
W I N T E R C O R P O R A T I O N
W

H
IT

E
 P

A
P

E
R

S P O N S O R E D
R E S E A R C H
P R O G R A M

T
h

e
 L

a r
g e

 S
c a l e

 D
a t a M

a n a g e m e n t E x p e r t s

Advances in Data
Warehouse Performance

I/O Elimination in DB2

http://www.wintercorp.com

W I N T E R C O R P O R A T I O N

411 WAVERLEY OAKS ROAD, SUITE 327
WALTHAM, MA 02452

781-642-0300

Rick Burns
Richard Winter

May 2007

©2007 Winter Corporation, Waltham, MA. All rights reserved.

Duplication only as authorized in writing by Winter Corporation.

Advances in Data
Warehouse Performance

I/O Elimination in DB2

http://www.wintercorp.com

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

3

Executive Summary
Today, data warehouse users face novel and demanding challenges. Data is growing
rapidly due to diverse market forces, including competitive pressures for increasingly detailed
analysis and more stringent regulatory demands. User populations are rising sharply to support
new activities like operational business intelligence and self-service applications. These demands
not only push data warehouse scale to new data size frontiers, they also generate richer data
relationships and increasingly dynamic and complex queries against them. These demands also
produce shrinking data latency windows to support access to ever fresher data.
Along with the growing demand for better business intelligence, businesses face increasing
competitive pressures to contain IT costs. The challenge is nothing short of improving the business
value of data while simultaneously reducing IT spending.
These many faceted database requirements tax traditional performance and scalability techniques
employed by data warehouse products. At the same time, hardware changes have opened new
efficiency opportunities to support the data access needs of large-scale data warehousing. Data
clustering strategies and intelligent software compression algorithms have emerged as highly
effective techniques to enable database products to take advantage of these changes. These
techniques improve the performance of business intelligence queries by radically reducing I/Os
needed to resolve them.
With Version 9 of IBM’s DB2 Warehouse on Linux, UNIX, and Windows, IBM offers an innovative
set of features that work together to provide unmatched data clustering and storage density, to
benefit many types of data warehouse queries. These features include robust data clustering on
multiple data attributes, granular partition elimination, efficient data windowing on range-
partitioned data, efficient data compression, scalable processing with high degrees of parallelism,
and automated design tools to make it easier for database designers to make the best use of these
features to meet their performance needs.
The innovative combination of capabilities found in IBM DB2 Warehouse work together synergistically
to satisfy increasingly dynamic and demanding data warehouse requirements. These include high
performance, highly selective data access across many types of queries, low latency data ingest to
support real-time data warehousing, and storage optimization to lower operating costs. The
performance gains provided by these features translate directly into improved business value for
DB2 customers. With its unique and innovative combination of database design solutions, DB2 offers
compelling options to many common, but complex, business intelligence requirements.
In short, IBM’s DB2 Warehouse helps address the twin challenges facing enterprises today. Namely,
improving the value they derive from the torrents of data they process every day, while lowering
costs at the same time.

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

4

Table of Contents
Executive Summary . 3

Table of Contents. 4

1  Introduction. 5

2  DB2: Architected for Performance. 6

2.1  Architectural Keys to DB2 Data Warehouse Performance. 6

2.2  Database Partitioning. 7

2.3  Table Partitioning. 7

2.4  Multi-Dimensional Clustering. 9

2.5  Row Compression . 10

2.6  Putting It All Together. .11

3  The DB2 Balanced Warehouse . 12

4  DB2 Architecture in Practice . 13

5  Conclusions. .16

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

5

Introduction
Today’s data warehouse users face novel and demanding challenges. Data is growing exponentially1
due to competitive pressures for increasingly detailed analysis and more stringent regulatory
demands. User populations are rising sharply to support new activities like operational business
intelligence and customer and supplier self-service. These demands not only push data warehouse
scale to new data size frontiers, they also generate increasingly dynamic and complex queries and
richer data relationships to support them. These demands also yield shrinking data latency windows
to support access to ever fresher data.
Along with the growing demand for better business intelligence, businesses face increasing
competitive pressures to contain IT costs. The challenge is nothing short of doing more with less,
improving the business value of data while reducing IT spending at the same time.
These many faceted database requirements tax traditional performance and scalability techniques
commonly employed by data warehouse products. Historically, transactional systems used indexes
to retrieve individual rows or small result sets quickly from very large data repositories by
dramatically reducing the number of I/Os needed to find them. Business intelligence queries
typically exhibit different data access patterns, usually touching more data, grouping it by multiple
attributes, and returning larger result sets. Extending indexed data access to support intersections
and unions of multiple indexes to perform the complex restrictions required to slice data by
multiple attributes has successful improved the performance of business intelligence queries.
Parallelizing these data access algorithms has allowed this approach to scale as database size has
grown. While improving performance however, these techniques in themselves do not solve the
cost containment problem.
At the same time however, hardware changes have opened new efficiency opportunities to support
the data access needs of large-scale data warehousing. The evolution of disk architectures has
dramatically shifted the balance between performance of random and sequential I/O in favor of
sequential I/O. Low memory costs have enabled larger data caches on disks and disk controllers to
better support large sequential I/O, while 64-bit processing has enabled large main memories,
supporting multi-block fetches initiated by application software. Finally, processing power has grown
more rapidly that I/O bandwidth, enabling effective use of more compute cycles per data block.
Data clustering strategies and intelligent software compression algorithms have emerged as highly
effective techniques to enable database products to take advantage of these hardware changes.
These techniques further improve business intelligence query performance by dramatically reducing
I/Os needed to resolve such queries. With Version 9 of IBM’s DB2 Warehouse Edition on Linux,
UNIX, and Windows, IBM offers an innovative set of features that work together to provide
unmatched data clustering and storage density to offer dramatic performance benefits many types
of data warehouse queries.
These features include robust data clustering on multiple data attributes, granular partition
elimination, efficient data windowing on range-partitioned data, efficient data compression, scalable
processing with high degrees of parallelism, and automated design tools to make it easier for
database designers to make the best use of these features to meet their performance needs. Just as
important, use of these features to improve performance is transparent to database users, including

1

See WinterCorp 2005 TopTen Survey results in 2005 TopTen Program Summary. The largest data warehouse in the
2005 survey exceeded 100 TB, and was three times larger than the biggest data warehouse in the 2003 survey.

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

6

front-end business intelligence tools, so performance features can be added as needed without
modifying applications or user interfaces.
While these features originated in several different parts of IBM’s far flung operations – it extensive
research labs, its deep mainframe experience, and its acquisition of companies like Informix and
RedBrick – this unique combination of features now available in IBM DB2 Warehouse work together
synergistically to satisfy increasingly dynamic and demanding data warehouse requirements.
These include high performance data access across many types of queries, low latency data ingest
to support real-time data warehousing, and storage optimization to lower operating costs. This
paper examines the architecture of these key features and analyzes how they complement one
another to provide significant customer benefits.
These performance gains translate directly into improved business value for DB2 customers. Besides
improving the productivity of analytic workers, better query performance enables companies to
pinpoint business problems and identify emerging business opportunities faster. Reduced data
latency enables improved customer service and better overall business responsiveness. Reduced
resource consumption can ea able broader and richer use of advanced business analytics at
dramatically lower costs.
In short, IBM’s DB2 Warehouse provides a robust database platform that helps address the twin
challenges facing enterprises today. Namely, improving the value they derive from the torrents of
data they process every day, while lowering costs at the same time.

DB2: Architected for Performance
2.1	 Architectural Keys to DB2 Data Warehouse Performance
IBM DB2 Warehouse attacks the performance of business intelligence queries from multiple angles,
to shorten overall query response time and to reduce the system resources required to resolve the
query. To shorten response time To improve query efficiency DB2 uses range partitioning and
multi-dimensional clustering (MDC) to group data by shared attribute values, and data compression
to reduce the volume of the data. These features provide targeted data access while minimizing
I/O. Used separately or in combination these features can dramatically lower system costs and
improve response time.
DB2’s balanced data distribution via hash partitioning, and support for large-scale parallelism
implements an effective divide-and-conquer strategy that equalizes work across many parallel
query processors to reduce overall query response time. This work-splitting strategy, called
database partitioning, is transparently coupled with DB2’s unique ability to physically cluster
data on multiple dimensions within each partition, and to group data by value range. Both
techniques enable highly selective access to data, limiting query I/O to relevant table partitions,
thereby dramatically reducing the work needed to resolve many queries.
Table partitioning also supports efficient partition roll-in and roll-out for data windowing
applications. In addition, MDC’s ability to group data by multiple attributes supplants the need
for separate column indexes on those attributes, both reducing storage requirements and lowering
update costs. Finally, good data compression techniques also reduce data volume, lowering storage
costs and further reducing the I/Os needed to resolve queries.
To deliver the anticipated benefits however, these features must each be used and combined
effectively (Figure 1). An enhanced automated database design wizard helps database architects to
choose an optimized physical database design, based on their anticipated workload, faster and

2

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

7

with less effort. The database design wizard can also be used for ongoing recommendations as the
data structure and workload evolves.
These features are key architectural elements of DB2 performance for business intelligence queries.
The sections below first look at the architecture and implementation of each feature individually,
and then examine the effects on performance and resource consumption of combining them.

2.2	 Database Partitioning
DB2 is a massively parallel processing (MPP) database system. DB2 divides system resources—
processors, memory and storage –into equal sized segments, called data partitions, that are managed
by an independent database process. DB2 calls this database partitioning, and it is fundamental
to the DB2 architecture.
Each database partition and its associated memory and storage is called a balanced partition unit
(BPU). A DB2 database is a collection of BPUs. BPUs usually contain 150-200 GB of user data, and
typically consist of a processor with 4 GB of memory and 500 GB of attached storage. DB2 BPUs
are usually deployed on clusters of small SMP servers with multiple partitions allocated per server,
each logically separate from one another.
Table data is distributed among the available BPUs based on a partitioning key that consists of one
or more columns per table. Selecting partitioning keys with unique or nearly unique values produces
a balanced distribution of data, and hashing the partitioning key allows DB2 to distribute data
evenly across the available database partitions in a deterministic fashion. Each row in a partitioned
table is hashed on its partitioning key to one of 4096 has buckets; each bucket is mapped to a specific
BPU. In cases of heavily skewed data, a
custom partition map can be used. In DB2,
indexes are also partitioned.
Balanced data distribution is key to efficient
parallel processing because it equalizes the
work to retrieve data in each partition. This
enables many concurrent query processes
in each partition to complete in roughly
equivalent time, optimizing query response
time. It is also key to scalability, allowing
data size to grow while maintaining roughly
constant response times simply by adding
the appropriate number of BPUs.

2.3	 Table Partitioning
Within each database partition (BPU), data can be sub-partitioned by range, clustered on multiple
dimensions, or both (Figure 1). In range partitioned tables—called table partitioning in DB2 to
distinguish it from database partitioning—data is clustered by range value, with every parallel BPU
containing all data ranges. Data within a given range, say a time period or a sequence of zip codes,
is stored as an unordered heap. Data that falls in different ranges is stored in separate heaps. Each
data range can occupy its own tablespace, or multiple data range can share a tablespace. Indexes span
table partitions; each index contains entries for rows in all range partitions, ordered by range. DB2
Version 9 introduced the table partitioning feature.

Figure 1: Tiered data clustering in DB2

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

8

A key benefit of table partitioning is the elimination of partitions by the query optimizer for queries
that use the partitioning key in the query predicate (Figure 2). For table scans, only the relevant
subset of partitions are retrieved, dramatically reducing the I/O required to resolve the query. In

the case of index scan retrievals, if range partitioning replaces an
index that would otherwise be used, the query is resolved using
fewer indexes, again eliminating I/O for the unneeded index.
Further, since the row IDs (RIDs) contain the partition identifier,
and are stored in order in the index, only the RIDs for the table
partitions of interest in the remaining indexes need to be retrieved.
In addition, using table partitioning in place of an index speeds up
insert and update operations by reducing index maintenance.
Table partitioning also supports roll-in and rollout operations on
tables that maintain a fixed window of data, for example, the most
recent 24 months of transactions (Figure 3). Windowing is a
common data warehouse strategy that allows new data to be
added to a table quickly, and obsolete data to be dropped from
the table just as quickly.
Recent data may either be inserted into the latest range partition,
or accumulated in a separate table until the end of the period. In
the latter case, the table is then attached as a new range partition
to the main table via the new attach partition option of the alter table

statement. Attach involves no data movement, just system catalog updates. A follow-up operation
is then required to validate the rows in the new partition and to update existing table indexes with
data from the new partition. This operation
is performed online, allowing earlier
partitions to be fully accessible. Following
this operation, the new partition is available
for query.
To remove, or rollout, an existing partition
from the table, the detach partition option of
the alter table statement is used. The
detached partition becomes a separate table
the can be archived, dropped or reused as
desired. Data in the detached partition
becomes unavailable to queries immediately
upon completion of the detach operation,
while data in the remaining partitions is
accessible immediately following the
detach operation. Index entries for rows in the detached partition immediately become invisible
to queries, and will be automatically cleaned up to reclaim index space by an asynchronous
background process.
Any Materialized Query Tables (MQTs) which use the immediate refresh option that contain data
from deleted partitions, are taken offline automatically until they are incrementally refreshed via
a manual operation. This may affect query performance until the independent refresh completes,
but does not affect access to base table data. If MQTs are based on the same time-cyclic roll-out

Figure 3: Partition Roll-in and Roll-out

Figure 2: Partition Elimination

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

9

granularity as the base table(s), then table partitioning can be defined on them as well, and the
maintenance is simple a detach partition of the effected rows in the MQT too.

2.4	 Multi-Dimensional Clustering
DB2 offers a third form of physical data organization called multi-dimensional clustering (MDC).
In MDC organized tables, data is clustered according to values of one or more columns (Figure 4).
The table is independently searchable on each cluster dimension. While many database systems
have the capability to order data on a single dimension, which may consist of multiple columns,
DB2 is the only DBMS that has the ability to cluster data independently on multiple data columns.
For example, a sales table may cluster on both store and day dimensions to keep each day’s sales for
each store together in a small series of data blocks called a cell. Each cell occupies one or more tablespace
extents. Extents are the basic unit of storage allocation containing a specified number of contiguous
pages on disk established at tablespace creation time.

In an MDC table, each block contains a
specific value or range of values for each
dimension. DB2 maintains a block index
for each dimension which points to data
blocks associated with each dimension
value. Because block IDs rather than row
IDs are being indexed, block indexes are
hundreds of times smaller than standard
row indexes, and therefore, are usually
memory resident during query processing.
In addit ion, MDC tables maintain a
composite block index, containing entries
for every value combinat ion of a l l
dimensions. The composite block index is
used during insert and load operations to

quickly find the right block for the new row and also during select statements on MDC
dimensions. During select processing, block indexes can be used in conjunction with standard
row based indexes for further IO reduction.
MDC organized tables afford many benefits to DB2 users. First, MDC provides automatic, low
maintenance data clustering. As rows are added to an MDC table, they are placed in a block of the
current extent assigned to the cell matching the values of the dimension columns in the row being
added. When that extent is full, a new one is allocated to the cell. Likewise on delete, when an
extent is emptied it is returned to the free pool and no longer associated with the cell. In either
case, the relevant block index are updated appropriately. This design means that clustering does
not decay over time as rows are inserted and dropped. DB2 guarantees that these cells stay physically
clustered such that no table reorganizations are ever required for clustering.
Clustering on multiple dimensions also provides a highly granular mechanism for cell elimination
during query processing. If, as in the example introduced earlier in this section, sales data is clustered
by store and day, queries about daily store sales reduce to a single MDC cell. Queries concerning
weekly sales only need to read the seven daily cells comprising the inquiry period. MDC block
indexes point directly to the blocks satisfying the query predicates, providing quick identification
of the correct MDC cells. If the query selects on multiple dimensions, the blocks IDs for each

Figure 4: Multi-dimensional Clustering

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

10

dimension are efficiently and-ed or or-ed as appropriate. DB2 also supports combining block index
search results with the results obtained from searching traditional row indexes. Finally, since the
rows of interest are stored on consecutive disk blocks, the relevant blocks can be scanned using
sequential I/O, which provided higher performance than random I/O. MDC provides superior
performance for queries with dimension-based predicates.
In addition, using MDC reduces the need for indexes, since MDC dimension columns provide
automatic clustering and fast searching without indexes. This also yields reduced storage
requirements and better performance during updates since fewer indexes need to be maintained.
Thus, MDC enables high performance, low latency updates for near-real time data warehouses
where data freshness is at a premium.
A potential drawback of MDC is that it requires careful implementation to assure efficient storage
utilization. Poor use of storage can result for specifying the dimensions of cells at too granular a level,
resulting in many partially filled extents. Poor storage utilization will offset many of the I/O and
storage savings promised by MDC. Using DB2s design advisor can help to avoid this problem.

2.5	 Row Compression
DB2’s row compression feature can dramatically reduce the space occupied on disk by table data
and correspondingly reduce the number of I/Os necessary to retrieve large row sets or partitions.
Derived from the well-known Lempel-Ziv compression algorithm, DB2’s compression technique
replaces common repeating data patterns within a row with a pointer to a compression dictionary
entry where a single copy of the pattern is stored (Figure 5). DB2 supports compression of all data
types except longs, BLOBs and XML data. Although all major database products now support
compression of table data, DB2 is unique in supporting compression of strings that span consecutive
columns in a row. The compression dictionary itself is stored in hidden rows across several pages
in the table. It is loaded into memory at first compressed field access.

In DB2, row data is compressed on disk, and remains compressed when data pages are read into
memory buffers. It is only expanded when column data in the row needs to be accessed to satisfy a
query. Since data decompression is a simple in-memory dictionary lookup, it requires modest CPU
activity to perform. On I/O-bound systems, expansion of compressed data is usually not noticeable.
In fact, expansion costs are commonly offset by larger CPU savings due to reduced I/O costs.

Figure 5: Row Compression

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

11

Compression is activated via the compress
option of the create table or alter table
statements. Once compression has been
turned on, a static compression dictionary
must be bui lt . For a new table, a
representative sample of the data is loaded.
Next an offline table reorg is performed to
build the compression dictionary. All rows
in the table at reorg time participate in
building the compression dictionary. For
pre-existing, populated tables, current
table data can be used to build the dictionary.
Once the dictionary exists, any data
subsequently loaded will be compressed
automatically. The compression dictionary is static, meaning that it does not change dynamically
as data is added to the table. If the common values of data added change over time, the compression
ratio will suffer, and the dictionary will need to be rebuilt via another reorg process.
Table compression provides two principle benefits. First, compressed rows take less storage space,
and because they are shorter, they waste less space at the end of disk pages. This results in significant
storage savings. For example, Figure 6 displays the storage savings from compressing the eight tables
comprising the schema for the TPC-H benchmark. Since storage is commonly more than half the
cost of a large data warehouse, this represents a major costs savings as well. Second, queries that
need to touch a large set of data, a common property of data warehouse queries, benefit from
dramatically reduced I/O, since the relevant rows occupy fewer disk pages. This translates into
reduced CPU time to service I/Os, and into lower query response time.
A final note, DB2’s row compression is currently incompatible with replication, a potentially
significant limitation for continuously available data warehouses, since replication is often used to
support them. In this case, other techniques like storage replication or dual load can be used to
offset this limitation.

2.6	 Putting It All Together
While each of these features provides significant individual benefits, when effectively combined
the benefits may be substantially amplified. Database partitioning spreads data evenly to enable
balanced division of labor among parallel query processes. Table partitioning clusters data by value
ranges, and supports windowing applications, which is especially useful for time-based data like
retail sales tables. MDC enables physical clustering of data across multiple dimensions, allowing
grouping of data on disk by common search fields.
Both table partitioning and MDC can eliminate the need for indexes on columns comprising cluster
or partitioning keys, allowing faster updates. Row compression reduces both I/O and storage,
regardless of the data organization. In combination, these features dramatically reduce the I/O
required to resolve many business intelligence queries by grouping related data together and
compressing it, and spread the remaining work evenly across all DB2 partitions (BPUs). They
support reduced data latency by shrinking the number of indexes that need to be maintained as
data is added or updated. They also support windowing applications on time-based data without
sacrificing benefits of balanced data distribution or multi-dimensional clustering.

Figure 6: Row Compression Disk Storage Savings

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

12

Deciding which feature to use where, and how to combine them, can be challenging. The choice
of database partitioning key determines how well data is balanced across DB2 partitions and how
fast certain common joins will be performed. The best partitioning key may not optimize join
performance, and vice versa. The choice of MDC attributes and the range of values for each MDC
cell often require subtle tradeoffs between cell granularity and efficient storage utilization. When
to index versus when to cluster is not always obvious.
DB2’s Design Advisor addresses this problem. The DB2 Design Advisor helps database designers
select appropriate choices for physical database design elements, like database partitioning columns,
MDC attributes and value ranges, indexing columns, and materialized query tables to generate
and automatically maintain (Figure 7). The DB2 Design Advisor is intended to be used during initial

database creation time, or when the data model
or application workload changes significantly.
The Design Advisor can be invoked through a GUI
interface, or via the command line. In either case,
it takes an existing database schema and a sample
workload—a captured set of queries—as input. The
capture option of DB2 Query Patroller can be used
to collect sample queries. The sample workload
should be representative of the overall database
workload and should be numbered in the 10s to
100s of queries. The sample workload can be
weighted to allow individual queries to have greater
or lesser influence on the recommended physical
design. The design advisor produces physical
design recommendations and the appropriate DDL

statements to implement them. Where relevant, it also indicates database objects, like indexes, which
are not used to execute the sample queries, and which may be dropped.
Although the current release of the Design Advisor does not include a table partitioning advisor,
in practice, choosing whether to add table partitioning and to which columns is usually
straightforward. Windowing applications benefit from choosing table partitioning on the relevant
date or time column at the granularity of the windowing interval. Continuous data frequently
queried by range—like zip code, for example—may also benefit from table partitioning.
Given the wealth of DB2’s physical design choices, DB2’s Design Advisor plays an instrumental
role in helping database designers and administrators navigate the complexities of feature selection
and how to employ them

The IBM Balanced Warehouse
In response to market demand, IBM has started prescribing scalable packages servers, storage and
database software, dubbed the Balanced Configuration Unit (BCU). The BCU concept has offered
pre-tested combinations of hardware and software that provided easier system configuration and
maintenance, and predictable database performance across a broad scale of system sizes.
The IBM Balanced Warehouse advances the BCU concept by offering pre-packaged data
warehousing solutions, enabling faster implementation times with lower risk. The IBM Balanced
Warehouse provides pre-configured, pre-tuned combinations of software, storage and hardware,
built from a cluster of BCUs, each containing a subset of the BPUs of the database (Table 1).

3

Figure 7: DB2 Design Advisor Selection Screen

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

13

Table 1: DB2 BCU descriptions

4

AIX BCU

—	 8 processor IBM P5-575
—	 1 DB2 partition / CPU
—	 4 GB RAM / partition
—	 2 Gbps Ethernet / node
—	 10-14 x 73 GB 15K drives / partition
—	 RAID 5 (4+p)
—	 4 FC adapters / node
—	 .5 TB disk / partition
—	 150-200 GB data / partition

Linux BCU

—	 2 Intel dual core processors (IBM x326)
—	 1 DB2 partition / core
—	 4 GB RAM / partition
—	 2 Gbps Ethernet / node
—	 14 x 73 GB 15K drives / partition
—	 RAID 5 or RAID 10
—	 .4 TB or .67 TB disk/ partition
—	 150-200 GB data / partition

DB2 Architecture in Practice
To illustrate the magnitude of the benefit in I/O reduction obtained by each of these features, and
how that benefit is amplified when the features are combined, we can examine a typical data
warehouse scenario. Consider a national retail chain with 1000 stores, selling approximately 10,000
products to more than 10 million customers. The business achieves 100 million sales transactions
per month, on average, and keeps 25 months of transaction data in its data warehouse for sales
analysis and marketing promotions. This
yields a sales activity table containing 2.5
billion rows. At 200 bytes per transaction,
this transaction table will contain 500 GB
of user data. If the DBA chooses a 32K page
size for this data warehouse, the sales
activity table occupies more than 500 GB
and over 15 million pages on disk.
To quantify the impact of various physical
database desig n choices on query
performance, let’s look at the amount of I/O
required to satisfy a typical sales reporting
query that a marketing analyst or a store
manager might ask (see Table 2). Consider
a business query to determine total sales of a specific product group in a particular store last month.
As a baseline, imagine that the sales activity data is stored all together in a single partition table
with no clustering, no indexes, and no compression, as shown graphically in Figure 8. In this case,
to satisfy the query, all 15 million pages will be sequentially scanned. At a sequential I/O rate of 50
MB per second, the 15 million pages will take 167 minutes to scan, so the query will take
approximately 3 ½ hours to run.
Adding database partitioning allow us to split the data into multiple BPUs which can be scanned
in parallel (Figure 9). With 10 BPUs, we can run the query 10-way parallel and complete it in 1/10th
the time, or approximately 17 minutes, because each partition needs to scan only 1/10th of the

Figure 8: Data in a single partition table

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

14

data—1.5 million pages. Note however,
that while we reduced the response time
by a factor of 10, running the query still
required the same amount of total work by
the database system as before—15 million
1/Os.
Other DB2 capabilities will help reduce the
overall work required to resolve the query.
Consider the ef fect of adding row
compression to our partitioned table.
Assuming a 2:1 compression ratio, which
appears to be commonly achievable, based
on early results reported by IBM, the size
of the sales activity is cut by one half, so

the table can be scanned with only ½ the I/O effort.—750 thousand I/Os per partition, which also
lowers the query response time to about 8.5 minutes.
Both indexing and data clustering—table partitioning and/or MDC—will further reduce the work
needed to satisfy the query and improve query response time. We can avoid the large table scans
necessary to resolve the query by adding btree indexes on the query search attributes of store, date
and product. Three indexes add an addition 150 GB to the storage requirements, but by reducing
I/O required to 1,800 random I/Os per partition, can lower response time for the query to 36 seconds.
Using compound indexes reduce this even more, to approximately 700 random I/Os, which can be
performed in about 14 seconds.
By contrast, table partitioning physically clusters data by a partition key (Figure 10). Replacing the
date index with table partitioning by month keeps together data for each of the 25 months of data
in the sales activity table. Without additional indexes, resolving the query would require scanning
last month’s data in each database partition, or 1 GB per partition, which yields a query response
time of 20 seconds. On the other hand,
adding indexes on product and store with
table partitioning on month, yields about
800 random I/Os or 17 seconds response
time. In either case, performance is on par
with intelligent indexing, but this design
has fewer indexes to maintain, yielding
improved update performance. It also
naturally supports the windowing design
of the data warehouse.
Suppose our performance requirement for
this class of queries demanded a 10 second
maximum response time. None of the
design choices examined so far produces
results in this range, because they do not
offer the granular clustering necessary to produce the locality of reference needed to limit I/Os
sufficiently. In this case, multi-dimensional clustering is a natural fit (Figure 11). Enabling MDC on
two dimensions, product group, and groups of 10 stores, within each month’s table partition,

Figure 9: Table with hash database partitioning

Figure 10: Table with database and table partitioning

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

15

provides excellent locality of reference for
a broad class of sales activity and marketing
analysis queries, with good storage
properties. The query needs to scan only
a single four page MDC cell to satisfy the
query, which takes only a fraction of a
second. With MDC, the sales activity table
also requires less storage than the indexing
options, and, by further reducing index
maintenance, it offers even better update
performance.
In combination, database partitioning,
table part it ioning, MDC, and row
compression offer a compelling design

choice for this type of data warehouse. Since the data warehouse characteristics—large data volume,
common search patterns, and windowing requirements—that make this design an excellent solution
are commonplace in today’s business environment, DB2’s innovative database design options offer
a widely applicable solution to everyday business intelligence needs.

Table 2: Effect of Physical Database Design on Storage and I/O Performance

Figure 11: Table with MDC plus database and table partitioning

Case Table Size
(in GB) Total I/Os I/O per

Partition Min. Response Time

Single partition table 500 15,000,000 15,000,000 167 min.

Table with 10
database partitions 500 15,000,000 1,500,000 17 min.

Partitioned Table with
Row Compression 250 7,500,000 750,000 8.5 min.

Add Indexing
(store, date, product) 400 17,800 1,780 36 sec.

Improved Indexing
(month-store, product) 350 6,900 690 14 sec.

Table partitioning
(replace date index) 350 8200 820 17 sec.

MDC (replace product
& store indexes) 320 40 4 < 1 sec.

By dramatically reducing the I/O, CPU and memory resources necessary to solve broad classes of
analytic queries, DB2 Warehouse not only improves business intelligence performance, it also
enhances the productivity of analytic workers, enabling improved analytic capabilities, and
dramatically lowers the cost of delivering better business intelligence. Reducing query response
time from hours to seconds enables exploratory analysis that goes far beyond standard analytic
reports. It allows analysts to not only describe what happened, but also explain why it happened,
and to more accurately predict what will happen. At the same time, by reducing use of system
resources by several factors, it can provide these added benefits at a fraction of previous costs. In

Advances in Data Warehouse Performance: I/O Elimination in DB2

A W I N T E R C O R P O R A T I O N W H I T E P A P E R

Copyright © WINTER CORPORATION, Waltham MA, 2007. All rights reserved.

summary, this example illustrates how IBM’s DB2 Warehouse V9 can truly help companies address
the challenge of delivering better business intelligence at lower cost.

Conclusions
To meet the growing demands for enterprise-wide business intelligence, DB2 has developed an
innovative set of database design options to support high performance data access, low latency
data ingest for real-time data warehousing, and storage optimization to lower operating costs that
are transparent to database users.
DB2 addresses the performance of business intelligence queries from two complementary angles.
DB2’s balanced data distribution via hash partitioning, and support for large-scale parallelism
implements an effective divide-and-conquer strategy that equalizes work across many parallel
query processors to reduce overall query response time. This work-splitting strategy, called database
partitioning, is coupled with DB2’s unique ability, via MDC, to physically cluster data on multiple
dimensions, and to order data by value range, called table partitioning, both of which limit I/O to
relevant data partitions, thereby dramatically reducing the work needed to satisfy many queries.
Grouping data by multiple attributes supplants the need for indexes on those attributes, both
reducing storage requirements and lowering update costs. Table partitioning also supports
efficient partition roll-in and roll-out for data windowing applications. DB2’s row compression
also reduces data volume, lowering storage costs and further reducing the I/Os needed to resolve
queries. Finally, DB2’s database design wizard simplifies the choice of the best physical database
design for a given workload.
The innovative combination of capabilities found in IBM DB2 Warehouse work together synergistically
to satisfy increasingly demanding and dynamic data warehouse requirements. These include high
performance data access across many types of queries, low latency data ingest to support real-time
data warehousing, and storage optimization to lower operating costs. The performance gains provided
by these features translate directly into improved business value for DB2 customers. With its unique
and innovative combination of database design solutions, DB2 offers compelling options to many
common but complex enterprise business intelligence requirements.
In short, IBM’s DB2 Warehouse provides a robust database platform that helps address the challenges
facing enterprises today to, improve the business intelligence value they derive from the torrents
of data they process every day, while lowering costs at the same time.

5

WinterCorp is an independent consulting firm
that specializes in the performance and scalability of

terabyte- and petabyte-scale data management
systems throughout their lifecycle.

Since our inception in 1992, we have architected
many of the world’s largest and most challenging

databases in production today. Our consulting services
help organizations define business-critical database solutions,

select their platforms, engineer their implementations,
and manage their growth to optimize business value.

With decades of experience in large-scale
database implementations and in-depth knowledge

of database products, we deliver unmatched insight
into the issues that impede performance and

the technologies that enable success.

©2007 Winter Corporation, Waltham, MA. All rights reserved.

Duplication only as authorized in writing by Winter Corporation.

411 WAVERLEY OAKS ROAD, SUITE 327
WALTHAM, MA 02452

781-642-0300

v i s i t us a t www.wintercorp .com

http://www.wintercorp.com
http://www.wintercorp.com

	Executive Summary
	Table of Contents
	Introduction
	DB2: Architected for Performance
	2.1	Architectural Keys to DB2 Data Warehouse Performance
	2.2	Database Partitioning

	2.3	Table Partitioning
	2.4	Multi-Dimensional Clustering
	2.5	Row Compression
	2.6	Putting It All Together

	The DB2 Balanced Warehouse
	DB2 Architecture in Practice
	Conclusions

