

CICS Transaction Server for VSE/ESA IBM

Problem Determination Guide
Release 1

 GC33-1663-00

CICS Transaction Server for VSE/ESA IBM

Problem Determination Guide
Release 1

 GC33-1663-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 291.

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

The CICS for VSE/ESA Version 2.3 edition remains applicable and current for users of CICS for VSE/ESA Version 2.3.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make any comments, please use
one of the methods described there.

 Copyright International Business Machines Corporation 1979, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . vii
What this book is about . vii
Who this book is for . vii
What you need to know to understand this book vii
How to use this book . vii

Notes on terminology . ix
Determining if a publication is current . xi

Part 1. Approach to problem determination . 1

Chapter 1. Introduction to problem determination 3
Before you start—preliminary checks . 3
What to do next . 7

Chapter 2. Classifying the problem . 9
Classifying problems using symptom keywords 9
Some more ways in which this manual classifies problems 10
Using the symptoms to classify the problem . 10
Distinguishing between waits, loops, and poor performance 14
Where to look next . 18

Chapter 3. Sources of information . 19
User documentation . 19
Manuals . 19
Source listings and link-edit maps . 19
Abend codes and error messages . 19
Symptom strings . 20
Change log . 20
Dumps . 20
Statistics . 21
Monitoring . 21
Transaction inputs and outputs . 22
Traces . 23
VSE service aids . 23

Part 2. Dealing with the problem . 25

Chapter 4. Dealing with transaction abends 27
Collecting the evidence . 27
What the abend code can tell you . 28
CICS transaction abend codes . 28
Finding where a program check occurred . 30
Analyzing the problem further . 36
FEPI abends . 38

Chapter 5. Dealing with CICS system abends 39
The documentation you need . 39
Interpreting the evidence . 40

 Copyright IBM Corp. 1979, 1999 iii

Chapter 6. Dealing with waits . 51
Techniques for investigating waits . 52
How tasks are made to wait . 59
Spooler waits . 77
Transaction manager waits . 78
Lock manager waits . 82
Journal control waits . 85
Task control waits . 88
Storage waits . 90
Temporary storage waits . 91
Terminal waits . 94
VTAM terminal control waits . 102
Interregion and intersystem communication waits 104
Transient data waits . 105
Loader waits . 108
File control waits . 108
Interval control waits . 115
XRF alternate system waits . 121
CICS system task waits . 122
FEPI waits . 123
What to do if CICS has stalled . 124

Chapter 7. Dealing with loops . 129
What sort of loop is indicated by the symptoms? 129
Investigating loops that cause transactions to abend with abend code AICA 134
Investigating loops that are not detected by CICS 136
What to do if you cannot find the reason for a loop 138

Chapter 8. Dealing with performance problems 139
Finding the bottleneck . 140
Finding why tasks fail to get attached to the transaction manager 141
Finding why tasks fail to get attached to the dispatcher 142
Finding why tasks fail to get an initial dispatch 144
Finding out why tasks take a long time to complete 146
A summary of performance bottlenecks, symptoms, and causes 146

Chapter 9. Dealing with incorrect output 149
Trace output is incorrect . 149
Dump output is incorrect . 153
Wrong data has been displayed on a terminal 156
Incorrect data is present on a VSAM data set 163
An application did not work as expected . 163
Your transaction produced no output at all . 164
Your transaction produced some output, but it was wrong 169

Chapter 10. Dealing with storage violations 173
Avoiding storage violations . 173
Two kinds of storage violation . 174
CICS has detected a storage violation . 174
Storage violations that affect innocent transactions 181
Programming errors that can cause storage violations 182
Storage recovery . 183

Chapter 11. Dealing with XRF errors . 185

iv CICS Transaction Server for VSE/ESA Problem Determination Guide

Symptoms of problems in an XRF complex . 185
Debugging the overseer sample program . 189
XRF trace . 190
The CAVM data sets . 190

Chapter 12. External CICS interface . 193

Chapter 13. Dealing with MRO problems 195

Part 3. Using traces and dumps in problem determination 197

Chapter 14. Using traces in problem determination 199
Normal CICS tracing . 207
CICS exception tracing . 220
CICS XRF tracing . 221
XRF trace entry types . 222
Program check and abend tracing . 224
VTAM buffer tracing . 224
Using FEPI trace . 224

Chapter 15. Using dumps in problem determination 225
Controlling dump action . 225
Analyzing dumps . 236
Locating the last command or statement . 241
Locating program data . 242
Storage freeze . 252
Using FEPI dump . 252

Chapter 16. The global trap/trace exit . 253
Establishing the exit . 253
Information passed to the exit . 254
Actions the exit can take . 254
Program check handling . 255
Coding the exit . 255

Part 4. Working with IBM to solve your problem . 257

Chapter 17. IBM program support . 259
When to contact the Support Center . 259
Dealing with the Support Center . 259
IBM Program Support structure . 262
Reporting a FEPI problem to IBM . 263

Chapter 18. APARs, fixes, and PTFs . 265
The APAR process . 265
Collecting the documentation for the APAR . 265
Sending the documentation to the change team 266
Applying the fix . 267

Part 5. Appendixes . 269

 Contents v

Appendix A. SDUMP contents and INFOANA EXIT keywords 271
Finding the control blocks from the keywords 272
Finding the keywords from the control blocks 278

Appendix B. Summary data for PG and US keywords 285
PG keyword . 285
US keyword . 289

Notices . 291
Trademarks and service marks . 292

Bibliography . 293
Books from VSE/ESA 2.4 base program libraries 294
Books from VSE/ESA 2.4 optional program libraries 296

Index . 299

vi CICS Transaction Server for VSE/ESA Problem Determination Guide

 Preface

What this book is about
This book helps you to determine the causes of problems in a system that uses
CICS Transaction Server for VSE/ESA. It contains information about resolving
CICS application and system problems, dealing with the IBM Support Center, and
handling authorized program analysis reports (APARs).

In general, this book does not describe methods of problem determination for the
CICS Transaction Server for VSE/ESA Front End Programming Interface. This
information is included in the CICS Front End Programming Interface User’s Guide.

Who this book is for
This book is for those responsible for debugging CICS systems and application
programs.

What you need to know to understand this book
This book assumes that you have a good knowledge of CICS. If you are using the
book to resolve system problems, you need to be familiar with the books that tell
you how to install and use a CICS system.

How to use this book
The information in this book is mainly for reference. Use the information to first
classify and then find a solution to your problem.

Refer to Table 1 to find the section of the book that you need to read.

Table 1 (Page 1 of 2). Road map for Problem Determination

If you want to... Refer to...

Go through some preliminary checks Chapter 1, “Introduction to problem determination” on
page 3

Classify the problem according to its symptoms Chapter 2, “Classifying the problem” on page 9

Look for information to help you diagnose the problem Chapter 3, “Sources of information” on page 19

Resolve transaction abnormal terminations. Chapter 4, “Dealing with transaction abends” on
page 27

Resolve system abnormal terminations. Chapter 5, “Dealing with CICS system abends” on
page 39

Decide whether the problem is caused by a wait, a
loop, or a performance problem.

“Distinguishing between waits, loops, and poor
performance” on page 14

Resolve problems caused by waits. Chapter 6, “Dealing with waits” on page 51

Resolve problems caused by loops. Chapter 7, “Dealing with loops” on page 129

Resolve problems caused by performance problems. Chapter 8, “Dealing with performance problems” on
page 139

Know what to do if you don’t get the output you
expected.

Chapter 9, “Dealing with incorrect output” on
page 149

 Copyright IBM Corp. 1979, 1999 vii

Table 1 (Page 2 of 2). Road map for Problem Determination

If you want to... Refer to...

Resolve problems caused by storage violations. Chapter 10, “Dealing with storage violations” on
page 173

Resolve problems involving XRF. Chapter 11, “Dealing with XRF errors” on page 185

Resolve problems with the external CICS interface. Chapter 12, “External CICS interface” on page 193

Resolve problems with MRO. Chapter 13, “Dealing with MRO problems” on
page 195

Use CICS trace. Chapter 14, “Using traces in problem determination”
on page 199

Use CICS dump. Chapter 15, “Using dumps in problem determination”
on page 225

Report the problem to IBM. Chapter 16, “The global trap/trace exit” on page 253

Look up a dump exit keyword. Appendix A, “SDUMP contents and INFOANA EXIT
keywords” on page 271

viii CICS Transaction Server for VSE/ESA Problem Determination Guide

Notes on terminology
The terms listed in Table 2 are commonly used in the CICS Transaction Server for
VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition
of terminology.

Table 2 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

$(the dollar symbol) In the character sets and programming
examples given in this book, the dollar
symbol ($) is used as a national currency
symbol and is assumed to be assigned
the EBCDIC code point X'5B'. In some
countries a different currency symbol, for
example the pound symbol (£), or the yen
symbol (¥), is assigned the same EBCDIC
code point. In these countries, the
appropriate currency symbol should be
used instead of the dollar symbol.

BSM BSM is used to indicate the basic security
management supplied as part of the
VSE/ESA product. It is
RACROUTE-compliant, and provides the
following functions:

 � Signon security
� Transaction attach security

C The C programming language

CICSplex A CICSplex consists of two or more
regions that are linked using CICS
intercommunication facilities. Typically, a
CICSplex has at least one
terminal-owning region (TOR), more than
one application-owning region (AOR), and
may have one or more regions that own
the resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

CICS/VSE The CICS product running under the
VSE/ESA operating system, frequently
referred to as simply “CICS”

COBOL The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was
previously known as “SQL/DS”.

 Preface ix

Table 2 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or

LU6.2)
 � FEPI security.

FOR (file-owning region)—also known as
a DOR (data-owning region)

A CICS region whose primary purpose is
to manage VSAM and DAM files, and
VSAM data tables, through function
provided by the CICS file control program.

IBM C for VSE/ESA The Language Environment version of the
C programming language compiler.
Generally referred to as “C/VSE”.

IBM COBOL for VSE/ESA The Language Environment version of the
COBOL programming language compiler.
Generally referred to as “COBOL/VSE”.

IBM PL/I for VSE/ESA The Language Environment version of the
PL/I programming language compiler.
Generally referred to as “PL/I VSE”.

IBM Language Environment for VSE/ESA The common runtime interface for all
LE-conforming languages. Generally
referred to as “LE/VSE”.

PL/I The PL/I programming language

VSE/POWER Priority Output Writers Execution
processors and input Readers. The
VSE/ESA spooling subsystem which is
exploited by the report controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the
new security mechanisms in CICS TS for
VSE/ESA R1, generally referred to as
“SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced
Function (AF) component

VSE/VTAM “VTAM”

x CICS Transaction Server for VSE/ESA Problem Determination Guide

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both the printed hardcopy and the BookManager softcopy versions
of a publication are in step, but subsequent updates are normally made available in
softcopy before they appear in hardcopy.

For CICS Transaction Server for VSE/ESA Release 1 books, softcopy updates
appear regularly on the Transaction Processing and Data Collection Kit CD-ROM,
SK2T-0730-xx and on the VSE/ESA Collection Kit CD-ROM, SK2T-0060-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-20 is more up-to-date than
SK2T-0730-19. The collection kit is also clearly dated on the front cover.

For individual books, the suffix number is incremented each time it is updated, so a
publication with order number SC33-0667-02 is more recent than one with order
number SC33-0667-01. Updates in the softcopy are clearly marked by revision
codes (usually a “#” character) to the left of the changes.

Note that book suffix numbers are updated as a product moves from release to
release, as well as for updates within a given release. Also, the date in the edition
notice is not changed until the hardcopy is reissued.

 Preface xi

xii CICS Transaction Server for VSE/ESA Problem Determination Guide

Part 1. Approach to problem determination

Part 1 contains:

Chapter 1. Introduction to problem determination 3
Before you start—preliminary checks . 3
What to do next . 7

Chapter 2. Classifying the problem . 9
Classifying problems using symptom keywords 9
Some more ways in which this manual classifies problems 10
Using the symptoms to classify the problem . 10
Distinguishing between waits, loops, and poor performance 14
Where to look next . 18

Chapter 3. Sources of information . 19
User documentation . 19
Manuals . 19
Source listings and link-edit maps . 19
Abend codes and error messages . 19
Symptom strings . 20
Change log . 20
Dumps . 20
Statistics . 21
Monitoring . 21
Transaction inputs and outputs . 22
Traces . 23
VSE service aids . 23

 Copyright IBM Corp. 1979, 1999 1

2 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 1. Introduction to problem determination

This book tells you how to find the reasons for problems with your CICS system.
This chapter contains the following topics:

� “Before you start—preliminary checks”
� “What to do next” on page 7

Usually, you start with a symptom, or set of symptoms, and trace them back to their
cause. This book describes tools and techniques you can use to find the cause of
a problem and suggests action for solving the problem.

Sometimes, you cannot solve the problem yourself if, for example, it is caused by
limitations in the hardware or software you are using. If the cause of the problem is
CICS code, you need to contact IBM, as described in Part 4, “Working with IBM
to solve your problem” on page 257.

Before you start—preliminary checks
Before you go further into looking for the cause of the problem, run through the
following preliminary checks. These checks might highlight a simple cause or, at
least, narrow the range of possible causes.

As you go through the questions, make a note of anything that might be relevant to
the problem. Even if the observations you record do not at first suggest a cause,
they could be useful to you later if you need to carry out systematic problem
determination.

1. Has the CICS system run successfully before?

If the CICS system has not run successfully before, it is possible that you have
not yet set it up correctly. You need to read other books in the CICS library for
guidance on doing this.

If you are currently migrating to CICS Transaction Server for VSE/ESA Release
1, ensure that you are aware of all the changes that have been made for this
version. For details of these, see the CICS Migration Guide.

2. Are there any messages explaining the failure?

If a transaction abends, and the task terminates abnormally, CICS sends a
message reporting the fact to the CSMT log (or your site replacement). If you
find a message there, it might immediately suggest a reason for the failure.

Were there any unusual messages associated with CICS start up, or while the
system was running before the error occurred? These might indicate some
system problem that prevented your transaction from running successfully.

If you see any messages that you do not understand, look in the VSE/ESA
Messages and Codes Volume 3 manual for an explanation and, perhaps, a
suggested course of action that you can take to resolve the problem.

3. Can you reproduce the error?

a. Can you identify any application that is always in the system when the
problem occurs?

� Check for application coding errors.

 Copyright IBM Corp. 1979, 1999 3

� Check that you have defined sufficient resources for the application,
such as VSAM file strings. Typically, if you had not defined
sufficient resources, you would find that the problem is related to
the number of users of the application.

b. Are you using exit programming interface (XPI) calls? If so, be sure to
observe the XPI protocols and restrictions exactly. For programming
information about the XPI, see the CICS Customization Guide.

The exit programming interface enables you to invoke a domain and
enter its environment directly; using it incorrectly can cause severe
CICS system problems. Here are some particular points for your
attention:

� Are the input parameters correct? If their format is not valid, they
are rejected by the called domain, and an exception trace is made.
If their values are acceptable to the domain but inappropriate for
the system, they could cause unpredictable effects.

� Be aware that you cannot use some XPI calls within some of the
user exits. If you do, the results can be unpredictable, and can
cause CICS to stall or abend. The CICS Customization Guide tells
you which exits can use XPI calls and which cannot.

c. If the problem is not related to any particular application, have you
considered your CICS system initialization parameters? Poorly defined
parameters may be the cause of problems in your system. You can
find guidance about setting up your CICS system in the CICS System
Definition Guide.

d. Does the problem seem to be related to system loading? If so, the
system might be running near its maximum capacity, or it might be in
need of tuning. For guidance about dealing with this sort of problem,
see the CICS Performance Guide.

4. Does the failure occur at specific times of day?

If the failure occurs at specific times of day, it could be dependent on system
loading. Typically, peak system loading is at mid-morning and mid-afternoon,
so those are the times when load-dependent failures are most likely to happen.
However, if your CICS network extends across more than one time zone, peak
system loading might occur at some other time of day.

5. Is the failure intermittent?

If an error is intermittent, particularly if it does not show the same symptoms,
the problem might be more difficult to resolve. An intermittent failure can be
caused by a “random” storage overlay. Furthermore, the transaction that
caused the error might have been deleted from the system long before the
symptoms are seen.

A method you can use to investigate random overlays is described in
Chapter 10, “Dealing with storage violations” on page 173.

6. Have any of the following changes been made since the last successful
run?

Service

a. Have you applied a PTF to CICS?

4 CICS Transaction Server for VSE/ESA Problem Determination Guide

b. Did it install successfully or did you get an error message during
installation? If you installed it successfully, check with IBM for any PTF
error.

c. Have any patches applied to any other program affected the way CICS
interfaces with the program?

Hardware

a. Have you changed any of your hardware?

Software

a. Have you changed any of your software?

b. If you have installed a new or modified application, check for error
messages in the output from the following:

 � Translator
 � Compiler
 � Assembler
 � Linkage editor

Administration

a. Have you changed your initialization procedure, for example by JCL,
CICS system initialization or override parameters, or VTAM
CONFIG/LIST?

b. Has CICS generated any error messages during initialization?

c. Have you installed any resource definitions defined using CEDA?

If the definitions were made but not installed when CICS was last
terminated, they might not have been preserved over the termination
and subsequent start up. In general, changes made to the CSD but not
installed are not visible when the CICS system is warm started.
However, if the change was in a group in a list specified on the
GRPLIST system initialization parameter specified on a cold start, it is
effectively installed during startup. (Changes which have been installed
are not visible after a cold start unless they were made to a group in a
list specified on the GRPLIST system initialization parameter.

If START=AUTO was specified in the system initialization table, or as
an override, you need to examine the job log to find out how the CICS
system last initialized.

For detailed guidance about the ways in which resources can be
defined and installed, see the CICS Resource Definition Guide.

7. Are specific parts of the network affected by the problem?

a. Can you identify specific parts of the network that the problem affects?
If you can, look for any explanatory message from the access method.
Even if no message has been sent to the console, you might find one
in the CSNE log.

b. Have you made any network-related changes?

c. If the problem affects a single terminal, are your terminal definitions
correct? Consider both the RDO TERMINAL definition, and the RDO
TYPETERM definition it uses.

 Chapter 1. Introduction to problem determination 5

d. If the problem affects a number of terminals, can you identify a factor
that is common to all of them? For example:

� Do they use the same RDO TYPETERM definition? If so, it is likely
that there is an error in that RDO TYPETERM definition.

� Is the whole network affected? If so, CICS has probably stalled.
See “What to do if CICS has stalled” on page 124 for advice.

8. Has the application run successfully before?

a. Have any changes been made to the application since it last ran
successfully?

Examine the new or modified part of the application.

b. Have you used RDO to create or alter a transaction, program, or
mapset? You must install these definitions before the resources are
available to the running CICS region.

c. If you changed any maps, have you created both a new phase
(TYPE=MAP) and a new DSECT (TYPE=DSECT), and then recompiled
every program using the new DSECT? Use the CEMT commands:

CEMT SET PROGRAM(mapset) NEWCOPY

CEMT SET PROGRAM(all programs) NEWCOPY

(See the CICS-Supplied Transactions manual for guidance about the
CEMT transaction.)

d. Have all the functions of the application been fully exercised before?

Establish what the program was doing when the error occurred, and
check the source code in that part of the program.

If a program has been run successfully on previous occasions, examine
the contents of any records, screen data, and files that were being
processed when the error occurred. They may contain some unusual
data value that caused a rarely used path in the program to be invoked.

e. Check that the application successfully retrieved the records that it
required at the time of the error.

f. Check that all fields within the records at the time of the error contain
data in a format acceptable to the program. Use CICS dump to do this.

If you can reproduce the problem in a test system, you can use
programming language debug tools and the CEDF transaction to check
the data and solve the problem.

9. The application has not run successfully before

If your application has not yet run successfully, examine it carefully to see if
you can find any errors in it.

a. Check the output from the translator, the compiler, and the linkage
editor, for any reported errors.

If your application fails to translate, compile or assemble, or link-edit
cleanly into the correct phase library, it will also fail to run if you attempt
to invoke it.

b. Check the coding logic of the application. Do the symptoms of the
failure indicate the function that is failing and, therefore, the piece of
code in error?

6 CICS Transaction Server for VSE/ESA Problem Determination Guide

c. The following is a list of some programming errors commonly found in
applications:

� CICS areas are addressed incorrectly
� The rules for quasi-reentrancy are not followed
� Transient data is managed incorrectly
� File resources are not released
� Storage is corrupted by the program
� Return codes from CICS requests are ignored

See “File control waits” on page 108 for more information about
common user errors in application programming.

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the CICS library and in the libraries of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail. Begin by finding the best category for the problem, using the
approach described in Chapter 2, “Classifying the problem” on page 9.

 Chapter 1. Introduction to problem determination 7

8 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 2. Classifying the problem

The purpose of this chapter is to help you classify your problem into one of the
categories used by the IBM Support Center for its service procedures. It contains
the following topics:

� “Classifying problems using symptom keywords”
� “Some more ways in which this manual classifies problems” on page 10
� “Using the symptoms to classify the problem” on page 10
� “Distinguishing between waits, loops, and poor performance” on page 14
� “Where to look next” on page 18

IBM Support Center staff have found that classifying the problem first is a good
approach to problem determination.

Classifying problems using symptom keywords
IBM keeps records of all known problems with its licensed programs on the
RETAIN database. IBM Support Center staff continually update the database as
new problems are reported, and they regularly search the database to see if
problems they are told about are already known.

If you have the IBM INFORMATION/ACCESS licensed program, 5665-266, you can
look on the RETAIN database yourself. Each of the problems there has a
classification type. For software problems, the classifications you will see are:

� ABEND (for transaction abends , see Chapter 4, “Dealing with transaction
abends” on page 27; for system abends , see Chapter 5, “Dealing with CICS
system abends” on page 39)

� WAIT (see Chapter 6, “Dealing with waits” on page 51)

� LOOP (see Chapter 7, “Dealing with loops” on page 129)

� POOR PERFORMANCE, or PERFM (see Chapter 8, “Dealing with
performance problems” on page 139)

� INCORRECT OUTPUT, or INCORROUT (see Chapter 9, “Dealing with
incorrect output” on page 149)

 � MESSAGE

All but the last of these, MESSAGE, are considered in this book. If you receive a
CICS error message, look in the VSE/ESA Messages and Codes Volume 3 manual
for an explanation. If you get a message from another IBM program, or from the
operating system, you need to look in the messages and codes book from the
appropriate library for an explanation of what that message means.

The VSE/ESA Messages and Codes Volume 3 manual might give you enough
information to solve the problem quickly, or it might redirect you to this manual for
further guidance. If you are unable to deal with the message, you may eventually
need to contact the IBM Support Center for assistance.

One type of problem that might give rise to a number of symptoms, usually
ill-defined, is that of poor application design. Checking the design of an application
is beyond the scope of this book, but one instance is described in “Poor application

 Copyright IBM Corp. 1979, 1999 9

design” on page 17, where you will find an example of how bad design can give
rise to an application with poor usability.

Some more ways in which this manual classifies problems
In addition to the RETAIN classifications used by the IBM Support Centers, this
book considers the following types of problem to belong in classes of their own for
the purpose of investigation:

� Storage violations (see Chapter 10, “Dealing with storage violations” on
page 173)

� XRF errors (see Chapter 11, “Dealing with XRF errors” on page 185)

� EXCI errors (see Chapter 12, “External CICS interface” on page 193)

� MRO errors (see Chapter 13, “Dealing with MRO problems” on page 195)

Whereas XRF, EXCI, and MRO errors can easily be classified in a straightforward
way, confirming that you have a storage violation can be difficult. Unless you get a
CICS message stating explicitly that you have a storage violation, you could get
almost any symptom, depending on what has been overlaid. You might, therefore,
classify it initially as one of the RETAIN symptom types described in “Classifying
problems using symptom keywords” on page 9.

Using the symptoms to classify the problem
The following paragraphs classify the problem on the basis of the symptoms you
observe.

The symptoms might enable you to classify the problem correctly at once, but
sometimes classification is not so straightforward. You may need to consider the
evidence carefully before making your decision. You might need to make a “best
guess”, and then be prepared to reconsider later on the basis of further evidence.

Look for the chapter heading that most nearly describes the symptoms you have,
and then follow the advice given there.

CICS has stopped running
Consider, firstly, the possibility that CICS might still be running, but only slowly. Be
certain that there is no activity at all before carrying out the checks in this section.
If CICS is running slowly, you probably have a performance problem. If so, read
“CICS is running slowly” on page 11 to confirm this before going on to Chapter 8,
“Dealing with performance problems” on page 139 for advice about what to do
next.

There are three main reasons why CICS might unexpectedly stop running:

1. There could be a CICS system abend.
2. CICS could be in a wait state. In other words, it could have stalled.
3. A program could be in a tight loop.

Look in the following places for any message that might explain the situation:

1. The VSE console . Look for any message saying that the CICS job has
abnormally terminated. If you find one, it means that a CICS system abend

10 CICS Transaction Server for VSE/ESA Problem Determination Guide

has occurred. In such a case, you should examine the CSMT log to see which
abend message has been written there.

If you do not find any explanatory message on the VSE console, check in the
CSMT log anyway.

2. The CSMT log . CSMT is the transient data destination to which abend
messages are written. If you find a message there, look in the VSE/ESA
Messages and Codes Volume 3 manual to make sure there has been a CICS
system abend.

If you see only a transaction abend message in the CSMT log, that will not
account for CICS itself not running, and you should not classify the problem as
an abend. A faulty transaction could hold CICS up, perhaps indefinitely, but
CICS would resume work again once the transaction abended.

Here are two examples of messages that might accompany CICS system abends,
and which you would find on the CSMT log:

DFHST0001 applid An abend (code aaa/bbbb) has occurred at offset X 'offset'
in module modname.

DFHSR0601 Program interrupt occurred with system task taskid in control

If you get either of these messages, or any others for which the system action is to
terminate CICS, turn to Chapter 5, “Dealing with CICS system abends” on page 39
for advice on what to do next.

If you cannot find a message telling you that CICS has terminated, it is likely that
the CICS system is in a wait state, or that some program is in a tight loop and not
returning control to CICS. These two possibilities are dealt with in Chapter 6,
“Dealing with waits” on page 51 and Chapter 7, “Dealing with loops” on page 129,
respectively.

CICS is running slowly
If CICS is running slowly, it is likely that you have a performance problem. It could
be because your system is badly tuned, or because it is operating near the limits of
its capacity. You will probably notice that the problem is worst at peak system load
times, typically at mid-morning and mid-afternoon. If your network extends across
more than one time zone, peak system load might occur at some other time.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
transaction could be the cause. Classify the problem initially as “poor
performance”, but be prepared to reconsider your classification later.

The following are some symptoms that could contribute to your perception that
CICS is running slowly:

� Tasks take a long time to start running.
� Some low priority tasks will not run at all.
� Tasks start running, but take a long time to complete.
� Some tasks start running, but do not complete.
� No output is obtained.
� Terminal activity is reduced, or has ceased.

 Chapter 2. Classifying the problem 11

Some of these symptoms do not, in isolation, necessarily mean that you have got a
performance problem. They could indicate that some task is in a loop, or is waiting
on a resource that is not available. Only you can judge whether what you see
should be classified as “poor performance”, in the light of all the evidence you
have.

You might be able to gather more detailed evidence by using the tools and
techniques that CICS provides for collecting performance data. The following is a
summary of what is available:

 � CICS statistics
You can use these to gather information about the CICS system as a whole,
without regard to tasks.

 � CICS monitoring
You can use this facility to collect information about CICS tasks.

 � CICS tracing
This is not a specific tool for collecting performance data, but you can use it to
gather detailed information about performance problems.

For guidance about using these tools and techniques, and advice about
performance and system tuning in general, see the CICS Performance Guide.

You can find guidance about identifying specific performance bottlenecks in your
CICS system in Chapter 8, “Dealing with performance problems” on page 139.

A task fails to start
If a task fails to start, look first in the CSMT and CSNE logs for any explanatory
message. If you do not find one, the task is possibly being prevented from starting
because either the system is running at the MXT limit (maximum number of tasks
permitted in the CICS system), the transaction is queuing for admittance to a
transaction class, (RDO TRANCLASS) or for other performance reasons.

Classify the problem provisionally as “poor performance”, and turn to Chapter 8,
“Dealing with performance problems” on page 139 for further guidance.

A task is running slowly
If just one task is running slowly, it is likely that the explanation lies with the task
itself. It could be in a loop, or it could periodically be entering a wait state. You
need to decide which of these possibilities is the most likely before starting
systematic problem determination. The ways that you might distinguish between
waits and loops are described in “Distinguishing between waits, loops, and poor
performance” on page 14.

Note: Do not overlook the possibility that the task might simply be doing
unnecessary work that does not change the final result—for example, starting a
skip sequential browse with large gaps between the keys, or failing to finish one
because it is holding on to resources.

12 CICS Transaction Server for VSE/ESA Problem Determination Guide

A task stops running at a terminal
When a task stops running at a terminal, you will notice either or both of these
symptoms:

� No output is obtained at the terminal
� The terminal accepts no input

First, make sure that the task is still in the system. Use the CEMT INQUIRE TASK
transaction to check its status, and make sure that it has not ended by simply
writing back to the terminal.

If the terminal has a display unit, check to see whether a special symbol has been
displayed in the operator information area that could explain the fault. If the
operator information area is clear, next check to see that no message has been
sent to any of the transient data destinations used for error messages, for example:

� CSMT, the destination for terminal error and abend messages

� CSTL, the destination for terminal I/O error messages

� CSNE, the destination for error messages written by DFHZNAC and DFHZNEP

For details of the destinations used by CICS, see the CICS System Definition
Guide. If you can find no explanation for the problem, the fault is probably
associated with the task running at the terminal. These are the possibilities:

� The task is in a wait state.
� The task is in a loop.
� There is a performance problem.

Read “Distinguishing between waits, loops, and poor performance” on page 14 to
find out which of these is the most likely explanation. You can then read the
appropriate chapter for advice about dealing with the problem.

A transaction has abended
If the transaction abended when you ran your application, CICS gives you an error
message on your screen as well as a message on the CSMT log.

Look in the VSE/ESA Messages and Codes Volume 3 manual for an explanation of
the message, and, perhaps, advice about what you should do to solve the problem.
If the code is not there, or the explanation or advice given is not sufficient for you to
solve the problem, turn to Chapter 4, “Dealing with transaction abends” on
page 27.

You have obtained incorrect output
Incorrect output is any sort of output that you were not expecting. However, use
the term with care in the context of problem determination, because it might be a
secondary effect of some other type of error. For example, looping could be
occurring if you get any sort of repetitive output, even though that output is not
what you had expected. Also, CICS responds to many errors that it detects by
sending messages. You might regard the messages as “incorrect output”, but they
are only symptoms of another type of problem.

If you have received an unexpected message, and its meaning is not at first clear,
look in the VSE/ESA Messages and Codes Volume 3 manual for an explanation.

 Chapter 2. Classifying the problem 13

These are the types of incorrect output that are dealt with in this book, in
Chapter 9, “Dealing with incorrect output” on page 149.

� Incorrect trace or dump data:

 – Wrong destination
– Wrong type of data captured
– Correct type of data captured, but the data values were unexpected

� Wrong data displayed on the terminal

A storage violation has occurred
When CICS detects that storage has been corrupted, this message is sent to the
console:

DFHSM0102 applid A storage violation (code X 'code') has been detected by
module modname.

If you see this message, or you know (through other means) that a storage
violation has occurred, turn to Chapter 10, “Dealing with storage violations” on
page 173 for advice about dealing with the problem.

In many cases storage violations go undetected by CICS, and you only find out that
they have occurred when something else goes wrong as a result of the overlay.
You could, for example, get a program check because code or data has been
overlaid. You might suspect some other type of problem at first, and only after
starting your investigation find that a storage violation has occurred.

You can avoid many storage violations by enabling storage protection
(STGPROT=YES in the SIT) and command protection (CMDSEC=YES in the SIT).
See the CICS System Definition Guide for more information about these system
initialization parameters.

An XRF error has occurred
If an XRF error has occurred, turn to Chapter 11, “Dealing with XRF errors” on
page 185 for advice.

Distinguishing between waits, loops, and poor performance
Waits, loops, and poor performance can be quite difficult to distinguish, and in
some cases you need to carry out quite a detailed investigation before deciding
which classification is the right one for your problem.

Any of the following symptoms could be caused by a wait, or a loop, or by a badly
tuned or overloaded system:

� One or more user tasks in your CICS system fails to start.
� One or more tasks stays suspended.
� One or more tasks fails to complete.
� No output is obtained.
� Terminal activity is reduced, or has ceased.
� The performance of your system is poor.

14 CICS Transaction Server for VSE/ESA Problem Determination Guide

Because it can be difficult to make a correct classification, consider the evidence
carefully before adopting a problem solving strategy. This section gives you
guidance about choosing the best classification.

 Waits
For the purpose of problem determination, a wait state is regarded as a state in
which the execution of a task has been suspended. That is, the task has started to
run, but it has been suspended without completing and has subsequently failed to
resume.

The task might typically be waiting for a resource that is unavailable, or it might be
waiting for an event control block (ECB) to be posted. A wait might affect just a
single task, or a group of related tasks. If none of the tasks in a CICS region is
running, CICS is in a wait state. The way to handle that situation is dealt with in
“What to do if CICS has stalled” on page 124.

If you are authorized to use the CEMT transaction, you can find out which user
tasks or CICS-supplied transactions are currently suspended in a running CICS
system using the CEMT INQUIRE TASK transaction. Use the transaction several
times, perhaps repeating the sequence after a few minutes, to see if any task stays
suspended. If you do find such a task, look at the resource type that it is waiting
on (the value shown for the HTYPE option). Is it unreasonable that there should be
an extended wait on the resource? Does the resource type suggest possible
causes of the problem?

You can use EXEC CICS INQUIRE TASK or EXEC CICS INQUIRE TASK LIST
commands as alternatives to the CEMT transaction. You can execute these
commands under CECI, or from a user-written program. Use the EXEC CICS
INQUIRE TASK LIST command to find the task numbers of all SUSPENDED,
READY, and RUNNING user tasks. If you use this command repeatedly, you can
see which tasks stay suspended. You may also be able to find some relationship
between several suspended tasks, perhaps indicating the cause of the wait.

If it seems fairly certain that your problem is correctly classified as a wait, and the
cause is not yet apparent, turn to Chapter 6, “Dealing with waits” on page 51 for
guidance about solving the problem. However, you should allow for the possibility
that a task may stay suspended because of an underlying performance problem, or
because some other task may be looping.

If you can find no evidence that a task is waiting for a specific resource, you should
not regard this as a wait problem. Consider instead whether it is a loop or a
performance problem.

 Loops
A loop is the repeated execution of some code. If you have not planned the loop,
or if you have designed it into your application but for some reason it fails to
terminate, you get a set of symptoms that vary depending on what the code is
doing. In some cases, a loop may at first be diagnosed as a wait or a performance
problem, because the looping task competes for system resources with other tasks
that are not involved in the loop.

The following are some characteristic symptoms of loops:

 Chapter 2. Classifying the problem 15

� The ‘system busy’ symbol is permanently displayed in the operator information
area of a display unit, or stays displayed for long periods.

� The transaction abends with abend code AICA.

� CPU usage is very high, perhaps approaching 100%, yet some tasks stay
suspended or ready, but not running, for a long time.

You can check what the CPU usage is for any VSE job by using the DISPLAY
SYSTEM ACTIVITY screen of the VSE/ESA Interactive Interface. See the
VSE/ESA Operation manual for more information.

� There is reduced activity at terminals, or possibly no activity at all.

� One or more CICS partitions appear to be stalled, or to be continuing only
slowly.

� No CICS messages are written to any destination, when they are expected.

� No new tasks can be started.

� Existing tasks remain suspended.

� The CEMT transaction cannot be used.

� Repetitive output is obtained. Try looking in these areas:

– Terminals, and the system console.

– Temporary storage queues. You can use CEBR to browse them online.

– Data files and CICS journals.

– Trace tables, but remember that some loops are intentional—some CICS
system tasks use them, for example, to see if there is any work to be done.

� Excessive demand for storage. If the loop contains a GETMAIN request,
storage is acquired each time this point in the loop is passed, as long as
sufficient storage to satisfy the request remains available. If storage is not also
freed in the loop, CICS eventually goes short on storage (SOS) in one of the
DSAs. You then get a message reporting that CICS is under stress in one of
these areas.

One further effect is that tasks issuing unconditional GETMAIN requests are
suspended more often as the loop continues and storage is progressively used
up. Tasks making storage requests do not need to be in the loop to be
affected in this way.

� Statistics show a large number of automatically initiated tasks.

� Large numbers of file accesses are shown for an individual task.

Some loops can be made to give some sort of repetitive output. Waits and
performance problems never give repetitive output. If the loop produces no output,
a repeating pattern can sometimes be obtained by using trace. A procedure for
doing this is described in Chapter 7, “Dealing with loops” on page 129.

If you are able to use the CEMT transaction, try issuing the CEMT INQUIRE TASK
transaction repeatedly. If the same transaction is shown to be running each time,
this is a further indication that the task is looping. However, note that the CEMT
transaction itself is always running when you use it to inquire on tasks.

If different transactions are seen to be running, this could still indicate a loop, but
one that involves more than just a single transaction.

16 CICS Transaction Server for VSE/ESA Problem Determination Guide

If you are unable to use the CEMT transaction, it may be because a task is looping
and not allowing CICS to regain control. A procedure for investigating this type of
situation is described in “What to do if CICS has stalled” on page 124.

Consider the evidence you have so far. Does it indicate a loop? If so, turn to
Chapter 7, “Dealing with loops” on page 129, where there are procedures for
defining the limits of the loop.

 Poor performance
A performance problem is considered to be one in which system performance is
perceptibly degraded, either because tasks fail to start running at all, or because
they take a long time to complete once they have started.

In extreme cases, some low-priority tasks may be attached but then fail to be
dispatched, or some tasks may be suspended and fail to resume. The problem
might initially be regarded as a wait.

If you get messages telling you that CICS is under stress, this can indicate either
that the system is operating near its maximum capacity, or that a task in error has
used up a large amount of storage—possibly because it is looping.

You see one of the following messages when CICS is under stress in one of the
DSAs:

DFHSM0131 applid CICS is under stress (short on storage below 16MB)

DFHSM0133 applid CICS is under stress (short on storage above 16MB)

If there is no such indication, see Chapter 8, “Dealing with performance problems”
on page 139 for advice on investigating the problem. However, before doing so,
be as sure as you can that this is best classified as a performance problem, rather
than a wait or a loop.

Poor application design
If you have only a poorly defined set of symptoms that might indicate a loop, a wait,
or possibly a performance problem with an individual transaction, consider the
possibility that poor design might be to blame.

This book does not deal with the principles of application design, or how to check
whether poor design is responsible for a problem. However, one example is given
here, to show how poor design of an application gave rise to symptoms which were
at first thought to indicate a loop.

Environment: CICS and DL/I using secondary indexes. The programmer had
made changes to the application to provide better function.

Symptoms: The transaction ran and completed successfully, but response was
erratic and seemed to deteriorate as the month passed. Towards
the end of the month, the transaction was suspected of looping and
was canceled. No other evidence of looping could be found, except
that statistics showed a high number of I/Os.

 Chapter 2. Classifying the problem 17

Explanation: The programmer had modified the program to allow the user to
compare on the last name of a record instead of the personnel
number, which it had done in the past. The database was the type
that grew through the month as activity was processed against it.

It was discovered that in making the change, the program was no
longer comparing on a field that was part of the key for the
secondary index. This meant that instead of searching the index for
the key and then going directly for the record, every record in the file
had to be read and the field compared. The structure of the source
program had not changed significantly; the number of database calls
from the program was the same, but the number of I/Os grew from a
few to many thousands at the end of the month.

Note that these symptoms eight equally well have pointed to a performance
problem, although performance problems are usually due to poorly tuned or
overloaded systems, and affect more than just one transaction. Performance
problems tend to have system-wide effects.

Where to look next
� For transaction abends , see Chapter 4, “Dealing with transaction abends” on

page 27

� For system abends , see Chapter 5, “Dealing with CICS system abends” on
page 39

� For waits , see Chapter 6, “Dealing with waits” on page 51

� For loops , see Chapter 7, “Dealing with loops” on page 129

� For poor performance , see Chapter 8, “Dealing with performance problems”
on page 139

� For incorrect output , see Chapter 9, “Dealing with incorrect output” on
page 149

� For storage violations , see Chapter 10, “Dealing with storage violations” on
page 173

� For XRF errors , see Chapter 11, “Dealing with XRF errors” on page 185

If you have already decided that you should refer the problem to the IBM Support
Center, you can find advice about dealing with the Center in Chapter 17, “IBM
program support” on page 259.

18 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 3. Sources of information

This chapter describes the information sources which may be useful in problem
determination

 User documentation
Have available the collection of information produced by your organization about
what your system and applications do and how they do it. It could include:

� Program descriptions or functional specifications

� Record layouts and file descriptions

 � Flowcharts

� Statement of inputs and outputs

� Change history of a program

� Change history of your installation

� Auxiliary trace profile for your transaction

� Statistical and monitoring profile showing average inputs, outputs, and
response times

 Manuals
You should have available the manuals in the CICS Transaction Server for
VSE/ESA Release 1 library and the libraries for any other products you use with
your application.

Make sure that the level of any manual you refer to matches the level of the system
you are using. Problems often arise through using either obsolete information, or
information about a level of the product that is not yet installed.

Source listings and link-edit maps
Include the source listings of any applications written at your installation. (They
often form the largest single element of documentation. Large installations with
thousands of programs might prefer to keep such listings on microfiche or
CD-ROM.) Make sure you include the relevant linkage-editor output with your
source listings to avoid wasting time trying to find your way through the phases with
an out-of-date link map. Be sure to include the JCL at the beginning of your
listings, to show the libraries that were used and the sublibrary in which the phase
was placed.

Abend codes and error messages
When a CICS transaction stops processing because of an error, the Online
Problem Determination (OLPD) program becomes active. OLPD analyzes the data
it collects and, if possible, describes the cause of the error. For more information
about transaction abends and OLPD, see the VSE/ESA Guide for Solving
Problems.

 Copyright IBM Corp. 1979, 1999 19

Messages are sent to several transient data destinations, for example:

� CSMT for terminal error and abend messages
� CSNE for messages issued by DFHZNAC
� CSTL for terminal I/O error messages
� CSFL for file control messages
� CXRF for terminal control messages from an XRF alternate CICS system

For a list of the destinations used by CICS, see the CICS System Definition Guide.
Use the VSE/ESA Messages and Codes Volume 3 manual to look up any
messages whose meaning you do not know. Make sure that you also have some
documentation of application messages and codes for programs that were written
at your installation, as well as a copy of the VSE/ESA Messages and Codes
Volume 3 manual.

 Symptom strings
CICS produces symptom strings in CICS system and transaction dumps, and in
message DFHME0116.

The symptom string provides a number of keywords that can be used to search the
RETAIN database. If your installation has access to the IBM
INFORMATION/ACCESS licensed program, 5665-266, you can search the RETAIN
database yourself. If you report a problem to the IBM Support Center, you are
often asked to quote the symptom string.

Although the symptom string is designed to provide keywords for searching the
RETAIN database, it can also give you significant information about what was
happening at the time the error occurred, and it might suggest an obvious cause or
a likely area in which to start your investigation.

 Change log
The information in the change log can identify changes made in the data
processing environment that may have caused problems with your application
program. To make your change log most useful, include the data concerning
hardware changes, system software (such as VSE and CICS) changes, application
changes, and any modifications made to operating procedures.

 Dumps
Dumps are an important source of detailed information about problems. Whether
they are the result of an abend or a user request, they allow you to see a snapshot
of what was happening in CICS at the moment the dump is taken. Chapter 15,
“Using dumps in problem determination” on page 225 contains guidance about
using dumps. However, because they do only provide a “snapshot,” you may need
to use them in conjunction with other sources of information relating to a longer
period of time, such as logs, traces, and statistics.

20 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Statistics
Statistics are often overlooked as a source of debugging information, but those that
relate to an application program can help solve problems. It is useful to have a
statistical profile (as mentioned in “User documentation” on page 19) to use for
problem determination. If you compare the information in the profile with the
statistical information produced by CICS, any differences you find may indicate the
source of a problem.

Statistics are most often used in system tuning and diagnosis, but they also contain
information that can indicate problems with the way your application handles
resources. For example, you may notice from these statistics that tables are being
loaded, or programs linked, for which there is no known requirement.

You can also use statistics to check terminals, files, queues, and so on for
irregularities in their activity. For example, if a terminal has the same number of
errors recorded for a particular transaction as the number of times that transaction
was run, this may indicate that an incorrect data stream is being sent to that
terminal. See the CICS Performance Guide for more information about using
statistics.

 Monitoring
You can use CICS monitoring to provide information for debugging applications. In
addition to the system-defined event monitoring points (EMPs) that already exist
within CICS code itself, you can define user event monitoring points in your own
application programs by using the EXEC CICS MONITOR command.

At a user EMP, you can add your own data (up to 256 counters, up to 256 clocks,
and a single character string of up to 8192 bytes) to fields reserved for you in
performance class monitoring data records. You can use these extra EMPs to
count how many times a certain event happens, or to time the interval between two
events. Your definitions in the Monitoring Control Table (MCT) specify the type and
number of fields that are available for your use within each task’s performance
record. For further information on the MCT see the CICS Resource Definition
Guide. See the CICS Application Programming Reference manual for programming
information on syntax and options of the EXEC CICS MONITOR command.

When your monitoring data has been collected, you usually need to format it, which
you can do by using a program based on the sample program, DFH$MOLS, or to
read it into a database, so that you can analyze it selectively. If you have a
suitable MVS system, you can transfer your CICS for VSE/ESA monitoring
information to it, and then process it using the Service Level Reporter Version 2
(SLR II).

See the CICS Performance Guide for guidance about using monitoring data.

 Chapter 3. Sources of information 21

Transaction inputs and outputs
Transaction inputs and outputs can be divided into the following areas:

 � Terminal data
� Transient data and temporary storage

 � Passed information
� Files and databases

 Terminal data
Terminal data is very important in solving problems, because it can help you
answer the following questions:

� What data did you enter just before the transaction failed?
� Was there any output? If so, what did it look like?

The more you know about the information that was entered at the terminal on
which the transaction failed, the better your chance of duplicating the problem in a
test environment. However, this information may not be precise, especially if there
are many fields on the input screen. You are recommended to provide a quick and
easy way for terminal operators to report problems, so that they can report the error
while they can still see the data on the screen (or at least remember more clearly
what it was).

The questions to consider are:

� Were all necessary input fields entered?
� Were the contents of the input fields correct?
� Which transmit key was used, (that is ENTER, a PF key, or a PA key)?

The output from a transaction is sometimes easier to capture. If you have a locally
attached printer, you can make a copy. (The problem may be that the printer
output is incorrect.)

On the output screen, check the following points:

� Do all the required fields contain data?
� Is the data correct?
� Is the screen format as designed?
� Are there any nondisplay fields used to pass data that may not be protected?

Transient data and temporary storage
If the program explicitly uses any transient data or temporary storage queues,
inspect them to see if their content is as expected. You can use the CICS-supplied
transaction, CEBR, to inspect temporary storage queues in some detail. See the
CICS-Supplied Transactions manual for information about this transaction.

Even if the program does not use queues, look at the system queues for CEMT (or
your site replacement) and CSTL to see if there are any relevant messages.

The things you might want to look for in the queues are:

� Are the required entries there?
� Are the entries in the correct order?
� Is the queue being written the same one that is being read?

22 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Passed information
Whenever you suspect a problem, check any information that is passed in any of
these ways:

 � COMMAREA
� Transaction work area (TWA)
� GETMAINed area, pointer in TWA

 � In-memory table
� Common system area (CSA) work area
� Terminal user area

Be particularly careful when you are using the common work area (CWA) because
you only have one area for the entire system. A transaction may depend on a
certain sequence of transactions and some other program may change that
sequence. If you are using the CWA, you must also know if your CICS is split into
multiple multiregion operation (MRO) regions because there is an independent
CWA for each MRO region.

Terminal user areas can have problems because the area is associated with a
terminal and not a particular transaction.

If you are using tables in the CWA, remember that there is no recovery; if a
transaction updates the table and then abends, the transaction is backed out but
the change is not.

Files and databases
Files and databases are often the main source of transaction input and output—you
should always investigate both these areas whenever a program is having
problems. To do this, you need to use the appropriate utilities and diagnostic tools
for the data access methods that you have at your installation.

Check the various indexes in files and databases. If you have more than one
method of accessing information, one path may be working well but another path
may be causing problems.

When looking through the data in files, pay particular attention to the record layout.
The program may be using an out-of-date record description.

 Traces
CICS provides a tracing facility that enables you to trace transactions through the
CICS components as well as through your own programs. CICS auxiliary trace
enables you to write trace records on a sequential device for later analysis. For
information about the tracing facilities provided by CICS, read Chapter 14, “Using
traces in problem determination” on page 199.

VSE service aids
The VSE service aids that are most likely to be of use in solving CICS problems
are:

� System debugging aid (SDAID), which traces instructions, branches or storage
or register alterations.

 Chapter 3. Sources of information 23

� EREP (Environmental Record Editing and Printing Program), which reads error
and other environmental records generated by hardware and software, edits the
records, and produces printed reports at your request.

See the VSE/ESA Guide to Solving Problems for further information on SDAID and
EREP.

24 CICS Transaction Server for VSE/ESA Problem Determination Guide

Part 2. Dealing with the problem

Part 2 contains:

Chapter 4. Dealing with transaction abends 27
Collecting the evidence . 27
What the abend code can tell you . 28
CICS transaction abend codes . 28
Finding where a program check occurred . 30
Analyzing the problem further . 36
FEPI abends . 38

Chapter 5. Dealing with CICS system abends 39
The documentation you need . 39
Interpreting the evidence . 40

Chapter 6. Dealing with waits . 51
Techniques for investigating waits . 52
How tasks are made to wait . 59
Spooler waits . 77
Transaction manager waits . 78
Lock manager waits . 82
Journal control waits . 85
Task control waits . 88
Storage waits . 90
Temporary storage waits . 91
Terminal waits . 94
VTAM terminal control waits . 102
Interregion and intersystem communication waits 104
Transient data waits . 105
Loader waits . 108
File control waits . 108
Interval control waits . 115
XRF alternate system waits . 121
CICS system task waits . 122
FEPI waits . 123
What to do if CICS has stalled . 124

Chapter 7. Dealing with loops . 129
What sort of loop is indicated by the symptoms? 129
Investigating loops that cause transactions to abend with abend code AICA 134
Investigating loops that are not detected by CICS 136
What to do if you cannot find the reason for a loop 138

Chapter 8. Dealing with performance problems 139
Finding the bottleneck . 140
Finding why tasks fail to get attached to the transaction manager 141
Finding why tasks fail to get attached to the dispatcher 142
Finding why tasks fail to get an initial dispatch 144
Finding out why tasks take a long time to complete 146
A summary of performance bottlenecks, symptoms, and causes 146

 Copyright IBM Corp. 1979, 1999 25

Chapter 9. Dealing with incorrect output 149
Trace output is incorrect . 149
Dump output is incorrect . 153
Wrong data has been displayed on a terminal 156
Incorrect data is present on a VSAM data set 163
An application did not work as expected . 163
Your transaction produced no output at all . 164
Your transaction produced some output, but it was wrong 169

Chapter 10. Dealing with storage violations 173
Avoiding storage violations . 173
Two kinds of storage violation . 174
CICS has detected a storage violation . 174
Storage violations that affect innocent transactions 181
Programming errors that can cause storage violations 182
Storage recovery . 183

Chapter 11. Dealing with XRF errors . 185
Symptoms of problems in an XRF complex . 185
Debugging the overseer sample program . 189
XRF trace . 190
The CAVM data sets . 190

Chapter 12. External CICS interface . 193

Chapter 13. Dealing with MRO problems 195

26 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 4. Dealing with transaction abends

This chapter gives guidance about finding the cause of transaction abends. It
contains the following topics:

� “Collecting the evidence”
� “What the abend code can tell you” on page 28
� “CICS transaction abend codes” on page 28
� “Finding where a program check occurred” on page 30
� “Analyzing the problem further” on page 36
� “FEPI abends” on page 38

When a CICS transaction abends (ends abnormally), a transaction abend message
and an abend code of four alphanumeric characters are sent to CSMT, the CEMT
transient data destination (or your site replacement). This is an example of what
the message looks like:

DFHAC2006 date time applid Transaction tranid program program name abend
primary abcode at termid.

The message contains several vital pieces of information. It identifies the
transaction (tranid) that failed, and the program (program name) that was being
executed when the failure was detected. Most importantly, it gives you the abend
code (abcode), indicating the nature of the error.

The transaction abend can originate from several places, and the method you use
for problem determination depends on the source of the abend. The procedures
are described in the sections that follow. As you go through them, you might like to
use the worksheet that is included at the end of this chapter to record your findings
(“Worksheet for transaction abends” on page 37).

Collecting the evidence
You can find all the evidence needed to investigate a transaction abend in the
information sent to the various transient data queues for error messages, and in the
transaction dump. If no transaction dump has been produced, it is possible that
transaction dumping has been suppressed for the transaction (via the transaction
definition), or the dump code entry in the transaction dump code table suppresses
dumping. For guidance about changing the dumping options so that you get a
transaction dump, see Chapter 15, “Using dumps in problem determination” on
page 225.

The transaction abend code and the abend message are recorded in the CSMT
log. Make a note, too, of any other messages you find there that might relate to
the abend, as they could provide additional valuable evidence.

Check also to see if any relevant messages have been sent to the transient data
destinations used by CICS to record messages. For a list of such destinations, see
the CICS System Definition Guide. Look in particular for any messages about files,
terminals, or printers that you might be attempting to use.

 Copyright IBM Corp. 1979, 1999 27

 Symptom string
CICS produces a symptom string as part of the transaction dump. The symptom
string gives some details about the circumstances of the transaction dump. It might
show, for example, that the dump was taken because the transaction abended with
the abend code ASRA.

If you refer the problem that caused the dump to be taken to the IBM Support
Center, they will use the symptom string to search the RETAIN database for
problems similar to it. For an introduction to symptom strings and their contents,
see “Looking at the symptom string in the dump” on page 41.

What the abend code can tell you
The first thing that the abend code can indicate is whether or not this was a CICS
abend. CICS transaction abend codes begin with the letter “A”. A user program or
another product might also use abend codes beginning with “A”. However, if the
transaction abend code begins with anything other than “A”, it is an abend code
belonging to a user program or to some other product. For the sake of
convenience, all such non-CICS abend codes are referred to in this section as user
abend codes.

For an introduction to the types of transaction abend codes used by CICS and by
other IBM products, see the VSE/ESA Messages and Codes Volume 3 manual.

If you have received a user abend code, it can still be difficult to find out which
program is responsible for it unless you have adequate documentation. For this
reason, it is good practice for all programmers who issue abends from within their
programs to document the codes in a central location at your installation.

As far as vendor products are concerned, the documentation includes, in most
cases, a list of abend codes that are issued from the programs making up the
products. This list, together with the documentation for your internal applications,
should make it possible for you to find what caused the abend. If it is not clear why
the user abend was issued, you might need to describe the problem to the owner
of the program.

CICS transaction abend codes
The best source of information on CICS abends is the VSE/ESA Messages and
Codes Volume 3 manual. That book contains a section that lists all transaction
abend codes issued by CICS. There is an explanation of why the code was
issued, followed by details of system and user actions.

If, after reviewing the material in the VSE/ESA Messages and Codes Volume 3
manual, you cannot find the cause of the problem, continue with the procedures
described here. The abend codes AICA, ASRA, ASRB, and ASRD are dealt with
separately because special procedures apply to them. If your abend code was
something other than these, use the procedures in “Locating the last command or
statement” on page 241, to find the last command that was executed, and then
turn to “Analyzing the problem further” on page 36.

28 CICS Transaction Server for VSE/ESA Problem Determination Guide

 AICA abends
Abend code AICA normally indicates that the transaction has been in a loop. You
can find detailed guidance about this subject in Chapter 7, “Dealing with loops” on
page 129.

 ASRA abends
CICS issues an ASRA abend code when it detects that a program check has
occurred within a transaction. Program checks can occur for a wide variety of
reasons, but you can find the nature of the error from the program interrupt code in
the program status word (PSW). The PSW is used by the machine hardware to
record the address of the current instruction being executed, the addressing mode,
and other control information. The PSW gives you the address at which the
program check occurred, and so it represents a record of the circumstances of the
failure. See “Finding where a program check occurred” on page 30 for more
information.

 ASRB abends
A transaction can abend with an abend code of ASRB when a program issues the
VSE ABEND macro. For example, DAM issues this ABEND macro when it detects
errors, rather than sending a return code to the calling program. CICS is notified
when a VSE abend occurs, and in turn issues an ASRB abend code for the
transaction.

Use the procedures outlined in “Locating the last command or statement” on
page 241 to find the origin of the abend in your program. That information,
together with the description and procedures for ASRB abends given in the
VSE/ESA Messages and Codes Volume 3 manual, should be sufficient for you to
solve the problem.

 ASRD abends
A transaction abends with code ASRD if:

� An application program attempts to invoke CICS macros.

� An application program attempts to access the CSA or TCA.

� An application program issues an EXEC CICS ADDRESS CSA command, and
attempts to access storage addressed by the pointer that is returned.

� A COBOL application program attempts to access the CSA via a BLL cell.

Any of the above causes a program check that CICS diagnoses as an ASRD
abend, rather than the usual ASRA abend. You can use the information in the
PSW to investigate the cause of an ASRD abend.

 AEYD abends
If command protection is activated by the CMDPROT(YES) system initialization
parameter the AEYD transaction abend can occur. CICS terminates a transaction
with this code when an output parameter of an EXEC CICS command addresses
storage that the issuing transaction could not itself directly overwrite.

At the time of the abend, register 2 points to the parameter area containing the
invalid address. The trace should include an exception trace entry created by
DFHEISR. This entry should identify the parameter in error. If the abend is

 Chapter 4. Dealing with transaction abends 29

handled, EXEC CICS ASSIGN ASRASTG, ASRAKEY, and ASRAREGS commands
can give additional information.

To prevent a recurrence of the abend, it is recommended that you correct the
program code. Alternatively, changing one or more of the following options may
alleviate the problem:

� EXECKEY in the RDO PROGRAM definition, if storage protection is active
� TASKDATAKEY in the RDO TRANSACTION definition

For further information, see “Avoiding storage violations” on page 173.

Finding where a program check occurred
When a transaction abends with code ASRA or ASRD, the first thing you need to
do is find out where the program check occurred. CICS will have attempted to
establish this for you. A record of the program in error and the offset of the
program check within the program load module are contained in the following
places:

� Message DFHAP0001 or DFHSR0001, which precedes an abend

� The transaction abend control block (TACB) which is created to describe an
abend

� Exception trace point ID AP 0781 (for an ASRA abend) or AP 0783 (for an
ASRD abend)

See “Interpreting transaction dumps” on page 237 for details of the contents of a
transaction dump, including the TACB.

The offset indicates the point in the program at which the program check occurred.
Note that the offset is derived from the PSW next sequential instruction address
and so may indicate the instruction after the one that failed. Unless the offset is
X'FFFFFFFF', turn to “What type of program check occurred?” on page 31.

If the offset appears as X'FFFFFFFF', CICS was unable to establish the location
of the program check. If this is the case, use the PSW to obtain the next
sequential instruction address. The PSW may be found in the following places:

� The TACB for the abend

� At the head of the formatted transaction dump

� Within the kernel error data block traced by exception trace point IDs AP 0781
or AP 0783

Now note down the start and end addresses of the different program areas in the
transaction dump. Is the next sequential instruction address from the PSW in any
of the programs? If so, then that is the program in which the interrupt occurred.
Use the procedure described in “Locating the last command or statement” on
page 241 to identify the last command executed.

If the address is outside all of the programs, one of two things is likely to have
happened.

� The program in which the program check occurred was running on your behalf
(for example, VSAM or DL/I), but not under CICS control. This is usually

30 CICS Transaction Server for VSE/ESA Problem Determination Guide

caused by incorrect parameters being passed to the program, or parameters
being passed in the wrong sequence. These are usually caught and flagged
with an appropriate return code, but certain combinations can cause problems.

� Your program might have taken a wild branch into some other piece of storage.
If the address from the PSW ends in an odd number, this is probably the case,
as valid instructions are always on an even address. The address could be
within the CICS address space, or, indeed, anywhere else in virtual storage.
Often, a wild branch is taken to address zero, because the register that should
contain the branch address is set to zero. The PSW usually contains address
X'00000004' after such a branch has occurred.

Check the register contents to see whether any of them contains the next
sequential instruction address from the PSW, or something close to it. This might
help you find out how you got to the wrong address.

If the PSW does point to an instruction in one of your programs, the next thing to
consider is the type of program check that occurred. Otherwise, turn directly to
“Analyzing the problem further” on page 36.

What type of program check occurred?
Knowing what type of program check occurred can be helpful in finding the cause
of the error. This is indicated by the program interrupt code (PIC), which you can
find in the PSW at the start of the transaction dump. You can find information
about the PSW in the ESA/390 Principles of Operation manual.

PIC PIC explanation

1 Operation exception—incorrect operation attempted.

Possible causes:

 � Overlaid program

� Overlaid register save area, causing incorrect branch

� Resource unavailable, but program logic assumed valid address
was returned, and took inappropriate action

� Incorrect branch to data that contains no instruction known to
the machine

� In an assembler-language program, a base register was
inadvertently changed

2 Privileged operation—this program is not authorized to execute this
instruction

Possible causes:

� Incorrect branch to this code; may be due to:

– Overlaid register save area
– Program overlaid by data that contains the privileged

operation code

3 Execution exception—you are not allowed to EXECUTE an
EXECUTE instruction.

Possible causes:

� Incorrect branch to this code

 Chapter 4. Dealing with transaction abends 31

� Incorrect register contents, may be due to:

– Overlaid register save area

– Program overlaid by data that contains the incorrect
instruction

– Incorrect program logic

4 Protection exception—read or write access violation has occurred.

Possible causes:

� Resource unavailable, and return code not checked. Program
logic assumed valid address returned and took inappropriate
action.

� Incorrect interface parameters to some other program or
subsystem (for example, VSAM or DL/I).

� Overlaid register save area, causing incorrect reference to data.

� In an assembler-language program, incorrect initialization or
modification of a register used to address data.

� Attempt to access internal control blocks illegally or used a
CICS system or application programming macro call.

� Attempt to write to storage for which the application does not
have an adequate key. For example, in a CICS system with
storage protection, an application running in USER key attempts
to write to the CDSA, the RDSA, the ECDSA, or the ERDSA.

� Attempt to write to the ERDSA or RDSA when PROTECT is
specified for the RENTPGM system initialization parameter.

� Storage, passed to CICS as an output parameter through the
EXEC interface, that is not addressable by the application
issuing the call. The transaction is abended AEYD, and the
PSW shows that a protection exception has occurred.

5 Addressing exception—the address that you referenced is not
available or is not valid.

Possible cause:

� Incorrect register contents, may be due to an overlaid register
save area

6 Specification exception—incorrect format of an instruction or invalid
registers.

Possible causes:

 � Overlaid program

� Incorrect field lengths used in packed-decimal multiply and
divide instructions

� Branch to an odd-numbered address, caused by an overlaid
register save area

7 Data exception—data invalid in a packed or signed-display decimal
operation. One, or possibly both, of the operands contain data not
suitable for the instruction.

32 CICS Transaction Server for VSE/ESA Problem Determination Guide

Possible causes:

� Incorrect input data (often because blanks have been used
where numeric data is expected)

 � Overlaid data

� Overlaid register save area, causing an incorrect branch

� Incorrect program logic, execution of code with uninitialized
variables

 � Wrong length

8 through F Arithmetic exceptions, such as divide checks, overflow, and
underflow. They differ in the form of arithmetic that was being
used—binary, packed decimal, or floating point.

Possible causes:

� Incorrect user data
� Overlaid data areas
� Overlaid register save area, causing incorrect reference to data

10 and above Program checks associated with system-related interrupts.

Dealing with arithmetic exceptions
If the program check was due to an arithmetic error (interruption codes 8 through
F), you need to find the operands used in the last instruction. Use the procedure
described in “Locating program data” on page 242 to locate the fields. You need
to know a little about the type of arithmetic being done, so that you can tell if the
operands are valid. The interrupt you received tells you what sort of arithmetic the
system was doing (binary, packed decimal, or floating point), but you need to
determine if that is what you had intended to do. You might need to consult a
programming language manual if you have any queries about this.

When you have identified the operands, you need to decide where the problem is.
Questions to consider include:

� Has the data been overlaid?

� Has the value been changed by faulty logic?

� Does the data type not match the operation type? For example, if you define
the variable as being packed decimal and then you read in binary information,
this causes a ‘data exception’ error.

Dealing with protection exceptions
With the storage protection facility, there are further situations in which a protection
exception (interrupt code 4) may occur:

� An attempt is made to write to the CDSA, RDSA, ECDSA, or ERDSA, when
storage protection is active and the application is running in user key

� An attempt is made to write to the ERDSA or RDSA when PROTECT is
specified for the RENTPGM system initialization parameter.

If any of these events occurs, CICS abnormally terminates the transaction with
abend code ASRA and issues message DFHSR0622 which identifies the DSA over
which the program attempted to write. This information is in the TACB and is
traced by exception trace point ID AP 0781. It is also useful to know the execution

 Chapter 4. Dealing with transaction abends 33

key of the program at the time of the protection exception. This appears in the
TACB, exception trace point ID AP 0781 and at the head of the formatted
transaction dump.

If the command protection facility is enabled (by specification of CMDPROT=YES in
the system initialization parameter), a protection exception can occur if storage,
passed to CICS as an output parameter through the EXEC interface, is not
accessible for READ/WRITE by the program issuing the command. The program is
passing to CICS storage that it cannot itself update, but it requires CICS to do so
for it. The transaction terminates abnormally with abend code AEYD. CICS
creates an exception trace entry AP 0779 and saves relevant data in the TACB that
is formatted at the beginning of the transaction dump.

 Note

Storage protection, and command protection are facilities that add data integrity
by highlighting application errors. In previous releases of CICS, such errors
may not have been detected or may have appeared as CICS problems. The
use of these facilities greatly reduces the number of abends that appear to be
CICS problems.

It is still possible for CICS to abend when the problem is in the application. For
example, command protection only checks output parameters and does not
prevent the passing of fetch-protected storage as an input parameter to CICS.
When CICS attempts to read such storage, an ASRA abend occurs.

Causes of protection exceptions
CICS storage protection is intended to prevent application programs erroneously
overwriting CICS programs and control blocks. The occurrence of a protection
exception in a new program running in a system with storage protection active
probably indicates an error in the application program. However, when existing
programs which need to be defined with EXECKEY(CICS) are first migrated to a
system with storage protection active, protection exceptions may well occur.

Any application program causing a protection exception when defined with
EXECKEY(USER) must be examined to determine why it is attempting to modify
storage that it is not allowed to modify. Its definition should be changed to
EXECKEY(CICS) only if it is determined that the application program is legitimately
accessing CICS key storage, and the exception is not the result of an application
error.

Programs might also be incorrectly link-edited as reentrant (SVA option on PHASE
linkage editor statement) and, as a result, loaded by CICS into one of the read-only
DSAs (RDSA or ERDSA). When such an incorrectly defined program attempts to
modify itself, or another program tries to modify it, a protection exception occurs.
The program should be checked to see whether it should be redefined as
non-reentrant, or whether the program should be changed to be truly reentrant.
The protection exception might indicate that the program uses poor programming
techniques that could result in other problems if uncorrected.

34 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Command protection
Command protection (activated by specifying CMDPROT=YES in the system
initialization parameter) prevents CICS from updating storage if the storage address
is passed as a command output parameter by a transaction that is not authorized
to update that storage. The transaction terminates with abend code AEYD. The
exception trace entry AP 0779 supplies details of the failing program and
command. When migrating to a system with command protection enabled, EXEC
commands that pass unauthorized storage are identified and can be corrected.

Possible causes of protection exceptions referencing CICS DSAs
The following is a summary of some of the causes of protection exceptions that can
occur in user key programs:

� Issuing a VSE macro request. Most VSE macros and services are not
supported in EXECKEY(USER) application programs. Use of unsupported
macros and services may cause a failure if these macros or services attempt to
reference VSE storage outside the CICS DSAs.

� Referencing storage obtained by an VSE GETVIS request or another VSE
macro. VSE storage obtained by these methods resides outside the CICS
DSAs, and is therefore protected from user key programs.

� Using PL/I statements, COBOL verbs or compiler options that are not permitted
in CICS application programs (see the CICS Application Programming Guide
for details of prohibited language statements and compiler options). For
example, the use of CALL with the RES compiler option, or a verb such as
INSPECT, may also cause VSE storage outside the CICS DSAs to be obtained
or updated (such storage is protected from user-key programs).

In previous versions of CICS, these may have worked, or at least may not have
caused the application to fail. However, the use of these statements and
options can have other effects on the overall execution of the CICS system,
and should be removed where possible.

� Modifying the CWA when CWAKEY=CICS is specified as a system initialization
parameter. In a user key program, this is an invalid reference to storage
allocated from the CDSA or ECDSA.

� Modifying the TCTUA when TCTUAKEY=CICS is specified as a system
initialization parameter. In a user key program this is an invalid reference to
storage allocated from the CDSA or ECDSA.

� Issuing an EXEC CICS EXTRACT EXIT command and attempting to update an
exit program’s global work area. In a user key program this is an invalid
reference to storage allocated from the CDSA or ECDSA.

Protection exceptions referencing the read-only DSAs
Protection exceptions occurring in programs resident in the ERDSA and RDSA are
caused by the program not being truly reentrant. It might be that the program
should not be defined as reentrant, or it might be that the program should be
reentrant but is using poor coding techniques which should be corrected instead.
For example:

� Using static variables or constants for fields which are set by CICS requests.
For example, in assembler coding, if the LENGTH parameter for a retrieval
operation such as EXEC CICS READQ TS is specified as a DC elsewhere in
the program, a constant is set up in static storage. When CICS attempts to set

 Chapter 4. Dealing with transaction abends 35

the actual length into the data area, it causes a protection exception if the
program is in the ERDSA or RDSA.

In some cases, for example EXEC CICS READ DATASET INTO () LENGTH()
..., the LENGTH value specifies the maximum length that the application can
accept, and is set by CICS to contain the actual length read on completion of
the operation. Even if the program does not have SVA specified on the
linkage-editor PHASE statement, using a static variable itself for this length
could cause problems if the program is being executed concurrently for multiple
users. The first transaction may execute correctly, resulting in the actual record
length being set in the LENGTH parameter, which is then used as the
maximum length for the second transaction.

� Defining a table with the SVA linkage-editor option on the PHASE linkage editor
statement and then attempting to initialize or update the table during CICS
execution. Such a table should not be defined with the SVA option.

� Defining BMS mapsets as with the SVA linkage-editor option can cause a
protection exception, if CICS attempts to modify the mapsets. In some cases,
CICS needs to modify BMS mapsets during execution. Mapsets should not be
link-edited with the SVA option. BMS mapsets should be loaded into CICS key
storage (because they should not be modified by application programs) which
means they must not be link-edited with the SVA option. (Partition sets are not
modified by CICS and can be link-edited with the SVA option.)

See the VSE/ESA System Control Statements manual for further information on the
PHASE linkage editor statement and the SVA option.

Analyzing the problem further
You should now know the point in the program at which the abend occurred, and
what the program was attempting to do.

� If your program uses or calls other programs or systems, examine the interface
and the way you pass data to the program. Are you checking the returned
information from the other system? Incorrect logic paths based on incorrect
assumptions can give unpredictable results.

� Examine the flow of your program using tools like the Execution Diagnostic
Facility (CEDF). Check the transient data and temporary storage queues with
the CICS browse transaction (CEBR), and use the CICS command-level
interpreter and syntax checker transactions (CECI and CECS). If necessary,
insert additional statements into the program until you understand the flow.

� Look at any trace output you might have. If you have a “normal” trace output
included in the documentation, compare the two for differences.

� Define the current environment, and try to isolate any changes in it since your
program last worked. This can be difficult in large installations, because so
many people interact with the systems and slight changes can affect things that
seem unconnected.

36 CICS Transaction Server for VSE/ESA Problem Determination Guide

Worksheet for transaction abends

1. Record the abend code and messages
Find the abend code from the
heading of the dump and record
any pertinent messages.

2. Is this a CICS or a USER abend code?
For a CICS abend code, go to step 3.
If this is a USER abend code, tell the appropriate person.

3. Look up the abend code
If you need further advice, go to step 4.

4. Is this an AICA abend?
Yes; read Chapter 7, “Dealing with Loops”.
No; go to step 5.

5. Is this an ASRA abend?
Yes; go to step 7.
No; go to step 6.

6. Is this an ASRD abend?
Yes; go to step 7.
No; go to step 14.

7. Record the program areas from the dump.
Begin Address End Address Program Name

Find the program
names from the
Module Index at
the end of the
formatted dump.

8. Record the address of the next instruction from the PSW, or the offset
established by CICS.

Offset/address of next instruction

9. Did the program check occur in one of the program areas listed above?
Yes; go to step 10.
No; go to step 14.

10. Record what type of program check occurred.

Program Interrupt Code

 Chapter 4. Dealing with transaction abends 37

11. Find the last statement executed.

Last Statement Executed

(See “Locating the last command or statement“ in chapter 15)
12. Was the PIC one of the arithmetic interrupts

(7,8,9,A,B,C,D,E,F)?
No; go to step 15.
Yes; find the contents of the operands of the last instruction.

Contents

(See “Locating program data” in chapter 15)
Now go to step 15.

13. Was the PIC a protection exception?
No; go to step 15.
Yes; see
and go to step 15.

14. Find the last statement executed.

Last Statement Executed

(See “Locating the last command or statement” in chapter 15)
15. Analyze the problem and the data gathered.

For most problems you should now have enough information to solve the
problem. If you still cannot find the source, recheck the following:
1. Parameters to or from other programs or systems.
2. Any needed resource that may not be available.
3. The formatted trace, for any unexplained flow.
4. The running environment, for any changes in it.

 FEPI abends
For information about FEPI-associated abends in CICS or VSE, see the CICS Front
End Programming Interface User’s Guide.

38 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 5. Dealing with CICS system abends

The purpose of this chapter is to tell you how to gather essential information about
CICS system abends. You are likely to be reading it for any of these reasons:

� A message has alerted you that a CICS system abend has occurred.

� You have been directed here from the VSE/ESA Messages and Codes Volume
3 manual, or the symptom code given in a message has prompted you to look
here.

� The symptom string at the head of a system dump gives insufficient information
about the cause of a CICS system abend

If you have not yet done so, look in the VSE/ESA Messages and Codes Volume 3
manual for an explanation of any message you may have received, because it
could offer a straightforward solution to your problem.

If the abend was clearly caused by a storage violation, turn directly to Chapter 10,
“Dealing with storage violations” on page 173. You know when CICS has detected
a storage violation, because it issues this message:

DFHSM0102 applid A storage violation (code X 'code') has been detected by
module modname.

On reading this chapter, you may find that the abend was due to an application
error. In this case, you need to look at the application to find out why it caused the
abend. However, if you find that a CICS module seems to be in error, you need to
contact the IBM Support Center. Before doing so, you must gather this information:

� The name of the failing module, and the module level
� The offset within the module at which the failure occurred
� The instruction at that offset
� The abend type

This chapter tells you how to find out all of these things, under:

� “The documentation you need”
� “Interpreting the evidence” on page 40

The documentation you need
The primary documentation you need for investigating system abends is the system
dump, taken at the time the error occurred. This usually contains all the evidence
needed to find the cause of the problem.

If system dumping is permitted for the dump code, and has not otherwise been
disabled, a system dump will have been taken when the error was detected. You
can find out which dump relates to which message, because the time stamps and
the dump IDs are the same.

If a system dump was not taken when the abend occurred, you need to find out
why. Use the procedure described in “You did not get a dump when an abend
occurred” on page 153, and follow the advice given there. When you are sure that

 Copyright IBM Corp. 1979, 1999 39

dumping is enabled for the appropriate system dump code, recreate the system
abend.

You can use the system dump formatting program, DFHPD410, to format and print
the dump. Details of how to do this are given in the CICS Operations and Utilities
Guide. The kernel domain storage areas (formatting keyword KE) and the internal
trace table (formatting keyword TR) are likely to be the most useful at the start of
your investigation.

The formatted output for kernel domain (search for the eye-catcher ===KE) contains
summary information about the error. The internal trace table (eye-catcher ===TR)
contains the exception trace entry (if any) that was made at the time the error was
detected.

Later, you might find that storage summaries for the application, transaction
manager, program manager, dispatcher, and loader domains (formatting keywords
AP, XM, PG, DS, and LD, respectively) are also useful. In each case, level-1
formatting is sufficient in the first instance.

You may need to copy the dump so that you can leave the system dump data set
free for use, or so that you have a more permanent copy for problem reporting.

Whether you look at the dump online or offline, do not purge it from the dump data
set until you have either copied it or finished with it—you might need to format
other areas later, or the same areas in more detail.

Interpreting the evidence
The first things to look at are any messages accompanying the abend, the
exception trace entry in the internal trace table, and the symptom string at the start
of the dump.

Looking at the messages
Messages that accompany a CICS system abend can sometimes point directly to
the cause of the failure. For every case, advice about how to react to a message
is given in the VSE/ESA Messages and Codes Volume 3 manual.

Looking at the exception trace entry
When a CICS system abend occurs, an exception trace entry is made to the
internal trace table and any other active trace destination. It does not matter
whether you have tracing turned on or not—the trace entry is still made.

If the trace table contains more than one exception trace entry, it is likely that the
last one is associated with the dump. However, this might not always be the case,
and you should make sure that you have found the correct entry. Be aware, too,
that dumps can sometimes be requested without a corresponding exception trace
entry being made.

The exception trace entry gives information about what was happening when the
failure occurred, and data that was being used at the time.

For details of trace entries, see Chapter 14, “Using traces in problem
determination” on page 199.

40 CICS Transaction Server for VSE/ESA Problem Determination Guide

Looking at the symptom string in the dump
The symptom string in a system dump is similar to the short symptom string at the
beginning of a CICS transaction dump. It:

� Is issued as part of message DFHME0116
� Appears at the beginning of a CICS system (VSE SDUMP)

The symptom string provides a number of keywords that can be directly typed into
RETAIN and used to search the RETAIN database. The possible keywords are
shown in Table 3. The keywords are used at the IBM Support Center to discover
duplicate problems, or problems that have already been reported by other users
and for which a solution is available. If you have the IBM INFORMATION/ACCESS
licensed program, 5665-266, you can search the RETAIN database yourself.

If you report a problem to the IBM Support Center, you are often asked to quote
the symptom string.

Although the symptom string is designed to provide keywords for searching the
RETAIN database, it can also give you significant information about what was
happening at the time the error occurred, and it might suggest an obvious cause or
a likely area in which to start your investigation. Amongst other things, it might
contain the abend code. If you have not already done so, look in the VSE/ESA
Messages and Codes Volume 3 manual to see what action it suggests for this
abend code.

If the system is unable to gather much information about the error, the symptom
string is less specific. In such cases, it might not help you much with problem
determination, and you need to look at other parts of the dump. The kernel domain
storage summary is a good place to start.

Table 3. Symptom string keywords

Keyword Meaning

PIDS/ Product ID (CICS product number)

LVLS/ Level indicator (CICS release level)

RIDS/ Module name

PTFS/ Module PTF level

MS/ Message ID reporting error

AB/ Abend code

ADRS/ Address or offset indicator

PRCS/ Return code

PCSS/ CICS jobname

OVS/ Overlaid storage

FLDS/ Name of a field associated with problem

REGS/ Software register associated with problem

VALU/ Value of a named field or register

 Chapter 5. Dealing with CICS system abends 41

Looking at the kernel domain storage areas
The type of information that you can gather from the kernel domain storage areas
is as follows:

� A summary of tasks and their status, and whether or not they were in error
when the dump was taken.

� An error analysis report for each task currently in error.

� CICS retains information for the previous fifty errors.

� The linkage stack for each task, showing which programs have been called and
have not yet returned.

The first thing you need to do is to find out which tasks are associated with the
error.

Finding which tasks are associated with the error
You can find out which tasks are associated with the error from the kernel task
summary. This tells you which tasks were in the system when the dump was
taken, whether or not they were running, and whether they were in error.

The task summary is in the form of a table, each line in the table representing a
different task.

The left-hand column of the task summary shows the kernel task number, which is
the number used by the kernel domain to identify the task. This is not the same as
the normal CICS task number taken from field TCAKCTTA of the TCA.

Figure 1 shows an example of a kernel task summary with a task in error.

 ===KE: KERNEL DOMAIN KE_TASK SUMMARY

 KE_NUM KE_TASK STATUS TCA_ADDR TRAN_# TRANSID DS_TASK KE_KTCB ERROR

 ððð1 ð397F93ð KTCB STEP ðððððððð ðððððððð ð39Dð3ðð

 ððð2 ð397FC2ð KTCB QR ðððððððð ð54C9ððð ð39D21ðð

 ððð3 ð397FF1ð KTCB RO ðððððððð ð54CAððð ð39D12ðð

 ððð4 ð398ð2ðð NOT RUNNING ððð7D5Fð ððð46 CECI ð54Dð5C8 ð39D21ðð

 ððð5 ð398ð4Fð NOT RUNNING ððð8ð5Fð ððð55 CEMT ð54DðAA8 ð39D21ðð

 ððð6 ð398ð7Eð UNUSED

 ððð7 ð398ðADð NOT RUNNING ð3B86ððð ððð58 CEDF ð54Dð428 ð39D21ðð

 ððð8 ð398ðDCð NOT RUNNING ððð77ððð ððð38 ENA1 ð54Dð288 ð39D21ðð

 ððð9 ð3981ðBð NOT RUNNING ððð74ððð ðððð6 CSSY ð54Dð1B8 ð39D21ðð

 ðððA ð39813Að NOT RUNNING ððð7Dððð JBS CSSY ð54Dð9D8 ð39D21ðð

 ðððB ð398169ð NOT RUNNING ð3B1B5Fð ðððð4 CSNE ð54Dð9ð8 ð39D21ðð

 ðððC ð398198ð NOT RUNNING ððð775Fð Jð1 CSSY ð54Dð768 ð39D21ðð

 ðððD ð3981C7ð NOT RUNNING ððð745Fð ððð21 CSSY ð54DðB78 ð39D21ðð

 ðððE ð3981F6ð NOT RUNNING ððð6A5Fð ðððð5 CSSY ð54Dð838 ð39D21ðð

 ðððF ð398225ð NOT RUNNING ð3B1Bððð TCP CSTP ð54Dð358 ð39D21ðð

 ðð1ð ð398254ð \\\RUNNING\\ ððð8ðððð ððð59 CESN ð54DðDE8 ð39D21ðð \YES\

 ðð11 ð398283ð NOT RUNNING ððð6Aððð ððð36 ALL ð54Dðð18 ð39D21ðð

 ðð12 ð3982B2ð UNUSED

 ðð13 ð3982E1ð NOT RUNNING ðððððððð ð54DððE8 ð39D21ðð

 ðð14 ð39831ðð NOT RUNNING ðððððððð ð54DðD18 ð39D21ðð

 ðð15 ð39833Fð UNUSED

 ðð16 ð39836Eð UNUSED

 ðð17 ð39839Dð UNUSED

 ðð18 ð3983CCð UNUSED

 ðð19 ð3983FBð UNUSED

 ðð1A ð39842Að UNUSED

 ðð1B ð398459ð UNUSED

Figure 1. Kernel task summary showing a task in error

Follow these steps to interpret the data in the kernel task summary:

42 CICS Transaction Server for VSE/ESA Problem Determination Guide

1. When you have located the task summary table in the formatted dump, look in
the ERROR column. If you find a value of *YES* for a particular task, that task
was in error at the time the dump was taken.

Note: If the recovery routine that is invoked when the error occurs does not
request a system dump, you will not see any tasks flagged in error. In such a
case, the system dump is likely to have been requested by a program that is
being executed lower down the linkage stack and that received an abnormal
response following recovery. The program that received the error has gone
from the stack, and so cannot be flagged. However, error data for the failing
task was captured in the kernel domain error table (see “Finding more
information about the error” on page 44). Error data is captured in the error
table even when no system dump is taken at all.

In Figure 1 on page 42, you can see that kernel task number 0010 is shown to
be in error.

2. Look next at the STATUS column. For each task you can see one of the
following values:

***RUNNING**
The task was running when the system dump was taken. This is the
normal status of a task in error.

NOT RUNNING
The task is in the system but is currently not running. It may, for example,
be suspended because it is waiting for some resource, or it may be ready
to run but waiting

Tasks shown to be “Not Running” are less likely to be associated with the
error, but it is possible that one of these could have been flagged with an
error. If you find this to be so, the most likely explanation is that the task in
error was attempting recovery when, for some reason, it was suspended.
to be dispatched.

KTCB
The CICS control blocks corresponding to the VSE subtasks. These are
treated as tasks in the kernel task summary.

Unused
Either the task was in the system but it has now terminated, or there has
not yet been a task in the system with the corresponding task number.
Earlier “Unused” tasks are likely to have run and terminated, and later ones
are likely never to have represented actual tasks. It is most unlikely that
you will ever need to distinguish between the two possibilities.

3. Look at the TRAN_# and KE_NUM columns. These are particularly important
in solving problems that require the use of traces. The TRAN_# column for a
task can contain:

� A number that matches the task number in the corresponding trace

� “TCP” for the CICS terminal control task

� Other character entries for CICS system tasks (for example, a component
identifier like “AP” for a CICS system task in the AP domain)

When you are working with trace output, you can use the number from the
TRAN_# column to identify entries associated with a user task up to the point
at which that task passes control to CICS. To identify the CICS processing

 Chapter 5. Dealing with CICS system abends 43

associated with the user task, you need to use the entry in the KE_NUM
column of the kernel task summary. This matches the KE_NUM shown in the
full trace entries for the task, and enables you to distinguish the CICS
processing associated with the task you are interested in from other CICS
processing.

Finding more information about the error
More information about the failure is given in the summary information for the task
in error (after the kernel task summary). It gives you a storage report for the task,
including registers and PSWs (program status word), and any data addressed by
the registers. The PSW is used by the machine hardware to record the address of
the current instruction being executed, the addressing mode, and other control
information. An example of such a storage report is shown in Figure 2 on
page 45, in this case for a program check. Analyze it as follows:

1. Look first in the dump for this header, which introduces the error report for the
task:

==KE: KE DOMAIN ERROR TABLE

2. Next, you will see the kernel error number for the task. Error numbers are
assigned consecutively by the kernel, starting from 00000001. You might, for
example, see this:

=KE: ERROR NUMBER: ððððððð1

The error number tells you the number of program checks and system abends
that have occurred for this run of CICS. Not all of them have necessarily
resulted in a system dump.

Some kernel error data follows. If you want to find the format of this data (and,
in most cases, you will not need to), see the DFHKERRD section of the CICS
Diagnosis Reference.

3. The next thing of interest is the kernel’s interpretation of what went wrong.
This includes the error code, the error type, the name of the program that was
running, and the offset within the program.

The error code gives you the system and user completion codes issued when
the abend occurred.

The error type tells you whether the error was associated with, for example, a
program check, a system abend, or an internal request for system recovery.

44 CICS Transaction Server for VSE/ESA Problem Determination Guide

==KE: KE Domain Error Table

=KE: Error Number: ððððððð1

 KERRD ð1F15718 KERNEL ERROR DATA

ðððð FðC3F461 C1D2C5C1 ð1ð4ððC4 ðððð116E C4C6C8E3 E2D74ð4ð ð127346ð ð1D8Bð8ð \ðC4/AKEA...D...>DFHTSP ...-.Q..\ ð1F15718

ðð2ð ðð891ððð ð11AA38ð ððððððð7 ððððððð4 ð7BDððð4 Cððððððð ð7BDðððð 812745CE \.i....t.....................a...\ ð1F15738

ðð4ð ððð6ððð4 ðððððððð 812745CE Bððððððð F2ððð5Bð ðððððððð ð11AFB8ð ð15748Bð \........a.......2...............\ ð1F15758

ðð6ð ðððððð32 81273658 812734CE ð12744D1 ðð8E8478 81272B14 ð11AFEFð 812734D2 \....a...a......J..d.a......ða..K\ ð1F15778

ðð8ð ðð891ððð 8ð884D88 ð11F5ð28 8ð884ð8ð ðððððððð ðððððððð ðððððððð ðððððððð \.i...h(h..&..h\ ð1F15798

ððAð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\ ð1F157B8

ððCð ðððððððð ðððððððð ðððððððð ðððððððð ð7BDððð4 Cððððððð ð7BDðððð 812745CE \............................a...\ ð1F157D8

ððEð ððð6ððð4 ðððððððð 812745CE Bððððððð F2ððð5Bð ðððððððð ð11AFB8ð ð15748Bð \........a.......2...............\ ð1F157F8

ð1ðð ðððððð32 81273658 812734CE ð12744D1 ðð8E8478 81272B14 ð11AFEFð 812734D2 \....a...a......J..d.a......ða..K\ ð1F15818

ð12ð ðð891ððð 8ð884D88 ð11F5ð28 8ð884ð8ð ðððððððð ðððððððð ðððððððð ðððððððð \.i...h(h..&..h\ ð1F15838

ð14ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\ ð1F15858

ð16ð ðððððððð ðððððððð ðððððððð ðððððððð B21EB433 ðB9ð388ð 4ð4ð4ð4ð 4ð4ð4ð4ð \........................ \ ð1F15878

ð18ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð ðððððððð ðððððððð \\ ð1F15898

 CICS DUMP: SYSTEM=CICSTOR 79 13:59:29 99/ð4/19

 ð1Að ðððððððð ðððððððð \........ \ ð1F158B8

 Error Code: ðC4/AKEA Error Type: PROGRAM_CHECK Timestamp: B21EB433ðB9ð388ð

 Date (GMT) : 19/ð4/99 Time (GMT) : 13:57:52.114947

Date (LOCAL) : 19/ð4/99 Time (LOCAL) : 13:57:52.114947

 KE_NUM: ðð1ð KE_TASK: ð11AA38ð TCA_ADDR: ðð891ððð DS_TASK: ð1D8Bð8ð

 Error happened in program DFHTSP at offset ðððð116E

 Registers and PSW.

PSW: ð7BDðððð 812745CE Instruction Length: 6 Interrupt Code: ð4 Exception Address: ðððððððð

Execution key at Program Check/Abend: B

 REGISTERS ð-15

 REGS ð1F15768

ðððð F2ððð5Bð ðððððððð ð11AFB8ð ð15748Bð ðððððð32 81273658 812734CE ð12744D1 \2...................a...a......J\ ð1F15768

ðð2ð ðð8E8478 81272B14 ð11AFEFð 812734D2 ðð891ððð 8ð884D88 ð11F5ð28 8ð884ð8ð \..d.a......ða..K.i...h(h..&..h .\ ð1F15788

Data at PSW: 812745CE Module: DFHTSP Offset: ðððð116E

 PSWDATA ð127346ð

ðððð 5CC4C6C8 E3E2D74ð 4ð8168B4 14FðF4F1 FðC91255 ð2224ð4ð 4ð4ð4ð4ð 4ð4ðð4ðð \\DFHTSP a...ð41ðI.... .. ð127346ð

< data for offset 2ð to 126ð follows >

Data at Registers

 REG ð F2ððð5Bð

 31-bit data cannot be accessed \\

 24-bit data follows:

 REGDATA ððððð5Bð

-ðð8ð ððð68Bðð ðððCðððð ðððððððð ðððð74Eð ðððð757ð ðððð89Dð ðððððððð ðð359ð28 \......................i.........\ ððððð53ð

< data for offset -6ð to 1ðð follows > ððððð55ð

Figure 2. Storage report for a task that has experienced a program check

4. Next, there is a report of where the system has recorded that the error
occurred, and the circumstances of the failure. This is the general format of
the information:

ERROR HAPPENED IN PROGRAM pppppppp AT OFFSET xxxxxxxx

5. The program name (pppppppp) and offset (xxxxxxxx) are determined by
searching through the CICS loader’s control blocks for a program that owned
the abending instruction at the time of the abend. If this search does not find
such a program, the following text appears in the report:

PROGRAM pppppppp WAS IN CONTROL, BUT THE PSW WAS ELSEWHERE.

6. The program name (pppppppp) reported, is the program that owns the current
kernel stack entry for the abending task. If this text appears, it may be possible
to locate the failing program using the method described in “Using the linkage
stack to identify the failing module” on page 47.

7. The failing program name and offset are also displayed in the section of the
report immediately after the contents of the registers have been reported. The
format of this information is:

DATA AT PSW: AAAAAAAA MODULE: PPPPPPPP OFFSET: XXXXXXXX

 Chapter 5. Dealing with CICS system abends 45

If the failing program could not be located, the module name and offset are
reported as unknown. The possible reasons for the program not being located
are:

� The failure occurred in a VSE loaded module

� The failing program had been released by the CICS loader before the
dump was taken

� A wild branch in the failing program caused the PSW to point to storage not
occupied by a CICS loaded program

Note that the accuracy of the program name and offset cannot be guaranteed
when reported in a formatted dump that was produced as the result of a
program executing a wild branch.

The error data for the failing task
The error data you get in the task storage report is based on values in the PSW
and the registers at the time the error was detected. Figure 2 on page 45 shows
the storage report for a task that failed when a program check was detected. It
illustrates the error data supplied when an error happens.

The storage addressed by the registers and PSW
Any storage addressed by the registers and PSW is included in the error data for
the failing task.

Note: Only the values of the registers and PSW, not the storage they address, are
guaranteed to be as they were at the time of the error. The storage that is shown is
a snapshot taken at the time the internal system dump request was issued. Data
might have changed because, for example, a program check has been caused by
an incorrect address in a register, or short lifetime storage is addressed by a
register.

Also, in general, where error data is given for a series of errors, the older the error,
the less likely it is that the storage is as it was at the time of the failure. The most
recent error has the highest error number; it might not be the first error shown in
the output.

The registers might point to data in the CICS region. If the values they hold can
represent 24-bit addresses, you see the data around those addresses. Similarly, if
their values can represent 31-bit addresses, you get the data around those
addresses.

It could be that the contents of a register might represent both a 24-bit address and
a 31-bit address. In that case, you get both sets of addressed data. (Note that a
register might contain a 24-bit address with a higher order bit set, making it appear
like a 31-bit address; or it could contain a genuine 31-bit address.)

If, for any reason, the register does not address any data, you see either of these
messages:

24-bit data cannot be accessed

31-bit data cannot be accessed

This means that the addresses cannot be found in the system dump of the CICS
region. Such areas are not dumped in a VSE SDUMP of the region.

46 CICS Transaction Server for VSE/ESA Problem Determination Guide

It is also possible that the addresses were within the CICS region but they were not
included in the SDUMP. For example, the address may be within the SVA, and the
SVA may not have been included in the list of areas dumped by an SDUMP
request. If this were to happen without your knowledge, you might think you had
an addressing error when, in fact, the address was a valid one.

The format of the PSW is described in the appropriate ESA/390 Principles of
Operation. The information in the PSW can help you to find the details needed by
the IBM Support Center. You can find the address of the failing instruction, and
hence its offset within the module, and also the abend type. You can find the
identity of the failing module itself by examining the kernel linkage stack, as
described below.

Using the linkage stack to identify the failing module
You can sometimes use the technique described in this section to gather the
information that the IBM Support Center needs to resolve the CICS system abend.
However, you should normally use the summary information presented in the
formatted output for the kernel domain storage areas.

This method is only valid if the abend has occurred in a module or subroutine that
has a kernel linkage stack entry. This is the case only where the module or
subroutine has been invoked by one of these mechanisms:

� A kernel domain call
� A kernel subroutine call
� A call to an internal procedure identified to the kernel
� A LIFO call

Routines that have been invoked by assembler language BALR instructions do not
have kernel linkage stack entries. Having found which task was in error from the
kernel’s task summary (see “Finding which tasks are associated with the error” on
page 42), you need next to find out which module was in error. The module name
is one of the things you need to give the IBM Support Center when you report the
problem to them.

Find the task number of the task in error from the KE_NUM column, and use this
as an index into the linkage stack entries. These are shown in the dump after the
task summary.

Figure 3 on page 48 shows what a typical kernel linkage stack looks like.

 Chapter 5. Dealing with CICS system abends 47

KE_NUM @STACK LEN TYPE ADDRESS LINK REG OFFS ERROR NAME

ðð31 ð52ðAð2ð ð12ð Bot 84Cðð4ð8 84Cðð6D8 ð2Dð DFHKETA

ðð31 ð52ðA14ð ð1Fð Dom 84CðFð78 84CðF18E ð116 DFHDSKE

ðð31 ð52ðA33ð ð37ð Dom 84CAA5A8 84CAACC2 ð71A DFHXMTA

ðð31 ð52ðA6Að ð33ð Dom 84F2543ð 84F25CF6 ð8C6 DFHPGPG

Int +ððCC 84F254B6 ðð86 INITIAL_LINK

ðð31 ð52ðA9Dð ð3Cð Dom 84F6C23ð 84E5DC4ð ðððð DFHAPLI1

Int +ðEEA 84F6C66E ð43E CICS_INTERFACE

ðð31 ð52ðAD9ð ð1ð8 Sub ð23ðB4ðð 823ðB8CA ð4CA DFHEIQSP

ðð31 ð52ðAE98 ð29ð Sub 82136D9ð 82137178 ð3E8 \YES\ DFHLDLD

ð52ðB128 Int +ð8FC 82136F26 ð196 LDLD_INQUIRE

ð52ðB128 Int +128E 821376CE ð93E CURRENT_GET_NO_WAIT

ðð31 ð52ðB128 ðF7ð Dom 84C6F8Eð 84C72EA6 35C6 DFHMEME

Int +2CB6 84C6FA4E ð16E SEND

Int +1486 84C72684 2DA4 CONTINUE_SEND

Int +35ðE 84C7ðDE4 15ð4 TAKE_A_DUMP_FOR_CALLER

ðð31 ð52ðCð98 ð3Dð Dom 84C52458 84C52F52 ðAFA DFHDUDU

Int +ð8F4 84C5254A ððF2 SYSTEM_DUMP

Int +1412 84C53212 ðDBA TAKE_SYSTEM_DUMP

Figure 3. Example of a kernel linkage stack showing a task in error

The TYPE column in the example can contain any of the following entries:

Type Meaning

Bot The first entry in the stack.

Dom Stack entry caused by a domain call.

Sub Stack entry caused by a subroutine.

Lifo Stack entry caused by a LIFO module.

Int Call to an internal procedure identified to the kernel.

A linkage stack for a task represents the sequence in which modules and
subroutines have been called during execution of a task. It provides a valuable
insight into the sequence of events up until the time of failure, and it also flags any
program or subroutine that was executing when the error was detected.

The modules and subroutines are shown in the listing in the order in which they
were invoked, so the first module you see is at the bottom of the stack, and the
second module is next from bottom. You often see the modules DFHKETA and
DFHDSKE, respectively, in these two positions.

The last module or subroutine in the listing is at the top of the stack, and it
represents the last call that was made before the dump was taken. Assuming that
the system abend caused the dump to be taken, this is likely to be a routine
associated with dump domain.

In the example shown, program DFHLDLD is shown to be in error. In this case,
DFHLDLD is the module name that you would need to report to the IBM Support
Center, together with the other information described in “Using the PSW to find the
offset of the failing instruction” on page 49.

Note: If module DFHAPLI is flagged in error, consider first whether an application
is to blame for the failure. DFHAPLI is the Application Language Interface
Program, and it is on the linkage stack whenever an application is being
executed. If an application is the cause of the error, it is your responsibility
to correct the problem.

48 CICS Transaction Server for VSE/ESA Problem Determination Guide

Using the PSW to find the offset of the failing instruction
You can calculate the offset of the failing instruction from the PSW, although in
practice you seldom need to because the offset is quoted in the storage report for
the task. If you are not sure of the format of the PSW, or how to calculate the
offset, see the appropriate ESA/390 Principles of Operation manual.

The Support Center also needs to know the instruction at the offset. Locate the
address of the failing instruction in the dump, and find out what instruction is there.
It is sufficient to give the hex code for the instruction, but make sure you quote as
many bytes as you found from the PSW instruction length field.

Identify also the abend type from the program interruption code, so that you can
report that, too. It might, for example, be ‘protection exception’ (interruption code
0004), or ‘data exception’ (interruption code 0007).

Finding the PTF level of the module in error
The IBM Support Center needs to know the PTF level of any module reported to
them as being in error. You can find this in the loader domain program storage
map summary, which you can get using the dump formatting keyword LD.

Figure 4 shows some entries from a typical program storage map summary. It
shows that program DFHZNEP, for example, is at PTF level ULnnnnn, where
nnnnn is a five-digit number.

 ==LD: PROGRAM STORAGE MAP

PGM NAME ENTRY PT CSECT LOAD PT. REL. PTF LVL. LAST COMPILED COPY NO. USERS LOCN TYP ATTRIBUTE R/A MODE APE ADDR

 OVERRIDE

 DFHDUIO 8ðð3Bððð DFHDUIO ðð73Bððð ð41ð ULnnnnn ð2/22/99 19.32 1 1 CDSA ANY REUSABLE 24 31 ð3AC633ð

 IPRDUIO ðð73C358

DFHCSA 8ðð3CBBð DFHKELCL ðð73C44ð ð41ð ULnnnnn ð2/22/99 ð8.38 1 1 CDSA RPL RESIDENT - - ð3AC643ð

1 DFHKELRT ðð73C74ð ð41ð ULnnnnn ð2/22/99 ð8.43

DFHCSA ðð73C9C8 ð41ð ULnnnnn I 22/ð2 1ð.ð8

DFHCSAOF ðð73CF78 ð41ð ULnnnnn I 22/ð2 1ð.ð8

DFHKERCD ðð73D568 ð41ð ULnnnnn ð2/22/99 18.48

DFHKERER ðð73D738 ð41ð ULnnnnn ð2/22/99 16.28

DFHKERRI ðð73EðD8 ð41ð ULnnnnn ð2/22/99 16.16

DFHKESFM ðð73E3ð8 ð41ð ULnnnnn ð2/22/99 16.18

DFHKESGM ðð73E82ð ð41ð ULnnnnn ð2/22/99 16.18

DFHAIP ððð3EE88 DFHEIP ðð73EE6ð ð41ð ULnnnnn I 22/ð2 17.14 1 2 CDSA ANY RESIDENT - - ð3AC673ð

DFHEIPA ðð741ðAð ð41ð ULnnnnn I 22/ð2 15.45

DFHCPI ðð741318 ð41ð ULnnnnn I 22/ð2 18.56

DFHAICBP ðð741A7ð ð41ð ULnnnnn I 22/ð2 16.17

 DFHZNEP 83ADF4C8 DFHYA41ð ð3ADF48ð ð41ð ULnnnnn 1 ð ECDSA RPL RESIDENT - - ð3B793Bð

Figure 4. Part of the loader domain program storage map summary

Note: Entries made in the R/A MODE OVERRIDE columns are the value of the
RMODE and AMODE supplied on the DFHLDLD DEFINE_PROGRAM call
for that program. If a REQUIRED_RMODE or REQUIRED_AMODE is not
specified, a – (dash) symbol appears in the appropriate column. If
AMODE_ANY or RMODE_ANY is specified, ‘ANY’ appears in the
appropriate column. Other values are shown as specified.

See the loader domain section of the CICS Diagnosis Reference manual for
further information on the DEFINE_PROGRAM domain call.

 Chapter 5. Dealing with CICS system abends 49

50 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 6. Dealing with waits

This chapter gives you information about what to do if you are aware that a task is
in a wait state during:

 � A run
 � Initialization
 � Termination
 � Restart

Refer to Table 4 to find the section of this chapter that you need to read.

Chapter 6, “Dealing with waits” chapter

Table 4. Road map for the

If you want to... Refer to...

Learn about the ways in which tasks in a CICS system
can be made to wait

“How tasks are made to wait” on page 59

Find out about the online and offline techniques to
investigate waits

“Techniques for investigating waits” on page 52

Identify the functional area of CICS involved in a wait
where you already know the identity of the resource
that a task is waiting for

Table 20 on page 69

Find out more about the functional area with which a
wait is associated

The section dealing with the functional area, as
follows:
“Transaction manager waits” on page 78
“Lock manager waits” on page 82
“Spooler waits” on page 77
“Journal control waits” on page 85
“Task control waits” on page 88
“Storage waits” on page 90
“Temporary storage waits” on page 91
“Terminal waits” on page 94
“VTAM terminal control waits” on page 102
“Interregion and intersystem communication waits” on
page 104
“Transient data waits” on page 105
“Loader waits” on page 108
“File control waits” on page 108
“Interval control waits” on page 115
“XRF alternate system waits” on page 121
“CICS system task waits” on page 122
“FEPI waits” on page 123

Know what to do in the event of CICS stalling “What to do if CICS has stalled” on page 124

If you have one or more tasks in a wait state, you should have already carried out
preliminary checks to make sure that the problem is best classified as a wait, rather
than as a loop or as poor performance. If you have not, you can find guidance
about how to do this in “Distinguishing between waits, loops, and poor
performance” on page 14.

You are unlikely to have direct evidence that a CICS system task is in a wait state,
except from a detailed examination of trace. You are more likely to have noticed
that one of your user tasks, or possibly a CICS user task—that is, an instance of a

 Copyright IBM Corp. 1979, 1999 51

CICS-supplied transaction—is waiting. In such a case, it is possible that a waiting
CICS system task could be the cause of the user task having to wait.

For the purpose of this chapter, a task is considered to be in a wait state if it has
been suspended after first starting to run. The task is not in a wait state if it has
been attached to the transaction manager but has not yet started to run, or if it has
been resumed after waiting but cannot, for some reason, start running. These are
best regarded as performance problems. Tasks that are ready to run but cannot be
dispatched might, for example, have too low a priority, or the CICS system might
be at the MXT limit, or the CICS system might be under stress (short on storage).
If you think you might have such a problem, read Chapter 8, “Dealing with
performance problems” on page 139.

Most tasks are suspended at least once during their execution, for example while
they wait for file I/O to take place. This is part of the regular flow of control, and it
gives other tasks a chance to run in the meantime. It is only when they stay
suspended longer than they should that a problem arises.

There are two stages in resolving most wait problems involving user tasks. The
first stage involves finding out what resource the suspended task is waiting for, and
the second stage involves finding out why that resource is not available. This
chapter focuses principally on the first of these objectives. However, in some
cases there are suggestions of ways in which the constraints on resource
availability can be relieved.

If you know that a CICS system task is in a wait state, it does not necessarily
indicate an error in CICS. Some system tasks spend long periods in wait states,
while they are waiting for work to do. For more information about waiting system
tasks, see “CICS system task waits” on page 122.

Note: Throughout this section, the terms “suspension” and “resumption” and
“suspended” and “resumed” are used generically. Except where otherwise
indicated, they refer to any of the SUSPEND/RESUME and WAIT/POST processes
by which tasks can be made to stop running and then be made ready to run again.

Techniques for investigating waits
You can investigate waits in a CICS system by the following three methods:

� Online inquiry. This is the least powerful technique, and it can only tell you
what resource a suspended user task is waiting for. This is enough information
to locate the failing area, but you often need to do more investigation before
you can solve the problem. The advantage of online inquiry is that you can
find out about the waiting task as soon as you detect the problem, and so you
capture the data early.

� Tracing. This can give you much more detail than online inquiry, but it involves
significant processing overhead. It must also be running with the appropriate
options selected when the task first enters a wait state, so this usually means
you need to reproduce the problem. However, the information it gives you
about system activity in the period leading up to the wait is likely to provide
much of the information you need to solve the problem.

� CICS system dump. This gives you a picture of the state of the CICS system
at an instant during the wait. You can request the dump as soon as you notice
that a task has entered a wait state, so it gives you early data capture for the

52 CICS Transaction Server for VSE/ESA Problem Determination Guide

problem. The dump is unlikely to tell you anything about system activity in the
period leading up to the wait, even if you had internal tracing running with the
correct selectivity when the task entered the wait. This is because the trace
table has probably wrapped before you have had a chance to respond.
However, the formatted dump might contain much of the information you need
to solve the problem.

If you are able to reproduce the problem, consider using auxiliary tracing and
dumping in combination.

Investigating waits using the online method
Online, you can use either CEMT INQUIRE TASK or EXEC CICS INQUIRE TASK
to find out what resource a user task is waiting on. EXEC CICS INQUIRE TASK
can be executed under CECI, or issued from a user-written program. Whatever
online method you use, you need to supply the task ID of the suspended user task.

If the task is suspended, the information that is returned to you includes the
resource type and/or the resource name, identifying the unavailable resource.
CEMT INQUIRE TASK displays the resource type of the unavailable resource in
the HTYPE field. The HVALUE field displays the resource name of the unavailable
resource. EXEC CICS INQUIRE TASK returns values in the SUSPENDTYPE and
SUSPENDVALUE fields which correspond to the resource type and resource name
of the unavailable resource.

HTYPE and SUSPENDTYPE, and HVALUE and SUSPENDVALUE correspond to
the values in the resource type and resource name fields of the dispatcher task
summary.

Table 20 on page 69 gives a list of all the resource types and resource names that
user tasks might be suspended on, and references showing where to look next for
guidance about solving the wait.

You probably need a system dump of the appropriate CICS region to investigate
the wait. If you do not yet have one, you can get one using the CEMT PERFORM
SNAP or CEMT PERFORM DUMP transactions—but make sure the task is still in a
wait state when you take the dump. You subsequently need to format the dump
using keywords for the given resource type. Advice on which keywords to use is
given, where appropriate, in the individual sections.

Investigating waits using trace
You can find detailed information about the suspension and resumption of tasks
during a run of CICS by studying the trace table. Tracing must, of course, be
running when the task in question is suspended or resumed, and the tracing
options must be selected correctly.

When you look at the trace table, you can find trace entries relating to a particular
task from the task numbers that the entries contain. Each is unique to a task so
you can be sure that, for any run of CICS, trace entries having the same task
number belong to the same task.

For general guidance about setting tracing options and interpreting trace entries,
see Chapter 14, “Using traces in problem determination” on page 199.

 Chapter 6. Dealing with waits 53

Setting up trace
The DSSR gate of the dispatcher domain provides the major functions associated
with the suspension and resumption of tasks. (See “How tasks are made to wait”
on page 59.) The level-1 trace points DS 0004 and DS 0005 are produced on
entry to, and exit from, the gate.

You need, therefore, to select tracing to capture the DS level-1 trace entries to
investigate any wait problem. You need to capture trace entries for other
components as well, when you know what functional areas are involved. The
functional area invoking the task wait might, for example, be terminal control (TC),
or file control (FC). Level-1 tracing is often enough for these components.
However, there are cases, such as those relating to VSAM I/O errors where level-2
trace is needed to examine the RPL as it is passed to VSAM.

Next, you need to ensure that tracing is done for the task that has the wait
problem. At first select special tracing for just that task, and disable tracing for all
other tasks by setting the master system trace flag off. Subsequently, you can
select special tracing for other tasks as well if it becomes clear that they are
implicated in the wait.

 Interpreting trace
For new-style trace entries, which include those for point IDs DS 0004 and
DS 0005, the function being traced is shown explicitly in the interpretation string.
The functions in Table 7 on page 60 are all provided by the DSSR gate, and you
might see any of them traced by these two trace points. The functions that can
cause a task to enter a wait state are identified in the table. Look out for these in
particular in the trace entries for any waiting task you are investigating.

Each function has its own set of input and output parameters, and these, too, are
shown in the interpretation strings of the formatted trace entries. Input parameters
are shown in the trace entries made from point ID DS 0004, and output parameters
in the trace entries made from point ID DS 0005.

The values of the parameters can provide valuable information about task waits, so
pay particular attention to them when you study the trace table.

Investigating waits using the formatted CICS system dump
If you are suitably authorized, you can request a CICS system dump using the
CEMT PERFORM DUMP, CEMT PERFORM SNAP, or CECI PERFORM DUMP
commands. Make sure that the task in question is waiting when you take the
dump, so that you capture information relevant to the wait.

You need to use the dump formatting keyword DS to format the dispatcher task
summary. You probably need to look at other areas of the dump as well, so keep
the dump on the dump data set.

Interpreting the dump for wait problems
The dispatcher task summary gives you information like that shown in Figure 5 on
page 55.

54 CICS Transaction Server for VSE/ESA Problem Determination Guide

===DS: DISPATCHER DOMAIN - SUMMARY

 KEY FOR SUMMARY

TY = TYPE OF TASK SY=SYSTEM NS=NON-SYSTEM

S = STATE OF TASK DIS=DISPATCHABLE SUS=SUSPENDED

 RUN=RUNNING REE=RESUMED EARLY

P = PURGEABLE WAIT/SUSPEND Y=YES N=NO

PS = PURGE STATUS OK=NO PURGE PU=PURGED PP=PURGE PENDING

TT = TIMEOUT TYPE IN=INTERVAL DD=DEADLOCK DELAYED DI=DEADLOCK IMMEDIATE

ST = SUSPEND TYPE EXT=WAIT_EXTERNAL SUSP=SUSPEND OLDC=WAIT_OLDC OLDW=WAIT_OLDW

DTA= DISPATCHER TASK AREA

AD = ATTACHING DOMAIN

MO = TASK MODE QR=QUASI-REENTRANT RO=RESOURCE OWNING SZ=FEPI OWNING

DS_TOKEN KE_TASK TY S P PS TT RESOURCE RESOURCE ST TIME OF TIMEOUT DTA AD ATTACHER MO SUSPAREA XM_TXN_TOKEN

 TYPE NAME SUSPEND DUE (DSTSK) TOKEN

ððððððð3 ð55C9C8ð SY SUS N OK - SUSP 11:ð7:46.318 18 - ð56FBð8ð XM ð57ð63ðð QR ð56FBð8ð ð57ð63ððððððð1

ððð2ððð3 ð55D6C8ð SY SUS N OK - TIEXPIRY DS_NUDGE SUSP 11:ð8:2ð.291

ðððCððð3 ð56FðC8ð SY SUS N OK - ICEXPIRY DFHAPTIX SUSP 11:ð8:2ð.291

ðð12ððð5 ð55C958ð SY SUS N OK - ICMIDNTE DFHAPTIM SUSP 11:ð5:ð1.563

ðð1Aððð3 ð55C92ðð SY SUS N OK - TCP_NORM DFHZDSP OLDW 11:ð8:2ð.465

Figure 5. Dispatcher task summary

A brief explanation of the summary information is given in the dump. A more
detailed explanation is given in the section that follows.

Dispatcher task summary fields
Detailed descriptions of the fields in the dispatcher task summary are given in
Table 5. Some of the fields relate to all tasks known to the dispatcher, and some
(identified in the table) relate only to suspended tasks. Values are not provided in
fields of the latter type for tasks that are not suspended.

Table 5 (Page 1 of 3). Descriptions of fields shown in the dispatcher task summary

Field Description

AD The 2-character domain index identifying the domain that attached
the task to the dispatcher.

ATTACHER
TOKEN

A token provided by the domain that attached the task. This
token uniquely identifies the task to the attaching domain.

DS_TOKEN A token given by the dispatcher to a domain that attaches a task.
It identifies the attached task uniquely to the dispatcher.

DTA An address used internally by the dispatcher.

KE_TASK A value that uniquely identifies to the kernel a task that has been
created.

MO The dispatching mode for the task. The possible values are:

 QR—quasi-reentrant.
 RO—resource owning.
 SZ—FEPI owning.

P Whether the suspend call issued by the suspending task specified
PURGEABLE(YES) or PURGEABLE(NO). PURGEABLE(NO)
inhibits deadlock time-out, CEMT SET TASK PURGE, and EXEC
CICS SET TASK PURGE.

The possible values are:

Y (=YES)—the task is purgeable.
N (=NO) —the task is not purgeable.

 Chapter 6. Dealing with waits 55

Table 5 (Page 2 of 3). Descriptions of fields shown in the dispatcher task summary

Field Description

PS The purge status of the task. The possible values are:

OK—the task has not been purged, and there is no purge
pending.

PU—the task has been purged, either by the dispatcher or by
the operator.

PP—there is a purge pending on the task.

RESOURCE
NAME
(suspended tasks
only)

The name of the resource that a suspended task is waiting for. A
value is given only if RESOURCE_NAME has been included as
an input parameter on the suspend call.

RESOURCE
TYPE (suspended
tasks only)

The type of the resource that the task is waiting for. A value is
given only if RESOURCE_TYPE has been included as an input
parameter on the suspend call.

S The state of the task within the dispatcher. Possible values are:

DIS—the task is dispatchable. It is ready to run, and it will be
dispatched when a TCB becomes available.

RUN—the task is running.

SUS—the task has been suspended by any of the functions
SUSPEND, WAIT_EXTERNAL, WAIT_OLDC, or
WAIT_OLDW of gate DSSR. For an explanation of these
functions, see “How tasks are made to wait” on page 59.

REE—the task has been resumed early, possibly because a
RESUME request has arrived before the corresponding
SUSPEND request. (The SUSPEND/RESUME interface is
asynchronous. For more details, see “Function SUSPEND of
gate DSSR” on page 62.)

ST (suspended
tasks only)

The type of function that was invoked to suspend a currently
suspended task. Possible values include:

 EXT—function WAIT_EXTERNAL
 OLDC—function WAIT_OLDC
 OLDW—function WAIT_OLDW
 SUSP—function SUSPEND

For a description of the functions, see “How tasks are made to
wait” on page 59.

SUSPAREA
(suspended tasks
only)

Either an address used internally by the dispatcher, or an ECB
address, or an ECB list address. These are the cases:

� Address used internally, if the task was suspended by a
SUSPEND call

� ECB address or ECB list address, if the task was suspended
by a WAIT_EXTERNAL or WAIT_OLDW call

� ECB address, if the task was suspended by a WAIT_OLDC
call

Look at the value given in the ST column to see which one of
these descriptions applies.

56 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 5 (Page 3 of 3). Descriptions of fields shown in the dispatcher task summary

Field Description

TIME OF
SUSPEND
(suspended tasks
only)

The time when a currently suspended task was suspended.

The format is hh:mm:ss.mmm (hours, minutes, seconds,
milliseconds), GMT.

TIMEOUT
DUE
(suspended tasks
only)

The time that a suspended task is due to timeout, if a timeout
interval has been specified. A suspended task only times out if it
is not resumed before this time arrives.

The format is hh:mm:ss.mmm (hours, minutes, seconds,
milliseconds).

TT (suspended
tasks only)

The time-out type for the task. The possible values, where one is
given, are:

IN—a time-out interval has been specified for the task.

DD—deadlock action is to be delayed when the time-out
interval expires.

DI—deadlock action is immediate when the time-out interval
expires.

See “INTERVAL and DEADLOCK_ACTION parameters” on
page 67 for more details of time-out interval and deadlock action.

TY Whether this is a system task or a non-system task. Possible
values are:

SY—this is a system task.
NS—this is a non-system task.

A non-system task can be either a user written transaction, or a
CICS-supplied transaction.

Parameters and functions setting fields in the dispatcher task
summary
Many of the values shown in the dispatcher task summary are provided directly by
parameters included on calls to and from the dispatcher. If you are using trace,
you can see the values of the parameters in the trace entries, and this can be
useful for debugging. For details of how you can use trace to investigate waits, see
“Investigating waits using trace” on page 53.

Table 6 shows the parameters that set task summary fields, the functions that use
those parameters, and the domain gates that provide the functions. Task summary
fields that are not set by parameters are also identified (by none in “Related
parameter” column).

Table 6 (Page 1 of 3). Parameters and functions that set fields shown in the dispatcher task summary

Field

Related parameter

Function

Input or
output

Gate

AD DOMAIN_INDEX INQUIRE_TASK
GET_NEXT

IN
OUT

DSBR

DTA ATTACH_TOKEN CREATE_TASK IN KEDS

 Chapter 6. Dealing with waits 57

Table 6 (Page 2 of 3). Parameters and functions that set fields shown in the dispatcher task summary

Field

Related parameter

Function

Input or
output

Gate

DS_TOKEN TASK_TOKEN ATTACH
CANCEL_TASK
PURGE_INHIBIT_QUERY
SET_PRIORITY
TASK_REPLY

GET_NEXT
INQUIRE_TASK

OUT
IN
IN
IN
IN

OUT
OUT

DSAT

DSBR

KE_TASK TASK_TOKEN CREATE_TASK
CREATE_TCB
PUSH_TASK
TASK_REPLY
TCB_REPLY

OUT
OUT
IN
IN
IN

KEDS

MO MODE ATTACH
CHANGE_MODE

GET_NEXT
INQUIRE_TASK

IN
IN

OUT
OUT

DSAT

DSBR

P PURGEABLE SUSPEND
WAIT_EXTERNAL
WAIT_OLDC
WAIT_OLDW

IN
IN
IN
IN

DSSR

PS none Not applicable — —

RESOURCE NAME RESOURCE_NAME ADD_SUSPEND
SUSPEND
WAIT_EXTERNAL
WAIT_OLDC
WAIT_OLDW

GET_NEXT
INQUIRE_TASK

IN
IN
IN
IN
IN

OUT
OUT

DSSR

DSBR

RESOURCE TYPE RESOURCE_TYPE ADD_SUSPEND
SUSPEND
WAIT_EXTERNAL
WAIT_OLDC
WAIT_OLDW

GET_NEXT
INQUIRE_TASK

IN
IN
IN
IN
IN

OUT
OUT

DSSR

DSBR

S
(see note 1)

STATE GET_NEXT
INQUIRE_TASK

OUT
OUT

DSBR

SUSPAREA
(see note 2)

ECB_ADDRESS or
ECB_LIST_ADDRESS
(see note 3)

WAIT_EXTERNAL
WAIT_OLDC
WAIT_OLDW

IN
IN
IN

DSSR

TIME OF SUSPEND none Not applicable — —

TASKNO none Not applicable — —

TIMEOUT DUE
(see note 4)

none Not applicable — —

58 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 6 (Page 3 of 3). Parameters and functions that set fields shown in the dispatcher task summary

Field

Related parameter

Function

Input or
output

Gate

TT INTERVAL and
DEADLOCK_ACTION

SUSPEND
WAIT_EXTERNAL
WAIT_OLDW
WAIT_OLDC

IN
IN
IN
IN

DSSR

TY none

ATTACHER TOKEN USER_TOKEN ATTACH
PURGE_INHIBIT_QUERY
TASK_REPLY

GET_NEXT
INQUIRE_TASK

OUT
OUT

DSAT

DSBR

ST none Not applicable — —

Notes:

1. Field S (for STATE) of the dispatcher task summary has a wider range of
values than parameter STATE of DSBR functions GET_NEXT and
INQUIRE_TASK. Parameter STATE can only have the values READY,
RUNNING, or SUSPENDED. For the possible values of field S, see Table 5
on page 55.

2. Parameters ECB_ADDRESS and ECB_LIST_ADDRESS only relate to
SUSPAREA when the task has been suspended by the WAIT_EXTERNAL,
WAIT_OLDW, or WAIT_OLDC functions of gate DSSR.

3. Parameter ECB_LIST_ADDRESS is only valid for functions WAIT_EXTERNAL
and WAIT_OLDW, and not for function WAIT_OLDC.

4. If INTERVAL has been specified, the value of TIMEOUT DUE should be equal
to INTERVAL + TIME OF SUSPEND.

How tasks are made to wait
The suspension and resumption of tasks in a CICS system are performed by the
dispatcher domain, usually on behalf of some other CICS component. If the exit
programming interface (XPI) is being used, it can be at the request of user code.

The major functions associated with the suspension and subsequent resumption of
tasks are provided by gate DSSR of dispatcher domain. When a task is to be
suspended or resumed, the requesting component calls gate DSSR with the
appropriate set of parameters. The required function is included in the parameter
list sent on the call, and the corresponding routines are executed by the dispatcher.
You can use trace to see the functions that are requested, and the values of
parameters that are supplied. See “Investigating waits using trace” on page 53.

Table 7 on page 60 lists the functions provided by the gate, and gives a brief
summary of their effect on the status of tasks in the CICS system.

 Chapter 6. Dealing with waits 59

The functions that are significant for problem determination are now described in
detail. You should consider their effects, the protocols that must be used, and the
parameters they use. If you are using trace, your approach to the wait problem
depends on the features of the function that caused the task to wait, so you must
find out early in your investigation how the task was suspended.

Some of the functions are available to users through the exit programming interface
(XPI). If you have any applications using these XPI functions, make sure that they
follow the rules and protocols exactly. For programming information about the XPI,
see the CICS Customization Guide.

Table 7. Functions provided by dispatcher gate DSSR

Function Effect on status of tasks

ADD_SUSPEND None—this does not cause a task to be
suspended.

INQUIRE_SUSPEND_TOKEN None.

DELETE_SUSPEND None—this does not cause a task to be
resumed.

SUSPEND This can cause a running task to be
suspended.

RESUME This can cause a suspended task to be
resumed.

WAIT_EXTERNAL This can cause a running task to wait.

WAIT_OLDW This can cause a running task to wait.

WAIT_OLDC This can cause a running task to wait.

Function ADD_SUSPEND of gate DSSR
The ADD_SUSPEND function of gate DSSR returns a SUSPEND_TOKEN to the
calling component. The function is available to users through the exit programming
interface (XPI). ADD_SUSPEND does not cause any running task to be
suspended.

The ADD_SUSPEND function has only to be called once for any sequence of
SUSPEND and RESUME calls for a particular task, because the same token can
be used each time.

The input and output parameters for the ADD_SUSPEND function are described in
Table 8 and Table 9, respectively.

Table 8. DSSR ADD_SUSPEND input parameters

Parameter Description

[RESOURCE_NAME]

[RESOURCE_TYPE]

Provide default values for SUSPEND calls using this
suspend token. The defaults are overridden if values are
specified on the SUSPEND call.

The parameters are optional, so in some cases you might
not see them shown in the formatted DS 0004 and DS 0005
trace entries.

A complete list of resource names and types is given in
Table 20 on page 69.

60 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 9. DSSR ADD_SUSPEND output parameters

Parameter Description

SUSPEND_TOKEN The token used to identify a SUSPEND/RESUME pair.

RESPONSE Possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR

For the meanings of RESPONSE values, see Table 19 on
page 67.

[REASON] When RESPONSE is ‘DISASTER’, REASON has this value:

 INSUFFICIENT_STORAGE

Function INQUIRE_SUSPEND_TOKEN of gate DSSR
INQUIRE_SUSPEND_TOKEN is used by some CICS system tasks to find out the
suspend token provided when the task was created.

The output parameters for the DSSR INQUIRE_SUSPEND_TOKEN function are
described in Table 10. (There are no input parameters.)

Table 10. DSSR INQUIRE_SUSPEND_TOKEN output parameters

Parameter Description

SUSPEND_TOKEN The token that was provided when the task was created.

RESPONSE Possible values:

OK|DISASTER

For the meanings of RESPONSE values, see Table 19 on
page 67.

Function DELETE_SUSPEND of gate DSSR
The DELETE_SUSPEND function of gate DSSR discards a SUSPEND_TOKEN. It
does not cause any suspended task to be resumed. The function is available to
users through the exit programming interface (XPI).

When the SUSPEND_TOKEN has been discarded, it can no longer be used to
SUSPEND or RESUME a task. However, note that the dispatcher does not allow a
SUSPEND_TOKEN to be discarded while a task is suspended against it, even if
the RESUME request is serviced before the SUSPEND request. (This is an
asynchronous interface—see “Function SUSPEND of gate DSSR” on page 62.)

The input and output parameters for the DSSR DELETE_SUSPEND function are
described in Table 11 and Table 12 on page 62, respectively.

Table 11. DSSR DELETE_SUSPEND input parameter

Parameter Description

SUSPEND_TOKEN The suspend token to be discarded.

 Chapter 6. Dealing with waits 61

Table 12. DSSR DELETE_SUSPEND output parameters

Parameter Description

RESPONSE Possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR

For the meanings of RESPONSE values, see Table 19 on
page 67.

[REASON] When RESPONSE is ‘INVALID’, REASON can have either of
these values:

INVALID_SUSPEND_TOKEN—the dispatcher does not
recognize the suspend token that has been supplied.

SUSPEND_TOKEN_IN_USE —a task is already
suspended against the suspend token that has been
supplied.

Function SUSPEND of gate DSSR
The SUSPEND function of gate DSSR causes a running task to be suspended.
The function is available to users through the exit programming interface (XPI),
both explicitly (SUSPEND call) and implicitly (GETMAIN SUSPEND(YES) call).

The task to be suspended is identified by a SUSPEND_TOKEN, which might have
been obtained by a previous ADD_SUSPEND call. A task suspended by a DSSR
SUSPEND call is resumed by a corresponding DSSR RESUME call, if the task is
not purged before the RESUME is issued.

It is important to recognize that this is an asynchronous interface: the RESUME call
might have been received before the SUSPEND call. This can be significant if you
are attempting to match SUSPEND and RESUME call pairs in the trace table,
because you might find the RESUME trace entry was made before the
corresponding SUSPEND trace entry. However, there can never be more than one
outstanding SUSPEND or RESUME against any suspend token.

The input and output parameters for the DSSR SUSPEND function are described in
Table 13 and Table 14 on page 63, respectively.

Table 13 (Page 1 of 2). DSSR SUSPEND input parameters

Parameter Description

SUSPEND_TOKEN The suspend token that the task is to be suspended
against.

PURGEABLE The purgeable status of the task. Possible values are:

YES|NO

A task can be purged by the dispatcher when deadlock is
detected, or purged by the operator or an application, if
PURGEABLE is YES.

[INTERVAL]

[DEADLOCK_ACTION]

INTERVAL and DEADLOCK_ACTION are mutually
exclusive alternatives. For a discussion of their
significance, see “INTERVAL and DEADLOCK_ACTION
parameters” on page 67.

62 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 13 (Page 2 of 2). DSSR SUSPEND input parameters

Parameter Description

[RESOURCE_NAME]

[RESOURCE_TYPE]

The name and the type of the resource that the task is to
wait for. The parameters are optional, so in some cases
you might not see them shown in the formatted DS 0004
and DS 0005 trace entries.

A complete list of resource names and types is given in
Table 20 on page 69.

[DELAY] If the ECB is posted within the time specified by the
DELAY value, CICS is not to consider the task for
dispatch until either the DELAY interval has expired or
there is no other work to do.

[TIME_UNIT] Defines the time units specified on the INTERVAL
parameter. Possible values are:

SECOND|MILLI-SECOND

[RETRY] Specifying RETRY(YES) continues the DTIMOUT interval
started on the last SUSPEND or WAIT that did not specify
RETRY(YES). This allows DTIMOUT to work even if a
legitimate loop keeps resuming and then resuspending the
task.

Table 14. DSSR SUSPEND output parameters

Parameter Description

[COMPLETION_CODE] A completion code to be supplied by the issuer of the
RESUME.

RESPONSE Possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

For the meanings of RESPONSE values, see Table 19 on
page 67.

[REASON] When RESPONSE is ‘PURGED’, REASON can have either
of these values:

TASK_CANCELLED—the task was purged by the
operator or an application while it was suspended.

TIMED_OUT—the task was automatically resumed
because the specified INTERVAL (or the deadlock
time-out value specified at task attach) expired.

When RESPONSE is ‘INVALID’, REASON can have any one
of these values:

INVALID_SUSPEND_TOKEN—the supplied suspend
token was not recognized by the dispatcher.

ALREADY_SUSPENDED—a SUSPEND call was issued
against a suspend token that was already in use.

CLEAN_UP_PENDING—the task has automatically been
resumed because it has timed out, but resume
processing is not yet complete.

 Chapter 6. Dealing with waits 63

Function RESUME of gate DSSR
The RESUME function of gate DSSR causes a suspended task to be resumed.
The function is available to users through the exit programming interface (XPI).

The task to be resumed is identified by a SUSPEND_TOKEN, which is the same as
the one used to SUSPEND the task in the first instance.

It is important to recognize that this is an asynchronous interface: so the RESUME
call might have been received before the SUSPEND call. This can be significant if
you are attempting to match SUSPEND and RESUME call pairs in the trace table,
because you might find the RESUME trace entry was made before the
corresponding SUSPEND trace entry. However, there can never be more than one
outstanding SUSPEND or RESUME against any suspend token.

The input and output parameters for the DSSR RESUME function are described in
Table 15 and Table 16, respectively.

Table 15. DSSR RESUME input parameters

Parameter Description

SUSPEND_TOKEN The suspend token that the task was suspended against.

[COMPLETION_CODE] A user-supplied completion code.

Table 16. DSSR RESUME output parameters

Parameter Description

RESPONSE Possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

For the meanings of RESPONSE values, see Table 19 on
page 67.

[REASON] When RESPONSE is ‘EXCEPTION’, REASON can have
either of these values:

TASK_CANCELLED—the task was purged by the
operator or an application while it was suspended.

TIMED_OUT—the task was automatically resumed
because the specified INTERVAL (or the deadlock
time-out value specified at task attach) expired.

When RESPONSE is INVALID, REASON can have either of
these values:

INVALID_SUSPEND_TOKEN—the suspend token was
not recognized.

ALREADY_RESUMED—the task that was suspended
against this suspend token has already been resumed.

Functions WAIT_EXTERNAL, WAIT_OLDW, and WAIT_OLDC of gate
DSSR

Functions WAIT_EXTERNAL, WAIT_OLDW, and WAIT_OLDC of gate DSSR have
much in common, and they are considered together. Unlike function SUSPEND of
gate DSSR, no corresponding function is provided explicitly by gate DSSR to
resume a task suspended by any of these functions. Instead, the task

64 CICS Transaction Server for VSE/ESA Problem Determination Guide

automatically becomes ready to run when an event control block (ECB) is posted.
The input and output parameters for the functions are described in Table 17 on
page 65 and Table 18 on page 66, respectively.

 WAIT_EXTERNAL
The WAIT_EXTERNAL function of gate DSSR causes a task to wait for an ECB,
which might be in a list of ECBs, to be posted by the VSE POST macro. The
function is available to users through the exit programming interface (XPI). A task
made to wait by the WAIT_EXTERNAL function becomes eligible to run again when
the single ECB, or any ECB in the list, has been posted.

 WAIT_OLDW
The WAIT_OLDW function of gate DSSR causes a task to wait on a single ECB, or
list of ECBs. The task becomes eligible to run again when the single ECB, or any
ECB in the list, has been posted either by a VSE POST macro or by “hand
posting”.

The address of an ECB on a WAIT_OLDW function may have the low order bit ON.
This signifies that the task is waiting on a VSE format ECB (posted value is
X'00008000') rather than on a CICS or MVS format ECB (posted value is
X'40000000'). The bit should be ignored to determine the actual address of an
ECB. For example, if a task is waiting on ECB address X'00785641', a task is
waiting on a VSE format ECB at address X'00786540'.

 WAIT_OLDC
The WAIT_OLDC function of gate DSSR causes a task to wait on a single ECB
that must be hand posted. A task made to wait by the WAIT_OLDC function
becomes eligible to run again when the ECB has been posted.

Input and output parameters for WAIT_EXTERNAL, WAIT_OLDW,
and WAIT_OLDC

Table 17 (Page 1 of 2). DSSR WAIT_EXTERNAL, WAIT_OLDW, and WAIT_OLDC
input parameters

Parameter Description

ECB_ADDRESS

ECB_LIST_ADDRESS

These two parameters are mutually exclusive alternatives.
ECB_ADDRESS is the address of a single ECB, and
ECB_LIST_ADDRESS is the address of a list of
addresses.

ECB_LIST_ADDRESS is valid only for WAIT_EXTERNAL
and WAIT_OLDW.

PURGEABLE The purgeable status of the task. Possible values are:

YES|NO

A task can be purged by the dispatcher when deadlock is
detected, or purged by the operator or an application, if
PURGEABLE is YES.

[INTERVAL]

[DEADLOCK_ACTION]

INTERVAL and DEADLOCK_ACTION are mutually
exclusive alternatives. For a discussion of their
significance, see “INTERVAL and DEADLOCK_ACTION
parameters” on page 67.

 Chapter 6. Dealing with waits 65

Table 17 (Page 2 of 2). DSSR WAIT_EXTERNAL, WAIT_OLDW, and WAIT_OLDC
input parameters

Parameter Description

[RESOURCE_NAME]

[RESOURCE_TYPE]

The name and the type of the resource that the task is to
wait for. The parameters are optional, so in some cases
you might not see them shown in the formatted DS 0004
and DS 0005 trace entries.

A complete list of resource names and types is given in
Table 20 on page 69.

[BATCH]
(WAIT_EXTERNAL only)

Whether the requests can be batched. Possible values
are:

YES|NO

[SPECIAL_TYPE]
(WAIT_OLDW only)

Identifies the task as a special type. Its value is always
CSTP.

[TIME_UNIT] The time units used in specifying the INTERVAL value.
Can be either seconds or milliseconds.

[DELAY] If the ECB is posted within the time specified by the
DELAY value, CICS is not to consider the task for
dispatch until either the DELAY interval has expired or
there is no other work to do.

[RETRY] Specifying RETRY(YES) continues the DTIMOUT interval
started on the last SUSPEND or WAIT that did not specify
RETRY(YES). This allows DTIMOUT to work even if a
legitimate loop keeps resuming and then resuspending the
task.

[ECB_EXTENDABLE]
(WAIT_EXTERNAL only)

This ECB can be processed by the VSE POST exit
DFHDSPX.

Table 18. DSSR WAIT_EXTERNAL, WAIT_OLDW, and WAIT_OLDC output parameters

Parameter Description

RESPONSE Possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

For the meanings of RESPONSE values, see Table 19 on
page 67.

[REASON] When RESPONSE is ‘PURGED’, REASON can have either
of these values:

� TASK_CANCELLED—the task was purged by the
operator or an application while it was waiting for the
ECB to be posted.

� TIMED_OUT— either the INTERVAL or the deadlock
time-out interval expired. In case of the deadlock
time-out, PURGEABLE(YES) must be in effect.

When RESPONSE is ‘INVALID’, REASON can have either of
these values:

� ALREADY_WAITING—the single ECB specified in
ECB_ADDRESS was already being waited on when this
WAIT request was received.

� INVALID_ECB_ADDR—the ECB address that was
supplied is not valid.

66 CICS Transaction Server for VSE/ESA Problem Determination Guide

INTERVAL and DEADLOCK_ACTION parameters
INTERVAL and DEADLOCK_ACTION are mutually exclusive input parameters on
the SUSPEND and WAIT calls to gate DSSR of the dispatcher domain.

INTERVAL is a length of time after which a task is to be resumed automatically by
the dispatcher, with a RESPONSE value of ‘EXCEPTION’ and a REASON value of
‘TIMED_OUT’.

DEADLOCK_ACTION describes whether or not the suspended task is to be purged
if deadlock is detected, and if so, how it should be purged. The action to be taken
depends on the anticipated cause of the deadlock, and it can have any one of
these values:

 � DELAYED
CICS ensures that it does not deadlock purge more than one task specifying
DELAYED in a given interval. This is in the hope that purging one task will free
the resources required by the others.

 � IMMEDIATE
Deadlock purges of tasks specifying IMMEDIATE go ahead regardless of how
many tasks are purged in a given interval. This is used, for example, when
purging one task will have no effect on other tasks specifying IMMEDIATE.

� INHIBIT This specifies that there is to be no deadlock time-out. INHIBIT
overrides any deadlock time-out interval specified at task attach.

The meanings of RESPONSE values returned on DSSR calls
Table 19 explains the meaning of each of the RESPONSE values that can be
returned from calls to DSSR functions.

Table 19. Meanings of DSSR function RESPONSE values

RESPONSE Meaning

OK When a domain command succeeds, a response of OK is
given and the REASON code is not set. The requested
function has been completed successfully.

EXCEPTION Processing of the function could not be completed for the
reason specified in the REASON field. If a command fails, the
reason for the failure is returned together with an exception
response.

DISASTER The domain could not complete the request because of an
unrecoverable system problem.

INVALID The requested function is not supported by the domain,
possibly because the format of the supplied parameters is
incorrect.

KERNERROR The kernel was unable to call the required function gate for
the specified REASON.

PURGED A purge has been requested for the task making the domain
call.

 Chapter 6. Dealing with waits 67

The resources that tasks in a CICS system can wait on
Table 20 on page 69 shows all the resources that tasks in a CICS system can wait
on. Some resources are identified by both a resource name and a resource type,
some by a resource name alone, and some by a resource type alone. The
resource names and resource types shown are the ones that you can see in
formatted trace entries and, for some resources, by online inquiry.

User tasks can be made to wait only on some of the resources. For each such
resource, there is a page reference showing you where to look for guidance about
dealing with the wait.

The remaining resources are used only by CICS system tasks. If you have
evidence that a system task is waiting on such a resource, and it is adversely
affecting the operation of your system, contact your IBM Support Center, after first
reading “CICS system task waits” on page 122.

68 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 20 (Page 1 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

(none) DMWTQUEU DFHDMWQ SUSPEND System
only

“CICS system task
waits” on page 122

(none) LMQUEUE DFHLMLM SUSPEND User “Lock manager waits” on
page 82

ADAPTER FEPI_RQE DFHSZATR WAIT_
EXTERNAL

User See note 6 on page 77

ALLOCATE TCTTETI value DFHALP SUSPEND User “Interregion and
intersystem
communication waits” on
page 104

Any_MBCB transient data
queue name

DFHTDSUB SUSPEND User “Transient data waits”
on page 105

Any_MRCB transient data
queue name

DFHTDSUB SUSPEND User “Transient data waits”
on page 105

AP_INIT CSADLECB DFHSII1 WAIT_OLDC System
only

“CICS system task
waits” on page 122

AP_INIT ECBTCP DFHAPSIP WAIT_OLDC System
only

“CICS system task
waits” on page 122

AP_INIT SIPDMTEC DFHAPSIP WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

AP_INIT TCTVCECB DFHSII1 WAIT_OLDC System
only

“CICS system task
waits” on page 122

AP_QUIES CSASSI2 DFHSTP WAIT_OLDC System
only

“CICS system task
waits” on page 122

AP_QUIES SHUTECB DFHSTP WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

AP_TERM STP_DONE DFHAPDM WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

CCSTWAIT VSMSTRNG DFHCCCC WAIT_OLDC System
only

“CICS system task
waits” on page 122

CCVSAMWT ASYNRESP DFHCCCC WAIT_OLDW System
only

“CICS system task
waits” on page 122

CCVSAMWT EXCLOGER DFHCCCC WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

CDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

CEPWTERM DFHPSPCK DFHPSPCK WAIT_OLD System
only

“CICS system task
waits” on page 122

CONSP DFHPSPIO DFHPSPIO WAIT_OLDW User “Spooler waits” on
page 77

DFHAIIN AITM DFHAIIN1 SUSPEND System
only

“CICS system task
waits” on page 122

DFHCPIN CPI DFHCPIN1 SUSPEND System
only

“CICS system task
waits” on page 122

 Chapter 6. Dealing with waits 69

Table 20 (Page 2 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

DFHPRIN PRM DFHPRIN1 SUSPEND System
only

“CICS system task
waits” on page 122

DFHSIPLT EARLYPLT DFHSII1 WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

DFHSIPLT LATE_PLT DFHSIJ1 or

DFHS1PLT

WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

ECDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

EDF DBUGUSER DFHEDFX SUSPEND User “Task control waits” on
page 88

EKCWAIT Value of NAME
argument on
EXEC CICS
WAIT EVENT
command

DFHEKC WAIT_OLDW User “Task control waits” on
page 88

ERDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

ESDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

EUDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

FCBFWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FCDWWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FCFRWAIT fileID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FCFSWAIT file ID DFHFCFS WAIT_OLDC User “File control waits” on
page 108

FCINWAIT STATIC DFHFCIN1 WAIT_OLDC System
only

“CICS system task
waits” on page 122

FCIOWAIT file ID DFHFCBD or

DFHFCVR

WAIT_OLDW User “File control waits” on
page 108

FCPSWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FCRBWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FCSRSUSP file ID DFHFCVR SUSPEND User “File control waits” on
page 108

FCTISUSP file ID DFHFCVR SUSPEND User “File control waits” on
page 108

FCXCWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

70 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 20 (Page 3 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

FCCIWAIT file ID DFHFCVR WAIT_OLDC User “File control waits” on
page 108

FEPRM SZRDP DFHSZRDP WAIT_
EXTERNAL

CSZI See note 6 on page 77

FOREVER DFHXMTA DFHXMTA WAIT_
EXTERNAL

User “A user task is waiting
on resource type
FOREVER” on page 82

ICEXPIRY DFHAPTIX DFHAPTIX SUSPEND System
only

“CICS system task
waits” on page 122

ICGTWAIT terminal ID DFHICP SUSPEND User “Interval control waits”
on page 115

ICMIDNTE DFHAPTIM DFHAPTIM SUSPEND System
only

“CICS system task
waits” on page 122

ICWAIT terminal ID
(See note 1 on
page 77)

DFHICP SUSPEND User “Interval control waits”
on page 115

IO_WAIT DUIO_WAIT DFHDUIO WAIT_OLDW System
only

“CICS system task
waits” on page 122

CSNC MROQUEUE DFHCRNP WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

IRLINK SYSIDNT
concatenated
with session
name

DFHZIS2 WAIT_
EXTERNAL

User “Terminal waits” on
page 94

JACDIORB DFHJAP DFHJAP WAIT_OLDW System
only

“CICS system task
waits” on page 122

JASUBTAS JASTMECB DFHJCSDJ WAIT_OLDC User “Journal control waits”
on page 85

JCAVLECB LECBECB DFHJCP WAIT_OLDC User “Journal control waits”
on page 85

JCBUFFER AVAIL_nn (See
note 2 on
page 77)

DFHJCP WAIT_OLDC User “Journal control waits”
on page 85

JCBUFFER JCTBAECB DFHJCKOJ WAIT_OLDC System
only

“CICS system task
waits” on page 122

JCBUFFER JCTBAECB DFHJCSDJ WAIT_OLDC User “Journal control waits”
on page 85

JCCLDONE SUBTASK DFHJCC WAIT_OLDW User “Journal control waits”
on page 85

JCDETACH SUBTASK DFHJCSDJ WAIT_OLDC User “Journal control waits”
on page 85

JCFLBUFF FLUSH_nn
(See note 2 on
page 77)

DFHJCP WAIT_OLDC User “Journal control waits”
on page 85

 Chapter 6. Dealing with waits 71

Table 20 (Page 4 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

JCINITN JOURNALS DFHJCP WAIT_OLDC System
only

“CICS system task
waits” on page 122

JCIOBLOK Jnnbbbbb (See
notes 2 on
page 77 and 3
on page 77)

DFHJCP WAIT_OLDC User “Journal control waits”
on page 85

JCIOCOMP JCTICA DFHJCI or

DFHJCP

WAIT_OLDW System
only

“CICS system task
waits” on page 122

JCIOCOMP JCTIOECB DFHJCC WAIT_OLDC User “Journal control waits”
on page 85

JCIOCOMP RDBLOKnn
(See note 2 on
page 77)

DFHJCO WAIT_OLDW System
only

“CICS system task
waits” on page 122

JCIOCOMP RDRECDnn
(See note 2 on
page 77)

DFHJCO WAIT_OLDW System
only

“CICS system task
waits” on page 122

JCJASUS JABSUTOK DFHJASP SUSPEND System
only

“CICS system task
waits” on page 122

JCJOURDS DLBL filename DFHJCP SUSPEND System
only

“CICS system task
waits” on page 122

JCLASTBK Jnnbbbbb (See
notes 2 and 3
on page 77)

DFHJCEOV WAIT_OLDC User “Journal control waits”
on page 85

JCOPDONE SUBTASK DFHJCO WAIT_OLDW User “Journal control waits”
on page 85

JCREADY JCTXAECB DFHJCO WAIT_OLDW User “Journal control waits”
on page 85

JCREADY JCTXBECB DFHJCO WAIT_OLDW User “Journal control waits”
on page 85

JCRQDONE SUBTASK DFHJCC

DFHJCKOJ

DFHJCO

WAIT_OLDW

WAIT_OLDW

WAIT_OLDW

User

System
only

User

“Journal control waits”
on page 85

JCSWITCH DS_SW_nn
(See note 2 on
page 77)

DFHJCP WAIT_OLDC System
only

“CICS system task
waits” on page 122

JCSWITCH DS_SDJnn
(See note 2 on
page 77)

DFHJCSDJ WAIT_OLDC User “Journal control waits”
on page 85

JCTAPE2 PREOPNnn
(See note 2 on
page 77)

DFHJCEOV WAIT_OLDC User “Journal control waits”
on page 85

JCTAPE2 STABLEnn
(See note 2 on
page 77)

DFHJCSDJ WAIT_OLDC User “Journal control waits”
on page 85

72 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 20 (Page 5 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

JCTERMN SUBTASK DFHJCBSP WAIT_OLDW System
only

“CICS system task
waits” on page 122

JCTIMER DFHJ1Snn
(See note 2 on
page 77)

DFHJCP WAIT_OLDC System
only

“CICS system task
waits” on page 122

KCCOMPAT CICS DFHXCPA WAIT_OLDC User “Task control waits” on
page 88

KCCOMPAT LIST DFHXCPA WAIT_OLDW User “Task control waits” on
page 88

KCCOMPAT SINGLE DFHXCPA WAIT_OLDW User “Task control waits” on
page 88

KCCOMPAT TERMINAL DFHXCPA SUSPEND User “Task control waits” on
page 88, and “Terminal
waits” on page 94

KC_ENQ SUSPEND DFHXCPC SUSPEND User “Task control waits” on
page 88, “Transient
data waits” on
page 105, and “File
control waits” on
page 108

KERNEL DETACH DFHKETA SUSPEND User “Loader waits” on
page 108

MBCB_xxx
(See note 4 on
page 77)

transient data
queue name

DFHTDSUB SUSPEND User “Transient data waits”
on page 105

MXT XM_HELD DFHXMAT (See note 5
on page 77)

User “Maximum task
condition waits” on
page 78

OPEN_ANY DFHPSPIO DFHPSPIO WAIT_OLDW User “Spooler waits” on
page 77

OPEN_NFY DFHPSPIO DFHPSPIO WAIT_OLDW User “Spooler waits” on
page 77

PROGRAM program ID DFHLDLD SUSPEND User “Loader waits” on
page 108

PROGRAM program_name DFHLDDMI SUSPEND User “Loader waits” on
page 108

 Chapter 6. Dealing with waits 73

Table 20 (Page 6 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

PROGRAM program name DFHPGAI

DFHPGCM

DFHPGDD

DFHPGEX

DFHPGIS

DFHPGLD

DFHPGLE

DFHPGLK

DFHPGLU

DFHPGPG

DFHPLRP

DFHPGXE

SUSPEND User “Loader waits” on
page 108

PS_INIT CSAOPFRC DFHPSP WAIT_OLDC System
only

“CICS system task
waits” on page 122

RDSA (none) DFHSMSQ SUSPEND User

“Storage waits”
on page 90

RECEIVE DFHPSPIO DFHPSPIO WAIT_OLDW User “Spooler waits” on
page 77

SDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

SMSYSTEM (none) DFHSMSY SUSPEND System
only

“CICS system task
waits” on page 122

STARTUP TSMCPECB DFHRCRP WAIT_OLDC System
only

“CICS system task
waits” on page 122

SUBTASK SISUBECB DFHRCRP WAIT_
EXTERNAL

System
only

“CICS system task
waits” on page 122

SUCNSOLE WTO DFHSUWT WAIT_OLDW System
only

“CICS system task
waits” on page 122

TCLASS tranclass name DFHXMCL (See note 7
on page 77)

User “Transaction manager
waits” on page 78

TCP_NORM DFHZDSP DFHZDSP WAIT_OLDW System
only

“CICS system task
waits” on page 122

TCP_SHUT DFHZDSP DFHZDSP WAIT_OLDW System
only

“CICS system task
waits” on page 122

TCTVCECB ZC_ZGRP DFHZGRP WAIT_OLDW System
only

“CICS system task
waits” on page 122

TDEPLOCK transient data
queue name

DFHTDEXP SUSPEND User “Transient data waits”
on page 105

TD_INIT DCT DFHTDA SUSPEND User “Transient data waits”
on page 105

74 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 20 (Page 7 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

TDIPLOCK transient data
queue name

DFHTDB SUSPEND User “Transient data waits”
on page 105

TDQ_IORB transient data
queue name

DFHTDSUB WAIT_OLDW User “Transient data waits”
on page 105

TIEXPIRY DS_NUDGE DFHTISR SUSPEND System
only

“CICS system task
waits” on page 122

TRANDEF transaction ID DFHXMDD

DFHXMQD

DFHXMXD

SUSPEND System
only

“Transaction manager
waits” on page 78

TSAUX (none) DFHTSP SUSPEND User “Temporary storage
waits” on page 91

TSBUFFER (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

TSEXTEND (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

TSIO (none) DFHTSP WAIT_OLDW User “Temporary storage
waits” on page 91

TSMCPECB STARTUP DFHRCRP WAIT_OLDW System “CICS system task
waits” on page 122

TSOPEN4B (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

TSQUEUE (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

TSSTRING (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

TSUT (none) DFHTSP WAIT_OLDW

WAIT_OLDC

User “Temporary storage
waits” on page 91

TSWBUFFR (none) DFHTSP WAIT_OLDC User “Temporary storage
waits” on page 91

UDSA (none) DFHSMSQ SUSPEND User “Storage waits” on
page 90

USERWAIT ECB list DFHEIQSK WAIT_OLDW User “Task control waits” on
page 88

XPCCWAIT DFHPSPIO DFHPSPIO WAIT_OLDW User “Spooler waits” on
page 77

WAITLIST DFHEVBBF DFHEVBBF WAIT_OLDW User “Task control waits” on
page 88

WTOR_RPY DFHXRCP DFHXRCP WAIT_OLDW System “CICS system task
waits” on page 122

WTOR_RPY DFHEVBBF DFHEVBBF WAIT_OLDW User “Task control waits” on
page 88

XOVR_RESP WCSTECB DFHWSRTR WAIT_OLDW System “CICS system task
waits” on page 122

 Chapter 6. Dealing with waits 75

Table 20 (Page 8 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

XRF_SYNC XRSSTECB DFHXRA WAIT_OLDC System “XRF alternate system
waits” on page 121

XRF_WAIT DFHXRA DFHXRA WAIT_OLDC System “XRF alternate system
waits” on page 121

XRGETMSG message queue
name

DFHWMQG WAIT_OLDW System
only

“CICS system task
waits” on page 122

XRPUTMSG message queue
name

DFHWMQP WAIT_OLDW User “XRF alternate system
waits” on page 121

ZC DFHZRAR1 DFHZRAR SUSPEND System
only

“VTAM terminal control
waits” on page 102

ZC DFHZRAQ1 DFHZRAQ SUSPEND System
only

“VTAM terminal control
waits” on page 102

ZC DFHZCRQ1 DFHZCRQ SUSPEND System
only

“How tasks are made to
wait” on page 59

ZC DFHZNAC1 DFHZNAC SUSPEND System
only

“How tasks are made to
wait” on page 59

ZC DFHZEMU1 DFHZEMU1 SUSPEND System
only

“VTAM terminal control
waits” on page 102

ZC DFHZIS11 DFHZIS1 SUSPEND System
only

“VTAM terminal control
waits” on page 102

ZC_ZCGRP ZSLSECB DFHZCGRP WAIT_OLDW System
only

“VTAM terminal control
waits” on page 102

ZC_ZGRP PSINQECB DFHZGRP WAIT_OLDW System
only

“VTAM terminal control
waits” on page 102

ZC_ZGRP PSOP1ECB DFHZGRP WAIT_OLDW System
only

“VTAM terminal control
waits” on page 102

ZC_ZGRP PSOP2ECB DFHZGRP WAIT_OLDW System
only

“VTAM terminal control
waits” on page 102

ZC_ZGRP TCTCVECB DFHZGRP WAIT_OLDC System
only

“VTAM terminal control
waits” on page 102

ZC_ZGUB PSUNBECB DFHZGUB WAIT_OLDC System
only

“VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZERH1 DFHZERH SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZERH2 DFHZERH SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZERH3 DFHZERH SUSPEND User “VTAM terminal control
waits” on page 102

ZCZNAC DFHZERH4 DFHZERH SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZARER DFHZARER SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZARL1 DFHZARL SUSPEND User “VTAM terminal control
waits” on page 102

76 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 20 (Page 9 of 9). Resources that a suspended task might be waiting on

Resource type

Resource
name

Suspending
module

DSSR
call

Task

Where to look next

ZCZGET DFHZARL2 DFHZARL SUSPEND User “VTAM terminal control
waits” on page 102

ZCZNAC DFHZARL3 DFHZARL SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZARL4 DFHZARL SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZARQ1 DFHZARQ SUSPEND User “VTAM terminal control
waits” on page 102

ZCIOWAIT DFHZARR1 DFHZARR1 SUSPEND User “VTAM terminal control
waits” on page 102

ZXQOWAIT LIST DFHZXQO WAIT_OLDW System “VTAM terminal control
waits” on page 102

ZXSTWAIT LIST DFHZXST WAIT_OLDW System “VTAM terminal control
waits” on page 102

Notes:

1. If there is a terminal associated with the task.

2. “nn” is the two-character journal ID.

3. “bbbbb” is the block number.

4. “xxx” is literal.

5. The task has not yet started, because the system is at MXT (maximum tasks in
CICS system).

6. These waits are used by the CICS Front End Programming Interface and are
not discussed in this manual.

7. The task has not yet started because it is being held for transaction class
purposes.

 Spooler waits
Read this section if the resource name your task is waiting on is DFHPSPIO.

Resource type CONSP
When CICS issues a command to VSE/POWER it establishes a communication
path via the VSE/ESA XPCC macro. This wait ensures that VSE/POWER has
responded positively to the request for communication before proceeding.

Resource type OPEN_ANY
CICS receives order request commands from VSE/POWER through the VSE/ESA
XPCC macro. This wait is issued to ensure that the connection between CICS and
VSE/POWER has completed before CICS requests VSE/POWER to send device
orders.

 Chapter 6. Dealing with waits 77

Resource type OPEN_NFY
CICS receives messages from VSE/POWER through the VSE/ESA XPCC macro.
This wait is associated with a 30-second timer. If VSE/POWER does not connect
within 30 seconds, CICS issues message DFHRC5482 and tries to establish a
connection with VSE/POWER again.

Resource type RECEIVE
CICS has asked VSE/POWER to pass data to it. This wait ensures that
VSE/POWER has completed the data transfer before processing the data.

Resource type XPCCWAIT
After a printer has finished printing a report, CICS waits for another suitable report
for the printer, or for the printer’s timeout value to expire.

Transaction manager waits
Formatting a system dump using the keyword XM=1 provides a number of
transaction manager summaries that are useful for identifying why tasks have failed
to run.

A task may fail to run if the system is at MXT, or if the task is defined in a
transaction class that is at its MAXACTIVE (maximum tasks in transaction class)
limit.

Maximum task condition waits
Tasks can fail to run if either of the following limits is reached:

 � MXT

 � MAXACTIVE

If a task is waiting for entry into the MXT set of transactions, the resource type is
MXT, and the resource name is XM_HELD. If a task is waiting for entry into the
MAXACTIVE set of transactions for a TRANCLASS, the resource type is TCLASS,
and the resource name is the name of the TRANCLASS that the task is waiting for.

If a task is shown to be waiting on resource type MXT, it is being held by the
transaction manager because the CICS system is at the MXT limit. The task has
not yet been attached to the dispatcher.

The limit that has been reached, MXT, is given explicitly as the resource name for
the wait. If this type of wait occurs too often, consider changing the MXT limit for
your CICS system.

 Transaction summary
The transaction summary (Figure 6 on page 80) lists all transactions (user and
system) that currently exist. The transactions are listed in order of task number
and the summary contains two lines per transaction.

The meanings of the column headings are as follows:

Tran id The primary transaction ID associated with the transaction

78 CICS Transaction Server for VSE/ESA Problem Determination Guide

Tran num The unique transaction number assigned to the transaction

Txn Addr The address of the transaction control block

Txd Addr The address of the transaction definition instance associated with the
transaction

Start Code The reason the transaction was attached, as follows:

C A CICS internal attach
T A terminal input attach
TT A permanent transaction terminal attach
QD A transient data trigger level attach
S A START command without any data
SD A START command with data
SZ A front end programming interface (FEPI) attach
DF Start code not yet known–to be set later.

Sys Tran Indicator (Yes or No) of whether the transaction is attached as a
system transaction. System transactions do not contribute towards
MXT.

Status An indicator of how far through attach the transaction has progressed
and whether the transaction is abending or not. The first line may
take the following values:

PRE The transaction is in the early stages of attach.

TCLASS The transaction is waiting to acquire membership of a
transaction class.

MXT The transaction is waiting on MXT.

ACT The transaction is active, that is, it has been DS attached.

Depending on the value in the first line, the second line of the status
field may further qualify the transaction state. For each first line
value, the meaning of the second line is as follows:

PRE No data is displayed in the second line

TCLASS The second line contains the name of the transaction
class that the transaction is waiting to join.

MXT or ACT If applicable, the second line indicates if the transaction
is flagged for deferred abend or a deferred message, or
if the transaction is already abending, as follows:

DF(xxxx) indicates that the transaction is scheduled for
deferred abend, where xxxx is the abend code.

DM(yy) indicates that the transaction is scheduled for
a deferred message, and yy indicates the
message type

AB(xxxx) indicates that the transaction is already
abending with abend code xxxx.

DS token The token identifying the DS task (if any) assigned to the transaction.

Facility type Type of the principal facility owned by the transaction.

Facility token Transaction token for the principal facility owner.

 Chapter 6. Dealing with waits 79

AP token The AP domain transaction token.

The first word of this token contains the address of the TCA (if any)
associated with the transaction.

PG token The program manager transaction token.

XS token The security domain transaction token.

US token The user domain transaction token.

RM token The recovery manager transaction token.

SM token The storage manager domain transaction token.

MN token The monitoring domain transaction token.

Figure 6 shows a transaction summary.

==XM: TRANSACTION SUMMARY

Tran Tran TxnAddr Start Sys Status DS Facility Facility AP PG XS US RM SM MN

id num TxdAddr code Tran token type token token token token token token token token

CSTP ðððð3 1ð1ð62ðð C Yes ACT ðð12ððð3 None n/a 1ð1646ðð ðððððððð ðððððððð ðððððððð 1ð16Cððð 1ðð89ð2ð ðððððððð

1ð1793Cð ð1ðððððð 1ð17Eððð ðððððððð ðððððððð 1ð1646ðð ðððððððð ðððððððð

CSNE ððð31 1ð1ð61ðð C Yes ACT ððððððð3 None n/a 1ð164Cðð ðððððððð ðððððððð ðððððððð 1ð16Cð58 11542ð54 ðððððððð

1ðA34B4ð ð1ðððððð 1ð17Eð48 ðððððððð ðððððððð 1ð164Cðð ðððððððð ðððððððð

ICð6 1ðð56 1ðE2B2ðð T No ACT ð896ð1C7 Terminal 1ðE167Að 1124F6ðð ðððððððð ðððððððð 1ð114ð23 1ð16C9Að 1154361ð ðððððððð

1ðAC93ðð ðððððððð ðððððððð 1ð17E7Eð ðððððððð 1ðEðF6Að 1124F6ðð ðððððððð ðððððððð

IC12 1ðð58 1ðE34Cðð SD No ACT ð5ð6ð1AD None n/a ðð1DE6ðð ðððððððð ðððððððð 1ð114ð23 1ð16C9F8 11545114 ðððððððð

1ðAC93Cð ðððððððð 1ð17E828 ðððððððð 1ðE314ðð ðð1DE6ðð ðððððððð ðððððððð

TAð3 93738 1ðEðEððð T No ACT ð88211E3 Terminal 1ðED9ððð ðð24Bððð ðððððððð ðððððððð 1ð114ð23 1ð16C738 115437Bð ðððððððð

1ðAD3D4ð ðððððððð ðððððððð 1ð17Eð9ð ðððððððð 1ð117D6ð ðð24Bððð ðððððððð ðððððððð

TAð3 9392ð 1ðAFF2ðð T No TCLASS ðððððððð Terminal 11214BDð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3D4ð DFHTCLð3 ðððððððð ðððððððð ðððððððð ðððððððð 1ð11768ð ðððððððð ðððððððð ðððððððð

TAð3 9396ð 1ðE2D2ðð T No TCLASS ðððððððð Terminal 1ðE573Fð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3D4ð DFHTCLð3 ðððððððð ðððððððð ðððððððð ðððððððð 1ðEðF6Cð ðððððððð ðððððððð ðððððððð

TAð3 93967 1ðAFEAðð T No TCLASS ðððððððð Terminal 1ðECCBDð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3D4ð DFHTCLð3 ðððððððð ðððððððð ðððððððð ðððððððð 1ð11754ð ðððððððð ðððððððð ðððððððð

TAð3 94ðð1 1ðE348ðð T No ACT ðððððððð Terminal 1ðE2C3Fð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3D4ð DF(AKCC) ðððððððð ðððððððð ðððððððð ðððððððð 1ðE3112ð ðððððððð ðððððððð ðððððððð

TAð2 9514ð 1ðE2D3ðð T No ACT ð38615ðD Terminal 1ðE2C5E8 ððð57ððð ðððððððð ðððððððð 1ð114ð23 1ð16C79ð 11544754 ðððððððð

1ðAD3C8ð ðððððððð ðððððððð 1ð17E51ð ðððððððð 1ðEðF32ð ððð57ððð ðððððððð ðððððððð

TAð2 95175 1ðE12Cðð T No TCLASS ðððððððð Terminal 1ðE937Eð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3C8ð DFHTCLð2 ðððððððð ðððððððð ðððððððð ðððððððð 1ðEðF1ðð ðððððððð ðððððððð ðððððððð

TAð2 95187 1ðEðBððð T No TCLASS ðððððððð Terminal 1ðEA95E8 ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3C8ð DFHTCLð2 ðððððððð ðððððððð ðððððððð ðððððððð 1ð1178ðð ðððððððð ðððððððð ðððððððð

TAð2 952ð5 1ðE2D6ðð T No MXT ðððððððð Terminal 1ðE837Eð ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3C8ð DF(AKCC) ðððððððð ðððððððð ðððððððð ðððððððð 1ðEðF78ð ðððððððð ðððððððð ðððððððð

TAð4 96637 1ðE33ððð T No ACT ð6ð4ð8E7 Terminal 1ðEð5BDð ððð576ðð ðððððððð ðððððððð 1ð114ð23 1ð16C7E8 115457C8 ðððððððð

1ðAD3Eðð ðððððððð ðððððððð 1ð17E558 ðððððððð 1ðE31ð4ð ððð576ðð ðððððððð ðððððððð

TAð4 96649 1ðE34ððð T No TCLASS ðððððððð Terminal 1ðAE89D8 ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

 1ðAD3Eðð DFHTCLð4 ðððððððð ðððððððð ðððððððð ðððððððð 1ðE312Cð ðððððððð ðððððððð ðððððððð

F121 993ð5 1ðE2D8ðð T No ACT ð2ðC1439 Terminal 1ðEA93Fð ððð6ðððð ðððððððð ðððððððð 1ð114ð23 1ð16C898 115423FC ðððððððð

 1ðAD3BCð AB(AFCY) ðððððððð ðððððððð 1ð17E7ð8 ðððððððð 1ðEðF92ð ððð6ðððð ðððððððð ðððððððð

TS12 99344 1ðAFEDðð T No MXT ðððððððð Terminal 1ðE499D8 ðððððððð ðððððððð ðððððððð 1ð114ð23 ðððððððð ðððððððð ðððððððð

1ðAD6B4ð ðððððððð ðððððððð ðððððððð ðððððððð 1ð1178Cð ðððððððð ðððððððð ðððððððð

Figure 6. Transaction summary

80 CICS Transaction Server for VSE/ESA Problem Determination Guide

Notes for Figure 6

� Transactions 00003 and 00031 are system transactions.

� Transactions 93920, 93960, and 93967 are waiting because transaction class
DFHTCL03 is at its MAXACTIVE limit.

� Transaction 94001 is scheduled to abend AKCC because it was attached when
transaction class DFHTCL03 was at its PURGETHRESH limit.

� Transactions 95175 and 95187 are waiting because transaction class
DFHTCL02 is at its MAXACTIVE limit.

� Transaction 95205 was scheduled to abend AKCC because it was attached
when transaction class DFHTCL02 was at its PURGETHRESH limit. It was
subsequently made to queue because CICS is at its MXT limit.

� Transaction 99305 is abnormally terminating with abend code AFCY.

� Transaction 99344 is queuing because the system is at its MXT limit.

� Transactions waiting in the transaction manager have no DS token, which is
indicated by zeros in the summary.

 MXT summary
The MXT summary indicates whether CICS is currently at MXT and shows the
current number of queued and active transactions. To check the status of an
individual transaction, consult the main transaction summary (Figure 6 on
page 80).

==XM: MXT SUMMARY

Maximum user tasks (MXT): 7

System currently at MXT: Yes

Current active user tasks: 7

Current queued user tasks: 2

 \ Peak active user tasks: 7

 \ Peak queued user tasks: 2

 \ Times at MXT limit: 1

\ NOTE: these values were reset at 18:ðð:ðð (the last statistics interval collection)

Transaction class summary
The transaction class summary lists each transaction class that is currently
installed. For each class, the current number of active and queued transactions is
shown. A transaction class is at its MAXACTIVE limit if its ‘current active’ total is
greater than or equal to its ‘max active’ setting. If a transaction class is at its
MAXACTIVE limit, a number of transactions may be queueing in that transaction
class. The transaction id and number of each queued transaction is listed with its
transaction class (for example, transaction classes DFHTCL01, DFHTCL02,
DFHTCL03, and DFHTCL04 in Figure 7 on page 82).

 Chapter 6. Dealing with waits 81

==XM: TCLASS SUMMARY

 Tclass Max Purge Current Current Total Queuing Queuing Queuing

Name Active Threshld Active Queued Attaches TranNum Transid Start Time

-------- -------- -------- -------- -------- -------- ------- ---- ------------

DFHTCLð1 1 ð ð ð ð

DFHTCLð2 1 3 1 2 7 95175 TAð2 18:ðð:19.677

95187 TAð2 18:ðð:24.624

DFHTCLð3 1 4 1 3 29 9392ð TAð3 17:55:4ð.584

9396ð TAð3 17:55:42.23ð

93967 TAð3 17:55:52.253

DFHTCLð4 1 ð 1 1 23 96649 TAð4 18:ð6:ð4.348

DFHTCLð5 1 ð ð ð ð

DFHTCLð6 1 ð ð ð ð

DFHTCLð7 1 ð ð ð ð

DFHTCLð8 1 ð ð ð ð

DFHTCLð9 1 ð ð ð ð

DFHTCL1ð 1 ð ð ð ð

\\\ Note that the 'Total Attaches' figures were reset at 18:ðð:ðð (the last statistics interval collection)

Figure 7. Transaction class summary

A user task is waiting on resource type FOREVER
If you have found that a user task is waiting on a resource type of FOREVER, and
resource name DFHXMTA, transaction manager has detected a severe error during
task initialization or task termination. Transaction manager has suspended the
task.

The suspended task is never resumed, and holds its MXT slot until CICS is
terminates. You must cancel CICS to remove this task as you will be unable
to quiesce the system . You cannot purge or forcepurge the task.

This wait is always preceded by one of the following messages: DFHXM0303,
DFHXM0304, DFHXM0305, DFHXM0306, DFHXM0307, DFGXM0308,
DFHXM0309, DFHXM0310. Transaction manager also takes a dump and message
DFHME0116 is produced and contains the symptom string.

Lock manager waits
Read this section if a resource name of LMQUEUE has been shown for a task. It
means that the suspended task cannot acquire the lock on a resource it has
requested, probably because another task has not released it.

A user task cannot explicitly acquire a lock on a resource, but many of the CICS
modules that run on behalf of user tasks do lock resources. If this is a genuine
wait, and the system is not just running slowly, this could indicate a CICS system
error.

82 CICS Transaction Server for VSE/ESA Problem Determination Guide

Collecting the evidence
You need to take a system dump, and format it using keywords LM and DS. This
formats the storage areas belonging to lock manager domain and dispatcher
domain. This section describes the data that you should find there if the resource
locks are being managed correctly.

Turn to the lock manager summary information (Figure 8 shows an example of
this).

LOCK LOCK OWNER MODE COUNT # LOCK # LOCK -> QUEUE

NAME TOKEN REQUESTS SUSPENDS

---- ----- ----- ---- ----- -------- -------- --------

SMLOCK ð3Bð51D8 ð ð

DSITLOCK ð3Bð52ð8 4 ð

LD_GBLOK ð3Bð5238 ð3BðAADð EXCL 1 1 ð3Bð9378

LD_LBLOK ð3Bð5268 ð ð

DMLOCKNM ð3Bð5298 ð3BðB69ð EXCL 35 ð

CCSERLCK ð3Bð52C8 ð ð

==LM: LOCK WAIT QUEUE

LOCK ADDRESS -> NEXT OWNER MODE SUSPEND STATUS

NAME TOKEN

---- ------- ------- ----- ---- ------- ------

LD_GBLOK ð3Bð9378 ðððððððð ð3BðB3Að EXCL ð1ðBððð1

Figure 8. Lock manager summary information

Table 21 describes each of the fields in the lock manager summary information.

Table 21 (Page 1 of 2). Fields in the lock manager summary information

Field Description

LOCK NAME The name given to the lock by the domain that originally issued the
ADD_LOCK command.

LOCK TOKEN The token assigned by the lock manager to uniquely identify the lock.

OWNER A token that uniquely identifies the owner of the lock. It is blank
unless a task currently holds the lock, in which case the KE_TAS
number of the task is given.

MODE The lock mode. It can be:

Blank No task currently holds the lock.

EXCL The lock is exclusive—only one task can hold the lock at any
one time. The lock owner is identified in the OWNER field.

SHR The lock is shared—several tasks can hold the lock. In this
case, the OWNER field will be blank.

COUNT Blank unless the lock mode is SHR, when it shows the number of
tasks currently holding the shared lock.

LOCK
REQUESTS

The cumulative total of the number of times a lock has been
requested—that is, the number of times the LOCK request has been
issued for the lock.

LOCK
SUSPENDS

The cumulative total of the number of tasks that have been
suspended when requesting this lock because the lock is held by
another task.

 Chapter 6. Dealing with waits 83

The first step is to establish which lock the suspended task is waiting on. Obtain
the KE_TAS number from the dispatcher domain summary for the suspended task
and match this with an OWNER in the ‘LOCK WAIT QUEUE’ section of the lock
manager summary information.

In the example, only one task is suspended and waiting to obtain the LD_GBLOK
lock. The owner (KE_TAS identifier) of this task is 03B0B3A0.

You then have to find out which task currently holds the lock that the suspended
task is waiting on. You can do this by looking at the lock manager summary for
that lock—in this case, LD_GBLOK.

If the mode of the lock is SHR (shared), you will not be able to proceed any further
and you will have to contact your IBM Support Center.

If the mode is EXCL (exclusive), the identifier of the task that currently holds the
lock is given in the OWNER field. In the example, the task that currently has the
lock— LD_GBLOK—is 030B0AAD0. Because the OWNER field is the KE_TAS
identifier of the task, you can find out from the dispatcher domain summary the
status, dispatcher task number, and TCA address of the task that currently holds
the lock.

When you have all this information ready, contact the IBM Support Center and
report the problem to them.

Table 21 (Page 2 of 2). Fields in the lock manager summary information

Field Description

-> QUEUE Blank unless tasks are currently suspended, awaiting the lock. If this
is the case, this field contains the address of the first such task.
Further information about the task is given in the ‘LOCK WAIT
QUEUE’ section of the information.

ADDRESS The address of the lock manager LOCK_ELEMENT that represents
the suspended task.

-> NEXT The address of the next task in the queue awaiting the lock. If this
field is zeros, this is the last task in the queue.

OWNER The KE_TAS number of the task that is currently suspended, awaiting
the lock.

MODE The lock mode. It can be:

EXCL The lock is exclusive—only one task can hold the lock at any
one time. The lock requester is identified in the OWNER
field.

SHR The lock is shared—several tasks can hold the lock.

SUSPEND
TOKEN

The dispatcher suspend token for the suspended task.

STATUS The status of the suspended task. It can be:

Blank The task is waiting to acquire the lock.

DELETED The suspended task has been deleted from the queue.
This occurs only if the lock is deleted.

PURGED The task was purged while waiting to acquire the lock.

84 CICS Transaction Server for VSE/ESA Problem Determination Guide

Journal control waits
Read this section if the resource type your task is waiting on is JASUBTAS or
starts with the characters JC, indicating journal control.

Resource type JASUBTAS
The purpose of this wait is to make the shutdown (normal or immediate) wait until
the JASP subtask has completely submitted all the archiving jobs of those journals
needing to be archived (as determined in the DFHJACD data set).

Resource type JCAVLECB
If the resource type is JCAVLECB and the resource name is LECBECB, the task is
waiting for a logical ECB to become available. This type of wait should only occur
at times of high journaling activity.

The number of logical ECBs is a function of the number of journals defined in the
JCT. Increasing the number of journals increases the number of logical ECBs.

Resource type JCBUFFER
If the resource type is JCBUFFER, with resource name AVAIL_nn (“nn” is a journal
number in the range 01 through 99), the buffer is probably nearly full, or the journal
is unavailable, for example, because of a volume switch or an output error.

If the resource type is JCBUFFER, with resource name JCTAECB, the task that
has requested shutdown is waiting for the journaling task to flush the buffer, close
the journal, and terminate itself.

Resource type JCFLBUFF
Tasks are made to wait on resource type JCFLBUFF after they have issued a
request to CLOSE a journal, while the buffer is flushed (written to the journal). You
can identify the journal for which the close request has been made from the final
two characters of the resource name, FLUSH_nn (“nn” is the journal number, in the
range 01 through 99).

You are likely to have an extended wait on this resource type only if an I/O problem
arises. Check to see if any diagnostic messages have been issued to indicate that
this has happened.

Resource type JCIOBLOK
User tasks are suspended on resource type JCIOBLOK, with resource name
Jnnbbbbb (“nn” is the journal number, in the range 01 through 99, and “bbbbb” is
the block number), when they make a JOURNAL request with the WAIT option. A
task suspended in this way with the WAIT option waits until I/O is complete.

An extended wait at this point indicates that there is either an I/O problem or a
system error.

 Chapter 6. Dealing with waits 85

Resource type JCIOCOMP
Resource type JCIOCOMP can have any of these resource names associated with
it:

 � JCTICA
 � JCTIOECB
 � RDRECDnn
 � RDBLOKnn

Only JCTIOECB is associated with waits that can involve user tasks.

Resource name JCTIOECB
User tasks that issue CLOSE requests are made to wait on resource type
JCIOCOMP and resource name JCTIOECB while I/O completes. Specifically, the
CLOSE request is made to wait for an already active I/O request to complete
before proceeding. An extended wait might indicate an I/O problem.

Resource type JCLASTBK
A user task that has requested a journal switch can be made to wait on resource
type JCLASTBK and resource name Jnnbbbbb (“nn” is the journal number, from 01
through 99, and “bbbbb” is the block number) when I/O is already active. The wait
is for the block identified by “bbbbb” to be written to the journal before it can be
closed. It is essentially an I/O wait, and there could be an I/O problem if there is
an extended wait at this point.

Resource type JCCLDONE
User tasks can be made to wait on resource type JCCLDONE and resource name
SUBTASK, but an extended wait at this point indicates that there is a system error.
The wait is for the OPEN/CLOSE subtask to complete the close request, and the
user task cannot influence this.

Resource type JCDETACH
A task that has requested shutdown can be made to wait on the detaching of the
journal subtask from the operating system.

Resource type JCOPDONE
User tasks can be made to wait on resource type JCOPDONE and resource name
SUBTASK, but an extended wait at this point indicates that there is a system error.
The wait is for the OPEN/CLOSE subtask to complete the open request, and the
user task cannot influence this.

Resource type JCREADY
Resource type JCREADY can have any of these resource names associated with
it:

 � JCTXAECB
 � JCTXBECB

User tasks are made to wait on resource type JCREADY and one of these
resource names when no operator reply has been received to message DFH4583,
and message DFH4584 has subsequently been issued. For details of the

86 CICS Transaction Server for VSE/ESA Problem Determination Guide

circumstances under which these messages are issued, and the actions you need
to take, see the VSE/ESA Messages and Codes Volume 3 manual.

The fifth character in the resource name (A or B) identifies the next extent to be
used.

Resource type JCRQDONE
User tasks can be made to wait on resource type JCRQDONE and resource name
SUBTASK in three routines:

� DFHJCC (user tasks)
� DFHJCO (user tasks)
� DFHJCJOJ (system tasks)

The task is waiting for the journaling subtask to complete an open or close request
issued by another task. Extended waits indicate either a system error, or possibly
an I/O problem.

Resource type JCSWITCH
If the resource type is JCSWITCH, with resource name DS_SDJnn (“nn” is the
journal number, from 01 through 99), a wait is issued on the task that requested
shutdown when a journal switch is already active. Extended waits indicate either a
system error, or possibly an I/O problem.

Resource type JCTAPE2
Resource type JCTAPE2 can be associated with two different resource names:

 � PREOPNnn
 � STABLEnn

(“nn” is the journal number, which is in the range 01 through 99)

The waits are both associated with “open ahead” tape processing, but in different
circumstances.

Resource name PREOPNnn
This wait is issued when a volume switch has been requested and “open ahead”
processing has not completed. It probably indicates that the volume that is to be
opened ahead is not ready.

Resource name STABLEnn
This wait is issued during shutdown processing, when previous “open ahead”
processing failed to complete. Like resource name PREOPNnn, it probably
indicates that the volume to be opened is not ready.

Journaling cannot be shut down until this processing is complete, and it is
potentially a cause of CICS stalling during termination processing.

 Chapter 6. Dealing with waits 87

Task control waits
If your task is waiting on a resource type of KCCOMPAT or KC_ENQ, it has been
suspended by the transaction manager. If your task is waiting on a resource type
of EKCWAIT, it has been suspended by task control.

KC_ENQ indicates that CICS code acting for a task has issued an EXEC CICS
ENQ command or a DFHKC TYPE=ENQ macro. If there is an extended wait for
no apparent reason, this might indicate an error within CICS. If that turns out to be
the case, contact the IBM Support Center.

EKCWAIT indicates that a task has issued an EXEC CICS WAIT EVENT
command. USERWAIT indicates that a task has issued an EXEC CICS WAITCICS
or EXEC CICS WAIT EXTERNAL command. If the wait is prolonged, you should
identify the event being waited on, and:

� Check that the EXEC CICS command specified the correct event.

� Check for problems with the task that should be completing the work for the
specified event. It might be waiting or looping, it might have a performance
problem, or it might have failed completely.

If the resource type is EKCWAIT or USERWAIT and the EXEC CICS WAIT
EVENT, WAITCICS, or WAIT EXTERNAL command included the NAME option, the
specified name is the resource name. For programming information about the
NAME option of the WAIT EVENT, WAITCICS, and WAIT EXTERNAL command,
see the CICS Application Programming Reference manual.

Resource type KCCOMPAT
If you have a resource type of KCCOMPAT, the resource name tells you more
about the circumstances of the wait. The meanings of the resource names are
described in Table 22.

Table 22. KCCOMPAT waits: meaning of resource names

Resource
name

Meaning

CICS The task has been suspended on a DFHKC TYPE=WAIT,DCI=CICS
macro call. CICS has issued the macro. The task is waiting for some
internal event, and the ECB should be posted by CICS under another
task.

LIST The task has been suspended on a DFHKC TYPE=WAIT,DCI=LIST
macro call issued by CICS code. It is waiting for any ECB in a list of
ECBs to be posted, after which it is resumed.

SINGLE The task has been suspended on a DFHKC TYPE=WAIT,DCI=SINGLE
macro call issued by CICS code. It is waiting for a single ECB to be
posted, after which it is resumed.

TERMINAL The task has been suspended on a DFHKC
TYPE=WAIT,DCI=TERMINAL macro call. CICS has suspended the
task. The task is waiting for terminal I/O to complete, and stays
suspended until resumed by CICS.

88 CICS Transaction Server for VSE/ESA Problem Determination Guide

If the resource name for the wait is SINGLE, CICS, or LIST, look at the entry in the
SUSPAREA column of the dispatcher summary in the dump. The type of value it
contains depends on the resource name:

� For SINGLE or CICS, it is the address of an ECB
� For LIST, it is the address of a list of ECBs

(The contents of the SUSPAREA entry are not significant for TERMINAL, because
this type of wait is subject to the dispatcher RESUME function. For more
information about debugging terminal waits, see “Terminal waits” on page 94.)

Check the contents of the SUSPAREA entry. Does it contain a valid address? That
is, is it within the CICS address space, and actually pointing at an ECB, or a list of
ECBs?

If you find an invalid address: It is possible that a storage overlay is the cause
of the wait problem. If you suspect this to be the case, turn to Chapter 10,
“Dealing with storage violations” on page 173 for further advice. However, note
that this is likely to be a “random” overlay, and such problems are often very
difficult to solve.

From the kernel information in the dump, find out which code issued the DFHKC
macro call. If you think that CICS has passed an incorrect address, contact the
IBM Support Center, and report the problem to them.

If you find a valid address: Consider what area the ECB is in. Does the position
of the ECB, and its environment, suggest that it relates to a resource whose
availability you can control? If so, you might be able to solve the problem by
redefining the quantity of that resource.

If the ECB does not lie within an area that you can control, refer the problem to the
IBM Support Center.

Resource type KC_ENQ
If your task is waiting on resource type KC_ENQ, it is unconditionally enqueued on
a single server resource that is currently unavailable. Typically, tasks are made to
wait on KC_ENQ when they make certain types of file control request, if the file is
already in use. These are the cases:

� The waiting task has attempted to change the state of a file that is in use.
Another task has already attempted to change the state of the same file, and is
suspended on resource type FCFSWAIT. For more details, see “Resource type
FCFSWAIT—waits for file state changes” on page 110.

� The waiting task has attempted to update a record in a recoverable file while
another task has the lock on it. The task owning the record lock retains it until
it reaches the end of the current logical unit of work (syncpoint or end of task).
For more details of record locking for VSAM files, see “Resource type
KC_ENQ—wait for a record lock in a recoverable VSAM file” on page 114.

If the wait on resource type KC_ENQ is prolonged:

� More than one task might be enqueued on the resource, and the task you are
investigating could be some way down the list. Check the programming logic of
any of your programs accessing the resource, to see if it can be released more
quickly. Consider whether you can include EXEC CICS DEQ commands.

 Chapter 6. Dealing with waits 89

� Another (long-running) task might have used the resource and finished with it,
without issuing an EXEC CICS DEQ command. The resource is made
available automatically when the task terminates, but in the meantime, no other
tasks are able to use it.

� There might be a CICS system error. If you have considered the other
possibilities and you think this is the most likely explanation, refer the problem
to the IBM Support Center.

 Storage waits
Read this section if you have found that a task is waiting for a long time on any of
the resource types CDSA, UDSA, ECDSA, EUDSA, ERDSA, SDSA, ESDSA, or
RDSA. Waits on these resources occur when tasks make unconditional storage
requests (SUSPEND=YES) that cannot be satisfied. The type is CDSA, UDSA,
SDSA, or RDSA for storage requests below the 16MB line, and ECDSA, EUDSA,
ESDSA, or ERDSA for storage requests above the line.

Note that, if conditional requests are made (SUSPEND=NO), tasks are not
suspended on these resources. Instead, an exception response is returned if the
request cannot be satisfied.

CICS automatically takes steps to relieve storage when it is under stress, for
example by releasing storage occupied by programs whose current use count is 0.

In addition, your task may be automatically purged if it has waited for storage
longer than the deadlock time-out parameter specified in the installed transaction
definition. Certain conditions prevent purging of a task, for example, DTIMEOUT(0)
or a specification of SPURGE(NO) on the RDO TRANSACTION resource definition.
See the CICS Resource Definition Guide for further information on DTIMEOUT and
SPURGE.

The two most likely explanations for extended waits on storage requests are:

1. The task has issued an unconditional GETMAIN request for an unreasonably
large amount of storage.

2. The task has issued an unconditional GETMAIN request for a reasonable
amount of storage, but the system has too little available. It could be
approaching SOS, or the storage could have become too fragmented for the
request to be satisfied.

The first step is to get a CICS system dump, and format it using the formatting
keyword SM. The way you interpret the dump to investigate each of the above
possibilities is dealt with in the sections that follow.

Was the request for too much storage?
Look in the SM suspend queue summary. This gives, amongst other things, the
number of bytes requested by every task that has been suspended by the storage
manager. You can see whether any of them has made a GETMAIN request for an
unreasonably large amount of storage. For example, the following is the dump
output in the SM suspend queue summary when task 41 requests 10 000 000
bytes:

90 CICS Transaction Server for VSE/ESA Problem Determination Guide

 ==SM: Suspend queue summary

KE Task Tran # Susptok Subpool DSA Request

ð53E54ðð ððððð41 ð4ð8ðð11 Uððððð41 EUDSA 1ððððð16

If the suspended task has made a reasonable GETMAIN request, you next need to
see if the system is approaching SOS.

Is the storage close to being exhausted?
It could be that your task has made a reasonable request for storage, but the
system is too close to SOS for the request to be satisfied.

To see if this could be the cause of the wait, look at the DSA summary in the
formatted dump. This tells you the current free space in each DSA, both in bytes
and as a percentage of the total storage. It also tells you the size of the largest
free area, that is, the biggest piece of contiguous storage. (“Contiguous storage” in
this context means storage not fragmented by other records. It is accepted that
records too large to fit in a single CI can be split across two or more CIs that are
not necessarily contiguous.)

If the largest free area is smaller than the requested storage, this is likely to be the
reason why the task cannot obtain its requested storage.

If the amount of free space is unexpectedly small, look at the task subpool
summary. If a task has made an unusually large number of GETMAIN requests,
this could indicate that it is looping. A looping task might be issuing GETMAIN
requests repetitively, each for a reasonable amount of storage, but collectively for a
very large amount. If you find evidence for a looping task, turn to Chapter 7,
“Dealing with loops” on page 129.

If your task has made a reasonable request and the system seems to have
sufficient free storage, you next need to see if fragmentation of free storage is
causing the GETMAIN request to fail.

Is fragmentation of free storage causing the GETMAIN request to fail?
If the DSA summary shows that the current free space is significantly greater than
the largest free area, it is likely that the DSA has become fragmented.

Temporary storage waits
Read this section if you have found that a user task is waiting on a resource type
starting with TS, showing that it is for temporary storage.

Resource type TSAUX
A task is forced to wait on TSAUX if it has made an unconditional request for
temporary storage, and the request cannot be met because insufficient auxiliary
storage is available. The task has issued an EXEC CICS WRITEQ TS command,
with or without the REWRITE option, but without specifying NOSUSPEND and
without any code to handle the NOSPACE condition. If SPURGE(YES) is defined
for the task on the CEDA DEFINE TRANSACTION command, and a DTIMEOUT

 Chapter 6. Dealing with waits 91

interval other than 0 has been specified, the task is purged when that time expires.
Otherwise, it is not purged, and is liable to be suspended indefinitely.

A task that makes a conditional temporary storage EXEC CICS WRITEQ TS
request (NOSUSPEND specified) is not suspended if the request cannot be met.
Instead, if the required auxiliary storage is not available, an exception response is
returned to it. (There might still be a suspension for another reason—for example,
the temporary storage program itself might become suspended after issuing a
GETMAIN, if CICS went short on storage.)

These are the two most likely reasons why a task that has issued an unconditional
EXEC CICS WRITEQ TS request might be suspended on resource type TSAUX:

1. The task has issued a request requiring too large a piece of temporary storage.

2. The task has issued a request requiring a reasonable amount of temporary
storage, but there is too little available.

This could indicate that the amount of auxiliary storage is becoming exhausted.
Otherwise, it could be that there is quite a large amount of auxiliary storage left,
but the storage is too fragmented for the request to be satisfied.

The first step is to get a CICS system dump, and format it using the formatting
keyword TSP to show the temporary storage control blocks. Include formatting
keywords SM and KE, too, as you might need to refer to the summaries for these
two components as well. Analyze the dump to investigate the cause of the problem
as follows:

Was the request for too much temporary storage?
Look in the temporary storage suspend queue summary. This gives, amongst
other things, the number of bytes requested by every task that has been
suspended because its request for storage cannot be met. You can see whether
any of them has made a request requiring an unreasonably large amount of
temporary storage.

Is temporary storage close to being exhausted?
It could be that your task has made a reasonable request for temporary storage,
but the amount of unallocated space is close to exhaustion.

To see if this could be the cause of the wait, look at the temporary storage
summary in the formatted dump. If the current free space is very small, this is
likely to be the reason why the task cannot obtain its requested temporary storage.
In such a case, consider defining secondary extents for the data set.

Look also at the temporary storage request summary. If a task has made an
unusually large number of WRITEQ TS requests, it could be looping. A looping
task might be issuing WRITEQ TS requests repetitively, each for a reasonable
amount of storage, but collectively for a very large amount. If you find evidence for
a looping task, turn to Chapter 7, “Dealing with loops” on page 129.

If your task has made a reasonable request and the system seems to have
sufficient unallocated temporary storage, you next need to see if fragmentation of
unallocated storage is causing the WRITEQ TS request to fail.

92 CICS Transaction Server for VSE/ESA Problem Determination Guide

Is fragmentation of unallocated storage causing the WRITEQ TS
request to fail?
Look at the temporary storage byte map, TSBMAP, in the dump.

Each byte in the TSBMAP shows how the corresponding control interval (CI) in
auxiliary storage is being used. If the CI is completely unused, the byte
representing it has a value equal to the number of segments in the CI. The
number of segments in each CI is shown in the temporary storage program
summary in a system dump. Alternatively, you can find out the number of
segments per CI from field TSASPCI in the temporary storage auxiliary control
area, TSACA. A value of X'3F', for example, in field TSASPCI would show that
each CI has X'3F' segments.

If the CI is completely allocated, you see a value of 0 for it in the TSBMAP. Such a
CI cannot be used to satisfy further temporary storage WRITEQ TS requests.

If the TSBMAP shows any value between 0 and the total number of segments in
the CI, the CI is partly used. Even if the temporary storage data set is not yet full,
that is, one or more of the CIs has unused segments, there must be sufficient
contiguous storage available for the WRITEQ TS request before it can be satisfied.
You can find out if this is a likely reason for the failure by looking in the TSBMAP at
the distribution of unused segments between CIs. The temporary storage program
summary in a system dump shows the number of bytes per segment. Alternatively,
look in field TSABPSEG of the TSACA, to find this information.

Resource type TSBUFFER
Resource type TSBUFFER indicates that the waiting task has issued an auxiliary
temporary storage request, but the buffers are all in use. If you find that tasks are
often made to wait on this resource, consider increasing the number of auxiliary
temporary storage buffers (system initialization parameter TS).

Resource type TSEXTEND
Resource type TSEXTEND indicates that the waiting task has issued a request to
extend the auxiliary temporary storage data set, but some other task has already
made the same request. The wait does not extend beyond the time taken for the
extend operation to complete. If you have a task that is waiting for a long time on
this resource, it is likely that there is a hardware fault or a problem with VSAM.

Resource type TSIO
Resource type TSIO indicates that the task is being made to wait while physical I/O
takes place during an auxiliary temporary storage read or write. If there is an
extended wait on this resource, it is likely that there is a hardware fault or a
problem with VSAM.

Resource type TSQUEUE
Resource type TSQUEUE indicates that the waiting task has issued a request
against a temporary storage queue that is already in use by another task. The
latter task is said to have the lock on the queue. If the queue is recoverable, the
task has the lock until the logical unit of work is complete. If it is not recoverable,
the task has the lock for the duration of the temporary storage request only.

 Chapter 6. Dealing with waits 93

If tasks in your system are frequently made to wait on temporary storage queues,
consider the following:

� Are tasks that are performing operations on the same temporary storage queue
intended to do so, or is the ID of the queue unintentionally not unique?

� Is it possible to create more temporary storage queues to reduce the contention
between tasks?

� If the queue in question is recoverable, is it possible to make tasks relinquish
control of it more quickly? Consider reducing the size of LUWs, or making
conversational tasks pseudoconversational.

Resource type TSSTRING
Resource type TSSTRING indicates that the task is waiting for an auxiliary
temporary storage VSAM string. If you find that tasks frequently wait on this
resource, consider increasing the number of temporary storage strings (system
initialization parameter TS).

Resource type TSUT
If a user task is waiting on resource type TSUT, activity keypointing is taking place.
This involves a large amount of I/O, and, if there are many temporary storage
queues, it could take a relatively long time to complete.

Resource type TSWBUFFR
Resource type TSWBUFFR indicates that the waiting task has issued an auxiliary
temporary storage request, but the write buffers are all in use. You have no control
over how temporary storage allocates read buffers and write buffers from the buffer
pool, but if you find that tasks are often made to wait on this resource, increasing
the number of auxiliary temporary storage buffers (system initialization parameter
TS) should help solve the problem.

 Terminal waits
Read this section if you have any of the following problems:

� A task should have started at a terminal, but has failed to do so.

� A task is waiting on a resource type of KCCOMPAT, with a resource name of
TERMINAL.

� A task is waiting on a resource type of IRLINK, with a resource name of
SYSIDNT concatenated with the session name.

Note that, if you have one or more unresponsive terminals (that is, terminals that
are showing no new output and accepting no input), this does not necessarily
indicate a terminal wait. If you have this problem, use CEMT INQUIRE TERMINAL
to find the transaction running at the terminal, and then CEMT INQUIRE TASK to
find out what resource that task is waiting on. When you know that, look at
Table 20 on page 69 to find where you can get further guidance.

If all the terminals in the network are affected, and CICS has stalled, read “What to
do if CICS has stalled” on page 124 for advice about how to investigate the
problem.

94 CICS Transaction Server for VSE/ESA Problem Determination Guide

If yours is a genuine terminal wait, remember when you carry out your investigation
that terminals in the CICS environment can have a wide range of characteristics. A
terminal is, in fact, anything that can be at the end of a communications line. It
could, for example, be:

� A physical device such as a 3270 terminal or a printer

� A batch region

� Another CICS region connected by an interregion communication link

� A system that is connected by an LUTYPE6.1 or APPC protocol.

If LUTYPE6.1 is in use, the other system might be another CICS region, or IMS.
With APPC, the range of possibilities is much wider. It could include any of the
systems and devices that support this communications protocol. For example,
apart from another CICS region, there might be a PC system at the other end of
the link.

If you find that the fault lies with a terminal, find out what type it is. In some cases,
you probably need to look in appropriate books from other libraries for guidance
about problem determination.

Terminal waits—first considerations
Here are a few preliminary considerations that could point to a simple solution.

� Is there an obvious physical explanation for the wait? For example, is a
terminal operator failing to respond to a request for input? In the case of a
printer, has it been powered off, or run out of paper?

� Have you checked in the CSTL and CSNE logs to see if there is a message
you might have missed? If either DFHTCP or DFHZCP detected an error
related to terminal control, a message reporting the problem will have been
sent to the CSNE log, and, perhaps, to the console too.

If you do find a message there reporting some terminal error that can be
related to the task, it should give you an idea of why the task is waiting. You
can find an explanation of the message and a description of the system action
in response to the error by looking in the VSE/ESA Messages and Codes
Volume 3 manual.

The CSNE log entry may also show that an error was detected, but that no
action was taken by TACP or NACP. This can occur if the line or terminal was
out of service, or if the error actions had been turned off in the user exits of
DFHTEP and DFHNEP. In such a case, the CICS code enabling the waiting
task to be resumed is never executed, and the task waits indefinitely.

� Have any HANDLE CONDITION routines for terminal errors been coded
incorrectly? If an attempt were made, in such a routine, to access the terminal
that has the error, the application would be very likely to wait indefinitely.

� If the terminal is installed using autoinstall, has the system failed to load
DFHZATA, the autoinstall program, or DFHZCQ which is called by DFHZATA,
because of a short on storage condition? If so, you need to deal with the
cause of the short on storage condition. Check the delete delay that you have
specified—if it is too short, your system may be deleting and reinstalling
terminals unnecessarily. If storage fragmentation is preventing DFHZATA or
DFHZCQ from being loaded, consider defining them as resident
(RESIDENT(YES) on the RDO PROGRAM definition). However, be aware that

 Chapter 6. Dealing with waits 95

it is a large program, and check your storage requirements before making this
change.

If none of these considerations applies, start a systematic investigation into the
reason for the wait, as follows:

Terminal waits—a systematic approach
First determine the type of terminal involved in the wait, and the type of access
method in use for that terminal. Both of these factors influence the way you
perform problem determination.

Then find where in the communication process the fault lies:

1. Is the problem associated with the access method?

2. If the access method has returned, or has not been involved, is terminal control
at fault?

3. If terminal control is working correctly, why is the terminal not responding?

To answer most of these questions, you will need to do some offline dump
analysis. Use CEMT PERFORM SNAP to get the dump, and then format it using
the formatting keyword TCP.

Note: Do not cancel your task before taking the dump. If you do, the values in
the terminal control data areas will not relate to the error.

What type of terminal is not responding?
You can check the terminal type in the following ways:

Online method: Use the transaction CECI to execute the EXEC CICS INQUIRE
TERMINAL DEVICE system programming command. This returns one of the
terminal types identified in the CICS Resource Definition Guide.

Offline method: Look at the formatted dump output you have obtained for
keyword TCP. First, identify the TCTTE relating to the terminal, from the
four-character terminal ID shown in field TCTTETI. Now look in field TCTTETT,
and read the 1-byte character that identifies the type of terminal. You can find what
terminal type is represented by the value in the field from the description given in
the CICS Data Areas manual.

What type of access method is in use?
Find the type of access method being used by the terminal that is not responding:

Online method: Use the CECI transaction to execute the EXEC CICS INQUIRE
TERMINAL ACCESSMETHOD system programming command. This returns the
access method in use by the terminal.

Offline method: You can find the access method for the terminal from the
TCTTE. Look in field TCTEAMIB, which is the byte name definition for the access
method. The CICS Data Areas manual relates values to access methods.

The most common access method is VTAM, identified by a value of TCTEVTAM.
The problem determination procedures outlined focus exclusively on VTAM. You
might also find either of the following values, each being of special significance for
problem determination:

96 CICS Transaction Server for VSE/ESA Problem Determination Guide

TCTEISMM The access method is MRO. This is used for interregion
communication, and it shows that the resource not responding is a remote
CICS region. The most likely reason for the wait is that some task in the
remote region is also in a wait state. The way you deal with this type of
problem is described in “Your task is waiting on another CICS region” on
page 101.

TCTELU6 Intersystem communication (ISC). The resource that is not responding
is a remote system. If this is a CICS system, diagnose the problem in the
remote system using the techniques given in this book. If the remote
system is a non-CICS system, you might need to refer to documentation
provided for that system.

VTAM in use—debugging procedures
First, look in the CSNE log to see if there is an error message that explains the
wait. If it contains an error code, you can find out what it means from section
“VTAM codes” in the VSE/ESA Messages and Codes, Volume 2 manual.

Look next for any NACP error codes in fields TCTEVRC5, TCTEVRC6,
TCTEVRC7, and TCTEVRC8 of the terminal table entry, TCTTE. Look also for any
SNA sense code in field TCTEVNSS.

Is the problem associated with VTAM?
You can find the VTAM process status (with respect to the waiting task) from fields
TCTEICIP and TCTEIDIP in the TCTTE. You might find the following values there,
and their interpretations:

TCTECIP Command request in progress

TCTEDIP Data request in progress

Either of these status values indicates that a VTAM request is in progress, and that
the VTAM RPL is active. A response is expected either from VTAM, or from the
terminal. You can find the address of the RPL from field TCTERPLA, unless the
request was for a RECEIVE on an APPC session, in which case you can find the
RPL address from field TCTERPLB.

If a VTAM request is not in progress, the next field of interest is in the VTAM
system area of the TCTTE. Find four bytes of VTAM exit IDs, starting at field
TCTEEIDA. If any are nonzero, the VTAM request has completed. Nonzero
values suggest that VTAM is not involved in the wait. You can find the meanings
of the values from the VTAM module ID codes list in the CICS User’s Handbook.

If you suspect that the problem is associated with VTAM, consider using VTAM
buffer tracing. This technique can give you detailed information about the
execution of VTAM requests. For guidance about using the technique, read the
appropriate section in Chapter 14, “Using traces in problem determination” on
page 199.

 Chapter 6. Dealing with waits 97

VTAM in use—is terminal control at fault?
First look at field TCTVAA1 in the terminal control table prefix, TCTFX. This
contains either the address of the first TCTTE on the active chain, or the value
X'FFFFFFFF'. If you see the latter value, it means that terminal control does not
recognize that it has work to do. If this conflicts with the INQUIRE TASK report you
have received that the task is waiting on some terminal related activity, report the
problem to your IBM Support Center.

If field TCTVAA1 points to a TCTTE on the active chain, check that the TCTTE of
the terminal your task is waiting for is included in the chain. You can find this out
by following the chain using the “next” pointer, field TCTEHACP of the TCTTE. If it
does not contain the address of the next TCTTE on the chain, it contains one of
these values:

Value Meaning

X'FFFFFFFF' This is the last TCTTE on the chain

X'00000000' This TCTTE is not on the active chain

If you find a value of X'00000000', report the problem to the IBM Support Center.

VTAM in use—is the terminal at fault?
If you have found that the access method and terminal control are not causing the
wait, the terminal itself must be waiting for some reason. Look at fields in the
TCTTE for the terminal to find its status.

CICS system dumps contain an index to the VTAM terminal entries. It appears in
the terminal control (TCP) summary section of the dump.

Information about the status and attributes of the VTAM terminals appears in an
interpreted form at the end of the control block for each terminal entry. The
information shown depends on the attributes of the terminal.

The example in Figure 9 on page 99 shows the index followed by a terminal entry
with its interpreted status and attribute information.

98 CICS Transaction Server for VSE/ESA Problem Determination Guide

===TCP: TERMINAL CONTROL SUMMARY (VTAM TERMINALS)

TERMINAL TASK IN ERROR ACTIVE RPL WORK ZNAC INTERVENTION AUTOINSTALL

TERMID TYPE LOGGED ON ATTACHED SERVICE STATS. REQUEST TO DO QUEUED REQUIRED ACTIVITY

R51 Cð NO NO YES ðððððððð NO NO NO NO N/A

R52 Cð NO NO YES ðððððððð NO NO NO NO N/A

R53 Cð NO NO YES ðððððððð NO NO NO NO N/A

R54 Cð NO NO YES ðððððððð NO NO NO NO N/A

R55 Cð NO NO YES ðððððððð NO NO NO NO N/A

S51 Cð NO NO YES ðððððððð NO NO NO NO N/A

S52 Cð NO NO YES ðððððððð NO NO NO NO N/A

S53 Cð NO NO YES ðððððððð NO NO NO NO N/A

S54 Cð NO NO YES ðððððððð NO NO NO NO N/A

S55 Cð NO NO YES ðððððððð NO NO NO NO N/A

-AAA Cð NO NO YES ððððððð1 NO NO NO NO N/A

-AAB Cð NO NO YES ðððððððð NO NO NO NO N/A

 TCTTE.R51 ð3B5C42ð TCT TERMINAL ENTRY

ðððð D9F5F14ð Cðððð5ð4 ð3B5C424 ðððððððð ðððððððð ðððððððð ðððððððð ððð8ðððð \R51D.....................\ ð3B5C42ð

ðð2ð ðððððððð ðCðððððð C5D5E4ðð ðððð8ð8ð ðððððððð ðððððððð ðððððððð ðððððððð \........ENU.....................\ ð3B5C44ð

ðð4ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ð1D8ðððð ðððððððð ð3B22ð3ð \.....................Q..........\ ð3B5C46ð

ðð6ð ðððððððð ðððððððð ðððððððð ð3B5869ð ðððððððð ðððððððð ð3B4639ð ðððððððð \..............f.................\ ð3B5C48ð

ðð8ð ðððððððð ðððððððð ðððððððð ðððððððð ð3B43ðF8 ðððððððð ðððððððð ðððððððð \...................8............\ ð3B5C4Að

ððAð ðððððððð ðððððððð ðððððððð ðð84ðððð ðððððððð ðððððððð ðððððððð ðððððððð \.............d..................\ ð3B5C4Cð

ððCð ðððððððð 8ððððððð ðððððððð ðððððððð ðððððððð ðððððð3B ð1ðððððð ðððððððð \................................\ ð3B5C4Eð

ððEð 1ððððððð ðððððððð ðððððððð ð3B5C618 ðððððððð ðððððððð ðððððððð ðððððððð \..............F.................\ ð3B5C5ðð

ð1ðð 3Aðð84ðð ðððððððð ðððððððð ðððððððð ðððððððð FFFFðððð ðððððððð ðððððððð \..d.............................\ ð3B5C52ð

ð12ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\ ð3B5C54ð

ð14ð 1ððð1ððð 1ððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\ ð3B5C56ð

ð16ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\ ð3B5C58ð

ð18ð ð8ð9ðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ð3B59421 \..............................m.\ ð3B5C5Að

ð1Að ðð44ðððð ðððð1ðð8 D4FD6ð38 8ð8ððð14 ðððððððð ðððððððð ðððððððð ðððððððð \........M.-.....................\ ð3B5C5Cð

ð1Cð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \........................ \ ð3B5C5Eð

TERMID = R51 EXIT FOOTPRINTS (HEX) = ðððððððð

IN SERVICE TCTTECA (NO TASK ATTACHED)

TCTECCV (STARTED BY TTI) TCTECSM (CA-MODE)

INPUT STATISTICS (DECIMAL) = ðððððððð OUTPUT STATISTICS (DECIMAL) = ðððððððð

ERROR STATISTICS (DECIMAL) = ðððððððð TCTE1RY (CICS IS PRIMARY)

TCTELSE (LUC CONTENTION LOSER) TCTESBIF (SBI/BIS SUPPORTED)

Figure 9. Terminal index and terminal entry with interpreted information

The values that are given below for fields in the TCTTE are not the only
possibilities, but they show important things about the terminal status. If you find
any other values for these fields, look in the CICS Data Areas manual to find out
what they mean.

Ask the following questions. The values shown indicate possible solutions.

1. Is the terminal in service? Look at field TCTTETS of the TCTTE, to find the
terminal status. The values that indicate why a terminal was failing to respond
include:

TCTTESPO = 1 and TCTTESOS = 1 terminal out of service

TCTTESOS = 1 only terminal in error recovery

Look also at field TCTESEST, to find the session status with respect to
automatic transaction initiation (ATI) for the terminal. Possible values include:

TCTESLGI = ð CREATESESS(NO) in TYPETERM definition

TCTESLGI = 1 CREATESESS(YES) in TYPETERM definition

TCTESLGT = 1 recovering CREATESESS

A value of TCTESLGI = 0, with TCTESLGT = 0, too, shows that
CREATESESS(NO) has been specified in the RDO TYPETERM resource
definition. This means that EXEC CICS START requests and ATI requests
cannot cause a session to be created. The request is either queued or
rejected when no session is currently established. This can put a terminal into
an indefinite wait state, especially if the terminal is a printer.

 Chapter 6. Dealing with waits 99

A value of TCTESLGI = 1 shows that CREATESESS(YES) has been specified
in the RDO TYPETERM resource definition. This means that CICS is allowed
to create sessions for the terminal, so the CREATESESS status is not the
cause of the wait.

A value of TCTESLGT=1 means that the session is in error recovery. This
could explain why there is no response from the terminal.

2. Has a task been created for this terminal? Look first at field TCTTECA of the
TCTTE.

� If its value is nonzero, there is a task attached to the terminal. Field
TCTEICCV indicates the following:

TCTECCV = ð the task has been started by a terminal

TCTECCV = 1 the task has been started by ATI

� If its value is zero, look also in fields TCTTEIC and TCTECTI. The values
you might find there are:

TCTEOIC = 1 ATI is waiting to start

TCTECTI = 1 there is ATI work for ZCP to do

3. Is there a task related to the terminal? From field TCTEMOST, you can find
the task session state with VTAM, and also, if bracket protocol is required (from
field TCTEIBPE), its conversation state with the terminal from field TCTEIINB.
The significant values that might provide further clues to the cause of the wait
are:

TCTECSM = 1 the task is in conversation with the terminal

TCTECSM = ð terminal control will accept new tasks from

 the terminal

Look now at field TCTEIBPE, to see if bracket protocol is required: A value of
1 indicates that bracket protocol is required. If this is the case, look in field
TCTEIINB which can have the following values:

TCTEINB = ð a conversation has not been started

TCTEINB = 1 a task is in conversation with the terminal

4. Is the terminal logged on to CICS? Look first at the node session status in the
TCTTE. The three stages of session creation are represented by three
separate bits, in fields TCTEILOS, TCTEIOPD, and TCTEINSD:

TCTELOS = 1 the node is logged on

TCTEOPD = 1 VTAM OPNDST macro issued

TCTENSD = 1 Start Data Traffic sent

If all three bits are set, so the value of the byte is TCTENIS, the node is in
session.

Now see if the terminal is logging off, or if it has already been logged off. The
fields of interest are TCTEINND, TCTEINBD, and TCTEIPSA. The values to
look for are:

TCTENND = 1 the terminal is to be logged off

TCTENBD = 1 the terminal is logging off because of an error

TCTEPSA = 1 the session with the terminal ended abnormally

—look for any explanatory message on CSMT

If any of these bits are set, the terminal might not be able to respond to the
waiting task.

100 CICS Transaction Server for VSE/ESA Problem Determination Guide

5. Should the terminal respond to the task? A value of 1 in field TCTEIPRA tells
you that it should.

If the values you find in all these fields suggest that the terminal status is normal,
the terminal is probably waiting for some activity to complete before it responds.
The type of investigation you need to do next depends on the type of terminal
involved in the wait. You should already have determined this, for example by
using the EXEC CICS INQUIRE TERMINAL DEVICE system programming
command. See the CICS System Programming Reference for further information
about this command.

Tools you can use for debugging terminal waits when VTAM is in use
The VTAM buffer trace is likely to be of particular use for investigating terminal
waits in a VTAM environment. This is a feature of VTAM itself, and you should
read the appropriate manual in the VTAM library for details of how to use it.

For a description of the use of this type of tracing in CICS problem determination,
see Chapter 14, “Using traces in problem determination” on page 199.

Your task is waiting on a physical terminal
If your task is waiting on a physical terminal, the terminal should first be checked
physically to see why it is not responding. If the terminal is at a remote location,
ask someone else to check it for you. Some possibilities are:

� A terminal with a keyboard might be waiting for an operator to enter some data.

� A printer might have been powered off, or it could have run out of paper.

Consider also the possibility of hardware error in the terminal itself.

Your task is waiting on another CICS region
If a session has been acquired and has not failed, your task is likely to be waiting
for some response from a task in the other region. This can apply to any of the
interregion or intersystem communication activities—function shipping,
asynchronous processing, transaction routing, distributed transaction processing, or
distributed program link. No matter which of these applies, it is most likely that the
other CICS region is not responding because the related task there has been
suspended.

You need to identify the related task in the remote CICS region, and find out the
resource it is waiting on. When you have done that, see Table 20 on page 69 to
find out which part of this section to turn to next.

Investigating the related task in the remote region
First, identify the region that is not responding to your local task.

If the task is using interregion communication (IRC), look first at the name of
the resource being waited on, returned together with resource type IRLINK by
CEMT INQUIRE TASK. The first four characters give you the SYSIDNT of the
remote CICS region.

If the task is using intersystem communication (ISC), look in field TCTTEIST of
the TCTTE, which points to the ISC system table entry. The first field in the system
table entry is the identity of the remote CICS region.

 Chapter 6. Dealing with waits 101

When you have identified the CICS region, take a system dump of it. Either use
the CEMT PERFORM DUMP command in that CICS region, or use the VSE DUMP
command. Take a system dump of the local CICS region, too.

Format the dumps using the formatting keyword DS to get a summary of the tasks
in each region, and TCP to get the TCTTEs.

First find the TCTTE for the task in the local CICS region. The way you find the
TCTTE for the task in the remote CICS region depends on whether you are using
LUTYPE6.1 sessions (or IRC) or APPC sessions:

� For LUTYPE6.1 sessions and IRC sessions, look in local control block
TCTENIB, the TCTTE extension for the NIB descriptor, at field TCTESQP. This
gives you the session qualifier pair for the session. It provides the terminal ID
associated with the local task, concatenated with the terminal ID associated
with the remote task.

Now go to the dump of the remote CICS region, and use the terminal ID to
locate its TCTTE. Check in field TCTESQP of TCTENIB to make sure that the
session qualifier pair matches that in the local system. It should be made up of
the same terminal IDs, but with their order reversed.

� For APPC sessions, look in local control block TCTTELUC, the APPC
extension, in field TCTESII. Ignoring the high-order byte, this gives you the
session instance identifier of the session.

Now go to the dump of the remote CICS region, and use the session instance
identifier you have found for the remote task to locate its TCTTELUC. The
TCTTE precedes the TCTTELUC in the dump.

When you have confirmed that you have located the correct TCTTE, look in field
TCTTECA. This gives you the TCA address of the task that is not responding.

Using the TCA address as the entry point, you can now investigate the reason why
the task has not responded. It is very likely that it has been suspended because
some resource is unavailable. Look in the dispatcher and transaction manager
summaries. If you can identify your task, you can see what resource it is waiting
on.

When you have identified the resource, turn to the appropriate section in this
chapter for guidance about investigating waits on that resource.

VTAM terminal control waits
VTAM terminal control waits are associated with the following resource types:

 � ZC
 � ZC_ZCGRP
 � ZC_ZGRP
 � ZC_ZGUB
 � ZCIOWAIT
 � ZCZGET
 � ZCZNAC
 � ZXQOWAIT
 � ZXSTWAIT

102 CICS Transaction Server for VSE/ESA Problem Determination Guide

The implication of waits on any of these VTAM terminal resource types are
described as follows:

Resource type ZC
If your task is waiting on a resource name of DFHZCRQ1, it is waiting for I/O to
complete. The task is attempting to complete one of the following:

 � RESETSR
� A send synchronous data flow
� A send asynchronous command

 � SESSIONC.

The task waits for the time specified in the RTIMEOUT value of the profile used by
the transaction rounded up to the nearest multiple of 16.78 seconds. If the task
times out, it receives either an AKCT or AZCT abend.

If your task is waiting on a resource name of DFHZEMW1, the error message writer
module, DFHZEMQ, is waiting for the completion of I/O. If a timeout value exists
and is exceeded, the suspend expires.

If your task is waiting on a resource name of DFHZRAQ1, this means a READ has
been issued. The task is resumed once the I/O operation is complete. If a timeout
value exists and is exceeded, the suspend expires.

If your task is waiting on a resource name of DFHZRAR1, this means a READ has
been issued. The task is resumed once the I/O operation is complete. If a timeout
value exists and is exceeded, the suspend expires.

Resource type ZC_ZCGRP, resource name ZSLSECB
DFHZSLS has to set the TCT prefix VTAM fields from the ACB. This wait is issued
to ensure that these fields are set before being used. The wait expires after 3
minutes.

Resource type ZC_ZGRP, resource name PSINQECB
If the task is waiting on resource name PSINQECB, this means that DFHZGRP has
issued the VTAM INQUIRE PERSESS macro during persistent session restart, or
during the reopening of the VTAM ACB, and is waiting for a response from VTAM.
The wait expires after 8 minutes if VTAM does not respond.

Resource type ZC_ZGRP, resource name PSOP2ECB
If the task is waiting on resource name PSOP2ECB, this means that DFHZGRP
has issued the VTAM OPNDST RESTORE macro during emergency restart, or
during the reopening of the VTAM ACB, and is waiting for a response from VTAM.
The wait expires after 8 minutes if VTAM does not respond.

Resource type ZC_ZGRP, resource name TCTVCECB
The persistent sessions initialization module, DFHZGRP, waits for the posting of
TCTVCECB to ensure that DFHTCRP has finished installing TCTTEs, before the
CNOS value is reinstated for all LU6.2 connections.

 Chapter 6. Dealing with waits 103

Resource type ZC_ZGUB
DFHZGUB issues ten VTAM CLSDST or TERMSESS macros during persistent
sessions restart. It waits for an RPL to become free for VTAM to post the VTAM
exit. The wait expires after 5 minutes if VTAM does not respond.

Resource type ZCIOWAIT
Suspends on resource type ZCIOWAIT occur when the task is waiting for some
terminal I/O. Once the expected I/O event occurs, the task is resumed.

Resource type ZCZGET
If your task is waiting on a resource name of DFHZARL2, it is suspended by
module DFHZARL, which deals with application request logic for APPC devices.
The suspend is caused by a GETMAIN call to DFHZGET failing. DFHZGET is
continually invoked until the GETMAIN is successful.

Resource type ZCZNAC
Suspends on resource type ZCZNAC are on resource names DFHZARL3 or
DFHZERH4. The wait is for DFHZNAC to issue an error message. The error
message to be issued depends on the error that led to the suspend. Various
actions may be taken by DFHZNAC before control is returned to the suspended
task.

Resource type ZXQOWAIT
The XRF queue organizer, DFHZXQO, waits for the posting of TCAICTEC and
XQOVECTE which happens when the queue is emptied.

Resource type ZXSTWAIT
The XRF session tracker, DFHZXST, waits for the posting of TCAICTEC and
TCTVXPLE which happens when the session tracking queue is emptied.

Interregion and intersystem communication waits
If you have a user task that is waiting for resource type ALLOCATE, it has
attempted to get a session with another CICS region, but all the sessions are in
use. Consider defining a greater number of sessions, which should solve the
problem. For guidance about this, see the CICS Resource Definition Guide and the
CICS Intercommunication Guide.

If you otherwise have a problem that you have identified as an interregion or an
intersystem communication wait, investigate it as for terminal waits. This is dealt
with in “Terminal waits” on page 94.

The method of debugging is the same in each case. You need to consider the
access method, terminal control, and the “terminal” itself.

For interregion and intersystem communication, the remote CICS region or system
is the terminal. Its status can be found using the same online or offline techniques
that you would use to find the status of a physical terminal. The status may lead
you to suspect that the task running in the remote CICS region is the cause of the
problem, and you then need to investigate why that task is waiting. So you could

104 CICS Transaction Server for VSE/ESA Problem Determination Guide

find that what started as a terminal wait might, after all, be a wait on some other
type of resource.

Transient data waits
Tasks issuing requests to read and write to transient data destinations can be
made to wait for several different reasons. The reasons depend on the type of
request being made, and whether the task is attempting to access an extrapartition
or an intrapartition queue.

The resource types that might be associated with the wait are:

 � TD_INIT
 � TDEPLOCK
 � TDIPLOCK
 � KC_ENQ
 � Any_MBCB
 � Any_MRCB
 � MBCB_xxx
 � MRCB_xxx

The resource name is the transient data queue name, except in the case of
TD_INIT, whose resource name is DCT.

Resource type TD_INIT—waits during initialization processing
A second stage PLT program being executed during system initialization can issue
a request for a resource that is not yet available, because the component that
services the request has not yet been initialized. If the program issues a transient
data request that cannot be serviced, it is suspended on a resource type of
TD_INIT with a resource name of DCT.

You are unlikely to see any evidence for this type of wait, unless you have trace
running during initialization with DS level-1 tracing selected. An error at this stage
would be likely to cause CICS to stall (see “CICS has stalled during initialization” on
page 124), or to terminate abnormally.

Resource type TDEPLOCK—waits for transient data extrapartition
requests

If you have a task suspended on resource type TDEPLOCK, with a resource name
corresponding to a transient data queue name, the task has issued a request
against an extrapartition transient data queue. Another task is already accessing
the same queue, and the waiting task cannot resume until that activity is complete.

If the wait is prolonged, it could be for either of these reasons:

� It is necessary for a task to change VSE subtask mode to open and close a
data set. The task must relinquish control while this happens, and, depending
on the system loading, this might take several seconds. This contributes to the
wait that the second task, suspended on resource type TDEPLOCK,
experiences.

� CICS uses the access method SAM to write data to extrapartition transient data
destinations. SAM executes synchronously with tasks requesting its services.
This means that any task invoking a SAM service must wait until the SAM

 Chapter 6. Dealing with waits 105

processing is complete. If, for any reason, SAM enters an extended wait, the
requesting task also experiences an extended wait.

If tasks frequently get suspended on resource type TDEPLOCK, you need to
determine which other transactions write data to the same extrapartition destination.
You might then consider redefining the extrapartition destinations in the DCT
(destination control table).

Resource types TDIPLOCK, KC_ENQ, Any_MBCB, Any_MRCB,
MBCB_xxx, and MRCB_xxx

If your task is waiting on any of the resource types TDIPLOCK, KC_ENQ,
Any_MBCB, Any_MRCB, MBCB_xxx, or MRCB_xxx, it has made a transient data
intrapartition request that cannot be serviced at once. In each case, the resource
name identifies the intrapartition queue that the request has been issued against.

Resource type TDIPLOCK
If you have a task suspended on resource type TDIPLOCK, with a resource name
corresponding to a transient data queue name, the task has issued a request
against an intrapartition transient data queue. Another task is already accessing
the same queue, and the waiting task cannot resume until that activity is complete.

If tasks frequently get suspended on resource type TDIPLOCK, you need to
determine which other transactions use the same intrapartition destination. You
might then consider redefining the intrapartition destinations in the DCT.

You can find further guidance information about the constraints that apply to tasks
writing to intrapartition destinations in the CICS Application Programming Guide.
For more details of the properties of recoverable transient data queues, see the
CICS Resource Definition Guide.

Resource type KC_ENQ
If a transient data queue has been defined in the DCT as intrapartition and logically
recoverable, there are further restrictions (in addition to those leading to waits on
resource type TDIPLOCK) on the use of the queue by more than one task at a
time.

If you have a task suspended on resource type KC_ENQ, it may have issued a
request against such a queue. Be aware, however, that KC_ENQ is not exclusively
for transient data waits.

Changes to logically recoverable queues are not committed until the end of a
logical unit of work. To ensure integrity of data, therefore, other tasks may be
forced to wait until the task accessing the queue has reached syncpoint or the end
of its activity. Tasks suspended on resource type KC_ENQ, where the current task
is trying to access transient data, are very likely to be waiting for the task currently
accessing the queue to reach syncpoint or end of task.

There are two types of KC_ENQ wait: one for reads and one for writes. A delete
requires both the read and write lock. No task may, therefore, read or write to a
queue while a delete is in progress. A delete cannot proceed until any task
currently reading or writing has completed its activity.

106 CICS Transaction Server for VSE/ESA Problem Determination Guide

A task may read while another task is writing but it can only read already
committed records. Uncommitted records can only be read by the task that wrote
them.

Whether or not a read request waits on resource type KC_ENQ depends on the
coding of the NOSUSPEND option on the READQ command. If coded, QBUSY is
returned to the application and the task does not wait. If not coded, the task waits
on resource type KC_ENQ.

Resource type Any_MBCB
If your task is waiting on resource type Any_MBCB, the resource name is the name
of an intrapartition queue that it is attempting to access. This type of wait shows
that all the transient data I/O buffers are in use, and the task resumes only when
one becomes available.

Tasks are only likely to wait in this way in a heavily loaded system.

Resource type Any_MRCB
When a transient data I/O buffer has been acquired for a task, a VSAM string must
be obtained. If all the VSAM strings available for transient data processing are in
use, the task is suspended on resource type Any_MRCB, with a resource name
equal to the intrapartition queue name.

Waits on Any_MRCB should not be prolonged, except in a heavily loaded system.

Resource type MRCB_xxx
A resource type of MRCB_xxx, with a resource name equal to an intrapartition
transient data queue name, shows that the suspended task has successfully
obtained a VSAM string, and is now waiting for VSAM I/O to complete. This should
not be a long wait, unless operator intervention is required.

Resource type MBCB_xxx
If a task is waiting on resource type MBCB_xxx, with a resource name equal to the
intrapartition queue name, this indicates contention for a transient data I/O buffer.
It should not be an extended wait, although it is dependent on VSAM I/O taking
place on behalf of another task that has issued a transient data request. If that, for
any reason, takes a long time, the wait on resource type MBCB_xxx is
correspondingly long. (For descriptions of the waits that might occur during
transient data VSAM I/O processing, see “Resource type Any_MRCB” and
“Resource type MRCB_xxx”).

The reason for this type of wait is best illustrated by example, as follows:

1. Task #1 issues a transient data request that requires access to an intrapartition
queue. Before the request can be serviced, task #1 must be assigned a
transient data I/O buffer that is not currently being used by any other task.

I/O buffers each contain a copy of a control interval (CI) from a data set. Each
CI contains records that correspond to elements in an intrapartition queue. A
search is made to see if the CI required for task #1 is already in one of the I/O
buffers. If it is, that I/O buffer can be used to service the request made by task
#1, and no VSAM I/O is involved. If it is not, task #1 is allocated any buffer, so
the required CI can be read in. The current contents of the buffer is
overwritten.

 Chapter 6. Dealing with waits 107

An I/O buffer can have a R/O (read only) status or a R/W (read/write) status. If
the buffer that is allocated to task #1 has R/W status, it contains a copy of a CI
that has been updated by some other task, but not yet written back to the data
set. Before the buffer can be used by task #1, the CI it contains must be
preserved by writing it back to the data set.

2. A request now arrives from task #2, and the request requires the CI that is
currently being written to the data set. No two buffers can contain the same CI,
so task #2 is made to wait on resource type MRCB_xxx until the outcome of
the VSAM I/O is known.

If VSAM I/O was successful, task #2 is resumed and assigned some other I/O
buffer.

If VSAM I/O was unsuccessful, task #2 can use the I/O buffer that already
contains the CI it needs.

 Loader waits
A task is suspended by the loader domain if it has requested a program load and
another task is already loading that program. Once the load in progress is
complete, the suspended task is resumed very quickly and the wait is unlikely to be
detected.

Note that the loader does not suspend a task while a program is loaded if it is the
first one to ask for that program.

If the requested program is not loaded quickly, the reasons for the wait need to be
investigated. The possible reasons for the wait, and the ways you should
investigate them are:

1. The system could be short on storage (SOS), so only system tasks can be
dispatched.

To check if the system is short on storage use the CEMT transaction to issue
the command CEMT INQUIRE SYSSTEM SOSSTATUS. Examine the job log,
check the run statistics, or issue a CEMT INQUIRE DSAS command. If SOS
has been reached too often, take steps to relieve the storage constraints. For
guidance about this, see the CICS Performance Guide.

2. There could be an I/O error on a library.

Check for messages that might indicate this. If you find one, investigate the
reason why the I/O error occurred.

3. There could be an error within VSE.

Has there been any sort of message to indicate this? If so, you should refer
the problem to the IBM Support Center.

File control waits
Most file control waits are associated with resource types starting with the
characters FC. Some are associated with resource type KC_ENQ, but KC_ENQ is
not used exclusively for file control waits.

Here is a list of identifiable resource types associated with file control waits, and all
the possible reasons for waits:

108 CICS Transaction Server for VSE/ESA Problem Determination Guide

 � FCBFWAIT
The task is waiting for a VSAM buffer.

 � FCCIWAIT
The task is waiting for VSAM control interval split processing to complete.

 � FCDWWAIT
The task is waiting for VSAM upgrade set activity to complete.

 � FCFSWAIT
The task is waiting to change the state of a file.

 � FCIOWAIT
The task is waiting for I/O on a disk volume.

 � FCPSWAIT
The task is waiting for a private string.

 � FCRBWAIT
The task is waiting because file recovery failed to complete.

 � FCSRSUSP
The task is waiting for a shared resource string.

 � FCTISUSP
The task is waiting for a VSAM transaction ID.

 � FCXCWAIT
The task is waiting for exclusive control of a VSAM control interval.

 � KC_ENQ
The task is waiting for a record lock in a recoverable VSAM file.

 � KC_ENQ
The task is waiting for exclusive control of a record in a DAM file.

The implications of waits on any of these file control resource types are dealt with
in the sections that follow.

Resource type FCBFWAIT—waits for VSAM buffers
If your task is waiting on resource type FCBFWAIT, it means that a VSAM buffer is
not currently available. You can specify the number of VSAM data buffers and
VSAM index buffers in the RDO FILE resource definition using the DATABUFFERS
and INDEXBUFFERS parameters, respectively.

Consider increasing the numbers of these buffers if you find that tasks are
frequently having to wait on this resource type.

If there are insufficient data and index buffers for a single task, the task is
suspended indefinitely. This might happen unexpectedly if you have a base cluster
and one or more paths in the upgrade set, and your application references only the
base. VSAM upgrades the paths whenever changes are made to the base. There
could then be too few buffers defined in the RDO LSRPOOL for both base and
paths.

 Chapter 6. Dealing with waits 109

Resource type FCCIWAIT—wait for VSAM control interval split activity
If your task is waiting on resource type FCCIWAIT, it means that the task is
waiting within VSAM for control interval split processing for the file to complete.

Resource type FCDWWAIT—wait for VSAM upgrade set activity
If your task is waiting on resource type FCDWWAIT, it has received a VSAM
response, which might indicate that your task is trying to read a record via a VSAM
path while this record is being updated by another request. This other request is
updating the record either via the base or via another path. If VSAM has not yet
completed the update, the content of the alternate index currently in use is no
longer the same as the content of the base data set.

This is a transient condition. CICS waits for all current update operations for this
VSAM data set to complete and retries the request once only. If the error
continues after the request is retried, CICS assumes that there is a genuine error
and returns a response of ILLOGIC to the application. Since ILLOGIC is a
response to all unexpected VSAM errors, CICS also returns the VSAM response
and reason codes (X'0890') in bytes 2 and 3 of EIBRCODE. These identify the
cause of the ILLOGIC response.

Resource type FCFSWAIT—waits for file state changes
If your task is waiting on resource type FCFSWAIT, it means that it has attempted
to change the state of a file—for example, to CLOSE or DISABLE it—but another
task is still using the file. This can happen if a long-running transaction, possibly
conversational, is using a recoverable file. The long-running transaction has the
lock on the file, and might not release it until it terminates. In such a case,
consider changing the programming logic so that the file is released more quickly.

Only one task at a time waits on FCFSWAIT. If any other tasks attempt to change
the state of the same file, they are suspended on resource type KC_ENQ. See
“Task control waits” on page 88.

Resource type FCIOWAIT—wait for VSAM I/O
If you have a task waiting on resource type FCIOWAIT, it means that the task is
waiting within VSAM for I/O to take place.

A wait on resource type FCIOWAIT occurs when the exclusive control conflict is
deferred internally by VSAM and not returned as an error condition to CICS. An
example of this is when a request against an LSR file is made for exclusive control
of a control interval (for example, by EXEC CICS WRITE or READ UPDATE) and
either this task or another task already holds shared control of this control interval
(for example, by STARTBR).

Exclusive control waits are discussed further in “Resource type FCXCWAIT—VSAM
exclusive control wait” on page 112.

110 CICS Transaction Server for VSE/ESA Problem Determination Guide

Resource types FCPSWAIT and FCSRSUSP—waits for VSAM strings
If your task is waiting on either of resource types FCPSWAIT or FCSRSUSP, it
means that it cannot get a VSAM string. FCPSWAIT shows that the wait is for a
private string, and FCSRSUSP shows that the wait is for a shared resource string.
You can purge the task from the system, if the task is purgeable.

The number of strings defined for a VSAM data set (STRINGS parameter in the
RDO FILE resource definition) determines how many tasks can use the data set
concurrently. STRINGS can have a value in the range 1–255. When all the strings
are in use, any other task wanting to access the data set must wait until a string
has been released.

If tasks are being caused to wait unduly for strings, consider whether you can
increase the value of STRINGS, or change the programming logic so that strings
are released more quickly.

An example of programming logic that can hold onto strings (and other VSAM
resources) for too long is when a conversational transaction issues a EXEC CICS
STARTBR or READNEXT and then enters a wait for terminal input without issuing
an EXEC CICS ENDBR. The browse remains active until the ENDBR, and the
VSAM strings and buffers are retained over the terminal wait. Also, for an LSR file,
the transaction continues to hold shared control of the control interval and causes
transactions that attempt to update records in the same control interval to wait.

Similarly, transactions hold VSAM resources for too long if a EXEC CICS READ
UPDATE or WRITE MASSINSERT is outstanding over a wait for terminal input.

Resource type FCRBWAIT—file recovery failed to complete
If your task is waiting on FCRBWAIT, it means that file recovery failed to complete.
Refer the problem to the IBM Support Center.

Resource type FCTISUSP—wait for a VSAM transaction ID
If your task is waiting on resource type FCTISUSP, it means that there are no
VSAM transaction IDs available. Transaction IDs are retained by a task for the
duration of a MASSINSERT session.

Waits on FCTISUSP should not be prolonged, and if your task stays suspended on
this resource type, it could indicate any of the following:

� There could be a system-wide problem. CICS could have stopped running, or
it might be running slowly. Turn to Chapter 2, “Classifying the problem” on
page 9 for advice if you suspect this.

� There could be a performance problem. Guidance about dealing with
performance problems is given in Chapter 8, “Dealing with performance
problems” on page 139.

� The logic of your applications might need changing, so that tasks do not retain
VSAM transaction IDs for too long. If the task does other processing during the
session, perhaps even involving input from an operator, code to release the
VSAM transaction ID should be included each time.

 Chapter 6. Dealing with waits 111

Resource type FCXCWAIT—VSAM exclusive control wait
If your task is waiting on resource type FCXCWAIT, it means that it cannot get
exclusive control of a VSAM control interval at the present time. Another task
already has shared or exclusive control of the control interval, so your task is
suspended pending the release of that control interval. An exclusive control wait on
resource type FCXCWAIT occurs within CICS, unlike the similar wait on
FCIOWAIT, which occurs within VSAM. See page 110.

If you find that exclusive control conflicts occur too often in your system, consider
changing the programming logic so that applications are less likely to have
exclusive control for long periods.

The possibility that a task is deadlocked, waiting on itself or another task for
release of the control interval, is dealt with in the next section.

Exclusive control deadlock
Prior to CICS Transaction Server for VSE/ESA Release 1, a task could be made to
wait on itself for exclusive control of a VSAM control interval. The task would be
deadlocked, and could neither release exclusive control nor reacquire it.

Alternatively, a task could be made to wait on another task which has exclusive or
shared control of a VSAM control interval. If this second task was, itself, waiting for
exclusive control of a resource of which the first task has exclusive or shared
control, then both tasks would be deadlocked.

In CICS Transaction Server for VSE/ESA Release 1, however, a mechanism exists
to avoid exclusive control deadlock. If a task is waiting on resource type
FCXCWAIT and causing the task to wait (causing a deadlock), the task is abended
either with abend code AFCF or AFCG at the time that it makes the request for
exclusive control.

A task that is abended with abend code AFCF would have been waiting for
exclusive control of a VSAM control interval of which another task has shared or
exclusive control.

A task that is abended with abend code AFCG would have been waiting for
exclusive control of a VSAM control interval of which it has shared control.

See the VSE/ESA Messages and Codes Volume 3 manual for further details of
these abend codes.

To resolve the problem, determine which program caused the potential deadlock.
Find out which programs are associated with the abended task, and attempt to find
the one in error. It is likely to be one that provides successive browse and update
facilities. When you have found the programs associated with the task, turn to
“How tasks can become deadlocked waiting for exclusive control” on page 113 for
guidance about finding how the error might have occurred.

112 CICS Transaction Server for VSE/ESA Problem Determination Guide

How tasks can become deadlocked waiting for exclusive control
Tasks can become deadlocked waiting for exclusive control of a CI only when they
have shared control of the CI and then attempt to get exclusive control without
relinquishing shared control first. This can only occur for VSAM shared resource
data sets.

For the deadlock to occur, a transaction must first issue a VSAM READ
SEQUENTIAL request via EXEC CICS STARTBR. This is a VSAM “shared
control” operation. It must then issue some VSAM request requiring exclusive
control of the CI without first ending the shared control operation.

The requests that require exclusive control of the CI are:

� VSAM READ UPDATE, via EXEC CICS READ UPDATE and, subsequently,
EXEC CICS REWRITE.

Exclusive control of the CI is not acquired until after the initial read is complete,
but it happens automatically after that and the CI is not released until the
record has been rewritten.

� VSAM WRITE DIRECT, via EXEC CICS WRITE

� VSAM WRITE SEQUENTIAL, via EXEC CICS WRITE MASSINSERT

VSAM handles requests requiring exclusive control on a data set that is already
being used in shared control mode by queueing them internally. VSAM returns
control to CICS, but transactions waiting for exclusive control remain suspended.

Example of code causing an exclusive control deadlock
The following sequence of EXEC commands would cause an exclusive control
deadlock to occur.

The first command causes shared control to be acquired:

EXEC CICS STARTBR

 FILE(myfile)

 RIDFLD(rid-area)

This causes no problems. The next command at first acquires shared control while
the record is read into “input-area”. When an attempt is subsequently made to get
exclusive control, deadlock occurs because the task that wants exclusive control is
also the task that is preventing it from being acquired.

EXEC CICS READ

 FILE(myfile)

 INTO(input-area)

 RIDFLD(rid-area)

 UPDATE

The following sequence of commands would not cause deadlock to occur, because
the transaction relinquishes its shared control of the CI by ending the browse
before attempting to get exclusive control of it.

The first command causes shared control to be acquired:

EXEC CICS STARTBR

 FILE(myfile)

 RIDFLD(rid-area)

 Chapter 6. Dealing with waits 113

The next command causes shared control to be relinquished:

EXEC CICS ENDBR

 FILE(myfile)

The next command initially causes shared control to be acquired. The record is
read into “input-area”, and then exclusive control is acquired in place of shared
control.

EXEC CICS READ

 FILE(myfile)

 INTO(input-area)

 RIDFLD(rid-area)

 UPDATE

The transaction now resumes. Exclusive control is relinquished following the next
REWRITE or UNLOCK command on file “myfile”.

Resource type KC_ENQ—wait for a record lock in a recoverable VSAM
file

When an application updates a record in a recoverable VSAM file, locking occurs at
two levels. VSAM locks the CI when the record has been read, and CICS locks the
record.

The CI lock is released as soon as the REWRITE (or UNLOCK) request is
completed. However, the record is not unlocked by CICS until the updating
transaction has reached a syncpoint. This is to ensure that data integrity is
maintained if the transaction fails before the syncpoint and the record has to be
subsequently backed out.

If a second transaction attempts to update the same record while it is still locked, it
is suspended on resource type KC_ENQ until the lock is released. This can be a
long wait, because the update might depend on a terminal operator typing in data.
Also, the suspended transaction relinquishes its VSAM string and, perhaps, its
exclusive control of the CI, and has to wait once more for those resources.

If transactions are commonly made to wait for this reason, you should review the
programming logic of your applications to see if the record-locking time can be
minimized.

Note that CICS only locks the recoverable record for update. Other transactions
are allowed to read the record, and this presents a potential read integrity
exposure. Thus, a transaction might read a record after an update has been made,
but before the updating transaction has reached its syncpoint. If the reading
transaction takes action based on the value of the record, the action will be
incorrect if the record has to be subsequently backed out.

There is some more information about read integrity in Chapter 9, “Dealing with
incorrect output” on page 149.

114 CICS Transaction Server for VSE/ESA Problem Determination Guide

Resource type KC_ENQ—wait for exclusive control of a DAM record
DAM does not use the “control interval” concept. When a task reads a record for
update, the record is locked so that concurrent changes cannot be made by two
transactions. The lock is released at the end of the current logical unit of work. If
a second task attempts to update the same record while the first has the lock, it is
suspended on resource type KC_ENQ.

Interval control waits
Read this section if you have a task that is not running, and interval control seems
to be involved. The following is a list of possible cases, and suggestions to
consider before you carry out a detailed investigation. If these do not give you
enough information to solve the problem, turn to “Finding the reason for a DELAY
request not completing” on page 116 for further guidance.

If, in the course of your preliminary investigations, you find that the task is waiting
because the terminal on which it is due to start is unavailable, turn to “Terminal
waits” on page 94.

� A terminal task that should have been initiated with an EXEC CICS START
command did not start when you expected it to. CEMT INQUIRE TASK does
not recognize the task, because it has not yet been attached.

Identify the terminal where the subject task should have started, and see if that
terminal is, for some reason, unavailable. You can use CEMT INQUIRE
TERMINAL to find the status of the terminal.

� A task is waiting on resource type ICGTWAIT. This means that the task has
issued an EXEC CICS RETRIEVE WAIT command, and the data to be
retrieved is not available. The resource name gives you the name of the
terminal running the task in the ICGTWAIT wait and therefore the target
TERMID for other tasks issuing EXEC CICS START commands to supply more
data. If there are no tasks in the system that would issue START commands
for this TERMID, you need to determine whether this is reasonable. If there
are such tasks in the system, check to see why they are not issuing the
required START commands. They might, for example, be waiting for terminal
input.

Look, too, at the deadlock time-out interval (DTIMOUT) and the system purge
value (SPURGE) for the task issuing the EXEC CICS RETRIEVE WAIT
command. If there is no DTIMOUT value or SPURGE(NO) has been specified
on the RDO TRANSACTION resource definition, the task will wait indefinitely
for the data.

Note: The task waiting on resource ICGTWAIT might not be the one that you
first set out to investigate. Any AID task scheduled to start at the same
terminal cannot do so until the current task has terminated.

� You have found that the task is waiting on resource type ICWAIT. This means
that the task issued an EXEC CICS DELAY command that has not yet
completed. Check that the interval or time specified on the request was what
you intended. If you believe that the expiry time of the request has passed,
then this suggests a possible CICS error.

Consider, too, the possibility that the task was the subject of a long DELAY that
was due to be canceled by some other task. If the second task failed before it

 Chapter 6. Dealing with waits 115

could cancel the delay, the first would not continue until the full interval
specified on DELAY had expired.

� A task that issued EXEC CICS POST did not have its ECB posted when you
expected it to.

Check to make sure the interval or time you specified was what you intended.

� A task that issued EXEC CICS WAIT EVENT was not resumed when you
thought it should have been.

Assuming the WAIT was issued sometime after a POST, first check to make
sure that the interval or time specified on the POST was what you intended. If
it was, next check to see whether the ECB being waited on was posted. If it
was, that indicates a possible CICS error.

If none of the simple checks outlined here help you to solve the problem, read the
next section.

Finding the reason for a DELAY request not completing
If your preliminary investigations have not shown the reason for the wait, you need
to look in greater detail at the evidence available. Take a system dump, and format
it using the keywords CSA, ICP, and AP. These provide the common system area,
the interval control program control blocks, and the task control areas, respectively.
You might also find information given by the formatting keywords KE (kernel
storage areas, including the calling sequence for each task), DS (dispatcher task
summary, including details of suspended tasks), and TR (internal trace table) to be
useful.

First, locate field CSATODTU in the CSA. Make a note of the value there, which is
the current CICS time of day in internal ‘timer units’. Now locate the TCA for your
task, and read the value of field TCAICEAD. This gives you the address of the
interval control element for your task. Use this information to find the ICE (interval
control element) for the task, and look at field ICEXTOD. Make a note of the value
there.

If ICEXTOD is greater than CSATODTU , the ICE has not yet reached the expiry
time. These are the possible explanations:

� Your task either did not make the DELAY request you expected, or the interval
specified was longer than intended. This could indicate a user error. Check
the code of the transaction issuing the request to make sure it is correct.

� Your task’s delay request was not executed correctly. This might indicate an
error within CICS code, or a corrupted control block.

If ICEXTOD is equal to CSATODTU (very unlikely), you probably took the system
dump just as the interval was about to expire. In such a case, attempt to re-create
the problem, take another system dump, and compare the values again.

If ICEXTOD is less than CSATODTU , the ICE has already expired. The
associated task should have resumed. This indicates that some area of storage
might have been corrupted, or there is an error within CICS code.

116 CICS Transaction Server for VSE/ESA Problem Determination Guide

Using trace to find out why tasks are waiting on interval control
Before using trace to find out why your task is waiting on interval control, you need
to select an appropriate trace destination and set up the right tracing options.

By their nature, interval control waits can be long, so select auxiliary trace as the
destination, because you can specify large trace data sets for auxiliary trace.
However, the data sets do not have to be large enough to record tracing for the
whole interval specified when you first detected the problem. That is because the
error is likely to be reproducible when you specify a shorter interval, if it is
reproducible at all. For example, if the error was detected when an interval of 20
seconds was specified, try to reproduce it specifying an interval of 1 second.

As far as tracing selectivity is concerned, you need to capture level-2 trace entries
made by dispatcher domain, timer domain, and interval control program. Use the
CETR transaction to set up the following tracing options:

1. Specify special tracing for the level-2 trace points for components DS
(dispatcher domain), TI (timer domain), and IC (interval control program).

2. Select special tracing for the task causing the problem, by specifying special
tracing both for the transaction and for the terminal where it is to be run.

3. Set the master system trace flag off, to turn off all standard tracing. This helps
minimize the number of trace entries not connected with the problem.

4. Make sure that auxiliary tracing is active, then set the transaction running.
When the problem appears, format the auxiliary trace data set and either print it
or view it online.

The sort of trace entries that you can expect in normal operation are shown in the
figures that follow. They show the flow of data and control following execution of
the command EXEC CICS DELAY INTERVAL(000003). A similar set of trace
entries would be obtained if TIME had been specified instead of INTERVAL,
because TIME values are converted to corresponding INTERVAL values before
timer domain is called.

Figure 10 shows the first two entries that you get following execution of the EXEC
CICS DELAY INTERVAL(000003) command.

AP ððE1 EIP ENTRY DELAY REQ(ððð4) FIELD-A(ðð34BD7ð) FIELD-B(ð8ðð1ðð4)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8413F43E TIME-16:31:58.ð43153375ð INTERVAL-ðð.ðððð16625ð =ððð6ð2=

AP ððF3 ICP ENTRY WAIT REQ(2ðð3) FIELD-A(ðððððð3C) FIELD-B(ðððððððð)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8476ðB88 TIME-16:31:58.ð43268125ð INTERVAL-ðð.ðððð37ðððð =ððð6ð5=

Figure 10. Trace entries following EXEC CICS DELAY INTERVAL(000003) invocation

Notes:

1. Trace point AP 00E1 is on ENTRY to the EIP DELAY routine. The function is
stated in the trace header, and the fact that this trace is made on ENTRY can
be deduced from the value shown in the request field, REQ(0004).

The rightmost two bytes of FIELD B give the EIBFN value, in this case
X'1004'. This shows that this is an interval control DELAY request.

The value shown against TASK is the trace task number, and it is unique to the
task while the task is in the system. Its purpose is to show which trace entries
relate to which tasks. The task number in this example is 00163. As long as
the task is in the system, and either running or suspended, trace entries having

 Chapter 6. Dealing with waits 117

this task number always relate to it. Use the task number for your task to
identify the trace entries associated with it.

2. Trace point AP 00F3 is on ENTRY to the ICP WAIT routine. The function is
given explicitly in the trace header, and both the function and the fact that this
represents ENTRY to the routine can be deduced from the request field,
REQ(2003).

The value of FIELD A, X'0000003C', is an important one for problem
determination. It shows the interval that has been specified, in this case three
seconds. Check the value shown here for your own task, to make sure it is
what you expect it to be.

Look next for an entry with point ID DS 0004 showing your task being suspended,
as in Figure 11. You might see TI domain trace entries preceding it that show
entry and exit for FUNCTION(REQUEST_NOTIFY_INTERVAL), but these do not
always appear.

There might also be some intervening entries, but they are unlikely to be of
relevance to the problem.

TI ð1ðð TISR ENTRY - FUNCTION(REQUEST_NOTIFY_INTERVAL) DOMAIN_TOKEN(ððE7ðððð , ðððððððð) STCK_INTERVAL(ððððððð2DC6C1ððð)

 PERIODIC_NOTIFY(NO) NOTIFY_TYPE(TIMER_TASK)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8476352A TIME-16:31:58.ð44239ðððð INTERVAL-ðð.ðððð155ððð =ððð614=

1-ðððð ðð6ððððð ððððððð6 ðððððððð ðððððððð B3Bððððð ðððððððð ð1ðððððð ðððððððð \.-..............................\

ðð2ð ðððððððð ðððððððð ðððððððð ððE7ðððð ðððððððð ðððððððð ðððððððð ððððððð2 \.............X..................\

ðð4ð DC6C1ððð ðððððððð ð2ð2ðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \.%..............................\

TI ð1ð1 TISR EXIT - FUNCTION(REQUEST_NOTIFY_INTERVAL) RESPONSE(OK) TIMER_TOKEN(ð3B9Bð58 , ðððððð1B)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8476352A TIME-16:31:58.ð73889875ð INTERVAL-ðð.ð296188125\ =ððð617=

1-ðððð ðð6ððððð ððððððð6 ðððððððð ðððððððð B3Bððððð ðððððððð ð1ððð1ðð ðððððððð \.-..............................\

ðð2ð ðððððððð ðððððððð ðððððððð ððE7ðððð ðððððððð ð3B9Bð58 ðððððð1B ððððððð2 \.............X..................\

ðð4ð DC6C1ððð ðððððððð ð2ð2ðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \.%..............................\

DS ððð4 DSSR ENTRY - FUNCTION(SUSPEND) SUSPEND_TOKEN(ð1ð4ðð34) RESOURCE_NAME(1477) RESOURCE_TYPE(ICWAIT) PURGEABLE(YES)

 DEADLOCK_ACTION(INHIBIT)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-847645CE TIME-16:31:58.ð73933625ð INTERVAL-ðð.ðððð4375ðð =ððð618=

1-ðððð ðð58ðððð ðððððð14 ððððððð1 ðððððððð B7ð5ðððð ðððððððð ð4ððð1ðð ðððððððð \................................\

ðð2ð ðððððððð ð1ð4ðð34 F1F4F7F7 4ð4ð4ð4ð C9C3E6C1 C9E34ð4ð ðððððð1B ððððððð2 \........1477 ICWAIT\

ðð4ð DC6C1ððð ðððððððð ð2ð1ððð3 ðððððððð ðððððððð ðððððððð \.%...................... \

Figure 11. Trace entries showing interval calculation and task suspension

Notes:

1. Trace point TI 0100, if shown, is on ENTRY to the
REQUEST_NOTIFY_INTERVAL function of timer domain. This is stated
explicitly in the trace header.

The value shown in the header for STCK_INTERVAL is derived from the
machine store clock value calculated for the DELAY interval specified on the
EXEC CICS DELAY command. You can find out how store clock values are
related to times in hours, minutes, and seconds from the ESA/390 Principles of
Operation manual.

If you do the calculation, you will find that the value shown is not exactly equal
to the interval you specified. An extra microsecond is added, to account for the
case where the interval is specified as 0.

In this example, 3 seconds is exactly equal to a store clock interval of
X'00000002DC6C0000'. You can see that the actual store clock value is
quoted in the trace entry as X'00000002DC6C1000', which is 3 seconds plus
1 microsecond.

118 CICS Transaction Server for VSE/ESA Problem Determination Guide

The TIME field of the trace entry shows the time at which the entry was made,
in the format hh:mm:ss. The value in this example (ignoring the fractions of a
second) is 16:31:58. It follows that the task is due to be resumed when the
time is 16:32:01, because the interval is 3 seconds.

2. Trace point TI 0101, if shown, is on EXIT from the
REQUEST_NOTIFY_INTERVAL function of timer domain.

You can see from RESPONSE(OK) in the header that the function completed
normally.

3. Trace point DS 0004 is on ENTRY to the dispatcher task SUSPEND/RESUME
interface.

The SUSPEND_TOKEN field in the trace header is significant. It shows the
unique suspend token being used for this SUSPEND/RESUME dialog, and it is
referred to explicitly again in a later trace entry showing that the task has been
resumed. In this example, the suspend token is X'01040034'.

Any subsequent dispatcher trace entry that shows the suspend token for your
task is connected with the suspension or resumption of the task.

Field RESOURCE_TYPE(ICWAIT) in the trace header shows that the resource
type associated with this suspend is ICWAIT. ICWAIT is the resource type that
is returned on CEMT INQUIRE TASK for tasks that are waiting on interval
control.

Next, obtain some trace entries that record system activity during the period when
your task is suspended. There are likely to be relatively few at the level of tracing
detail you have specified, but you need to look further on in the trace to find the
next entries of interest.

Add 3 seconds (or whatever interval you specified) to the time shown on the last
trace entry you looked at, and turn forward to the trace entries made at around that
time. Now look for an entry made from trace point DS 0004. This does not show
the task number for your task, but it does show its suspend token. When you have
found it, go back one entry. You should find there a trace entry made from trace
point AP F322. This and the following two trace entries of interest are shown in
Figure 12.

AP F322 APTIX RESUMED - SYSTEM TASK APTIX RESUMED

TASK-ðððð6 KE_NUM-ððð9 TCB-ðð9F3338 RET-84773724 TIME-16:32:ð1.1ð1687ð625 INTERVAL-ðð.ððð1ð65ððð =ððð67ð=

1-ðððð ð1ðððððð D7C5D5C4 D5D6E3D7 ð11ð7739 ððE7ðððð ðððððððð ð3B9Bð58 ðððððð1B \....PENDNOTP.....X..............\

ðð2ð ð1ð8ððð2 ððD4ðððð ðððððððð ð3B9Bððð ððððððð1 ð1ð5ððð2 ðððððððð ðððððððð \.....M..........................\

ðð4ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\

ðð6ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð \................................\

DS ððð4 DSSR ENTRY - FUNCTION(RESUME) SUSPEND_TOKEN(ð1ð4ðð34)

TASK-ðððð6 KE_NUM-ððð9 TCB-ðð9F3338 RET-847646D4 TIME-16:32:ð1.1ð19761875 INTERVAL-ðð.ðððð278125 =ððð674=

1-ðððð ðð58ðððð ðððððð14 ððððððð1 ðððððððð B4ðððððð ðððððððð ð5ððð1ðð ðððððððð \................................\

ðð2ð ðððððððð ð1ð4ðð34 ðððððððð ððE7ðððð ðððððððð ð3B9Bð58 ðððððð1A ðððð26EE \.............X..................\

ðð4ð D9AC1ððð ðððððððð ðððððððð ððð1632C ðððððððð ðððððððð \R....................... \

DS ððð5 DSSR EXIT - FUNCTION(RESUME) RESPONSE(OK)

TASK-ðððð6 KE_NUM-ððð9 TCB-ðð9F3338 RET-847646D4 TIME-16:32:ð1.1ð19959375 INTERVAL-ðð.ðððð1975ðð =ððð675=

1-ðððð ðð58ðððð ðððððð14 ððððððð1 ðððððððð B4ðððððð ðððððððð ð5ððð1ðð ðððððððð \................................\

ðð2ð ðððððððð ð1ð4ðð34 ðððððððð ððE7ðððð ðððððððð ð3B9Bð58 ðððððð1A ðððð26EE \.............X..................\

ðð4ð D9AC1ððð ðððððððð ðððððððð ððð1632C ðððððððð ðððððððð \R....................... \

Figure 12. Trace entries showing your task being resumed

 Chapter 6. Dealing with waits 119

Notes:

1. Trace point AP F322 is used to report that system task APTIX has been
resumed. APTIX has the job of “waking up” your task on expiration of the
specified interval.

The task number for APTIX is, in this case, X'00006', and this value is shown
on the trace entry.

2. Trace point DS 0004 is on entry to the dispatcher SUSPEND/RESUME
interface. This function is stated explicitly in the header.

TASK-00006 indicates that the trace entry is for system task APTIX.

SUSPEND_TOKEN(01040034) shows that APTIX is requesting dispatcher
domain to resume the task that was suspended for the specified interval. You
will recall that a suspend token of X'01040034' was given to your task when it
was first suspended.

3. Trace point DS 0005 is on exit from the dispatcher SUSPEND/RESUME
interface.

The trace entry shows RESPONSE(OK), indicating that the task whose
suspend token was X'01040034' has successfully been resumed. However,
note that this does not necessarily mean that the task has started to run—it has
only been made “dispatchable”. For example, it still needs to wait for a TCB to
become available.

Now look forward in the trace, and locate a trace entry made from trace point
AP 00F3 and showing your task number. This and the next entry conclude the
DELAY request for your task. They are shown in Figure 13.

AP ððF3 ICP EXIT NORMAL REQ(ððð5) FIELD-A(ð1ððð3ðð) FIELD-B(ð3BD6EEð ..>.)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8476ðB88 TIME-16:32:ð1.1ð23ð45625 INTERVAL-ðð.ðððð154375 =ððð688=

AP ððE1 EIP EXIT DELAY OK REQ(ððF4) FIELD-A(ðððððððð) FIELD-B(ðððð1ðð4)

TASK-ðð163 KE_NUM-ððð7 TCB-ðð9F3338 RET-8413F43E TIME-16:32:ð1.1ð2415375ð INTERVAL-ðð.ðððð235625 =ððð691=

Figure 13. Trace entries showing satisfactory conclusion of the DELAY request

Notes:

1. Trace point AP 00F3 is on EXIT from interval control program. Field
REQ(0005) shows that this is so, and it also shows that the response was
normal. Anything other than a normal response would result in a value other
than X'00' for the first byte of the REQ field.

2. Trace point AP 00E1 is on EXIT from the EXEC interface program. This is
shown by bits 0–3 of the second byte of the REQ value, X'F4'.

The values shown for FIELD A and FIELD B show that no exception condition
was detected.

That is the end of the DELAY processing, and the task that was suspended should
have been resumed.

When you look at your own trace table, concentrate on finding the point at which
the processing went wrong. Also, watch for bad parameters. If you do find one, it
could mean that an application has a coding error, or some field holding a
parameter has been overlaid, or an error has occurred in CICS code.

120 CICS Transaction Server for VSE/ESA Problem Determination Guide

Checking your application code is the easiest option you have. If you find that it is
correct and you suspect a storage violation, see Chapter 10, “Dealing with storage
violations” on page 173. If you think the error is in CICS code, contact the IBM
Support Center.

XRF alternate system waits
The XRF takeover process involves several operations. Before each operation can
be started, one or more events must have completed. For example:

� Passively-shared data sets must not be opened until it is known that the active
system has terminated.

Note: This is the only way an alternate system can be sure that no more data
will be written by an active system.

� Resource managers, such as transient data and temporary storage, rely on the
time-of-day clock providing them with a nondecreasing value to ensure the
proper management of their resources. The alternate system must not restart
a resource manager until the alternate time-of-day clock has been synchronized
with the active time-of-day clock.

A system task that issued a takeover request to CAVM waits on the ECB
WCSTCECB in the CAVM static control block (DFHWCGPS) until CAVM has
decided to accept or reject the request. The DFHDSSR WAIT_EXTERNAL request
is issued in DFHWSRTR. The CAVM subtask posts WCSTCECB in either
DFHWSTKV (the normal case) or DFHWSSOF (CAVM failure).

The following ECBs each represent an event. The ECBs are located in the static
storage for DFHXRP. The ECBs and the events are:

� XRSTIECB—the CAVM has initiated a takeover.

� XRSIAECB—the alternate system is now the incipient active system.

� XRSTCECB—the active system is known to have terminated.

� XRSRAECB—DFHRSD is available for use by DFHRC (recovery control)
macros.

� XRSSSECB—the time-of-day clock is synchronized with active system sign off.

� XRSSTECB—the time-of-day clock is synchronized with active system
termination.

 XRSTIECB
This ECB is posted by DFHXRA, following a successful call to the CAVM to initiate
takeover. Once the ECB has been posted, DFHXRA attaches a system transaction
to initiate the switch of terminals with backup sessions. DFHXRA is called from
either the surveillance task (DFHXRSP), or the console communication task
(DFHXRCP). No tasks wait for XRSTIECB to be posted.

 XRSIAECB
The XRSIAEB ECB is posted by DFHXRA, following notification by the CAVM that
an alternate system is now the incipient active system. DFHXRA is called from the
surveillance task (DFHXRSP). No tasks wait for XRSIAECB to be posted.

 Chapter 6. Dealing with waits 121

 XRSTCECB
The XRSTCECB ECB is posted by DFHXRA, following notification by the CAVM
that an active system has terminated. There can be a delay in posting the ECB if:

� An SDUMP is being taken as part of the active system termination process.

� In a 2-CPC environment, the active CPC has failed, and the operator failed to
reply to the messages sent to the console.

No tasks wait for XRSTCECB to be posted.

 XRSRAECB
The XRSRAECB ECB is posted by DFHXRA once the restart data set has been
opened for DFHRC use. No tasks wait for XRSRAECB to be posted.

 XRSSSECB
The XRSSSECB ECB is posted by DFHXRA following notification by the CAVM
that the time-of-day clock is synchronized with active sign off. DFHXRA is called
from the surveillance task (DFHXRSP). No tasks wait for XRSSSECB to be
posted.

 XRSSTECB
The XRSSTECB ECB is posted by DFHXRA, following notification by the CAVM
that the time-of-day clock is synchronized with respect to active system termination.
There may be a delay in posting the ECB if the time indicated by the active system
time-of-day clock is significantly ahead of that indicated by the alternate system
time-of-day clock. DFHXRA is called from the surveillance task (DFHXRSP).

Only the system initialization task, DFHSII1, waits for XRSSTECB to be posted.
When the ECB is posted, DFHSII1 links to DFHJRCP to restore journal states
before attaching the remaining resource manager tasks.

 XRPUTMSG
You are only likely to find either of the CICS-supplied transactions CEDA or CESN
waiting on a resource type of XRPUTMSG, and only during XRF takeover by the
alternate CICS system. It can indicate either of these conditions:

� Data that is required by the transactions is held on a data set subject to a VSE
LOCK, and another job currently has the lock.

� There is an error in the CICS availability manager.

If it seems clear that a VSE LOCK is not implicated, refer the problem to the IBM
Support Center.

CICS system task waits
From an analysis of trace, you could have evidence that a CICS system task is in a
wait state. You might have seen the task suspended on a SUSPEND call to the
dispatcher, but with no corresponding RESUME call. Alternatively, by looking at
the dispatcher task summary in a formatted CICS system dump, you might see that
a CICS system task is waiting.

Note: You cannot get online information about waiting system tasks from CEMT
INQUIRE TASK or EXEC CICS INQUIRE TASK.

122 CICS Transaction Server for VSE/ESA Problem Determination Guide

If a system task is in a wait state, and there is a system error preventing it from
resuming, contact your IBM Support Center. However, do not assume that there is
a system error unless you have other evidence that the system is malfunctioning.
Other possibilities are:

� Some system tasks are intended to wait for long periods while they wait for
work to do. Module DFHSMSY of storage manager domain, for example, can
stay suspended for minutes, or even hours, in normal operation. Its purpose is
to clean up storage when significant changes occur in the amount being used,
and that might happen only infrequently in a production system running well
within its planned capacity.

� System tasks perform many I/O operations, and they are subject to constraints
like string availability and volume and data set locking. In the case of tape
volumes, the tasks can also be dependent on operator action while new
volumes are mounted.

If, in addition to the waiting system task, you think you have enough evidence to
show that there is a system error, contact your IBM Support Center.

 FEPI waits
This section outlines the CICS waits that FEPI issues. Table 23 shows the points
at which FEPI issues CICS waits:

It is possible for a FEPI_RQE wait to be outstanding for a long time—such as when
awaiting a flow from the back-end system that is delayed due to network traffic. It
is recommended that you do not cancel tasks that are waiting at this point; to do so
could lead to severe application problems.

An SZRDP wait is generated when the FEPI Resource Manager is idle.
Consequently, the SZ subtask is also inactive. On lightly loaded systems, this
occurs frequently.

If the Resource Manager abends, then any active CICS FEPI transactions are left
waiting on the FEPI_RQE resource. Because the Resource Manager is absent,
these waits never get posted, so the transactions suspend. You must issue a
CEMT SET TASK FORCEPURGE command to remove these suspended
transactions from the system.

Table 23. FEPI waits

Resource
name

Resource
type

Wait type Description

FEPI_RQE ADAPTER WAIT_EXTERNAL Issued in the FEPI adapter when
a FEPI command is passed to
the Resource Manager for
processing. Ends when the
Resource Manager has
processed the request.

SZRDP FEPRM WAIT_EXTERNAL Issued in the FEPI Resource
Manager when it has no work to
do. Ends when work arrives
(from either the FEPI adapter or
a VTAM exit).

 Chapter 6. Dealing with waits 123

What to do if CICS has stalled
CICS can stall during initialization, when it is running apparently “normally”, or
during termination.

These possibilities are dealt with in:

� “CICS has stalled during initialization”
� “CICS has stalled during a run” on page 125
� “CICS has stalled during termination” on page 127

If XRF takeover by an alternate CICS system fails to complete satisfactorily, that
might also appear to you as a CICS stall. See Chapter 11, “Dealing with XRF
errors” on page 185 for more information.

CICS has stalled during initialization
If CICS stalls during initialization, on cold start, warm start, or emergency restart,
the first place to look is the VSE console log. This tells you how far initialization
has progressed.

Note that there might be significant delays at specific stages of initialization,
depending on how CICS last terminated.

On cold start, loading the GRPLIST definitions from the CSD data set can take
several minutes. For large systems, this delay could be 20 minutes or more. You
can tell if this stage of initialization has been reached because you get the following
console message for each list specified on the GRPLIST system initialization
parameter:

DFHSI1511 INSTALLING GROUP LIST xxxxxxxx

On warm start, there may be a considerable delay while resource definitions are
being created from the global catalog. You are not told explicitly that this
processing is taking place, but it occurs just after this message is issued:

DFHJC45ðð - nn OF nn JOURNALS SUCCESSFULLY OPENED

If you find that unexpected delays occur at other times during CICS initialization,
consider the messages that have already been sent to the console and see if they
suggest the reason for the wait. For example, a shortage of storage is one of the
most common causes of stalling, and is always accompanied by a message. The
JCL job log is another useful source of information.

You can find out if this has happened by taking an SDUMP of the CICS region.
Format the dump using the keywords KE and DS, to get the kernel and dispatcher
task summaries.

Consider, too, whether any first- or second-stage program list table (PLT) program
that you have written could be in error. If such a program does not follow the strict
protocols that are required, it can cause CICS to stall. For programming
information about PLT programs, see the CICS Customization Guide.

124 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS has stalled during a run
If a CICS region that has been running normally stalls, so that it produces no output
and accepts no input, the scope of the problem is potentially system-wide. The
problem might be confined exclusively to CICS, or it could be caused by any other
task running under VSE.

Look first on your VSE console for any messages. Look particularly for messages
indicating that operator intervention is needed, for example to change a tape
volume. The action could be required on behalf of a CICS task, or it could be for
any other program that CICS interfaces with.

If there is no operator action outstanding, inquire on active users at the VSE
console to see what the CPU usage is for CICS. If you find the value is very high,
this probably indicates that a task is looping. Read Chapter 7, “Dealing with loops”
on page 129 for advice about investigating the problem further.

If the CPU usage is low, CICS is doing very little work. Some of the possible
reasons are:

� The system definition parameters are not suitable for your system.

� The system is short on storage, and new tasks cannot be started. This
situation is unlikely to last for long unless old tasks cannot, for some reason, be
purged.

� The system is at one of the MXT or transaction class limits, and no new tasks
can be attached. In such a case, it is likely that existing tasks are deadlocked,
and for some reason they cannot be timed out.

� There is an exclusive control conflict for a volume.

� There is a problem with the communications access method.

� There is a CICS system error.

To find out if any of these apply to your system, see the paragraphs that follow.
For some of the investigations, you need to see a system dump of the CICS
partition. If you do not already have one, you can request one using the VSE
console. Make sure that CICS is apparently stalled at the time you take the dump,
because otherwise it will not provide the evidence you need. Format the dump
using the formatting keywords KE and XM, to get the storage areas for the kernel
and the transaction manager.

Are the system definition parameters wrong?
It is possible that the system definition parameters for your system are causing it to
stall, possibly at a critical loading. Take a look at what has been specified, paying
particular attention to these items:

� The CICS maximum tasks (MXT) and transaction class (MAXACTIVE) limits. If
these are too low, new tasks could fail to be attached. If you suspect one of
these limits is the cause of the stall, read “Are MXT or transaction class limits
causing the stall?” on page 126 for a way of getting further evidence.

� ICV, the system region exit time. If this is set too high, CICS might relinquish
control to the operating system for longer than intended when it has no work to
do, perhaps giving the impression of a stall.

 Chapter 6. Dealing with waits 125

� ICVR, the runaway task time interval. If this is set too high, a runaway task
could stop other tasks from running for a relatively long time. It can have a
value up to 2 700 000 milliseconds, in which case a runaway task would not
time out for 45 minutes. CICS could, in the meantime, be stalled. If the ICVR
is set to 0, the runaway task does not time out at all.

You should already have an indication if the ICVR is the problem, from the
CPU usage (see above).

� ICVTSD, the terminal scan delay interval. The effect differs for VTAM and
non-VTAM terminals, but if its value is not appropriate for your system the
effect could make you think that CICS is stalled.

For more details about the choice of these and other system definition parameters,
see the CICS Performance Guide.

Is the system short on storage?
If storage is under stress, storage manager statistics indicate that a storage stress
situation has occurred (‘Times went short on storage’). In addition, if the SOS is
caused by a suspended GETMAIN or if CICS is unable to alleviate the situation by
releasing programs with no current user, and slowing the attachment of new tasks:

� A message is sent to the console saying that CICS is short on storage
(DFHSM0131I for storage below the 16 megabyte line, DFHSM0133I for
storage above the 16 megabyte line)

� The storage manager statistic ‘Times went short on storage’ is updated.

CICS can go short on storage independently in any DSA. You may see tasks
suspended on any of the resource types, CDSA, SDSA, RDSA, UDSA, ECDSA,
ESDSA, ERDSA, or EUDSA.

Are MXT or transaction class limits causing the stall?
Before new transactions can be attached for the first time, they must qualify under
the MXT and transaction class limits. In a system that is running normally, tasks
run and terminate and new transactions are attached, even though these limits are
reached occasionally. It is only when tasks can neither complete nor be purged
from the system that CICS can stall as a result of one of these limits being
reached.

Look first at the transaction manager summary in the formatted system dump.

Investigate the tasks accepted into the MXT set of tasks to see if they are causing
the problem. XM dump formatting formats the state of MXT and provides a
summary of the TCLASSes and of the transactions waiting for acceptance into
each TCLASS.

Now look at the task control queue control area, in the AP section of the dump for
a summary of task enqueues and resources. If you find that many tasks are
enqueued on the same resource, this could indicate a deadlock involving tasks that
are not purgeable. Investigate these tasks to find if they are causing the problem.

126 CICS Transaction Server for VSE/ESA Problem Determination Guide

Is there a problem with the communications access method?
If you suspect that there is a communication problem, you can inquire on the status
of VTAM from the VSE console. To do this, use the command MSG nn,DATA=CEMT

INQUIRE VTAM. You can use this command only if the VSE console has been
defined to CICS as a terminal. The status returned has a value of OPEN or
CLOSED.

� If the VTAM status is OPEN, the problem could be associated with processing
done in the VTAM part of your system or with processing done in the CICS part
of your system. If it appears that there is a communication problem, consider
using VTAM buffer tracing. For guidance about using this technique, see
Chapter 14, “Using traces in problem determination” on page 199.

� If the VTAM status is CLOSED, CICS cannot use VTAM to perform
communication functions.

Is there a CICS system error?
If you have investigated all the task activity, and all the other possibilities from the
list, and you have still not found an explanation for the stall, it is possible that there
is a CICS system error. Contact the IBM Support Center with the problem.

CICS has stalled during termination
Waits often occur when CICS is being quiesced because some terminal input or
output has not been completed. To test this possibility, try using the CEMT
transaction to inquire on the tasks currently in the system.

CICS termination takes place in two stages:

1. All transactions are quiesced.
2. All data sets and terminals are closed.

If you find that you cannot use the CEMT transaction, it is likely that the system is
already in the second stage of termination. CEMT cannot be used beyond the first
stage of termination.

Note: Even if CEMT is not included in the transaction list table (XLT), you can still
use it in the first stage of termination.

The action to take next depends on whether you can use the CEMT transaction,
and if so, whether or not there are current user tasks.

� If you can use the CEMT transaction:

– If there are user tasks currently in the system, check what they are. A task
may be performing a prolonged termination routine, or it might be waiting
on a resource before it can complete its processing. It is also possible that
a task is waiting for operator intervention.

Determine what type of terminal is associated with the task. If the terminal
is a 3270 device, some keyboard input might be expected. If it is a printer,
it might have been powered off or it might have run out of paper.

– If there are no user tasks in the system, it may be that one or more
terminals have not been closed. Use the CEMT transaction to see which
terminals are currently INSERVICE, and then use CEMT SET to place
them OUTSERVICE.

 Chapter 6. Dealing with waits 127

If these actions fail, proceed as if you were unable to use the CEMT
transaction.

� If you cannot use the CEMT transaction , go to the VSE console or the
NetView master terminal and display the active sessions. If necessary, close
down the network using the VARY NET,INACT,ID=applid command. This should
enable CICS to resume its termination sequence. If it does not, you might
need to cancel the CICS job. If this does happen, consider whether any PLT
program running in the second quiesce stage could be in error. If such a
program did not follow the strict protocols that are required, it could cause CICS
to stall during termination. For programming information about PLT programs,
see the CICS Customization Guide.

128 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 7. Dealing with loops

A loop is a sequence of instructions that is executed repetitively. Loops that are
coded into applications must always be guaranteed to terminate, because otherwise
you could get any of the symptoms of loops described in Chapter 2, “Classifying
the problem” on page 9.

If a loop does not terminate, it could be that the termination condition can never
occur, or it might not be tested for, or the conditional branch could erroneously
cause the loop to be executed over again when the condition is met.

This chapter outlines procedures for finding which programs are involved in a loop
that does not terminate, and contains the following topics:

� “What sort of loop is indicated by the symptoms?”
� “Investigating loops that cause transactions to abend with abend code AICA” on

page 134
� “Investigating loops that are not detected by CICS” on page 136
� “What to do if you cannot find the reason for a loop” on page 138

If you find that the looping code is in one of your applications, check through the
code to find out which instructions are in error. If it looks as if the error is in CICS
code, you probably need to contact the IBM Support Center.

Some CICS domains can detect loops in their own routines, and let you know if
one is suspected by sending the following message:

DFHxx0004 applid A possible loop has been detected at offset X 'offset' in
module modname.

The two characters “xx” represent the two-character domain index. If, for example,
monitoring domain had detected the loop, the message number would be
DFHMN0004.

If you see this sort of message repeatedly, contact the IBM Support Center.

What sort of loop is indicated by the symptoms?
Unplanned loops can be divided into those that can be detected by CICS, and
those that cannot. Figure 14 shows a hierarchical classification of loops.

Unplanned loops

Detectable by CICS Not detectable by CICS

Tight loops Non-yielding loops Yielding loops

Figure 14. Hierarchical classification of loops

Figure 15 gives a specific example of code containing a simple tight loop.

 Copyright IBM Corp. 1979, 1999 129

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR EXIT)
ENDFILE(END MSG)

END EXEC.
ROUTE FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM ID)
END EXEC.

NEW LINE ATTRIBUTE.
GO TO NEW LINE ATTRIBUTE.
MOVE LOW VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 15. Example of code containing a tight loop

CICS can detect some looping tasks by comparing the length of time the tasks
have been running with the runaway time interval, ICVR, that you code in the
system initialization table. If a task runs for longer than the interval you specify,
CICS regards it as “runaway” and causes it to abend with an abend code of AICA.

However, in some cases, CICS requests that are contained in the looping code can
cause the timer to be reset. Not every CICS request can do this; it can only
happen if the request can cause the task to be suspended. Thus, if the looping
code contains such a request, CICS cannot detect that it is looping.

The properties of the different types of loop, and the ways you can investigate
them, are described in the sections that follow.

Tight loops and non-yielding loops
Tight loops and non-yielding loops are both characterized by the fact that the
looping task can never be suspended within the limits of the loop. This makes
them detectable by CICS, which compares the time they have been running
continually with the runaway time interval, ICVR, that you code in the system
initialization table. If the tasks run for longer than the interval you specify, CICS
regards them as “runaway” and causes them to abend with an abend code of
AICA.

Note: If you make the ICVR value equal to 0, runaway task detection is disabled.
Runaway tasks can then cause the CICS partition to stall, meaning that CICS must
be canceled and brought up again. You might choose to set ICVR to zero in test
systems, because of the wide variation in response times. However, it is usually
more advisable to set ICVR to a large value in test systems.

A tight loop is one involving a single program, where the same instructions are
executed repeatedly and control is never returned to CICS.

Figure 16 on page 131 shows a tight loop, with an indefinite number of instructions
contained in the loop. None of the instructions returns control to CICS. In the
extreme case, there could be a single instruction in the loop, causing a branch to
itself.

130 CICS Transaction Server for VSE/ESA Problem Determination Guide

Program X

looping code does
not return control ..
to CICS ..

Figure 16. A tight loop

A non-yielding loop is also contained in a single program, but it differs from a tight
loop in that control is returned temporarily from the program to CICS. However, the
CICS routines that are invoked are ones that can neither suspend the program nor
pass control to the dispatcher.1 There is, therefore, no point at which the task can
be suspended, and so the ICVR cannot be reset.

Figure 17 shows a non-yielding loop.

Program Y

EXEC CICS ... command is executed, but
looping ICVR timer not reset ...
code and returns to program

Figure 17. A non-yielding loop

1 The CICS commands that do not cause tasks to wait include (but are not restricted to) ASKTIME, DEQ, ENQ, ENTER
TRACENUM, FREEMAIN, HANDLE, RELEASE, TRACE ON/OFF. Whether a command allows the ICVR to be reset might also
depend on other factors. For instance, a FREEMAIN might reset the ICVR if the storage lock is held. A READ might also not
wait if the desired record is already in a VSAM buffer.

 Chapter 7. Dealing with loops 131

Figure 18 shows an example of code that contains a simple non-yielding loop. In
this case, the loop contains only one CICS command, EXEC CICS ASKTIME.

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR EXIT)
ENDFILE(END MSG)

END EXEC.
ROUTE FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM ID)
END EXEC.

NEW LINE ATTRIBUTE.
EXEC CICS

ASKTIME
END EXEC.
GO TO NEW LINE ATTRIBUTE.
MOVE LOW VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 18. Example of code containing a non-yielding loop

If you have a transaction that repeatedly abends with an abend code of AICA, first
make sure the ICVR value has not been set too low. If the value seems
reasonable, read “Investigating loops that cause transactions to abend with abend
code AICA” on page 134 for advice on determining the limits of the loop.

If you have a stalled CICS region, diagnose the problem using the techniques in
“What to do if CICS has stalled” on page 124. Check if the ICVR value has been
set to zero. If it has, change the value and try to cause a transaction to abend with
a code of AICA.

 Yielding loops
Yielding loops are characterized by returning control at some point to a CICS
routine that can suspend the looping task. However, the looping task is eventually
resumed, and so the loop continues.

CICS is unable to use the runaway task timer to detect yielding loops, because the
timer is reset whenever the task is suspended. Thus, the runaway task time is
unlikely ever to be exceeded, and so the loop goes undetected by the system.

Yielding loops typically involve a number of programs. The programs might be
linked to and returned from, or control might be transferred from one program to
another in the loop. A yielding loop can also be confined to just one program, in
which case it must contain at least one wait-enabling CICS command.

132 CICS Transaction Server for VSE/ESA Problem Determination Guide

Figure 19 shows a yielding loop involving two programs, A and B. Program A links
to program B, and then program B subsequently returns.

Program A Program B

Link to program B

RETURN to Program A

Figure 19. A yielding loop

Figure 20 shows a specific example of a yielding loop within a single program.
This code issues the SUSPEND command, which is always a yielding type of
command. Every time SUSPEND is issued, the dispatcher suspends the task
issuing the request, and sees if any other task of higher priority can run. If no such
task is ready, the program that issued the SUSPEND is resumed.

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR EXIT)
ENDFILE(END MSG)

END EXEC.
ROUTE FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM ID)
END EXEC.

NEW LINE ATTRIBUTE.
EXEC CICS

SUSPEND
END EXEC.
GO TO NEW LINE ATTRIBUTE.
MOVE LOW VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 20. Example of code containing a yielding loop

You can detect a yielding loop only by circumstantial evidence such as repetitive
output, or excessive use of storage. A fuller description of what to look out for is
given in “Loops” on page 15.

If you suspect that you have a yielding loop, turn to “Investigating loops that are not
detected by CICS” on page 136 for further guidance.

 Chapter 7. Dealing with loops 133

Investigating loops that cause transactions to abend with abend code
AICA

If the loop causes a transaction to abend with abend code AICA, it must either be a
tight loop or a non-yielding loop. You do not need to find which type you have,
although this is likely to be revealed to you when you do your investigation.

Both a tight loop and a non-yielding loop are characterized by being confined to a
single user program. You should know the identity of the transaction to which the
program belongs, because it is the transaction that abended with code AICA when
the runaway task was detected.

The documentation you need
When investigating loops that cause transactions to abend AICA, you need the
CICS system dump accompanying the abend. System dumping must be enabled
for dump code AICA.

You can use the system dump to find out:

� Whether the loop is in your user code or in CICS code
� If the loop is in your user code, the point at which the loop was entered

It is also useful to have trace running, as trace can help you to identify the point in
your program where looping started. If you have a non-yielding loop, it can
probably also show you some instructions in the loop.

A tight loop is unlikely to contain many instructions, and you might be able to
capture all the evidence you need from the record of events in the internal trace
table. A non-yielding loop may contain more instructions, depending on the EXEC
CICS commands it contains, but you might still be able to capture the evidence you
need from the record of events in the internal trace table. If you find that it is not
big enough, direct tracing to the auxiliary trace destination instead.

Trace CICS system activity selectively, to ensure that most of the data you obtain is
relevant to the problem. Set up the tracing like this:

1. Select level-1 special tracing for AP domain, and for the EXEC interface
program (EI).

2. Select special tracing for just the task that has the loop, and disable tracing for
all other tasks by turning the master system trace flag off.

You can find guidance about setting up these tracing options in Chapter 14, “Using
traces in problem determination” on page 199.

Now start the task, and wait until it abends AICA. Format the CICS system dump
with formatting keywords KE and TR, to get the kernel storage areas and the
internal trace table. (See “Formatting system dumps” on page 244.) You now
have the documentation you need to find the loop.

134 CICS Transaction Server for VSE/ESA Problem Determination Guide

Looking at the evidence
Look first at the kernel task summary. The runaway task is flagged “*YES*” in the
ERROR column. The status of the task is shown as “***Running**”.

Now use the kernel task number for the looping task to find its linkage stack. If a
user task is looping, DFHAPLI, a transaction manager program, should be near the
top of the stack. You are likely to find other CICS modules at the top of the stack
that have been invoked in response to the abend. For example, those associated
with taking the dump. If you find any program or subroutine above DFHAPLI that
has not been invoked in response to the error, it is possible that CICS code, or the
code of another program, has been looping. If you find that the loop is within CICS
code, contact the IBM Support Center. Make sure you keep the dump, because
the Support Center staff need it to investigate the problem.

If the kernel linkage stack entries suggest that the loop is in your user program, you
next need to identify the loop.

Identifying the loop
There are two approaches to identifying loops in user programs. You can use the
trace table, or you can look in the transaction dump.

Using the trace table
Go to the last entry in the internal trace table, and work backward until you get to
an entry for point ID AP 1942. The trace entry should have been made when
recovery was entered after the transaction abended AICA. Make a note of the task
number, so you can check that any other trace entries you read relate to the same
abended task.

The entries preceding AP 1942 should have been made either just before the loop
was entered (for a tight loop), or within the loop itself (for a non-yielding loop).
Watch in particular for trace entries with the point ID AP 00E1. These are made
on entry to the EXEC interface program (DFHEIP) whenever your program issues
an EXEC CICS command, and again on exit from the EXEC interface program.
Field B gives you the value of EIBFN, which identifies the specific command that
was issued. (For a list of EIBFN values and their meanings, see the CICS User’s
Handbook.)

For trace entries made on exit from DFHEIP, field A gives you the response code
from the request. Look carefully at any response codes—they could provide the
clue to the loop. Has the program been designed to deal with every possible
response from DFHEIP? Could the response code you see explain the loop?

If you see a repeating pattern of trace points for AP 00E1, you have a non-yielding
loop. If you can match the repeating pattern to statements in the source code for
your program, you have identified the limits of the loop.

If you see no repeating pattern of trace points for AP 00E1, it is likely that you
have a tight loop. The last entry for AP 00E1 (if there is one) should have been
made from a point just before the program entered the loop. You might be able to
recognize the point in the program where the request was made, by matching trace
entries with the source code of the program.

 Chapter 7. Dealing with loops 135

Using the transaction dump
First, find the PSW, and see if it points into your program. This is likely to be the
case if you have a tight loop, and it should lead you to an instruction within the
loop.

If the next instruction address is not within your code, it is of less value for locating
the loop. However, you should attempt to identify the module containing the
instruction, as it is likely to be one that was called during the execution of a CICS
request made within the loop. Use the module index at the end of the formatted
dump to find the module name. If the PSW address is not contained in one of
these areas, another program was probably executing on behalf of CICS when the
runaway task timer expired.

Note: It is possible that the loop was contained entirely within a module owned by
CICS or some other product, and your program was not responsible for it at
all. If you find that the loop is contained within CICS code, contact the IBM
Support Center.

If the PSW does point to a module outside your application program, find the
address of the return point in your program from the contents of register 14 in the
appropriate register save area. The return address will lie within the loop, if the
loop is not confined to system code.

When you have located a point within the loop, work through the source code and
try to find the limits of the loop.

Finding the reason for the loop
When you have identified the limits of the loop, find the reason why the loop
occurred. Assuming you have the trace, and EI level-1 tracing has been done,
ensure that you can explain why each EIP entry is there. Verify that the responses
are as expected.

A good place to look for clues to loops is immediately before the loop sequence,
the first time it is entered. Occasionally, a request that results in an unexpected
return code can trigger a loop. However, you usually can only see the last entry
before the loop if you have CICS auxiliary trace running, because the internal trace
table is likely to wrap before the AICA abend occurs.

Investigating loops that are not detected by CICS
You probably suspect that you have a loop through circumstantial evidence, and
CICS has failed to detect it. You might, for example, have seen some sort of
repetitive output, or statistics might have shown an excessive number of I/O
operations or requests for storage. These types of symptom can indicate that you
have a yielding loop.

The nature of the symptoms may indicate which transaction is involved, but you
probably need to use trace to define the limits of the loop.

Use auxiliary trace to capture the trace entries, to ensure that the entire loop is
captured in the trace data. If you use internal trace, there is a danger that
wraparound will prevent you from seeing the whole loop.

136 CICS Transaction Server for VSE/ESA Problem Determination Guide

Use the CETR transaction to set up the following tracing options. You can use the
transaction dynamically, on the running CICS system. For guidance about using
the CETR transaction, see Chapter 14, “Using traces in problem determination” on
page 199.

1. Select level-1 special tracing for every component, using the CETR transaction.
Capture as much trace information for the task as possible, because you do not
yet know what functions are involved in the loop.

2. Set all standard tracing off, by setting the master system trace flag off.

3. Select special tracing for just the task containing the loop.

4. Set the auxiliary tracing status to STARTED, and the auxiliary switch status to
ALL. As CETR allows you to control trace dynamically, you do not need to
start tracing until the task is running and the symptoms of looping appear.

These steps ensure that you get all level-1 trace points traced for just the task you
suspect of looping, the trace entries being sent to the auxiliary trace destination.

When you have captured the trace data, purge the looping task from the system.
Use the CEMT INQUIRE TASK command to find the number of the task, and then
purge it using either the CEMT SET TASK PURGE or the CEMT SET TASK
FORCEPURGE command. This causes the transaction to abend, and to produce a
transaction dump of the task storage areas.

Note: The use of FORCEPURGE is, in general, not recommended, because it can
cause unpredictable system problems. For example, it causes task storage
areas to be released, including I/O areas, without notifying any components
that might be accessing them. If the FORCEPURGEd task was waiting for
input, such an area might be written to after it is released. The storage
might even be in use by another task when the input occurs.

The documentation you need
In addition to the auxiliary trace data and the transaction dump, you need source
listings of all the programs in the transaction.

The trace data and the program listings should enable you to identify the limits of
the loop. You need the transaction dump to examine the user storage for the
program. The data you find there could provide the evidence you need to explain
why the loop occurred.

Identifying the loop
Examine the trace table, and try to detect the repeating pattern of trace entries. If
you cannot do so straightaway, remember that many different programs might be
involved, and the loop could be large. Another possibility is that you might not
have captured the entire loop in the trace data set. This could be because the loop
did not have time to complete one cycle before you purged the transaction, or the
trace data sets might have wrapped before the loop was complete.

Consider also the possibility that you might not be dealing with a loop, and the
symptoms you saw are due to something else—poor application design, for
example.

 Chapter 7. Dealing with loops 137

If you are able to detect a pattern, you should be able to identify the corresponding
pattern of statements in your source code.

Note: The PSW is of no value in locating loops that are not detected by CICS.
The contents of the PSW are unpredictable, and the PSW is not formatted in the
transaction dump for ATCH abends.

Finding the reason for the loop
Look carefully at the statements contained in the loop. Does the logic of the code
suggest why the loop occurred? If not, examine the contents of data fields in the
task user storage. Look particularly for unexpected response codes, and null
values when finite values are expected. Programs can react unpredictably when
they encounter these conditions, unless they are tested for and handled
accordingly.

What to do if you cannot find the reason for a loop
If you cannot find the reason for a non-yielding or a yielding loop using the
techniques outlined above, there are two more approaches that you can adopt:

1. Use the interactive tools that CICS provides
2. Modify the program, and execute it again.

Investigating loops using interactive tools
If you have a non-yielding or a yielding loop, you can use the execution diagnostic
facility (CEDF) to look at the various parts of your program and storage at each
interaction with CICS. If you suspect that some unexpected return code might have
caused the problem, CEDF is a convenient way of investigating the possibility.

CECI and CEBR are also useful for investigating loops. You can, for example, use
them to examine the status of files and queues during the execution of your
program. Programs can react unpredictably if records and queue entries are not
found when these conditions are not tested for and handled accordingly.

Modifying your program to investigate the loop
If the program is extremely complex, or the data path difficult to follow, you may
need to insert additional statements into the source code. Even extra ASKTIME
commands allow you to use EDF and inspect the program at more points. You can
also request dumps from within your program, and insert user trace entries, to help
you to find the reason for the loop.

138 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 8. Dealing with performance problems

When you have a performance problem, it might be characterized by one of the
following symptoms, each of which represents a particular processing bottleneck. If
so, turn directly to the relevant section:

1. Some tasks fail to get attached to the transaction manager—see “Finding why
tasks fail to get attached to the transaction manager” on page 141.

2. Some tasks fail to get attached to the dispatcher—see “Finding why tasks fail
to get attached to the dispatcher” on page 142.

3. Some tasks get attached to the dispatcher, but fail to get dispatched—see
“Finding why tasks fail to get an initial dispatch” on page 144.

4. Tasks get attached to the dispatcher and then run and complete, but take a
long time to do so—see “Finding out why tasks take a long time to complete”
on page 146.

If you are only aware that performance is poor, and you have not yet found which
of these is relevant to your system, read “Finding the bottleneck” on page 140.

There is a quick reference section at the end of this chapter that summarizes
bottlenecks, symptoms, and actions that you should take.

 Copyright IBM Corp. 1979, 1999 139

Finding the bottleneck
Four potential bottlenecks can be identified for user tasks, and three for CICS
system tasks. The bottlenecks are summarized in Figure 21.

SYSTEM TASK USER TASK

attach to Bottleneck 1
transaction manager

attach to Bottleneck 2
dispatcher

initial dispatch Bottleneck 3

dispatch, suspend Bottleneck 4
and resume cycle

TASK ENDS

Figure 21. Potential performance bottlenecks in a CICS system

Each bottleneck is affected by a different set of system parameters, and you may
find that adjusting the parameters solves the problem. It is useful to determine
which bottleneck is causing your performance problem, so you can find out which
parameters you need to consider.

If performance is particularly poor for any of the tasks in your system, you might be
able to capture useful information about them with CEMT INQUIRE TASK.
However, tasks usually run more quickly than you can inquire on them, even
though there may be a performance problem. Then consider using performance
class monitoring or tracing to get the information you need.

Initial attach to the transaction manager: If a task has not been attached to the
transaction manager, you cannot get any information about its status online. CEMT
INQUIRE TASK returns a response indicating that the task is not known. If the
task has not already run and ended, this response means that it has not been
attached to the transaction manager.

Guidance about finding out why tasks take a long time to get an initial attach to the
transaction manager is given in “Finding why tasks fail to get attached to the
transaction manager” on page 141.

140 CICS Transaction Server for VSE/ESA Problem Determination Guide

Initial attach to the dispatcher: If a task has been attached to the transaction
manager, but has not yet been attached to the dispatcher, CEMT INQUIRE TASK
will show it to be ‘SUSPENDED’ on a resource type of MXT or TCLASS. These
are the only valid reasons why a user task, having been attached to the transaction
manager, would not be attached to the dispatcher.

If CEMT INQUIRE TASK returns anything other than this, the task is not waiting to
be attached to the dispatcher. However, consider whether the MXT limit might be
causing the performance problem, even though individual tasks are not being held
up long enough for you to use CEMT INQUIRE TASK on them. In such a case,
use monitoring and tracing to find just how long tasks are waiting to be attached to
the dispatcher.

Guidance about finding whether the MXT limit is to blame for the performance
problem is given in “Is the MXT limit preventing tasks from getting attached?” on
page 142.

Initial dispatch: A task can be attached to the dispatcher, but then take a long
time to get an initial dispatch. In such a case, CEMT INQUIRE TASK returns a
status of ‘READY’ for the task. If you keep getting this response and the task fails
to do anything, it is likely that the task you are inquiring on is not getting its first
dispatch.

The delay might be too short for you to use CEMT INQUIRE TASK in this way, but
still long enough to cause a performance problem. In such a case, use tracing or
performance class monitoring for the task, either of which would tell you how long
the task had to wait for an initial attachment to the dispatcher.

If you think your performance problem could be due to tasks taking a long time to
get a first dispatch, read “Finding why tasks fail to get an initial dispatch” on
page 144.

The dispatch, suspend, and resume cycle: If performance is poor and tasks are
getting attached and dispatched, the problem lies with the dispatch, suspend and
resume cycle. Tasks run, but the overall performance is poor. If you are able to
show that tasks are getting attached and then dispatched, read “Finding out why
tasks take a long time to complete” on page 146.

Finding why tasks fail to get attached to the transaction manager
A task might fail to get attached to the transaction manager for one of the following
reasons:

1. The interval specified on an EXEC CICS START command might not have
expired, or the time specified might not have been reached, or there might be
some error affecting interval control.

Guidance about investigating these possibilities is given in “Interval control
waits” on page 115. Consider doing this only if INTERVAL or TIME was
specified on the START command.

2. The terminal specified on an EXEC CICS START command might not be
available. It could be currently OUTSERVICE, or executing some other task.
Check its status using CEMT INQUIRE TERMINAL, and perhaps take some
remedial action.

 Chapter 8. Dealing with performance problems 141

Remember that several tasks might be queued on the terminal, some of which
might require operator interaction. In such a case, the transaction to be started
might not get attached to the transaction manager for a considerable time.

3. A remote system specified on an EXEC CICS START command might not be
available, or an error condition might have been detected in the remote system.
In such a case, the error would not be reported back to the local system.

Use CEMT INQUIRE TERMINAL to inquire on the status of the remote system.

Finding why tasks fail to get attached to the dispatcher
Two valid reasons why a user task might fail to get an initial attach to the
dispatcher are2:

� The system is at the MXT limit (see “Is the MXT limit preventing tasks from
getting attached?”).

� The task belongs to a transaction class that is at its MAXACTIVE limit.

Is the MXT limit preventing tasks from getting attached?
Before the transaction manager can attach a user task to the dispatcher, the task
must first qualify under the MXT (maximum tasks in the system) and transaction
class limits. If a task is not getting attached, it is possible that one or both of these
values is too small.

Try using CEMT INQUIRE TASK to show if a task is failing to get attached because
of the MXT or transaction class limits. If you cannot use CEMT because the task is
held up for too short a time, you can look at either the transaction global statistics,
transaction class statistics, or the CICS performance-class monitoring records.
Another option is to use CICS system tracing.

Using transaction manager statistics: To find out how often the MXT and
transaction class limits are reached, look at the transaction global statistics and
transaction class statistics. If you compare the number of times these limits are
reached with the total number of transactions, you can see whether the values set
for the limits are adversely affecting performance.

To gather statistics relating to the number of times that the MXT or transaction
class limits are reached, you need to use, at the start of the run, the command
CEMT PERFORM STATISTICS RECORD (or your site replacement) with the
keywords TRANSACTION and TRANCLASS.

CEMT PERFORM STATISTICS RECORD [TRANCLASS TRANSACTION]

The statistics are gathered and recorded in the Data Management Facility (DMF)
data set. You can format this data set by using the statistics utility program,
DFHSTUP. Read the section on DFHSTUP in the CICS Operations and Utilities
Guide for details on how to use this facility.

When formatting the DMF data set using DFHSTUP, you may find the following
DFHSTUP control parameters useful:

2 For a system task, there may not be enough storage to build the new task. This sort of problem is more likely to occur near peak
system load times.

142 CICS Transaction Server for VSE/ESA Problem Determination Guide

 � SELECT APPLID=
 � COLLECTION TYPE=REQ
 � TIME START= ,STOP=
 � DATE START= ,STOP=

See the section on DFHSTUP in the CICS Operations and Utilities Guide for details
on how to code these parameters. If you code these control parameters correctly,
you avoid the formatting of much information that may well be unnecessary at this
point.

If MXT is never reached, or reached only infrequently, it is not affecting
performance.

If MXT is reached for 5% of transactions, this might have a noticeable effect on
performance. When the ratio reaches 10%, there is likely to be a significant effect
on performance, and this could account for some tasks taking a long time to get a
first attach.

Consider revising the MXT and transaction class values if the statistics indicate that
they are affecting performance. For guidance about the performance
considerations when you set these limits, see the CICS Performance Guide.

Using CICS monitoring: Use monitoring information to find out how long an
individual task waits to be attached to the Dispatcher. If you want to summarize
the monitoring data of particular transactions to assess the impact across many
tasks, and you have a suitable MVS system that you can load your monitoring data
into, use products such as Service Level Reporter (SLR).

Monitoring produces performance-class records (if performance-class monitoring is
active) for each task that is executing or has executed in the CICS region.
Performance-class records contain a breakdown of the delays incurred in
dispatching a task, part of which is the impact on a task of the MXT limit and
transaction class limits.

For further information on the data produced by CICS Monitoring see the CICS
Performance Guide.

Using trace: Use trace if you want to find out just how long an individual task
waits to be attached to the dispatcher.

If you do not want to do any other tracing, internal trace is probably a suitable
destination for trace entries. Because the task you are interested in is almost
inactive, very few trace entries are generated.

Select special tracing for the transaction associated with the task, and turn off all
standard tracing by setting the master system trace flag off. Define as special trace
points the level-1 trace points for transaction manager (XM), and for the CICS task
controlling the facility that initiates the task, such as terminal control (TC). Make
sure that no other trace points are defined as special. For guidance about setting
up these tracing options, see Chapter 14, “Using traces in problem determination”
on page 199.

When you have selected the options, start tracing to the internal trace table and
attempt to initiate the task. When the task starts, get a system dump with CEMT

 Chapter 8. Dealing with performance problems 143

PERFORM SNAP. Format the dump using the keyword TR, to get the internal
trace table.

Look for the trace entry showing terminal control calling the transaction manager
with a request to attach the task, and the subsequent trace entry showing the
transaction manager calling dispatcher domain with a request to attach the task.
The time stamps on the two trace entries tell you the time that elapsed between the
two events. That is equal to the time taken for the task to be attached.

Finding why tasks fail to get an initial dispatch
When a task is past the transaction class and MXT barriers, it can be attached to
the dispatcher. It must then wait for its initial dispatch. If tasks are made to wait
for a relatively long time for their first dispatch, you will probably notice the
degradation in the performance of the system.

You can get evidence that tasks are waiting too long for a first dispatch from
performance class monitoring. If you do find this to be the case, investigate the
reasons for the delay. To calculate the initial dispatch delay incurred by a task use
the following fields from the performance-class monitoring record:

DSPDELAY = First dispatch delay
TCLDELAY = Transaction Class delay
MXTDELAY = MXT delay

Using the above names:

Delay in dispatcher = DSPDELAY - (TCLDELAY + MXTDELAY)

If ‘Delay in Dispatcher’ is significantly greater than 0, the dispatcher could not
dispatch the task immediately.

The factors that influence the length of time a task must wait before getting its first
dispatch are:

� The priority of the task
� Whether the system is becoming short on storage

Priorities of tasks: Normally, the priorities of tasks determine the order in which
they are dispatched. Priorities can have any value in the range 1–255. If your task
is getting a first dispatch (and, possibly, subsequent dispatches) too slowly, you
might consider changing its priority to a higher value.

You have no control over the priorities of CICS system tasks.

One other factor affecting the priorities of tasks is the priority aging multiplier,
PRTYAGE, that you code in the system initialization parameters. This determines
the rate at which tasks in the system can have their priorities aged. Altering the
value of PRTYAGE affects the rate at which tasks are dispatched, and you
probably need to experiment to find the best value for your system.

Storage stress conditions are detailed in the storage manager statistics. CICS
attempts to alleviate the situation by releasing programs with no current user, and
by not attaching new tasks. If these actions fail to eliminate storage stress or if the

144 CICS Transaction Server for VSE/ESA Problem Determination Guide

SOS condition is caused by a suspended GETMAIN, one or both of these
messages is sent to the console:

DFHSM0131 applid CICS is under stress (short on storage below 16MB)

DFHSM0133 applid CICS is under stress (short on storage above 16MB)

If you do not observe the SOS messages, you can find out how many times CICS
has gone SOS from the storage manager statistics ('Times went short on storage').
You can also get this information from the storage manager domain DSA summary
in a formatted system dump.

Note: Release of the storage cushion is not the only cause of CICS going SOS.
The condition is also raised if a task makes an unconditional request for storage
greater than the storage cushion size when the system is approaching SOS. In
such a case, the cushion is not released, but the task making the unconditional
request is suspended and message DFHSM0131I or DFHSM0133I may be issued.
CICS resumes the suspended tasks immediately if storage is made available by
CICS releasing unused programs. The short-on-storage condition remains until all
the previously suspended tasks have obtained the storage they requested.

Two other conditions are recognized by the dispatcher on the approach to SOS,
namely ‘storage getting short’ and ‘storage critical’. The two conditions affect the
chance of new tasks getting a first dispatch.

From the ‘storage getting short’ point, through ‘storage critical’ and right up to SOS,
the priorities of new user tasks are reduced in proportion to the severity of the
condition3. At first, you are not likely to notice the effect, but as ‘storage critical’ is
approached, new tasks might typically be delayed by up to a second before they
are dispatched for the first time.

It is likely that ‘storage getting short’ and ‘storage critical’ occur many times for
every occasion SOS is reached. If you want to see how often these points are
reached, select level-2 tracing for the dispatcher domain and look out for trace point
IDs DS 0038 (‘storage getting short’) and DS 0039 (‘storage critical’). Trace point
DS 0040 shows that storage is OK.

A summary of the effects of ‘storage getting short’, ‘storage critical’, and SOS is
given in Table 24.

Table 24. How storage conditions affect new tasks getting started

State of storage Effects on user tasks

Storage getting short Priority of new user tasks reduced a little

Storage critical Priority of new user tasks reduced considerably

3 This sentence is untrue if the SIT parameter PRTYAGE is set to 0.

 Chapter 8. Dealing with performance problems 145

Finding out why tasks take a long time to complete
When a ready task is dispatched, it becomes a running task. It is unlikely to
complete without being suspended at least once, and it is likely to go through the
‘READY - RUNNING - SUSPENDED’ cycle several times during its lifetime in the
dispatcher.

The longer the task spends in the non-running state, either ‘ready’ or ‘suspended’,
the greater your perception of performance degradation. In extreme cases, the
task might spend so long in the non-running state that it is apparently waiting
indefinitely. It is not likely to remain ‘ready’ indefinitely without running, but it could
spend so long suspended that you would probably classify the problem as a wait.

The purpose of this section is to deal not with waiting tasks, but instead with tasks
that complete more slowly than they should.

Here are some factors that can affect how long tasks take to complete:

 � System loading
� Time-out interval for tasks
� Distribution of data sets on DASD volumes

Each of these factors is considered in turn.

The effect of system loading on performance
The most obvious factor affecting the time taken for a task to complete is system
loading. For more information, see the CICS Performance Guide. Note in
particular that there is a critical loading beyond which performance is degraded
severely for only a small increase in transaction throughput.

The effect of task time-out interval on performance
The time-out interval is the length of time a task can wait on a resource before it is
removed from the suspended state. A transaction that times out is normally
abended.

Any task in the system can use resources and not allow other tasks to use them.
Normally, a task with a large time-out interval is likely to hold on to resources
longer than a task with a short time-out interval. Such a task has a greater chance
of preventing other tasks from running. It follows that task time-out intervals should
be chosen with care, to optimize the use of resources by all the tasks that need
them.

A summary of performance bottlenecks, symptoms, and causes
Table 25 on page 147 contains a summary of potential performance bottlenecks,
the symptoms you get if they are restricting the performance of your system, and
the specific causes of the delays at each point.

146 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 25. A summary of performance bottlenecks, symptoms and causes

Bottleneck Symptoms Possible causes

Initial attach to
transaction
manager

CEMT INQUIRE TASK does
not know task.

Tracing shows long wait for
attach to transaction
manager.

Interval on EXEC CICS START too
long

Terminal not available

Remote system not available

Initial attach to
dispatcher

CEMT INQUIRE TASK
shows wait on MXT or
transaction class.

Tracing shows long wait for
attach to dispatcher.

MXT or transaction class limits set
too low

First dispatch Performance class
monitoring shows long wait
for first dispatch.

Storage statistics show CICS
has gone SOS.

MXT or transaction class limits set
too low

Priority of task set too low

Insufficient storage

System under stress, or near it

SUSPEND /
RESUME
cycle

Tasks take a long time to
complete.

System loading high

Task time-out interval too large

CICS data sets are susceptible to
VSE LOCK activity

 Chapter 8. Dealing with performance problems 147

148 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 9. Dealing with incorrect output

For the purpose of problem determination with this book, “incorrect output’ is
explained in Chapter 2, “Classifying the problem” on page 9.

The following categories of incorrect output are dealt with in this chapter:

� “Trace output is incorrect”
� “Dump output is incorrect” on page 153
� “Wrong data has been displayed on a terminal” on page 156
� “Incorrect data is present on a VSAM data set” on page 163
� “An application did not work as expected” on page 163
� “Your transaction produced no output at all” on page 164
� “Your transaction produced some output, but it was wrong” on page 169

Trace output is incorrect
If you are unable to get the trace output you need, you can find guidance about
solving the problem in this section. You can be very selective about the way CICS
does tracing, and the options need to be considered carefully.

There are two main types of problem, explained below:

� Your tracing might have gone to the wrong destination.

� You might have captured the wrong data.

Tracing has gone to the wrong destination
CICS system trace entries go to the following destinations:

� CICS trace entries, other than exception traces, go to either of the following
trace destinations if they are currently active:

– The internal trace table
– The current auxiliary trace data set

You can inquire on the current destinations and set them to what you want
using the CETR transaction.

� CICS exception traces go to the internal trace table even if internal tracing is
not active, and to any other trace destination that is currently active.

Figure 39 on page 218 illustrates what you might see on a CETR screen, and
indicates how you can change the options by overtyping the fields. From that
illustration you can see that, from the options in effect, a normal trace call results in
a trace entry being written to the auxiliary trace destination. If an exceptional
condition occurred, the corresponding exception trace entry would be made both to
the auxiliary trace data set and to the internal trace table, even though the internal
trace status is STOPPED.

Note that the master system trace flag value only determines whether standard
tracing is to be done for a task (see Figure 37 on page 213). It has no effect on
any other tracing status.

Internal tracing goes to the internal trace table in main storage. The internal trace
table is used as a buffer in which the trace entries are built regardless of the

 Copyright IBM Corp. 1979, 1999 149

destination. It, therefore, always contains the most recent trace entries, even if its
status is STOPPED—if at least one of the other trace destinations is currently
STARTED.

Auxiliary tracing goes to one of two data sets, if the auxiliary tracing status is
STARTED. The current data set can be selected from the CETR screen by
overtyping the appropriate field with A or B, as required. What happens when the
data set becomes full is determined by the auxiliary switch status. Make sure that
the switch status is correct for your system, or you might lose the trace entries you
want, either because the data set is full or because they are overwritten.

The way in which trace entries are directed to the required destinations is illustrated
in Figure 40 on page 219.

You have captured the wrong trace data
There are several ways in which you might capture the wrong trace data. The
following are some sets of symptoms that suggest specific areas for attention:

1. You are not getting the right task tracing, because:

� Tasks do not trace the right trace points for some components.

� Transactions are not being traced when they are started from particular
terminals.

� There is no tracing for some terminals that interest you.

If you are aware of symptoms like these, it is likely that you do not have the
right task tracing options set up. Turn to “You are not getting the correct task
tracing” on page 151 for further guidance.

2. You are getting the wrong amount of data traced, because:

� Tracing is not being done for all the components you want, so you are
getting too little information.

� Tracing is being done for too many components, so you are getting more
information than you want.

� You are not getting the right trace points (level-1 or level-2) traced for some
of the components.

� Tasks are not tracing the component trace points you want. This evidence
suggests CICS component tracing selectivity is at fault.

If your observations fit any of these descriptions, turn to “You are not getting
the correct component tracing” on page 151 for guidance about fixing the
problem.

3. The data you want is missing entirely from the trace table.

If you have this sort of problem, turn to “The entries you want are missing from
the trace table” on page 151 for guidance about finding the cause.

It is worth remembering that the more precisely you can define the trace data you
need for any sort of problem determination, the more quickly you are likely to get to
the cause of the problem.

150 CICS Transaction Server for VSE/ESA Problem Determination Guide

You are not getting the correct task tracing
If you are not getting the correct task tracing, use the CETR transaction to check
the transaction and terminal tracing options, and if necessary change them.

You can define whether you want standard or special tracing for specific
transactions, and standard or special tracing for transactions started at specific
terminals. You can also suppress tracing for transactions and terminals that do not
interest you. The type of task tracing that you get (standard or special) depends on
the type of tracing for the corresponding transaction-terminal pair, in the way shown
in Figure 35 on page 212.

You can deduce from the table that it is possible to get standard tracing when a
transaction is initiated at one terminal, and special tracing when it is initiated from
another terminal. This raises the possibility of setting up inappropriate task tracing
options, so the trace entries that interest you—for example, when the transaction is
initiated from a particular terminal—are not made.

You are not getting the correct component tracing
If you are not getting the correct component tracing, use the CETR transaction to
inquire on the current component tracing options and, if necessary, to change them.

First, check that you are only tracing components that interest you. If some other
components are being traced, change the options so they are no longer traced for
standard tracing or for special tracing, as appropriate.

Next, check that the right tracing levels have been defined for standard tracing and
special tracing. Remember that, whenever a task that has standard tracing is
running, the trace points that you have defined as standard for a component are
traced whenever that component is invoked. Similarly, special trace points are
traced whenever special task tracing is being done.

Figure 37 on page 213 illustrates the logic used to determine whether a trace call
is to be made from a trace point.

If you are satisfied that the component tracing selectivity is correct but you are still
getting too much or too little data, read “You are not getting the correct task tracing”
above.

The entries you want are missing from the trace table
Read this section if one or more entries you were expecting were missing entirely
from the trace table.

There are several possible situations:

1. The trace entry did not appear at the expected time:

� If tracing for some components or some tasks did not appear, you might
not have set up the tracing selectivity correctly. For guidance about
checking and correcting the options, refer to “You are not getting the
correct task tracing” and “You are not getting the correct component
tracing.”

� If you attempted to format the auxiliary trace data set selectively by
transaction or terminal, and trace entries for the transaction or terminal
were missing entirely, it could be that you did not capture the

 Chapter 9. Dealing with incorrect output 151

corresponding “transaction attach” (point ID AP F004, KC level-1) trace
entry.

When you select trace entries by specifying TRANID or TERMID
parameters in the DFHTU410 trace control statements, DFHTU410
searches for any transaction attach trace entries that contain the specified
TRANID or TERMID. It then formats any associated trace entries,
identified by the TASKID found in the transaction attach trace entry data.

It follows that you must have KC level-1 tracing selected for the task in
question at the time it is attached if you want to format the auxiliary trace
data set selectively by transaction or terminal.

For more details about trace formatting using DFHTU410, see the CICS
Operations and Utilities Guide.

If the options were correct and tracing was running at the right time, but the
trace entries you wanted did not appear, it is likely that the task you were
interested in did not run or did not invoke the CICS components you expected.
Examine the trace carefully in the region in which you expected the task to
appear, and attempt to find why it was not invoked. Remember also that the
task tracing options might not, after all, have been appropriate.

2. The earliest trace entry was later than the event that interested you.

If tracing was running at the right time, it is likely that the trace table wrapped
round and earlier entries were overwritten.

Internal trace always wraps when it is full. Try using a bigger trace table, or
direct the trace entries to the auxiliary trace destination.

Note: Changing the size of the internal trace table during a run causes the
data that was already there to be destroyed. In such a case, the
earliest data would have been recorded after the time when you
redefined the table size.

Auxiliary trace switches from one data set to the next when it is full, if the
autoswitch status is NEXT or ALL:

� If the autoswitch status is NEXT, the two data sets can fill up but earlier
data cannot be overwritten. Your missing data might be in the initial data
set, or the events you were interested in might have occurred after the data
sets were full. In the second case, you can try increasing the size of the
auxiliary trace data sets.

� If the autoswitch status is ALL, you might have overwritten the data you
wanted. The initial data set is reused when the second extent is full. Try
increasing the size of the auxiliary trace data sets.

3. You cannot find an exception trace entry that you expected.

Bear in mind that exception tracing is always done to the internal trace table
irrespective of the status of any other type of tracing. So, if you missed it in
your selected trace destination, try looking in the internal trace table.

152 CICS Transaction Server for VSE/ESA Problem Determination Guide

Dump output is incorrect
Read this section if you did not get the dump output you were expecting.

The things that can go wrong are:

� The dump you got did not seem to relate to the CICS partition in which you
were interested.

� You did not get a dump when an abend occurred.

� Some dump IDs were missing from the sequence of dumps in the dump data
set.

� You did not get the correct data formatted from a system dump.

The sections that follow give guidance about resolving the possible problems you
may encounter.

The dump you got did not seem to relate to your CICS partition
If you have experienced this problem, it is likely that you have dumped the wrong
CICS partition. It should not occur if you are running a single partition. If you
invoked the dump from the CICS master terminal using the CEMT PERFORM
SNAP transaction, check that you were using the master terminal for the correct
CICS partition. This is more likely to be a problem if you have a VTAM network,
because that allows you to switch a single physical VTAM terminal between the
different CICS partitions.

You did not get a dump when an abend occurred
Read this section if you have experienced any of these problems:

� A transaction abended, but you did not get a transaction dump.

� A transaction abended and you got a transaction dump, but you did not get the
system dump you wanted at the same time.

� A system abend occurred, but you did not get a system dump.

There are, in general, two reasons why dumps might not be taken:

� Dumping was suppressed because of the way the dumping requirements for
the CICS partition were defined. The valid ways that dumping can be
suppressed are described in detail in the sections that follow.

� A system error could have prevented a dump from being taken. Some of the
possibilities are:

– No transaction or system dump data sets were available.

– An I/O error occurred on a transaction or a system dump data set.

– There was insufficient space to write the dump in the dump data set. In
such a case, you might have obtained a partial dump.

Depending on the areas that are missing from the dump, the dump
formatting program might subsequently be able to format the data that is
there, or it might not be able to format the data at all.

For each of these system errors, there should be a message explaining what
has happened. See the VSE/ESA Messages and Codes Volume 3 manual for
guidance about the action to take.

 Chapter 9. Dealing with incorrect output 153

How dumping can be suppressed
If you did not get a dump when an abend occurred, and there was no system error,
the dumping that you required must somehow have been suppressed. There are
several levels at which dumping can be suppressed:

Find out which type of dump suppression applies to your system before you decide
what remedial action to take.

Global suppression of system dumping
System dumping can be suppressed globally in two ways:

� By coding the DUMP=NO system initialization parameter

� By using the CEMT command CEMT SET SYSTEM DUMPING (NOSYSDUMP)

� By using the system programming command EXEC CICS SET SYSTEM
DUMPING, with a CVDA value of NOSYSDUMP

If system dumping has been suppressed globally by any of these means, any
system dumping requirements specified in the transaction dump table and the
system dump table are overridden.

Inquire whether system dumping has been suppressed globally by using the CEMT
or EXEC CICS INQUIRE SYSTEM DUMPING commands. If necessary, cancel the
global suppression of system dumping using CEMT or EXEC CICS SET SYSTEM
DUMPING (SYSDUMP).

Suppression of system dumping from a global user exit program
System dumping can be suppressed for specific dump codes by an XDUREQ user
exit program. For programming information about the XDUREQ global user exit
program, see the CICS Customization Guide.

If an exit program that suppresses system dumping for a particular dump code is
enabled, system dumping is not carried out for that dump code. This overrides any
system dumping requirement specified for the dump code in the dump table.

The exit program can suppress system dumps only while it is enabled. If you want
the system dumping suppression to be canceled, issue an EXEC CICS DISABLE
command for the program. Any system dumping requirements specified in the
dump table then take effect.

Suppression of dumping for individual transactions
For individual transactions, you can suppress transaction dumps by using the
EXEC CICS SET TRANSACTION DUMPING system programming command, or by
using the DUMP attribute on the RDO TRANSACTION resource definition. None of
the dumping requirements specified in the transaction dump table are met if a
transaction abends for which dumping is suppressed.

Use EXEC CICS INQUIRE TRANSACTION DUMPING to see whether dumping
has been suppressed for a transaction, and then use the corresponding SET
command to cancel the suppression if necessary.

154 CICS Transaction Server for VSE/ESA Problem Determination Guide

Suppression of dumping by dump table options
If transaction dumping and system dumping are not suppressed by any of the
preceding mechanisms, the dump table options determine whether or not you get a
dump for a particular dump code. For details, see Chapter 15, “Using dumps in
problem determination” on page 225.

You can inquire on transaction and system dump code attributes using CEMT
INQUIRE TRDUMPCODE and CEMT INQUIRE SYDUMPCODE, respectively. You
must specify the dump code you are inquiring on.

If you find that the dumping options are not what you want, use CEMT SET
TRDUMPCODE or CEMT SET SYDUMPCODE to change the values of the
attributes accordingly.

� If you had no transaction dump when a transaction abended , use CEMT
INQUIRE TRDUMPCODE and check if an attribute of TRANDUMP or
NOTRANDUMP is specified for this dump code. The attribute needs to be
TRANDUMP if a transaction dump is to be taken.

If the attribute is shown to be TRANDUMP, look next at the maximum number
of dumps specified for this dump code, and compare it with the current number.
The values are probably equal, showing that the maximum number of dumps
have already been taken.

� If you had a transaction dump but no system dump , use CEMT INQUIRE
TRDUMPCODE and check whether there is an attribute of SYSDUMP or
NOSYSDUMP for the dump code. You must SYSDUMP specified if you are to
get a system dump as well as the transaction dump.

Check also that you have not had all the dumps for this dump code, by
comparing the maximum and current dump values.

� If you had no system dump when a system abend occurred , use CEMT
INQUIRE SYDUMPCODE and check whether you have an attribute of
SYSDUMP or NOSYSDUMP for the dump code. You need SYSDUMP if you
are to get a system dump for this type of abend.

Finally, check the maximum and current dump values. If they are the same,
you need to reset the current value to zero.

Some dump IDs were missing from the sequence of dumps
CICS keeps a count of the number of times that dumping is invoked during the
current run, and the count is included as part of the dump ID given at the start of
the dump.

Note: SDUMPs produced by the kernel do not use the standard dump domain
mechanisms, and always have a dump ID of 0/0000.

If both a transaction dump and a system dump are taken in response to the event
that invoked dumping, the same dump ID is given to both. However, if just a
transaction dump or just a system dump is taken, the dump ID is unique to that
dump.

The complete range of dump IDs for any run of CICS is, therefore, distributed
between the set of system dumps and the set of transaction dumps, but neither set
of dumps has them all.

 Chapter 9. Dealing with incorrect output 155

Figure 22 on page 156 gives an example of the sort of distribution of dump IDs
that might occur. Note that each dump ID is prefixed by the run number, in this
case 23, and that this is the same for any dump produced during that run. This
does not apply to SDUMPs produced by the kernel; these always have a dump ID
of 0/0000.

On system dump data set On transaction dump data set

ID=23/0001
ID=23/0002 ID=23/0002

ID=23/0003
ID=23/0004

ID=23/0005
ID=23/0006
ID=23/0007

ID=23/0008

Figure 22. Typical distribution of dump IDs between dump data sets

For further discussion of the way CICS manages transaction and system dumps,
see Chapter 15, “Using dumps in problem determination” on page 225.

You did not get the correct data formatted from a CICS system dump
If you did not get the correct data formatted from a CICS system dump, these are
the most likely explanations:

� You did not use the correct dump formatting keywords. If you do not specify
any formatting keywords, the whole system dump is formatted. However, if you
specify any keywords at all, you must be careful to specify keywords for all the
functional areas you are interested in.

� You used the correct dump formatting keywords, but the dump formatting
program was unable to format the dump correctly because it detected an error.
In such a case, you should be able to find a diagnostic error message from the
dump formatter.

� A partial dump might have been taken as the VSE SYSDUMP library is full.

Wrong data has been displayed on a terminal
There are many reasons why you might get the wrong data displayed, some with
system-related causes and some with application-related causes. If you think that it
is system-related, read this section for some suggestions on likely areas in which to
start your investigations.

For the present purpose, a terminal is considered to be any device where data can
be displayed. It might be some unit with a screen, or it could be a printer. Many
other types of terminals are recognized by CICS, including remote CICS regions,
and batch partitions, but they are not considered in this section on incorrect output.

Broadly, there are two types of incorrect output that you might get on a screen, or
on a printer:

� The data information is wrong, so unexpected values appear on the screen or
in the hard copy from a printer.

156 CICS Transaction Server for VSE/ESA Problem Determination Guide

� The layout is incorrect on the screen or in the hard copy. That is, the data is
formatted wrongly.

In practice, you may sometimes find it difficult to distinguish between incorrect data
information and incorrect formatting. In fact, you seldom need to make this
classification when you are debugging this type of problem.

Sometimes, you might find that a transaction runs satisfactorily at one terminal, but
fails to give the correct output on another. This is probably due to the different
characteristics of the different terminals, and you should find the answer to the
problem in the sections that follow.

The preliminary information you need to get
Before you can investigate the reasons why incorrect output is displayed at a
terminal, you need to gather some information about the transaction running at the
terminal, and the about terminal itself.

The first things you need to know are:

� The identity of the transaction associated with the incorrect output.

� For an autoinstalled terminal, the model number, to ensure that you inquire on
the correct RDO TYPETERM resource definition. You can find this from the
autoinstall message in the CADL log.

Depending on the symptoms you have experienced, you probably need to examine
the RDO PROFILE definitions for the transaction, and the RDO TYPETERM
resource definitions for the affected terminal. The attributes most likely to be of
interest are SCRNSIZE for the RDO PROFILE, and ALTSCREEN, ALTPAGE,
PAGESIZE, EXTENDEDDS, and QUERY for RDO TYPETERM. Other attributes
might also be significant, but the values you find for the attributes named here can
often explain why the incorrect output was obtained.

Specific types of incorrect output, and their possible causes
This section contains some suggestions about what to do for specific types of
incorrect output, and what might be at fault.

Logon rejection message
If you get a logon rejection message when you attempt to log on to CICS, it could
be that the RDO TYPETERM resource definitions for the terminal are incorrect. A
message recording the failure is written to the CSNE log or, in the case of
autoinstall, to the CADL log.

You are likely to get a logon rejection if you attempt to specify anything other than
QUERY(NO) for a terminal that does not have the structured query field feature.
Note that NO is the default value for RDO TYPETERM resource definitions that you
supply, but YES is the value for RDO TYPETERM resource definitions that are
supplied with CICS. If you have a persistent problem with logon rejection, you can
use the VTAM buffer trace to find out more about the reasons for the failure.

 Chapter 9. Dealing with incorrect output 157

Unexpected messages and codes
If the “wrong data” is in the form of a message or code that you do not understand,
look in the appropriate manual for an explanation of what it means.

Messages that are prefixed by DFH originate from CICS— look in the VSE/ESA
Messages and Codes Volume 3 manual for these. For codes that appear in the
space at the bottom of the screen where status information is displayed, look in the
appropriate guide for the terminal.

The following are examples of common errors that can cause messages or codes
to be displayed:

� SCRNSIZE(ALTERNATE) has been specified in an RDO PROFILE resource
definition, and too many rows have been specified for ALTSCREEN and
ALTPAGE in the RDO TYPETERM resource definition for the terminal.

� An application has sent a spurious hex value corresponding to a control
character in a data stream. For example, X'11' is understood as “set buffer
address” by a 3270 terminal, and the values that follow are interpreted as the
new buffer address. This eventually causes an error code to be displayed.

If you suspect this may be the cause of the problem, check your application
code carefully to make sure it cannot send any unintended control characters.

� EXTENDEDDS(YES) has been specified in the RDO TYPETERM resource
definition for a device that does not support this feature. In such a case, a
message is sent to the screen, and a message might also be written to the
CSMT log.

The default value for EXTENDEDDS is NO, but check to make sure that YES
has not been specified if you know your terminal is not an extended data
stream device.

Unexpected appearance of uppercase or lowercase characters
If the data displayed on your terminal has unexpectedly been translated into
uppercase characters, or if you have some lowercase characters when you were
expecting uppercase translation, you need to look at the options governing the
translation.

These are the significant properties of the various translation options you have:

� The ASIS option on EXEC CICS BMS and terminal control commands
specifies that lowercase characters in an input data stream are not to be
translated to uppercase.

ASIS overrides the UCTRAN attributes for both RDO TYPETERM and
PROFILE resource definitions.

� The UCTRAN attribute of the RDO TYPETERM resource definition states
whether lowercase characters in 3270 input data streams are to be translated
to uppercase for terminals with this TYPETERM definition.

The UCTRAN attribute of RDO TYPETERM resource definition is overridden by
ASIS, but it overrides the UCTRAN attribute of an RDO PROFILE resource
definition.

� The UCTRAN attribute of an RDO PROFILE resource definition states whether
lowercase characters in the input data stream are to be translated to uppercase

158 CICS Transaction Server for VSE/ESA Problem Determination Guide

for transactions with this PROFILE running on VTAM terminals. The PROFILE
UCTRAN value is valid only for VTAM terminals.

The UCTRAN option for an RDO PROFILE resource definition is overridden by
both the UCTRAN option for an RDO TYPETERM resource definition and the
ASIS option on EXEC CICS BMS and terminal control commands.

� If the ASIS option is NOT specified, then if either the PROFILE or the
TYPETERM resource definitions specify UCTRAN(YES), the data presented to
the transaction is translated.

Note: User exit XZCIN can also be used to perform uppercase translation.

The UPPERCASE option in the offline utilities (DFHDU410, DFHSTUP, DFHTU410)
specify whether all lowercase characters are to be translated to uppercase
characters.

Figure 23 and Figure 24 summarize whether or not you get uppercase translation,
depending on the values of these options.

ASIS option TYPETERM

not specified

UCTRAN(YES) UCTRAN(NO)

P
R UCTRAN(YES) YES YES
O
F
I
L UCTRAN(NO) YES NO
E

Figure 23. Uppercase translation truth table—ASIS option not specified

ASIS option TYPETERM

is specified

UCTRAN(YES) UCTRAN(NO)

P
R UCTRAN(YES) NO NO
O
F
I
L UCTRAN(NO) NO NO
E

Figure 24. Uppercase translation truth table—ASIS option is specified

The UPPERCASE option in the offline utilities (DFHDU410, DFHSTUP, and
DFHTU410) specifies whether all lowercase characters are to be translated to
uppercase.

 Chapter 9. Dealing with incorrect output 159

CRTE and uppercase translation
Initiating a CRTE session: The input required to start a CRTE routing session is
of the form:

CRTE SYSID(xxxx),TRPROF(yyyyyyyy)

Translation to uppercase is dictated by the TYPETERM of the terminal at which
CRTE was entered and CRTE’s transaction profile definition as shown in Table 26.

Input within the CRTE session: During the CRTE routing session, uppercase
translation is dictated by the TYPETERM of the terminal at which CRTE was
initiated and the transaction profile definition of the transaction being initiated (which
has to be a valid transaction on the application owning region) as shown in
Table 27.

During a CRTE routing session, if the first six characters entered at a screen are
CANCEL, CICS will recognize this input in upper, lower or mixed case and end the
routing session.

For more information on the ALIAS attribute of the RDO TRANSACTION resource
definition, see the ‘Transaction’ section of the CICS Resource Definition Guide.

Table 26. Uppercase translation on CRTE session initiation

TYPETERM UCTRAN CRTE PROFILE UCTRAN INPUT TRANSLATED TO
UPPERCASE

YES YES/NO ALL OF THE INPUT

NO NO NONE OF THE INPUT.
See note.

NO YES ALL OF THE INPUT
EXCEPT THE TRANSID.
See note.

TRANID YES ALL OF THE INPUT

TRANID NO TRANSID ONLY

Note: Note that if the transid CRTE is not entered in upper case, it will not be
recognized (unless there is a lower/mixed case alias), and message DFHAC2001 will be
issued.

Table 27. Uppercase translation during CRTE session

TYPETERM UCTRAN TRANSACTION
PROFILE (AOR)

UCTRAN

INPUT TRANSLATED TO
UPPERCASE

YES YES/NO ALL OF THE INPUT

NO NO NONE OF THE INPUT. See note.

NO YES ALL OF THE INPUT EXCEPT THE
TRANSID. See note.

TRANID YES ALL OF THE INPUT

TRANID NO TRANSID ONLY

Note: Note that if the transid CRTE is not entered in upper case, it will not be
recognized (unless there is a lower/mixed case alias defined on the AOR) and message
DFHAC2001 will be issued.

160 CICS Transaction Server for VSE/ESA Problem Determination Guide

Be aware that when transaction routing from CICS Transaction Server for VSE/ESA
Release 1 to an earlier release that does not support transaction based uppercase
translation, uppercase translation only occurs if it is specified in the RDO
TYPETERM.

EXEC CICS SET TERMINAL and uppercase translation
In a single system, if the EXEC CICS SET TERMINAL command is issued for a
terminal while it is running a transaction performing RECEIVE processing,
unpredictable results may occur. This is because the command can override the
RDO TYPETERM definition regarding uppercase translation and RECEIVE
processing interrogates the uppercase translate status of the terminal in order to
establish whether translation is required.

In a transaction routing environment, the system programmer who issues the EXEC
CICS SET TERMINAL command should be aware (for VTAM terminals) that the
TOR terminal uppercase translate status is copied to the AOR surrogate terminal
on every flow across the link from the TOR to the AOR. Consequently:

� The EXEC CICS SET TERMINAL change of uppercase translate status will
only take effect on the AOR on the next flow across the link.

� Any AOR TYPETERM definition used to hard code remote terminal definitions
will be overridden with the TOR values for uppercase translate status.

� EXEC CICS INQUIRE TERMINAL issued on the AOR can return misleading
uppercase translation status of the terminal, since the correct status on the
TOR may not yet have been copied to the AOR.

� The processing of RECEIVE requests on the TOR and AOR can interrogate the
uppercase translate status of the terminal. Therefore unpredictable results can
also occur if the system programmer issues the EXEC CICS SET TERMINAL
command during receive processing.

Katakana terminals—mixed English and Katakana characters
If you are using a Katakana terminal, you might see some messages containing
mixed English and Katakana characters. That is because Katakana terminals
cannot display mixed-case output. Uppercase characters in the data stream
appear as uppercase English characters, but lowercase characters appear as
Katakana characters. If you have any Katakana terminals connected to your CICS
system, specify the MSGCASE=UPPER system initialization parameter to ensure
that messages contain uppercase characters only.

The offline utilities DFHDU410, DFHSTUP and DFHTU410 have an extra
parameter to ensure all output is translated to uppercase. See the CICS
Operations and Utilities Guide for details on how to use these parameters.

Wrong data values are displayed
If the data values are wrong on the user’s part of the screen (the space above the
area used to display status information to the operator), or in the hard copy
produced by a printer, it is likely that the application is at fault.

 Chapter 9. Dealing with incorrect output 161

Some data is not displayed
If you find that some data is not being displayed, consider these possibilities:

� The SENDSIZE value for the RDO TYPETERM resource definition could be too
large for the device receiving the data. Its receiving buffer could then overflow,
with some data being lost.

� SCRNSIZE(ALTERNATE) might be specified in the RDO PROFILE resource
definition for the transaction running at the terminal, while default values for
ALTSCREEN and ALTPAGE are allowed in the RDO TYPETERM resource
definition for the terminal.

The default values for ALTSCREEN and ALTPAGE are 0 rows and 0 columns,
so no data could then be displayed if SCRNSIZE(ALTERNATE) were specified.

� EXTENDEDDS(YES) is specified (on the RDO TYPETERM resource definition)
for a device that does not support this feature.

Early data is overlaid by later data
Early data can be overlaid by later data, so that data appears in the wrong order,
when the SENDSIZE value of the RDO TYPETERM resource definition is too large
for the device receiving the data. This is because the buffer can wrap when it is
full, with the surplus data overlaying the first data that was received.

The data is formatted wrongly
Incorrect formatting of data can have a wide range of causes, but here are some
suggestions of areas that can sometimes be troublesome:

� BMS maps are incorrect.

� Applications have not been recompiled with the latest maps.

� Different numbers of columns have been specified for ALTSCREEN and
ALTPAGE in the RDO TYPETERM resource definitions for the terminal. This
can lead to unpredictable formatting errors. However, you will not see them
unless SCRNSIZE(ALTERNATE) has been specified in the RDO PROFILE
resource definitions for the transaction running at the terminal.

� The PAGESIZE values included in the RDO TYPETERM resource definitions
must suit the characteristics of the terminal, or you get formatting errors.

For a screen display, the number of columns specified must be less than or
equal to the line width. For a printer, the number of columns specified must be
less than the line width, or else both BMS (if you are using it) and the printer
might provide a new line, giving you extra spacing you do not want.

The default values for PAGESIZE depend on the value you specify for the
DEVICE keyword.

� If you get extra line feeds and form feeds on your printer, it could be that an
application is sending control characters that are not required because the
printer is already providing end of line and end of form operations.

If your application is handling the buffering of output to a printer, make sure
that an “end of message” control character is sent at the end of every buffer full
of data. Otherwise, the printer might put the next data it receives on a new
line.

162 CICS Transaction Server for VSE/ESA Problem Determination Guide

Tools for debugging terminal output in a VTAM environment
Among the debugging tools you have, the most likely to be of particular use for
investigating terminal incorrect output errors in a VTAM environment is VTAM buffer
trace. This is a function of VTAM itself, and you need to read the appropriate
manual in the VTAM library to find out how to use it.

For a description of the use of these two types of tracing in CICS problem
determination, see Chapter 14, “Using traces in problem determination” on
page 199.

Incorrect data is present on a VSAM data set
If EXEC CICS READ UPDATE is not used, an error can occur because VSAM
allows a record to be read by one transaction while another transaction is updating
it.

If the first transaction were to take some action based on the value of the record,
the action would probably be erroneous.

For example, in inventory control, a warehouse has 150 items in stock. 100 items
are sold to a customer, who is promised delivery within 24 hours. The invoice is
prepared, and this causes a transaction to be invoked that is designed to read the
inventory record from a VSAM data set and updates it accordingly.

In the meantime, a second customer also asks for 100 items. The salesperson
uses a terminal to inquire on the number currently in stock. The “inquire”
transaction reads the record that has been read for update but not yet rewritten,
and returns the information that there are 150 items. This customer, too, is
promised delivery within 24 hours.

Errors of this kind are prevented by the use of EXEC CICS READ UPDATE.

An application did not work as expected
It is not possible to give specific advice on dealing with this sort of problem, but the
points and techniques that follow should help you to find the area where the failure
is occurring.

General points for you to consider
1. Make sure you can define exactly what happened, and how this differs from

what you expected to happen.

2. Check the commands you are using for accuracy and completeness. For
programming information about EXEC CICS commands, see the CICS
Application Programming Reference and CICS System Programming Reference
manuals. Are any default values the ones you really want? Does the
description of the effect of each command match your expectations?

3. Can you identify a failing sequence of commands? If so, can it be reproduced
using CECI?

4. Consider the resources required by the application. Are they defined as
expected?

5. Are the required functions in the failing functional area available in this system?

 Chapter 9. Dealing with incorrect output 163

6. For “input” type requests, does the item exist? You can verify this using offline
utilities.

7. For “output” type requests, is the item created? Verify that the before and after
images are as expected.

Using traces and dumps
Traces and dumps can give you valuable information about unusual conditions that
might be causing your application to work in an unexpected way.

1. If the path through the transaction is indeterminate, insert user trace entries at
all the principal points.

2. If you know the point in the code where the failure occurs, insert a CICS
system dump request immediately after it.

3. Use CETR to select special tracing for the level-1 trace points for all
components. Select special tracing for the failing task only, and disable all
standard tracing by setting the master system trace flag off.

4. Run the transaction after setting the trace options, and wait until the system
dump request is executed. Format the internal trace table from the dump
(formatting keyword TR), and examine the trace entries before the failure.
Look in particular for unusual or unexpected conditions, possibly ones that the
application is not designed to handle.

Your transaction produced no output at all
If your transaction produced no output at all, you need to carry out some
preliminary checks before looking at the problem in detail. You might be able to
find a simple explanation for the failure.

Are there any messages explaining why there is no output?
Look carefully in each of the transient data destinations CSMT, and CSTL for any
messages that might relate to the task. You could find one there that explains why
you received no output.

If you can find no such message, the next step is to get some information about the
status of the transaction that produced no output, your terminal, and the CICS
system.

Can you use the terminal where the transaction should have started?
Go to the terminal where the transaction should have started, and note whether the
keyboard is locked. If it is, press RESET. Now try issuing CEMT INQUIRE TASK
(or your site replacement) from the terminal.

If you cannot issue CEMT INQUIRE TASK from the terminal, one of these
explanations applies:

� The task that produced no output is still attached to the terminal.

� The terminal where you made the inquiry is not in service.

� There is a system-wide problem.

� You are not authorized to use the CEMT transaction. (This may be because
you have not signed on to the terminal and the CEMT transaction is not

164 CICS Transaction Server for VSE/ESA Problem Determination Guide

authorized for that terminal. If you have signed on to the terminal, you are
probably authorized to use CEMT.)

Try to find a terminal where you can issue CEMT INQUIRE TASK. If no terminal
seems to work, there is probably a system-wide problem. Otherwise, see if the
task you are investigating is shown in the summary.

� If the task is shown, it is probably still attached, and either looping or waiting.
Turn to “No output—what to do if the task is still in the system” to see what to
do next.

� If the task is not shown, there is a problem with the terminal where you first
attempted to issue CEMT INQUIRE TASK.

If you are able to issue CEMT INQUIRE TASK from the terminal where the
transaction was attached, one of these explanations applies:

� The transaction gave no output because it never started.

� The transaction ran without producing any output, and terminated.

� The transaction started at another terminal, and might still be in the system. If
it is still in the system, you can see it in the task summary that you got for
CEMT INQUIRE TASK. It is probably looping or waiting. Turn to “No
output—what to do if the task is still in the system” for advice about what to do
next. If you do not see the task in the summary, turn to “No output—what to
do if the task is not in the system.”

No output—what to do if the task is still in the system
If you obtained no output and the task is still in the system, it is either waiting for a
resource, or looping. You should get an indication of which of these two conditions
is the most likely from the status for the task returned by CEMT INQUIRE TASK.

You have a suspended task , treat this as a “wait” problem. Use the techniques of
Chapter 6, “Dealing with waits” on page 51 to investigate it further.

You have a running task , it is likely to be looping. Turn to Chapter 7, “Dealing
with loops” on page 129 to find out what to do next.

No output—what to do if the task is not in the system
If you have obtained no output and CEMT INQUIRE TASK shows the task is not in
the system, one of two things could have happened:

� Your transaction never started.

� Your transaction ran, but produced no output.

Note: If you are not getting output on a printer, the reason could be simply
that you are not setting on the START PRINTER bit in the write control
character. You need to set this bit to get printed output if you have specified
the STRFIELD option on a CONVERSE or SEND command, which means that
the data area specified in the FROM option contains structured fields. Your
application must set up the contents of the structured fields.

Your task might have been initiated by direct request from a terminal, or by
automatic task initiation (ATI). Most of the techniques apply to both sorts of task,
but there are some extra things to investigate for ATI tasks. Carry out the tests
which apply to all tasks first, then go on to the tests for ATI tasks if you need to.

 Chapter 9. Dealing with incorrect output 165

Did the task run? Techniques for all tasks
There are many different techniques for finding out if a transaction started, or if it
ran but produced no output. Use the ones that are most convenient at your
installation.

Using CICS system trace entry points:
CICS system tracing is probably the most powerful technique for finding out
whether a transaction ever started. You might need to direct the trace output to the
auxiliary trace destination, depending on how certain you can be about the time the
task is expected to start. Even a large internal trace table might wrap and overlay
the data you want to see if you are not too sure about when the task should start.

Use the CETR transaction to set up the right tracing options. See Chapter 14,
“Using traces in problem determination” on page 199 for guidance about setting up
trace options.

Select special tracing for just your task, and disable tracing for all other tasks by
setting the master system trace flag off. Set up special tracing for the level one
trace points for the components that are likely to be used during the invocation of
the task. The components you choose depend on how the task is initiated—by
direct request from a terminal, or by automatic transaction initialization—but they
should include loader domain (LD), program manager (PG), transaction manager
(XM), and dispatcher domain (DS). Make sure that special tracing is disabled for
all other components, to minimize the amount of trace data that is collected and the
tracing overhead.

Now turn tracing on, and attempt to start your task. When you are sure that the
time has passed when the output should have appeared, stop tracing, and format
the trace data set.

If your transaction ran, you should see the following types of trace entries for your
task and the programs associated with it:

1. Loader domain, when it loaded your program, if the program was not already in
main storage.

2. Transaction manager, when it attached your task to the dispatcher.

3. Dispatcher domain, when your task got its first dispatch. You might also see
subsequent entries showing your task being suspended, and then resumed.

4. Program manager, for any program management functions associated with
your task.

If trace entries for any of these processes are missing, that should help you to find
where the failure occurred.

 Using EDF
If the transaction being tested requires a terminal, you can use EDF. You need two
other terminals for input, as well as the one that the transaction requires (“tttt”).
Use one of these others to put the transaction terminal under control of EDF, with:

 CEDF tttt

At the remaining terminal, enter whatever transaction or sequence of transactions
causes the one under test to be initiated. Wait long enough for it to start. If no

166 CICS Transaction Server for VSE/ESA Problem Determination Guide

output appears at the second terminal, the transaction has not started. If you have
not yet done so, consider using trace to get more information about the failure.

 Using statistics
If no one else is using the transaction in question, you can tell from CICS statistics
whether the program has been executed or not.

Use the command CEMT PERFORM STATISTICS RECORD (or your site
replacement) before you test your transaction, using the TRANSACTION option:

CEMT PERFORM STATISTICS RECORD

[TRANSACTION]

This causes statistics on transactions that have been executed to be recorded in
the DMF data set.

Now initiate the transaction and wait until it should have been executed. Repeat
the CEMT PERFORM STATISTICS RECORD command, to get a new set of
statistics written to the DMF data set. Format the data from the DMF data set. for
the APPLID that interests you, and look at the statistics recorded before and after
you attempted to execute the transaction. If the count for your transaction
increased by 1, it was executed. If it remained the same, it was not executed.

Alternatively, if no one else is using the transaction, you can tell, using CEMT,
whether the program is being executed. Use the command CEMT INQUIRE
PROGRAM(xxxxxxxx) where xxxxxxxx is the program name. The screen presented
to you includes a USECOUNT value. This value is the number of times that the
program has been executed since the start of the current CICS session.

Now initiate the transaction and wait until it should have been executed. Repeat the
CEMT INQUIRE PROGRAM(xxxxxxxx) and the USECOUNT value will have been
incremented if the program has been executed.

Formatting the DMF data set . The statistics utility program, DFHSTUP, prepares
and prints reports offline using the data recorded in the DMF data set. See the
CICS Operations and Utilities Guide for information about using the DFHSTUP
utility program.

When you format the DMF data set using DFHSTUP in order to look at the
statistics relating to executed transactions and programs, you may find the following
DFHSTUP control parameters useful:

 � SELECT APPLID=
 � COLLECTION TYPE=REQ
 � TIME START= ,STOP=
 � DATE START= ,STOP=

See the CICS Operations and Utilities Guide for details on how to code these
parameters. If you correctly code these control parameters, you avoid the
formatting of much information that might be unnecessary at this point.

 Chapter 9. Dealing with incorrect output 167

 Using CEBR
You can use CEBR to investigate your transaction if the transaction reads or writes
to a transient data queue, or writes to a temporary storage queue. A change in
such a queue is strong evidence that the transaction ran, provided that the
environment is sufficiently controlled that nothing else could produce the same
effect. You need to be sure that no other transaction that might be executed during
your testing does the same thing.

The absence of such a change does not mean that the transaction did not run—it
may have run incorrectly, so that the expected change was not made.

 Using CECI
If your transaction writes to a file, you can use CECI before and after the
transaction to look for evidence of the execution of your transaction. A change in
the file means the transaction ran. If no change occurred, that does not necessarily
mean that the transaction failed to run—it could have worked incorrectly, so that the
changes you were expecting were not made.

Disabling the transaction
If your transaction requires a terminal, you can do the following. Use CEMT to
disable the transaction under test, then do whatever causes the transaction to be
initiated. You should get this message at the terminal where it is due to run:

DFHAC2008 date time applid Transaction tranid has been disabled and cannot
be used

If you do not get this message, it is likely that your transaction did not start because
of a problem with that terminal.

Investigating tasks initiated by ATI
In addition to the general techniques for all tasks described above, there are some
additional ones for tasks that should have started by ATI.

Tasks to be started by ATI can be invoked in any of these ways:

� By issuing EXEC CICS START commands, even if no interval is specified
� By BMS ROUTE operations
� By writing to transient data queues with nonzero trigger levels.

There are many reasons why automatically initiated tasks could fail to start. Even
when the CICS system is operating normally, an ATI transaction might fail to start
for any of the following reasons:

� It might require a resource that is not available. The resource is usually a
terminal, although it could be a queue.

� It might not be scheduled to start until some time in the future. START
commands and output sent with BMS ROUTE are both subject to this sort of
scheduling, but transactions started when transient data trigger levels are
reached are not.

CICS maintains two chains for scheduling transactions that have been requested,
but not started. They are the interval control element (ICE) chain, and the
automatic initiate descriptor (AID) chain. The information contained in one or other
of the chains can sometimes indicate why your task has failed to start.

168 CICS Transaction Server for VSE/ESA Problem Determination Guide

The ICE chain
The ICE chain is used for tasks scheduled to start after some specified interval, for
example on an EXEC CICS START command. You can locate it in the formatted
system dump by looking at the ICP section. Look in field ICETRNID of each ICE
(the 4-character transaction ID) to see if it relates to your task.

If you find an ICE for your task, look in field ICEXTOD. That will show you the
expiration time of day. Does it contain the value you expect? If not, either the task
which caused this one to be autoinitiated was in error, or there is a system
problem.

The AID chain
The AID chain is used for tasks that are due to start immediately. Tasks are
moved from the ICE chain to the AID chain as soon as the scheduled time expires,
and they are placed there directly if there is no time delay requested. If a task
needs a resource, usually a terminal, that is unavailable, the task remains on the
AID chain until it can use the resource.

You can see the AIDs in the TCP section of the formatted system dump. Look in
field AIDTRNID (the 4-character transaction ID) of each AID, to see if it relates to
your task.

If you do find an AID that relates to your task, your task is scheduled to start, but
cannot do so because the terminal is unavailable. Look in field AIDTRMID to find
the symbolic ID of the terminal, and then investigate why the terminal is not
available. One possibility is that the terminal is not in ATI status, because
ATI(YES) has not been specified for it in the RDO TYPETERM resource definition.

Your transaction produced some output, but it was wrong
If your transaction produced no output at all, read “Your transaction produced no
output at all” on page 164. For other types of wrong terminal output, read this
section.

The origins of corrupted data
You get incorrect output to a terminal if data which is the object of the transaction
becomes corrupted at some stage.

Figure 25 on page 170 illustrates how data flows between various CICS resources
when a transaction is executed, and shows the points at which the data might
become invalid.

 Chapter 9. Dealing with incorrect output 169

1 2 3 4 5

File or Database CICS Application CICS Terminal

.. ..

.. .. X = 14.456

..
Record 222 x=z/w**5+y ..
Record 223 ..

.. ..

..

Figure 25. Where data might be corrupted in a transaction

The data might be corrupted at any of points 1 through 5, as it flows from file to
terminal.

1. Data records might be incorrect, or they could be missing from the file.
2. Data from the file might be mapped into the program incorrectly.
3. Data input at the terminal might be mapped into the program incorrectly.
4. Bad programming logic might corrupt the data.
5. The data might be mapped incorrectly to the terminal.

Each of these possibilities will be dealt with in turn.

Were records in the file incorrect or missing?
You can check the contents of a file or database either by using CECI or by using
a utility program to list off the records in question.

If you find bad data in the file or data set, the error is likely to have been caused by
the program that last updated the records containing that data. If the records you
expected to see are missing, make sure that your application can deal with a
‘record not found’ condition.

If the data in the file is valid, it must have been corrupted later on in the processing.

Was the data mapped correctly into the program?
When a program reads data from a file or a database, the data is put into a field
described by a symbolic data declaration in the program.

Is the data contained in the record that is read compatible with the data declaration
in the program?

Check each field in the data structure receiving the record, making sure in
particular that the type of data in the record is the same as that in the declaration,
and that the field receiving the record is the right length.

If the program receives input data from the terminal, make sure that the relevant
data declarations are correct for that, too.

170 CICS Transaction Server for VSE/ESA Problem Determination Guide

If there seems to be no error in the way in which the data is mapped from the file
or terminal to the program storage areas, the next thing to check is the program
logic.

Is the data being corrupted by bad programming logic?
To find out if data is being corrupted by bad programming logic in the application,
determine the flow of data through the transaction. You can do this by using the
following techniques:

� Desk checking your source code with the help of another programmer who is
not familiar with the program. It is often possible for such a person to see
weaknesses in the code which you have overlooked.

� Interactive tools. These allow you to look at the ways in which the data values
being manipulated by your program change as the transaction proceeds.

– CEDF is, perhaps, the most powerful interactive tool for checking your
programming logic. You can use it to follow the internal flow from one
CICS command-level statement to another. If necessary, you can add
CICS statements such as EXEC CICS ASKTIME at critical points in your
program, to see if certain paths are taken, and to check program storage
values.

– CECI allows you to simulate CICS command statements. Try to make your
test environment match the environment in which the error occurred as
closely as possible. If you do not, you might find that your program works
with CECI, but not otherwise.

– CEBR enables you to look at temporary storage and transient data queues,
and to put data into them. This can be useful when many different
programs use the queues to pass data.

Note: When you use CEBR to look at a transient data queue, the records
you retrieve are removed from the queue before they are displayed to you.
This could alter the flow of control in the program you are testing. You can,
however, use CEBR to copy transient data queues to and from temporary
storage, as a way of preserving the queues if you need to.

� User tracing. This allows you to trace the flow of control and data through your
program, and to record data values at specific points in the execution of the
transaction. You could, for example, look at the values of counters, flags, and
key variables during the execution of your program. You can include up to
4000 bytes of data on any trace entry, so this can be a powerful technique for
finding where data values are being corrupted.

For programming information about how you can invoke user tracing, see the
description of the EXEC CICS ENTER TRACENUM command in the CICS
Application Programming Reference manual.

� CSFE storage freeze. This can be used to freeze the storage associated with
a terminal or a transaction so that it is not FREEMAINed at the end of
processing. This can be a useful tool if, for example, you want to investigate
possible storage violations. You need to get a transaction dump to look at the
storage after you have run the task with storage freeze on.

For long-running tasks, there is a possibility that a large amount of storage may
be consumed because it cannot be FREEMAINed while storage freeze is on.
For short-running tasks, however, there should be no significant overhead.

 Chapter 9. Dealing with incorrect output 171

If, after using these techniques, you can find no fault with the logic of the
program, the fault either lies with the way data is mapped to the terminal, or
you could have missed some important evidence.

Is the data being mapped incorrectly to the terminal?
Incorrect data mapping to a terminal can have both application-related and
system-related causes. If you are using BMS mapping, check the items below.

� Examine the symbolic map very carefully to make sure that it agrees with the
map in the load module. Check the date and time stamps, and the size of the
map.

� Make sure that the attributes of the fields are what they should be. For
example:

– An attribute of DARK on a field can prevent the data in the field from being
displayed on the screen.

– Failing to turn on the modified data tag (MDT) in a field might prevent that
field from being transmitted when the screen is read in.

Note: The MDT is turned on automatically if the operator types data in the
field. If, however, the operator does not type data there, the application
must turn the tag on explicitly if the field is to be read in.

� If your program changes a field attribute byte, or a write control character, look
at each bit and check that its value is correct by looking in the appropriate
reference manual for the terminal.

172 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 10. Dealing with storage violations

The first section in this chapter describes the CICS facilities for preventing storage
violations. The rest of the chapter describes problem determination techniques for
storage violations once they occur.

Avoiding storage violations
CICS provides two facilities that help prevent storage violations.

CICS subsystem storage protection
prevents user application programs from directly overwriting CICS code
and control blocks.

Command protection
prevents CICS, when processing an EXEC CICS command, from
overwriting storage that the issuing transaction could not itself directly
overwrite.

Even if your system uses all the CICS storage protection facilities, CICS storage
violations can occur in certain circumstances in systems using storage protection.
For example:

� An application program could contain the necessary instructions to switch to
CICS key and modify CICS storage.

� An application program could contain the necessary instructions to switch to the
basespace and modify the storage of other transactions.

� An application program could be defined with EXECKEY(CICS) and could thus
modify CICS storage and the storage of other transactions.

� An application could overwrite one or more storage check zones in its own
task-lifetime storage.

To gain the full benefit of CICS storage protection, you need to examine the
storage needs of individual application programs and control the storage key
definitions that are used.

When CICS detects and prevents an attempted storage violation, the name of the
abending program and the address of the area it tried to overwrite are passed to
the program error program (DFHPEP). For programming information about
DFHPEP, see the CICS Customization Guide.

If a storage violation does occur in your system, read the rest of this chapter.

 Copyright IBM Corp. 1979, 1999 173

Two kinds of storage violation
Storage violations can be divided into two classes, namely those detected and
reported by CICS, and those not detected by CICS. They require different problem
determination techniques.

CICS-detected violations are identified by the following message sent to the
console:

DFHSM0102 applid A storage violation (code X 'code') has been detected by
module modname.

If you have received this message, turn first to the description of message
DFHSM0102 in the VSE/ESA Messages and Codes Volume 3 manual to see an
explanation of the value of 'code', telling you how CICS detected the storage
violation. Then return to this section, and read “CICS has detected a storage
violation.”

Storage violations not detected by CICS are less easy to identify. They can cause
almost any sort of symptom. Typically, you may have got a program check with a
condition code indicating ‘operation exception’ or ‘data exception’, because the
program or its data has been overlaid. Otherwise, you might have obtained a
message from the dump formatting program saying that it had found a corrupted
data area. Whatever the evidence for the storage violation, if it has not been
detected by CICS, turn to “Storage violations that affect innocent transactions” on
page 181.

CICS has detected a storage violation
CICS can detect storage violations when:

1. The duplicate storage accounting area (SAA) or the initial SAA of a TIOA
storage element has become corrupted.

2. The leading storage check zone or the trailing storage check zone of a
user-task storage element has become corrupted.

CICS detects storage violations involving TIOAs by checking the SAA chains when
it receives a command to FREEMAIN an individual element of TIOA storage, at
least as far as the target element. It also checks the chains when it FREEMAINs
the storage belonging to a TCTTE after the last output has taken place. CICS
detects storage violations involving user-task storage by checking the storage
check zones of an element of user-task storage when it receives a command to
FREEMAIN that element of storage. It also checks the chains when it FREEMAINs
all the storage belonging to a task when the task ends.

The storage violation is detected not at the time it occurs, but only when the SAA
chain or the storage check zones are checked. This is illustrated in Figure 26 on
page 176, which shows the sequence of events when CICS detects a violation of a
user task storage element. The sequence is the same when CICS detects a
violation of a TIOA storage element.

The fact that the SAA or storage check zone is overlaid some time before it is
detected does not matter too much for user storage where the trailing storage

174 CICS Transaction Server for VSE/ESA Problem Determination Guide

check zone has been overlaid, because the transaction whose storage has been
violated is also very likely to be the one responsible for the violation. It is fairly
common for transactions to write data beyond the end of the allocated area in a
storage element and into the check zone. This is the cause of the violation in
Figure 26 on page 176.

The situation could be more serious if the leading check zone has been overlaid,
because in that case it could be that some other unrelated transaction was to
blame. However, storage elements belonging to individual tasks are likely to be
more or less contiguous, and overwrites could extend beyond the end of one
element and into the next.

If the leading storage check zone was only overwritten by chance by some other
task, the problem might not be reproducible. On other occasions, other parts of
storage might be affected. If you have this sort of problem, you need to investigate
it as though CICS had not detected it, using the techniques of “Storage violations
that affect innocent transactions” on page 181.

Finding the offending transaction when the duplicate SAA of a TIOA storage
element has been overlaid might not be so straightforward. This is because TIOAs
tend to have much longer lifetimes than tasks, because they wait on the response
of terminal operators. By the time the storage violation is detected, the transaction
that caused it is unlikely to still be in the system. However, the techniques for
CICS-detected violations still apply.

 Chapter 10. Dealing with storage violations 175

Storage element

User task issued Leading Trailing
GETMAIN; storage storage
storage element is check zone check zone
obtained.

Data written by task

Task writes data,
overlaying the Leading ----------------------------
trailing storage storage ----------------------------
check zone. check zone ----------------------------

Task continues.
Storage check zones do not match

Task ends. CICS
attempts to FREEMAIN Leading ----------------------------
the storage but finds storage ----------------------------
that the two storage check zone ----------------------------
check zones are not
identical.
CICS issues error
message and continues.
The corrupted storage Leading ----------------------------
element remains storage ----------------------------
unchanged and cannot check zone ----------------------------
be reused unless
storage recovery is on.

Figure 26. How user-storage violations are committed and detected

Note: For storage elements with SAAs, the address that is returned on the
GETMAIN request is that of the leading SAA; for storage elements with
storage check zones, the address that is returned is that of the beginning of
usable storage.

What happens when CICS detects a storage violation
When CICS detects a storage violation, it makes an exception trace entry in the
internal trace table, issues message DFHSM0102 and takes a CICS system dump,
unless you have suppressed dumping for system dump code SM0102. If you have
suppressed dumping for this dump code, re-enable it and attempt to reproduce the
error. The system dump is an important source of information for investigating
CICS-detected storage violations.

If storage recovery is on (STGRCVY=YES system initialization parameter), the
corrupted SAAs or check zones are repaired and the transaction continues. See
“Storage recovery” on page 183.

If storage recovery is not on, CICS abends the transaction whose storage has been
violated (if it is still running). If the transaction is running when the error is detected
and if dumping is enabled for the dump code, a transaction dump is taken.

176 CICS Transaction Server for VSE/ESA Problem Determination Guide

If you received a transaction abend message, read “What the transaction abend
message can tell you.” Otherwise, go on to “What the CICS system dump can tell
you.”

What the transaction abend message can tell you
If you get a transaction abend message, it is very likely that CICS detected the
storage violation when it was attempting to satisfy a FREEMAIN request for user
storage. Make a note of the information the message contains, including:

� The transaction abend code
� The identity of the transaction whose storage has been violated
� The identity of the program running at the time the violation was detected
� The identity of the terminal at which the task was started

Because CICS does not detect the overlay at the time it occurs, the program
identified in the abend message is probably not the one in error. However, it is
likely that it issued the FREEMAIN request on which the error was detected. One
of the other programs in the abended transaction might have violated the storage in
the first place.

What the CICS system dump can tell you
Before looking at the system dump, you must format it using the appropriate
formatting keywords. The ones you need for investigating storage violations are:

� TR, to get you the internal trace table
� TCP, to get you terminal-related areas
� AP, to get you the TCAs and user storage

The dump formatting program reports the damaged storage check zone or SAA
chain when it attempts to format the storage areas, and this can help you with
diagnosis by identifying the TCA or TCTTE owning the storage.

When you have formatted the dump, take a look at the data overlaying the SAA or
storage check zone to see if its nature suggests which program put it there. There
are two places you can see this, one being the exception trace entry in the internal
trace table, and the other being the violated area of storage itself.

Look first at the exception trace entry in the internal trace table to check that it
shows the data overlaying the SAA or storage check zone. Does the data suggest
what program put it there? Remember that the program is likely to be part of the
violated transaction in the case of user storage. For terminal storage, you probably
have more than one transaction to consider.

As the SAAs and storage check zones are only 8 bytes long, there might not be
enough data for you to identify the program. In this case, find the overlaid data in
the formatted dump. The area is pointed to in the diagnostic message from the
dump formatting program. The data should tell you what program put it there, and,
more importantly, what part of the program was being executed when the overlay
occurred.

If the investigations you have done so far have enabled you to find the cause of the
overlay, you should be able to fix the problem.

 Chapter 10. Dealing with storage violations 177

What to do if you cannot find what is overlaying the SAA
The technique described in this section enables you to locate the code responsible
for the error by narrowing your search to the sequence of instructions executing
between the last two successive old-style trace entries in the trace table.

You do this by forcing CICS to check the SAA chain of terminal storage and the
storage check zones of user-task storage every time an old-style trace entry is
made from AP domain. These types of trace entry have point IDs of the form AP
00xx, “xx” being two hexadecimal digits. Storage chain checking is not done for
new-style trace entries from AP domain or any other domain. (For a discussion of
old and new-style trace entries, see Chapter 14, “Using traces in problem
determination” on page 199.)

The procedure has a significant processing overhead, because it involves a large
amount of tracing. You are likely to use it only when you have had no success with
other methods.

How you can force storage chain checking
You can force storage chain checking either by using the CSFE DEBUG
transaction, or by using the CHKSTSK or CHKSTRM system initialization
parameters. See the CICS System Definition Guide for more information about
these parameters. Tracing must also be active, or CICS will do no extra checking.
The CSFE transaction has the advantage that you need not bring CICS down
before you can use it.

Table 28 on page 179 shows the CSFE DEBUG options and their effects.
Table 29 shows the startup overrides that have the same effects.

178 CICS Transaction Server for VSE/ESA Problem Determination Guide

Your strategy should be to have the minimum tracing that will capture the storage
violation, to reduce the processing overhead and to give you less trace data to
process. Even so, you are likely to get a large volume of trace data, so direct the
tracing to the auxiliary trace data sets. For general guidance about using tracing in
CICS problem determination, see Chapter 14, “Using traces in problem
determination” on page 199.

You need to have only level-1 tracing selected, because no user code is executed
between level-2 trace points. However, you do not know which calls to CICS
components come before and after the offending code, so you need to trace all
CICS components in AP domain. (These are the ones for which the trace point IDs
have a domain index of “AP”.) Set level-1 tracing to be special for all such

Table 28. Effects of the CSFE DEBUG transaction

CSFE syntax Effect

CSFE DEBUG,

 CHKSTSK=ALL

This checks storage check zones of all storage
areas on the transaction storage chain for every
task.

You need to use CSFE DEBUG,CHKSTSK=ALL if
one task’s storage check zone is being overlaid
by another task.

CSFE DEBUG,

 CHKSTSK=CURRENT

This checks storage check zones for all storage
areas on the transaction storage chain for the
current task only.

If a task is overlaying one of the storage check
zones of its own user storage, use
CSFE DEBUG,CHKSTSK=CURRENT

CSFE DEBUG,

 CHKSTRM=CURRENT

This checks SAAs for all TIOAs linked off the
current TCTTE. Use this if the SAA of a TIOA
has been overlaid.

CSFE DEBUG,

 CHKSTSK=NONE

This turns off storage zone checking for
transaction storage areas.

CSFE DEBUG,

 CHKSTRM=NONE

This turns off SAA checking for TIOAs.

Table 29. Effects of the CHKSTSK and CHKSTRM system initialization parameters

Override Effect

CHKSTSK=ALL As CSFE DEBUG,CHKSTSK=ALL

CHKSTSK=CURRENT As CSFE DEBUG,CHKSTSK=CURRENT

CHKSTRM=CURRENT As CSFE DEBUG,CHKSTRM=CURRENT

CHKSTSK=NONE As CSFE DEBUG,CHKSTSK=NONE. This
override is the default.

CHKSTRM=NONE As CSFE DEBUG,CHKSTRM=NONE. This
override is the default.

 Chapter 10. Dealing with storage violations 179

components, so that you get every AP level-1 trace point traced using special task
tracing.

If the trailing storage check zone of a user-storage element has been overlaid,
select special tracing for the corresponding transaction only. This is because it is
very likely to be the one that has caused the overlay.

If the duplicate SAA of a TIOA has been overlaid, you need to select special tracing
for all tasks associated with the corresponding terminal, because you are not sure
which has overlaid the SAA. It is sufficient to select special tracing for the terminal
and standard tracing for every transaction that runs there, because you get special
task tracing with that combination. (See Figure 35 on page 212.)

Your choice of terminal tracing depends on where the transaction is likely to be
initiated from. If it is only ever started from one terminal, select special tracing for
that terminal alone. Otherwise, you need to select special tracing for every such
terminal.

When you have set up the tracing options and started auxiliary tracing, you need to
wait until the storage violation occurs.

What happens after CICS detects the storage violation?
When the storage violation is detected by the storage violation trap, storage
checking is turned off, and an exception trace entry is made. If dumping has not
been disabled, a CICS system dump is taken. The following message is sent to
the console:

DFHSM0103 applid STORAGE VIOLATION (CODE X 'code') HAS BEEN
DETECTED BY THE STORAGE VIOLATION TRAP. TRAP IS NOW INACTIVE .

The value of 'code' is equal to the exception trace point ID, and it identifies the
type of storage that was being checked when the error was detected.

Perform the following steps:

1. Format the system dump using the formatting keyword TR, to get the internal
trace table.

2. Locate the exception trace entry made when the storage violation was
detected, near the end of the table.

3. Scan back through the table, and find the last old-style trace entry (AP 00xx).
The code causing the storage violation was being executed between the time
that the trace entry was made and the time that the exception trace entry was
made.

4. If you have used the CHKSTSK=CURRENT option, can locate the occurrence
of the storage violation only with reference to the last old-style trace entry for
the current task. For greater accuracy in locating the occurrence of the
violation, you might need to use the CHKSTSK=ALL option. However, keep in
mind the additional overhead of running with CHKSTSK=ALL, and use it only if
you need it.

5. Identify the section of code that was being executed between the two trace
entries from the nature of the trace calls. You then need to study the logic of
the code to find out how it caused the storage violation.

180 CICS Transaction Server for VSE/ESA Problem Determination Guide

For suggestions on programming errors that might have caused your particular
problem, look at the list of common ones given in “Programming errors that can
cause storage violations” on page 182.

Storage violations that affect innocent transactions
Storage violations that affect innocent transactions—that is, transactions that do not
cause the violation—usually go undetected by CICS. However, occasionally CICS
detects that the initial SAA of a TIOA element or the storage check zone of a
user-storage element has been overlaid by a task that does not own it.

If they are reproducible, storage violations of this type typically occur at specific
offsets within structures. For example, the start of an overlay might always be at
offset 30 from the start of a field.

The most likely cause of such a violation is a transaction writing data to a part of
the DSAs that it does not own, or possibly FREEMAINing such an area. The
transaction might previously have GETMAINed the area and then FREEMAINed it
before writing the data, or addressability might otherwise not have been correctly
maintained by an application. Another possible reason is that an ECB might have
been posted by a transaction after the task that was waiting on it had been
canceled.

Storage violations affecting innocent transactions are, in general, more difficult to
resolve than those that are detected by CICS. Often, you become aware of them
long after they occur, and then you need a long history of system activity to find out
what caused them.

A strategy for storage violations affecting innocent transactions
In this case, the storage violation has been caused by a program writing to an area
it does not own, but you probably have no idea at the outset which program is at
fault. Look carefully at the content of the overlay before you do any other
investigation, because it can help you to identify the transaction, program, or
routine that caused the error. If it does not provide the information you need, use
CICS tracing to collect a history of all the activities that reference the affected area.

The trace table must go back as far as task attach of the program causing the
overlay, because that trace entry relates the transaction’s identity to the unit of work
number used on subsequent entries— this could require a very large trace table.
Internal trace is not suitable, because it wraps when it is full and it then overwrites
important trace entries.

You should use auxiliary trace for recording long periods of system activity, as you
can specify very large auxiliary trace data sets which do not wrap when full.

If you have no idea which transaction is causing the overlay, you need to trace the
activities of every transaction. This impacts performance, because of the
processing overhead.

 Chapter 10. Dealing with storage violations 181

A procedure for resolving storage violations affecting innocent
transactions

1. Ensure that level-1 trace points are in the special set for all CICS components.
Select special tracing for all user tasks, by setting up standard tracing for all
user transactions and all terminals, and disable standard tracing by setting the
master system trace flag off.

2. Use the CETR transaction to set up the tracing options, and select auxiliary
trace as the trace destination.

3. When you get the symptoms that tell you that the storage violation has
occurred, take a system dump—unless the error causes a system dump to be
taken.

4. Format the system dump, and format and print the auxiliary trace data set. If
you know which area of storage the violation occurred in, you can use
appropriate dump formatting keywords. Otherwise, you need to format the
entire system dump. The dump formatting program may report that it has
found some incorrect data. If not, you need to find the overlaid area by other
means.

5. Locate all the entries in the trace table that address the overlaid area.
Operations involving GETMAIN and FREEMAIN in particular are likely pointers
to the cause of the error.

6. When you have found a likely trace entry, possibly showing a GETMAIN or
FREEMAIN addressing the area, find the ID of the associated transaction by
locating the trace entry for TASK ATTACH. Rather than locating this manually,
it is probably better to reformat the auxiliary trace data set selectively to show
just trace entries corresponding to the task’s unit of work.

7. Take a look at all the programs belonging to the transaction. It is likely that
one of these caused the overlay, and you need to consider the logic of each to
see if it could have caused the error. This is a long job, but it is one of the few
ways of resolving a storage violation affecting an innocent transaction.

What to do if you still cannot find the cause of the overlay
If you are unable to identify the cause of the storage violation after carrying out the
procedures of the preceding section, contact your IBM Support Center. They may
suggest coding a global trap/trace exit to detect the storage violation.

Programming errors that can cause storage violations
The purpose of this section is to outline a number of commonly occurring
programming errors that can cause storage violations.

1. Failing to GETMAIN sufficient storage. This is often caused by failure to
recompile all the programs for a transaction after a common storage area has
been redefined with a changed length.

2. Runaway subscript. Make sure that your tables can only grow to a finite size.

3. Writing data to an area after it has been FREEMAINed.

When a task FREEMAINs an area that it has been addressing, it can no longer
write data to the area without the risk of overwriting some other data that might
subsequently be there.

182 CICS Transaction Server for VSE/ESA Problem Determination Guide

4. Hand posting an ECB for a canceled task.

If a task waiting on a CICS ECB is canceled, and then a transaction attempts
to hand post the ECB when the resource being waited on becomes available, it
may corrupt data belonging to some unrelated activity if the area once occupied
by the ECB has been reused.

 Storage recovery
The STGRCVY system initialization parameter enables you to vary the action taken
by CICS on detection of a storage violation.

In normal operation, CICS sets up four task-lifetime storage subpools for each task.
Each element in the subpool starts and ends with a check zone that includes the
subpool name. At each FREEMAIN, and at end of task, CICS inspects the check
zones and abends the task if either has been overwritten.

Terminal input-output areas (TIOAs) have similar check zones, each of which is set
up with the same value. At each FREEMAIN of a TIOA, CICS inspects the check
zones and abends the task if they are not identical.

If CICS is initialized with STGRCVY(YES), the overwriting of check zones is treated
differently. After the system dump has been taken for the storage violation, CICS
resets the check zones to their initial value and the task continues execution.

STGRCVY(NO) is the default.

 Chapter 10. Dealing with storage violations 183

184 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 11. Dealing with XRF errors

If you have a problem when using XRF, it might not be easy to determine whether
the active or the alternate system is at fault. In diagnosing these problems, the
message content and sequence can be very useful. The CICS availability manager
data sets hold these messages (see “The CAVM data sets” on page 190).

Symptoms of problems in an XRF complex
This section gives examples of the symptoms that can occur in your CICS system
when using the extended recovery facility (XRF). For each symptom, a list of
questions leads to the possible causes, indicating the nature of the error. If the
error is a CICS error rather than a user error, then the module in error is shown.

The symptoms are divided as follows:

� “Active system does not initialize”
� “Alternate system does not initialize”
� “Takeover starts, but does not complete” on page 186
� “Not all terminals recovered after a takeover” on page 187
� “Unexpected takeover” on page 187
� “Takeover does not occur when expected” on page 187
� “Related systems are not taken over” on page 188
� “Alternate system terminates unexpectedly” on page 188
� “Overseer does not restart a job that had failed” on page 189
� “Unable to log on to CICS” on page 189

Active system does not initialize
1. Does VSE indicate that the active system is waiting for data sets?

Check that the necessary data sets have been correctly specified.

2. Have the CAVM data sets (the control and message data sets) been set up
correctly? For more information about the data sets, see “The CAVM data
sets” on page 190.

3. For a multi-VSE environment, have the POWER shared spool requirements
been met?

4. Has the active system signed on to the CAVM?

5. If not, is another job signed on to the CAVM as an active system, or is takeover
in progress?

6. Is the active system signed on to the CAVM, and an alternate system in the
process of taking over and awaiting a response to a message?

Alternate system does not initialize
1. Does VSE indicate that the alternate system is waiting for data sets?

Check that the necessary data sets have been correctly specified.

2. Have the CAVM data sets (the control and message data sets) been set up
correctly? For more information about the data sets, see “The CAVM data
sets” on page 190.

 Copyright IBM Corp. 1979, 1999 185

3. For a multi-VSE environment, have the POWER shared spool requirements
been met?

4. Is an alternate system already signed on to the CAVM?

5. Have you started VTAM?

Unlike the active system, the alternate system cannot initialize without VTAM.

Takeover starts, but does not complete
1. Has the takeover been accepted by the alternate system?

2. Is the alternate system waiting for confirmation that the active system has
ended (particularly in a CPC failure case)?

Even though the alternate system has successfully issued the CANCEL, the
active system may be unable to terminate abnormally, for example it may be
necessary for the system operator to issue the FORCE command.

If the active system has ended, the alternate system may be unable to
determine from POWER that it has. If the CPC has failed, POWER may still
indicate that the active job is running.

In these cases, a reply is probably outstanding to message DFHXA6561D on
the system operator console, or to message DFHXA6577D or DFHXA6578D if
an error has been detected with the CLT contents. See the VSE/ESA
Messages and Codes Volume 3 manual for guidance information about the
responses to these messages.

3. Did the alternate system attempt to cancel the active system?

When the alternate system issues the CANCEL command, this should be
displayed on both system consoles in a two-processor configuration. If VSE on
the alternate system processor did not accept the command, message
DFHXA6560I is displayed by the alternate system.

If there is a failure of POWER communication between the active and alternate
processors, the CANCEL command may not have been routed.

If there are errors in the CLT, the alternate system may not be able to construct
the appropriate CANCEL command.

In each of these cases, a reply to messages DFHXA6561D, DFHXA6577D or
DFHXA6578D may be required. See the VSE/ESA Messages and Codes
Volume 3 manual for guidance information about the responses to these
messages.

4. Do you have the correct definitions in the CLT?

If CLT errors were detected, the alternate system may not be able to construct
the CANCEL command. A previous message should be displayed on the
alternate system processor to report the error with the CLT contents.

A reply to messages DFHXA6561D, DFHXA6577D or DFHXA6578D may be
required. See the VSE/ESA Messages and Codes Volume 3 manual for
guidance information about the responses to these messages.

186 CICS Transaction Server for VSE/ESA Problem Determination Guide

Not all terminals recovered after a takeover
1. In a multi-VSE environment, do the control units need switching?

2. Are the necessary VTAM cross-domain definitions active and available?

3. Should the reconnect transaction (CXRE) have run yet?

If CXRE could not be scheduled, messages DFHXG6485, DFHXG6487, or
DFHXG6488 are issued. If CXRE was delayed, to allow physical switching of
terminals to be completed, message DFHXG6481I is issued, telling you how
long the delay will be. This delay includes the delay specified in the SIT
parameter AUTCONN.

4. Did the reconnect transaction (CXRE) start up on time?

Message DFHXG6490I is issued at the start of every reconnection pass. When
CXRE has reconnected all the terminals that it believes it should reconnect, it
ends the pass with message DFHXG6484I. Otherwise, if it is unable to
reschedule itself, it issues the message DFHXG6489.

5. Is there a combination of long-running tasks updating recoverable resources
without syncpointing, and a high value in the AKPFREQ system initialization
parameter?

With this combination, a terminal or session that is installed, subsequently
reinstalled, and then acquired, might not be reacquired after a takeover. If this
happens, you should ensure that long-running tasks take regular syncpoints,
and you should set a lower AKPFREQ value.

 Unexpected takeover
1. Did someone stop the active system’s processor, with TAKEOVER=AUTO

coded in the SIT for the alternate system?

2. Is the ADI value specified for the alternate system too low? For guidance
about the ADI system initialization parameter, see the CICS System Definition
Guide. For general details of the system initialization parameters you need to
define for XRF, see the CICS XRF Guide.

3. In a two-processor system, has there been some presumably unexpected
processing that stopped the active system from running?

Note: If such processing is expected, you can suspend surveillance by using
the command CEBT SET SURVEILLANCE OFF, or change the alternate
system to TAKEOVER=COMMAND by using CEBT SET TAKEOVER
COMMAND for the duration of the activity.

4. Has a badly coded CLT initiated unnecessary takeovers?

Takeover does not occur when expected
1. Was the correct TAKEOVER value in effect for the alternate system?

2. If the CEBT PERFORM TAKEOVER command was entered, was it accepted?

3. If you are expecting an automatic takeover, is the ADI value set too high?

4. If you have set up for an automatic takeover, was the missing surveillance
signal detected by the alternate system?

5. Did the active system sign off abnormally?

If so, did the alternate system detect this?

 Chapter 11. Dealing with XRF errors 187

6. Did the alternate system have a large backlog of messages in the CAVM
message file?

If the backlog becomes too large, the alternate system becomes invalid. Do
you need a larger message file?

7. Is the alternate system clock significantly behind the active system clock? This
can cause the alternate system to wait before completing the takeover. See
messages DFHXG6682I and DFHXG6683I.

8. Is a CEBT SET SURVEILLANCE OFF command still in force, if one has been
previously issued? Is the alternate system in TAKEOVER=COMMAND status
set by a previously issued CEBT SET TAKEOVER COMMAND command?

Related systems are not taken over
1. Has the master/coordinator alternate system run its CLT successfully?

If errors were detected in the CLT, message DFHXA6576I should have been
issued by the alternate system. See the VSE/ESA Messages and Codes
Volume 3 manual for an explanation of this message.

2. Do you have the correct definitions in the CLT, so that the other alternate
systems are instructed to take over?

If other alternate systems of related systems should have initiated a takeover
as a result of a command entry in the CLT, but did not, the appropriate
command entries may not be correctly specified in the CLT, or the set of
commands may be incomplete.

System operator commands issued as part of CLT processing are displayed on
the system console of the alternate system processor. If an error was detected
in a command, there should be an associated VSE error message displayed on
this console. System operator commands in the CLT are not interpreted by
CICS.

The CLT contents may not be correct for use by this alternate system. For
example, the appropriate APPLID may not be correctly specified in the CLT, in
which case message DFHXA6567I is displayed on the system console
reporting the error.

Alternate system terminates unexpectedly
1. Did the active system shut down normally, thus causing the alternate system to

shut down normally?

2. Was the alternate system shutdown caused by a CAVM event?

This could be because a new active system has been initialized, thus
invalidating the existing alternate system.

3. Did the alternate system’s VTAM fail, thus causing the alternate system to
terminate?

The alternate system does not complete initialization until VTAM is available
and the VTAM ACB has been opened.

Similarly, if the VTAM in the alternate system fails while the alternate system is
tracking the active system, the alternate system cannot continue, and it is
abended. Bring up VTAM again, and restart the alternate system.

188 CICS Transaction Server for VSE/ESA Problem Determination Guide

4. Did the alternate system become invalid because of an unacceptable message
backlog in the CAVM message file?

Overseer does not restart a job that had failed
1. Is ‘restart in place’ disabled?

2. Is ‘restart in place’ not active for this system?

3. Is the job to be restarted not defined to the overseer?

If the overseer determines that a takeover is taking place, or is likely to take
place, it does not perform a restart in place.

4. Was the overseer unable to open/read the CAVM data sets associated with this
job?

Unable to log on to CICS
1. Is the VTAM USERVAR set to the correct value?

The VTAM USERVAR is the CICS generic APPLID. You can use the VTAM
commands D NET,USERVAR and F NET,USERVAR to inspect, and change,
the setting of the USERVAR whose ID is the APPLID used in the failing logon
attempts.

2. Has CICS issued the necessary F NET,USERVAR command?

The F NET,USERVAR command is logged by both VSE and VTAM. CICS
issues message DFHXG6479 if it is unable to issue the F NET,USERVAR
command.

3. Has the new USERVAR value been propagated around the network after
initialization of the active system, or after a takeover?

4. Are the necessary VTAM cross-domain definitions not active, or not available?

5. Did you set up the specific and generic APPLIDs correctly in your system
initialization parameters? Are they the right way round?

6. Are you trying to log on to the generic? Use the generic APPLID during logon.

Debugging the overseer sample program
If the overseer detects an error, it may put out a diagnostic message, or take a
snap dump, or do both of these things. You can request a snap dump of the
overseer’s partition using the CEMT PERFORM SNAP command.

The documentation for messages put out by the overseer is in the prolog of the
source for the sample program, DFH$AXRO.

Return and reason codes for some types of failure are saved in the RADBS control
block, and within individual GENDS control blocks if the error is connected with a
particular XRF pair of CICS systems.

 Chapter 11. Dealing with XRF errors 189

Notes:

1. Some overseer problems are asynchronous, and post a user ECB when they
complete. Be careful not to reuse user areas before the events complete.

2. There is one system key area, and one user key area, managed by the
overseer authorized services. You can find the assembler language DSECTs
and a description of the logic used in module DFHWOSB.

 XRF trace
For information about XRF trace, see “CICS XRF tracing” on page 221.

The CAVM data sets
The control and message data sets, used by the CICS availability manager
(CAVM), are both VSAM ESDS data sets which are accessed using control interval
processing with user buffering. The control intervals (CIs) have the standard VSAM
format with CI definition fields (CIDFs) and record definition fields (RDFs). All data
in a given control or message data set relates to a single generic APPLID.

The control data set contains a CI for recording CAVM’s view of the overall state
of the generic APPLID (the state management record), and a status CI for each
potential member system (the active and alternate systems).

The message data set contains secondary status CIs, to be used when a system
is unable to write its status CI in the control data set, and enough message CIs to
hold the maximum anticipated backlog of messages from the active system to the
alternate system.

At most times, when the active and alternate systems are running normally,
serialization of access to the data sets is unnecessary, because the state
management record remains unchanged, and all other CIs in the two data sets are
owned (updated) by only one of the member systems. However, when the state
changes, at SIGNON, TAKEOVER or SIGNOFF, the state management record is
changed, and ownership of other CIs may also change. VSE LOCK is used to
serialize updates of the state management record, and any changes of ownership
of other CIs are effected under this LOCK. VSE UNLOCK is used to free the data
set, so that any system can update it again.

The contents of the data sets are described in more detail in the following sections
of this chapter and may be useful when the problem cannot be easily ascribed to
the active system or the alternate system. For example, a terminal might be lost
(not switched), or the system waiting indefinitely.

Contents of the control data set
The control data set contains the following sequence of CIs:

 1. Control CI
2. State management record CI
3. Primary active system status CI
4. Primary alternate system status CI.

The control CI is used for validation. It contains:

190 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Bytes Contents
ð- 4 CAVM data set format number

8-14 Filename (DFHXCTL for control data set,

DFHXMSG for message data set)

 15-22 Generic APPLID

 23-42 Unique identification comprising:

23-3ð TOD clock at time of formatting by CAVM

 31-33 PWR

34 POWER SYSID of formatting system

 35-42 IPL TOD

A control CI with the same format is also present in the message data set. During
the CAVM SIGNON procedure, CAVM writes both CIs as part of its formatting
operation if both data sets were previously unused. Otherwise, it validates the two
CIs by checking that:

� The CAVM code level and data-set format are compatible.
� They have the same unique identification data.
� The filename value is appropriate for the intended use of the data set.
� The generic APPLID is the same as that of the system attempting to sign on.

The state management record contains information about the overall state of the
generic APPLID. It consists of a fixed part, followed by a number of job description
parts, one for each potential member system. The format of the fixed part is
defined by the DSECT SMDESCR in DFHWSMDS. The format of a job description
part is defined by the DSECT WSJDESC in DFHWSMDS.

The status CIs contain information about a particular member system. Unlike the
state management record, they are continually updated. The status data may be
recorded in a corresponding CI in the message data set if a system is for some
reason unable to update its control data set status CI. The preferred place for
status information is the control data set.

Each status CI consists of a fixed part which describes that system, and may be of
interest to any partner system. This is followed by parts containing information
directed to a specific partner system. Since the implementation allows only one
alternate system, there is in fact only one instance of these specific parts in each
CI.

The fixed part of the status CI consists of a 12-byte status record header, followed
by data described by the DSECT WSAS in DFHWSADS. The format of the status
record header is:

 Bytes Contents
ð- 7 TOD clock value at time of issuing write request

8-11 Write sequence number

The sequence numbers of the status CIs in the control data set are independent.
However corresponding status CIs in the control and message data sets share a
sequence number. Except for the special case when both contain their initial value
(zero), corresponding status CIs should always contain different sequence numbers
with the higher value in the CI containing the more up-to-date data.

 Chapter 11. Dealing with XRF errors 191

The following part of the status CI contains in order:

1. Data described by DSECT WSAR in DFHWSADS.

2. Either invalidation data for the alternate system (DSECT WSARIV in
DFHWSADS) if it is an active system status CI, or a takeover message for the
active system (DSECT WSARTM in DFHWSADS) if it is an alternate system
status CI.

3. Expedited message data from PUTREQ and PUTRSP requests (DSECT
WSARQR in DFHWSADS).

Contents of the message data set
The message data set contains the following sequence of CIs:

 1. Control CI
2. Unused CI (set to zeros)
3. Secondary active system status CI
4. Secondary alternate system status CI
5. Message data CIs up to the end of the space allocated.

The control CI and status CIs have already been described in the section on the
control data set.

The message data CIs form a wraparound store of message records generated as
the result of PUTMSG requests issued by the active system to the CAVM message
manager. The active system’s write cursor and the alternate system’s initial-read
cursor are both located in the active system’s status CI (see the DSECTs WSAR
and WSAS in DFHWSADS.) The alternate system’s current-read cursor is located
in the alternate system’s status CI (see the DSECT WSAR in DFHWSADS.)

The CIs are in standard VSAM format, and each message is represented by a
single nonspanned ESDS record. CIDF and RDF control fields are maintained
accordingly. The message manager does not attempt to combine RDFs for
adjacent records of equal length, consequently there is one RDF for each record in
the CI.

Each message CI contains:

1. A control record
2. Zero or more message records.

192 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 12. External CICS interface

The CICS external CICS interface produces messages with a format of
DFHEXnnnn.

For full details of all CICS messages, see the VSE/ESA Messages and Codes
Volume 3.

The external CICS interface outputs trace to the internal trace table, which is
located in the non-CICS VSE batch partition. Trace data is formatted and included
in any dumps produced by the external CICS interface.

Trace entries issued by the external CICS interface are listed in the CICS Trace
Entries manual.

The external CICS interface produces VSE SDUMPS for some error conditions.
These dumps contain all the external CICS interface control blocks, as well as trace
entries.

A user-replaceable program, DFHXCTRA, is available for use under the guidance
of IBM service personnel. It is the equivalent of DFHTRAP used in CICS. It is
invoked every time the external CICS interface writes a trace entry. The actions of
the CICS-supplied DFHXCTRA are, on a pipe FREEMAIN error, to:

1. Make a trace entry
2. Take an SDUMP
3. Skip writing the current trace entry

 4. Disable itself.

 Copyright IBM Corp. 1979, 1999 193

194 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 13. Dealing with MRO problems

This chapter discusses problems with multiregion operation (MRO).

If an error is suspected in communication between System A and System B, the
problem can be determined by looking at either system. The following procedure is
applied here to System A, but could equally well be applied to System B:

1. First, look at the field CSACRBA in the CSA optional features list in System A.
If CSACRBA is zero, the interregion communication routine is not active in that
system.

2. If CSACRBA is not zero, examine the TCTSEs in System A and find the
TCTSE for System B. In this TCTSE, TCSEIRCF is the flag byte that indicates
the state of communication between the two systems. If bit TCSEIRNC in this
byte is on, there is no communication between System A and System B. This
is because of one of the following:

� System B has not started interregion services
� System A is out of service with respect to System B
� System B is out of service with respect to System A

If bit TCSEIRNC is off, a session should exist.

3. Inspect the primary and secondary session(s) between the systems. The first
primary session is pointed to by field TCSEVC1 in the TCTSE, and the first
secondary session is pointed to by TCSEVC2. If System A initiated the
session, look at secondary sessions, otherwise look at primary sessions.

Each session is defined by a TCTTE. The field TCTESCCB in TCTTE is zero if
the session is not connected to the other system, otherwise it contains the
address of the subsystem connection control block (SCCB) that the interregion
SVC routine uses to represent that end of the connection.

Assuming the session is connected, TCTTECA is zero if no task is using the
session. Otherwise, TCTTECA points to the TCA of the task that uses the
session.

The protocol for interregion data transfer is similar to that for VTAM SNA data
flow control. Field TCTEIRF1 contains information on the state of the session,
field TCTESBRS gives the bracket status, field TCTESRHI is the inbound
request header, and field TCTESRHO is the outbound request header.

The field TCTENIBA points to the TCTTE extension for the NIB descriptor.
Within this TCTTE extension, TCTEPSQ contains the primary name, and
TCTESSQ contains the secondary name. Thus a session in System A can be
related to a session in System B.

 Copyright IBM Corp. 1979, 1999 195

196 CICS Transaction Server for VSE/ESA Problem Determination Guide

Part 3. Using traces and dumps in problem determination

Part 3 contains:

Chapter 14. Using traces in problem determination 199
Normal CICS tracing . 207
CICS exception tracing . 220
CICS XRF tracing . 221
XRF trace entry types . 222
Program check and abend tracing . 224
VTAM buffer tracing . 224
Using FEPI trace . 224

Chapter 15. Using dumps in problem determination 225
Controlling dump action . 225
Analyzing dumps . 236
Locating the last command or statement . 241
Locating program data . 242
Storage freeze . 252
Using FEPI dump . 252

Chapter 16. The global trap/trace exit . 253
Establishing the exit . 253
Information passed to the exit . 254
Actions the exit can take . 254
Program check handling . 255
Coding the exit . 255

 Copyright IBM Corp. 1979, 1999 197

198 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 14. Using traces in problem determination

Several types of traces are available to record different aspects of CICS activities.
The types of tracing that can be used for CICS systems are:

� “Normal” CICS tracing, is performed by the trace domain at predetermined
trace points in CICS code during the regular flow of control, and “user” tracing
from applications. You get this when you turn on CICS internal tracing or
auxiliary tracing. You can control this type of tracing to suit your needs, except
that, when an exception condition is detected by CICS, it always makes an
exception trace entry. You cannot turn exception tracing off.

� Tracing from the CICS exit programming interface (XPI), using the
TRACE_PUT XPI call from an exit program. You can control this within the exit
program, or by enabling and disabling exits.

� CICS XRF tracing, which records CICS XRF-related activities. This is always
running if you are operating in a CICS XRF environment.

� Program check and abend tracing, which is used by CICS to record pertinent
information when a program check or abend occurs. This is controlled by CICS
code.

� VTAM buffer tracing. This is a part of VTAM, but it can be used to record the
flow of data between logical units in the CICS environment. You can control
this type of tracing to meet your needs.

This chapter starts with a discussion of formatting and interpreting trace entries.
This is followed by the characteristics of the various types of tracing in the sections:

� “Normal CICS tracing” on page 207
� “CICS exception tracing” on page 220
� “CICS XRF tracing” on page 221
� “Program check and abend tracing” on page 224
� “VTAM buffer tracing” on page 224

Formatting and interpreting trace entries
Before you can look at the trace entries that have been sent to the various trace
destinations, you need to format the traced data. The way you do this varies
depending on the destination. For more details of trace utility programs, see the
CICS Operations and Utilities Guide.

You can specify abbreviated or extended trace formatting, to give you either a
“one line per entry” trace table, or a “many lines per entry” trace table. The
structures of the two types of trace entry are described in later sections.

Internal trace can be formatted in one of two ways:

� From a CICS system dump, using the CICS print dump exit, DFHPD410
� From a transaction dump, using the CICS dump utility program, DFHDU410

Auxiliary trace can be formatted using the CICS trace utility program, DFHTU410.
You can control the formatting, and you can select trace entries on the basis of
task, terminal, transaction, time frame, trace point ID (single or range), dispatcher
task reference, and task-owning domain. This complements the usefulness of
auxiliary trace for capturing large amounts of trace data.

 Copyright IBM Corp. 1979, 1999 199

Most of the time, the abbreviated trace table is the most useful form of trace
formatting, as you can quickly scan many trace entries to locate areas of interest.
However, you might occasionally want to look at the extended format trace entries,
to understand fully the information given in the corresponding abbreviated entries,
and to be aware of the additional data supplied with many extended trace entries.

Note: Trace entries can only be formatted selectively by transaction or terminal if
the “transaction attach” entry (point ID AP F004, KC level-1) for the transaction is
included in the trace data set.

Interpreting extended-format CICS system trace entries
CICS system trace entries made to the internal trace table and to auxiliary trace
data sets can be formatted to give the same type of information.

There are two slightly different extended trace entry formats. One (“old-style”)
resembles the format used in earlier releases of CICS, and gives FIELD A and
FIELD B values. The other (“new-style”) uses a completely new format, described
below.

Both types of formatted trace entries always show:

� The trace point ID . This is an identifier that indicates where the trace point is
in CICS code. In the case of application (AP) domain, the request type field
included in the entry is also needed to uniquely identify the trace point. For all
other domains, each trace point has a unique trace point ID.

Its format is always a two-character domain index, showing which domain the
trace point is in, then a space, then a four-digit (two-byte) hexadecimal number
identifying the trace point within the domain.

The following are examples of trace point IDs:

AP ððEE trace point X'ððEE' in Application Domain

DS ððð5 trace point X'ððð5' in Dispatcher Domain

TI ð1ð1 trace point X'ð1ð1' in Timer Domain

� An interpretation string , showing:

– The module where the trace point is located
– The function being performed
– Any parameters passed on a call, and any response from a called routine.

� A standard information string , showing:

– The task number , which is used to identify a task uniquely for as long as it
is in the system. It provides a simple way of locating trace entries
associated with specific tasks, as follows:

- A five-digit decimal number shows that this is a trace entry for a task
with a TCA, the value being taken from field TCAKCTTA of the TCA.

- A three-character non-numeric value in this field shows that the trace
entry is for a system task. You could, for example, see “III”
(initialization), or “TCP” (terminal control).

- A two-character domain index in this field shows that the trace entry is
for a task without a TCA. The index identifies the domain that attached
the task.

200 CICS Transaction Server for VSE/ESA Problem Determination Guide

– The kernel task number (KE_NUM), which is the number used by the
kernel domain to identify the task. The same KE_NUM value for the task is
shown in the kernel task summary in the formatted system dump.

– The time when the trace entry was made.

– The interval that elapsed between this and the previous trace entry, in
seconds.

The standard information string gives two other pieces of useful information:

– The address of the VSE subtask (field TCB) that is in use for this task.
This field can help you in comparing a CICS trace with the corresponding
VSE trace.

– The return address (field RET), passed in Register 14 to a called routine.
This field helps by showing what invoked the module that is making this
trace entry.

� A number of data fields containing information relevant to the function being
performed.

For old-style trace points, these are shown as fixed length (4-byte) FIELD A
and FIELD B values in the same line as the interpretation string. Both the
hexadecimal data values and any printable EBCDIC characters that they
represent are shown.

For new-style trace points, 1–7 variable-length data fields can be given. They
are shown immediately below the standard information line. Any printable
EBCDIC characters represented by byte values in the data fields are shown on
the right of the dump.

Some of the data fields in the new trace entries contain material intended for
use by IBM support personnel and you cannot interpret them directly.
However, there is enough information to resolve user errors and for IBM
support personnel to resolve most system errors in the interpretation string for
the entry. Trace entries from old-style trace points also include a request type
field (REQ), which gives the same information as the two-byte request field in
the formatted trace entries of CICS/VSE Version 2.

Some old-style trace entries also have a RESOURCE field. When provided, it
is usually the name of a resource associated with the request being traced.
For example, for program control requests, it is the program name.

Figure 27 on page 202 shows a trace entry made from an old-style trace point. Its
trace point ID is AP 00E1, corresponding to trace ID X'E1' of CICS/VSE Version
2.

 Chapter 14. Using traces in problem determination 201

FIELD A value FIELD B value

trace interpretation type of any EBCDIC any EBCDIC
point ID string request characters characters

AP 00E1 EIP EXIT SYNCPOINT OK REQ(00F4) FIELD-A(00000000) FIELD-B(00001602)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8413F470 TIME-16:32:01.1291125625 INTERVAL-00.0000216875 =000725=

task VSE TCB time of entry seconds since
number address hh:mm:ss last entry

kernel call return
task number address

Note: For some trace entries, an 8 character resource field appears to the right of FIELD B.

Figure 27. Example of the extended format for an old-style trace entry

You can probably see the resemblance between this type of format and the
CICS/VSE Version 2 equivalent it replaces.

The following is an explanation of the old-style trace entry:

� AP 00E1 shows that this trace entry was made from trace point X'00E1' in the
application domain.

Note that although all old-style trace points are in AP domain, not all AP
domain trace points are old-style. Some are new trace points, and they have a
similar format to that shown in Figure 28 on page 203. In general, old-style
trace points have values less than or equal to X'00FF' and new AP-domain
trace points have values greater than or equal to X'0200'

� The interpretation string ‘EIP EXIT SYNCPOINT OK’ gives information about
what was going on at the time the trace entry was made.

– EIP identifies the module where the trace point is located, in this case
DFHEIP.

– EXIT shows that the trace entry was written on completion of processing a
request.

– SYNCPOINT shows the type of function requested.

� REQ(00F4) represents the “request type” of the trace format of CICS/VSE
Version 2. In this example, byte 1 bits 0–3 (X'F') show that the trace entry is
made on exit from the request.

� FIELD-A and FIELD-B contain the same data as FIELD A and FIELD B in the
old-style format.

FIELD-A bytes 0–3 would contain the secondary response, EIBRESP2.
FIELD-B bytes 0–1 would contain the condition number, EIBRESP. In this
example, both are zero, indicating that no error response has been returned.
FIELD-B bytes 2–3 contain the command code, EIBFN. In this example, this is
X'1602', showing that the EXEC CICS command was SYNCPOINT.

� The standard information string shows:

– The task number for the currently running task is 00163. Any trace entries
having the same task number would have been made while this task was
running.

– The kernel task number for the task is 0007. If you were to take a system
dump while this task was in the system, you could identify the task in the
kernel summary information from this number.

202 CICS Transaction Server for VSE/ESA Problem Determination Guide

– The time when the trace entry was made was 16:32:01.1291125625.

– The interval that elapsed between this and the preceding trace entry was
00.0000216875 seconds.

Look now at Figure 28, which shows a new-style trace entry.

trace interpretation
point ID string

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(1A4A) SUSPEND(YES) INITIAL_IMAGE(00) STORAGE_CLASS(TASK)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-800411F2 TIME-16:31:52.5916976250 INTERVAL-00.0000666250 =000112=
1-0000 00480000 00000011 00000000 00000000 B6700000 00000000 02000100 C4C6C8C3 *............................DFHC*
0020 C5E3D9C4 03BD5BB0 00001A4A 03BD5B01 00000001 01000698 04755D70 40400008 *ETRD..$.... ..$........Q..). ..*
0040 00000FE8 C3C5E3D9 *...YCETR *

offset in data any EBCDIC
data field characters

field 1

Figure 28. Example of the extended format for a new-style trace entry

The following is an explanation of the new-style trace entry:

� SM 0C01 shows that this trace entry was made from trace point X'0C01' in
the storage manager domain.

� The interpretation string provides the following information:

– SMMG tells you the trace call was made from within module DFHSMMG.

– ENTRY FUNCTION(GETMAIN) tells you the call was made on entry to the
GETMAIN function.

– GET_LENGTH(1A4A) SUSPEND(YES) INITIAL_IMAGE(00)
STORAGE_CLASS(TASK) tells you the parameters associated with the
GETMAIN call, as follows:

- The request is for X'1A4A' bytes of storage.
- The task is to be suspended if the storage is not immediately available.
- The storage is to be initialized to X'00'.
- The storage class is TASK.

� The standard information string gives you this information:

– The task currently running is task number X'00163'.

– The kernel task number for the task is 0007.

– The time when the trace entry was made was 16:31:52.5916976250.

– The time that elapsed between this and the preceding trace entry was
00.0000666250 seconds.

� The data that is displayed below the standard information was taken from only
one data area.

The CICS Trace Entries manual contains details of trace point ID SM 0C01.
The data area is the SMMG parameter list.

Relevant information is formatted from the data area and appears in the trace
entry interpretation string.

Note that information about some data areas is intended for use by IBM
support personnel, and this means that details of their format and contents
might not be available to you. If you reach a point at which you are certain that

 Chapter 14. Using traces in problem determination 203

you cannot continue the problem determination process because you do not
have access to information about a data area, you need to contact your IBM
Support Center. They may not necessarily tell you the format and contents, but
they investigate the problem in the usual way, as described in Chapter 17,
“IBM program support” on page 259.

Interpreting abbreviated-format CICS system trace entries
Abbreviated-format CICS trace entries contain much of the information present in
the corresponding extended-format trace entries, and they are often sufficient for
debugging purposes. There is a one-to-one correspondence between the trace
entry numbers for the abbreviated and extended trace entries, so you can easily
identify the trace entry pairs.

Abbreviated trace entries show a “TCB index” instead of a VSE subtask control
block address. The TCB index has a value of 1, 2, or 3, and it indicates when
CICS task execution switches from one VSE subtask to another.

The first abbreviated trace entry always has a value of 1 for the TCB index. When
execution switches to another subtask, the value is shown as 2. When execution
switches again, the value shown is either 1 if the previous subtask is used, or 3 if
the remaining subtask is used.

A value of 3 for the TCB index appears only when the FEPI function is used.

There is no absolute correlation between the type of VSE subtask (quasi-reentrant,
resource owning, or FEPI) and the value of the TCB index. A value of 1 is always
shown for the TCB that happens to be in use when the first trace entry is made.

Figure 29 gives an example of the abbreviated format for an old-style trace entry.

abbreviated any any
task trace interpretation request EBCDIC EBCDIC
number point ID string field characters characters

00021 1 AP 00E1 EIP ENTRY INQUIRE-TRACEFLAG 0004,00223810,00007812 =000005=

TCB FIELD A FIELD B trace entry
index value value number

Note: For some trace entries, an 8-character resource field appears to the right of FIELD B.

Figure 29. Example of the abbreviated format for an old-style trace entry

Abbreviated old-style trace entries are easy to interpret, as you can readily identify
the REQ, FIELD A and FIELD B fields. Note that some such trace entries also
include a RESOURCE field.

For ZCP trace entries, FIELD B (which contains the TCTTE address) is printed
twice on each line. This allows both sides of the output to be scanned for the
terminal entries on an 80-column screen without having to scroll left and right.

Figure 30 on page 205 gives an example of the abbreviated format for a new-style
trace entry.

204 CICS Transaction Server for VSE/ESA Problem Determination Guide

abbreviated
task trace interpretation
numberpoint ID string

00021 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 03B8A370 , 00000001,848659C0,048659A0,410,200,REUSABLE =000023=

TCB index trace entry
number

Figure 30. Example of the abbreviated format for a new-style trace entry

Abbreviated-format new-style trace entries are less readily interpreted, because the
parameters in the interpretation string are not identified by name. If you are not
familiar with the parameters included in the trace entry, you need to look at the
corresponding extended-format trace entry to find out what they are. Figure 31
shows the corresponding extended-format trace entry.

trace interpretation
point ID string

LD 0002 LDLD EXIT - FUNCTION(ACQUIRE_PROGRAM) RESPONSE(OK) NEW_PROGRAM_TOKEN(03B8A370 , 00000001) ENTRY_POINT(848659C0) LOAD_POINT
(048659A0) PROGRAM_LENGTH(410) FETCH_TIME(200) PROGRAM_ATTRIBUTE(REUSABLE)

TASK-00021 KE_NUM-0007 TCB-009FF3C0 RET-847B26A2 TIME-10:45:49.6888118129 INTERVAL-00.0000235625 =000023=
1-0000 00880000 0000001C 00000000 00000000 BBA02800 00000000 01000100 C4C6C8C3 *.h..........................DFHC*
0020 D9D84040 FD052000 00062060 03B8A370 00000001 848659C0 048659A0 A4F78696 *RQ-..t.....df...f..u7fo*
0040 00000410 C3D9E2D8 00000000 C3C9C3E2 E4E2C5D9 01010002 1C000000 00000000 *....CRSQ....CICSUSER............*
0060 00000000 00000200 C302D840 40000500 01000000 00000000 00000000 00000000 *........C.Q*
0080 00000000 00000000 *........ *

offset in data any EBCDIC
data field characters

field 1

Figure 31. Example of the corresponding extended-format trace entry

LD 0002 shows that this trace entry was made from trace point X'0002' in the
loader domain.

The interpretation string provides this information:

� LDLD tells you the trace call was made from within module DFHLDLD.

� EXIT FUNCTION(ACQUIRE_PROGRAM) tells you the call was made on exit
from the ACQUIRE_PROGRAM function.

The standard information string gives you this information:

� The task currently running has a task number of 00021.

� The kernel task number for the task is 0007.

� The time when the trace entry was made was 10:45:49.6888118129.

� The time that elapsed between this and the preceding trace entry was
00.0000235625 seconds.

The data displayed below the standard information was taken from only one data
area. If you look in the CICS Trace Entries manual for details of trace point ID LD
0002, you will see that the data area is the LDLD parameter list.

 Chapter 14. Using traces in problem determination 205

Interpreting user trace entries
User trace entries have point IDs in the range AP 0000 through AP 00C2, the
numeric part of the point ID being specified in the application.

Extended format user trace entries show a user-defined resource field, and a
user-supplied data field that can be up to 4000 bytes in length. A typical
extended-format entry is shown in Figure 32.

trace interpretation
point ID string

AP 000B USER EVENT - APPLICATION-PROGRAM-ENTRY - SEND - CICS USER TRACE ENTRY HELP INFORMATION
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8003F54C TIME-16:32:01.1295568750 INTERVAL-00.0001965625 =000731=
1-0000 E4E2C5D9 404040 *USER *
2-0000 C3C9C3E2 40E4E2C5 D940E3D9 C1C3C540 C5D5E3D9 E8404040 40404040 40404040 *CICS USER TRACE ENTRY *
0020 C8C5D3D7 40C9D5C6 D6D9D4C1 E3C9D6D5 40404040 40404040 40404040 40404040 *HELP INFORMATION *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0060 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

3-0000 E2C5D5C4 40404040 *SEND *

offset in data any EBCDIC
data field characters

data field
number

Figure 32. Example of the extended format for a user trace entry

The interpretation string for the entry contains the string
“APPLICATION-PROGRAM-ENTRY”, to identify this as a user trace entry, and the
resource field.

There are three data fields on an extended-format user trace entry:

1. The character string “USER”.

2. User data from the area identified in the FROM parameter of the trace
command.

3. The resource field value identified in the RESOURCE parameter of the trace
command.

The abbreviated-trace entry corresponding to the extended trace entry of Figure 32
is shown in Figure 33.

abbreviated
task trace interpretation optional
numberpoint ID string user data

00163 1 AP 000B USER EVENT APPLICATION-PROGRAM-ENTRY SEND CICS USER TRACE ENTRY HELP INFORMATION =000731=

TCB index trace entry
number

Figure 33. Example of the abbreviated format for a user trace entry

Abbreviated-format trace entries show the user resource field in the interpretation
string. There is also an optional user data field that contains as much
user-specified data as can be fitted into the line. If successive user trace entries
have the same resource field value, but different data field values, you might need
to refer to the corresponding extended trace entries to assess their significance.

206 CICS Transaction Server for VSE/ESA Problem Determination Guide

Normal CICS tracing
“Normal” CICS tracing is handled by trace domain. It can be used to trace the flow
of execution through CICS code, and through your applications as well. For
programming information about how to make trace calls from within your own
programs, refer to the description of the EXEC CICS ENTER TRACENUM
command in the CICS Application Programming Reference manual. You can see
what functions are being performed, what parameters are being passed, and the
values of important data fields at the time trace calls are made. This type of tracing
is also used for “first failure data capture”, if an exception condition is detected by
CICS.

The principal feature of this type of CICS tracing is the control you have over the
amount of system tracing that is done. You can select tracing by transaction, by
CICS component, and by level of detail.

You can select internal tracing or auxiliary tracing on their own, or combine them so
that they are active at the same time. Your choice has no effect on the selectivity
with which system tracing is done, but each type of tracing has a set of
characteristic properties. These properties are described in “CICS internal trace”
on page 216, and “CICS auxiliary trace” on page 217.

Trace points and trace levels
Trace points are included at specific points in CICS code; from these points, trace
entries can be written to any currently selected trace destination. All CICS trace
points are listed in alphanumeric sequence in the CICS Trace Entries manual.

Some trace points are used to make exception traces when exception conditions
occur, and some are used to trace the mainline execution of CICS code. Trace
points of the latter type each have an associated “level” attribute. The value of this
attribute depends on where the trace point is, and the sort of detail it can provide
on a trace call.

Trace levels can, in principle, vary in value in the range 1–32, but in practice nearly
all mainline trace points have a trace level of 1 or 2.

Level-1 trace points are designed to give you enough diagnostic information to fix
“user” errors. The following is a summary of where they are located, and a
description of the information they return:

� On entry to, and exit from, every CICS domain. The information includes the
domain call parameter list, and data whose address is contained in the
parameter list if it is necessary for a high-level understanding of the function to
be performed.

� On entry to, and exit from, major internal domain functions. The information
includes parameters passed on the call, and any output from the function.

� Before and after calls to other programs, for example, VTAM. The information
includes what request is to be made, the input parameters on the request, and
the result of the call.

� At many of the points where trace calls were made in CICS/VSE Version 2.
The type of information is the same as for that release.

 Chapter 14. Using traces in problem determination 207

Level-2 trace points are situated between the level-1 trace points, and they
provide information that is likely to be more useful for fixing errors within CICS
code. You probably will not want to use level-2 trace points yourself, unless you
are requested to do so by IBM support staff after you have referred a problem to
them.

Level-3 trace points and above are reserved for special cases. Very few
components have trace points higher than 2, and they are only likely to be of use to
IBM support staff.

You can select how much CICS system tracing is to be done on the basis of the
trace level attributes of trace points. You can make your selection independently
for each CICS component, and you can also vary the amount of tracing to be done
for each task. This gives you control over what system tracing is done.

Note: In the storage manager component (SM), two levels of tracing, level 3 and
level 4, are intended for IBM field engineering staff. These trace levels take effect
only if specified in system initialization parameters and modify the internal SM
operation for CICS subpools as follows:

SM level 3 trace The quickcell mechanism is deactivated. Every CICS subpool,
regardless of quickcelling requirements, will issue domain calls for
GETMAIN and FREEMAIN services, and these calls will be traced.

SM level 4 trace Subpool element chaining on every CICS subpool is forced.
Every CICS subpool, regardless of element chaining requirements, will use
element chaining.

A significant performance overhead is introduced into your CICS system if these
storage manager trace levels are selected. Note that specifying SM=ALL activates
SM trace levels 1, 2, 3, and 4.

Specifying the system tracing you want
For each transaction, you can specify whether standard tracing or special tracing is
to be done, or whether tracing is to be suppressed for that transaction altogether.

For each component, you can specify two sets of trace level attributes. The trace
level attributes define the trace point IDs to be traced for that component when
standard task tracing is being done and when special task tracing is being done,
respectively.

If you are running a test region, you probably have background tracing most of the
time. In this case, the default tracing options (standard tracing for all transactions,
and level-1 trace points only in the standard set for all components) probably
suffice. All you need do is to enable the required trace destinations and set up any
related tracing options. Details are given in “Selecting trace destinations and
related options” on page 216.

For a production system, background tracing might incur an unacceptable
processing overhead. If you find this to be so, you are recommended to set up
tracing so that exception traces only are recorded on an auxiliary trace data set.
There need be no other tracing overhead, and you can be sure that the exception
trace will be preserved even when the event invoking the trace does not cause a
system dump to be taken. For details, see “CICS exception tracing” on page 220.

208 CICS Transaction Server for VSE/ESA Problem Determination Guide

When specific problems arise, you can set up special tracing to help you focus on
only the relevant tasks and components. A scheme for specifying the tracing you
need is outlined in Figure 34 on page 209.

Trace to be used
for a problem

Specific
tasks

implicated
in N

problem?

Y

Identify next task

Non Transaction
terminal specific
task? N problem? N

Y Y

Terminal
specific

N problem?

Y

Select special Select special
tracing for tracing for
transaction terminal

Any more tasks?
Y

N

1

Figure 34 (Part 1 of 3). Outline scheme for setting up special tracing for problems

 Chapter 14. Using traces in problem determination 209

1

Specific
components
implicated

in N
problem?

Y

Identify next component

Tracing Set special
needed for tracing off
component? N for component

Y

See
Extra tracing Set special note 2

detail level 1
needed for tracing for
component? N component

Y

Select special See
level 1 and 2 note 2
tracing for
component

Any more components?
Y

N

2

Figure 34 (Part 2 of 3). Outline scheme for setting up special tracing for problems

210 CICS Transaction Server for VSE/ESA Problem Determination Guide

2

Any
standard
tracing Y
needed?

N

See
Set master system note 3
trace flag off

See
Enable trace note 3
destinations

See
Format and examine note 4
trace output

Figure 34 (Part 3 of 3). Outline scheme for setting up special tracing for problems

Notes:

1. See “Tracing for selected tasks”

2. See “Selecting component tracing” on page 214

3. See “Setting the tracing status” on page 218

4. See “Formatting and interpreting trace entries” on page 199; “Interpreting
extended-format CICS system trace entries” on page 200; and “Interpreting
abbreviated-format CICS system trace entries” on page 204.

Tracing for selected tasks
You can select which tasks are to have standard tracing, which are to have special
tracing, and which are to have tracing suppressed. If you specify standard tracing
for a task, trace entries are made at all the trace points in the standard set. If you
specify special task tracing, you get trace entries at all the trace points in the
special set. If you suppress tracing for a task, you do not get any tracing done
(except exception tracing) when that task is running.

For transactions that run at terminals, a task is considered to be an instance of a
transaction run at a specific terminal. By defining the type of tracing you want by
transaction and terminal, you automatically define what task tracing is to be done.

For non-terminal transactions, a task is just an instance of the transaction. The
type of tracing you define for the transaction alone defines the type of task tracing
that is to be done.

 Chapter 14. Using traces in problem determination 211

The type of task tracing you get for the various combinations of transaction tracing
and terminal tracing is summarized in the truth table shown in Figure 35 on
page 212.

OPTION on TERMINAL
OPTION on TRANSACTION

standard special
tracing tracing

tracing suppressed SUPPRESSED SUPPRESSED

standard tracing STANDARD SPECIAL

special tracing SPECIAL SPECIAL

Figure 35. The combination of task trace options

You can set up the task tracing you want using the CETR transaction, with the
screen shown in Figure 36. Type in the transaction ID or the terminal ID or the
netname for the terminal, together with the appropriate tracing.

The status can be any one of STANDARD, SPECIAL, or SUPPRESSED for the
transaction, and either STANDARD or SPECIAL for the terminal.

This screen can also be used to set up certain other terminal tracing options. You
can select ZCP tracing for a named terminal (trace point ID AP 00E6).

à ð
 CETR Transaction and Terminal Trace

 Type in your choices.

 Item Choice Possible choices

 Transaction ID ===> Any valid 4 character ID

 Transaction Status ===> STandard, SPecial, SUppressed

 Terminal ID ===> Any valid Terminal ID

 Netname ===> Any valid Netname

 Terminal Status ===> STandard, SPecial

 Terminal ZCP Trace ===> ON, OFf

 When finished, press ENTER.

 PF1=Help 3=Quit 9=Error List

á ñ

Figure 36. CETR screen for specifying standard and special task tracing

The CETR transaction can, for example, help you to get standard tracing for a
transaction when it is run at one terminal, special tracing when it is run at a second
terminal, and no tracing at all when it is run at any other terminal.

212 CICS Transaction Server for VSE/ESA Problem Determination Guide

Notes:

1. You can turn standard tracing off for all tasks by setting the master system
trace flag off. You can do this with the CETR transaction, using the screen
shown in Figure 39 on page 218, or you can code the SYSTR=OFF system
initialization parameter. However, any special task tracing will continue—it is
not affected by the setting of the system master trace flag.

2. If you run with standard tracing turned off and you specify levels of tracing for
the required components under the "Special" heading in the “Components
Trace Options” screen shown in Figure 38 on page 215, you can use CETR to
trace a single transaction. To do this, specify the transaction ID and a
transaction status of SPECIAL, on the screen shown in Figure 36 on
page 212.

The tracing logic used by CICS
The logic used by CICS to decide whether a trace call is to be made from a trace
point is shown in Figure 37. It is assumed that at least one trace destination is
STARTED.

TRACE POINT

Tracing Y
suppressed for
this task?

N

Standard Y Master N
tracing required system trace
for this task? flag on?

N Y

N Special Standard N
tracing specified tracing specified
for this domain for this domain
and level? and level?

Y Y

Trace Trace
call call
made not made

Figure 37. Logic used to determine if a trace call is to be made from a trace point

 Chapter 14. Using traces in problem determination 213

Selecting component tracing
“Component names and abbreviations” lists the components for which you can
select trace levels for standard and special tracing. You can reference this list
online through CETR, by pressing PF1 on the component screen (see Figure 38 on
page 215).

Decide for each component the trace levels to be used for both standard and
special tracing. You can define this either during system initialization, or online
using the CETR transaction.

Note: The component codes BF, BM, CP, DC, DI, EI, FC, IC, IS, JC, KC, PC, RC,
SC, SP, SZ, TC, TD, TS, and UE are subcomponents of the AP domain.
The corresponding trace entries are produced with a point ID of AP nnnn.

For example, trace point AP 0471 is a file control level-1 trace point and
AP 0472 is a file control level-2 trace point. These trace points are
produced only if the trace setting for the FC component is “(1,2)” or “ALL”.
The component code AP is used for trace points from the AP domain that
do not fall into any of the subcomponent areas listed above.

Component names and abbreviations

Code Component name'
AP Application domain'
BF Built-in function'
BM Basic mapping support'
CP Common programming interface'
DC Dump compatibility layer'
DD Directory manager domain'
DI Batch data interchange'
DM Domain manager domain'
DS Dispatcher domain'
DU Dump domain'
EI Exec interface'
EX External CICS interface'
FC File control'
GC Global catalog domain'
IC Interval control'
IS ISC or IRC'
JC Journal control'
KC Task control'
KE Kernel'
LC Local catalog domain'
LD Loader domain'
LM Lock domain'
ME Message domain'
MN Monitoring domain'
PA Parameter domain'
PC Program control'
PG Program manager'
RC Report Controller'
SC Storage control'
SM Storage manager domain'
SP Syncpoint'
ST Statistics domain'

214 CICS Transaction Server for VSE/ESA Problem Determination Guide

SZ Front End Programming Interface'
TC Terminal control'
TD Transient data'
TI Timer domain'
TR Trace domain'
TS Temporary storage'
UE User exit interface'
US User domain'
XM Transaction manager'
XS Security manager'

Defining component tracing at system initialization: You can code any of the
following CICS system initialization parameters to define component tracing:

� SPCTR, to indicate the level of special tracing required for CICS as a whole.

� SPCTRxx, where xx is one of the two-character component identifiers that
specify the level of special tracing you require for a particular CICS component
(see “Component names and abbreviations” on page 214).

� STNTR, to indicate the level of standard tracing required for CICS as a whole.

� STNTRxx, where xx is one of the two-character component identifiers that
specify the level of standard tracing you require for a particular CICS
component (see “Component names and abbreviations” on page 214).

For more information about system initialization parameters, see the CICS System
Definition Guide.

Defining component tracing when the CICS system is running: You can use
the CETR transaction to define component tracing dynamically on the running CICS
system.

Figure 38 shows you an example Component Trace Options screen. To make
changes, overtype the settings shown on the screen, and then press ENTER.

à ð
 CETR Component Trace Options

 Overtype where required and press ENTER. PAGE 1 OF 2

 Component Standard Special

 -------- ------------------------------- ---------------------------

 AP 1 1-2

 BF 1 OFF

 BM 1 OFF

 CP 1 1-2

 DC 1 OFF

 DD 1 1-2

 DI 1 1

 DM 1 1-2

 DS 1 1-2

 DU 1 1-2

 EI 1 1

 FC 1 1-2

 GC 1 1-2

 IC 1 1

 IS 1 OFF

 JC 1 1

 KC 1 1

PF: 1=Help 3=Quit 7=Back 8=Forward 9=Messages ENTER=Change

á ñ

Figure 38. CETR screen for specifying component trace options

With the settings shown, trace entries are made as follows:

 Chapter 14. Using traces in problem determination 215

� With standard task tracing in effect, from level-1 trace points of all the
components listed.

� With special task tracing in effect:

– From level-1 trace points only for components DI, EI, IC, JC and KC

– From both level-1 and level-2 trace points for components AP, CP, DD,
DM, DS, DU, FC, and GC

No special task tracing is done for components BF, BM, DC, and IS.

Selecting trace destinations and related options
The trace destinations you select and the options you define for the destinations
depend on your specific problem determination requirements. You can opt to run
CICS internal tracing or CICS auxiliary tracing, or you can elect to have both active
at the same time. See in “CICS internal trace” and “CICS auxiliary trace” on
page 217 for more information. Decide how much trace data you need to capture,
and whether you want to integrate CICS tracing with tracing done by other
programs.

You can control the status and certain other attributes of the various types of CICS
tracing either dynamically, using the CETR transaction, or during system
initialization, by coding the appropriate system initialization parameters.

CICS internal trace
You can select a status of STARTED or STOPPED for internal trace. If you select
STARTED, any trace calls that are made cause trace entries to be directed to the
internal trace table. This occupies a sequence of pages in virtual storage above
the 16MB line, in VSE GETVIS storage.

The internal trace table has a minimum size of 16KB, and a maximum size of
1 048 576KB. The table is extendable from 16KB in 4KB increments. You can
change the size of the table dynamically, while CICS is running, but if you do so
you lose all of the trace data that was present in the table at the time of the
change. If you want to keep the data and change the size of the table, take a
system dump before you make the change.

The internal trace table wraps when it is full. When the end of the table is reached,
the next entry to be directed to the internal trace entry goes to the start, and
overlays the trace entry that was formerly there. In practice, the internal trace table
cannot be very big, so it is most useful for background tracing or when you do not
need to capture an extensive set of trace entries. If you need to trace CICS
system activity over a long period, or if you need many entries over a short period,
one of the other trace destinations is likely to be more appropriate.

Note that the internal trace table is always present in virtual storage, whether you
have turned internal tracing on or not. The reason is that the internal trace table is
used as a destination for trace entries when CICS detects an exception condition.
Other trace destinations that are currently selected get the exception trace entry as
well, but the entry always goes to the internal trace table even if you have turned
tracing off completely. This is so that you get “first failure data capture”.

216 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS auxiliary trace
CICS auxiliary trace entries are directed to one of two auxiliary trace data sets,
DFHAUXT and DFHBUXT. These are CICS-owned SAM data sets, and they must
be created before CICS is started. They cannot be redefined dynamically.

You can use the AUXTR system initialization parameter to turn CICS auxiliary trace
on or off during CICS initialization.

You can select a status of STARTED, STOPPED, or PAUSED for CICS auxiliary
trace dynamically using the CEMT SET AUXTRACE command or the CETR
transaction. These values reflect both the status of the auxiliary trace flag, and the
status of the current auxiliary trace data set, in the way shown in Table 30.

When you first select STARTED for CICS auxiliary trace, any trace entries are
directed to the initial auxiliary trace data set. If CICS terminated normally when
auxiliary trace was last active, this is the auxiliary trace data set that was not being
used at the time. Otherwise, it is the DFHAUXT data set. If you initialize CICS
with auxiliary trace STARTED, DFHAUXT is used as the initial auxiliary trace data
set.

What happens when the initial data set is full depends on the status of the auxiliary
switch (AUXTRSW). This can have a value of NO, NEXT, or ALL, and you can
define it either using the AUXTRSW system initialization parameter, or dynamically
using the CEMT SET AUXTRACE command or the CETR transaction.

AUXTRSW
value Meaning

NO When the initial data set is full, no more auxiliary tracing is done.

NEXT When the initial data set is full, the other data set then receives the
next trace entries. However, when that one is full, no more trace data
is written to auxiliary trace.

ALL Auxiliary trace data is written alternately to each data set, a switch
being made from one to the other every time the current one becomes
full. This means that trace entries already present in the trace data
sets start getting overwritten when both data sets become full for the
first time.

The advantage of using auxiliary trace is that you can collect large amounts of
trace data, if you initially define large enough trace data sets. For example, you
might want to do this to trace system activity over a long period of time, perhaps to
solve an unpredictable storage violation problem.

Table 30. The meanings of auxiliary trace status values

Auxiliary tracing
status

Auxiliary trace flag Auxiliary trace data
set

STARTED ON OPEN

STOPPED OFF CLOSED

PAUSED OFF OPEN

 Chapter 14. Using traces in problem determination 217

A time stamp is included in the header line of every page of abbreviated auxiliary
trace output to help match external events with a particular area of the trace, and
thus help you to find the trace entries that are of interest.

Setting the tracing status
You can set the system tracing status by coding the appropriate system
initialization parameters, and you can also set it dynamically, using the CETR
transaction. The CETR transaction enables you to make changes in response to
contingencies, as they arise.

Setting the tracing status at system initialization
These are the parameters that you can use to set up tracing status at system
initialization:

AUXTR
To specify whether auxiliary trace is to be activated at system initialization.

AUXTRSW
To define the auxiliary switch status.

INTTR
To specify whether internal tracing is to be activated at system initialization.

SYSTR
To set the master system trace flag on or off.

TRTABSZ
To specify the size of the internal trace table.

USERTR
To set the master user trace flag on or off. It must be on if user trace calls are
to be made from your applications.

For more details of these system initialization parameters, see the CICS System
Definition Guide.

Setting the tracing status using CETR
You can use the CICS trace control transaction (CETR) to set the tracing status.
Figure 39 shows you the CETR screen you can use to set the tracing status
dynamically.

à ð
CETR CICS Trace Control Facility

Type in your choices.

Item Choice Possible choices

Internal Trace Status ===> STOPPED STArted, STOpped

Internal Trace Table Size ===> ðð16 K 16K - 1ð48576K

Auxiliary Trace Status ===> STARTED STArted, STOpped, Paused

Auxiliary Trace Dataset ===> B A, B

Auxiliary Switch Status ===> ALL NO, NExt, All

Master System Trace Flag ===> OFF ON, OFf

Master User Trace Flag ===> OFF ON, OFf

When finished, press ENTER.

PF1=Help 3=Quit 4=Components 5=Ter/Trn 9=Error List

á ñ

Figure 39. Tracing options shown on a CETR screen

218 CICS Transaction Server for VSE/ESA Problem Determination Guide

In this example, internal tracing status is STOPPED, and so regular tracing is not
directed explicitly to the internal trace table. However, note that the internal trace
table is used as a buffer for the other trace destinations, so it always contains the
most recent trace entry, if at least one trace destination is STARTED. The internal
trace table is also used as a destination for exception trace entries, which are made
whenever CICS detects an exception condition. If such a condition were detected
when the options shown in this example were in effect, you would be able to find
the exception trace entry in the internal trace table.

The internal trace table size is 16KB, which is the minimum size it can be. If
internal trace were STARTED, the trace table would wrap when it became full.

The current auxiliary trace data set is B, meaning that trace entries are being
written to DFHBUXT. The auxiliary switch status is ALL, so a switch would be
made to the other auxiliary trace data set whenever one became full.

The master system trace flag is OFF. This means that no standard tracing is done
at all, even though standard tracing might be specified for some tasks. However,
special task tracing is not affected—the master system trace flag only determines
whether standard task tracing is to be done.

You can see the role of the master system trace flag in Figure 37 on page 213.

The master user trace flag is OFF, so no user trace entries can be made from
applications. You must set the master user trace flag on before any user trace
requests in your programs can be serviced. If it were off, any trace call requests in
your programs would be ignored.

The logic used to ensure that trace entries are written to the required destinations
is shown in Figure 40.

TRACE CALL

Trace entry built
in the internal
trace table

Auxiliary Yes Trace data copied
tracing status to the current

=STARTED? auxiliary trace
data set

No

RETURN

Figure 40. How trace entries are directed to the required destinations

 Chapter 14. Using traces in problem determination 219

CICS exception tracing
CICS always performs exception tracing when it detects an exception condition (for
example, bad parameters on a domain call, or an abnormal response from a called
routine). The aim is “first failure data capture”, to record data that might be relevant
to the exception as soon as possible after it has been detected.

CICS uses a similar mechanism for both exception tracing and “normal” tracing.
Exception trace entries are made from specific points in CICS code, and data is
taken from areas that might provide information about the cause of the exception.
The first data field in the trace entry is usually the parameter list from the last
domain call, because this can indicate the reason for the exception.

The exception trace points do not have an associated “level” attribute, and trace
calls are only ever made from them when exception conditions occur.

Exception trace entries are always written to the internal trace table, even if no
trace destinations are currently STARTED. That is why there is always an internal
trace table in every CICS partition, to make sure there is always somewhere to
write exception trace entries. If the other trace destinations are STARTED, the
exception trace entries are written there, as well.

You can select tracing options so that exception traces only are made to an
auxiliary trace data set. This is likely to be useful for production regions, because it
enables you to preserve exception traces in auxiliary storage without incurring any
general tracing overhead. You need to disable all standard and special task
tracing, and enable auxiliary trace:

1. Ensure that special tracing has not been specified for any task.

2. Set the master system trace flag off.

3. Set the auxiliary trace status to STARTED, and the auxiliary trace data set and
the auxiliary switch status to whatever values you want.

Exception traces are now made to an auxiliary trace data set, but there is no other
tracing overhead.

The format of an exception trace entry is almost identical to that of a normal trace
entry. However, you can identify it by the eye-catcher \EXC\ in the header.

Note: Exception conditions that are detected by VSE—for example, operation
exception, protection exception, or data exception—do not cause a CICS exception
trace entry to be made directly. However, they do cause a CICS recovery routine
to be invoked, and that, in turn, causes a “recovery” exception trace entry to be
made.

User exception trace entries
The EXCEPTION option on the EXEC CICS ENTER TRACENUM command
enables user programs to write a trace entry to the trace destinations, even when
the master user trace flag is off. User exception trace entries are always written to
the internal trace table (even if internal tracing is set off), but are written to other
destinations only if they are active.

220 CICS Transaction Server for VSE/ESA Problem Determination Guide

The user exception trace entries that CICS writes are identified by the character
string *EXCU in any formatted trace output produced by CICS utility programs. For
example, an application program exception trace entry generated by an EXEC
CICS ENTER TRACENUM() EXCEPTION command appears in formatted trace
output as:

USER \EXCU - APPLICATION-PROGRAM-EXCEPTION

If you use the exit programming interface (XPI) trace control function to write user
trace entries, you can use the DATA1 block descriptor to indicate whether the entry
is an exception trace entry. Enter the literal ‘USEREXC’ in the DATA1 field on the
DFHTRPTX TRACE_PUT call to identify an exception trace entry. This is
interpreted by the trace formatting utility program as follows:

USER \EXCU - USER-EXIT-PROGRAM-EXCEPTION

See the CICS Customization Guide for programming information about XPI trace
control function.

CICS XRF tracing
CICS XRF tracing is always active when you are running with XRF. It is used by
the CICS availability manager (CAVM), and you cannot turn it off. However, it only
makes about 12 entries every 2 seconds, so the overhead is not great. Note that
CICS XRF tracing is quite distinct from the “normal” CICS tracing that can originate
from the CAVM, which is identified by trace point IDs AP 00C4 through AP 00C7.

The XRF trace entries are 32 bytes long and are written to a trace table in main
storage. The table has a fixed size of 64KB, and it wraps around when it is full.

The table starts with 28 bytes of control information, in the format shown in
Table 31.

Trace entries are 32 bytes long, and have the format shown in Table 32.

Table 31. Control information at the start of the XRF trace table

Bytes Contents

 0–15 '*** XRF TRACE **'

16–19 Address of start of trace entries

20–23 Address of end of trace entries

24–27 Address of end of most recent entry

Table 32. Format of an XRF trace entry

Bytes Contents

 0 Type code

 1 Subtype

 2–3 Process ID of XRF process that made the entry

 4–27 Trace data—the format depends on the type or the subtype

28–31 Clock value when entry was made, same format as “normal” CICS trace
entries

 Chapter 14. Using traces in problem determination 221

Process IDs are assigned in order of process ATTACH starting from 1. Some
special values are used for processes which are not known to the dispatcher, but
which cause trace entries to be made. These are:

Process ID Function
X'0000' Initial attach
X'FFFE' STXIT AB error handling
X'FFFF' Dispatcher activities.

XRF trace entry types
The entries are as follows:

Table 33 (Page 1 of 3). XRF trace entry types

Module Type Subtype Description

DFHWLGET 1 1 Module entry

Bytes:

 4-11 Module name

12-15 LIFO allocation address

DFHWLFRE 1 2 Module return

Bytes:

 4-11 Module name

12-15 LIFO allocation address

16-27 ð

DFHWDATT 2 1 XRF process attach

Bytes:

 4- 7 Process entry point

 8-11 Initial data parameter

12-15 Address of STXITPC routine

16-19 Address of STXITAB routine

2ð-23 Address of attached process XPB

24-27 Process ID attached process XPB

DFHWDISP 2 2 XRF process detach

Bytes:

 4-27 ð

DFHWDISP 2 3 XRF process dispatch

Bytes:

 4- 7 Address of external ECB waited for

 (if any)

 8-11 Address of internal ECB waited for

 (if any)

12-15 Awaited broadcast events that were

 posted

16-19 Broadcast events still posted for

 this process

2ð-23 Address of process XPB

24-27 Locks held by this process

222 CICS Transaction Server for VSE/ESA Problem Determination Guide

Table 33 (Page 2 of 3). XRF trace entry types

Module Type Subtype Description

DFHWDWAT 2 4 XRF process wait (event data)

Bytes:

 4- 7 Address of external ECB to wait for

 (if any)

 8-11 Address of internal ECB to wait for

 (if any)

12-15 Broadcast events to wait for

 (if any)

16-19 Events to be broadcast to all

 processes

2ð-23 Events to be reset for this process

24-27 ð

DFHWDAT 2 5 XRF process wait (lock data)

Bytes:

 4- 7 Locks to be freed

 8-11 Locks to be acquired

12-19 ð

2ð-23 Locks held by all other processes

at time of call

24-27 Locks held by this process

at time of call

DFHWDISP 2 6 Dispatcher termination

Bytes:

 4-27 ð

DFHDISP 2 7 Dispatcher issuing operating system WAIT

Bytes:

 4-19 ð

2ð-23 Address of WAIT list

24-27 Number of ECBs in WAIT list

DFHWDISP 2 8 Dispatcher resume after operating system WAIT

Bytes:

 4-27 ð

DFHWMMT 3 1 Message manager issuing VSAM GET

Bytes:

 4- 7 RPL address

 8-11 RBA of CI to be read

12-27 ð

DFHWMMT 3 2 Message manager issuing VSAM PUT

Bytes:

 4- 7 RPL address

 8-11 RBA of CI to be written

12-27 ð

DFHWMMT 3 3 Message manager I/O complete

Bytes:

 4- 7 RPL address

 8-11 RBA of CI to be read

12 ð

13-15 VSAM feedback information

16-27 ð

 Chapter 14. Using traces in problem determination 223

Table 33 (Page 3 of 3). XRF trace entry types

Module Type Subtype Description

DFHWMQH 4 1 Message manager message received

Bytes:

 4- 7 ð

 8-11 Queue name

12-15 Message sequence number

16-19 Address of message block

(contains message copy)

2ð-27 ð

DFHWMWR 4 2 Message manager message sent

Bytes:

 4- 7 ð

 8-11 Queue name

12-15 Message sequence number

16-19 Message file cycle number

2ð-23 RBA of this message

24-25 ð

26-27 Response to PUTMSG request

 (WMSRESP)

Program check and abend tracing
Program check and abend tracing is carried out by kernel domain. The kernel
records information about program checks and abends, including details of the
registers and the PSW at the time of failure.

You cannot format the program check and abend trace information directly, but you
can get a summary of its contents in a formatted CICS system dump by specifying
dump formatting keyword KE. The information is provided in the form of a storage
report for each task that has had a program check or an abend during the current
run of CICS.

An example of such a storage report is given in Figure 2 on page 45.

VTAM buffer tracing
VTAM buffer tracing enables you to look at all the data that is passed between
logical units on a VTAM communication link. For details of VTAM buffer tracing,
see the appropriate manual in the VTAM library.

Using FEPI trace
For information about using trace to solve FEPI problems, see the CICS Front End
Programming Interface User’s Guide.

224 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 15. Using dumps in problem determination

You have the choice of two different types of CICS dump to help you with problem
determination. They are the transaction dump , of transaction-related storage
areas, and the CICS system dump , of the entire CICS partition.

The type of dump to use for problem determination depends on the nature of the
problem. In practice, the system dump is often more useful, because it contains
more information and you can be reasonably confident that it has captured all the
evidence you need to solve your problem.

The CICS system dump is potentially very large, but this need not be a problem.
You can leave the data on the system dump data set, or keep a copy of it, and
format it selectively as you require.

You can control the dump actions taken by CICS, and also what information the
dump output contains.

Controlling dump action
There are two aspects to controlling dump action:

� Setting up the dumping environment, so that appropriate dump action is taken
when circumstances arise that cause a dump to be taken.

� Causing a dump to be taken. Both users and CICS can issue requests for
dumps to be taken.

Setting up the dumping environment
There are several levels at which the dumping environment can be set up:

� System dumps (apart from CICS kernel domain dumps) can be globally
suppressed or enabled at system initialization by using the DUMP system
initialization parameter.

� System dumps (apart from CICS kernel domain dumps) can be globally
suppressed or enabled dynamically through the CEMT or EXEC CICS SET
SYSTEM DUMPING command.

� Transaction dumps can be suppressed or enabled dynamically for individual
transactions. This is done by using the EXEC CICS SET TRANSACTION
DUMPING system programming command, or by using the DUMP attribute of
the RDO TRANSACTION resource definition.

� System dumps (apart from CICS kernel domain dumps) can be suppressed for
specific dump codes from a dump domain XDUREQ global user exit program
For details of XDUREQ, see the CICS Customization Guide

� System dumps (apart from CICS kernel domain dumps) can be suppressed or
enabled dynamically for specific system abend codes. You can do this using
the CEMT SET SYDUMPCODE command or the EXEC CICS SET
SYSDUMPCODE system programming command.

� Transaction dumps can be suppressed or enabled dynamically for specific
transaction abend codes. This can be done by using the CEMT SET

 Copyright IBM Corp. 1979, 1999 225

TRDUMPCODE command or the EXEC CICS SET TRANDUMPCODE system
programming command

A dump code defines what action CICS is to take under any of the
circumstances in which a dump might be required. Dump codes are kept in
one of two dump tables , one for “transaction dump codes” and the other for
“system dump codes”. For details, see “The dump code options you can
specify” on page 229.

� Dumps of the builder parameter set at specific stages in the build process of
terminal or connection definition can be enabled. This is done using the CSFE
ZCQTRACE facility. For details, see “The CSFE ZCQTRACE facility” on
page 235.

Events that can cause dumps to be taken
The following events cause dumps to be taken, if the dumping environment allows
dumping under the circumstances:

� Explicit requests for dumps from users
� CICS transaction abends
� CICS system abends

On most occasions when dumps are requested, CICS references a dump code that
is specified either implicitly or explicitly to determine what action should be taken.
Dump codes are held in two dump tables, the transaction dump table and the
system dump table.

The ways that you can request dumps
You can issue an explicit request for a dump by using the CEMT transaction, by
using an EXEC CICS command, or by using an exit programming interface (XPI)
call.

� CEMT PERFORM [DUMP|SNAP] enables you to get a CICS system dump
from the master terminal, if system dumping has not been globally suppressed.
The system dump code that is needed is supplied by CICS, and it has a
specific value of “MT0001”.

� You can use EXEC CICS PERFORM DUMP to get a CICS system dump, if
system dumping is not globally suppressed. You must specify a system dump
code when you use this command and it must be a maximum of 8 characters in
length.

� You can use EXEC CICS DUMP TRANSACTION to get a transaction dump.
You get a transaction dump even if dumping has been suppressed for the
transaction that you identify on the command.

You must specify a transaction dump code when you use this command and it
must be a maximum of 4 characters in length. It could, for example, be TD01.

� You can make a TRANSACTION_DUMP or a SYSTEM_DUMP XPI call from a
global user exit (GLUE) program to get a transaction dump or a system dump,
respectively. For programming information about these exits, see the CICS
Customization Guide.

You might use these methods of taking dumps if, for example, you had a task in a
wait state, or you suspected that a task was looping. However, these methods are
not useful for getting information following a transaction abend or a CICS system

226 CICS Transaction Server for VSE/ESA Problem Determination Guide

abend. This is because the evidence you need is almost certain to disappear
before your request for the dump has been processed.

The occasions when CICS requests a dump
In general, CICS requests a dump when a transaction or CICS system abend
occurs. The dumping environment determines whether or not a dump is actually
taken. CICS does not take a transaction dump if a HANDLE ABEND is active4.
The NODUMP option on an EXECS CICS ABEND command, an internal call, or
the transaction definition, prevents the taking of a transaction dump.

The following are the occasions when CICS requests a dump:

� CICS requests a transaction dump, and perhaps a system dump, after a
transaction abend occurs. There are two cases:

– You can include the command EXEC CICS ABEND in one of your
applications, causing it to abend when some condition occurs. You must
specify a four-character transaction abend code on this command, and this
is used as the transaction dump code. It could, for example, be ‘MYAB’.

– CICS might cause a transaction to abend, for any of the reasons described
in the VSE/ESA Messages and Codes Volume 3 manual. In this case, the
four-character CICS transaction abend code is used as the transaction
dump code. It might, for example, be ASRA.

� A CICS system dump could be taken following a CICS system abend. In this
situation, the system dump code is often equal to the abend message ID, with
the leading letters “DFH” stripped off. In the case of message DFHST0001, for
example, the system dump code would be “ST0001”. However, in some cases
the system dump code cannot be directly related to a CICS message, either
because it does not closely resemble the message, or because no message
accompanies the event causing the dump to be invoked. For details of these
system dump codes, see the VSE/ESA Messages and Codes Volume 3
manual.

� A CICS system dump can be requested from within the Node Error Program
(NEP) when a terminal error is processed for a terminal with no task attached.
For information about using NEPs to handle terminal errors, read the entry for
message DFHZC3496 in the VSE/ESA Messages and Codes Volume 3
manual; also read the programming information on NEPs in the CICS
Customization Guide.

� A CICS system dump can also be requested from the global trap/trace exit. In
this case, the system dump code is TR1003.

Enabling system dumps for some CICS messages
There are occasions when you might need diagnostic information for an event that
causes a message to be sent, but does not normally cause CICS to take a system
dump. You can enable system dumping for some CICS messages in such a
situation by adding the dump code (constructed by removing the “DFH” prefix from
the message number) to the system dump table, and specifying the SYSDUMP

4 To make PL/I on units work, PL/I library routines can issue HANDLE ABEND. This is called an implicit HANDLE ABEND and
causes the suppression of transaction dumps.

 Chapter 15. Using dumps in problem determination 227

option. CICS then causes a system dump to be taken when the message is
issued.

To determine which messages you can do this for, look in the VSE/ESA Messages
and Codes Volume 3 manual. If the message you are interested in has a
2-character alphabetic component ID after the “DFH” prefix, and it has either
XMEOUT global user exit parameters or a destination of “Terminal User”, you can
use it to construct a system dump code to add to the dump table.

You cannot enable dumping for messages that do not have these characteristics.
For example, some messages that are issued early during initialization cannot be
used to cause CICS to take a system dump, because the mechanisms that control
dumping might not be initialized at that time. Also, you cannot enable dumping for
the message domain's own messages (they are prefixed by “DFHME”) where they
do not normally cause CICS to take a system dump.

System dump actions with messages DFHAP0001 and DFHSR0001
In the event of a program check or VSE abend in the AP domain or in a user
application program, CICS may issue either message DFHAP0001 or DFHSR0001.
Message DFHSR0001 is issued by CICS only when storage protection is active;
that is, the system initialization parameter STGPROT=YES is specified and the
hardware and software environment supports the storage protection facility. CICS
determines which of these messages to issue depending on whether or not the
program check or VSE abend occurs in code running in user key.

If the code had been running in user key at the time of the program check or VSE
abend, CICS issues message DFHSR0001 and takes a system dump with dump
code SR0001. Only application programs defined with EXECKEY(USER) run in
user key.

If the code had not been running in user key at the time of the program check or
VSE abend, CICS issues message DFHAP0001 and takes a system dump with
dump code AP0001.

So, if CICS storage protection is active, this mechanism enables you to suppress
the system dumps caused by errors in application programs, while still allowing
dumps caused by errors in CICS code to be taken. To achieve this, use either a
CEMT SET SYDUMPCODE or an EXEC CICS SET SYSDUMPCODE command to
suppress system dumps for system dumpcode SR0001:

CEMT SET SYDUMPCODE(SRððð1) ADD NOSYSDUMP

If storage protection is not active, the dumps may be suppressed via a suppression
of dumpcode AP0001. Note, however, that this suppresses dumps for errors in
both application and CICS code.

You cannot control AP0001 and SR0001 system dumps by using the DUMP
parameter of the RDO TRANSACTION definition. The DUMP parameter of the
TRANSACTION definition controls only transaction dumps.

Usually, program checks, or VSE abends caused by an application program, are
also followed by an ASRA, ASRB or ASRD transaction abend and a transaction
dump. If, in some instances, you want the SDUMP for one of these transaction
abends but not the other, specify the one you want by using either a CEMT

228 CICS Transaction Server for VSE/ESA Problem Determination Guide

TRDUMPCODE or an EXEC CICS TRANDUMPCODE command. For example,
specifying:

CEMT SET TRDUMPCODE(ASRB) ADD SYSDUMP

adds an entry to the dump table and ensures that SDUMPs are taken for ASRB
abends. However, note that the SDUMP in this instance is taken at a later point
than the SDUMP normally taken for system dump code AP0001 or SR0001.

The dump code options you can specify
You can specify what dump action is to be taken by CICS for each individual dump
code, either by using a CEMT transaction or by using a system programming
command. The options you can specify differ slightly, depending on whether you
are defining the action for a transaction dump code or for a system dump code.

� For a transaction dump code , you can specify:

– Whether a transaction dump is to be taken

– Whether a system dump is to be taken, with or without a transaction dump

– Whether CICS is to be terminated

– The maximum number of times the transaction dump code action can be
taken during the current run of CICS, or before the count is reset

� For a system dump code , you can specify:

– Whether a system dump is to be taken

– Whether CICS is to be terminated

– The maximum number of times the system dump code action can be taken
during the current run of CICS, or before the count is reset

Notes:

1. Only a transaction dump code can cause both a transaction dump and a
system dump to be taken.

2. If a severe error is detected, the system can terminate CICS even if you specify
that CICS is not to be terminated.

3. Values of 0–998 for “maximum times dump code action can be taken” are
literal, but a value of 999 (the default) means there is no limit.

4. You cannot suppress CICS kernel domain dumps.

All the options you specify are recorded in the appropriate dump table, and written
in the CICS global catalog. Any dump table entries you have changed or created
during a CICS run are preserved when CICS is subsequently shut down. They are
available during the next run unless CICS is cold started, when they are deleted
from the global catalog.

The only circumstances in which dump table additions and changes are lost are:

� When CICS is cold started.

� When the CICS global catalog is redefined, although this is likely to be done
only in exceptional circumstances.

� When CICS creates a temporary dump table entry for you, because you have
asked for a dump for which there is no dump code in the dump table.

 Chapter 15. Using dumps in problem determination 229

Dump table statistics
CICS maintains the following statistics for each dump table entry:

� The number of times the dump code action has been taken. This count is
referred to as the “dumps-taken”. Its value is incremented every time the dump
code action is taken, irrespective of what action has been specified in the dump
table entry. The current count can be reset to zero by a CEMT transaction, by
a system programming command, or by statistical interval expiry.

If system dumping is globally suppressed:

– The dumps-taken count for a system dump code is not incremented by
dump requests using that dump code, but the dumps-suppressed count is
incremented.

– The dumps-taken count for a transaction dump code specifying a system
dump is incremented by dump requests using that dump code. This is so
even if the dump code specifies that only a system dump is to be taken.

� For a transaction dump code, the number of transaction dumps that have been
taken. The number is incremented every time a transaction dump is taken for
this dump code. However, it is not incremented if transaction dumping has
been suppressed in this table entry.

� For a transaction dump code, the number of transaction dumps that have been
suppressed.

� The number of system dumps that have been taken. The number is
incremented every time a system dump is taken for this dump code. It is not
incremented if system dumping has been suppressed, either explicitly in the
dump table entry or because system dumping has been suppressed globally.

� The number of system dumps that have been suppressed, either explicitly for
this dump code or because system dumping has been suppressed globally.

Notes:

1. Dump code statistics are all reset when CICS is shut down—unlike dump code
attributes, which are not reset.

2. The following dump code statistics are reset at the end of every statistics
collecting interval:

� Number of transaction dumps taken
� Number of transaction dumps suppressed
� Number of system dumps taken
� Number of system dumps suppressed

The transaction dump table
Table 34 shows some examples of the type of information that might be maintained
in the transaction dump table for different transaction dump codes.

Table 34 (Page 1 of 2). Examples of transaction dump table entries

Type of information Example
1

Example
2

Example
3

Transaction dump code MYAB ASRA AKC3

Take a transaction dump? YES NO NO

Take a system dump? YES YES NO

230 CICS Transaction Server for VSE/ESA Problem Determination Guide

� Example 1 shows a transaction dump table entry for transaction dump code
MYAB. This is a user-supplied dump code, specified either on an
EXEC CICS DUMP TRANSACTION command, or as a transaction abend
code on an EXEC CICS ABEND command.

The table entry shows that when this dump code is invoked, both a transaction
dump and a system dump are to be taken, and CICS is not to be terminated.
The dump code action can be taken a maximum of 50 times, but the action for
this dump code has not been taken since CICS was started or since the current
count (“times dump action taken”) was reset.

� Example 2 shows a transaction dump table entry for transaction dump code
ASRA. This is a CICS transaction abend code, and this dump table entry is
referred to every time a transaction abends ASRA. The entry shows that a
system dump only is to be taken for an ASRA abend, and that CICS is not to
be terminated. It also shows that the action for this abend code has already
been taken the maximum number of times, so no action is taken when another
ASRA abend occurs. However, the current count could be reset to 0
dynamically using either a CEMT transaction or a system programming
command (SET TRANDUMPCODE or SET SYSDUMPCODE respectively).
More system dumps would then be taken for subsequent ASRA abends.

� Example 3 shows a transaction dump table entry for transaction dump code
AKC3. This is a CICS transaction abend, and this dump table entry is
referenced every time a transaction abends AKC3—that is, whenever the
master terminal operator purges a task.

The entry shows that no action at all is to be taken in the event of such an
abend. The maximum number of times the dump code action can be taken is
given as 999, meaning that there is no limit to the number of times the
specified action is taken. The dump code action has been taken 37 times, but
each time both the transaction dump and the system dump were suppressed.

Table 35 on page 232 shows how the transaction dump table entry for transaction
dump code MYAB would be updated with and without global suppression of system
dumping. Only the updated fields are shown.

Table 34 (Page 2 of 2). Examples of transaction dump table entries

Type of information Example
1

Example
2

Example
3

Shut down CICS? NO NO NO

Maximum times dump code action can be
taken

50 30 999

Times dump code action already taken
(current count)

0 30 37

Transaction dumps taken 0 0 0

Transaction dumps suppressed 0 30 37

System dumps taken 0 30 0

System dumps suppressed 0 0 37

 Chapter 15. Using dumps in problem determination 231

The statistics show that a system dump was taken when system dumping was
enabled, but not when system dumping was suppressed.

There is a further effect. CICS maintains a record of the current dump ID —the
number of the most recent dump to be taken. This is printed at the start of the
dump, together with the appropriate dump code. It is concatenated with the CICS
run number—that is, the number of times that CICS has been brought up since the
global catalog was created—to provide a unique ID for the dump.

Note: This does not apply to SDUMPs taken by the kernel; these always have a
dump ID of 0/0000.

For example, for the ninth dump to be taken during the eleventh run of CICS, if the
dump code were TD01, this is what you would see:

 CODE=TDð1 ID=11/ððð9

If system dumping is enabled for the dump code, the same dump ID is given to
both the transaction dump and the system dump.

Table 35. Effect of global suppression of system dumping on transaction dump table
update

Type of information

Before
update

System
dumping
enabled

System
dumping
suppressed

Transaction dump code MYAB

Take a transaction dump? YES

Take a system dump? YES

Shut down CICS? NO

Maximum times action can be
taken

50

Times action already taken 0 1 1

Transaction dumps taken 0 1 1

Transaction dumps
suppressed

0 0 0

System dumps taken 0 1 0

System dumps suppressed 0 0 1

The system dump table
Table 36 shows two examples of the type of information that might be maintained
in the system dump table for different system dump codes.

Table 36 (Page 1 of 2). Examples of system dump table entries

Type of information Example 1 Example 2

System dump code SYDMP001 MT0001

Take a system dump? YES YES

Shut down CICS? YES NO

Maximum times action can be taken (default) 999

Times action already taken 0 79

232 CICS Transaction Server for VSE/ESA Problem Determination Guide

The type of information kept in the system dump table is similar to that kept in the
transaction dump table (see Table 34 on page 230).

� Example 1 shows a system dump table entry for system dump code
SYDMP001, a user-supplied system dump code, specified using EXEC CICS
PERFORM DUMP. The table entry shows that no dumps have yet been taken.
However, if one were taken, CICS would be shut down. If global suppression
of system dumping was in effect, no dump would be taken but CICS would be
shut down if this dump code were referenced.

� Example 2 shows the system dump table entry for system dump code
MT0001, the CICS-supplied dump code for system dumps requested from the
master terminal, with CEMT PERFORM DUMP or CEMT PERFORM SNAP.
CICS is not shut down when a dump is taken for this dump code. Also, the
value of 999 for “maximum times action can be taken” shows that an unlimited
number of dumps can be taken for this dump code. The current count (“times
action already taken”) shows that to date, 79 dumps have been requested
using CEMT.

Table 36 (Page 2 of 2). Examples of system dump table entries

Type of information Example 1 Example 2

System dumps taken 0 79

System dumps suppressed 0 0

What happens to a dump request if there is no dump table
entry?
If a dump is requested, either by CICS or the user, using a dump code that is not in
the dump table, CICS makes a temporary dump table entry using default values for
the attributes. However, the entry is not written to the CICS global catalog, and it is
lost when CICS is shut down.

The default value for the maximum number of times that the dump action can be
taken is set by the TRDUMAX system initialization parameter (for new or added
transaction dump codes) and the SYDUMAX system initialization parameter (for
new or added system dump codes).

You can modify the default values for a transaction dump table entry using the
following commands:

� CEMT SET TRDUMPCODE

� EXEC CICS SET TRANDUMPCODE

� EXEC CICS SET TRANSACTION DUMPING (to modify the TRANDUMPING
attribute only).

The following table shows the default values for transaction dump table entries and
the attributes you can specify to modify them:

Table 37 (Page 1 of 2). Default values for transaction dump table entries

Action Default Attribute Permitted value

Take a transaction
dump?

YES TRANDUMPING TRANDUMP or
NOTRANDUMP

 Chapter 15. Using dumps in problem determination 233

You can modify the default values for a system dump table entry using the
following commands:

� CEMT SET SYDUMPCODE

� EXEC CICS SET SYSDUMPCODE

� EXEC CICS SET SYSTEM DUMPING (to modify the SYSDUMPING attribute
only).

The following table shows the default values for system dump table entries and the
attributes you can specify to modify them:

For example, if you issue a command requesting a dump, using the previously
undefined dump code SYDMPX01:

EXEC CICS PERFORM DUMP DUMPCODE(‘SYDMPXð1’)

CICS makes a temporary dump table entry for dump code SYDMPX01 which you
can browse, and see that it has the default attributes for a system dump code. You
can also see that the current count has been set to 1, as a dump has been taken.

Attempting to add the dump code to the dump table after CICS has made the entry
causes the exception response ‘DUPREC’ to be returned. If you want to make a
change to the CICS-generated default table entry, and have that entry preserved
across CICS runs, you must delete it and then add a new entry with the options
you require.

Table 37 (Page 2 of 2). Default values for transaction dump table entries

Action Default Attribute Permitted value

Take a system dump? NO SYSDUMPING SYSDUMP or
NOSYSDUMP

Shut down CICS? NO SHUTOPTION SHUTDOWN or
NOSHUTDOWN

Maximum times dump
code action can be
taken

999 MAXIMUM 0 through 999

Table 38. Default values for system dump table entries

Action Default Attribute Permitted value

Take a system dump? YES SYSDUMPING SYSDUMP or
NOSYSDUMP

Shut down CICS? NO SHUTOPTION SHUTDOWN or
NOSHUTDOWN

Maximum times dump
code action can be
taken

999 MAXIMUM 0 through 999

234 CICS Transaction Server for VSE/ESA Problem Determination Guide

Specifying the areas you want written to a transaction dump
When you use the EXEC CICS DUMP TRANSACTION command to get a
transaction dump, you can specify which areas of storage are to be dumped. You
cannot specify in the dump table which areas are to be written to the transaction
dump for particular transaction dump codes. You always get a complete
transaction dump whenever a transaction abend occurs, if the dump code requires
a transaction dump to be taken.

The CSFE ZCQTRACE facility
The CSFE ZCQTRACE facility is used to gather information during the build
process of terminal or connection definition. The syntax is as follows:

CSFE {ZCQTRACE=termid|ZCQTRACE,AUTOINSTALL|ZCQTRACE,OFF}

When CSFE ZCQTRACE is enabled, a dump of the builder parameter set and the
appropriate TCTTE is written to the transaction dump data set at specific points in
the processing. Table 39 shows the circumstances in which dumps are invoked,
the modules that invoke them, and the corresponding dump codes.

If a terminal definition is shipped from a terminal owning region (TOR) to an
application owning region (AOR) and ZCQTRACE is enabled for that terminal in the
TOR, then DFHZCQIQ invokes a dump in the TOR, and DFHZCQIS invokes a
dump in the AOR.

Table 39. ZCQTRACE dump codes

Module Dump
code

When invoked

DFHTRZCP AZQC Installing terminal when termid = terminal ID

DFHTRZZP AZQZ Merging terminal with TYPETERM
when termid = terminal ID

DFHTRZXP AZQX Installing connection
when termid = connection ID

DFHTRZIP AZQI Installing sessions
when termid = connection ID

DFHTRZPP AZQP When termid = pool terminal ID

DFHZCQIQ AZQQ Inquiring on resource when termid = resource ID
(resource = terminal or connection)

DFHZCQIS AZQS Installing a resource when termid = resource ID
(resource = terminal or connection), or when
ZCQTRACE,AUTOINSTALL is specified.

DFHTRZYP AZQY Installing typeterm when
ZCQTRACE,AUTOINSTALL is specified.

Where dumps are written
Transaction dumps and system dumps are written to different destinations.

� Transaction dumps go to a pair of CICS SAM data sets, with DLBL names
DFHDMPA and DFHDMPB. Some of the attributes of these data sets can be
set by system initialization parameters, some can be set dynamically using
CEMT SET DUMPDS or EXEC CICS SET DUMPDS, and all can be inquired

 Chapter 15. Using dumps in problem determination 235

on by using CEMT INQUIRE DUMPDS or EXEC CICS INQUIRE DUMPDS.
DFHDMPA and DFHDMPB have the following attributes:

– CURRENTDDS status. This tells you the data set that is currently active,
which is the one where transaction dumps are currently written.

You can use the system initialization parameter DUMPDS to specify the
transaction dump data set that is to be opened during initialization. You
can use the CEMT SET DUMPDS transaction or an EXEC CICS SET
command to switch the dump data sets.

– One of the statuses OPEN or CLOSED. A transaction dump data set must
be OPEN if it is to be written to.

– The current data set has one of the statuses AUTOSWITCH or
NOAUTOSWITCH. You can set the status during system initialization
using the DUMPSW system initialization parameter, and you can set it
dynamically using the CEMT transaction or an EXEC CICS SET DUMPDS
command.

If the status is AUTOSWITCH, a switch is made automatically to the other
dump data set when the current one becomes full, and subsequent
transaction dumps are written to the new dump data set. The entire
overflowing transaction dump is written in to the new dump data set.

The dump data set being switched to does not inherit the AUTOSWITCH
status, to prevent data in the first dump data set from being overwritten by
another switch. You need to reset the AUTOSWITCH status explicitly, if
you want it.

If the status is NOAUTOSWITCH, a switch is not made when the current
dump data set becomes full, so no more transaction dumps can be written.

� CICS system dumps are written to a VSE SYSDUMP library, by an invocation
of the VSE SDUMPX macro.

 Analyzing dumps
CICS system dumps and transaction dumps are unformatted when written to the
appropriate dump data set. In other words, they are memory dumps of all or part
of the CICS address space.

Unformatted dumps are not easy to interpret, and you are recommended not to use
them for debugging. CICS provides utilities for formatting transaction dumps and
CICS system dumps, and you should always use them before you attempt to read
any dump. You can quickly locate areas of storage that interest you in a formatted
dump, either by browsing it online, or by printing it and looking at the hard copy.

The formatting options that are available for transaction dumps and system dumps
are described in “Formatting transaction dumps” and “Formatting system dumps” on
page 244, respectively.

236 CICS Transaction Server for VSE/ESA Problem Determination Guide

Formatting transaction dumps
You can format transaction dumps offline using the CICS dump utility program,
DFHDU410. Individual transaction dumps must be formatted in their entirety, but
you can control which dumps are formatted from the dump data set. You can
select dumps to be formatted as follows:

� Those taken in a specific period of time
� Those associated with a specific transaction identifier
� Those taken for a specific transaction dump code
� Those having specific dump IDs—that is, those for specific CICS runs and

dump count values

You can also use the SCAN option with the dump utility program, to get a list of the
transaction dumps recorded on the specified dump data set.

For information about using DFHDU410 to format transaction dumps, see the CICS
Operations and Utilities Guide.

Interpreting transaction dumps
This section describes the contents of a transaction dump, and gives guidance on
locating information that is useful for debugging transactions. The different parts of
the transaction dump are dealt with in the order in which they appear, but be aware
that only those parts that will help you for problem determination are described.
Some control blocks which do appear in the transaction dump are intended for the
problem determination purposes of IBM Service and, as such, are not described in
this section.

 Job log
The job log for the dump utility program, DFHDU410, is sometimes shown at the
start of the transaction dump, depending on how the job was invoked. You can
ignore it, because it does not contain any information that can be used for
debugging.

 Symptom string
The symptom string tells you something about the circumstances of the transaction
dump. It might show, for example, that the dump was taken because the
transaction abended with abend code ASRA.

If you refer the problem that caused the dump to be taken to the IBM Support
Center, they can use the symptom string to search the RETAIN database for
problems that resemble it.

CICS Transaction Server for VSE/ESA level
The CICS Transaction Server for VSE/ESA level that was being executed when the
transaction dump was taken.

Transaction environment summary
The transaction environment summary is a formatted summary of the transaction
environment at the time the dump is taken.

 Chapter 15. Using dumps in problem determination 237

Remote abend indicator
If the transaction abended remotely (the abend originally occurred in a remote
distributed program link (DPL) server program), and the abend is being re-issued
on the local system, a message indicates this. The message contains the SYSID
of the system that passed the abend to the local system. This information is taken
from the transaction abend control block (see “Transaction storage” on page 240).

 PSW
If the transaction dump was taken in response to a local abend with abend code
AICA, ASRA, ASRB, or ASRD, a PSW is formatted from the dump data set. It
belongs to the program that was being executed when the abend occurred. It is
taken from the transaction abend control block (see “Transaction storage” on
page 240).

Registers at the time of interrupt
If the transaction abended locally with abend code AICA, ASRA, ASRB, or ASRD,
you see a set of registers that belong to the program that was executing when the
error was detected. They are taken from the transaction abend control block (see
“Transaction storage” on page 240).

 Execution key
If the transaction abended locally with abend code ASRA or ASRB, the execution
key that is in force at the time of the abend is formatted. It is taken from the
transaction abend control block (see “Transaction storage” on page 240).

Registers at last EXEC command
If the transaction has issued any EXEC commands, then a set of registers is
displayed. These are the registers from the last EXEC command that was issued.

Task control area (TCA)
The next thing in the transaction dump is the entire TCA. This contains information
about the transaction to which the dump relates. Note that the user area precedes
the system area.

Task control area, system area
The system area of the task control area is formatted separately as it can be
addressed separately by CICS. It contains system information relating to the task
and can often be a valuable source of debugging information.

Transaction work area (TWA)
Any transaction work area relating to the transaction is formatted, if present.

EXEC interface structure (EIS)
The EIS contains information about the transaction and program specific to the
execution interface component of CICS.

System EXEC interface block (SYSEIB)
This is used solely by programs using the SYSEIB option. See the CICS
Application Programming Guide for more details.

238 CICS Transaction Server for VSE/ESA Problem Determination Guide

EXEC interface user structure (EIUS)
The EIUS contains execution interface component information that must reside in
user key storage.

EXEC interface block (DFHEIB)
DFHEIB contains information relating to the passing of EXEC requests from the
program to CICS, and the passing of data between the program and CICS. Field
EIBFN is of particular interest, because it shows the type of the last EXEC
command to be issued by the program. For programming information about the
values that EIBFN can contain, see the CICS Application Programming Reference
manual or the CICS User’s Handbook.

Kernel stack entries
The kernel stack entries contain information that has been saved by the kernel on
behalf of programs and subroutines on the kernel linkage stack. If you refer the
problem to the IBM Support Center, they might need to use the stack entries to find
the cause of the failure.

Common system area (CSA)
The CSA is one of the main control areas used by CICS. It contains information
relating to the system as a whole, and to the task that was running when the
transaction dump was invoked. It can be very useful for debugging both application
problems and system problems. You cannot access fields in the CSA in your
programs. Attempting to do so causes your transaction to terminate abnormally
with abend code ASRD.

Common system area optional features list (CSAOPFL)
The common system area optional features list, an extension of the CSA, contains
the addresses of CICS optional features.

Trace table (abbreviated format)
The abbreviated-format trace table is formatted by default. You can suppress it by
specifying the NOABBREV parameter in the DFHDU410 job. A “one entry per line”
summary of the trace entries, copied from the internal trace table, is formatted.

Provided that you had EI level-1 and PC level-1 tracing selected for your task, you
can identify the last CICS command issued by your task quite easily. The
procedure is outlined in “Locating the last command or statement” on page 241.

Trace table (extended format)
Following the abbreviated-format trace table is the corresponding extended-format
trace table. This is formatted by default. You can suppress it by specifying the
NOFULL parameter in the DFHDU410 job. It contains more detail, but you can
probably get all the information you need using the abbreviated trace.

Common work area (CWA)
The CWA is the installation-defined work area for use by all programs and is
formatted if it exists.

 Chapter 15. Using dumps in problem determination 239

 Transaction storage
“Transaction storage” is storage that might have been obtained by CICS to store
information about a transaction, or it might have been explicitly GETMAINed by the
transaction for its own purposes. You are likely to find several such areas in the
dump, each introduced by a header describing it as transaction storage of a
particular class, for example:

 USER24
 USER31
 CICS24
 CICS31

Transaction storage class CICS31 contains, among other things, the transaction
abend control block (TACB). To find it, look for the eye-catcher DFHTACB .
DFHTACB contains valuable information relating to the abend. It contains:

� The PSW and general purpose registers of the program executing at the time
of the abend (for local AICA, ASRA, ASRB, and ASRD abends only. However,
for some AICA abends, only the “next sequential instruction” part of the PSW
and the registers are present.)

� The name of the failing program.

� The offset within the failing program at which the abend occurred (for local
ASRA, ASRB and ASRD abends only).

� The execution key at the time of the abend (for local ASRA and ASRB abends
only).

� Whether the abend was caused by an attempt to overwrite a protected CICS
DSA (local ASRA abends only).

Note that if the abend originally occurred in a remote DPL server program, an
eye-catcher *REMOTE* is present. If this is the case, the registers and PSW are
not present.

Terminal control table terminal entry (TCTTE)
The TCTTE contains information about the terminal that is the principal facility of
the transaction. You usually find one TCTTE for the transaction if the transaction is
terminal oriented. For “daisy chained” transactions, you may find more than one.

To look at the TIOA for the task, find the address in field TCTTEDA of the TCTTE.

Program information for the current transaction
This shows summary information for all linked programs for the transaction that
have not yet returned, including load point, entry point, and length. This is followed
by the program storage for each of these programs. This is where you can find the
instructions addressed by register 14 and by the PSW, and hence the point of
failure in your program. For details of how you do this, see “Locating the last
command or statement” on page 241.

Other program manager control blocks are shown too, including PPT entries for
active programs, and load list elements and program storage for any programs
loaded by this transaction but not yet released.

240 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Module index
The final item that you find in the transaction dump is the module index. This
shows you all the modules that were in storage when the error was detected, and
their addresses.

Locating the last command or statement
The easiest way of locating the last command issued by your application before the
abend is to use the internal trace table. You must have had internal trace running,
and you need to have captured entries from the EI level-1 and PC level-1 trace
points for your task. The way you can find the last command using trace is
described in “Last command identification.”

If you did not have trace running, you need to rely on values in registers belonging
to your programs, and try to relate these to your source statements. That might
lead you to an EXEC CICS command, or to another type of statement in your
program. The procedure is outlined in “Last statement identification” on page 242.

Last command identification
This process for identifying the last command applies to system dumps, in which it
is necessary to identify the abending task. Item 2 is relevant to transaction dumps.

1. If the abend was a local AICA, ASRA, ASRB, or ASRD, find the last entry in
the table and work back until you find an entry for trace point ID AP 1942. If
you cannot find AP 1942, then search for any one of the following: AP 0790,
AP 0791, or AP 0792. The trace entry for AP 1942 is made on entry to APLI’s
recovery routine. The entries for AP 0790, AP 0791, and AP 0792 are made
by DFHSRP, the AP domain recovery routine that deals with program checks,
operating system abends, and runaway task conditions. The task number for
your task is shown in the entry.

If the abend was none of those mentioned above, find the last entry in the table
and work back until you find an entry for trace point ID AP 00F2 (PCP abend)
that references the abend code. The task number of your task is shown in the
entry.

2. Now go back until you find the last trace entry showing your task number that
was made from trace point ID AP 00E1. The trace entry is located in the
EXEC interface program, DFHEIP. The data in the trace entry includes the
value of EIBFN, which tells you the specific command your program issued
before the abend. For programming information about the possible values that
EIBFN can take, and their meanings, see the CICS Application Programming
Reference manual, the CICS System Programming Reference manual or the
CICS User’s Handbook.

3. You might now be able to identify the program that was being run when the
abend occurred, from knowing the structure of the application. If not, you can
identify the program by using the information in the “program information for the
current transaction” section of the dump. The failing program is the one most
recently linked to (the first program printed in this section). The summary
information includes the name of the program, and its load point, entry point,
and length.

4. You should by now have found the program containing the last EXEC
command that was issued before the abend. Now locate the EXEC command

 Chapter 15. Using dumps in problem determination 241

in that program. If you cannot do it by inspection, use the techniques
described in the next section.

Last statement identification
1. Locate the “transaction storage –CICS31” areas of the transaction dump.

These areas are maintained by CICS, and they relate to the transaction that
was running when the abend occurred. You should be able to see the
eye-catcher DFHTACB in at least one of the areas. This signifies the start of
the transaction abend control block, and it contains the registers and PSW
belonging to the program being executed when the abend occurred. If there is
more than one area containing this eye-catcher, it means that two or more
successive abends occurred. Find the first occurrence, because that relates to
the abend that started the sequence.

2. Locate the PSW for the program in the TACB, and make a note of the next
sequential instruction address. The PSW for the program is present if the
abend is AICA, ASRA, ASRB or ASRD. Alternatively, obtain the offset of the
abend within the failing program load module from the TACB. The offset is
present if the abend is ASRA, ASRB or ASRD and is valid if not
X'FFFFFFFF'. Note down the value of register 14, too.

3. Use the “program information for the current transaction” section of the dump to
obtain the name and entry point of the failing program. Alternatively, obtain the
name of the failing program from the TACB.

4. The offset or PSW should point to an instruction in the program. If it does not,
register 14 should show a return address into your program. Either way, you
need to correlate the address with a statement in the source code for the
program.

Note: In system dumps formatted by DFHPD410, the offset of an error is
formatted in the kernel error data section. Because the EXEC interface stub is
linked at the start of the program code, you need to subtract X'28' bytes from
this offset in order to calculate the actual offset of the failing instruction.

If the source language is assembler , the instruction where the abend occurred
is apparent from the program storage in the dump. If the source language is
COBOL , PL/I, or C, you need to refer to a compiler output mapping source
statements onto the object code.

Locating program data
You can look at the data that your application program has in its storage areas.
CICS maintains a pointer to the chain of dynamic storage that the program uses, in
field TCAPCDSA of the system area of the TCA.

� For PL/I programs , TCAPCDSA addresses the chain of PL/I DSAs.

� For COBOL programs , TCAPCDSA addresses the task global table (TGT) and
working storage.

� For assembler programs , TCAPCDSA addresses the DFHEISTG storage.

Look in the appropriate programming language manual for details of the structure of
the program’s acquired storage.

242 CICS Transaction Server for VSE/ESA Problem Determination Guide

Dumps for C programs
If DUMP(YES) is coded on the RDO TRANSACTION definition, CICS system and
transaction dumps are produced for failing C programs. The use of the relevant C
registers is as follows:

Register Use

3 In most circumstances, is the base register

12 Holds the address of the CICS TCA for the C program

13 Holds the address of the register save area

Location of COBOL dumped areas
You can find the dumped COBOL program in the “program information for the
current transaction” section of the dump—it is addressed by the LOAD_POINT
parameter on the appropriate LDLD ACQUIRE_PROGRAM exit trace entry. The
register save area INIT1+X'48' (covering registers 0 through 14) should have
register 12 pointing to the program global table (PGT), register 13 pointing to the
task global table (TGT), and some others to locations in the data area and
compiled code of the program storage. If not, a CICS error is indicated.

For each invocation of the COBOL program, CICS copies the static TGT from
program storage into CICS dynamic storage (the COBOL area) and uses the
dynamic copy instead of the static one. CICS also copies working storage from
program storage to the COBOL area, above the TGT. Task-related COBOL areas
thus enable the single copy of a COBOL program to multithread as if it were truly
reentrant.

The dumped COBOL area
The COBOL area is addressed by TCAPCDSA (alias TCAPCCA) in the system part
of the TCA (and forms part of the transaction storage chain). The COBOL area
contains:

� The COBOL working storage for the task
� A copy of the TGT

At any time after the program has issued a CICS request, the TGT is always
addressed by TCAPCHS in the system part of the TCA.

The TGT is used to hold intermediate values set at various stages during program
execution. The first 18 words of the TGT constitute a standard save area, in which
the program’s current registers are stored on any request for CICS service.

The TGT also holds the base locator for linkage (BLL) cells, which contain the
addresses of all areas defined in the linkage section of the COBOL program. You
can use the memory map from the COBOL compiler listing for your application to
find the offset of the BLL cells in the TGT.

 Chapter 15. Using dumps in problem determination 243

BLL cells in a CICS application program
To investigate a problem connected with BLL cells, you should examine the
COBOL compiler listing for your application to determine the use you have made of
the BLL cells.

The first BLL cell that is used points to the EXEC interface block (an area that
follows the literal string 'DFHEIB').

The second BLL cell that is used points to the first (or only) 4096-byte block of
CICS COMMAREA as supplied with an EXEC CICS LINK, XCTL, or RETURN with
a TRANSID. If the COMMAREA is greater than 4096 bytes, the third BLL cell that
is used points to the next 4096-byte block of COMMAREA; further 4096-byte
COMMAREAs are pointed to by succeeding BLL cells.

The next BLL cell always points to itself; the remaining BLL cells are set by the
application program. Thus, for example, if the COMMAREA size is 10KB, it is the
fifth BLL cell used that points to itself.

Note that an ASRD abend will occur if an attempt is made to access storage via
the BLL cell immediately after the one that points to itself, if it has not yet been set
by the application program.

Formatting system dumps
You can process VSE system dumps (SDUMPs) from the VSE dump library
(SYSDUMP) using the VSE Info/Analysis program (INFOANA).

In releases prior to CICS Transaction Server for VSE/ESA Release 1, the CICS
system dump formatting routine for use with INFOANA is supplied as DFHDAP.
This standard name is not suitable for those users running more than one release
of CICS, because the dump formatting processing in each version is
release-specific, and you must use the correct version for the system dump you are
formatting. The module is now named with the release identifier as part of the
name—DFHPD410 is the formatting routine you must use with INFOANA when
formatting CICS Transaction Server for VSE/ESA Release 1 system dumps.

The CICS SDUMP formatting routine (DFHPD410) enables you to format a system
dump selectively by specifying one or more CICS component identifiers as
parameters to the formatting routine. Thus the CICS SDUMP formatting routine
enables you to process a CICS Transaction Server for VSE/ESA Release 1 system
dump selectively. You can:

� Specify which component storage areas are to be formatted,and at what level
of detail, by using formatting keywords and level numbers (KEYWORD
parameter)

� Specify the default level of detail for components that are not explicitly identified
by keyword (DEF parameter)

� Specify whether the output is to be printed in uppercase characters
(UPPERCASE parameter)

244 CICS Transaction Server for VSE/ESA Problem Determination Guide

A summary of system dump formatting keywords and levels
The component keywords specify which areas of CICS you want the INFOANA exit
to format dump data for, and the level number operand specifies the amount of
data you want formatted.

If you omit all of the component keywords, and you do not specify DEF=0, the
CICS dump exit formats dump data for all components.

The CICS dump component keywords, and the levels you can specify for each of
them, are as follows:

AI [={0|2}]
Autoinstall model manager.

AI=0 Suppress formatting of AI control blocks.

AI=2 Format AI control blocks.

AP [={0|1|2|3}]
Application domain.

AP=0 Suppress formatting of AP control blocks.

AP=1 Format a summary of addresses of the AP control blocks for each
active transaction.

AP=2 Format the contents of the AP control blocks for each active
transaction.

AP=3 Format level-1 and level-2 data.

CC [={0|2}]
The CICS catalog domain.

CC=0 Suppress formatting of CC control blocks.

CC=2 Format the CC control blocks.

CP [={0|2}]
The common programming interface.

CP=0 Suppress formatting of CP control blocks.

CP=2 Format the CPI static storage.

CSA[={0|2}]
The CICS common system area.

CSA=0 Suppress formatting of the CSA.

CSA=2 Format the CSA and its extension, the optional features list
(CSAOPFL).

DD[={0|1|2|3}]
The directory manager domain.

DD=0 Suppress formatting of DD control blocks.

DD=1 Format the directory manager summary.

DD=2 Format the directory manager control blocks, including the anchor
block, directory headers, and AVL tree headers.

DD=3 Format level-1 and level-2 data.

 Chapter 15. Using dumps in problem determination 245

DM[={0|1|2|3}]
The domain manager.

DM=0 Suppress formatting of DM control blocks.

DM=1 Format the wait queue.

DM=2 Format the anchor block.

DM=3 Format level-1 and level-2 data.

DS[={0|1|2|3}]
The dispatcher domain.

DS=0 Suppress formatting of DS control blocks.

DS=1 Format the dispatcher dump summary.

DS=2 Format the anchor block.

DS=3 Format level-1 and level-2 data.

DU[={0|2}]
The dump domain.

DU=0 Suppress formatting of DU control blocks.

DU=2 Format the DU anchor block.

FCP[={0|2}]
The file control program.

FCP=0 Suppress formatting of the file control table.

FCP=2 Format the file control table.

ICP[={0|2}]
The interval control program.

ICP=0 Suppress formatting of the interval control elements (ICEs).

ICP=2 Format the ICEs.

IND[={0|1|2|3}]
The page number indexes for the formatted output.

IND=0 Suppress formatting of the page number indexes.

IND=1 Provide a control block index sorted by address.

IND=2 Provide a control block index sorted by block name.

IND=3 Format level-1 and level-2 data.

JCP [={0|2}]
The journal control area.

JCP=0 Suppress formatting of the JCA.

JCP=2 Format the JCA.

KE[={0|1|2|3}]
The CICS kernel.

KE=0 Suppress formatting of the kernel control blocks.

KE=1 Format the stack and a summary of tasks.

246 CICS Transaction Server for VSE/ESA Problem Determination Guide

KE=2 Format the anchor block.

KE=3 Format level-1 and level-2 data.

LD[={0|1|2|3}]
The loader domain.

LD=0 Suppress formatting of loader domain control blocks.

LD=1 Format a program status and module summary.

LD=2 Format the anchor block, the current program elements (CPEs), and
the active program elements (APEs)

LD=3 Format level-1 and level-2 data.

LM[={0|1|2|3}]
The lock manager domain.

LM=0 Suppress formatting of lock manager domain control blocks.

LM=1 Format the lock status and allocated locks summary.

LM=2 Format the anchor block and quickcells.

LM=3 Format level-1 and level-2 data.

ME[={0|2}]
The message domain.

ME=0 Suppress formatting of the ME anchor block.

ME=2 Format the anchor block.

MN[={0|1|2|3}]
The monitoring domain.

MN=0 Suppress formatting of monitoring domain control blocks.

MN=1 Format the monitoring status and monitoring dictionary summary.

MN=2 Format the anchor block and monitoring control table.

MN=3 Format level-1 and level-2 data.

MRO[={0|1|2|3}]
CICS multiregion operation. APPC URDs, and any associated DWE chains are
formatted on all non-zero levels.

MRO=0 Suppress formatting of all MRO control blocks.

MRO=1 Format MRO control blocks for the current address space.

MRO=2 Format MRO control blocks for all address spaces except the current
address space.

MRO=3 Format level-1 and level-2 data.

PA[={0|2}]
The parameter manager domain.

PA=0 Suppress formatting of the PA anchor block.

PA=2 Format the PA anchor block.

 Chapter 15. Using dumps in problem determination 247

PCT[={0|2}]
The program control table.

PCT=0 Suppress formatting of the transaction definitions.

PCT=2 Format the transaction definitions.

PG[={0|1|2|3}]
The program manager domain.

PG=0 Suppress formatting of program manager domain control blocks.

PG=1 Format the program manager summary.

PG=2 Format the program manager control blocks, including the anchor
block, the LLEs, the PGWEs, the PPTEs, the PLCBs, and the HTBs.

PG=3 Format level-1 and level-2 data.

PR [={0|2}]
Partner resource management.

PR=0 Suppress formatting of PR areas.

PR=2 Format the PR static storage and the partner resource table.

RC [={0|2}]
The report controller

RM=0 Suppress formatting of RC control blocks.

RM=2 Format RC control blocks.

RM [={0|2}]
The recovery manager domain.

RM=0 Suppress formatting of RM control blocks.

RM=2 Format RM control blocks.

SM[={0|1|2|3}]
The storage manager domain.

SM=0 Suppress formatting of storage manager domain control blocks.

SM=1 Format the dynamic storage areas (DSAs), task and domain storage
subpools, transaction areas (SMXs), suspend queue, and subspace
area (SUA) summaries.

SM=2 Format the anchor block (SMA), subpool control areas (SCAs),
pagepool areas (PPAs), pagepool extent areas (PPXs), storage
manager transaction areas (SMXs), subspace areas (SUAs), suspend
queue elements (SQEs), page allocation maps (PAMs), DSA extent
descriptors (DXEs), and DSA extent getmain descriptors (DXGs).

SM=3 Format level-1 and level-2 data.

SSA[={0|2}]
The static storage areas.

SSA=0 Suppress formatting of the static storage areas address list.

SSA=2 Format the static storage areas address list.

248 CICS Transaction Server for VSE/ESA Problem Determination Guide

ST[={0|1|2|3}]
The statistics domain.

ST=0 Suppress formatting of statistics domain control blocks.

ST=1 Format statistics collection details.

ST=2 Format the anchor block.

ST=3 Format level-1 and level-2 data.

SZ[={0|1}]
Front end programming interface (FEPI).

SZ=0 Suppress formatting of the FEPI static area.

SZ=1 Format the FEPI static area. Nothing is printed unless you have
installed FEPI. See the CICS Front End Programming Interface User’s
Guide for further information on this feature.

TCP[={0|1|2|3}]
The terminal control program.

TCP=0 Suppress formatting of TCP control blocks.

TCP=1 Format the terminal control summary.

TCP=2 Format the terminal control table, the terminal input/output areas, and
the AIDs.

TCP=3 Format level-1 and level-2 data.

TDP[={0|1|2|3}]
The transient data program.

TDP=0 Suppress formatting of transient data control blocks.

TDP=1 Format the summary of transient data destinations.

TDP=2 Format the transient data static storage areas and the multiple strings
control blocks (MRCBs).

TDP=3 Format level-1 and level-2 data.

TI[={0|1|2|3}]
The timer domain.

TI=0 Suppress formatting of timer domain control blocks.

TI=1 Format outstanding request details.

TI=2 Format the anchor block.

TI=3 Format level-1 and level-2 data.

TMP[={0|2}]
The table manager program.

TMP=0 Suppress formatting of table manager static storage and control
blocks.

TMP=2 Format table manager static storage and control blocks.

TR[={0|1|2|3}
The trace domain.

 Chapter 15. Using dumps in problem determination 249

TR=0 Suppress formatting of trace.

TR=1 Format abbreviated trace.

TR=2 Format full trace.

TR=3 Format level-1 and level-2 data.

TRS[={<trace selectivity parameter(s) >}]
Trace entry selectivity.

This keyword is effective only if the TR keyword value is 1, 2, or 3.

The TRS component keyword allows you to exercise much the same selectivity
over the formatting and printing of trace entries written in a trace internal to a
system dump, as you may exercise over the formatting and printing of trace
entries in an auxiliary trace.

The trace selectivity parameter may be any valid trace selectivity parameter
available to DFHTU410 for the formatting of CICS auxiliary trace entries except
the parameters PAGESIZE, ABBREV, and FULL. You may, as with
DFHTU410, select any number of parameters from those available. See the
CICS Operations and Utilities Guide for more information about DFHTU410
trace selectivity parameters.

Note, however, that you must use angled brackets around the parameter, or
sequence of parameters, that you specify. The format and default values of
parameters used to select trace entries from an internal SDUMP trace, are the
same as those that apply when you use DFHTU410 to format auxiliary trace
entries.

TSP[={0|1|2|3}]
Temporary storage domain.

TSP=0 Suppress formatting of temporary storage control blocks.

TSP=1 Format a summary of temporary storage control blocks and temporary
storage control block checking.

TSP=2 Format temporary storage control blocks.

TSP=3 Format level-1 and level-2 data.

UEH[={0|2}]
The user exit handler.

UEH=0 Suppress formatting of control blocks.

UEH=2 Format control blocks.

US[={0|1|2|3}]
The user domain.

US=0 Suppress formatting of user domain control blocks.

US=1 Format the user domain summary.

US=2 Format the control blocks.

US=3 Format level-1 and level-2 data.

XM[={0|1|2|3}]
The transaction manager.

250 CICS Transaction Server for VSE/ESA Problem Determination Guide

XM=0 Suppress formatting of transaction manager control blocks.

XM=1 Format the domain summary, global state summary, transaction
summary, transaction class summary, and MXT summary.

XM=2 Format the control blocks including the transaction domain anchor
block, transactions (TXn), and transaction class control blocks (TCL).

XM=3 Format level-1 and level-2 data.

XRF[={0|2}]
The extended recovery facility.

XRF=0 Suppress formatting of control blocks.

XRF=2 Format control blocks.

XS[={0|1}]
The security domain.

XS=0 Suppress formatting of anchor block and supervisor storage.

XS=1 Format anchor block and supervisor storage.

For guidance about using the formatting keywords and levels, see the CICS
Operations and Utilities Guide.

The default SDUMP formatting levels
The DEF dump exit parameter specifies the default level of formatting you want for
data from the dump data set. Note that the DEF parameter is only effective for
components that are not included in a list of component keywords.

The levels that you can specify are as follows:

Level Meaning

0 For those components not included in a specified list of keywords, suppress
all component formatting. Note that if you specify DEF=0, but do not specify
any component keywords, you still get the dump summary and, if
appropriate, the error message index.

1 For those components not included in a specified list of keywords, and
where applicable, format the summary information only. (A summary is not
available for all components; see the level numbers available for the
individual keywords for those for which a summary of dump information is
available.)

2 For those components not included in a specified list of keywords, format the
control block information only.

3 For those components not included in a specified list of keywords, format the
control block information and also (where applicable) the summary
information.

Effects of omitting the DEF parameter:

� If you omit the DEF parameter and do not specify any component keywords,
the result is as if you specified DEF=3.

� If you omit the DEF parameter and specify one or more component keywords,
the result is as if you specified DEF=0.

 Chapter 15. Using dumps in problem determination 251

Exceptions to the scope of the DEF parameter: There are two parts of a CICS
system dump that are not governed by component keywords, and are therefore
outside the scope of the DEF parameter. These are:

1. The dump summary
2. The error message index.

These parts of a CICS system dump are always formatted, even if you specify
DEF=0 and no component keywords.

 Storage freeze
Particular classes of CICS storage that are normally freed during the processing of
a transaction can, optionally, be kept intact and freed only at the end of the
transaction. Then, in the event of an abend, the dump contains a record of the
storage that would otherwise have been lost, including the storage used by CICS
service modules. The classes of storage that can be frozen in this way are those
in the teleprocessing and task subpools, and in terminal-related storage (TIOAs).

The storage freeze function is invoked by the CSFE transaction. For information
about using CSFE, see the CICS-Supplied Transactions manual.

Using FEPI dump
For information about using dumps to solve FEPI problems, see the CICS Front
End Programming Interface User’s Guide.

252 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 16. The global trap/trace exit

The global trap/trace exit (DFHTRAP) is intended to be used only under the
guidance of IBM Service personnel. It is designed so that a detailed diagnosis of a
problem can be made without having to stop and then restart CICS.

Typically, the global trap/trace exit is used to detect errors that cannot be
diagnosed by other methods. These might cause intermittent problems that are
difficult to reproduce, the error perhaps occurring some time before the effects are
noticed. For example, a field might be changed to a bad value, or some structure
in storage might be overlaid at a specific offset.

DFHTRAP is an assembler language program that can be invoked whenever the
trace (TR) domain is called to make a trace entry. The trap must be activated
before it is used, either dynamically or at CICS initialization.

A skeleton version of DFHTRAP is supplied in both source and load-module forms.
The source of DFHTRAP is cataloged in the VSE/ESA sublibrary PRD1.BASE.
The source of the skeleton DFHTRAP contains comments explaining its use of
registers and DSECTs, and the coding you need to do if you need to use the exit.

The code in DFHTRAP must not make use of any CICS services, cause the
current task to lose control, or change the status of the CICS system.

Establishing the exit
DFHTRAP can be installed as part of the RDO group DFHFE. You can install it
either by adding the DFHFE group to a group list specified on the GRPLIST system
initialization parameter, or dynamically using the CEDA transaction.

When CICS is running, activation and deactivation of the trap exit routine can be
requested using the TRAP operand of the CSFE DEBUG command:

CSFE DEBUG,TRAP={ON|OFF}

The trap exit can also be activated at CICS initialization by specifying TRAP=ON,
either in DFHSIT or as a startup override. If you want to replace a trap exit routine
while CICS is running, use the CSFE DEBUG commands in conjunction with the
CEMT NEWCOPY command. The following sequence of commands causes the
currently active version of DFHTRAP to be refreshed:

CSFE DEBUG,TRAP=OFF

CEMT SET PROGRAM(DFHTRAP) NEWCOPY

CSFE DEBUG,TRAP=ON

 Copyright IBM Corp. 1979, 1999 253

Information passed to the exit
To assist in the diagnosis of faults in a CICS system, the trace domain passes
information to the exit in a parameter list addressed by register 1. A DSECT
(DFHTRADS) is supplied for this list, which contains the addresses of:

� The return-action flag byte
� The trace entry that has just been added to the table
� Up to three areas to be included in a further trace entry
� An 80-byte work area for the sole use of the trap exit
� The CSA (which may be zero during early initialization)
� The TCA, if there is one
� A register save area

The DSECT also contains EQU statements for use in setting the return-action flag
byte.

The exit can look at data from the current trace entry to determine whether or not
the problem under investigation has appeared. It can also look at the TCA of the
current task, and the CSA. The DSECTs for these areas are included in the
skeleton source.

The CSA address is zero for invocations of DFHTRAP early in initialization, before
the CSA is acquired.

Actions the exit can take
The return-action flag byte can be set by the exit to tell the trace domain what
action is required on return from the exit. The following list gives the possible
choices:

 � Do nothing.

� Make a further trace entry.

� Take a CICS system dump using dump code TR1003.

� Terminate CICS without a dump after message DFHTR1000. (If you require a
dump, the system dump return-action flag must also be set.)

� Disable the trap exit, so that it is not invoked again until reactivated by the
CSFE transaction.

Any combination of these actions can be chosen and all actions are honored on
return to the trace domain.

To reactivate the trap exit when it has been disabled, use CSFE
DEBUG,TRAP=ON, unless the exit routine is to be replaced. In this case the
sequence of commands given above applies.

The skeleton program shows how to make a further trace entry. When DFHTRAP
detects a TS GET request, it asks for a further trace entry to be made by entering
the data required in the area supplied for this purpose, and by setting the
appropriate bit in the return-action flag byte.

The trace domain then makes a trace entry with trace point ID TR 0103,
incorporating the information supplied by the exit.

254 CICS Transaction Server for VSE/ESA Problem Determination Guide

Trace entries created in this way are written to any currently active trace
destination. This could be the internal trace table or the auxiliary trace data set.

The skeleton DFHTRAP also shows how to detect the trace entry made by the
storage manager (SM) domain for a GETMAIN request for a particular subpool.
This is provided as an example of how to look at the data fields within the entry.

Program check handling
The occurrence of a program check in the trap exit is detected by the recovery
routine in DFHTRPT. This then:

1. Marks the exit as unusable

2. Issues the message DFHTR1001 to the system console

3. Takes a CICS system dump with dump code TR1001, showing the PSW and
registers at the time of the interrupt

4. Continues (ignoring the exit on future invocations of the trace domain).

To recover from this situation, execute the commands given above for replacing the
current version of the exit routine.

Coding the exit
When using the trap exit, note the following points:

� A skeleton version of DFHTRAP is supplied in both source and load-module
forms. Make sure that the LIBDEF search chain sequence in the CICS startup
JCL finds the correct version of the phase.

� DFHTRAP must save and restore the trace domain’s registers. The supplied
skeleton version contains the code necessary to do this. You are strongly
advised not to change this code.

� The 80-byte work area provided for the sole use of the exit is in working
storage acquired by the trace domain using a VSE GETVIS. It is acquired and
initialized to binary zeros when the trap is activated. It then exists until the trap
is deactivated (CSFE DEBUG,TRAP=OFF). In a CICS transaction dump, the
DFHTRAP working storage can be found soon after the CSA optional features
list. The 80-byte work area is at the end of the DFHTRAP working storage and
is immediately preceded by a 16-byte eye-catcher (DFHTRAP_WORKAREA),
so that the work area can be located even if it has not been formatted. In a
CICS system dump, the DFHTRAP working storage is in the trace domain (TR)
section. See “Formatting system dumps” on page 244 for details of how to use
the TR keyword to format the trace domain information in the dump.

� DFHTRAP must always run with AMODE(31) and RMODE(ANY) specified. In
particular, it must always return control to the trace domain in 31-bit addressing
mode.

 Chapter 16. The global trap/trace exit 255

256 CICS Transaction Server for VSE/ESA Problem Determination Guide

Part 4. Working with IBM to solve your problem

Part 4 contains:

Chapter 17. IBM program support . 259
When to contact the Support Center . 259
Dealing with the Support Center . 259
IBM Program Support structure . 262
Reporting a FEPI problem to IBM . 263

Chapter 18. APARs, fixes, and PTFs . 265
The APAR process . 265
Collecting the documentation for the APAR . 265
Sending the documentation to the change team 266
Applying the fix . 267

 Copyright IBM Corp. 1979, 1999 257

258 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 17. IBM program support

The IBM Customer Engineering Program Support structure exists to help you
resolve problems with IBM products, and to ensure that you can make the best use
of your IBM computing systems. Program support is available to all licensed users
of IBM licensed programs, and you can get assistance by telephoning your local
Support Center.

This chapter helps you decide when to contact the Support Center, and what
information you need to collect before contacting the Center. The chapter also
gives you an understanding of the way in which IBM Program Support works.

When to contact the Support Center
Before contacting the Support Center, try to ensure that the problem belongs with
the Center. Do not worry if you cannot be sure that the problem is due to CICS
itself.

In practice, many errors reported to Program Support turn out to be user errors,
cannot be reproduced, or need to be dealt with by other parts of IBM Service such
as Hardware CE or Systems Engineering. This indicates just how difficult it can be
to determine the precise cause of a problem. User errors are mainly caused by
faults in application programs and errors in setting up systems. TCT parameters, in
particular, have been found to cause difficulty in this respect.

Dealing with the Support Center
Your first contact with the Support Center is the call receipt operator, who takes
initial details and routes your call to the correct support group.

The Support Center needs to know as much as possible about your problem, so
have the information ready before making your first call. It is a good idea to record
the information on a problem reporting sheet, such as the one shown in Figure 41
on page 260.

 Copyright IBM Corp. 1979, 1999 259

PROBLEM REPORTING SHEET

Date Severity Problem No.

Incident No.

Problem/Enquiry

Abend/Prog CK Incorrout VSE Rel

Wait Module VSE Lvl

Loop Message CICS Rel

Performance Other CICS Lvl

Documentation available

Abend System dump Program output

Message Transaction dump Other

Trace Translator output

Symptom string Compiler output

Actions

Date Name Activity

Resolution

APAR PTF Other

Figure 41. Sample problem reporting sheet

There are two advantages of using a problem reporting sheet:

1. You will be communicating with the IBM Support Center by telephone. So, with
all your findings before you on a sheet of paper, you are prepared to respond
to the questions that you may be asked.

2. You should maintain your own in-house tracking system to record all problems.
This information can then be used for planning, organizing, communicating, and
establishing priorities for controlling and solving these problems.

What the Support Center needs to know
When you contact the Support Center, you need to give the operator the name of
your organization and your access code. Your access code is a unique code
authorizing you to use IBM Software Services, and you provide it every time you
contact the Center. Using this information, the operator accesses your customer
profile, which contains details of your address, relevant contact names, telephone
numbers, and details of the IBM products at your installation.

260 CICS Transaction Server for VSE/ESA Problem Determination Guide

The Support Center operator asks you if this is a new problem, or a further call on
an existing one. If it is new, you are assigned a unique incident number. A
problem management record (PMR) is opened on the RETAIN system, where all
activity associated with your problem is recorded. The problem remains “open”
until it is solved.

Make a note of the incident number on your own problem reporting sheet. The
Center expects you to quote the incident number in all future calls connected with
this problem.

If the problem is new to you, the operator asks you for the source of the problem
within your system software—that is, the program that seems to be the cause of
the problem. As you are reading this book, it is likely that you have already
identified CICS TS for VSE/ESA as the problem source. You also need to give the
version and release number, for example Version 1 Release 1.

You need to give a severity level for the problem. Severity levels can be 1, 2, or 3.
They have the following meanings:

� Severity level 1 indicates that you are unable to use a program, resulting in a
critical condition that needs immediate attention.

� Severity level 2 indicates that you are able to use the program, but that
operation is severely restricted.

� Severity level 3 indicates that you are able to use the program, with limited
functions, but the problem is not critical to your overall operation.

When deciding the severity of the problem, take care neither to understate it nor to
overstate it. The Support Center procedures depend on the severity level so that
the most appropriate use can be made of the Center’s skills and resources. Your
problem is normally dealt with immediately if it is severity level 1.

Finally, the operator offers you a selection of specific component areas within CICS
(for example, terminal control, file control) and asks you to choose the area where
your problem appears to lie. Based on this selection, the operator can route your
call to a specialist in the chosen area.

The keywords are subsequently used as search arguments on the RETAIN
database, to see if your problem is a known one that has already been the subject
of an authorized program analysis report (APAR).

You are not asked for any more information at this stage. However, you need to
keep all the information relevant to the problem, and any available documentation
such as dumps, traces, and translator, compiler, and program output.

How your problem is subsequently progressed depends on its nature. The
representative who handles the problem gives you guidance about what is required
from you. The possibilities are described in the next section.

 Chapter 17. IBM program support 261

What happens next
Details of your call are passed using the RETAIN problem management system to
the appropriate support group. Your problem, assuming it is one associated with
CICS, is put on the CICS queue. The problems are dealt with in order of severity
level.

At first, a support center representative uses the keywords that you have provided
to search the RETAIN database. If your problem is found to be one already known
to IBM, and a fix has been devised for it, a Program Temporary Fix (PTF) can
quickly be dispatched to you.

Let the representative know if any of the following events occurred before the
problem appeared:

� Changes in level of VSE or licensed programs
� Regeneration of any product

 � PTFs applied
� Additional features used
� Application programs changed
� Unusual operator action

You might be asked to give values from a formatted dump or trace table. You
might also be asked to carry out some special activity, for example to set a trap, or
to use trace with a certain type of selectivity, and then to report on the results.

It might be necessary to have several follow-up telephone calls, depending on the
complexity of the symptoms and your system environment. In every case, the
actions taken by you and the Support Center are entered in the PMR. The
representative can then be acquainted with the full history of the problem before
any follow-up call.

The result of the investigations determines whether your problem is a new one, or
one that is already known. If it is already known, and a fix has been developed,
the fix is sent to you.

If the problem is new, an APAR may be submitted. This is dealt with by the CICS
change team. See Chapter 18, “APARs, fixes, and PTFs” on page 265.

IBM Program Support structure
Figure 42 on page 263 shows the relationships between the customer, the staff at
the IBM Support Center, and the change team. The role of each member of the
IBM support staff is outlined in the rest of this section.

262 CICS Transaction Server for VSE/ESA Problem Determination Guide

CUSTOMER

IBM CALL
SUPPORT RECEIPT
CENTER

Product specialist

CHANGE
TEAM

Figure 42. Structure of IBM Program Support

Reporting a FEPI problem to IBM
For information specifically about reporting a FEPI problem, see the CICS Front
End Programming Interface User’s Guide.

 Chapter 17. IBM program support 263

264 CICS Transaction Server for VSE/ESA Problem Determination Guide

Chapter 18. APARs, fixes, and PTFs

An APAR is an “authorized program analysis report”. An APAR is your means of
informing the appropriate change team of a problem you have found with an IBM
program.

When the change team solves the problem, they produce a fix enabling you to get
your system running properly again. Finally, a PTF is produced to replace the
module in error, and the APAR is closed.

The APAR process
The first step in the APAR process is that a support center representative enters
your APAR into the RETAIN system. The APAR text contains a description of your
problem. If you have found a means of getting round the problem, details of this
are entered as well. Your name is also entered, so that the Support Center knows
who to contact if the change team need to ask anything further about the APAR
documentation.

When the APAR is entered, you are given an APAR number. You must write this
number on all the documentation you submit to the change team. This number is
always associated with the APAR and its resolution and, if a code change is
required, it is associated with the fix as well.

The next stage in the APAR process, getting relevant documentation to the change
team, is up to you.

The following is a summary of the things you need to do:

1. You must collect all of the documentation that is required for the APAR. You
are given guidance by the support center on precisely what you need to send.
The documentation that is required varies, depending on the problem area, but
“Collecting the documentation for the APAR” gives you an idea of the material
that you should supply.

2. You need to package all the documentation and send it to the change team.
The procedure for this is given in “Sending the documentation to the change
team” on page 266.

3. Lastly, you need to apply the PTF resulting from the APAR, possibly after
testing the fix on your system. This is described in “Applying the fix” on
page 267.

Collecting the documentation for the APAR
As a general rule, the documentation you need to submit for an APAR includes all
the material you need yourself to perform problem determination. Some of the
documentation is common to all CICS problems, and some is specific to particular
types of problem.

Make sure the problem you have described can be seen in the documentation you
send. If the problem has ambiguous symptoms, you need to reveal the sequence
of events leading up to the failure. Tracing is valuable in this respect, but you

 Copyright IBM Corp. 1979, 1999 265

might be able to provide details that trace cannot give. You are encouraged to
annotate your documentation, if your annotation is legible and if it does not cover
up vital information. You can highlight data in any hard copy you send, using
transparent highlighting markers. You can also write notes in the margins,
preferably using a red pen so that the notes are not overlooked.

Finally, note that if you send too little documentation, or if it is unreadable, the
change team will return the APAR marked “insufficient documentation”. It is,
therefore, worthwhile preparing your documentation carefully and sending
everything relevant to the problem.

The general documentation is described in “General documentation needed for all
problems with CICS.” However, these are only guidelines—you must find out from
the support center precisely what documentation you need to send for your specific
problem.

General documentation needed for all problems with CICS
The following is a list of the general documentation you might be asked to submit
for an APAR:

� Any hard or soft copy illustrating the symptoms of the problem.

� A system dump of the CICS address space. Format the whole system dump if
you plan to submit hard copy. Otherwise, you can just send the system dump
data set on tape.

� A CICS trace. Auxiliary trace is best, but internal trace will do if you do not
have an auxiliary trace. If internal trace has been running, it is in the system
dump in any case.

� Listings of CICS management modules, such as DFHKCP, that are not
supplied as object code only. These should be unnecessary if
preassembled modules are used .

� Relevant CICS tables. Again, these should be unnecessary if preassembled
versions are used.

� Listings of relevant application programs.

 � Console logs.

� CICS logs (for example, the CSMT log) wherever possible. These contain
information that is often overlooked. They are particularly useful when VTAM is
in use.

� JCL listings. These may appear on dumps, and need not be sent twice.

� A list of PTFs and APARs applied.

� Details of any user modifications.

Sending the documentation to the change team
Follow the directions in APAR II02709 when gathering documentation to send to
the change team. If you do not have access to the RETAIN database, ask your
IBM representative to obtain a copy of APAR II02709 for you. The documentation
you submit for the problem is best shipped in an APAR box, which you can obtain
from your local IBM branch. APAR boxes are clearly marked as such, and they
have a panel where tracking information such as the APAR number can be written.

266 CICS Transaction Server for VSE/ESA Problem Determination Guide

Packing and mailing the APAR box
Place all your documentation and notes in one or more APAR boxes, making sure
that the boxes are marked, for example, “1 of 2”, and so on, if you need to use
more than one.

If you include any magnetic tapes, write this clearly on the outside of the box. This
lessens the chance of their being stored in magnetic fields strong enough to
damage the data.

To make sure the documentation reaches the correct destination, that is, the CICS
change team, write the following on the box:

SHIP TO CODE 5U6

You also need a mailing label with the address of the CICS change team on it.

When the change team receives the package, this is noted in your APAR record on
the RETAIN system. The team then investigates the problem. Occasionally, they
need to ask the Support Center to contact you for more documentation, perhaps
specifying some trap you must apply before getting it.

When the problem is solved, a code is entered on RETAIN to close the APAR, and
you are provided with a fix.

You can enquire any time at your Support Center on how your APAR is
progressing, particularly if it is a problem of high severity.

Applying the fix
When the change team have found a fix for your problem, they might want you to
test it on your system. If they do ask you to test the fix, you are normally given two
weeks to do it and to provide them with the results. However, you can ask for an
extension if you are unable to complete the testing in that time.

When the team is confident that the fix is satisfactory, the APAR is certified by the
CICS development team and the APAR is closed. You receive notification when
this happens.

The APAR becomes a PTF
If the solution involves a change to code in a CICS module that you can assemble,
you are sent the code change right away. The change is later distributed as a
PTF.

If you cannot assemble the module yourself, because it involves a part of CICS that
is object serviced, you might be supplied with a ZAP or a TOTEST PTF.

If you want a PTF to resolve a specific problem, you can order it explicitly by its
PTF number through the IBM Support Center. Otherwise, you can wait for the PTF
to be sent out on the standard distribution tape.

 Chapter 18. APARs, fixes, and PTFs 267

268 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Part 5. Appendixes

 Copyright IBM Corp. 1979, 1999 269

270 CICS Transaction Server for VSE/ESA Problem Determination Guide

Appendix A. SDUMP contents and INFOANA EXIT keywords

The following two tables provide a cross-reference between the CICS control blocks contained in an
SDUMP and their associated system dump formatting keyword.

The first table provides a list of system dump formatting keywords and the CICS control blocks that they
display.

The second table provides a list of all CICS control blocks in an SDUMP, alphabetically, with their
associated system dump formatting keyword.

See “Formatting system dumps” on page 244 for a list of all possible system dump formatting keywords.

 Copyright IBM Corp. 1979, 1999 271

Finding the control blocks from the keywords
AI keyword

AP keyword

� CICS24 (task storage—below 16MB, CICS key)
� CICS31 (task storage—above 16MB, CICS key)
� DBL (journal control dynamic log buffer)
� DWE (user DWE storage)
� EIB (EXEC interface block)
� EIS (EXEC interface structure)
� EIUS (EXEC interface user structure)
� FILE (user file storage)
� JCA (journal control area)
� MAPCOPY (user BMS MAP storage)
� QCA (queue control area)
� QEA (queue element area)
� SYSEIB (system EXEC interface block)
� SYS_TCA (task control area—system area only)
� TD (user transient data)
� TS (user temporary storage)
� TCA (task control area—user)
� USER24 (task storage—below 16MB, user key)
� USER31 (task storage—above 16MB, user key)

CC keyword

� Local (anchor block)
– LCBUFFER (local catalog buffers—one each thread)
– LC_ACB (local catalog ACB)
– LC_RPL (local catalog RPLs—one each thread)

� Global (anchor block)
– GCBUFFER (global catalog buffers—one each thread)
– GC_ACB (global catalog ACB)
– GC_RPL (global catalog RPLs—one each thread)

CP keyword

� CP STATIC—Common Programming Interface (CPI) static storage

CSA keyword

� CSA (common system area)
� CSAOPFL (CSA optional features list)
� CWA (common work area)

DD keyword

� DDANCHOR (directory manager anchor block)
� For each directory:

– DIR_HEAD (directory header)
– AVL_HEDR (AVL header)
– HASH_TBL (hash table)

DM keyword

� DMANCHOR (domain manager anchor block)
� WQP (domain wait queue)

272 CICS Transaction Server for VSE/ESA Problem Determination Guide

DS keyword

� DSANC (dispatcher anchor block)
� DS_TCB (TCB block)
� DTA (dispatcher task area)
� SUSPAREA (unformatted SUSPEND_AREAS/TOKENS)
� TASK (unformatted DTAs)

DU keyword

� DUA (dump domain anchor block)
� DUBUFFER (transaction dump data set buffer)
� OPENBLOK (transaction dump Open block)
� SDTE (system dump table elements)
� TDTE (transaction dump table elements)

FCP keyword

� ACB (VSAM ACBs)
� AFCTE (application file control table element)
� DTF (DAM file DTF)
� DSNB (data set name block)
� DFHDTTABLE (data table base area)
� DFHDTFILE (data table path area)
� DFHDTHEADER (data table global area)
� DTRGLOBL (data table remote global area)
� FBWA (data table browse area)
� FCSTATIC (FCP static storage—anchor block)
� FCTE (file control table element)
� SHRCTL (shared LSRPOOLs)
� VSWA (VSAM work area)

ICP keyword

� ICE (interval control elements/AIDs)

JCP keyword

� DFHJCOCL (journal open/close parameter list)
� DFHJCT (journal control table header)
� DFHJCTTE (journal table entry)
� JAB (journal archive anchor block)
� JACD (journal archive control data set ACB)
� JACD (journal archive control data set RPL)
� JAW (journal archive work element)
� JCBUFFER (journal buffer)
� JCDTF (journal DTF)
� LECBS (logical ECBs)

KE keyword

� AFCB (CICS AFCB)
� AFCS (CICS AFCS)
� AFT (CICS AFT)
� AUTOSTCK (automatic storage stack entry)
� KCB (kernel anchor block)
� KERNSTCK (kernel linkage storage stack entry)
� KERRD (kernel error data)
� KTCB (KTCB table entry)
� DOH (domain table header)

 Appendix A. SDUMP contents and INFOANA EXIT keywords 273

� DOM (domain table entry)
� TAH (task table header)
� TAS (task table entry—TASENTRY)
� TCH (KTCB table header)

LD keyword

� APE (active program element)
� CPE (current program element)
� CSECTL (program CSECT List)
� LD_GLBL (loader domain global storage—anchor block)
� LDBE (loader domain browse element)
� LDWE (loader domain wait element)
� LLA (load list area)

LM keyword

� FREECHAI (LM domain freechain 1)
� FREECHAI (LM domain freechain 2)
� FREECHAI (LM domain freechain 3)
� LMANCHOR (lock manager domain anchor block)
� LMQUICK1 (LM domain quickcell 1)
� LMQUICK2 (LM domain quickcell 2)
� LMQUICK3 (LM domain quickcell 3)
� LOCK_ELE (LM domain lock element)

ME keyword

� MEA (message domain anchor block)

MN keyword

� MCT (monitoring control table)
� MNA (monitoring domain global storage—anchor block)
� MNAFB (monitor authorization facility parameter block)
� MNCONNS (monitor field connectors)
� MNDICT (monitor dictionary)
� MNDMF (DMF record buffer)
� MNEXC (exception record buffer)
� MNEXLIST (user EMP address list)
� MNFLDMAP (excluded/included CICS field map)
� MNPER (performance data buffer)
� MNTMA (transaction monitoring area)

MRO keyword

� CCB (connection control block)
� CRB (CICS region block)
� CSB (connection status block)
� DWE (deferred work element)
� LACB (logon address control block)
� LCB (logon control block)
� LXA (LX array)
� SCACB (subsystem connection address control block)
� SCCB (subsystem connection control block)
� SCTE (subsystem control table extension)
� SLCB (subsystem logon control block)
� SUDB (subsystem user definition block)
� UCA (use count array)

274 CICS Transaction Server for VSE/ESA Problem Determination Guide

� URD (unit of recovery descriptor)

PA keyword

� DFHSIT (system initialization table)
� OVERSTOR (override parameter temporary work area)
� PAA (parameter manager domain anchor block)
� PARMSAVE (SIT override parameters)
� PRVMODS (SIT PRVMOD list)

PCP keyword

� PPTTE (program processing table entries)

PCT keyword

� PCTTE (program control table entries)

PG keyword

� PGA (program manager anchor)
� LLE (load list element)–can be system LLE or task LLE)
� PGWE (program manager wait element)
� PPTE (program processing table element)
� PTA (program transaction area)
� PLCB (program manager program level control block)
� HTB (handle table)

For an explanation of PG summary data in a level-1 dump, see Appendix B, “Summary data for
PG and US keywords” on page 285.

RC keyword

� PSG (system spooling global control block)
� PSC (Continuous report control block)
� PST (CEMS operator task control block)
� PSW (Writer task control block)

RM keyword

� DFHRMCBS (recovery manager table storage)

SM keyword

� CTN (cartesian tree node)
� DXE (DSA extent list element)
� DXG (DSA extent GETMAIN description)
� DXH (DSA extent list header)
� MCA (SM macro-compatibility control area)
� PAM (page allocation map)
� PPA (page pool control area)
� PPX (page pool extent control area)
� QPF (quickcell page free element)
� QPH (quickcell page header)
� SAE (storage access table entry)
� SAT (storage access table)
� SCA (subpool control area)
� SCE (storage element descriptor)
� SCF (free storage descriptor)
� SMA (storage manager domain anchor block)
� SMSVCTRT (DFHSMSVC trace table)
� SMX (transaction storage area)

 Appendix A. SDUMP contents and INFOANA EXIT keywords 275

� SQE (suspend queue element)
� STAB (storage manager statistics buffer)

SSA keyword

� SSAL (static storage address list)
� SSA (static storage areas)

ST keyword

� STANCHOR (statistics domain anchor block)
� STSAFPB (statistics authorization facility parameter block)
� STDMF (statistics DMF record)
� STSTATS (statistics domain statistics record)

SZ keyword

� SZSDS (FEPI static area)

TCP keyword

� ACB (VTAM access method control block)
� AID (automatic initiation descriptor)
� AWE (autoinstall work element)
� BIND (bind image)
� DCB (SAM data control block)
� DIB (data interchange block)
� EXLST (VTAM ACB exit list)
� ISORM (indirect system object resolution map)
� LOGDS (extracted logon or CLSDST Pass data)
� NIB (node initialization block)
� PWE (postponed work element)
� RACE (receive-any control elements)
� RAIA (VTAM receive-any Input area)
� RPL (VTAM request parameter list—receive-any RPLs)
� SNTTE (SNT terminal entry)
� TACLE (terminal abnormal condition line entry)
� TCTENIB (NIB descriptor)
� TCTESBA (APPC send/receive buffer)
� TCTFX (TCT prefix)
� TCTTELUC (TCTTE APPC extension)
� TCTME (TCT mode entry)
� TCTSE (TCT system entries)
� TCTSK (TCT skeleton entries)
� TCTTE (TCT terminal entries)
� TCTTETTE (TCTTE extension)
� TCTTEUA (TCTTE user area)
� TIOA (terminal I/O area)
� WAITLST (wait list)
� ZEPD (TC module entry list)

TDP keyword

� ACB (TD VSAM ACB)
� BUFFER (TD I/O buffer)
� DCTE (destination control table entries)
� MBCA (TD buffer control area)
� MBCB (TD buffer control block)
� MQCB (TD queue control block)

276 CICS Transaction Server for VSE/ESA Problem Determination Guide

� MRCA (TD string control area)
� MRCB (TD string control block)
� MRSD (TD CI state map—segment descriptor)
� MWCB (TD wait control block)
� RPL (TD VSAM RPL)
� SDSCI (TD SCSCI)
� TDST (TD static storage)
� VEMA (TD VSAM error message area)

TI keyword

� TIA (Timer domain anchor block)
� TRE (Timer request elements)

TMP keyword

� TMSTATIC (table manager static storage)
� SKT (scatter tables)
� DIRSEG (directory segments)
� TM_LOCKS (read lock blocks)

TR keyword

� TRA (trace domain anchor block)
� TRDCB (auxiliary trace data set DCB)
� TRDECB (auxiliary trace data set DECB)

TSP keyword

� TSACA (TS auxiliary control area)
� TSBMAP (TS byte map)
� TSBCA (TS buffer control area)
� TSBUFFER (TS I/O buffer)
� TSCOM (TS common area)
� TSGID (TS group identifier)
� TSRE (TS request element)
� TST (TS table header)
� TSTTE (TS table entry)
� TSUT (TS unit table header)
� TSUTE (TS unit table entry)
� TSVCA (TS VSWA control area)

UEH keyword

� DWE (deferred work element)
� EPB (exit program blocks)
� GWA (EPB global work area)
� TIE (task interface element)
� UET (user exit table)
� URD (unit of recovery descriptor)

US keyword

� USA (user domain anchor block)
� USXD (user domain transaction data)
� USUD (user domain user data), one or more of the following:

 – Principal
 – Session
 – EDF

 Appendix A. SDUMP contents and INFOANA EXIT keywords 277

For an explanation of US summary data in a level-1 dump, see Appendix B, “Summary data for
PG and US keywords” on page 285.

XM keyword

� XMA (XM domain anchor block)
� TXN (XM domain transaction))
� TCL (XM domain tclass)
� XM_XB (XM domain browse element)
� MXT (XM domain MXT tclass)

XRF keyword

� XRPSTAT (XRP static storage)
� XRP_ACTS (XRP active status area)
� XRP_ALTS (XRP alternate status area)
� XRP_HLTH (XRP health area)
� XRP_XRSA (XRP anchor area)
� CAVM_STA (CAVM static storage)

XS keyword

� XSA (security domain anchor block)
� XSSS (security supervisor storage)

Finding the keywords from the control blocks

CICS INFOANA
Control DATA
Block

ACB VSAM ACBs FCP
ACB VTAM access method control block TCP
ACB TD VSAM ACB TDP
AFCB CICS AFCB KE
AFCS CICS AFCS KE
AFCTE application file control table element FCP
AFT CICS AFT KE
AID automatic initiation descriptor TCP
AITM static storage AI
AITMTE autoinstall terminal models AI
APE active program element LD
AUTOSTCK automatic storage stack entry KE
AVL_HEDR AVL tree header DD
AWE autoinstall work element TCP

BIND bind image TCP
BUFFER TD I/O buffer TDP

CAVM_STA CAVM static storage XRF
CCB connection control block MRO
CCBUFFER local catalog buffers, one each thread CC
CICS24 task storage - below 16MB, CICS key AP
CICS31 task storage - above 16MB, CICS key AP
CPE current program element LD
CPSTATIC common program interface storage CP
CRB CICS region block MRO
CSA common system area CSA
CTN cartesian tree node SM
CSAOPFL CSA optional features list CSA

278 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS INFOANA
Control DATA
Block

CSB connection status block MRO
CSECTL program CSECT list LD
CWA common work area CSA

DBL journal control dynamic log buffer AP
DCB data control block FCP
DCB data control block JCP
DCB SAM data control block TCP
DCTE destination control table entries TDP
DDANCHOR directory manager anchor block DD
DECB data extent control block JCP
DFHJCOCL journal open/close parameter list JCP
DFHJCT journal control table header JCP
DFHJCTTE journal table entry JCP
DFHRMCBS recovery manager table storage RM
DFHSIT system initialization table PA
DIB data interchange block TCP
DIR_HEAD directory header DD
DIRSEG directory segments TMP
DMANCHOR domain manager anchor block DM
DOH domain table header KE
DOM domain table entry KE
DS_TCB TCB block DS
DSANC dispatcher anchor block DS
DSNB data set name block FCP
DFHDTTABLE data table base area FCP
DFHDTFILE data table path area FCP
DTA dispatcher task area DS
DFHDTHEADER data table global area FCP
DTRGLOBL data table remote global area FCP
DUA dump domain anchor block DU
DUBUFFER transaction dump-data set buffer DU
DWE deferred work element MRO
DWE deferred work element UEH
DWE user DWE storage AP
DXE DSA extent list element SM
DXG DSA extent GETMAIN descriptor SM
DXH DSA extent list header SM

EIB EXEC interface block AP
EIS EXEC interface structure AP
EIUS EXEC interface user structure AP
EPB exit program blocks UEH
EXLST VTAM ACB exit list TCP

FBWA data table browse area FCP
FCSTATIC FCP static storage - anchor block FCP
FCTE file control table element FCP
FILE user file storage AP
FREECHAI LM domain freechain 1 LM
FREECHAI LM domain freechain 2 LM
FREECHAI LM domain freechain 3 LM

 Appendix A. SDUMP contents and INFOANA EXIT keywords 279

CICS INFOANA
Control DATA
Block

GC_ACB global catalog ACB CC
GC_RPL global catalog RPLs, one each thread CC
GCBUFFER global catalog buffers, one each thread CC
GWA EPB global work area UEH

HASH_TBL hash table DD
HTB handle table PG

ICE interval control elements/AIDs ICP
ISORM indirect system object resolution map TCP

JAB journal archive anchor block JCP
JACD ACB journal archive control data set ACB JCP
JACD RPL journal archive control data set RPL JCP
JAW journal archive work element JCP
JCA journal control area AP
JCBUFFER journal buffer JCP

KCB kernel anchor block KE
KERNSTCK kernel linkage storage stack entry KE
KERRD kernel error data KE
KTCB KTCB table entry) KE

LACB logon address control block) MRO
LC_ACB local catalog ACB CC
LC_RPL local catalog RPLs, one each thread CC
LCB logon control block) MRO
LD_GLBL loader domain global storage - anchor block LD
LDBE loader domain browse element LD
LDWE loader domain wait element LD
LECBS logical ECBs JCP
LLE load list element PG
LMANCHOR lock manager domain anchor block LM
LMQUICK1 LM domain quickcell 1 LM
LMQUICK2 LM domain quickcell 2 LM
LMQUICK3 LM domain quickcell 3 LM
LOCK_ELE LM domain lock element LM
LOGDS extracted logon or CLSDST pass data TCP
LXA LX array MRO

MAPCOPY user BMS MAP storage AP
MBCA TD buffer control area TDP
MBCB TD buffer control block TDP
MCA SM macro-compatibility control area SM
MCT monitoring control table MN
MEA message domain anchor block ME
MNA monitor domain global storage - anchor block MN
MNAFB monitor authorization facility parameter block MN
MNCONNS monitor field connectors MN
MNDICT monitor dictionary MN
MNDMF DMF record buffer MN
MNEXC exception record buffer MN
MNEXLIST user EMP address list MN
MNFLDMAP excluded/included CICS field map MN
MNPER performance data buffer MN
MNTMA transaction monitoring area MN

280 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS INFOANA
Control DATA
Block

MQCB TD queue control block TDP
MRCA TD string control area TDP
MRCB TD string control block TDP
MRSD TD CI state map - segment descriptor TDP
MWCB TD wait control block TDP
MXT XM domain MXT tclass XM

NIB node initialization block TCP

OPENBLOK transaction dump open block DU
OVERSTOR override parameter temporary work area PA

PAA parameter manager domain anchor block PA
PAM page allocation map SM
PARMSAVE SIT override parameters PA
PCTTE program control table entries PCT
PGA program management anchor PG
PGWE program management wait element PG
PLCB program management program control blk PG
PPA pagepool control area SM
PPTE program processing table element PG
PPTTE program processing table entries PCP
PPX pagepool extent control area SM
PRSTATIC partner resource static area PR
PRTE partner resource table entries PR
PRVMODS SIT PRVMOD list PA
PSC Continuous report control block RC
PSG system spooling global control block RC
PST CEMS operator task control block RC
PSW Writer task control block RC
PTA program transaction area PG
PWE postponed work element TCP

QCA queue control area AP
QEA queue element area AP
QPH quickcell page header SM
QPK quickcell page free element SM

RACE receive-any control elements TCP
RAIA VTAM receive-any input area TCP
RMCBS recovery manager control blocks RM
RPL VTAM request parameter list - receive-any RPLs TCP
RPL TD VSAM RPL TDP

SAE storage access table entry SM
SAT storage access table SM
SCA subpool control areas SM
SCACB subsystem connection address control block MRO
SCCB subsystem connection control block MRO
SCE storage element descriptor SM
SCF free storage descriptor SM
SCTE subsystem control table extension MRO
SDSCI TD SCSCI TDP
SDTE system dump table elements DU
SHRCTL LSRPOOLs FCP
SKT scatter tables TMP
SLCB subsystem logon control block MRO

 Appendix A. SDUMP contents and INFOANA EXIT keywords 281

CICS INFOANA
Control DATA
Block

SMA storage manager domain anchor block SM
SMX transaction storage area SM
SNTTE SNT terminal entry TCP
SQE suspend queue element SM
SSA static storage areas SSA
SSAL static storage address list SSA
STANCHOR statistics domain anchor block ST
STDMF statistics DMF record ST
STSAFPB statistics authorization facility parameter block ST
STSTATS statistics domain statistics record ST
SUDB subsystem user definition block MRO
SUSPAREA unformatted SUSPEND_AREAS/TOKENS DS
SYS_TCA TCA - system AP
SZSDS FEPI static area SZ

TACLE terminal abnormal condition line entry TCP
TAH task table header KE
TAS task table entry - TASENTRY KE
TASK unformatted DTAs DS
TCA task control area AP
TCH KTCB table header KE
TCL XM domain tclass XM
TCTENIB NIB descriptor TCP
TCTESBA LU6.2 send/receive buffer TCP
TCTFX TCT prefix TCP
TCTME TCT mode entry TCP
TCTSE TCT system entries TCP
TCTSK TCT skeleton entries TCP
TCTTE TCT terminal entries TCP
TCTTELUC TCTTE LU6.2 extension TCP
TCTTETTE TCTTE extension TCP
TCTTEUA TCTTE user area TCP
TD user transient data AP
TDST TD static storage TDP
TDTE transaction dump table elements DU
TIA timer domain anchor block TI
TIE task interface element UEH
TIOA terminal I/O area TCP
TM_LOCKS read lock blocks TMP
TMSTATIC table manager static storage TMP
TRA trace domain anchor block TR
TRDCB auxiliary trace data set DCB TR
TRDECB auxiliary trace data set DECB TR
TRE timer request elements TI
TS user temporary storage AP
TSACA TS auxiliary control area TSP
TSBCA TS buffer control area TSP
TSBMAP TS byte map TSP
TSBUFFER TS I/O buffer TSP
TSCOM TS common area TSP
TSGID TS group identifier TSP
TSRE TS request element TSP
TST TS table header TSP
TSTTE TS table entry TSP
TSUT TS unit table header TSP
TSUTE TS unit table entry TSP

282 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS INFOANA
Control DATA
Block

TSVCA TS VSWA control area TSP
TXN XM domain transaction XM

UCA use count array MRO
UET user exit table UEH
URD unit of recovery descriptor MRO
URD unit of recovery descriptor UEH
USER24 task storage - below 16MB, user key AP
USER31 task storage - above 16MB, user key AP

VEMA TD VSAM error message area TDP
VSWA VSAM work area FCP

WAITLST wait list TCP
WQP domain wait queue DM

XMA XM domain anchor block XM
XM_XB XM domain browse element XM
XRP_ACTS XRP active status area XRF
XRP_ALTS XRP alternate status area XRF
XRP_HLTH XRP health area XRF
XRP_XRSA XRP anchor area XRF
XRPSTAT XRP static storage XRF

ZEPD TC module entry list TCP

 Appendix A. SDUMP contents and INFOANA EXIT keywords 283

284 CICS Transaction Server for VSE/ESA Problem Determination Guide

Appendix B. Summary data for PG and US keywords

This appendix lists the elements of the control block summaries in a level-1
analyzed dump for the PG and US keywords.

 PG keyword
The summaries appear below in the sequence in which they appear in a dump.
This is broadly the sequence in which the control blocks are listed in Appendix A,
but note:

� The system LLE summary, if present, follows the PGA summary, but the task
LLE summary, if present, follows the PTA summary.

� The HTB does not appear in a summary.

PGA (program manager anchor)
PG Domain Status

One of the following:

 � Initializing
 � Initialized
 � Quiescing
 � Quiesced
 � Terminating
 � Terminated

Autoinstall status
Either active or inactive

Autoinstall catlg status
Autoinstall catalog status, one of the following:

 � All
 � Modify
 � None

Autoinstall exit name
Autoinstall exit name

Attempted autoinstalls
Number of attempted autoinstalls in decimal

Failed autoinstalls
Number of failed autoinstalls in decimal

Rejected autoinstalls
Number of rejected autoinstalls in decimal

XRSINDI active
Status of user exit, either Y or N

Exec calls allowed
Either Y or N

System LLE chain head
Address of system LLE chain head, zero if no chain exists

 Copyright IBM Corp. 1979, 1999 285

PGWE chain head
Address of PGWE chain head, or zero if no chain exists

Stats last - 1st word
Statistics last reset time using GMT (on two lines)

Reset time - 2nd word
Second part of last reset time

SM access token
SM access token value

SM isolation token
SM isolation token value

Storage protect
Either Y or N

Cold start
Either Y or N

Recovery complete
Either Y or N

System LLE Summary
LLE-ADDR

LLE address

PROGRAM
Program name

PPTE-ADD
PPTE address

 PGWE Summary
PGWE-ADD

Address of suspended program

PROGRAM
Name of suspended program

SUS-TOKN
Suspend token

PPTE-ADD
Program PPTE address

 PPTE Summary
PPTE ADDRESS

Address of PPTE block

PROGRAM NAME
The tables are indexed using the program name

MOD TYPE
Module type, one of the following:

� PG - Program
� MP - Mapset
� PT - Partitionset

286 CICS Transaction Server for VSE/ESA Problem Determination Guide

LANG DEF
Language defined, one of the following:

� NDF - Not defined
� ASS - Assembler

 � C - C
� COB - COBOL
� PLI - PL/I

LANG DED
Language deduced, one of the following:

� NDD - Not deduced
� ASS - Assembler

 � C - C
� COB - COBOL
� COL - COBOL/VSE
� LEV - LEVSE
� PLI - PL/I

INST TYPE
PPTE installation type, one of the following:

� R - Built from RDO
� C - Built from catalog constant
� G - Built from grouplist
� A - Autoinstall
� S - System autoinstall
� M - Manual

CEDF STAT
CEDF status, either CED(CEDF allowed) or NOC(CEDF not allowed)

AVAL STAT
Program availability status, either E(enabled) or DI(disabled)

DATA LOC
Data location, either A (any location) or B(below 16M)

EXEC KEY
Execution key, either C (CICS) or U (user)

DPL SUBS
DPL subset, either DP (DPLsubset) or F (full API)

RE LOAD
Indicator of whether this is a reload program, either Y or N

LOAD STAT
Load status, one of the following:

� L - Loaded
� NL - Not loadable
� ND - Not loaded

HOLD STAT
CICS hold status, either C (loaded for CICS lifetime) or T (task lifetime)

USE COUNT
Use count in decimal, blank if 0

 Appendix B. Summary data for PG and US keywords 287

LOCK OWNER
Transaction number of locking program

PGWE CHAIN
Indicator of presence of any PGWEs, either Y or N.

REMOTE PRGID
Remote program name.

REMOTE SYSID
Remote system name.

REMOTE TRNID
Remote transaction name.

 PTA Summary
TRAN NUM

Transaction number.

PTA ADDRESS
Address of PTA.

LOG-LVL
Logical level count in decimal.

SYS-LVL
System level count in decimal.

TASK-LLE
Address of task LLE head, zero if no task LLE exists.

PLCB
Address of PLCB head, or zero if no PLCB exists.

Task LLE Summary
LLE-ADDR

LLE address.

PROGRAM
Program name.

PPTE-ADD
PPTE address.

Task PLCB Summary
PLCB-ADD

PLCB address.

PROGRAM
Program name.

LOG-LVL
Logical level of program.

LOAD
Program load point.

ENTRY
Program entry point.

288 CICS Transaction Server for VSE/ESA Problem Determination Guide

LENGTH
Program length.

CA-CURR
Current commarea address.

CLEN
Current commarea length.

INVK-PRG
Name of invoking program.

STG
Commarea storage class. Can be one of five:

� Blank - No commarea for this level.
� C - CICS
� C24 - CICS 24 bit
� U - User
� U24 - User 24 bit

EXIT-NME
Exit name derived from user exit number, if applicable.

ENV
Environment type, one of the following:

� EXEC - Command level application
� GLUE - Global user exit
� PLT - PLT program
� SYS - CICS system program
� TRUE - Task-related user exit
� URM - User-replaceable program

PPTE-ADD
Program PPTE address.

 US keyword
A level-1 dump summarizes only the user domain data (USUD). The fields
displayed are the same for each type of USUD (principal, session, or EDF).

 USXD summary
TRAN NUM

Transaction number.

PRINCIPAL TOKEN
Principal token, if any.

SESSION TOKEN
Session token, if any.

EDF TOKEN
EDF token, if any.

 Appendix B. Summary data for PG and US keywords 289

 USUD summary
TOKEN

User token.

USERID
User identifier.

GROUPID
Group identifier.

ADDCOUNT
Adduser use count.

TRNCOUNT
Transaction use count.

OPID
Operator identifier.

CLASSES
A bitmap expressing the operator classes in order 24 to 1.

PRTY
Operator priority.

TIMEOUT
Timeout interval in hours and minutes (hh:mm).

ACEE
Address of ACEE.

XRFSOFF
XRF user signon. Can be NOFORCE or FORCE.

USERNAME
User name.

290 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Notices

This information was developed for products and
services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this
document in other countries. Consult your local IBM
representative for information on the products and
services currently available in your area. Any reference
to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe any
IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program,
or service.

IBM may have patents or pending patent applications
covering subject matter described in this document. The
furnishing of this document does not give you any
license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the
United Kingdom or any other country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied
warranties in certain transactions, therefore this
statement may not apply to you.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at
any time without notice.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester,
Hampshire, England, SO21 2JN. Such information may
be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any
equivalent agreement between us.

 Copyright IBM Corp. 1979, 1999 291

Trademarks and service marks

The following terms, used in this publication, are
trademarks or service marks of IBM Corporation in the
United States or other countries:

Bookmanager, CICS, CICS/VSE, IBM, NetView,
RETAIN, VSE/ESA, VTAM

292 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
Messages and Codes Vol 3 (softcopy only) SC33-6799
Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1979, 1999 293

Books from VSE/ESA 2.4 base program libraries

VSE/ESA Version 2 Release 4

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User's Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

294 CICS Transaction Server for VSE/ESA Problem Determination Guide

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

 VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

 VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

 VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

 Bibliography 295

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

296 CICS Transaction Server for VSE/ESA Problem Determination Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

 Bibliography 297

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

298 CICS Transaction Server for VSE/ESA Problem Determination Guide

 Index

A
abbreviated-format trace 204
abend codes

transaction 27
AICA 29
ASRA 29
ASRB 29
CICS 28
destination 27
documentation 28
interpretation 28
product other than CICS 28
user 28

ABEND symptom keyword 9
abends

AICA 130
CICS system

See CICS system abends
codes

See abend codes
dump not made when expected 153
exception trace entry 40
investigating 39

the documentation you need 39
looking at the symptom string 41
symptom keyword 9
transaction 27

See also transaction abends
AICA 29
ASRA 29
ASRB 29
worksheet 37

access methods
determining the type in use 96
intersystem communication 97
possible reason for stalled system 127

ADD_SUSPEND function 60
input parameters 60

addressing exception 32
AEYD

causes 29
AICA abend

probable cause 29
PSW 238
registers 238

AICA abends 130
AID (automatic initiation descriptor)

See automatic initiate descriptor (AID)
AID chain

investigating tasks that have not started 168
locating in the formatted system dump 169

AIDTRMID (symbolic ID of terminal) 169
AIDTRNID (transaction ID) 169
AITM resource name 69
ALLOCATE resource type 69, 104
alternate system waits 121
ALTPAGE attribute 158, 162
ALTSCREEN attribute, 158, 162
Any_MBCB resource type 69
AP_INIT resource type 69
AP_QUIES resource type 69
AP_TERM resource type 69
APPC, range of devices 95
application programs

dynamic storage 242
storage areas 242

arithmetic exceptions 33
investigating 33

ASIS option 158
ASRA abend

causes 29
execution key 238
PSW 238
registers 238

ASRB abend
causes 29
execution key 238
PSW 238
registers 238

ASRD abend
causes 29
PSW 238
registers 238

assembler programs
locating the DFHEISTG storage 242

assemblers
errors in output 6

asynchronous processing 101
ASYNRESP resource name 69
ATI (automatic transaction initiation) 99

See also automatic transaction initiation (ATI)
autoinitiated tasks

excessive numbers shown in statistics 16
automatic initiate descriptor (AID)

See also AID chain
identifying the related task 169
identifying the terminal 169
investigating tasks that have not started 168

automatic transaction initiation (ATI)
task produced no output 165, 168

looking at the AID chain 168
looking at the ICE chain 168
resource not available 168
task not yet scheduled to start 168

 Copyright IBM Corp. 1979, 1999 299

automatic transaction initiation session status 99
auxiliary trace

abbreviated-format 204
advantages 217
characteristics 217
controlling 218
data sets 217
destination 217
DFHAUXT 217
DFHBUXT 217
extended-format 200
formatting 199

selectivity 199
interpreting 200, 204
loss of trace data 150
status 217, 219
switch status 217
trace entries missing 152

AUXTR, system initialization parameter 218
AUXTRSW, system initialization parameter 218
AVAIL_nn resource name 71, 85

B
base locator linkage (COBOL)

See BLL (base locator linkage (COBOL))
basic mapping support (BMS)

See BMS (basic mapping support)
BATCH

WAIT_EXTTERNAL input parameter 65
BLL (base locator linkage (COBOL))

in COBOL dump 243
BMS (basic mapping support)

applications not compiled with latest maps 162
ASIS option 158
attributes of fields 172

DARK field attribute 172
incorrect output to terminal 172

attributes of fields 172
DARK field attribute 172
MDT 172
modified data tag 172
symbolic map 172

maps incorrect 162
MDT 172
modified data tag 172
symbolic map 172

bottlenecks 140, 146
dispatch, suspend and resume cycle 141
initial attach to the dispatcher 141
initial attach to the transaction manager 140
initial dispatch 141

BPS (builder parameter set)
See builder parameter set (BPS)

builder parameter set (BPS)
CSFE ZCQTRACE facility 235

C
CAVM (CICS availability manager) 221

control data set 190
message data set 190

CCSTWAIT resource type 69
CCVSAMWT resource type 69
CDSA resource type 69
CEBR transaction

checking programming logic 171
investigating loops 138
use in investigating no task output 168

CECI transaction
checking for bad data in a file 170
checking programming logic 171
investigating loops 138
use in investigating no task output 168

CEDA in a wait state 122
CEDF transaction

checking programming logic 171
investigating loops 138

CEMT INQUIRE TASK
HTYPE field 53
HVALUE field 53

CEMT transaction
SET PROGRAM NEWCOPY 6
use during CICS termination 127

CEPWTERM resource type 69
CESN in a wait state 122
CETR transaction

example screen 215, 218
master system trace flag 213
selecting components to be traced 214
setting special trace levels 214
setting standard trace levels 214
suppressing standard tracing 213
task tracing options 212
terminal tracing options 212
transaction tracing options 212

CHKSTRM option, startup override 178
CHKSTSK option, startup override 178
CICS availability manager

See CAVM (CICS availability manager)
CICS availability manager (CAVM) 221

trace table 221
CICS running slowly 11
CICS stalled

caused by SOS condition 126
during a run 125, 130
during initialization 124
during quiesce 127
during termination 127
effect of ICV parameter 125
effect of ICVR parameter 125
effect of ICVTSD parameter 126
effect of MXT parameter 126

300 CICS Transaction Server for VSE/ESA Problem Determination Guide

CICS stalled (continued)
investigating the reason for the stall 10
messages 10
on cold start 124
on emergency restart 124
on warm start 124
PLT initialization programs 124
PLT shutdown programs 128
possible causes 10
specific regions 16
system definition parameters wrong 125

CICS system abends
action of global trap/trace exit 254
CICS system dump following 227
CSMT log messages 11
exception trace entry 40
information needed by the Support Center 39
investigating 39
looking at the symptom string 41
messages 11
the documentation you need 39

CICS system dumps
data not formatted correctly 156
destination 236
dispatcher domain storage areas 83
dump not made on CICS system abend 153
following CICS system abend 227
following transaction abend 227
formatting 244

selectivity 244
from global trap/trace exit 254
global suppression 154, 225
in problem determination 225
internal trace table 40
investigating CICS system abends 39
investigating waits 52, 54
kernel domain storage areas

CICS system abends 40
error code 44
error data 46
error type 44
failing program 45
information provided 42
kernel error number 44
point of failure 45
PSW at time of error 46
registers at time of error 46
task error information 44
task summary 42
tasks in error 42
waits for resource locks 83

locating the AID chain 169
locating the ICE chain 169
lock manager domain storage areas 83
looking at the symptom string 41
of remote CICS regions 102

CICS system dumps (continued)
precautions using dump formatting keywords 156
statistics 230
storage manager domain storage areas 90
storage violation 176, 177, 182
suppression by user exit program 154
suppression for individual transactions 154, 225
suppression for specific dump codes 225
system dump code option 229
system dump codes 226
temporary storage control blocks 92
terminal control storage areas 96

CICS, resource name 73
CICS410 dump exit
classification of problems 9
COBOL programs

BLL (base locator linkage) 243
task global table 242
working storage 242

common system area (CSA)
in transaction dump 239
locating the AID chain 169
optional features list 239

compilers
errors in output 6

COMPLETION_CODE
RESUME input parameter 64
SUSPEND output parameter 63

component tracing
identifying codes 214
precautions when selecting 151
setting special trace levels 214
setting standard trace levels 214

CONSP resource type 69
control data set 190
control interval (CI)

exclusive control deadlock 112, 113
exclusive control waits 112

CPI resource name 69
CRTE and uppercase translation 160
CSA (common system area)

See common system area (CSA)
CSADLECB resource name 69
CSAOPFL 239
CSAOPFRC resource name 74
CSASSI2 resource name 69
CSATODTU 116
CSFE DEBUG transaction

global trap/trace exit 253
storage checking 178
TRAP operand 253

CSFE transaction
checking the programming logic 171
storage freeze option 171

CSFE ZCQTRACE transaction
dumps of builder parameter set 235

 Index 301

CSMT log
abend messages 3, 11, 13
terminal error messages 13, 95

CSNC resource type 71
CURRENTDDS, transaction dump data set status 236
CWA (common work area) 239

D
DAM
data corruption

bad programming logic 171
incorrect mapping to program 170
incorrect mapping to terminal 172

attributes of fields 172
DARK field attribute 172
MDT 172
modified data tag 172
symbolic map 172

incorrect records in file 170
missing records in file 170
possible causes 169

data exception 31
DATABUFFERS parameter of FILE resource

definition 109
DBUGUSER resource name 70
DCT (destination control table)

See destination control table (DCT)
DCT resource name 74
deadlock time-out interval

description 67
EXEC CICS WRITEQ TS command 91
interval control waits 115
task storage waits 90

DEADLOCK_ACTION
description of parameter 67
SUSPEND input parameter 62
WAIT_EXTERNAL input parameter 65
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

debugging
IRC problems 195
multiregion operation problems 195

DELETE_SUSPEND function of gate DSSR 61
input parameters 61
output parameters 62

destination control table (DCT)
extrapartition transient data destinations 106
logically recoverable queues 106

DFGTRAP 253
DFH$AXRO 189
DFHAIIN resource type 69
DFHAUXT 217
DFHBUXT 217
DFHCPIN resource type 69

DFHDMPA dump data set 235
DFHDMPB dump data set 235
DFHDU410 job log 237
DFHEISTG 242
DFHEVBBF resource name 75
DFHJ1Snn resource name 73
DFHJAP resource name 71
DFHKC TYPE=DEQ macro 89
DFHKC TYPE=ENQ macro 88
DFHKC TYPE=WAIT macro 88

DCI=CICS option 88
DCI=LIST option 88
DCI=SINGLE option 88
DCI=TERMINAL option 88

DFHPRIN resource type 70
DFHPSPCK resource name 69
DFHPSPIO 73
DFHPSPIO resource name 69, 73, 74, 77
DFHRC5482 message 78
DFHSIPLT resource type 70
DFHSPSPIO resource name 75
DFHTACB 240, 242

PSW 240
registers 240

DFHTRADS DSECT 254
DFHXRA resource name 76
DFHXRCP resource name 75
DFHZARER resource name 76
DFHZARL1 resource name 76
DFHZARL2 resource name 77
DFHZARL3 resource name 77
DFHZARL4 resource name 77
DFHZARQ1 resource name 77
DFHZARR1 resource name 77
DFHZCRQ1 resource name 76
DFHZDSP resource name 74
DFHZEMU1 resource name 76
DFHZERH1 resource name 76
DFHZERH2 resource name 76
DFHZERH3 resource name 76
DFHZERH4 resource name 76
DFHZIS11 resource name 76
DFHZNAC1 resource name 76
DFHZRAQ1 resource name 76
DFHZRAR1 resource name 76
DISASTER value of dispatcher RESPONSE output

parameter 67
dispatcher

ADD_SUSPEND function 60
DELETE_SUSPEND function 61
dispatch, suspend and resume cycle 141, 146
failure of tasks to get attached 141, 142
failure of tasks to get initial dispatch 141, 144
functions of gate DSSR 59
INQUIRE_SUSPEND_TOKEN function 61
RESUME function 64

302 CICS Transaction Server for VSE/ESA Problem Determination Guide

dispatcher (continued)
SUSPEND function 62
suspension and resumption of tasks 59
tracing the suspension and resumption of tasks 54
WAIT_EXTERNAL function 64, 65
WAIT_OLDC function 64, 65
WAIT_OLDW function 64, 65

distributed transaction processing (DTP) 101
DL/I
DMB (data management block)
DMWTQUEU resource name 69
domain identifying codes 214
DS_NUDGE resource name 75
DS_SDJnn resource name 72
DS_SW_nn resource name 72
DSA (dynamic storage area)

current free space 91
storage fragmentation 91

DSSR gate of dispatcher domain
ADD_SUSPEND function 60
DELETE_SUSPEND function 61
INQUIRE_SUSPEND_TOKEN function 61
RESUME function 64
SUSPEND function 62
tracing the functions 54

interpreting the trace table 54
tracing the input and output parameters 54
WAIT_EXTERNAL function 64, 65
WAIT_OLDC function 64, 65
WAIT_OLDW function 64, 65

dump codes
checking the attributes 155
DUMPSCOPE option 227
RELATED attribute 227
storage violation 176
suppression of system dumps 225
suppression of transaction dumps 225
system 155, 226

CICS termination option 229
maximum dumps option 229
NOSYSDUMP attribute 155
options 229
SYSDUMP attribute 155
system dumping option 229

transaction 155, 226
CICS termination option 229
format 226
maximum dumps option 229
NOTRANDUMP attribute 155
options 229
system dumping option 229
TRANDUMP attribute 155
transaction dumping option 229

dump data sets
attributes 235
AUTOSWITCH status 236

dump data sets (continued)
CLOSED status 236
current status 236
DFHDMPA 235
DFHDMPB 235
inquiring on 235
NOAUTOSWITCH status 236
OPEN status 236
setting 235
switch status 236

dump domain
XDUREQ global user exit 154

dump table
examples 230, 232
options 155, 229

loss of additions and changes 229
preservation of additions and changes 229

statistics 230
current count 230
reset 230
system dumps suppressed 230
system dumps taken 230
times dump code action taken 230
transaction dumps suppressed 230
transaction dumps taken 230

suppression of dumping 155
system 232
temporary entries 229, 233
transaction 230

DUMP, system initialization parameter 154, 225
DUMPDS, system initialization parameter 236
dumps

CICS system
See CICS system dumps

controlling
CEMT transaction 226
dump codes 226
dump tables 226
examples 230, 232
EXEC CICS commands 226
selective dumping of storage 235
specifying dump options 229
using an undefined dump code 233

controlling dump action 225
current dump ID 232
dump output is incorrect

data not formatted correctly 156
dump not made on abend 153
investigating 153
some dump IDs missing from the sequence of

dumps 155
wrong CICS partition 153

dumps 20
events that can cause dumps 226
IDs missing from the sequence of dumps 155
in problem determination 225

 Index 303

dumps (continued)
looking at the symptom string 41
options 229
requesting dumps 226
setting the dumping environment 225
suppressing 154
transaction

See transaction dumps
DUMPSCOPE dump code option 227
DUMPSW, system initialization parameter 236
dynamic storage area (DSA)

See DSA (dynamic storage area)

E
EARLYPLT resource name 70
ECB (event control block)

EXEC CICS POST command 116
function WAIT_EXTERNAL of gate DSSR 64, 65
function WAIT_OLDC of gate DSSR 64, 65
function WAIT_OLDW of gate DSSR 64, 65
invalid address, task control waits 89
posting after task is canceled 181
storage violations 181
valid address, task control waits 89

ECB_ADDRESS
WAIT_EXTERNAL input parameter 65
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

ECB_LIST_ADDRESS
WAIT_EXTERNAL input parameter 65
WAIT_OLDW input parameter 65

ECBTCP resource name 69
ECDSA resource type 70
EDF (execution diagnostic facility)

investigating loops 138
use in investigating no task output 166

EDF resource type 70
EDSA (extended dynamic storage area)

current free space 91
storage fragmentation 91

EIB (EXEC interface block)
See EXEC interface block (EIB)

EIBFN 239
in last command identification 241

EKCWAIT resource type 70
EMP (event monitoring point) 21
ENQUEUE on single server resource 89
Environmental Record Editing and Printing Program

(EREP) 24
ERDSA resource type 70
EREP (Environmental Record Editing and Printing

Program) 24
error code 44
error data 46

error number 44
error type 44
ESDSA resource type 70
EUDSA resource type 70
event control block (ECB)

See ECB (event control block)
event monitoring point (EMP) 21
exception trace

characteristics 220
CICS system abends 40
destination 220
format 220
missing trace entries 152
purpose 220
storage violation 176, 177, 180
user 220

EXCEPTION value of dispatcher RESPONSE output
parameter 67

EXCLOGER resource name 69
EXEC CICS ABEND command 227
EXEC CICS DELAY command 115
EXEC CICS DUMP TRANSACTION command 226,

235
EXEC CICS ENTER TRACENUM command 220
EXEC CICS INQUIRE TASK

SUSPENDTYPE field 53
SUSPENDVALUE field 53

EXEC CICS PERFORM DUMP command 226
EXEC CICS POST 116
EXEC CICS READ UPDATE command 113
EXEC CICS RETRIEVE WAIT command 115
EXEC CICS REWRITE command 113
EXEC CICS START command 115, 141, 142
EXEC CICS STARTBR command 113
EXEC CICS WAIT EVENT command 116
EXEC CICS WRITE command 113
EXEC CICS WRITE MASSINSERT command 113
EXEC CICS WRITEQ TS command 91

NOSUSPEND 91
REWRITE option 91

EXEC interface block (EIB)
EIBFN 239

execution diagnostic facility (EDF)
investigating loops 138

execution exception 31
Execution key 238
exit programming interface (XPI)

ADD_SUSPEND function 60
correctness of input parameters 4
DELETE_SUSPEND function of dispatcher 61
need to observe protocols and restrictions 4
problems using 4
restrictions in user exits 4
RESUME function of dispatcher 64
SUSPEND function of dispatcher 62
suspension and resumption of tasks 59

304 CICS Transaction Server for VSE/ESA Problem Determination Guide

exit programming interface (XPI) (continued)
SYSTEM_DUMP call 226
TRANSACTION_DUMP call 226
WAIT_EXTERNAL function of dispatcher 65

extended dynamic storage area
See EDSA (extended dynamic storage area)

extended-format trace 200
EXTENDEDDS attribute, TYPETERM 158, 162
extrapartition transient data waits 105

F
FCBFWAIT resource type 70, 109
FCCIWAIT resource type 71
FCDWWAIT resource type 70, 110
FCFRWAIT resource type 70
FCFSWAIT resource type 70, 110
FCINWAIT resource type 70
FCIOWAIT resource type 70, 110
FCPSWAIT resource type 70, 111
FCRBWAIT resource type 70, 111
FCSRSUSP resource type 70, 111
FCTISUSP resource type 70, 111
FCXCWAIT resource type 70, 112
FEPI

See front end programming interface
file accesses, excessive 16
file control waits 108

exclusive control deadlock 112, 113
file ID resource name 70
files

no task output 168
first failure data capture 216, 220
FLUSH_nn resource name 71, 85
FOREVER resource type 71
formatting CICS system dumps 244
front end programming interface (FEPI)

dump control option 249
FEPI waits 123

function shipping 101

G
global catalog data set (GCD)

dump table options 229
effect of redefinition on dump table 229

global trap/trace exit 182, 253
actions the exit can take 254
activating and deactivating the exit 253
coding 255
establishing the exit 253
information passed to the exit 254
program check handling 255
replacing a trap exit 253
uses 253
work area 255

H
HTYPE field 53
HVALUE field 53

I
I/O buffers, transient data

all in use 107
IBM Support Center

call receipt 259, 260
dealing with the Center 259
problem reporting 259
structure 262
use of RETAIN database 9, 261
when to contact 259

ICE (interval control element)
See interval control element (ICE)

ICE chain
ICE expiration 116
ICETRNID transaction ID 169
ICEXPIRY resource type 71
ICEXTOD expiration time 169
ICEXTOD value 116
ICGTWAIT resource type 71, 94, 115
ICMIDNTE resource type 71
ICV, system initialization parameter

possible cause of CICS stall 125
ICVR, system initialization parameter

non-yielding loops 130
possible cause of CICS stall 125
tight loops 130

ICVTSD, system initialization parameter
possible cause of CICS stall 126

ICWAIT resource type 71, 94, 115
incorrect output

abend codes 19
application did not work as expected 163
BMS mapping 172

attributes of fields 172
DARK field attribute 172
MDT 172
modified data tag 172
symbolic map 172

change log 20
checking for bad data in a file 170
checking the mapping from file to program 170
checking the programming logic 171

desk checking 171
using CEBR 171
using CECI 171
using CEDF 171
using interactive tools 171

databases 23
error messages 19
files 23

 Index 305

incorrect output (continued)
incorrect output read from VSAM data set 163
investigating 149
link-edit maps 19
manuals 19
monitoring 21
no output obtained 164

ATI tasks 165, 168
disabling the transaction 168
explanatory messages 164
finding if the task ran 166
looking at files 168
looking at temporary storage queues 168
looking at transient data queues 168
possible causes 164
START PRINTER bit on write control

character 165
task not in system 165
task still in system 165
testing the terminal status 164
using CECI 168
using execution diagnostic facility 166
using statistics 167, 168
using trace 166

passed information 23
printed output wrong 156
source listings 19
statistics 21
symptom keyword 9
symptoms 13
temporary storage 22
terminal data 22
terminal output wrong 156
trace 23
trace data wrong 150
trace destination wrong 149
trace entries missing 151
trace output wrong 149
transaction inputs and outputs 22
transient data 22
unexpected messages 13
user documentation 19
wrong CICS components being traced 151
wrong output obtained 169

possible causes 169
wrong tasks being traced 151

INCORROUT symptom keyword 9
INDEXBUFFERS parameter of FILE resource

definition 109
information sources 19
INFORMATION/ACCESS licensed program 9
initialization

See system initialization
initialization stall 124
INQUIRE_SUSPEND_TOKEN function of gate

DSSR 61

INQUIRE_SUSPEND_TOKEN function of gate DSSR
(continued)

output parameters 61
internal trace

abbreviated-format 204
characteristics 216
controlling 218
destination 216
exception trace destination 216
extended-format 200
formatting 199
interpreting 200, 204
status 216, 219
trace entries missing 152
trace table size 216

changing the size dynamically 216
wrapping 216

interregion communication
See IRC (interregion communication)

intersystem communication (ISC)
poor performance 142
waits 101, 104

INTERVAL
description of parameter 67
SUSPEND input parameter 62
WAIT_EXTERNAL input parameter 65
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

interval control
element 116
performance considerations 141
waits 115

deadlock time-out interval 115
systematic investigation 116
using trace 117

interval control element (ICE) 168
See also ICE chain

INTTR, system initialization parameter 218
INVALID value of dispatcher RESPONSE output

parameter 67
IRC (interregion communication) 195

poor performance 142
waits 101, 104

IRLINK resource type 71, 94, 101
ISC (intersystem communication)

See intersystem communication (ISC)

J
JABSUTOK resource name 72
JACDIORB resource type 71
JASTMECB resource name 71, 85
JASUBTAS resource type 71, 85
JCAVLECB resource type 71, 85
JCBUFFER resource type 71, 85

306 CICS Transaction Server for VSE/ESA Problem Determination Guide

JCCLDONE resource type 71
JCDETACH resource type 71
JCFLBUFF resource type 71, 85
JCINITN resource type 72
JCIOBLOK resource type 72, 85
JCIOCOMP resource type 72, 86
JCJASUS resource type 72
JCJOURDS resource type 72
JCLASTBK resource type 72, 86
JCOPDONE resource type 72, 86
JCREADY resource type 72
JCRQDONE resource type 72, 87
JCSWITCH resource type 72, 87
JCTAPE2 resource type 72, 87
JCTBAECB resource name 71
JCTERMN resource type 73
JCTICA resource name 72
JCTIMER resource type 73
JCTIOECB resource name 72, 86
JCTXAECB resource name 72, 86
JCTXBECB resource name 72, 86
Jnnbbbbb resource name 72, 85, 86
journal control

contention for exclusive control of journal 85
waits 85

JOURNAL resource name 72

K
Katakana terminals 161

mixed English and Katakana characters 161
KC_ENQ resource type 73, 88, 89, 110

DAM record locking 115
VSAM record locking 114

KCCOMPAT resource type 73, 88
resource names 88

CICS 88
LIST 88
SINGLE 88
SUSPEND 88
TERMINAL 88, 94

kernel domain
information given in dump 42

error code 44
error data 46
error table 44
error type 44
failing program 45, 47
kernel error number 44
point of failure 45
PSW at time of error 46
registers at time of error 46
storage addressed by PSW 46
storage addressed by registers 46
task error information 44
task summary 42
tasks in error 42, 44

kernel domain (continued)
linkage stack 47

identifying the task in error 47
stack entries 239
storage areas 42

KERNEL resource type 73
KERNERROR value of dispatcher RESPONSE output

parameter 67

L
last command identification 241
last statement identification 242
LATE_PLT resource name 70
LECBECB resource name 71, 85
level-1 trace points 207
level-2 trace points 208
level-3 trace points 208
link editor

errors in output 6
LIST resource name 73, 77
LMQUEUE resource name 69, 82
loader domain (LD)

program storage map 49
waits 108

lock manager domain (LM)
involvement in waits 82

identifying the lock owning task 83
investigating 83

logon rejection 157
LOOP symptom keyword 9
loops

CICS detected 129
debugging with interactive tools 138
identifying the point of entry 135
in CICS code 129
in system code 136
investigating 129

looking at the evidence 135
techniques 134, 136

investigating by modifying your program 138
looking at the transaction dump 136
non-yielding 129

characteristics 130
finding the cause 136
investigating 134
possible causes 136

possible causes 129
potential consumption of storage 91
potential consumption of temporary storage 92
symptom keyword 9
symptoms 14, 15, 129

CICS region stalled 16
CPU usage high 16
reduced activity at terminals 16
repetitive output 16
short on storage 16

 Index 307

loops (continued)
symptoms (continued)

system busy symbol 16
tight 129

characteristics 130
finding the cause 136
identifying an instruction in the loop 136
investigating 134
possible causes 136

types 129
using CEBR 138
using CECI 138
using CEDF 138
using the CEMT transaction 16
using trace 134, 136
yielding 129

characteristics 132
finding the cause 138
investigating 136
possible causes 138
useful documentation 137

lowercase characters 158
LUTYPE6.1, range of devices 95

M
MBCB_xxx resource type 73
message data set 190
MESSAGE symptom keyword 9
messages

absence of, when expected 16
CICS under stress 17
destination

CSMT 11, 13
CSTL 13

DFHAC2008 168
DFHSM0131 17, 145
DFHSM0133 17, 145
DFHSR0601 11
DFHST0001 11
dump formatting error 177
preliminary checks 3
short on storage 145
sources 5
storage violation 174, 177
symptom keyword 9
terminal errors 95
transaction abend 27
transaction disabled 168
unexpected 13, 158

missing trace entries 151
module index

in transaction dump 241
MONITOR POINT command 21
monitoring point 21

MRO waits 101, 104
MROQUEUE resource name 71
multiregion operation using IRC 195
multiregion operation waits 101, 104
MXT (maximum tasks value)

effect on performance 142
kernel task summary 43
possible cause of CICS stall 126
reason for task failing to start 12
waits 78
XM_HELD resource type 78

MXT resource type 73

N
NetView 128
networks

messages 95
preliminary checks 5

NOSYSDUMP, system dump code attribute 155
NOTRANDUMP, transaction dump code attribute 155

O
OK value of dispatcher RESPONSE output

parameter 67
OLPD (Online Problem Determination) program
Online Problem Determination (OLPD) program
OPEN_ANY resource type 73
OPEN_NFY resource type 73
operation exceptions 31
output

absence when it is expected 14
incorrect

See incorrect output
none obtained 164

ATI tasks 165, 168
disabling the transaction 168
explanatory messages 164
finding if the task ran 166
looking at files 168
looking at temporary storage queues 168
looking at transient data queues 168
possible causes 164
START PRINTER bit on write control

character 165
task not in system 165
task still in system 165
testing the terminal status 164
using CECI 168
using execution diagnostic facility 166
using statistics 167, 168
using trace 166

repetitive 16
wrong 169

possible causes 169

308 CICS Transaction Server for VSE/ESA Problem Determination Guide

overseer sample program 189

P
PAGESIZE attribute, TYPETERM 162
PC, communication with CICS 95
PERFM symptom keyword 9
performance

bottlenecks 140, 146
dispatch, suspend and resume cycle 141
initial attach to the dispatcher 141
initial attach to the transaction manager 140
initial dispatch 141

dispatch, suspend and resume cycle 146
initial attach to the dispatcher 142
initial attach to the transaction manager 141
initial dispatch to the dispatcher 144
interval control delays 141
MXT limit 142
performance class monitoring 144
poor

at peak system load times 11
finding the bottleneck 140
investigating 139
lightly loaded system 11
possible causes 11
symptom keyword 9
symptoms 11, 14, 17, 139

remote system status 142
system loading 146
task control statistics 142
task priority 144
task time-out interval 146
terminal status 141
using trace 143

performance class monitoring 144
PIC (program interrupt code)

See program interrupt code (PIC)
PL/I application programs

locating the DSA chain 242
PLT (program list table)

See program list table (PLT)
PMR (problem management record) 261
poor performance

See performance, poor
preliminary checks

all functions fully exercised 6
any changes to the application 6
any previous success 3, 6
changes since last success 4

hardware modification 5
initialization procedure 5
modified application 5
new application 5
PTF (program temporary fix) 4
resource definitions 5

preliminary checks (continued)
common programming errors 7
failure at specific times of day 4
intermittent failures 4
interval control waits 115
messages 3
network related errors 5

many terminals 6
single terminal 5

no previous success 6
output from assembler 6
output from compiler 6
output from link editor 6
output from translator 6
reproducible problems 3

caused by poor system definition 4
related to applications 3
related to system loading 4

terminal waits 95
PREOPNnn resource name 72, 87
printers 78

no output 165
printed output wrong 156, 161
unexpected line feeds and form feeds 162
waits 78
write control character 165

privileged operation 31
PRM resource name 70
problem classification 9
problem determination

FEPI waits 123
problem management record (PMR) 261
problem reporting

documentation needed 261
IBM Program Support 259
information needed 260
report sheet 259

processors
usage high 16

PROFILE definition
SCRNSIZE attribute 158, 162
UCTRAN attribute 158

program check
addressing exception 32
arithmetic exceptions 33

investigating 33
cause of ASRA abends 29
data exception 31
execution exception 31
investigating 30
next sequential instruction 30
operation exception 31
outside of CICS 30
possible types 31
privileged operation 31
protection exception 32

 Index 309

program check (continued)
specification exception 32
system interrupts 33
wild branch 31

program check and abend tracing 224
program control waits 108
program interrupt code (PIC)

addressing exception 32
arithmetic exceptions 33
data exception 31
execution exception 31
interpretation 31
operation exception 31
privileged operation 31
protection exception 32
specification exception 32
system interrupts 33

program list table (PLT)
programs executing during CICS quiesce 128
transient data waits 105, 124

program name resource name 74
PROGRAM resource type 73, 74
program status word (PSW) 29

See also PSW (program status word)
program support

See IBM Support Center
programming errors

preliminary checks 7
programs

information for current transaction 240
loops 129
problems with loading 108
representation in linkage stack 47
storage 240

protection exception 32
dealing with 33
possible causes 34

PS_INIT resource type 74
PSB (program specification block)
PSINQECB resource name 76
PSOP1ECB resource name 76
PSOP2ECB resource name 76
PSUNBECB resource name 76
PSW (program status word)

at time of error 46
CICS system abends 46
description 29
finding the offset of a failing instruction 49
format 49
in transaction abend control block 240
in transaction dump 238

PTF 267
PTF level 49
PURGEABLE operand

SUSPEND input parameter 62
WAIT_EXTERNAL input parameter 65

PURGEABLE operand (continued)
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

PURGED value of dispatcher RESPONSE output
parameter 67

Q
quiesce stall 127

R
RDBLOKnn resource name 72
RDO transaction

See resource definition online (RDO)
RDRECDnn resource name 72
RDSA resource type 74
REASON

ADD_SUSPEND output parameter 60
DELETE_SUSPEND output parameter 62
RESUME output parameter 64
SUSPEND output parameter 63
WAIT_EXTERNAL output parameter 66
WAIT_OLDC output parameter 66
WAIT_OLDW output parameter 66

RECEIVE resource type 74
record locking

DAM data sets 115
VSAM data sets 114

registers
at time of error 46
CICS system abends 46
data addressed at the time of error 46
in transaction abend control block 240
in transaction dump 238

registers at last EXEC command 238
RELATED dump code attribute 227
Remote abend indicator 238
resource definition online (RDO)

ALTER mapset 6
ALTER program 6
ALTER transaction 6
DEFINE mapset 6
DEFINE program 6
DEFINE transaction 6
INSTALL option 6

resource names 77
AITM 69
ASYNRESP 69
AVAIL_nn 71, 85
CICS 73
CPI 69
CSADLECB 69
CSAOPFRC 74
CSASSI2 69
DBUGUSER 70

310 CICS Transaction Server for VSE/ESA Problem Determination Guide

resource names (continued)
DCT 74, 105
DETACH 73
DFHEVBBF 75
DFHJ1Snn 73
DFHPSPCK 69
DFHPSPIO 69, 73, 74, 75, 77
DFHXMTA 71
DFHXRA 76
DFHXRCP 75
DFHZARER 76
DFHZARL1 76
DFHZARL2 77, 104
DFHZARL3 77, 104
DFHZARL4 77
DFHZARQ1 77
DFHZARR1 77
DFHZCRQ1 76, 103
DFHZDSP 74
DFHZEMU1 76
DFHZEMW1 103
DFHZERH1 76
DFHZERH2 76
DFHZERH3 76
DFHZERH4 76, 104
DFHZIS11 76
DFHZNAC1 76
DFHZRAQ1 76, 103
DFHZRAR1 76, 103
DLBL filename 72
DMWTQUEU 69
DS_NUDGE 75
DS_SW_nn 72
EARLYPLT 70
EXCLOGER 69
file ID 70
FLUSH_nn 71, 85
HVALUE 53
inquiring during task waits 53
JABSUTOK 72
JASTMECB 71, 85
JC_SDJnn 72
JCTBAECB 71
JCTICA 72, 86
JCTIOECB 72, 86
JCTXAECB 72, 86
JCTXBECB 72, 86
Jnnbbbbb 72, 85, 86
JOURNAL 72
LATE_PLT 70
LECBECB 71, 85
LIST 73, 77
LMQUEUE 69, 82
message queue ID 76
module name 71
MROQUEUE 71

resource names (continued)
PREOPNnn 72, 87
PRM 70
program ID 73
program name 74
program_name 73
PSINQECB 76
PSOP1ECB 76
PSOP2ECB 76
PSUNBECB 76
RDBLOKnn 72
RDRECDnn 72
SHUTECB 69
SINGLE 70, 73
SIPDMTEC 69
SISUBECB 74
SMSYSTEM 74
STABLEnn 72, 87
STARTUP 75
STATIC 70
STP_DONE 69
SUBTASK 71, 72, 73, 86, 87
summary of possible values 68
SUSPEND 73
SUSPENDVALUE 53
SYSIDNT/session ID 71
TCLASS 74
TCTTETI value 69
TCTVCECB 69, 76
TERMINAL 73
terminal ID 71
transaction ID 75
transient data queue name 69, 73, 74, 75, 105,

106, 107
TSBUFFER 75
TSEXTEND 75
TSIO 75
TSMCPECB 74
TSOPEN4B 75
TSQUEUE 75
TSSTRING 75
TSUT 75
TSWBUFFR 75
VSMSTRNG 69
WCSTECB 75
WTO 74
XM_HELD 73
XRSSTECB 76
ZC_ZGRP 74
ZSLSECB1 76

resource types 77, 78
ALLOCATE 69, 104
Any_MBCB 69, 107
Any_MRCB 69, 107
AP_INIT 69
AP_QUIES 69

 Index 311

resource types (continued)
AP_TERM 69
CCSTWAIT 69
CCVSAMWT 69
CDSA 69, 90
CEPWTERM 69
CONSP 69, 77
CSNC 71
DFHAIIN 69
DFHCPIN 69
DFHPRIN 70
DFHSIPLT 70
ECDSA 70, 90
EDF 70
EKCWAIT 70, 88
ERDSA 70, 90
ESDSA 70
EUDSA 70, 90
FCBFWAIT 70, 109
FCCIWAIT 71
FCDWWAIT 70, 110
FCFRWAIT 70
FCFSWAIT 70, 110
FCINWAIT 70
FCIOWAIT 70, 110
FCPSWAIT 70, 111
FCRAWAIT 111
FCRBWAIT 70
FCSRSUSP 70, 111
FCTISUSP 70, 111
FCXCWAIT 70, 112
FOREVER 71
HTYPE 53
ICEXPIRY 71
ICGTWAIT 71, 115
ICMIDNTE 71
ICWAIT 71, 115
inquiring during task waits 53
IRLINK 71, 94, 101
JASUBTAS 71, 85
JCAVLECB 71, 85
JCBUFFER 71, 85
JCCLDONE 71
JCDETACH 71
JCFLBUFF 71, 85
JCINITN 72
JCIOBLOK 72, 85
JCIOCOMP 72, 86
JCJASUS 72
JCLASTBK 72, 86
JCOPDONE 72, 86
JCREADY 72
JCRQDONE 72, 87
JCSWITCH 72, 87
JCTAPE2 72, 87
JCTERMN 73

resource types (continued)
JCTIMER 73
KC_ENQ 73, 88, 89, 106, 110
KCCOMPAT 73, 88, 94
KERNEL 73
MBCB_xxx 73, 107
MRCB_xxx 107
MXT 73
OPEN_ANY 73, 77
OPEN_NFY 73, 78
PROGRAM 73, 74
PS_INIT 74
RDSA 74
RECEIVE 74, 78
SDSA 74
STARTUP 74
SUBTASK 74
SUCNSOLE 74
summary of possible values 68
SUSPENDTYPE 53
TCP_NORM 74
TCP_SHUT 74
TCTVCECB 74
TD_INIT 74, 105
TDEPLOCK 74, 105
TDIPLOCK 75, 106
TDQ_IORB 75
TIEXPIRY 75
TRANDEF 75
TSAUX 75, 91
TSBUFFER 93
TSEXTEND 93
TSIO 93
TSMCPECB 75
TSQUEUE 93
TSSTRING 94
TSUT 94
TSWBUFFR 94
UDSA 75, 90
WAITLIST 75
WTOR_RPY 75
XOVR_RESP 75
XPCCWAIT 75, 78
XRF_SYNC 76
XRF_WAIT 76
XRGETMSG 76
XRPUTMSG 122
ZC 76, 103
ZC_ZCGRP 76, 103
ZC_ZGRP 76
ZC_ZGUB 76, 104
ZCIOWAIT 76, 104
ZCZGET 77, 104
ZCZNAC 77, 104
ZXQOWAIT 77, 104
ZXSTWAIT 77, 104

312 CICS Transaction Server for VSE/ESA Problem Determination Guide

RESOURCE_NAME
ADD_SUSPEND input parameter 60
SUSPEND input parameter 62
WAIT_EXTERNAL input parameter 65
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

RESOURCE_TYPE
ADD_SUSPEND input parameter 60
SUSPEND input parameter 62
WAIT_EXTERNAL input parameter 65
WAIT_OLDC input parameter 65
WAIT_OLDW input parameter 65

resources
definition errors 5
inquiring during task waits 53
journal control 85
locks 82

investigating waits 83
names 68
storage manager 90
task control 88
temporary storage 91
types 68

RESPONSE
ADD_SUSPEND output parameter 60
DELETE_SUSPEND output parameter 62
INQUIRE_SUSPEND_TOKEN output parameter 61
meanings of possible values 67
RESUME output parameter 64
SUSPEND output parameter 63
WAIT_EXTERNAL output parameter 66
WAIT_OLDC output parameter 66
WAIT_OLDW output parameter 66

RESUME function 64
input parameters 64

RETAIN problem management system
APARs 265
data base 9, 262
problem management record 261
symptom keywords 9
using INFORMATION/ACCESS 9

runaway task time interval
See ICVR, system initialization parameter

runaway tasks
See tasks, runaway

S
SAA (storage accounting area)

chains 174
overlays 174, 177, 181

SAM 105
SCRNSIZE attribute, PROFILE 158, 162
SDAID, system debugging aid 23
SDSA resource type 74

SDUMPX macro 236
SENDSIZE attribute, TYPETERM 162
short on storage

See SOS (short on storage)
SHUTECB resource name 69
SINGLE resource name 73
SINGLE, resource name 70
SIPDMTEC resource name 69
SISUBECB resource name 74
SMSYSTEM resource name 74
SOS (short on storage)

caused by looping code 16
potential cause of waits 91

sources of information 19
SPCTR, system initialization parameter 215
SPCTRxx, system initialization parameter 215
SPECIAL_TYPE

SUSPEND input parameter 62
WAIT_OLDW input parameter 65

specification exception 32
spooler waits 77
STABLEnn resource name 72, 87
START PRINTER bit on write control character 165
STARTUP resource name 75
STARTUP resource type 74
statistics

autoinitiated tasks 16
file accesses 16
task control

number of times at MXT 142
use in investigating no task output 167

STGRCVY system initialization parameter 183
STNTR, system initialization parameter 215
STNTRxx, system initialization parameter 215
storage

consumption by looping tasks 91
fragmentation 91
task subpool summary 91
violations

See storage violations
waits 90

fragmentation of free storage 91
too little free storage 91

storage accounting area (SAA)
See SAA (storage accounting area)

storage chain checking
by CICS 174
forcing 178

storage freeze 252
storage manager domain (SM)

conditional storage requests 90
request for too much storage 90
suspend queue summary 90
trace levels 3 and 4 208
unconditional storage requests 90
waits 90

likely causes 90

 Index 313

storage recovery 183
storage violations

CHKSTRM option 178
CHKSTSK option 178
CICS detected 173, 174
CICS system dump 176, 177
exception trace entry 176, 177, 180
forcing storage chain checking 178
investigating 173
looking at the overlaying data 177
possible causes 182
programming errors 182
reason for invalid ECB address 89
symptoms 174
TIOA 174
undetected 173, 181

possible causes 181
user task storage element 174
using CSFE DEBUG 178
using trace 178, 181

STP_DONE resource name 69
STRFIELD option

CONVERSE command 165
SEND command 165

STRINGS parameter of FILE resource definition 111
structured fields 165
SUBTASK resource name 71, 72, 73, 86, 87
SUBTASK resource type 74
SUCNSOLE resource type 74
suppressing dumps

CICS dump table options 154
SUSPEND function of gate DSSR 62

input parameters 62
SUSPEND resource name 73
SUSPEND_TOKEN

ADD_SUSPEND output parameter 60
DELETE_SUSPEND input parameter 61
INQUIRE_SUSPEND_TOKEN output parameter 61
RESUME input parameter 64
SUSPEND input parameter 62

SUSPENDTYPE field 53
SUSPENDVALUE field 53
symbolic maps 172
symptom strings

in transaction dump 237
problem determination 41
RETAIN database search 237
RETAIN search keywords 41

symptoms
CICS has stopped running 10
CICS running slowly 11
incorrect output 13
keywords 9, 261
loops 14, 15
low priority tasks will not start 11
no output is obtained 11

symptoms (continued)
poor performance 11, 14, 17, 139
tasks do not complete 11
tasks in a wait state 15
tasks take a long time to complete 11
tasks take a long time to start 11
terminal activity is reduced 11
use in classifying problems 10
waits 14

SYSDUMP, system dump code attribute 155
SYSIDNT/session ID resource name 71
system busy symbol 16
system debugging aids (SDAIDS) 23
system dump

formatting keywords and levels 245
system initialization

AUXTR parameter 218
AUXTRSW parameter 218
defining component tracing requirements 215
defining the tracing status 218
DUMP parameter 154, 225
DUMPDS parameter 236
DUMPSW parameter 236
global suppression of CICS system dumps 225
INTTR parameter 218
setting transaction dump data set attributes 235
SPCTR parameter 215
SPCTRxx parameter 215
STNTR parameter 215
STNTRxx parameter 215
suppressing standard tracing 213
SYSTR parameter 213
TRTABSZ parameter 218
USERTR parameter 218

system loading, effect on performance 146
system task waits 68, 122

intentional 123
SYSTEM_DUMP, exit programming interface call 226
SYSTR, system initialization parameter 213

T
task control

waits 88
causes 88, 89
failure of task to DEQUEUE on resource 89
invalid ECB address 89
resource type KCCOMPAT 88
unconditional ENQUEUE on single server

resource 89
valid ECB address 89

task control area (TCA)
in transaction dump 238
system area 238
user area 238

314 CICS Transaction Server for VSE/ESA Problem Determination Guide

task global table (TGT) 242
task termination

abnormal 3
task tracing

precautions when choosing options 151
special 211
standard 211
suppressed 211

tasks
abnormal termination 3
ATI, no output produced 165, 168

looking at the AID chain 168
looking at the ICE chain 168

conversation state with terminal 100
dispatch, suspend and resume cycle 141, 146
dispatching priority 144
error data 46
exclusive control deadlock 112, 113
failure to complete 11, 13, 14
failure to get attached to the dispatcher 141, 142
failure to get attached to the transaction

manager 140, 141
failure to get initial dispatch 141, 144
failure to start 11, 12, 14
identifying the AID 169
identifying the ICE 169
identifying, in remote region 101
in a wait state 15
in error 42

identified in linkage stack 47
information in kernel domain storage areas 44
lock owning

identifying a lock being waited on 82
looping 129

consumption of storage 91, 92
identifying the limits 137

MXT limit 142
PSW at time of error 46
reason for remaining on the AID chain 169
registers at time of error 46
runaway

non-yielding loops 130
storage report 44
tight loops 130

session state with VTAM 100
slow running 12, 146
subpool summary 91
summary in kernel storage 42
suspended 14

inquiring on 15
investigating 52

task error information 44
time-out interval 146
tracing 151, 211
transfer from ICE to AID chain 169
waits 51

definition of wait state 52

tasks (continued)
waits (continued)

journal control 85
maximum task conditions 78
on locked resources 82
online investigation 52
stages in resolving wait problems 52
storage manager 90
suspension and resumption of tasks 59
system 68
task control 88
techniques for investigating 52
temporary storage 91
user 68
using the formatted CICS system dump 52
using trace 52

TCA (task control area)
See task control area (TCA)

TCAPCDSA field 242
TCLASS resource type 74
TCP_NORM resource type 74
TCP_SHUT resource type 74
TCSESUSF 169
TCTCVECB resource name 76
TCTTE (terminal control table terminal entry)

in transaction dump 240
TCTTE chain, in terminal waits 98
TCTVCEBC resource type 74
TCTVCECB resource name 69
TD_INIT resource type 74
TDEPLOCK resource type 74
TDIPLOCK resource type 75
TDQ_IORB resource type 75
temporary storage

auxiliary control area 93
byte map 93
conditional requests for auxiliary storage 91
consumption by looping tasks 92
control interval size 93
current free space 92
no task output 168
repetitive records 16
request for too much storage 92
suspend queue summary 92
unconditional requests for auxiliary storage 91
waits 91

too little contiguous auxiliary storage 93
unallocated space close to exhaustion 92

terminal control program (TCP) 98
terminal control table terminal entry (TCTTE)

See TCTTE (terminal control table terminal entry)
TERMINAL resource name 73
terminal scan delay (ICVTSD)

See ICVTSD, system initialization parameter
terminal tracing

precautions when choosing options 151

 Index 315

terminal tracing (continued)
special 212
standard 212
suppressed 212

terminal waits
autoinstall program not loaded 95
CREATESESS(NO) in TYPETERM definition 99
error action by TACP or NACP turned off 95
finding the access method 96
HANDLE CONDITION coded incorrectly 95
interregion communication 101
intersystem communication 97, 101
multiregion operation 101

identifying tasks in remote regions 101
identifying the remote region 101

operator failing to respond 95
preliminary considerations 95
printer powered off 95
printer run out of paper 95
VTAM access method in use 97

automatic transaction initiation session status 99
NACP error codes 97
node session status 100
SNA sense codes 97
task conversation state with terminal 100
task session state with VTAM 100
task status 100
TCTTE chain 98
terminal control status 98
terminal status 98
VTAM exit ids 97
VTAM process status 97
VTAM terminal control 102

terminals
ATI status 169
control characters in data stream 158
conversation state with task 100
error messages 95
incorrect mapping of data 172

attributes of fields 172
DARK field attribute 172
MDT 172
modified data tag 172
symbolic map 172

incorrect output displayed
data formatted wrongly 162
debugging tools 163
early data overlaid by later data 162
investigating 156
logon rejection message 157
mixed English and Katakana characters 161
some data not displayed 162
unexpected messages and codes 158
unexpected uppercase or lowercase

characters 158
wrong data values displayed 161

terminals (continued)
no input accepted 13
no output 11, 13
range of characteristics 95
reduced activity 11, 14, 16
repetitive output 16
status 98

effect on performance 141
terminal control program 98
unresponsive 94
waits

See terminal waits
termination

abnormal 3
system dump code option 229

termination stall 127
TIEXPIRY resource type 75
trace

abbreviated format 239
abbreviated-format 204
auxiliary

See auxiliary trace
calls to other programs 207
CETR transaction

See CETR transaction
CICS VTAM exit

destinations 149
CICS XRF trace 190, 221

description 221
destination 221
origin 221

controlling
auxiliary trace 218
internal trace 218
special task tracing 211
special trace levels 214
standard task tracing 211
standard trace levels 214
suppressing task tracing 211

data provided on call 207
exception trace 220

destinations 149
domain entry 207
domain exit 207
DSSR functions 54

input and output parameters 54
interpreting the trace table 54

entries from AP domain 200, 202
entries missing 151
example of formatted entry 201, 203
exception

See exception trace
extended-format 200, 239
formatted entry

data fields 201
interpretation string 200
interval 201

316 CICS Transaction Server for VSE/ESA Problem Determination Guide

trace (continued)
formatted entry (continued)

kernel task number 201
standard information string 200
task number 200
time of entry 201
trace point id 200

formatting 199
from global trap/trace exit 254
global trap/trace exit 253
in problem determination

loops 134, 136
poor performance 143
principles 199
selecting destinations 216
storage violations 178, 181

incorrect output from
investigating 149
trace entries missing 151
wrong CICS components being traced 151
wrong data captured 150
wrong destination 149
wrong tasks being traced 151

internal
See internal trace

internal domain functions 207
interpreting 200, 204

user entries 206
interpreting user entries 206
investigating waits 52, 53

setting the tracing options 54
last command identification 241
last statement identification 242
level-1 207
level-2 208
level-3 208
levels 207, 220
logic of selectivity 213
master system trace flag 149, 213, 219
master user trace flag 219
overview of different types 199
point id 200
points 207

location 207
program check and abend 224
repetitive output 16
storage manager trace levels 208
suppressing standard tracing 213
suspension and resumption of tasks 54

interpreting the trace table 54
use in investigating no task output 166
user 171

checking programming logic 171
user exception trace entries 220
VTAM buffer

description 224
investigating logon rejection 157

trace (continued)
VTAM buffer (continued)

terminal waits 101
XRF

See trace, CICS XRF trace
TRANDEF resource type 75
TRANDUMP, transaction dump code attribute 155
transaction abends

abend code 27
documentation 28
interpretation 28

action of global trap/trace exit 254
AICA 29, 130
ASRA 29
ASRB 29
collecting the evidence 27
CSMT log messages 11
dump not made when expected 153
getting a transaction dump 27
investigating 27
last command identification 241
last statement identification 242
message 27
messages 3, 13
storage violation 176
system dump following 227
transaction dump following 227
worksheet 37

transaction dumps
abbreviated-format trace table 239
accompanying transaction abends 27
common system area 239
CSA 239
CSAOPFL 239
CWA 239
destination 235
DFHTACB 240, 242
dump not made on transaction abend 153
exec interface structure 238
EXEC interface user structure 239
execution key 238
extended-format trace table 239
following transaction abend 227
formatting 237

selectivity 237
in problem determination 225
interpretation 237
job log for DFHDU410 237
kernel stack entries 239
last command identification 241
last statement identification 242
locating program data 242

assembler program DFHEISTG storage 242
chain of PL/I DSAs 242
COBOL working storage 242
task global table 242

 Index 317

transaction dumps (continued)
module index 241
optional features list 239
program information 240
program storage 240
PSW 238
registers 238
registers at last EXEC command 238
remote abend indicator 238
selective dumping of storage 235
statistics 230
storage violation 176, 177
suppression for individual transactions 154, 225
symptom string 237
system EXEC interface block 238
task control area, system area 238
task control area, user area 238
TCTTE 240
transaction abend control block 240, 242
transaction dump code options 229
transaction dump codes 226
transaction storage 240
transaction work area 238

transaction ID resource name 75
transaction list table (XLT) 127
transaction manager

failure of tasks to get initial attach 141
transaction routing 101
transaction storage

in transaction dump 240
transaction tracing

precautions when choosing options 151
special 212
standard 212
suppressed 212

TRANSACTION_DUMP, exit programming interface
call 226

transactions
disabling 168
evidence that it ran 166

program control 166
program load 166
task attach 166
task dispatch 166

no output produced 164
ATI tasks 165, 168
disabling the transaction 168
explanatory messages 164
finding if the task ran 166
investigating 164
looking at files 168
looking at temporary storage queues 168
looking at transient data queues 168
possible causes 164
START PRINTER bit on write control

character 165
task not in system 165

transactions (continued)
no output produced (continued)

task still in system 165
testing the terminal status 164
using CECI 168
using execution diagnostic facility 166
using statistics 167, 168
using trace 166

wrong output produced 169
investigating 169
possible causes 169

transient data
extrapartition destinations 105
I/O buffers 107
intrapartition destinations 106
no task output 168
recoverable queues 106
VSAM I/O 107
VSAM strings 107
waits 105

during initialization 105
extrapartition 105
I/O buffer contention 107
I/O buffers all in use 107
intrapartition 106
resource names 105
resource types 105
VSAM I/O 107
VSAM strings all in use 107

transient data queue name resource name 75
translator

errors in output 6
traps 253
TRTABSZ, system initialization parameter 218
TSAUX resource type 75, 91
TSBMAP (temporary storage byte map) 93
TSBUFFER resource name 75, 93
TSEXTEND resource name 75, 93
TSIO resource name 75, 93
TSMCPECB resource name 74
TSMCPECB resource type 75
TSOPEN4B resource name 75
TSQUEUE resource name 75, 93
TSSTRING resource name 75, 94
TSUT resource name 75, 94
TSWBUFFR resource name 75, 94
TYPETERM definition

ALTPAGE attribute 158, 162
ALTSCREEN attribute 158, 162
ATI status 169
CREATESESS(NO), cause of terminal waits 99
EXTENDEDDS attribute 158, 162
PAGESIZE attribute 162
SENDSIZE attribute 162
UCTRAN attribute 158

318 CICS Transaction Server for VSE/ESA Problem Determination Guide

U
UCTRAN attribute 160

PROFILE definition 158
TYPETERM definition 158

UDSA resource type 75
uppercase characters 158
user task waits 68
user tracing

checking programming logic 171
exception trace entries 220
interpretation 206

USERTR, system initialization parameter 218

V
VARY NET,INACT command 128
VSAM

data buffers 109
exclusive control deadlock 112, 113
exclusive control of control interval 112
I/O waits 110
incorrect data read from file 163
index buffers 109
strings 111
transaction ID waits 111
waits

exclusive control deadlock 112, 113
file state changes 110
for exclusive control of control interval 112
for VSAM transaction ID 111
I/O 110
record locking by CICS 114
VSAM buffer unavailable 109
VSAM string unavailable 111

VSAM READ SEQUENTIAL 113
VSAM READ UPDATE 113
VSAM WRITE DIRECT 113
VSAM WRITE SEQUENTIAL 113
VSE console

CICS termination message 10
VSE dump library 236
VSE RESERVE locking ???????????

CEDA in a wait state 122
CESN in a wait state 122
VSAM I/O waits 110
waits during XRF takeover 122
waits on resource type XRPUTMSG 122

VSE service aids
EREP (Environmental Record Editing and Printing

Program) 23
SDAIDs, system debugging aids 23

VSE/ESA ABEND macro 29
VSMSTRNG resource name 69
VTAM

buffer trace
See trace, VTAM buffer

VTAM (continued)
exit trace

See trace, CICS VTAM exit
process status 97
session state with task 100
terminal control waits 102

W
WAIT symptom keyword 9
WAIT_EXTERNAL function 64, 65

input parameters 65
WAIT_OLDC function 64, 65

input parameters 65
WAIT_OLDW function 64, 65

input parameters 65
WAITLIST resource type 75
waits 77

alternate system 121
deadlock time-out interval 115
definition 15, 52
FEPI 123
file control 108
interregion communication 101, 104
intersystem communication 101, 104
interval control 115
investigating 51
journal control 85
lock manager 82
maximum task conditions 78
online investigation 52

finding the resource 53
program control 108
spooler waits 77
stages in resolving 52
storage manager 90
suspension and resumption of tasks 59
symptom keyword 9
symptoms 14, 15
task control 88
techniques for investigating 52
temporary storage 91
terminal 94
transient data 105

during initialization 105
extrapartition 105
I/O buffer contention 107
I/O buffers all in use 107
intrapartition 106
VSAM I/O 107
VSAM strings all in use 107

using the formatted CICS system dump 52, 54
using trace 52, 53

setting the tracing options 54
VTAM terminal control 102

 Index 319

WCC (write control character) 165
WCSTECB resource name 75
working storage, COBOL programs 242
write control character (WCC) 165
WTO resource name 74
WTOR_RPY resource type 75

X
XDUREQ global user exit 225
XDUREQ, dump domain global user exit 154
XLT (transaction list table) 127
XM_HELD resource type 78
XOVR_RESP resource type 75
XPCCWAIT resource type 75
XPI

See exit programming interface (XPI)
XRF errors

active system does not initialize 185
alternate system does not initialize 185
alternate system terminated unexpectedly 188
failure of CAVM 122
investigating 185
not all terminals recovered 187
overseer did not restart failed job 189
overseer sample program 189

diagnostic messages 189
return codes 189
taking a snap dump 189

related systems not taken over 188
symptoms 185
takeover did not occur when expected 187
takeover does not complete 186
unable to log on to CICS 189
unexpected takeover 187

XRF takeover
CEDA in a wait state 122
CESN in a wait state 122
wait on resource type XRPUTMSG 122

XRF trace
See trace, CICS XRF trace

XRF_SYNC resource type 76
XRF_WAIT resource type 76
XRGETMSG resource type 76
XRPUTMSG resource type 76, 122
XRSSTECB resource name 76

Z
ZC resource type 76
ZC_ZCGRP 76
ZC_ZGRP 76
ZC_ZGRP resource name 74
ZC_ZGRP resource type 76
ZC_ZGUB 76

ZCIOWAIT 76
ZCZGET resource type 77
ZCZNAC resource type 77
ZSLSECB resource name 76
ZXQOWAIT resource type 77
ZXSTWAIT resource type 77

320 CICS Transaction Server for VSE/ESA Problem Determination Guide

Sending your comments to IBM
CICS Transaction Server for VSE/ESA

Problem Determination Guide

GC33-1663-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC33-1663-ðð

Spine information:

IBM CICS TS for VSE/ESA Problem Determination Guide Release 1

	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Notes on terminology
	Determining if a publication is current

	Part 1. Approach to problem determination
	Chapter 1. Introduction to problem determination
	Before you start—preliminary checks
	What to do next

	Chapter 2. Classifying the problem
	Classifying problems using symptom keywords
	Some more ways in which this manual classifies problems
	Using the symptoms to classify the problem
	Distinguishing between waits, loops, and poor performance
	Where to look next

	Chapter 3. Sources of information
	User documentation
	Manuals
	Source listings and link-edit maps
	Abend codes and error messages
	Symptom strings
	Change log
	Dumps
	Statistics
	Monitoring
	Transaction inputs and outputs
	Traces
	VSE service aids

	Part 2. Dealing with the problem
	Chapter 4. Dealing with transaction abends
	Collecting the evidence
	What the abend code can tell you
	CICS transaction abend codes
	Finding where a program check occurred
	Analyzing the problem further
	FEPI abends

	Chapter 5. Dealing with CICS system abends
	The documentation you need
	Interpreting the evidence

	Chapter 6. Dealing with waits
	Techniques for investigating waits
	How tasks are made to wait
	Spooler waits
	Transaction manager waits
	Lock manager waits
	Journal control waits
	Task control waits
	Storage waits
	Temporary storage waits
	Terminal waits
	VTAM terminal control waits
	Interregion and intersystem communication waits
	Transient data waits
	Loader waits
	File control waits
	Interval control waits
	XRF alternate system waits
	CICS system task waits
	FEPI waits
	What to do if CICS has stalled

	Chapter 7. Dealing with loops
	What sort of loop is indicated by the symptoms?
	Investigating loops that cause transactions to abend with abend code AICA
	Investigating loops that are not detected by CICS
	What to do if you cannot find the reason for a loop

	Chapter 8. Dealing with performance problems
	Finding the bottleneck
	Finding why tasks fail to get attached to the transaction manager
	Finding why tasks fail to get attached to the dispatcher
	Finding why tasks fail to get an initial dispatch
	Finding out why tasks take a long time to complete
	A summary of performance bottlenecks, symptoms, and causes

	Chapter 9. Dealing with incorrect output
	Trace output is incorrect
	Dump output is incorrect
	Wrong data has been displayed on a terminal
	Incorrect data is present on a VSAM data set
	An application did not work as expected
	Your transaction produced no output at all
	Your transaction produced some output, but it was wrong

	Chapter 10. Dealing with storage violations
	Avoiding storage violations
	Two kinds of storage violation
	CICS has detected a storage violation
	Storage violations that affect innocent transactions
	Programming errors that can cause storage violations
	Storage recovery

	Chapter 11. Dealing with XRF errors
	Symptoms of problems in an XRF complex
	Debugging the overseer sample program
	XRF trace
	The CAVM data sets

	Chapter 12. External CICS interface
	Chapter 13. Dealing with MRO problems

	Part 3. Using traces and dumps in problem determination
	Chapter 14. Using traces in problem determination
	Normal CICS tracing
	CICS exception tracing
	CICS XRF tracing
	XRF trace entry types
	Program check and abend tracing
	VTAM buffer tracing
	Using FEPI trace

	Chapter 15. Using dumps in problem determination
	Controlling dump action
	Analyzing dumps
	Locating the last command or statement
	Locating program data
	Storage freeze
	Using FEPI dump

	Chapter 16. The global trap/trace exit
	Establishing the exit
	Information passed to the exit
	Actions the exit can take
	Program check handling
	Coding the exit

	Part 4. Working with IBM to solve your problem
	Chapter 17. IBM program support
	When to contact the Support Center
	Dealing with the Support Center
	IBM Program Support structure
	Reporting a FEPI problem to IBM

	Chapter 18. APARs, fixes, and PTFs
	The APAR process
	Collecting the documentation for the APAR
	Sending the documentation to the change team
	Applying the fix

	Part 5. Appendixes
	Appendix A. SDUMP contents and INFOANA EXIT keywords
	Finding the control blocks from the keywords
	Finding the keywords from the control blocks

	Appendix B. Summary data for PG and US keywords
	PG keyword
	US keyword

	Notices
	Trademarks and service marks

	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Index

