
CICS® Transaction Server for VSE/ESA™

Internet Guide
Release 1

SC34-5765-00

���

CICS® Transaction Server for VSE/ESA™

Internet Guide
Release 1

SC34-5765-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 151.

First Edition (September 2000)

This edition applies to Release 1 of the IBM licensed program CICS Transaction Server for VSE/ESA, program
number 5648-054, and to all subsequent versions, releases, and modifications until otherwise indicated in new
editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

Order publications through your IBM representative or IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of the publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . ix
What this book is about . ix
How to use this book . ix
What you need to know to understand this book ix
Notes on terminology . ix

Part 1. Overview . 1

Chapter 1. Introduction . 3
General concepts . 6
Distributed computing . 6

Security support . 7
TCP/IP protocols. 7

TCP/IP internet addresses and ports 8
Programming models . 9
Comparing mechanisms . 10

Accessing CICS from the Web 10
CICS and Java . 11
CICS TRANSACTION GATEWAY 11

Application design . 11
Separating business and presentation logic 11

Chapter 2. How this book is organized 13

Part 2. CICS Web support . 15

Chapter 3. Introduction to CICS Web support 17
Types of requester . 17
Types of service . 17
Processing examples . 18
Control flow in request processing 18

Using CICS Web support to call a program 18
Using CICS Web support to run a terminal-oriented transaction 20

Data flow in request processing. 21
Using the CICS Web support commarea method to call a program 21

Chapter 4. Planning for CICS Web support 25
Defining the prerequisites for using CICS Web support 26

VSE/ESA . 26
CICS . 26
TCP/IP for VSE/ESA . 26

URL format . 26
Operations tasks . 27

Chapter 5. Configuring CICS Web support 29
Controlling web support with system initialization parameters 29
Defining resources to CICS . 29

CICS supplied resource definitions 30
DOCTEMPLATE definitions 30
TCPIPSERVICE definitions 31
TRANSACTION definitions for extra alias transactions 32
PROGRAM definitions for user-replaceable programs. 33

© Copyright IBM Corp. 1994, 2000 iii

Setting up a sub-library for the template manager 33
Defining a conversion table 33

Configuring TCP/IP for VSE/ESA 35
Reserving ports for CICS Web support 35
Identifying the TCP/IP server 35
Specifying a name server . 35

Enabling lightpen support . 36
Running the sample application 36

Chapter 6. Writing an analyzer for CICS Web support 37
Inputs . 37
Outputs . 38
Processing . 38
Code page considerations for Web API applications 39
Code page considerations for Web commarea applications 39
Performance considerations . 40
The default analyzer . 40

Chapter 7. Writing a converter 43
Performance considerations . 43
Writing a converter—Decode . 44

Inputs . 44
Outputs . 44
Processing . 44

Writing a converter—Encode . 45
Inputs . 45
Outputs . 45
Processing . 46

Chapter 8. The Web error program 47
The Web error program — general 47

Inputs . 47
Outputs . 48
Processing . 48

Chapter 9. 3270 applications on the Web 49
Input to DFHWBTTA . 49
Customizing the input to DFHWBTTA 51
Output from DFHWBTTA . 51
Customizing the output from DFHWBTTA 52

Required contents for a heading template 52
Required contents for a footing template 53
Customizing with Encode . 54
Lightpen operation . 54

Chapter 10. Creating HTML templates from BMS definitions 57
Generating a standard template. 57
Why customize the generation of templates? 57
Customization facilities . 58
How to produce the HTML templates 58
Restricting the size of HTML templates 58
Writing a customizing macro definition 59
Customization examples . 59
HTML and browser considerations. 62

Limitations . 62
The DFHMDX macro. 63

iv CICS TS for VSE/ESA: Internet Guide

The DFHWBOUT macro . 66

Chapter 11. Writing CICS programs to process HTTP requests 69
Using HTTP requests . 69

How to receive an HTTP request 70
Explaining HTTP responses . 71

How to send an HTTP response 72
Handling Escaped Data. 73

Handling escaped data in commarea applications 73
Describing symbols, symbol table, and symbol list 74

Symbols in an HTML template 74
Symbol lists . 74
Operational example . 75
Using the output of the environment variables program 76

Sample application programs. 76

Chapter 12. Displaying a template on a Web browser 77
How to display a template on a Web browser 77

Default CICS URL format . 79

Chapter 13. Security for CICS Web support 81
Security for the HTML template manager sub-library 81
Security for CICS Web support transactions 81

Security for the alias . 81
Using sample programs for security 82

The security sample programs 82
Using basic authentication sample programs 83

Chapter 14. Problem determination 85
Recovery procedures (CICS Web support). 86
Product design considerations (CICS Web support) 86
Troubleshooting . 86

Defining the problem. 86
Documentation about the problem 87

Using messages and codes . 87
CICS Web support and CICS business logic interface trace information 87

Numeric values of symbolic codes 88
Dump and trace formatting . 88
Debugging the user-replaceable programs 89

Using EDF . 89
Using trace entries . 89
Writing messages . 89
Trapping abends . 89

Part 3. The CICS business logic interface 91

Chapter 15. Introduction to the CICS business logic interface 93
Types of requester . 93
Processing examples . 93
Controlling flow in request processing 94

Using the CICS business logic interface to call a program 94
Using the CICS business logic interface to run a terminal-oriented transaction 95

Passing data in request processing 96
Using the CICS business logic interface to call a program 96
Requesting a terminal-oriented transaction. 96

Contents v

Chapter 16. Configuring the CICS business logic interface 101

Chapter 17. Programming tasks for client systems 103

Part 4. Appendixes . 105

Appendix A. Reference information for DFHWBBLI 107
Business logic interface . 108

Appendix B. Reference information for DFHWBADX 115
Summary of parameters . 115
Function . 115
Parameters . 116
Responses and reason codes 118
DFHWBADX responses and reason codes 119

Appendix C. Reference information for the converter 121
Decode . 122
Encode . 127

Appendix D. Reference information for DFHWBTL 131
Parameters in the communication area 132
Responses and reason codes 134

Appendix E. Reference information for DFHWBENV 137

Appendix F. Reference information for DFH$WBST and DFH$WBSR . . . 141

Appendix G. Reference information for DFHWBPA 143

Appendix H. Reference information for DFHWBEP 145
Parameters . 145

Appendix I. HTML-coded character sets 149

Notices . 151
Programming interface information 152
Trademarks and service marks 152

Bibliography . 155
CICS Transaction Server for VSE/ESA Release 1 Library 155

Books from VSE/ESA 2.5 base program libraries 157
VSE/ESA Version 2 Release 5. 157
High-Level Assembler Language (HLASM) 157
Language Environment for VSE/ESA (LE/VSE) 158
VSE/ICCF . 158
VSE/POWER . 158
VSE/VSAM . 158
VTAM for VSE/ESA. 159

Books from VSE/ESA 2.5 optional program libraries 161
C for VSE/ESA (C/VSE) . 161
COBOL for VSE/ESA (COBOL/VSE) 161
DB2 Server for VSE . 162
DL/I VSE . 162

vi CICS TS for VSE/ESA: Internet Guide

PL/I for VSE/ESA (PL/I VSE) 162
Screen Definition Facility II (SDF II) 163
TCP/IP for VSE/ESA . 163

Information on the World Wide Web 165
HTTP/1.0 . 165
HTML . 165

Determining if a publication is current 167

Index . 169

Sending your comments to IBM 175

Contents vii

viii CICS TS for VSE/ESA: Internet Guide

Preface

What this book is about
This book describes how you can make the CICS® transaction processing services
of CICS Transaction Server for VSE/ESA ® available to a variety of Internet users
and TCP/IP-based applications.

How to use this book
This book is intended to show what CICS facilities are available to enable you to
use your CICS system as a non-SNA server. Read “Part 1. Overview” on page 1 for
general information, and for guidance about which other parts of the book to
consult.

What you need to know to understand this book
Within this book, reference is made to Release 1. The function described in
this book has been added since the release of CICS Transaction Server for
VSE/ESA Release 1 and can be identified within the code as 1.1.1.

This book assumes that you are familiar with CICS, either as a system
administrator or as a system or application programmer. Some parts of the book
assume additional knowledge about CICS and other products.

Notes on terminology
When the term “CICS” is used without any qualification in this book, it refers to the
CICS element of IBM® CICS Transaction Server for VSE/ESA.

In this release, the CICS Web interface is split into the Listener support for
TCPIPSERVICE, and the protocol support for HTTP. This book now refers to the
HTTP protocol support as ″CICS Web support″. Within the product code, the term
″CICS Web interface″ remains synonymous with ″CICS Web support″.

In this release, there are two ways of coding Web application programs.

1. Commarea-style applications are those that take a communication area
containing an HTTP request as input, and build an HTTP response in the
communication area.

2. Web API applications use the new WEB and DOCUMENT application
programming interface to process the inbound HTTP request and build the
response

.

© Copyright IBM Corp. 1994, 2000 ix

x CICS TS for VSE/ESA: Internet Guide

Part 1. Overview

This part of the book outlines some of the ways in which you can make CICS
transaction processing services available to a variety of Internet users.

This part contains:

v “Chapter 1. Introduction” on page 3

v “Chapter 2. How this book is organized” on page 13

© Copyright IBM Corp. 1994, 2000 1

Overview

2 CICS TS for VSE/ESA: Internet Guide

Chapter 1. Introduction

This book describes the following sources of external requests, and the routes that
they can use into CICS:

Web browsers
Web browsers can use a variety of methods:

CICS Web support
CICS Web support is a CICS facility for supporting Web browsers.

CICS Transaction Gateway
This is a workstation application that can accept requests from Web
browsers and route them into CICS. It uses a CICS client and the EPI.

Java-enabled Web browsers
Java-enabled Web browsers can use applets to communicate with CICS. The
applets can use CICS-provided Java classes to construct external call interface
(ECI) and external presentation interface (EPI) requests. The Web browsers
communicate with Web servers, and with one of the following:

CICS Transaction Gateway
This is a workstation application that uses a CICS client to route ECI and
EPI requests to a CICS server.

The following types of external requests are described in other books:

3270 users
Users of the IBM 3270 Display System can start transactions. This is the most
familiar method of introducing work to CICS Transaction Server for VSE/ESA.

User socket applications
User socket applications can use the CICS Sockets feature of TCP/IP for
VSE/ESA. See the TCP/IP for VSE/ESA Programmer’s Reference.

VSE™ applications
Applications running in VSE partitions can use the External CICS Interface
(EXCI) to access CICS programs. See the CICS External Interfaces Guide.

CICS client applications
CICS client applications use a CICS client and the ECI or the EPI. See the
CICS Family: Client/Server Programming.

Telnet clients
Telnet clients can use TN3270 to start transactions. See the TCP/IP for
VSE/ESA Installation Guide.

CICS programs
Programs running in CICS servers on any platform can use EXEC CICS LINK
to call a CICS program, or transaction routing to send transaction requests to
CICS Transaction Server for VSE/ESA. Programs running in CICS Transaction
Server for VSE/ESA can use the CICS front end programming interface (FEPI)
to start transactions in the same or another instance of CICS Transaction
Server for VSE/ESA. See the CICS Front End Programming Interface User’s
Guide.

Figure 2 on page 5 shows the principal ways of using CICS transaction processing
services from outside CICS.

© Copyright IBM Corp. 1994, 2000 3

Key to figure 2

= Sources of external requests

= Targets of external requests

= CICS provided interfaces

= CICS components

= Other product components

TC = Terminal Control
TR = Transaction Routing
DPL = Distributed Program Link
EXCI = EXternal CICS Interface
ECI = External Call Interfaces
EPI = External Presentation Interface
CWP = CICS WebServer Plugin

Figure 1.

4 CICS TS for VSE/ESA: Internet Guide

CICS business
logic interface

CICS
sockets

User Socket
application

L

I

N

K

L

I

N

K

D

P

L

D

P

L

E

X

C

I

E

X

C

I

Target
COMMAREA

Program

CICS
Transaction Server CICS TX Series

CICS client
application

E
C
I

CICS Transaction Server environment

CICS
TX Series

TN3270

IBM 3270

CICS
Transaction Server

T

C

T

C

T

R

T

R

T

R

T

R

Target
3270

Transaction

CICS client
application

E
P
I

Web
browser

Web
Sphere

CICS
Transaction

Gateway Java

VSE environment

3270
Bridge

Web 3270
interface

TCPIPSERVICE

CICS Web
support

Web browser

Any VSE
application

Figure 2. Client access to existing business logic

Chapter 1. Introduction 5

General concepts
All the mechanisms described in this book follow a similar pattern. A client is the
source of the external request which comes into CICS over a network using a
variety of transport protocols, or from another CICS region, using Inter Region
Communication (IRC). CICS (or another product) provides a transport-specific
listener (a long-running task) that starts another task (a facilitator such as an alias
or a mirror), to process the incoming request. The facilitator uses CICS services to
access the application.

The priorities of different alias transactions can be adjusted to determine the service
that a client request receives. There must be enough free tasks to service the alias
transactions as they are started by the listener. The CICS programs that service the
client requests are subject to contention for resources in the CICS system, and to
transmission delays if they are remote from the CICS system, or if they request the
use of remote resources by function shipping or distributed program link.

The CICS server is independent of the application model (2/3-tier, 2/3 platforms).
The listener/facilitator deals with the different transports used and sets the rules for
which programming models are supported.

Distributed computing
Distributed computing involves the cooperation of two or more machines
communicating over a network. The machines participating in the system can range
from personal computers to super computers; the network can connect machines in
one building or on different continents.

The main benefit of distributed computing is that it enables you to optimize your
computing resources for both responsiveness and economy. For example, it
enables you to:

v Share the cost of expensive resources, such as a typesetting and printing
service, across many desktops. It also gives you the flexibility to change the
desktop-to-server ratio, depending on the demand for the service.

v Allocate an application’s presentation, business, and data logic appropriately.
Often, the desktop is the best place to perform the presentation logic, as it is
nearest to the end user and can provide highly responsive processing for such
actions as drag and drop GUI interfaces.

Conversely, you may feel that the best place for the database access logic is
close to the actual storage device - that is, on an enterprise or departmental
server. The most appropriate place for the business logic may be less clear, but
there is much to be said for placing this too in the same node as the data logic,
thus allowing a single desktop request to initiate a substantial piece of server
work without intervening network traffic.

Distributed computing enables you to make such trade-offs in a flexible way.

Along with the advantages of distributed computing come new challenges.
Examples include keeping multiple copies of data consistent, keeping clocks in
individual machines synchronized, and providing network-wide security. A system
that provides distributed computing support must address these new issues.

CICS supports distributed computing and the client/server model by means of:

Distributed program link (DPL)
A CICS client program passes parameters to a remote CICS server program

6 CICS TS for VSE/ESA: Internet Guide

and waits for the server to send data in reply. Parameters and data are
exchanged by means of a communications area.

The external CICS interface (EXCI)
A VSE client program links to a CICS server program. This is similar to DPL.

The external call interface (ECI)
The ECI enables CICS Transaction Server for VSE/ESA server programs to be
called from client programs running on a variety of operating systems. For
information about CICS Clients, see the CICS Family: Client/Server
Programming manual.

Function shipping
The parameters for a single CICS API request are intercepted by CICS code
and sent from the client system to the server. The CICS mirror transaction in
the server executes the request, and returns any reply data to the client
program. This can be viewed as a specialized form of remote procedure call.

Asynchronous transaction processing
A CICS client transaction uses the EXEC CICS START command to initiate
another CICS transaction, and pass data to it. The START request can be
intercepted by CICS code, and function shipped to a server system. The client
transaction and started transactions execute independently. This is similar to a
remote procedure call with no response data.

Distributed transaction processing
A program in the client system establishes a conversation with a
complementary program in the server, and exchanges messages. The programs
may use the APPC protocols.

Transaction routing
Terminals owned by one CICS system to run transactions owned by another.

The CICS family of products runs on a variety of operating systems, and provides a
standard set of functions to enable members to communicate with each other. For
information about the CICS family, see the CICS Family: Interproduct
Communication manual.

Security support
CICS Transaction Server for VSE/ESA supports:

v A single network signon (through the ATTACHSEC option of the DEFINE
CONNECTION command)

v Authentication of the client system through bind-time security.

An external security manager provides resource access control and login facility.

In all the above scenarios the client environment must know which server CICS
system to communicate with. This is normally done by specifying the name of the
required remote CICS system in the definition of the relevant remote CICS
resource, or in the client application program.

TCP/IP protocols
TCP/IP is a communication protocol used between physically separated computer
systems. TCP/IP can be implemented on a wide variety of physical networks.

TCP/IP is a large family of protocols that is named after its two most important
members, Transmission Control Protocol and Interface Protocol. Figure 3 on page 8

Chapter 1. Introduction 7

shows the TCP/IP protocols used in terms of the layered Open Systems
Interconnection (OSI) model. For CICS users, who may be more accustomed to
SNA, the left side of Figure 3 shows the SNA layers that correspond very roughly to
the OSI layers.

The protocols used by TCP/IP are shown in the right-hand box in Figure 3.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
connectionless data transmission service, and supports both TCP and UDP.
Data is transmitted link by link; an end-to-end connection is never set up
during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
connection-oriented data transmission service between applications, that is,
a connection is established before data transmission begins. TCP has more
error checking that UDP.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It
provides a connectionless data transmission service between applications.
UDP has less error checking than TCP. If UDP users want to be able to
respond to errors, the communicating programs must establish their own
protocol for error handling. With high-quality transmission networks, UDP
errors are of little concern.

ONC RPC and XDR
XDR and ONC RPC correspond to the sixth and seventh OSI layers.

Sockets interface
The interface between the fourth and higher layers is the sockets interface.
In some TCP/IP implementations, the sockets interface is the API that
customers use to write their higher-level applications.

TCP/IP internet addresses and ports
TCP/IP provides for process-to-process communication, which means that calls
need an addressing scheme that specifies both the physical host connection (Host
A and Host B in Figure 4 on page 9) and the software process or application (C, D,
E, F, G, and H). The way this is done in TCP/IP is for calls to specify the host by an
internet address and the process by a port number. You may find internet

Sockets
interface

SNA

Application

Presentation

Data flow

Transmission

Path control

Data link

Physical

OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

TCP/IP family

RPC

XDR

(Empty)

TCP or UDP

IP

Subnetwork

Figure 3. TCP/IP protocols compared to the OSI and SNA models

8 CICS TS for VSE/ESA: Internet Guide

addresses also referred to elsewhere as internet protocol (IP) addresses or host
IDs.

Internet addresses
Each host on a TCP/IP internet is identified by its internet address. An internet
address is 32 bits, but it is usually displayed in dotted decimal notation. Each byte
is converted to a decimal number in the range 0 to 255, and the four numbers are
separated by dots thus: 129.126.178.99.

Remember that an internet is a collection of networks — hence the internet address
must specify both the network and the individual host. How this is done varies with
the size of the network. For example, in Figure 4, 129.126 could specify the
network, and 178.99 could specify the host on that network.

Port numbers (for servers)
An incoming connection request specifies the server that it wants by specifying the
server’s port number. For instance, in Figure 4, a call requesting port number 21 on
host A is directed to process C.

Well-known ports identify servers that carry standard services such as the File
Transfer Protocol (FTP) or Telnet. The same service is always allocated the same
port number, so, for example, FTP is always 21 and Telnet always 23. Networks
generally reserve port numbers 1 through 255 for well-known ports.

Port numbers (for clients)
Client applications must also identify themselves with port numbers so that server
applications can distinguish different connection requests. The method of allocating
client port numbers must ensure that the numbers are unique; such port numbers
are termed ephemeral port numbers. For example, in Figure 4, process F is shown
with port number 3300 on host B allocated.

Programming models
The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:

v Terminal-initiated, that is, the conversational model

v Distributed program link, that is, the RPC model

v START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of continuing
and distributing themselves, for example, with pseudoconversations, RETURN

129.126.178.99

Host A Host B

21 23 4100

C D E

Host address

Port numbers

Processes

123.156.189.2

3300 3301 3302

F G H

Figure 4. How applications are addressed

Chapter 1. Introduction 9

IMMEDIATE or DTP. The main difference between these models is in the way that
they maintain state (for example, security), and hence state becomes an integral
part of the application design. This presents the biggest problem when you attempt
to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the RPC model.

State management and its associated token management, which were previously
controlled by the terminal, now need additional techniques to support this move.
Similarly, when START requests are disassociated from the terminal, difficulties
arise in returning the requests to their starting point.

Comparing mechanisms
This topic compares accessing CICS from the Web, and using CICS with Java. It
lists some of the characteristics and benefits of each interface. Your decision about
which access mechanism to use depends on the type of client (for example, Web
browser, Java). This affects the transport and presentation protocol that you use.

Accessing CICS from the Web
CICS Web support allows you to use a Web browser as a graphical user interface
for business logic applications1. Its main purpose is to allow you to build CICS
HTML application utilities; it is not designed to perform as a full Web server. You
should use a separate Web server for facilities such as:

v supplying GIFs, applets, and other items referenced from the CICS pages

v supporting News, e-mail, FTP, and Gopher daemons

v providing the proxy, firewall, and gateway services needed when connecting to
the Internet.

Here are some of the things you should consider when choosing a CICS Web
solution:

v The programming model you intend to use. For example, whether the target
program is a commarea program or a 3270 transaction (BMS or non-BMS).

v How your applications are designed. Do you want a 2–tier solution, where a Web
browser talks directly to CICS Web support by means of a Web server within
VSE/ESA, or a 3–tier solution, where the Web server is external to VSE/ESA (for
example, on AIX).

v Whether your application is contained entirely within CICS, or is a program
outside CICS which needs access to CICS as part of a larger application.

If your program is entirely within CICS, you should consider using the CICS
business logic interface. This way, you can use different front ends to existing
programs without the need for the new client to understand the format of the
commarea, or for the program to be aware of the different callers. Because you
can use a converter, the format can be hidden and maintained in one place, and
changes either to the client or to the program require changes only to the

1. A business logic application is one that communicates via a communications area, and from which all presentation logic has been
removed. See “Application design” on page 11 for further details.

10 CICS TS for VSE/ESA: Internet Guide

converter. The converter is then responsible for managing the translation of
formats, a different one being specified on the CICS business logic interface
depending on the caller.

v Whether the application is Web-aware. A Web-aware application understands
HTTP and produces HTML without the need for a converter. “Chapter 11. Writing
CICS programs to process HTTP requests” on page 69 describes two methods of
writing Web-aware applications:

– Web API applications, which use the EXEC CICS WEB and EXEC CICS
DOCUMENT application programming interface to process the inbound HTTP
request and build the response. This is the recommended method.

– Commarea-style applications, which accept as input a communication area
containing an HTTP request, and also build the HTTP response in the
communication area. This method is retained for compatibility with previous
releases.

CICS and Java
CICS supports one Java environment;

v Java support provided by the CICS Transaction Gateway.

.

CICS TRANSACTION GATEWAY
The Java language can be used to construct Java applets and Java applications,
both of which are used in the CICS Transaction Gateway. Here, the Java executes
outside the CICS environment, and access into CICS is provided by the Java
classes supplied by the gateway. For example, an applet writen for the Java
gateway would use the com.ibm.ctg.client.ECIRequest class to produce an ECI call
to communicate with a COBOL program using a commarea.

Application design
You can access existing applications originally designed for other environments,
such as the Web use of the bridging facilities described in “Using CICS Web
support to run a terminal-oriented transaction” on page 20, or write new ones
specifically for a new environment. In general, it is good practice to split applications
into a part containing the business code that is reusable, and a part responsible for
presentation to the client. This technique enables you to improve performance by
optimizing the parts separately, and allows you to reuse your business logic with
different forms of presentation.

When separating the business and presentation logic, you need to consider the
following:

v Avoid affinities between the two parts of the application.

v Be aware of the DPL-restricted API; see the CICS Application Programming
Reference for details.

v Be aware of hidden presentation dependencies, such as EIBTRMID usage.

Separating business and presentation logic
Figure 5 on page 12 illustrates a simple CICS application that accepts data from an
end user, updates a record in a file, and sends a response back to the end user.
The transaction that runs this program is the second in a pseudoconversation. The
first transaction has sent a BMS map to the end user’s terminal, and the second

Chapter 1. Introduction 11

transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the
transaction’s presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

A sound principle of modular programming in CICS application design is to separate
the presentation logic from the business logic, and to use a communication area
and the EXEC CICS LINK command to make them into a single transaction.
Figure 6 illustrates this approach to application design.

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use CICS Web support with
the CICS business logic interface, to implement a two-tier model where the
presentation logic is HTTP-based.

Transaction program

. . .

. . .

. . .

. . .

. . .

EXEC CICS RECEIVE MAP ...

EXEC CICS READ UPDATE ...

EXEC CICS REWRITE ...

EXEC CICS SEND MAP ...

Figure 5. CICS functions in a single application program

. . .

EXEC CICS SEND MAP . . .

. . .

EXEC CICS LINK . . .

. . .

EXEC CICS RECEIVE MAP . . .

. . .

Presentation logic

EXEC CICS RETURN . . .

. . .

EXEC CICS REWRITE . . .

. . .

EXEC CICS READ UPDATE . . .

. . .

EXEC CICS ADDRESS COMMAREA . . .

Business logic

Figure 6. Separation of business and presentation logic

12 CICS TS for VSE/ESA: Internet Guide

Chapter 2. How this book is organized

Having read “Chapter 1. Introduction” on page 3 to get an understanding of the
different ways of introducing work into CICS, use the rest of the manual as
reference material. It is organized as follows:

v “Part 2. CICS Web support” on page 15 describes support for web browsers
through CICS Web support.

v “Part 3. The CICS business logic interface” on page 91 describes the CICS
business logic interface

© Copyright IBM Corp. 1994, 2000 13

14 CICS TS for VSE/ESA: Internet Guide

Part 2. CICS Web support

This part of the book describes CICS Web support.

It contains:

v “Chapter 3. Introduction to CICS Web support” on page 17

v “Chapter 4. Planning for CICS Web support” on page 25

v “Chapter 5. Configuring CICS Web support” on page 29

v “Chapter 6. Writing an analyzer for CICS Web support” on page 37

v “Chapter 7. Writing a converter” on page 43

v “Chapter 8. The Web error program” on page 47

v “Chapter 9. 3270 applications on the Web” on page 49

v “Chapter 10. Creating HTML templates from BMS definitions” on page 57

v “Chapter 11. Writing CICS programs to process HTTP requests” on page 69

v “Chapter 12. Displaying a template on a Web browser” on page 77

v “Chapter 13. Security for CICS Web support” on page 81

v “Chapter 14. Problem determination” on page 85

© Copyright IBM Corp. 1994, 2000 15

CICS Web support

16 CICS TS for VSE/ESA: Internet Guide

Chapter 3. Introduction to CICS Web support

This part of the book describes CICS Web support, a function of CICS that
promotes access to CICS transaction processing services from outside CICS. It is
primarily, though not exclusively, concerned with access from Web browsers on the
Internet, or on an enterprise’s intranet.

The CICS business logic interface is a callable program that allows a variety of
callers to access the same Web-aware business logic as CICS Web support, but
via a CICS link rather than via the CICS HTTP listener.

CICS Web support and the CICS business logic interface support the separation of
presentation logic from business logic in application design. They also support the
conversion of output that uses existing presentation methods, such as CICS basic
mapping support (BMS), into others, particularly hypertext markup language
(HTML). There is a brief discussion about the distinction between presentation logic
and business logic in “Separating business and presentation logic” on page 11.

The rest of this chapter presents an overview of this facility. It contains the following
sections:

v “Types of requester”

v “Types of service”

v “Processing examples” on page 18

v “Control flow in request processing” on page 18

v “Dealing with non-HTTP requests” on page 20

v “Data flow in request processing” on page 21

“Chapter 4. Planning for CICS Web support” on page 25 presents a list of tasks
associated with planning, installing, customizing, programming, and operating the
facilities.

Types of requester
The CICS Web support can deal with requests from these types of requester:

v Web browsers that are connected to a TCP/IP port that is reserved for the CICS
Web support. A user-replaceable program relates the hypertext transfer protocol
(HTTP) request to the required CICS transaction processing services.

v Non-HTTP clients — see “Dealing with non-HTTP requests” on page 20.

v Web browsers connected to an HTTP server that invokes the CICS business
logic interface. See “Chapter 15. Introduction to the CICS business logic
interface” on page 93. For example, the CICS Transaction Gateway uses this
interface.

Types of service
CICS Web support supplies CICS transaction processing services in the following
ways:

1. Using a non-terminal transaction to run a CICS program. A user-replaceable
program maps data in the request to the communication area that the program
is expecting. The user-replaceable program also maps the output
communication area into the response format expected by the requester. If the
CICS program is written to accept and process HTTP and HTML, the

© Copyright IBM Corp. 1994, 2000 17

user-replaceable program might not be needed. CICS provides support for
manipulating HTML pages when the requester’s protocol includes HTML.

2. Starting a CICS terminal-oriented transaction. This service is designed to be
used when the request is an HTTP request, and contains HTML. CICS
recognizes that this is a request for a terminal-oriented transaction from the
format of the HTTP request. CICS provides a procedure and supporting tools for
mapping 3270 data streams, including those produced by BMS maps, into
HTML, and HTML into BMS. The user can customize this mapping, either by
creating a macro definition, or by providing a user-replaceable program, or both.
This is designed to allow existing 3270–based applications to function without
modification.

Processing examples
Figure 7 shows how CICS Web support processes a request from a Web browser
that is connected to a TCP/IP for VSE/ESA server.

The Web browser is an HTTP client. It constructs an HTTP request, which is
passed across the network to TCP/IP for VSE/ESA in the server. TCP/IP for
VSE/ESA relays the request to CICS Web support, which provides the requested
service. The output is sent back to the Web browser in an HTTP response.

Control flow in request processing
To make decisions about the facilities to use, and how to customize them, you need
to understand how CICS Web support interacts with the CICS business logic
interface.

Using CICS Web support to call a program
Figure 8 on page 19 shows the control flow through CICS Web support to a CICS
program. This would be the result of receiving a typical URL of the form:
http://ip_address:port/converter_program/cwba/user_program

Server

VSE/ESA

CICS Transaction Server

CICS
Web

support

Business
logic

interface

NetworkWeb
browsers

TCP/IP
for

VSE/ESA

CICS
service

Figure 7. Processing a request to CICS Web support

18 CICS TS for VSE/ESA: Internet Guide

1. The Sockets listener task monitors the TCP/IP for VSE/ESA interface for
incoming HTTP requests, based on the port number specified on the
TCPIPSERVICE resource definition.

2. An HTTP request arrives in TCP/IP for VSE/ESA from a Web browser.

3. The Sockets listener task attaches Web attach transaction CWXN. CWXN or
its alias should be specified as the TRANSACTION on the TCPIPSERVICE
definition.

4. Web attach processing receives the incoming request and calls DFHCCNV to
translate HTTP request headers from ASCII to EBCDIC.

5. Web attach processing links to the user’s analyzer (the analyzer URM).

6. If the analyzer requests conversion, Web attach processing calls DFHCCNV to
translate the body of the HTTP request from ASCII to EBCDIC.

7. Web attach processing starts an alias transaction (CWBA or alias) to deal with
all further processing of the request in CICS, then terminates.

13

3

Alias

1 2

4

5

6

7

8

9

10

11

1214

15

VSE/ESA

Converter
(Encode)

DFHCCNV

Request
from client

Reply to
client

CICS Transaction Server

DFHCCNV
(headers)

Analyzer

DFHCCNV
(user data)

Converter
(Decode)

CICS
program

Web
attach

processing

Sockets
listener

task
TCP/IP

for
VSE/ESA

Figure 8. Calling a program with CICS Web support—control flow

Chapter 3. Introduction to CICS Web support 19

8. If the analyzer requests a converter, the alias calls it, requesting the Decode
function. Decode can modify the communication area for the CICS program.
The converter is a user-written CICS program.

9. The alias calls the CICS program that the analyzer or Decode specified. The
communication area passed to the CICS program is the one set up by
Decode. If no converter program was called, the communication area contains
the entire request.

10. The CICS program processes the request and builds a response using EXEC
CICS WEB WRITE and EXEC CICS WEB SEND commands, or returns output
in the communication area.

11. If the analyzer requested a converter, the alias calls the Encode function of the
converter, which uses either the EXEC CICS WEB commands or the
communication area to prepare the HTTP response. If no converter program
was called, and no EXEC CICS WEB SEND command issued, the alias
assumes that the CICS program has put the desired HTTP response in the
communication area.

12. If the analyzer or application requested data conversion, the alias calls
DFHCCNV to translate the HTTP response.

13. The alias returns the results to the Sockets domain, requests that the socket
be closed, and returns.

14. The Sockets domain issues a call to TCP/IP for VSE/ESA to send the
response.

Some variations on this process are possible:

v You might not use a CICS program, but construct the response in the Decode or
Encode functions of the converter, or partly in both.

v You might not use a converter, but construct the response in the CICS program.
In this case the CICS program must be written either to accept an HTTP request
in its communication area, and to overwrite it with an HTTP response, or to use
the Web-related CICS application programming interface to process an HTTP
request and build an HTTP response.

v You might construct the response in the analyzer. In this case the alias does not
call a converter, or a CICS program, but does the data conversion (if requested
by the analyzer), and then sends the reply to the Web browser.

Dealing with non-HTTP requests
CICS Web support can be used to process requests that are not in the HTTP
format. If the Web attach transaction cannot parse the incoming request as an
HTTP request, the process illustrated in Figure 8 on page 19 is modified in various
ways:

v There is no translation of any part of the request before it is passed to the
analyzer. The analyzer must do its own translation, or work in the client code
page.

v If the analyzer asks for data conversion, the whole of the data is translated
before the alias is started.

Using CICS Web support to run a terminal-oriented transaction
Figure 9 on page 21 shows the control flow through CICS Web support for a
request for a terminal-oriented transaction. The first part of the processing is the
same as for calling a program, but if you want to run a transaction, you must
specify DFHWBTTA as the CICS program to be called, followed by the name of the

20 CICS TS for VSE/ESA: Internet Guide

transaction to be run. All BMS maps used must be recompiled and have HTML
templates created.

1. If the analyzer requests a converter, the alias calls it, requesting the Decode
function. Decode sets up the communication area for DFHWBTTA. If no
converter is specified, the 3270 Bridge will perform the BMS-to-HTML mapping.

2. The alias calls DFHWBTTA. The communication area passed to DFHWBTTA is
the one set up by Decode. If no converter program was called, the
communication area contains the entire request.

3. DFHWBTTA extracts the transaction ID for the terminal-oriented transaction
from the HTTP request, and starts a transaction that runs the CICS Web bridge
exit, DFHWBLT.

4. When the program attempts to write to its principal facility, the data is
intercepted by the CICS Web bridge exit, and returned to the alias. If the caller
requested a converter, the alias calls the Encode function of the converter,
which uses the communication area to prepare the response. If no converter
program was called, the alias assumes that the communication area contains
the desired response.

Data flow in request processing
To make decisions about the facilities to use, and how to customize them, you need
to understand how data is passed in the CICS Web support.

Using the CICS Web support commarea method to call a program
Figure 10 on page 22 shows the data flow from client through CICS and back to the
client. As explained in “Using CICS Web support to call a program” on page 18,
some of these steps are optional. See “Chapter 11. Writing CICS programs to
process HTTP requests” on page 69 for more information about HTTP headers and
HTTP requests.

Bridge transaction

Transaction
program

CICS Web
bridge exit

Alias transaction

DFHWBTTAAlias

1

2 3 4

5

Converter
(Decode)

Converter
(Encode)

Figure 9. Running a transaction with CICS Web support—control flow

Chapter 3. Introduction to CICS Web support 21

1. A request arrives from a client, and the CICS Sockets listener transaction,
CSOL, starts the Web attach transaction, CWXN, and reads the request into
CICS temporary storage.

2. DFHCCNV translates the HTTP headers from ASCII into EBCDIC.

3. DFHCCNV translates the HTTP user data from the client code page into
EBCDIC.

4. The Decode function of the converter constructs the communication area for the
CICS program. This communication area can be constructed in-place in the
buffer provided by CICS. Decode can get a new buffer, or it can use the EXEC
CICS WEB application programming interface to retrieve the parts of the
incoming request.

5. The CICS program updates the communication area.

6. The Encode function of the converter constructs the HTTP response to be sent
to the client. The response can be constructed in-place in the communication
area. Encode can free the communication area and get a new buffer for the
response, or it can use the new Web application programming interface to
construct an HTTP response. The response consists of headers and user data.
You can make your response longer than 32K, as described in “Explaining
HTTP responses” on page 71.

CICS program

Communication area

Communication area

HTTP headers (EBCDIC) HTTP user data (EBCDIC)

HTTP headers (ASCII) HTTP user data (client code page)

1

3

5

HTTP user data (EBCDIC)

6

7 8

9

HTTP headers (EBCDIC)

HTTP headers (ASCII) HTTP user data (client code page)

2 DFHCCNV

DFHCCNV

4
Decode

Encode

DFHCCNV

DFHCCNV

Figure 10. Calling a program using the CICS Web support commarea method—data flow

22 CICS TS for VSE/ESA: Internet Guide

7. DFHCCNV translates the headers from EBCDIC to ASCII.

8. DFHCCNV translates the user data from EBCDIC to the client code page.

9. The alias sends the response to the client, and frees the storage.

Chapter 3. Introduction to CICS Web support 23

24 CICS TS for VSE/ESA: Internet Guide

Chapter 4. Planning for CICS Web support

This chapter describes the planning tasks for CICS Web support. Major decisions
about the kinds of requests you are going to allow and kinds of services you are
going to provide are made here, and they affect the rest of the tasks involved in
setting up CICS Web support.

Task See... Task completed?

Have you the correct prerequisites to
use CICS Web support?

“Defining the prerequisites
for using CICS Web
support” on page 26

YES / NO

Which CICS transaction processing
services are to be made available to

users of CICS Web support and the CICS
business logic interface? (These services

can be CICS programs, or CICS
transactions.)

For transactions, see
“Chapter 9. 3270

applications on the Web” on
page 49. For programs, see
“Chapter 11. Writing CICS
programs to process HTTP

requests” on page 69.

YES / NO

How is your Web-related work going to
be passed to CICS?

“Types of requester” on
page 17.

YES / NO

(TCPIPSERVICE definitions form part of
the processing of incoming requests.)

Which CICS resources are to be
accessed by which TCPIPSERVICE

definitions.

See the CICS Release
Guide for details of the

TCPIPSERVICE definition,
and “TCPIPSERVICE

definitions” on page 31 for
Web-specific considerations.

YES / NO

What level of security is required for
each Web application?

“Chapter 13. Security for
CICS Web support” on

page 81
YES / NO

What is the URL format that you want to
use for your applications to gain access

to CICS services?
“URL format” on page 26 YES / NO

(A user-replaceable program known as
the analyzer interprets incoming requests

and is required for CICS Web support)
Are you going to write your own analyzer

or use the CICS supplied analyzer
DFHWBADX?

“Chapter 6. Writing an
analyzer for CICS Web

support” on page 37
YES / NO

How to write a converter program to
incorporate existing business logic into

your Web application.

“Chapter 7. Writing a
converter” on page 43

YES / NO

Are you going to use the communication
area method or EXEC CICS WEB
commands in your applications?

“Chapter 11. Writing CICS
programs to process HTTP

requests” on page 69
YES / NO

For CICS transactions that use BMS,
decide what customization of the HTML

output is necessary.

“Chapter 10. Creating HTML
templates from BMS

definitions” on page 57
YES / NO

© Copyright IBM Corp. 1994, 2000 25

Task See... Task completed?

What client and server codepages are
going to be used?

“Code page considerations
for Web API applications” on

page 39,“Code page
considerations for Web

commarea applications” on
page 39,“Defining a
conversion table” on

page 33, and “Appendix I.
HTML-coded character sets”

on page 149

YES / NO

If you use HTML templates or
DOCTEMPLATEs, where are they to be

stored?

“DOCTEMPLATE
definitions” on page 30

YES / NO

How long should CICS wait before
deleting non-active resources?

“Controlling web support
with system initialization
parameters” on page 29

YES / NO

Defining the prerequisites for using CICS Web support
This section describes the software requirements for using CICS Web support.

VSE/ESA
The following must be installed on the VSE/ESA system:

v TCP/IP for VSE/ESA. Ports belonging to TCP/IP for VSE/ESA must be made
available for use by the CICS region involved.

v Language Environment. This provides the run-time libraries that are a
prerequisite for running CICS Web support.

CICS
CICS must be set up for Language Environment support, as described in the CICS
System Definition Guide.

TCP/IP for VSE/ESA
Ports belonging to TCP/IP for VSE/ESA must be made available for use by the
CICS region involved.

URL format
v If requests are received by CICS Web support, the decision about URLs will

affect the specification of the analyzer. “The default analyzer” on page 40
describes the conventions accepted by the default analyzer supplied with CICS
Web support.

v If the requests are from other callers of the CICS business logic interface, you
must decide for yourself what the caller must supply to request CICS transaction
processing services. “Appendix A. Reference information for DFHWBBLI” on
page 107 describes the communication area that callers must supply, and
explains what the CICS business logic interface does with its input.

26 CICS TS for VSE/ESA: Internet Guide

Operations tasks
v You can control the operation of CICS Web support by using CEMT or CPSM for

the following resource types:
– TCPIP
– TCPIPSERVICE

and CEDA for these resource types:
– TCPIPSERVICE
– DOCTEMPLATE

See the CICS Enhancements Guide and the CICS Supplied Transactions for further
information on these commands.

Chapter 4. Planning for CICS Web support 27

28 CICS TS for VSE/ESA: Internet Guide

Chapter 5. Configuring CICS Web support

This chapter explains how to configure CICS Web support. Table 1 is a checklist of
what you need to do.

Table 1. Configuring CICS Web support

Task See... Task completed?

Specifying the appropriate
system initialization (SIT)

parameters.

“Controlling web support with
system initialization parameters”

YES / NO

Creating the necessary
resource definitions.

“Defining resources to CICS” YES / NO

Reserving ports for CICS
Web support

“Reserving ports for CICS Web
support” on page 35

YES / NO

Specifying a name server
(optional).

“Specifying a name server” on
page 35

YES / NO

Enabling lightpen support
(optional).

“Enabling lightpen support” on
page 36

YES / NO

Running the sample
application to test CICS Web

support.

“Running the sample application”
on page 36

YES / NO

Controlling web support with system initialization parameters
CICS Web support is controlled initially by system initialization parameters. When
CICS is running, you can make changes using CEMT and CEDA. There are four
CICS system initialization parameters relating to CICS Web support:

v If you are using Web 3270 support, you can use the WEBDELAY parameter to
fix:

– The length of time, in minutes, after which a Web task and its associated data
is marked for deletion if no activity takes place on it.

– The frequency, in minutes, with which the garbage collection transaction
CWBG is run to delete the marked tasks and their data.

v The TCPIP parameter specifies whether CICS TCPIP services are to be
activated at CICS startup. The default is NO, meaning that HTTP services cannot
be enabled, and you cannot use any TCPIPSERVICE resources defined with
CEDA.. If TCPIP is set to YES, HTTP services can be enabled and can then
process work.

See the CICS Enhancements Guide for details of these new system initialization
parameters, and the CICS System Definition Guide for general information on the
SIT.

Defining resources to CICS
This section describes the resources needed to configure CICS Web support. It
contains these topics:
v “CICS supplied resource definitions” on page 30
v “DOCTEMPLATE definitions” on page 30
v “TCPIPSERVICE definitions” on page 31
v “TRANSACTION definitions for extra alias transactions” on page 32
v “PROGRAM definitions for user-replaceable programs” on page 33

© Copyright IBM Corp. 1994, 2000 29

v “Setting up a sub-library for the template manager” on page 33
v “Defining a conversion table” on page 33

CICS supplied resource definitions
CICS Web support provides an RDO group defining the CICS resources used by
the interface. The following definitions are in the locked group DFHWEB:
v Transactions required by CICS Web support (for example, CWBA and CWXN)
v Programs supplied with the CICS Web support

To change these definitions, you must copy them to your own RDO group and
modify them there.

Sample CICS Web TCPIPSERVICE definitions are provided in the locked group
DFH$SOT. To change these definitions, you must copy them to your own group and
change them there.

The group DFH$WBSN contains the resource definitions for the security sample
programs described in “Using sample programs for security” on page 82.

DOCTEMPLATE definitions
DOCTEMPLATE definitions allow you to perform variable substitution on documents
in a manner similar to that done by BMS for 3270 screens. Templates can contain
HTML, or binary data such as images. The data within the template is retrieved
whenever a call is made for the template by means of an EXEC CICS DOCUMENT
CREATE or EXEC CICS DOCUMENT INSERT command. The template can reside
in any of the following places:
v VSE/ESA sub-library.
v CICS auxiliary temporary storage.
v CICS extrapartition transient data.
v CICS load module.
v CICS file.
v Exit program.

See the CICS Enhancements Guide for details of how to define a DOCTEMPLATE,
and information about programming with documents and the associated EXEC
CICS DOCUMENT commands.

VSE/ESA sub-library
You can use any editor you like to create the templates as members of this
sub-library. The record format must be F (fixed). The templates can contain
sequence numbers as follows:
v F format, and LRECL 80: the sequence numbers must be in record positions 73

through 80.

In any other case, there must be no sequence numbers in the records. The
template manager decides whether there are sequence numbers by looking at the
first logical record of a member of the VSE/ESA sub-library, so members that are
only partially sequenced might be interpreted incorrectly. The default library name is
DFHHTML. The sub-library name must be DFHDOC. The members must have a
member type of HTML.

CICS temporary storage
Define one TSQUEUE for each template. The document handler domain returns an
error if a request for a template is made to a non-existent TSQUEUE.

30 CICS TS for VSE/ESA: Internet Guide

CICS transient data
Define an extrapartition TDQUEUE for each template. If you use an intrapartition
transient data queue, your data is lost as soon as it has been read. If you use an
extrapartition data queue, you must reset the queue after reading it.

CICS load module
Compile and link-edit a data-only load module. For example, an Assembler CSECT
could contain a PROLOG containing your own control information, an ENTRY
statement, any number of DC statements containing the HTML you want to output
(you must put your own linefeeds in), and an END statement. CICS assumes that
the entry point of the load module delimits the start of the template.

CICS file
This can be any CICS-controlled file.

Exit program
This is called whenever a request is made for the template. CICS passes a
commarea to the exit program which is mapped by the following copybooks:
v DFHDHTXD (Assembler)
v DFHDHTXH (C)
v DFHDHTXL (PL/I)
v DFHDHTXO (COBOL)

The commarea contains the address (dhtx_buffer_ptr) and length
(dhtx_buffer_len) of a CICS-supplied buffer in which the EXITPGM must return the
template. The actual length of the template must be returned in dhtx_template_len.
If the template to be returned is longer than dhtx_buffer_len, the template must be
truncated to length dhtx_buffer_len and the EXITPGM must set the length required
in dhtx_template_len. The EXITPGM is then called again with a larger buffer.

TCPIPSERVICE definitions
For HTTP requests to be submitted directly to CICS, you need one or more
TCPIPSERVICE resources to be installed.

The TCPIPSERVICE definition allows you to define which TCP/IP services are to
use CICS internal Sockets support. The internal CICS service that can be defined is
CICS Web support.

The TCPIPSERVICE definition allows you to manage these internal CICS
interfaces, with CICS listening on multiple ports, with different flavors of CICS Web
support on different ports.

You must install and open a TCPIPSERVICE definition for each port on which CICS
is to listen for incoming HTTP requests. You can create your own TCPIPSERVICE
definition, or copy the HTTPNSSL definitions from the DFH$SOT group into your
own group and modify them to meet your system requirements.

The important parameters for a Web TCPIPSERVICE are:

v The STATUS must be OPEN

v The TRANSACTION to be attached by CICS when new work arrives on the
specified port must be CWXN or a user-defined alias of CWXN, which must
invoke DFHWBXN as the initial program.

v The port on which CICS is to listen

v The backlog of requests to be processed which TCP/IP for VSE/ESA is to allow

Chapter 5. Configuring CICS Web support 31

v The name of the analyzer user-replaceable module to be driven for
TCPIPSERVICE

v An IP address on which CICS is to listen for incoming requests.

v A TS queue name. This is the 6–character prefix of TS queue names generated
by CICS Web support when writing inbound and outbound data to temporary
storage. If no prefix is supplied on the definitions, the default name of DFHWEB
is used to generate TS queue names.

For more information on defining Web TCPIPSERVICEs, see the CICS Release
Guide.

TRANSACTION definitions for extra alias transactions
Two CICS transactions are provided with CICS Web support:

Web attach transaction (CWXN).
This CICS-supplied transaction invokes the analyzer program. It establishes
the context in which the alias transaction CWBA is to run, and issues the
appropriate ATTACH command. When CWXN is defined as the
TRANSACTION on the TCPIPSERVICE definition, it is started by the
sockets listener task CSOL when a new connection request is received on
the port specified on the TCPIPSERVICE definition. If the HTTP 1.0
Keep-Alive header has been sent by the Web browser, CWXN remains in
the system after the alias has been attached, and attaches new alias
transactions to process further HTTP requests received from browser. If
Keep-Alive has not been specified, CWXN terminates after the alias has
been attached.

Alias transaction CWBA.
An alias transaction is a CICS-supplied transaction that is started by the
Web attach transaction (CWXN) to process a single request. Many
instances of the alias transaction can be active in a CICS system at the
same time, each processing a different request. The alias transaction runs
the CICS-supplied alias program that calls the CICS program. If you wish,
you may set up additional transaction definitions for alias transactions, each
using the CICS-supplied alias program.

You may want to use other alias transaction names for various reasons:
v Auditing
v Resource and command checking
v Allocating initiation priorities
v Allocating database plan selection
v Assigning different runaway values to different CICS programs

If you do want to use other alias transaction names, you must copy the definition of
CWBA, making the necessary changes. The definition of CWBA is as follows:
DEFINE TRANSACTION(CWBA) GROUP(DFHWEB)

PROGRAM(DFHWBA) TWASIZE(0)
PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED)
PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) INDOUBT(BACKOUT)
SPURGE(YES) TPURGE(NO)
RESSEC(NO) CMDSEC(NO)

32 CICS TS for VSE/ESA: Internet Guide

You cannot change the program name in this definition. Only the CICS-supplied
alias program DFHWBA can be used. All the extra alias transactions must be local
transactions.

PROGRAM definitions for user-replaceable programs
Each incoming request is serviced by a CICS program that provides transaction
processing services, and by two other user-replaceable programs, an analyzer
(required) and a converter (optional).

If you are not using autoinstall for programs, you must define all the
user-replaceable programs you use. If you are using autoinstall for programs, you
do not need to define the converters. In any case analyzers must be defined with
EXECKEY(CICS). All the user-replaceable programs must be local to the system in
which CICS Web support is operating.

Setting up a sub-library for the template manager
If you use the HTML template manager for constructing HTTP responses, you may
provide a VSE/ESA sub-library to hold the templates. You can use any editor you
like to create the templates as members of this data set. The record format must be
F (fixed). The templates can contain sequence numbers as follows:

v F format, and LRECL 80: the sequence numbers must be in record positions 73
through 80.

In any other case, there must be no sequence numbers in the records. The
template manager decides whether there are sequence numbers by looking at the
first logical record of a member of the VSE/ESA sub-library, so members that are
only partially sequenced might be interpreted incorrectly.

Any VSE/ESA library can be used to specify sub-library member templates, as
specified in the DOCTEMPLATE definition. If you are using the template manager
(DFHWBTL) or the Web bridge (DFHWBTTA), references to templates that are not
defined and installed as DOCTEMPLATE definitions are resolved as members of
the library specified as DFHHTML. The sub-library name must be DFHDOC. The
members must have a member type of HTML.

Defining a conversion table
If you have commarea-style Web applications which do not use the Web API, or
you are using CICS Web support to run a terminal-oriented transaction, you need to
create or modify a DFHCNV table for data conversion to allow CICS to deal with
incoming requests. The use of the DFHCNV macro for defining the table is
described in CICS Family: Communicating from CICS on System/390. There are
two kinds of data conversion performed in CICS Web support:

Conversion of the HTTP header information. This information is always
transmitted as ASCII data using the ISO 8859-1 (Latin-1) character set.

This is the base character set for HTTP and HTML. This data has to be
translated into EBCDIC. The conversion template name that the server
controller supplies to the DFHCCNV program, which does the translation, is
DFHWBHH.

Conversion of the HTTP user data.
This information is transmitted in the code page of the HTTP client, and can
be translated into EBCDIC if required. The conversion template name is
supplied by the analyzer. If the request is not an HTTP request, all the
request is translated using the name supplied by the analyzer.

Chapter 5. Configuring CICS Web support 33

For data conversion of the HTTP headers, you need to create a conversion
template as follows:
DFHCNV TYPE=ENTRY, *

RTYPE=PC, *
CLINTCP=8859-1, *
SRVERCP=037, *
RNAME=DFHWBHH, *
USREXIT=NO

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES

In the TYPE=ENTRY macro, the RNAME parameter must be DFHWBHH. The code
page specifications CLINTCP and SRVERCP will get the HTTP request headers
translated from ASCII to EBCDIC, and the HTTP response headers translated from
EBCDIC to ASCII. The TYPE=SELECT and TYPE=FIELD macros must be coded
exactly as shown.

For each name that the analyzer might specify for translating user data in the
request from the client code page into EBCDIC, and for translating the user data in
the response from EBCDIC to the client code page, you need to create a
conversion template as follows:
DFHCNV TYPE=ENTRY, *

RTYPE=PC, *
CLINTCP=8859-1, *
SRVERCP=037, *
RNAME=DFHWBUD, *
USREXIT=NO

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES

In the TYPE=ENTRY macro, the CLINTCP parameter must specify the code page
of the client, and the RNAME parameter must specify the name that the analyzer
will supply. The sample entry above supports translation of user data in the request
from ASCII to EBCDIC, and of the user data in the response from EBCDIC to
ASCII, for the default analyzer, which uses the name DFHWBUD. You may code
the TYPE=SELECT and TYPE=FIELD macros in any way that is appropriate to the
format of the user data that the client sends.

You may use the TYPE=INITIAL macro to set defaults for some of the values
specified in these samples, as explained in CICS Family: Communicating from
CICS on System/390.

The following sample shows a complete definition of the conversion templates for
use with a Web browser using a Japanese double-byte character set. The code
page 932 is one of several code pages for Japanese Web browsers, and 931 is
one of the corresponding System/390® code pages. This sample can be used with
the default analyzer. The sample must be assembled using the High-Level
Assembler before being used.

DFHCNV TYPE=INITIAL
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBHH,USREXIT=NO, *

SRVERCP=037,CLINTCP=8859-1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBUD,USREXIT=NO, *

CLINTCP=932,SRVERCP=931
DFHCNV TYPE=SELECT,OPTION=DEFAULT

34 CICS TS for VSE/ESA: Internet Guide

DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *
LAST=YES

DFHCNV TYPE=FINAL
END

.

Configuring TCP/IP for VSE/ESA
This section describes the changes you must make to TCP/IP for VSE/ESA as part
of configuring CICS Web support.

Reserving ports for CICS Web support
You are recommended to reserve as many ports as you need for CICS Web
support, and to ensure that CICS Web support has exclusive use of those ports.

Application programmers may use port numbers from 256 to 32 767 for
nonstandard servers. For VSE/ESA, be careful when choosing port numbers less
than 1024 — the ″well-known″ ports.

The maximum length of any queue of requests for a TCP/IP port on which a
program is listening is controlled by TCP/IP for VSE/ESA, and is currently defined to
be equivalent to a maximum of 10. This cannot be modified.

Identifying the TCP/IP server
You must identify the TCP/IP for VSE/ESA server by specifying a name for its IP
address, otherwise CICS Web Support will not initialize successfully. You use the
TCP command DEFINE NAME to do so. For example:

DEFINE
NAME,NAME=WINVSE.HURSLEY.IBM.COM,IPADDR=9.20.101.97

where NAME is a meaningful host name, and IPADDR specifies your server IP
address.

If you do not do this, you will see the following error message during CICS start-up:
DFHSO0117 applid Unable to determine the TCP/IP host name.
Language Environment return code X'00000458', return code X'00000000'.
TCP/IP services are unavailable.

Specifying a name server
If you want full CICS function (that is, if you want to use DFH$WBSN and
DFHWBENV), CICS Web support needs to access a name server during its
operation. You set the name server in TCP/IP for VSE/ESA using the TCP
command SET DNS1. For example:

SET DNS1=n.n.n.n

where n.n.n.n is the dotted decimal address of the name server.

To override the default search, you can code individual name, IP address pairs
using the TCP command DEFINE NAME. For example:

DEFINE NAME,NAME=name,IPaddr=n.n.n.n

Chapter 5. Configuring CICS Web support 35

If the name server lookup fails when CICS runs:

v The security sample program DFH$WBSN does not execute correctly.

v The environment variables program DFHWBENV does not return a connection
name in SERVER_NAME, but the dotted decimal address of the connection, and
it also returns a null string for REMOTE_HOST.

Enabling lightpen support
To enable selector pen processing over the CICS Web support 3270 bridge, you
must define a bridge facility with lightpen support enabled. To do this, follow these
steps:

1. Copy the following definitions to a new group. Unless all applications running on
the CICS system require lightpen support, you should also rename both
definitions:

v The CICS-supplied bridge facility CBRF, in group DFHTERM.

v Its default TYPETERM, DFHLU2, in group DFHTYPE.

2. In the TYPETERM definition, change the LIGHTPEN option under ″DEVICE
PROPERTIES″ to YES.

3. In the TERMINAL definition, change the TYPETERM parameter to point to the
new TYPETERM.

4. Install the definitions in the CICS region.

5. If you have created a new bridge facility definition, update the PROFILE
definition of the 3270 transaction which you are going to run with CICS Web
support, so that the bridge facility will be modelled on the new
TERMINAL/TYPETERM definition:

a. Identify the PROFILE that the transaction uses by using CEDA to view the
PROFILE parameter of the TRANSACTION definition.

b. If the profile is a CICS-supplied profile, make a copy of it to your own group
and rename it.

c. Alter the new PROFILE and enter the name of your new bridge facility in the
FACILITYLIKE parameter.

d. Alter your TRANSACTION definition to use the new PROFILE definition.

Running the sample application
A sample application DFH$WB1A is provided to help you test the operation of CICS
Web support. From a suitable Web browser, enter a URL that connects to CICS
Web support with absolute path /CICS/CWBA/DFH$WB1A. The response displays the
message “DFH$WB1A on system xxxxxxxx successfully invoked through the CICS
Web support.” with xxxxxxxx replaced by the application ID of the CICS system in
which CICS Web support is running.

36 CICS TS for VSE/ESA: Internet Guide

Chapter 6. Writing an analyzer for CICS Web support

The analyzer is a user-replaceable program for the CICS Web support. It interprets
the incoming request and specifies the CICS resources that are needed to provide
the requested service.

You must supply an analyzer, or use the IBM-supplied default analyzer
DFHWBADX.

You can write your analyzer in Assembler, C, COBOL, or PL/I. Language-dependent
header files, include files, and copy books are described in “Appendix B. Reference
information for DFHWBADX” on page 115.

There is an analyzer for each CICS Web support TCPIPSERVICE. The place of the
analyzer in CICS Web support is illustrated in Figure 8 on page 19. The analyzer
can specify:
v The name of the CICS program that is to process the request
v The name of the converter that is to process the request
v The name of the alias transaction that is to process the request
v A user ID or terminal to be associated with the alias transaction
v Any code page conversion that is needed for user data
v A modified value for the user data length.

For reference information for the analyzer, see “Appendix B. Reference information
for DFHWBADX” on page 115.

This chapter describes the analyzer program. It contains these sections:

v “Inputs”

v “Outputs” on page 38

v “Processing” on page 38

v “Code page considerations for Web API applications” on page 39

v “Code page considerations for Web commarea applications” on page 39

v “Performance considerations” on page 40

v “The default analyzer” on page 40

Inputs
The analyzer input includes:
v An eye-catcher for an analyzer parameter list
v The IP address of the client
v The IP address of the server
v An indicator of whether the request is an HTTP request

The analyzer input also includes the incoming request. If the request is an HTTP
request, various parts of the request are identified by pointers and lengths to make
processing easier.

These are the version, method, absolute path, and request header and have
already been translated into EBCDIC by CICS. The user data is still in the client
code page.

© Copyright IBM Corp. 1994, 2000 37

If the request is not an HTTP request (an FTP request for example), the input
includes the entire request in the client code page. The pointers and lengths apply
only to the communication area containing the first 32767 bytes of the incoming
requests.

Outputs
The analyzer must provide the following output:
v A response code

It may also provide the following outputs:
v The name of the CICS program that is to service the request. If the request is for

a terminal-oriented transaction, the program name must be DFHWBTTA.
v The conversion template name for code page translation of the user data.
v The transaction ID of the alias transaction that is to service the request.
v The name of the converter that is to be used to service the request.
v A user token that is to be passed to the converter functions.
v A modified value for the user data length.
v If the userid is not changed by the analyzer, the userid passed on input is used,

if one was specified. If no userid is derived from anywhere, the CICS default
userid is used.

v A reason code.

Processing
The inputs and outputs are presented in a CICS communication area. The analyzer
can use any of its inputs to determine the CICS resources that are to be used to
service the request, and the other outputs it might wish to supply.

To impose rules about which clients can use which services, you can use the input
client IP address and the contents of the request to decide if this client is allowed to
use this service. You can reject a client request by setting the output response to a
value other than URP_OK.

You can specify a different analyzer for each TCPIPSERVICE, allowing the port
number of the TCPIPSERVICE to determine which CICS resources are to process
the request.

If the code page of the client is not an EBCDIC code page, you can set the output
conversion template name. See “Code page considerations for Web commarea
applications” on page 39.

If the request can be completely satisfied in the analyzer, you do not need to set
the converter name or the CICS program name.

If the request can be completely satisfied by the analyzer and a converter, you must
set the converter name, but not the CICS program name.

If you need a CICS program to service the request, and the program name can be
determined by the analyzer, you should set the output CICS program name. (If you
do not set it here, you must specify the use of a converter, and the converter
Decode function must set the program name.)

If the selected CICS program needs a converter, you must set the output converter
name.

38 CICS TS for VSE/ESA: Internet Guide

If the service is to be provided under a user-defined alias transaction, you must set
the output transaction name.

To pass any other information to the converter functions, you can set an output user
token. This token could be a pointer to storage acquired with the SHARED option
by the analyzer to be freed by the converter. You may also make changes to the
contents of the request, and these are visible to Decode and to the CICS program.
Any changes to the contents of the request held in the communication area are not
reflected in the data returned by the EXEC CICS WEB commands.

If you want to use EDF to test your CICS programs, analyzers, or converters, you
should use the CEDX transaction. The use of EDF is described in “Using EDF” on
page 89.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses are
associated with architected HTTP responses. For details consult “Appendix B.
Reference information for DFHWBADX” on page 115. If you use any response other
than URP_OK, or if you use any reason codes, you should document the
responses and reason codes to help with problem determination.

If the request is a non-HTTP request, and you detect that there is more data to be
received, you can use the URP_EXCEPTION response to request CICS to receive
more data, and add it to that already in the input area. Web attach processing then
calls the analyzer again.

Code page considerations for Web API applications
If you are using the EXEC CICS WEB and EXEC CICS DOCUMENT commands,
you can specify the host and client codepages on the individual commands; these
override any DFHCNV key allocated to this transaction by the analyzer.

For EXEC CICS WEB RECEIVE, the host codepage must be a server codepage
supported by the CICS DFHCNV mechanism, and must therefore be set to one of
the server codepage values listed in CICS Family: Communicating from CICS on
System/390.

The client codepage must be one of those listed in “Appendix I. HTML-coded
character sets” on page 149. You can specify either the IANA value or the IBM
CCSID value, as CICS performs mapping between the two.

If there is an error during the processing of an HTTP request, and the Web error
program is invoked, the DFHCNV key specified by the analyzer is used to
determine what codepage conversion should be performed on the error response
returned to the Web browser.

Code page considerations for Web commarea applications
When designing your analyzer, if you are not using the HTML base code page ISO
8859-1 (Latin-1) for user data, you need to specify the conversion template for the
code pages used. You must perform the following steps:

1. Identify the character sets that HTTP clients will use. All the browsers that have
access to the CICS Web support might use the same code page, or you might
be able to tell the code page from the IP address of the client. It might be
possible to get the browsers to create URLs that include an indicator of the

Chapter 6. Writing an analyzer for CICS Web support 39

code page. The HTTP request headers Content-Type and Content-Language
might contain useful information, but they are not used consistently by all web
browsers.

2. Use CICS Family: Communicating from CICS on System/390 to decide the kind
of conversion to be performed, and add a conversion template to the DFHCNV
table. For nonstandard conversion you need to create or modify the DFHUCNV
program.

3. Write an analyzer that decides what data conversion is needed, and sets the
name of the conversion template in the wbra_dfhcnv_key parameter.

If there is an error during the processing of an HTTP request, and the Web error
program is invoked, the DFHCNV key specified by the analyzer is used to
determine what codepage conversion should be performed on the error response
returned to the Web browser.

Performance considerations
You should use performance-efficient techniques such as index tables to resolve the
relations between request and CICS resources, rather than performing I/O
operations. You should avoid allocating storage, since this can introduce processing
delays.

CICS HTTP persistent connections support means that sockets connections with
Web browsers can be kept open after the initial HTTP request has been processed.
This has a significant effect on the amount of processing required for each HTTP
request in the network. To enable CICS persistent connections support you must
specify either NO or a numeric value for the SOCKETCLOSE keyword on the
relevant TCPIPSERVICE definition. Note that CICS supports only the HTTP 1.0
Keep-Alive implementation of the persistent connections, not the HTTP 1.1
implementation.

To optimize the amount of processing required to retrieve a DOCTEMPLATE, you
should consider storing the DOCTEMPLATEs inside CICS or use a VSE/ESA
sub-library on a virtual disk, rather than in a VSE/ESA sub-library on a real disk.
The most efficient method of storing DOCTEMPLATEs is as load modules, but the
advantages of fast retrieval need to be weighed against the amount of CICS
storage occupied by the template.

The default analyzer
DFHWBADX is the default analyzer for the CICS Web support. The source code for
the analyzer is supplied in various languages, and you can use it as the basis of
your own analyzer. The source files are as follows:
v DFHWBADX (Assembler)
v DFHWBAHX (C)
v DFHWBALX (PL/I)
v DFHWBAOX (COBOL)

The default analyzer is written for HTTP requests in which the absolute path has
one of the following five forms:

/converter/alias/program?token
/converter/alias/program

40 CICS TS for VSE/ESA: Internet Guide

/converter/alias/program/filename
/converter/alias/program/filename?token
/converter/alias/program/?token

The default analyzer links to the CICS-supplied utility DFHWBUN to unescape the
user data in the communication area passed to the analyzer.

The default analyzer checks the eye-catcher, and then interprets the contents of the
absolute path as follows:

v converter must be between one and eight characters long. It is converted to
uppercase and interpreted as the name of the converter to be called by the alias,
unless it has the value “CICS”, in which case the converter name is set to nulls
to show that no converter is to be used.

v alias must be between one and four characters long. It is converted to uppercase
and interpreted as the transaction ID of the alias transaction to be used to
service the request.

v program must be between one and eight characters long. It is converted to
uppercase and interpreted as the name of the CICS program that is to be used
to service the request.

v filename can be any length, but it must not begin with a slash (“/”) or contain a
question mark. It must be made up of characters allowed in URLs. It is ignored
by the analyzer, but is available to the converter or the CICS program.

v token, a user-modifiable field. The first eight bytes are interpreted as the user
token to be passed to the converter.

If program is DFHWBTTA, the filename is treated as the ID of a transaction to be
run using the 3270 bridge facility. See “Chapter 9. 3270 applications on the Web” on
page 49 for details of the interface to DFHWBTTA.

The default analyzer sets the conversion template name to DFHWBUD.

The default analyzer diagnoses various errors, and the meanings of its responses
and reason codes are described in “DFHWBADX responses and reason codes” on
page 119.

Chapter 6. Writing an analyzer for CICS Web support 41

42 CICS TS for VSE/ESA: Internet Guide

Chapter 7. Writing a converter

This chapter describes the converter.

You can have many converter programs in a CICS system to support the operation
of CICS Web support. The place of converters in CICS Web support is illustrated in
Figure 8 on page 19 and Figure 9 on page 21. The converter must run in the same
CICS region as the TCPIPSERVICE which receives the request. Each converter
must provide two functions:

v Decode is used before the CICS program is called. It can:

– Use the data from the Web browser to build the communication area in the
format expected by the CICS program.

– Supply the lengths of the input and output data in the CICS program
communication area.

– Perform administrative tasks related to the request.

v Encode is used after the CICS program has been called. It can:

– Use the data from the CICS program to build the HTTP response and HTTP
response headers.

– Perform administrative tasks related to the response.

It contains the following sections:

v “Writing a converter—Decode” on page 44

v “Writing a converter—Encode” on page 45

You might not need to write any converters. If the analyzer or the caller of the CICS
business logic interface indicates that a converter is not required, the first 32K bytes
of the request is passed to the CICS program in its communication area.

You may write your converters in Assembler, C, COBOL, or PL/I.
Language-dependent header files, include files, and copy books are described in
“Appendix C. Reference information for the converter” on page 121.

The converter provides Decode and Encode functions for processing a request.

There are some restrictions on what these functions can do when the converter is
called from a CICS business logic interface that was called in offset mode. These
are described below.

Performance considerations
The converter is called from the alias transaction, or from the CICS business logic
interface, and therefore its functions can only affect the performance of a single
client request.

You should avoid operations that introduce processing delays. If a converter
function needs to allocate storage, it should use the NOSUSPEND option of EXEC
CICS GETMAIN. The efficiency of later processing can be improved if Decode sets
decode_input_data_len to the exact length of the data to be passed to the CICS
program, since this optimizes the use of storage and data transmission facilities.

© Copyright IBM Corp. 1994, 2000 43

Writing a converter—Decode
This section gives informal descriptions of the inputs and outputs of Decode, and
gives some hints about processing.

Inputs
The inputs to Decode include:

v An eye-catcher for a Decode parameter list

v The IP address of the client

v The name of the CICS program that is to service the request, if this was set by
the analyzer, or the CICS business logic interface

v A pointer to the buffer containing the request (perhaps modified by the analyzer)

v The user token supplied by the analyzer, or by the caller of the CICS business
logic interface

v A counter giving the number of times Decode has been entered in the current
Web request. This is useful for loopback requests.

If the incoming request is an HTTP request, various parts of the request are
identified by pointers and lengths to make processing easier:
v Version
v Method
v Absolute path
v Request header
v User data

Outputs
Decode must set the following outputs:
v A response code
v The length of the communication area to be passed to the CICS program

It might also provide the following outputs.
v A pointer to the communication area to be passed to the CICS program, if this is

not the input communication area.
v The name of the CICS program that is to service the request.
v The user token to be passed to Encode.
v A reason code.

Processing
The main purpose of Decode is to provide the communication area for the CICS
program.

v If your converter is running as part of the CICS Web support, or as part of the
CICS business logic interface in pointer mode, the communication area passed
to the target program can be the storage addressed by DECODE_DATA_PTR on
entry to Decode, or you can use EXEC CICS GETMAIN to get new storage, and
update DECODE_DATA_PTR to address the new storage. If
DECODE_DATA_PTR is altered to address another storage location, it is the
converter program’s responsibility to freemain the original storage.

v If your converter is running as part of the CICS business logic interface in offset
mode, the buffer must occupy the same storage as the input communication
area. In this case you must not use EXEC CICS GETMAIN to get new storage,
and you must not change the data pointer in the parameter list.

44 CICS TS for VSE/ESA: Internet Guide

You can set the output for the length of the communication area you pass to the
CICS program, and you can set an output for the returned length if this is less than
the length to be passed to the CICS program.

You can use the input user token passed by the analyzer, and if this is a pointer,
you can use and update the information in the storage it addresses. You can pass
the same token on to Encode, or you can replace it with another token.

The CICS program name as set by the analyzer, or by the caller of the CICS
business logic interface, is available for your use, and you can change it. If the
program name has not been set already, you must set it here, or no CICS program
will be called.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses and
reason codes are associated with architected HTTP responses. For details consult
“Appendix C. Reference information for the converter” on page 121. If you use any
response other than URP_OK, or if you use any reason codes, you should
document the responses and reason codes to help with problem determination.

However, if this occurrence of the decode converter is a loop back from the Encode
converter, these pointers and lengths are set to zero (0), DECODE_ DATA_PTR
points to the request data from ENCODE_DATA_PTR, and
DECODE_INPUT_DATA_LEN is the length in bytes of the data pointed to by
DECODE_DATA_PTR. The user token is the same as it was from the exit of the
Encode converter. On these secondary occurrences of the Decode converter, the
user can still access the same information (using the WEB EXTRACT command)
that the first occurrence could access. The user can detect whether this is a
loopback request by checking the value of DECODE_ENTRY_COUNT and
ENCODE_ENTRY_COUNT. Their value will be greater than 1 on a looped back
request.

Writing a converter—Encode
This section gives informal descriptions of the inputs and outputs of Encode, and
gives some hints about processing.

Inputs
The inputs to Encode include:

v An eye-catcher for an Encode parameter list

v A pointer to the communication area returned by the CICS program, and its
length

v The user token created by the analyzer and passed by Decode

v A counter giving the number of times Decode has been entered in the current
Web request. This is useful for loopback requests.

Outputs
Encode must set the following outputs:
v A response code
v A pointer to the buffer containing the response to be sent to the client

It might also provide the following outputs.

v A reason code

Chapter 7. Writing a converter 45

Processing
The main purpose of Encode is to provide the response to be sent to the client.
You can use the HTML template manager to help you to construct the HTTP
response; see “Appendix D. Reference information for DFHWBTL” on page 131. On
exit from Encode, ENCODE_DATA_PTR must point to the buffer containing the
response. You must set the output response length, and you must put the data
length (response length plus 4) in the first word of the buffer.

v If your converter is running as part of the CICS Web support, or as part of the
CICS business logic interface in pointer mode, the HTTP response can occupy
the storage addressed by ENCODE_DATA_PTR on entry to Encode, or you can
use EXEC CICS GETMAIN to get new storage and update ENCODE_DATA_PTR
to point to the new storage. On exit from Encode, this new buffer must contain
the HTTP response in the format described above.

If the request being processed was received by a CICS Web TCPIPSERVICE,
and ENCODE_DATA_PTR has been altered to address another storage location,
it is the converter program’s responsibility to freemain the original storage. CICS
frees the storage addressed by ENCODE_DATA_PTR after the HTTP response
has been sent. If the request being processed was not received by a CICS Web
TCPIPSERVICE, it is the responsiblity of the caller of the CICS business logic
interface to free the buffer addressed by ENCODE_DATA_PTR (that is, the
address returned in field WBBL_OUTDATA_PTR minus 4).

v If your converter is running as part of the CICS business logic interface in offset
mode, the buffer must occupy the same storage as the communication area
returned by the CICS program. In this case you must not use EXEC CICS
GETMAIN to get new storage, and you must not change the data pointer in the
parameter list.

You can use the input user token passed by Decode, and, if this is a pointer, you
can use the information in the storage it addresses. If it is a pointer, you must use
EXEC CICS FREEMAIN to free the storage it addresses.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses and
reason codes are associated with architected HTTP responses. For details consult
“Appendix C. Reference information for the converter” on page 121. If you use any
response other than URP_OK, or if you use any reason codes, you should
document the responses and reason codes to help with problem determination.

However, if the response code is URP_OK_LOOP, the CICS Web interface loops
back to the Decode converter. The data pointed to by ENCODE_DATA_PTR should
still be in the same format as a normal response (see “Appendix C. Reference
information for the converter” on page 121 for reference information).

46 CICS TS for VSE/ESA: Internet Guide

Chapter 8. The Web error program

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information. It describes the Web error program, DFHWBEP.

The Web error program — general
The Web error program, DFHWBEP, is a user-replaceable module driven by CICS
Web support when there is a failure in the processing of a Web request received by
a CICS Web TCPIPSERVICE. DFHWBEP allows you to modify the HTTP response
issued by CICS, or to put out an alternative message.

The parameter list passed to the Web error program contains a pointer to a buffer
containing the default HTTP response returned by CICS for the error detected, and
the length of the response. The Web error program can:

v leave the response unchanged.

v modify the response to be returned, and update the length in
WBEP_RESPONSE_LEN accordingly.

v GETMAIN a new buffer, build a new HTTP response, and pass back the address
of the new buffer in WBEP_RESPONSE_BUFFER and the length of the new
response in WBEP_RESPONSE_LEN.

The EXEC CICS WEB application programming interface is not available from the
Web error program. The data to be returned to the client must be in the buffer
addressed by WBEP_RESPONSE_PTR.

The default HTTP response is passed to the Web error program in its EBCDIC
form. CICS assumes that the HTTP response addressed by
WBEP_RESPONSE_PTR on exit from the Web error program is in EBCDIC, and
performs codepage conversion on the response to convert it to ASCII before
returning it to the client. The key used for this conversion is that selected by the
analyzer user-replaceable module. If none was selected, or the analyzer was not
invoked before the error occurred, the response is assumed to be in the
ISO-8859–1 codepage.

If the error being processed is a sockets send or receive error, no error response is
returned to the browser before closing the socket.

Inputs
Input to DFHWBEP is:

v Name of target program

v Name of program in which error occurred

v Abend code

v Associated message number

v Pointer to HTTP response to be returned. DFHWBEP can overwrite the CICS
Web support response with its own HTTP response, which might be more
meaningful to users.

v Length of HTTP response. The maximum length of the response is 32K.

v Server and client IP address

v Error code identifying the nature of the error

v Response and reason codes returned by the analyzer or the converter program.

© Copyright IBM Corp. 1994, 2000 47

Outputs
DFHWBEP returns a user-defined HTTP response and its accompanying text to the
client.

Processing
The main purpose of the Web error program is to allow the CICS system
administrator to customize or tailor the default HTTP error response returned by
CICS for the error detected.

This ensures that the response that appears on the Web browser is meaningful to
the user.

For reference information for DFHWBEP, see “Appendix H. Reference information
for DFHWBEP” on page 145. For more information on user-replaceable modules,
see the CICS Customization Guide.

48 CICS TS for VSE/ESA: Internet Guide

Chapter 9. 3270 applications on the Web

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

DFHWBTTA is a callable CICS-supplied program that provides an interface between
Web browsers and CICS transactions. DFHWBTTA and its associated programs
perform the translation between HTML and 3270 data streams or BMS maps.
DFHWBTTA supports non-conversational, conversational, and pseudoconversational
transactions.

This chapter is intended for programmers who write converters that create or modify
requests to run CICS transactions, and for callers of DFHWBTTA who use the CICS
business logic interface.

Input to DFHWBTTA
The communication area for DFHWBTTA must contain an HTTP request for a CICS
transaction. There are two types of requests:

1. Initial requests are requests that are not continuations of conversations or of
pseudoconversations. The request for the first transaction of a sequence of
transactions in a pseudoconversation is an initial request. The first request for a
conversational transaction is an initial request. The only request for a
transaction that is neither conversational nor pseudoconversational is an initial
request.

To send data on the initial request, use plus signs (+) rather than blanks to
separate the transaction id and any further data. For example, to start
transaction CEMT with the string CEMT INQ TAS, use the following path on the
URL:
/cics/cwba/dfhwbtta/CEMT+INQ+TAS

CICS passes this data to the 3270 application in the form of a formatted 3270
datastream. The initial path can be in any format, as long as the transid follows
the last ″/″. The form used on subsequent HTTP responses for the same Web
3270 conversation uses the same path that was input to DFHWBTTA.

2. Continuation requests are requests that continue a conversation or
pseudoconversation. DFHWBTTA retains information about conversations and
pseudoconversations that allows it to recognize a request as being a
continuation request. Identification of the retained information is passed in a
hidden variable in the HTML generated for the previous request.

The request must be encoded in EBCDIC. The format of the URL in the HTTP
request must be in one of the following four forms:

/converter/alias/program/tranid

/converter/alias/program/tranid?token

/converter/alias/program/keyword/tranid

/converter/alias/program/keyword/tranid?token

v converter must be between one and eight characters long. It is ignored by
DFHWBTTA.

© Copyright IBM Corp. 1994, 2000 49

v alias must be between one and four characters long. It is ignored by
DFHWBTTA.

v program must be between one and eight characters long. It is ignored by
DFHWBTTA.

v keyword is optional and is not case sensitive. If it is present, it must have the
value UNFORMAT. If the UNFORMAT option is present, DFHWBTTA assumes
that the transaction id has been entered from an unformatted screen.

v tranid can be of any length. For an initial request, DFHWBTTA interprets it as a
transaction ID. For a continuation request, it is ignored.

v token, if it is present, is ignored by DFHWBTTA.

A continuation request may also contain user data. This user data must consist of
URL-encoded data. URL-encoded data is data in the form of variable=value
elements separated by ampersands. The data is to be interpreted as a BMS map,
or as a 3270 data stream. The map or data stream is expected to be the browser’s
response to the previously output HTML. The variables are interpreted as follows:

v Retained data for a continuation request. The value of the variable
DFH_STATE_TOKEN identifies the retained data for the continuation request.

v Cursor position. The value of the variable DFH_CURSOR is interpreted as the
name of the field in which the cursor is to appear. The corresponding cursor
position is passed to the application program in EIBCPOSN.

v AID indicator. The first occurrence of any of the following variables defines the
AID that will be passed to the application: DFH_ENTER, DFH_CLEAR,
DFH_PF1, ..., DFH_PF9, DFH_PF10, ..., DFH_PF24, DFH_PA1, ..., DFH_PA3,
DFH_PEN. The values associated with these variables are not significant in the
conversion of the data to a BMS map or 3270 data stream.

v Data fields. Each of the fields of the BMS map is represented by a variable
whose value is interpreted by DFHWBTTA as the value of the data supplied by
the browser. The name of each variable is the same as the name of the field in
the BMS map.

v Modified field indicators. Variables of the form DFH_NEXTTRANSID.n, where n is
a number, specify the names of the modifiable fields that will be searched to find
a transaction ID. The values of these variables are the names of other variables
in the URL-encoded data.

For a continuation request, DFHWBTTA determines the transaction ID as follows:

v If the request is part of a pseudoconversation, and the previous transaction
ended with RETURN IMMEDIATE TRANSID=, the specified transaction ID is the
one that is used.

v If the request is part of a pseudoconversation, and the previous transaction
ended with RETURN TRANSID=, the specified transaction ID is the one that is
used.

v If the request is part of a pseudoconversation, but the previous transaction did
not specify a transaction ID on the RETURN command, but the AID is associated
with a transaction ID, that transaction ID is used.

v If the request is part of a pseudoconversation, but no transaction ID was
specified on the RETURN command, and there is no transaction ID associated
with the AID, then the first four bytes of data in the first modified field are taken
to be the transaction ID. If the data in the modified field has a blank in the first
four bytes, the transaction ID is the data up to the first blank. The method of
determining the first modified field is as follows:

1. Set n to 1.

2. Search for DFH_NEXTTRANSID.n.

50 CICS TS for VSE/ESA: Internet Guide

3. If there is no occurrence of DFH_NEXTTRANSID.n, end the search.

4. If there is an occurrence of DFH_NEXTTRANSID.n, search for the variable
whose name is the value of DFH_NEXTTRANSID.n.

5. If there is such a variable, use the value to determine the transaction ID.

6. If there is no such variable, add 1 to n, and return to step 2.

v If the request is part of a conversation, then the waiting transaction is continued.

Customizing the input to DFHWBTTA
The HTTP request is prepared by the Decode function of the converter, if the caller
asks for a converter. The converter may make modifications to the request.

On input to Decode, exactly one of the AID variables is present in the user data,
and it is the one set by the browser. You can insert your own AID variable, or
modify the existing AID variable.

You can modify information about the cursor position by changing the value of
DFH_CURSOR. The value of DFH_CURSOR must be the name of one of the
variables that define the contents of the data fields. The standard technique for
generating HTML pages from BMS maps produces HTML pages that track cursor
movements in the Web browser, and report the final position of the cursor in
DFH_CURSOR.

You can insert or delete DFH_NEXTTRANSID.n variables to control the selection of
the next transaction ID that is described in “Input to DFHWBTTA” on page 49. If you
add an instance of DFH_NEXTTRANSID.n, use the name of one of the other
variables as the value of DFH_NEXTTRANSID.n.

Decode must not modify the value of DFH_STATE_TOKEN.

Output from DFHWBTTA
DFHWBTTA presents an HTTP response to the Encode function of the converter (if
any). The response is in a buffer that begins with a 32-bit unsigned number that
specifies the length of the buffer. The rest of the buffer is the HTTP response. The
HTML in the response is that corresponding to the output BMS map or 3270 data
stream from the transaction program. This output might have been customized as
described in “Chapter 10. Creating HTML templates from BMS definitions” on
page 57.

The HTTP headers in the HTTP response are generated automatically by
DFHWBTTA. The headers generated by DFHWBTTA are:
v Content-type: text/html
v Content-length: <length of user data>
v Pragma: no-cache
v Connection: Keep-Alive (if this is an HTTP 1.0 persistent connection)

If any additional headers are required, the Encode function of the converter should
be used to add them to the HTTP response.

Chapter 9. 3270 applications on the Web 51

Customizing the output from DFHWBTTA
If you are using the functions of DFHWBTTA that emulate the non-BMS terminal
commands, you can modify the appearance of the generated page by providing
header and footer information for the page. The main part of the page is generated
directly from an internal representation of a 3270 screen image, whose size is
determined from the DEFSCREEN and ALTSCREEN definitions on the
FACILITYLIKE terminal definition associated with your transaction. This screen
image is not directly customizable, unless you choose to modify it in your ENCODE
converter function (see “Customizing with Encode” on page 54). However, you can
specify HTML to be inserted before and after this screen image representation by
installing document templates containing customized markup. You supply one or
more of the following templates, whose names are defined in the TEMPLATENAME
fields of DOCTEMPLATE definitions:

tranHEAD
This is a template that is inserted at the head of the HTML page being
output for transaction tran, if it is installed.

CICSHEAD
This is a template that is inserted at the head of the HTML page being
output for transactions that do not have a corresponding tranHEAD
template installed.

tranFOOT
This is a template that is inserted at the foot of the HTML page being output
for transaction tran, if it is installed. If this template is not installed,
CICSFOOT is used instead.

CICSFOOT
This is a template that is inserted at the foot of the HTML page being output
for transactions that do not have a corresponding tranFOOT template
installed.

The HTML generated to represent the screen image is designed to be presented in
a non-proportional font, so that the column alignment implied by the 3270 screen
addresses is approximately preserved. CICS generates a <pre> tag at the beginning
of the page for you, but you should generate the closing </pre> tag yourself in your
customized footing template (tranFOOT or CICSFOOT). These tags ensure that the
screen image is successfully generated in a non-proportional font.

Required contents for a heading template
If you choose to supply heading or footing templates, you must supply some of the
required elements of an HTML page. A heading template should contain the
following HTML elements:

v A doctype tag. For example:
<!doctype html public "//W3C//DTD HTML 3.2//EN>

v An <html> tag

v A <head> tag

v A <title> tag. For example:
<title>A sample title</title>

v A </head> tag

v A <body> tag. You can use this tag to specify text colors, or an image to be used
as the background for the page. For example:
<body background="/dfhwbimg/background2.gif" bgcolor=#FFFFFF"
text="#000000" link="#00FFFF" vlink="#800080" alink="#FF0000>

52 CICS TS for VSE/ESA: Internet Guide

v Optionally, any masthead images, heading tags, navigational links, or anything
else needed to create your customized page.

The default header generated by CICS is as follows:
<!doctype html public "//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>CICS Web support screen emulation</title>
<script language="JavaScript">
</script>
<meta name="generator" content="CICS Transaction Server/1.1.1">
</head>
<body>

Required contents for a footing template
If you choose to supply heading or footing templates, you must supply some of the
required elements of an HTML page. A footing template should contain the following
HTML elements:

v A </pre> tag, to terminate the non-proportional text begun by CICS. If you do not
specify a </pre> tag, any input buttons you specify are displayed vertically rather
than horizontally.

v Input buttons to represent any programmed function keys or the ENTER key. For
example:
<input type="submit" name="DFH_PF1" value="Help">
<input type="submit" name="DFH_PF3" value="Quit">
<input type="submit" name="DFH_ENTER" value="Continue">

These form part of the HTML form begun by CICS. The buttons, when selected
by the user, produce the AID indicator discussed in “Input to DFHWBTTA” on
page 49, so should have the names described there. The value parameter
specifies the legend that appears on the generated button. It is not used by
DFHWBTTA.

v A </form> tag

v Optionally, any other customizations of your pages

v A </body> tag to close the page

v An </html> tag

If you do not specify a footing template, the CICS-generated footing contains
buttons for all the possible AID indicators; this may not be suitable for your
customized page.

The default footer generated by CICS is as follows:
</pre>
<input type="submit" name="DFH_PF1" value="PF01">
<input type="submit" name="DFH_PF2" value="PF02">
<input type="submit" name="DFH_PF3" value="PF03">
<input type="submit" name="DFH_PF4" value="PF04">
<input type="submit" name="DFH_PF5" value="PF05">
<input type="submit" name="DFH_PF6" value="PF06">
<input type="submit" name="DFH_PF7" value="PF07">
<input type="submit" name="DFH_PF8" value="PF08">
<input type="submit" name="DFH_PF9" value="PF09">
<input type="submit" name="DFH_PF10" value="PF10">
<input type="submit" name="DFH_PF11" value="PF11">
<input type="submit" name="DFH_PF12" value="PF12">

<input type="submit" name="DFH_PF13" value="PF13">

Chapter 9. 3270 applications on the Web 53

<input type="submit" name="DFH_PF14" value="PF14">
<input type="submit" name="DFH_PF15" value="PF15">
<input type="submit" name="DFH_PF16" value="PF16">
<input type="submit" name="DFH_PF17" value="PF17">
<input type="submit" name="DFH_PF18" value="PF18">
<input type="submit" name="DFH_PF19" value="PF19">
<input type="submit" name="DFH_PF20" value="PF20">
<input type="submit" name="DFH_PF21" value="PF21">
<input type="submit" name="DFH_PF22" value="PF22">
<input type="submit" name="DFH_PF23" value="PF23">
<input type="submit" name="DFH_PF24" value="PF24">

<input type="submit" name="DFH_PA1" value="PA1">
<input type="submit" name="DFH_PA2" value="PA2">
<input type="submit" name="DFH_PA3" value="PA3">
<input type="submit" name="DFH_CLEAR" value="Clear">
<input type="submit" name="DFH_ENTER" value="Enter">
<input type="submit" name="DFH_PEN" value="Pen">
<input type="reset" value="Reset">
</form>
</body>
</html>

Customizing with Encode
The Encode function may make changes to the response. If the transaction is
expecting a response from the user (either conversational or pseudoconversational),
the changes to the output must still allow the continuation request to be correctly
understood by the next part of the conversation or pseudoconversation.

Lightpen operation
CICS Web support allows applications that support selector pens to be run from a
Web browser. (For details of selector pens, see the CICS Application Programming
Guide.). To do this, the bridge facility associated with the transaction must be
properly configured, as explained in “Enabling lightpen support” on page 36. CICS
Web support recognises a field as being detectable only if:

v the field attribute byte identifies the field as being detectable or intensified (that
is, bright), and

v the first character of the field contains a valid designator character. This can be
an ampersand (&), a right angle bracket (>), a question mark (?), a blank, or a
null.

When a field is determined to be selector pen detectable, the field appears on the
browser with a checkbox preceding it. The designator character, which would have
appeared as the first character in the field on a 3270 device, is removed from the
field data, and only the remaining characters are displayed. The field length on the
browser is decreased by one character.

The checkbox contains a check symbol (U) only if the designator character is a
right angle bracket (>); to select a field, check or uncheck the checkbox accordingly.

If the field is a selection field, checking and unchecking the checkbox simulates
toggling the modified data tag (MDT) bit on and off. If you uncheck the checkbox on
an unprotected field and enter data, the MDT bit is not switched on. (Note that this
is different to what happens on a 3270 device.)

If the field is an attention field, checking the checkbox does not cause data to be
transmitted to the CICS region. To do this, check the checkbox associated with the
attention field and click on the button marked ″Pen″. If multiple attention fields are

54 CICS TS for VSE/ESA: Internet Guide

checked, the attention field closest to the screen origin (that is, row 1 column 1) will
be used as the attention field. if no attention field is checked, CICS assumes that
the ENTER key has been pressed.

Chapter 9. 3270 applications on the Web 55

56 CICS TS for VSE/ESA: Internet Guide

Chapter 10. Creating HTML templates from BMS definitions

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

This chapter describes how to create HTML templates from an existing BMS
mapset definition. You can generate templates using standard generation, or
customized generation.

Source for BMS mapsets that are available only as load modules can, with some
limitiations, be recovered using DFHBMSUP. See CICS External Interfaces Guide
for details.

Generating a standard template
A template generated by the standard method contains the following:

v Constants and input fields from the map

v Buttons to represent the following:
– ENTER key
– PA1, PA2, and PA3 keys
– Program function keys PF01 to PF24
– HTML reset

v Up to five hidden variables, DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID.5,
whose values are the names of the first five fields in the map. The use of these
variables is explained in “Chapter 9. 3270 applications on the Web” on page 49.

v A hidden variable DFH_CURSOR whose value is the name of the field in which
the cursor is set in the map.

v A JavaScript function dfhsetcursor, which when invoked in the browser sets the
cursor position to the field whose name is the value of DFH_CURSOR.

v A JavaScript exception handler for the onLoad exception. This function invokes
dfhsetcursor, and tracks the movement of the cursor.

Why customize the generation of templates?
There are many reasons why you might wish to change the output from generating
a template for a BMS map. You can:

1. Support the application’s use of keys that are not in the standard output.

2. Suppress the HTML Reset function, which does not correspond to any 3270
function.

3. Change the appearance of the keys, or the text associated with them.

4. Provide an HTML title for the HTML page.

5. Provide a masthead graphic for the HTML page.

6. Change the color of the background, or specify a special background.

7. Modify the BMS colors. You might need to do this if the BMS colors do not
show up well against the background.

8. Suppress parts of the BMS map.

9. Add Web browser control functions, JavaScript functions for example, to the
HTML page.

10. Add text that appears only on the HTML page, but is not part of the BMS map.

11. Add HTML header information to the HTML page.

© Copyright IBM Corp. 1994, 2000 57

Examples of these customizations are given in “Customization examples” on
page 59 .

Customization facilities
There are two facilities provided to help you customize the HTML templates:

1. The DFHMDX macro (invoked from within DFHMSX): You use the DFHMDX
macro to define your own customization macro that is used when the templates
are being created from the BMS map definitions. You use a customization
macro for the customizations numbered 1 to 9 in the list in “Why customize the
generation of templates?” on page 57.

2. The DFHWBOUT macro: You add invocations of the DFHWBOUT macro to the
BMS map definitions. This macro inserts text in the HTML page, and you use it
for the customizations numbered 9 to 11 in the list in “Why customize the
generation of templates?” on page 57.

(For customization number 9 (above) you have to coordinate what you put in the
customization macro with what you put in DFHWBOUT.)

How to produce the HTML templates
The procedure is as follows:

1. Review the application programs and their use of BMS to see if customization is
necessary.

2. For the applications that need customized HTML pages, create a customization
macro definition, and store it in a library in the concatenation of macro libraries
specified in the LIBDEF source statement for the assembler. Write appropriate
DFHWBOUT macro invocations, and put them in the appropriate places in your
map definitions.

3. Assemble the existing map definitions with TYPE=TEMPLATE on the DFHMSD
macro, or SYSPARM=TEMPLATE in the parameters passed to the assembler.
Note that the label on the DFHMSD macro is used to name the HTML templates
produced for each map in the mapset being processed. The HTML template
names consist of the label from the DFHMSD macro plus one character starting
from ‘A’. For the bridge exit to match the HTML template with the BMS map
when a BMS SEND or RECEIVE is issued by a program, the HTML template
members must match the name of the mapset value used on the SEND and
RECEIVE statements.If you are using a customizing macro, you must add the
name of the customizing macro to the TYPE. The assembler produces LIBR
source statements that set up one template for each map in a mapset.

4. Use LIBR to store the templates in the template library. You must store the
templates in a VSE/ESA sub-library named DFHDOC, although the library name
can be any valid library name.

5. If you want to put your templates in a VSE/ESA sub-library other than
DFHHTML.DFHDOC, you must define DOCTEMPLATE definitions for your
templates, and specify an alternate library.

Restricting the size of HTML templates
If the template is to be used by a transaction run using the 3270 Bridge, the size of
the template is restricted. If the template requires more than 32K of storage to be
read from the VSE/ESA sub-library, any attempt to use the 3270 Bridge results in
message DFHWB0133 being issued with a code of X’4119’.

58 CICS TS for VSE/ESA: Internet Guide

Even if the template requires less than 32K of storage it can still cause an error if
symbol substitution significantly increases the amount of data.

When the template is generated, DFHWBTLG issues a message containing the
amount of storage required for each template to be read from the VSE/ESA
sub-library. It also issues warning messages when the size of the template exceeds
30K and 32K.

Writing a customizing macro definition
You have to supply a complete assembler macro definition that is invoked by
CICS-supplied assembler macros. The definition of a customizing macro must be
written according to the rules for assembler macro definitions. The macro
invocations in the definition must also follow the rules for assembler language
macro statements. A customizing macro definition contains the following elements:

1. A MACRO statement to begin the definition.

2. The name of the macro.

3. Any number of invocations of the DFHMDX macro.

The syntax of DFHMDX is described in “The DFHMDX macro” on page 63, and
its use is described in “Customization examples”. DFHMDX is invoked from
within DFHMSX.

4. A MEND statement to end the definition.

Customization examples
The following sample shows a customizing macro definition. The first invocation of
DFHMDX sets defaults for the values to be applied to subsequent invocations of
DFHMDX by specifying * for the mapset name and map name. Later invocations
override or add to the parameters for specific maps in the mapset. The continuation
characters are in column 72, and the continued text is resumed in column 16.

MACRO
DFHMSX
DFHMDX MAPSET=*,MAP=*, *

PF1='Help,PF3='Exit',PF4='Save',PF09='Messages'
DFHMDX MAPSET=DFHWB0,MAP=*, *

TITLE='CICS Web Interface', *
PF3='Messages'

DFHMDX MAPSET=DFHWB0,MAP=DFHWB02, *
TITLE='CICS Web Interface Enable', *
PF3='Save'
MEND

When CICS creates the templates, for each of your BMS map definitions it invokes
the DFHMSX customizing macro. Each DFHMDX macro is processed in sequence,
and if applicable, the parameter values are stored. Where a duplicate parameter is
specified for a particular map or mapset, the new value replaces the previous value
for that map or mapset only.

The first DFHMDX macro in this example, where MAPSET=* and MAP=*, specifies
a value of ″Exit″ for the PF3 keyword of any subsequent occurrence of DFHMDX.
This value applies to every mapset and map in every subsequent DFHMDX macro
until a new value is specified for the PF3 keyword. Here, PF3 remains as the ’Exit’
key for all mapsets and maps until it is set to ″Messages″ for all the maps in
mapset DFHWB0. It is then set to ″Save″ for map DFHWB02 only; in all the other
maps in DFHWB0, PF3 is still ″Messages″, and in all mapsets and maps other than
DFHWB0, PF3 is still ″Exit″.

Chapter 10. Creating HTML templates from BMS definitions 59

The customizations listed in “Why customize the generation of templates?” on
page 57 can be performed as follows:

1. Support the application’s use of keys that are not in the standard output.

You can add a key to the map AD001 as follows:
DFHMDX MAP=AD001,PF18='Resubmit'

The Web browser displays a key with the legend ″Resubmit″. If the user
presses this key, it is reported to the application as PF18.

2. Suppress the HTML Reset function.

You can suppress the Reset function for the map AD001 as follows:
DFHMDX MAP=AD001,RESET=NO

The Web browser displays a page that does not contain a Reset key.

3. Change the appearance of the keys, or the text associated with them.

You can change the legend on the PF1 key as follows:
DFHMDX PF1='Help'

The Web browser displays a key with the legend ″Help″. If the user presses
this key, it is presented to the application as PF01.

4. Provide an HTML title for the HTML page.

You can add a title to a displayed map as follows:
DFHMDX MAP=DFHWB01,TITLE='CICS Web Interface'

The Web browser displays ″CICS Web Interface″ as the title of the page.

5. Provide a masthead graphic for the HTML page.

Write a DFHMDX macro for the map that is to have the masthead. For
example:

DFHMDX MASTHEAD=(/dfhwbimg/masthead.gif,'CWI')

The Web browser uses the specified masthead, or will show ″CWI″ as the
masthead if it cannot find the graphic file.

6. Change the color of the background, or specify a special background.

Write a DFHMDX macro for the map that is to have a special background. For
example:

DFHMDX MAP=AD001,BACKGROUND=/dfhwbimg/texture4.jpeg

The Web browser uses the specified file as a background for the page.

To change the color of the background, use the BGCOLOR parameter.

7. Modify the BMS colors.

To modify the BMS colors, write a DFHMDX macro like the following:
DFHMDX MAP=AD001,BLUE=AQUA,YELLOW=#FF8000

The Web browser shows BMS blue text in HTML aqua (the same as BMS
turquoise), and BMS yellow text in bright orange.

8. Suppress parts of the BMS map.

You can suppress a field in a map as follows:
DFHMDX MAP=AD001,SUPPRESS=((5,2),(6,2),(7,*))

The displayed page does not contain the field at row 5 column 2, nor the field
at row 6 column 2, nor any of the fields in row 7 of the map.

60 CICS TS for VSE/ESA: Internet Guide

9. Add Web browser control functions.

If you want a JavaScript function to be invoked when a page is loaded, use the
ONLOAD parameter of the DFHMDX macro in your customization macro. For
example:

DFHMDX MAP=AD001,ONLOAD='jset(''CWI is wonderful'',''Hello there!'')'

will get the JavaScript function jset invoked with the given parameters when
the page is loaded.

To complete this customization, the definition of the jset function must be
added to the header of the HTML page with a DFHWBOUT macro. You must
put the macro invocation before the first DFHMDF macro in the BMS map
definition. Here is a sample:

DFHWBOUT '<script language="JavaScript">'
DFHWBOUT 'function jset(msg,wng)'
DFHWBOUT ' {window.status = msg; alert(wng)}'
DFHWBOUT '</script>'

When the page is loaded the status area at the bottom of the window contains
the message ″CWI is wonderful″, and an alert window opens that contains the
message ″Hello there!″.

10. Add text that appears only on the HTML page, but is not part of the BMS
map.

Put DFHWBOUT macros in the BMS map definition in the place that you want
the text to appear in. For example:

DFHWBOUT '<p>This text illustrates the use of the DFHWBOUT macro,'
DFHWBOUT 'which can be used to output text that should only appear'
DFHWBOUT 'in HTML templates, and will never appear in the'
DFHWBOUT 'corresponding BMS map.'

will produce the following lines in the HTML template:
<p>This text illustrates the use of the DFHWBOUT macro,
which can be used to output text that should only appear
in HTML templates, and will never appear in the
corresponding BMS map.

11. Add HTML header information to the HTML page.

Put DFHWBOUT macros in the BMS map definition before the first occurrence
of DFHMDF. For example:

DFHWBOUT '<meta name="author" content="E Phillips Oppenheim">'
DFHWBOUT '<meta name="owner" content="epoppenh@xxxxxxx.yyy.co*

m">'
DFHWBOUT '<meta name="review" content="19980101">'
DFHWBOUT '<meta http-equiv="Last-Modified" content="&WBDATE&W*

BTIME GMT">'

will produce the following lines in the head section of the HTML template:
<meta name="author" content="E Phillips Oppenheim">
<meta name="owner" content="epoppenh@xxxxxxx.yyy.com">
<meta name="review" content="19980101">
<meta http-equiv="Last-Modified" content="23-Dec-1997 12:06:46 GMT">

DFHMSD sets the values of &WBDATE and &WBTIME to the time and date at
which the macro is assembled.

12. Using country-specific characters in JavaScript and HTML.

The default US code page 37, which is used to produce the template, can be
modified for different codepages. For example:

Chapter 10. Creating HTML templates from BMS definitions 61

DFHMDX OPENSQ=[,CLOSESQ=],OPENBR={,CLOSEBR=},EXCLAM=!

This specifies the substitutions needed. The characters must be entered on a
terminal where the codepage corresponds to the SERVERCP on the DFHCNV
call.

HTML and browser considerations
When customizing a macro definition, the HTML specifications for white space must
be taken into consideration. For 3270 terminals, blanks (EBCDIC x’40’) and nulls
(EBCDIC x’00’) can be used to format screen data positions. When such a
datastream is converted into HTML, the browser interpretation of this generates
different output to that found on a 3270 terminal.

A string of blanks is ignored by a browser if it immediately follows a start tag, and
any subsequent sequence of contiguous blanks is interpreted as one blank. To
force the rendering of all blanks, you can use the <pre> and </pre> tags.

The handling of null characters is unspecified, and browsers handle them
inconsistently. They may or may not be displayed.

Limitations
CICS Web 3270 supports the following terminal control commands:

v EXEC CICS SEND (but not the STRFIELD option)

v EXEC CICS CONVERSE (but not the STRFIELD option)

v EXEC CICS RECEIVE

It also supports minimum function BMS and the EXEC CICS SEND TEXT
command.

The following limitations apply to CICS Web 3270 support:

v The ATTRB=BRT option of a BMS field has no effect for an unprotected (input)
field. This applies if the field is defined with ATTRB=BRT in the map definition or
if the field attribute is changed to BRT dynamically on an EXEC CICS SEND
MAP command.

v If a BMS program changes the attribute of a field in the map dynamically (by
moving a 3270 attribute value to the attribute byte of a field named in the logical
map), this change is not reflected in the HTML template subsequently sent to a
browser. The template is sent as it is defined in the template dataset.

v The emulation of lightpens is not supported.

v There is no support for partitions, logical devices codes, magnetic slot readers,
outboard formatting, or other hardware features.

v EXEC CICS DEFRESP is ignored. This may affect application recovery.

v The COLOR option is not supported for terminal control commands.

v User transactions can mix BMS and non-BMS requests, subject to the following
restrictions. Transactions not following these guidelines will abend AWC3:

– A BMS RECEIVE must follow a BMS SEND.

– A terminal control RECEIVE must follow a terminal control SEND.

– To change from using BMS requests to using non-BMS requests and vice
versa, use a SEND with the ERASE option.

These restrictions apply from one transaction to the next in a
pseudo-conversation. This means that if a transaction issues a SEND MAP and

62 CICS TS for VSE/ESA: Internet Guide

then returns, the next transaction in the pseudo-conversation will have to issue a
RECEIVE MAP to get any data from the screen. If it issues a terminal control
RECEIVE, it will abend AWC3.

The DFHMDX macro
The DFHMDX macro is invoked from within DFHMSX. Its syntax is shown in
Figure 11.

The keyword parameters to this macro can appear in any order.

MAPSET
specifies the name of the mapset that contains the map to which other
options refer. If you specify an asterisk, the options become the default to
all subsequent mapsets.

MODULE
specifies the name of the load module into which the mapset is link-edited.

DFHMDX

WW DFHMDX MAPSET= name
* ,MODULE=name

,MAP= name
*

W

W
,DOCTYPE= ’-//W3C//DTD HTML 3.2//EN’

doctype
,TITLE=’title-text’

W

W
,MASTHEAD= url

url,’alternate text’
,BACKGROUND=url ,BGCOLOR= color

W

W
,TEXT= color ,LINK= color ,VLINK= color ,ALINK= color

W

W

X

,

, key = button X

,

, bmscolor = color

YES
,RESET = NO

’text’

W

W

X

,

,SUPPRESS=((row,col))
,HEAD ,FOOT

,ONLOAD=’text’
W

W
,ONUNLOAD=’text’ NO

,PROPFONT= YES
OPENSQ = char

hex-value

W

W
CLOSESQ = char

hex-value
OPENBR = char

hex-value
CLOSEBR = char

hex-value

W

W
EXCLAM = char

hex-value
,CODEPAGE(datavalue)

WY

Figure 11. Syntax of DFHMDX

Chapter 10. Creating HTML templates from BMS definitions 63

You can only use this parameter if you do not specify MAPSET=*. The
name you specify (which can only be seven characters) is used to construct
the names of the templates by adding a single character suffix. The default
value is the name of the mapset.

MAP specifies the name of the map within the mapset specified in MAPSET to
which the options refer. If you specify an asterisk, the options become the
default to all subsequent maps.

DOCTYPE
specifies the DTD public identifier part of the <!doctype> tag that you want
to appear in the HTML template. The default is -//W3C//DTD HTML 3.2//EN,
which specifies HTML 3.2. Level 3.2 is required for the color support in
certain HTML tags.

TITLE specifies the title to be used as the HTML title, and as the content of the
first <h1> tag.

MASTHEAD
specifies the URL of a masthead graphic to appear at the head of a page
before the first <h1> tag. If you supply alternate-text, the browser will use
the text if it cannot load the specified graphic.

BACKGROUND
specifies the URL of a graphic file for the page background.

BGCOLOR
specifies the color of the page background.

TEXT specifies the color of normal text.

LINK specifies the color of unvisited hypertext links on the page.

VLINK specifies the color of visited hypertext links on the page.

ALINK
specifies the color of activated hypertext links on the page.

PF1-PF24
specifies the name or image to be assigned to the simulated button for the
corresponding 3270 program function key.

PA1-PA3
specifies the name or image to be assigned to the simulated button for the
corresponding 3270 program attention key.

CLEAR
specifies the name or image to be assigned to the simulated button for the
3270 Clear key.

ENTER
specifies the name or image to be assigned to the simulated button for the
3270 Enter key.

PEN specifies the name or image to be assigned to the simulated button for pen
selection.

BLUE specifies the color to appear in the HTML page where blue is specified in
the BMS map. The default is #0000FF.

GREEN
specifies the color to appear in the HTML page where green is specified in
the BMS map. The default is #008000.

64 CICS TS for VSE/ESA: Internet Guide

NEUTRAL
specifies the color to appear in the HTML page where neutral is specified in
the BMS map. The default is #000000.

PINK specifies the color to appear in the HTML page where pink is specified in
the BMS map. The default is #FF00FF.

RED specifies the color to appear in the HTML page where red is specified in the
BMS map. The default is #FF0000.

TURQUOISE
specifies the color to appear in the HTML page where turquoise is specified
in the BMS map. The default is #00FFFF.

YELLOW
specifies the color to appear in the HTML page where yellow is specified in
the BMS map. The default is #FFFF00.

RESET
specifies whether the HTML reset function is to be supported. Specify YES
to get a default reset button with the default legend Reset. Specify NO to
get no reset button. Specify your own text for a reset button with your own
legend.

SUPPRESS
specifies BMS map fields that are not to appear in the HTML page. Specify
any number of row and column pairs for the start positions of the fields to
be suppressed. The values rr and cc specified must correspond to the
POS=(rr,cc) specification on the DFHMDF macro for a field to be
suppressed. Each pair must be enclosed in parentheses, and the whole list
of pairs must be enclosed in parentheses. If you want to suppress all the
fields in a row, specify the row number and put an asterisk for the column
specification. The SUPPRESS parameter is ignored if you specify it with
MAP=* or MAPSET=*.

Use the keyword HEAD to suppress the heading information in the
template. Use the keyword FOOT to suppress the footer information in the
template. If you want to create a single HTML page from several maps,
specify FOOT on the first, HEAD on the last, and both FOOT and HEAD on
all the maps in between.

If you wish to specify a list that exceeds the assembler’s limit of 256
characters for a character string in macro definitions, code extra DFHMDX
macros with the same MAPSET and MAP values, and put more values in
the SUPPRESS parameters.

ONLOAD
specifies the JavaScript text to be used to replace the standard onLoad
exception handler for the HTML page. The text must not contain double
quotes ("), and single quotes (') must be doubled ('') following the usual
assembler language conventions. If you use this parameter you will
suppress the setting of the cursor to the field indicated by DFH_CURSOR
provided by the standard onLoad exception handler. You can use the
function dfhsetcursor to set the cursor position.

ONUNLOAD
specifies the JavaScript text to be used as the onUnload exception handler
for the HTML page. The text must not contain double quotes ("), and single
quotes (') must be doubled (''), following the usual assembler language
conventions.

Chapter 10. Creating HTML templates from BMS definitions 65

PROPFONT
specifies the font. If YES, the template will specify that text is to be
presented in a proportional font, and consecutive spaces are to be reduced
to a single space. If NO, the template will specify that text is to be specified
in a font of fixed pitch, and consecutive spaces are to be preserved.

OPENSQ
The hex value or the character to be used to display an open square
bracket. The default is x’BA’ (codepage 37).

CLOSESQ
The hex value or the character to be used to display a close square
bracket. The default is x’BB’ (codepage 37).

OPENBR
The hex value or the character to be used to display an open brace. The
default is x’C0’ (codepage 37).

CLOSEBR
The hex value or the character to be used to display a close brace. The
default is x’D0’ (codepage 37).

EXCLAM
The hex value or the character to be used to display an exclamation mark.
The default is x’5A’ (codepage 37).

CODEPAGE
specifies the IBM codepage number in which any text generated by the
template generation process is encoded. This codepage must match the
codepage used when the templates are used by CICS, either in the
HOSTCODEPAGE option of the EXEC CICS DOCUMENT command, or in
the SRVERCP option of the DFHCNV macro selected by the analyzer
program. The IBM host codepages supported by CICS are described in
CICS Family: Communicating from CICS on System/390. The default
codepage is 037.

color can be an explicit specification #rrggbb, where rr, gg, and bb are 2-digit
hexadecimal numbers giving the intensities of red, green, and blue in the requested
color, or it can be any one of the following color names: AQUA, BLACK, BLUE, FUCHSIA,
GRAY, GREEN, LIME, MAROON, NAVY, OLIVE, PURPLE, RED, SILVER, TEAL, WHITE, YELLOW.

key can be any of PF01 to PF24, PA1 to PA3, CLEAR, ENTER, and PEN.

button can be (IMAGE,url), where url specifies the URL of a graphic image to be
used for the button, or 'text', where text is the text to be put in the button, or NO if
the button is not to appear.

bmscolor can be any of BLUE, GREEN, NEUTRAL, PINK, RED, TURQUOISE, and YELLOW.

The DFHWBOUT macro
The DFHWBOUT macro is used to add text to the HTML page generated from a
BMS map. The text appears only as part of the HTML page. If the macro is used
before the first occurrence of DFHMDF in a map, the text is placed in the <head>
section of the HTML page. If the macro is used elsewhere in the map, the text is
placed inline in the HTML page immediately following the text generated by the
preceding DFHMDF macro.

66 CICS TS for VSE/ESA: Internet Guide

DFHWBOUT

WW DFHWBOUT ’ text ’
NO

, SOSI = YES

WY

The parameters of this macro are as follows:

text The text that is to be inserted in the HTML page.

SOSI Whether the text contains DBCS characters delimited by shift-out (X’0E’)
and shift-in (X’0F’). The default is SOSI=NO.

Chapter 10. Creating HTML templates from BMS definitions 67

68 CICS TS for VSE/ESA: Internet Guide

Chapter 11. Writing CICS programs to process HTTP requests

This chapter describes facilities that help you to write CICS programs that process
HTTP/1.0 requests and responses. Note that unpredictable results may occur if you
use HTTP/1.1–specific headers.

v “Using HTTP requests” describes HTTP requests and how CICS handles them.

v “Explaining HTTP responses” on page 71 describes HTTP responses and how a
CICS program can construct them.

v “Sample application programs” on page 76 describes a small sample program
that you can use to test the operation of CICS Web support.

A CICS Web program can communicate with its caller by means of a CICS
communication area. If the program is supported by a converter, the communication
area contains the information put in it by Decode, otherwise it contains the entire
HTTP request. The HTTP header information is in EBCDIC, and if the analyzer
asks for data conversion, the user data has been translated using the
analyzer-specified key.

Using HTTP requests
This section gives an outline of the formats of HTTP requests. Detailed information
can be found in the references in “Information on the World Wide Web” on
page 165.

A Web resource is identified by a uniform resource locator (URL), which identifies
the host, and the resource requested. A user of a Web browser can enter a URL
like the following:
http://www.ibm.com:80/Scripts/Global/nph-cc?cc=at

In this URL,

v www.ibm.com is the name of the host to which the request is to be sent.

v 80 is the TCP/IP port to which the request is to be sent. (80 is the default port for
HTTP, and is not usually specified.) If the port is omitted, so is the colon that
precedes it.

v /Scripts/Global/nph-cc is the absolute path, identifying a file to be retrieved, or
a CGI script to be executed.

v cc=at is the query string.

The URL is converted by the browser into an HTTP request. An HTTP request
consists of a request line followed by zero or more HTTP headers, each delimited
by a carriage return line feed (CRLF), followed by optional user data. An HTTP
header consists of a name, a colon, a space, and a value. An additional CRLF
delimits the headers from the user data.The HTTP request line derived from the
sample URL above contains:
GET /Scripts/Global/nph-cc?cc=at HTTP/1.0

The first part of the line is the method (GET), the second part is the absolute path
and query string, and the last part is the HTTP version. There may be headers
generated by the Web browser that sends the request. This request contains no
user data.

A common way of generating HTTP requests is by the use of HTML forms. The
designer of an HTML form can specify that some of the data entered by the end

© Copyright IBM Corp. 1994, 2000 69

user is to be transmitted as user data in the HTTP request. A request generated
from a form might therefore include user data as well as the headers described
above.

In CICS Web support, the HTTP request is received from TCP/IP for VSE/ESA, and
presented to the analyzer, which is a user-replaceable program. The purpose of the
analyzer is to decide what CICS resources are needed to satisfy the request. The
interpretation of the absolute path as a file reference is not appropriate in the CICS
Web support environment, so an enterprise can choose to fix what absolute paths
can be sent by browsers, and how the resulting request is interpreted as a request
for CICS resources. The functions of the analyzer are described in “Chapter 6.
Writing an analyzer for CICS Web support” on page 37. The default analyzer, the
URLs that it accepts, and the way it interprets them, are described in “The default
analyzer” on page 40.

In the CICS business logic interface, the request for CICS resources is constructed
by the caller.

How to receive an HTTP request
There are two ways to receive an HTTP request:

1. Use the EXEC CICS WEB commands (this is the recommended method). See
“Using EXEC CICS WEB commands to receive an HTTP request”.

2. Use the environment variables program DFHWBENV (this method is
implemented for compatibility with various releases of CICS Transaction Server
for OS/390). See “Using DFHWBENV to retrieve information from an HTTP
request” on page 71.

Using EXEC CICS WEB commands to receive an HTTP request
When an application receives an HTTP request, the EXTRACT WEB command
allows the application processing the request to retrieve information about the
inbound request.

This information includes, within the first line of the request, the method to be
applied to the resource, the identifier of the resource (URI), the protocol version in
use, and any query string supplied on the request.

The EXEC CICS WEB READ/STARTBROWSE/READNEXT/ENDBROWSE
HTTPHEADER commands allow the application to extract header information that it
wants to read from the HTTP header fields. These headers allow the client to pass
on information about the request, and about the client itself, to the server. For
example, the user agent indicates the browser being used, and the Content-length
gives the length of the body of the HTTP request.

The EXEC CICS WEB READ/STARTBROWSE/READNEXT/ENDBROWSE
FORMFIELD commands allow the application to extract name-value pair information
from the body of the HTTP request when the body contains HTML forms data.
Either URL-encoded or multipart forms data can be used. These commands always
return the data in its unescaped form.

Applications that construct symbol lists for the EXEC CICS DOCUMENT API using
name-value pairs extracted using the EXEC CICS WEB
READ/STARTBROWSE/READNEXT/ENDBROWSE FORMFIELD commands must
use the UNESCAPED option on the EXEC CICS DOCUMENT command. If a value
contains any ampersands, the application must build the symbol list using a
different delimiter byte, and must specify the value of the delimiter on the

70 CICS TS for VSE/ESA: Internet Guide

DELIMITER option of the EXEC CICS DOCUMENT command. The delimiter
chosen must not appear in any of the names or values specified in the symbol list.

The EXEC CICS WEB RECEIVE command allows an application to receive the
message body of the HTTP request into a buffer. This means that applications that
handle non-forms data, or that prefer to handle the forms data in its escaped form,
can then pass the received data unchanged as a symbol list on an EXEC CICS
DOCUMENT command.The EXEC CICS WEB RECEIVE command allows the
server to receive user data into a buffer and the HTTP Content-length header tells
the application the size of the information being sent.

Using DFHWBENV to retrieve information from an HTTP request
You can use the environment variables program DFHWBENV to retrieve the
following information present in the HTTP request:
v The IP address of the client
v The IP address of the host
v The local host name
v The HTTP method
v The HTTP version

You can also use the environment variables program to retrieve an indicator of the
CICS release under which the program is running. See “Appendix E. Reference
information for DFHWBENV” on page 137 for more information about DFHWBENV
and the format in which it presents its output.

You can use information from the environment variables program and the
information in the communication area to control processing in your CICS program.
You should restrict yourself to the DPL subset of the CICS application programming
interface. The DPL subset is documented in CICS Application Programming
Reference.

You can use DFHWBENV in the alias transaction to extract HTTP request header
information from the incoming request. Note that you can not invoke DFHWBENV
from the analyzer.

Explaining HTTP responses
After receiving and interpreting a request, a server responds with an HTTP
response.

An HTTP response consists of a status-line, response header fields and the
document data. The status-line contains a numeric status code (STATUSCODE)
which defines the response and its associated textual phrase (STATUSTEXT) which
gives a short description of the status code. For example:

404 Not Found

This status code indicates that the server has not found anything matching the
Request-URI.

See http://www.w3.org/Protocols/rfc2068/rfc2068 chapter 10 for more
information on status codes and reason phrases.

The HTTP response that is sent back to the requester consists of a response line,
headers, and optional user data. As in an HTTP request, the CRLF combination

Chapter 11. Writing CICS programs to process HTTP requests 71

separates the headers, and a null header separates the headers from the user
data. A typical response might begin with the response line and the three headers
shown:
HTTP/1.0 200 Document follows
Date: Fri, 05 Jan 1999 14:23:02 GMT
Server: NCSA/1.5
Content-type: text/html

In the first header, HTTP/1.0 is the HTTP version, 200 is the HTTP response code,
and Document follows is a user-readable comment. (There are several standard
3-digit response codes; 200 is a response that indicates successful completion of
the request.) The next three headers are the date header, the server header, and
the content header. The user data might consist of HTML pages, or might be plain
text. (In this case the content header promises HTML.)

You can use the EXEC CICS DOCUMENT, EXEC CICS WEB, and EXEC CICS
TCPIP application programming interface to build your response, which is the
recommended method, or you can use the HTML template manager DFHWBTL
with commarea support, which is implemented for compatibility with various
releases of CICS Transaction Server for OS/390.

How to send an HTTP response
There are two ways to construct and send an HTTP response:

1. Use the EXEC CICS application programming interface (this is the
recommended method).

2. Use the HTML template manager (this method is implemented for compatibility
with various releases of CICS Transaction Server for OS/390).

Using the EXEC CICS API to send an HTTP response

The HTTP header fields allow the server to pass additional information about the
response and itself. To add HTTP header information the EXEC CICS WEB WRITE
HTTPHEADER command is used. These header fields give information about the
server and about further access to the resource identified by the request-URI.

The EXEC CICS WEB SEND command selects a document for delivery. By
inserting a document name in the DOCTOKEN option you can specify the name of
a document that you wish to send. This document can be a document that has
been created using the EXEC CICS DOCUMENT commands. The EXEC CICS
WEB RETRIEVE command retrieves a document that has been passed to CICS on
an earlier WEB SEND into an application buffer.

The DOCUMENT application programming interface, which is described in the CICS
Enhancements Guide, allows you to manage CICS documents with the following
commands. If you have several different programs building an HTTP response, you
can use the combination of EXEC CICS WEB SEND and EXEC CICS WEB
RETRIEVE, along with EXEC CICS DOCUMENT CREATE, to pass the partially
completed document from one part of the application to the next.

v EXEC CICS DOCUMENT CREATE creates a new document.

v EXEC CICS DOCUMENT RETRIEVE retrieves a copy of the document from the
document domain to the application.

v EXEC CICS DOCUMENT INSERT inserts information at a specified point in the
document.

v EXEC CICS DOCUMENT SET manipulates symbols and their associated values.

72 CICS TS for VSE/ESA: Internet Guide

Using the HTML template manager to construct an HTTP
response
The HTML template manager DFHWBTL allows you to insert templates in the HTTP
response, and to replace symbols in the templates with values that you specify. This
has been retained for compatibility with previous releases. See “Appendix D.
Reference information for DFHWBTL” on page 131 for more information about the
HTML template manager and its operation.

The storage containing the response must begin with a 32-bit integer specifying the
length of the response plus 4 for the integer. You can build the HTTP response in
the communication area, in which case the maximum length of the response is 4
less than the length of the communication area.

v If your program is operating under CICS Web support or under the CICS
business logic interface in pointer mode, you can build the response in any area
of storage other than the communication area, provided that you pass the
address of the storage to Encode in the communication area. In this way you
can build HTTP responses longer than 32K.

v If your program is operating under the CICS business logic interface in offset
mode, you can build the response only in the communication area provided.

The response can be constructed entirely by the CICS program, or partly by the
CICS program and partly by Encode. For commarea-style applications, translation
of the various parts of the response from EBCDIC to ASCII (for the headers) and to
the client code page (for the user data) is dealt with by the alias program. Web API
applications must specify the host and client code pages to be used on the relevant
API call.

Handling Escaped Data
The HTTP protocol specifies a set of control characters that are used to define the
structure of the stream of data returned in an HTTP response. HTML forms data, for
example, uses the ″&″ character to delimit the end of a name/value pair, so if a
user enters an ″&″ into an HTML form, the HTTP client must send the ″&″ in a way
that does not prevent the HTTP server from correctly parsing the data. The HTTP
client does this by ″escaping″ the character in question. Escaping consists of
replacing the relevant character with the string ″%nn″, where nn is the ASCII value
for the character being unescaped.

Handling escaped data in commarea applications
For commarea-style Web application that have been invoked as a result of an
HTTP request being received by a CICS Web TCPIPSERVICE, the way in which
CICS handles escaped data depends up the analyzer being used for that
TCPIPSERVICE.

On linking to the analyzer program, the HTTP request is in its escaped form. The
analyzer can:

v set field WBRA_UNESCAPE to WBRA_UNESCAPE_NOT_REQUIRED, so that
the Web application sees the HTTP request in its escaped form.

v leave the data in its unescaped form and ask CICS to unescape the body of the
HTTP request by setting WBRA_UNESCAPE to
WBRA_UNESCAPE_REQUIRED.

v unescape the HTTP request, then set WBRA_UNESCAPE to
WBRA_UNESCAPE_NOT_REQUIRED. This is what the default analyzer
DFHWBADX does, to retain compatibility with earlier releases.

Chapter 11. Writing CICS programs to process HTTP requests 73

The operation of DFHWBUN and DFHWBPA (CICS-supplied utilities to help with the
processing of HTTP requests), is affected by whether the data they are processing
is escaped or unescaped. CICS uses the setting of WBRA_UNESCAPE to
determine this, so you must ensure that on exit from the analyzer URM,
WBRA_UNESCAPE is set to WBRA_UNESCAPE_NOT_REQUIRED only if the
data is unescaped, otherwise the HTML forms data may not be processed correctly.

If you are writing a commarea-style application that can be run either through CICS
Web support or through the CICS business logic interface, you must ensure that
WBRA_UNESCAPE is set to WBRA_UNESCAPE_NOT_REQUIRED, and that any
escaping is delegated to the Web application. If this is not done, the application is
passed unescaped data by the CICS business logic interface, and escaped data by
CICS Web support, which may cause unpredictable results.

Describing symbols, symbol table, and symbol list
This section describes the symbols in an HTML template, and how the HTML
template manager uses the symbol table to replace the symbols with values. The
concept of symbol lists and variable substitution is the same for the EXEC CICS
WEB application programming interface as for DFHWBTL.

Symbols in an HTML template
In an HTML template, symbols begin with an ampersand (“&”) and end with a
semicolon (“;”), and contain up to 32 characters with no imbedded spaces. Thus the
following template contains &mytitle; as its only symbol.
<html>

<head>
<title>

&mytitle;
</title>

</head>
<body>

Symbol lists
This section describes symbol lists as used by the template manager DFHWBTL,
which has been implemented for compatibility with various releases of CICS
Transaction Server for OS/390.

The template manager maintains a symbol table for each active page environment.
In WBTL_BUILD_HTML_PAGE and WBTL_ADD_HTML_TEMPLATE, the template
manager uses the input symbol list, if any, to create or update the symbol table,
and then replaces the symbols in the template by their values in the table.

A symbol list is a character string. It consists of one or more definitions with single
byte separators. By default, the single byte separator is an ampersand, but the
caller of the template manager may choose their own separator, as described in
“Operational example” on page 75. A definition consists of a name, an equals sign,
and a value. Here is an example:
mytitle=New Authors&auth1=Halliwell Sutcliffe&auth2=Stanley Weyman

The name must contain only uppercase and lowercase letters, numbers, and
underscores (“_”). The name is case-sensitive, so uppercase letters are regarded
as different from lowercase letters. Unlike the symbols in the template, the names in
the symbol list have neither an ampersand at the beginning, nor a semicolon at the
end. The symbol &mytitle; in the template corresponds to the name mytitle in the
symbol list.

74 CICS TS for VSE/ESA: Internet Guide

The caller of the template manager may specify their own symbol separator to
override the default of ampersand. Do this by inserting the character sequence
‘&DELIM=x&’ at the start of the symbol list. The ‘x’ is a single byte separator used
in the following list of symbols. The single byte may be any hexadecimal value
apart from:

v null (binary X’00’)

v shift in (binary X’0E’)

v shift out (binary X’0F’)

v space (binary X’40’)

v plus sign (binary X’4E’)

v percent sign (binary X’6C’)

v colon (binary X’7A’)

v equals (binary X’7E’)

v backslash (binary X’E0’)

If the separator is overridden, the application must ensure that the separator does
not appear in any symbol value in the symbol list. For this reason, the application
should avoid using alphanumeric and other printable characters as the separator.

If any of the above values are specified, they are disregarded, and the template
manager assumes that an ampersand is being used as a separator. If a valid
separator override is specified, the application must use it to separate symbol
values from the symbol names that follow them. The application must also
guarantee that the separator does not appear anywhere in a symbol value, and
ensure that WBTL_SYMBOL_LIST_LEN includes the length of ‘&DELIM=x&’.

If an application specifies a valid separator override, all symbol values in the symbol
list for this call to the template manager are treated as unescaped character
sequences. This means that they are substituted into the template without
undergoing any conversion. For example, a plus sign (“+”) remains as a plus, and
sequences such as %2B remain as they are rather than being converted to single
characters.

If the application does not specify its own valid separator, the following rules apply
to symbol values. The value in the symbol list can have any characters except
ampersand, but with some restrictions on the use of the percent sign (“%;”) and the
plus sign (“+”). A percent sign must be followed by two characters that are
hexadecimal digits. When the value is put into the symbol table, a plus sign is
interpreted as a space, a percent sign and the two hexadecimal digits following it
are interpreted as the EBCDIC equivalent of the single ASCII character denoted by
the two digits, and the remaining characters are left as they are. If you want a plus
sign in the value in the symbol table, you must put %2B; in the value in the symbol
list. If you want a percent sign in the value in the symbol table, you must put in the
value %25 ; in the symbol list. If you want an ampersand in the value in the symbol
table, you must put %26; in the value in the symbol list. If you want a space in the
value in the symbol table, the value in your symbol list may contain a space, a plus
sign, or %20;.

Operational example
The following symbol list
mytitle=New Authors&auth1=Halliwell Sutcliffe&auth2=Stanley Weyman

provides definitions of three symbols. Note that an ampersand is a separator that
separates a name from the following value, and is not part of the name that follows

Chapter 11. Writing CICS programs to process HTTP requests 75

it. In an HTML template, &mytitle; is replaced by New Authors, &auth1; by
Halliwell Sutcliffe, and &auth2; by Stanley Weyman.

Here is an example of how an application specifies its own separator:
&DELIM=!&COMPANY=BLOGGS & SON!ORDER=NUTS + BOLTS

Here the symbol COMPANY has a value of ‘BLOGGS & SON’. The symbol ORDER
has a value of ‘NUTS+BOLTS’. The delimiter used is ‘!’, but a non-printable
character should be used which will never appear in a symbol value. The use of the
UNESCAPED option ensures that the plus sign in ‘NUTS+BOLTS’ is not converted
to a space.

WBTL_SYMBOL_LIST_LEN would be set to decimal 48.

Using the output of the environment variables program
The environment variables program, DFHWBENV, is implemented for compatibility
with various releases of CICS Transaction Server for OS/390.

The output of the environment variables program, described in “Appendix E.
Reference information for DFHWBENV” on page 137, can be used as a symbol list
for the HTML template manager. If you want to use an environment variable that is
derived from one of the HTTP headers, you cannot always predict whether it will
appear in the environment variables string. Therefore, you should always initialize
the symbol table so that names that represent environment variables are associated
with default values. Then you can use the output from the environment variables
program as a symbol list. For example, if you want to use the &HTTP_REFERER; and
&HTTP_AUTHORIZATION; variables in your template, but you do not know whether the
client has set them, you could pass the following symbol string to the template
manager first:
HTTP_REFERER=&HTTP_AUTHORIZATION=

This associates both the names with a null string value in the symbol table.

Sample application programs
DFH$WB1A is a sample program provided with CICS Web support. It uses no
converter, and constructs a simple HTTP response whose body is an HTML page.
The sample program can be run by enabling CICS Web support with the default
analyzer DFHWBADX, and by entering a suitable URL such as the following on a
Web browser:
http://9.22.123.12:10004/cics/CWBA/DFH$WB1A

The format of the URL is described in “Default CICS URL format” on page 79. The
response displays the message “DFH$WB1A on system xxxxxxxx successfully
invoked through the CICS Web support.” with xxxxxxxx replaced by the application
ID of the CICS system in which CICS Web support is running.

DFH$WB1C is another sample application. It has the same function as
DFH$WB1A, but is written in C.

Sample application DFH0WBCA demonstrates the use of the DOCUMENT API.

76 CICS TS for VSE/ESA: Internet Guide

Chapter 12. Displaying a template on a Web browser

This chapter contains a simple example of how you could use the WEB and
DOCUMENT programming interface and the DOCTEMPLATE and TCPIPSERVICE
resource definitions to display a document template on a Web browser. It is
supplied in this book as guidance only, and is not intended as comprehensive
programming information. Details of the syntax and parameters of the commands
used in this example can be found in the CICS Application Programming Reference.

In this example:

1. PROGRAM1 displays a template called TEMPLATE1, which invites the user to
enter their name.

2. The template specifies PROGRAM2 in its ″form action=″ field.

3. PROGRAM2 then runs, using as input the user’s name from PROGRAM1 and
displaying it on the browser as part of a template called TEMPLATE2.

How to display a template on a Web browser
This section provides information about the steps you might follow to display a
template:

1. Define and install a TCPIPSERVICE definition to specify the port on which you
want CICS and the browser to communicate:
TCpipservice ==> MYTCPIP
Group ==> MYGROUP
DEscription ==> Provides port number to display template on Web
URM ==> DFHWBADX
Portnumber ==> 10004
STatus ==> Open
TRansaction ==> CWXN
Backlog ==> 00001
TSqprefix ==>
Ipaddress ==>

2. Define and install two DOCTEMPLATE definitions. One specifies a
MEMBERNAME of TEMPLAT1 and a TEMPLATENAME=WEBDISPLAY1, as
follows:
DOctemplate ==> MYDOCT
Group ==> MYGROUP
DEscription ==> Template for display on Web
FULL TEMPLATE NAME
TEmplatename ==> WEBDISPLAY1
ASSOCIATED CICS RESOURCE
File ==>
TSqueue ==>
TDqueue ==>
Program ==>
Exitpgm ==>
TEMPLATE SUBLIBRARY
Library ==> DFHHTML
Membername ==> TEMPLAT1
TEMPLATE PROPERTIES
Appendcrlf ==> YES
TYpe ==> Ebcdic

The second specifies a MEMBERNAME of TEMPLAT2 and a TEMPLATENAME
of WEBDISPLAY2.

3. Create the first template. In this example, the HTML data is in a VSE/ESA
sub-library named DFHDOC in library DFHHTML, in member TEMPLAT1.HTML:

© Copyright IBM Corp. 1994, 2000 77

<HTML>
<HEAD>
<TITLE>WEB TEMPLATE COMPANY</TITLE>
</HEAD>
<BODY>
<center>
<H2>CICS Web support at work</H2>
<H3>Please enter your first name:</H3>
<FORM METHOD=POST ACTION="http://yoursystem:10004/cics/CWBA/PROGRAM2">
Name:

<input type=text name=name size=20 maxlength=25>
<P>

<input type=submit value="Click here">
</form>
</center>
</BODY>
</HTML>

The URL format is described in “Default CICS URL format” on page 79.

4. Create the second template. In this example, the HTML data is in a VSE/ESA
sub-library named DFHDOC in library DFHHTML, in member TEMPLAT2.HTML:
<HTML>
<HEAD>
<TITLE>WEB TEMPLATE COMPANY</TITLE>
</HEAD>
<BODY>
<center>
<H2>CICS Web support at work</H2>
<H3>Hello &name;, welcome to CICS Web support!</H3>
</center>
</BODY>
</HTML>

5. In your PROGRAM1 application program, define a 16–byte field called TOKEN1
to hold the document token, then code the following commands:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(TOKEN1)
TEMPLATE('WEBDISPLAY1')

where the TEMPLATE name is the name specified on the TEMPLATENAME
operand of the DEFINE DOCTEMPLATE command. This command creates a
document at the location in storage pointed to by TOKEN1. The document
contains the HTML in template WEBDISPLAY1.
EXEC CICS WEB SEND

DOCTOKEN(TOKEN1)
CLNTCODEPAGE('client codepage')

This command sends the specified document to a browser. CLNTCODEPAGE
can be any of the client codepages listed in “Appendix I. HTML-coded character
sets” on page 149.

6. In your PROGRAM2 application program, define an 80–byte buffer, DOCBUF, to
hold the retrieved document, a 16–byte field called TOKEN2 to hold the
document token, then code the following commands:
EXEC CICS WEB RECEIVE

INTO(DOCBUF)
LENGTH(DOCLENGTH)
MAXLENGTH(80)
CLNTCODEPAGE('client codepage')
HOSTCODEPAGE('host codepage')

78 CICS TS for VSE/ESA: Internet Guide

where CLNTCODEPAGE can be any of the client codepages listed in
“Appendix I. HTML-coded character sets” on page 149, and HOSTCODEPAGE
can be any of the host codepages listed in the CICS Family: Communicating
from CICS on System/390. The default host codepage is 037.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(TOKEN2)
TEMPLATE('WEBDISPLAY2')
SYMBOLLIST(DOCBUF)
LISTLENGTH(DOCLENGTH)

where the TEMPLATE name is the name specified on the TEMPLATENAME
operand of the DEFINE DOCTEMPLATE command. This command creates a
document at the location in storage pointed to by TOKEN2. The document
contains the HTML from template WEBDISPLAY2, with the symbol list retrieved
on the WEB RECEIVE command.
EXEC CICS WEB SEND

DOCTOKEN(TOKEN2)
CLNTCODEPAGE('client codepage')

This command sends the specified document to a browser. CLNTCODEPAGE
can be any of the client codepages listed in “Appendix I. HTML-coded character
sets” on page 149.

7. On your browser, enter a URL like the following:
http://yoursystem:10004/cics/CWBA/PROGRAM1

The URL format is described in “Default CICS URL format”.

Default CICS URL format
The format of the URL used in this example is the default format used by the
analyzer (see “Chapter 6. Writing an analyzer for CICS Web support” on page 37).
The format is:

http is the protocol you want the browser to use. This can be http.

yoursystem
is the TCP/IP name or IP address for the VSE/ESA system on which CICS
is running. If none is specified, this defaults to the IP address of the default
TCP/IP stack for the VSE/ESA system on which CICS is running.

10004 is the port number you specified in the TCPIPSERVICE definition. If you are
using the HTTP protocol and you omit the port number, it defaults to 80.

cics is the converter name, if you use one, or cics if you do not want to use a
converter.

CWBA
is the CICS Web transaction.

PROGRAM1
is the name of your program.

Chapter 12. Displaying a template on a Web browser 79

80 CICS TS for VSE/ESA: Internet Guide

Chapter 13. Security for CICS Web support

This chapter discusses security considerations for the HTML template manager
VSE/ESA sub-library, and the CICS Web support transactions. It also contains
“Using sample programs for security” on page 82 which illustrate the operation of
the sample security analyzer, converter, and sign-on program.

Security for the HTML template manager sub-library
If your CICS programs use the VSE/ESA sub-library facilities of the HTML template
manager described in “Appendix D. Reference information for DFHWBTL” on
page 131, the CICS region user ID must have READ authority for the library
described in the DOCTEMPLATE VSE/ESA sub-library definition. If you reference
other VSE/ESA sub-libraries by defining DOCTEMPLATEs with other libraries, the
CICS region must also have READ authority for them.

Security for CICS Web support transactions
You can specify security requirements for each of the transactions that compose the
CICS Web support. In the following explanations:

v authority to attach means that the associated user must be given READ authority
to the named transaction in the resource class specified by the XTRAN system
initialization parameter.

v authority to START means that the associated user must be given READ
authority to the named transaction in the resource class specified by the XPCT
system initialization parameter.

v authority to specify a user ID means that the associated user must be given
READ authority to the userid.DFHSTART profile in the SURROGAT resource class,
if the XUSER system initialization parameter is specified as YES.

v authority to use a program means that the associated user must be given READ
authority to the named program in the resource class specified by the XPPT
system initialization parameter.

For more information, see the CICS Security Guide.

Security for the alias
The alias transaction executes as a non-terminal CICS transaction. Its name is
user-specified. If you use the default analyzer described in “The default analyzer” on
page 40, the transaction name is the second “index level” in the absolute path
specified by the client, and is usually CWBA.

The alias transaction executes under the user ID specified in wbra_userid, if it is
specified by the analyzer, otherwise it executes under the CICS default userid. If
you use the CICS-supplied alias definition, this user ID must have the following
authority:

v The authority to attach the alias transaction

If you define your own alias transactions, this user ID must have the following
authorities:

v The authority to attach the alias transaction

v The authority to access any CICS resources used by the alias transaction, if it is
defined with the RESSEC(YES) option

© Copyright IBM Corp. 1994, 2000 81

v The authority to access any CICS system programming commands used by the
alias transaction, if it is defined with the CMDSEC(YES) option

Using sample programs for security
If you want a series of Web transactions to be executed under a user ID that is
specified by the Web client (the end user), you can use the security sample
programs to help you. To use the security analyzer sample program, you must
specify its name as the Analyzer Program name in the TCPIPSERVICE definition.

Two sets of sample programs are provided:

1. The security sample programs, described in “The security sample programs”:
v The security analyzer, DFH$WBSA
v The security converter, DFH$WBSC
v The sign-on program, DFH$WBSN

2. The basic authentication sample programs, described in “Using basic
authentication sample programs” on page 83:
v The basic authentication analyzer, DFH$WBAU
v The basic authentication converter, DFH$WBSB

The CICS resource definitions for these programs are in group DFH$WBSN.

The security sample programs
The security sample programs use the state management sample program,
DFH$WBST.

A typical sequence of interactions between a user and the CICS Web support might
be as follows:

1. The end user sends an HTTP request in which the URL has no query string.

2. The security analyzer checks the URL for a converter name, alias name,
program name, and query string. As there is no query string, it sets its outputs
so that the converter is the security converter sample program DFH$WBSC,
while the alias and CICS program are the ones requested in the URL. The
user token output is zeros.

3. The Decode function of the security converter, finding a zero user token, calls
the Create function of the state management sample program to assign a
token. It saves the token in its user token output. It uses the Store function of
the state management program to save the original URL. It sets the CICS
program name to DFH$WBSN, the security sign-on sample program.

4. The sign-on program builds an HTML form asking for a user ID and a
password. The form specifies an HTML ACTION that generates a URL. The
generated URL causes the sign-on program to be invoked again, but with the
state management token as its query string.

5. The Encode function of the security converter builds the HTTP response.

6. The user gets the form, fills in the user ID and the password, and sends it
back.

7. The security analyzer finds a query string. It uses the Retrieve function of the
state management program to validate the token. As the token is not yet
associated with a valid user ID, it sets its outputs so that the converter name is
the security converter. The state management token is passed as the user
token.

82 CICS TS for VSE/ESA: Internet Guide

8. The sign-on program extracts the user ID and password from the form, and
uses EXEC CICS VERIFY PASSWORD to validate the user ID. DFH$WBSN
passes the validated user ID in the commarea to the security converter
(DFH$WBSC), which uses the Store function of the state management
program.

9. The Encode function of the security converter builds the HTTP response, and
adds a redirection (HTTP response 302) to it, incorporating the original URL.

10. When the user has entered a valid userid and password, CICS issues an
HTTP Redirect response containing the original URL, with the security token
appended to it. When the browse resubmits the redirected request, CICS
knows that signon processing is complete, and processes the request.

11. The Web browser receives the redirected URL, and sends a request for the
original program with the token that identifies the validated user ID.

12. The security analyzer finds that the query string is a valid user token
associated with a user ID, so the original request proceeds.

Once the user token has been established as the key to the authenticated user ID,
it is the responsibility of the CICS program, or the converter that builds the HTTP
response, to ensure that any URLs that are generated to continue the conversation
with the client contain the conversation token as query string. This ensures that
subsequent programs in the conversation execute under the specified user ID.
Since the CICS program is already running with the correct conversation token as
its query string, it can extract its value by using the environment variable program to
obtain the value of the query string. If necessary, the correct value for the
conversation token can be substituted into HTML templates by using the symbol
&QUERY_STRING;, provided that the environment variable string has first been loaded
into the symbol table in the template manager’s page environment.

Using basic authentication sample programs
The basic authentication sample programs use HTTP basic authentication. On the
first reference by a Web browser to a CICS region (identified by its application ID),
the browser prompts the user for a user ID and password. The user ID and
password supplied at the prompt are sent to the CICS region for every request.
CICS validates the user ID and password for each request. There is no user prompt
for the second or later requests.

The user ID and password are encoded, but not encrypted, for transmission.

To use the security analyzer sample program, you must specify its name as the
TCPIPSERVICE definition.

The basic authentication analyzer searches the incoming HTTP headers for an
Authorization header with a ″Basic″ operand. If it finds one, it decodes the
BASE64-encoded user ID and uses it as the alias user ID. It always schedules
DFH$WBAU as the converter.

The basic authentication converter searches the incoming HTTP headers for an
Authorization header. It decodes the user ID and the password. It uses VERIFY
PASSWORD to validate the password. If the user ID and password combination is
invalid, or if the Authorization header is absent, an HTTP 401 response is returned
to the Web browser, and the user is prompted for a password. If the user ID and
password combination is correct, the application continues, and runs under the
specified user ID.

Chapter 13. Security for CICS Web support 83

84 CICS TS for VSE/ESA: Internet Guide

Chapter 14. Problem determination

This chapter contains Diagnosis, Modification, or Tuning Information.

This chapter helps you debug problems in CICS Web support and CICS business
logic interface user-replaceable programs, the IBM-supplied parts of CICS Web
support and CICS business logic interface, and the operating environment of CICS
Web support. If you suspect you have a problem in another part of CICS, refer to
the CICS Problem Determination Guide.

The formats of messages and trace outputs in CICS Web support and CICS
business logic interface are also described.

Diagnostic information is designed to provide first failure data capture, so that if an
error occurs, enough information about the error is available directly without the
need to reproduce the error situation. The information is presented in the following
forms:

Messages
CICS Web support and CICS business logic interface provide CICS
messages with the prefix DFHWB, and these are listed in the CICS
Messages and Codes manual.

Trace CICS Web support and CICS business logic interface output system trace
entries containing all the important information required for problem
diagnosis.

Dump Dump formatting is provided for data areas relating to CICS Web support
and CICS business logic interface.

Abend codes
Transaction abend codes are standard four-character names. The abend
codes are listed in the CICS Messages and Codes manual.

This chapter is organized as follows:

v “Recovery procedures (CICS Web support)” on page 86 describes how CICS
Web support copes with software errors.

v “Product design considerations (CICS Web support)” on page 86 describes
aspects of the design of CICS Web support that you need to know for problem
determination.

v “Troubleshooting” on page 86 describes a method of analyzing problems in CICS
Web support and CICS business logic interface.

v “Using messages and codes” on page 87 describes how to find information about
messages and abend codes.

v “CICS Web support and CICS business logic interface trace information” on
page 87 describes CICS Web support and CICS business logic interface trace
information.

v “Dump and trace formatting” on page 88 describes how to control the formatting
of dumps and trace entries.

v “Debugging the user-replaceable programs” on page 89 gives hints about
debugging user-replaceable programs.

© Copyright IBM Corp. 1994, 2000 85

Recovery procedures (CICS Web support)
If a TCPIPSERVICE definition is installed and enabled when CICS fails, that
definition is re-installed and re-enabled when CICS recovers. Any changes made to
the TCPIPSERVICE with CEMT are not recovered.

If TCP/IP for VSE/ESA abends, CICS Web support enters immediate disable
processing, but CICS continues to run.

The abending of an alias transaction might cause changes to recoverable resources
to be backed out.

Product design considerations (CICS Web support)
There are two CICS transactions for each HTTP request; CWXN (or an alias of
CWXN), and CWBA (or an alias of CWBA). These two transactions have different
logical units of work.

Troubleshooting
This section provides some hints on troubleshooting. It follows the general outline:
1. Define the problem.
2. Obtain information (documentation) on the problem.
3. Work out where in CICS Web support the problem is happening.

Defining the problem
When you have a problem, first try to define the circumstances that gave rise to it.
If you need to report the problem to the IBM software support center, this
information is useful to the support personnel.

1. What is the system configuration?
v CICS Transaction Server for VSE/ESA release
v VSE/ESA operating system
v Language Environment release

2. What operating options are in use?

3. When did the problem first occur?

4. What were you trying to accomplish at the time the problem occurred?

5. What changes were made to the system before the occurrence of the problem?
v To the VSE/ESA system
v To CICS Web support
v To the CICS program being called by the client
v To the converter being used in the call
v To the analyzer being used to interpret client requests
v To the client
v To CICS Transaction Server for VSE/ESA
v To TCP/IP for VSE/ESA

6. What is the problem?
v Incorrect output
v Hang/Wait: Use CEMT INQUIRE to display details of the transaction
v Loop: Use CEMT INQUIRE to display the details of the transaction
v Abend in a user-replaceable program
v Abend in a CICS program
v Abend in the IBM-supplied part of CICS Web support
v Performance problem
v Storage violation

86 CICS TS for VSE/ESA: Internet Guide

v Logic error

7. At what point in the processing did the problem occur? (Use Figure 8 on
page 19.)

8. What was the state of TCP/IP for VSE/ESA

Documentation about the problem
To investigate most problems, you must look at the dumps, traces, and logs
provided with VSE/ESA and CICS.
v System dump: This contains the CICS internal trace
v CICS auxiliary trace, if enabled
v Console log
v CSMT log
v CWBO log
v CICS job log

To identify which are likely to be useful for your problem, try to work out the area of
the CICS Web support giving rise to the problem, and read the relevant section in
the rest of this chapter.

Using messages and codes
CICS Web support and CICS business logic interface messages have identifiers of
the form DFHxxnnnn., where nnnn are four numeric characters indicating which
component generated the message, as shown in CICS Messages and Codes. xx
indicates which domain generated the message; WB indicates the Web domain, DH
indicates the document handler domain, and SO indicates the Sockets domain.

CICS Web support messages are sent to the CICS Web support message transient
data queue CWBO. CICS Sockets domain messages are sent to the CICS Sockets
domain message transient data queue CSOO. If you define CWBO as an indirect
destination for CSMT, the messages appear in CSMT. Some messages are sent to
the console.

When the CICS Web support or the CICS business logic interface issues a
message as a result of an error, it also makes an exception trace entry. The CICS
Web support also generates information messages, for instance during enable
processing and disable processing.

Messages are supplied in English, Japanese, Chinese, Korean and German.

The CICS Web support and CICS business logic interface abend codes are listed in
CICS Messages and Codes.

CICS Web support and CICS business logic interface trace information
The CICS Web support and CICS business logic interface output CICS system
trace, which is formatted using software supplied as part of CICS.

If selected, level 2 trace gives a full trace of the data being transmitted between the
client and the CICS program. CICS trace output is described in the CICS Problem
Determination Guide, and details of the contents of each trace point are given in the
CICS User’s Handbook.

Chapter 14. Problem determination 87

Numeric values of symbolic codes
The response codes from the analyzer and the converter appear in the trace output
as numeric values as follows:
v URP_OK (0)
v URP_EXCEPTION (4)
v URP_INVALID (8)
v URP_DISASTER (12)
v URP_OK_LOOP (16)

The CICS-defined reason codes from the analyzer and converter appear in the
trace output as numeric codes as follows:
v URP_SECURITY_FAILURE (1)
v URP_CORRUPT_CLIENT_DATA (2)

The DFHWBTL function codes appear in the trace output as numeric values as
follows:
v WBTL_BUILD_HTML_PAGE (1)
v WBTL_START_HTML_PAGE (2)
v WBTL_ADD_HTML_SYMBOLS (3)
v WBTL_ADD_HTML_TEMPLATE (5)
v WBTL_END_HTML_PAGE (6)

The response codes from DFHWBTL appear in the trace output as numeric values
as follows:
v WBTL_OK (0)
v WBTL_EXCEPTION (4)
v WBTL_INVALID (8)
v WBTL_DISASTER (12)

The reason codes from DFHWBTL appear in the trace output as numeric values as
follows:
v WBTL_INVALID_FUNCTION (1)
v WBTL_INVALID_TOKEN (2)
v WBTL_INVALID_SYMBOL_LIST (3)
v WBTL_INVALID_BUFFER_PTR (4)
v WBTL_FEATURE_INACTIVE (5)
v WBTL_TEMPLATE_NOT_FOUND (6)
v WBTL_TEMPLATE_TRUNCATED (7)
v WBTL_PAGE_TRUNCATED (8)
v WBTL_GETMAIN_ERROR (9)
v WBTL_FREEMAIN_ERROR (10)

Dump and trace formatting
To select the level of dump formatting printed for the CICS Web support or CICS
business logic interface, you change the CICS parameters in the INFOANA control
statement for dump formatting as follows:
CALL DFHPD410 DATA WB=0|1|2|3,TR=1|2|3

The parameters have these meanings:

WB=0 Suppress system dumps for the CICS Web support, and the CICS business
logic interface.

WB=1 Produce a system dump summary listing for the CICS Web support, and
the CICS business logic interface.

88 CICS TS for VSE/ESA: Internet Guide

WB=2 Produce a system dump for the CICS Web support, and the CICS business
logic interface.

WB=3 Produce a system dump summary listing and a system dump for the CICS
Web support, and the CICS business logic interface.

TR=1 Produce an abbreviated trace.

TR=2 Produce a full trace.

TR=3 Produce both a full and abbreviated trace.

CICS Web support output in the formatted dump consists of the major CICS Web
support control blocks, with interpretation of some of the fields.

The CICS Web support output can be found in the INFOANA output by searching
for ===WB. It is under the heading CICS Web support.

The CICS Sockets output can be found in the INFOANA output by searching for
===SO. It is under the heading CICS Sockets.

The document domain output can be found in the INFOANA output by searching for
===DH. It is under the heading Document domain.

Debugging the user-replaceable programs
The user-replaceable programs are the analyzer (CICS Web support only) and the
converters

Using EDF
You can use EDF with the analyzer, and you can also use it to debug the converter,
and the CICS program. If you want to use EDF, you must:

v Define EDF as a translator option when the program is translated.

v Define CEDF(YES) in the program definition of the converter, the CICS program,
or the analyzer.

v Enter CEDX xxxx at the terminal, where xxxx is either CWXN or an alias of
CWXN (to debug the analyzer), or CWBA or an alias of CWBA (to debug the
converter or the target program).

Using trace entries
You can output diagnostic information to the CICS trace by the use of the EXEC
CICS ENTER TRACENUM command. The amount of trace information and the
information contained within trace entries is at your discretion. See the CICS
Application Programming Reference for more information about this command.

Writing messages
You can write diagnostic messages by using EXEC CICS WRITEQ TD. Message
information content, message format, frequency, and destination are at your
discretion.

Trapping abends
You are recommended to use EXEC CICS HANDLE ABEND to trap abends. You
should collect the diagnostic information you need by tracing, and then return a
URP_DISASTER response.

Chapter 14. Problem determination 89

90 CICS TS for VSE/ESA: Internet Guide

Part 3. The CICS business logic interface

This part of the book contains information about the CICS business logic interface.

This part of the book describes the CICS business logic interface. CICS Web
support, as described in “Chapter 3. Introduction to CICS Web support” on page 17,
is a collection of CICS resources supporting direct access to CICS transaction
processing services from Web browsers. The CICS business logic interface is a
callable program that allows a variety of callers to access the same Web-aware
business logic as CICS Web support, but via a CICS link rather than via the CICS
HTTP listener.

The CICS business logic interface supports the separation of presentation logic
from business logic in application design. The converter program contains the
presentation logic and understands how data must be presented to the business
logic, which is contained in the application program. There is a brief discussion
about the distinction between presentation logic and business logic in “Separating
business and presentation logic” on page 11.

It contains:

v “Chapter 15. Introduction to the CICS business logic interface” on page 93

v “Chapter 16. Configuring the CICS business logic interface” on page 101

© Copyright IBM Corp. 1994, 2000 91

92 CICS TS for VSE/ESA: Internet Guide

Chapter 15. Introduction to the CICS business logic interface

This chapter presents an overview of the CICS business logic interface. It contains
the following sections:

v “Types of requester”

v “Processing examples”

v “Controlling flow in request processing” on page 94

v “Passing data in request processing” on page 96

“Chapter 16. Configuring the CICS business logic interface” on page 101 provides
information about setting up the CICS business logic interface.

Types of requester
The CICS business logic interface can deal with requests from the following types
of requester. These callers provide a communication area that contains parameters
that specify the required CICS transaction processing services. For example:

v Users of the external CICS interface (EXCI).

v Users of the CICS Family: Client/Server Programming external call interface
(ECI).

v Any program running in a CICS application environment. The program uses
EXEC CICS LINK to the CICS business logic interface.

Processing examples
Figure 12 shows how the CICS business logic interface processes a request from a
VSE/ESA application that uses the EXCI.

The VSE/ESA application constructs a communication area that contains
parameters for the CICS business logic interface, and calls it with EXCI. The CICS
business logic interface ensures that the CICS Transaction Server for VSE/ESA
provides the requested service, and returns any output in the communication area.

Figure 13 on page 94 shows how the CICS business logic interface processes a
request from a CICS client that uses the ECI.

Server

VSE/ESA

CICS Transaction Server

CICS
serviceBusiness

Logic
interface

EXCI
Any

VSE/ESA
application

Figure 12. Processing a request from the EXCI

© Copyright IBM Corp. 1994, 2000 93

The client, running in a workstation environment, constructs a communication area
that contains parameters for the CICS business logic interface. It uses the ECI to
call the CICS business logic interface. The CICS business logic interface ensures
that the CICS Transaction Server for VSE/ESA provides the requested service, and
returns any output in the communication area. The ECI operates with the SNA
protocol (see the CICS Family: Client/Server Programming for further information).

Controlling flow in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how the components of the CICS business logic
interface interact.

Using the CICS business logic interface to call a program
Figure 14 shows the control flow through the CICS business logic interface to a
program. The CICS business logic interface is accessed by an EXEC CICS LINK
command to PROGRAM DFHWBBLI.

1. A request arrives for the CICS business logic interface.

2. If the caller requests a converter, the CICS business logic interface calls it,
requesting the Decode function. Decode sets up the communication area for
the CICS program.

3. The CICS business logic interface calls the CICS program that the caller
specified. The communication area passed to the CICS program is the one set
up by Decode. If no converter program was called, the communication area
contains the entire request.

Server

VSE/ESA

CICS Transaction Server

CICS
serviceBusiness

logic
interface

ECICICS
client

Workstation

Figure 13. Processing a request from the ECI

Converter
(Decode)

1 2

4
3

56

Request from caller

Reply to caller

CICS
program

Converter
(Encode)

Business
logic

interface

Figure 14. Calling a program with the CICS business logic interface—control flow

94 CICS TS for VSE/ESA: Internet Guide

4. The CICS program processes the request, and returns output in the
communication area.

5. If the caller requested a converter, the CICS business logic interface calls the
Encode function of the converter, which uses the communication area to
prepare the response. If no converter program was called, the CICS business
logic interface assumes that the CICS program has put the desired response in
the communication area.

6. The CICS business logic interface sends a reply back to the caller.

Using the CICS business logic interface to run a terminal-oriented
transaction

Figure 15 shows the control flow through the CICS business logic interface for a
request for a terminal-oriented transaction. Note that the business logic interface is
running under a CICS mirror transaction, not a Web CICS transaction. The first part
of the processing is the same as for calling a program, but if you want to run a
transaction, you must specify DFHWBTTA as the CICS program to be called, in
wbbl_server_program_name.

1. If the caller requests a converter, the CICS business logic interface calls it,
requesting the Decode function. Decode sets up the communication area for
DFHWBTTA.

2. The CICS business logic interface calls DFHWBTTA. The communication area
passed to DFHWBTTA is the one set up by Decode. If no converter program
was called, the communication area contains the entire request.

3. DFHWBTTA extracts the transaction ID for the terminal-oriented transaction
from the HTTP request, and starts a transaction that runs the CICS Web bridge
exit.

4. When the program attempts to write to its principal facility, the data is
intercepted by the CICS Web bridge exit, and returned to the CICS business
logic interface. If the caller requested a converter, the CICS business logic
interface calls the Encode function of the converter, which uses the
communication area to prepare the response. If no converter program was
called, the CICS business logic interface assumes that the communication area
contains the desired response.

Bridge transaction

Transaction
program

CICS Web
bridge exit

Mirror transaction

Converter
(Decode)

DFHWBTTA

Converter
(Encode)

3 4

1

2

5

Business
logic

interface

Figure 15. Running a transaction with the CICS business logic interface—control flow

Chapter 15. Introduction to the CICS business logic interface 95

Passing data in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how data is passed in the CICS business logic
interface.

Using the CICS business logic interface to call a program
Figure 16 shows the data flow through the CICS business logic interface to a
program, and back to the requester.

1. The caller of the CICS business logic interface provides a communication area
that contains the request to be processed. The contents of the communication
area must be in a code page acceptable to the subsequent processes. Usually
this means that they must be in EBCDIC.

2. If the caller requests a converter, the Decode function of the converter
constructs the communication area for the CICS program.

3. The CICS program updates the communication area.

4. If the caller requests a converter, the Encode function of the converter
constructs the communication area that is to be returned to the caller.

5. The CICS business logic interface returns to its caller, which can now use the
contents of the communication area.

Requesting a terminal-oriented transaction
Figure 17 on page 97 shows the data flow for a request that starts a
terminal-oriented transaction.

Communication area

Encode

Communication area

CICS program

Communication area

Communication area

1

2

3

4

5

Decode

Figure 16. Calling a program with the CICS business logic interface—data flow

96 CICS TS for VSE/ESA: Internet Guide

This figure shows the data flow through the CICS business logic interface for a
3270 BMS application. If CICS Web support processes the request, there is data
conversion of headers and user data as shown in Figure 10 on page 22.

1. The caller of the CICS business logic interface provides a communication area
that contains the request to be processed. The contents of the communication
area must be in a code page acceptable to the subsequent processes, and
DFHWBTTA requires EBCDIC.

2. You can use the Decode function of the converter to modify the request if
required.

3. As this is the first transaction of a conversation or pseudoconversation, the
request includes the transaction ID, and perhaps data to be made available to
the transaction program. DFHWBTTA extracts the data so that it can be made
available to the transaction program in EXEC CICS RECEIVE.

4. The transaction program uses EXEC CICS RECEIVE to receive the data. It then
constructs an output map, and uses EXEC CICS SEND MAP to send it to the
requester.

5. The map and its data contents are converted into HTML. This conversion uses
templates defined in DOCTEMPLATE definitions.

Template conversion Template library

Output map

Transaction program

Transaction data

Encode

Output HTML

Communication area

1

2 Decode

DFHWBTTA

Communication area

3

4

5

6

Communication area

7

Figure 17. Starting a terminal-oriented transaction—data flow

Chapter 15. Introduction to the CICS business logic interface 97

6. You can use the Encode function of the converter to modify the response if
required.

7. The CICS business logic interface returns to its caller, which can now use the
contents of the communication area.

Figure 18 shows the data flow for a request that continues a terminal-oriented
transaction.

This figure shows the data flow when the CICS business logic interface processes
the request. If CICS Web support processes the request, there is data conversion
of headers and user data as shown in Figure 10 on page 22.

1. The caller of the CICS business logic interface provides a communication area
that contains the request to be processed. The contents of the communication

Communication area

1

2 Decode

Input map

Transaction program

Input HTML

DFHWBTTA

Communication area

3

4

5

Output map

Template conversion

Template conversion

Output HTML

6

Communication area

7

Template library

Template library

8

Encode

Figure 18. Continuing a terminal-oriented transaction—data flow

98 CICS TS for VSE/ESA: Internet Guide

area must be in a code page acceptable to the subsequent processes. Usually
this means that they must be in EBCDIC.

2. The Decode function of the converter constructs the communication area for
DFHWBTTA.

3. As this is not the first transaction of a conversation or pseudoconversation, the
request includes HTML corresponding to the map that the transaction program
is expecting to receive. DFHWBTTA extracts the forms data to make it available
to the transaction program in EXEC CICS RECEIVE MAP.

4. The incoming forms input data is converted into a BMS map. This conversion
uses templates from DOCTEMPLATE definitions.

5. The transaction program uses EXEC CICS RECEIVE MAP to receive the data.
It then constructs an output map, and uses EXEC CICS SEND MAP to send it
to the requester.

6. The map and its data contents are converted into HTML. This conversion uses
templates from DOCTEMPLATE definitions.

7. The Encode function of the converter uses the HTML output from the
conversion process to construct the communication area to be returned to the
caller.

8. The CICS business logic interface returns to its caller, which can now use the
contents of the communication area.

Chapter 15. Introduction to the CICS business logic interface 99

100 CICS TS for VSE/ESA: Internet Guide

Chapter 16. Configuring the CICS business logic interface

The CICS business logic interface is a callable program that does not require the
support of special transactions. However, before you plan how to use the CICS
business logic interface, you need to know about the role of the converters.

You can have many converter programs in a CICS system to support the operation
of the CICS business logic interface. The place of converters in the CICS business
logic interface is illustrated in Figure 14 on page 94 and Figure 15 on page 95. Each
converter must provide two functions:

v Decode is used before the CICS program is called. It can:

– Use the data from the incoming request to build the communication area in
the format expected by the CICS program.

– Supply the lengths of the input and output data in the CICS program
communication area.

– Perform administrative tasks related to the request.

v Encode is used after the CICS program has been called. It can:

– Use the data from the CICS program to build the response.

– Perform administrative tasks related to the response.

There are some restrictions on the functions of the converter that depend on how
the CICS business logic interface was called. The two modes of calling the CICS
business logic interface are:

1. Pointer mode

2. Offset mode

The differences in the functions are described in “Chapter 7. Writing a converter” on
page 43, and in “Appendix A. Reference information for DFHWBBLI” on page 107.
Converters called in offset mode are more restricted than converters called in
pointer mode. All requests from web browsers using the CICS Transaction Gateway
result in offset mode calls to the CICS business logic interface.

You must set the WEBDELAY system initialization parameter, as described in
“Controlling web support with system initialization parameters” on page 29.

If you are not using autoinstall for programs, you must define all the
user-replaceable programs (converters) that the callers of the CICS business logic
interface use. If you are using autoinstall for programs, you do not need to define
the converters. All the converters must be local to the system in which the CICS
business logic interface is operating.

Reference information for the business logic interface can be found in “Appendix A.
Reference information for DFHWBBLI” on page 107

© Copyright IBM Corp. 1994, 2000 101

102 CICS TS for VSE/ESA: Internet Guide

Chapter 17. Programming tasks for client systems
v Write VSE applications to use the EXCI to communicate with the CICS business

logic interface. There are applications that use CICS programs for their services,
and applications that use CICS transactions for their services. See “Appendix A.
Reference information for DFHWBBLI” on page 107.

v Write workstation applications to use the ECI to communicate with the CICS
business logic interface. There are applications that use CICS programs for their
services, and applications that use CICS transactions for their services. See
“Appendix A. Reference information for DFHWBBLI” on page 107.

v Write CICS applications to use EXEC CICS LINK to communicate with the CICS
business logic interface. There are applications that use CICS programs for their
services, and applications that use CICS transactions for their services. See
“Appendix A. Reference information for DFHWBBLI” on page 107.

© Copyright IBM Corp. 1994, 2000 103

104 CICS TS for VSE/ESA: Internet Guide

Part 4. Appendixes

© Copyright IBM Corp. 1994, 2000 105

106 CICS TS for VSE/ESA: Internet Guide

Appendix A. Reference information for DFHWBBLI

This section contains Product-sensitive Programming Interface and Associated
Guidance Information. It provides reference information for the business logic
interface.

© Copyright IBM Corp. 1994, 2000 107

Business logic interface

Summary of parameters
The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as part
of the CICS Web support. The files for the various languages are as follows:

Language File

Assembler DFHWBBLD

C DFHWBBLH

COBOL DFHWBBLO

PL/I DFHWBBLL

These files give language-specific information about the data types of the fields in
the communication area.

In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with wbbl_ to give the name of the
parameter.

Table 2. Parameters for the business logic interface

Input
wbbl_

Inout
wbbl_

Output
wbbl_

client_address
client_address_length
client_address_string
converter_program_name
eyecatcher
header_length
header_offset
http_version_length
http_version_offset
indata_length
indata_offset
indata_ptr
length
method_length
method_offset
mode
prolog_size
resource_length
resource_offset
server_program_name
status_size
user_token
user_data_length
vector_size
version

outdata_length
outdata_offset
outdata_ptr

Function
The business logic interface allows callers to specify what presentation logic is to
be executed before and after a CICS program. It has two modes of operation:

108 CICS TS for VSE/ESA: Internet Guide

v Pointer mode: the input data for Decode is in storage allocated separately from
the communication area for the business logic interface. The communication area
contains a pointer (wbbl_data_ptr) to the input data for Decode. When the call
to the business logic interface ends, the output from Encode is in storage
allocated separately from the communication area for the business logic
interface, and the communication area contains a pointer (wbbl_outdata_ptr) to
the output from Encode.

v Offset mode: the input data for Decode is part of the communication area for the
business logic interface. The communication area contains the offset
(wbbl_data_offset) of the input data for Decode. When the call to the business
logic interface ends, the output from Encode is part of the communication area
for the business logic interface, and the communication area contains the offset
(wbbl_outdata_offset) of the output from Encode.

The caller of the business logic interface uses wbbl_mode to indicate which mode
of operation is to be used.

For information about writing a converter for the business logic interface, see
“Chapter 7. Writing a converter” on page 43.

Note: The business logic interface does not handle the response codes and reason
codes produced by the converter in the manner described in “Appendix C.
Reference information for the converter” on page 121, but as described in
“Responses” on page 112 under responses 400, 500, and 501.

Parameters
Before inserting the inputs into the communication area, you must clear it to binary
zeros.

wbbl_eyecatcher
(Input only)

A 14–character field that must be set to the standard eyecatcher string
>DFHWBBLIPARMS.

wbbl_client_address
(Input only)

A fullword 32–bit field that must be set to the binary IP address of the client,
if this is known.

wbbl_client_address_length
(Input only)

A 1–byte binary field that must be set to the length of
wbbl_client_address_string.

wbbl_client_address_string
(Input only)

A string of up to 15 characters that are the dotted decimal representation
wbbl_client_address, padded on the right with binary zeros.

wbbl_converter_program_name
(Input only)

The 8–character name of the program to be used to converter DECODE
and ENCODE functions.

wbbl_header_length
(Input only)

Appendix A. Reference information for DFHWBBLI 109

A fullword binary number that must contain the length of the HTTP headers
associated with this request.

wbbl_header_offset
(Input only)

A fullword binary number that must contain the offset (from the start of the
request data) of the HTTP headers associated with this request.

wbbl_http_version_length
(Input only)

A fullword binary number that must contain the length of the version of the
HTTP protocol to be used to process the request.

wbbl_http_version_offset
(Input only)

A fullword binary number that must contain the offset of the version of the
HTTP protocol to be used to process the request.

wbbl_indata_length
(Input only)

A fullword binary number that must be set to the length of the data located
by wbbl_indata_ptr or wbbl_indata_offset. If the analyzer modified this
value it is visible here. If the request is not an HTTP request, do not set this
field.

wbbl_indata_offset
(Input only)

If wbbl_mode is ″O″, this field is the offset (from the start of the parameter
list) of the HTTP request data to be passed to the application.

wbbl_indata_ptr
(Input only)

If wbbl_mode is ″P″, this is the address of the HTTP request data to be
passed to the application.

wbbl_length
(Input only)

A halfword binary number that must be set to the total length of the BLI
parameter list.

wbbl_method_length
(Input only)

A fullword binary number that must contain the length of the HTTP method
to be used to process the request. The method should be one of: GET,
POST, HEAD, PUT, DELETE, LINK, UNLINK, or REQUEUE.

wbbl_method_offset
(Input only)

A fullword binary number that must contain the offset (from the start of the
request data) of the HTTP method to be used to process the request. The
method should be one of: GET, POST, HEAD, PUT, DELETE, LINK,
UNLINK, or REQUEUE.

wbbl_mode
(Input only)

110 CICS TS for VSE/ESA: Internet Guide

A single character that indicates the addressing mode for wbbl_indata and
wbbl_outdata. It must be set to ″P″ to indicate that these values are
pointers, or to ″O″ to indicate that these values are offsets from the start of
the parameter list.

wbbl_outdata_length
(Input only)

The fullword binary field in which DFHWBBLI returns the length of the
response data located by wbbl_outdata_ptr or wbbl_outdata_offset.

wbbl_outdata_offset
(Input only)

If wbbl_mode is ″O″, this is the fullword in which DFHWBBLI returns the
offset (from the start of the parameter list) of the response data from the
application. This address in not necessarily the same as
wbbl_indata_offset.

wbbl_outdata_ptr
(Input only)

If wbbl_mode is ″P″, this is the fullword address in which DFHWBBLI returns
the address of the response data from the application. This address in not
necessarily the same as wbbl_indata_ptr.

wbbl_prolog_size
(Input only)

A halfword binary number that must be set to 56 (that is, the length of the
wbbl_prolog substructure).

wbbl_resource_length
(Input only)

A fullword binary number that must contain the length of the URI resource
that is being requested (that is, the non-network part of the URL, starting at
the first slash (/) in the URL).

wbbl_resource_offset
(Input only)

A fullword binary number that must contain the offset (from the start of the
request data) of the URI resource that is being requested (that is, the
non-network part of the URL, starting at the first slash (/)in the URL).

wbbl_response
(Input only)

A fullword binary field in which DFHWBBLI returns its response code.

wbbl_server_program_name
(Input only)

The 8–character name of the application program that is to be used to
process the request and produce the response.

wbbl_status_size
(Input only)

A 1–byte binary field that must be set to the length of the wbbl_status
substructure.

wbbl_user_data_length
(Input only)

Appendix A. Reference information for DFHWBBLI 111

A fullword binary number that must be set to the length of the user data. If
the analyzer modified this value it is visible here. If the request is not an
HTTP request, do not set this field.

wbbl_user_token
(Input only)

An 8–character field in which the caller of DFHWBBLI can pass data which
identifies the current conversational state with the client. It is usually set to
the first eight characters of the query-string portion of the URL (that is, any
data following a question mark (?)).

wbbl_vector_size
(Input only)

A halfword binary number that must be set to 64 (that is, the length of the
wbbl_vector substructure.

wbbl_version
(Input only)

A halfword binary number that indicates which version of the BLI parameter
list is currently being used. It should be set using the constant value
wbbl_current_version.

Responses
One of the following values is returned in wbbl_response. These values
correspond to the intended HTTP responses to be sent to an HTTP client.

400 One of the converter functions returned a URP_EXCEPTION response with
a reason URP_CORRUPT_CLIENT_DATA. The business logic interface
writes an exception trace entry (trace point 4556) and issues a message
(DFHWB0120).

403 The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a NOTAUTH response. The
business logic interface writes an exception trace entry (trace point 4556)
and issues a message (DFHWB0120).

404 The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a PGMIDERR response. The
business logic interface writes an exception trace entry (trace point 4556)
and issues a message (DFHWB0120).

500 One of the following occurred:

v The business logic interface detected an abend. A message that depends
on the program that abended is issued. For the program specified in
wbbl_server_program_name, the message is DFHWB0125. For the
Encode function of the converter, the message is DFHWB0126. For the
Decode function of the converter, the message is DFHWB0127. For any
other program, the message is DFHWB0128. In any case an exception
trace entry (trace point 4557) is written.

v The EXEC CICS LINK to the program specified in
wbbl_server_program_name received an INVREQ or a LENGERR or
an unexpected response. The business logic interface writes an
exception trace entry (trace point 4556) and issues a message
(DFHWB0120).

501 One of the following occurred:

112 CICS TS for VSE/ESA: Internet Guide

v Decode returned a response of URP_EXCEPTION with an undefined
reason code. The business logic interface writes an exception trace entry
(trace point 455B) and issues a message (DFHWB0121).

v Decode returned a response of URP_INVALID. The business logic
interface writes an exception trace entry (trace point 455C) and issues a
message (DFHWB0121).

v Decode returned a response of URP_DISASTER. The business logic
interface writes an exception trace entry (trace point 455D) and issues a
message (DFHWB0121).

v Decode returned an undefined response. The business logic interface
writes an exception trace entry (trace point 455E) and issues a message
(DFHWB0121).

v Encode returned a response of URP_EXCEPTION with an undefined
reason code. The business logic interface writes an exception trace entry
(trace point 455B) and issues a message (DFHWB0122).

v Encode returned a response of URP_INVALID. The business logic
interface writes an exception trace entry (trace point 455C) and issues a
message (DFHWB0122).

v Encode returned a response of URP_DISASTER. The business logic
interface writes an exception trace entry (trace point 455D) and issues a
message (DFHWB0122).

v Encode returned an undefined response. The business logic interface
writes an exception trace entry (trace point 455E) and issues a message
(DFHWB0122).

503 One of the following occurred:

v The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a TERMERR response. The
business logic interface writes an exception trace entry (trace point 4555)
and issues a message (DFHWB0120).

v The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a SYSIDERR or ROLLEDBACK
response. The business logic interface writes an exception trace entry
(trace point 4556) and issues a message (DFHWB0120).

Appendix A. Reference information for DFHWBBLI 113

114 CICS TS for VSE/ESA: Internet Guide

Appendix B. Reference information for DFHWBADX

This section contains Product-sensitive Programming Interface and Associated
Guidance Information. It provides reference information for the analyzer, and
information about the responses and reason codes for the default analyzer,
DFHWBADX.

Summary of parameters
The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as part
of the CICS Web support. The files for the various languages are listed in the
following table.

Language Parameters file Constants file

Assembler DFHWBTDD DFHWBUCD

C DFHWBTDH DFHWBUCH

COBOL DFHWBTDO DFHWBUCO

PL/I DFHWBTDL DFHWBUCL

These files give language-specific information about the data types of the fields in
the communication area. If you use these files you must specify
XOPTS(NOLINKAGE) on the Translator step; failure to do this causes the compile
to fail.

In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with wbra_ to give the name of the
parameter.

Table 3. Parameters for the analyzer

Input
wbra_

Inout
wbra_

Output
wbra_

client_ip_address
content_length
eyecatcher
function
http_version_length
http_version_ptr
method_length
method_ptr
request_header_length
request_header_ptr
request_type
resource_length
resource_ptr
server_ip_address
user_data_ptr

user_data_length
userid

alias_tranid
converter_program
dfhcnv_key
reason
response
server_program
user_token
unescape

Function
The analyzer is called by Web attach processing before it starts the alias. The
analyzer can examine the incoming request, and must specify the CICS resources
needed to process the request.

© Copyright IBM Corp. 1994, 2000 115

Parameters
wbra_alias_tranid

(Output only)

A string of length 4. The transaction ID of the alias that is to service the
request. If you do not set this field, or if you set it to blanks, CWBA is used.

wbra_client_ip_address
(Input only)

The 32-bit IP address of the client.

wbra_content_length
(Input only)

A 32–bit binary representation of the user data length as specified by the
Content-Length HTTP header in the received data.

wbra_converter_program
(Output only)

A string of length 8. The name of the converter whose Decode and Encode
functions are used to process the request. If you do not set this field, no
converter is called.

wbra_dfhcnv_key
(Output only)

A string of length 8. The name of the conversion template in the DFHCNV
table for the code page translation of the user data for this request. If the
request is not an HTTP request, this name is used to translate the entire
request. The name you choose must be defined in the DFHCNV table, as
described in “Defining a conversion table” on page 33. If you do not set this
field, there is no translation.

wbra_eyecatcher
(Input only)

A string of length 8. Its value is ″>analyze″.

wbra_function
(Input only)

A code indicating that the analyzer is being called. The value is 1.

wbra_http_version_length
(Input only)

The length in bytes of the string identifying the HTTP version supported by
the client. If the request is not an HTTP request, this length is zero.

wbra_http_version_ptr
(Input only)

A pointer to the string identifying the HTTP version supported by the client.
If the request is not an HTTP request, do not use this pointer.

wbra_method_length
(Input only)

The length in bytes of the string identifying the method specified in the
HTTP request. If the request is not an HTTP request, this length is zero.

wbra_method_ptr
(Input only)

116 CICS TS for VSE/ESA: Internet Guide

A pointer to the method specified in the HTTP request. If the request is not
an HTTP request, do not use this pointer.

wbra_reason
(Output only)

A reason code—see “Responses and reason codes” on page 118.

wbra_request_header_length
(Input only)

The length of the first HTTP header in the HTTP request. If the request is
not an HTTP request, this length is zero.

wbra_request_header_ptr
(Input only)

A pointer to the first HTTP header in the HTTP request. The other HTTP
headers follow this one in the request buffer. If the request is not an HTTP
request, do not use this pointer.

wbra_request_type
(Input only)

If this is an HTTP request, the value is WBRA_REQUEST_HTTP. If this is
not an HTTP request, the value is WBRA_REQUEST_NON_HTTP.

wbra_resource_length
(Input only)

The length in bytes of the string identifying the HTTP absolute path
specified in the HTTP request. If the request is not an HTTP request, this
length is zero.

wbra_resource_ptr
(Input only)

A pointer to the string identifying the HTTP absolute path specified in the
HTTP request. If the request is not an HTTP request, do not use this
pointer.

wbra_response
(Output only)

A response—see “Responses and reason codes” on page 118.

wbra_server_ip_address
(Input only)

The 32-bit IP address of the TCP/IP for VSE/ESA partition receiving the
request.

wbra_server_program
(Output only)

A string of length 8. The name that is passed to Decode as
decode_server_program. If you do not set this field, the value passed is
nulls. The program name must be set here or in the Decode function of the
converter specified in wbra_converter_program, or no CICS program will
be called.

wbra_unescape
(Output only)

The default CICS action for escaped HTTP data is to pass the data to the
application in its escaped form. To ensure that escaped characters are

Appendix B. Reference information for DFHWBADX 117

unescaped before passing them to your application program, the value is
WBRA_UNESCAPE_REQUIRED; otherwise the value is
WBRA_UNESCAPE_NOT_REQUIRED.

wbra_user_data_length
(Input and output)

A 15–bit integer, representing the length of the user data in the HTTP
request. If the request is non-HTTP, this length is the length of the request.
The length passed to the analyzer includes any trailing carriage return and
line feed (CRLF) characters that may delimit the end of the user data.If the
length is reduced, the newly redundant bytes are replaced by null
characters, X’00’. The modified value is passed on to the CICS business
logic interface in field wbbl_user_data_length, and to the Decode program
in field decode_user_data_length.

wbra_user_data_ptr
(Input only)

A pointer to the user data in the HTTP request. If the request is not an
HTTP request, this is a pointer to the request.

wbra_user_token
(Output only)

A 64-bit token that is passed to Decode as decode_user_token. If you do
not set this field, the value passed is null. If there is no converter for this
request, the value is ignored.

wbra_userid
(Input and output)

A string of length 8. On input, it is the userid derived from the client
certificate, if one was used. On output, it is the userid under which the alias
executes. If it is blank or null on output, the CICS default userid is used.

Responses and reason codes
You must return one of the following values in wbra_response:

URP_OK
Web attach processing starts the alias transaction.

URP_EXCEPTION
The alias transaction is not started. Web attach processing writes an
exception trace entry (trace point 4510), and issues a message
(DFHWB0523).

If the request is an HTTP request, response 400 is sent to the Web
browser.

If the request is not an HTTP request, no response is sent, and the TCP/IP
for VSE/ESA socket is closed.

URP_INVALID
The alias transaction is not started. Web attach processing writes an
exception trace entry (trace point 4510), and issues a message
(DFHWB0523). If the request is an HTTP request, response 400 is sent to
the web browser. If the request is not an HTTP request, no response is
sent, and the TCP/IP for VSE/ESA socket is closed.

URP_DISASTER
The alias transaction is not started. CICS writes an exception trace entry

118 CICS TS for VSE/ESA: Internet Guide

(trace point 4510), and issues a message (DFHWB0523). If the request is
an HTTP request, response 400 is sent to the web browser. If the request
is not an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

If you return any other value in wbra_response, Web attach processing writes an
exception trace entry (trace point 4510), and issues a message (DFHWB0523). If
the request is an HTTP request, response 400 is sent to the web browser. If the
request is not an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

You may supply a 32-bit reason code in wbra_reason to provide further information
in error cases. The CICS Web support does not take any action on the reason code
returned by the analyzer. The reason code is output in any trace entry that results
from the invocation of the analyzer, and in message DFHWB0523.

See “Numeric values of symbolic codes” on page 88 for the numeric values of the
response and reason codes in trace output.

DFHWBADX responses and reason codes
The meanings of the responses produced by the default analyzer DFHWBADX are
as follows:

URP_OK
The analyzer found that the request conformed to the default HTTP request
format, and generated the appropriate outputs for the alias.

URP_EXCEPTION
The analyzer found that the request did not conform to the default format. A
reason code is supplied as follows:

1 The length of the resource was less than 6. (The shortest possible
resource specification is /A/B/C, asking for program C to be run
under transaction B with converter A.) This response and reason
are the ones used when the incoming request is not an HTTP
request.

2 The resource specification did not begin with a “/”.

4 The length of the converter name in the resource specification was
0 or more than 8.

5 The length of the transaction name in the resource specification
was 0 or more than 4.

6 The length of the CICS program name in the resource specification
was 0 or more than 8.

8 One of the following:

v There is no second “/”

v There is nothing after the second “/”

v There is no third “/”

v There is nothing after the third “/”

URP_INVALID
The eye-catcher was invalid. This is an internal error.

Appendix B. Reference information for DFHWBADX 119

120 CICS TS for VSE/ESA: Internet Guide

Appendix C. Reference information for the converter

This section provides reference information for the Decode and Encode functions
of the converter.

The names of the parameters and constants in the communication area passed to
the converter, translated into appropriate forms for the different programming
languages supported, are defined in files supplied as part of the CICS Web support.
The files for the various languages are listed in the following table.

Language Parameters file Constants file

Assembler DFHWBCDD DFHWBUCD

C DFHWBCDH DFHWBUCH

COBOL DFHWBCDO DFHWBUCO

PL/I DFHWBCDL DFHWBUCL

These files give language-specific information about the data types of the fields in
the communication area. If you use these files you must specify
XOPTS(NOLINKAGE) on the Translator step; failure to do this causes the compile
to fail.

© Copyright IBM Corp. 1994, 2000 121

Decode

Summary of parameters
In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with decode_ to give the name of the
parameter.

Table 4. Parameters for Decode

Input
decode_

Inout
decode_

Output
decode_

client_address
client_address_string
eyecatcher
entry_count
function
http_version_length
http_version_ptr
method_length
method_ptr
request_header_length
request_header_ptr
resource_length
resource_ptr
user_data_length
user_data_ptr

data_ptr
input_data_len
server_program
user_token

output_data_len
reason
response

Function
If the analyzer, or the caller of the CICS business logic interface, specified a
converter name for the request, Decode is called before the CICS program that is
to service the request.

Parameters
decode_client_address

(Input only)

The 32-bit IP address of the client.

decode_client_address_string
(Input only)

The IP address of the client in dotted decimal format.

decode_data_ptr
(Input and output)

On input, a pointer to the request from the client (as modified by the
analyzer) or, if this call is a loop back from the Encode converter function,
a pointer to the response data of encode_data_ptr.

On output, pointer to the communication area to be passed to the CICS
program. You must ensure that the pointer points to a valid location, or
results can be unpredictable. Do not use this field as output when the
converter was called from a CICS business logic interface that was called in
offset mode.

decode_entry_count
(Input only)

122 CICS TS for VSE/ESA: Internet Guide

A count to say how many times the Decode converter has been entered for
the current Web request.

decode_eyecatcher
(Input only)

A string of length 8. Its value for Decode is “>decode”.

decode_function
(Input only)

A halfword code set to the constant value URP_DECODE, indicating that
Decode is being called.

decode_http_version_length
(Input only)

The length in bytes of the string identifying the HTTP version supported by
the client. If the request is not an HTTP request, this length is zero.

decode_http_version_ptr
(Input only)

A pointer to the string identifying the HTTP version supported by the client.
If the analyzer modified this part of the request, the changes are visible
here. If decode_http_version_length is zero, do not use this pointer.

decode_input_data_len
(Input and output)

On input, this is the length in bytes of the request data pointed to by
decode_data_ptr.

The value to be used for the DATALENGTH option of the EXEC CICS LINK
command for the CICS program. The default value if this output is not set is
32KB.

decode_method_length
(Input only)

The length in bytes of the method specified in the HTTP request. If the
request is not an HTTP request, this length is zero.

decode_method_ptr
(Input only)

A pointer to the method specified in the HTTP request. If the analyzer
modified this part of the request, the changes are visible here. If
decode_method_length is zero, do not use this pointer.

decode_output_data_len
(Output only)

The value to be used for the LENGTH option of the EXEC CICS LINK
command for the CICS program. The default value if this output is not set is
32KB.

decode_reason
(Output only)

A reason code—see “Responses and reason codes” on page 125.

decode_request_header_length
(Input only)

Appendix C. Reference information for the converter 123

The length of the first HTTP header in the HTTP request. If the request is
not an HTTP request, this length is zero.

decode_request_header_ptr
(Input only)

A pointer to the first HTTP header in the HTTP request. If the analyzer
modified this part of the request, the changes are visible here. If
decode_request_header_length is zero, do not use this pointer.

decode_resource_length
(Input only)

The length in bytes of the string identifying the HTTP absolute path
specified in the HTTP request. If the request is not an HTTP request, this
length is zero.

decode_resource_ptr
(Input only)

A pointer to the string identifying the HTTP absolute path specified in the
HTTP request. If the analyzer modified this part of the request, the changes
are visible here. If decode_resource_length is zero, do not use this
pointer.

decode_response
(Output only)

A response—see “Responses and reason codes” on page 125.

decode_server_program
(Input and output)

A string of length 8. On input, the value supplied by the analyzer in
wbra_server_program, or the value supplied by the caller of the CICS
business logic interface. On output, the name of the CICS program that is
to service the request. The CICS program name must be set here or in the
analyzer, or no CICS program will be called.

decode_user_data_length
(Input only)

The length in bytes of the user data for this HTTP request. If the analyzer
modified this value, it is visible here. If there is no user data in the request,
the length is zero. If the request is not an HTTP request, this length is the
length of the request.

decode_user_data_ptr
(Input only)

A pointer to any user data for this HTTP request. If the analyzer modified
this part of the request, the changes are visible here. If there is no user
data in the request, the pointer is zero. If the request is not an HTTP
request, this pointer has the same value as decode_data_ptr.

decode_user_token
(Input and output)

A 64-bit token. On input, the user token supplied by the analyzer as
wbra_user_token, or the user token supplied by the caller of the CICS
business logic interface.On output, a token that is passed to Encode as
encode_user_token.

124 CICS TS for VSE/ESA: Internet Guide

decode_version
(Input)

A single-character parameter list version identifier, which changes whenever
the layout of the parameter list changes. Its value is a character zero
(X’F0’), indicating a CICS TS 1.1.1 version parameter list.

decode_volatile
(Input)

A single-character code indicating whether the data area pointed to be
decode_data_ptr can be be replaced. Possible values are:

0 The area is part of another commarea and cannot be replaced.

1 The storage pointed to by decode_data_ptr can be freed and
replaced by a different size workarea.

Responses and reason codes
You must return one of the following values in decode_response:

URP_OK
The alias, or the CICS business logic interface, links to the CICS program
using the communication area provided by Decode.

URP_EXCEPTION
The CICS program is not executed.

If the alias was the caller, the action taken depends on the reason code:

v URP_SECURITY_FAILURE—the alias writes an exception trace entry
(trace point 455A), and issues a message (DFHWB0121). If the request
is an HTTP request, response 403 is sent to the Web browser. If the
request is not an HTTP request, no response is sent, and the TCP/IP for
VSE/ESA socket is closed.

v URP_CORRUPT_CLIENT_DATA—the alias writes an exception trace
entry (trace point 4559), and issues a message (DFHWB0121). If the
request is an HTTP request, response 400 is sent to the Web browser. If
the request is not an HTTP request, no response is sent, and the TCP/IP
for VSE/ESA socket is closed.

v Any other value—the alias writes an exception trace entry (trace point
455B), and issues a message (DFHWB0121). If the request is an HTTP
request, response 501 is sent to the Web browser. If the request is not
an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

If the CICS business logic interface was the caller, the action taken
depends on the reason code:

v URP_CORRUPT_CLIENT_DATA—the CICS business logic interface
writes an exception trace entry (trace point 4556), issues a message
(DFHWB0120), and returns a response of 400 to its caller.

v Any other value—the CICS business logic interface writes an exception
trace entry (trace point 455B), issues a message (DFHWB0121), and
returns a response of 501 to its caller.

URP_INVALID
The CICS program is not executed.

If the alias was the caller, the alias writes an exception trace entry (trace
point 455C), and issues a message (DFHWB0121). If the request is an

Appendix C. Reference information for the converter 125

HTTP request, response 501 is sent to the web browser. If the request is
not an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455C), issues a
message (DFHWB0121), and returns a response of 501 to its caller.

URP_DISASTER
The CICS program is not executed.

If the alias was the caller, the alias writes an exception trace entry (trace
point 455D), and issues a message (DFHWB0121). If the request is an
HTTP request, response 501 is sent to the web browser. If the request is
not an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455D), issues a
message (DFHWB0121), and returns a response of 501 to its caller.

If you return any other value in decode_response, the CICS program is not
executed.

If the alias was the caller, the alias writes an exception trace entry (trace point
455E), and issues a message (DFHWB0121). If the request is an HTTP request,
response 500 is sent to the web browser. If the request is not an HTTP request, no
response is sent, and the TCP/IP for VSE/ESA socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455E), issues a message
(DFHWB0121), and returns a response of 501 to its caller.

You may supply a 32-bit reason code in decode_reason to provide further
information in error cases. Neither the CICS Web support nor the CICS business
logic interface takes any action on the reason code returned by Decode, except as
indicated above under URP_EXCEPTION. The reason code is output in any trace
entry that results from the invocation of Decode.

See “Numeric values of symbolic codes” on page 88 for the numeric values of the
response and reason codes in trace output.

126 CICS TS for VSE/ESA: Internet Guide

Encode

Summary of parameters
In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with encode_ to give the name of the
parameter.

Table 5. Parameters for Encode

Input
encode_

Inout
encode_

Output
encode_

eyecatcher
entry_countfunction
input_data_len
user_token

data_ptr reason
response

Function
If the analyzer, or the caller of the CICS business logic interface, specified a
converter name for the request, Encode is called after the CICS program has
ended. It constructs the response from the contents of the communication area.

Parameters
encode_data_ptr

(Input and output)

On input, a pointer to the communication area returned by the CICS
program. If no CICS program was called, it is a pointer to the
communication area created by Decode.

On output, a pointer to the buffer containing the response to be sent to the
client. You must ensure that the pointer points to a valid location, or results
can be unpredictable. The buffer must be doubleword aligned. The first four
bytes must be a 32-bit unsigned number specifying the length of the buffer.
(In COBOL, specify this as PIC 9(8) COMP.) The rest of the buffer is the
response. Do not use this field as output when the converter was called
from a CICS business logic interface that was called in offset mode.

encode_entry_count
(Input only)

A count to say how many times the Encode converter has been entered for
the current Web request.

encode_eyecatcher
(Input only)

A string of length 8. Its value for Encode is “>encode”.

encode_function
(Input only)

A halfword code set to the constant value URP_ENCODE, indicating that
Encode is being called.

encode_input_data_len
(Input only)

The length of the communication area as specified by Decode in
decode_output_data_len.

Appendix C. Reference information for the converter 127

encode_reason
(Output only)

A reason code—see “Responses and reason codes”.

encode_response
(Output only)

A response—see “Responses and reason codes”.

encode_user_token
(Input only)

The 64-bit token output by Decode as decode_user_token.

encode_version
(Input)

A single-character parameter list version identifier, which changes whenever
the layout of the parameter list changes. Its value is a character zero
(X’F0’), indicating a CICS TS 1.1.1 version parameter list.

encode_volatile
(Input)

A single-character code indicating whether the data area pointed to be
encode_data_ptr can be be replaced. Possible values are:

0 The area is part of another commarea and cannot be replaced.

1 The storage pointed to by encode_data_ptr can be freed and
replaced by a different size workarea.

Responses and reason codes
You must return one of the following values in encode_response:

URP_OK
The response in the buffer pointed to by encode_data_ptr is sent to the
client.

URP_DISASTER
If the alias was the caller, the alias writes an exception trace entry (trace
point 455D), and issues a message (DFHWB0122). If the request is an
HTTP request, response 501 is sent to the web browser. If the request is
not an HTTP request, no response is sent, and the TCP/IP for VSE/ESA
socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455D), issues a
message (DFHWB0122), and returns a response of 501 to its caller.

URP_OK_LOOP
The CICS Web interface loops back to the start of the Decode function.
The value stored in encode_user_token is copied to decode_user_token
for the Decode converter function to use.

If the alias was the caller and you return any other value in encode_response, the
alias writes an exception trace entry (trace point 455E), and issues a message
(DFHWB0122). If the request is an HTTP request, response 501 is sent to the web
browser. If the request is not an HTTP request, no response is sent, and the
TCP/IP for VSE/ESA socket is closed.

128 CICS TS for VSE/ESA: Internet Guide

If the CICS business logic interface was the caller and you return any other value in
encode_response, the CICS business logic interface writes an exception trace
entry (trace point 455E), issues a message (DFHWB0122), and returns a response
of 501 to its caller.

You can supply a 32-bit reason code in encode_reason to provide further
information in error cases. Neither the CICS Web support nor the CICS business
logic interface takes any action on the reason code returned by Encode. The
reason code is output in any trace entry that results from the invocation of Encode.

See “Numeric values of symbolic codes” on page 88 for the numeric values of the
response and reason codes in trace output.

Appendix C. Reference information for the converter 129

130 CICS TS for VSE/ESA: Internet Guide

Appendix D. Reference information for DFHWBTL

The HTML template manager helps you to write CICS application programs that
create HTML pages to be sent to an HTTP client. You use EXEC CICS LINK to call
DFHWBTL.

An HTML page can be built from one or more templates. The templates can be
read from a VSE/ESA sub-library, or can be provided inline in your application
program, or can be defined in a DOCTEMPLATE definition. DOCTEMPLATEs
define templates with 48–character names. The template name used in DFHWBTL
is padded with 40 blanks and the corresponding DOCTEMPLATE is used if it exists.
If there is no corresponding DOCTEMPLATE, a resource definition for the member
in the DFHHTML library is created dynamically.

Templates can contain HTML symbols, and the template manager replaces the
symbols with values from a symbol table as it adds the template to a page. The
template manager allows you to set up and modify a symbol table as you add
templates to the HTML page.

The functions of the template manager are summarized as follows:

v BUILD_HTML_PAGE combines the functions of START_HTML_PAGE,
ADD_HTML_TEMPLATE, and END_HTML_PAGE.

v START_HTML_PAGE establishes an environment for the next three functions,
and allows you to put values in the symbol table.

v ADD_HTML_SYMBOLS adds symbols to the symbol table. It also modifies the
values of symbols already defined in the symbol table.

v ADD_HTML_TEMPLATE adds a template to the HTML page, replacing symbols
in the template with the values defined in the symbol table.

v END_HTML_PAGE destroys the environment established in
START_HTML_PAGE, though the page remains in the storage in which it was
constructed.

You call the template manager using EXEC CICS LINK as follows:
EXEC CICS LINK PROGRAM(DFHWBTL) COMMAREA(...) LENGTH(...)

You supply the communication area addressed by the COMMAREA option of the
command. The contents of the communication area are described below.

In this chapter the various program elements (values) are given symbolic names.
These names, translated into appropriate forms for the different programming
languages supported, are defined in files supplied as part of the CICS Web support.
The files for the various languages are as follows:

Language File

Assembler DFHWBTLD

C DFHWBTLH

COBOL DFHWBTLO

PL/I DFHWBTLL

These files give language-specific information about the data types of the fields in
the communication area.

© Copyright IBM Corp. 1994, 2000 131

Parameters in the communication area
The following table summarizes the use of the parameters by function.

Table 6. Parameters for the HTML template manager

Function Parameters Usage

WBTL_START_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_symbol_list_ptr
wbtl_symbol_list_len

input
input
output
output
output
input
input

WBTL_ADD_HTML_SYMBOLS wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_symbol_list_ptr
wbtl_symbol_list_len

input
input
output
output
input
input
input

WBTL_ADD_HTML_TEMPLATE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_template_name
wbtl_template_abstime
wbtl_template_buffer_ptr
wbtl_template_buffer_len
wbtl_html_buffer_ptr
wbtl_html_buffer_len

input
input
output
output
input
input
input
input
inout
inout

WBTL_END_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token

input
input
output
output
input

WBTL_BUILD_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_template_name
wbtl_template_abstime
wbtl_template_buffer_ptr
wbtl_template_buffer_len
wbtl_symbol_list_ptr
wbtl_symbol_list_len
wbtl_html_buffer_ptr
wbtl_html_buffer_len

input
input
output
output
input
output
input
input
input
input
inout
inout

wbtl_version_no
(Input only)

The version number of the template manager interface. Specify
WBTL_CURRENT_VERSION.

wbtl_function
(Input only)

132 CICS TS for VSE/ESA: Internet Guide

Specify the function you wish to perform as one of the following:
v WBTL_BUILD_HTML_PAGE
v WBTL_START_HTML_PAGE
v WBTL_ADD_HTML_SYMBOLS
v WBTL_ADD_HTML_TEMPLATE
v WBTL_END_HTML_PAGE

See “Numeric values of symbolic codes” on page 88 for the numeric values
of the functions in trace output.

wbtl_response
(Output only)

The response from the template manager to the function and inputs. See
“Responses and reason codes” on page 134.

wbtl_reason
(Output only)

Might contain additional information about an error for some responses.
See “Responses and reason codes” on page 134.

wbtl_connect_token
(Input and output)

As output from WBTL_START_HTML_PAGE, this token represents the
page environment established by WBTL_START_HTML_PAGE, and you
must save it for use with other functions. You can have several tokens in
use at once, and the template manager maintains separate page
environments for each token.

As input to WBTL_ADD_HTML_SYMBOLS,
WBTL_ADD_HTML_TEMPLATE, and WBTL_END_HTML_PAGE, this token
identifies the HTML page environment.

wbtl_template_name
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE, and
WBTL_ADD_HTML_TEMPLATE, this is an 8-character field, padded on the
right with spaces. If you want the template manager to use a template from
a VSE/ESA sub-library, put the name of the member here. If you want the
template manager to use an inline template, put spaces here and use the
wbtl_template_buffer_ptr and wbtl_template_buffer_len fields.

wbtl_template_abstime
(Output only)

As output from WBTL_ADD_HTML_TEMPLATE and
WBTL_BUILD_HTML_PAGE when the template manager is requested to
use the VSE/ESA sub-library member specified by wbtl_tempate_name.
This is the current date and time.

wbtl_template_buffer_ptr
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the address of the template to be
used. If you want the template manager to use an inline template, use this
field. If you want the template manager to use a template from a VSE/ESA
sub-library, do not use this field, but use wbtl_template_name instead. This
field is ignored if wbtl_template_name is specified.

Appendix D. Reference information for DFHWBTL 133

wbtl_template_buffer_len
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the template
pointed to by wbtl_template_buffer_ptr. If you want the template manager
to use an inline template, use this field. If you want the template manager
to use a template from a VSE/ESA sub-library, do not use this field, but use
wbtl_template_name instead. This field is ignored if wbtl_template_name
is specified.

wbtl_symbol_list_ptr
(Input only)

This field is a required input to WBTL_ADD_HTML_SYMBOLS, and an
optional input to WBTL_BUILD_HTML_PAGE and
WBTL_START_HTML_PAGE. It is the address of the list of symbols to be
used to update the symbol table. The format of the list is described in
“Describing symbols, symbol table, and symbol list” on page 74. If the
function is WBTL_ADD_HTML_SYMBOLS, you must use
wbtl_connect_token to identify the page environment whose symbol table
is to be updated.

wbtl_symbol_list_len
(Input only)

This field is a required input to WBTL_ADD_HTML_SYMBOLS, and an
optional input to WBTL_BUILD_HTML_PAGE and
WBTL_START_HTML_PAGE. It is the length in bytes of the list of symbols
to be used to update the symbol table.

wbtl_html_buffer_ptr
(Input and output)

As input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this field is the address of the unused
portion of the buffer that contains the HTML page being constructed. As
output from WBTL_BUILD_HTML_PAGE and WBTL_ADD_TEMPLATE, this
field is the address of the remaining space in the buffer.

wbtl_html_buffer_len
(Input and output)

As input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the unused
portion of the buffer that contains the HTML page being constructed. As
output from WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the remaining
space in the buffer.

Responses and reason codes
WBTL_OK

The operation ended successfully.

WBTL_EXCEPTION
The template manager detected an error in the operation. The following
reason values are possible:

134 CICS TS for VSE/ESA: Internet Guide

WBTL_PAGE_TRUNCATED
There was not enough room left in the buffer for the page. The
HTML template manager has used all the space available, and
discarded the rest of the page.

WBTL_TEMPLATE_NOT_FOUND
The template manager could not find the template named in
wbtl_template_name in the VSE/ESA sub-library.

WBTL_TEMPLATE_TRUNCATED
There was not enough room left in the buffer for the template. The
HTML template manager has used all the space available, and
discarded the rest of the template.

WBTL_INVALID
The template manager detected an error in the parameters in the
communication area. The following reason values are possible:

WBTL_INVALID_BUFFER_PTR
The value in wbtl_html_buffer_ptr was zero when an address was
required.

WBTL_INVALID_FUNCTION
The value in wbtl_function was not recognized.

WBTL_INVALID_SYMBOL_LIST
An input symbol list was required, but either wbtl_symbol_list_ptr
was zero, or wbtl_symbol_list_len was zero.

WBTL_INVALID_TOKEN
The operation was expecting an input wbtl_connect_token, but
found its value was zero. All tokens output by the HTML template
manager are non-zero.

WBTL_DISASTER
The template manager detected an unrecoverable error. The following
reason values are possible:

WBTL_FREEMAIN_ERROR
There was an error while attempting to release storage.

WBTL_GETMAIN_ERROR
There was an error while attempting to acquire storage.

See “Numeric values of symbolic codes” on page 88 for the numeric values of the
response and reason codes in trace output.

Appendix D. Reference information for DFHWBTL 135

136 CICS TS for VSE/ESA: Internet Guide

Appendix E. Reference information for DFHWBENV

The environment variables program is DFHWBENV. It extracts information about the
server (the CICS region in which the server controller is running), and the client (the
Web browser that sent the current request). You can use EXEC CICS LINK to call
it. You must supply a communication area that is long enough to contain the
expected response. The exact length of the response depends on the nature of
your connection with the client, and the values set by the client’s browser program,
but 1024 bytes will usually be enough. On return, the communication area contains
a 32-bit integer followed by a sequence of values of environment variables. The
32-bit integer specifies the length of the string that follows it. The values are
specified with the following format:
variable-name=value

Each value is separated from the following variable name by an ampersand. None
of the values contain an ampersand. This format is the same as that required for
input as a symbol list to the HTML template manager (DFHWBTL), and to the
parser (DFHWBPA). If the environment variables program cannot return any
variables, it returns a length of zero. If the communication area you provide is not
long enough to contain all the variables and their values, the program abends with
abend code AWBC.

DFHWBENV can be linked to only from the alias transaction. You cannot link to
DFHWBENV from the analyzer.

The meaning of the value for each variable name provided by CICS that can occur
in the communication area is as follows:

CONTENT_LANGUAGE
The national language of any user data in the HTTP request. The value
contains the ISO 3316 language code, optionally qualified by an ISO 639
country code. It is extracted from the Content-Language HTTP header. If
there is no Content-Language header, the value is a null string.

CONTENT_LENGTH
The character representation of the decimal length of any user data in the
HTTP request. It is extracted from the Content-Length HTTP header. If
there is no user data, the value is zero.

CONTENT_TYPE
The MIME format of any user data in the HTTP request. It is extracted from
the Content-Type HTTP header. If there is no user data, the value is a null
string.

QUERY_STRING
The query string from the HTTP request. Any ampersands in the query
string are expanded to %26;, and any equals signs are expanded to %3D;. If
there is no query string, the value is a null string.

REMOTE_ADDR
The IP address of the client in dotted decimal format.

REMOTE_HOST
The fully-qualified name of the client, if this can be obtained from the name
server. If the name cannot be found, the value is a null string.

REMOTE_USER
The user ID that has been assigned to the current request.

© Copyright IBM Corp. 1994, 2000 137

REQUEST_METHOD
The method name specified in the first HTTP header received from the
client. It is one of GET, POST, HEAD, SHOWMETHOD, PUT, DELETE,
LINK, UNLINK.

SERVER_NAME
The fully-qualified name of the connection, for example
www.hursley.ibm.com. If CICS was unable to obtain its own name from the
domain name server when the CICS Web support was enabled, the dotted
decimal address of the connection will be returned instead.

SERVER_PORT
The character representation of the decimal value of the TCP/IP port on
which the request was received, for example 80.

SERVER_PROTOCOL
The name of the Internet protocol describing the data received, usually
HTTP/1.0.

SERVER_SOFTWARE
The name and version of the CICS product.

All HTTP headers found in the inbound request are also placed in the commarea,
and are given the prefix HTTP_. Any variables passed in an HTTP request that do
not conform to RFC 1945 naming standards are ignored by DFHWBENV and are
not returned in the commarea. Some examples of valid headers are:

HTTP_ACCEPT
The contents of all the Accept HTTP headers, separated by commas. These
values represent the MIME types that the browser is prepared to accept, so
the list should never be empty. However, if there are no Accept headers,
the value is a null string.

HTTP_ACCEPT_ENCODING
The contents of the Accept-Encoding HTTP header. If there is no
Accept-Encoding header, the variable is not returned.

HTTP_ACCEPT_LANGUAGE
The contents of the Accept-Language HTTP header. If there is no
Accept-Language header, the variable is not returned.

HTTP_AUTHORIZATION
The contents of the Authorization HTTP header. If there is no Authorization
header, the variable is not returned.

HTTP_CHARGE_TO
The contents of the Charge-To HTTP header. If there is no Charge-To
header, the variable is not returned.

HTTP_FROM
The contents of the From HTTP header. If there is no From header, the
variable is not returned.

HTTP_IF_MODIFIED_SINCE
The contents of the If-Modified-Since HTTP header. If there is no
If-Modified-Since header, the variable is not returned.

HTTP_PRAGMA
The contents of the Pragma HTTP header. If there is no Pragma header,
the variable is not returned.

138 CICS TS for VSE/ESA: Internet Guide

HTTP_REFERER
The contents of the Referer HTTP header. This is the URL of the page from
which the link was made. If there is no Referer header, the variable is not
returned.

HTTP_USER_AGENT
The contents of the User-Agent HTTP header. This is the product name of
the Web browser program. If there is no User-Agent header, the variable is
not returned.

Appendix E. Reference information for DFHWBENV 139

140 CICS TS for VSE/ESA: Internet Guide

Appendix F. Reference information for DFH$WBST and
DFH$WBSR

Two state management sample programs, DFH$WBST and DFH$WBSR are
supplied with the CICS Web Interface. They allow a transaction to save data for
later retrieval by the same transaction, or by another transaction. The saved data is
accessed by a token that is created by the state management program for the first
transaction. The first transaction must pass the token to the transaction that is to
retrieve the data. DFH$WBST uses EXEC CICS GETMAIN to allocate storage for
the saved data. DFH$WBSR saves the data in temporary storage queues, one for
each token, so that, with suitable temporary storage table definitions, the data can
be accessed from several CICS systems. The rest of this section applies equally to
either program.

The state management program and the tokens it allocates can be used in many
ways. Here are two suggestions:

v The token can be used as a conversation token, that is a token that identifies
information that is to be preserved throughout a pseudoconversation. A
conversation token can be managed by the converter or the CICS program, and
is best conveyed from program to program in a pseudoconversation as a hidden
field in an HTML form.

v The token can be used as a session token, that is a token that identifies
information that is to preserved throughout an extended interaction between an
end user and various CICS programs, perhaps over several
pseudoconversations. A session token can be managed by the analyzer, and is
best conveyed from interaction to interaction as a query string in a URL. This use
of a state management token is illustrated by the security analyzer, security
converter, and security sign-on sample programs described in “Using sample
programs for security” on page 82.

The state management program provides the following operations:
v Create a new token.
v Store information and associate it with a previously-created token.
v Retrieve information previously associated with a token.
v Destroy information associated with a token, and invalidate the token.
v Remove information and tokens that have expired.

The last operation is an internal operation, not explicitly invoked by the caller.

The layout of the 268-byte communication area is shown in the following table. You
must clear the communication area to binary zeros before setting the inputs for the
function you require.

Table 7. Parameters for the state management program

Offset Length Type Value Notes

0 4 C Eyecatcher

4 1 C ’C’
’R’
’S’
’D’

Create
Retrieve
Store
Destroy
This is the function code. It is a required input
to every call.

© Copyright IBM Corp. 1994, 2000 141

Table 7. Parameters for the state management program (continued)

Offset Length Type Value Notes

5 1 X Return code. This is an output from every
call.

6 2 X Reserved.

8 4 F Token. This is an output from a Create call,
and an input to every other call.

12 256 C User data. This is an input to a Create call,
and an output from a Retrieve call. It is not
used in other calls.

The return codes are as follows:

0 The requested function was performed.

v If the function was Create, a new token is available at offset 8.

v If the function was Retrieve, the user data associated with the input
token at offset 8 is now in the user data area at offset 12.

v If the function was Store, the input user data at offset 12 is now
associated with the input token and offset 8. Any user data previously
associated with the token is overwritten.

v If the function was Destroy, the data associated with the input token at
offset 8 has been discarded, and the token is no longer valid.

2 The function code at offset 4 was not valid. Correct the program that sets
up the communication area.

3 The function was Create, but EXEC CICS GETMAIN gave an error
response.

4 The function was Retrieve, Store, or Destroy, but the input token at offset 8
was not found. Either the input token is not a token returned by Create, or it
has expired.

5 EXEC CICS WRITEQ TS gave an error response when writing internal data
to a temporary storage queue.

7 EXEC CICS ASKTIME gave an error response.

8 EXEC CICS READQ TS gave an error response when reading internal data
from a temporary storage queue.

9 EXEC CICS ASKTIME gave an error response during timeout processing.

11 The function was Create, but EXEC CICS WRITEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

12 The function was Retrieve, but EXEC CICS READQ TS gave an error
response. This return code is produced only by DFH$WBSR.

13 The function was Store, but EXEC CICS WRITEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

14 The function was Destroy, but EXEC CICS DELETEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

142 CICS TS for VSE/ESA: Internet Guide

Appendix G. Reference information for DFHWBPA

The CICS Web support parser program is DFHWBPA. It parses strings of the form:
key1=value1&key2=value2&key3=value3 ...

key1 is a keyword, value1 is the corresponding value, and so on. The
keyword/value pairs must be separated by ampersands as shown in the example. If
there is only one keyword/value pair there must be no ampersand. A keyword must
contain only uppercase and lowercase letters, digits, and underscores (“_”). It must
not contain any imbedded blanks. A value can contain any character except an
ampersand. The kinds of strings that the parser accepts are the same as:
v Data transmitted by HTTP clients as query strings
v Forms data from HTTP clients
v Output from the environment variables program DFHWBENV
v Input to the HTML template manager

The parser accepts a string and a keyword as input, and returns the corresponding
value as output. If the string does not contain the keyword, the output is nulls.

The program is called by EXEC CICS LINK. You supply a communication area
containing the keyword to be found, two ampersands, and the string to be
searched. The communication area must not be more that 4096 bytes long.
EXEC CICS LINK PROGRAM(DFHWBPA) COMMAREA(...) LENGTH(...)

When the parser returns to your program, the communication area contains the
value followed by nulls.

The following example illustrates the operation of the parser. Suppose the input
communication area contains the following string:
a1&&myt=New Authors&a1=Halliwell Sutcliffe&a2=Stanley Weyman

The output is:
Halliwell Sutcliffe

The output is padded to 60 bytes (the length of the input communication area) with
nulls.

© Copyright IBM Corp. 1994, 2000 143

144 CICS TS for VSE/ESA: Internet Guide

Appendix H. Reference information for DFHWBEP

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

The names of the parameters and constants in the communication area passed to
DFHWBEP, translated into appropriate forms for the programming languages
supported, are listed in the following table.

Language Parameters file

Assembler DFHWBEPD

C DFHWBEPH

COBOL DFHWBEPO

PL/I DFHWBEPL

Parameters
All DFHWBEP parameters are input only, except wbep_response_ptr, which is
input and output.

wbep_abend_code
(Input only)

The 8–character abend code associated with this exception.

wbep_analyzer_reason
(Input only)

The reason code returned by the analyzer program, if invoked.

wbep_analyzer_response
(Input only)

The response code returned by the analyzer program, if invoked.

wbep_client_address
(Input only)

The 15–character TCPIP address of the client.

wbep_client_address_len
(Input only)

The length of the TCP/IP address contained in WBEP_CLIENT_ADDRESS.

wbep_converter_program
(Input only)

The name of the converter program, if one is used, for the failing request.

wbep_converter_reason
(Input only)

The reason code returned by the converter, if invoked.

wbep_converter_response
(Input only)

The response code returned by the converter, if invoked.

© Copyright IBM Corp. 1994, 2000 145

wbep_error_code
(Input only)

The error code identifying the error detected.

wbep_eyecatcher
(Input only)

A character field containing an eyecatcher to help with diagnostics.
DFHWBA sets this to >wbepca before calling the Web error program.

wbep_failing_program
(Input only)

The program in which the exception occurred.

wbep_http_response_code
(Input only)

The HTTP error response code returned by CICS for this error. You can
change this response code by manipulating the response in the buffer
pointed to by WBEP_RESPONSE_PTR.

wbep_length
(Input only)

The length of the DFHWBEPC copybook.

wbep_message_len
(Input only)

The length of the message addressed by WBEP_MESSAGE_PTR.

wbep_message_number
(Input only)

A fullword number of the CICS WB message associated with the error.

wbep_message_ptr
(Input only)

A pointer to the CICS message text associated with this exception.

wbep_response_len
(Input only)

The fullword length of the CICS message text associated with this
exception.

wbep_response_ptr
(Input and output)

A pointer to the response message text associated with this exception.

wbep_server_address
(Input only)

The 15–character TCPIP address of the server.

wbep_server_address_len
(Input only)

The length of the TCP/IP address contained in
WBEP_SERVER_ADDRESS.

wbep_target_program
(Input only)

146 CICS TS for VSE/ESA: Internet Guide

The target program associated with the Web request.

wbep_tcpipservice_name
(Input only)

The name of the TCPIPSERVICE associated with this request.

wbep_version
(Input only)

The version of DFHWBEPC being passed by CICS.

Appendix H. Reference information for DFHWBEP 147

148 CICS TS for VSE/ESA: Internet Guide

Appendix I. HTML-coded character sets

Table 8 lists the supported IANA charset= values and the IBM CCSID equivalents.
All of these values are valid for codepage conversions on the following commands:

v EXEC CICS WEB SEND

v EXEC CICS WEB RECEIVE

v EXEC CICS DOCUMENT RETRIEVE

On the CLNTCODEPAGE parameter of these commands, you can specify either
the IANA value or the IBM CCSID value, as CICS performs mapping between the
two.

Table 8. Coded character sets

Language Coded character set IANA charset IBM CCSID

Albanian ISO/IEC 8859-1 iso-8859-1 819

Arabic ISO/IEC 8859-6 iso-8859-6 1089

Bulgarian Windows 1251 windows-1251 1251

Byelorussian Windows 1251 windows-1251 1251

Catalan ISO/IEC 8859-1 iso-8859-1 819

Chinese (simplified) GB gb2312 1381 or 5477

Chinese (traditional) Big 5 big5 950

Croatian ISO/IEC 8859-2 iso-8859-2 912

Czech ISO/IEC 8859-2 iso-8859-2 912

Danish ISO/IEC 8859-1 iso-8859-1 819

Dutch ISO/IEC 8859-1 iso-8859-1 819

English ISO/IEC 8859-1 iso-8859-1 819

Estonian ISO/IEC 8859-1 iso-8859-1 819

Finnish ISO/IEC 8859-1 iso-8859-1 819

French ISO/IEC 8859-1 iso-8859-1 819

German ISO/IEC 8859-1 iso-8859-1 819

Greek ISO/IEC 8859-7 iso-8859-7 813

Hebrew ISO/IEC 8859-8 iso-8859-8 916

Hungarian ISO/IEC 8859-2 iso-8859-2 912

Italian ISO/IEC 8859-1 iso-8859-1 819

Japanese Shift JIS

EUC Japanese

x-sjis or shift-jis

euc-jp

943 (932, a subset
of 943, is also
valid)

5050 (EUC)

Korean EUC Korean euc-kr 970 (for AIX or Unix)

Latvian Windows 1257 windows-1257 1257

Lithuanian Windows 1257 windows-1257 1257

Macedonian Windows 1257 windows-1257 1251

Norwegian ISO/IEC 8859-1 iso-8859-1 819

Polish ISO/IEC 8859-2 iso-8859-2 912

© Copyright IBM Corp. 1994, 2000 149

Table 8. Coded character sets (continued)

Language Coded character set IANA charset IBM CCSID

Portuguese ISO/IEC 8859-1 iso-8859-1 819

Romanian ISO/IEC 8859-2 iso-8859-2 912

Russian Windows 1251 windows-1251 1251

Serbian (Cyrillic) Windows 1251 windows-1251 1251

Serbian (Latin 2) Windows 1250 windows-1250 1250

Slovakian ISO/IEC 8859-2 iso-8859-2 912

Slovenian ISO/IEC 8859-2 iso-8859-2 912

Spanish ISO/IEC 8859-1 iso-8859-1 819

Swedish ISO/IEC 8859-1 iso-8859-1 819

Turkish ISO/IEC 8859-9 iso-8859-9 920

Ukrainian Windows 1251 windows-1251 1251

UCS-2 iso-10646-ucs-2 1200 (growing) or
13488 (fixed)

150 CICS TS for VSE/ESA: Internet Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore this statement may
not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Limited, Hursley Park, Winchester, Hampshire, England SO21 2JN.

© Copyright IBM Corp. 1994, 2000 151

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

Programming interface information
This book is intended to help you use the external interfaces provided by the CICS
Transaction Server for VSE/ESA. This book documents General-use Programming
Interface and Associated Guidance Information provided by CICS.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided by
CICS.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
CICS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified, where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification, or Tuning Information is provided to help you diagnose
problems in your CICS system.

Note: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

Diagnosis, Modification, or Tuning Information is identified, where it occurs, by an
introductory statement to a chapter or section.

Trademarks and service marks
The following terms, used in this publication, are trademarks or service marks of
IBM Corporation in the United States or other countries:

BookManager CICS
CICS/VSE DB2
DFS IBM
IMS Language Environment
OS/2 RACF
RT SAA
VTAM

152 CICS TS for VSE/ESA: Internet Guide

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Notices 153

154 CICS TS for VSE/ESA: Internet Guide

Bibliography

CICS Transaction Server for VSE/ESA Release 1 Library

Evaluation and planning
CICS Release Guide GC33-1645
CICS Migration Guide GC33-1646
CICS Report Controller Planning Guide SC33-1941
CICS Enhancements Guide GC34-5763

General
CICS Master Index SC33-1648
CICS Trace Entries Handbook SC34-5556
CICS User’s Handbook SX33-6101
CICS Glossary (softcopy only) GC33-1649

Administration
CICS System Definition Guide SC33-1651
CICS Customization Guide SC33-1652
CICS Resource Definition Guide SC33-1653
CICS Operations and Utilities Guide SC33-1654
CICS Supplied Transactions SC33-1655

Programming
CICS Application Programming Guide SC33-1657
CICS Application Programming Reference SC33-1658
CICS 4.1 Sample Applications Guide SC33-1713
CICS Application Migration Aid Guide SC33-1943
CICS System Programming Reference SC33-1659
CICS Distributed Transaction Programming Guide SC33-1661
CICS Front End Programming Interface User’s Guide SC33-1662
REXX Guide SC34-5764
CICS Family: Client/Server Programming SC33-1435

Diagnosis
CICS Problem Determination Guide GC33-1663
CICS Messages and Codes SC33-6799
CICS Diagnosis Reference LY33-6085
CICS Data Areas LY33-6086
CICS Supplementary Data Areas LY33-6087

Communication
CICS Internet Guide SC34-5765
CICS Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics
CICS Recovery and Restart Guide SC33-1666
CICS Performance Guide SC33-1667
CICS Shared Data Tables Guide GC33-1668
CICS Security Guide SC33-1942
CICS External Interfaces Guide SC33-1669
CICS XRF Guide SC33-1671
CICS Report Controller User’s Guide SC34-5688

CICS Clients
CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows:

Administration
SC34-5449

© Copyright IBM Corp. 1994, 2000 155

CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris:

Administration
SC34-5451

CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

156 CICS TS for VSE/ESA: Internet Guide

Books from VSE/ESA 2.5 base program libraries

VSE/ESA Version 2 Release 5

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User’s Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

e-business Connectors User’s Guide SC33-6719

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

© Copyright IBM Corp. 1994, 2000 157

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

158 CICS TS for VSE/ESA: Internet Guide

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.5 base program libraries 159

160 CICS TS for VSE/ESA: Internet Guide

Books from VSE/ESA 2.5 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

© Copyright IBM Corp. 1994, 2000 161

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

162 CICS TS for VSE/ESA: Internet Guide

Book title Order number

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator’s Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

TCP/IP for VSE/ESA
Documentation for TCP/IP for VSE/ESA is available by ordering the ″TCP/IP for
VSE/ESA PDF Product Library″ product kit, SK2T-1336. Not all the books are
separately orderable as they are only available in PDF form. The following titles are
available on the product kit at the time of going to press:

Book title Order number

TCP/IP for VSE/ESA — IBM Program Setup and Supplementary Information SC33-6601

TCP/IP for VSE/ESA Flyer G221-9030

TCP/IP for VSE/ESA Performance Considerations n/a

TCP/IP for VSE/ESA LPS GC33-6594

The Native TCP/IP forVSE GC33-6594

TCP/IP Tutorial and Technical Overview GG24-3376

VSE/ESA as a Web Server SG24-2040

TCP/IP for VSE 1.4 Installation Guide n/a

TCP/IP for VSE 1.4 User’s Guide n/a

TCP/IP for VSE 1.4 Commands n/a

TCP/IP for VSE 1.4 Programmer’s Reference n/a

TCP/IP for VSE 1.4 Messages and Codes n/a

TCP/IP for VSE 1.4 Optional Products n/a

Books from VSE/ESA 2.5 optional program libraries 163

164 CICS TS for VSE/ESA: Internet Guide

Information on the World Wide Web

Information about the hypertext transfer protocol (HTTP) and the hypertext markup
language (HTML) is on the World Wide Web. URLs are provided in this book with
the caveat that their permanence cannot be guaranteed.

HTTP/1.0
CICS supports HTTP/1.0. Unpredictable results can occur if you use
HTTP/1.1–specific headers. For HTTP/1.0 information, consult the following:

v Overview of HTTP
http://www.w3.org/hypertext/WWW/Protocols/Overview.html

v Hypertext Transfer Protocol (HTTP/1.0)
http://ds.internic.net/rfc/rfc1945.txt

The following references are to information about the ISO 8859-1 (Latin-1)
character set:

v ISO 8859-1 National Character Set FAQ
http://aliga.cesca.es:1025/%7Ezopcgp01/manuals/ISO8859-1.faq

v ISO 8859-1:1987 (ordering information)
http://www.iso.ch/cate/d16338.html

v ISO 8859-1 (Latin-1) Characters List
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html

v Table of Latin-1 character glyphs
http://www.w3.org/pub/WWW/MarkUp/Wilbur/latin1.gif

HTML
CICS has no dependency on the level of HTML used. There are many reference
sites available on the World Wide Web. The most useful starting place for HTML
reference material is:
http://www.w3.org/

© Copyright IBM Corp. 1994, 2000 165

166 CICS TS for VSE/ESA: Internet Guide

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a publication are
in step, but subsequent updates will probably be available in softcopy before they
are available in hardcopy.

For CICS for VSE/ESA books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx and on the

VSE/ESA Collection Kit CD-ROM, SK2T-0060-xx. Each reissue of the collection kit
is indicated by an updated order number suffix (the -xx part). For example,
collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection
kit is also clearly dated on the cover.

Here’s how to determine if you are looking at the most current copy of a publication:

v A publication with a higher suffix number is more recent than one with a lower
suffix number. For example, the publication with order number SC33-0667-02 is
more recent than the publication with order number SC33-0667-01. (Note that
suffix numbers are updated as a product moves from release to release, as well
as for hardcopy updates within a given release.)

v When the softcopy version of a publication is updated for a new collection kit the
order number it shares with the hardcopy version does not change. Also, the
date in the edition notice remains that of the original publication. To compare
softcopy with hardcopy, and softcopy with softcopy (on two editions of the
collection kit, for example), check the last two characters of the publication’s
filename. The higher the number, the more recent the publication. For example,
DFHPF104 is more recent than DFHPF103. Next to the publication titles in the
CD-ROM booklet and the readme files, asterisks indicate publications that are
new or changed.

v Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

© Copyright IBM Corp. 1994, 2000 167

168 CICS TS for VSE/ESA: Internet Guide

Index

Numerics
200 response

HTTP response 72
302 response

HTTP response 83
3270 applications 49
400 response

business logic interface 112
HTTP response 118, 119, 125

401 response
business logic interface 112

403 response
business logic interface 112
HTTP response 125

404 response
business logic interface 112

500 response
business logic interface 112
HTTP response 126

501 response
HTTP response 125, 126, 128

503 response
business logic interface 113

A
absolute path in URL 69
Accept-Encoding HTTP header 138
Accept HTTP header 138
Accept-Language HTTP header 138
alias 81
alias transaction CWBA 32
analyzer 19, 37, 79

basic authentication sample 82
default 40, 119
designing and coding 37
programming reference 115
security sample 82

Authorization HTTP header 138

B
basic authentication analyzer 82
basic authentication converter 82
basic mapping support 17
BMS 17
business logic 17, 91

C
character sets 149
Charge-To HTTP header 138
CICS business logic interface 17, 91

control flow for a program 94
control flow for a transaction 95
data flow for a program 96
data flow for a transaction(continue) 98
data flow for a transaction(start) 97

CICS business logic interface 17, 91 (continued)
programming reference 107

CICS Family: Client/Server Programming 93
CICS program

designing and coding 69
CICS system initialization parameters

TCPIP 29
XPCT 81
XPPT 81
XTRAN 81
XUSER 81

CICS Web support 91
control flow for a program 19
control flow for a transaction 21
data flow for a program 22
data flow for a transaction (continue) 98
data flow for a transaction (start) 97
processing example 18

CICSFOOT 52
CICSHEAD 52
client codepages 79, 149
codepages 79, 149
connection-oriented data transmission 8
connectionless data transmission 8
CONTENT_LANGUAGE environment variable 137
Content-Language HTTP header 40, 137
CONTENT_LENGTH environment variable 137
Content-Length HTTP header 137
CONTENT_TYPE environment variable 137
Content-Type HTTP header 40, 137
control flow

CICS business logic interface 94
CICS Web support 19
terminal oriented transaction 21, 95

conversation token 141
converter 43

basic authentication sample 82
designing and coding 43
programming reference 121
security sample 82

converter name in URL 79
CRLF 69, 118
CWBA alias transaction 32
CWXN Web attach transaction 19, 32

D
data conversion 33
data flow

CICS business logic interface 96
CICS Web support 22
terminal-oriented transaction (continue) 98
terminal-oriented transaction (start) 97

datagram 8
decode_client_address field 122
decode_client_address_string field 122
Decode converter function

designing and coding 44

© Copyright IBM Corp. 1994, 2000 169

Decode converter function (continued)
programming reference 122

decode_data_ptr field 122
decode_eyecatcher field 123
decode_function field 123
decode_http_version_length field 123
decode_http_version_ptr field 123
decode_input_data_len field 43, 123
decode_method_length field 123
decode_method_ptr field 123
decode_output_data_len field 123, 127
decode_reason field 123
decode_request_header_length field 123
decode_request_header_ptr field 124
decode_resource_length field 124
decode_resource_ptr field 124
decode_response field 124
decode_server_program field 117, 124
decode_user_data_length field 124
decode_user_data_ptr field 124
decode_user_token field 118, 124, 128
decode_version field 125
decode_volatile field 125, 128
default URL 41, 79
DFH$WB1A 36, 76
DFH$WB1C 76
DFH$WBAU 82
DFH$WBSA 82
DFH$WBSB 82
DFH$WBSC 82
DFH$WBSN 36, 82
DFH$WBSN RDO group 30, 82
DFH$WBSR 141
DFH$WBST 141
DFHCCNV 19
DFHCNV table 33
DFHDHTXD 31
DFHDHTXH 31
DFHDHTXL 31
DFHDHTXO 31
DFHHTML DD name 30, 33
DFHMDX macro 63
DFHSIT 29
DFHWBA alias program 33
DFHWBADX 40, 119
DFHWBBLI 107
DFHWBENV (environment variables program) 36, 71,

76, 137
DFHWBEP, Web error program 47
DFHWBHH conversion template 34
DFHWBHH conversion template name 33
DFHWBOUT macro 66
DFHWBPA 143
DFHWBTL 131
DFHWBTTA 20, 49, 95
DFHWBUD conversion template 34
DFHWBUD conversion template name 34, 41
DFHWEB RDO group 30
distributed application design 11
distributed computing 6
distributed transaction processing 7

DNS1 35
dotted decimal 9
double-byte character set (DBCS) 34
DPL 6
DPL subset 71

E
ECI 93
ECI request

processing example 94
EDF 89
Encode converter function

designing and coding 45
programming reference 127

encode_data_ptr field 127
encode_eyecatcher field 127
encode_function field 127
encode_input_data_len field 127
encode_reason field 128
encode_response field 128
encode_user_token field 124, 128
encode_version field 128
ENTER TRACENUM command 89
environment variables program (DFHWBENV) 36, 71,

76, 137
ephemeral port numbers 9
EXCI 93
EXCI request

processing example 93
EXEC CICS commands

DOCUMENT 72
DOCUMENT CREATE 78
TCPIP 72
WEB 72
WEB ENDBROWSE FORMFIELD 70
WEB ENDBROWSE HTTPHEADER 70
WEB EXTRACT 70
WEB READ FORMFIELD 70
WEB READ HTTPHEADER 70
WEB READNEXT FORMFIELD 70
WEB READNEXT HTTPHEADER 70
WEB RECEIVE 71, 78
WEB SEND 78
WEB STARTBROWSE FORMFIELD 70
WEB STARTBROWSE HTTPHEADER 70
WEB WRITE 72

EXEC CICS LINK 93
external call interface 93
external CICS interface 93

F
File Transfer Protocol 9
From HTTP header 138
function shipping 7

H
HANDLE ABEND command 89
hidden field in HTML form 141

170 CICS TS for VSE/ESA: Internet Guide

host name in URL 69
HTML 17
HTML form 69
HTML template manager 81, 131

programming reference 132
setting up a sub-library 33

HTML templates 57
HTTP 17
HTTP_ACCEPT_ENCODING environment

variable 138
HTTP_ACCEPT environment variable 138
HTTP_ACCEPT_LANGUAGE environment

variable 138
HTTP_AUTHORIZATION environment variable 138
HTTP_CHARGE_TO environment variable 138
HTTP_FROM environment variable 138
HTTP_IF_MODIFIED_SINCE environment

variable 138
HTTP method 69
HTTP_PRAGMA environment variable 138
HTTP_REFERER environment variable 139
HTTP request 69
HTTP request header 69

Accept 138
Accept-Encoding 138
Accept-Language 138
Authorization 138
Charge-To 138
Content-Language 40, 137
Content-Length 137
Content-Type 40, 137
From 138
If-Modified-Since 138
Keep-Alive 40
Pragma 138
Referer 139
User-Agent 139

HTTP response 71
HTTP response codes 72
HTTP response header 72
HTTP_USER_AGENT environment variable 139
HTTP user data 70
HTTP version 69
hypertext markup language 17
hypertext transfer protocol 17

I
IANA character set 149
IBM CCSID character set 149
If-Modified-Since HTTP header 138
INFOANA 88
internet address 8
Internet Protocol (IP) 8
ISO 3316 language code 137
ISO 639 country code 137
ISO 8859-1 character set 33

K
Keep—Alive header 40

L
Latin-1 character set 33
lightpen operation 54
limitations of Web 3270 support 62
load modules 31

M
messages and codes 87

N
name server 35
non-HTTP requests 20

P
parser program 143
persistent connections 40
port number 8
port number in URL 69
port numbers 35
Pragma HTTP header 138
presentation logic 17, 91
processing examples

CICS Web support 18
ECI request 94
EXCI request 93

PROGRAM definitions 33
programming models 9
pseudoconversational model 10

Q
QR TCB 86
QUERY_STRING environment variable 137
query string in URL 69, 141

R
Referer HTTP header 139
REMOTE_ADDR environment variable 137
REMOTE_HOST environment variable 137
REMOTE_USER environment variable 137
REQUEST_METHOD environment variable 138
requester types 17, 93
RP TCB 86

S
samples

application 36, 76
basic authentication analyzer 82
basic authentication converter 82
security analyzer 82
security converter 82
sign-on program 82
state management program 141

security 81
security analyzer 82

Index 171

security converter 82
security support 7
selector pen operation 54
SERVER_NAME environment variable 138
SERVER_PORT environment variable 138
SERVER_PROTOCOL environment variable 138
SERVER_SOFTWARE environment variable 138
service types 17
session token 141
sign-on sample program 82
sockets interface 8
state management sample program 82, 141
sub-library 30
symbol list 74
symbols in an HTML template 74

T
task control blocks 86
TCP/IP 7
TCP/IP port in URL 69
TCP62 94
TCPIP system initialization parameter 29
TCPIPSERVICE definition 31, 35
TD queue 31
Telnet 9
temporary storage queue 30
tools

environment variables program 137
HTML template manager 81, 131
parser program 143

transaction routing 7
transient data queue 31
Transmission Control Protocol (TCP) 8
TS queue 30

U
uniform resource locator 69
URL 69, 79

absolute path 69
host name 69
port number 69
query string 69

URL, default 79
URP_DISASTER response

in analyzer 118
in Decode 126
in Encode 128

URP_EXCEPTION response
in analyzer 118
in Decode 125

URP_INVALID response
in analyzer 118
in Decode 125

URP_OK_LOOP 128
URP_OK response

in analyzer 118
in Decode 125
in Encode 128

URP_RECEIVE_OUTSTANDING reason code 118
User-Agent HTTP header 139

user data 70
User Datagram Protocol (UDP) 8
user-replaceable programs 33

V
VSE/ESA sub-library 30

W
wbbl_client_address 109
wbbl_client_address_length 109
wbbl_client_address_string 109
wbbl_converter_program_name 109
wbbl_eyecatcher field 109
wbbl_header_length 109
wbbl_header_offset 110
wbbl_http_version_length 110
wbbl_http_version_offset 110
wbbl_indata_length 110
wbbl_indata_offset 110
wbbl_indata_ptr 110
wbbl_length field 110
wbbl_method_length 110
wbbl_method_offset 110
wbbl_mode field 110
wbbl_outdata_length 111
wbbl_outdata_offset 111
wbbl_outdata_ptr 111
wbbl_prolog_size 111
wbbl_resource_length 111
wbbl_resource_offset 111
wbbl_response field 111
wbbl_server_program_name 111
wbbl_status_size 111
wbbl_user_data_length 111
wbbl_user_token 112
wbbl_vector_size 112
wbbl_version field 112
wbep_abend_code 145
wbep_analyzer_reason 145
wbep_analyzer_response 145
wbep_client_address 145
wbep_client_address_len 145
wbep_converter_program 145
wbep_converter_reason 145
wbep_converter_response 145
wbep_error_code 146
wbep_eyecatcher 146
wbep_failing_program 146
wbep_http_response_code 146
wbep_length 146
wbep_message_len 146
wbep_message_number 146
wbep_message_ptr 146
wbep_response_len 146
wbep_response_ptr 146
wbep_server_address 146
wbep_server_address_len 146
wbep_target_program 146
wbep_tcpipservice_name 147
wbep_version 147

172 CICS TS for VSE/ESA: Internet Guide

wbra_alias_termid field 89
wbra_alias_tranid field 116
wbra_client_ip_address field 116
wbra_content_length field 116
wbra_converter_program field 116
wbra_dfhcnv_key field 116
wbra_eyecatcher field 116
wbra_function field 116
wbra_http_version_length field 116
wbra_http_version_ptr field 116
wbra_method_length field 116
wbra_method_ptr field 116
wbra_reason field 117
wbra_request_header_length field 117
wbra_request_header_ptr field 117
wbra_request_type field 117
wbra_resource_length field 117
wbra_resource_ptr field 117
wbra_response field 117
wbra_server_ip_address field 117
wbra_server_program field 117, 124
wbra_unescape 117
wbra_user_data_length field 118
wbra_user_data_ptr field 118
wbra_user_token field 118, 124
wbra_userid field 81, 118
wbtl_connect_token field 133
WBTL_DISASTER response 135
WBTL_EXCEPTION response 134
WBTL_FREEMAIN_ERROR reason 135
wbtl_function field 132
WBTL_GETMAIN_ERROR reason 135
wbtl_html_buffer_len field 134
wbtl_html_buffer_ptr field 134
WBTL_INVALID_BUFFER_PTR reason 135
WBTL_INVALID_FUNCTION reason 135
WBTL_INVALID response 135
WBTL_INVALID_SYMBOL_LIST reason 135
WBTL_INVALID_TOKEN reason 135
WBTL_OK response 134
WBTL_PAGE_TRUNCATED reason 135
wbtl_reason field 133
wbtl_response field 133
wbtl_symbol_list_len field 134
wbtl_symbol_list_ptr field 134
wbtl_template_abstime field 133
wbtl_template_buffer_len field 134
wbtl_template_buffer_ptr field 133
wbtl_template_name field 133
WBTL_TEMPLATE_NOT_FOUND reason 135
WBTL_TEMPLATE_TRUNCATED reason 135
wbtl_version_no field 132
Web attach transaction CWXN 19, 32
Web error program, DFHWBEP 47
well-known ports 9
WRITEQ TD command 89

X
XPCT system initialization parameter 81
XPPT system initialization parameter 81
XTRAN system initialization parameter 81

XUSER system initialization parameter 81

Index 173

174 CICS TS for VSE/ESA: Internet Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–870229

– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink
™

: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication number and title

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 175

����

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5765-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
C

IC
S

T
S

fo
r

VS
E

/E
SA

In
te

rn
et

G
ui

de
R

el
ea

se
1

	Contents
	Preface
	What this book is about
	How to use this book
	What you need to know to understand this book
	Notes on terminology

	Part 1. Overview
	Chapter 1. Introduction
	General concepts
	Distributed computing
	Security support

	TCP/IP protocols
	TCP/IP internet addresses and ports
	Internet addresses
	Port numbers (for servers)
	Port numbers (for clients)

	Programming models
	Comparing mechanisms
	Accessing CICS from the Web
	CICS and Java
	CICS TRANSACTION GATEWAY

	Application design
	Separating business and presentation logic

	Chapter 2. How this book is organized
	Part 2. CICS Web support
	Chapter 3. Introduction to CICS Web support
	Types of requester
	Types of service
	Processing examples
	Control flow in request processing
	Using CICS Web support to call a program
	Dealing with non-HTTP requests

	Using CICS Web support to run a terminal-oriented transaction

	Data flow in request processing
	Using the CICS Web support commarea method to call a program

	Chapter 4. Planning for CICS Web support
	Defining the prerequisites for using CICS Web support
	VSE/ESA
	CICS
	TCP/IP for VSE/ESA

	URL format
	Operations tasks

	Chapter 5. Configuring CICS Web support
	Controlling web support with system initialization parameters
	Defining resources to CICS
	CICS supplied resource definitions
	DOCTEMPLATE definitions
	VSE/ESA sub-library
	CICS temporary storage
	CICS transient data
	CICS load module
	CICS file
	Exit program

	TCPIPSERVICE definitions
	TRANSACTION definitions for extra alias transactions
	PROGRAM definitions for user-replaceable programs
	Setting up a sub-library for the template manager
	Defining a conversion table

	Configuring TCP/IP for VSE/ESA
	Reserving ports for CICS Web support
	Identifying the TCP/IP server
	Specifying a name server

	Enabling lightpen support
	Running the sample application

	Chapter 6. Writing an analyzer for CICS Web support
	Inputs
	Outputs
	Processing
	Code page considerations for Web API applications
	Code page considerations for Web commarea applications
	Performance considerations
	The default analyzer

	Chapter 7. Writing a converter
	Performance considerations
	Writing a converter—Decode
	Inputs
	Outputs
	Processing

	Writing a converter—Encode
	Inputs
	Outputs
	Processing

	Chapter 8. The Web error program
	The Web error program — general
	Inputs
	Outputs
	Processing

	Chapter 9. 3270 applications on the Web
	Input to DFHWBTTA
	Customizing the input to DFHWBTTA
	Output from DFHWBTTA
	Customizing the output from DFHWBTTA
	Required contents for a heading template
	Required contents for a footing template
	Customizing with Encode
	Lightpen operation

	Chapter 10. Creating HTML templates from BMS definitions
	Generating a standard template
	Why customize the generation of templates?
	Customization facilities
	How to produce the HTML templates
	Restricting the size of HTML templates
	Writing a customizing macro definition
	Customization examples
	HTML and browser considerations
	Limitations

	The DFHMDX macro
	The DFHWBOUT macro

	Chapter 11. Writing CICS programs to process HTTP requests
	Using HTTP requests
	How to receive an HTTP request
	Using EXEC CICS WEB commands to receive an HTTP request
	Using DFHWBENV to retrieve information from an HTTP request

	Explaining HTTP responses
	How to send an HTTP response
	Using the EXEC CICS API to send an HTTP response
	Using the HTML template manager to construct an HTTPresponse

	Handling Escaped Data
	Handling escaped data in commarea applications

	Describing symbols, symbol table, and symbol list
	Symbols in an HTML template
	Symbol lists
	Operational example
	Using the output of the environment variables program

	Sample application programs

	Chapter 12. Displaying a template on a Web browser
	How to display a template on a Web browser
	Default CICS URL format

	Chapter 13. Security for CICS Web support
	Security for the HTML template manager sub-library
	Security for CICS Web support transactions
	Security for the alias

	Using sample programs for security
	The security sample programs
	Using basic authentication sample programs

	Chapter 14. Problem determination
	Recovery procedures (CICS Web support)
	Product design considerations (CICS Web support)
	Troubleshooting
	Defining the problem
	Documentation about the problem

	Using messages and codes
	CICS Web support and CICS business logic interface trace information
	Numeric values of symbolic codes

	Dump and trace formatting
	Debugging the user-replaceable programs
	Using EDF
	Using trace entries
	Writing messages
	Trapping abends

	Part 3. The CICS business logic interface
	Chapter 15. Introduction to the CICS business logic interface
	Types of requester
	Processing examples
	Controlling flow in request processing
	Using the CICS business logic interface to call a program
	Using the CICS business logic interface to run a terminal-orientedtransaction

	Passing data in request processing
	Using the CICS business logic interface to call a program
	Requesting a terminal-oriented transaction

	Chapter 16. Configuring the CICS business logic interface
	Chapter 17. Programming tasks for client systems
	Part 4. Appendixes
	Appendix A. Reference information for DFHWBBLI
	Business logic interface

	Appendix B. Reference information for DFHWBADX
	Summary of parameters
	Function
	Parameters
	Responses and reason codes
	DFHWBADX responses and reason codes

	Appendix C. Reference information for the converter
	Decode
	Encode

	Appendix D. Reference information for DFHWBTL
	Parameters in the communication area
	Responses and reason codes

	Appendix E. Reference information for DFHWBENV
	Appendix F. Reference information for DFH$WBST andDFH$WBSR
	Appendix G. Reference information for DFHWBPA
	Appendix H. Reference information for DFHWBEP
	Parameters

	Appendix I. HTML-coded character sets
	Notices
	Programming interface information
	Trademarks and service marks

	Bibliography
	CICS Transaction Server for VSE/ESA Release 1 Library

	Books from VSE/ESA 2.5 base program libraries
	VSE/ESA Version 2 Release 5
	High-Level Assembler Language (HLASM)
	Language Environment for VSE/ESA (LE/VSE)
	VSE/ICCF
	VSE/POWER
	VSE/VSAM
	VTAM for VSE/ESA

	Books from VSE/ESA 2.5 optional program libraries
	C for VSE/ESA (C/VSE)
	COBOL for VSE/ESA (COBOL/VSE)
	DB2 Server for VSE
	DL/I VSE
	PL/I for VSE/ESA (PL/I VSE)
	Screen Definition Facility II (SDF II)
	TCP/IP for VSE/ESA

	Information on the World Wide Web
	HTTP/1.0
	HTML

	Determining if a publication is current
	Index
	Sending your comments to IBM

