, take a copy of the sample and modify it. After
modification, translate, assemble, and link-edit your module. Then put the load
module into a user library that is concatenated before PRD1.BASE in the LIBDEF
PHASE search statement for the CICS job. (This applies to completely new
modules as well as modified sample modules.) For more guidance information

Table 115. Autoinstall programs and copy books

Language PRD1.BASE member name

Programs:

Assembler
COBOL
PL/I
C

DFHZATDX.A
DFHZCTDX.C
DFHZPTDX.P
DFHZDTDX.H

Copy books:

Assembler
COBOL
PL/I
C

DFHTCUDS.A
DFHTCUDS.C
DFHTCUDS.P
DFHTCUDS.H

 Chapter 10. Writing a program to control autoinstall of terminals 437

 sample autoinstall programs

about this procedure, refer to the CICS System Definition Guide. Do not overwrite
the sample with your customized module, because subsequent service may
overwrite your module. You must install a new resource definition for a customized
user program.

The default action of the sample program, on INSTALL, is to select the first model
in the list, and derive the terminal identifier from the last four nonblank characters of
the NETNAME, set the status byte, and return to CICS. If there are no models in
the list, it returns with no action.

The default action, on DELETE, is to address the passed parameter list, and return
to CICS with no action.

You can customize the sample program to carry out any processing that suits your
installation. Examples of customization are given in “Customizing the sample
program” on page 439. Generally, your user program could:

� Count and limit the total number of logged-on terminals.

� Count and limit the number of automatically installed terminals.

� Keep utilization information about specific terminals.

� Map TERMINAL name and NETNAME.

� Do general logging.

� Handle special cases (for example, always allow specific terminals or users to
log on).

� Send messages to the operator.

� Exercise network-wide control over autoinstall. A network-wide, global
autoinstall control program can reside on one CICS system. When an
autoinstall request is received by a control program on a remote CICS system,
this global control program can be invoked and data transferred from one
control program to another.

438 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

Customizing the sample program
Here are three pieces of code that customize the sample program.

 Assembler language
Figure 29, in assembler language, limits logon to netnames L77A and L77B. The
model names utilized are known in advance. A logon request from any other
terminal, or a request for a model which cannot be found, is rejected.

\ REGISTER CONVENTIONS = \

\ Rð used by DFHEICAL expansion \

\ R1 -------"-------"------"---- \

\ R2 Base for Input parameters \

\ R3 Base for code addressability \

\ R4 Base for model name list \

\ R5 Base for output parameter list \

\ R6 Work register \

\ R7 -----"------- \

\ R8 -----"------- \

\ R9 free \

\ R1ð Internal subroutine linkage return \

\ R11 Base for EIB \

\ R12 free \

\ R13 Base for dynamic storage \

\ R14 used by DFHEICAL expansion \

\ R15 -------"-------"------"---- \

 \

\ SELECT MODEL

\

LH R6,TABLEN Number of valid netnames

LA R7,TABLE Address the table

\

LOOP1 CLC NETNAME(4),ð(R7) Is this netname in table?

 BE VALIDT

\

LA R7,16(R7) Next table entry

 BCT R6,LOOP1

\

\ Now we know its not a valid netname

\ simply return and the logon is rejected

\

 B RETURN

\

Figure 29 (Part 1 of 2). Example of how to customize the DFHZATDX sample program

 Chapter 10. Writing a program to control autoinstall of terminals 439

 sample autoinstall programs

\ R7 now points to model name

VALIDT CLI SELECTED_MODELNAME,C' ' MTS model name supplied?

 BNE VALIDM1 Yes

LH R6,MODELNAME_COUNT Count of models

LTR R6,R6 Were any presented?

 BZ RETURN No

LA R8,MODELNAME First model name

\

LOOP2 CLC 8(8,R7),ð(R8) Is this model name here?

 BE VALIDM

\

LA R8,L'MODELNAME(R8) Next model name

 BCT R6,LOOP2

\

\ Now we know the required model name was not presented

\ to this exit by CICS, a return rejects the logon

\

 B RETURN

\

\ At this point the model name was found in those presented

\ It is given to CICS and the new termid is

\ the netname

\

VALIDM MVC SELECTED_MODELNAME,ð(R8) R8 was left pointing at

\ model name

VALIDM1 DS ðH

MVC SELECTED_TERM_ID,NETNAME Use netname for termid

\ (4 chars)

\

\

\ SELECTIONS COMPLETE, RETURN

\

MVI SELECTED_RETURN_CODE,X'ðð' Indicate all OK

 B RETURN Exit program

\

\ Table of netnames allowed to log on and the model name

\ necessary for the logon to be successful

\

\ Format of table :

\ Bytes 1 to 8 Netname allowed to log on

\ 9 to 16 Model required for netname

\

 DS ðD

TABLE DC CL8'L77A',CL8'327ðð64'

 DC CL8'L77B',CL8'327ðð65'

TABLEN DC Y((\-TABLE)/16)

\

Figure 29 (Part 2 of 2). Example of how to customize the DFHZATDX sample program

440 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

 COBOL
Figure 30, in COBOL, redefines the NETNAME, so that the last four characters are
used to select a more suitable model than that selected in the sample control
program.

 .

 \

\ Redefine the netname so that the last 4 characters (of 7)

\ can be used to select the autoinstall model to be used.

 \

\ The netnames to be supplied are known to be of the form:

 \

 \ HVMXNNN

 \

\ HVM is the prefix

\ X is the system name

\ NNN is the address of the terminal

 \

 ð1 NETNAME-BITS.

ð2 FIRST-CHRS PIC X(3).

 ð2 NEXT-CHRS.

ð3 NODE-LETTER PIC X(1).

ð3 NODE-ADDRESS PIC X(3).

ð2 LAST-CHR PIC X(1).

 .

 .

 PROCEDURE DIVISION.

 .

 .

 \

\ Select the autoinstall model to be used according to the

\ node letter (see above). The models to be used are user

 \ defined.

 \

\ (It is assumed that the netname supplied in the commarea by CICS

\ has been moved to NETNAME-BITS).

 \

\ If the node letter is C then use model AUTO2

\ If the terminal netname is HVMC289 (a special case) then use

\ model AUTO1.

\ Otherwise (node letters A,B,D...) use model AUTO3.

 \

IF NODE-LETTER = 'C' THEN MOVE 'AUTO2' TO SELECTED-MODELNAME.

IF NEXT-CHRS = 'C289' THEN MOVE 'AUTO1' TO SELECTED-MODELNAME.

IF NODE-LETTER = 'A' THEN MOVE 'AUTO3' TO SELECTED-MODELNAME.

IF NODE-LETTER = 'B' THEN MOVE 'AUTO3' TO SELECTED-MODELNAME.

IF NODE-LETTER = 'D' THEN MOVE 'AUTO3' TO SELECTED-MODELNAME.

 .

 .

Figure 30. Example of how to customize the DFHZCTDX sample program

 Chapter 10. Writing a program to control autoinstall of terminals 441

 sample autoinstall programs

 PL/I
Figure 31, in PL/I, extracts information from the VTAM CINIT RU, which carries the
BIND image. Part of this information is the screen presentation services
information, such as the default screen size and alternate screen size. The
alternate screen size is used to determine the model of terminal that is requesting
logon. The presented models are searched for a match, and if there is no match,
the first model from those presented is used.

DCL 1 CINIT BASED(INSTALL_CINIT_PTR),

 2 CINIT_LENG FIXED BIN(15),

 2 CINIT_RU CHAR(256);

 DCL SAVE_CINIT CHAR(256);

/\ Temp save area for CINIT RU \/

DCL 1 SCRNSZ BASED(ADDR(SAVE_CINIT)),

 2 SPARE CHAR(31),

/\ Bypass first part of CINIT and reach \/

/\ into BIND image carried in CINIT \/

 2 DHGT BIT(8),

/\ Screen default height in BIND PS area \/

 2 DWID BIT(8),

/\ Screen default width in BIND PS area \/

 2 AHGT BIT(8),

/\ Screen alternate height in BIND PS area \/

 2 AWID BIT(8);

/\ Screen alternate width in BIND PS area \/

 DCL NAME CHAR(2);

/\ Used to work up a screen model type \/

DCL TERMID PIC'9999' INIT(1) STATIC;

/\ Used to work up a unique termid \/

 DCL ENQ CHAR(8) INIT('AUTOPRG');

/\ Used to prevent multiple access to termid \/

/\ If model name supplied by MTS, bypass model name selection \/

IF SELECTED_MODELNAME ¬= ' '

THEN GO TO MODEL_EXIT;

/\ Clear the CINIT save area and move in the VTAM CINIT RU.\/

/\ This is useful if you fail to recognize the model \/

/\ of terminal; provide a dump and analyze this data \/

SAVE_CINIT = LOW(256);

SUBSTR(SAVE_CINIT,1,CINIT_LEN) = SUBSTR(CINIT_RU,1,CINIT_LEN);

Figure 31 (Part 1 of 2). Example of how to customize the DFHZPTDX sample program

442 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

/\ Now access the screen PS area in the portion of the BIND

image presented in the CINIT RU \/

/\ using the screen alternate height as a guide to the model

of terminal attempting logon. If this cannot be determined

then default to the first model in the table \/

SELECT (AHGT); /\ NOW GET SCRN ALTERNATE HEIGHT \/

WHEN (12) NAME = 'M1'; /\ MODEL 1 \/

WHEN (32) NAME = 'M3'; /\ 3 \/

WHEN (43) NAME = 'M4'; /\ 4 \/

WHEN (27) NAME = 'M5'; /\ 5 \/

OTHERWISE NAME = 'M2'; /\ 2 \/

 END;

/\ Search the model entries for a matching entry. \/

/\ The criterion here is that a model definition should\/

/\ contain the chars M2 for a model 2, and so on. \/

/\ For example, L327ðM2, L327ðM5 \/

 /\ TERMM2, TERMM5 \/

IF MODELNAME_COUNT = ð

THEN GO TO EXIT;

DO I = 1 TO MODELNAME_COUNT;

 IF INDEX(MODELNAME(I),NAME)

THEN GO TO FOUND_MODEL;

 END;

 NO_MODEL: /\ Matching entry was not found, default to first model\/

SELECTED_MODELNAME = MODELNAME(1);

GO TO MODEL_EXIT;

 FOUND_MODEL: /\ Move the selected model name to the return area \/

SELECTED_MODELNAME = MODELNAME(I);

 MODEL_EXIT: /\ ENQ to stop multiple updates of counter. \/

/\ A simple counter is used to generate unique \/

/\ terminal identities, so concurrent access to \/

/\ this counter is denied to ensure no two get \/

/\ the same identifier or update the counter. \/

/\ To use this method the program must be defined as resident.\/

EXEC CICS ENQ RESOURCE(ENQ);

SELECTED_TERMID = TERMID; /\ Set SELECTED_TERMID to

 count value \/

TERMID = TERMID + 1; /\ Increase the count value by 1 \/

IF TERMID = 9999 THEN TERMID = 1; /\ Reset if too large\/

EXEC CICS DEQ RESOURCE(ENQ);

 NAME_EXIT:

INSTALL_RETURN_CODE = LOW(1);

/\ Set stat field to X'ðð' to allow

logon to be processed \/

GO TO EXIT;

 END INSTALL;

Figure 31 (Part 2 of 2). Example of how to customize the DFHZPTDX sample program

 Chapter 10. Writing a program to control autoinstall of terminals 443

 sample autoinstall programs

444 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for APPC connections

Chapter 11. Writing a program to control autoinstall of APPC
connections

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter describes the user-replaceable program that controls the automatic
installation of local APPC connections. For information about controlling the
automatic installation of local VTAM terminals, see Chapter 10. For information
about controlling the installation of shipped terminals and connections, see
Chapter 12.

The chapter is divided into the following sections:

 1. “Preliminary considerations”
2. “The autoinstall control program at INSTALL” on page 447
3. “The autoinstall control program at DELETE” on page 450
4. “The sample autoinstall control program for APPC connections” on page

450

Note: In this chapter, “connection” and “session” are used as general terms when
explaining autoinstall. The names “CONNECTION” and “SESSIONS” are used to
indicate the CICS resource types used to create the definitions.

 Preliminary considerations
In considering the autoinstall of local APPC connections, we need to distinguish
between the following:

� Local APPC single-sessions connections initiated by CINIT requests

� Local APPC parallel- and single-session connections initiated by bind requests

Local APPC single-session connections initiated by a CINIT
Autoinstall of local APPC single-session connections that are initiated by CINIT
requests works in the same way as autoinstall for terminals. You must provide a
TERMINAL—TYPETERM model pair, and a customized version of one of the
supplied autoinstall control programs, DFHZATDX or DFHZATDY. See
Chapter 10, “Writing a program to control autoinstall of terminals” on page 425.

Local APPC parallel-session and single-session connections initiated
by a BIND

If autoinstall is enabled, and an APPC BIND request is received for an APPC
service manager (SNASVCMG) session (or for the only session of a single-session
connection), and there is no matching CICS CONNECTION definition, a new
connection is created and installed automatically.

 Copyright IBM Corp. 1977, 1999 445

 the autoinstall control program for APPC connections

Like autoinstall for other resources, autoinstall for APPC connections requires
model definitions. However, unlike the model definitions used to autoinstall
terminals, those used to autoinstall APPC links do not need to be defined explicitly
as models. Instead, CICS can use any previously-installed connection definition as
a “template” for a new definition. In order for autoinstall to work, you must have a
template for each kind of connection you want to be autoinstalled.

Autoinstall templates for APPC connections
The purpose of a template is to provide CICS with a definition that can be used for
all connections with the same properties. You customize the supplied autoinstall
control program, DFHZATDY, to select an appropriate template for each new
connection, depending on the information it receives from VTAM.

A template consists of a CONNECTION definition and its associated SESSIONS
definitions. You should have a definition installed for each different set of session
properties you are going to need.

Any installed connection definition can be used as a template, but for performance
reasons, your template should be an installed connection definition that you do not
actually use. The definition is locked while CICS is copying it, and if you have a
very large number of sessions autoinstalling, the delay may be noticeable.

Benefits of autoinstall
Autoinstall support is likely to be beneficial if you have large numbers of APPC
parallel session devices with identical characteristics. For example, if you had 1000
PS/2s, all with the same characteristics, you would set up one template to
autoinstall all of them. If 500 of your PS/2s had one set of characteristics, and 500
had another set, you would set up two templates to autoinstall them.

Restart of any kind should be noticeably faster, especially when large numbers of
terminals are involved.

Savings can also be made on systems management overheads, and on storage, as
autoinstalled resources do not occupy space before they are used.

Requirements for autoinstall
You can have only one active autoinstall control program for terminals and
connections. You must specify the name of the active program on the AIEXIT
system initialization parameter. As well as providing function to autoinstall APPC
connections initiated by BIND requests, the sample program, DFHZATDY, provides
the same function for terminal autoinstall as the default DFHZATDX control
program described in Chapter 10. Thus, you can use a customized version of
DFHZATDY to autoinstall both terminals and APPC connections.

Note: Both DFHZATDX and DFHZATDY provide function to install shipped
terminals and connections.

You may find the supplied version of DFHZATDY adequate for your purposes. If
not, you can write a customized version of the supplied program, or create your
own program to provide enhanced function.

446 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

The autoinstall control program for APPC connections
The purpose of the autoinstall control program is to provide CICS with any extra
information it needs to complete an autoinstall request. For APPC connections, the
control program selects the template to be used, and provides a name for the new
connection.

If autoinstall is enabled, when CICS receives an APPC BIND request for an
SNASVCMG session (or for the only session of a single-session connection), if
there is no matching CONNECTION definition, CICS passes the partner’s VTAM
NETNAME to the autoinstall control program. The control program uses
information from the BIND, which is passed in the communications area, to select
the most appropriate template on which to base a new connection.

The control program needs to know the NETNAME or SYSID of all the templates,
in order to return the name of the most suitable one. If it attempts to use an
unsuitable template, message DFHZC6922 is issued, explaining why the template
is unusable.

If the template is usable, CICS makes a copy of the definitions within it and
attempts to install the new CONNECTION definition. If the installation is not
successful, message DFHZC6903 is issued.

Recovery and restart
Autoinstalled connections are not cataloged in CICS Transaction Server for
VSE/ESA Release 1, so they are not recovered at an emergency restart or a warm
restart.

The autoinstall control program at INSTALL
The autoinstall control program is invoked at INSTALL for:

� Local VTAM terminals
� Local APPC single-session connections initiated by a CINIT
� Local APPC parallel-session connections initiated by a BIND
� Local APPC single-session connections initiated by a BIND
� Shipped terminals and connections

On each invocation, CICS passes a parameter list to the control program by means
of a communication area addressed by DFHEICAP. The parameter list passed at
INSTALL of local terminals and APPC single-session connections initiated by CINIT
is described in “The communication area at INSTALL for terminals” on page 428.
The parameter list passed at INSTALL of shipped terminals and connections is
described in “The communications area at INSTALL for shipped terminals” on
page 456. This section describes only INSTALL of local APPC connections
initiated by BIND requests.

The communication area at INSTALL for APPC connections
The communications area is mapped by the DSECT for the assembler version of
DFHZATDY, which is supplied in the VSE/ESA sublibrary PRD1.BASE.

 Chapter 11. Writing a program to control autoinstall of APPC connections 447

 autoinstall control program at INSTALL

\---\

\ APPC Install parameter list - Functions 2, 3, and 4 \

\---\

INSTALL_APPC_COMMAREA DSECT Install Parameter List

\

INSTALL_APPC_STANDARD DS F Standard field

 ORG INSTALL_APPC_STANDARD

INSTALL_APPC_EXIT_FUNCTION DS XL1 Install request type

INSTALL_APPC_PS_CINIT EQU X'F2' Install PS via CINIT

INSTALL_APPC_PS_BIND EQU X'F3' Install PS via BIND

INSTALL_APPC_SS_BIND EQU X'F4' Install SS via BIND

INSTALL_APPC_EXIT_COMPONENT DS CL2 Component ID 'ZC'

 DS XL1 Reserved

\

 ORG ,

INSTALL_APPC_NETNAME_PTR DS A -> NETNAME Input

INSTALL_APPC_CINIT_PTR DS ðA -> CINIT_RU Input

INSTALL_APPC_BIND_PTR DS A -> BIND Input

INSTALL_APPC_SELECTED_PTR DS A -> Return fields Output

INSTALL_APPC_SYNCLEVEL_PTR DS A -> Sync level Input

\

INSTALL_APPC_TEMPLATE_NETNAME_PTR DS A -> Template NETNAME Output

INSTALL_APPC_TEMPLATE_SYSID_PTR DS A -> Template SYSID Output

INSTALL_APPC_SYSID_PTR DS A -> New SYSID Output

\

TEMPLATE_NETNAME DS CL8 Put netname here

TEMPLATE_SYSID DS CL4 Put sysid here

SYSID DS CL4 Put new name here

SYNCLEVEL DS XL2 Synclevel of new connection

Figure 32. Autoinstall control program’s communications area at INSTALL. For APPC
connections initiated by BIND requests.

INSTALL_APPC_STANDARD header
A fullword input field comprising the following information:

INSTALL_APPC_EXIT_FUNCTION
A 1-byte field that defines the install request type. The equated
values are:

INSTALL_APPC_PS_CINIT
X'F2' represents an install request for an APPC
parallel-session connection from a secondary node
via a CINIT request.

Note: These requests cannot be received by CICS
Transaction Server for VSE/ESA Release 1.

INSTALL_APPC_PS_BIND
X'F3' represents an install request for an APPC
parallel-session connection via a BIND.

INSTALL_APPC_SS_BIND
X'F4' represents an install request for an APPC
single-session connection via a BIND.

Note: The values X'F0' and X'F1' represent, respectively,
install and delete requests for terminals (including APPC
single-session devices).

448 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

INSTALL_APPC_EXIT_COMPONENT
A 2-byte component code, which is set to ‘ZC’.

INSTALL_APPC_NETNAME_PTR
A fullword pointer to a 2-byte length field, followed by the NETNAME to be
installed (input field).

INSTALL_APPC_CINIT_PTR
A fullword pointer to an input field containing the incoming CINIT, if the
incoming session is a secondary.

Note: Not applicable to CICS Transaction Server for VSE/ESA Release 1.

INSTALL_APPC_BIND_PTR
A fullword pointer to an input field containing the incoming BIND.

INSTALL_APPC_SELECTED_PTR
A fullword pointer to the return fields. These are in the same format as those
for autoinstall of terminals.

Note that for APPC autoinstall (functions X'F3' and X'F4') only the return
code is used. You return other information for APPC in other fields defined in
the communications area.

INSTALL_APPC_SYNCLEVEL_PTR
A fullword pointer to a 2-byte input field specifying the syncpoint level for the
connection, which is extracted from the BIND. The possible values are:

X'0000' Synclevel 0.
X'0001' Synclevel 1.
X'0002' Synclevel 2.

INSTALL_APPC_TEMPLATE_NETNAME_PTR
A fullword pointer to an 8-byte output area that your control program can use to
specify the NETNAME of the template. If the name is less than 8 bytes, it must
be padded with trailing blanks. If, alternatively, you specify a CONNECTION
name (in the SYSID field), the 8-byte area should be filled with zeros.

INSTALL_APPC_TEMPLATE_SYSID_PTR
A fullword pointer to a 4-byte output area that your control program can use to
specify the SYSID (connection name) of the template. If the name is less than
4 bytes, it must be padded with trailing blanks. If, alternatively, you specify a
NETNAME, the 4-byte area should be filled with blanks.

INSTALL_APPC_SYSID_PTR
A fullword pointer to a 4-byte output area in which your program must put the
SYSID for the new autoinstalled connection. The name you supply must be
unique. You can use the same or similar logic to create it that you use for
creating a terminal ID. If the name is less than 4 bytes, it must be padded with
trailing blanks.

If you are using recoverable resources, the SYSID chosen for a connection
after a restart must be the same as that chosen in the previous CICS run.

 Chapter 11. Writing a program to control autoinstall of APPC connections 449

 sample autoinstall programs

The autoinstall control program at DELETE
There is no delete function for APPC connections equivalent to that for
autoinstalled terminals.

The sample autoinstall control program for APPC connections
The sample control program for autoinstall of local APPC connections is
DFHZATDY. The source code, in assembler-language only, is in library
PRD1.BASE.

As well as providing function to autoinstall APPC connections initiated by BIND
requests, DFHZATDY provides the same function for terminal autoinstall as the
DFHZATDX program described in Chapter 10. Thus, you can use a customized
version of DFHZATDY to autoinstall both terminals and APPC connections.

Default actions of the sample program
The role of DFHZATDY in installing APPC connections is to choose the template to
be used (by supplying its NETNAME or SYSID), and to supply the name (SYSID)
of the new connection. The actions taken by the supplied version of the program
are to:

1. Examine the request type passed in the INSTALL_APPC_EXIT_FUNCTION
field:

X'F0'
An incoming CINIT for a terminal or APPC single-session device.
Proceed as for DFHZATDX. See Chapter 10, “Writing a program to
control autoinstall of terminals” on page 425.

X'F1'
A delete request for a terminal or APPC single-session device.
Proceed as for DFHZATDX. See Chapter 10, “Writing a program to
control autoinstall of terminals” on page 425.

INSTALL_APPC_PS_CINIT (X 'F2')
An incoming CINIT for an APPC parallel-session connection.
Specify a template by setting the field pointed to by
INSTALL_APPC_TEMPLATE_SYSID to 'CCPS'.

Note: This type of request cannot be received by CICS Transaction
Server for VSE/ESA Release 1.

INSTALL_APPC_PS_BIND (X 'F3')
An incoming BIND for an APPC parallel-session connection.
Specify a template by setting the field pointed to by
INSTALL_APPC_TEMPLATE_SYSID to 'CBPS'.

INSTALL_APPC_SS_BIND (X 'F3')
An incoming BIND for an APPC single-session connection. Specify
a template by setting the field pointed to by
INSTALL_APPC_TEMPLATE_SYSID to 'CBSS'.

2. Specify a name for the new connection by copying the last 4 non-blank
characters of the input NETNAME pointed to by
INSTALL_APPPC_NETNAME_PTR to the field pointed to by
INSTALL_APPC_SYSID_PTR.

450 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

3. Indicate that a selection has been made by setting the return code to
RETURN_OK.

 Resource definitions
CICS supplies a resource definition group called DFHAI62, which defines
DFHZATDY, and contains CONNECTION definitions for CCPS, CBPS, and CBSS.
If you want to use the supplied version of DFHZATDY, you should append
DFHAI62 to your CICS startup grouplist. However, if you customize DFHZATDY
you will probably need to create your own definitions.

DFHZATDY is defined as follows in DFHAI62:

DEFINE PROGRAM(DFHZATDY)

DESCRIPTION(Assembler definition for sessions autoinstall control program)

GROUP(DFHAI62)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO)

USAGE(NORMAL) STATUS(ENABLED) CEDF(NO)

DATALOCATION(ANY) EXECKEY(CICS) EXECUTIONSET(FULLAPI)

 Chapter 11. Writing a program to control autoinstall of APPC connections 451

 sample autoinstall programs

452 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for shipped terminals

Chapter 12. Writing a program to control autoinstall of
shipped terminals

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter describes how to write a program to control the installation of shipped
terminals and connections. Both the supplied autoinstall control programs,
DFHZATDX and DFHZATDY, provide function to install shipped definitions of
remote terminals and connections. You can therefore base your customized control
program on either DFHZATDX or DFHZATDY.

Just as you can use an autoinstall user program in a terminal-owning region (TOR)
to control the automatic installation of local terminals and connections, so you can
use a similar program in an application-owning region (AOR) to control the
installation of shipped terminals and connections. (Bear in mind when reading this
chapter that it assumes that your user program is installed in an AOR—or in a
combined AOR/TOR—rather than in a TOR.)

The chapter is divided into the following sections:

1. “Installing shipped terminals and connections”
2. “The autoinstall control program at INSTALL” on page 455
3. “The autoinstall control program at DELETE” on page 458
4. “Default actions of the sample programs” on page 459

Installing shipped terminals and connections
In releases of CICS before CICS Transaction Server for VSE/ESA Release 1, the
terminal identifiers (TERMIDs) of shippable terminals had to be unique in the
transaction routing network. That is, you could not ship a terminal definition to an
AOR on which a remote terminal of the same name was already installed. This
restriction no longer applies. Because your autoinstall control program is invoked
for shipped terminals and connections, you can use it to reset the TERMINAL (or
CONNECTION) attribute of a shipped definition to an alias , thereby avoiding
conflicts with names of remote terminals and connections already installed in the
AOR. There is no need to reset the REMOTENAME attribute, which remains set to
the name by which the terminal is known in the TOR; and autoinstall model names
are not applicable to shipped definitions.

Note: If the name of a shipped definition clashes with the name of a local terminal
or connection installed in the AOR, the install is rejected, and the autoinstall control
program is not invoked.

For more information about using aliases on remote definitions, see the CICS
Intercommunication Guide.

 Copyright IBM Corp. 1977, 1999 453

 the autoinstall control program for shipped terminals

 CICS-generated aliases
The autoinstall control program is invoked once for each shipped terminal or
connection definition to be installed.

If CICS detects that the name on a shipped definition clashes with the name of a
remote terminal or connection already installed in the AOR, it generates an alias
TERMID and passes it to the control program in field
SELECTED_SHIPPED_TERMID of the communications area.

If CICS detects that there is no clash of names, it passes in
SELECTED_SHIPPED_TERMID the name by which the terminal or connection is
known in the TOR—that is, the value of the TERMINAL or CONNECTION attribute
on the shipped definition.

Your control program can accept the passed TERMID, change it, or reject the
installation of the shipped definition.

CICS-generated aliases consist of a 1-character prefix and a 3-character suffix.
The prefix is always '{'. The suffix can have the values 'AAA' through '999'.
That is, each character in the suffix can have the value 'A' through 'Z' or '0'
through '9'. The first suffix generated by CICS has the value 'AAA'. This is
followed by 'AAB', 'AAC', ... 'AAZ', 'AA0', 'AA1', and so on, up to '999'.

Each time that it needs to create an alias, CICS generates a 3-character suffix that
it has not recorded as being in use. If your autoinstall control program overrides a
CICS-generated TERMID, CICS does not record the suffix as being in use, and
supplies the same suffix for the next alias.

Resetting the terminal identifier
You need to think about the algorithm by which your control program allocates alias
TERMIDs.

You must consider the consequences of a definition being deleted by the CICS
Transaction Server for VSE/ESA Release 1 timeout delete mechanism, and
subsequently being re-shipped and re-installed. You must decide whether your
autoinstall program should allocate the same TERMID as before (which implies a
file mapping the name by which the terminal is known in the TOR to the alias
allocated by the AOR), or whether allocation of a different TERMID is
acceptable—in which case you could use the default aliases generated by CICS.
This decision may depend on several factors. For example:

� How your application programs allocate temporary storage queue names. If
they derive them from the TERMID (so as to associate the queue with a
particular end-user), problems of data mismatch could occur if the queue is not
emptied by transaction end (possibly due to a failure), and TERMIDs are not
allocated to the same terminals consistently.

The best solution is for your application programs always to check before
creating a temporary storage queue whether a queue of the same name
already exists, and, if so, to delete it. This dispenses with the need for your
autoinstall program to allocate TERMIDs consistently.

However, if your application programs do not already implement this check, it
may not be possible to correct them all. In this case, your autoinstall program
may need to use a mapping file, as described above.

454 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for shipped terminals

� Whether your application programs record TERMIDs for later use. For
example, an application might issue an EXEC CICS START TERMID
command, with a time interval after which the transaction is to be initiated
against the named terminal. If, during the delay interval, the terminal definition
is deleted, re-shipped, and re-installed with a different local TERMID, the
started transaction could fail because the TERMID no longer exists.

If your application programs record TERMIDs in this way, your autoinstall
program may need to use a mapping file.

Example: Assume that you have two terminal-owning regions, TORA and TORB,
and that they use the same set of terminal idenfifiers, T001 through T500. TORA
and TORB route transactions to the same application-owning region, AOR1. To
prevent naming conflicts when terminals are shipped to AOR1, your control
program in AOR1 could:

� Accept the TERMIDs allocated by TORA. That is, leave the TERMINAL
attribute of the remote definition set to the same as the REMOTENAME
attribute.

� Create aliases for the TERMIDs allocated by TORB. That is, reset the
TERMINAL attribute of the remote definition, using a mapping file as described
above. For example, TERMIDs of T001 through T500 could be mapped to
aliases of A001 through A500.

This solution allows two TORs using the same set of TERMIDs to access the same
AOR. However, even though the aliases created in the AOR are mapped
consistently to TERMIDs in the TOR, the solution does not guarantee that data
mismatch problems cannot occur if terminals are re-shipped. This is because it
relies on TERMIDs being allocated consistently in the TOR—that is, on specific
TERMIDs always being assigned to the same physical devices.

Note: Your control program could use the correlation identifier contained in each
terminal and connection definition to check whether a definition has been
re-installed in the TOR—see the description of the
INSTALL_SHIPPED_CORRID_PTR parameter on page 458.

A better solution might be to map the terminal alias in the AOR to the netname of
the terminal. This would at least guarantee that a specific alias always relates to
the same physical device. But it would still require TERMIDs for which aliases are
not created to be consistently allocated in the TOR.

The autoinstall control program at INSTALL
The autoinstall control program is invoked at INSTALL for:

� Local VTAM terminals
� Local APPC single-session connections initiated by a CINIT
� Local APPC parallel-session connections initiated by a BIND
� Local APPC single-session connections initiated by a BIND
� Remote shipped terminals and connections, including shipped definitions of

Client virtual terminals

On each invocation, CICS passes a parameter list to the control program by means
of a communication area addressed by DFHEICAP. The parameter list passed at
INSTALL of local terminals and APPC single-session connections initiated by CINIT

 Chapter 12. Writing a program to control autoinstall of shipped terminals 455

 the autoinstall control program for shipped terminals

is described in “The communication area at INSTALL for terminals” on page 428.
The parameter list passed at INSTALL of local APPC connections initiated by BIND
requests is described in “The communication area at INSTALL for APPC
connections” on page 447. This section describes only INSTALL of shipped
terminals and connections.

The communications area at INSTALL for shipped terminals
The communications area is mapped by the DSECT for the assembler version of
DFHZATDX, which is supplied in PRD1.BASE.

\--\

\ Remote install parameter list - Shipped definition Functions 7 & 8 \

\--\

INSTALL_SHIPPED_COMMAREA DSECT Install Parameter List

\

INSTALL_SHIPPED_STANDARD DS F Standard field

 ORG INSTALL_SHIPPED_STANDARD

INSTALL_SHIPPED_EXIT_FUNCTION DS XL1 Install type

INSTALL_SHIPPED_TERM EQU X'F7' Install terminal

INSTALL_SHIPPED_RSE EQU X'F8' Install remote system entry

INSTALL_SHIPPED_EXIT_COMPONENT DS CL2 Component ID 'ZC'

INSTALL_SHIPPED_CLASH DS CL1 Install clash Y/N

 ORG ,

INSTALL_SHIPPED_NETNAME_PTR DS A Pointer to netname

INSTALL_SHIPPED_SELECTED_PTR DS A Pointer to return fields

INSTALL_SHIPPED_TERMID_PTR DS A Pointer to incoming TERMID

INSTALL_SHIPPED_APPLID_PTR DS A Pointer to applid of TOR

INSTALL_SHIPPED_SYSID_PTR DS A Pointer to sysid

INSTALL_SHIPPED_CORRID_PTR DS A Pointer to correlation ID

INSTALL_SHIPPED_SELECTED_PARMS DSECT ,

 DS CL8 Reserved

SELECTED_SHIPPED_TERMID DS CL4 Selected TERMID

SELECTED_SHIPPED_RETURN_CODE DS CL1 Selected return code

RETURN_OK EQU X'ðð' Accept request

REJECT EQU X'ð1' Reject request

\

Figure 33. Autoinstall control program’s communications area at INSTALL. For shipped
terminals and connections.

INSTALL_SHIPPED_STANDARD
A fullword input field containing the following information:

INSTALL_SHIPPED_EXIT_FUNCTION
A 1-byte field that indicates the type of resource being installed. For
install of remote terminals and connections the equated values are:

INSTALL_SHIPPED_TERM (X 'F7') A shipped terminal
INSTALL_SHIPPED_RSE (X 'F8') A shipped connection (remote

system entry).

INSTALL_SHIPPED_EXIT_COMPONENT
A 2-byte component code, which is set to ‘ZC’.

INSTALL_SHIPPED_CLASH
A 1-character input field that indicates whether the TERMID of the shipped
definition is already in use in the AOR.

456 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for shipped terminals

Y The name by which the terminal or connection is known in the TOR
(the value of the TERMINAL or CONNECTION attribute on the
shipped definition) is already in use in the AOR to identify an installed
remote terminal or connection.

N The name by which the terminal or connection is known in the TOR is
not in use in the AOR to identify a remote terminal or connection.

INSTALLED_SHIPPED_NETNAME_PTR
A fullword pointer to an 8-character input field containing the netname of the
terminal or connection to be installed.

INSTALL_SHIPPED_SELECTED_PTR
A fullword pointer to the return fields. The output fields, for use by your
program, are:

SELECTED_SHIPPED_TERMID
A 4-character field used to specify the name by which the remote
terminal or connection is to be known to this system. If the name is
less than 4 characters long, it must be padded with trailing blanks.
For a list of the characters you can use in terminal names, see the
CICS Resource Definition Guide.

On invocation, if INSTALL_SHIPPED_CLASH is set to 'N' (indicating
no conflict of terminal names), SELECTED_SHIPPED_TERMID
contains the same value as the field pointed to by
INSTALL_SHIPPED_TERMID_PTR (the value of the TERMINAL or
CONNECTION attribute on the shipped definition). If
INSTALL_SHIPPED_CLASH is set to 'Y',
SELECTED_SHIPPED_TERMID contains a CICS-generated alias.

Your user program can use this field to override a CICS-generated
alias. For advice on choosing terminal and connection names, see
“Resetting the terminal identifier” on page 454.

SELECTED_SHIPPED_RETURN_CODE
The 1-character return code field. The equated values are:

RETURN_OK (X'00') Install the remote terminal or connection.
Your user program must return this value if
the resource is to be autoinstalled.

REJECT (X'01') Do not install the remote terminal or
connection. This is the default value.

INSTALL_SHIPPED_TERMID_PTR
A fullword pointer to a 4-character input field containing the name by which the
terminal or connection is known in the TOR. (This is the value of the
TERMINAL or CONNECTION attribute on the shipped definition.)

INSTALL_SHIPPED_APPLID_PTR
A fullword pointer to an 8-character input field containing the netname (applid)
of the TOR.

INSTALL_SHIPPED_SYSID_PTR
A fullword pointer to a 4-character input field containing the name (sysid) of the
connection to the TOR.

 Chapter 12. Writing a program to control autoinstall of shipped terminals 457

 the autoinstall control program for shipped terminals

INSTALL_SHIPPED_CORRID_PTR
A fullword pointer to an 8-character input field containing the shipped
definition’s correlation identifier. A correlation identifier is a unique “instance
token” that is created when a CICS Transaction Server for VSE/ESA Release 1
terminal or connection definition is installed, and stored within the definition.
Thus, if the definition is shipped to another region, the value of the token is
shipped too. The correlation ID is used by CICS during attach processing, to
check whether existing shipped definitions in an AOR are up-to-date, or
whether they need to be deleted and reshipped because the terminal has been
re-installed in the TOR. For further information about instance tokens, see the
CICS Intercommunication Guide.

If your control program maps TOR-allocated TERMIDs to the aliases that it
assigns in the AOR, by recording correlation IDs it could check whether a
terminal has been re-installed in the TOR. If the terminal has been re-installed,
it is possible that the TOR-allocated TERMID relates to a different physical
device from that last installed under this TERMID.

The autoinstall control program at DELETE
The autoinstall control program is reinvoked when an autoinstalled resource is
deleted. (The resources that can be autoinstalled are listed under “The autoinstall
control program at INSTALL” on page 455.) Invoking the user program at DELETE
enables you to reverse the processes carried out at INSTALL.

The parameter list passed to your user program at DELETE of local terminals is
described on page 435. This section describes only DELETE of shipped terminals
and connections.

Shipped terminal and connection definitions are deleted by the CICS Transaction
Server for VSE/ESA Release 1 timeout delete mechanism. For details of the
timeout delete mechanism, see the CICS Intercommunication Guide.

Figure 34 shows the communications area passed to the autoinstall user program
at DELETE.

DELETE_SHIPPED_COMMAREA DSECT , Delete parameter list

DELETE_SHIPPED_STANDARD DS F Standard field

DELETE_SHIPPED_EXIT_FUNCTION DS XL1 Delete type

DELETE_SHIPPED_TERM EQU X'FA' Delete terminal

DELETE_SHIPPED_RSE EQU X'FB' Delete remote system entry

DELETE_SHIPPED_EXIT_COMPONENT DS CL2 Component ID 'ZC'

 DS CL1 Reserved

DELETE_SHIPPED_TERMID DS CL4 TERMID in TOR

DELETE_SHIPPED_APPLID DS CL8 Applid of TOR

DELETE_SHIPPED_LTERMID DS CL4 TERMID in AOR

Figure 34. Autoinstall control program’s communications area at DELETE. For shipped
terminals and connections.

At DELETE, all fields in the communications area are input only. Fields not listed
below are as described for INSTALL.

DELETE_SHIPPED_EXIT_FUNCTION
A 1-byte field that indicates the type of resource being deleted. The equated
values are:

458 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for shipped terminals

DELETE_SHIPPED_TERM (X'FA') A shipped terminal.
DELETE_SHIPPED_RSE (X'FB') A shipped connection (remote system

entry).

Note: A value of X'F1' represents the deletion of a local terminal, or an
APPC single-session device that was autoinstalled via a CINIT request—see
page 435.

DELETE_SHIPPED_TERMID
A 4-character field containing the identifier (TERMID) of the terminal or
connection in the TOR.

DELETE_SHIPPED_APPLID
An 8-character field containing the netname (applid) of the TOR.

DELETE_SHIPPED_LTERMID
A 4-character field containing the name by which the terminal or connection is
known in the AOR. This may or may not be the same as
DELETE_SHIPPED_TERMID, depending on whether an alias has been used in
the AOR.

Default actions of the sample programs
When DFHZATDX or DFHZATDY is invoked at INSTALL of a shipped terminal or
connection, it:

1. Updates, if necessary, the SELECTED_SHIPPED_TERMID field, so that it
contains the name by which the terminal or connection is known in the TOR.

Notes:

a. If CICS detected a conflict with a currently-installed remote TERMID, on
invocation of the sample programs SELECTED_SHIPPED_TERMID
contains a CICS-generated alias. The sample programs overwrite this
value.

b. If CICS detected no conflict with a currently-installed remote TERMID, on
invocation of the sample programs SELECTED_SHIPPED_TERMID
contains the value of the TERMINAL attribute on the shipped definition (the
value pointed to by INSTALL_SHIPPED_TERMID_PTR). The sample
programs accept this value.

2. Permits the remote definition to be installed by setting the return code field to
RETURN_OK, and returning.

When DFHZATDX or DFHZATDY is invoked at DELETE of a shipped terminal or
connection, it takes no action and returns.

 Chapter 12. Writing a program to control autoinstall of shipped terminals 459

 the autoinstall control program for shipped terminals

460 CICS Transaction Server for VSE/ESA Customization Guide

 the autoinstall control program for programs

Chapter 13. Writing a program to control autoinstall of
programs

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter describes the user-replaceable program that controls the automatic
installation of programs, mapsets, and partitionsets.

Note: In this chapter, the term “program autoinstall” is used to mean autoinstall of
all three program types (program, mapset, and partitionset) unless otherwise
specified.

The chapter is divided into the following sections:

 1. “Preliminary considerations”
2. “Benefits of autoinstall” on page 463
3. “Requirements for autoinstall” on page 463
4. “The autoinstall control program at INSTALL” on page 464
5. “The sample autoinstall control program for programs, DFHPGADX” on

page 466

 Preliminary considerations
As well as terminals and APPC connections, you can autoinstall:

 � User programs
 � Mapsets
 � Partitionsets

If the autoinstall program function is enabled, and an implicit or explicit load request
is issued for a previously undefined program, mapset, or partitionset, CICS
dynamically creates a definition, and installs and catalogs it, as appropriate. An
implicit or explicit load occurs when:

� CICS starts a transaction.

� An application program issues one of the following commands:

EXEC CICS LINK
EXEC CICS XCTL
EXEC CICS LOAD
EXEC CICS ENABLE (for a global user exit, or task-related user exit,
program)
EXEC CICS RECEIVE or SEND MAP
EXEC CICS SEND PARTNSET
EXEC CICS RECEIVE PARTN

� A program abend occurs, and CICS transfers control to the program named on
an EXEC CICS HANDLE ABEND command.

� CICS calls any user-replaceable program other than the program or terminal
autoinstall program.

 Copyright IBM Corp. 1977, 1999 461

 the autoinstall control program for programs

� A program is named in the PLTPI or PLTSD list.

Autoinstall model definitions
Like autoinstall for terminals, program autoinstall uses model definitions, together
with a user-replaceable control program, to create explicit definitions for resources
that need to be autoinstalled. The purpose of a model is to provide CICS with a
definition that can be used for all programs with the same properties. CICS calls
the autoinstall control program with a parameter list that includes the name of a
CICS-supplied, default model definition appropriate to the program type (program,
mapset, or partitionset). Your autoinstall control program can accept the default
model, or specify another (any installed program definition can be used as a
model). It can also specify explicitly any properties that are unique to a program,
thus overriding those specified on the model definition.

On return from the control program, CICS creates a resource definition from the
model and properties returned in the parameter list.

Note that CICS does not call your control program for CICS programs, mapsets, or
partitionsets—that is, for any objects that begin with the letters “DFH”.

Autoinstall processing of mapsets
Table 116 shows the differences in mapset processing between CICS regions with
program autoinstall active and inactive.

Table 116. Differences in mapset processing between autoinstall and non-autoinstall

Program autoinstall INACTIVE Program autoinstall ACTIVE

CSD definition is required.
CICS attempts to load a referenced
mapset with a suffix. If this fails, CICS
tries an unsuffixed version. If that is
unsuccessful, abend APCT is issued.

CSD definition is not required. Using
autoinstall, CICS attempts to load the
referenced suffixed mapset or partitionset,
then the unsuffixed one. (In each case, a
definition is autoinstalled.) The
transaction requesting the resource
abends only if no version of the resource
exists in the library, either suffixed or
unsuffixed.

If the suffixed mapset is not found in the
library, the definition is marked ‘not
loadable’.

 System autoinstall
Some programs are autoinstalled automatically (if they have not been statically
defined) by the CICS system autoinstall function, which does not require model
definitions or the support of the autoinstall control program. Programs in this
category include:

� First phase program list table post initialization (PLTPI) programs (that is,
PLTPI programs that are defined before the PLT table delimiter DFHDELIM).

� Second phase program list table shutdown (PLTSD) programs (that is, PLTSD
programs that are defined after the PLT table delimiter DFHDELIM).

462 CICS Transaction Server for VSE/ESA Customization Guide

Note: PLTPI programs that are defined after DFHDELIM, and PLTSD programs
that are defined before DFHDELIM, are treated like any other user programs—they
are eligible for program autoinstall.

Benefits of autoinstall
Program autoinstall reduces system administration, virtual storage usage, and,
potentially, restart times.

Reduced system administration costs
Without autoinstall, you have to define all new programs, mapsets, and partitionsets
to CICS before they can be used. Autoinstall eliminates this requirement, enabling
these resources to be used without prior definition. Furthermore, the need to
maintain predefined definitions also disappears, leading to a significant saving in
system administration effort.

Saving in virtual storage
There is a saving in virtual storage within the CICS address space, as the
definitions of autoinstalled resources do not occupy table space until they are
generated.

Faster startup times
Warm and emergency starts: If you are using program autoinstall with
cataloging, restart times are similar to those of restarting a CICS region that is not
using program autoinstall. This is because, in both cases, resource definitions are
reinstalled from the catalog during the restart. The definitions after the restart are
those that existed before the system was terminated.

If you are using autoinstall without cataloging, CICS restart times are improved
because CICS does not install definitions from the CICS global catalog. Instead,
definitions are autoinstalled as required whenever programs, mapsets, and
partitionsets are referenced following the restart.

See the CICS Recovery and Restart Guide for information on cataloging.

Cold starts: Startup times are faster than for a region that does not use program
autoinstall, because program definitions are installed singly, as required, rather than
all together at startup.

Requirements for autoinstall
To use autoinstall with programs, mapsets, and partitionsets, you must:

1. Write a customized version of the autoinstall control program for programs,
DFHPGADX (unless the supplied version is entirely suitable for your purposes).

2. Specify the name of your control program on the PGAIEXIT system initialization
parameter (the default name is DFHPGADX), or on a CEMT or EXEC CICS
SET SYSTEM PROGAUTOEXIT command.

3. Make program autoinstall active by specifying 'ACTIVE' on the PGAIPGM
system initialization parameter (or by issuing a SET SYSTEM
PROGAUTOINST(AUTOACTIVE) command).

 Chapter 13. Writing a program to control autoinstall of programs 463

 autoinstall control program at INSTALL

4. Specify whether you want autoinstalled program definitions to be recorded on
the CICS global catalog, on the PGAICTLG system initialization parameter (or
on a SET SYSTEM PROGAUTOCTLG command).

5. Include the DFHPGAIP resource definition group in your CICS startup grouplist.
DFHPGAIP (which is already included in the CICS-supplied startup list,
DFHLIST) contains the default program, mapset, and partitionset model
definitions passed to the autoinstall control program, and a definition of
DFHPGADX (that you may need to amend).

6. Create any additional program, mapset, and partitionset model definitions that
you need, and add this group to your startup grouplist.

7. If you want to log messages associated with program autoinstall, define the
CSPL transient data (TD) queue.

For information about coding system initialization parameters, see the CICS System
Definition Guide. For information about defining programs, mapsets, partitionsets,
and TD queues, see the CICS Resource Definition Guide.

The autoinstall control program at INSTALL
On invocation, CICS passes a parameter list to the autoinstall control program by
means of a communication area addressed by DFHEICAP. The communications
area is mapped by a copybook that is supplied in each of the languages supported
by CICS.

The assembler form of the parameter list is as follows:

PGAC_PROGRAM
passes the 8-byte name of the object to be autoinstalled. This is an input-only
field, which your user-replaceable program must not alter.

PGAC_MODULE_TYPE
passes a 1-byte indicator of the type of object to be installed. The equated
values are:

PGAC_TYPE_PROGRAM A program.
PGAC_TYPE_MAPSET A mapset.
PGAC_TYPE_PARTITIONSET A partitionset.

This is an input-only field, which your user-replaceable program must not alter.

PGAC_MODEL_NAME
allows your control program to specify the 8-byte autoinstall model name to be
used. If you do not set this field, CICS uses the default model name for the
type of object:

DFHPGAPG For a program.
DFHPGAMP For a mapset.
DFHPGAPT For a partitionset.

PGAC_LANGUAGE
allows your control program to specify, in a 1-byte field, the language of the
program to be autoinstalled. The equated values are:

PGAC_ASSEMBLER Assembler.
PGAC_COBOL COBOL.

464 CICS Transaction Server for VSE/ESA Customization Guide

 autoinstall control program at INSTALL

PGAC_C C.
PGAC_PLI PL/I.

If you do not set this field, the autoinstall routine uses the language defined in
the model, if one is specified. However, when control is passed to the
program, CICS determines the language from the program itself, and overrides
any specification provided.

You should not need to specify the language of executable programs that have
been translated using the EXEC CICS translator before compiling.

PGAC_CEDF_STATUS
allows you to specify, in a 1-byte field, the execution diagnostic facility (EDF)
status of the program to be autoinstalled. The equated values are:

PGAC_CEDF_YES EDF can be used with this program.
PGAC_CEDF_NO EDF cannot be used with this program.

PGAC_DATA_LOCATION
allows you to specify, in a 1-byte field, the data location for task-lifetime
storage. The equated values are:

PGAC_LOCATION_BELOW
Task-lifetime storage must be located below 16MB.

PGAC_LOCATION_ANY
Task-lifetime storage can be below or above 16MB.

PGAC_EXECUTION_KEY
allows you to specify, in a 1-byte field, the execution key for the program. The
equated values are:

PGAC_CICS_KEY The program is to execute in CICS key.
PGAC_USER_KEY The program is to execute in user key.

PGAC_LOAD_ATTRIBUTE
allows you to specify, in a 1-byte field, the load attributes for the object. The
equated values are:

PGAC_RELOAD CICS is to load a fresh copy of the object for each
request.

PGAC_RESIDENT CICS is to make the object permanently resident.

PGAC_TRANSIENT The storage for this object is to be released
whenever the use count reaches zero.

PGAC_REUSABLE CICS can use any copy of the object currently in
storage.

PGAC_USE_SVA_COPY
allows you to specify, in a 1-byte field, whether CICS is to use an SVA-resident
copy of the program. The equated values are:

PGAC_SVA_YES CICS is to use a copy in the SVA.

PGAC_SVA_NO CICS is to load a private copy using the LIBDEF
SEARCH library definition for the CICS job.

 Chapter 13. Writing a program to control autoinstall of programs 465

 sample autoinstall programs

PGAC_EXECUTION_SET
allows you to specify, in a 1-byte field, whether or not the program is restricted
to using the distributed program link (DPL) subset of the CICS API. The
equated values are:

PGAC_DPLSUBSET The program is to be restricted to the DPL subset
of the EXEC CICS API.

PGAC_FULLAPI The program can use the full API.

PGAC_REMOTE_SYSID
allows you to specify, in a 4-byte field, the name of the remote system where
the program is to execute. CICS function ships any request for this program to
the specified remote CICS.

PGAC_REMOTE_PROGID
allows you to specify, in an 8-byte field, the name by which the program is
known in the remote CICS region. For a remote program, the remote name
defaults to the local name if you set this field to blank.

PGAC_REMOTE_TRANSID
allows you to specify, in a 4-byte field, the name of the CICS mirror transaction
under which the program, if remote, is to run. By default, this is set to the
name of the CICS mirror transaction, CSMI.

PGAC_RETURN_CODE
allows you to specify, in a 1-byte field, the autoinstall control program’s return
code to CICS. The equated values are:

PGAC_RETURN_OK
Install the program definition using the values returned in the
communications area parameter list.

PGAC_RETURN_DONT_DEFINE_PROGRAM
Do not define the program.

The sample autoinstall control program for programs, DFHPGADX
The CICS-supplied default autoinstall program is an assembler-language
command-level program, named DFHPGADX. The source of the default program
is provided in COBOL, PL/I, and C, as well as in assembler language. The names
of the supplied programs and their associated copy books are summarized in
Table 117 on page 467. All the supplied programs and copy books are in the
VSE/ESA sublibrary PRD1.BASE.

466 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

Table 117. Sample programs and copy books for program autoinstall

Language PRD1.BASE member name

Executable file:

Assembler only

DFHPGADX.A

Program source:

Assembler
COBOL
PL/I
C

DFHPGADX.A
DFHPGAOX.C
DFHPGALX.P
DFHPGAHX.H

Copy books:

Assembler
COBOL
PL/I
C

DFHPGACD.A
DFHPGACO.C
DFHPGACL.P
DFHPGACH.H

Customizing the sample program
You can write your autoinstall control program in any of the languages supported
by CICS, with full access to the CICS application and system programming
interfaces.

If you customize the supplied control program, or write your own version, you
should note the following:

 � Input:
The first two fields of the parameter list are input-only fields and should not be
altered by your program.

 � Output:
The remaining fields on the parameter list are input/output or output only fields,
which you can use to specify attributes that override those of the model
definition.

� Some of the output fields in the parameter list are not applicable to mapsets or
partitionsets. CICS ignores any parameters you specify that are not applicable
to the type of object being installed.

� Any attributes you return to CICS in the parameter list are used to modify the
model definition, and CICS installs the modified definition. Once installed, the
definition can be modified normally using the EXEC CICS SET PROGRAM or
CEMT SET PROGRAM commands.

� If you modify your control program, you can make the new version available by
using the EXEC CICS SET PROGRAM NEWCOPY or CEMT SET PROGRAM
NEWCOPY command.

� You can discard definitions after they have been installed; they are reinstalled
when next referenced.

� You must ensure that the parameters you return to CICS are valid, and
consistent with other system attributes in your CICS region. For example:

– Do not return PGAC_SVA_YES on the PGAC_USE_SVA_COPY parameter
if CICS is running with the system initialization parameter SVA=NO.

 Chapter 13. Writing a program to control autoinstall of programs 467

 sample autoinstall programs

– Do not return PGAC_USER_KEY (which is the default) on the
PGAC_EXECUTION_KEY parameter if the task for which your control
program is called is running with CICS-key task-lifetime storage.

You can determine the storage key for the task by testing the
TASKDATAKEY option in its transaction definition by means of the
following EXEC CICS commands:

EXEC CICS ADDRESS EIB
EXEC CICS INQUIRE TRANSACTION(eibtrans) TASKDATAKEY(...)

 Important

When creating an autoinstalled program definition, CICS ignores the program
language specified on the model program definition. CICS determines the
language from the load module itself, when the autoinstalled program is
invoked.

However, CICS does not deduce characteristics other than language from the
load module. These other program characteristics must be explicitly defined by
the autoinstall control program or by RDO. If your programs have varying
characteristics (varying AMODE or DATALOCATION requirements, for
example), you must be able to distinguish between the various types when
using autoinstall. You could do this by keeping a list of exceptions to the
default characteristics, and coding your autoinstall control program to refer to
this list; or you might decide to install explicit RDO definitions of the exceptions.

 Resource definition
The autoinstall control program cannot itself be autoinstalled, nor can any program
it references. You must define a program resource definition in the CSD for the
control program and for any other programs it references. You must also ensure
these definitions are installed in the CICS region during startup by including the
group containing the definitions in your startup grouplist. If you specify an invalid
name for the control program, CICS disables the program, thus disabling the
program autoinstall function.

The following program resource definitions are supplied by CICS for the autoinstall
control program; the default is the assembler version, DFHPGADX. If these
definitions are not suitable for your use, you can create your own, using RDO or
the DFHCSDUP utility.

� Default autoinstall control program definition for DFHPGADX. This defines the
assembler version, and its status is set to ENABLED:

 GROUP(DFHPGAIP) PROGRAM(DFHPGADX)

DESCRIPTION(Assembler definition for program autoinstall exit)

 LANGUAGE(ASSEMBLER) EXECKEY(CICS) EXECUTIONSET(FULLAPI)

 RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

 STATUS(ENABLED) CEDF(NO) DATALOCATION(ANY)

� Autoinstall control program definition for DFHPGAOX. This defines the
CICS-supplied COBOL version, and its status is set to DISABLED:

468 CICS Transaction Server for VSE/ESA Customization Guide

 sample autoinstall programs

 GROUP(DFHPGAIP) PROGRAM(DFHPGAOX)

DESCRIPTION(COBOL definition for program autoinstall exit)

 LANGUAGE(COBOL) EXECKEY(CICS) EXECUTIONSET(FULLAPI)

 RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

 STATUS(DISABLED) CEDF(NO) DATALOCATION(ANY)

� Autoinstall control program definition for DFHPGAHX. This defines the
CICS-supplied C version, and its status is set to DISABLED:

 GROUP(DFHPGAIP) PROGRAM(DFHPGAHX)

DESCRIPTION(C definition for program autoinstall exit)

 LANGUAGE(C) EXECKEY(CICS) EXECUTIONSET(FULLAPI)

 RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

 STATUS(DISABLED) CEDF(NO) DATALOCATION(ANY)

� Autoinstall control program definition for DFHPGALX. This defines the
CICS-supplied PL/I version, and its status is set to DISABLED:

 GROUP(DFHPGAIP) PROGRAM(DFHPGALX)

DESCRIPTION(PL/I definition for program autoinstall exit)

LANGUAGE(PLI) EXECKEY(CICS) EXECUTIONSET(FULLAPI)

 RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

 STATUS(DISABLED) CEDF(NO) DATALOCATION(ANY)

Testing and debugging your program
You can use the CICS execution diagnostic facility (EDF) to help you test your
autoinstall control program. However, EDF is inhibited for programs with names
that begin with the letters DFH; so to use EDF you must name your program
something other than one of the default names.

 Chapter 13. Writing a program to control autoinstall of programs 469

 sample autoinstall programs

470 CICS Transaction Server for VSE/ESA Customization Guide

 the dynamic transaction routing program

Chapter 14. Writing a dynamic transaction routing program

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

This chapter tells you how to write a dynamic transaction routing program. It is
divided into the following sections:

1. “Overview of dynamic transaction routing”
2. “The dynamic transaction routing program, DFHDYP” on page 472
3. “Parameters passed to the dynamic transaction routing program” on page

478
4. “Naming your dynamic routing program” on page 485
5. “Testing your dynamic routing program” on page 485
6. “Dynamic transaction routing sample programs” on page 486

Overview of dynamic transaction routing
When you define transactions to CICS, you can describe them as “remote” or
“local”. Local transactions are always executed in the terminal-owning region;
remote transactions can be routed to other regions connected to the
terminal-owning region by MRO links, or to other systems that are connected by
APPC (LUTYPE6.2) ISC links.

You can select both the system to which the transaction is to be routed and the
transaction’s remote name dynamically, rather than when the transaction is defined
to CICS. To do this you must use a dynamic transaction routing program . The
CICS-supplied default routing program is called DFHDYP. Its source-level code is
supplied in assembler-language, COBOL, PL/I, and C versions in the VSE/ESA
sublibrary PRD1.BASE. You can write your own program in any of these
languages, using the default program as a model.

This chapter describes the default program, and tells you how to write your own
version. If you need more guidance information about transaction routing, you
should first refer to the CICS Intercommunication Guide.

 Dynamic transactions
When you want to route transactions dynamically, you must define them with the
value DYNAMIC(YES) on the RDO TRANSACTION resource definition. (The
default value is DYNAMIC(NO).) You must also supply values for both the remote
and the local options. This allows CICS to select the appropriate values when the
transaction is routed, and to ignore those values that are not needed. For
information about defining transactions for dynamic transaction routing, see the
CICS Intercommunication Guide.

 Copyright IBM Corp. 1977, 1999 471

 the dynamic transaction routing program

The dynamic transaction routing program, DFHDYP
CICS invokes the user-replaceable dynamic transaction routing program as follows:

� When a transaction defined with the value DYNAMIC(YES) is initiated.

� When a transaction definition is not found and CICS uses the special
transaction defined on the DTRTRAN system initialization parameter. (For
more information about DTRTRAN, see the CICS System Definition Guide.)

� Before routing a remote, terminal-oriented, transaction initiated by ATI.

� If an error occurs in route selection.

� At the end of a routed transaction, if the initial invocation requests reinvocation
at termination.

� If a routed transaction abends, if the initial invocation requests re-invocation at
termination.

Information passed to the dynamic transaction routing program
The CICS relay program, DFHAPRT, passes information to the dynamic transaction
routing program by means of a communications area. The communications area
contains fields that are mapped by the DSECT DFHDYPDS, and is described in
detail in “Parameters passed to the dynamic transaction routing program” on
page 478. Some of the data passed to the dynamic transaction routing program in
the communications area is:

� The SYSID of the remote CICS region specified when the transaction was
installed

� The netname of the remote CICS region

� The name of the remote transaction

� The dispatch priority (MRO only) of the remote transaction

� Whether or not the request is to be queued if no sessions are immediately
available to the remote CICS region

� The address of the remote transaction’s communications area

� The address of a copy of the transaction’s terminal input/output area (TIOA)

� A task-local user data area

The communications area DSECT contains comments to describe the information
passed.

The dynamic transaction routing program can accept these values, or change them,
or tell CICS not to continue routing the transaction. The values used depend on
the function being performed; that is, some values may be ignored.

The information passed to the dynamic transaction routing program indicates
whether the transaction is being routed dynamically or statically (for remote ATI
requests).

If the transaction is being routed dynamically, the dynamic transaction routing
program can change the SYSID or netname to determine where the transaction is
to run.

472 CICS Transaction Server for VSE/ESA Customization Guide

 the dynamic transaction routing program

If the transaction was started by ATI, the dynamic transaction routing program is
called only to notify it of where the transaction is going to run. In this case, the
dynamic transaction routing program cannot change the remote system name, and
any changes to the SYSID or NETNAME fields in the communications area are
ignored.

For transactions that are run remotely, either because they are defined as remote
or because they are dynamically routed to a remote CICS region, CICS monitoring
is informed of the SYSID of the remote CICS region. For transactions that the
dynamic transaction routing program routes locally, the monitoring field is set to
nulls.

Changing the target CICS region
The communications area passed to the dynamic transaction routing program
initially contains the SYSID and netname of the default CICS region to which the
transaction is to be routed. These are derived from the value of the
REMOTESYSTEM option of the installed transaction definition. If the transaction
definition does not specify a REMOTESYSTEM value, the SYSID and netname
passed are those of the local CICS region.

The dynamic transaction routing program can change the SYSID and netname, so
that the CICS region to which the transaction is routed is determined as follows:

� The NETNAME and the SYSID are not changed.

CICS tries to route to the SYSID as originally specified in the communications
area.

� The NETNAME is not changed, but the SYSID is changed.

CICS updates the communications area with the NETNAME corresponding to
the new SYSID, and tries to route to the new SYSID.

� The NETNAME is changed, but the SYSID is not changed.

CICS updates the communications area with a SYSID corresponding to the
new NETNAME, and tries to route to the new SYSID.

� The NETNAME is changed and the SYSID is changed.

CICS overwrites the communications area with a SYSID corresponding to the
new NETNAME, and tries to route to that new SYSID.

If the NETNAME specified is invalid, or cannot be found, SYSIDERR is returned to
the dynamic transaction routing program.

Using a common transaction definition in the TOR
The recommended method is to use a single, common definition for all remote
transactions that are to be dynamically routed. The name of the common definition
is specified on the DTRTRAN system initialization parameter. You can use the
REMOTESYSTEM option of the common definition to specify a default AOR to
which transactions are to be routed. For information about defining remote
transactions for dynamic transaction routing, see the CICS Intercommunication
Guide.

 Chapter 14. Writing a dynamic transaction routing program 473

 the dynamic transaction routing program

 Important

To route a transaction defined by the DTRTRAN definition, your dynamic
transaction routing program must set the DYRDTRRJ field of the
communications area to 'N' (the default is 'Y'). If you leave DYTDTRRJ set
to 'Y', the transaction is rejected.

You can test the DYRDTRXN field to check if the transaction passed to your
routing program is defined by the DTRTRAN definition. Figure 35 contains
skeleton code for routing transactions defined by DTRTRAN.

if DYRDTRXN='Y' then /\ Is DYP invoked because of DTRTRAN \/

do /\ .. Yes \/

Call Find_AOR(sysid) /\ Select the SYSID of the AOR \/

if rc=ð then /\ Is AOR available? \/

 do /\ .. Yes \/

DYRRETC=RETCODð /\ Set OK Return Code \/

DYRSYSID=sysid /\ Set the sysid \/

DYRDTRRJ='N' /\ Don't reject DTRTRAN defns \/

... /\ Set other commarea fields \/

 end /\ \/

 else /\ .. No \/

... /\ AOR unavailable logic \/

 end /\ \/

Figure 35. Example pseudocode to route transactions defined by DTRTRAN

Changing the program name
For transactions defined as DYNAMIC, on invocation of the routing program the
DYRLPROG field in the communications area contains the name of the initial
program associated with the transaction to be routed. If you decide to route the
transaction locally, you can use this field to specify an alternative program to be
run. For example, if all remote CICS regions are unavailable and the transaction
cannot be routed, you may want to run a program in the local CICS
terminal-owning region to send an appropriate message to the user.

Telling CICS whether to route or terminate a transaction
If you want a transaction to be routed, whether you have changed any values or
not, you return a zero value to CICS in field DYRRETC of the communications
area. If you want to terminate the transaction with a message or an abend, you
supply a return code of X'8'. A further option (return code X'4') tells CICS to
terminate the transaction without issuing a message or abend.

Warning: Setting a return code of X'4' for APPC transaction routing leads to
unpredictable results, and should be avoided.

When you return control to CICS with return code zero, CICS first compares the
returned SYSID with its own local SYSID:

� If the SYSIDs are the same (or the returned SYSID is blank) CICS executes
the transaction locally.

474 CICS Transaction Server for VSE/ESA Customization Guide

 the dynamic transaction routing program

� If the two SYSIDs are not the same, CICS routes the transaction to the remote
CICS region, using the remote transaction name.

The dynamic transaction routing program is invoked again if the routed transaction
abends and, optionally, when the routed transaction terminates.

If the system is unavailable or unknown
The dynamic transaction routing program is invoked again if the remote system
name that you specify on the route selection call is not known or is unavailable.
When this happens, you have a choice of actions:

� You can tell CICS not to continue trying to route the transaction, by issuing a
return code of ‘8’ in DYRRETC. If the reason for the error is that the system is
unavailable, CICS issues message ‘DFHAC2014’ or ‘DFHAC2029’ to the
terminal user. If the reason for the error is that the system is unknown,
DFHAPRT abends the transaction.

� You can tell CICS to terminate the transaction without issuing a message or
abend by placing a return code of ‘4’ in DYRRETC. However, note the above
warning about setting return code ‘4’.

� If the reason for the error is that no sessions are immediately available to the
remote system, you can reset field DYRQUEUE to ‘Y’ (it must previously have
been set to ‘N’—the request is not to be queued—for this error to occur), issue
a return code of ‘0’ in DYRRETC, and try to route the transaction again.

If you try to route the transaction again without resetting DYRQUEUE to ‘Y’
(and without changing the sysid), and the system is still unavailable, DFHDYP
is reinvoked. If you then choose to set return code ‘8’, CICS terminates the
transaction with message ‘DFHAC2030’.

� You can change the sysid, and issue a return code of ‘0’ in DYRRETC to try to
route the transaction again. Note that if you change the sysid, you may also
need to supply a different remote transaction ID. You need to do this if, for
example, the transaction has a different remote transaction name on each
system.

A count of the times the routing program has been invoked for routing purposes for
this transaction is passed in field DYRCOUNT. Use this count to help you decide
when to stop trying to route the transaction.

Invoking the dynamic transaction routing program at end of routed
transactions

If you want your dynamic transaction routing program to be invoked again when the
routed transaction has completed, you must set the DYROPTER field in the
communications area to 'Y' before returning control to CICS. You might want to
do this, for example, if you are keeping a count of the number of transactions
currently executing on a particular CICS region. However, during this reinvocation,
the dynamic transaction routing program should update only its own resources,
because at this stage the final command to the terminal from the application
program in the AOR may be pending, and the dynamic transaction routing program
is about to terminate.

Note: If you have set DYROPTER to 'Y', and the routed transaction abends, the
dynamic transaction routing program is invoked again to notify it of the abend. You

 Chapter 14. Writing a dynamic transaction routing program 475

 the dynamic transaction routing program

could use this invocation to initiate a user-defined program in response to the
transaction abend.

Invoking the dynamic transaction routing program on abend
If the routed transaction abends, the DFHAPRT program in the TOR:

1. Passes back a response to the CICS transaction manager indicating that a
transaction abend has occurred

2. If the dynamic transaction routing program requested to be reinvoked at
termination of the transaction (by setting DYROPTER to 'Y' when invoked for
routing), reinvokes the dynamic transaction routing program

3. Returns to CICS transaction manager

Modifying the initial terminal data
The dynamic routing program should not perform an EXEC CICS RECEIVE or an
EXEC CICS GDS RECEIVE command, because this prevents the routed-to
transaction from obtaining the initial terminal data.

The CICS relay program, DFHAPRT, places a copy of the user’s initial terminal
input into a separate buffer. This information includes SNA presentation services
headers for APPC mapped and unmapped conversations. A pointer to this buffer
(DYRBPNTR), and its length (DYRBLGTH), are provided in the communication
area passed from DFHAPRT to the dynamic routing program.

Because the transaction profile has not been queried at this point, uppercase
translation has not been performed on the input data unless UCTRAN(YES) is
specified on the TYPETERM definition.

Sometimes you may want to modify the initial data input by the user. (It may be
necessary to do this if, for example, you change the ID of the remote transaction,
using field DYRTRAN of the communications area.) To modify the input data, your
routing program should, when invoked for route selection:

1. Copy the input data pointed to by DYRBPNTR into a named variable, of length
DYRBLGTH

2. Modify the data in the named variable

3. Use the INPUTMSG option of the EXEC CICS RETURN command to make the
modified data available to the application program

For guidance information about using INPUTMSG on EXEC CICS RETURN
commands, see the CICS Application Programming Guide. For programming
information about the INPUTMSG option, see the CICS Application Programming
Reference manual.

Note: If, after modifying the input data, the dynamic transaction routing program is
reinvoked because an error occurs in routing to the selected transaction, it should
“remember” that it has modified the original user-input.

476 CICS Transaction Server for VSE/ESA Customization Guide

 the dynamic transaction routing program

Modifying the application’s communications area
Sometimes you may want to modify the routed application’s communications area.
For example, if your routing program changes the ID of the remote transaction, it
may also need to change the input communications area passed to the routed
application. Field DYRACMAA of the routing program’s communications area
enables you to do this; it is a pointer to the application’s communications area.

Receiving information from a routed transaction
If your dynamic transaction routing program chooses to be reinvoked at the end of
a routed transaction, it can obtain information about the transaction by monitoring
its output communications area and output TIOA.

Monitoring the output communications area
A routed transaction can pass information back to the dynamic transaction routing
program in its output communications area. When invoked at transaction
termination, your routing program can examine the output communications area
(pointed to by DYRACMAA). The following is an example of how this facility could
be used:

You have a CICSplex consisting of sets of functionally-equivalent TORs and
AORs, and need to identify any intertransaction affinities that may affect
transaction routing. (Note that some transactions may sometimes create
affinities, and sometimes not.)

The routed transactions themselves “know” when an affinity is created, and can
communicate this to the dynamic transaction routing program. The routing
program is then able to route such transactions accordingly.

Monitoring the output TIOA
When invoked at transaction termination, your routing program can examine the
copy of the routed transaction’s output TIOA pointed to by DYRBPNTR. This can
be useful, for example, to guard against the situation where one AOR in a
CICSplex develops software problems. These may be reported by means of a
message to the end user, rather than by a transaction abend. If this happens, the
routing program is unaware of the failure and cannot bypass the AOR that has the
problem. By reading the output TIOA, your routing program can check for
messages indicating specific kinds of failure, and bypass any AOR that is affected.

Some processing considerations
� Any of the EXEC CICS commands (except EXEC CICS RECEIVE—see

“Modifying the initial terminal data” on page 476) can be issued from the
routing program. You are likely to find the EXEC CICS INQUIRE
CONNECTION and INQUIRE IRC commands particularly useful if you want to
confirm that a link is available before routing a transaction. The EXEC CICS
INQUIRE and SET commands are described in the CICS System Programming
Reference manual.

� Although the routing program can issue any EXEC CICS command, you should
consider carefully the effect of commands that alter protected resources,
because changes to those resources may be committed or backed out
inadvertently as a result of logic in the routed transaction. You should also
consider carefully the effect of EXEC CICS SYNCPOINT and ABEND
commands on APPC transaction routing.

 Chapter 14. Writing a dynamic transaction routing program 477

 parameters passed to DFHDYP

� If you want to keep information about how transactions are routed, it must be
done in the user routing program, perhaps by writing the information to a
temporary storage queue associated with this terminal.

� Several transactions can form a single conversation with the end user. At the
start of the conversation, resources are allocated to record the state of the
conversation. Because these resources are local to the system to which the
first transaction in the conversation was routed, the routing program must be
able to continue to route to this system until the end of the conversation.

� It is important to avoid creating “tangled daisychains”: for any transaction that is
being dynamically routed, you must avoid routing back to a node that has
previously been routed from.

� The dynamic transaction routing program can be RMODE(ANY) but must be
AMODE(31).

Unit of work considerations
Depending on the terminal type, the CICS relay program, the dynamic transaction
routing program, and the routed transaction may constitute a single unit of work.
Any protected resources owned by the dynamic transaction routing program could
therefore be affected by the syncpoint activity of the routed transaction. This
means that these resources may be committed or backed out inadvertently by the
routed transaction. If you want to avoid this, you have to define the routing
program’s resources as unprotected rather than protected.

Parameters passed to the dynamic transaction routing program
Figure 36 on page 479 shows all the parameters passed from DFHAPRT, the
CICS relay program, to the dynamic transaction routing program by means of a
communications area. The communications area is mapped by the copy book
DFHDYPDS, which is supplied, for all the supported programming languages, in the
VSE/ESA sublibrary PRD1.BASE.

478 CICS Transaction Server for VSE/ESA Customization Guide

 parameters passed to DFHDYP

 DS OCL4 Standard Header

 DYRFUNC DS CL1 Function Code

 DYRCOMP DS CL2 Component Code Always 'RT'

 DYRFILL1 DS CL1 Reserved

DYRERROR DS CL1 Route selection error code

DYROPTER DS CL1 Transaction termination option

 DYRQUEUE DS CL1 Queue-the-request indicator

 DYRFILL2 DS CL1 Reserved

 DYRRETC DS F Return code

 DYRSYSID DS CL4 Default/Selected sysid

DYRVER DS H Version of the interface

 DYRFILL3 DS H Reserved

DYRTRAN DS CL8 Default/Selected remote tranid

DYRCOUNT DS F Number of invocations count

DYRBPNTR DS F Address of input buffer

DYRBLGTH DS F Length of input buffer

DYRRTPRI DS CL1 Route priority to AOR?

 DYRFILL4 DS CL1 Reserved

DYRPRTY DS H Dispatch priority passed to AOR

DYRNETNM DS CL8 Netname matching sysid

DYRLPROG DS CL8 Run this program if routed locally

 DYRDTRXN DS CL1 DTRTRAN indicator

 DYRDTRRJ DS CL1 DTRTRAN reject

 DYRSRCTK DS XL4 Reserved

 DYRABNLC DS XL4 Reserved

DYRABCDE DS CL4 Transaction abend code

DYRCABP DS CL1 Continue abend processing?

 DYRFILL5 DS CL1 Reserved

DYRACMAA DS F Address of application's commarea

DYRACMAL DS F Length of application's commarea

DYRUAPTR DS F Address of the user area

 DYRUSER DS CL128 User area

Figure 36. The communication area passed to a dynamic transaction routing program

DYRABCDE
is the abend code returned when a remote or locally routed transaction abends.

DYRACMAA
is the 31-bit address of the routed application’s communications area. If there
is no communications area, this field is set to null.

When your dynamic routing program is invoked for routing (DYRFUNC=0), the
address is that of the input communications area (if any). Likewise, when your
routing program is invoked because of a route-selection error or a remote ATI
request (DYRFUNC=1 and 3, respectively), the address is that of the input
communications area.

When your routing program is invoked because a previously-routed transaction
has terminated normally (DYRFUNC=2), the address is that of the output
communications area (if any). Routed applications can use their output
communications area to pass information to the dynamic routing program—see
“Receiving information from a routed transaction” on page 477.

When your routing program is invoked because the routed transaction has
abended (DYRFUNC=4), the information in the communications area is not
meaningful.

 Chapter 14. Writing a dynamic transaction routing program 479

 parameters passed to DFHDYP

Your routing program can alter the data in the application’s communications
area.

DYRACMAL
is the length of the routed-to application’s communications area. If there is no
communications area, this field is set to zero.

DYRBLGTH
is the length of the copy of the TIOA/LUC buffer.

DYRBPNTR
is the 31-bit address of a copy of the TIOA/LUC buffer.

When your dynamic routing program is invoked for routing, because of a
route-selection error, or for a remote ATI request (DYRFUNC=0, 1, and 3,
respectively), it is given a copy of the input TIOA. Your routing program can
alter the terminal input data passed to the routed transaction—see “Modifying
the initial terminal data” on page 476.

When your routing program is invoked because a previously-routed transaction
has terminated normally (DYRFUNC=2), it is given a copy of the output TIOA.
Your routing program can monitor the output TIOA to detect possible problems
in the AOR—see “Receiving information from a routed transaction” on
page 477.

DYRCABP
indicates whether or not you want CICS to continue standard abend
processing. The possible values are:

Y Continue with CICS abend processing.

N Terminate the transaction, do not continue with CICS abend processing,
and give control to the program specified by DYRLPROG.

This option enables you to pass control to a local program that can handle
the condition in your own way, and issue appropriate messages to terminal
users.

If you enter N, you must ensure that DYRLPROG specifies the name of a
valid program on the local system.

There is no default value.

DYRCOUNT
is a count of the times the dynamic transaction routing program has been
invoked for routing purposes for this transaction with DYRFUNC set to ‘0’, ‘1’,
or ‘3’. This option is provided to allow you to limit the number of retry requests.

DYRDTRRJ
indicates whether the transaction, which is defined by the common transaction
definition specified on the DTRTRAN system initialization parameter, is to be
rejected, or accepted for processing. This parameter is only relevant when
DYRTRXN is set to Y. The possible values are:

Y The transaction is rejected. This is the default.

N The transaction is not rejected.

This indicator is always set to the reject condition when the dynamic transaction
routing program is invoked. To dynamically route a transaction defined by the
DTRTRAN definition, you must change this to the accept condition.

480 CICS Transaction Server for VSE/ESA Customization Guide

 parameters passed to DFHDYP

If you reject the transaction, message DFHAC2001—“Transaction ‘tranid’ is
unrecognized”—is sent to the user’s terminal.

DYRDTRXN
indicates whether the transaction to be routed is defined by the common
transaction definition specified on the DTRTRAN system initialization
parameter, or by a specific transaction definition. The possible values are:

Y The transaction is defined by the definition specified by the system
initialization parameter DTRTRAN. That is, there is no resource
definition for the input transaction identifier (id).

The transaction is initiated in the terminal-owning region using the
transaction id specified by the system initialization parameter,
DTRTRAN. The input transaction id is passed to the dynamic
transaction routing program in the DYRTRAN field.

N The transaction is not defined by the definition specified by the
system initialization parameter, DTRTRAN. There is an installed
resource definition for the input transaction id.

The transaction is initiated in the terminal-owning region using the
input transaction id. The transaction id passed to the dynamic
transaction routing program in the DYRTRAN field is the remote
transaction id from the transaction resource definition (if this is
different from the input transaction id).

For an explanation of the DTRTRAN system initialization parameter, see the
CICS System Definition Guide.

DYRERROR
has a value only when DYRFUNC is set to ‘1’. It indicates the type of error that
occurred during the last attempt to route a transaction. The possible values
are:

0 The selected sysid is unknown.

1 The selected system is not in service.

2 The selected system is in service, but no sessions are available.

3 An allocate request has been rejected, and SYSIDERR returned to
the application program. This error occurs for one of the following
reasons:

1. An XZIQUE global user exit program requested that the allocate
be rejected, or

2. CICS rejected the allocate request automatically because the
QUEUELIMIT value specified on the RDO CONNECTION
resource definition has been reached.

4 A queue of allocate requests has been purged, and SYSIDERR
returned to all the waiting application programs. This error occurs
for one of the following reasons:

1. An XZIQUE global user exit program requested that the queue
be purged, or

2. CICS purged the queue automatically because the MAXQTIME
limit specified on the RDO CONNECTION resource definition
has been reached.

 Chapter 14. Writing a dynamic transaction routing program 481

 parameters passed to DFHDYP

DYRFUNC
tells you the reason for this invocation of the dynamic transaction routing
program. The possible values are:

0 Invoked for transaction routing.
1 Invoked because an error occurred in route selection.
2 Invoked because a previously routed transaction has terminated.
3 Invoked before automatic initiation.
4 Invoked because the routed transaction abended.

DYRLPROG
is the name of the initial program associated with the transaction for which the
dynamic transaction routing program is invoked, if the transaction is defined for
dynamic routing. If the transaction is being statically routed (the RDO
TRANSACTION resource definition specifies DYNAMIC(NO) and a specific
REMOTESYSTEM name), this field contains blanks.

You can use this field to specify the name of an alternative program to be run if
the transaction is routed locally. For example, if all remote CICS regions are
unavailable, and the transaction cannot be routed, you may want to run a
program in the local terminal-owning region to send an appropriate message to
the user.

Note: DYRLPROG must not be set to blanks when you specify DYRCABP=N.
If you specify DYRCABP, ensure you also specify a valid program name on
DYRLPROG.

DYRNETNM
is the netname of the CICS region identified in DYRSYSID.

If the DYRNETNM value is changed by the initial invocation of the dynamic
transaction routing program, CICS tries to route the transaction to the CICS
region with the new netname.

DYROPTER
specifies whether the dynamic transaction routing program is to be reinvoked
when the routed transaction terminates. The possible values are:

N The dynamic transaction routing program is not to be reinvoked. This is
the default.

Y The dynamic transaction routing program is to be reinvoked.

You can specify this option for transactions that are routed to remote CICS
regions and also for transactions that are executed locally.

DYRQUEUE
identifies whether or not the request is to be queued if no sessions are
immediately available to the remote system identified by DYRSYSID. The
possible values are:

Y The request is to be queued if necessary. This is the default.
N The request is not to be queued.

DYRPRTY
can be used to set the dispatch priority of the task in the application-owning
region, if the connection between the terminal-owning region and
application-owning region is MRO.

482 CICS Transaction Server for VSE/ESA Customization Guide

 parameters passed to DFHDYP

CICS sets this value to ‘0’ (zero) before invoking the dynamic transaction
routing program. If the DYRRTPRI value is ‘Y’ on return from the initial
invocation, CICS passes the DYPPRTY value to the application-owning region.

DYRRETC
contains a return code that tells CICS how to proceed. The possible values
are:

0 Continue processing the transaction.
4 Terminate the transaction without message or abend.
8 Terminate the transaction with either a message or an abend.

Whenever the routing program is invoked, DYRRETC is set to ‘0’. If you want
CICS to continue processing the transaction, you must leave it set to ‘0’.

To make CICS terminate the transaction (issuing a message or abend), return
a value of ‘8’.

To make CICS terminate the transaction without issuing a message or abend
(indicating that DFHDYP has done all the processing that is necessary), return
a value of ‘4’.

Warning: Setting a return code of ‘4’ for APPC transaction routing leads to
unpredictable results, and should be avoided.

You do not need to set a return code when the routing program is invoked at
transaction termination. (Any code you set is ignored by CICS.)

DYRRTPRI
indicates whether or not the dispatch priority of the transaction should be
passed to the application-owning region, if the connection between the
terminal-owning region and the application-owning region is MRO. The
possible values are:

N The dispatch priority is not passed. This is the default.
Y The dispatch priority is passed.

DYRSYSID
identifies the SYSID of a CICS region. The exact meaning of this parameter
depends on the value for DYRFUNC:

� When DYRFUNC is set to ‘0’, DYRSYSID contains:

– The remote CICS region name as specified on the REMOTESYSTEM
option of the installed RDO TRANSACTION resource definition, or,

– The system name of the local CICS region if REMOTESYSTEM is not
specified.

The dynamic transaction routing program can accept this value or change it
before returning to CICS.

If the SYSID you return to CICS is the same as the local sysid, CICS runs
the transaction in the local region (the terminal-owning region).

� When DYRFUNC is set to ‘1’, DYRSYSID contains the CICS region name
returned to CICS by the dynamic transaction routing program on its
previous invocation, and the SYSID is found to be in error.

The action your dynamic transaction routing program can take when
DYRFUNC=1 depends on the DYRERROR parameter setting:

 Chapter 14. Writing a dynamic transaction routing program 483

 parameters passed to DFHDYP

– If DYRERROR is set to ‘0’ (unknown sysid) or ‘1’ (CICS region not in
service) and you want CICS to retry transaction routing, you must
change DYRSYSID before returning to CICS.

– If DYRERROR is set to ‘2’ (no session available) and you want CICS to
retry transaction, you must change DYRSYSID or change the value of
DYRQUEUE to ‘Y’ (queue the request until a session is available).

� When DYRFUNC is set to ‘2’, DYRSYSID contains the name of the CICS
region on which the completed transaction executed.

� When DYRFUNC is set to ‘3’, DYRSYSID contains the CICS region name
specified on the REMOTESYSTEM option of the installed transaction
definition, with DYNAMIC(NO) also specified. Any changes to this value, or
to DYRNETNAME, are ignored.

� When DYRFUNC is set to ‘4’, DYRSYSID contains the name of the CICS
region on which the transaction abended.

DYRTRAN
contains the remote transaction id.

When DYRFUNC is set to ‘0’ or ‘3’, DYRTRAN contains the remote transaction
id specified on the REMOTENAME option of the installed RDO TRANSACTION
resource definition. Your dynamic transaction routing program can accept this
remote transaction id, or supply a different transaction name for forwarding to
the remote CICS region. If the supplied name is longer than four characters, it
is truncated by CICS.

You can change DYRTRAN on any call to the dynamic transaction routing
program, though it is effective only when DYRFUNC is set to ‘0’, ‘1’, or ‘3’.

DYRUAPTR
is the 31-bit address of the user area (DYRUSER).

DYRUSER
is a 128-byte user area.

CICS initializes this user area to zeroes before invoking the dynamic
transaction routing program for a given task. This user area can be modified
by the dynamic transaction routing program, returned to the CICS relay
program, DFHAPRT, and is passed to subsequent invocations of the dynamic
transaction routing program for a given transaction instance.

DYRVER
is the version number of the dynamic transaction routing program interface.
The default is “2”.

484 CICS Transaction Server for VSE/ESA Customization Guide

 testing your dynamic routing program

Naming your dynamic routing program
The supplied, user-replaceable dynamic routing program is named DFHDYP. If you
write your own version, you can name it differently.

After the system has been loaded, to find the name of the dynamic routing program
currently identified to CICS, use the EXEC CICS INQUIRE SYSTEM command.
Field DTRPROGRAM contains the name of the current program.

The default is DFHDYP.

To change the current program:

� Use the DTRPGM system initialization parameter. For more guidance
information about how to do this, refer to the CICS System Definition Guide.

� Make the change online using the EXEC CICS SET SYSTEM DTRPROGRAM
command. For programming information about this command, refer to the
CICS System Programming Reference manual.

Note: A sample definition is provided for DFHDYP, but you must install a new
resource definition for a customized dynamic routing program.

Testing your dynamic routing program
You can use the CICS execution diagnostic facility (EDF) to test your dynamic
transaction routing program. To do so, you must name your program something
other than DFHDYP, because you cannot use EDF for programs that begin with
“DFH”. For details of how to use EDF, see the CICS Application Programming
Guide.

You can use EDF in either single- or dual-terminal mode. If you choose
single-terminal mode, EDF displays screens for both the dynamic transaction
routing program and the application program that is invoked by the routed
transaction. The screens relate to:

� The initial invocation of the dynamic transaction routing program for transaction
routing (DYRFUNC=0 or DYRFUNC=3)

� The invocation of the dynamic transaction routing program if an error occurs in
route selection (DYRFUNC=1)

� The invocation of the application program

� The termination of the task

� The invocation of the dynamic transaction routing program at termination of the
routed transaction (DYRFUNC=2), if you have specified DYROPTER=Y

� The invocation of the dynamic transaction routing program if the routed
transaction abends (DYRFUNC=4)

If you want EDF to display the execution of your dynamic routing program only,
either choose dual-terminal mode, or use one of the other methods described in the
CICS Application Programming Guide.

 Chapter 14. Writing a dynamic transaction routing program 485

 sample transaction routing programs

Dynamic transaction routing sample programs
The CICS-supplied sample dynamic transaction routing program is an
assembler-language command-level program, named DFHDYP. The corresponding
sample copy book that defines the communication area is DFHDYPDS. In addition,
there are COBOL, PL/I, and C source-level samples and copy books. The names
of the supplied programs and copy books are summarized in Table 118. All the
supplied programs and copy books are in the VSE/ESA sublibrary PRD1.BASE.

You can write your own dynamic routing program in COBOL, PL/I, C, or assembler
language, and you can change the name of the program.

When invoked with DYRFUNC set to ‘0’ or ‘3’, the sample programs accept the
sysid and remote transaction name that are passed in fields DYRSYSID and
DYRTRAN of the communication area, and set DYRRETC to ‘0’ before returning to
CICS. When invoked with DYRFUNC set to ‘1’ or ‘4’, they set a return code of ‘8’.

If you want to route transactions dynamically, you must customize DFHDYP, or
replace it completely with your own routing program.

Table 118. Dynamic transaction routing programs and copy books

Language PRD1.BASE member name

Programs:

Assembler
COBOL
PL/I
C

DFHDYP.A
DFHDYP.C
DFHDYP.P
DFHDYP.H

Copy books:

Assembler
COBOL
PL/I
C

DFHDYPDS.A
DFHDYPDS.C
DFHDYPDS.P
DFHDYPDS.H

486 CICS Transaction Server for VSE/ESA Customization Guide

 user-replaceable journaling programs

Chapter 15. The user-replaceable journaling programs

Considerations common to all user-replaceable programs

Note that the comments contained in Chapter 5, “General notes about
user-replaceable programs” on page 347 apply to this chapter.

CICS Transaction Server for VSE/ESA Release 1 provides automatic journal
archiving, as described in Chapter 17, “CICS journaling” on page 513. However,
you can still use the two user-replaceable programs, DFHXJCO and DFHXJCC, in
CICS Transaction Server for VSE/ESA Release 1 to use your own archiving
procedures.

The user-replaceable programs, DFHXJCO and DFHXJCC
There are two user-replaceable journaling programs. These are DFHXJCO and
DFHXJCC.

DFHXJCO is invoked just before CICS executes an open-for-output request for a
non-DMF disk journal.

DFHXJCC is invoked after CICS has executed a request to close an
open-for-output, non-DMF disk journal. DFHXJCC is invoked whether the CLOSE
request is successful or not.

The supplied versions of DFHXJCO and DFHXJCC simply return to their callers.
You can write your own programs to replace the CICS-supplied versions if you
want to do any additional processing at journal open or close time. Note, if you do
write your own programs, that they must be coded in assembler language.

Some possible uses are:

� Control procedures to ensure that journal data sets have been archived before
they are made available for reuse.

� Automatic submission of journal archiving jobs through POWER, rather than
using manual procedures. This can be valuable in an XRF environment, where
the need to minimize operator involvement in the recovery procedure may be
an important factor.

The communication area
The type of OPEN or CLOSE is passed to the user-replaceable programs, along
with additional information, in a communication area. The communication area
contains all the information you may need to do any extra processing in the
user-replaceable programs. It is listed in Figure 37 on page 488.

 Copyright IBM Corp. 1977, 1999 487

 user-replaceable journaling programs

DFHXJCOM DSECT

XJCOMBA EQU \ Commarea begin address

COMINVDS DS ðCL4 Invocation Descriptor

COMLOCDS DS CL1 Local Invocation Descriptor

COMEOFO EQU C'1' Reserved

COMEOFC EQU C'2' Reserved

COMFOPN EQU C'3' First open

COMMSCL EQU C'4' Midstream close

COMMSOP EQU C'5' Reserved

COMSDCL EQU C'6' Shutdown close

COMGLBDS DS CL2 Global Invocation Descriptor 'JC'

 DS CL1 Reserved

COMJRNUM DS XL2 Hexadecimal Journal Number

COMJRNDS DS CL1 Journal Data Set Id (A or B)

 DS CL1 Reserved

COMJNDCB DS A DTF Address

COMJNDDN DS CL8 Journal DLBL name

XJCOMEA EQU \ Commarea end address

XJCOMLEN EQU XJCOMEA-XJCOMBA Commarea length

Figure 37. DFHXJCOM communication area

The settings of field COMLOCDS have the following meanings:

COMFOPN Set when the journal is first opened at normal CICS start up.

COMSDCL Set when the journal is closed at CICS shutdown.

COMMSCL Set when the journal is closed at times other than shutdown and
emergency restart.

You should address the communication area as follows:

EXEC CICS ADDRESS COMMAREA (XJCOMPTR)

 USING DFHXJCOM,XJCOMPTR

Limitations on the use of DFHXJCO and DFHXJCC
Because DFHXJCO and DFHXJCC may be invoked during CICS initialization,
before support for other languages is available, they must be coded in assembler
language.

You can only use a certain set of CICS commands in programs DFHXJCO and
DFHXJCC, for the following reasons:

� You must not invoke journal control and many of its requesters recursively.
� The user-replaceable programs may be invoked during initialization before

some of the CICS services are initialized.

You are strongly advised not to use any CICS commands that are not in the list
below; if you do, the results are unpredictable. Permitted commands are:

� EXEC CICS HANDLE CONDITION and IGNORE CONDITION
� EXEC CICS PUSH HANDLE and POP HANDLE
� EXEC CICS ABEND and HANDLE ABEND
� EXEC CICS ADDRESS and ASSIGN
� EXEC CICS GETMAIN and FREEMAIN
� EXEC CICS RETURN
� EXEC CICS WAIT EVENT
� EXEC CICS INQUIRE JOURNALNUM and INQUIRE SYSTEM

488 CICS Transaction Server for VSE/ESA Customization Guide

 user-replaceable journaling programs

If you want to modify the programs so that they can do extra processing, you must
take into account the circumstances under which these user-replaceable programs
are called. Both may be called during initialization if CICS has determined that the
journals were not closed during the previous run of CICS. Under these
circumstances, CICS may issue an end-of-file OPEN and CLOSE prior to the first
journal OPEN.

The sample programs and copy book
The source-code of the default journaling programs, DFHXJCO and DFHXJCC, is
provided, in assembler language only, in the VSE/ESA sublibrary PRD1.BASE,
together with a copy book, DFHXJCOM, which maps the communication area.

 Chapter 15. The user-replaceable journaling programs 489

 user-replaceable journaling programs

490 CICS Transaction Server for VSE/ESA Customization Guide

 the XRF overseer program

Part 4. Customizing the XRF overseer program

Table 119. XRF overseer road map

If you want to... Refer to...

Write a program to control XRF Chapter 16, “The extended recovery
facility overseer program” on page 493

 Copyright IBM Corp. 1977, 1999 491

 the XRF overseer program

492 CICS Transaction Server for VSE/ESA Customization Guide

 the XRF overseer program

Chapter 16. The extended recovery facility overseer program

The information in this chapter is of interest only to users of the extended recovery
facility (XRF). Details of XRF are provided in the CICS XRF Guide, and guidance
information about running the overseer, including a sample job stream, is provided
in the CICS Operations and Utilities Guide.

The XRF overseer program has two major functions:

� To display the current status of active and alternate CICS regions
� To restart failed CICS regions in place without operator intervention

There is a CICS-supplied sample overseer program which performs these two
functions and which you may find adequate for your installation.

The chapter is divided into the following sections:

1. “The sample XRF overseer program” contains:

� “Functions of the sample program”
� “How the sample overseer program interfaces with CICS” on page 498
� “How to tell the sample overseer which actives and alternates to monitor”

on page 498

2. “The DFHWOSM macros” on page 499 describes the macros that you use to
provide services to the overseer program.

3. “Customizing the sample overseer program” on page 508 describes how
you can extend the functions of the sample program.

The sample XRF overseer program
The CICS-supplied sample overseer is an assembler-language batch program that
runs in its own partition. The source of the sample program, DFH$AXRO, and its
associated DSECTs are supplied in the VSE/ESA sublibrary PRD1.BASE. An
assembled version of the sample program is also supplied in PRD1.BASE, as are
the DFHWOSM macros that you use to provide CICS services to the overseer.

Functions of the sample program
The program acts on six commands that the console operator can enter. (Minimum
abbreviations are shown like this: D.) These commands are as follows:

Display
Display the current status of all active-alternate pairs being monitored by the
overseer program.

Restart
Enable or disable the restart-in-place function of the overseer program.

Snap
Take a snap dump of the sample program.

End
Terminate the sample program.

 Copyright IBM Corp. 1977, 1999 493

 the XRF overseer program

Open
Ask the overseer to try to open CICS availability manager (CAVM) data sets
that it has previously failed to open.

? help
Ask the overseer to display a list of available overseer commands along with
descriptions, on the system console.

The Display and Restart commands control the two major functions of the sample
overseer program. These are described in the following sections. The Open
command is described in “Opening CAVM data sets dynamically” on page 497.

The Display function
When the operator enters the Display command at the VSE console, the sample
overseer program issues a multiline write-to-operator command (MLWTO) showing
the last known state of each of the active-alternate pairs that it is monitoring. The
overseer retrieves this information from the control and message data sets, in
which the CICS availability manager (CAVM) has been recording state and
surveillance information. The display includes a title line and one line of status
information for each active-alternate pair. The title line is as follows:

GEN-APP ACT-JOB ACT-APP APWR A-ST BKP-JOB BKP-APP BPWR B-ST TKV

Each line of status information provides the status values listed in Table 120.

Two additional items might appear on the status display:

NO ACTIVE DATA

NO BACKUP DATA .

These are displayed instead of status data when no data was extracted from the
CAVM data sets. This happens when newly-created data sets are used—CICS has
not yet written any data to them—or when the overseer fails to open the data sets.

An example of the status display is shown, for guidance purposes, in the CICS
Operations and Utilities Guide.

Table 120 (Page 1 of 2). Explanation of the overseer status values

Value Description

GEN-APP The generic applid of the active-alternate pair.

ACT-JOB The CICS jobname of the active.

BKP-JOB The CICS jobname of the alternate.

ACT-APP The specific applid of the active.

BKP-APP The specific applid of the alternate.

APWR The VSE/POWER SYSID of the CPU on which the active was last
known to be executing.

BPWR The VSE/POWER SYSID of the CPU on which the alternate was last
known to be executing.

494 CICS Transaction Server for VSE/ESA Customization Guide

 the XRF overseer program

Table 120 (Page 2 of 2). Explanation of the overseer status values

Value Description

A-ST The last known status of the active. The status can be:

ACT Active signed on normally and running the active CICS
workload.

BACK Alternate signed on and running normally.
INCA Incipient active, meaning that an alternate CICS is taking

over from an active CICS. The active job has signed off
abnormally, and the incipient active is waiting for the active
job to terminate.

SOFA Signed off abnormally.
SOFN Signed off normally.
TKIP Takeover in progress. An alternate CICS is attempting a

takeover of this active system. When the takeover is
complete, the status is changed.

TKOV Taking over (alternate only).
UNKN Unknown—the overseer has no current information about

the status, which was in an intermediate state when the
Display command was processed. Reissuing the Display
command causes UNKN to be replaced by another status
value.

B-ST The last known status of the alternate. The status can be:

ACT Active signed on normally and running the active CICS
workload.

BACK Alternate signed on and running normally.
INCA Incipient active, meaning that an alternate CICS is taking

over from an active CICS. The active job has signed off
abnormally, and the incipient active is waiting for the active
job to terminate.

OLD The information displayed for the alternate refers to
out-of-date information about the system that was the
alternate until a recent takeover. That system is the
current active, and the information displayed for the
alternate is marked as OLD until a new alternate is signed
on and running normally.

SOFA Signed off abnormally.
SOFN Signed off normally.
TKOV Taking over (alternate only).
UNKN Unknown—the overseer has no current information about

the status, which was in an intermediate state when the
Display command was processed. Reissuing the Display
command causes UNKN to be replaced by another status
value.

TKV The XRF takeover option for the alternate CICS system. This can be
AUT, COM, or MAN.

Note: An ‘X’ following any of these status values indicates that the associated job is
currently executing. However, because VSE/POWER services are used to discover the
execution state of a job, only those jobs that are running on the same VSE/POWER
system as the overseer program, show the correct execution state. Any job that is not
on the same VSE/POWER shared spool appears not to be executing.

 Chapter 16. The extended recovery facility overseer program 495

 the XRF overseer program

 Restart-in-place
The overseer program can restart failed CICS regions in place automatically, if they
are in the same VSE/ESA operating system image as the overseer. The
alternatives to automatic restart are operator-initiated restart, automatic takeover to
the alternate, and operator-initiated takeover.

Automatic restart in place of failed regions is most useful in a multi-VSE/ESA,
multiregion, XRF configuration. Because related regions must operate in the same
VSE/ESA operating system image, a takeover of one region means that all related
regions must also be taken over by their alternates. A region may not be important
enough for you to want every failure to cause a takeover to the alternate VSE/ESA
operating system image. This could disrupt users who would not otherwise have
been affected by the failure. Automatic restart in place of the failed region is
therefore likely to be preferred to takeover in these circumstances.

If your system consists of one or more independent regions, with actives and
alternates located in separate VSE/ESA operating system images, you can:

� Allow the overseer to restart an active region in place automatically when it
fails.

� Choose automatic takeover by the alternate.

� Leave the operator to decide what to do. The operator could decide to restart
the failing region in place or to initiate a takeover by the alternate, and this
decision is likely to depend on which part of your system has failed.

If you are operating an MRO system in a single VSE/ESA operating system image,
the failure of an active region can be handled by a takeover by the alternate,
without causing all the related regions to be taken over, because the new active
region can continue communication with the other active regions. Takeover is
therefore likely to be your preferred course of action.

Enabling and disabling restart in place: You can enable and disable the
restart-in-place function of the overseer program using the Restart command.
When you enter this command, restart processing is enabled or disabled for all
generic applids that the overseer is monitoring. You can also specify that particular
active-alternate pairs are not to be automatically restarted in place, regardless of
whether restart processing is enabled or disabled. This is described in “How to tell
the sample overseer which actives and alternates to monitor” on page 498.

The Restart command works like an ON/OFF switch. Restart in place is enabled
when the sample program is initialized. When the Restart command is first
entered, restart in place is disabled. If you issue the command again, restart will
be enabled again, and so on. If a region fails while restart in place is disabled, no
attempt to restart it will be made, even if restart in place is enabled again.

Rules that control restart in place: The sample overseer program concludes
that a region has failed if both:

� The region is not executing now, and was known to have been executing
during the previous examination of the relevant CAVM data sets by the
overseer.

� The region did not sign off normally from the CICS availability manager
(CAVM).

496 CICS Transaction Server for VSE/ESA Customization Guide

 the XRF overseer program

The overseer program can restart a failed active region in place, if all the following
conditions are met:

� Restart in place is enabled for this overseer.

� Restart in place is enabled for this active-alternate pair.

� There is no executing alternate region for this active, or the alternate region is
currently defined with the TAKEOVER=COMMAND system initialization
parameter. If the alternate region is defined with TAKEOVER=AUTO or
TAKEOVER=MANUAL, the overseer assumes that the alternate will initiate a
takeover or that the console operator will decide what action to take.

� The failing region was running in the same VSE/ESA operating system image
as the overseer.

� An attempt to restart the region in place is not already in progress.

� If the failing region belongs to a group of related regions (an MRO environment,
for example), a takeover to another VSE/ESA operating system image, perhaps
initiated by another region, is not under way.

When a failed active region is restarted in place, whether by the operator or by the
overseer, the corresponding alternate region cannot continue to support the new
active region, and must be restarted. The overseer program restarts the alternate
region automatically in these circumstances, provided that restart processing is
enabled for both the failing region and the overseer.

If you want to be able to restart regions in place on both VSE/ESA operating
system images in a multi-VSE/ESA environment, an overseer program must
execute on each VSE/ESA operating system image. For more guidance
information about how the sample overseer program restarts failed regions in place,
see the CICS Operations and Utilities Guide.

Opening CAVM data sets dynamically
When the overseer program is initialized, it is possible that some CAVM data sets
have not yet been formatted by a CICS system. The overseer program obtains an
‘open error’ return code on these data sets, and subsequent attempts to display
details about the associated CICS systems receive the response ‘NO ACTIVE
DATA AVAILABLE’.

This problem arises only if the overseer is initialized before all the CAVM data sets
have been formatted. If it occurs, the operator can use the Open command to retry
the opening of those CAVM data sets for which the Open previously failed. The
overseer retries an Open only if the previous attempt failed with the return code
X'C'. (See “DFHWOSM FUNC=OPEN macro” on page 502.)

The use of the Open command is indicated when:

� The overseer displays ‘NO ACTIVE DATA AVAILABLE’ for a system that the
operator knows has successfully signed on to the CAVM.

� In an already established XRF environment, a new XRF system has just started
up and formatted its CAVM data sets, and the operator wants future displays
from the overseer to display information for the new job.

 Chapter 16. The extended recovery facility overseer program 497

 the XRF overseer program

How the sample overseer program interfaces with CICS
The overseer service consists of two CICS modules (DFHWOSA and DFHWOSB)
which you cannot customize, and a sample overseer program (DFH$AXRO), which
you can customize or replace with your own overseer program. DFHWOSA loads
the overseer program. DFHWOSA and DFHWOSB are supplied in the VSE/ESA
sublibrary PRD1.BASE.

The CICS overseer module DFHWOSB provides a stable interface to the CAVM
datasets and to certain VSE/ESA and VSE/POWER services that the overseer
program requires. The overseer program invokes those services using a
CICS-supplied group of macros called the DFHWOSM macros. (These are
described in “The DFHWOSM macros” on page 499.)

In summary, DFHWOSA invokes the sample program, and DFHWOSB is
subsequently invoked by the sample program whenever the sample issues a
DFHWOSM macro. The DFHWOSM macros do not interact directly with either the
active or the alternate CICS partitions.

How to tell the sample overseer which actives and alternates to
monitor

As written, the sample overseer program can handle 20 active-alternate pairs and
20 “related system names”. (A related system name identifies those regions or
systems that cannot be considered in isolation by the overseer. The most common
example of this is an MRO environment, where the overseer needs to be able to
identify related regions when deciding whether to restart a failed region in place.
Those regions or systems that are identified with a common related system name
must execute on the same VSE/ESA operating system image.)

You can increase or decrease the numbers of active-alternate pairs and related
system names that the overseer can handle, by changing the values of the
variables GENSIZE (active-alternate pairs) and RLTSIZE (related system names) in
DFH$AXRO.

The sample program discovers which active-alternate pairs it is monitoring from a
VSAM key-sequenced data set called DFHOSD, which contains a single entry for
each active-alternate pair. You create this data set and initialize it with information
about active-alternate pairs before you use the overseer for the first time. You also
have to redefine the DFHOSD data set whenever you want to change the
information that it holds.

The sample overseer program reads the DFHOSD records in key sequence and
builds a table of entries. Each active-alternate pair is known by its generic applid
on this data set. Every entry on the data set contains the following information:

� A 12-byte key field, containing the 4-byte value ‘GNbb’ followed by the 8-byte
generic applid of the active-alternate pair.

� The filenames of the control data set and the message data set associated with
this generic applid. Each of these is an 8-byte value.

� An optional 8-byte RELATEID, to identify related systems.

� A restart-in-place indicator to show whether a region can be restarted in place.
The only value that will prevent an attempt to restart in place is ‘N’.

498 CICS Transaction Server for VSE/ESA Customization Guide

 DFHWOSM macros

The data structure of the DFHOSD data set entries is provided in member
DFH$XRDS of the VSE/ESA sublibrary PRD1.BASE.

For a sample of the console listing from an overseer job, see the CICS Operations
and Utilities Guide.

The DFHWOSM macros
The DFHWOSM macros invoke the CICS module DFHWOS to provide services to
the overseer program. The macros are the supported interface to the CAVM data
sets. They are supplied in the VSE/ESA sublibrary PRD1.BASE. The following list
tells you what the macros do, and where to find a full description of them:

“DFHWOSM FUNC=BUILD macro” on page 500
Open communication with DFHWOSB.

“DFHWOSM FUNC=CLOSE macro” on page 500
Terminate access to the CAVM data sets for a named generic applid.

“DFHWOSM FUNC=DSECT macro” on page 501
Generate required DSECTs.

“DFHWOSM FUNC=JJC macro” on page 501
Issue a VSE/POWER cancel for a named job.

“DFHWOSM FUNC={JJS|QJJS} macro” on page 502
Discover current VSE/POWER JOB status.

“DFHWOSM FUNC=OPEN macro” on page 502
Initialize access to the CAVM data sets for a named generic applid.

“DFHWOSM FUNC=OSCMD macro” on page 503
Issue operating system VSE/POWER commands.

“DFHWOSM FUNC=READ macro” on page 504
Retrieve status information for a named generic applid from the CAVM
data sets.

“DFHWOSM FUNC=TERM macro” on page 506
Close communication with DFHWOSB.

“DFHWOSM FUNC=WAIT macro” on page 507
Communicate with the system operator and wait for an overseer
command.

The macros are described in detail in the following sections. For all the
DFHWOSM macros, the following rules apply:

� The “label” field is optional.

� If the macro has an input parameter list, the address of that parameter list must
be supplied as the value of the PARM operand. The address itself may be
specified as a register number or as a label. Register 1 is the default value.

� If the macro has to supply either a BUILD TOKEN or an OPEN TOKEN to
DFHWOSA (as described in “The DFHWOSM tokens” on page 500), the token
must be provided in the register specified in the TOKEN operand. Register 14
is the default value.

 Chapter 16. The extended recovery facility overseer program 499

 DFHWOSM FUNC=CLOSE

The DFHWOSM tokens
When DFHWOSA first invokes the overseer program, it passes a value in register 1
which is known as the ENTRY token. The ENTRY token value is stored by the
overseer program on entry and is passed back to DFHWOSB as input to the BUILD
macro.

The DFHWOSM FUNC=BUILD macro must be the first macro issued by the
overseer program and must complete successfully. The register 1 output from this
macro is a second token called the BUILD token. The BUILD token value is stored
by the overseer program and passed back to DFHWOSB as input to the OPEN,
CLOSE, READ, QJJS, JJS, JJC, OSCMD, WAIT and TERM macros.

DFHWOSM FUNC=BUILD macro
The DFHWOSM FUNC=BUILD macro must be issued by the overseer program to
initialize its communication with DFHWOS. No other macro can be issued by the
overseer program until DFHWOS FUNC=BUILD has completed successfully.

label DFHWOSM FUNC=BUILD

 [,TOKEN={token register|14}]

 Input
The TOKEN value is the ENTRY token that was passed to the sample overseer
program when it was first invoked by DFHWOSA.

 Output
Register 1 Contains the BUILD token value, which must be returned as an

input value by the overseer program on certain subsequent
requests. This value will be returned to register 1 only if register 15
has a return code of 0.

Register 15 Contains one of the following return codes:

0 Communication successfully initialized between the
overseer program and DFHWOSA.

4 Incorrect TOKEN value supplied.

8 Insufficient storage.

DFHWOSM FUNC=CLOSE macro
The DFHWOSM FUNC=CLOSE macro terminates access to the CAVM data sets
for a named generic applid.

label DFHWOSM FUNC=CLOSE

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

500 CICS Transaction Server for VSE/ESA Customization Guide

 DFHWOSM FUNC=JJC

 Input
The PARM value is a pointer to the address of the generic applid whose associated
CAVM data sets are no longer to be accessed by the overseer program.

The TOKEN value is the BUILD token.

 Output
Register 15 Contains one of the following return codes:

0 CLOSE request was successful and the CAVM data sets
associated with this generic applid can no longer be
accessed by the overseer program.

4 Close request failed.

8 Access to CAVM data sets for the named generic applid
had not been initialized.

DFHWOSM FUNC=DSECT macro
The DFHWOSM FUNC=DSECT macro generates a number of DSECTs, including
the DSECT of the DBLID definitions.

label DFHWOSM FUNC=DSECT

DFHWOSM FUNC=JJC macro
The DFHWOSM FUNC=JJC macro issues a VSE/POWER cancel for a named job
with a POWER job number.

label DFHWOSM FUNC=JJC

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
The PARM value is a pointer to the addresses of the following:

An 8-byte VSE/POWER job name
An 8-byte VSE/POWER job number

The TOKEN value is the BUILD token.

 Output
Register 15 Contains the following return codes:

0 VSE/POWER cancel completed. Check VSE/POWER
data in XPCCB user area.

Nonzero Return code from XPCC/POWER request.

Register 1 Contains the XPCCB control block address.

Register 0

 Chapter 16. The extended recovery facility overseer program 501

 DFHWOSM FUNC=OPEN

0 If register 15 = 0, XPCC request has completed
successfully. If register 15 is nonzero, XPCC has failed.

1 Timeout occurred.

2 Cancel failed.

DFHWOSM FUNC={JJS|QJJS} macro
Given a VSE/POWER JOBNAME and POWER job number, both versions of this
macro return the current VSE/POWER job status into the POWER USER DATA
PORTION of the XPCCB control block (PXPUSER in IJBXPCCB).

The FUNC=JJS macro returns control when the POWER call has completed
successfully or unsuccessfully. The FUNC=QJJS macro returns control
immediately and posts an event control block (ECB) once the POWER request has
completed.

label DFHWOSM FUNC={JJS|QJJS}

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
The PARM value is a pointer to the addresses of the following:

An 8-byte POWER job name
An 8-byte POWER job number

The TOKEN value is the BUILD token.

 Output
Register 15 Contains the following return codes:

0 POWER status request complete. Check POWER data
in XPCCB user area.

Nonzero Return code from XPCC/POWER request.

Register 1 Contains the XPCCB control block address.

Register 0 For FUNC=QJJS, the address of the spooler ECB is returned.

For FUNC=JJS, the following return codes are returned.

0 If register 15 = 0 then XPCC request has completed
successfully. If register 15 is nonzero then XPCC has
failed.

1 Timeout occurred.

DFHWOSM FUNC=OPEN macro
The DFHWOSM FUNC=OPEN macro initializes access to the CAVM data sets for
a named generic applid.

502 CICS Transaction Server for VSE/ESA Customization Guide

 DFHWOSM FUNC=OSCMD

label DFHWOSM FUNC=OPEN

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
The PARM value is a pointer to three addresses, and these are:

1. The address of the generic applid
2. The address of the filename of the control data set
3. The address of the filename of the message data set

The TOKEN value is the BUILD token.

 Output
Register 15 Contains one of the following return codes:

0 Access initialized, active and alternate signed on.

1 Access initialized, active signed on.

2 Access initialized, alternate signed on.

3 Access initialized, nothing signed on.

4 Same POWER SYSID; IPL time of active earlier than
VSE/ESA IPL time.

5 Same POWER SYSID; IPL time of alternate earlier than
VSE/ESA IPL time.

6 Insufficient storage.

7 Generic applid is not associated with the named CAVM
data sets.

8 Access already initialized for this generic applid or for
this file name.

C Data set open failure.

10 SHOWCB failure.

A register 15 return code value of 0–5 indicates that a DFHWOSM FUNC=READ
macro can now be issued. A return code value of 6 or above indicates that the
OPEN has failed and that the overseer program will not be able to access the
CAVM data sets. A return code value of C indicates that the OPEN has failed but
can be retried by the operator entering the ‘O’ (Open) command.

DFHWOSM FUNC=OSCMD macro
The DFHWOSM FUNC=OSCMD macro is used to issue VSE/POWER commands.
(The overseer program performs restart in place of a failed region by issuing an
OSCMD macro.) The text of the required command is provided as input to the
macro, and the OSCMD service issues an XPCC SENDR specifying this command
text. In addition, the OSCMD service issues a VSE/ESA WTO request so that a
copy of the command text appears on the VSE console to keep the operator
informed of what is about to happen. This copy has the comment ‘(BY IOP)’
appended to show that the command is going to be issued by an overseer

 Chapter 16. The extended recovery facility overseer program 503

 DFHWOSM FUNC=READ

program. A second copy of the command text is sent to the console when the
VSE/ESA command is issued. The run-time sample provided in the CICS
Operations and Utilities Guide for guidance purposes includes an example of this.

label DFHWOSM FUNC=OSCMD

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
The PARM value is a single address that points to a command area. The
command area is made up of a 4-byte length field followed by the command data.
The length field contains the length of the whole command area. The command
data must be in WTO command format.

The TOKEN value is the BUILD token.

 Output
Register 0 Power spooler ECB address. Request does not complete until ECB

is posted.

Register 1 XPCCB address.

Register 15 Return code from XPCC SEND request. A return code of greater
than zero indicates that the XPCC request has failed.

DFHWOSM FUNC=READ macro
The DFHWOSM FUNC=READ macro returns information about a named generic
applid from its associated CAVM data sets.

label DFHWOSM FUNC=READ

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
Figure 38 on page 505 illustrates the input to and output from the READ macro.
The PARM value is a pointer to a parameter list that contains the addresses of the
generic applid and the dbllist. The dbllist is a list of one or more doublewords.

In the first two bytes of the second word of each of these doublewords you supply
the DBLID of the information you require. Each piece of information that you can
request is identified by a DBLID, and a list of these is provided in Figure 39 on
page 506.

The first word of each doubleword is an output area to contain the address of the
requested information, and the last two bytes of the second word of each
doubleword will contain the length of the information. The end of the dbllist is
signalled by setting the high order bit of the last doubleword to one.

The TOKEN value is the BUILD token.

504 CICS Transaction Server for VSE/ESA Customization Guide

 DFHWOSM FUNC=TERM

Parameter list pointer

Generic Applid
Address Generic Applid

DBLLIST Address

OUTPUT INPUT OUTPUT

Item 1 address DBLID 1 Item 1 length

Item 2 address DBLID 2 Item 2 length

. . .

. . .

Item n address DBLID n Item n length

Figure 38. Input to and output from the DFHWOSM FUNC=READ macro

Note: The data structures of the status information pointed to by items X'0024'
and X'0124' are provided in DSECT DFHXRHDS of the PRD1.BASE.

 Output
Register 15 Contains one of the following return codes:

0 Read successful, active and alternate signed on.

1 Read successful, active signed on.

2 Read successful, alternate signed on.

3 Read successful, nothing signed on.

4 Same POWER SYSID; IPL time of active earlier than
VSE/ESA IPL time.

5 Same POWER SYSID; IPL time of alternate earlier than
VSE/ESA IPL time.

8 CAVM data set access not initialized.

10C DBLID not known.

1xx Read subtask problem.

If a return code of 0–5 is returned to register 15, each doubleword of the DBLLIST
contains the address (4 bytes) and the length (2 bytes) of the output from this read.
A return code of 8, 10C or 1xx indicates a READ failure.

 Chapter 16. The extended recovery facility overseer program 505

 DFHWOSM FUNC=TERM

DBLIDs for the active:

DBLID1 EQU X'ððð1' JOBNAME

DBLID2 EQU X'ððð2' POWER JOBID

DBLID3 EQU X'ððð3' JOB SUBMISSION TIME (STIME)

DBLID4 EQU X'ððð4' JOB STEP TASK ATTACH TIME (ATIME)

DBLID5 EQU X'ððð5' CANCEL NAME

DBLID6 EQU X'ððð6' POWER SSNAME

DBLID7 EQU X'ððð7' VSE/POWER SYSID

DBLID8 EQU X'ððð8' VSE/ESA IPL TIME

DBLID9 EQU X'ððð9' SPECIFIC APPL NAME

DBLID1ð EQU X'ðððA' ADDRESS SPACE IDENTIFIER (ASID)

DBLID11 EQU X'ðððB' TO X'ðð1F' SPARE FOR STATE CTL ITEMS

DBLID32 EQU X'ðð2ð' HEARTBEAT INTERVAL

DBLID33 EQU X'ðð21' HEARTBEAT COUNTER

DBLID34 EQU X'ðð22' MSG FILE CURSOR

DBLID35 EQU X'ðð23' STATUS VALUE (STATE)

DBLID36 EQU X'ðð24' INQUIRE HEALTHDATA

DBLID37 EQU X'ðð25' SPARE

DBLID38 EQU X'ðð26' SPARE

DBLIDs for the alternate:

DBLID257 EQU X'ð1ð1' JOBNAME

DBLID258 EQU X'ð1ð2' POWER JOBID

DBLID259 EQU X'ð1ð3' JOB SUBMISSION TIME (STIME)

DBLID26ð EQU X'ð1ð4' JOB STEP TASK ATTACH TIME (ATIME)

DBLID261 EQU X'ð1ð5' CANCEL NAME

DBLID262 EQU X'ð1ð6' POWER SSNAME

DBLID263 EQU X'ð1ð7' POWER SYSID

DBLID264 EQU X'ð1ð8' VSE/ESA IPL TIME

DBLID265 EQU X'ð1ð9' SPECIFIC APPL NAME

DBLID266 EQU X'ð1ðA' ADDRESS SPACE IDENTIFIER (ASID)

DBLID267 EQU X'ð1ðB' TO X'ð11F' SPARE FOR STATE CTL ITEMS

DBLID288 EQU X'ð12ð' HEARTBEAT INTERVAL

DBLID289 EQU X'ð121' HEARTBEAT COUNTER

DBLID29ð EQU X'ð122' MSG FILE CURSOR

DBLID291 EQU X'ð123' STATUS VALUE (STATE)

DBLID292 EQU X'ð124' INQUIRE HEALTHDATA

DBLID293 EQU X'ð125' SPARE

DBLID294 EQU X'ð126' SPARE

Figure 39. DBLIDs for the DFHWOSM FUNC=READ macro

DFHWOSM FUNC=TERM macro
The DFHWOSM FUNC=TERM macro terminates communication between the
overseer program and DFHWOSB, and releases any VSE/ESA system or POWER
connections. It must be issued before the overseer program completes to ensure
an orderly termination.

label DFHWOSM FUNC=TERM

 [,TOKEN={token register|14}]

506 CICS Transaction Server for VSE/ESA Customization Guide

 DFHWOSM FUNC=WAIT

 Input
The TOKEN value is the BUILD token.

 Output
Register 15 Contains one of the following return codes:

0 Communication terminated successfully.

Nonzero Request failed. Return code from XPCC/POWER
request performed by DFHWOSB.

DFHWOSM FUNC=WAIT macro
The DFHWOSM FUNC=WAIT macro allows the console operator to communicate
with the overseer program. When the overseer program issues a DFHWOSM
FUNC=WAIT macro, DFHWOSB sends a message to the console asking the
operator to reply with an overseer command. DFHWOSB then waits for up to 4
seconds for the operator to reply. If the operator does not reply, control is passed
back to the overseer so that it can continue to monitor CICS XRF jobs. When the
WAIT macro is executed again, DFHWOSB does not send the message to the
operator. Instead, it waits for four seconds for the operator to reply to the first
message, before returning to the overseer. If the operator replies, DFHWOSB
passes the command back to the overseer where it will be processed. The next
execution of the WAIT once again sends the message to the console operator and
waits for a reply.

label DFHWOSM FUNC=WAIT

 [,PARM={parm address|1}]

 [,TOKEN={token register|14}]

 Input
The PARM value is a pointer to two addresses, and these are:

1. The address of the TIMER ECB.

2. The address of the CONSOLE ECB. This should contain either:

� The address of the console CCB as supplied as output by a previous
DFHWOSM WAIT call, indicating that the operator has not replied, or

� Zero, indicating that the operator has replied and the overseer has just
processed that reply.

The TOKEN value is the BUILD token.

 Output
Register 0 Console CCB address. If the console CCB has been posted, (this

means bit 0 of byte 2 is set to ‘1’), then the operator has replied
and the address of the input data is returned in register 15. If the
console CCB has not been posted (this means bit 0 of byte 2 is set
to ‘0’), then the operator has not replied and the contents of register
15 are unpredictable.

Register 15 Address of input area if console CCB has been posted.

 Chapter 16. The extended recovery facility overseer program 507

 sample overseer

Customizing the sample overseer program
The sample overseer program consists of three routines—the main module
DFH$AXRO and two subroutines:

� DFH$ADSP displays status information.
� DFH$ARES performs restart in place.

The associated DSECTs are provided in member DFH$XRDS of the PRD1.BASE.
There are a number of ways in which you can change the supplied code if you
want to make the overseer program more suitable for your installation.

Here are some customization suggestions:

� If the supplied display of status information (DSECT DSPDS) is not suitable,
you can change the layout for your installation.

� The CSECT DFH$ADSP can be customized so that, for example, status
information is displayed automatically at regular intervals, or whenever a region
is in trouble, as well as when the console operator enters the ‘D’ (Display)
command. This would require interpretation of the status information by the
overseer.

� Any of the messages to the system console, which are listed in the prologue of
the source module DFH$AXRO, can be changed.

� You can change the format or the content of the DFHOSD data set (DSECT
OSDDS) if, for example, you want it to contain more information.

� You can change the restart function so that, for example, a failed region will be
restarted only during periods of heavy use, while at other times a takeover to
the alternate will be initiated by the operator.

� When an active region fails and is taken over by the alternate, the old active
region must be restarted as the new alternate. In those cases where the cause
of the takeover was not a VSE/ESA operating system failure, restart of the old
active as an alternate region could be automated in the overseer program.

There is one optional section of code in the overseer program, which is described
in the next section.

Detection of loops and waits
The sample overseer program includes some code that you can use to detect
possible loops or waits in the active CICS region.

The sample program monitors the CICS TCB (task control block) time stamp. If
this remains the same for a period defined by the variable LOOPTM, a message is
sent to the console warning of a possible loop or wait. The value of LOOPTM is
the number of seconds (wait time) before a loop is suspected; you may need to
change it to suit your requirements and to avoid the detection of false loops. You
should set it to a value greater than the largest runaway task time interval (as
specified on the ICVR system initialization parameter—for guidance on the syntax
of this parameter, see the CICS System Definition Guide) to avoid detection of user
transaction loops.

To include this LOOP WARNING code, set the variable &LPWARN to ‘1’ and
reassemble the sample.

508 CICS Transaction Server for VSE/ESA Customization Guide

 sample overseer

Assembling and link-editing the overseer program
The non specific job control statements required to assemble and link-edit the
overseer program are the same as those required for user-replaceable programs.

The specific link-edit statements that you require are:

 PHASE DFH$AXRO,\

 ENTRY DFH$AXNA

If you change the overseer code in any way, note that the VSE/ESA sublibrary
PRD1.BASE is required for the assembly, and that the link-edit job step requires
the entry name DFH$AXNA. If you change any of the DSECTs used by the
sample program, you should reassemble DFH$AXRO.

 Chapter 16. The extended recovery facility overseer program 509

 sample overseer

510 CICS Transaction Server for VSE/ESA Customization Guide

 journaling, monitoring, and statistics

Part 5. CICS journaling, monitoring, and statistics

Table 121. Journaling, monitoring, and statistics road map

If you want to... Refer to...

Control and interpret the journal records
written by CICS

Chapter 17, “CICS journaling” on
page 513

Control and interpret the monitoring data
collected by CICS

Chapter 18, “CICS monitoring” on
page 531

Control and interpret the statistics data
collected by CICS

Chapter 19, “CICS statistics” on
page 569

Write non-CICS programs that use DMF
to store monitoring data

Chapter 20, “The user interface to DMF”
on page 579

 Copyright IBM Corp. 1977, 1999 511

 journaling, monitoring, and statistics

512 CICS Transaction Server for VSE/ESA Customization Guide

 opening and reading journals

 Chapter 17. CICS journaling

CICS journaling provides facilities for the creation, control, and retrieval of a
special-purpose series of data sets called journals during real-time CICS
execution. Journals are intended for recording, in chronological order, any
information that you may later need to reconstruct data or events. For example,
you could create journals to act as audit trails; to record database updates,
additions, and deletions for backup purposes; or to track transaction activity in the
system.

This chapter describes the following aspects of CICS journaling:

1. “Formatting a journal before output”

2. “Opening, closing, and reading journals” on page 513

3. “The structure and contents of journal records” on page 515

4. “Notes on CICS journaling” on page 529. This section contains:

� “Automatic journal archiving”
� “The journaling user-replaceable programs”
� “The global user exits in DFHJCP”

For information about the uses of journaling, refer to the CICS Recovery and
Restart Guide.

Formatting a journal before output
Before using a journal data set for the first time, you must format it. Use
DFHJCJFP for formatting disk journals, and DFHFTAP for formatting tape journals.

The method by which CICS repositions at startup normally rules out the need for
the journal set to be reformatted before subsequent CICS runs. Thus, reformatting
should only be undertaken in exceptional circumstances (for example, prior to a
cold start). Refer to the CICS Recovery and Restart Guide for guidance
information about journal positioning at system initialization. If you do decide to
reformat, ensure that the journaled data that will be erased is no longer needed.

As an alternative to reformatting, with the data set offline, you can force an EOF
into the block number 1 position. You should not apply this procedure (or
reformatting) to the system log, nor for DL/I, nor for the automatic archiving facility,
because they may be required for emergency restart.

Data collected during the current run of CICS is likely to be written after the last
record from the previous run. Therefore, when reading the journals, you must be
aware that data may be present for more than one CICS execution.

Opening, closing, and reading journals
Journal records are written to the journal data sets either directly from a user
application program, or from a CICS management program on behalf of a user
application. Journal records can be written from a user application using the EXEC
CICS WRITE JOURNALNUM command. For programming information about the

 Copyright IBM Corp. 1977, 1999 513

 opening and reading journals

EXEC CICS WRITE JOURNALNUM command, see the CICS Application
Programming Reference manual.

This section describes the commands that you use for opening and closing
journals, and for reading journals offline.

Opening and closing a journal
To open or close a journal data set from an application program, use the EXEC
CICS SET JOURNALNUM command. For programming information about the
EXEC CICS SET JOURNALNUM command, see the CICS System Programming
Reference manual.

Reading journals offline
Journal data sets can be read offline by user-written programs. Although written as
operating-system undefined (U-format) records by CICS journal management, the
blocks are compatible with records of the variable-length blocked (VB) format. The
data set label information indicates U-format, but this can be overridden to VB
(using RECFORM=VARBLK on the DTFSD macro); this causes data management
to deblock records and offer them to the offline program.

Each block begins with a 4-byte block-length field, and each logical record within a
block begins with a 4-byte record-length field. These 4-byte fields are in the form
‘LLbb’ (where “LL” represents 2 bytes containing the length of the block or record).

Unless a journal volume was successfully closed when last written during CICS
execution, or unless it had a tape mark written by the DFHTEOF program, there is
no end-of-file indicator on the volume. If this is the case, data can run into old
records.

Offline user-written programs can map journal records by issuing the DFHJCR
CICSYST=YES statement, which results in the DFHJCRDS DSECT being included
in the program. The DSECT thus generated is identical to that obtained for CICS
programs by the COPY DFHJCRDS statement, except that the fields are not
preceded by a CICS storage accounting area. The DSECT is intended to map
journal records directly in the block, rather than in a CICS storage area.

Using the offline program: The offline program can be used with a DISK or
TAPE journal device. The following points should be considered when reading
journals offline while CICS is still active.

� For a DISK journal, two data sets should be allocated. The appropriate JCT
option (JOUROPT=PAUSE or JOUROPT=AUTOARCH) must be specified.
You are responsible for ensuring that journal volumes are read in the required
sequence.

� For a TAPE journal, the journal volume can be removed and read whenever
you want. Another tape volume can be mounted to record data while the first
volume is being processed. The advantages of a tape journal over a journal on
a disk device are that the job to read the tape journal can run for a relatively
long time and is usually easier to process clerically because there is no need to
alternate between the information on the two separate data sets.

514 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

Printing journal files: You can use the CICS-supplied utility, DFHJUP, to print
journal files. For more guidance information about the CICS-supplied utilities, refer
to the CICS Operations and Utilities Guide.

The structure and contents of journal records
DL/I and DMF/SMF records

The following description does not apply to journal records written on behalf of
DL/I, nor to those written to a DMF data set in SMF format. These are
described on page 527.

Journal data sets are usually specified as of undefined record type. They are then
constructed by the journal control program (JCP) to correspond to the layout of
variable-length blocked records, where each block and every record within the
block begins with a 4-byte ‘LLbb’ length field. Each resultant block on a journal
data set contains the following logical records:

1. One journal control label record.

The journal control label record provides global CICS information, such as the
block number, the CICS run start time, and the journal identification.

2. One or more journal records.

These records follow the journal control label record, and contain all the
information that has been written for the different CICS tasks. These records
are variable length. The number in a particular block depends on the length of
data to be logged, on the size of the two journal buffers specified for the journal
in the journal control table, and on the frequency of writes. Writes occur
because they have been explicitly forced, or because the current buffer is full.

Figure 40 shows a typical layout of a block on a journal data set.

LL bb LL bb Journal Control Label Record ('8045')

LL bb Journal Record 1 LL bb

Journal Record 2

LL bb Journal Record 3

Figure 40. CICS journal block layout

The DSECT DFHJCRDS describes all of the journal records. DFHJCRDS includes
the 8-byte storage accounting field, which precedes the journal records if they are
read by CICS, but which is not present if the journal is read by an offline program.
To include DFHJCRDS in an offline program, code DFHJCR CICSYST=YES. This
causes the DSECT to be included without the CICS storage accounting area.

 Chapter 17. CICS journaling 515

 structure of journal records

The system header
The first 10 bytes of every journal record, including the journal control label record
(but excluding DL/I and SMF-format records) is the system header.8 The system
header consists of the fields shown in Table 122.

The field JCRSTRID (the system-type ID) and the field JCRUTRID (the user-type
ID) allow you to distinguish those journal records output by CICS (by such features
as automatic journaling), from those issued by direct user requests.

For CICS journal requests, JCRUTRID contains binary zeros, and JCRSTRID
contains a 1-byte function code followed by a 1-byte module code. The function
code tells you which function was being journaled, and the module code shows
which module caused the record to be written. Valid settings of these codes are
contained in the member DFHFMIDS of the VSE/ESA sublibrary PRD1.BASE.
Figure 41 on page 517 shows the valid function identifiers, and Figure 42 on
page 521 shows the valid module identifiers.

For user journal requests, JCRSTRID always contains binary zeros, and
JCRUTRID contains the 2-byte hexadecimal code specified by the JTYPEID
keyword of the JOURNAL request in the application program.

Table 122. Format of the system header for journal records

Field
name in
DFHJCRDS
DSECT

Field
size in
bytes

Format

Contents

JCRBA EQU * Label for start of journal records
JCRLL 2 Halfword binary Length of record
JCRBB 2 Binary zeros Not used
JCRSTRID 2 Hexadecimal System-type ID
JCRUTRID 2 Hexadecimal User-type ID
JCRLRN 2 Packed decimal Record number within block

8 The formats of journal records written on behalf of DL/I, and those written to a DMF data set in SMF-format, are described on
page 527.

516 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

\\\

\ \ \ \ \ \

\ \ \ FUNCTION AND MODULE IDENTIFIERS \ \ \

\ \ \ (SEE FOLLOWING DSECTS: DFHDWEDS,DFHJCADS,DFHJCR) \ \ \

\ \ \ \ \ \

\\\

\ \ F U N C T I O N I D E N T I F I E R S \ \

\\\

\ \

\ X'ð1' THRU X'7F' ARE RESERVED FOR DL/I \

\ X'2ð' PLUS X'8-' ...USE FOR AUTOMATIC JOURNALING \

\ X'4ð' PLUS X'8-' ...USE FOR AUTOMATIC LOGGING \

\ X'Eð' THROUGH X'FF' ARE RESERVED FOR SYNCPOINT LOGGING \

\ (MUST BE PRESENT IN 'LOGGABLE' DWE'S) \

\ \

\\\

\ \ JOURNAL CONTROL \ \

\\\

FIDJCLAB EQU X'8ð' ...JOURNAL CONTROL LABEL

\ RECORD (DFHJCR) \

\\\

\ \ DYNAMIC BACKOUT FUNCTION IDENTIFIERS:- \ \

\\\

FIDDBOFL EQU X'8ð' OVERFLOW DYNAMIC LOG RECORD

FIDDBCHN EQU X'81' CHAIN DYNAMIC LOG RECORD

\\\

\ \ FILE CONTROL \ \

\\\

FIDALOG EQU X'4ð' ...AUTOMATICALLY LOGGED

FIDAJRN EQU X'2ð' ...AUTOMATICALLY JOURNALED

FIDMASS EQU X'1ð' ...MASSINSERT REQ. (FIDFCWA ONLY)

\ PLUS ONE OF... \

FIDFCRO EQU X'8ð' ...FILE CONTROL READ-ONLY

FIDFCRU EQU X'81' ...FILE CONTROL READ-UPDATE

FIDFCWU EQU X'82' ...FILE CONTROL WRITE-UPDATE

FIDFCWA EQU X'83' ...FILE CONTROL WRITE-ADD

FIDFCWAC EQU X'84' ...FILE CONTROL WRITE-ADD-COMPLETE

FIDFCWD EQU X'86' ...FILE CONTROL WRITE DELETE

FIDFCBOF EQU X'88' ...BACKOUT FAILED LOG RECORD

FIDFCDSN EQU X'8F' ...DSNAME RECORD

\ \

\ NOTE THAT FID\ VALUES (AS ABOVE) ARE OFTEN USED BOTH TO \

\ IDENTIFY THE FUNCTION OF THE DWE AND THE FUNCTION OF THE \

\ LOG RECORD. IN THE CASE OF THE FIDFC\ EQU'S ABOVE, THEY \

\ ARE USED FOR LOG RECORDS ONLY. THOSE BELOW APPLY ONLY \

\ TO DWE'S \

\ \

FIDFCVWA EQU X'8ð' THIS DWE ADDRESSES A VSWA.

FIDFCRVY EQU X'4ð' THIS DWE IS ASSOCIATED WITH A \

 RECOVERABLE CHANGE.

Figure 41 (Part 1 of 4). Journal function identifiers

 Chapter 17. CICS journaling 517

 structure of journal records

\\\

\ TRANSIENT DATA FUNCTION IDENTIFIERS:- \

FIDTDIT EQU X'F1' TD DESTINATION'S INPUT TASK

FIDTDOT EQU X'F2' TD DESTINATION'S OUTPUT

\ TASK \

FIDTDPT EQU X'F3' TD DESTINATION'S PURGE TASK

\ EQU X'ð8' ...DYNAMIC BACKOUT MASK \

 RESERVED

FIDTDPLP EQU X'81' TD PHYSICAL 'FIRST PUT' LOG

FIDTDPGT EQU X'82' TD PHYSICAL 'GET' LOG

FIDTDPRL EQU X'83' TD PHYSICAL QUEUE ZERO LOG

\ - REUSE=YES \

FIDTDPLG EQU X'84' TD PHYSICAL 'PURGE' LOG

FIDTDPQZ EQU X'85' TD PHYSICAL QUEUE ZERO LOG

\ - REUSE=NO \

\\\

\ TEMPORARY STORAGE FUNCTION IDENTIFIERS \

FIDTSAL EQU X'4ð' AUTOMATIC LOGGING MASK

\ EQU X'ð8' ...DYNAMIC BACKOUT MASK \

 RESERVED

FIDTSUPD EQU X'8ð' ..TEMPORARY STORAGE UPDATE

FIDTSPRI EQU X'F2' ..TEMPORARY STORAGE

\ PURGE/RELEASE \

FIDTSPUT EQU X'F4' ..TEMPORARY STORAGE

\ PUT/PUTQ \

\\\

\ SPECIAL FEATURES FUNCTION IDENTIFIERS \

FIDPSOPC EQU X'8ð' CONTINOUS LOGICAL SPOOLOPEN

FIDPSWRC EQU X'81' CONTINOUS LOGICAL SPOOLWRITE

FIDPSCLC EQU X'82' CONTINOUS LOGICAL SPOOLCLOSE

FIDPSOPS EQU X'83' STANDARD SPOOLOPEN

\\\

\ INTERVAL CONTROL FUNCTION IDENTIFIERS \

FIDICPDF EQU X'5ð' INTERVAL CONTROL PUT,DEFER

FIDICRGT EQU X'8ð' RESTART GET.

\ EQU X'ð8' BACKOUT MASK, RESERVED \

\\\

\ ALP FUNCTION IDENTIFIERS \

FIDALRGT EQU X'8ð' RESTART GET

\\\

\ PROGRAM CONTROL FUNCTION IDENTIFIERS \

FIDPCPPT EQU X'8ð' PC REPLACE PPT DEFINITION

\\\

\ TASK CONTROL FUNCTION IDENTIFIERS \

FIDKCPCT EQU X'8ð' KC REPLACE PCT DEFINITION

FIDKCPFT EQU X'81' KC REPLACE PFT DEFINITION

FIDKCPCA EQU X'82' KC ADD PCT DEFINITION

FIDKCPFA EQU X'83' KC ADD PFT DEFINITION

FIDKCPCD EQU X'84' KC DELETE PCT DEFINITION

FIDKCPFD EQU X'85' KC DELETE PFT DEFINITION

Figure 41 (Part 2 of 4). Journal function identifiers

518 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

\\\

\ ACTIVITY KEYPOINT FUNCTION IDENTIFIERS:- \

FIDAKS EQU X'8ð' ACTIVITY KEYPOINT: START.

FIDAKE EQU X'81' ACTIVITY KEYPOINT: END.

\ EQU X'82' RESERVED - WAS FIDKPTCA \

\ EQU X'83' RESERVED - WAS FIDKPDCT \

\ EQU X'84' RESERVED - WAS FIDKPTCR \

\ EQU X'85' RESERVED - WAS FIDKPTST \

FIDAKM EQU X'86' ACTIVITY KEYPOINT: MIDDLE.

\\\

 SPACE 1

\\\

\ SYNCPOINT FUNCTION IDENTIFIERS:- \

FIDSPUOW EQU X'EF' START OF UNIT OF WORK

FIDSPLUC EQU X'Fð' LUC RELATED FUNCTION

FIDLSOSP EQU X'F1' LOGICAL START OF SYNCPOINT

FIDLEOTK EQU X'F2' LOGICAL END OF TASK

FIDPEOTK EQU X'F3' PHYSICAL END OF TASK

FIDBEOTK EQU X'F4' BAD END OF TASK LOG RECORD

FIDSPR EQU X'F5' SPR LOG RECORD

FIDBEOSP EQU X'F6' BAD END OF SYNCPOINT LOG

\ RECORD \

FIDRSQ EQU X'F7' REMOTE SESSION QUALIFIER

FIDSPRMI EQU X'F8' RMI DWE. (ALSO USED AS A TEST MASK..\

..FOR THE FOLLOWING RMI CODES. \

 ...

FIDSPPTC EQU X'F9' RMI PREPARE

FIDSPPTB EQU X'FA' RMI ABOUT TO BACKOUT

FIDSPRSC EQU X'FB' RMI RESYNC COMMITTED

FIDSPRSB EQU X'FC' RMI RESYNC BACKED OUT

FIDSPFGT EQU X'FD' RMI FORGET

FIDSPLTC EQU X'FE' RMI 'LOST TO COLD START'

FIDSPNID EQU X'FF' RMI 'NOT IN DOUBT'

\\\

 SPACE 1

\\\

\ RECOVERY CONTROL FUNCTION IDENTIFIERS:- \

FIDRCFWD EQU X'Fð' FORWARD RECOVERY RECORD

FIDRCBWD EQU X'8ð' BACKOUT RECORD

\\\

 SPACE 1

\\\

\ BMS FUNCTION IDENTIFIERS:- \

FIDBMPM EQU X'81' ...BMS - PARTIAL MESSAGE ON

\ TEMPORARY STORAGE \

FIDBMODS EQU X'82' ...BMS - OPEN DATA SET ON

\ BATCH LU \

Figure 41 (Part 3 of 4). Journal function identifiers

 Chapter 17. CICS journaling 519

 structure of journal records

\\\

\ TERMINAL CONTROL FUNCTION IDENTIFIERS \

\ \

FIDTCML EQU X'Fð' SYNCPOINT - LOG SEQUENCE

\ NUMBERS \

\ CAN BE OR'ED WITH ANY OF \

THE FOLLOWING THREE FIELDS:

FIDTCDWL EQU X'ð1' ...DEFERRED WRITE DATA

FIDTCFMH EQU X'ð2' ...+ FUNCTION MANAGEMENT

\ HEADER

FIDTCDIP EQU X'ð4' ...+ DIP REQUEST

\ \

\ EQU X'ð8' ...DYNAMIC BACKOUT MASK \

 RESERVED

FIDTCAL EQU X'4ð' AUTOMATIC LOGGING MASK...

FIDTCAJ EQU X'2ð' AUTOMATIC JOURNALING MASK..

\ ...THE ABOVE 2 PLUS 1 OF FOLLOWING SET \

FIDTCTL EQU X'8ð' ...SEQUENCE NUMBER ONLY

\ (LOG ONLY) \

FIDTCIM EQU X'81' ...INPUT MESSAGE (LOG AND

\ JOURNAL) \

FIDTCOM EQU X'82' ...OUTPUT MESSAGE (JOURNAL

\ ONLY) \

FIDTCWP EQU X'83' ...WRITE WAS PURGED (LOG

\ ONLY) \

FIDTCPRR EQU X'84' ...POSITIVE RESPONSE

\ RECEIVED (LOG ONLY) \

FIDTCIMF EQU X'85' ...INPUT MESSAGE (W/FMH,

\ LOG AND JOURNAL) \

FIDTCOMN EQU X'86' ...OUTPUT MESSAGE, (W/O

\ FMH, JOURNAL ONLY) \

FIDTCON EQU X'87' ...OUTPUT MESSAGE, FMH,

\ CCOMPL=NO \

FIDTCONN EQU X'88' ...OUTPUT MESSAGE, W/O FMH,

 ...CCOMPL=NO

FIDTCUA EQU X'89' ...INITIAL TCT USER AREA

FIDTCEIB EQU X'8A' ...INITIAL EXEC COMM AREA

FIDTCIMN EQU X'8B' INPUT MSG, NO FMH, COMPLETE

FIDTCINN EQU X'8C' INPUT MSG, NO FMH, INCOMPLETE

\\\

\ TABLE BUILDER SERVICES FUNCTION IDENTIFIERS \

FIDBSDOP EQU X'8ð' TBS DWE IS 'OPEN'

FIDBSDCL EQU X'81' TBS DWE IS 'CLOSED'

\\\

\ FRONT END PROGRAMMING INTERFACE IDENTIFIERS \

FIDFEPIN EQU X'Fð' FEPI INBOUND DATA API <--- FEPI

FIDFEPOU EQU X'F1' FEPI OUTBOUND DATA API ---> FEPI

\\\

\ GENERAL PURPOSE SUBTASK IDENTIFIERS \

FIDSKDF EQU X'8ð' ...SK - DEFAULT

\\\

Figure 41 (Part 4 of 4). Journal function identifiers

520 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

\\\

\ \ M O D U L E I D E N T I F I E R S \ \

\\\

\ \

\ (MAY BE X'ð1'-->X'FF'.) \

\ \

MODIDKC EQU X'ð3' ...TASK CONTROL

MODIDPC EQU X'ð4' ...PROGRAM CONTROL

MODIDSC EQU X'ð5' ...STORAGE CONTROL

MODIDDC EQU X'ð7' ...DUMP CONTROL

MODIDIC EQU X'ð8' ...INTERVAL CONTROL

MODIDTC EQU X'1ð' ...TERMINAL CONTROL

MODIDFC EQU X'11' ...FILE CONTROL

MODIDTD EQU X'12' ...TRANSIENT DATA

MODIDTS EQU X'13' ...TEMPORARY STORAGE

MODIDFCJ EQU X'14' ...FILE CONTROL JOURNALING

MODIDIRC EQU X'37' ...IRC INTERFACE

MODIDDL EQU X'39' ...Reserved

MODIDBM EQU X'4ð' ...BASIC MAPPING

MODIDJC EQU X'45' ...JOURNAL CONTROL

MODIDDB EQU X'46' ...DYNAMIC BACKOUT PROGRAM

MODIDVC EQU X'47' ...Reserved

MODIDPS EQU X'53' ...SPECIAL FEATURES

MODIDKPP EQU X'54' ...KEYPOINT PROGRAM

MODIDBI EQU X'55' ...BUILT-IN FUNCTIONS

MODIDAKP EQU X'58' ...ACTIVITY KEYPOINT PROG

MODIDSPP EQU X'59' ...SYNCPOINT PROGRAM

MODIDEIP EQU X'5A' ...EXEC INTERFACE PROGRAM

MODIDTMP EQU X'5B' ...TABLE MANAGER

MODIDSKP EQU X'5C' ...SUBTASK MANAGER

MODIDFEP EQU X'5D' ...FRONT-END PROGRAMMING INTERFACE

MODIDAL EQU X'5E' ...ALLOCATION PROGRAM (ALP)

MODIDBBP EQU X'BB' ...BB INTERFACE

MODIDRCP EQU X'CE' ...RECOVERY CONTROL PROGRAM

MODIDTBS EQU X'E3' ...TABLE BUILDER SERVICES

MODIDTOR EQU X'EF' ...TERMINAL OBJECT RESOLUTION

MODIDUSR EQU X'FF' RESERVED FOR USER SYNCPOINT

\ SUPPORT \

\\\

Figure 42. Journal module identifiers

 Chapter 17. CICS journaling 521

 structure of journal records

The journal control label record
The first record in each block of journal records is a label record. The label record,
including the system header, is 42 bytes long. The format of the journal control
label record (excluding the system header) is shown in Table 123.

Table 123. Format of the journal control label record

Field
name in
DFHJCRDS
DSECT

Field
size in
bytes

Format

Contents

JCLRJFID 1 Binary Journal ID (1–99)
JCLRBLKN 3 Packed decimal Block number (1–n) in this data set
JCLRVCD 4 Packed decimal Volume creation date (0cyyddd+)
JCLRVSN 2 Packed decimal Volume sequence number within run

(nnn+) (only 1 or 2 for disk journals)
JCLRLBW 4 Binary (disk) Relative TTR0 of previous block
JCLRTBAL 2 Binary (disk) Track-balance from previous block

(disk journals)
JCLRTIME 4 Packed decimal Time block written (hhmmsss+)
JCLRRST 4 Packed decimal Run start time (hhmmsss+)
JCLRDATE 4 Packed decimal Date block written (0cyyddd+)
JCLRSEQ 4 Binary Journal block sequence number

Other journal records
All journal records other than the journal control label record—that is, all those
written in response to EXEC CICS WRITE JOURNALNUM commands—have one
through three variable-length segments in the following order after the system
header.

Note: This does not apply to DL/I nor to SMF-format journal records, which have
their own format, described on page 527.

System System User Journaled
header prefix prefix data

Figure 43. CICS journal record format

Each of these three segments is described in the sections that follow.

522 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

The system prefix
The system prefix is variable in length, and it identifies the origin of the record. The
system prefix contains at least the data shown in Table 124.

Additional system prefix data: For some CICS journal requests, additional data
is included in the system prefix to identify more specifically the originator of the
request. This extra data follows the common fields of the system prefix, and is
usually variable in length; hence the need for the length field JCSPLL at the start of
the system prefix. All the following have their own prefix layout, and these are
described, for the purposes of diagnosis and recovery, in the CICS Data Areas
manual.

 � Activity keypointing
 � File control
� Front End Programming Interface (for details of FEPI, see the CICS Front End

Programming Interface User’s Guide)
 � Recovery control
� Remote session qualifier
� Resource manager interface
� SPR (intersystem communication)

 � Terminal control

Table 124. Data contained in the system prefix

Field
name in
DFHJCRDS
DSECT

Field
size in
bytes

Format

Contents

JCSPBA 0 - Label for system prefix begin address
JCSPLL 2 Halfword binary Length of system prefix
JCSPFS 3 Binary Flags

Note: The first two bytes of JCSPFS are reserved. The third byte is field
JCSPF1, and the settings are:

JCSPUP EQU X'01' User prefix present in record
JCSPSOTK EQU X'02' Physical start-of-task9

JCSPLSTK EQU X'04' Logical start-of-task9

JCSPRRIF EQU X'08' DFHRUP record-in-flight flag
JCSPMIDT EQU X'10' Output message in doubt
JCSPEMER EQU X'20' Written by emergency restart
JCSPDSP EQU X'80' DL/I checkpoint

JCSPTASK 3 Packed decimal Task number
JCSPTIME 4 Packed decimal Time of request (hhmmsss+)
JCSPTRAN 4 Characters Transaction identification
JCSPTERM 4 Characters Terminal identification (or binary

zeros)
JCSPREA EQU * Label for end of system prefix

common root.

9 The setting of this bit is meaningful for system journal records only. You should ignore its setting for user journal records.

 Chapter 17. CICS journaling 523

 structure of journal records

The user prefix
The user prefix is optional, and is placed in a journal output record next to the
system prefix, in response to the PREFIX option of the EXEC CICS WRITE
JOURNALNUM command. As with the system prefix, the user prefix always begins
with a halfword binary length field; the user prefix data follows the halfword. For
journal records that include a user prefix, the flag byte JCSPF1 of the system prefix
has the indicator bit JCSPUP set to ‘1’.

 Journaled data
The final segment of a journal record is the journaled data. CICS does not
generate a length field for the data portion of the record. If you want a length field
for the data, you must include it in the data. Alternatively, you can compute the
length of the data portion of a journal record by taking the length of the system
header (10 bytes), plus the length of the system prefix (JCSPLL), plus the length of
the user prefix (in the field, if any, defined by yourself), and subtracting the total
from the length of the journal record (JCRLL).

Not all journal records contain journaled data. For example, syncpoint records
contain no journaled data.

Identifying records for the start and end of tasks or LUWs
You can identify records written by the syncpoint program to mark the start and end
of tasks, and the start and end of LUWs, by examining the value of JCRSTRID,
together with the flags set in the JCSPFS field of the system prefix. See Table 125
and Figure 44 on page 526.

 Coding hint

You must check JCRSTRID before using the flags JCSPSOTK and JCSPLSTK,
which have no meaning if the record is a DL/I log record. The following is a
possible algorithm.

1. If the first byte of JCRSTRID is in the range X'01' to X'7F', process as a
DL/I log record , and bypass following steps.

2. If JCSPSOTK or JCSPLSTK is set on, process as start-of-task or
start-of-LUW respectively, and go to the next step. If neither JCSPSOTK
nor JCSPLSTK is set on, go to step 3.

3. Process as a CICS log record .

Table 125. Identifying syncpoint events

Syncpoint event JCRSTRID value System prefix
flag

Physical start-of-task X'EF59' JCSPSOTK

Logical start-of-task (start-of-LUW) X'EF59' JCSPLSTK

Logical end-of-task (end-of-LUW) X'F259' N/A

Physical end-of-task X'F359' N/A

524 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

Identifying a record for an unfinished task or LUW
You can tell if a record is for an unfinished task by the presence or absence of a
physical end-of-task record (JCRSTRID=X'F359') for the same task. The end of
each LUW is indicated by a logical end-of-task record (JCRSTRID=X'F259'). In
Figure 44 on page 526, if a system failure occurred before the completion of task
33, no physical end-of-task record would be written to the journal. In the restart
data set, written by the recovery utility program (DFHRUP) during emergency
restart, records for in-flight tasks are identified by the flag JCSPRRIF in the system
prefix.

Identifying in-doubt messages at system termination
You can identify in-doubt messages at system termination only if the task is
invoked from a VTAM terminal, and the installed transaction definition includes the
MSGPOPT|MSGPREQ=PROTECT option. This causes logging (for each LUW) of
the first input, last output, and positive-response-received messages. In this case,
the deferred write record (JCRSTRID=X'F110') should be followed by a
positive-response-received record (JCRSTRID=X'C410'). If not, the message was
in doubt when the system terminated. On the restart data set (and in the message
cache) the deferred write record, if in doubt, has the JCSPMIDT flag set on. (For
information about message caches, see the CICS Recovery and Restart Guide.)

 Chapter 17. CICS journaling 525

 structure of journal records

JCRSTRID JCSPF1 JCSPTASK

START-OF-
TASK 33
RECORD Start-of-

task flag
X'EF59' JCSPSOTK

x'02'
(OTHER
RECORDS)

JCRSTRID JCSPTASK

START-OF-
SYNCPOINT 33
RECORD

X'F159' (start-of-syncpoint)
(OTHER
RECORDS)

JCRSTRID JCSPTASK

END-OF-
SYNCPOINT 33
RECORD

X'F259' (end-of-LUW)
(OTHER
RECORDS)

JCRSTRID JCSPF1 JCSPTASK

START-OF-
LUW 33
RECORD Start-of-

LUW flag
X'EF59' JCSPLSTK

x'04'
(OTHER
RECORDS)

JCRSTRID JCSPTASK

START-OF-
SYNCPOINT 33
RECORD

X'F159' (start-of-syncpoint)
(OTHER
RECORDS)

JCRSTRID JCSPTASK

END-OF-
SYNCPOINT 33
RECORD

X'F359' (end-of-task)

Figure 44. Journal records, showing task and LUW delimiters. This figure shows physical
and logical start- and end-of-task records, with the setting of JCSPSOTK and JCSPLSTK
flags to indicate start-of-task and start-of-LUW in a task with two LUWs.

526 CICS Transaction Server for VSE/ESA Customization Guide

 structure of journal records

Journal records for DL/I
Records written to the CICS journal on behalf of DL/I have the format shown in
Table 126.

Note: If the first byte of the data following field JCRBB has a value in the range
X'01' through X'7F', the journal records are written to DL/I. To analyze a DL/I log
record, refer to the DL/I documentation.

Table 126. The format of journal records for DL/I

Field
name in
DFHJCRDS
DSECT

Field
size in
bytes

Format

Contents

JCRLL 2 Halfword binary Length of record
JCRBB 2 Binary zeros Not used
None V Data Variable-length DL/I data

Format of journal records written to in SMF format
This section describes the format of journaling records that are written:

� To a Data Management Facilities (DMF) data set (JTYPE=SMF is specified on
the DFHJCT TYPE=ENTRY macro)

or

� To a CICS journal in SMF-format (FORMAT=SMF is specified on the DFHJCT
TYPE=ENTRY macro).

In either case, the records are of System Management Facilities (SMF) type 110.
The three components of each record are an SMF header, an SMF product section,
and a CICS data section.

SMF SMF Product CICS Data
Header Section Section

Figure 45. Format of an SMF type 110 journaling record

The SMF header describes the system creating the output.

The SMF product section identifies the subsystem to which the journaling data
relates. Both the SMF header and the SMF product section can be mapped by the
DSECT JCSMFDS, which you can generate using the DFHJCSMF macro as
follows:

JCSMFDS DFHJCSMF PREFIX=SMF

The label ‘JCSMFDS’ is the default DSECT name, and SMF is the default PREFIX
value, so you could also generate the DSECT simply by coding DFHJCSMF. The
format of the JCSMFDS DSECT is shown in Figure 46 on page 528.

Note: The copy book DFHSMFDS is also provided and can be used to map the
SMF header and the SMF product sections of all three subtypes of SMF 110
records written by CICS journaling, CICS monitoring, and CICS statistics.

 Chapter 17. CICS journaling 527

 structure of journal records

The CICS data section contains a variable-length blocked journal record.
Figure 40 on page 515 shows a typical layout of a blocked journal record.

\ START OF THE SMF HEADER

\

JCSMFDS DSECT

SMFFLG DS X OPERATING SYSTEM INDICATOR (see note)

SMFRTY DC X'6E' RECORD 11ð FOR CICS

SMFTME DS XL4 TIME RECORD MOVED TO SMF

SMFDTE DS XL4 DATE RECORD MOVED TO SMF

SMFSID DC CL4'CICS' SYSTEM IDENTIFICATION

SMFSSI DC CL4'CICS' SUBSYSTEM IDENTIFICATION

SMFSTY DS XL2 RECORD SUBTYPE - X'ðððð' FOR JOURNALING

SMFTRN DS XL2 NUMBER OF TRIPLETS

 DS XL2 RESERVED

SMFAPS DS XL4 OFFSET TO PRODUCT SECTION

SMFLPS DS XL2 LENGTH OF PRODUCT SECTION

SMFNPS DS XL2 NUMBER OF PRODUCT SECTIONS

SMFASS DS XL4 OFFSET TO DATA SECTION

SMFASL DS XL2 LENGTH OF DATA SECTION

SMFASN DS XL2 NUMBER OF DATA SECTIONS

\

\ THIS CONCLUDES THE SMF HEADER

\

\ START OF THE SMF PRODUCT SECTION

\

SMFPSRVN DS XL2 RECORD VERSION (CICS)

SMFPSPRN DS CL8 PRODUCT NAME (GENERIC APPLID)

SMFPSSPN DS CL8 PRODUCT NAME (SPECIFIC APPLID)

SMFPSMFL DS XL2 RECORD MAINTENANCE INDICATOR

 DS XL2 RESERVED

SMFPSRSN DS PL4 RECORD-NUMBER WITHIN JOURNAL

SMFPSJID DS X JOURNAL IDENTIFIER

SMFPSBKN DS PL3 RECORD-NUMBER WITHIN DATA SET

SMFPSLBW DS XL4 LAST-RECORD ADDRESS

\ (FORMAT IS TTRð)

SMFPSBAL DS AL2 TRACK BALANCE IN BYTES

\

 DS XL46 RESERVED

SMFPSJBN DS CL8 JOBNAME

SMFPSRSD DS XL4 JOB DATE

SMFPSRST DS XL4 JOB TIME

SMFPSUIF DS CL8 USER IDENTIFICATION

SMFPSPDN DS CL8 OPERATING SYSTEM PRODUCT LEVEL

SMFPSEND EQU \ END OF SMF PRODUCT SECTION

\ THIS CONCLUDES THE SMF PRODUCT SECTION

Figure 46. Format of the SMF header and product section for journaling records

Note: CICS sets only the subsystem-related bits of the operating system indicator
flag byte in the DMF header (SMFFLG). DMF sets the remainder of the byte
according to the operating system level and other factors.

528 CICS Transaction Server for VSE/ESA Customization Guide

 notes on journaling

Notes on CICS journaling
This section contains brief notes on aspects of CICS journaling that are covered
fully in other books, or in other parts of this book.

Automatic journal archiving
CICS Transaction Server for VSE/ESA Release 1 provides automatic journal
archiving: when a journal data set fills up, CICS can automatically archive it while
the second disk data set is being used. You can find more information about
automatic journal archiving in the CICS Recovery and Restart Guide.

The journaling user-replaceable programs
For guidance information about the journaling user-replaceable programs, refer to
Chapter 15, “The user-replaceable journaling programs” on page 487.

The global user exits in DFHJCP
Global user exit XJCWR in the journaling control program is invoked after a journal
record is written to the journal buffer, but before it is written to the journal data set.
At this exit, the addresses of the journal record and of the JCT entry are available
to your exit program.

Exit XJCWB is invoked before each physical WRITE to each non-SMF journal. It
could be used (for example) to pass copies of CICS log records to another system,
to aid recovery of the prime-site system after a disaster.

For more information about global user exits in general, and about the journaling
exits in particular, refer to Chapter 1, “Global user exit programs” on page 3.

 Chapter 17. CICS journaling 529

 notes on journaling

530 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring—introduction

 Chapter 18. CICS monitoring

This chapter describes the monitoring facilities of CICS Transaction Server for
VSE/ESA Release 1. It is divided into the following sections:

1. “Introduction to CICS monitoring” describes the classes of monitoring data,
event-monitoring points, and the use of the monitoring control table.

2. “CICS monitoring record formats” on page 536 describes the formats of
CICS monitoring SMF type 110 records.

3. “Data produced by CICS monitoring” on page 546 lists all the
system-defined data that can be produced by CICS monitoring.

Introduction to CICS monitoring
CICS monitoring collects data about the performance of all user- and
CICS-supplied transactions during online processing for later offline analysis. The
records produced by CICS monitoring are of the System Management Facility
(SMF) type 110, and are written to a CICS Data Management Facility (DMF) data
set.

Note: Statistics records are also written to the DMF data set as type 110 records.
You might find it useful to process the statistics records and the monitoring records
together, because statistics provide resource and system information that is
complementary to the transaction data produced by CICS monitoring. The contents
of the statistics fields, and the procedure for processing them, are described in
Chapter 19, “CICS statistics” on page 569.

Monitoring data is useful both for performance tuning and for charging your users
for the resources they use.

The classes of monitoring data
Two types, or “classes”, of monitoring data can be collected. These are
performance class data and exception class data.

Performance class data is detailed transaction-level information, such as the
processor and elapsed time for a transaction, or the time spent waiting for I/O. At
least one performance record is written for each transaction that is being monitored.
See “Performance class monitoring data” on page 532 for further information.

Exception class data is information about exceptional conditions suffered by a
transaction, such as queuing for file strings, or waiting for temporary storage. This
data highlights possible problems in system operation. There is one exception
record for each exception condition.

You can choose which classes of monitoring data you want to be collected. How to
do this is described in “Controlling CICS monitoring” on page 536.

 Copyright IBM Corp. 1977, 1999 531

 monitoring—introduction

Performance class monitoring data
CICS performance class monitoring data is collected at system-defined
event-monitoring points (EMPs) in the CICS code. You cannot relocate these
monitoring points, but you can create additional ones, at which user-defined
performance data can be gathered.

Coding additional event-monitoring points
If you want to gather more performance class data than is provided at the
system-defined EMPs, you can code additional EMPs in your application programs.
You could use these additional EMPs to count the number of times a certain event
occurs, or to time the interval between two events, for example. If the performance
class was active when a transaction was started, but was not active when a user
EMP was issued, the operations defined in that user EMP would still be executed
on that transaction’s monitoring area. The DELIVER option would result in a loss
of data at this point, because the generated performance record cannot be output
while the performance class is not active. If the performance class was not active
when a transaction was started, the user EMP would have no effect.

To code user EMPs in your application programs, you use the EXEC CICS
MONITOR command. For programming information about this command, see the
CICS Application Programming Reference manual.

Additional EMPs are provided in some IBM program products, such as DL/I. From
a CICS point of view, these are like any other user-defined EMP. EMPs in user
applications and in IBM program products are identified by a decimal number. The
numbers 1 through 199 are available for EMPs in user applications, and the
numbers 200 through 255 are for use in IBM program products. The numbers can
be qualified with an entry name, so that you can use each number more than once.
For example, ‘ENTRYA.4’, ‘ENTRYB.4’, and ‘4’ identify three different EMPs.
Furthermore, any counts, clocks, or byte-strings updated at one of them are
different objects from those updated at any of the others. If you do not specify an
entry name, CICS assumes the default of ‘USER’.

For each EMP that you code in an application program, there must be a
corresponding monitoring control table (MCT) definition, with the same entry name
and identification number as the EMP that it describes. (The following sections
refer to the combination of entry name and identification number as an “empid”.)

If you want to record the same type of data for different transactions, you can code
the same empids in several application programs. This causes similar fields in the
corresponding transaction performance records to be updated.

You do not have to assign empids to system-defined EMPs, and you do not have
to code MCT entries for them.

The monitoring control table (MCT)
You use the monitoring control table (MCT):

� To tell CICS about the EMPs that you have coded in your application programs
and about the data that is to be collected at these points. See “DFHMCT
TYPE=EMP” on page 533.

� To tell CICS that you want specific system-defined performance data not to be
recorded during a particular CICS run. See “DFHMCT TYPE=RECORD” on
page 533.

532 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring—introduction

Full details of the DFHMCT macros are provided in the CICS Resource Definition
Guide, and you should refer to that book when reading the following sections.

 DFHMCT TYPE=EMP
There must be a DFHMCT TYPE=EMP macro definition for every user-coded EMP.
This macro has an ID operand, whose value must be made up of the ENTRYNAME
and POINT values specified on the EXEC CICS MONITOR command. The
PERFORM operand of the DFHMCT TYPE=EMP macro tells CICS which user
count fields, user clocks, and character values to expect at the identified user EMP,
and what operations to perform on them.

Note that, in a single run of CICS, the format of all performance records is identical,
and that the length of records increases relative to the number of data fields in the
user EMPs defined in the MCT.

The maximum amount of user data that can be added to performance records is
16384 bytes. The user data is divided into user areas. Each user area is defined
by coding an entry name qualifier on the ID operand of the DFHMCT TYPE=EMP
macro. If you code the same entry name when defining multiple EMPs, all the
EMPs operate on fields in the same user area. Correspondingly, by coding
different entry names you can append multiple user areas to the monitoring
records. Provided that the overall maximum of 16384 bytes is not exceeded, each
user area can contain:

� 0 through 256 counters
� 0 through 256 clocks
� A single 8192-byte character string

Each user area is uniquely referenced by its entry name. For example:

DFHMCT TYPE=EMP,ID=ENTRYA.1,PERFORM=...

DFHMCT TYPE=EMP,ID=ENTRYA.2,PERFORM=...

DFHMCT TYPE=EMP,ID=ENTRYB.1,PERFORM=...

DFHMCT TYPE=EMP,ID=ENTRYB.1,PERFORM=...

DFHMCT TYPE=EMP,ID=1,PERFORM=...

In the above examples, in addition to the system-defined performance fields, three
user areas, ‘ENTRYA’, ‘ENTRYB’, and ‘USER’, are defined (if no entry name is
specified, the default is ‘USER’). If the application codes an EMP invocation with
ENTRYNAME(ENTRYA), only the ENTRYA user area is operated on. The only
operation that spans all user areas is DELIVER, which operates across the whole
monitoring area.

 DFHMCT TYPE=RECORD
The DFHMCT TYPE=RECORD macro allows you to exclude specific
system-defined performance data from a CICS run. (Each performance monitoring
record is approximately 572 bytes long, without taking into account any user data
that may be added, or any excluded fields.)

Each field of the performance data that is gathered at the system-defined EMPs
belongs to a group of fields that has a group identifier. Each performance data
field also has its own numeric identifier that is unique within the group identifier.
For example, the transaction sequence number field in a performance record
belongs to the group DFHTASK, and has the numeric identifier ‘031’. Using these

 Chapter 18. CICS monitoring 533

 monitoring—introduction

identifiers, you can exclude specific fields or groups of fields, and reduce the size of
the performance records.

Examples of MCT coding
The examples below show some EXEC CICS MONITOR commands with the MCT
entries that must be coded for them.

 Example 1

EXEC CICS MONITOR command MCT entry

EXEC CICS MONITOR DFHMCT TYPE=EMP, *
POINT(11) CLASS=PERFORM, *
ENTRYNAME(PROG3) ID=(PROG3.11), *

CLOCK=(1,CLOCKA), *
PERFORM=SCLOCK(1)

Example 1 shows a user clock being started by an application that is identified as
PROG3. This is the eleventh EMP in this application. To prevent confusion with
the eleventh EMP in another application, this EMP is uniquely identified by the
empid PROG3.11. The clock that is being started is the first clock in a string, and
has the identifier CLOCKA.

 Example 2

EXEC CICS MONITOR command MCT entry

EXEC CICS MONITOR DFHMCT TYPE=EMP, *
POINT(12) CLASS=PERFORM, *
ENTRYNAME(PROG3) ID=(PROG3.12), *

PERFORM=PCLOCK(1)

Example 2 shows the same user clock (CLOCKA) being stopped. Although this is
the same clock being stopped by the same application as in example 1, it is being
stopped from a different EMP. The EMP is uniquely identified by the empid
PROG3.12.

534 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring—introduction

 Example 3

EXEC CICS MONITOR command MCT entry

EXEC CICS MONITOR DFHMCT TYPE=EMP, *
POINT(13) CLASS=PERFORM, *
DATA1(address of data) ID=(PROG3.13), *
DATA2(length of data) PERFORM=MOVE(0,32)
ENTRYNAME(PROG3)

Example 3 shows 32 bytes of user data being updated in the character string
reserved for that purpose. The updated data starts at offset 0, and the data is not
more than 32 bytes in length.

Exception class data
Exception class data is information on exceptional conditions suffered by a
transaction. This data highlights possible problems in system operation. There is
one exception record for each exception condition. Exception records are produced
after each of the following conditions encountered by a transaction has been
resolved:

� Wait for storage in the CDSA
� Wait for storage in the UDSA
� Wait for storage in the SDSA
� Wait for storage in the RDSA
� Wait for storage in the ECDSA
� Wait for storage in the EUDSA
� Wait for storage in the ESDSA
� Wait for storage in the ERDSA
� Wait for auxiliary temporary storage
� Wait for auxiliary temporary storage string
� Wait for auxiliary temporary storage buffer
� Wait for file string
� Wait for file buffer
� Wait for LSRPOOL string

An exception record is created each time any of the resources covered by
exception class monitoring becomes constrained by system bottlenecks. If
performance data is also being recorded, it keeps a count of the number of
exception records generated for each task. The exception records can be linked to
the performance data by the transaction identifier in both records.

This data is intended to help you identify constraints that affect the performance of
your transaction. The information is written to a DMF data set as soon as the task
that was originally constrained has been released.

You can enable exception-class monitoring by coding the MNEXC=ON and MN=ON
system initialization parameters. Alternatively you can use either the CEMT SET
MONITOR ON EXCEPT or the EXEC CICS SET MONITOR STATUS(ON)
EXCEPTCLASS(EXCEPT) command.

 Chapter 18. CICS monitoring 535

 monitoring record formats

How performance and exception class data is passed to DMF
Performance class records and exception class records are not written to DMF in
the same way by CICS monitoring.

Performance data records are written to a performance record buffer, which is
defined and controlled by CICS, as they are produced. The performance records
are passed to DMF for processing when the buffer is full, when the performance
class of monitoring is switched off, and when CICS itself quiesces. When
monitoring itself is deactivated or when there is an immediate shutdown of CICS,
the performance records are not written to DMF and the data is lost.

Exception records are passed directly to DMF when the exception condition
completes. Each exception record describes one exception condition. You can link
performance records with their associated exception records by matching the value
of the TRANNUM field in each type of record; each contains the same transaction
number.

Controlling CICS monitoring
When CICS is initialized, you switch the monitoring facility on by specifying the
system initialization parameter MN=ON. MN=OFF is the default setting. You can
select the classes of monitoring data you want to be collected using the MNPER
and MNEXC system initialization parameters. You can request the collection of any
combination of performance class data and exception class data. The class
settings can be changed whether monitoring itself is ON or OFF. For guidance
information about system initialization parameters, refer to the CICS System
Definition Guide.

When CICS is running, you can control the monitoring facility dynamically. Just as
at CICS initialization, you can switch monitoring on or off, and you can change the
classes of monitoring data that are being collected. There are two ways of doing
this:

1. You can use the master terminal CEMT INQ|SET MONITOR command, which
is described in the CICS-Supplied Transactions manual.

2. You can use the EXEC CICS INQUIRE and SET MONITOR commands, which
are described in the CICS System Programming Reference manual.

If you activate a class of monitoring data in the middle of a run, the data for that
class becomes available only for transactions that are started thereafter. You
cannot change the classes of monitoring data collected for a transaction after it has
started. It is often preferable, particularly for long-running transactions, to start all
classes of monitoring data at CICS initialization.

CICS monitoring record formats
This section describes the formats of CICS monitoring SMF type 110 records in
detail. You need this information if you write your own program to analyze the
monitoring data. CICS writes two types of SMF 110 record. Each type, or subtype
as it is known, can be identified using the record subtype field in the SMF header.
The subtype values are as follows:

X'0001' Monitoring.
X'0002' Statistics.

536 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring record formats

For more information about SMF statistics records, refer to Chapter 19, “CICS
statistics” on page 569.

The three components of a CICS monitoring record are an SMF header, an SMF
product section, and a CICS data section. Each of these is described in the
sections that follow.

SMF SMF Product CICS Data
Header Section Section

Figure 47. Format of an SMF type 110 monitoring record

SMF header and SMF product section
The SMF header describes the system creating the output. The SMF product
section identifies the subsystem to which the monitoring data relates, which, in the
case of CICS monitoring (and also of CICS statistics), is the CICS region. Both the
SMF header and the SMF product section can be mapped by the DSECT
MNSMFDS, which you can generate using the DFHMNSMF macro as follows:

MNSMFDS DFHMNSMF PREFIX=SMF

The label ‘MNSMFDS’ is the default DSECT name, and SMF is the default PREFIX
value, so you could also generate the DSECT simply by coding:

DFHMNSMF

The MNSMFDS DSECT has the format shown in Figure 48 on page 538.

 Chapter 18. CICS monitoring 537

 monitoring record formats

\ START OF THE SMF HEADER

\

MNSMFDS DSECT

SMFMNLEN DS XL2 RECORD LENGTH

SMFMNSEG DS XL2 SEGMENT DESCRIPTOR

SMFMNFLG DS X OPERATING SYSTEM INDICATOR (see note 1)

SMFMNRTY DC X'6E' RECORD 11ð FOR CICS

SMFMNTME DS XL4 TIME RECORD MOVED TO SMF

SMFMNDTE DS XL4 DATE RECORD MOVED TO SMF

SMFMNSID DS CL4 SYSTEM IDENTIFICATION

SMFMNSSI DS CL4 SUBSYSTEM IDENTIFICATION

SMFMNSTY DS XL2 RECORD SUBTYPE - MONITORING USES TYPE 1

SMFMNTRN DS XL2 NUMBER OF TRIPLETS

 DS XL2 RESERVED

SMFMNAPS DS XL4 OFFSET TO PRODUCT SECTION

SMFMNLPS DS XL2 LENGTH OF PRODUCT SECTION

SMFMNNPS DS XL2 NUMBER OF PRODUCT SECTIONS

SMFMNASS DS XL4 OFFSET TO DATA SECTION

SMFMNASL DS XL2 LENGTH OF DATA SECTION

SMFMNASN DS XL2 NUMBER OF DATA SECTIONS

\

\ THIS CONCLUDES THE SMF HEADER

\

\

\ START OF THE SMF PRODUCT SECTION

\

SMFMNRVN DS XL2 RECORD VERSION (CICS)

SMFMNPRN DS CL8 PRODUCT NAME (GENERIC APPLID)

SMFMNSPN DS CL8 PRODUCT NAME (SPECIFIC APPLID)

SMFMNMFL DS XL2 RECORD MAINTENANCE INDICATOR

 DS XL2 RESERVED

SMFMNCL DS XL2 CLASS OF DATA

\ 1 = DICTIONARY

\ 3 = PERFORMANCE

\ 4 = EXCEPTION

SMFMNDCA DS XL4 OFFSET TO CICS FIELD CONNECTORS

SMFMNDCL DS XL2 LENGTH OF EACH CICS FIELD CONNECTOR

SMFMNDCN DS XL2 NUMBER OF CICS FIELD CONNECTORS

SMFMNDRA DS XL4 OFFSET TO FIRST CICS DATA RECORD

SMFMNDRL DS XL2 LENGTH OF EACH CICS DATA RECORD

SMFMNDRN DS XL2 NUMBER OF CICS DATA RECORDS

\

 DS XL2ð RESERVED

SMFMNTAD DS XL4 LOCAL TOD CLOCK ADJUSTMENT VALUE

SMFMNLSO DS XL8 RESERVED

SMFMNDTO DS XL8 RESERVED

 DS XL2 RESERVED

SMFMNJBN DS CL8 JOBNAME

SMFMNRSD DS XL4 JOB DATE

SMFMSRST DS XL4 JOB TIME

SMFMNUIF DS CL8 USER IDENTIFICATION

SMFMNPDN DS CL8 OPERATING SYSTEM PRODUCT LEVEL

\

\ THIS CONCLUDES THE SMF PRODUCT SECTION

Figure 48. Format of the SMF header and product section for monitoring records

538 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring record formats

Notes:

1. CICS sets only the subsystem-related bits of the operating system indicator flag
byte in the SMF header (SMFMNFLG). DMF sets the remainder of the byte
according to the operating system level and other factors. For an explanation
of the setting of the other bits, refer to the CICS Operations and Utilities Guide.

2. For dictionary class monitoring records (described in “Dictionary data sections”),
the fields SMFMNDRA, SMFMNDRL, and SMFMNDRN in the SMF product
section have the following meaning:

SMFMNDRA Offset to the first dictionary entry.
SMFMNDRL Length of a single dictionary entry.
SMFMNDRN Number of dictionary entries within the CICS data section.

3. The copy book DFHSMFDS is also provided and can be used to map the SMF
header and the SMF product sections of both subtypes of SMF 110 records
written by CICS monitoring and CICS statistics.

CICS data section
The CICS data section can be made up of a dictionary data section, a performance
data section, or an exception data section. You can identify which of these you are
dealing with by looking at the value of field SMFMNCL in the SMF product section.
Each of the data section types is described in the sections that follow.

Dictionary data sections
Dictionary data sections describe all the fields in the performance data records that
are gathered during this CICS run. They describe all the system-provided data
fields (whether you have excluded any or not), plus any user-provided data fields,
which CICS takes at initialization time from the MCT entries you have coded. This
means that the descriptions of the system-provided data fields never change,
though the user data fields can be changed each time CICS is initialized. The
contents of the dictionary data sections cannot be changed while CICS is running.

Dictionary data sections contain a variable number of 26-byte dictionary entries.
Each dictionary entry provides the following information about a single performance
record data field:

CMODNAME The identifier of the group to which the field belongs.
CMODTYPE The field type.
CMODIDNT The field identifier.
CMODLENG The length of the field.
CMODCONN The connector value assigned to the field.
CMODOFST The offset of the field.
CMODHEAD The informal name of the field.

You can map the dictionary entries by generating a DSECT with the DFHMCTDR
macro as shown in Figure 49 on page 540.

 Chapter 18. CICS monitoring 539

 monitoring record formats

DFHMCTDR TYPE=(PREFIX,CMO)

CMO is the default label prefix. The DSECT is as follows:

CMODNAME DS CL8 + ð NAME OF OWNER (entry name)

CMODTYPE DS C + 8 OBJECT TYPE

\ 'S' = STOPWATCH (CLOCK)

\ 'A' = ACCUMULATOR (COUNT)

\ 'C' = BYTE-STRING FIELD

\ 'T' = TIMESTAMP (STCK FORMAT)

\ 'P' = PACKED-DECIMAL FIELD

CMODIDNT DS CL3 +9 ID WITHIN TYPE

\ CLOCK-, COUNT-, OR FIELD-NO.

CMODLENG DS H +12 LENGTH OF OBJECT

CMODCONN DS XL2 +14 ASSIGNED CONNECTOR

CMODOFST DS XL2 +16 ASSIGNED OFFSET

CMODHEAD DS CL8 +18 INFORMAL NAME

CMODNEXT EQU \

Figure 49. CICS monitoring dictionary entry DSECT

Whenever the monitoring of performance class data is switched on, whether at
CICS initialization or while CICS is running, a dictionary data section is written. So,
if the monitoring of performance class data is switched on and off three times
during a single CICS run, there are three separate, but identical, dictionary data
sections for that run. The dictionary data section is passed to DMF, together with
any performance data sections, when the first buffer of performance data sections
for a performance class data monitoring session is output to DMF. Any offline
utility should use the most recent dictionary record encountered when processing
CICS monitoring records.

The format of dictionary data sections is shown in Figure 50. A list of the default
CICS dictionary entries is given in Figure 51 on page 541.

SMF Header SMF Product Section Dictionary Data Section

Dictionary Dictionary Dictionary Dictionary Dictionary
Entry 1 Entry 2 Entry 3 Entry 4 Entry n

Field Field Field Field Field Field Field
Owner Type Identifier Length Connector Offset Title

Figure 50. Format of the CICS monitoring dictionary data section

540 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring record formats

FIELD FIELD FIELD FIELD FIELD FIELD FIELD
OWNER TYPE IDENTIFIER LENGTH CONNECTOR OFFSET TITLE

DFHTASK C ðð1 4 X'ððð1' X'ðððð' TRAN

DFHTERM C ðð2 4 X'ððð2' X'ððð4' TERM

DFHCICS C ð89 8 X'ððð3' X'ððð8' USERID

DFHTASK C ðð4 4 X'ððð4' X'ðð1ð' TTYPE

DFHCICS T ðð5 8 X'ððð5' X'ðð14' START

DFHCICS T ðð6 8 X'ððð6' X'ðð1C' STOP

DFHTASK P ð31 4 X'ððð7' X'ðð24' TRANNUM

DFHTASK A 1ð9 4 X'ððð8' X'ðð28' TRANPRI

DFHTASK C 166 8 X'ððð9' X'ðð2C' TCLSNAME

DFHTERM C 111 8 X'ðððA' X'ðð34' LUNAME

DFHPROG C ð71 8 X'ðððB' X'ðð3C' PGMNAME

 DFHTASK C ð97 2ð X'ðððC' X'ðð44' NETNAME

DFHTASK C ð98 8 X'ðððD' X'ðð58' UOWID

DFHCICS C 13ð 4 X'ðððE' X'ðð6ð' RSYSID

DFHTASK C ð64 4 X'ðððF' X'ðð64' TASKFLAG

DFHPROG C 113 4 X'ðð1ð' X'ðð68' ABCODEO

DFHPROG C 114 4 X'ðð11' X'ðð6C' ABCODEC

DFHCICS C 112 4 X'ðð12' X'ðð7ð' RTYPE

DFHTERM A ð34 4 X'ðð13' X'ðð74' TCMSGIN1

DFHTERM A ð83 4 X'ðð14' X'ðð78' TCCHRIN1

DFHTERM A ð35 4 X'ðð15' X'ðð7C' TCMSGOU1

DFHTERM A ð84 4 X'ðð16' X'ðð8ð' TCCHROU1

DFHTERM A ð67 4 X'ðð17' X'ðð84' TCMSGIN2

DFHTERM A ð85 4 X'ðð18' X'ðð88' TCCHRIN2

DFHTERM A ð68 4 X'ðð19' X'ðð8C' TCMSGOU2

DFHTERM A ð86 4 X'ðð1A' X'ðð9ð' TCCHROU2

DFHTERM A 135 4 X'ðð1B' X'ðð94' TCM62IN2

DFHTERM A 137 4 X'ðð1C' X'ðð98' TCC62IN2

DFHTERM A 136 4 X'ðð1D' X'ðð9C' TCM62OU2

DFHTERM A 138 4 X'ðð1E' X'ððAð' TCC62OU2

DFHTERM A ð69 4 X'ðð1F' X'ððA4' TCALLOCT

DFHSTOR A ð54 4 X'ðð2ð' X'ððA8' SCUGETCT

DFHSTOR A 1ð5 4 X'ðð21' X'ððAC' SCUGETCT

DFHSTOR A 117 4 X'ðð22' X'ððBð' SCCGETCT

DFHSTOR A 12ð 4 X'ðð23' X'ððB4' SCCGETCT

DFHSTOR A ð33 4 X'ðð24' X'ððB8' SCUSRHWM

DFHSTOR A 1ð6 4 X'ðð25' X'ððBC' SCUSRHWM

DFHSTOR A 116 4 X'ðð26' X'ððCð' SC24CHWM

DFHSTOR A 119 4 X'ðð27' X'ððC4' SC31CHWM

DFHSTOR A ð95 8 X'ðð28' X'ððC8' SCUSRSTG

DFHSTOR A 1ð7 8 X'ðð29' X'ððDð' SCUSRSTG

DFHSTOR A 118 8 X'ðð2A' X'ððD8' SC24COCC

DFHSTOR A 121 8 X'ðð2B' X'ððEð' SC31COCC

DFHSTOR A ð87 4 X'ðð2C' X'ððE8' PCSTGHWM

DFHSTOR A 139 4 X'ðð2D' X'ððEC' PC31AHWM

DFHSTOR A 1ð8 4 X'ðð2E' X'ððFð' PC24BHWM

DFHSTOR A 142 4 X'ðð2F' X'ððF4' PC31CHWM

DFHSTOR A 143 4 X'ðð3ð' X'ððF8' PC24CHWM

DFHSTOR A 122 4 X'ðð31' X'ððFC' PC31RHWM

Figure 51 (Part 1 of 3). Default CICS dictionary entries

 Chapter 18. CICS monitoring 541

 monitoring record formats

DFHSTOR A 162 4 X'ðð32' X'ð1ðð' PC24RHWM

DFHSTOR A 161 4 X'ðð33' X'ð1ð4' PC31SHWM

DFHSTOR A 16ð 4 X'ðð34' X'ð1ð8' PC24SHWM

DFHFILE A ð36 4 X'ðð35' X'ð1ðC' FCGETCT

DFHFILE A ð37 4 X'ðð36' X'ð11ð' FCPUTCT

DFHFILE A ð38 4 X'ðð37' X'ð114' FCBRWCT

DFHFILE A ð39 4 X'ðð38' X'ð118' FCADDCT

DFHFILE A ð4ð 4 X'ðð39' X'ð11C' FCDELCT

DFHFILE A ð93 4 X'ðð3A' X'ð12ð' FCTOTCT

DFHFILE A ð7ð 4 X'ðð3B' X'ð124' FCAMCT

DFHDEST A ð41 4 X'ðð3C' X'ð128' TDGETCT

DFHDEST A ð42 4 X'ðð3D' X'ð12C' TDPUTCT

DFHDEST A ð43 4 X'ðð3E' X'ð13ð' TDPURCT

DFHDEST A ð91 4 X'ðð3F' X'ð134' TDTOTCT

DFHTEMP A ð44 4 X'ðð4ð' X'ð138' TSGETCT

DFHTEMP A ð46 4 X'ðð41' X'ð13C' TSPUTACT

DFHTEMP A ð47 4 X'ðð42' X'ð14ð' TSPUTMCT

DFHTEMP A ð92 4 X'ðð43' X'ð144' TSTOTCT

DFHMAPP A ð5ð 4 X'ðð44' X'ð148' BMSMAPCT

DFHMAPP A ð51 4 X'ðð45' X'ð14C' BMSINCT

DFHMAPP A ð52 4 X'ðð46' X'ð15ð' BMSOUTCT

DFHMAPP A ð9ð 4 X'ðð47' X'ð154' BMSTOTCT

DFHPROG A ð55 4 X'ðð48' X'ð158' PCLINKCT

DFHPROG A ð56 4 X'ðð49' X'ð15C' PCXCTLCT

DFHPROG A ð57 4 X'ðð4A' X'ð16ð' PCLOADCT

DFHJOUR A ð58 4 X'ðð4B' X'ð164' JCPUWRCT

DFHTASK A ð59 4 X'ðð4C' X'ð168' ICPUINCT

DFHSYNC A ð6ð 4 X'ðð4D' X'ð16C' SPSYNCCT

DFHFEPI A 15ð 4 X'ðð4E' X'ð17ð' SZALLOCT

DFHFEPI A 151 4 X'ðð4F' X'ð174' SZRCVCT

DFHFEPI A 152 4 X'ðð5ð' X'ð178' SZSENDCT

DFHFEPI A 153 4 X'ðð51' X'ð17C' SZSTRTCT

DFHFEPI A 154 4 X'ðð52' X'ð18ð' SZCHROUT

DFHFEPI A 155 4 X'ðð53' X'ð184' SZCHRIN

DFHFEPI A 157 4 X'ðð54' X'ð188' SZALLCTO

DFHFEPI A 158 4 X'ðð55' X'ð18C' SZRCVTO

DFHFEPI A 159 4 X'ðð56' X'ð19ð' SZTOTCT

DFHTASK S ðð7 8 X'ðð57' X'ð194' USRDISPT

DFHTASK S ðð8 8 X'ðð58' X'ð19C' USRCPUT

DFHTASK S ð14 8 X'ðð59' X'ð1A4' SUSPTIME

DFHTASK S 1ð2 8 X'ðð5A' X'ð1AC' DISPWTT

DFHCICS S 1ð3 8 X'ðð5B' X'ð1B4' EXWTTIME

DFHTERM S ðð9 8 X'ðð5C' X'ð1BC' TCIOWTT

DFHFILE S ð63 8 X'ðð5D' X'ð1C4' FCIOWTT

DFHJOUR S ð1ð 8 X'ðð5E' X'ð1CC' JCIOWTT

DFHTEMP S ð11 8 X'ðð5F' X'ð1D4' TSIOWTT

DFHTERM S 1ðð 8 X'ðð6ð' X'ð1DC' IRIOWTT

DFHDEST S 1ð1 8 X'ðð61' X'ð1E4' TDIOWTT

Figure 51 (Part 2 of 3). Default CICS dictionary entries

542 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring record formats

DFHPROG S 115 8 X'ðð62' X'ð1EC' PCLOADTM

DFHTASK S 125 8 X'ðð63' X'ð1F4' DSPDELAY

DFHTASK S 126 8 X'ðð64' X'ð1FC' TCLDELAY

DFHTASK S 127 8 X'ðð65' X'ð2ð4' MXTDELAY

DFHTASK S 129 8 X'ðð66' X'ð2ðC' ENQDELAY

DFHTERM S 133 8 X'ðð67' X'ð214' LU61WTT

DFHTERM S 134 8 X'ðð68' X'ð21C' LU62WTT

DFHFEPI S 156 8 X'ðð69' X'ð224' SZWAIT

DFHTASK S 17ð 8 X'ðð6A' X'ð22C' RMITIME

DFHTASK S 171 8 X'ðð6B' X'ð234' RMISUSP

Figure 51 (Part 3 of 3). Default CICS dictionary entries

Note: The “field types” in Figure 51 are:

A Count.
C Byte-string.
P Packed decimal number.
S Clock.
T Time stamp.

Performance data sections
Each performance data section is made up of a string of field connectors, followed
by one or more performance data records. All of the performance records
produced by a single CICS run have the same format, and each record is, by
default, 380 bytes long. However, the length of the performance records changes if
you add user data at user EMPs, or if you exclude any system-defined data from
the monitoring process. All of the system-defined data fields in the performance
records are described in “Performance class data” on page 548. The format of the
performance data section is shown in Figure 52.

SMF Header SMF Product Section Performance Data Section

Field Performance Performance Performance Performance
Connectors Record 1 Record 2 Record 3 Record n

Data for Data for Data for Data for Data for Data for
field 1 field 2 field 3 field 4 field 5 field n

Figure 52. Format of the performance data section

 Chapter 18. CICS monitoring 543

 monitoring record formats

Relationship of the dictionary record to the performance records
Following the performance records’ SMF product section, and before the
performance records themselves, is a string of field connectors . The purpose of
the field connectors is to tell you which fields are going to occur in the performance
records produced by this CICS run. Each field connector corresponds to one field
in each of the succeeding performance records. The first field connector
corresponds to the first field, the second to the second field, and so on. Each field
connector also corresponds to a single dictionary entry in the associated dictionary
record: the connector value is equal to the value of CMODCONN in the
corresponding dictionary entry. In this way, each performance record field is
connected to the dictionary entry that describes it. A useful technique for
calculating the offset of a particular dictionary entry is to take the connector,
subtract one, and multiply the result by the length of a single dictionary entry.

Thus, the string of field connectors is the key to the dictionary. And without the
dictionary, reporting and analysis programs cannot interpret the performance data.

The successive performance records can be regarded as rows in a table, with each
column corresponding to one type of field within the records. Each field connector
then describes the contents of one column. This view of the data is helpful when
designing tabular reports, which are often arranged in this way.

Figure 53 illustrates the relationship between the dictionary record, the field
connectors, and the performance records.

Dictionary Record

Dictionary Dictionary Dictionary Dictionary Dictionary
Entry 1 Entry 2 Entry 3 Entry 4 Entry n

Field 001 002 004 nnn
Connectors

Performance Data for Data for Data for Data for
Record 1 field 1 field 2 field 4 field n

Performance Data for Data for Data for Data for
Record 2 field 1 field 2 field 4 field n

Performance Data for Data for Data for Data for
Record 3 field 1 field 2 field 4 field n

Performance Data for Data for Data for Data for
Record 4 field 1 field 2 field 4 field n

Figure 53. Relationship between the dictionary record and the performance records. In this
example, the data that is defined by Dictionary Entry 3 has been excluded, so there is no
field connector value for it and it does not appear in the performance records.

544 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring record formats

How the string of field connectors is constructed: When CICS is initialized, a
unique connector value is assigned to every dictionary entry. CICS then examines
the MCT entries for this run to see if you have excluded any system-defined
performance data. If you have, the offset values for their corresponding dictionary
entries are set to X'FFFF'. CICS then constructs a sequence of field connectors
that excludes those with offsets of X'FFFF'. In this way, the connectors tell you
which system- and user-data fields are going to occur in your performance records
for this run. If you have not excluded any system-defined performance data, there
is one field connector for every dictionary entry.

Please note the following:

Field connectors link the fields in a performance record with their dictionary
entries. They are unique values that are assigned at
initialization time. They may, therefore, change from one run
of CICS to the next.

Field identifiers allow you to exclude specific system-defined performance
data from being collected during a CICS run. They are
unique within a group name and record type, and they do
not change between CICS runs. There is more information
about field identifiers in the CICS Resource Definition Guide.

Field offsets in the performance record allow you to build a table for fast
selection of required fields in your monitoring data processing
programs.

Exception data sections
The format of an exception data record (including the SMF header and SMF
product section) is shown in Figure 54. The exception data section contains a
single exception record representing one exception condition.

SMF SMF Product Exception
Header Section Data Section

Figure 54. Format of an SMF type 110 exception data record

The format of the exception data section can be mapped by the DSECT
MNEXCDS, which you can generate using the DFHMNEXC macro as follows:

MNEXCDS DFHMNEXC PREFIX=EXC

The label ‘MNEXCDS’ is the default DSECT name, and EXC is the default PREFIX
value, so you could also generate the DSECT simply by coding

DFHMNEXC

The MNEXCDS DSECT has the format shown in Figure 55 on page 546.

 Chapter 18. CICS monitoring 545

 monitoring data

MNEXCDS DSECT

EXCMNTRN DS CL4 TRANSACTION IDENTIFICATION

EXCMNTER DS XL4 TERMINAL IDENTIFICATION

EXCMNUSR DS CL8 USER IDENTIFICATION

EXCMNTST DS CL4 TRANSACTION START TYPE

EXCMNSTA DS XL8 EXCEPTION START TIME

EXCMNSTO DS XL8 EXCEPTION STOP TIME

EXCMNTNO DS PL4 TRANSACTION NUMBER

EXCMNTPR DS XL4 TRANSACTION PRIORITY

 DS CL4 RESERVED

EXCMNLUN DS CL8 LUNAME

 DS CL4 RESERVED

EXCMNEXN DS XL4 EXCEPTION NUMBER

EXCMNRTY DS CL8 EXCEPTION RESOURCE TYPE

EXCMNRID DS CL8 EXCEPTION RESOURCE ID

EXCMNTYP DS XL2 EXCEPTION TYPE

EXCMNWT EQU X'ððð1' WAIT

EXCMNBWT EQU X'ððð2' BUFFER WAIT

EXCMNSWT EQU X'ððð3' STRING WAIT

 DS CL2 RESERVED

EXCMNTCN DS CL8 TRANSACTION CLASS NAME

\ END OF EXCEPTION RECORD

Figure 55. CICS monitoring exception record DSECT

For further information about exception class data, refer to page 565.

Data produced by CICS monitoring
All of the exception class data and all of the system-defined performance class data
that can be produced by CICS monitoring is listed below. Each of the data fields is
presented as a field description, followed by an explanation of the contents. The
field description has the format shown in Figure 56 on page 547, which is taken
from the performance data group DFHTASK.

546 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

ðð1 (TYPE-C, 'TRAN', 4 BYTES)

| | | |

 | | | Length of the field (as re-

 | | | presented by CMODLENG in the

 | | | dictionary entry).

 | | |

| | Informal name for the field, as used,

| | perhaps, in column headings when the

| | monitoring output is processed

| | (CMODHEAD of the dictionary entry).

 | |

 | Data type, which may be one of the following:

 | A - a 32-bit count

 | C - a byte string

 | P - a packed decimal value

 | S - a clock comprising a 32-bit accumulation

 | of 16-microsecond units followed by an

 | 8-bit flag followed by a 24-bit count

 | (modulo-16 777 216) of the number of

 | intervals included in the accumulation.

 | T - a time stamp derived directly from the

 | output of an STCK instruction.

 | (CMODTYPE of the dictionary entry)

 |

Field identifier by which the field may be individually

excluded or included during MCT preparation (CMODIDNT of

the dictionary entry).

Figure 56. Format of the descriptions of the data fields

Note: References in Figure 56 to the associated dictionary entries apply only to
the performance class data descriptions. Exception class data is not defined in the
dictionary record.

Clocks and time stamps
In the descriptions that follow, the term clock is distinguished from the term time
stamp .

A clock is a 32-bit value, expressed in units of 16 microseconds, accumulated
during one or more measurement periods. The 32-bit value is followed by 8
reserved bits, which are in turn followed by a 24-bit value indicating the number of
such periods.

Neither the 32-bit timer component of a clock nor its 24-bit period count are
protected against wraparound. The timer capacity is about 18 hours, and the
period count runs modulo 16 777 216.

The 8 reserved bits have the following significance:

Bits 0, 1, 2 and 3 Used for online control of the clock when it is running, and
should always be zeros on output.

Bits 4 and 7 Not used.
Bits 5 and 6 Used to indicate, when set to 1, that the clock has suffered at

least one out-of-phase start (bit 5) or stop (bit 6).

 Chapter 18. CICS monitoring 547

 monitoring data

A time stamp is an 8-byte copy of the output of an STCK instruction.

Note: All times produced in the offline reports are in GMT (Greenwich Mean Time)
not local time. Times produced by online reporting can be expressed in either GMT
or local time.

Performance class data
The performance class data is described below in order of group name. The group
name is always in field CMODNAME of the dictionary entry.

A user task can be represented by one or more performance class monitoring
records, depending on whether the MCT event monitoring option DELIVER or the
system initialization parameters MNCONV=YES or MNSYNC=YES have been
selected. In the descriptions that follow, the term “user task” means “that part or
whole of a transaction that is represented by a performance class record”, unless
the description states otherwise.

A note about response time
You can calculate the internal CICS response time by subtracting performance data
field 005 (start time) from performance data field 006 (finish time).

Figure 57 shows the relationship of dispatch time, suspend time, and CPU time
with the response time.

Response Time

S S
T T
A Suspend Time Dispatch Time O
R P
T

First T
T Dispatch Dispatch CPU Time I
I Delay Wait M
M E
E

Figure 57. Response time relationships

A note about wait times
The performance data fields 009, 010, 011, 063, 100, 101, 129, 133, 134, 156, and
171 all record the elapsed time spent waiting for a particular type of I/O operation.
For example, field 009 records the elapsed time waiting for terminal I/O. The
elapsed time includes not only that time during which the I/O operation is actually
taking place, but also the time during which the access method is completing the
outstanding event control block, and the time subsequent to that until the waiting
CICS transaction is redispatched.

548 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

Wait Times

Dispatch and Dispatch and
Suspend Time

CPU Time CPU Time

Dispatch
Wait

Figure 58. Wait time relationships

A note about program load time

Response Time

S S
T T
A Suspend Time Dispatch Time O
R P
T

First T
T Dispatch Dispatch CPU Time I
I Wait Wait M
M E
E

PCload
Time

Figure 59. Program load time

Figure 59 shows the relationship between the program load time (field 115) and the
dispatch time and the suspend time (fields 7 and 14).

 Chapter 18. CICS monitoring 549

 monitoring data

A note about exception wait time

Exception Wait Time

Dispatch and Dispatch and
Suspend Time

CPU Time CPU Time

Dispatch
Wait

Figure 60. Exception wait time

Figure 60 shows the relationship between the exception wait time (field 103), and
the dispatch time and suspend time (fields 7 and 14).

A note about RMI elapsed and suspend time

RMI Elapsed Time

Dispatch and Dispatch and
RMI Suspend Time

CPU Time (Suspend) CPU Time

Dispatch
Wait

Figure 61. RMI elapsed and suspend time

Figure 61 shows the relationship between the RMI elapsed time and the suspend
time (fields 170 and 171).

A note about storage occupancy counts
An occupancy count measures the area under the curve of user-task storage in use
against elapsed time. The unit of measure is the “byte-unit”, where the “unit” is
equal to 1024 microseconds, or 1.024 milliseconds. A user task occupying, for
example, 256 bytes for 125 milliseconds, is measured as follows:

125 / 1.024 ms = 122 units * 256 = 31 232 byte-units.

where ms is milliseconds.

550 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

Note: All references to start time and stop time in the calculations below refer to
the middle 4 bytes of each 8-byte start/stop time field. Bit 51 of Start time or Stop
time represents a unit of 16 microseconds.

To calculate the response time in microsecond units:
Response = ((Stop time − Start time) * 16)

To calculate the number of 1024-microsecond units:
Units = (Response / 1024)

 or
Units = ((Stop time − Start time) / 64)

To calculate the average user-task storage used from the storage occupancy count:
Average user-task = storage used (Storage Occupancy / Units)

To calculate units per second:
Units Per Second = (1 000 000 / 1024) = 976.5625

To calculate the response time in seconds:
Response time = (((Stop time − Start time) * 16) / 1 000 000)

During the life of a user task CICS measures, calculates, and accumulates the
storage occupancy at the following points:

� Before GETMAIN increases current user-storage values
� Before FREEMAIN reduces current user-storage values
� Just before the performance record is moved to the buffer

Response Time

S S
T T
A O
R P
T

.... T
T I
I . . . M
M . . . E
E

.

.

G F G F F G F G

G = GETMAIN
F = FREEMAIN
Dotted line = Average storage occupancy

Figure 62. Storage occupancy

 Chapter 18. CICS monitoring 551

 monitoring data

A note about program storage
The level of program storage currently in use is incremented at LOAD, LINK, and
XCTL events by the size (in bytes) of the referenced program, and is decremented
at RELEASE or RETURN events.

Notes:

1. On an XCTL event, the program storage currently in use is also decremented
by the size of the program issuing the XCTL, because the program is no longer
required.

2. On a RELEASE event, if the program being released was loaded via a LOAD
HOLD command, program storage currently in use is not decremented. This is
because it cannot be determined whether the program being released by the
current task was also loaded by the current task.

Figure 63 on page 553 shows the relationships between the “high-water mark”
data fields that contain the maximum amounts of program storage in use by the
user task. Field PCSTGHWM (field ID 087) contains the maximum amount of
program storage in use by the task both above and below the 16MB line. Fields
PC31AHWM (139) and PC24BHWM (108) are subsets of PCSTGHWM, containing
the maximum amounts in use above and below the 16MB line, respectively.
Further subset-fields contain the maximum amounts of storage in use by the task in
each of the CICS dynamic storage areas (DSAs).

Note: The totaled values of all the subsets in a superset may not necessarily
equate to the value of the superset; for example, the value of PC31AHWM plus the
value of PC24BHWM may not equal the value of PCSTGHWM. This is because
the peaks in the different types of program storage acquired by the user task do not
necessarily occur simultaneously.

The “high-water mark” fields are described in detail in “Performance data in group
DFHSTOR” on page 558.

552 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

PCSTGHWM - high-water mark of program storage in all CICS DSAs

PC31AHWM - HWM of PC storage above 16MB

PC31CHWM - ECDSA HWM

PC31SHWM - ESDSA HWM

PC31RHWM - ERDSA HWM

16MB line

PC24BHWM - HWM of PC storage below 16MB

PC24CHWM - CDSA HWM

PC24SHWM - SDSA HWM

PC24RHWM - RDSA HWM

Figure 63. Relationships between the “high-water mark” program storage data fields

Performance data in group DFHCICS
005 (TYPE-T, ‘START’, 8 BYTES)

Start time of measurement interval. This is one of the following:

� The time at which the user task was attached

� The time at which data recording was most recently in support of the MCT
user event monitoring point DELIVER option

� The monitoring options MNSYNC=YES or FREQUENCY

For more information see “Clocks and time stamps” on page 547.

006 (TYPE-T, ‘STOP’, 8 BYTES)
Finish time of measurement interval. This is either the time at which the user
task was detached, or the time at which data recording was completed in
support of the MCT user event monitoring point DELIVER option or the
monitoring options MNSYNC=YES or FREQUENCY. For more information see
“Clocks and time stamps” on page 547.

Note: Response Time = STOP − START. For more information see “A note
about response time” on page 548.

089 (TYPE-C, ‘USERID’, 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an
MRO or APPC link with attach-time security enabled.

103 (TYPE-S, ‘EXWTTIME’, 8 BYTES)
Accumulated data for exception conditions. The 32-bit clock contains the total
elapsed time for which the user waited on exception conditions. The 24-bit
period count equals the number of exception conditions that have occurred for
this task. For more information see “Clocks and time stamps” on page 547.

 Chapter 18. CICS monitoring 553

 monitoring data

Note: The performance class data field ‘exception wait time’ will be updated
when exception conditions are encountered even when the exception class is
inactive. For more information see Figure 60 on page 550.

112 (TYPE-C, ‘RTYPE’, 4 BYTES)
Performance record type (low-order byte-3):

C Record output for a terminal converse.
D Record output for a user EMP DELIVER request.
F Record output for a long-running transaction.
S Record output for a syncpoint.
T Record output for a task termination.

130 (TYPE-C, ‘RSYSID’, 4 bytes)
is the name (sysid) of the remote system to which this transaction was routed
either statically or dynamically.

Note: If the transaction was not routed or was routed locally, this field is set to
null. Also see the program name (field 71).

Performance data in group DFHDEST
041 (TYPE-A, ‘TDGETCT’, 4 BYTES)

Number of transient data GET requests issued by the user task.

042 (TYPE-A, ‘TDPUTCT’, 4 BYTES)
Number of transient data PUT requests issued by the user task.

043 (TYPE-A, ‘TDPURCT’, 4 BYTES)
Number of transient data PURGE requests issued by the user task.

091 (TYPE-A, ‘TDTOTCT’, 4 BYTES)
Total number of transient data requests issued by the user task. This field is
the sum of TDGETCT, TDPUTCT, and TDPURCT.

101 (TYPE-S, ‘TDIOWTT’, 8 BYTES)
Elapsed time in which the user waited for VSAM transient data I/O. For more
information see “Clocks and time stamps” on page 547, and “A note about wait
times” on page 548.

Performance data in group DFHFEPI
150 (TYPE-A,‘SZALLOCT’, 4 bytes)

Number of conversations allocated by the user task. This number is
incremented for each FEPI ALLOCATE POOL or FEPI CONVERSE POOL.

151 (TYPE-A,'SZRCVCT',4 bytes)
Number of FEPI RECEIVE requests made by the user task. This number is
also incremented for each FEPI CONVERSE request.

152 (TYPE-A,'SZSENDCT',4 bytes)
Number of FEPI SEND requests made by the user task. This number is also
incremented for each FEPI CONVERSE request.

153 (TYPE-A,'SZSTRTCT',4 bytes)
Number of FEPI START requests made by the user task.

154 (TYPE-A,'SZCHROUT',4 bytes)
Number of characters sent through FEPI by the user task.

554 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

155 (TYPE-A,'SZCHRIN',4 bytes)
Number of characters received through FEPI by the user task.

156 (TYPE-S,'SZWAIT',8 bytes)
Elapsed time in which the user task waited for all FEPI services. For more
information see “Clocks and time stamps” on page 547, and “A note about
wait times” on page 548.

157 (TYPE-A,'SZALLCTO',4 bytes)
Number of times the user task timed out while waiting to allocate a
conversation.

158 (TYPE-A,'SZRCVTO',4 bytes)
Number of times the user task timed out while waiting to receive data.

159 (TYPE-A,'SZTOTCT',4 bytes)
Total number of all FEPI API and SPI requests made by the user task.

Performance data in group DFHFILE
036 (TYPE-A, ‘FCGETCT’, 4 BYTES)

Number of file GET requests issued by the user task.

037 (TYPE-A, ‘FCPUTCT’, 4 BYTES)
Number of file PUT requests issued by the user task.

038 (TYPE-A, ‘FCBRWCT’, 4 BYTES)
Number of file browse requests issued by the user task. This number excludes
the START and END browse requests.

039 (TYPE-A, ‘FCADDCT’, 4 BYTES)
Number of file ADD requests issued by the user task.

040 (TYPE-A, ‘FCDELCT’, 4 BYTES)
Number of file DELETE requests issued by the user task.

063 (TYPE-S, ‘FCIOWTT’, 8 BYTES)
Elapsed time in which the user task waited for file I/O. For more information
see “Clocks and time stamps” on page 547, and “A note about wait times” on
page 548.

070 (TYPE-A, ‘FCAMCT’, 4 BYTES)
Number of times the user task invoked file access-method interfaces. This
number excludes requests for OPEN and CLOSE.

093 (TYPE-A, ‘FCTOTCT’, 4 BYTES)
Total number of file control requests issued by the user task. This number
excludes any request for OPEN, CLOSE, ENABLE, or DISABLE of a file.

 Chapter 18. CICS monitoring 555

 monitoring data

How EXEC CICS file commands correspond to file control monitoring fields:

Table 127. EXEC CICS file commands related to file control monitoring fields

EXEC CICS command Monitoring fields

READ FCGETCT and FCTOTCT

READ UPDATE FCGETCT and FCTOTCT

DELETE (after READ UPDATE) FCDELCT and FCTOTCT

DELETE (with RIDFLD) FCDELCT and FCTOTCT

REWRITE FCPUTCT and FCTOTCT

WRITE FCADDCT and FCTOTCT

STARTBR FCTOTCT

READNEXT FCBRWCT and FCTOTCT

READPREV FCBRWCT and FCTOTCT

ENDBR FCTOTCT

RESETBR FCTOTCT

UNLOCK FCTOTCT

Note: The number of STARTBR, ENDBR, RESETBR and UNLOCK file control
requests can be calculated by subtracting the file request counts, FCGETCT, FCPUTCT,
FCBRWCT, FCADDCT, and FCDELCT from the total file request count, FCTOTCT.

Performance data in group DFHJOUR
010 (TYPE-S, ‘JCIOWTT’, 8 BYTES)

Elapsed time for which the user task waited for journal I/O. For more
information see “Clocks and time stamps” on page 547, and “A note about wait
times” on page 548.

058 (TYPE-A, ‘JCPUWRCT’, 4 BYTES)
Number of journal output requests during the user task.

Performance data in group DFHMAPP
050 (TYPE-A, ‘BMSMAPCT’, 4 BYTES)

Number of BMS MAP requests issued by the user task. This field corresponds
to the number of RECEIVE MAP requests that did not incur a terminal I/O, and
the number of RECEIVE MAP FROM requests.

051 (TYPE-A, ‘BMSINCT’, 4 BYTES)
Number of BMS IN requests issued by the user task. This field corresponds to
the number of RECEIVE MAP requests that incurred a terminal I/O.

052 (TYPE-A, ‘BMSOUTCT’, 4 BYTES)
Number of BMS OUT requests issued by the user task. This field corresponds
to the number of SEND MAP requests.

090 (TYPE-A, ‘BMSTOTCT’, 4 BYTES)
Total number of BMS requests issued by the user task. This field is the sum of
BMSMAPCT, BMSINCT, and BMSOUTCT counts.

556 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

Performance data in group DFHPROG
055 (TYPE-A, ‘PCLINKCT’, 4 BYTES)

Number of program LINK requests issued by the user task, including the link to
the first program of the user task.

056 (TYPE-A, ‘PCXCTLCT’, 4 BYTES)
Number of program XCTL requests issued by the user task.

057 (TYPE-A, ‘PCLOADCT’, 4 BYTES)
Number of program LOAD requests issued by the user task.

071 (TYPE-C, ‘PGMNAME’, 8 BYTES)
The name of the first program invoked at attach-time.

For a remote transaction:

� If this CICS definition of the remote transaction does not specify a program
name, this field contains blanks.

� If this CICS definition of the remote transaction specifies a program name,
this field contains the name of the specified program. (Note that this is not
necessarily the program that is run on the remote system.)

For a dynamically-routed transaction, if the dynamic transaction routing program
routes the transaction locally and specifies an alternate program name, this
field contains the name of the alternate program.

113 (TYPE-C, ‘ABCODEO’, 4 BYTES)
Original abend code.

114 (TYPE-C, ‘ABCODEC’, 4 BYTES)
Current abend code.

115 (TYPE-S, ‘PCLOADTM’, 8 BYTES)
Elapsed time in which the user task waited for LIBDEF sublibrary chain fetches.
Only fetches for programs with installed program definitions or autoinstalled as
a result of application requests are included in this figure. However, installed
programs residing in the SVA are not included (because they do not incur a
physical fetch from a library). For more information about program load time
see “Clocks and time stamps” on page 547, and “A note about wait times” and
Figure 59 on page 549.

 Chapter 18. CICS monitoring 557

 monitoring data

Performance data in group DFHSTOR

User storage fields in group DFHSTOR:
033 (TYPE-A, ‘SCUSRHWM’, 4 BYTES)

Maximum amount (high-water mark) of user storage allocated to the user task
below the 16MB line, in the user dynamic storage area (UDSA).

054 (TYPE-A, ‘SCUGETCT’, 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task below the
16MB line, in the UDSA.

095 (TYPE-A, ‘SCUSRSTG’, 8 BYTES)
Storage occupancy of the user task below the 16MB line, in the UDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information about storage occupancy, see “A note about storage
occupancy counts” on page 550.

105 (TYPE-A, ‘SCUGETCT’, 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
above the 16MB line, in the extended user dynamic storage area (EUDSA).

106 (TYPE-A, ‘SCUSRHWM’, 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
above the 16MB line, in the EUDSA.

107 (TYPE-A, ‘SCUCRSTG’, 8 BYTES)
Storage occupancy of the user task above the 16MB line, in the EUDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information see “A note about storage occupancy counts” on page 550.

116 (TYPE-A, ‘SC24CHWM’, 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
below the 16MB line, in the CICS dynamic storage area (CDSA).

117 (TYPE-A, ‘SCCGETCT’, 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
below the 16MB line, in the CDSA.

118 (TYPE-A, ‘SC24COCC’, 8 BYTES)
Storage occupancy of the user task below the 16MB line, in the CDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information see “A note about storage occupancy counts” on page 550.

119 (TYPE-A, ‘SC31CHWM’, 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
above the 16MB line, in the extended CICS dynamic storage area (ECDSA).

120 (TYPE-A, ‘SCCGETCT’, 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
above the 16MB line, in the ECDSA.

121 (TYPE-A, ‘SC31COCC’, 8 BYTES)
Storage occupancy of the user task above the 16MB line, in the ECDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information see “A note about storage occupancy counts” on page 550.

558 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

Table 128. User storage field id cross reference

UDSA EUDSA CDSA ECDSA

Getmain count 054 105 117 120

High-water-mark 033 106 116 119

Occupancy 095 107 118 121

Program storage fields in group DFHSTOR:
087 (TYPE-A, ‘PCSTGHWM’, 4 BYTES)

Maximum amount (high-water mark) of program storage in use by the user task
both above and below the 16MB line.

108 (TYPE-A, ‘PC24BHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line. This field is a subset of PCSTGHWM (field ID 087) that
resides below the 16MB line.

122 (TYPE-A, ‘PC31RHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line, in the extended read-only dynamic storage area
(ERDSA). This field is a subset of PC31AHWM (field ID 139) that resides in
the ERDSA.

139 (TYPE-A, ‘PC31AHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line. This field is a subset of PCSTGHWM (field ID 087) that
resides above the 16MB line.

142 (TYPE-A, ‘PC31CHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line, in the extended CICS dynamic storage area (ECDSA).
This field is a subset of PC31AHWM (139) that resides in the ECDSA.

143 (TYPE-A, ‘PC24CHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the CICS dynamic storage area (CDSA). This field is a
subset of PC24BHWM (108) that resides in the CDSA.

160 (TYPE-A, ‘PC24SHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the shared dynamic storage area (SDSA). This field is
a subset of PC24BHWM (108) that resides in the SDSA.

161 (TYPE-A, ‘PC31SHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line, in the extended shared dynamic storage area (ESDSA).
This field is a subset of PC31AHWM (139) that resides in the ESDSA.

162 (TYPE-A, ‘PC24RHWM’, 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the read-only dynamic storage area (RDSA). This field
is a subset of PC24BHWM (108) that resides in the RDSA.

 Chapter 18. CICS monitoring 559

 monitoring data

Performance data in group DFHSYNC
060 (TYPE-A, ‘SPSYNCCT’, 4 BYTES)

Number of SYNCPOINT requests issued during the user task.

Notes:

1. A SYNCPOINT is implicitly issued as part of the task-detach processing.

2. A SYNCPOINT is issued at PSB termination for DL/I.

Performance data in group DFHTASK
001 (TYPE-C, ‘TRAN’, 4 BYTES)

Transaction identification.

004 (TYPE-C, ‘TTYPE’, 4 BYTES)
Transaction start type. The high-order bytes (0 and 1) are set to:

'TO ' Attached from terminal input.
'S ' Attached by automatic transaction initiation (ATI) without data.
'SD' Attached by automatic transaction initiation (ATI) with data.
'QD' Attached by transient data trigger level.
'U ' Attached by user request.
'TP' Attached from terminal TCTTE transaction ID.
'SZ' Attached by Front End Programming Interface (FEPI).

007 (TYPE-S, ‘USRDISPT’, 8 BYTES)
Elapsed time for which the user task was dispatched. For more information
see “Clocks and time stamps” on page 547.

008 (TYPE-S, ‘USRCPUT’, 8 BYTES)
Processor time for which the user task was dispatched under the CICS TCBs
(QR, RO, CO). For more information see “Clocks and time stamps” on
page 547.

014 (TYPE-S, ‘SUSPTIME’, 8 BYTES)
Total elapsed wait time for which the user task was suspended by the
dispatcher. This includes:

� The elapsed time waiting for the first dispatch. This also includes any
delay incurred because of the limits set for this transaction’s transaction
class (if any) or by the system parameter MXT being reached.

� The task suspend (wait) time.
� The elapsed time waiting for redispatch after a suspended task has been

resumed.

For more information, see “Clocks and time stamps” on page 547, and “A note
about wait times” on page 548.

031 (TYPE-P, ‘TRANNUM’, 4 BYTES)
Transaction identification number.

The transaction number field is normally a 4-byte packed decimal number.
However, some CICS system tasks are identified by special character
“transaction numbers”, as follows:

� ' III' for system initialization task

560 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

� ' JBS' or ‘ Jnn’ for journal control (where nn = the journal number from 01
- 99

� ' TCP' for terminal control

These special identifiers are placed in bytes 2 through 4. Byte 1 is a blank
(X'40') before the terminal control TCP identifier, and a null value (X'00')
before the others.

059 (TYPE-A, ‘ICPUINCT’, 4 BYTES)
Number of interval control START or INITIATE requests during the user task.

064 (TYPE-A, ‘TASKFLAG’, 4 BYTES)
Task error flags, a string of 31 bits used for signaling unusual conditions
occurring during the user task:

Bit 0 Reserved.
Bit 1 Detected an attempt either to start a user clock that was already

running, or to stop one that was not running.
Bits 2–31 Reserved.

097 (TYPE-C, ‘NETNAME’, 20 BYTES)
Fully qualified name by which the terminal-owning CICS region is known to its
VTAM. This name is assigned at attach time using either the NETNAME
derived from the TCT (when the task is attached to a local terminal), or the
NETNAME passed as part of an ISC APPC or IRC attach header. At least
three padding bytes (X'00') are present at the right end of the name.

If the originating terminal is VTAM across an ISC APPC or IRC link, then the
NETNAME is the networkid.LUname If the terminal is non-VTAM, then the
NETNAME is networkid.generic_applid.

All originating information passed as part of an ISC LUTYPE6.1 attach header
has the same format as the non-VTAM terminal originators above.

When the originator is communicating over an external CICS interface (EXCI)
session, the name is a concatenation of:

'DFHEXCIU' | '.' | 'VSE1' | Address Space Id (ASID)

8 bytes | 1 byte | 4 bytes | 4 bytes

derived from the originating system. That is, the name is a 17-byte LU name
consisting of:

� An 8-byte eye-catcher set to 'DFHEXCIU'.

� A 1-byte field containing a period (.).

� A 4-byte field containing the characters 'VSE1'.

� A 4-byte field containing the address space id (ASID) in which the client
program is running. (This is the 4-character EBCDIC representation of the
2-byte hex address space id.)

098 (TYPE-C, ‘UOWID’, 8 BYTES)
Name by which the unit of work is known within the originating system. This
name is assigned at attach time using either an STCK-derived token (when the
task is attached to a local terminal), or the unit of work ID passed as part of an
ISC APPC or IRC attach header.

The first six bytes of this field are one of the following:

 Chapter 18. CICS monitoring 561

 monitoring data

� A binary value derived from the clock of the originating system and
wrapping round at intervals of several months

� A character value of the form “hhmmss”, which wraps round daily. This
case applies when the originating system is communicating through a DL/I
batch session.

The last two bytes of this field are for the period count. These may change
during the life of the task as a result of syncpoint activity.

Note: When using MRO or ISC, the UOWID field must be combined with the
NETNAME field (097) to uniquely identify a task, because UOWID is unique
only to the originating CICS system.

102 (TYPE-S, ‘DISPWTT’, 8 BYTES)
Elapsed time for which the user task waited for redispatch. This is the
aggregate of the wait times between each event completion and user-task
redispatch.

Note: This field does not include the elapsed time spent waiting for first
dispatch. This field is a subset of the task suspend time, SUSPTIME (014),
field.

109 (TYPE-C, ‘TRANPRI’, 4 BYTES)
Transaction priority when monitoring of the task was initialized (low-order
byte-3).

125 (TYPE-S, ‘DSPDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch.

Note: This field is a subset of the task suspend time, SUSPTIME (014), field.
For more information see “Clocks and time stamps” on page 547.

126 (TYPE-S, ‘TCLDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set for this transaction’s transaction class, TCLSNAME (166), being
reached. For more information see “Clocks and time stamps” on page 547.

Note: This field is a subset of the first dispatch delay, DSPDELAY (125), field.

127 (TYPE-S, ‘MXTDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set by the system parameter, MXT, being reached.

Note: The field is a subset of the first dispatch delay, DSPDELAY (125), field.

129 (TYPE-S, ‘ENQDELAY’, 8 BYTES)
The elapsed time waiting for a CICS Task Control ENQ. For more information
see “Clocks and time stamps” on page 547.

Note: This field is a subset of the task suspend time, SUSPTIME (014), field.

166 (TYPE-C, ‘TCLSNAME’, 8 BYTES)
Transaction class name. This field is null if the transaction is not in a
TRANCLASS.

170 (TYPE-S, ‘RMITIME’, 8 BYTES)
Amount of elapsed time spent in the Resource Manager Interface (RMI). For
more information see “Clocks and time stamps” on page 547, and Figure 61
on page 550.

562 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

171 (TYPE-S, ‘RMISUSP’, 8 BYTES)
Amount of elapsed time the task was suspended by the dispatcher while in the
Resource Manager Interface (RMI). For more information see “Clocks and time
stamps” on page 547, “A note about wait times” on page 548, and Figure 61
on page 550.

Note: The field is a subset of the task suspend time, SUSPTIME (014), field
and also the RMITIME (170) field.

Performance data in group DFHTERM
002 (TYPE-C, ‘TERM’, 4 BYTES)

Terminal or session identification. This field is null if the task is not associated
with a terminal or session.

009 (TYPE-S, ‘TCIOWTT’, 8 BYTES)
Elapsed time for which the user task waited for input from the terminal operator,
after issuing a RECEIVE request. For more information see “Clocks and time
stamps” on page 547, and “A note about wait times” on page 548.

034 (TYPE-A, ‘TCMSGIN1’, 4 BYTES)
Number of messages received from the task’s principal terminal facility,
including LUTYPE6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

035 (TYPE-A, ‘TCMSGOU1’, 4 BYTES)
Number of messages sent to the task’s principal terminal facility, including
LUTYPE6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

067 (TYPE-A, ‘TCMSGIN2’, 4 BYTES)
Number of messages received from the LUTYPE6.1 alternate terminal facilities
by the user task.

068 (TYPE-A, ‘TCMSGOU2’, 4 BYTES)
Number of messages sent to the LUTYPE6.1 alternate terminal facilities by the
user task.

069 (TYPE-A, ‘TCALLOCT’, 4 BYTES)
Number of TCTTE ALLOCATE requests issued by the user task for LUTYPE6.2
(APPC), LUTYPE6.1, and IRC sessions.

083 (TYPE-A, ‘TCCHRIN1’, 4 BYTES)
Number of characters received from the task's principal terminal facility,
including LUTYPE6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

084 (TYPE-A, ‘TCCHROU1’, 4 BYTES)
Number of characters sent to the task's principal terminal facility, including
LUTYPE6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

085 (TYPE-A, ‘TCCHRIN2’, 4 BYTES)
Number of characters received from the LUTYPE6.1 alternate terminal facilities
by the user task. (Not applicable to ISC APPC.)

086 (TYPE-A, ‘TCCHROU2’, 4 BYTES)
Number of characters sent to the LUTYPE6.1 alternate terminal facilities by the
user task. (Not applicable to ISC APPC.)

 Chapter 18. CICS monitoring 563

 monitoring data

100 (TYPE-S, ‘IRIOWTT’, 8 BYTES)
Elapsed time for which the user task waited for control at this end of an MRO
link. For more information see “Clocks and time stamps” on page 547, and “A
note about wait times” on page 548.

111 (TYPE-C, ‘LUNAME’, 8 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. If the task is executing in an application-owning or file-owning
region then the luname is the generic applid of the originating connection for
LUTYPE6.1 and LUTYPE6.2 (APPC). The luname is blank if the originating
connection is either MRO (ISC) or external CICS interface (EXCI).

133 (TYPE-S, ‘LU61WTT’, 8 BYTES)
The elapsed time for which the user task waited for I/O on a LUTYPE6.1
connection or session. This time also includes the waits incurred for
conversations across LUTYPE6.1 connections, but not the waits incurred due
to LUTYPE6.1 syncpoint flows. For more information see “Clocks and time
stamps” on page 547, and “A note about wait times” on page 548.

134 (TYPE-S, ‘LU62WTT’, 8 BYTES)
The elapsed time for which the user task waited for I/O on a LUTYPE6.2
(APPC) connection or session. This time also includes the waits incurred for
conversations across LUTYPE6.2 (APPC) connections, but not the waits
incurred due to LUTYPE6.2 (APPC) syncpoint flows. For more information see
“Clocks and time stamps” on page 547, and “A note about wait times” on
page 548.

135 (TYPE-A, ‘TCM62IN2’, 4 BYTES)
Number of messages received from the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

136 (TYPE-A, ‘TCM62OU2’, 4 BYTES)
Number of messages sent to the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

137 (TYPE-A, ‘TCC62IN2’, 4 BYTES)
Number of characters received from the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

138 (TYPE-A, ‘TCC62OU2’, 4 BYTES)
Number of characters sent to the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

Performance data in group DFHTEMP
011 (TYPE-S, ‘TSIOWTT’, 8 BYTES)

Elapsed time for which the user task waited for VSAM temporary storage I/O.
For more information see “Clocks and time stamps” on page 547, and “A note
about wait times” on page 548.

044 (TYPE-A, ‘TSGETCT’, 4 BYTES)
Number of temporary-storage GET requests issued by the user task.

046 (TYPE-A, ‘TSPUTACT’, 4 BYTES)
Number of PUT requests to auxiliary temporary storage issued by the user
task.

564 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

047 (TYPE-A, ‘TSPUTMCT’, 4 BYTES)
Number of PUT requests to main temporary storage issued by the user task.

092 (TYPE-A, ‘TSTOTCT’, 4 BYTES)
Total number of temporary-storage requests issued by the user task. This field
is the sum of TSGETCT, TSPUTACT, and TSPUTMCT.

Exception class data
Exception records are produced after each of the following conditions encountered
by a transaction has been resolved:

� Wait for storage in the CDSA
� Wait for storage in the UDSA
� Wait for storage in the SDSA
� Wait for storage in the RDSA
� Wait for storage in the ECDSA
� Wait for storage in the EUDSA
� Wait for storage in the ESDSA
� Wait for storage in the ERDSA
� Wait for auxiliary temporary storage
� Wait for auxiliary temporary storage string
� Wait for auxiliary temporary storage buffer
� Wait for file string
� Wait for file buffer
� Wait for LSRPOOL string

Exception records are fixed format (their format is shown on page 545).

 Exception data
EXCMNTRN (TYPE-C, 4 BYTES)

Transaction identification. This field is null if the task is not associated with a
terminal or session.

EXCMNTER (TYPE-C, 4 BYTES)
Terminal identification. This field is null if the task is not associated with a
terminal or session.

EXCMNUSR (TYPE-C, 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an
MRO or APPC link with attach-time security enabled.

EXCMNTST (TYPE-C, 4 BYTES)
Transaction start type. The low-order byte (0 and 1) is set to:

'TO' Attached from terminal input.
'S' Attached by automatic transaction initiation (ATI) without data.
'SD' Attached by automatic transaction initiation (ATI) with data.
'QD' Attached by transient data trigger level.
'U ' Attached by user request.
'TP' Attached from terminal TCTTE transaction ID.
'SZ' Attached by Front End Programming Interface (FEPI).

EXCMNSTA (TYPE-T, 8 BYTES)
Start time of the exception.

 Chapter 18. CICS monitoring 565

 monitoring data

EXCMNSTO (TYPE-T, 8 BYTES)
Finish time of the exception.

Note: The performance class exception wait time field, EXWTTIME (103), is a
calculation based on subtracting the start time of the exception (EXCMNSTA)
from the finish time of the exception (EXCMNSTO).

EXCMNTNO (TYPE-P, 4 BYTES)
Transaction identification number.

EXCMNTPR (TYPE-C, 4 BYTES)
Transaction priority when monitoring was initialized for the task (low-order byte).

EXCMNLUN (TYPE-C, 4 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. This field is nulls if the task is not associated with a terminal.

EXCMNEXN (TYPE-A, 4 BYTES)
Exception sequence number for this task.

EXCMNRTY (TYPE-C, 8 BYTES)
Exception resource type. The possible values for EXCMNRTY are shown in
Table 129 on page 567.

EXCMNRID (TYPE-C, 8 BYTES)
Exception resource identification. The possible values for EXCMNRID are
shown in Table 129 on page 567.

EXCMNTYP (TYPE-A, 2 BYTES)
Exception type. This field can be set to one of the following values:

X'0001' Exception due to a wait (EXCMNWT).
X'0002' Exception due to a buffer wait (EXCMNBWT).
X'0003' Exception due to a string wait (EXCMNSWT).

EXCMNTCN (TYPE-C, 8 BYTES)
Transaction class name. This field is null if the transaction is not in a
transaction class.

The following table shows the value and relationships of the fields EXCMNTYP,
EXCMNRTY, and EXCMNRID.

566 CICS Transaction Server for VSE/ESA Customization Guide

 monitoring data

Table 129. Possible values of EXCMNTYP, EXCMNRTY, and EXCMNRID. The
relationship between exception type, resource type, and resource identification.

EXCMNTYP

Exception
type

EXCMNRTY

Resource
type

EXCMNRID

Resource
ID

 MEANING

EXCMNWT ‘STORAGE’ ‘UDSA’ Wait for UDSA storage

EXCMNWT ‘STORAGE’ ‘EUDSA’ Wait for EUDSA storage

EXCMNWT ‘STORAGE’ ‘CDSA’ Wait for CDSA storage

EXCMNWT ‘STORAGE’ ‘ECDSA’ Wait for ECDSA storage

EXCMNWT ‘STORAGE’ ‘SDSA’ Wait for SDSA storage

EXCMNWT ‘STORAGE’ ‘ESDSA’ Wait for ESDSA storage

EXCMNWT ‘STORAGE’ ‘RDSA’ Wait for RDSA storage

EXCMNWT ‘STORAGE’ ‘ERDSA’ Wait for ERDSA storage

EXCMNWT ‘TEMPSTOR’ TS Qname Wait for temporary storage

EXCMNSWT ‘FILE’ filename Wait for string associated with file

EXCMNSWT ‘LSRPOOL’ filename Wait for string associated with LSRPOOL

EXCMNSWT ‘TEMPSTOR” TS Qname Wait for string associated with DFHTEMP

EXCMNBWT ‘LSRPOOL’ LSRPOOL Wait for buffer associated with LSRPOOL

EXCMNBWT ‘TEMPSTOR’ TS Qname Wait for buffer associated with DFHTEMP

 Chapter 18. CICS monitoring 567

 monitoring data

568 CICS Transaction Server for VSE/ESA Customization Guide

 statistics—introduction

 Chapter 19. CICS statistics

This chapter is divided into the following sections:

1. “Introduction to CICS statistics” describes the types of statistics data, and
the use of the EXEC CICS COLLECT STATISTICS command.

2. “CICS statistics record format” on page 573 describes the format of CICS
statistics SMF type 110 records.

3. “Global user exit in the CICS statistics domain” on page 578 suggests ways
in which you can use the XSTOUT statistics exit.

4. “Processing the output from CICS statistics” on page 578 lists the methods
of processing statistics data.

Introduction to CICS statistics
CICS statistics contain information about the CICS system as a whole—for
example, its performance and usage of resources. Statistics data is therefore
useful both for performance tuning and for capacity planning.

Statistics are collected during CICS online processing for later offline analysis. The
statistics domain writes statistics records to a Data Management Facility (DMF)
data set. The records are of System Management Facility (SMF) type 110, subtype
0002.10

Types of statistics data
CICS produces five types of statistics: interval, end-of-day, requested, requested
reset , and unsolicited .

Interval statistics
are gathered by CICS during a specified interval. CICS writes the interval
statistics to the DMF data set automatically at the expiry of that interval if:

� Statistics recording status was set ON by the STATRCD system
initialization parameter (and has not subsequently been set OFF by a
CEMT SET STATISTICS or EXEC CICS SET STATISTICS RECORDING
command). The default value of STATRCD is OFF.

 or

� ON is specified on CEMT SET STATISTICS.

 or

� The RECORDING option of the EXEC CICS SET STATISTICS command is
set to ON.

When interval statistics are written, the statistics counters are reset. See
“Resetting statistics counters” on page 572.

10 Monitoring records are also written to the DMF data set as SMF type 110 records. (Some journaling type 110 records can be
written there, too.) You might find it useful to process the statistics records and the monitoring records together, because statistics
provide resource and system information that is complementary to the transaction data produced by CICS monitoring.

 Copyright IBM Corp. 1977, 1999 569

 statistics—introduction

You can change the interval duration using CEMT SET STATISTICS and the
EXEC CICS SET STATISTICS command. The default interval duration is 3
hours for a cold start of CICS.

End-of-day statistics
are a special case of interval statistics. They are the statistics for the duration
between the last time the statistics counters were reset and:

� The end-of-day expiry time, or
� When CICS quiesces (normal shutdown), or
� When CICS terminates (immediate shutdown)

For details of the events at which statistics counters are reset, see “Resetting
statistics counters” on page 572.

The end-of-day value defines a logical point in the 24-hour operation of CICS.
You can change the end-of-day value using CEMT SET STATISTICS or the
EXEC CICS SET STATISTICS command. CICS writes end-of-day statistics to
DMF even if, on one of the following, you have specified OFF:

� The STATRCD system initialization parameter
� The CEMT SET STATISTICS command
� The RECORDING option of the EXEC CICS SET STATISTICS command

The default end-of-day value is 12 midnight. When end-of-day statistics are
written, the statistics counters are reset.

Requested statistics
are statistics which the user has asked for using one of the following
commands:

� CEMT PERFORM STATISTICS RECORD
� EXEC CICS PERFORM STATISTICS RECORD
� EXEC CICS SET STATISTICS ON|OFF RECORDNOW

CICS writes requested statistics to DMF even if, on one of the following, you
have specified OFF:

� The STATRCD system initialization parameter
� The CEMT SET STATISTICS command
� The RECORDING option of the EXEC CICS SET STATISTICS command

Statistics counters are not reset.

Requested reset statistics
differ from requested statistics in that all statistics are collected, and all
statistics counters are reset. They are invoked by either of the commands:

� CEMT PERFORM STATISTICS RECORD ALL(RESETNOW)
� EXEC CICS PERFORM STATISTICS RECORD ALL(RESETNOW)

You can also invoke requested reset statistics when setting statistics recording
status ON or OFF, using either of the commands:

� CEMT SET STATISTICS ON|OFF RECORDNOW RESETNOW
� EXEC CICS SET STATISTICS ON|OFF RECORDNOW RESETNOW

Note that it is valid to specify the RECORDNOW RESETNOW options only
when there is a genuine change of recording status. For example, coding

570 CICS Transaction Server for VSE/ESA Customization Guide

 statistics—introduction

EXEC CICS SET STATISTICS ON RECORDNOW RESETNOW when
STATISTICS is already set ON causes an error response.

CICS writes requested reset statistics to DMF even if, on one of the following,
you have specified OFF:

� The STATRCD system initialization parameter
� The CEMT SET STATISTICS command
� The RECORDING option of the EXEC CICS SET STATISTICS command

Unsolicited statistics
are automatically gathered by CICS for dynamically allocated and deallocated
resources. CICS writes these statistics to DMF just before the resource is
deleted if:

� Statistics recording status was set ON by the STATRCD system
initialization parameter (and has not subsequently been set OFF by a
CEMT SET STATISTICS or EXEC CICS SET STATISTICS RECORDING
command).

 or

� ON is specified on CEMT SET STATISTICS.

 or

� The RECORDING option of the EXEC CICS SET STATISTICS command is
set to ON.

CICS collects unsolicited statistics for:

Autoinstall
Whenever an autoinstalled terminal entry in the TCT is deleted,
CICS collects statistics covering the autoinstalled period since the
last interval. This period includes any delay interval specified on the
system initialization parameters AILDELAY or AIRDELAY.

If an autoinstall terminal logs on again before the expiry of the delay
interval, then the accumulation of statistics continues until the next
interval. At that interval, the accumulation of statistics is restarted.

FEPI nodes
Whenever an installed FEPI node definition is discarded, CICS
collects the statistics covering the installed period since the last
interval.

FEPI pools
Whenever an installed FEPI pool definition is discarded, CICS
collects the statistics covering the installed period since the last
interval.

FEPI targets
Whenever an installed FEPI target definition is discarded, CICS
collects the statistics covering the installed period since the last
interval.

Files
Whenever CICS closes a file, CICS collects statistics covering the
period since the last interval.

 Chapter 19. CICS statistics 571

 statistics—introduction

LSRPOOL files
Whenever CICS closes a file which is in an LSRPOOL, it collects
LSRPOOL file statistics (as well as the file statistics), covering the
period from the last interval.

LSRPOOLs
When CICS closes the last file in an LSRPOOL, it collects the
statistics for the LSRPOOL.

Note that the following peak values are reset at each interval
collection:

� Peak number of requests waiting for a string
� Maximum number of concurrent active file control strings

However, the other statistics, which are not reset at an interval
collection, cover the entire period from the time the LSRPOOL is
created (when the first file is opened) until the LSRPOOL is deleted
(when the last file is closed).

Programs
Whenever an installed program definition is discarded, CICS collects
the statistics covering the installed period since the last interval.

System dumps
Whenever a system dump table entry is removed, CICS collects the
statistics covering the period since the last interval.

Transactions
Whenever an installed transaction definition is discarded, CICS
collects the statistics covering the installed period since the last
interval.

Transaction classes
Whenever an installed transaction class definition is discarded, CICS
collects the statistics covering the installed period since the last
interval.

Transaction dumps
Whenever a transaction dump table entry is removed, CICS collects
the statistics covering the period since the last interval.

For information about how to use the CEMT statistics commands, refer to the
CICS-Supplied Transactions manual. For programming information about the
EXEC CICS statistics commands, see the CICS System Programming Reference
manual.

Resetting statistics counters
Statistics counters are reset in the following circumstances:

� At CICS startup

� When interval statistics are written (but not when an interval occurs and no
statistics are written)

� At end of day

� When requested reset statistics are written

572 CICS Transaction Server for VSE/ESA Customization Guide

 format of statistics records

However, you can cause statistics counters to be reset without writing records to
the DMF data set. You do this by changing the statistics recording status, using
either of the commands:

� CEMT SET STATISTICS ON|OFF RESETNOW
� EXEC CICS SET STATISTICS ON|OFF RESETNOW

Note that it is valid to specify the RESETNOW option only when there is a genuine
change of recording status. For example, coding EXEC CICS SET STATISTICS
ON RESETNOW when STATISTICS is already set ON causes an error response.

 Important

Statistics counters are reset in various ways. Specific counters may be reset to:

 � 0
 � 1
� A new peak value

 � Not reset
� None of the above

For information about the resetting of specific statistics counters, refer to the
CICS Performance Guide.

The EXEC CICS COLLECT STATISTICS command
In addition to the types of statistics data described above, there is an online EXEC
CICS COLLECT STATISTICS function. Online statistics are collected and returned
to the invoking application.

The three sample programs DFH0STAT, DFH$STCN, and DFH$STAS show how
you can use the EXEC CICS COLLECT STATISTICS and EXEC CICS INQUIRE
commands to produce a useful analysis of a CICS Transaction Server for VSE/ESA
system. The programs produce a report showing critical system parameters from
the CICS dispatcher, together with loader statistics and an analysis of the CICS
storage manager. DFH0STAT is provided in COBOL; DFH$STCN and DFH$STAS
are provided in assembler language; all in the VSE/ESA sublibrary PRD1.BASE.

For programming information about the COLLECT STATISTICS command, see the
CICS System Programming Reference manual.

For information about installing and operating the sample statistics programs, see
the CICS System Definition Guide. For information about the data produced by the
programs, see the CICS Performance Guide.

CICS statistics record format
This section describes the format of CICS statistics SMF type 110 records in detail.
You need this information if you write your own program to analyze the statistics
data. The three components of a CICS statistics record are an SMF header, an
SMF product section, and a CICS data section, as shown in Figure 64 on
page 574. Each of these is described in the sections that follow.

 Chapter 19. CICS statistics 573

 format of statistics records

SMF SMF Product CICS Data
Header Section Section

Figure 64. Format of an SMF type 110 statistics record

SMF header and SMF product section
The SMF header describes the system creating the output. The SMF product
section identifies the subsystem to which the statistics data relates, which, in the
case of CICS statistics, is the CICS region. Both the SMF header and the SMF
product section can be mapped by the DSECT STSMFDS, which you can generate
using the DFHSTSMF macro as follows:

STSMFDS DFHSTSMF PREFIX=SMF

The label ‘STSMFDS’ is the default DSECT name, and SMF is the default PREFIX
value, so you could also generate the DSECT simply by coding

DFHSTSMF

.

The STSMFDS DSECT has the format shown in Figure 65.

\ START THE SMF HEADER

\

STSMFDS DSECT

SMFSTLEN DS XL2 RECORD LENGTH

SMFSTSEQ DS XL2 SEGMENT DESCRIPTOR

SMFSTFLG DS X OPERATING SYSTEM INDICATOR (see note 1)

SMFSTRTY DC X'6E' RECORD TYPE 11ð FOR CICS

SMFSTTME DS XL4 TIME RECORD MOVED TO SMF

SMFSTDTE DS XL4 DATE RECORD MOVED TO SMF

SMFSTSID DS XL4 SYSTEM IDENTIFICATION

SMFSTSSI DS CL4'CICS' SUBSYSTEM IDENTIFICATION

SMFSTSTY DS XL2 RECORD SUBTYPE X'ððð2' FOR STATISTICS

SMFSTTRN DS XL2 NUMBER OF TRIPLETS

 DS XL2 RESERVED

SMFSTAPS DS XL4 OFFSET TO PRODUCT SECTION

SMFSTLPS DS XL2 LENGTH OF PRODUCT SECTION

SMFSTNPS DS XL2 NUMBER OF PRODUCT SECTIONS

SMFSTASS DS XL4 OFFSET TO DATA SECTION

SMFSTASL DS XL2 LENGTH OF DATA SECTION

SMFSTASN DS XL2 NUMBER OF DATA SECTIONS

\

\ THIS CONCLUDES THE SMF HEADER

\

Figure 65 (Part 1 of 2). Format of the SMF header and product section for statistics
records

574 CICS Transaction Server for VSE/ESA Customization Guide

 format of statistics records

\ START THE SMF PRODUCT SECTION

\

SMFSTRVN DS XL2 RECORD VERSION

SMFSTPRN DS CL8 PRODUCT NAME (GENERIC APPLID)

SMFSTSPN DS CL8 PRODUCT NAME (SPECIFIC APPLID)

SMFSTMFL DS XL2 RECORD MAINTENANCE INDICATOR

 DS XL2 RESERVED

 DS XL2 RESERVED

SMFSTDTK DS XL4 DOMAIN TOKEN

SMFSTDID DS CL2 DOMAIN ID

SMFSTRQT DS CL3 USS/EOD/REQ/INT STATISTICS TYPE

SMFSTICD DS CL3 YES IF INCOMPLETE DATA RECORDED

SMFSTDAT DS CL8 COLLECTION DATE MMDDYYYY

SMFSTCLT DS CL6 COLLECTION TIME HHMMSS

 DS XL2 RESERVED

SMFSTINT DS CL6 INTERVAL HHMMSS. See note 3.

SMFSTINO DS XL4 INTERVAL NUMBER. See note 3.

SMFSTRTK DS XL8 REQUEST TOKEN

SMFSTLRT DS CL6 LAST RESET TIME HHMMSS

SMFSTCST DS XL8 CICS START TIME

SMFSTJBN DS CL8 JOBNAME

SMFSTRSD DS XL4 JOB DATE

SMFSTRST DS XL4 JOB TIME

SMFSTUIF DS CL8 USER IDENTIFICATION

SMFSTPDN DS CL8 OPERATING SYSTEM PRODUCT LEVEL

\

\ THIS CONCLUDES THE SMF PRODUCT SECTION

Figure 65 (Part 2 of 2). Format of the SMF header and product section for statistics
records

Notes:

1. CICS sets only the subsystem-related bits of the operating system indicator flag
byte in the SMF header (SMFSTFLG). DMF sets the remainder of the byte
according to the operating system level and other factors. For an explanation
of the setting of the other bits, refer to the CICS Operations and Utilities Guide.

2. The copy book DFHSMFDS is also provided and can be used to map the SMF
header and the SMF product sections of both subtypes of SMF type 110
records written by CICS monitoring and CICS statistics.

3. Fields SMFSTINT and SMFSTINO are only relevant if SMFSTRQT is ‘INT’.
Otherwise both values should be ignored.

 Chapter 19. CICS statistics 575

 format of statistics records

CICS statistics data section
The format of the CICS statistics data section is shown in Figure 66.

SMF Header SMF Product Section Statistics Data Section

Statistics Statistics Statistics Statistics Statistics
Record 1 Record 2 Record 3 Record 4 Record n

Figure 66. Format of the statistics data section

If the data records are incomplete, the flag field SMFSTICD is set to ‘YES’. In this
case, the statistics data section is not present.

For complete data records, the statistics data section is made up of one or more
statistics data records. There are different formats of data records. Each has a
common format for the first 5 bytes. These 5 bytes are described in the extract
from copy book DFHSTIDS in Figure 67.

DFHSTIDS DSECT Statistics record header

\

 DS ðF Fullword alignment

STILEN DS H Length of the record

STID DS AL2 Statistics identifier

STIVERS DS CL1 Statistics record version

Figure 67. Extract from copy book DFHSTIDS

STILEN
is the length of the data record.

STID
identifies which type of statistics record you have (see Figure 68 on page 577).

You can use the STID symbolic name or value to determine which copy book
to use when processing the statistics data records. For details about the
relationship between the STID name or value and the copy book, see
Figure 68 on page 577. For further guidance information about the fields
within the statistics data records, see the CICS Performance Guide.

STIVERS
takes the value ‘1’ for this release of CICS.

576 CICS Transaction Server for VSE/ESA Customization Guide

 format of statistics records

 STID STID
 Symbolic Value Copy book Type of record
 name

STISMDSA 2 DFHSMSDS Storage manager DSA id

STISMD 5 DFHSMDDS Storage mgr domain subpool id

STISMT 6 DFHSMTDS Storage manager task subpool id

STIXMG 1ð DFHXMGDS Transaction manager (Globals) id

STIXMR 11 DFHXMRDS Transaction manager (Trans) id

STIXMC 12 DFHXMCDS Transaction manager (Tclass) id

STIFEPIP 16 DFHA22DS FEPI pool id

STIFEPIC 17 DFHA23DS FEPI connection id

STIFEPIT 18 DFHA24DS FEPI target id

STIVT 21 DFHAð3DS VTAM stats id

STIAUSS 22 DFHAUSDS Terminal Autoinstall USS id

STIPAUTO 23 DFHPGGDS Program Autoinstall id

STIAUTO 24 DFHAð4DS Terminal Autoinstall stats id

STILDR 25 DFHLDRDS Loader (Resid) id

STILDG 3ð DFHLDGDS Loader (Globals) id

STIDTB 33 DFHAð5DS DTB statistics id

STITCR 34 DFHAð6DS Terminal control (resid) id

STILSRR 39 DFHAð8DS LSRPOOL pool stats (resid) id

STILSRFR 4ð DFHAð9DS LSRPOOL File statistics (by file)

STITDQR 43 DFHA1ðDS TDQUEUE (Resid) id

STITDQG 45 DFHA11DS TDQUEUE (globals) id

STITSQ 48 DFHA12DS TSQUEUE statistics id

STIJCR 49 DFHA13DS Journal control (Resid) id

STICONSR 52 DFHA14DS ISC/IRC system entry (resid) id

STICONSS 54 DFHA21DS ISC connection - system security

STIDS 56 DFHDSGDS Dispatcher stats id

STIUSG 61 DFHUSGDS User domain stats id

STITM 63 DFHA16DS Table manager statistics id

STIST 66 DFHSTGDS Statistics statistics id

STIFCR 67 DFHA17DS File Control (resid) id

STICONMR 76 DFHA2ðDS ISC/IRC mode entry (resid) id

STIMNR 8ð DFHMNTDS Monitoring stats (Resid) id

STIM 81 DFHMNGDS Monitoring stats (global) id

STITDR 85 DFHTDRDS Transaction dump (resid) id

STITDG 87 DFHTDGDS Transaction dump (global) id

STISDR 88 DFHSDRDS System dump (resid) id

STISDG 9ð DFHSDGDS System dump (global) id

Figure 68. Statistics data record copy books related to STID name and value

 Chapter 19. CICS statistics 577

 processing statistics

Global user exit in the CICS statistics domain
There is one global user exit point (XSTOUT) in the CICS statistics domain. The
exit is invoked before the contents of a statistics data buffer is written to DMF. At
this exit, the following information is available:

� The address of the statistics buffer
� The length of the statistics buffer
� The address of the statistics type

This applies to all five types of statistics: interval, end-of-day, requested, requested
reset, and unsolicited statistics.

If you write a global user exit program to be invoked at this exit, you can examine
this information and tell CICS either to write the contents of the buffer to DMF or to
suppress its output.

For more information about global user exits in general, and about the statistics exit
in particular, refer to Chapter 1, “Global user exit programs” on page 3.

Processing the output from CICS statistics
You can use to process statistics output using:

The supplied program, DFHSTUP
For information about how to run DFHSTUP, refer to the CICS Operations and
Utilities Guide. For information about how to interpret the report produced by
DFHSTUP, refer to the CICS Performance Guide.

Your own program
to report and analyze the data in the statistics records.

578 CICS Transaction Server for VSE/ESA Customization Guide

 user interface to DMF

Chapter 20. The user interface to DMF

This chapter tells you how to write non-CICS programs that use the CICS Data
Management Facility (DMF) to store monitoring information.

Note: For information about storing monitoring data from CICS programs, refer to
Chapter 18, “CICS monitoring” on page 531.

The chapter is divided into the following sections:

1. “Introduction” describes the interface and the programming prerequisites to
be able to use the interface.

2. “The DFHEWTM macro” on page 579 describes the format of the macro used
to pass data to DMF.

3. “SMF headers” on page 581 describes the two formats of header required to
describe the data passed to DMF.

4. “Writing an interpretation program” on page 583 contains useful information
for writing a program to interpret your data.

 Introduction
As well as being provided for use by CICS, DMF can also be used to store data
from non-CICS programs. DMF can therefore be used as a central repository for
monitoring data from the whole VSE/ESA system.

Data is passed to DMF by the DFHEWTM macro. The record must conform to the
layout of OS/390 System Management Facility (SMF) records, as described in
“SMF headers” on page 581

Because DMF uses MVS macros to protect its resources, any user program that
wants to pass data to DMF must run in OS390 emulation—that is, the EXEC
statement must specify the OS390 option. (Refer to the VSE/ESA System Control
Statements manual for details). There are no restrictions on the AMODE of the
calling program and the DFHEWTM macro may be issued from above or below the
16MB line. Similarly, the data to be passed may reside above or below the 16MB
line.

To manipulate data that is passed to DMF, you can use the CICS-supplied utility
program, DFHDFOU. For details of DFHDFOU, see the CICS Operations and
Utilities Guide. However, the interpretation of any user data must be performed by
your own program—see “Writing an interpretation program” on page 583.

The DFHEWTM macro
There are three DFHEWTM functions. These are the DFHEWTM calls GEN,
TEST, and WRITE. DFHEWTM is provided in assembler-language only.

 Copyright IBM Corp. 1977, 1999 579

 user interface to DMF

The GEN call
GEN defines assembler-language constants that describe the state of DMF. These
may be used after the TEST call to determine whether to issue a WRITE call.

 DFHEWTM GEN

The TEST call
TEST returns the current state of DMF in the field provided by the user. The value
returned may be compared with the constants provided by the GEN call to
determine whether to issue a WRITE call.

 DFHEWTM TEST

 ,STATUS=field

 ,REG=n

REG=n
specifies a work register to be used by the macro. Any valid register may be
used, except register 0.

STATUS=field
specifies the name of a 1-byte field into which the status of DMF is to be
placed. The value returned will be one of:

DMF_ABEND DMF has suffered an abend while in cross-memory
mode. In this state no attempt should be made to
pass data to DMF.

DMF_ACTIVE DMF is running and can accept data.

DMF_INITIALIZING DMF is being initialized.

DMF_SHUTDOWN DMF is being closed.

DMF_STOPPED The DMF partition is not running.

DMF_SUSPENDED DMF has been started but has been temporarily
suspended.

The WRITE call
WRITE causes data to be passed to DMF. Before attempting to pass the data to
DMF, the macro ensures that the executing program is running with OS390
emulation active.

 DFHEWTM WRITE

 ,RECORD

 ,SUBSYS=sid

 [,REG=n]

580 CICS Transaction Server for VSE/ESA Customization Guide

 user interface to DMF

REG=n
specifies a work register to be used by the macro. Any valid register may be
used, except register 0. If you do not specify a value, register 1 is used by the
macro.

RECORD
specifies the record to be written. This may be the name of a field or a
general-purpose register. If specified as a register, it must be enclosed in
parentheses. For a description of the format of the record, see “SMF headers.”

SUBSYS=sid
specifies a 4-character identifier that can be used by your interpretation routine
to identify the caller of the macro.

This value may be the name of a field or a general-purpose register. If
specified as a register, it must be enclosed in parentheses.

The WRITE call sets a return code in register 15 to indicate the result of the
operation. Table 130 shows the possible return codes.

Table 130. Return codes set by the WRITE call

Decimal Hex Description

0 0 The record was written without an error.

8 8 The record was not written because the record length specified
in the RDW was less than 18 bytes.

16 10 The record was not written because DMF was not active.

24 18 The record was not written because the record has been lost,
or an error (other than there being no space available, when
the return code is X'28') has prevented DMF from writing it to
the data space.

36 24 The record was not written because the record type specified is
not currently being recorded.

40 28 The record was not written because there is insufficient space
available in the DMF data space to hold it.

44 2C The record was not written because the macro was issued
from a program not running with OS390 emulation.

 SMF headers
Data records written to DMF must contain header information that conforms to the
format prescribed for SMF records. The header may take two forms—which one
you choose depends on whether you want to include record sub-types to describe
your records. CICS uses sub-types to differentiate between records of the same
record-type—for example, between monitoring and statistics records.

There are no supplied macros to create the DSECTs described below.

 Chapter 20. The user interface to DMF 581

 user interface to DMF

Notes:

1. Record types 0 through 127, which are SMF-formatted records, are reserved
for IBM products. For record types 0 through 127, you must supply the record
descriptor word and the record type field in the standard SMF record header.
The DFHEWTM macro supplies the remaining information.

2. Record types 128 through 255 are available for user-written records. When
using the DFHEWTM macro to write user records you must provide the
standard SMF record header, including the record descriptor word, the date,
time and system identifier.

SMF header for records without sub-types
Table 131. SMF header for records without sub-types

Offset Name Lngth Format Description

0 0 SMFMLEN 2 Binary Record length (maximum size of 32756).
This field and the next field (total of 4
bytes) form the record descriptor word
(RDW). This field must contain the logical
record length including the RDW. The next
field should be set to hexadecimal zeroes.

2 2 SMFMSEG 2 Binary Reserved.

4 4 SMFMFLG 1 Binary System indicator. Set to X'84' for VSE.

5 5 SMFMRTY 1 Binary Record type. (Hexadecimal values are
0–FF).

6 6 SMFMTME 4 Binary Time since midnight, in hundredths of a
second, when record was submitted to
DMF.

10 A SMFMDTE 4 Packed Date record was submitted to DMF, in the
form ðcyydddF. (Where F is the sign, c is a
century indicator 0=1900, 1=2000, 2=2100,
etc; yy is the year of the century, and ddd is
the day number.)

14 E SMFMSID 4 EBCDIC System identification (taken from DMF
start-up option SID).

SMF header for records with sub-types
Table 132 (Page 1 of 2). SMF header for records with sub-types

Offset Name Lngth Format Description

0 0 SMFMLEN 2 Binary Record length (maximum size of 32756).
This field and the next field (total of 4
bytes) form the record descriptor word
(RDW). This field must contain the logical
record length including the RDW. The next
field should be set to hexadecimal zeroes.

2 2 SMFMSEG 2 Binary Reserved.

4 4 SMFMFLG 1 Binary System indicator. Set to X'C4' for VSE.

5 5 SMFMRTY 1 Binary Record type. (Hexadecimal values are
0–FF).

582 CICS Transaction Server for VSE/ESA Customization Guide

 user interface to DMF

Table 132 (Page 2 of 2). SMF header for records with sub-types

Offset Name Lngth Format Description

6 6 SMFMTME 4 Binary Time since midnight, in hundredths of a
second, when record was submitted to
DMF.

10 A SMFMDTE 4 Packed Date record was submitted to DMF, in the
form ðcyydddF. (Where F is the sign, c is a
century indicator 0=1900, 1=2000, 2=2100,
etc; yy is the year of the century, and ddd is
the day number.)

14 E SMFMSID 4 EBCDIC System identification (taken from DMF
start-up option SID).

18
12

SMFMSSI 4 EBCDIC Subsystem identification (taken from the
SUBSYS parameter specified on the
DFHEWTM macro).

22
16

SMFMSTY 2 Binary Record sub-type. (Hexadecimal values are
0-FF).

Writing an interpretation program
Once data has been collected by DMF, and has been off-loaded to a sequential file
as described in the CICS Operations and Utilities Guide, you can start to process it.
You could use DFHJUP to select only your records from the sequential file, or to
simply ignore data that your interpretation program is not interested in. For
examples of how to do this, see the CICS Operations and Utilities Guide.

You should use sequential access methods to read your data. Use the following
information to create the DTF to use for reading your data:

Record format: VARBLK

Block size: 32767

A good source of information regarding an interpretation routine is the
CICS-supplied sample program DFH$MOLS, which is supplied in assembler form in
PRD1.BASE.

 Chapter 20. The user interface to DMF 583

 user interface to DMF

584 CICS Transaction Server for VSE/ESA Customization Guide

 customizing security processing

Part 6. Customizing CICS security processing

Table 133. Security road map

If you want to... Refer to...

Write an interface to an ESM Chapter 21, “Invoking an external security
manager” on page 587

Write a transaction to be invoked when a
user’s terminal-timeout period expires

Chapter 22, “Writing a “good night”
program” on page 597

 Copyright IBM Corp. 1977, 1999 585

 customizing security processing

586 CICS Transaction Server for VSE/ESA Customization Guide

 the VSE/ESA router

Chapter 21. Invoking an external security manager

CICS provides an interface to an external security manager (ESM), which may be
the Basic Security Manager (BSM) supplied by VSE/ESA, a vendor product, or
user-written. This chapter gives an overview of the CICS–ESM interface, and
describes how you can use the VSE/ESA router exit to pass control to a
user-written ESM. It describes how ESM exit programs can access CICS-related
information. Finally, it lists the control points at which CICS invokes the ESM.

For definitive information about security processing, you should refer to the
CICS Security Guide.

The chapter is divided into the following sections:

1. “An overview of the CICS–ESM interface”
2. “The VSE/ESA router”
3. “How ESM exit programs access CICS-related information” on page 590
4. “CICS security control points” on page 592
5. “Early verification processing” on page 594

An overview of the CICS–ESM interface
CICS security uses, via the RACROUTE macro, the VSE/ESA system authorization
facility (SAF) interface to route authorization requests to the ESM. Any ESM used
by CICS Transaction Server for VSE/ESA must conform to the SAF RACROUTE
interface. Normally, if a RACROUTE-conforming ESM is present, the VSE/ESA
router passes control to it. However, you can modify the action of the VSE/ESA
router by invoking the router exit. The router exit can be used, for example, to do
pre-processing before a vendor-supplied ESM is invoked, or to pass control to a
user-written ESM. (If you want to use your own security manager, you must
supply a VSE/ESA router exit routine.)

The control points at which CICS issues a RACROUTE macro to route
authorization requests are described in “CICS security control points” on page 592.

The VSE/ESA router
SAF provides your installation with centralized control over security processing, by
using a system service called the VSE/ESA router. The VSE/ESA router provides
a common system interface for all products providing resource control. The
resource-managing components and subsystems (such as CICS) call the VSE/ESA
router as part of certain decision-making functions in their processing, such as
access control checking and authorization-related checking. These functions are
called control points . This single SAF interface encourages the use of common
control functions shared across products and across systems.

If a RACROUTE-conforming ESM is available in the system, the VSE/ESA router
may pass control to the ESM’s router, which in turn invokes the appropriate ESM
function. (The parameter information and the ESM router table, which associates
router invocations with ESM functions, determine the appropriate function.)
However, before calling the ESM router, the VSE/ESA router calls an optional,
installation-supplied security-processing exit, if one has been installed.

 Copyright IBM Corp. 1977, 1999 587

 the VSE/ESA router

The VSE/ESA router exit
The VSE/ESA router provides an optional installation exit. You can use the router
exit to pass control to your own ESM, or for preprocessing before a
vendor-supplied ESM is invoked.

The VSE/ESA router exit routine is invoked whenever CICS (or another component
of your system) issues a RACROUTE macro. The router passes a parameter list
(generated by the RACROUTE macro) to the exit routine. In addition, the exit
receives the address of a 152-byte work area.

On entry to the exit routine, register 1 contains the address of the area described in
Table 134.

The exit must be named ICHRTX00 and must be located in the shared virtual area
(SVA).

Note: During signon processing, CICS issues the RACROUTE
REQUEST=VERIFY macro with the ENVIR=VERIFY option, in
problem-program state. (For an explanation of why CICS does this, see
“Early verification processing” on page 594.) The ESM requires
RACROUTE calls with the ACEE option to be issued in supervisor state.
Therefore, if you use an ICHRTX00 exit that intercepts CICS RACROUTE
calls, and replaces them with its own RACROUTE requests, your exit
program should not assume that a REQUEST=VERIFY call was made in
supervisor state.

When intercepting a REQUEST=VERIFY call, your exit program should
check the settings of the two high-order bits of the byte at offset 3 in the
RACINIT parameter list. If ENVIR=VERIFY was specified on the call (as in
CICS early verification), these bits are both set on. If this is the case, your
exit program should not issue any further RACROUTE macros. To do so
could cause abends in the ESM.

Table 134. Area addressed by register 1, on entry to exit routine

Offset Length Description

0 4 Parameter list address: points to the VSE/ESA router parameter
list. (See “The VSE/ESA router parameter list.”)

4 4 Work area address: points to a 152-byte work area that the exit
can use.

The VSE/ESA router parameter list
The VSE/ESA router parameter list is generated when the RACROUTE macro is
issued, and describes the security processing request by providing the request
type. If the router exit routine exists, the router passes the parameter list to this
exit. (If it does not exist, and if an ESM is active, the router passes the parameter
list to the ESM router.)

You can map the VSE/ESA router parameter list using the ICHSAFP macro. Its
format is shown in the RACF External Security Interface (RACROUTE) Macro
Reference manual. (For VSE considerations, refer to the VSE/ESA Planning
manual.)

588 CICS Transaction Server for VSE/ESA Customization Guide

 the VSE/ESA router

Router exit return codes
Your exit routine must return a return code in register 15. The hexadecimal values
of the return code are shown in Table 135.

Table 135. VSE/ESA router exit return codes

Code Meaning

0 The exit has completed successfully. Control proceeds to the ESM
front-end routine for further security processing and an invocation of the
ESM.

C8 The exit has completed successfully. The VSE/ESA router translates this
return code to a router return code of ‘0’ and returns control to the issuer of
the RACROUTE macro (CICS), bypassing ESM processing. (See the next
section.)

CC The exit has completed successfully. The VSE/ESA router translates this
return code to a router return code of ‘4’ and returns control to CICS,
bypassing ESM processing. (See the next section.)

D0 The exit has completed successfully. The VSE/ESA router translates this
return code to a router return code of ‘8’ and returns control to CICS,
bypassing ESM processing. (See the next section.)

Other If the exit routine sets any return code other than those described above,
the VSE/ESA router returns control directly to CICS and passes the
untranslated code as the router return code. Further ESM processing is
bypassed.

Passing control to a user-supplied ESM
Normally, a caller (such as CICS) invokes the VSE/ESA router and passes it
request type, requester, and subsystem parameters via the RACROUTE exit
parameter list. Using these parameters, the VSE/ESA router calls the router exit
which, on completing its processing, passes a return code to the router. If the
return code is ‘0’, as defined above, the router invokes the ESM. The ESM reports
the result of that invocation to the router by entering return and reason codes in
register 15 and register 0 respectively. The router converts the ESM return and
reason codes to router return and reason codes and passes them to the caller.
The router provides additional information to the caller by placing the unconverted
ESM return and reason codes in the first and second words of the router input
parameter list.

You can make the VSE/ESA router exit pass control to a user-written ESM. If you
do so you must provide CICS with the ESM return and reason codes that it expects
to receive. You set the router exit return code, as defined in Table 135, so that
any vendor-supplied ESM is not invoked; and you code the exit so that it places the
ESM return and reason codes in the first and second fullwords of the router input
parameter list. ESM return and reason codes are documented in the RACF
External Security Interface (RACROUTE) Macro Reference manual. (For VSE
considerations, refer to the VSE/ESA Planning manual.)

Note: Remember that it is possible for a subsystem other than CICS to call the
VSE/ESA router by issuing a RACROUTE macro. (Application programs too, may
issue RACROUTE macros directly.) Your router exit program can establish
whether the caller is CICS by checking the “eyecatcher” fields (UXPARROW,
UXPDFHXS, and UXPBLKID) in the installation data parameter list—see “The
installation data parameter list” on page 590.

 Chapter 21. Invoking an external security manager 589

 ESM exit programs

How ESM exit programs access CICS-related information
When CICS invokes the ESM, it passes information about the current CICS
environment, for use by an ESM exit program, in an installation data parameter
list .

The ESM parameter list
CICS (or another caller) passes information to your external security manager in
the ESM parameter list, the address of which can be calculated using field
SAFPRACP of the VSE/ESA router parameter list.

When the caller is CICS, the “INSTLN” field of the ESM parameter list points to the
installation data parameter list, which contains CICS-related information that can be
used by ESM exit programs.

The format of the ESM parameter list, and the actual name of the “INSTLN” field,
vary, depending on which CICS security event is being processed. (The “request
type” field (SAFPREQT) of the router parameter list shows why the ESM is being
called by indicating the RACROUTE REQUEST type.) Table 136 shows how some
formats of the ESM parameter list can be mapped using VSE/ESA macros.

Note: The INSTLN field points to the installation parameter list only if you specify
INSTLN on the ESMEXITS system initialization parameter. The default value of
this parameter is NOINSTLN, which means that no installation data is passed.

Table 136. Mapping the ESM parameter list

RACROUTE
REQUEST type

Parameter list
mapping macro

INSTLN
field name

VERIFY IRRPRIPL INITIPTR (X'10')

AUTH ICHACHKL ACHKIN31 (X'20')

FASTAUTH Not available Offset X'18'

LIST Not available Offset X'0C'

EXTRACT Not available None

The installation data parameter list
The installation data parameter list gives your ESM exit programs access to the
following information:

� The CICS security event being processed.

� Details of the current CICS environment. That is:

– The applid of the CICS region
– The common work area (CWA)
– The transaction being invoked
– The program being executed
– The CICS terminal identifier
– The VTAM LU name
– The terminal user area

You can map the installation parameter list using the macro DFHXSUXP. The
DSECT DFHXSUXP contains the following fields:

590 CICS Transaction Server for VSE/ESA Customization Guide

 ESM exit programs

UXPLEN A halfword containing the length of this parameter list in bytes.

UXPARROW Arrow “eyecatcher” (>).

UXPDFHXS The name of the owning component (DFHXS).

UXPBLKID The name of the block identifier (UXPARMS).

UXPPHASE Address of a 1-byte code that indicates the reason for the call to the
ESM (that is, the security event being processed). The code can
have one of the following values:

DEFAULT_SIGN_ON (X'01') Signon of default userid.
PRESET_SIGN_ON (X'02') Signon of preset security

terminal.
IRC_SIGN_ON (X'03') Link signon for IRC (MRO)

links.
LU61_SIGN_ON (X'04') Link signon for LUTYPE6.1

links.
LU62_SIGN_ON (X'05') Link signon for APPC links.
XRF_SIGN_ON (X'06') XRF tracking of signon.
ATTACH_SIGN_ON (X'07') Attach-time signon of link

user.
NON_TERMINAL_SIGN_ON (X'08') Non-terminal ADD_USER.
USER_SIGN_ON (X'10') Normal user signon.
DELETE_SIGN_OFF (X'22') Sign-off when terminal

deleted.
LINK_SIGN_OFF (X'25') Sign-off when link is closed.
XRF_SIGN_OFF (X'26') XRF tracking of sign-off.
ATTACH_SIGN_OFF (X'27') End-of-task sign-off of link

user.
NON_TERMINAL_SIGN_OFF (X'28') Non-terminal DELETE.
USER_SIGN_OFF (X'30') Normal user sign-off.
TIMEOUT_SIGN_OFF (X'31') Sign-off forced by TIMEOUT

expiry.
USRDELAY_SIGN_OFF (X'32') Sign-off forced by USRDELAY

expiry.
DEFERRED_SIGN_OFF (X'33') Sign-off deferred until task

end.
USER_ATTACH_CHECK (X'40') Transaction attach check for

user.
LINK_ATTACH_CHECK (X'41') Transaction attach check for

link.
EDF_ATTACH_CHECK (X'42') Transaction attach check for

CEDF.
USER_COMMAND_CHECK (X'50') Command checking for user.
LINK_COMMAND_CHECK (X'51') Command checking for link.
EDF_COMMAND_CHECK (X'52') Command checking for EDF.
USER_RESOURCE_CHECK (X'60') Resource checking for user.
LINK_RESOURCE_CHECK (X'61') Resource checking for link.
EDF_RESOURCE_CHECK (X'62') Resource checking for EDF.
USER_SURROGATE_CHECK (X'68') Surrogate checking for user.
LINK_SURROGATE_CHECK (X'69') Surrogate checking for link.
EDF_SURROGATE_CHECK (X'6A') Surrogate checking for EDF.
USER_QUERY_CHECK (X'70') Query checking for user.
LINK_QUERY_CHECK (X'71') Query checking for link.

 Chapter 21. Invoking an external security manager 591

 CICS security control points

EDF_QUERY_CHECK (X'72') Query checking for EDF.
INITIALIZE_SECURITY (X'80') Initialization of CICS security.
REBUILD_SECURITY (X'81') CEMT or command-level

SECURITY REBUILD.
XRF_TRACK_INITIALIZE (X'82') XRF tracking of initial or

rebuild.

UXPSUBSY Address of an area containing the CICS subsystem identifier.

UXPAPPL Address of an area containing the CICS application ID.

UXPCWA Address of the Common Work Area.

UXPTRAN Address of an area containing the transaction identifier.

UXPPROG Address of an area containing the program name. The address may
be zero if no program name can be identified.

UXPTERM Address of an area containing the terminal identifier. The address
may be zero if no terminal is associated with the request.

UXPLUNAM Address of an area containing the VTAM LU name. The address may
be zero if no terminal is associated with the request, or the area may
be blank if the terminal is not a VTAM terminal.

UXPTCTUA Address of the TCT user area.

UXPTCTUL Address of a fullword containing the length of the TCTUA.

UXPCOMM Address of a 2-word communication area.

CICS security control points
The following list summarizes the RACROUTE macros used by CICS to invoke the
ESM, and the control points at which they are issued.

RACROUTE
The “front end” to the macros described below, it invokes the VSE/ESA router.

RACROUTE REQUEST=VERIFY
Issued at operator signon (with the parameter ENVIR=CREATE), and at
sign-off (with the parameter ENVIR=DELETE). This macro creates or destroys
an access control environment element (ACEE). It is issued at the following
CICS control points:

Normal signon through EXEC CICS SIGNON
Signon of the default userid DFLTUSER
Signon of preset security terminals
Signon of MRO sessions
Signon of LUTYPE6.1 sessions
Signon of APPC sessions
Signon for XRF tracking of the above
Signon of the userid on attach requests (for all values of ATTACHSEC
except LOCAL)
Normal sign-off through EXEC CICS SIGNOFF
Sign-off when deleting a terminal
Sign-off when TIMEOUT expires
Sign-off of MRO sessions
Sign-off of LUTYPE6.1 sessions
Sign-off of APPC sessions

592 CICS Transaction Server for VSE/ESA Customization Guide

 CICS security control points

Sign-off for XRF tracking of the above
Sign-off of the userid on attach requests (for all values of ATTACHSEC
except LOCAL)

RACROUTE REQUEST=VERIFYX
This creates or deletes an ACEE in a single call. It is issued at the following
CICS control points:

� Signon, as an alternative to VERIFY, when an optimized signon is
performed for subsequent signons across an LU6.2 link with
ATTACHSEC(VERIFY).

� When an invalid password, or a passticket is presented, or an EXEC CICS
VERIFY PASSWORD command is issued.

RACROUTE REQUEST=FASTAUTH
Issued during resource checking, on behalf of a user who is identified by an
ACEE. It is the high-performance form of REQUEST=AUTH, using in-storage
resource profiles, and is issued at the following CICS control points:

When attaching local transactions
When checking link security for transaction attach
Transaction validation for MRO tasks
CICS resource checking
Link security check for a CICS resource
Transaction validation for EDF
Transaction validation for the transaction being tested (by EDF)
Remote DL/I PSB scheduling resource check
QUERY SECURITY with the RESTYPE option

RACROUTE REQUEST=AUTH
This is a higher path length form of resource checking. It is used:

� After a call to FASTAUTH indicates an access failure that requires logging.

� When a QUERY SECURITY request with the RESCLASS option is used.
This indicates a request for a resource for which CICS has not built
in-storage profiles. (If CICS has in fact built in-storage profiles,
REQUEST=AUTH uses them.)

RACROUTE REQUEST=LIST
Issued to create and delete the in-storage profile lists needed by
REQUEST=FASTAUTH. (One REQUEST=LIST macro is required for each
resource class.) It is issued at the following CICS control points:

When CICS security is being initialized
When an EXEC CICS REBUILD SECURITY is issued
When XRF tracks either of these events.

RACROUTE REQUEST=EXTRACT
Issued (with the parameters SEGMENT=SESSION,CLASS=APPCLU) during
verification of APPC BIND security, at the following CICS control point:

BIND of APPC sessions.

It is also issued (with the parameters SEGMENT=CICS,CLASS=USER) during
signon, at all the control points listed under RACROUTE REQUEST=VERIFY.

 Chapter 21. Invoking an external security manager 593

 early verification processing

For a detailed description of these macros, see the RACF External Security
Interface (RACROUTE) Macro Reference manual. (For VSE considerations, refer
to the VSE/ESA Planning manual.)

Early verification processing
The CICS signon routine invokes the SAF interface, using the RACROUTE
REQUEST=VERIFY macro with the ENVIR=VERIFY option in problem-program
state. Some external security manager products can get control through the SAF
exit interface, and perform an early verification routine. To discover whether your
security manager supports this function, see the documentation supplied with your
ESM.

CICS defers the creation of the accessor environment element until the
RACROUTE REQUEST=VERIFY macro with the ENVIR=CREATE option is issued
to perform the normal verification routine. The ENVIR=CREATE version of the
macro is issued by the security manager domain running in supervisor state.

CICS passes the following information on the ENVIR=VERIFY version of the
RACROUTE REQUEST=VERIFY macro:

USERID
The userid of the user signing on to the CICS region.

GROUP
The group name, if specified, of the group into which the user wants to sign on.

PASSWRD
The user’s password to verify the userid.

NEWPASS
A new value, if specified, for the user’s password. This changes the existing
password and is to be used for subsequent signons.

OIDCARD
The contents, if supplied, of an operator identification card.

APPL
The APPLID of the CICS region on which the user is signing on. Which
APPLID is passed depends on what is specified as system initialization
parameters.

INSTLN
A pointer to a vector of CICS-related information, which you can map using the
DFHXSUXP mapping macro. This pointer is valid only if ESMEXITS=INSTLN
is specified as a system initialization parameter for the CICS region.

The installation data referenced by the INSTLN parameter includes a pointer,
UXPCOMM, to a two-word communications area that can be used to pass
information between the two phases of the signon verification process—between
the early verification routine initiated by ENVIR=VERIFY, and the normal verification
routine initiated by ENVIR=CREATE.

CICS maintains a separate communications area for each task, in CICS-key
storage.

594 CICS Transaction Server for VSE/ESA Customization Guide

 early verification processing

Writing an early verification routine
An early verification routine, written for the ENVIR=VERIFY option, receives control
from SAF in the usual way from the external security manager whose entry point is
addressed by field SAFVRACR in the SAF vector table. It receives control in the
same state as its caller, as follows:

 � Problem-program state
� Task mode (usually the CICS quasi-reentrant TCB)
� PSW partition storage
� 31-bit addressing mode
� Primary address translation mode

Register 13 points to a standard 18-word save area. Register 1 points to a 2-word
parameter list, where:

� The first word is the address of the SAF parameter list for the VERIFY function.
� The second word is the address of a 152-byte work area.

Using CICS API commands in an early verification routine
An early verification routine can use CICS application programming interface (API)
commands, provided it obeys the following interface rules:

� The routine must be written in assembler.

� Entry to the routine must be via the DFHEIENT macro, which saves the caller's
registers and establishes a CICS early verification API environment.

� Exit from the routine must be via the DFHEIRET macro, which releases the
CICS early verification API environment and restores the caller's registers.

� The routine must be link-edited with the special security domain API stub,
DFHXSEAI, instead of the normal CICS API stub, DFHEAI0. The CICS early
verification stub causes linkage to a special interface routine that is aware of
the SAF interface linkage requirements, and saves the current CICS command
environment. In addition, the standard EXEC interface stub DFHEAI should
also be included, immediately before the early verification routine:

 INCLUDE DFHEAI

 INCLUDE verify-program

 INCLUDE DFHXSEAI

 ENTRY verify-program

The DFHEIENT and DFHEIRET macros are inserted by the CICS translator unless
you specify

\ASM XOPTS(NOPROLOG,NOEPILOG)

as the first statement of the program. The DFHEIENT macro assumes that register
15 points to its first executable instruction.

Upon return from the DFHEIENT macro, a CICS storage area mapped by the
DFHEISTG macro has been established. The pointer DFHEIBP (and the register
specified in the EIBREG parameter of DFHEIENT) contains the address of an
EXEC interface block (EIB). DFHEICAP contains the pointer to the original
parameter list supplied by the SAF interface.

 Chapter 21. Invoking an external security manager 595

 early verification processing

Return and reason codes from the early verification routine
Before returning control, the early verification routine should set a return code and
reason code in fields SAFPRRET and SAFPRREA of the SAF parameter list. It
should also pass a value to be returned as the SAF return code in a register that is
specified in the RCREG keyword of the DFHEIRET macro that is used to exit the
program. These return codes are examined by the CICS signon function, and any
non-zero value in SAFPRRET is interpreted as a verification failure and causes the
signon to fail. A zero return code allows the signon to proceed, and eventually
CICS issues a RACROUTE REQUEST=VERIFY,ENVIR=CREATE macro in supervisor state
and under control of the CICS resource-owning TCB. It is only at this invocation
that CICS accepts an ACEE address from the external security manager.

596 CICS Transaction Server for VSE/ESA Customization Guide

 writing a good night program

Chapter 22. Writing a “good night” program

You can use the GNTRAN system initialization parameter to specify a “good night”
transaction that you want CICS to invoke when a user’s terminal-timeout period
expires. The default value for GNTRAN is 'NO', which means that CICS does not
schedule a “good night” transaction, but instead tries to sign off the terminal user.
(Whether or not the sign off is successful depends on the value of the SIGNOFF
attribute on the terminal’s RDO TYPETERM resource definition.)

Note: Any transaction that you specify on the GNTRAN parameter must be able to
handle the type of communication area it is passed when terminal timeout occurs.
The CICS sign-off transaction, CESF, can do this, but CESN and all other
CICS-supplied transactions cannot.

For further information about GNTRAN, see the CICS System Definition Guide.

Writing your own “good night” program allows you to include functions in addition
to, or instead of, sign-off. For example, your program could prompt the terminal
user to enter their password, and allow the session to continue if the correct
response is received. CICS supplies a sample “good night” program, DFH0GNIT,
that demonstrates this, and a sample transaction definition, GNIT, that points to
DFH0GNIT.

CICS passes the “good night” program a parameter list in the communications area
shown in Figure 69. If a terminal times out during a pseudoconversational
transaction, your program could, using information in the parameter list:

� Ask for and check a response from the user
� Restore the screen left by the timed-out transaction
� Restore the cursor position
� Receive the communications area of the timed-out transaction, which is passed

to the “good night” transaction as an input message
� Return with the TRANSID of the next transaction in the conversation

DFHSNGS

DFHSNGS_FIXED DS ðCL64 Fixed part of parameter list

GNTRAN_START_TRANSID DS CL4 TRANSID that invoked GNTRAN

GNTRAN_PSEUDO_CONV_FLAG DS CL1 Pseudoconversational flag

GNTRAN_SCREEN_TRUNCATED DS CL1 Screen buffer truncation flag

GNTRAN_TRANSLATE_TIOA DS CL1 Uppercase translation required?

 DS CL9 Reserved

GNTRAN_TIMEOUT_TIME DS CL8 Time of terminal timeout

GNTRAN_TIMEOUT_REASON DS CL1 Reason for timeout

 DS CL11 Reserved

GNTRAN_PSEUDO_CONV_TRANSID DS CL4 Next transaction ID

GNTRAN_SCREEN_LENGTH DS FL2 Length of screen buffer

GNTRAN_CURSOR_POSITION DS FL2 Cursor position

GNTRAN_SCREEN_WIDTH DS FL2 Width of screen

GNTRAN_SCREEN_HEIGHT DS FL2 Height of screen

GNTRAN_USER_FIELD DS CL16 Available to user program

DFHSNGS_VARIABLE DS ðX Variable part of parameter list

GNTRAN_SCREEN_BUFFER DS ðX Contents of screen buffer

Figure 69. Communications area passed to the “good night” program (assembler)

 Copyright IBM Corp. 1977, 1999 597

 writing a good night program

GNTRAN_START_TRANSID
The identifier of the transaction that started the “good night” transaction. If it
was started by CICS because of a terminal timeout,
GNTRAN_START_TRANSID is set to 'CEGN'. Your program should examine
this field to check that timeout processing is appropriate (that is, that the “good
night” transaction was started because of a terminal timeout and for no other
reason).

GNTRAN_PSEUDO_CONV_FLAG
A flag indicating whether the terminal timed out during a pseudoconversational
transaction.

Y The terminal timed out between transactions that form part of a
pseudoconversational application.

N The terminal did not time out between transactions that form part of a
pseudoconversational application.

GNTRAN_SCREEN_TRUNCATED
A flag indicating whether the 3270 screen buffer had to be truncated.

Y The screen buffer was truncated.
N The screen buffer was not truncated.

GNTRAN_TRANSLATE_TIOA
A flag indicating whether the TIOA input to GNTRAN requires uppercase
translation.

Y The TIOA input needs uppercase translation.
N The TIOA input does not need uppercase translation.

GNTRAN_TIMEOUT_TIME
The time that the terminal timed out, in CICS ABSTIME format.

GNTRAN_TIMEOUT_REASON
The reason for the timeout:

T No input from the terminal.
X An XRF takeover.

GNTRAN_PSEUDO_CONV_TRANSID
The identifier of the next transaction, if the terminal timed out during a
pseudoconversational sequence. (If the terminal did not time out during a
pseudoconversational sequence, the value of this field is meaningless.)

GNTRAN_SCREEN_LENGTH
The length of the screen buffer.

GNTRAN_CURSOR_POSITION
The cursor position.

GNTRAN_SCREEN_WIDTH
The width of the screen in use when the terminal timed out.

GNTRAN_SCREEN_HEIGHT
The height of the screen in use when the terminal timed out.

You can use GNTRAN_SCREEN_WIDTH and GNTRAN_SCREEN_HEIGHT to
decide whether to use the ERASE DEFAULT or ERASE ALTERNATE option
when restoring the user’s screen.

598 CICS Transaction Server for VSE/ESA Customization Guide

 sample good night program

GNTRAN_USER_FIELD
This field is available for use by your “good night” user program. It is initialized
to binary zeroes and is not changed by CICS. You can use it to help develop a
pseudoconversational “good night” transaction.

GNTRAN_SCREEN_BUFFER
A variable length field containing the contents of the screen buffer.

The sample “good night” program, DFH0GNIT
The sample “good night” program is a pseudoconversational COBOL program
named DFH0GNIT. Copy books of the communications area passed to the “good
night” program are supplied in assembler language, COBOL, PL/I, and C. The
names of the supplied program, copy books, and mapsets are summarized in
Table 137. All are supplied in the VSE/ESA sublibrary PRD1.BASE.

Table 137. Sample “good night” program, copy books, and mapsets

Language PRD1.BASE member name

Program source:

COBOL only

DFH0GNIT.C

Copy books:

Assembler
COBOL
PL/I
C

DFHSNGSD.A
DFHSNGSO.C
DFHSNGSL.P
DFHSNGSH.H

Mapsets:

Assembler
COBOL

DFH$GMAP.A
DFH0GMAP.C

What the sample program does
The DFH0GNIT sample program:

1. Checks that it has been invoked for a terminal timeout, by testing the
GNTRAN_START_TRANSID field of the communications area passed by CICS.
If this contains anything other than 'CEGN', it quits.

2. If a flag within GNTRAN_USER_FIELD shows that this is the first invocation for
this timeout:

a. If GNTRAN_PSEUDO_CONV_FLAG indicates that the terminal timed out
during a pseudoconversation, issues EXEC CICS RECEIVE to retrieve the
communications area.

b. Saves the length of the communications area in another field within
GNTRAN_USER_FIELD.

c. Writes the communication area, if any, to a temporary storage queue.

d. Displays a screen asking the user to input his or her password, and sets
the flag indicating that this has been done.

 Chapter 22. Writing a “good night” program 599

 sample good night program

e. Issues EXEC CICS RETURN with TRANSID GNIT and the COMMAREA
option, to continue the timeout process as a pseudoconversation.

3. If this is not the first invocation for this timeout:

a. Recovers the original communication area, if any, from the temporary
storage queue.

b. Checks the password received from the user, and redisplays the timeout
screen with an error message if it is incorrect.

4. If the number of incorrect responses exceeds the maximum specified to your
external security manager, DFH0GNIT returns immediately with TRANSID
CESF, which tries to sign off the userid.

5. If the correct password is entered, DFH0GNIT:

� Restores the screen contents
� Restores the cursor position

If the terminal timed out during a pseudoconversational transaction, DFH0GNIT
also:

� Restores the communications area of the timed-out transaction

� Returns with the TRANSID of the next transaction in the interrupted
conversation

Customizing the sample program
You can write your “good night” program in any of the languages supported by
CICS, with full access to the CICS application and system programming interfaces.

If you customize the supplied program, or write your own “good night” program,
note the following:

� Like the sample, your program should be pseudoconversational, because it
could be invoked simultaneously for many users (if, for example, many
terminals time out during the lunch period). If your program is conversational,
CICS maximum number of tasks (MXT) could quickly be reached.

When you are continuing your timeout program’s pseudoconversation, always
specify the name of your ‘good night’ transaction (for example, GNIT) as the
next TRANSID. If you do not, CICS does not know that you are still handling
the timeout, and results may be unpredictable.

� Your program should always start, like the sample program, by testing the
GNTRAN_START_TRANSID field of the communications area passed by CICS.
If it finds that the “good night” transaction was started for any reason other than
a terminal timeout (for example, by an EXEC CICS START request), timeout
processing may not be appropriate.

� To obtain the communications area of the timed-out transaction in a
pseudoconversation, your program must issue an EXEC CICS RECEIVE
command. (The communication area passed to it on invocation is not that of
the timed-out transaction, but contains information about the timed-out
transaction.)

� If your program tries to sign off the terminal user, the result depends on what is
specified on the SIGNOFF option of the terminal’s RDO TYPETERM resource
definition:

600 CICS Transaction Server for VSE/ESA Customization Guide

 sample good night program

YES The terminal is signed off, but not logged off.
NO The terminal remains logged on and signed on.
LOGOFF The terminal is both signed off and logged off.

� Specify the identifier (TRANSID) of your “good night” transaction on the
GNTRAN system initialization parameter.

If you have customized the sample program, DFH0GNIT, specify the supplied
sample transaction definition, GNIT.

If you have written your own “good night” program, named something other
than DFH0GNIT, you must create and install a transaction definition that points
to your program, and specify this definition on the GNTRAN system initialization
parameter.

 Chapter 22. Writing a “good night” program 601

 sample good night program

602 CICS Transaction Server for VSE/ESA Customization Guide

 modifying resource attributes

Part 7. Examining and modifying resource attributes

Table 138. Resource attributes road map

If you want to... Refer to...

Customize the DFHCSDUP resource
definition utility by means of user
programs

Chapter 23, “User programs for the
system definition utility program
(DFHCSDUP)” on page 605

Write a program that invokes the CEDA
transaction

Chapter 24, “The programmable interface
to the RDO transaction, CEDA” on
page 621

 Copyright IBM Corp. 1977, 1999 603

 modifying resource attributes

604 CICS Transaction Server for VSE/ESA Customization Guide

 user programs for DFHCSDUP

Chapter 23. User programs for the system definition utility
program (DFHCSDUP)

This chapter tells you how to write programs for use with the CICS system
definition utility program (DFHCSDUP). It is divided into the following sections:

1. “An overview of DFHCSDUP” contains background information.

2. “DFHCSDUP as a batch program” on page 606 describes the DFHCSDUP
EXTRACT command, and tells you how to write a user program to be invoked
from DFHCSDUP.

3. “Invoking DFHCSDUP from a user program” on page 611 tells you how to
write a program from which DFHCSDUP itself can be invoked.

An overview of DFHCSDUP
The CICS system definition utility program (DFHCSDUP) is a component of
resource definition online (RDO). DFHCSDUP is an offline utility program that
allows you to read from and write to a CICS system definition (CSD) file, either
while CICS is running or while it is inactive.

Using DFHCSDUP, you can do the following:

� Add a group to the end of a named list in a CSD file.

� Append a group list from one CSD file to a group list in another, or in the
same, CSD file.

� Copy all of the resource definitions in one group to another group in the same,
or in a different, CSD file.

� Define a single resource, or a group of resources, on the CSD.

� Alter the definition of a single resource, on the CSD.

� Delete from the CSD a single resource definition, all of the resource definitions
in a group, or all of the group names in a list.

� Extract requested data from the CSD and pass it to a named user program for
processing.

� Initialize a new CSD file, and add to it the CICS-supplied resource definitions.

� List selected resource definitions, groups, and lists.

� Migrate the contents of a table from a CICS load library to a CSD file.

� Remove a single group from a list on the CSD file.

� Apply service to a CSD file when necessary.

� Upgrade the CICS-supplied resource definitions in a primary CSD file for a new
release of CICS.

� Verify a CSD file by removing internal locks on groups and lists.

 Copyright IBM Corp. 1977, 1999 605

 DFHCSDUP as a batch program

You can invoke DFHCSDUP in two ways:

� As a batch program. The next section refers to this method.

� From a user program. “Invoking DFHCSDUP from a user program” on
page 611 describes this method.

DFHCSDUP as a part of the resource definition process is described in the CICS
Resource Definition Guide. Guidance information about the execution JCL for
DFHCSDUP, and the formats of the DFHCSDUP commands, are given in the CICS
Operations and Utilities Guide.

DFHCSDUP as a batch program
This section refers to DFHCSDUP as a batch program. It describes the
DFHCSDUP EXTRACT command, and the three sample programs that can be
invoked during EXTRACT processing.

Writing a program to be invoked during EXTRACT processing
The DFHCSDUP LIST command produces reports about the current status of the
CSD file that vary only according to the input parameters you provide. Another
DFHCSDUP command, EXTRACT, causes the CSD data you select to be passed
unformatted to a user program. The user program can then create reports of the
CSD data that meet local requirements. For example, you could cross-refer related
definitions (such as TERMINALs and TYPETERMs), or you could sort the data by
attribute values, such as security keys or processing priorities. The user program
could also write the requested resource attributes to a data set to be used as input
to a database product, such as SQL or DL/I.

The user program must be linked RMODE(24), AMODE(24). It receives control in
24-bit primary-space translation mode. The contents of the access registers are
unpredictable. The program must return control in 24-bit primary addressing mode,
and it must restore any access registers that it modifies (in addition to restoring the
general purpose registers).

There are three sample programs that can be invoked from DFHCSDUP during
EXTRACT processing. The sample programs, and how to replace them with your
own versions, are described on page 609.

The EXTRACT command
The EXTRACT command takes requested data from the CSD and passes it to a
user program for processing. The command has the following format:

EXTRACT {GROUP(name)|LIST(name)} USERPROGRAM(name) [OBJECTS]

GROUP
selects only those resource definitions within the named group. You can
specify a generic group name, as on the DFHCSDUP LIST command.

606 CICS Transaction Server for VSE/ESA Customization Guide

 DFHCSDUP as a batch program

LIST
selects only those resource definitions within the groups contained in the
named list. You can specify a generic list name only if you do not specify the
OBJECTS option.

OBJECTS
returns the detail of each resource definition. You can extract resource
definition data at two levels of detail:

1. If you omit the OBJECTS option, the command extracts one of the
following:

� The names of all the resource definitions within the specified group
� The names of all the groups within the specified list.

2. If you specify the OBJECTS option, all the attributes of the resource
definitions are also extracted.

USERPROGRAM
is the name of the user-written program that is to process the data retrieved by
the EXTRACT command. You must supply a USERPROGRAM value.

When the user program is invoked
The user program can be invoked at nine different points during the processing of
the EXTRACT command by DFHCSDUP. However, your program is invoked at all
of these points only if you specify both LIST and OBJECTS on the EXTRACT
command. The invocation points are as follows:

1. At the beginning of EXTRACT processing. This is to allow for activities such as
file opening and storage acquisition.

2. At the beginning of LIST processing, but only if you have specified a LIST
value on the EXTRACT command.

3. At the start of every group being processed by the EXTRACT command.

4. At the start of each object (that is, resource type—TERMINAL, PROGRAM, and
so on) that is being processed, to allow for selection on an object or group
basis.

Note: If you have specified LIST but not OBJECTS on the EXTRACT
command, this invocation does not occur.

5. For every keyword (attribute) in the extracted object, but only if you have
specified OBJECTS on the EXTRACT command. This is to allow for the
detailed processing that may be necessary for cross-referencing.

6. At the end of every object—that is, when all of the keywords within an object
have been processed. This is to allow for the processing of data built up from
the detailed items, and it occurs once for each object.

7. At the end of every group, to allow for processing of the accumulated data.

8. At the end of LIST processing, if you have specified a LIST value on the
EXTRACT command.

9. When EXTRACT processing is complete, to allow for closing of files, release of
storage, and so on.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 607

 DFHCSDUP as a batch program

Parameters passed from DFHCSDUP to the user program
On every invocation of the user program, DFHCSDUP passes a parameter list
addressed by general register 1. The parameter list consists of a series of
fullwords that address the fields described in more detail below. The addresses set
in the parameter list vary, depending on the point that EXTRACT processing has
reached.

The parameter list contains the following fields:

Function Type Ptr
The address of a halfword field that contains a code defining the point in
EXTRACT processing reached.

The function codes are as follows:

 0 Initial call.
 2 List start call.
 4 Group start call.
 6 Object start call.
 8 Keyword detail call.
10 Object end call.
12 Group end call.
14 List end call.
16 Final call.

Workarea Ptr
This is the address of a field containing the address of a fullword to be used by
the user application to store the address of any user-acquired work area.

Back translated command Ptr
The address of a fullword that contains the address of a 75-byte area of
storage that contains the EXTRACT command that is being processed.

List name Ptr
The address of an 8-byte field that identifies the RDO list from which the
current object is taken. This value is set only on the ‘list start’ and ‘list end’
calls.

Group name Ptr
The address of an 8-byte field that identifies the RDO group from which the
current object is taken. This value is set on the ‘group start’, ‘group end’,
‘object start’, ‘object end’, and ‘keyword’ calls.

Object type Ptr
The address of a 12-byte field that identifies the type of object (such as
TRANSACTION, PROGRAM, and so on), and is set only on the ‘object start’,
‘object end’, and ‘keyword’ calls.

Object name Ptr
The address of an 8-byte field that contains the name of the object, and is set
only on the ‘object start’, ‘object end’, and ‘keyword’ calls.

Keyword name Ptr
The address of a 12-byte field that contains the name of the keyword being
processed, and is set only on ‘keyword’ calls.

608 CICS Transaction Server for VSE/ESA Customization Guide

 DFHCSDUP as a batch program

Keyword length Ptr
The address of a halfword field that contains the length of the value associated
with the keyword, and is set only on ‘keyword’ calls.

Keyword Value Ptr
The address of the storage area that contains the value associated with the
keyword, and is set only on ‘keyword’ calls.

Note: Fields not set with a pointer value contain a null value.

The sample EXTRACT programs
There are two CICS-supplied sample programs that can be invoked during
DFHCSDUP EXTRACT processing. One of these is provided in COBOL, PL/I, and
assembler language, and the other is provided in COBOL only. They are outlined
in Table 139.

You can use the sample programs as supplied, or as models on which to base your
own programs.

Only the assembler-language version, DFH$CRFA, is supplied in executable form.
The source statements for each of these programs are supplied in the VSE/ESA
sublibrary PRD1.BASE.

Note that the sample programs require you to specify the OBJECTS keyword on
the DFHCSDUP EXTRACT command.

The output data definition names (DLBLs) for the sample programs are as follows:

CRFOUT CSD cross-referencing program.
CBDOUT CSD backup utility program.

The sample programs are discussed in the next two sections.

Table 139. Sample EXTRACT user programs for the DFHCSDUP utility program

Program
names

Languages Description

DFH$CRFA
DFH0CRFC
DFH$CRFP

Assembler
COBOL
PL/I

Produces a cross-reference listing of the
resource definitions defined in the group or list
you specify on the EXTRACT command.

DFH0CBDC COBOL Writes the list or group of resource definitions
you specify on the EXTRACT command in the
form of DEFINE commands, suitable for use as a
backup copy of the resources extracted.

The CSD cross-referencing program
The CICS-supplied sample CSD cross-referencing program produces a
cross-reference listing of objects and keywords on the CSD. The data gathered by
the EXTRACT command is passed to the sample program, where it is saved in a
cross-reference table. On the final call to this sample program, the contents of the
table are printed in collating sequence.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 609

 DFHCSDUP as a batch program

The program must be run against an EXTRACT command of the form:

EXTRACT GROUP(group name) OBJECTS USERPROGRAM(program-name)

or:

EXTRACT LIST(list name) OBJECTS USERPROGRAM(program-name)

Note that the sample program requires you to specify the OBJECTS keyword.

For this program only, in addition to the EXTRACT command, you must define, in a
sequential data set, the objects and keywords for which you want a cross-reference
listing. The data set is read by the sample program using the filename CRFINPT.

CRFINPT is a sequential file containing 80-byte records. Each record contains one
object or keyword to be cross-referenced. You can cross-reference any valid
resource type or attribute known to CEDA. For example, your CRFINPT file may
contain the following entries (one per line):

PROGRAM
TRANSACTION
TYPETERM
DSNAME

For each record in the file, a report is produced detailing the different values
assigned to the keyword, where they are defined, and where they are used. Note
that keyword values longer than 44 characters are truncated.

You should define CRFINPT as CISIZE=80, RECSIZE=80, and BLKFACTOR=1.

The CSD backup utility program
The CICS-supplied sample CSD backup utility program, DFH0CBDC, produces a
file of DFHCSDUP DEFINE control statements. The file can be used:

� For later editing and commenting to document CSD resources
� For distribution, in part or as a whole, to other CICS installations
� To recreate or add resource definitions to any CSD using DFHCSDUP

The program must be run against an EXTRACT command of the form:

EXTRACT GROUP(group name) OBJECTS USERPROGRAM(DFHðCBDC)

or:

EXTRACT LIST(list name) OBJECTS USERPROGRAM(DFHðCBDC)

Note that the sample program requires you to specify the OBJECTS keyword.

Note the following points when using DFH0CBDC:

� It can deal with only one set of data during each invocation of DFHCSDUP; if
two EXTRACT commands are issued, the second set of data overwrites the
first.

� In the file produced by DFH0CBDC, any DEFINE statements that relate to
CICS-supplied resources are preceded by an asterisk (*) in column 1; in other
words, they are commented out. This is important if you use the file as input to
define resources to a CSD. (The CICS-supplied definitions are already present
in the CSD, having been produced automatically when it was initialized.)

610 CICS Transaction Server for VSE/ESA Customization Guide

 invoking DFHCSDUP from a user program

� If you remove an asterisk from column 1 (to reinstate the DEFINE statement),
do so by deleting it, not by overtyping it with a blank. This ensures that the
resulting command is no more than 72 characters long; if it is longer than this,
errors occur when the output is passed back through DFHCSDUP.

Assembling and link-editing EXTRACT programs
You must assemble (or compile) and link-edit DFHCSDUP user programs as batch
programs, not as CICS applications, and you need link-edit control statements
appropriate to the language in which they are written.

Note: DFHCSDUP user programs should not be translated, or unpredictable
results could occur.

When you compile the COBOL versions of the sample programs, you must specify
the compiler attributes NORENT and NORES.

When you link-edit the programs, you must specify the following link-edit control
statements:

� An ENTRY statement that defines the entry name as DFHEXTRA

� An INCLUDE statement for a CICS-supplied stub that must be included in your
user program

These requirements are explained in more detail in the CICS System Definition
Guide, which provides sample job streams for link-editing DFHCSDUP user
programs written in each of the three languages (assembler, COBOL, and PL/I).

Invoking DFHCSDUP from a user program
It is possible to invoke DFHCSDUP from a user program. This method enables
you to create a flexible interface to the utility. By specifying the appropriate entry
parameters, your program can cause DFHCSDUP to pass control to an exit routine
at any of five exit points. The exits can be used, for example, to pass commands
to DFHCSDUP, or to respond to messages produced by DFHCSDUP processing.

Entry parameters for DFHCSDUP
Your program tells DFHCSDUP that it has been called by a user program by
passing a value of zero in register 1. Your program passes a parameter list
addressed by register 0. It may pass up to five parameters, as described below:

OPTIONS
A list of character strings, separated by commas. (The information passed here
is that which would otherwise be passed on the PARM keyword of the EXEC
statement of JCL.) A maximum of four options can be specified:

CSD({READWRITE|READONLY})
specifies whether you require read-write or read-only access to the
CSD.

PAGESIZE(nnnn)
specifies the number of lines per page on output listings. Valid values
for nnnn are 4 through 9999. The default value is 60.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 611

 invoking DFHCSDUP from a user program

NOCOMPAT|COMPAT
specifies whether DFHCSDUP is to be invoked in compatibility mode.
By default, it is invoked in noncompatibility mode. For details of
compatibility mode, see the CICS Resource Definition Guide.

UPPERCASE
specifies that output listings are to be printed entirely in uppercase
characters. The default is to print in mixed case.

FILENAMES
A list of filenames that, if specified, are substituted for those normally used by
DFHCSDUP.

HDING
The starting page number of any listing produced by DFHCSDUP. You can
use this parameter to ensure that subsequent invocations produce logically
numbered listings. If this parameter is not specified, the starting page number
is set to 1.

The length of the page number data (field ‘bb’ in Figure 70 on page 613) must
be 0 or 4. The page number, if supplied, must be four numeric EBCDIC
characters. The field, if present, is updated upon exit from DFHCSDUP with a
number one greater than that of the last page printed.

ACB
The address of a data control block for use internally by DFHCSDUP. Any
ACB that you specify is used internally, instead of that normally used by
DFHCSDUP.

Note that if you specify both replacement filenames and a replacement ACB,
the alternative ACB is used, but the alternative filenames are disregarded.

EXITS
The addresses of a set of user exit routines to be invoked during processing of
DFHCSDUP.

The structure of the parameter list is shown in Figure 70 on page 613.

612 CICS Transaction Server for VSE/ESA Customization Guide

 invoking DFHCSDUP from a user program

General options bb parm field
Register 0

fnames

hding bb nnnn

acb

exits

00bb bb

00bb 0000 0000 00000000

A(initialization exit) 0000 0000 00000000

A(termination exit) 0000 0000 00000000

A(extract exit) 0000 A(CSD-acb) DLBLCSD

A(get command exit) 0000 0000 DLBLIN

A(put message exit) 0000 0000 DLBLOUT

bb is a two-byte field containing the length of the functional data
00 represents two bytes of binary zeros
A() means "address of"

Figure 70. Entry parameters for DFHCSDUP

You should note the following:

� Each parameter contains a length field, followed by some functional data.

� The functional data for the FILENAMES, ACB, and EXITS parameters contains
multiple subentries.

� The parameters OPTIONS, FILENAMES, and HDING are aligned on a halfword
boundary, and the first two bytes ‘bb’ contain the binary number of bytes in the
following functional data.

� The parameters ACB and EXITS are aligned on a fullword boundary, and the
first four bytes ‘00bb’ contain the binary number of fullwords in the following
functional data.

� If the ‘bb’ field for any parameter is zero, the parameter is ignored.

� If a subentry in the functional data is all binary zeros, it is ignored.

� If any subentry is not within the length indicated by ‘bb’, it is ignored.

� In the FILENAMES functional data, each subentry consists of an 8-byte field
containing a 7-byte filename to replace a default filename used by DFHCSDUP.
DFHCSDUP does not use the first three subentries of the FILENAMES
parameter. The fourth, fifth, and sixth subentries, if present, replace the
filenames of DFHCSD, SYSIPT, and SYSLST, respectively.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 613

 invoking DFHCSDUP from a user program

� In the ACB functional data, each subentry consists of two fullwords. The first
word is not used by CICS. The second word contains the address of an open
ACB. You must ensure that the ACB has been opened with the correct
attributes, which are:

PRIMARY CSD AM=VSAM,MACRF=(KEY,DIR,SEQ,IN,OUT),STRNO=3

DFHCSDUP does not use the first three subentries of the ACB parameter. The
fourth subentry, if present, is used instead of the internal ACB for DFHCSD.

� In the EXITS parameter, each subentry consists of a single fullword containing
the address of an exit routine. You must specify the exit routines in the order
shown in Figure 70 on page 613. (The user exits are described in “The user
exit points in DFHCSDUP.”)

Responsibilities of the user program
Before invoking DFHCSDUP, your calling program must ensure that:

� AMODE(24) and RMODE(24) are in force.

� System/370 register conventions are obeyed. That is:

Register 0 contains the address of the parameter list.
Register 1 contains zero.
Register 14 contains the return address.
Register 15 contains the entry address of DFHCSDUP.

� If the EXITS parameter is passed, any programming environment needed by
the exit routines has been initialized.

� Any ACB passed for use by DFHCSDUP is OPEN.

The user exit points in DFHCSDUP
There are five user exit points in DFHCSDUP. By specifying the appropriate entry
parameters, you can cause DFHCSDUP to pass control to an exit routine at any of
these points.

None of the user exits supports XPI calls.

Parameters passed to the user exit routines
The address of a parameter list is passed to the user exit routine in register 1. The
list contains some standard parameters that are passed to all of the exit routines,
and may also contain some exit-specific parameters that are unique to the exit
point from which the exit routine is being invoked.

The format of the parameter list is identical to that used by CICS global user exits.
For a description of the standard parameters, see “DFHUEPAR standard
parameters” on page 8. Explanations of the exit-specific parameters are included
in the descriptions of the individual exits, which follow.

614 CICS Transaction Server for VSE/ESA Customization Guide

 invoking DFHCSDUP from a user program

The initialization exit
The initialization exit is invoked once during DFHCSDUP initialization. Its purpose
is to allow a routine to perform exit-related initialization. For example, the routine
may obtain its own global work area and save its address in UEPGAA and its
length in the halfword pointed to by UEPGAL. These values are retained by
DFHCSDUP and become available at the other exit points.

Table 140. Initialization exit

When
invoked

Invoked once, on entry to DFHCSDUP.

Exit-specific
parameters

None

Return codes UERCNORM (X'00') Continue processing.

UERCERR Irrecoverable error. This causes DFHCSDUP
to terminate with a return code of ‘8’.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 615

 invoking DFHCSDUP from a user program

The get-command exit
The purpose of the get-command exit is to read in command lines. If it is specified,
no commands are read from the SYSIPT data stream.

On invocation, your exit routine must supply the address and length of a complete
command. It must return control with either the normal return code ‘UERCNORM’
or with the code ‘UERCDONE’, signifying that it has no more commands to pass.
After it has processed each command, DFHCSDUP reinvokes the exit until return
code ‘UERCDONE’ is received.

Table 141. Get-command exit

When
invoked

Invoked multiple times, at the point where DFHCSDUP would
otherwise read commands from the SYSIPT data stream.

Exit-specific
parameters

UEPCMDA Address of a fullword containing a pointer to a
command.

UEPCMDL Address of a halfword containing the length of the
command text. The maximum length that can be
specified is 1536 bytes.

Return codes UERCNORM (X'00') Continue processing.

UERCDONE (X'04') No more commands to process. (This is
equivalent to reaching end-of-file on the
SYSIPT data stream.)

UERCERR Irrecoverable error. This causes DFHCSDUP
to terminate with a return code of ‘8’.

616 CICS Transaction Server for VSE/ESA Customization Guide

 invoking DFHCSDUP from a user program

The extract exit
The extract exit is invoked at various points during processing of the EXTRACT
command. The points are listed on page 607.

Notes:

1. If you do not specify an EXTRACT user exit routine on the entry linkage to
DFHCSDUP, or on the USERPROGRAM keyword, a syntax error occurs.

2. A user exit routine specified on the USERPROGRAM keyword is used in
preference to one specified on the entry linkage.

Table 142 (Page 1 of 2). Extract exit

When
invoked

Invoked multiple times during processing of the EXTRACT command.

Exit-specific
parameters

EXTRACT_FUNCTION_CODE_PTR
Address of a halfword containing a code that defines the
point in EXTRACT processing reached. The EXTRACT
function codes are listed on page 608.

EXTRACT_WORK_AREA_PTR
Address of a fullword containing the address of the
EXTRACT work area.

EXTRACT_BACKTRAN_COMMAND_PTR
Address of a fullword containing the address of the
EXTRACT command being processed.

EXTRACT_CSD_LIST_NAME_PTR
Address of an 8-byte field containing the name of the list
whose data is being extracted. This value is set only on
‘list start’ and ‘list end’ calls.

EXTRACT_CSD_GROUP_NAME_PTR
Address of an 8-byte field containing the name of the
group whose data is being extracted. This value is set on
‘group start’, ‘group end’, ‘object start’, ‘object end’, and
‘keyword’ calls.

EXTRACT_CSD_OBJECT_TYPE_PTR
Address of a 12-byte field that identifies the type of object
(such as TRANSACTION, PROGRAM, and so on). This
value is set only on ‘object start’, ‘object end’, and
‘keyword’ calls.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 617

 invoking DFHCSDUP from a user program

Table 142 (Page 2 of 2). Extract exit

EXTRACT_CSD_OBJECT_NAME_PTR
Address of an 8-byte field containing the name of the
object. This value is set only on ‘object start’, ‘object end’,
and ‘keyword’ calls.

EXTRACT_KEYWORD_NAME_PTR
Address of an 12-byte field containing the name of the
keyword being processed. This value is set on ‘keyword’
calls only.

EXTRACT_KEYWORD_LENGTH_PTR
Address of a halfword containing the length of the value
associated with the keyword. This value is set on
‘keyword’ calls only.

EXTRACT_KEYWORD_VALUE_PTR
Address of a character string which contains the value
associated with the keyword. This value is set on
‘keyword’ calls only.

Note that these parameters are similar to those passed when
DFHCSDUP is invoked as a batch program. (See “Parameters
passed from DFHCSDUP to the user program” on page 608.)
However, when DFHCSDUP is invoked from a user program, the
parameter list also includes the standard parameters mentioned
under “Parameters passed to the user exit routines” on page 614.

Return codes UERCNORM (X'00') Continue processing.

UERCERR Irrecoverable error. This causes DFHCSDUP
to terminate with a return code of ‘8’.

618 CICS Transaction Server for VSE/ESA Customization Guide

 invoking DFHCSDUP from a user program

The put-message exit
The put-message exit is invoked whenever a message is to be issued. You could
use this exit to provide messages in the operator’s national language.

Even if this exit is supplied, messages are always additionally written to the default
output file (that is, to the SYSLST data stream, or to the replacement filename
specified on the entry linkage to DFHCSDUP).

Table 143. Put-message exit

When
invoked

Invoked when a message is to be issued.

Exit-specific
parameters

UEPMNUM Address of a 4-character field containing the
message number.

UEPMDOM Reserved.

UEPINSN Address of a 2-byte field containing the number of
insert fields.

UEPINSA Address of the following message structure:

 DS F Reserved

INS_1_TEXT_PTR DS A Address of insert 1

INS_1_LEN_PTR DS A Address of a fullword containing

the length of insert 1

 DS F Reserved

 DS F Reserved

INS_2_TEXT_PTR DS A Address of insert 2

INS_2_LEN_PTR DS A Address of a fullword containing

the length of insert 2

 DS F Reserved

 ...

 DS F Reserved

INS_n_TEXT_PTR DS A Address of insert n

INS_n_LEN_PTR DS A Address of a fullword containing

the length of insert n

 DS F Reserved

The exit-specific parameters provide a message number and insert
fields only, to enable you to provide messages in the language of
your operators. The structure pointed to by UEPINSA is repeated as
many times as UEPINSN requires.

Return codes UERCNORM (X'00') Continue processing.

UERCERR Irrecoverable error. This causes DFHCSDUP
to terminate with a return code of ‘8’.

 Chapter 23. User programs for the system definition utility program (DFHCSDUP) 619

 invoking DFHCSDUP from a user program

The termination exit
The purpose of the termination exit is to allow you to perform final housekeeping
duties. It is invoked before a normal or an abnormal termination of DFHCSDUP.

Table 144. Termination exit

When
invoked

Invoked once, before termination of DFHCSDUP.

Exit-specific
parameters

UEPTRMFL A 1-byte field that indicates the mode of termination.
Its possible values are:

0 Normal termination.
1 Abnormal termination.

Return codes UERCNORM (X'00') Continue processing.

UERCERR Irrecoverable error. This causes DFHCSDUP
to terminate with a return code of ‘8’.

The sample program, DFH$CUS1
The CICS-supplied sample program, DFH$CUS1, illustrates how DFHCSDUP can
be invoked from a user program. It is written to accept input from a console, and
write messages to the console.

Note that DFH$CUS1 uses a different ACB name from that normally used by
DFHCSDUP. Ensure that the required DLBL is provided before running the
program.

620 CICS Transaction Server for VSE/ESA Customization Guide

 the programmable interface to CEDA

Chapter 24. The programmable interface to the RDO
transaction, CEDA

This chapter describes a programmable interface to the resource definition online
(RDO) transaction, CEDA. The functions provided by RDO can be invoked from
application programs, by a command such as:

EXEC CICS LINK PROGRAM('DFHEDAP')

 COMMAREA(CEDAPARM)

where DFHEDAP is the name of the entry point in the RDO program, and
CEDAPARM is a user-defined name of a parameter list consisting of five 31-bit
addresses (each contained in a fullword) as follows:

1. Address of a field containing the RDO command in source form.

2. Address of a halfword binary field specifying the length of the command. The
maximum length of the input command is 1022 bytes.

3. Address of a 1-byte indicator field defined as follows:

X'80' Display output at terminal instead of returning it to caller.
X'00' Do not display output at terminal.

4. Address of a field in which output is to be placed by DFHEDAP.

5. Address of a halfword binary field specifying the maximum length of output that
the application can handle.

If the indicator in address 3 is X'80', output is displayed at the terminal. In this
case, you can enter any number of CEDA commands at the terminal, in response
to the output displayed on your screen. Control is returned to your application
program when you press PF3.

However, if the indicator is X'00' (output is not to be displayed at the terminal),
DFHEDAP returns control to your application program immediately after processing
the RDO command specified in the first address. At the same time, DFHEDAP
returns the output as one or two concatenated, structured fields. The output from a
single request comprises one field for the translation stage and one or none for the
execution stage. Each field has the format:

� Binary halfword containing inclusive length of field.

� Binary halfword containing the number of messages produced.

� Binary halfword containing the highest message-severity: ‘0’ and ‘4’ continue to
execution; ‘8’ and ‘12’ do not continue to execution.

� Variable-length data containing:

– For the translation stage: diagnostic messages if there are any.
– For the execution stage: data that would normally appear on the CEDA

screen, including messages. Each line begins with a new line (NL)
character and, otherwise, consists of blanks and uppercase alphanumeric
characters.

The format of this data is not guaranteed from release to release, but it is the same
as that displayed by CEDA. (Analysis of this data should not normally be
necessary. Typically, your program is interested only in whether or not the

 Copyright IBM Corp. 1977, 1999 621

 DFHEDAP in a DTP environment

command was successful.) If the total output is longer than the maximum length
specified by the user, it is truncated.

Notes:

1. An attempt to start CEDA from an application program by an EXEC CICS
START command must fail. This is because CEDA’s first action is to request
input from its associated terminal, whereas an automatically initiated transaction
must first send data to the terminal.

An attempt to start CEDA under CECI by an EXEC CICS START command
fails for similar reasons.

2. The RDO command passed in address 1 of the CEDAPARM parameter list
must be valid. (For example, spelling errors such as PRORGAM for
PROGRAM are not corrected automatically when you use the programmable
interface.)

Use of the programmable interface
Remember that you can use the offline utility program, DFHCSDUP, to examine
and amend CSD files; and that DFHCSDUP can be invoked from a user program.
(See “Invoking DFHCSDUP from a user program” on page 611.)

Using DFHCSDUP is the recommended method for updating CSD files in bulk .

You should only use the interface described in this chapter where the required
function includes the INSTALL command, which is not available from DFHCSDUP.

Using DFHEDAP in a DTP environment
The LINK DFHEDAP function is intended to be used in a single environment. It is
not supported within a distributed transaction programming (DTP)
environment—using it such an environment can result in abends.

In a DTP environment, CICS may attempt to propagate SYNCPOINT and
SYNCPOINT ROLLBACK requests across sessions to other systems. These
requests are issued by CEDA modules that are invoked by the use of LINK
DFHEDAP. Note that the issuing of SYNCPOINT ROLLBACK means that LINK
DFHEDAP cannot be used in a DTP environment that owns LU6.1 links.

Generally, a session should be in SEND state to initiate a SYNCPOINT, but the
session may not remain in SEND state once a LINK DFHEDAP command is
issued. (For information about valid commands and states, see the CICS
Distributed Transaction Programming Guide. This book also explains the APPC
architecture rules on a session’s state after SYNCPOINT and SYNCPOINT
ROLLBACK requests are made.)

The code invoked by LINK DFHEDAP can result in wrong sequence of commands.
For example, if the code invoked by DFHEDAP issues a SYNCPOINT ROLLBACK
from a back-end application program whose session is in SEND state (and which
has never issued a SYNCPOINT), the session will be put into RECEIVE state. If
the code invoked by DFHEDAP then issues a SYNCPOINT, an abend occurs. This
can be prevented by all DTP applications issuing a SYNCPOINT request when they
get into SEND state (on all of their sessions) and before they issue the LINK
DFHEDAP command.

622 CICS Transaction Server for VSE/ESA Customization Guide

 DFHEDAP in a DTP environment

Do not attempt to use LINK DFHEDAP when more than a pair of DTP application
programs are involved—that is, one front end and one back end.

The general rules for using LINK DFHEDAP within a simple DTP environment (one
front end and one back end) are that all sessions in a DTP environment should be
in SEND state when the LINK DFHEDAP command is issued, and they should
revert to SEND state in the event of a SYNCPOINT ROLLBACK being issued by
the DFHEDAP code.

 Chapter 24. The programmable interface to the RDO transaction, CEDA 623

 DFHEDAP in a DTP environment

624 CICS Transaction Server for VSE/ESA Customization Guide

 appendixes

 Part 8. Appendixes

Table 145. Appendixes road map

If you want to... Refer to...

Match the entries in your VTAM LOGON
mode table to the TYPETERMs and
model TERMINAL definitions that you
specify to CICS

Appendix A, “Coding entries in the VTAM
LOGON mode table” on page 627

Check the default actions of the
DFHZNAC program that invokes the node
error program

Appendix B, “Default actions of the node
abnormal condition program” on
page 653

Use the sample program, DFH$TDWT, to
send messages from a TD queue to a
terminal

Appendix C, “Transient data
write-to-terminal program (DFH$TDWT)”
on page 669

Translate lower- and mixed-case
characters to uppercase

Appendix D, “Uppercase translation of
national characters” on page 671

Look at an example global user exit
program

Appendix E, “The example program for
the XTSEREQ global user exit,
DFH$XTSE” on page 673

 Copyright IBM Corp. 1977, 1999 625

 appendixes

626 CICS Transaction Server for VSE/ESA Customization Guide

 coding the VTAM LOGON mode table

Appendix A. Coding entries in the VTAM LOGON mode table

This appendix shows you what to code in your VTAM LOGON mode table for a
terminal to be automatically installed. It is divided into the following sections:

 1. “Overview”
2. “TYPETERM device types and pointers to related LOGON mode data” on

page 629
3. “VTAM MODEENT macro operands” on page 631
4. “CICS statistics data section” on page 576
5. “Matching models and LOGON mode entries” on page 637
6. “LOGON mode definitions for CICS-supplied autoinstall models” on page

649

 Overview
CICS uses the logmode data when processing an automatic installation (autoinstall)
request. Automatic installation functions properly only if the logmode entries that
you define to VTAM have matches among the TYPETERMs and model TERMINAL
definitions that you specify to CICS. “Matching models and LOGON mode entries”
on page 637 and “LOGON mode definitions for CICS-supplied autoinstall models”
on page 649 show examples of matching definitions.

The following tables show, for a variety of possible terminal devices, what you must
code on the VTAM MODEENT macros that define your logmode table if you want
to use autoinstall. Between them they show the values that must be specified for
each of the operands of the MODEENT macro. Where all bit settings of an
operand’s value have significance for CICS, the data is shown in hexadecimal form.
If some of an operand’s bit settings are not significant to CICS, its data bytes are
shown as bit patterns. The bit settings that have significance for CICS are shown
set to the values that CICS expects. Those bits that have no significance to CICS
are shown as periods. Thus, for example:

ð1..ðð11

shows that six bits in the subject byte must be given specific values; the remaining
two have no significance.

Some of the examples shown here correspond exactly to entries in the
CICS-supplied LOGON mode table called ISTINCLM. Where this is so, the table
gives the name of the entry in ISTINCLM.

The PSERVIC setting shows fields called aaaaaaaa, bbbbbbbb, and so on. The
contents of these vary for LUTYPE0, LUTYPE2, and LUTYPE3 devices, according
to how you specify certain attributes of the terminals. You can work out the values
you need by looking at “PSERVIC screen size values for LUTYPE0, LUTYPE2, and
LUTYPE3 devices” on page 636.

 Copyright IBM Corp. 1977, 1999 627

 coding the VTAM LOGON mode table

Relationship between TERMINAL, TYPETERM, and MODEENT values

modename MODEENT LOGMODE=modename,
TYPE=1,
FMPROF=X'..',
TSPROF=X'..',
PRIPROT=X'..',
SECPROT=X'..',
COMPROT=X'....',
RUSIZES=X'85C7',

PSERVIC=X'02800000000018502B507E00'

TERMINAL definition

AUTINSTNAME ==> name Known to user autoinstall pgm
GROUP ==> PDATD
TYPETERM ==> T3278

TYPETERM definition

TYPETERM ==> T3278
GROUP ==> PDATD
DEVICE ==> LUTYPE2
QUERY ==> YES COLD
EXTENDEDDS ==> YES
DEFSCREEN ==> 24,80
ALTSCREEN ==> 43,80
RECEIVESIZE ==> 256
SENDSIZE ==> 1536

Figure 71. The relationship between TERMINAL, TYPETERM, and MODEENT values

628 CICS Transaction Server for VSE/ESA Customization Guide

 TYPETERM device types

TYPETERM device types and pointers to related LOGON mode data
Search Table 146 for the TYPETERM device type that corresponds to the terminal
you want to autoinstall. When you find the right one, use the number to its right to
locate, in Table 147 on page 631, what has to be coded on the VTAM MODEENT
macros.

Note that Table 146 is a complete list of TYPETERM device types; not all of these
can be used with autoinstall. Those that cannot are marked with an asterisk (*).
For details about coding TYPETERM definitions, and for a list of terminals that can
be autoinstalled, see the CICS Resource Definition Guide.

Table 146 (Page 1 of 3). TYPETERM device types, with cross-references to VTAM
logmode entries

TYPETERM device type

Reference
number in
Table 147 on
page 631

DEVICE(APPC) 24

DEVICE(BCHLU) 17

DEVICE(BCHLU) SESSIONTYPE(BATCHDI) 15

DEVICE(BCHLU) SESSIONTYPE(USERPROG) 16

DEVICE(CONTLU) 10

DEVICE(INTLU) 11

DEVICE(LUTYPE2) 18

DEVICE(LUTYPE2) TERMMODEL(1) 18

DEVICE(LUTYPE3) 19

DEVICE(LUTYPE3) TERMMODEL(1) 19

DEVICE(LUTYPE4) 12

DEVICE(SCSPRINT) 11, 13

DEVICE(TLX) 8

DEVICE(TLX) SESSIONTYPE(CONTLU) 8

DEVICE(TLX) SESSIONTYPE(INTLU) 9

DEVICE(TWX) 8

DEVICE(TWX) SESSIONTYPE(CONTLU) 8

DEVICE(TWX) SESSIONTYPE(INTLU) 9

DEVICE(3270) 2

DEVICE(3270) BRACKET(NO) 1

DEVICE(3270) TERMMODEL(1) 2

DEVICE(3270) TERMMODEL(1) BRACKET(NO) 1

DEVICE(3270P) 2

DEVICE(3270P) BRACKET(NO) 1

DEVICE(3270P) TERMMODEL(1) 2

DEVICE(3270P) TERMMODEL(1) BRACKET(NO) 1

DEVICE(3275) 2

 Appendix A. Coding entries in the VTAM LOGON mode table 629

 TYPETERM device types

Table 146 (Page 2 of 3). TYPETERM device types, with cross-references to VTAM
logmode entries

TYPETERM device type

Reference
number in
Table 147 on
page 631

DEVICE(3275) BRACKET(NO) 1

DEVICE(3275) TERMMODEL(1) 2

DEVICE(3275) TERMMODEL(1) BRACKET(NO) 1

DEVICE(3600) 16, 22, 23

DEVICE(3600) SESSIONTYPE(PIPELINE)
*

21

DEVICE(3600) SESSIONTYPE(PIPELN)
*

21

DEVICE(3614)
*

3

DEVICE(3650) SESSIONTYPE(PIPELINE)
*

21

DEVICE(3650) SESSIONTYPE(PIPELN)
*

21

DEVICE(3650) SESSIONTYPE(USERPROG) BRACKET(YES) 6

DEVICE(3650) SESSIONTYPE(USERPROG) BRACKET(NO) 7

DEVICE(3650) SESSIONTYPE(3270) 5

DEVICE(3650) SESSIONTYPE(3270) BRACKET(NO) 4

DEVICE(3650) SESSIONTYPE(3653) 5

DEVICE(3650) SESSIONTYPE(3653) BRACKET(NO) 4

DEVICE(3767) 11

DEVICE(3767C) 10

DEVICE(3767I) 11

DEVICE(3770) 17

DEVICE(3770) SESSIONTYPE(BATCHDI) 15

DEVICE(3770) SESSIONTYPE(USERPROG) 16

DEVICE(3770B) 17

DEVICE(3770B) SESSIONTYPE(BATCHDI) 15

DEVICE(3770B) SESSIONTYPE(USERPROG) 16

DEVICE(3770C) 10

DEVICE(3770I) 11

DEVICE(3790) 20

DEVICE(3790) SESSIONTYPE(BATCHDI) 14

DEVICE(3790) SESSIONTYPE(SCSPRT) 13

DEVICE(3790) SESSIONTYPE(SCSPRINT) 13

DEVICE(3790) SESSIONTYPE(USERPROG) 16

DEVICE(3790) SESSIONTYPE(3277CM) 18

630 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM MODEENT macro operands

Table 146 (Page 3 of 3). TYPETERM device types, with cross-references to VTAM
logmode entries

TYPETERM device type

Reference
number in
Table 147

DEVICE(3790) SESSIONTYPE(3284CM) 19

DEVICE(3790) SESSIONTYPE(3286CM) 19

VTAM MODEENT macro operands
Table 147 shows the VTAM LOGON mode table entry for each TYPETERM you
might define. You should have reached this table by looking up the TYPETERM
device types in Table 146 on page 629.

Look down the left hand side of the table for the reference number (RN) that
brought you here from Table 146 on page 629. When you find it, look across to
the middle column. This shows the macro operands that affect the way CICS
handles automatic installation. Your MODEENT macro entries for devices to be
installed must match what is specified there. Any MODEENT macro entries not
shown in the table, such as PSERVIC for some reference numbers, are not tested
by CICS. Any bit settings that do not matter to CICS during bind analysis for
autoinstalled terminals appear as periods (.).

Note: Some fields in the PSERVIC data for LUTYPE0, LUTYPE2, and LUTYPE3
devices have values that depend on the ALTSCREEN and DEFSCREEN
characteristics of the device. For this reason, you have to consult
“PSERVIC screen size values for LUTYPE0, LUTYPE2, and LUTYPE3
devices” on page 636 to find out the values you need to specify instead of
aaaaaaaa, bbbbbbbb, cccccccc, dddddddd, and eeeeeeee.

The right-hand column in the table names entries in the CICS-supplied LOGON
mode table that could meet your needs. The CICS-supplied table is called
ISTINCLM. For further VTAM information, refer to VTAM Network Implementation
Guide.

Table 147 (Page 1 of 5). LOGON mode table and ISTINCLM entries

RN

VTAM MODEENT macro entries that are needed
for related CICS TYPETERM definitions

Suitable
supplied
entries

1 FMPROF=X'02'
TSPROF=X'02'
PRIPROT=X'70'
SECPROT=X'40'
COMPROT=B'0000.000 00000.00'

2 FMPROF=X'02'
TSPROF=X'02'
PRIPROT=X'71'
SECPROT=X'40'
COMPROT=B'0010.000 00000.00'

DSILGMOD
D4B32781
D4B32782
D4B32783
D4B32784
D4B32785
NSX32702
S3270

 Appendix A. Coding entries in the VTAM LOGON mode table 631

 VTAM MODEENT macro operands

Table 147 (Page 2 of 5). LOGON mode table and ISTINCLM entries

RN

VTAM MODEENT macro entries that are needed
for related CICS TYPETERM definitions

Suitable
supplied
entries

3 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'B0'
SECPROT=X'B0'
COMPROT=B'0000.000 00000.00'

4 FMPROF=X'04'
TSPROF=X'03'
PRIPROT=X'B0'
SECPROT=X'90'
COMPROT=B'0100.000 00000.00'

5 FMPROF=X'04'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0110.000 00000.00'

6 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'31'
SECPROT=X'30'
COMPROT=B'0110.000 00000.00'

INTRUSER

7 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'B0'
SECPROT=X'30'
COMPROT=B'0100.000 00000.00'

8 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0011.000 01000.00'
PSERVIC=B'00000001 00000000 00000000 0000000.

. 00000000 00000000 00000000
00000000 00000000 00000000'

9 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0011.000 10000.00'
PSERVIC=B'00000001 00000000 00000000 0000000.

. 00000000 00000000 00000000
00000000 00000000 00000000'

SCS

10 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0011.000 01000.00'
PSERVIC=X'01'

632 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM MODEENT macro operands

Table 147 (Page 3 of 5). LOGON mode table and ISTINCLM entries

RN

VTAM MODEENT macro entries that are needed
for related CICS TYPETERM definitions

Suitable
supplied
entries

11 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0011.000 10000.00'
PSERVIC=X'01'

SCS

See note 2

12 FMPROF=X'07'
TSPROF=X'07'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0101.000 10000.01'
PSERVIC=B'00000100 10101000 01000000 10100000

. 10101000 01000000 10100000
00000000 00001100 00000000'

13 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0011.000 10000.00'
PSERVIC=X'01'

SCS3790

See note 2

14 FMPROF=X'03'
TSPROF=X'04'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0111.000 10000.00'
PSERVIC=B'00000001 00110001 00011000 0100000.

. 00000000 10010010 00000000
00000000 00000000 01010000'

15 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0111.000 10000.00'
PSERVIC=B'00000001 00110001 00001100 0111000.

. 00000000 11010010 00000000
00000000 00000000 11010000'

16 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0111.000 10000.00'

See note 3

17 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=X'90'
COMPROT=B'0111.000 10000.00'
PSERVIC=B'00000001 00100000 00000000 0000000.

. 00000000 11000010 00000000
00000000 00000000 11000000'

 Appendix A. Coding entries in the VTAM LOGON mode table 633

 VTAM MODEENT macro operands

Table 147 (Page 4 of 5). LOGON mode table and ISTINCLM entries

RN

VTAM MODEENT macro entries that are needed
for related CICS TYPETERM definitions

Suitable
supplied
entries

18 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=B'10..0000'
COMPROT=B'0011.000 10000.00'
PSERVIC=B'00000010 10000000 00000000 00000000

00000000 00000000 aaaaaaaa bbbbbbbb
cccccccc dddddddd eeeeeeee'

D329001
D4A32771
D4A32772
D4A32781
D4A32782
D4A32783
D4A32784
D4A32785
D4C32771
D4C32772
D4C32781
D4C32782
D4C32783
D4C32784
D4C32785
D6327801
D6327802
D6327803
D6327804
D6327805
EMUDPCX
EMU3790
SNX32702

See note 1

19 FMPROF=X'03'
TSPROF=X'03'
PRIPROT=X'B1'
SECPROT=B'10..0000'
COMPROT=B'0011.000 10000.00'
PSERVIC=B'00000011 10000000 00000000 00000000

00000000 00000000 aaaaaaaa bbbbbbbb
cccccccc dddddddd eeeeeeee'

BLK3790
DSC2K
DSC4K
D6328902
D6328904

See note 1

20 FMPROF=X'04'
TSPROF=X'03'
PRIPROT=X'31'
SECPROT=X'B0'
COMPROT=B'0111.000'

21 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'50'
SECPROT=X'10'
COMPROT=B'0000.000 00000.00'

22 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'B0'
SECPROT=X'B0'
COMPROT=B'0100.000 00000.00'

IBMS3650

634 CICS Transaction Server for VSE/ESA Customization Guide

 VTAM MODEENT macro operands

Table 147 (Page 5 of 5). LOGON mode table and ISTINCLM entries

RN

VTAM MODEENT macro entries that are needed
for related CICS TYPETERM definitions

Suitable
supplied
entries

23 FMPROF=X'04'
TSPROF=X'04'
PRIPROT=X'B1'
SECPROT=X'B0'
COMPROT=B'0111.000 00000.00'

24 TYPE=X'00'
FMPROF=X'13'
TSPROF=X'07'
PRIPROT=X'B0'
SECPROT=X'B0'
COMPROT=B'101.000 10110.01'
PSERVIC='00000110 00000010

. 00000000 00000000 00000000

. 00000000 00000000 00000000

. 0010..00 00000000'

Notes:

1. PSERVIC (RN 18 and 19): BYTE 2 BIT 0 should be set on where extended data
stream (EXTDS) support is required.

2. RN 11 or 13 is used to determine the MODEENT macro operands for device
SCSPRINT. However, if you have specified any of the attributes EXTENDEDDS,
COLOR, PROGSYMBOLS, HILIGHT, SOSI, OUTLINE, QUERY(COLD), or
QUERY(ALL) for the TYPETERM, then the COMPROT parameter of RN 13 should
be modified to read COMPROT=B'0111.000 10000.00'.

3. This LOGMODE may be used for either device type 4700 in half duplex mode or
device types BCHLU, 3770, 3770B and 3790 with SESSIONTYPE(USERPROG).
To enable these devices to be autoinstalled with the correct model, the model
names list supplied to the autoinstall exit will list the names of models defined as
DEVICE(3600) after the names of all other eligible models. The exit can be coded
to select a name from the end of the list for a 4700 half duplex device.

 Appendix A. Coding entries in the VTAM LOGON mode table 635

 PSERVIC screen size values

PSERVIC screen size values for LUTYPE0, LUTYPE2, and LUTYPE3
devices

Table 148 is to help you decide what screen size values you should specify on the
PSERVIC operand of the VTAM MODEENT macro, for LUTYPE0, LUTYPE2, and
LUTYPE3 devices.

If, on your CICS TYPETERM definition, you code the values shown in columns 1
through 4 of Table 148, the screen size values in the CICS model bind image are
as shown in column 5. The values you code for screen sizes on the PSERVIC
operand must match this.

CICS treats some differently-coded PSERVIC screen size specifications as
equivalent. See Table 149 on page 637.

Table 148. Autoinstall model device definition options

Device-type DEFSCRN ALTSCRN QUERY MODEL BIND

0,2,3 00,00 ? ? INVALID

0,2,3 12,40 , ? 0000000001

0,2,3 12,40 00,00 ? 0C2800007E

0,2,3 12,40 YY,YY ? 0C28YYYY7F

0,2,3 24,80 , NO 0000000002

3 24,80 , COLD/ALL 0000000002

0,2 24,80 , COLD/ALL 0000000003

0,2,3 24,80 00,00 ? 185000007E

0,2,3 24,80 YY,YY ? 1850YYYY7F

0,2,3 XX,XX , ? XXXX00007E

0,2,3 XX,XX 00,00 ? XXXX00007E

0,2,3 XX,XX YY,YY ? XXXXYYYY7F

Where:
0 = Local non-SNA 3270
2 = LUTYPE2
3 = LUTYPE3

, = Blanks (the default)
XX,XX = A screen size that is not 12,40 or 24,80
YY,YY = A screen size that is not 00,00 or blanks
? = Any (that is, QUERY=ALL|COLD|NO, and ALTSCRN=any)

636 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

Table 149. Equivalent PSERVIC screen size values

Bytes 20—24 of CICS model bind Valid screen size values on PSERVIC
definition

0000 0000 01 0000 0000 00
0000 0000 01
0C28 0000 7E

0000 0000 02 0000 0000 00
0000 0000 02
1850 0000 7E

0000 0000 03 0000 0000 00
0000 0000 03
1850 0000 03

xxxx 0000 7E

Plus, if xxxx=1850

0000 0000 00
xxxx 0000 7E

0000 0000 02

xxxx yyyy 7F 0000 0000 00
xxxx yyyy 7F

Where:
xxxx = 2 bytes containing the default screen size, in hexadecimal
yyyy = 2 bytes containing the alternate screen size, in hexadecimal

Matching models and LOGON mode entries
This section contains a set of VTAM LOGON mode table definitions, and their
matching CICS autoinstall definitions. Each entry consists of a VTAM logmode
definition, the matching CICS TYPETERM and model TERMINAL definitions, and
(for information) the BIND that CICS sends based on the specified model definition.

Note that the CICS-specific attributes are purely arbitrary. Only device attributes
affect the match algorithm. It is the responsibility of the autoinstall user program to
distinguish between matching models.

\\

1) LOCAL NON-SNA 3277 / 3278 / 3279 (without special features)

\\

MT32772 MODEENT LOGMODE=MT32772, 3277/8 MODEL 2

 TYPE=1,

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 PSERVIC=X'ððððððððððððððððððððð2ðð'

 OR

 PSERVIC=X'ðððððððððððð185ð2B5ð7Fðð' Others

 OR

PSERVIC=X'ðððððððððððð185ððððð7Eðð' Model 2, no Altscreen

 Appendix A. Coding entries in the VTAM LOGON mode table 637

 matching models and LOGON mode entries

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M3278A

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T3278

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T3278

GROUP ==> PDATD

DEVICE ==> 327ð

TERMMODEL ==> 2

LIGHTPEN ==> YES

AUDIBLEALARM ==> YES

UCTRAN ==> YES

IOAREALEN ==> 2ððð,2ððð

ERRLASTLINE ==> YES

ERRINTENSIFY ==> YES

USERAREALEN ==> 32

ATI ==> YES

TTI ==> YES

AUTOCONNECT ==> NO

LOGONMSG ==> YES

BIND SENT BY CICS depends on PSERVIC value on LOGMODE definition above:

EITHER : ð1ð2ð271 4ð2ððððð ðððððð8ð ðððððððð

ðððððððð ððððððð2 ðððð93ðð ðð3ððððð

OR : ð1ð2ð271 4ð2ððððð ðððððð8ð ðððððððð

ðððððð18 5ð2B5ð7F ðððð93ðð ðð3ððððð

OR : ð1ð2ð271 4ð2ððððð ðððððð8ð ðððððððð

Real Model 2 ðððððð18 5ððððð7E ðððð93ðð ðð3ððððð

\\

2) LOCAL SNA 3277/78/79 (without special features) LUTYPE2

\\

S32782 MODEENT LOGMODE=S32782, SNA LUTYPE2 327ð

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'8585',

 PSERVIC=X'ð28ððððððððð185ð185ð7Fðð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M32782

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T32782

INSERVICE ==> YES

638 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T32782

GROUP ==> PDATD

DEVICE ==> LUTYPE2

TERMMODEL ==> 2

LIGHTPEN ==> YES

AUDIBLEALARM ==> YES

UCTRAN ==> YES

IOAREALEN ==> 256,256

ERRLASTLINE ==> YES

ERRINTENSIFY ==> YES

USERAREALEN ==> 32

ATI ==> YES

TTI ==> YES

LOGONMSG ==> YES

DISCREQ ==> YES

RECEIVESIZE ==> 256

BUILDCHAIN ==> YES

BIND SENT BY CICS : ð1ð3ð3B1 Bð3ð8ððð ðð85C78ð ððð28ððð

ðððððð18 5ð185ð7F ðððððððð ðððððððð

\\

3) 377ð BATCH LU (3777)

\\

BATCH MODEENT LOGMODE=BATCH, 377ð BATCH

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'7ð8ð',

 PSERVIC=X'ð131ðC7ðE1ððD2ððððE1ððDð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M377ð

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T377ð

INSERVICE ==> YES

 Appendix A. Coding entries in the VTAM LOGON mode table 639

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T377ð

GROUP ==> PDATD

DEVICE ==> 377ð

SESSIONTYPE ==> BATCHDI

PAGESIZE ==> 12,8ð

DISCREQ ==> YES

AUTOPAGE ==> YES

RECEIVESIZE ==> 256

SENDSIZE ==> 256

IOAREALEN ==> 256,2ð48

BUILDCHAIN ==> YES

BRACKET ==> YES

ATI ==> YES

TTI ==> YES

AUTOCONNECT ==> NO

HORIZFORM ==> YES

VERTFORM ==> YES

LDCLIST ==> LDC2

Needs LDC declaration in TCT :

LDC2 DFHTCT TYPE=LDC,LOCAL=INITIAL

 DFHTCT TYPE=LDC,LDC=BCHLU

 DFHTCT TYPE=LDC,LOCAL=FINAL

BIND SENT BY CICS : ð1ð3ð3B1 Bð7ð8ððð ðððððð8ð ððð131ðC

7ðE1ððD2 ððððE1ðð Dððððððð ðððððððð

\\

4) 667ð LUTYPE4

\\

S667ð MODEENT LOGMODE=S667ð, 667ð LUTYPE4

 TYPE=1,

 FMPROF=X'ð7',

 TSPROF=X'ð7',

 RUSIZES=X'8585',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'5ð81',

 PSERVIC=X'ð4A84ðAðððA84ðAððððððCðð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M667ð

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T667ð

INSERVICE ==> YES

640 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T667ð

GROUP ==> PDATD

DEVICE ==> LUTYPE4

BUILDCHAIN ==> YES

DISCREQ ==> YES

RECEIVESIZE ==> 256

UCTRAN ==> YES

IOAREALEN ==> 256,4ð96

FORMFEED ==> YES

HORIZFORM ==> YES

VERTFORM ==> YES

ATI ==> YES

TTI ==> YES

PAGESIZE ==> 5ð,8ð

AUTOPAGE ==> YES

LOGONMSG ==> NO

LDCLIST ==> LDC1

Needs LDC declaration in TCT :

LDCS DFHTCT TYPE=LDC,LDC=SYSTEM

LDC1 DFHTCT TYPE=LDC,LOCAL=INITIAL

 DFHTCT TYPE=LDC,DVC=(BLUCON,ð1),PROFILE=DEFAULT,LDC=PC,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(BLUPRT,ð2),PROFILE=BASE,LDC=PP,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(BLUPRT,ð8),PROFILE=BASE,LDC=P8,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(BLUPRT,ð8),PROFILE=DEFAULT,LDC=DP,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(BLUPCH,ð3),PROFILE=JOB,LDC=PM,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(BLUPCH,ð3),PROFILE=DEFAULT,LDC=DM,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED1,ð4),PROFILE=WPRAW,LDC=P1,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED1,ð4),PROFILE=DEFAULT,LDC=D1,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED2,ð5),PROFILE=OII1,LDC=P2,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED2,ð5),PROFILE=DEFAULT,LDC=D2,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED3,ð6),PROFILE=OII2,LDC=P3,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,DVC=(WPMED4,ð7),PROFILE=OII3,LDC=P4,

 PGESIZE=(5ð,8ð),PGESTAT=AUTOPAGE

 DFHTCT TYPE=LDC,LOCAL=FINAL

BIND SENT BY CICS : ð1ð7ð7B1 Bð5ð81ðð ðð85858ð ððð4A84ð

AðððA84ð AððððððC ðððððððð ðððððððð

 Appendix A. Coding entries in the VTAM LOGON mode table 641

 matching models and LOGON mode entries

\\

5) 379ð FULL FUNCTION LU

\\

S379ðA MODEENT LOGMODE=S379ðA, 379ð FULL FUNCTION LU

 TYPE=1,

 FMPROF=X'ð4',

 TSPROF=X'ð4',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 RUSIZES=X'8585',

 COMPROT=X'7ð8ð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M379ðA

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T379ðA

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T379ðA

GROUP ==> PDATD

DEVICE ==> 379ð

SENDSIZE ==> 256

RECEIVESIZE ==> 256

SESSIONTYPE ==> USERPROG

BRACKET ==> YES

IOAREALEN ==> 256

ATI ==> YES

TTI ==> YES

BIND SENT BY CICS : ð1ð4ð4B1 Bð7ð8ððð ðð85858ð ðððððððð

\\

6) 379ð BATCH DATA INTERCHANGE

\\

S379ðB MODEENT LOGMODE=S379ðB, 379ð BATCH

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð4',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'7ð8ð',

 RUSIZES=X'8585',

 PSERVIC=X'ð131184ððððð92ððððE1ðð5ð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M379ðB

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T379ðB

INSERVICE ==> YES

TERMPRIORITY ==> 5ð

642 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T379ðB

GROUP ==> PDATD

DEVICE ==> 379ð

SESSIONTYPE ==> BATCHDI

AUTOPAGE ==> YES

BUILDCHAIN ==> YES

OBOPERID ==> YES

IOAREALEN ==> 256,2ð48

RELREQ ==> YES

SENDSIZE ==> 256

RECEIVESIZE ==> 256

ATI ==> YES

TTI ==> YES

LDCLIST ==> LDC2

Needs LDC declaration in TCT :

LDC2 DFHTCT TYPE=LDC,LOCAL=INITIAL

 DFHTCT TYPE=LDC,LDC=BCHLU

 DFHTCT TYPE=LDC,LOCAL=FINAL

BIND SENT BY CICS : ð1ð3ð4B1 Bð7ð8ððð ðð85858ð ððð13118

4ððððð92 ððððE1ðð 5ððððððð ðððððððð

\\

7) 379ð SCSPRT

\\

S379ðC MODEENT LOGMODE=S379ðC, 379ð WITH SCS

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'8585',

 PSERVIC=X'ð1ðððððððððððððððððððððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M379ðC

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T379ðC

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T379ðC Note that CEDA changes DEVICE=379ð,

GROUP ==> PDATD SESSIONTYPE=SCSPRT to DEVICE=SCSPRINT,

DEVICE ==> 379ð SESSIONTYPE=blanks, PRINTERTYPE=3284.

SESSIONTYPE ==> SCSPRT

BRACKET ==> YES

SENDSIZE ==> 256

RECEIVESIZE ==> 256

ATI ==> YES

TTI ==> YES

BIND SENT BY CICS : ð1ð3ð3B1 Bð3ð8ððð ðð85858ð ððð1ðððð

 Appendix A. Coding entries in the VTAM LOGON mode table 643

 matching models and LOGON mode entries

\\

8) 3767 INTERACTIVE (FLIP-FLOP) LU

\\

S3767 MODEENT LOGMODE=S3767, 3767 INTERACTIVE

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 PSERVIC=X'ð1ðððððððððððððððððððððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M3767

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TERMPRIORITY ==> 6ð

TYPETERM ==> T3767

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T3767

GROUP ==> PDATD

DEVICE ==> 3767

VERTFORM ==> YES

HORIZFORM ==> YES

RELREQ ==> YES

DISCREQ ==> YES

IOAREALEN ==> 256

AUTOPAGE ==> NO

PAGESIZE ==> 12,8ð

ATI ==> YES

TTI ==> YES

BRACKET ==> YES

RECEIVESIZE ==> 256

SENDSIZE ==> 256

BIND SENT BY CICS : ð1ð3ð3B1 9ð3ð8ððð ðððððð8ð ððð1ðððð

\\

9) 365ð INTERPRETER LU

(SESTYPE = USERPROG BRACKET = YES)

\\

S365ðA MODEENT LOGMODE=S365ðA, 365ð SESTYPE=USERPROG

 TYPE=1, BRACKET=YES

 FMPROF=X'ð4',

 TSPROF=X'ð4',

 PRIPROT=X'31',

 SECPROT=X'3ð',

 COMPROT=X'6ððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M365ðA

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T365ðA

INSERVICE ==> YES

644 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T365ðA

GROUP ==> PDATD

DEVICE ==> 365ð

SESSIONTYPE ==> USERPROG

ROUTEDMSGS ==> SPECIFIC

FMHPARM ==> YES

RELREQ ==> YES

DISCREQ ==> YES

BRACKET ==> YES

RECEIVESIZE ==> 256

IOAREALEN ==> 256,256

ATI ==> YES

TTI ==> YES

AUTOCONNECT ==> NO

BIND SENT BY CICS : ð1ð4ð431 3ð6ððððð ðððððð8ð ðððððððð

\\

1ð) 365ð HOST CONVERSATIONAL (327ð) LU

\\

S365ðB MODEENT LOGMODE=S365ðB, 365ð SESTYPE=327ð

 TYPE=1, AND SESTYPE=3653

 FMPROF=X'ð4',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'6ððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M365ðB1

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T365ðB1

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T365ðB1

GROUP ==> PDATD

DEVICE ==> 365ð

OBFORMAT ==> YES

SESSIONTYPE ==> 327ð

RELREQ ==> YES

DISCREQ ==> YES

IOAREALEN ==> 256

BRACKET ==> YES

RECEIVESIZE ==> 24ð

ATI ==> NO

TTI ==> YES

BIND SENT BY CICS : ð1ð4ð3B1 9ð6ððððð ðððððð8ð ðððððððð

 Appendix A. Coding entries in the VTAM LOGON mode table 645

 matching models and LOGON mode entries

\\

11) 365ð HOST CONVERSATIONAL (3653) LU

(N.B. LOGMODE SAME AS HC (327ð) LU)

\\

S365ðB MODEENT LOGMODE=S365ðB, 365ð SESTYPE=327ð

 TYPE=1, AND SESTYPE=3653

 FMPROF=X'ð4',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'6ððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M365ðB2

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T365ðB2

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T365ðB2

GROUP ==> PDATD

DEVICE ==> 365ð

SESSIONTYPE ==> 3653

RELREQ ==> YES

DISCREQ ==> NO

BRACKET ==> YES

IOAREALEN ==> 256

RECEIVESIZE ==> 24ð

ROUTEDMSGS ==> NONE

ATI ==> NO

TTI ==> YES

BIND SENT BY CICS : ð1ð4ð3B1 9ð6ððððð ðððððð8ð ðððððððð

\\

12) 365ð HOST COMMAND PROCESSOR LU

(SESTYPE = USERPROG BRACKET = NO)

\\

S365ðC MODEENT LOGMODE=S365ðC, 365ð SESTYPE=USERPROG

 TYPE=1, BRACKET=NO

 FMPROF=X'ð4',

 TSPROF=X'ð4',

 PRIPROT=X'Bð',

 SECPROT=X'3ð',

 COMPROT=X'4ððð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M365ðC

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T365ðC

INSERVICE ==> YES

646 CICS Transaction Server for VSE/ESA Customization Guide

 matching models and LOGON mode entries

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T365ðC

GROUP ==> PDATD

DEVICE ==> 365ð

SESSIONTYPE ==> USERPROG

BRACKET ==> NO

RELREQ ==> NO

DISCREQ ==> NO

RECEIVESIZE ==> 256

IOAREALEN ==> 256

ATI ==> YES

TTI ==> YES

BIND SENT BY CICS : ð1ð4ð43ð 3ð4ððððð ðððððð8ð ðððððððð

\\

13) 8815 SCANMASTER (APPC SINGLE SESSION)

\\

SIN62 MODEENT LOGMODE=SIN62, 8815 SCANMASTER.

 TYPE=ð,

 FMPROF=X'13',

 TSPROF=X'ð7',

 PRIPROT=X'Bð',

 SECPROT=X'Bð',

 COMPROT=X'5ðB1',

 PSNDPAC=X'ðð',

 SRCVPAC=X'ðð',

 SSNDPAC=X'ðð',

 RUSIZES=X'8585',

 PSERVIC=X'ð6ð2ðððððððððððððððð2Cðð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> MLU62

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> SINLU62

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> SINLU62

GROUP ==> PDATD

DEVICE ==> APPC

RECEIVESIZE ==> 2ð48

SENDSIZE ==> 2ð48

ATI ==> YES

TTI ==> YES

Note: There is no RDO keyword equivalent of the MACRO

keyword 'FEATURE=SINGLE', because this is assumed with

RDO DEFINE TYPETERM when DEVICE=APPC.

BIND SENT BY CICS : ðð13ð7Bð Bð5ðB1ðð ðð85858ð ððð6ð2ðð

ðððððððð ðððððð2C ððððð8ðð ðððððððð

ðððððð1D ððð9ð24ð 4ð4ð4ð4ð 4ð4ð4ðð9

ð3ðð6765 71D98A6C 3ðð7ð4C3 C9C3E2E6

F1ðððððð ðððððððð ðððððððð ðððððððð

 Appendix A. Coding entries in the VTAM LOGON mode table 647

 matching models and LOGON mode entries

\\

14) 329ð (SDLC)

\\

S329ð MODEENT LOGMODE=S329ð, 329ð SDLC

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'8787',

 PSERVIC=X'ð28ððððððððð185ð3EAð7Fðð'

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M329ð

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TYPETERM ==> T329ð

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T329ð

GROUP ==> PDATD

DEVICE ==> LUTYPE2

TERMMODEL ==> 2

ALTSCREEN ==> 62,16ð

DEFSCREEN ==> 24,8ð

AUDIBLEALARM ==> YES

UCTRAN ==> YES

IOAREALEN ==> 2ððð,2ððð

ERRLASTLINE ==> YES

ERRINTENSIFY ==> YES

USERAREALEN ==> 32

ATI ==> YES

TTI ==> YES

LOGONMSG ==> YES

ERRHILIGHT ==> BLINK

RECEIVESIZE ==> 1ð24

BIND SENT BY CICS : ð1ð3ð3B1 9ð3ð8ððð ðð87878ð ððð28ððð

ðððððð18 5ð3EAð7F ðððððððð ðððððððð

\\

15) 36ð1 WITH A 36ð4 ATTACHED

\\

S36ðð MODEENT LOGMODE=S36ðð, 36ð1

 TYPE=1,

 FMPROF=X'ð4',

 TSPROF=X'ð4',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'7ððð',

 RUSIZES=X'ðððð'

648 CICS Transaction Server for VSE/ESA Customization Guide

 definitions for CICS-supplied autoinstall models

TERMINAL definition

\\\\\\\\\\\\\\\\\\\\\\\\\

AUTINSTNAME ==> M36ðð

AUTINSTMODEL ==> ONLY

GROUP ==> PDATD

TERMPRIORITY ==> 5ð

TYPETERM ==> T36ðð

INSERVICE ==> YES

TYPETERM definition

\\\\\\\\\\\\\\\\\\\\\\\\\

TYPETERM ==> T36ðð

GROUP ==> PDATD

DEVICE ==> 36ðð

AUTOPAGE ==> NO

PAGESIZE ==> 6,4ð

RELREQ ==> YES

DISCREQ ==> NO

IOAREALEN ==> 256

SENDSIZE ==> 224

RECEIVESIZE ==> 256

USERAREALEN ==> 1ðð

ATI ==> NO

TTI ==> YES

BRACKET ==> YES

LDCLIST ==> BMSLLDC1

Needs LDC declaration in TCT :

BMSLLDC1 DFHTCT TYPE=LDCLIST,

 LDC=(DS,JP,PB=5,LP,MS)

 DFHTCT TYPE=LDC,

 LDC=(DS=1),

 DVC=36ð4,

 PGESIZE=(6,4ð),

 PGESTAT=PAGE

 DFHTCT TYPE=LDC,LDC=SYSTEM

BIND SENT BY CICS : ð1ð4ð4B1 Bð7ððððð ðððððð8ð ðððððððð

LOGON mode definitions for CICS-supplied autoinstall models
This section contains VTAM LOGON mode table definitions that match the
CICS-supplied TYPETERM and model TERMINAL definitions for autoinstall. The
first six entries are example definitions; that is, they are not supplied with VTAM.

DFHLU3 MODEENT LOGMODE=DFHLU3, LU TYPE 3 PRINTER.

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'8585',

 PSERVIC=X'ð38ðððððððððððððððððð2ðð'

 Appendix A. Coding entries in the VTAM LOGON mode table 649

 definitions for CICS-supplied autoinstall models

DFHSCSP MODEENT LOGMODE=DFHSCSP, LU TYPE 1 SCS PRINTER

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'7ð8ð',

 RUSIZES=X'8585',

 PSERVIC=X'ð1ððððð1ðððððððððððððððð'

DFHLU62T MODEENT LOGMODE=DFHLU62T, APPC SINGLE-SESSION

 TYPE=ð,

 FMPROF=X'13',

 TSPROF=X'ð7',

 PRIPROT=X'Bð',

 SECPROT=X'Bð',

 COMPROT=X'5ðB1',

 RUSIZES=X'8888',

 PSERVIC=X'ð6ð2ðððððððððððððððð2Cðð'

DFH327ð MODEENT LOGMODE=DFH327ð, 327ð

 TYPE=1,

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð'

DFH327ðP MODEENT LOGMODE=DFH327ðP, 3284/3286 BISYNC 327ðP (QUERY)

 TYPE=1,

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð'

DFHLU2 MODEENT LOGMODE=DFHLU2, SNA LUTYPE2 327ð

 TYPE=1,

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'Bð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'85C7',

 PSERVIC=X'ð28ðððððððððððððððððð3ðð'

The following entries are those LOGMODE definitions supplied by VTAM that
match CICS-supplied TYPETERM definitions.

DFHLUðE2 MODEENT LOGMODE=NSX327ð2, LUð model 2 queryable

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð',

 PSERVIC=X'ðð8ððððððððð185ððððð7Eðð'

650 CICS Transaction Server for VSE/ESA Customization Guide

 definitions for CICS-supplied autoinstall models

DFHLUðM2 MODEENT LOGMODE=D4B32782, LUð model 2 nonqueryable

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð',

 PSERVIC=X'ðððððððððððð185ððððð7Eðð'

DFHLUðM3 MODEENT LOGMODE=D4B32783, LUð model 3 nonqueryable

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð',

 PSERVIC=X'ðððððððððððð185ð2ð5ð7Fðð'

DFHLUðM4 MODEENT LOGMODE=D4B32784, LUð model 4 nonqueryable

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð',

 PSERVIC=X'ðððððððððððð185ð2B5ð7Fðð'

DFHLUðM5 MODEENT LOGMODE=D4B32785, LUð model 5 nonqueryable

 FMPROF=X'ð2',

 TSPROF=X'ð2',

 PRIPROT=X'71',

 SECPROT=X'4ð',

 COMPROT=X'2ððð',

 RUSIZES=X'ðððð',

 PSERVIC=X'ðððððððððððð185ð1B847Fðð'

DFHLU2E2 MODEENT LOGMODE=SNX327ð2, LU2 model 2 queryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87F8',

 PSERVIC=X'ð28ððððððððð185ððððð7Eðð'

DFHLU2E3 MODEENT LOGMODE=SNX327ð3, LU2 model 3 queryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87F8',

 PSERVIC=X'ð28ððððððððð185ð2ð5ð7Fðð'

 Appendix A. Coding entries in the VTAM LOGON mode table 651

 definitions for CICS-supplied autoinstall models

DFHLU2E4 MODEENT LOGMODE=SNX327ð4, LU2 model 4 queryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87F8',

 PSERVIC=X'ð28ððððððððð185ð2B5ð7Fðð'

DFHLU2M2 MODEENT LOGMODE=D4A32782, LU2 model 2 nonqueryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87C7',

 PSERVIC=X'ð2ðððððððððð185ððððð7Eðð'

DFHLU2M3 MODEENT LOGMODE=D4A32783, LU2 model 3 nonqueryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87C7',

 PSERVIC=X'ð2ðððððððððð185ð2ð5ð7Fðð'

DFHLU2M4 MODEENT LOGMODE=D4A32784, LU2 model 4 nonqueryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87C7',

 PSERVIC=X'ð2ðððððððððð185ð2B5ð7Fðð'

DFHLU2M5 MODEENT LOGMODE=D4A32785, LU2 model 5 nonqueryable

 FMPROF=X'ð3',

 TSPROF=X'ð3',

 PRIPROT=X'B1',

 SECPROT=X'9ð',

 COMPROT=X'3ð8ð',

 RUSIZES=X'87C7',

 PSERVIC=X'ð2ðððððððððð185ð1B847Fðð'

652 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Appendix B. Default actions of the node abnormal condition
program

This appendix describes the default actions of the node abnormal condition
program, DFHZNAC. The actions vary, depending on the terminal error code and
system sense codes received from VTAM. In most cases, DFHZNAC issues
messages and sets one or more “action flags” in the communication area passed to
the node error program, DFHZNEP. DFHZNEP then has the opportunity to change
the default actions (though not the messages) by setting or resetting flags. (Note,
however, that in some circumstances, the actions actually taken can vary from the
actions set, depending on the state of the node at the time of the error.)

For more information about DFHZNAC and DFHZNEP, see Chapter 9, “Writing a
node error program” on page 391.

The appendix is divided into the following sections:

1. “Default actions for terminal error codes”
2. “CICS messages associated with VTAM errors” on page 659
3. “Default actions for system sense codes” on page 665
4. “Action flag settings and meanings” on page 667

Default actions for terminal error codes
Terminal error codes from VTAM are put in a 1-byte field (TWAEC) of the
communications area passed to DFHZNEP.

Table 150 shows the message issued and action flags set by DFHZNAC for each
terminal error code.

For error codes with CICS messages associated with them, see the VSE/ESA
Messages and Codes Volume 3 manual for descriptions of the corresponding error
conditions.

The figures in the “Action flags set ” column are translated into bit settings and
explained in Table 153 on page 667.

Table 150 (Page 1 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'10' TCZSRCTU DFHZC2405 18

X'11' TCZSRCBF DFHZC2403 2 5 18 24

X'13' TCZSRCVH DFHZC2416 18 24

X'14' TCZLRCER DFHZC2404 2 3 9 10 11 23 24

X'15' TCZSRCPF DFHZC2407 2 3 9 10 11 24

X'16' TCZDMIT DFHZC3492 None

X'18' TCZLRCNR DFHZC2404 2 3 9 10 11 23 24

X'19' TCZSRCTS DFHZC2406 9 10 11 18

 Copyright IBM Corp. 1977, 1999 653

 default actions of DFHZNAC

Table 150 (Page 2 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'1A' TCZSRCVE DFHZC2408 2 3 9 10 11 18 24

X'1D' TCZSRCVI DFHZC2417 2 24

X'1E' TCZSRCV2 DFHZC2408 2 3 9 10 11 24

X'20' TCZVTAMI DFHZC2417 None

X'21' TCZLUCF1 DFHZC4902 3 9 10 11 22 24

X'22' TCZLUCF2 DFHZC4903 3 9 10 11 22 24

X'23' TCZFSMBE DFHZC4904 3 9 10 11 22 24

X'24' TCZFSMCS DFHZC4905 3 9 10 11 22 24

X'25' TCZFSMCR DFHZC4906 3 9 10 11 24

X'26' TCZSDLER DFHZC4907 3 9 10 11 24

X'28' TCZRVLER DFHZC4909 3 9 10 11 24

X'29' TCZRVLRB DFHZC4910 3 9 10 11 24

X'2A' TCZRLPEX DFHZC4911 2 3 9 10 11 24

X'2B' TCZRLPBD DFHZC4912 2 3 9 10 11 22 24

X'2C' TCZRLPDR DFHZC4913 2 3 9 10 11 24

X'2D' TCZRLPIL DFHZC4914 2 3 9 10 11 22 24

X'2E' TCZRLPEC DFHZC4915 2 3 9 10 11 22 24

X'2F' TCZRLPRR DFHZC4916 2 3 9 10 11 24

X'30' TCZRLPIF DFHZC4917 2 3 9 10 11 24

X'31' TCZRLPIR DFHZC4918 2 3 9 10 11 24

X'32' TCZRLXCL DFHZC4922 20

X'33' TCZIVIND DFHZC4919 2 3 9 10 11 22 24

X'34' TCZIVDAT DFHZC4920 2 3 9 10 11 22 24

X'35' TCZRTMT DFHZC4930 2 3 9 10 11 24

X'37' TCZXSHRA DFHZC3470 9 10 11 24

X'3C' TCZXUVAR DFHZC3488 2 3 9 10 11 18 24

X'3D' TCZXMSG None None

X'40' TCZINCPY DFHZC2489 3 9 11

X'41' TCZTOLRQ DFHZC2490 2 3 9 10 11 15 24

X'42' TCZUNPRT DFHZC2497 1 None

X'43' TCZCPYNS DFHZC2434 3 11

X'44' TCZSRCDE DFHZC2456 2 3 9 10 11 18 24

X'45' TCZCHMX DFHZC3400 3 10 11 22

X'46' TCZOCIR DFHZC3402 3 9 10 11

X'47' TCZGMMS None 2 13

X'48' TCZOPSIN DFHZC3461 None

X'49' TCZCLSIN DFHZC3462 None

654 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Table 150 (Page 3 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'4A' TCZOPACB DFHZC3463 None

X'4B' TCZICPUT DFHZC2498 None

X'4C' TCZDSPCL DFHZC3481 2 3 9 10 11 24

X'4E' TCZUNBFE DFHZC3479 2 3 9 10 11 24

X'4F' TCZCNOS0 None None

X'50' TCZSDRE3 DFHZC3417 3 9 10 11 24

X'51' TCZBDPRI DFHZC3418 3 9 10 11 24

X'52' TCZBDUAC DFHZC3419 2 3 5 24

X'53' TCZBDTOS DFHZC3420 20

X'54' TCZUNBIS DFHZC3434 2 3 9 10 11 24

X'55' TCZEMWBK DFHZC3440 None

X'56' TCZXRFVS DFHZC6598 None

X'57' TCZRELIS DFHZC3464 20

X'58' TCZERMGR DFHZC3433 None

X'59' TCZROCT DFHZC2443 2 3 9 10 11 24

X'5A' TCZSBIRV DFHZC3421 20

X'5B' TCZNSP01 DFHZC3422 2 3 9 10 11 18 24

X'5C' TCZNSP02 DFHZC3424 9 10 11 15 24

X'5D' TCZPRDTO DFHZC0101 None

X'5E' TCZBRUAC DFHZC3454 2 3 5 18 24

X'5F' TCZBDSQP DFHZC3455 2 3 5 18 24

X'60' TCZUNCMD DFHZC2421 2 3 9 10 11 24

X'62' TCZVTAMQ None 3 24

X'63' TCZVTAMO DFHZC3441 None

X'64' TCZVTAMA DFHZC3443 None

X'65' TCZINVRR DFHZC2448 2 3 10 11 22 23 24

X'66' TCZSIGR DFHZC3452 None

X'67' TCZVTAMK DFHZC3442 None

X'69' TCZSEXOS DFHZC3466 20 23

X'6A' TCZTIOAE DFHZC3444 1 2 3 9 10 11 23 24

X'6B' TCZNOTNA DFHZC3495 24

X'6C' TCZPSAF DFHZC0155 3 6 9 10 11 24

X'6D' TCZPSAR DFHZC0156 None

X'6F' TCZSDAS DFHZC2351 2 3

X'70' TCZCLRRV DFHZC3468 9 10 11 15 24

X'71' TCZPSLE DFHZC0147 3 6 9 10 11 24

X'72' TCZPSVF DFHZC0148 9 10 11 24

 Appendix B. Default actions of the node abnormal condition program 655

 default actions of DFHZNAC

Table 150 (Page 4 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'73' TCZSDSE4 DFHZC2437 3 9 11

X'74' TCZSDSE5 DFHZC2423 3 9 10 11 24

X'75' TCZSESE1 DFHZC2424 3 9 10 11 15 24

X'76' TCZLGNA DFHZC2487 3

X'77' TCZDMRY DFHZC2488 None

X'78' TCZSDRE2 DFHZC2430 3 9 11 22

X'79' TCZPSRAF DFHZC0145 3 6 9 10 11 24

X'7A' TCZPSRAC DFHZC0144 11

X'7C' TCZPSANR DFHZC0157 3 9 10 11 24

X'7D' TCZRABUS DFHZC4949 2 3 9 10 11 24

X'80' TCZSRCSP DFHZC2414 None

X'81' TCZSSXNR DFHZC2432 None

X'82' TCZSSXUC DFHZC2419 2 3 9 10 11 23 24

X'83' TCZSSXAR DFHZC2450 None

X'84' TCZSSXIB DFHZC2446 2 3 9 10 11 23 24

X'85' TCZUNEGR DFHZC3409 2 3 9 10 11 23 24

X'88' TCZLEXCI DFHZC2467 2 3 9 10 11 23 24

X'89' TCZLEXUS DFHZC2468 2 3 9 10 11 23 24

X'8A' TCZLUSRR DFHZC4937 2 3 5 24

X'8B' TCZLUSRF DFHZC4938 2 3 5 24

X'8C' TCZLUPUN DFHZC4939 2 3 5 24

X'8D' TCZLUPLK DFHZC4941 2 3 5 24

X'8E' TCZLUPEX DFHZC4942 2 3 5 24

X'8F' TCZLUSKN DFHZC4940 2 3 5 24

X'90' TCZLGCER DFHZC2422 1 2 3 6 9 10 11 23 24

X'91' TCZRSTLE DFHZC2429 3 10 11

X'92' TCZSDSE6 DFHZC2428 3 9 11

X'93' TCZRACET DFHZC2455 2 3 9 10 11 15 22 24

X'94' TCZRACES DFHZC2426 2 3 9 10 11 22

X'95' TCZSDSE8 DFHZC2445 3 9 11

X'96' TCZRVSZ1 DFHZC2435 3 10 11 24

X'97' TCZRVSZ3 DFHZC2436 3 10 11

X'98' TCZACT01 DFHZC2439 2 18

X'99' TCZSDSE7 DFHZC2459 3 9 11

X'9A' TCZDOMCF DFHZC2447 3 9 10 11 23

X'9B' TCZRACNL DFHZC2486 3

X'9D' TCZRSPER DFHZC3465 1 2 3 9 10 11 23 24

656 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Table 150 (Page 5 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'9E' TCZDEVND DFHZC3472 None

X'A0' TCZNOISC DFHZC3480 23 24

X'A1' TCZRVSZ2 DFHZC2438 3 10 11

X'A2' TCZPRGE DFHZC4945 3 9 10 11 24

X'A3' TCZBKTSE DFHZC2444 2 3 9 10 11 24

X'A7' TCZBOEB DFHZC2449 2 3 11 18 22 24

X'A8' TCZFMHLE DFHZC2471 2 3 4 10 11 22 24

X'A9' TCZRACRF DFHZC2472 11

X'AA' TCZSDSE9 DFHZC2473 3 9 11

X'AB' TCZLUERR DFHZC3470 9 10 11 24

X'AC' TCZVRDAC DFHZC3474 9 10 11 24

X'AD' TCZNRLUF DFHZC3475 9 10 11 24

X'AE' TCZRCLUF DFHZC3476 9 10 11 24

X'AF' TCZCLEAN DFHZC3477 9 10 11 24

X'B1' TCZRPLAC DFHZC2401 2 3 9 10 11 23 24

X'B2' TCZSDAUC DFHZC2425 3 9 10 11 15 24

X'B3' TCZBDBND DFHZC4929 2 3 5 24

X'B4' TCZRSNE DFHZC2402 3 11

X'B5' TCZSAXUC DFHZC2420 2 3 9 10 11 23 24

X'B6' TCZNSEED DFHZC4924 2 3 5 24

X'B7' TCZASINC DFHZC4925 2 3 5 22 24

X'B8' TCZEVBAD DFHZC4926 2 3 5 22 24

X'B9' TCZFMH12 DFHZC4927 2 3 5 22 24

X'BA' TCZRACSF DFHZC2114 11

X'BB' TCZSEXUC DFHZC2418 2 3 9 10 11 23 24

X'BC' TCZINIIR DFHZC3410 2 3 9 10 11

X'BD' TCZDESGM DFHZC4928 24

X'BE' TCZBFAIL DFHZC4944 2 3 5 22 24

X'BF' TCZCPFAL DFHZC3490 24

X'C0' TCZDWEGF DFHZC3499 None

X'C1' TCZSRCAT DFHZC2400 2 3 9 10 11 23 24

X'C2' TCZLUINP DFHZC3486 24

X'C3' TCZCPFAL DFHZC3490 24

X'C5' TCZSRCNA DFHZC2427 2

X'C6' TCZPASSD DFHZC3484 None

X'C7' TCZPSPRE DFHZC3485 24

X'C8' TCZLUINH DFHZC3489 18 24

 Appendix B. Default actions of the node abnormal condition program 657

 default actions of DFHZNAC

Table 150 (Page 6 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'C9' TCZNPSAU DFHZC3487 24

X'CB' TCZSRCTC DFHZC2431 2 3 9 10 11

X'CC' TCZSRCCI DFHZC2451 2 3 9 10 11

X'CD' TCZSRCCX DFHZC2454 2 3 9 10 11

X'CE' TCZVHOLD DFHZC3469 9 10 11 24

X'CF' TCZVRNOP DFHZC3471 9 10 11 24

X'D0' TCZTXCS DFHZC2409 2 3 9 10 11 15 24

X'D1' TCZTXCU DFHZC2410 2 3 9 10 11 18 24

X'D3' TCZDMPD DFHZC2463 None

X'D4' TCZCXRR DFHZC2453 1 2 3 9 10 11

X'D5' TCZCXE2 DFHZC2452 3 9 10 11 18 24

X'D6' TCZSXC2 DFHZC2441 None

X'D7' TCZSXC1 DFHZC2440 None

X'D8' TCZRNCH DFHZC2457 2 3 9 10 11 24

X'D9' TCZYX43 DFHZC2469 2 3 9 10 11

X'DA' TCZSXC3 DFHZC2470 9 10 11 24

X'DB' TCZPIPL DFHZC2117 9 10 11 23 24

X'DC' TCZPXE1 DFHZC2442 None

X'DD' TCZPXE2 DFHZC2458 None

X'DF' TCZDMGF DFHZC3482 None

X'E0' TCZDMSN DFHZC2411 None

X'E1' TCZDMRA DFHZC2412 None

X'E2' TCZDMCL DFHZC2413 2

X'E3' TCZCNCL DFHZC2485 3 9 10 11

X'E4' TCZAIER DFHZC2433 None

X'E6' TCZDMLG DFHZC2404 None

X'E8' TCZDMSLE DFHZC3416 2 3

X'E9' TCZSTIND DFHZC2102 3

X'EA' TCZSTLER DFHZC3432 2 3

X'EB' TCZSTRMH DFHZC3428 3

X'EC' TCZSTRMM DFHZC3429 2 3

X'ED' TCZSTON DFHZC3430 2 3

X'EF' TCZSTIN DFHZC3431 2 3

X'F1' TCZBDMOD DFHZC4931 18 24

X'F2' TCZEXRVT DFHZC2469 2 3 9 10 11

X'F3' TCZICTYP DFHZC4932 2 3 22 24

X'F4' TCZIDBA DFHZC4933 2 3 22 24

658 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Notes:

1. See message DFHZC2497 or DFHZC3493, depending on the device type.
2. “Good morning” message to be sent.
3. Cancel task, and close VTAM session owing to quick close or abend.

Table 150 (Page 7 of 7). Messages issued and flags set by DFHZNAC for specific
error codes

Error code Symbolic
label

Message Action flags set

X'F5' TCZISYNL DFHZC4934 2 3 22 24

X'F6' TCZIUOW DFHZC4935 2 3 22 24

X'F7' TCZIFMHL DFHZC4936 2 3 22 24

X'F8' TCZFSMRB DFHZC4943 3 9 10 11 24

X'F9' TCZINVAT DFHZC4946 2 3 22 24

X'FA' TCZLUSEC DFHZC4947 2 3 22 24

X'FB' TCZPSUNB DFHZC0125 None

X'FC' TCZPSOPN DFHZC0131 None

X'FD' TCZPSRC DFHZC0146 None

X'FE' TCZPSRF DFHZC0150 3 6 9 10 11 15 24

X'FF' TCZPSPE DFHZC0149 None

CICS messages associated with VTAM errors

Table 151 (Page 1 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC0101 TCZPRDTO X'5D' None

DFHZC0125 TCZPSUNB X'FB' None

DFHZC0131 TCZPSOPN X'FC' None

DFHZC0144 TCZPSRAC X'7A' 11

DFHZC0145 TCZPSRAF X'79' 3 6 9 10 11 24

DFHZC0146 TCZPSRC X'FD' None

DFHZC0147 TCZPSLE X'71' 3 6 9 10 11 24

DFHZC0148 TCZPSVF X'72' 9 10 11 24

DFHZC0149 TCZPSPE X'FF' None

DFHZC0150 TCZPSRF X'FE' 3 6 9 10 11 15 24

DFHZC0155 TCZPSAF X'6C' 3 6 9 10 11 24

DFHZC0156 TCZPSAR X'6D' None

DFHZC0157 TCZPSANR X'7C' 3 9 10 11 24

DFHZC2102 TCZSTIND X'E9' 3

DFHZC2114 TCZRACSF X'BA' 11

DFHZC2117 TCZPIPL X'DB' 9 10 11 23 24

 Appendix B. Default actions of the node abnormal condition program 659

 default actions of DFHZNAC

Table 151 (Page 2 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC2351 TCZSDAS X'6F' 2 3

DFHZC2400 TCZSRCAT X'C1' 2 3 9 10 11 23 24

DFHZC2401 TCZRPLAC X'B1' 2 3 9 10 11 23 24

DFHZC2402 TCZRSNE X'B4' 3 11

DFHZC2403 TCZSRCBF X'11' 2 5 18 24

DFHZC2404 TCZLRCER X'14' 2 3 9 10 11 23 24

DFHZC2404 TCZLRCNR X'18' 2 3 9 10 11 23 24

DFHZC2404 TCZDMLG X'E6' None

DFHZC2405 TCZSRCTU X'10' 18

DFHZC2406 TCZSRCTS X'19' 9 10 11 18

DFHZC2407 TCZSRCPF X'15' 2 3 9 10 11 24

DFHZC2408 TCZSRCVE X'1A' 2 3 9 10 11 18 24

DFHZC2408 TCZSRCV2 X'1E' 2 3 9 10 11 18 24

DFHZC2409 TCZTXCS X'D0' 2 3 9 10 11 15 24

DFHZC2410 TCZTXCU X'D1' 2 3 9 10 11 18 24

DFHZC2411 TCZDMSN X'E0' None

DFHZC2412 TCZDMRA X'E1' None

DFHZC2413 TCZDMCL X'E2' 2

DFHZC2414 TCZSRCSP X'80' None

DFHZC2416 TCZSRCVH X'13' 18 24

DFHZC2417 TCZSRCVI X'1D' 2 24

DFHZC2417 TCZVTAMI X'20' None

DFHZC2418 TCZSEXUC X'BB' 2 3 9 10 11 23 24

DFHZC2419 TCZSSXUC X'82' 2 3 9 10 11 23 24

DFHZC2420 TCZSAXUC X'B5' 2 3 9 10 11 23 24

DFHZC2421 TCZUNCMD X'60' 2 3 9 10 11 24

DFHZC2422 TCZLGCER X'90' 1 2 3 6 9 10 11 23 24

DFHZC2423 TCZSDSE5 X'74' 3 9 10 11 24

DFHZC2424 TCZSESE1 X'75' 3 9 10 11 15 24

DFHZC2425 TCZSDAUC X'B2' 3 9 10 11 15 24

DFHZC2426 TCZRACES X'94' 2 3 9 10 11 22

DFHZC2427 TCZSRCNA X'C5' 2

DFHZC2428 TCZSDSE6 X'92' 3 9 11

DFHZC2429 TCZRSTLE X'91' 3 10 11

DFHZC2430 TCZSDRE2 X'78' 3 9 11 22

DFHZC2431 TCZSRCTC X'CB' 2 3 9 10 11

DFHZC2432 TCZSSXNR X'81' None

DFHZC2433 TCZAIER X'E4' None

660 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Table 151 (Page 3 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC2434 TCZCPYNS X'43' 3 11

DFHZC2435 TCZRVSZ1 X'96' 3 10 11 24

DFHZC2436 TCZRVSZ3 X'97' 3 10 11

DFHZC2437 TCZSDSE4 X'73' 3 9 11

DFHZC2438 TCZRVSZ2 X'A1' 3 10 11

DFHZC2439 TCZACT01 X'98' 2 18

DFHZC2440 TCZSXC1 X'D7' None

DFHZC2441 TCZSXC2 X'D6' None

DFHZC2442 TCZPXE1 X'DC' None

DFHZC2443 TCZROCT X'59' 2 3 9 10 11 24

DFHZC2444 TCZBKTSE X'A3' 2 3 9 10 11 24

DFHZC2445 TCZSDSE8 X'95' 3 9 11

DFHZC2446 TCZSSXIB X'84' 2 3 9 10 11 23 24

DFHZC2447 TCZDOMCF X'9A' 3 9 10 11 23

DFHZC2448 TCZINVRR X'65' 2 3 10 11 22 23 24

DFHZC2449 TCZBOEB X'A7' 2 3 11 18 22 24

DFHZC2450 TCZSSXAR X'83' None

DFHZC2451 TCZSRCCI X'CC' 2 3 9 10 11

DFHZC2452 TCZCXE2 X'D5' 3 9 10 11 18 24

DFHZC2453 TCZCXRR X'D4' 1 2 3 9 10 11

DFHZC2454 TCZSRCCX X'CD' 2 3 9 10 11

DFHZC2455 TCZRACET X'93' 2 3 9 10 11 15 22 24

DFHZC2456 TCZSRCDE X'44' 2 3 9 10 11 18 24

DFHZC2457 TCZRNCH X'D8' 2 3 9 10 11 24

DFHZC2458 TCZPXE2 X'DD' None

DFHZC2459 TCZSDSE7 X'99' 3 9 11

DFHZC2463 TCZDMPD X'D3' None

DFHZC2467 TCZLEXCI X'88' 2 3 9 10 11 23 24

DFHZC2468 TCZLEXUS X'89' 2 3 9 10 11 23 24

DFHZC2469 TCZYX43 X'D9' 2 3 9 10 11

DFHZC2469 TCZEXRVT X'F2' 2 3 9 10 11

DFHZC2470 TCZSXC3 X'DA' 9 10 11 24

DFHZC2471 TCZFMHLE X'A8' 2 3 4 10 11 22 24

DFHZC2472 TCZRACRF X'A9' 11

DFHZC2473 TCZSDSE9 X'AA' 3 9 11

DFHZC2485 TCZCNCL X'E3' 3 9 10 11

DFHZC2486 TCZRACNL X'9B' 3

DFHZC2487 TCZLGNA X'76' 3

 Appendix B. Default actions of the node abnormal condition program 661

 default actions of DFHZNAC

Table 151 (Page 4 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC2488 TCZDMRY X'77' None

DFHZC2489 TCZINCPY X'40' 3 9 11

DFHZC2490 TCZTOLRQ X'41' 2 3 9 10 11 15 24

DFHZC2497 1 TCZUNPRT X'42' None

DFHZC2498 TCZICPUT X'4B' None

DFHZC3400 TCZCHMX X'45' 3 10 11 22

DFHZC3402 TCZOCIR X'46' 3 9 10 11

DFHZC3409 TCZUNEGR X'85' 2 3 9 10 11 23 24

DFHZC3410 TCZINIIR X'BC' 2 3 9 10 11

DFHZC3416 TCZDMSLE X'E8' 2 3

DFHZC3417 TCZSDRE3 X'50' 3 9 10 11 24

DFHZC3418 TCZBDPRI X'51' 3 9 10 11 24

DFHZC3419 TCZBDUAC X'52' 2 3 5 24

DFHZC3420 TCZBDTOS X'53' 20

DFHZC3421 TCZSBIRV X'5A' 20

DFHZC3422 TCZNSP01 X'5B' 2 3 9 10 11 18 24

DFHZC3424 TCZNSP02 X'5C' 9 10 11 15 24

DFHZC3428 TCZSTRMH X'EB' 3

DFHZC3429 TCZSTRMM X'EC' 2 3

DFHZC3430 TCZSTON X'ED' 2 3

DFHZC3431 TCZSTIN X'EF' 2 3

DFHZC3432 TCZSTLER X'EA' 2 3

DFHZC3433 TCZERMGR X'58' None

DFHZC3434 TCZUNBIS X'54' 2 3 9 10 11 24

DFHZC3440 TCZEMWBK X'55' None

DFHZC3441 TCZVTAMO X'63' None

DFHZC3442 TCZVTAMK X'67' None

DFHZC3443 TCZVTAMA X'64' None

DFHZC3444 TCZTIOAE X'6A' 1 2 3 9 10 11 23 24

DFHZC3452 TCZSIGR X'66' None

DFHZC3454 TCZBRUAC X'5E' 2 3 5 18 24

DFHZC3455 TCZBDSQP X'5F' 2 3 5 18 24

DFHZC3461 TCZOPSIN X'48' None

DFHZC3462 TCZCLSIN X'49' None

DFHZC3463 TCZOPACB X'4A' None

DFHZC3464 TCZRELIS X'57' 20

DFHZC3465 TCZRSPER X'9D' 1 2 3 9 10 11 23 24

DFHZC3466 TCZSEXOS X'69' 20 23

662 CICS Transaction Server for VSE/ESA Customization Guide

 default actions of DFHZNAC

Table 151 (Page 5 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC3468 TCZCLRRV X'70' 9 10 11 15 24

DFHZC3469 TCZVHOLD X'CE' 9 10 11 24

DFHZC3470 TCZXSHRA X'37' 9 10 11 24

DFHZC3470 TCZLUERR X'AB' 9 10 11 24

DFHZC3471 TCZVRNOP X'CF' 9 10 11 24

DFHZC3472 TCZDEVND X'9E' None

DFHZC3474 TCZVRDAC X'AC' 9 10 11 24

DFHZC3475 TCZNRLUF X'AD' 9 10 11 24

DFHZC3476 TCZRCLUF X'AE' 9 10 11 24

DFHZC3477 TCZCLEAN X'AF' 9 10 11 24

DFHZC3479 TCZUNBFE X'4E' 2 3 9 10 11 24

DFHZC3480 TCZNOISC X'A0' 23 24

DFHZC3481 TCZDSPCL X'4C' 2 3 9 10 11 24

DFHZC3482 TCZDMGF X'DF' None

DFHZC3484 TCZPASSD X'C6' None

DFHZC3485 TCZPSPRE X'C7' 24

DFHZC3486 TCZLUINP X'C2' 24

DFHZC3487 TCZNPSAU X'C9' 24

DFHZC3488 TCZXUVAR X'3C' 2 3 9 10 11 18 24

DFHZC3489 TCZLUINH X'C8' 18 24

DFHZC3490 TCZCPFAL X'BF' 24

DFHZC3490 TCZCPFAL X'C3' 24

DFHZC3492 TCZDMIT X'16' None

DFHZC3495 TCZNOTNA X'6B' 24

DFHZC3499 TCZDWEGF X'C0' None

DFHZC4902 TCZLUCF1 X'21' 3 9 10 11 22 24

DFHZC4903 TCZLUCF2 X'22' 3 9 10 11 22 24

DFHZC4904 TCZFSMBE X'23' 3 9 10 11 22 24

DFHZC4905 TCZFSMCS X'24' 3 9 10 11 22 24

DFHZC4906 TCZFSMCR X'25' 3 9 10 11 24

DFHZC4907 TCZSDLER X'26' 3 9 10 11 24

DFHZC4909 TCZRVLER X'28' 3 9 10 11 24

DFHZC4910 TCZRVLRB X'29' 3 9 10 11 24

DFHZC4911 TCZRLPEX X'2A' 2 3 9 10 11 24

DFHZC4912 TCZRLPBD X'2B' 2 3 9 10 11 22 24

DFHZC4913 TCZRLPDR X'2C' 2 3 9 10 11 24

DFHZC4914 TCZRLPIL X'2D' 2 3 9 10 11 22 24

DFHZC4915 TCZRLPEC X'2E' 2 3 9 10 11 22 24

 Appendix B. Default actions of the node abnormal condition program 663

 default actions of DFHZNAC

Table 151 (Page 6 of 6). CICS messages associated with VTAM errors

Message Symbolic
label

Error code Action flags set

DFHZC4916 TCZRLPRR X'2F' 2 3 9 10 11 24

DFHZC4917 TCZRLPIF X'30' 2 3 9 10 11 24

DFHZC4918 TCZRLPIR X'31' 2 3 9 10 11 24

DFHZC4919 TCZIVIND X'33' 2 3 9 10 11 22 24

DFHZC4920 TCZIVDAT X'34' 2 3 9 10 11 22 24

DFHZC4922 TCZRLXCL X'32' 20

DFHZC4924 TCZNSEED X'B6' 2 3 5 24

DFHZC4925 TCZASINC X'B7' 2 3 5 22 24

DFHZC4926 TCZEVBAD X'B8' 2 3 5 22 24

DFHZC4927 TCZFMH12 X'B9' 2 3 5 22 24

DFHZC4928 TCZDESGM X'BD' 24

DFHZC4929 TCZBDBND X'B3' 2 3 5 24

DFHZC4930 TCZRTMT X'35' 2 3 9 10 11 24

DFHZC4931 TCZBDMOD X'F1' 18 24

DFHZC4932 TCZICTYP X'F3' 2 3 22 24

DFHZC4933 TCZIDBA X'F4' 2 3 22 24

DFHZC4934 TCZISYNL X'F5' 2 3 22 24

DFHZC4935 TCZIUOW X'F6' 2 3 22 24

DFHZC4936 TCZIFMHL X'F7' 2 3 22 24

DFHZC4937 TCZLUSRR X'8A' 2 3 5 24

DFHZC4938 TCZLUSRF X'8B' 2 3 5 24

DFHZC4939 TCZLUPUN X'8C' 2 3 5 24

DFHZC4940 TCZLUSKN X'8F' 2 3 5 24

DFHZC4941 TCZLUPLK X'8D' 2 3 5 24

DFHZC4942 TCZLUPEX X'8E' 2 3 5 24

DFHZC4943 TCZFSMRB X'F8' 3 9 10 11 24

DFHZC4944 TCZBFAIL X'BE' 2 3 5 22 24

DFHZC4945 TCZPRGE X'A2' 3 9 10 11 24

DFHZC4946 TCZINVAT X'F9' 2 3 22 24

DFHZC4947 TCZLUSEC X'FA' 2 3 22 24

DFHZC4949 TCZRABUS X'7D' 2 3 9 10 11 24

DFHZC6598 TCZXRFVS X'56' None

None TCZXMSG X'3D' None

None TCZCNOS0 X'4F' None

None 2 TCZGMMS X'47' 13

None 3 TCZVTAMQ X'62' 24

664 CICS Transaction Server for VSE/ESA Customization Guide

 default actions for system sense codes

Default actions for system sense codes
Table 152 shows the message issued and action flags set by DFHZNAC for each
inbound system sense code received. See the VSE/ESA Messages and Codes
Volume 3 manual for a description of the conditions that correspond to the system
sense codes. The figures in the “Action flags set ” column are translated into bit
settings and explained in Table 153 on page 667.

Table 152 (Page 1 of 2). Messages issued and flags set by DFHZNAC for specific
sense codes

Sense code Message Action flags set

X'0001'
See note 1 on
page 667.

DFHZC3401 2

X'0002'
See note 1 on
page 667.

DFHZC3415 2, 3, 10, 11

X'0003'
See note 1 on
page 667.

DFHZC3449 None

X'0004'
See note 1 on
page 667.

DFHZC3450 None

X'0007'
See note 1 on
page 667.

DFHZC3451 None. See note 2 on page 667.

X'00FF' DFHZC3446 2, 3, 9, 10, 11, 21, 23

X'0801' DFHZC2476 3, 9, 10, 11

X'0802' DFHZC2461 None

X'0806' DFHZC3426 None

X'0807' DFHZC3411 None

X'080B' DFHZC2462 2, 3, 9, 10, 11, 15, 24

X'080E' DFHZC3448 23

X'080F' DFHZC3436 9, 10, 11

X'0811' DFHZC2464 9, 10, 11

X'0812' DFHZC2465 2, 3

X'081B' DFHZC2483 2, 3. See note 3 on page 667.

X'081C' DFHZC2466 2, 3, 9, 10, 11

X'0824' DFHZC2475 3, 9, 10, 11

X'0825' DFHZC2484 2, 3, 9, 10, 11

X'0826' DFHZC3423 2, 3, 9, 10, 11

X'0827' DFHZC2480 3

X'0829' DFHZC3407 1, 2, 3, 10, 11, 24

X'082A' None. See note 4 on
page 667.

9

X'082B' DFHZC3408 2, 3, 10, 11, 13

 Appendix B. Default actions of the node abnormal condition program 665

 default actions for system sense codes

Table 152 (Page 2 of 2). Messages issued and flags set by DFHZNAC for specific
sense codes

Sense code Message Action flags set

X'082D' DFHZC3413 None

X'082E' DFHZC3412 None

X'082F' DFHZC3414 2, 3, 9, 10, 11

X'0831' DFHZC3438 None

X'0833' DFHZC3427 None

X'0847' DFHZC3439 None

X'084A' None. See note 5 on
page 667.

None

X'084C' DFHZC3467 9, 10, 11

X'0860' DFHZC3459 None

X'0863' DFHZC3460 9, 10, 11

X'0864' DFHZC2475 3, 9, 10, 11

X'0865' DFHZC2465 3, 9, 10, 11

X'0866' DFHZC2475 3, 9, 10, 11

X'0867' None. See note 6 on
page 667.

9, 10, 11

X'0868' DFHZC3456 2, 9, 10, 11

X'0869' DFHZC3457 2, 9, 10, 11

X'08FF' DFHZC3447 2, 3, 9, 10, 11, 24

X'1000' DFHZC3494 2, 3, 9, 10, 11

X'1001' DFHZC2481 2, 3, 9, 10, 11, 14

X'1002' DFHZC2481 2, 3, 9, 10, 11, 14

X'1003' DFHZC2479 2, 3, 9, 10, 11, 14

X'1005' DFHZC3406 2, 3, 4, 9, 10, 11, 14

X'1008' DFHZC2478 None

X'1009' DFHZC3458 2, 9, 10, 11

X'10FF' DFHZC3446 2, 3, 9, 10, 11, 21, 23

X'2003' DFHZC3405 2, 3, 9, 10, 11, 15, 24

X'20FF' DFHZC3445 2, 3, 9, 10, 11, 23, 24

X'400B' DFHZC2477 1, 3, 11

X'40FF' DFHZC3453 2, 3, 9, 10, 11, 23, 24

X'8000' DFHZC3435 2, 3, 9, 10, 11, 18, 24

X'8002' DFHZC3435 2, 3, 9, 10, 11, 18, 24

X'8004' DFHZC3435 2, 3, 9, 10, 11, 18, 24

X'8005' DFHZC3435 2, 3, 9, 10, 11, 18, 24

X'80FF' DFHZC3435 2, 3, 9, 10, 11, 18, 23, 24

X'FFFF' DFHZC2460 2, 3, 9, 10, 11, 23, 24

666 CICS Transaction Server for VSE/ESA Customization Guide

 action flag settings and meanings

Notes:

1. The system sense code is in the form of an LUSTATUS command code.

2. No action flags are set if a task is attached or if outstanding operations are to
complete. Otherwise, flag 21 is set.

3. Action flags 2 and 3 are set for negative response received for a SEND that
requested a definite response.

4. Presentation space error.

5. Presentation error on read. Display buffer alteration, due to operator
intervention, detected on a READ command to a compatibility-mode logical
unit.

6. Function abend received from a device. A negative response to a chain was
sent, but purged.

Action flag settings and meanings
Table 153 shows the “action flags” that can be set by DFHZNAC in the
communication area passed to DFHZNEP. The flags set by DFHZNAC represent
the default actions that will be taken if the settings are not changed by DFHZNEP.

The figures in the “Flag ” column refer to those in columns 3 of Table 150 on
page 653 and Table 152 on page 665.

Table 153. Meanings of action flags set by DFHZNAC

Flag Field Bit mask Hex bit
setting

Action

1 TWAOPT1 1... X'80' Print action flags
2 .1.. X'40' Print VTAM RPL
3 ..1. X'20' Print TCTTE
4 ...1 X'10' Print TIOA
5 1... X'08' Print BIND area
61.. X'04' System dump if no task attached

9 TWAOPT2 1... X'80' Abort any send for this terminal
10 .1.. X'40' Abort any receive for this terminal
11 ..1. X'20' Abend any task attached to

TCTTE
12 ...1 X'10' Cancel any task attached to

TCTTE
13 1... X'08' Good Morning message to be sent
141.. X'04' Purge any BMS pages for this

TCTTE
151. X'02' SIMLOGON required

17 TWAOPT3 1... X'80' Set INTLOG now allowed
18 .1.. X'40' Set no internal general logons
20 ...1 X'10' Normal CLSDST (no reset

allowed)
21 1... X'08' Normal CLSDST (reset allowed)
221.. X'04' Send negative response
231. X'02' AOS - keep node out of service
241 X'01' CLSDST node

 Appendix B. Default actions of the node abnormal condition program 667

 action flag settings and meanings

668 CICS Transaction Server for VSE/ESA Customization Guide

 transient data write-to-terminal program

Appendix C. Transient data write-to-terminal program
(DFH$TDWT)

DFH$TDWT is a sample program that sends transient data messages to a terminal
or printer. You can use it to send messages from a single transient data queue, or
from several queues, to one terminal.

In the destination control table (DCT), you can specify that particular categories of
message (for example, those from the abnormal condition program (DFHACP), and
signon and sign-off messages) should be sent to destinations defined as
INDIRECT. If these INDIRECT destinations are defined (by means of the
INDDEST operand) so that they refer to the same intrapartition destination with a
transaction identifier and a trigger level of 1, the receipt of a single message in any
of the specified categories causes the transaction to be started. The program thus
invoked displays or prints the message. The transaction that invokes the
DFH$TDWT sample program is TDWT.

To use the sample program, your CICS system must include automatic transaction
initiation and an intrapartition transient data set. Both the source code and the
object code for the DFH$TDWT sample program is provided in the VSE/ESA
sublibrary PRD1.BASE.

For detailed information about defining transient data destinations in the DCT, see
the CICS Resource Definition Guide.

Resource definitions required
To use the DFH$TDWT sample program as supplied, you need the following
resource definitions installed on your CICS region:

� A RDO PROGRAM definition for the DFH$TDWT program
� A RDO TRANSACTION definition for the TDWT transaction
� A RDO TERMINAL definition for the L86P terminal
� A DCT entry for the intrapartition destination L86P
� DCT entries for the intrapartition destinations indirect to the destination L86P

The CSD resource definitions for the program and transaction are provided in the
DFH$UTIL group.

Note: DFH$UTIL is not a member of the default startup group list DFHLIST.

The DCT entry for the intrapartition destination L86P is provided in the sample
DCT, DFHDCT2$.

However, you must define the other resources:

� Add to the CSD a terminal definition for the L86P terminal and install the
definition in your CICS region.

� Add to the DCT entries for the intrapartition destinations that are indirect to the
destination L86P. Initialize your CICS region with this DCT specified on the
DCT system initialization parameter.

 Copyright IBM Corp. 1977, 1999 669

 transient data write-to-terminal program

For example:

 DFHDCT TYPE=INDIRECT,DESTID=CSMT,INDDEST=L86P

 DFHDCT TYPE=INDIRECT,DESTID=CSTL,INDDEST=L86P

 DFHDCT TYPE=INDIRECT,DESTID=CSML,INDDEST=L86P

670 CICS Transaction Server for VSE/ESA Customization Guide

 uppercase translation of national characters

Appendix D. Uppercase translation of national characters

Uppercase translation in CICS can be done either by using the UCTRAN option on
the PROFILE and TYPETERM definitions, or by using the EXEC CICS SET
TERMINAL(termid) UCTRANST command.

However, some languages have characters which are not part of the set of
EBCDIC characters translated by UCTRAN, and so are never translated to
uppercase, regardless of what you have specified on your resource definitions. To
translate these national characters, you have two options:

� Use the XZCIN global user exit
� Modify the translation table in DFHTCTDY.

Whichever method you use, the Character Data Representation Architecture Level
1 - Registry manual is a useful reference for information on code pages.

Using the XZCIN global user exit
XZCIN is described on page 190. To use it for uppercase translation, you must
supply your own translation routine, which is then invoked when terminal input
occurs.

 Using DFHTCTDY
CICS provides the source for DFHTCTDY in VSE/ESA sublibrary PRD1.BASE; you
can use this to modify the translation table to translate your national characters.
Figure 72 on page 672 shows a suggested way to code the assembler source
statements used to generate DFHTCTDY.

 Copyright IBM Corp. 1977, 1999 671

 uppercase translation of national characters

 MACRO

 NATLANG

DFHUCTRT CSECT Resume UCTRAN table CSECT

.\

.\ This example translates lowercase 'a' (EBCDIC X'81') to

.\ uppercase 'A' (EBCDIC X'C1') for a US code page.

.\

ORG TCZUCTAB+X'81' Reset the counter to the

character to be translated.

DC X'C1' Declare the replacement

character as a constant.

.\

.\ Repeat the above two statements for each extra character you wish

.\ to be translated.

.\

ORG , Reset the location counter

&SYSLOC LOCTR Resume previous location counter

MEND End of macro definition

 DFHTCT TYPE=INITIAL,SUFFIX=DY, \

 ACCMETH=(VTAM), \

 DUMMY=DUMMY

 NATLANG Execute NATLANG

 DFHTCT TYPE=FINAL

 END DFHTCTBA

Figure 72. Suggested coding for national language character translation

If you use this method, you must reassemble your modified copy of DFHTCTDY,
keeping the 'DY' suffix. The 'DY' suffix is necessary because, even if you use
RDO for all your terminals and have TCT=NO specified in your SIT or its overrides,
CICS uses DFHTCTDY by default to create control blocks for RDO-defined and
autoinstalled terminals.

If you specify a suffix other than 'DY' on the TCT system initialization parameter,
you must add your translation code to the TCT you are using.

672 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

Appendix E. The example program for the XTSEREQ global
user exit, DFH$XTSE

This appendix lists the example global user exit program, DFH$XTSE. The
example shows you how to:

� Use EXEC CICS commands in a global user exit program

� Use EXEC CICS commands and XPI calls in the same exit program

� Modify the command parameter list in EXEC interface exits such as XTSEREQ
and XICEREQ

� Modify Temporary Storage (TS) requests.

\\\

\ \

\ MODULE NAME = DFH$XTSE \

\ \

\ FUNCTION = \

\ Example global user exit program to run at the XTSEREQ and \

\ XTSEREQC exits. \

\ \

\ DESCRIPTION = \

\ The program gives examples of: \

\ 1) Coding Exec Interface global user exits, showing how to \

\ modify and add parameters to the Command Parameter List. \

\ 2) Issuing a mixture of EXEC CICS API and XPI calls within \

\ the same global user exit program. \

\ 3) Modifying Temporary Storage requests, by renaming the queue \

\ name and allowing the SYSID to be added so that the request \

\ is routed to a queue-owning region (QOR). \

\ \

\ --- \

\ NOTE that this program is only intended to DEMONSTRATE the use \

\ of the TS request user exit XTSEREQ, and to show the sort of \

\ information which can be obtained from the exit parameter list. \

\ IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT.\

\ --- \

\ \

\ NOTES = \

\ The important notes to remember when coding similar global user \

\ exits are: \

\ \

\ 1) If the exit program modifies the Command Parameter List, you \

\ MUST ensure that the storage used for additional fields such \

\ as the SYSID is non-volatile. Here are examples of storage \

\ that is safe: \

\ a) Shared storage obtained by GETMAIN. This should be \

\ obtained in the Request exit, and freed in the Request \

\ Complete exit.. The shared storage address can be passed \

\ using the 4-byte token in the DFHUEPAR parameter list. \

\ b) Shared global work area storage. \

\ c) Storage obtained by using the LOAD HOLD option. \

\ d) TCTUA or CWA storage. \

Figure 73 (Part 1 of 16). Example exit program for the XTSEREQ exit

 Copyright IBM Corp. 1977, 1999 673

 example XTSEREQ global user exit program

\ \

\ It is not safe to use the following storage: \

\ Program storage (DFHEISTG) since this is freed as soon \

\ as the exit program returns control to CICS. \

\ \

\ 2) When adding or removing a field in the command parameter list, \

\ you must remember: \

\ a) To set/clear the field's existence bit in the EID \

\ b) To set/clear the appropriate address in the Addr_List \

\ c) To set the hi-order bit in the LAST address in the \

\ Addr_List. \

\ \

\ 3) If you are planning to use the CICS API in the exit, you \

\ must: \

\ a) Use the DFHEIENT macro to control module entry. \

\ b) Use the DFHEIRET macro to return control to CICS. However,\

\ the exit return code MUST be set in Register 15. \

\ c) Issue an ADDRESS EIB command before issuing any EXEC CICS \

\ commands. \

\ \

\ 4) If you are planning to use the API and XPI in the same \

\ global user exit program, take care to ensure that Register \

\ 13 points to the kernel stack entry (UEPSTACK) for XPI calls, \

\ and is restored for API calls if necessary. \

\ \

\ \

\\\

 EJECT ,

\---\

\ \

\ Copybook and DSECTS required by the exit program \

\ \

\---\

 DFHUEXIT TYPE=EP,ID=(XTSEREQ,XTSEREQC)

DFHUEXIT TYPE=XPIENV Exit programming interface (XPI)

COPY DFHTRPTY Trace XPI definitions

COPY DFHTSUED Command Level Plist definitions

\

\---\

\ The following DSECT maps the shared storage obtained by the \

\ EXEC CICS GETMAIN API call. This storage is used to store the \

\ modified SYSID and/or TS QNAME that is passed to CICS on return \

\ from the exit program. \

\---\

SHARED_STORAGE DSECT

SHARED_EYECATCHER DS CL16

SHARED_NAME DS CL8

SHARED_SYSID DS CL4

\

Figure 73 (Part 2 of 16). Example exit program for the XTSEREQ exit

674 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\---\

\ The TS Routing table is made up of a set of entries. Each entry \

\ can be mapped by the TABLE_ENTRY DSECT \

\---\

TABLE_ENTRY DSECT

ENTRY_NAME DS CL8

NEW_NAME DS CL8

NEW_SYSID DS CL4

ENTRY_ACTION DS XL1

FILLER DS CL3

\

\---\

\ The following definitions are for program working storage. \

\---\

DFHEISTG DSECT

RETCODE DS XL4 Program Return Code

TR_ERROR_N DS X Error Number for Trace Entry

RESP DS X API Response

 EJECT ,

\\\

\ PROGRAM REGISTER USAGE : \

\ Rð - Work Register \

\ R1 - Points to DFHUEPAR plist on entry \

\ Work Register \

\ R2 - DFHUEPAR parameter List \

\ R3 - Code Base Register \

\ R4 - <unused> \

\ R5 - <unused> \

\ R6 - Subroutine Linkage Register \

\ R7 - Address of TS Queue Name from Command Plist \

\ R8 - Command Parameter list UEPCLPS \

\ R9 - Address of Table_Entry in TS_Routing_Table \

\ R1ð- <unused> \

\ R11- EIB Register \

\ R12- Work Register \

\ R13- DFHEISTG for API calls \

\ Kernel Stack for XPI calls \

\ R14- Work Register \

\ R15- Work Register \

\\\

 EJECT ,

\\\

\ DFH$XTSE - Main Routine \

\ This is the entry point for the exit program. Control is passed \

\ to the TS_REQUEST or TS_REQUEST_COMPLETE routines depending \

\ on whether the exit was invoked at the XTSEREQ or XTSEREQC exit \

\ points \

\ \

Figure 73 (Part 3 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 675

 example XTSEREQ global user exit program

\ Registers: \

\ R1 = UEPAR plist (set on entry) \

\ = Work register \

\ R2 = UEPAR plist \

\ R3 = Program base register (set by DFHEIENT) \

\ R6 = Linkage register \

\ R11= EIB register \

\ R13= EISTG register (set by DFHEIENT) \

\ R15= Work register \

\ User Exit Return Code \

\ \

\ Logic: \

\ DFH$XTSE: \

\ Exec Interface Entry \

\ Address DFHUEPAR plist \

\ Set OK Return Code \

\ Address the EIB \

\ Trace entry \

\ Select Exitid \

\ When(XTSEREQ) then call TS_Request \

\ When(XTSEREQC) then call TS_Request_Complete \

\ Otherwise call Error(Invalid_Exit) \

\ End Select \

\ Trace exit \

\ Set Exit return code \

\ Return \

\\\

DFH$XTSE DFHEIENT

DFH$XTSE AMODE 31

DFH$XTSE RMODE ANY

LR R2,R1 DFHUEPAR plist provided by caller

USING DFHUEPAR,R2 Use R2 to address UEPAR PLIST

\

LA R15,UERCNORM Set OK Response

ST R15,RETCODE in working storage

\

EXEC CICS ADDRESS EIB(R11)

 USING DFHEIBLK,R11

\

BAL R6,TRACE_ENTRY Trace program entry

\

L R1,UEPEXN Address of the 1 byte Exit Id

CLI ð(R1),XTSEREQ Is this XTSEREQ exit?

BE TS_REQUEST ..Yes Branch to routine

CLI ð(R1),XTSEREQC Is this XTSEREQC exit?

BE TS_REQUEST_COMPLETE .. Yes Branch to routine

B ERROR1 Otherwise Branch to error routine

\

RETURN DS ðH Return point

BAL R6,TRACE_EXIT Trace program exit

\

L R15,RETCODE Fetch return code

DFHEIRET RCREG=15 Return to CICS

 EJECT ,

Figure 73 (Part 4 of 16). Example exit program for the XTSEREQ exit

676 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\===\

\ TS_REQUEST - Invoked at XTSEREQ exit point \

\ Determine the TS Queue Name and scan the TS_Routing_Table for \

\ a match. If an entry exists in the table, then check the action \

\ field and call the ROUTE_REQUEST or LOCAL_REQUEST routines. \

\ \

\ The TS_Touting_Table is made up of entries with the following \

\ structure: \

\ \

\ TABLE_ENTRY: \

\ -- \

\ | Entry_Name | New_Name | QOR_Sysid | Action | \filler\ | \

\ | Char 8 | Char 8 | Char 4 | Bin 1 | Char 3 | \

\ -- \

\ Last Entry is indicated by special TS_Queue Name \

\ \

\ Registers: \

\ R1 = Work register \

\ R7 = Set to the TS Queue Name \

\ R8 = Command Parameter List (CLPS) \

\ R9 = Points to the next entry in the TS_Routing_Table \

\ R15= Work register \

\ \

\ Logic: \

\ TS_Request: \

\ If called recursively then \

\ call Error(Recursive_Call1) \

\ Else \

\ If the Command GROUP code is not a TS request then \

\ call Error(Invalid_Group_Code1) \

\ Else \

\ Clear the UEPTQTOK \

\ Address the Command Plist UEPCLPS \

\ Fetch tsq_name \

\ Fetch start of TS_Routing_Table \

\ Check_Next_Entry: \

\ Get the next table entry \

\ Select (entry_name) \

\ When (last_entry) call Entry_Not_Found \

\ When (tsq_name) \

\ Select (entry_action) \

\ When (Route) call Route_Request \

\ When (Local) call Local_Request \

\ Otherwise call Error(Invalid_Table_Action) \

\ End Select \

\ Otherwise \

\ Goto Check_Next_Entry \

\ End Select \

\ End If \

\ End If \

\ Return \

Figure 73 (Part 5 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 677

 example XTSEREQ global user exit program

\===\

TS_REQUEST DS ðH

\ Check for possible recursion

L R1,UEPRECUR Address of recursive count

 LH R1,ð(R1) Fetch count

LTR R1,R1 Has exit been invoked recursively?

BNZ ERROR2 ..Yes Branch to error routine

\

\ Extract pointer to the EID and TS queue name from CLPS

L R8,UEPCLPS Fetch address of Command Plist

USING TS_ADDR_LIST,R8 Use R8 to address CLPS

L R1,TS_ADDRð Address the EID..

L R7,TS_ADDR1 Fetch address of TS QUEUE

DROP R8 Drop addressability to CLPS

\

\ Check that the Command GROUP code corresponds to a TS request

USING TS_EID,R1 ..with Register 1

CLI TS_GROUP,TS_TEMPSTOR_GROUP Is this a TS request?

BNE ERROR3 ..No Branch to error routine

DROP R1 Drop addressability to EID

\

\ Clear the TS Request token

L R1,UEPTQTOK Fetch address of token

XC ð(4,R1),ð(R1) Clear Token for XTSEREQC

\

\

\---\

\ Start scan of TS_Routing Table \

\---\

LA R9,TS_ROUTING_TABLE Fetch address of routing table

USING TABLE_ENTRY,R9 Address entries from R9

\

CHECK_NEXT_ENTRY DS ðH

CLC ENTRY_NAME,ENTRY_NAME_LAST Is this the last entry

BE ENTRY_NOT_FOUND ..Yes Take default routing action

CLC ENTRY_NAME,ð(R7) Is this the wanted TS queue name?

BE ENTRY_FOUND ..Yes Check for the action required

LA R9,24(R9) Point to next entry

B CHECK_NEXT_ENTRY Start search again

\

ENTRY_FOUND DS ðH

CLI ENTRY_ACTION,ROUTE Is the action to route request?

BE ROUTE_REQUEST ..Yes Branch to Route routine

CLI ENTRY_ACTION,LOCAL Is the action to rename queue?

BE LOCAL_REQUEST ..Yes Branch to Local routine

B ERROR4 Otherwise Branch to error routine

DROP R9 Drop addressability to Entry

 EJECT ,

\

Figure 73 (Part 6 of 16). Example exit program for the XTSEREQ exit

678 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\===\

\ TS_REQUEST_COMPLETE - Invoked at XTSEREQC exit point \

\ Free any shared storage that was acquired during previous \

\ invocation at XTSEREQ \

\ \

\ Registers: \

\ R1 = Work register \

\ R6 = Linkage register \

\ R8 = Command Parameter List (CLPS) \

\ \

\ Logic: \

\ TS_Request_Complete: \

\ If called recursively then \

\ call Error(Recursive_Call2) \

\ Else \

\ If the Command GROUP code is not a TS request then \

\ call Error(Invalid_Group_Code2) \

\ Else \

\ If UEPTQTOK->token ¬= ð then Call Freemain_Shared_Plist \

\ End If \

\ End If \

\ Return \

\===\

TS_REQUEST_COMPLETE DS ðH

\ Check for possible recursion

L R1,UEPRECUR Address of recursive count

 LH R1,ð(R1) Fetch count

LTR R1,R1 Has exit been invoked recursively?

BNZ ERROR5 ..Yes Branch to error routine

\

\ Check that the Command GROUP code corresponds to a TS request

L R8,UEPCLPS Fetch address of Command Plist

USING TS_ADDR_LIST,R8 Use R8 to address CLPS

L R1,TS_ADDRð Address the EID..

USING TS_EID,R1 ..with Register 1

CLI TS_GROUP,TS_TEMPSTOR_GROUP Is this a TS request?

BNE ERROR6 ..No Branch to error routine

DROP R1 Drop addressability to EID

DROP R8 Drop addressability to CLPS

\

L R1,UEPTQTOK Fetch address of Token

L R1,ð(R1) Fetch actual token

LTR R1,R1 Did XTSEREQ GETMAIN any storage?

BZ RETURN ..No Return to caller

BAL R6,FREEMAIN_SHARED ..Yes Issue FREEMAIN

B RETURN Return to caller

 EJECT ,

\

Figure 73 (Part 7 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 679

 example XTSEREQ global user exit program

\===\

\ LOCAL_REQUEST: Process Local TS Queues \

\ An entry has been found in the TS_Routing Table for this TS \

\ Queue Name. If required, rename the TS Queue Name, but do not \

\ modify the SYSID. \

\ \

\ Registers: \

\ R1 = Work register \

\ R6 = Link Register \

\ R7 = Address of current Queue name (Set on entry) \

\ R8 = Command Parameter List (CLPS) \

\ R9 = Address of table entry (Set on entry) \

\ R12= Work register (Shared_storage) \

\ \

\ Logic: \

\ Local_Request: \

\ If entry_name ¬= new_name then \

\ Call Getmain_Shared \

\ Copy new_name into shared storage \

\ Address the command plist \

\ Update ADDR1 to point to address of the new TS QUEUE name \

\ Set the Hi-order bit if last address in CLPS \

\ End If \

\ Return \

\===\

LOCAL_REQUEST DS ðH

USING TABLE_ENTRY,R9 R9 points to the table entry

CLC NEW_NAME,ð(R7) Is the new_name=current_queue name?

 BE RETURN ..Yes Return

\

\ Obtain Shared storage to hold the new queue name

BAL R6,GETMAIN_SHARED GETMAIN SHARED storage

L R12,UEPTQTOK Fetch address of token

L R12,ð(R12) Fetch shared storage pointer

USING SHARED_STORAGE,R12 Address using R12

MVC SHARED_NAME,NEW_NAME Copy QNAME into shared storage

\

\ Update the Queue Name in CLPS

L R8,UEPCLPS Address the CLPS.

USING TS_ADDR_LIST,R8 ..with Register 8

LA R1,SHARED_NAME Fetch address of the new QNAME

TM TS_ADDR1,X'8ð' Is the hi-order bit on?

 BZ LOCAL1 ..No continue

O R1,=X'8ððððððð' Indicate ADDR1 is last parameter

LOCAL1 DS ðH

ST R1,TS_ADDR1 Store address in TS_ADDR1

 B RETURN Return

 DROP R8 Drop TS_ADDR_LIST

 DROP R12 Drop SHARED_STORAGE

DROP R9 Drop addressability to Entry

 EJECT ,

\

Figure 73 (Part 8 of 16). Example exit program for the XTSEREQ exit

680 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\===\

\ ROUTE_REQUEST: Ship request to remote system \

\ An entry has been found in the TS_Routing Table for this TS \

\ Queue Name. The request is modified by adding a SYSID to the \

\ command and renaming the queue if required. \

\ \

\ Registers: \

\ R1 = Work register \

\ R6 = Link Register \

\ R7 = Address of current Queue name (Set on entry) \

\ R8 = Command Parameter List (CLPS) \

\ R9 = Address of table entry (Set on entry) \

\ R12= Work register (Shared_storage) \

\ \

\ Logic: \

\ Route_Request: \

\ Call Getmain_Shared \

\ If entry_name ¬= new_name then \

\ Copy new_name into shared storage \

\ Address the command plist \

\ Update ADDR1 to point to address of the new TS QUEUE name \

\ End If \

\ Copy new_sysid into shared storage \

\ Address the command plist \

\ Update ADDR7 to point to the address of the new SYSID \

\ Set the SYSID existence bit in the EID \

\ Set the Hi-order bit in last address in CLPS \

\ Return \

\===\

ROUTE_REQUEST DS ðH

BAL R6,GETMAIN_SHARED GETMAIN SHARED storage

L R12,UEPTQTOK Fetch address of token

L R12,ð(R12) Fetch Shared storage address

USING SHARED_STORAGE,R12 Address using R12

\

\ Update the Queue Name in CLPS

USING TABLE_ENTRY,R9 R9 points to the table entry

CLC NEW_NAME,ð(R7) Is the new_name=current_queue name?

BE ROUTE1 ..Yes No need to update Queue Name

MVC SHARED_NAME,NEW_NAME Copy QNAME into shared storage

L R8,UEPCLPS Address the CLPS..

USING TS_ADDR_LIST,R8 ..with Register 8

LA R1,SHARED_NAME Fetch address of the new QNAME

ST R1,TS_ADDR1 Store address in TS_ADDR1

 DROP R8 Drop TS_ADDR_LIST

\

Figure 73 (Part 9 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 681

 example XTSEREQ global user exit program

\ Update the Sysid in CLPS

ROUTE1 DS ðH

MVC SHARED_SYSID,NEW_SYSID Copy SYSID into shared storage

L R8,UEPCLPS Address the CLPS..

USING TS_ADDR_LIST,R8 ..with Register 8

L R1,TS_ADDRð Address the EID..

USING TS_EID,R1 ..with Register 1

OI TS_BITS1,TS_SYSID_V Indicate SYSID now present in CLPS

DROP R1 Drop addressability to EID

LA R1,SHARED_SYSID Fetch address of the new SYSID

ST R1,TS_ADDR7 Store address in TS_ADDR7

OI TS_ADDR7,X'8ð' Indicate SYSID is end of plist

\

\ Clear hi-order bits in ARGs 1 to 5

NI TS_ADDR1,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR2,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR3,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR4,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR5,X'7F' Indicate not last parameter in CLPS

 B RETURN Return

 DROP R8 Drop TS_ADDR_LIST

 DROP R12 Drop SHARED_STORAGE

DROP R9 Drop addressability to Entry

 EJECT ,

\

\===\

\ ENTRY_NOT_FOUND - No entry was found in the TS_Routing_Table \

\ No entry found in Routing Table for this TS Queue Name. In the \

\ sample program, all such requests are routed. \

\ \

\ Registers: \

\ R1 = Work register \

\ R6 = Link Register \

\ R8 = Command Parameter List (CLPS) \

\ R12= Work register (Shared_storage) \

\ \

Figure 73 (Part 10 of 16). Example exit program for the XTSEREQ exit

682 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\ Logic: \

\ Entry_Not_Found: \

\ Call Getmain_Shared \

\ Copy default_sysid into shared storage \

\ Address the command plist \

\ Update ADDR7 to point to the address of the default SYSID \

\ Set the SYSID existence bit in the EID \

\ Set the Hi-order bit in last address in CLPS \

\ Return \

\===\

ENTRY_NOT_FOUND DS ðH

BAL R6,GETMAIN_SHARED GETMAIN SHARED storage

L R12,UEPTQTOK Fetch address of token

L R12,ð(R12) Fetch shared storage address

USING SHARED_STORAGE,R12 Address using R12

\

\ Update the Sysid in CLPS

MVC SHARED_SYSID,DEFAULT_SYSID Copy SYSID to shared storage

L R8,UEPCLPS Address the CLPS..

USING TS_ADDR_LIST,R8 ..with Register 8

L R1,TS_ADDRð Address the EID..

USING TS_EID,R1 ..with Register 1

OI TS_BITS1,TS_SYSID_V Indicate SYSID now present in CLPS

DROP R1 Drop addressability to EID

LA R1,SHARED_SYSID Fetch address of the new SYSID

ST R1,TS_ADDR7 Store address in TS_ADDR7

OI TS_ADDR7,X'8ð' Indicate SYSID is end of plist

\

\ Clear hi-order bits in ARGs 1 to 5

NI TS_ADDR1,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR2,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR3,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR4,X'7F' Indicate not last parameter in CLPS

NI TS_ADDR5,X'7F' Indicate not last parameter in CLPS

 B RETURN Return

 DROP R8 Drop TS_ADDR_LIST

 DROP R12 Drop SHARED_STORAGE

 EJECT ,

\

Figure 73 (Part 11 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 683

 example XTSEREQ global user exit program

\===\

\ GETMAIN_SHARED - Obtain Shared storage \

\ We cannot use transaction storage to pass information in the \

\ Command Parameter List since this is volatile and will be \

\ released when the exit program returns to CICS. \

\ We must obtain SHARED storage here, and free it at the \

\ TS request complete exit XTSEREQC \

\ \

\ Registers: \

\ Rð = Used by EXEC CICS call \

\ R1 = Used by EXEC CICS call \

\ Work Register \

\ R6 = Link Register - Return Address \

\ R11= EIB register (set on entry) \

\ R12= Work register \

\ R14= Used by EXEC CICS call \

\ R15= Used by EXEC CICS call \

\ \

\ Logic: \

\ Getmain_Shared: \

\ EXEC CICS GETMAIN LENGTH(32) SET(UEPTQTOK) SHARED RESP(resp) \

\ If resp ¬= OK then \

\ Call Error(Getmain_Failed) \

\ Else \

\ Address shared storage \

\ Set eyecatcher 'XTSEREQ Storage' \

\ End If \

\ Return \

\===\

GETMAIN_SHARED DS ðH

L R12,UEPTQTOK Fetch address of token

L R12,ð(R12) Fetch shared storage anchor

LTR R12,R12 Is the storage already present?

 BNZR R6 ..Yes Return

EXEC CICS GETMAIN LENGTH(32) SET(R12) SHARED X

 INITIMG(X'ðð') RESP(RESP)

CLC RESP,DFHRESP(NORMAL) GETMAIN worked OK?

BNE ERROR7 ..No Goto Error routine

L R1,UEPTQTOK Fetch address of token

ST R12,ð(R1) Save address of storage

 USING SHARED_STORAGE,R12

MVC SHARED_EYECATCHER,EYE_CATCHER Set Eyecatcher

 DROP R12 Drop R12

BR R6 Return to caller

 EJECT ,

\

Figure 73 (Part 12 of 16). Example exit program for the XTSEREQ exit

684 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

\===\

\ FREEMAIN_SHARED - Free shared storage \

\ Free the shared storage associated with this command. \

\ \

\ Registers: \

\ Rð = Used by EXEC CICS call \

\ R1 = Used by EXEC CICS call \

\ R6 = Link Register - Return Address \

\ R11= EIB register (set on entry) \

\ R12= Work register \

\ R14= Used by EXEC CICS call \

\ R15= Used by EXEC CICS call \

\ \

\ Logic: \

\ Freemain_Shared: \

\ Address shared storage \

\ If eyecatcher ¬= 'XTSEREQ Storage' then \

\ Call Error(Freemain_Logic_Error) \

\ Else \

\ EXEC CICS FREEMAIN DATAPOINTER(UEPTQTOK) RESP(resp) \

\ If resp ¬= OK then \

\ Call Error(Freemain_Failed) \

\ End If \

\ End If \

\ Return \

\===\

FREEMAIN_SHARED DS ðH

L R12,UEPTQTOK Fetch token address

L R12,ð(R12) Address shared storage address

 USING SHARED_STORAGE,R12 ..Using R12

CLC SHARED_EYECATCHER,EYE_CATCHER Is this our storage?

BNE ERROR8 ..No Goto Error routine

 DROP R12 Drop R12

EXEC CICS FREEMAIN DATAPOINTER(R12) RESP(RESP)

CLC RESP,DFHRESP(NORMAL) FREEMAIN worked OK?

BNE ERROR9 ..No Goto Error routine

L R12,UEPTQTOK Fetch token address

XC ð(4,R12),ð(R12) Clear token address

BR R6 Return to caller

 EJECT ,

\

\===\

\ Trace Routines \

\ Issue a Trace XPI call \

\ \

\ Registers: \

\ Rð = Used by XPI call \

\ R1 = DFHTRPT plist \

\ R6 = Link Register - Return Address \

\ R12= Work register \

\ R13= EISTG register (set by DFHEIENT) \

\ Kernel Stack entry \

\ R14= Used by XPI call \

\ R15= Used by XPI call \

\===\

Figure 73 (Part 13 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 685

 example XTSEREQ global user exit program

 USING DFHTRPT_ARG,R1

TRACE_ENTRY DS ðH

L R1,UEPXSTOR Prepare for XPI call

 DFHTRPTX CLEAR, X

 POINT_ID(TR_ENTRY)

 B ISSUE_TRACE

TRACE_EXIT DS ðH

L R1,UEPXSTOR Prepare for XPI call

 DFHTRPTX CLEAR, X

 POINT_ID(TR_EXIT)

 B ISSUE_TRACE

TRACE_ERROR DS ðH

L R1,UEPXSTOR Prepare for XPI call

 DFHTRPTX CLEAR, X

 POINT_ID(TR_ERROR), X

 DATA1(TR_ERROR_N,1)

 BAL R6,ISSUE_TRACE

 B RETURN

\

\---\

\ Issue the Trace XPI call \

\---\

ISSUE_TRACE DS ðH

L R8,UEPTRACE Address of trace flag

TM ð(R8),UEPTRON Is trace on?

BZ NO_TRACE No - do not issue trace then

LR R12,R13 Save R13 round XPI call

 L R13,UEPSTACK

 DFHTRPTX CALL, X

 IN, X

 FUNCTION(TRACE_PUT), X

 POINT_ID(\), X

 OUT, X

 RESPONSE(\), X

 REASON(\)

LR R13,R12 Restore R13 (DFHEISTG)

NO_TRACE DS ðH

BR R6 Return to caller

 DROP R1

\

\===\

\ ERRORn \

\ Error has occurred during processing \

\ Issue a trace point and return to the CICS \

\===\

ERROR1 DS ðH

 MVI TR_ERROR_N,1

 B TRACE_ERROR

ERROR2 DS ðH

 MVI TR_ERROR_N,2

 B TRACE_ERROR

ERROR3 DS ðH

 MVI TR_ERROR_N,3

 B TRACE_ERROR

Figure 73 (Part 14 of 16). Example exit program for the XTSEREQ exit

686 CICS Transaction Server for VSE/ESA Customization Guide

 example XTSEREQ global user exit program

ERROR4 DS ðH

 MVI TR_ERROR_N,4

 B TRACE_ERROR

ERROR5 DS ðH

 MVI TR_ERROR_N,5

 B TRACE_ERROR

ERROR6 DS ðH

 MVI TR_ERROR_N,6

 B TRACE_ERROR

ERROR7 DS ðH

 MVI TR_ERROR_N,7

 B TRACE_ERROR

ERROR8 DS ðH

 MVI TR_ERROR_N,7

 B TRACE_ERROR

ERROR9 DS ðH

 MVI TR_ERROR_N,7

 B TRACE_ERROR

 EJECT ,

 DROP R2 Drop DFHUEPAR

 DROP R11 Drop EIB

 LTORG ,

\\\

\ CONSTANTS \

\\\

 DS ðD

EYE_CATCHER DC CL16'XTSEREQ Storage '

DEFAULT_SYSID DC CL4'MQ1 '

LOCAL EQU X'ð1'

ROUTE EQU X'ð2'

\

\ Trace point ids

TR_ENTRY DC XL2'12ð'

TR_EXIT DC XL2'121'

TR_ERROR DC XL2'122'

\

\---\

\ TABLE_ENTRY: \

\ -- \

\ | Entry_Name | New_Name | QOR_Sysid | Action | \filler\ | \

\ | Char 8 | Char 8 | Char 4 | Bin 1 | Char 3 | \

\ -- \

\ Last Entry is indicated by special TS_Queue Name \

\---\

Figure 73 (Part 15 of 16). Example exit program for the XTSEREQ exit

 Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE 687

 example XTSEREQ global user exit program

TS_ROUTING_TABLE DS ðD

ENTRY_NAME_1 DC CL8'AAAAAAAA' Rename Queue AAAAAAAA as

NEW_NAME_1 DC CL8'BBBBBBBB' BBBBBBBBB

QOR_SYSID_1 DC CL4' '

ACTION_1 DC XL1'ð1' Local request

FILLER_1 DC CL3' '

ENTRY_NAME_2 DC CL8'A1 ' Rename Queue A1 as

NEW_NAME_2 DC CL8'B1 ' B1

QOR_SYSID_2 DC CL4' '

ACTION_2 DC XL1'ð1' Local request

FILLER_2 DC CL3' '

ENTRY_NAME_3 DC CL8'A2 ' Rename Queue A2 as

NEW_NAME_3 DC CL8'B2 ' B2

QOR_SYSID_3 DC CL4' '

ACTION_3 DC XL1'ð1' Local request

FILLER_3 DC CL3' '

ENTRY_NAME_4 DC CL8'RRRRRRRR' Rename Queue RRRRRRRR as

NEW_NAME_4 DC CL8'REMOTE ' REMOTE and ship request

QOR_SYSID_4 DC CL4'MQ1 ' to System MQ1

ACTION_4 DC XL1'ð2'

FILLER_4 DC CL3' '

ENTRY_NAME_5 DC CL8'R1 ' Don't rename Queue R1, but

NEW_NAME_5 DC CL8'R1 ' ship request to System MQ1

QOR_SYSID_5 DC CL4'MQ1 '

ACTION_5 DC XL1'ð2'

FILLER_5 DC CL3' '

ENTRY_NAME_LAST DC XL8'FFFFFFFFFFFFFFFF'

NEW_NAME_LAST DC CL8' '

QOR_SYSID_LAST DC CL4' '

ACTION_LAST DC XL1'ðð'

FILLER_LAST DC CL3' '

 END DFH$XTSE

Figure 73 (Part 16 of 16). Example exit program for the XTSEREQ exit

688 CICS Transaction Server for VSE/ESA Customization Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
Messages and Codes Vol 3 (softcopy only) SC33-6799
Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1977, 1999 689

Books from VSE/ESA 2.4 base program libraries

VSE/ESA Version 2 Release 4

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User's Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

690 CICS Transaction Server for VSE/ESA Customization Guide

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

 VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

 VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

 VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

 Bibliography 691

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

692 CICS Transaction Server for VSE/ESA Customization Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

 Bibliography 693

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

694 CICS Transaction Server for VSE/ESA Customization Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing,
to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in
your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without
notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley
Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent
agreement between us.

 Copyright IBM Corp. 1977, 1999 695

This book contains sample programs. Permission is hereby granted to copy and store the sample programs into a
data processing machine and to use the stored copies for study and instruction only. No permission is granted to use
the sample programs for any other purpose.

Programming interface information

This book is intended to help you to customize your CICS Transaction Server for VSE/ESA Release 1 system. This
book primarily documents Product-sensitive Programming Interface and Associated Guidance Information provided by
CICS.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as diagnosing,
modifying, monitoring, repairing, tailoring, or tuning of CICS. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive programming interfaces should be
used only for these specialized purposes. Because of their dependencies on detailed design and implementation, it is
to be expected that programs written to such interfaces may need to be changed in order to run with new product
releases or versions, or as a result of service.

However, this book also documents General-use Programming Interface and Associated Guidance Information.

General-use programming interfaces allow the customer to write programs that request or receive the services of
CICS.

General-use Programming Interface and Associated Guidance Information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States
or other countries:

Other company, product, and service names may be the trademarks or service marks of others.

BookManager Language Environment
CICS MVS/ESA
CICSPlex OS/390
CICS/VSE SQL/DS
DB2 System/370
ESA/390 VSE/ESA
IBM VTAM
IBMLink

696 CICS Transaction Server for VSE/ESA Customization Guide

 Index

Numerics
3270 information display system

error processors (optional) 409
unavailable printer

DFHZNEP 418

A
abends

transaction bit 384
abnormal conditions

in terminal error programs 381
sample node error program 407
sample terminal error program 361
user-written node error programs 417

abort write bit 384
ACQUIRE PROGRAM function of the XPI 277
action flag names, DFHTEP 367
adapter, task-related user exits 203
ADD SUSPEND function of the XPI 257
addressing mode implications 219
AIEXIT, system initialization parameter 426, 446
AILDELAY, system initialization parameter 125, 571
AIRDELAY, system initialization parameter 423, 571
allocate queues

controlling the length of
using the XISCONA global user exit 80
using the XZIQUE global user exit 192

APPC connections, automatic installation of 445
assembling and link-editing a user-replaceable

program 348
autoinstall

See automatic installation of APPC connections
See automatic installation of programs
See automatic installation of shipped terminals
See automatic installation of terminals

autoinstall user-replaceable programs
for APPC connections (DFHZATDY) 445
for programs (DFHPDADX) 461
for shipped terminals (DFHZATDX) 453
for shipped terminals (DFHZATDY) 453
for terminals (DFHZATDX) 437

automatic installation of APPC connections
benefits of 446
control program

at delete 450
parameter list at install 447
purpose of 447

introduction 445
model definitions 445
parallel-session 445

automatic installation of APPC connections (continued)
recovery and restart 447
requirements for 446
single-session

initiated by BIND 445
initiated by CINIT 445

supplied resource definitions 451
templates 446
the sample program 450

default actions 450
automatic installation of programs

benefits of 463
control program

parameter list at install 464
testing 469

installation of mapsets 462
introduction 461
model definitions 462
requirements for 463
supplied resource definitions 468
system autoinstall 462
the sample programs

customizing 467
DFHPGADX 466
DFHPGAHX 466
DFHPGALX 466
DFHPGAOX 466

automatic installation of shipped terminals
control program

parameter list at delete 458
parameter list at install 456

introduction 453
automatic installation of terminals

control program
action at delete 435
action at install 427
action on return 433
information returned to CICS 430
naming 436
testing and debugging 436

parameter list at logon 428
the sample programs

customizing 439
DFHZATDX 437

VTAM LOGON mode table 426
automatic journal archiving 529

B
Basic Mapping Support (BMS)

global user exit points 24

 Copyright IBM Corp. 1977, 1999 697

C
CEDA transaction

programmable interface to 621
CEMT INQUIRE AUTOINSTALL 436
CEMT INQUIRE MONITOR 536
CEMT PERFORM STATISTICS 570
CEMT SET AUTOINSTALL 436
CEMT SET MONITOR 536
CHANGE PRIORITY function of the XPI 267
CICS system definition utility program (DFHCSDUP)

EXTRACT command 606
invocation from a user program 611
sample programs 609

DFH$CRFA 609
DFH$CRFP 609
DFH0CBDC 609
DFH0CRFC 609

user exits 614
writing a user program 606

invocation points 607
link-edit statements 611
parameters passed from DFHCSDUP 608

CINIT request unit 428
CINIT, VTAM 437
clock, definition

for monitoring 547
closing journal data sets 514
CLSDSTP, system initialization parameter 406
CODE operand

DFHSNEP TYPE=ERRPROC 413
DFHTEPM TYPE=ERRPROC 373
DFHTEPT TYPE=BUCKET 380
DFHTEPT TYPE=PERMCODE|ERRCODE 378

common subroutine vector table (CSVT) 408, 416
communication area

terminal error program 361
communications area

autoinstall control program
APPC connections 447
programs 464
terminals 428

dynamic transaction routing program 478
journaling user-replaceable programs 487
node error program 400
program error program 353
terminal error program 383
transaction restart program 356

COUNT operand
DFHSNET macro 415
DFHTEPT TYPE=PERMCODE|ERRCODE 378
limits, default threshold for TEP 378

CS operand
DFHSNEP TYPE=INITIAL 411

CSD utility program (DFHCSDUP) 610

CSNE transaction 392
CSVT (common subroutine vector table) 408
customizing CICS

overseer program, XRF 508
XRF overseer program 493

D
DAM files

exit for backout of WRITE-ADD operations 39, 176
data management facility (DMF)

records written to
CICS exception class 536
CICS performance class 536

user interface 579
writing non-CICS programs that use DMF 579

data sets, journal
closing 514
opening 514

data tables 128
DBLID values for DFHWOSM FUNC=READ

macro 506
DECB, terminal error program

information 367
operand 367

DEFAULT operand
DFHZNEPI TYPE=INITIAL 421

default threshold count limits
DFHTEP (terminal error program) 378

DEFINE PROGRAM function of the XPI 273
defining terminal error blocks 377
DELETE PROGRAM function of the XPI 280
DELETE SUSPEND function of the XPI 263
DFH$AXRO (sample XRF overseer program) 498
DFH$CRFA, cross-reference program,

assembler-language 609
DFH$CRFP, cross-reference program, PL/I 609
DFH$PCPI, sample program for global user exits 15
DFH$SDAP, sample shutdown program 342
DFH$TDWT, transient data write-to-terminal

program 669
DFH$XTSE, example program for XTSEREQ exit 673
DFH$XZIQ, sample global user exit program 199
DFH0CBDC program, write DEFINE commands for

COBOL 609
DFH0CRFC, cross-reference program, COBOL 609
DFH0GNIT, sample “good night” program 599
DFHAPIQX macro 302
DFHCSDUP, system definition utility program

See CICS system definition utility program
(DFHCSDUP)

DFHDSATX macro 255
DFHDSSRX macro 255
DFHDUDUX macro 268
DFHDYP, dynamic transaction routing program

changing the program name 474

698 CICS Transaction Server for VSE/ESA Customization Guide

DFHDYP, dynamic transaction routing program
(continued)

changing the target region 473
communications area 478
error handling 475
information passed to 472
invoking on abend 476
modifying application’s communications area 477
modifying initial terminal data 476
overview 471
processing considerations 477
receiving information from routed transaction

monitoring the output COMMAREA 477
monitoring the output TIOA 477

renaming customized version 485
routing a transaction 474
sample program 486
testing customized version 485
UOW considerations 478
when invoked 472

DFHEIP, EXEC interface program 348
DFHJCADS, journal control area DSECT 514
DFHJCJCX macro 334
DFHJCP, global user exits 529
DFHJUP, journal utility program 515
DFHKEDSX macro 272
DFHLDLDX macro 273
DFHMCTDR, monitoring dictionary DSECT 539
DFHMNMNX macro 281
DFHNET DSECTs 416
DFHOSD data set 498
DFHPEP, program error program

communication area for assembler-language
programs 353

source code 353
writing 351

DFHPGADX, user-replaceable autoinstall program
customizing 467
installation of mapsets 462
introduction to 461
parameter list at install 464
sample program 466
supplied definition of 468
use of model definitions 462
when invoked 461

DFHPGAQX macro 285
DFHPGISX macro 285
DFHREST, transaction restart program

communications area 356
default program 358
introduction 355
transactions suitable for restart 355
when invoked 355

DFHRMCAL macro 203
DFHSAIQX macro 304, 309

DFHSIT (system initialization table)
entries for CICS monitoring 536

DFHSMFDS, SMF header DSECT 527, 537
DFHSMMCX macro 310
DFHSMSRX macro 316
DFHSNEP macro

TYPE=DEF3270 412
TYPE=DEFILU 412
TYPE=ERRPROC 396, 413
TYPE=FINAL 412
TYPE=INITIAL 395, 411
TYPE=USTOR 411
TYPE=USTOREND 411

DFHSNEP, sample node error program 410
DFHSNET macro 414

COUNT operand 415
ESB structure 415
ESBS operand 415
NAME operand 415
NEBNAME operand 415
NEBS operand 415
TIME operand 415

DFHSTUP, statistics processing program 578
DFHTACP, terminal abnormal condition program 360

terminal error-handling 360
DFHTEPM macro

examples 374
TYPE=ENTRY 372
TYPE=ERRPROC 373
TYPE=EXIT 373
TYPE=FINAL 373
TYPE=INITIAL 370

DFHTEPT macro
examples 380
TYPE=BUCKET 380
TYPE=FINAL 380
TYPE=INITIAL 376
TYPE=PERMCODE|ERRCODE 377
TYPE=PERMTID 377

DFHTRPTX macro 318
DFHUEPAR DSECT 8, 207
DFHUERTR DSECT 210
DFHUEXIT macro 7
DFHWOSA (XRF overseer module) 498
DFHWOSM macros 499, 500

FUNC=BUILD 500
FUNC=CLOSE 500
FUNC=DSECT 501
FUNC=JJC 501
FUNC=JJS 502
FUNC=OPEN 502
FUNC=OSCMD 503
FUNC=QJJS 502
FUNC=READ 504, 506
FUNC=TERM 506
FUNC=WAIT 507

 Index 699

DFHWOSM macros (continued)
token values 499

DFHWOSM tokens 500
DFHXJCC, user-replaceable journal program

communication area 487
introduction 487
limitations 488
sample program 489

DFHXJCO, user-replaceable journal program
communication area 487
introduction 487
limitations 488
sample program 489

DFHXMCLX macro 321
DFHXMIQX macro 329, 333
DFHXMSRX macro 319, 320
DFHXMXDX macro 323
DFHXSEAI, security domain API stub 595
DFHXTEP, sample terminal error program 361
DFHZATDX, user-replaceable autoinstall program

action at delete 435
action at install 427
communications area 435
customizing 439
introduction 425
sample control program 438
source code 437
suggestions for use 438
used to install shipped terminals 453

DFHZATDY, user-replaceable autoinstall program
communications area 447
default actions 450
for APPC single-session connections

initiated by CINIT 445
for parallel-session APPC connections 445
for single-session APPC connections

initiated by BIND 445
introduction to 445
purpose of 447
supplied definition of 451
the sample program 450
used to install shipped terminals 453
when invoked 447

DFHZNAC, node abnormal condition program 392
action flag settings 667
default actions

for system sense codes 665
for terminal error codes 653

execution with persistent session support 423
logging facility 406
terminal error-handling 399

DFHZNEP, user-replaceable node error program 391
DFHZNEPI macros

TYPE=ENTRY 421
TYPE=FINAL 422
TYPE=INITIAL 421

dictionary data section, CICS monitoring records 539,
544

disabling and enabling restart in place 496
dispatcher functions of the XPI 255
display function of the overseer program 494
DL/I

journal records 527
DL/I journal records 524
DMF (data management facility)

records written to
CICS exception class 536
CICS performance class 536

user interface 579
writing non-CICS programs that use DMF 579

DSECTPR operand
DFHTEPM TYPE=INITIAL 370

DTRPGM, system initialization parameter 485
DTRTRAN, system initialization parameter 473
dump control functions of the XPI 268
DYNAMIC option 471
dynamic transaction routing

overview 471
sample programs 486
the user program

error handling procedure 475
naming of 485
parameters 478
testing of 485
when invoked 472

dynamic transaction routing program (DFHDYP)
changing the program name 474
changing the target region 473
communications area 478
error handling 475
information passed to 472
invoking on abend 476
modifying application’s communications area 477
modifying initial terminal data 476
overview 471
processing considerations 477
receiving information from routed transaction

monitoring the output COMMAREA 477
monitoring the output TIOA 477

renaming customized version 485
routing a transaction 474
sample program 486
testing customized version 485
UOW considerations 478
when invoked 472

dynamic transactions 471

E
early verification processing 594
EDF (Execution Diagnostic Facility)

with global user exits 6

700 CICS Transaction Server for VSE/ESA Customization Guide

EDF (Execution Diagnostic Facility) (continued)
with task-related user exits 206

EMP (event-monitoring point) 532
enabling and disabling restart in place 496
END_BROWSE_PROGRAM function of the XPI 299
error group index 408, 415
error groups 394
error processing 359

in node error program (NEP) 407
in terminal error program (TEP) 359

error status block (ESB) 415
error status element (ESE) 363, 368

DFHTEPT TYPE=PERMCODE|ERRCODE 377
ESB (error status block) 415
ESBS operand

DFHSNET macro 415
ESE (error status element) 363, 368

DFHTEPT TYPE=PERMCODE|ERRCODE 377
ESM (external security manager) 587
ESMEXITS, system initialization parameter 590
event-monitoring point (EMP) 532
exception class monitoring 535
exception class monitoring records 531
exception class statistics records 569
exception data section format 545
EXEC CICS HANDLE command

as alternative to node error program 391
EXEC CICS INQUIRE command

for autoinstall 436
EXEC CICS PERFORM command

for requested statistics 570
EXEC CICS SET command

for autoinstall 436
for opening and closing journal data sets 514

EXEC CICS WRITE JOURNALNUM command 513
EXEC interface program (DFHEIP) 348
Execution Diagnostic Facility (EDF)

with global user exits 6
with task-related user exits 206
with user-replaceable programs 347

exit programming interface (XPI)
See XPI (exit programming interface)

extended recovery facility (XRF)
overseer program 493

customizing the sample program 508
DFH$AXRO 498
DFHOSD data set 498
DFHWOSM macros 499
display function 494
interface with CICS 498
module DFHWOS 498
restart-in-place function 496
sample 493

external security manager (ESM) 587
EXTRACT command

for task-related user exits 233

EXTRACT command (continued)
of DFHCSDUP 606

F
field connectors, CICS monitoring 544, 545
field identifiers, CICS monitoring 545
format of journal records

coding hint 524
FREEMAIN function of the XPI 314
FUNC=BUILD macro, DFHWOSM 500
FUNC=CLOSE macro, DFHWOSM 500
FUNC=DSECT macro, DFHWOSM 501
FUNC=JJC macro, DFHWOSM 501
FUNC=JJS|QJJS macro, DFHWOSM 502
FUNC=OPEN macro, DFHWOSM 502
FUNC=OSCMD macro, DFHWOSM 503
FUNC=READ macro, DFHWOSM 504
FUNC=TERM macro, DFHWOSM 506
FUNC=WAIT macro, DFHWOSM 507
function shipping, queuing due to

See XISCONA, global user exit
See XZIQUE, global user exit

G
GET_NEXT_PROGRAM function of the XPI 298
GETMAIN function of the XPI 311
global user exits

example programs 17
for EXEC interface exits 673
for mixing API and XPI calls 6, 673
for modifying TS requests 154, 673
for XFCREQ 52, 55
for XFCREQC 52, 55
for XICEREQ 98, 99
for XICEREQC 98, 99
for XPCREQ 114
for XPCREQC 114
for XTDEREQ 181
for XTDEREQC 181
for XTSEREQ 154, 673
for XTSEREQC 154, 673

exit points
for ‘terminal not known’ condition 160
in activity keypoint program 23
in BMS 24
in data tables programs 128
in dispatcher domain 29
in dump domain 30
in dynamic transaction backout program 35
in EXEC interface program 40
in file control EXEC interface program 45, 57
in file control open/close program 43
in file control state program 71
in Front End Programming Interface 78
in good-morning message program 79

 Index 701

global user exits (continued)
exit points (continued)

in intersystem communication program 80
in interval control program 85
in journal control program 100, 529
in loader domain 101
in message domain 103
in monitoring domain 107
in program control program 109
in resource management modules 125
in resource manager interface program 123
in security manager domain 133
in statistics domain 135, 578
in system recovery program 137
in system termination program 140
in takeover request-processing program 141
in task control program 143
in temporary storage control program 144
in temporary storage EXEC interface

program 146
in terminal allocation program 156
in terminal control program 158
in transaction backout programs 168
in transaction manager domain 177
in transient data EXEC interface program 181
in transient data program 179
in VTAM terminal management program 189
in VTAM working-set module 190

exit programs
addressing implications 5
defining, enabling, and disabling 13
errors 12
global work area 6
multiple at one exit 13
one at several exits 14
parameters passed 7
programming interface restrictions 11
register conventions 4
returning values to CICS 10
using CICS services 5
using EDF 6

overview 3
sample programs

DFH$PCEX 117
DFH$PCGA 14
DFH$PCPI 15
DFH$PCTA 121
DFH$SXP1 106
DFH$SXP2 106
DFH$SXP3 106
DFH$SXP4 106
DFH$SXP5 106
DFH$SXP6 106
DFH$ZCAT 14
DFH$ZCGA 14
DFHXIS 81
DFHXTENF 166

global user exits (continued)
sample programs (continued)

list of 14
summary of 14

trace table entries 7
with storage protection

data storage key 12
execution key 11

GMTRAN, system initialization parameter 404
GNTRAN, system initialization parameter 597, 601
good night transaction

customizing the sample program 600
overview 597
sample program, DFH0GNIT 599

GROUP operand
DFHSNEP TYPE=ERRPROC 413

I
initialization programs

considerations when writing 339
INITPARM, system initialization parameter 15
INQ_APPLICATION_DATA function of the XPI 302
INQUIRE MONITOR command 536
INQUIRE MONITORING DATA function of the

XPI 284
INQUIRE_ACCESS function of the XPI 314
INQUIRE_AUTOINSTALL function of the XPI 300
INQUIRE_CURRENT_PROGRAM function of the

XPI 291
INQUIRE_DTRTRAN function of the XPI 319
INQUIRE_ELEMENT_LENGTH function of the

XPI 315
INQUIRE_MXT function of the XPI 320
INQUIRE_PROGRAM function of the XPI 286
INQUIRE_SHORT_ON_STORAGE function of the

XPI 316
INQUIRE_SYSTEM function of the XPI 304
INQUIRE_TASK_STORAGE function of the XPI 317
INQUIRE_TCLASS function of the XPI 321
INQUIRE_TRANDEF function of the XPI 323
INQUIRE_TRANSACTION function of the XPI 329
interactive logical unit error processor 410
intersystem queues

controlling the length of
using the XISCONA global user exit 80
using the XZIQUE global user exit 192

INTLU error processor 410
ISSUE PASS command 406
ISTINCLM entries for automatic installation 631

J
JCA (journal control area) 514
journal control area (JCA) 514

702 CICS Transaction Server for VSE/ESA Customization Guide

journal control label record 522
journal module identifiers 521
journal records

data section format 528
delimiters 526
for DL/I 527
formats and contents 515
journaled data 524
logged output message 525
module identifiers 521
system header 516
system prefix 523
user prefix 524
written in SMF format 527
written to DMF 527

journaling
automatic journal archiving 529
global user exits 529
user-replaceable programs 487

journals
closing 513, 514
opening 513, 514
printing 515
reading 513

offline 514

K
kernel domain functions of the XPI 272

L
loader functions of the XPI 273
logical units (LUs)

node error program 399
LOGON mode table, VTAM 627
loop or wait detection 508

M
MAXERRS operand

DFHTEPT TYPE=INITIAL 376
MAXTIDS operand

DFHTEPT TYPE=INITIAL 376
MCT (monitoring control table)

entries for EMPs 532
MN, system initialization parameter 536
MNEXC, system initialization parameter 536
MNPER, system initialization parameter 536
model definitions

for autoinstall of APPC connections 445
for automatic installation of programs 462

model terminal support
coding entries 427

MONITOR function of the XPI 281

monitoring
clock definition 547
control commands 536
control table (MCT) 532
data produced 546
data section format 539
DFHMCTDR, the dictionary DSECT 539
DFHSIT entries 536
DFHSMFDS, SMF header DSECT 537
dictionary data section 539, 544
DMF 536
event-monitoring point (EMP) 532
exception class data 531
exception data section format 545
exception data sections 545
field connectors 544, 545
field identifiers 545
functions of the XPI 281
monitoring control table 532
overview 531
passing the data to DMF 536
performance class data 531, 548
performance record format 543
purpose 531
record formats 536
record types 531
SMF header 537
SMF product section 537
time stamp definition 548

monitoring control table (MCT) 532

N
NAME operand

DFHSNEP TYPE=INITIAL 411
DFHSNET macro 415

national characters
uppercase translation 671

NEB (node error block) 416
NEBNAME operand

DFHSNET macro 415
NEBS operand

DFHSNET macro 415
NEP (node error program)

3270 unavailable printer 418
application routing failure 406
common subroutine vector table (CSVT) 416
communication area 400
conventions for registers 413
default actions of DFHZNAC

for system sense codes 665
for terminal error codes 653

default node error program 394
default transaction-class routine 421
DFHNET DSECT 416
DFHSNET 414

 Index 703

NEP (node error program) (continued)
DFHZNAC 399
DFHZNAC action flag settings 667
DFHZNAC logging facility 406
DFHZNAC/DFHZNEP interface 392
DFHZNEP 392, 399
DFHZNEPI interface module 420
DFHZNEPI macros 420
DFHZNEPI TYPE=INITIAL 421
DSECTs 416
error groups 394
error status blocks 416
error table header 416
multiple NEPs 397
NEPCLASS 397
NET generation 394
node abnormal condition program 399
node error block, format 409
node error blocks 416
 node error table 409

format 409
generation 394

reasons for writing your own 392
routing considerations 398
sample 394, 407

addressability 408
coding description 395
common subroutine vector table (CSVT) 408
compatibility with sample TEP 407
components 408
conditions 397
CSVT (common subroutine vector table) 408
DFHSNEP TYPE=INITIAL macro 411
DFHSNEP TYPE=USTOR macro 411
DFHSNEP TYPE=USTOREND macro 411
error processor vector table (EPVT) 408, 412
error processors for INTLU, DFHSNEP

TYPE=DEFILU 412
error processors, DFHSNEP

TYPE=DEF3270 412
error status information 409
generating by DFHSNEP 410
node error table 409
optional common subroutines 409
optional error processor for INTLU 410
optional error processors for 3270 409
routing mechanism (VTAM) 408

session failures 419
TERMERR condition 391
terminal control program (VTAM section) 399
user-supplied error processors, DFHSNEP

TYPE=ERRPROC 413
user-written 417

addressability 418
restrictions on use 417

user-written error processors 413

NEP (node error program) (continued)
VTAM error handling

background 392
when abnormal condition occurs 399
with persistent session support 423

changing the recovery message 424
changing the recovery notification 423
changing the recovery transaction 424

writing overview 393
NEPCLAS operand

DFHZNEPI TYPE=ENTRY 421
NEPCLASS operand

for CEDA 397
NEPNAME operand

DFHZNEPI TYPE=ENTRY 421
NET (node error table) 394
NETNAME operand

DFHSNEP TYPE=INITIAL 412
node abnormal condition program (NACP) 399
node error block (NEB) 416
node error handler (CSNE transaction) 392
node error program (NEP)

3270 unavailable printer 418
application routing failure 406
common subroutine vector table (CSVT) 416
communication area 400
conventions for registers 413
default actions of DFHZNAC

for system sense codes 665
for terminal error codes 653

default node error program 394
default transaction-class routine 421
DFHNET DSECT 416
DFHSNET 414
DFHZNAC 399
DFHZNAC action flag settings 667
DFHZNAC logging facility 406
DFHZNAC/DFHZNEP interface 392
DFHZNEP 392, 399
DFHZNEPI interface module 420
DFHZNEPI macros 420
DFHZNEPI TYPE=INITIAL 421
DSECTs 416
error groups 394
error status blocks 416
error table header 416
multiple NEPs 397
NEPCLASS 397
NET generation 394
node abnormal condition program 399
node error block, format 409
node error blocks 416
 node error table 409

format 409
generation 394

reasons for writing your own 392

704 CICS Transaction Server for VSE/ESA Customization Guide

node error program (NEP) (continued)
routing considerations 398
sample 394, 407

addressability 408
coding description 395
common subroutine vector table (CSVT) 408
compatibility with sample TEP 407
components 408
conditions 397
CSVT (common subroutine vector table) 408
DFHSNEP TYPE=INITIAL macro 411
DFHSNEP TYPE=USTOR macro 411
DFHSNEP TYPE=USTOREND macro 411
error processor vector table (EPVT) 408, 412
error processors for INTLU, DFHSNEP

TYPE=DEFILU 412
error processors, DFHSNEP

TYPE=DEF3270 412
error status information 409
generating by DFHSNEP 410
node error table 409
optional common subroutines 409
optional error processor for INTLU 410
optional error processors for 3270 409
routing mechanism (VTAM) 408

session failures 419
TERMERR condition 391
terminal control program (VTAM section) 399
user-supplied error processors, DFHSNEP

TYPE=ERRPROC 413
user-written 417

addressability 418
restrictions on use 417

user-written error processors 413
VTAM error handling

background 392
when abnormal condition occurs 399
with persistent session support 423

changing the recovery message 424
changing the recovery notification 423
changing the recovery transaction 424

writing overview 393
node error table (NET) 394
nonpurgeable task 384
notation, syntax vii

O
OPTIONS operand

DFHTEPM TYPE=INITIAL 370
DFHTEPT TYPE=INITIAL 377

overseer program, XRF
customizing the sample program 508

loop or wait detection in the active 508
DFH$AXRO 498
DFHOSD data set 498

overseer program, XRF (continued)
DFHWOSM macros

FUNC=BUILD 500
FUNC=CLOSE 500
FUNC=DSECT 501
FUNC=JJC 501
FUNC=JJS 502
FUNC=OPEN 502
FUNC=OSCMD 503
FUNC=QJJS 502
FUNC=READ 504
FUNC=TERM 506
FUNC=WAIT 507

display function 494
interface with CICS 498
module DFHWOS 498
restart-in-place function 496

enabling and disabling restart in place 496
rules of restart in place 496

sample 493

P
PEP (program error program) 351

communication area for assembler-language
programs 353

source code 353
writing 351

performance class data, CICS monitoring 548
performance class monitoring records 531
performance class statistics records 569
performance record format 543
persistent session support

node error program 423
PGAICTLG, system initialization parameter 464
PGAIEXIT, system initialization parameter 463
PGAIPGM, system initialization parameter 339, 463
PLT programs 342
PLTPI programs

general considerations 342
introduction 339
second stage 339
third stage 340

PLTPI, system initialization parameter 339
PLTSD programs

for first quiesce stage 341
for second quiesce stage 341
general considerations 342
introduction 341
sample program (DFH$SDAP) 342

PLTSD, system initialization parameter 341
PRINT operand

DFHTEPM TYPE=INITIAL 371
processing output from CICS statistics 578
program error program (PEP)

communication area for assembler-language
programs 353

 Index 705

program error program (PEP) (continued)
source code 353
writing 351

program list table (PLT) programs
general considerations 342
PLTPI programs

introduction 339
second stage 339
third stage 340

PLTSD programs
for first quiesce stage 341
for second quiesce stage 341
introduction 341
sample 342

with storage protection
data storage key 343
execution key 343

program management functions of the XPI 285
programmable interface to RDO transactions 621
programs, automatic installation of 461
PSERVIC values for automatic installation 636

Q
queues for intersystem sessions

controlling the length of
using the XISCONA global user exit 80
using the XZIQUE global user exit 192

R
RACROUTE macros 592
RDO transactions

EXEC CICS LINK to DFHEDAP 621
programmable interface to 621

recovery and restart
node error program (DFHZNEP) 391
program error program (PEP) 351
routing mechanism (VTAM) 408

recursive retry routine, in DFHTEP
example 389

regions, restarting in place 496
RELEASE PROGRAM function of the XPI 279
RENTPGM, system initialization parameter 274, 294
resource definition online transactions

EXEC CICS LINK to DFHEDAP 621
programmable interface to 621

resource manager interface (RMI) 203
restart-in-place function of the overseer program 496
RESUME function of the XPI 262
RMI (resource manager interface) 203
RMTRAN, system initialization parameter 424
routing mechanism, VTAM 408
rules that control restart in place 496

S
sample DFHTEP generation 369
sample overseer program, XRF 493, 499, 500

customizing 508
DFHWOSM FUNC=BUILD macro 500
DFHWOSM FUNC=CLOSE macro 500
DFHWOSM FUNC=DSECT macro 501
DFHWOSM FUNC=JJC macro 501
DFHWOSM FUNC=JJS|QJJS macro 502
DFHWOSM FUNC=OPEN macro 502
DFHWOSM FUNC=OSCMD macro 503
DFHWOSM FUNC=READ macro 504
DFHWOSM FUNC=TERM macro 506
DFHWOSM FUNC=WAIT macro 507
display function 494
enabling and disabling restart in place 496
how sample overseer program interfaces with

CICS 498
how to tell sample overseer which actives/alternates

to monitor 498
restarting regions in place 496
rules that control restart in place 496

sample programs
for automatic installation of APPC connections 450
for automatic installation of programs 466
for automatic installation of terminals 437
for dynamic transaction routing 486
for global user exits

DFH$PCPI, description of 15
DFH$XZIQ, for the XZIQUE exit 199
DFHXTENF, for the XALTENF exit 166
list of 14

for journaling 489
for the system definition utility program,

DFHCSDUP 609
good night transaction (DFH0GNIT) 599
node error program (DFHSNEP) 407
PLT shutdown program (DFH$SDAP) 342
program error program (DFHPEP) 352
terminal error program (DFHXTEP) 361
transaction restart program (DFHREST) 358
transient data write-to-terminal program

(DFH$TDWT) 669
schedule flag word 217
security

early verification processing 594
interface to external manager 587
RACROUTE macros 592
system authorization facility (SAF) 587
the CICS–ESM interface 587
VSE/ESA router 587
VSE/ESA router exit 588

service level reporter (SLR) 578
session failures, user actions 419

706 CICS Transaction Server for VSE/ESA Customization Guide

SET MONITOR command 536
SET_AUTOINSTALL function of the XPI 301
SET_PROGRAM function of the XPI 294
SET_SYSTEM function of the XPI 309
SET_TRANSACTION function of the XPI 333
shipped terminals, automatic installation of 453
shutdown (PLTSD) programs

considerations when writing 341
SLR (service level reporter) 578
SMF (system management facility)

header 527, 537, 574
product section 527, 574

START_BROWSE_PROGRAM function of the
XPI 297

START_PURGE_PROTECTION function of the
XPI 272

state data access functions of the XPI 302
statistics

control commands 570
data section format 576
exception class data 569
global user exit 578
overview 569
performance class data 569
processing output from 578
purpose 569
record formats 573
record types 569
SLR (service level reporter) 578
SMF header 574
SMF product section 574

STATRCD, system initialization parameter 569
STOP_PURGE_PROTECTION function of the XPI 272
storage control functions of the XPI 310, 316
storage protection facility

 with global user exit programs 11
with PLT programs 342
with task-related user exit programs 220
with user-replaceable programs 348

stub program, for task-related user exits 203, 204
SUSPEND function of the XPI 259
syncpoint management

module DFHDBP 232
syncpoint manager parameters 210

syntax notation vii
system autoinstall 462
system definition utility program (DFHCSDUP)

See CICS system definition utility program
(DFHCSDUP)

SYSTEM DUMP function of the XPI 268
system header, journal records 516
system initialization parameters

AIEXIT 426, 446
AILDELAY 125, 571
AIRDELAY 423, 571
CLSDSTP 406

system initialization parameters (continued)
DTRPGM 485
DTRTRAN 473
ESMEXITS 590
GMTRAN 404
GNTRAN 597, 601
INITPARM 15
MN 536
MNEXC 536
MNPER 536
PGAICTLG 464
PGAIEXIT 463
PGAIPGM 339, 463
PLTPI 339
PLTSD 341
RENTPGM 274, 294
RMTRAN 424
STATRCD 569
TBEXITS 13, 169

system initialization table (DFHSIT)
entries for CICS monitoring 536

system management facility (SMF)
header 527, 537
product section 527, 537

system prefix, journal records 523
system-defined event-monitoring point 532

T
TACLE (terminal abnormal condition line entry)

address contents 384
DSECT, format description 385
terminal error program 361

task manager parameters in task-related user
exits 213

task-related user exits 203
adapter

installing and withdrawing 232
responses to the caller 219
structure and components 203

addressability of the parameter list 207
addressing mode implications 219
administration 204, 232
application program parameters 210
caller parameter lists 210
CEDA 232
CICS termination calls 227

limitations 227
sample code 228
use of DFHEIENT 228

DFHEIENT macros 221
DFHUEPAR DSECT 207
DFHUERTR, function definition 210
DFHUEXIT TYPE=RM macro 207
EDF 206
enabling and disabling

EXEC CICS DISABLE command 233

 Index 707

task-related user exits (continued)
enabling and disabling (continued)

EXEC CICS ENABLE command 233
EXTRACT command 233
global work area 222, 233
local work area 222
parameter lists 207
PPT entries 232
protocols

read-only 222
single-update 222

recovery considerations 222
sample code for CICS termination call 228
sample code for syncpoint manager calls 224
schedule flag word 217
stub program 203, 204

ename 205
statname 205

syncpoint manager calls 222, 225
backing out changes 225
committing changes 225
restart resynchronization 225
sample pseudocode 224

syncpoint manager parameters 210
table entries 232
task manager calls 226

limitations 226
task manager parameters 213
UEPCALAM, address of the caller’s AMODE

indication byte 209
UEPEIB, address of EIB 208
UEPEXN, address of function definition 207
UEPFLAGS, address of schedule flag word 208
UEPGAA, address of global work area 208
UEPGAL, length of global work area 208
UEPHMSA, address of register save area 208
UEPRMQUA, address of the resource manager

qualifier name 209
UEPRMSTK, address of the kernel stack entry 208
UEPSECBLK, address of a fullword addressing the

user security block 209
UEPSECFLG, address of the user security flag 209
UEPSYNCA, address of the single-update indication

byte 209
UEPTAA, address of local work area 208
UEPTAL, length of local work area 208
UEPTIND, address of the caller’s task

indicators 209
UEPUOWDS, address of the APPC unit of work

identifier 208
UEPURID, address of unit of recovery identifier 208
UERTFGP, function group indicator 210
UERTFID, caller identifier 210
using CICS commands 221
using EDF 231
with storage protection

data storage key 220, 343

task-related user exits (continued)
with storage protection (continued)

execution key 220
work areas 221

TBEXITS, system initialization parameter 13, 169
TCP (terminal control program)

TACLE (terminal abnormal condition line entry) 360
VTAM section 399

TEB (terminal error block) 362
templates, for autoinstall of APPC connections 446
TEP (terminal error program)

abnormal conditions 360
CICS components 359
communication area 361

address contents 382
default table 363
define terminal error blocks

tables, DFHTEPT TYPE=PERMTID 377
DFHTEP recursive retry routine 388

example 389
system count (TCTTENI) 388
user field a (PCISAVE) 388
user field b (PCICNT) 388

DFHTEP tables 376
DFHTEPM TYPE=ENTRY 372
DFHTEPM TYPE=EXIT 373
DFHTEPT TYPE=PERMCODE|ERRCODE 377
error processor source 372
error table 362
generating 368
replace error processors, DFHTEPM

TYPE=ERRPROC 373
sample

action flag names 367
common subroutines 365
components 362
DECB information 367
DECB operand 367
DFHTEPM TYPE=INITIAL 369
entry and initialization 364
error processing execution 364
error processor selection 364
error status element (ESE) 363
ESE information 368
exit 365
generate sample module 369
messages 367
overview 364
TACLE information 368
terminal error block (TEB) 362
terminal identification and error-code lookup 364

sample DFHTEP generation 369
tables

default threshold count limits 379
DFHTEPT macro examples 380
DFHTEPT TYPE=BUCKET 380
DFHTEPT TYPE=INITIAL 376

708 CICS Transaction Server for VSE/ESA Customization Guide

TEP (terminal error program) (continued)
terminal abnormal condition line entry (TACLE) 361
user-written program

abend-transaction bit 384
abnormal conditions 381
abort write bit 384
address contents of communication area 382
address contents of TACLE 384
dummy terminal indicator 384
example 388
format description of TACLE DSECT 385
nonpurgeable task 384

TERMERR condition 391
terminal abnormal condition line entry (TACLE) 361
terminal abnormal condition program (DFHTACP) 360
terminal control program (TCP)

See TCP (terminal control program)
terminal error block (TEB) 362
terminal error program (TEP)

abnormal conditions 360
CICS components 359
communication area 361

address contents 382
default table 363
define terminal error blocks

tables, DFHTEPT TYPE=PERMTID 377
DFHTEP recursive retry routine 388

example 389
system count (TCTTENI) 388
user field a (PCISAVE) 388
user field b (PCICNT) 388

DFHTEP tables 376
DFHTEPM TYPE=ENTRY 372
DFHTEPM TYPE=EXIT 373
DFHTEPT TYPE=PERMCODE|ERRCODE 377
error processor source 372
error table 362
generating 368
replace error processors, DFHTEPM

TYPE=ERRPROC 373
sample

action flag names 367
common subroutines 365
components 362
DECB information 367
DECB operand 367
DFHTEPM TYPE=INITIAL 369
entry and initialization 364
error processing execution 364
error processor selection 364
error status element (ESE) 363
ESE information 368
exit 365
generate sample module 369
messages 367
overview 364
TACLE information 368

terminal error program (TEP) (continued)
sample (continued)

terminal error block (TEB) 362
terminal identification and error-code lookup 364

sample DFHTEP generation 369
tables

default threshold count limits 379
DFHTEPT macro examples 380
DFHTEPT TYPE=BUCKET 380
DFHTEPT TYPE=INITIAL 376

terminal abnormal condition line entry (TACLE) 361
user-written program

abend-transaction bit 384
abnormal conditions 381
abort write bit 384
address contents of communication area 382
address contents of TACLE 384
dummy terminal indicator 384
example 388
format description of TACLE DSECT 385
nonpurgeable task 384

terminal identification and error-code lookup 364
terminals, automatic installation 425
TIME operand

DFHSNET macro 415
of DFHTEPT TYPE=PERMCODE|ERRCODE

macro 378
time stamp, definition

for monitoring 548
trace control functions of the XPI 318
trace table entries, global user exit interface 7
TRACE_PUT function of the XPI 318
transaction abends

program error program (PEP) 351
TRANSACTION DUMP function of the XPI 269
transaction management functions of the XPI 319
transaction restart program (DFHREST) 355

communications area 356
default program 358
introduction 355
transactions suitable for restart 355
when invoked 355

transaction routing
See dynamic transaction routing

transaction-class error-handling routine 399, 421
transient data write-to-terminal program

(DFH$TDWT) 669
TRMIDNT operand

DFHTEPT TYPE=PERMTID 377

U
uppercase translation

of national characters 671
user event-monitoring points 532

 Index 709

user exits
See also global user exits
See also resource manager interface
See also task-related user exits
DFHCSDUP 614
global 3
task-related 203

user journaling functions of the XPI 334
user prefix, journal records 524
user-replaceable programs 348

assembling and link-editing 348
dynamic transaction routing program

(DFHDYP) 471
for automatic installation of APPC connections

(DFHZATDY) 445
for automatic installation of programs

(DFHPGADX) 461
for automatic installation of shipped terminals

(DFHZATDX) 453
for automatic installation of shipped terminals

(DFHZATDY) 453
for automatic installation of terminals

(DFHZATDX) 425
for journaling 529

DFHXJCC 487
DFHXJCO 487

general rules 347
node error program (DFHZNEP) 391
program error program (DFHPEP) 351
rewriting 347
terminal error program (DFHTEP) 359
testing with EDF 347
transaction restart program (DFHREST) 355
with storage protection

data storage key 349
execution key 348

user-supplied error processors, DFHSNEP
TYPE=ERRPROC 413

user-written node error programs 417

V
VSAM files

backout of WRITE-ADD operations
DFHDBP file error exit 39
DFHFCBP error exit 176

VSE/ESA router exit 588
VTAM

application routing failure 406
automatic installation 425
CINIT request unit 428
CLSDST PASS function 406
default DFHZNEP 392
DFHZNAC logging facility 406
entries in LOGON mode table 627
error-handling 392

DFHZNAC/DFHZNEP interface 392

VTAM (continued)
error-handling (continued)

DFHZNAC/DFHZNEP interface action flags 394
ISTINCLM values 631
node error program (DFHZNEP) 407
PSERVIC values 636
session failures

user-written NEPs 419
transaction-class error-handling routine 399
VTAM LOGON mode table 426

VTAM (virtual telecommunications access method)
See VTAM

W
wait or loop detection 508
work areas in task-related user exits 221
WRITE JOURNAL DATA function of the XPI 335

X
XAKUSER, global user exit 23
XALCAID, global user exit 156
XALTENF, global user exit 162
XBMIN, global user exit 25
XBMOUT, global user exit 25
XDBDERR, global user exit 39
XDBFERR, global user exit 37
XDBIN, global user exit 36
XDBINIT, global user exit 36
XDSAWT, global user exit 29
XDSBWT, global user exit 29
XDTAD, global user exit 130, 131
XDTLC, global user exit 132
XDTRD, global user exit 128, 129
XDUCLSE, global user exit 34
XDUOUT, global user exit 34
XDUREQ, global user exit 30
XDUREQC, global user exit 32
XEIIN, global user exit 41
XEIOUT, global user exit 42
XFCAREQ, global user exit

description 57
parameter list and return codes 69

XFCAREQC, global user exit
description 57
parameter list and return codes 70

XFCNREC, global user exit
parameter list and return codes 44

XFCNREQ, global user exit
description 43

XFCREQ, global user exit
command parameter structure 46
description 45
example of use 52
parameter list and return codes 54

710 CICS Transaction Server for VSE/ESA Customization Guide

XFCREQ, global user exit (continued)
UEPCLPS parameter 46

XFCREQC, global user exit
command parameter structure 46
description 45
example of use 52
parameter list and return codes 55
UEPCLPS parameter 46

XFCSREQ, global user exit 72
XFCSREQC, global user exit 74
XGMTEXT, global user exit 79
XICEREQ, global user exit

command parameter structure 90
example of use 98
parameter list and return codes 88
UEPCLPS parameter 91

XICEREQC, global user exit
command parameter structure 90
example of use 98
parameter list and return codes 89
UEPCLPS parameter 91

XICEXP, global user exit 86
XICREQ, global user exit 85
XICTENF, global user exit 164
XISCONA, global user exit 80, 82
XISLCLQ, global user exit 84
XJCWB, global user exit 100
XJCWR, global user exit 100
XKCREQ, global user exit 143
XLDELETE, global user exit 102
XLDLOAD, global user exit 101
XMEOUT, global user exit 105
XMNOUT, global user exit 107
XPCABND, global user exit 122
XPCFTCH, global user exit 116
XPCHAIR, global user exit 118
XPCREQ, global user exit

command parameter structure 110
description 109
example of use 114
parameter list and return codes 109
UEPCLPS parameter 111

XPCREQC, global user exit
command parameter structure 110
description 109
example of use 114
parameter list and return codes 110
UEPCLPS parameter 111

XPCTA, global user exit 120
XPI (exit programming interface)

dispatcher functions
ADD SUSPEND 257
CHANGE PRIORITY 267
DELETE SUSPEND 263
RESUME 262
SUSPEND 259
WAIT_EXTERNAL 264

XPI (exit programming interface) (continued)
dump control functions

SYSTEM DUMP 268
TRANSACTION DUMP 269

format of an XPI call 240
journaling function

WRITE JOURNAL DATA 335
kernel domain functions

START_PURGE_PROTECTION 272
STOP_PURGE_PROTECTION 272

loader functions
ACQUIRE PROGRAM 277
DEFINE PROGRAM 273
DELETE PROGRAM 280
RELEASE PROGRAM 279

mixing API and XPI calls 6, 673
monitoring functions

INQUIRE MONITORING DATA 284
MONITOR 281

overview 235
program management functions

END_BROWSE_PROGRAM 299
GET_NEXT_PROGRAM 298
INQUIRE_AUTOINSTALL 300
INQUIRE_CURRENT_PROGRAM 291
INQUIRE_PROGRAM 286
SET_AUTOINSTALL 301
SET_PROGRAM 294
START_BROWSE_PROGRAM 297

programming examples 246, 673
state data access functions

INQ_APPLICATION_DATA 302
INQUIRE_SYSTEM 304
SET_SYSTEM 309

storage control functions
FREEMAIN 314
GETMAIN 311
INQUIRE_ACCESS 314
INQUIRE_ELEMENT_LENGTH 315
INQUIRE_SHORT_ON_STORAGE 316
INQUIRE_TASK_STORAGE 317

trace control function
TRACE_PUT 318

transaction management functions
INQUIRE_DTRTRAN 319
INQUIRE_MXT 320
INQUIRE_TCLASS 321
INQUIRE_TRANDEF 323
INQUIRE_TRANSACTION 329
SET_TRANSACTION 333

XRCDBER, global user exit 170
XRCFCER, global user exit 174
XRCINIT, global user exit 170, 171, 172
XRCINPT, global user exit 172, 173
XRCOPER, global user exit 174

 Index 711

XRF (extended recovery facility)
See extended recovery facility (XRF)

XRMIOUT, global user exit 124
XRMMI, global user exit 123
XRSINDI, global user exit 126
XSNOFF, global user exit 134
XSNON, global user exit 133
XSRAB, global user exit 137
XSTERM, global user exit 140
XSTOUT, global user exit 135
XSZARQ, global user exit 78
XSZBRQ, global user exit 78
XTCATT, global user exit 159
XTCIN, global user exit 158
XTCOUT, global user exit 158
XTDEREQ, global user exit

command parameter structure 184
parameter list and return codes 182
UEPCLPS parameter 185

XTDEREQC, global user exit
command parameter structure 184
parameter list and return codes 183
UEPCLPS parameter 185

XTDIN, global user exit 179
XTDOUT, global user exit 180
XTDREQ, global user exit 179
XTSEREQ, global user exit 147

command parameter structure 149
example program 154, 673
UEPCLPS parameter 149

XTSEREQC, global user exit 148
command parameter structure 149
example program 154, 673
UEPCLPS parameter 149

XTSIN, global user exit 144
XTSOUT, global user exit 145
XTSREQ, global user exit 144
XXMATT, global user exit 177
XXRSTAT, global user exit 141
XZCATT, global user exit 189
XZCIN, global user exit 190
XZCOUT, global user exit 190
XZCOUT1, global user exit 191
XZIQUE, global user exit 192, 196

designing your exit program 199
how to use 192
interaction with XISCONA 192
overview 192
the sample program, DFH$XZIQ 199
using IRC/ISC statistics 199
when invoked 192

712 CICS Transaction Server for VSE/ESA Customization Guide

Sending your comments to IBM
CICS Transaction Server for VSE/ESA

Customization Guide

SC33-1652-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1652-ðð

Spine information:

IBM CICS TS for VSE/ESA Customization Guide Release 1

	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Syntax notation and conventions used in this book
	Road map
	Notes on terminology

	Part 1. Customizing with user exit programs
	Chapter 1. Global user exit programs
	Overview — what is a global user exit?
	Global user exit programs
	The global user exit points

	Chapter 2. Task-related user exit programs
	Introduction to the task-related user exit mechanism (the adapter)
	The stub program
	The task-related user exit program
	Adapter administration

	Chapter 3. The user exit programming interface (XPI)
	Overview
	General form of an XPI call
	Global user exit XPI examples, showing the use of storage
	The XPI functions
	Dispatcher functions
	Dump control functions
	Kernel domain functions
	Loader functions
	Monitoring functions
	Program management functions
	State data access functions
	Storage control functions
	Trace control function
	Transaction management functions
	User journaling function

	Part 2. Customizing with initialization and shutdown programs
	Chapter 4. Writing initialization and shutdown programs
	Initialization programs
	Shutdown programs
	General considerations

	Part 3. Customizing with user-replaceable programs
	Chapter 5. General notes about user-replaceable programs
	Rewriting user-replaceable programs
	Assembling and link-editing user-replaceable programs
	User-replaceable programs and the CICS storage protection facility

	Chapter 6. Writing a program error program
	Chapter 7. Writing a transaction restart program
	Chapter 8. Writing a terminal error program
	Background to error handling for sequential devices
	The sample terminal error program
	User-written terminal error programs

	Chapter 9. Writing a node error program
	Background to CICS-VTAM error handling
	When an abnormal condition occurs
	The sample node error program
	User-written node error programs
	Using the node error program with VTAM persistent sessions

	Chapter 10. Writing a program to control autoinstall of terminals
	Preliminary considerations
	The autoinstall control program at INSTALL
	The autoinstall control program at DELETE
	Naming, testing, and debugging your autoinstall control program
	The sample programs and copy books

	Chapter 11. Writing a program to control autoinstall of APPC connections
	Preliminary considerations
	The autoinstall control program at INSTALL
	The autoinstall control program at DELETE
	The sample autoinstall control program for APPC connections

	Chapter 12. Writing a program to control autoinstall of shipped terminals
	Installing shipped terminals and connections
	The autoinstall control program at INSTALL
	The autoinstall control program at DELETE
	Default actions of the sample programs

	Chapter 13. Writing a program to control autoinstall of programs
	Preliminary considerations
	Benefits of autoinstall
	Requirements for autoinstall
	The autoinstall control program at INSTALL
	The sample autoinstall control program for programs, DFHPGADX

	Chapter 14. Writing a dynamic transaction routing program
	Overview of dynamic transaction routing
	The dynamic transaction routing program, DFHDYP
	Parameters passed to the dynamic transaction routing program
	Naming your dynamic routing program
	Testing your dynamic routing program
	Dynamic transaction routing sample programs

	Chapter 15. The user-replaceable journaling programs

	Part 4. Customizing the XRF overseer program
	Chapter 16. The extended recovery facility overseer program
	The sample XRF overseer program
	The DFHWOSM macros
	Customizing the sample overseer program

	Part 5. CICS journaling, monitoring, and statistics
	Chapter 17. CICS journaling
	Formatting a journal before output
	Opening, closing, and reading journals
	The structure and contents of journal records
	Notes on CICS journaling

	Chapter 18. CICS monitoring
	Introduction to CICS monitoring
	CICS monitoring record formats
	Data produced by CICS monitoring

	Chapter 19. CICS statistics
	Introduction to CICS statistics
	CICS statistics record format
	Global user exit in the CICS statistics domain
	Processing the output from CICS statistics

	Chapter 20. The user interface to DMF
	Introduction
	The DFHEWTM macro
	SMF headers
	Writing an interpretation program

	Part 6. Customizing CICS security processing
	Chapter 21. Invoking an external security manager
	An overview of the CICS–ESM interface
	The VSE/ESA router
	How ESM exit programs access CICS-related information
	CICS security control points
	Early verification processing

	Chapter 22. Writing a "good night" program
	The sample "good night" program, DFH0GNIT

	Part 7. Examining and modifying resource attributes
	Chapter 23. User programs for the system definition utility program (DFHCSDUP)
	An overview of DFHCSDUP
	DFHCSDUP as a batch program
	Invoking DFHCSDUP from a user program

	Chapter 24. The programmable interface to the RDO transaction, CEDA
	Using DFHEDAP in a DTP environment

	Part 8. Appendixes
	Appendix A. Coding entries in the VTAM LOGON mode table
	Overview
	TYPETERM device types and pointers to related LOGON mode data
	VTAM MODEENT macro operands
	PSERVIC screen size values for LUTYPE0, LUTYPE2, and LUTYPE3 devices
	Matching models and LOGON mode entries
	LOGON mode definitions for CICS-supplied autoinstall models

	Appendix B. Default actions of the node abnormal condition program
	Default actions for terminal error codes
	CICS messages associated with VTAM errors
	Default actions for system sense codes
	Action flag settings and meanings

	Appendix C. Transient data write-to-terminal program (DFH$TDWT)
	Appendix D. Uppercase translation of national characters
	Using the XZCIN global user exit
	Using DFHTCTDY

	Appendix E. The example program for the XTSEREQ global user exit, DFH$XTSE
	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Notices
	Programming interface information
	Trademarks and service marks

	Index

