

IBM Tivoli System Automation
for Multiplatforms and
End-to-End Automation

Transcript

IBM Software Group

IBM Software Group

IBM Tivoli System Automation
for Multiplatforms and
End-to-End Automation

Automation and high availability
with cross-cluster scope

“Life is hard, but e2e can be so easy!”

© 2006 IBM Corporation

Hello, my name is Joel Hermann and I work in the IBM Development Center in Boeblingen,
Germany. I’m here today with Isabell Schwertle, a member of our development team for IBM Tivoli
System Automation. We’d like to give you a very brief overview to this solution, which provides self-
healing capabilities for business applications. It does this by detecting failing IT components and
then repairing or working around those failures.

Through the Tivoli System Automation family of products, you can enjoy rock-solid high availability
for applications and related resources that are on IBM mainframes, AIX clusters, and Linux clusters.
AND you can do this end-to-end, in an IT landscape that has a mix of different platforms.

Please note that we’ll be doing additional sessions that go into more detail about some of the topics
we’re covering today. At the end of this overview, we’ll show you where you can get them, plus
other information. Let’s now get started by reviewing why system automation and resource
availability are critical for your business.

IBM Software Group | Tivoli software

The “pain” of resource availability, application availability

Cost per hour for being Down in M$

Brokerage

Retail Sales

Pay per view

On demand challenges
• Downtime unaffordable
• Heterogeneous by nature

– Different HW/SW platforms

Standish 0 Group 1 2 3 4 5 6 7 – Cross-cluster application dependencies
• Complexity

Hardware
Failures

Unplanned Outage Causes

30%

45%
25%

Operator Errors

Application Failures

IDC 2005

Customer pressures
• No automation in place or inadequate automation
• Cost and availability issues due to multiple

automation and operations teams
• Automation implementation and maintenance

costs
• Rapid changes to existing I/T infrastructure

• Loss of business

• Loss of customers – competition is just a mouse click away

• Loss of credibility, brand image and stock value

2 © 2006 IBM Corporation

Businesses today simply can not afford to have their computing systems or even parts of
systems down. Sure, you might be able to get by for a while, but any revenue or customers
that you lose because of down time is simply too much.

And avoiding down time isn’t getting any easier. Business processes and business
requirements often mean adding complexity to your IT landscape. This can create
problems with development and with maintenance and support.

That’s why looking for answers to system automation and high availability are not unique to
IBM or IBM clients. It’s a common problem, and a number of solutions are on the market.
Isabell and I might be biased, but we believe that Tivoli System Automation is the premier
solution today and will remain so in the future. Through Tivoli System Automation:

•You can create the level of high availability that your business requires AND
•You can reach across platform and system boundaries through end-to-end automation,
which can cover your entire IT landscape.

We’re very excited about the end-to-end capabilities available with Tivoli System Automation,
but let’s take a few minutes to set the stage.

IBM Software Group | Tivoli software

Tivoli System Automation – basic principles

e Provide high availability for IT resources
• For example, applications, IP addresses, file systems, others

e Capability to automatically start and stop resources with knowledge of…

• Resource groups, relationships, backup resources, …

e Quick, consistent and automatic recovery of failed resources and whole
applications by:

• Restarting in place or

• Moving to backup resources providing the same kind of service

e Automated operations = reduced complexity for the operator

• Start, stop, monitor at the business application level

• No need to remember the application components and their relationships

3 © 2006 IBM Corporation

Tivoli System Automation‘s charter, its purpose, is to provide high availability by automating
IT resources. This can be, for example, applications, IP addresses, file systems or other
resources. Tivoli System Automation can manage your business applications, whether they
run on a single system, are distributed within a cluster, or are spread across multiple clusters.

To be able to do this, Tivoli System Automation uses knowledge about:
•The components that make up an application,
•How these components are related (for example, one component must be started before
another), and
•The desired operational state for an application

This kind of information is defined in an automation policy. A policy is the main input for the
automation manager‘s decision engine, which is a very, very sophisticated knowledge- based
system developed at IBM Böblingen.

All automated resources are monitored to be able to detect outages very quickly. In case of a
failure, Tivoli System Automation can recover:
•By restarting the application or components of an application in place, or if that is not
possible,
•By moving an application to another system

Though these capabilities, Tivoli System Automation can help ease daily operations and
reduce possible operator errors. That‘s because an operator doesn‘t need to remember
the components that belong to an application, how they‘re related, or where they‘re
located. The automation manager knows all of this because of the policy used.

Let‘s now see why policies are so cool.

On f ai lu re of W e b
ing on node 1WW? e bb

Re
 nd
start on n ode 1 p os sib

D ep e s On D e pe nd s On Yes ¬ S ta rt We b o n n

VI PA DBW ai t un t i
OVnI Pl iAn e D B

E xi t

Event: On failure of DB
RunningIBoMn Snoodfet1w?are Group | Tivoli software

Stop Web on node1

Generate n Start Event: OAutomationWait ounltil iii ofp Weee b is vOfeflrinse us scripts
RG_Web
Exit

Running on node2?

Automation policies reduce implementation time, Stop Web on node2

coding and support effort. Wait until Web is Offline
Generate Event: On Start of
RG_Web

Exit
e No programming required Event:

Runn
le? WEB App

o
li

up
cati

on
Gr

No ¬ Stop DB

ode1
 Web is

e Automation policy contains description of

l

• Resource information

• Automation Goals

Offline
Wait until DB is

(Online, Offline, Affinity, Collocation,…)

Generate Event: On Start of • Relationships
RG_Web

Exit (StartAfter, StopAfter, DependsOn,…)
 Running on node2?
• Groups of resources Restart on node2 possible?

(Basic Groups, Move Groups,…) Yes ¬ Start Web on node2
Wait until Web is

 Online
e New resources or systems can be added Exit

No ¬ Stop DB
Wait until DB is

easily, without re-writing scripts
Offline

Generate Event: On Start of
RG_Web

Exit

4 © 2006 IBM Corporation

If you’ve never had to write scripts that automate resources or applications, then count your
blessings. And if you have written them, then you’ll really love Tivoli System Automation
policies.

This animation shows a simplified pseudo script that tries to automate a Web application
consisting of a Web server, a database, and a virtual IP address running in a three-tier cluster.
The address and the database need to be started before the Web server.

In contrast, a TSA policy would use a simple group definition and so-called DependsOn
relationships to replace such a lengthy – and often very complex – script. The DependsOn
relationships would ensure that the address and the database are started before the Web
server. It’s that easy.

Policies thus contain resource information that decribes a resource’s class and name,
how to start, stop, and monitor it, and where it should run. These resources can be
assigned to groups of similar resources, and relationships among resources and groups
can be defined.

Unlike other automation products, no special programming skills or related education is
required. And the best part is that resources or systems can be quickly added to or
removed from policies and tested. Just try making such changes to hand-coded scripts!

So what’s the value of all this to you?

IBM Software Group | Tivoli software

Tivoli System Automation – basic benefits

With Tivoli System Automation, the potential exists for:

e Reduced application down time and associated losses

e Reduced operator involvement and thus fewer operator errors

e Simplified maintenance and operation of complex environments

e Increased flexibility and speed for responding to changing

requirements or a dynamic IT infrastructure

And now, “end-to-end” automation is here with

IBM Tivoli System Automation for Multiplatforms!

5 © 2006 IBM Corporation

Here we’ve listed some value “highlights” that Tivoli System Automation can offer companies
of all shapes and sizes in today’s on demand business world. Each by itself is enough to
warrant taking a closer look at Tivoli System Automation. Together, these values form a
powerful argument for Tivoli System Automation as a means to help reduce a business’ Total
Cost of Ownership for its IT infrastructure.

But that’s not all! Now Tivoli System Automation for Multiplatforms offers capabilities for
end-to-end automation!

IBM Software Group | Tivoli software

So why end-to-end automation?

¤ In the past, automation scope was limited to operating system and
automation platform

¤ Today, businesses need a tool to automate operations for n-tier
applications

e Reduce labor costs associated with maintaining availability levels

e Reduce costs of downtime (shorten repair / maintenance windows;
reduce operator errors)

e Enable operators to work on end-to-end level without having specific
operating system knowledge

Enterprise Service Group
startsAfter

WEB Server App. Server DB2

Linux Cluster AIX Cluster z/OS Sysplex

6 © 2006 IBM Corporation

Up to now, we’ve really been talking about Tivoli System Automation’s past support for
automation and high availability within a single system or a cluster of like (or “homogeneous”)
systems. As great as that is, it still isn’t enough to meet the needs of businesses that have
applications running in heterogeneous landscapes. And we’re not talking about something
very exotic here. For example, any business that has its SAP database on one hardware
platform and its application servers on another has such a heterogeneous landscape.

And when you have that situation, then you need to think “globally”, cross-platform. You
need to find ways to meet the challenge of maintaining and operating such applications.
And even more than before, you need to find ways to keep them available!

IBM Software Group | Tivoli software

IBM Tivoli System Automation product family
¤ System Automation for z/OS
¤ System Automation for Multiplatforms

e Base: high availability and disaster recovery for Linux and AIX clusters
e End-to-end automation management: automated operations and monitoring capabilities for heterogeneous
business applications

IBM Tivoli

System Automation
for Multiplatforms

End-to-End Automation

Adapter Adapter

IBM Tivoli IBM Tivoli
System Automation
for Multiplatforms

System Automation
for z/OS

AIX Cluster Linux Cluster z/OS Sysplex z/OS Sysplex

7 © 2006 IBM Corporation

That’s why the Tivoli System Automation team stepped up to the challenge of “end-to-end”
automation. Since September 2005, Tivoli System Automation for Multiplatforms also offers an end-
to-end automation component that addresses the needs shown in the last chart. This component
provides automated operations and monitoring for application resources located on diverse
platforms. This includes managing their inter-dependencies.

Today, Tivoli System Automation for Multiplatforms provides end-to-end automation management
capabilities for applications running under Linux, Linux on the mainframe, IBM AIX, and IBM z/OS.
And support for other major platforms is under development.

Its important to note that the end-to-end automation feature does not replace other “first-level”
automation products. Instead it builds on them and what‘s already in place. Communicaton
between the end-to-end automation component and a first-level automation product is done
through an adapter, as shown here.

So let’s review these ideas once more…………

F ir st Le v el First Level First Level
A u to ma ti on Automation Automation

IBM Software Group | Tivoli software

Tivoli System Automation – end-to-end automation recap

e Automation and high availability on single cluster is ensured by:
• Tivoli System Automation MP Base / Tivoli System Automation z/OS

• Other clustering products (for example, HACMP or Microsoft® Server Cluster)

e IBM Tivoli SA MP End-to-End Automation allows enterprise-wide automation
with common concepts!

End-to-End Automation
Automation

Manager

 CRM

SAP Dependency DB2

WASDependency Dependency WEB

Online Trading Application

z/OS Sysplex AIX Cluster Linux Cluster

8 © 2006 IBM Corporation

X Fact #1: Business applications are becoming more and more complex.

X Fact #2: More and more application workloads are being split across different platforms.

X Fact #3: Complex applications and complex application environments X create
availability problems that can tax the skill of operations personnel.

X The Tivoli System Automation family and support for end-to-end automation help put an
end to much of that pain. Now you can implement and take advantage of resource
automation for multi-tiered applications in a heterogeneous environment. In turn, this can
help you reduce costs associated with maintaining application availability or costs of down
time caused by operator errors or maintenance windows.

The gateway to end-to-end automation is the Operations Console. Isabell, please show us
how it works.

IBM Software Group | Tivoli software

Operations Console – overview

e One console to access all IBM Tivoli
System Automation domains

¬ Same look and feel while controlling

resources on different platforms

e Comes with Tivoli System Automation
for Multiplatforms V2 Base and End-to-
End Automation

e Web-based operations console

• Based on WebSphere Portal Server
(Integrated Solutions Console)

• No need to install anything on the client
• Can be accessed simply by using a Web

browser

e Designed to be easy to use and meet
the needs of an SA operator

9 © 2006 IBM Corporation

The Tivoli System Automation Operations Console is the “hub” for automated operations and
monitoring of applications in a heterogeneous environment. Normally installed on a separate
server, the console is Web-based and designed to provide easy and efficiently support of the
end-to-end landscape.

The Tivoli System Automation for Multiplatforms Operations Console is a web-based user interface
that runs in the IBM Integrated Solutions Console. The Integrated Solutions Console, or short ISC, is a
common framework for administrative console functions which is built on WebSphere Portal Server.

To access the Operations Console, all that is required on the client is a web browser. As the name
says, the SA Operations Console, is the main console for the System Automation operator to
perform daily operational tasks. For example, the operations console can be used to start or stop
applications without the need to know their dependencies and without the need to have application-
or operating system specific knowledge. Other typical operator tasks are: Monitoring the operational
status of applications, diagnosing problems with automated applications, switching between
configuration choices for applications, excluding nodes from automation for maintenance purposes,
and more.

The SA operations console provides a common console to access all supported Tivoli System
Automation domains. This means, the operator has a console with a common look and feel to
access automated applications running on a z/OS Sysplex, AIX cluster or Linux cluster. In addition,
the operations console displays an end-to-end automation domain for heterogeneous e-business
applications spanning multiple clusters.

Now, let’s have a look at the layout of the main panel of the operations console:

In the top left you can see the domain topology showing clusters and systems, including a logical end-
to-end automation domain for cross-cluster e-business applications. This end-to-end automation
domain is called “FriendlyE2E” in this example and is displayed as the root of the topology tree. Below
this end-to-end automation domain you can see four so-called first level automation domains
representing the real clusters. In this example we have two Linux Clusters and two z/OS Sysplexes.
We can expand a cluster to see its systems, for example, if we expand FECluster, you can see that
the cluster consists of three systems, where two are online and one is currently offline – as the greyed
out icon shows.

The selection in the topology tree controls what is shown in the resource table below the domain
topology. The resource table displays the automated resources for the currently selected domain or
node. Currently the end-to-end automation domain FriendlyE2E is selected in the topology tree.
Therefore the resource table displays the automated applications that have been defined for the
end-to-end automation domain. In this example, there are two e-business applications “Friendly
Computer Shop” and “Stock Trading Application” that consist of components running on multiple
clusters and platforms.

Changing the selection in the topology tree, also changes the contents shown in the resource
table. For example, if I select FECluster, the resource table shows the applications hosted
within that cluster.

Again, notice that the icon immediately shows whether an application is online or offline.

Now, let’s switch back to the end-to-end domain and have a closer look at the automated e-
business applications. To get more information about a particular resource, an operator can select
it in the resource table. As the icon shows, “Stock Trading Application” is a group that consists of
several sub-components that make up the e-business application “Stock Trading Application”. Let’s
select it:

Note the following:

- The resource table now shows the sub-components belonging to the “Stock Trading
Application”

- A bread-crumb trail above the resource table displays the current context

- In the Topology tree’s “Located here” column you can see on which clusters and
systems the components of the “Stock Trading Application” are distributed

- The information area shows more details about the currently selected “Stock Trading
Application”

Let’s have a look at the information area. The information area always shows detailed information
about the current selection. For example, it shows the exact name and class, as well as owner
information and provides a hyperlink that can take an operator to further operational information about
this resource. Besides that, a very important part is the status section. The status section shows the
currently observed state of the resource – online, which means that the “Stock Trading Application” is
currently up and running – and the desired state, which is the automation goal that has been defined
in the automation policy. Above these two states the status section shows summary information, also
called a compound state, for the resource. Since the observed state matches the desired state, the
summary says that the resource works as desired and a green icon is shown.

Now, let’s have a look at a couple of scenarios showing how an operator can work with the System
Automation operations console:

First we will look at a problem analysis scenario. The operations console automatically displays
errors and warnings when they are detected by System Automation:

If the operation console is notified about state changes, it automatically triggers a refresh. As you
can see there are a number of places where new errors and warnings have been reported:

In the domain topology you can see on a per domain basis which domain hosts applications with
problems. This gives the operator already a very high-level view of where problems exist.

Then, of course, in the resource table you can see the problems using an additional icon next to each
resource signaling a problem. Besides the icon, there is also the Compound state column, which gives
textual information about the severity of the problem.

As you can see, the “Stock Trading Application” signals an error. If we look at its components we
can see that both the “Banking Application” and the “IMS Connect” resources are currently offline
with the “Banking Application” signalling a Warning and “IMS Connect” signalling an Error. The
remaining components of the “Stock Trading Application” are still OK and up and running.

Now, let’s select the “Banking Application” to understand why it went offline.

The “Located here” column in the topology tree quickly shows the operator that the Banking
Application is a component that is hosted by the z/OS Sysplex FEPLEX2.

The information area shows all details about the selected resource.

The most valuable information for us right now is displayed in the status section. There we can see
that the observed state is offline although the desired state is online and the summary information
says: “The resource cannot be started because of unfulfilled dependencies”. To understand this
unfulfilled dependency, we can have a look at the relationships to other resources by clicking on the
“Relationships” tab:

Here you can see that two relationships to “IMS Connect” exist for the “Banking Application”.

The first one says that “Banking Application” starts after “IMS Connect”. This means that
before the automation manager can start the “Banking Application”, “IMS Connect” must be
started.

The second relationship says that “Banking Application” is forced down by “IMS Connect”. This
means that if “IMS Connect” has a failure, the automation manager will stop the “Banking
Application”.

So, what has happened here? As you can see, “IMS Connect” signals an Error. Due to the “forced
down by” relationship, this resulted in a shutdown of the related “Banking Application”.

Note that “IMS Connect” and “Banking Application” are hosted on two different clusters, so this is
true cross-cluster automation.

The goal for the automation is to keep the “Banking Application” online. However, due to the
“starts after” relationship to “IMS Connect”, the “Banking Application” will not be started again by
the automation until “IMS Connect” is back online. This is why the “Banking Application” issued
the warning that it cannot be started because of unfulfilled dependencies.

Now, let’s go to the resource that actually has the error, “IMS Connect”. We can either use the link in
the Relationships tab or select it in the resource table. Now “IMS Connect” is selected and we can
switch back to the General page to view its detailed status information.

Again, we first look at the summary information in the status section. There it says, “The referenced
resource is in an error state”. The actual resource providing the “IMS Connect” service is located
within a first-level cluster and is called referenced resource.

We can use the hyperlink in the referenced resource section to drill down to the referenced resource
which is located in sysplex FEPLEX1.

We have now automatically and seamlessly navigated to the application group IMS_CONNECT
which is hosted by FEPLEX1 and which is automated by System Automation for z/OS. Note that
FEPLEX1 is selected in the domain topology and the resource section now shows the resources
hosted by FEPLEX1. The IMS_CONNECT application group has been selected and is displayed in
the information area. The operator gets the same presentation for his automated applications,
independent of the underlying operating system or automation product and can seamlessly
navigate between the various domains or, as we have seen, from an end-to-end scope down to a
first-level automation domain.

IMS_CONNECT has been made highly available using three IMS Connect instances, where each
instance is located on a different system – SYS5, SYS6, and SYS7. System Automation ensures
that only one instance is online at a time and if that one fails, it will failover to one of the stand-by
instances on another system.

However, as you can see in the resource table, all IMS_CONNECT instances show fatal errors. So,
there was no instance left to failover to. This is the reason why this error has propagated up to the
end-to-end level impacting the “Stock Trading Application”. Let’s select the first instance –
IMS_CONNECT on SYS5

The status section of the information area tells the operator that the resource has an unrecoverable
problem. This means that the automation manager has tried several times to restart the application,
but was not able to do so because of a permanent application failure. In such a case the operator
needs to debug the problem at the source looking for example through system logs or application
logs. The operator can get assistance through the System Automation operations console by
following the info link in the resource’s information area. The info link can be provided by the
customer for each resource and can point to operator instructions that contain information on how to
debug typical problems with this application, tasks how to fix common problems, what the service
level agreements are, who the primary contacts are for problems with this application, and any other
information that the customer’s administrator wants to provide for this resource. In addition to the
info link, owner information is presented for each resource, so that the operator immediately knows
whom to contact.

Depending on the actual problem, the operator can either fix the problem by himself, using for
example the instructions behind the info link, or the operator opens a problem ticket and forwards
the problem to some second level personnel.

When the actual problem with IMS_CONNECT has been fixed at the source, the operator needs to
tell System Automation that the resource is operational again, so that System Automation will
automate the resource again according to the automation policy. The operator can do so using the
Reset button that is available for resources that are in an unrecoverable error state. A click on the
Reset button triggers System Automation for z/OS to bring IMS_CONNECT online again on one of
the available systems.

As you can see, there are no more problems visible within the FEPLEX1 sysplex and
IMS_CONNECT is online on SYS5. Now let’s have a look at the “Stock Trading Application” in the
end-to-end automation domain:

As you can see, there are no more problems reported and both components that were offline
previously, namely “IMS Connect” and “Banking Application”, are both back online. Under the
covers, the end-to-end automation manager was notified that IMS_CONNECT has come back
online. Therefore the end-to-end automation manager was now able to start the “Banking
Application”, which is located on the other Sysplex, because the “start after” relationship could now
be satisfied.

In this scenario you have seen, how an operator can seamlessly navigate between multiple
heterogeneous clusters, how you can drill down to the root of an application problem, how to get
detailed information about resources, how to view the defined automation relationships, and how true
heterogeneous, cross-cluster

automation can work without the need for the operator to remember relationships between
application components or the need to have platform specific knowledge.

Let’s have a look at another scenario, where an operator will shutdown an application component,
which is distributed across multiple clusters, for maintenance purposes. A click on “Top” will show
all top-level e- business applications available in the FriendlyE2E domain again. Now, let’s look at
the “Friendly Computer Shop” application group:

The “Friendly Computer Shop” is an online shopping application based on SAP. As you can see, it
consists of two components, “mySAP Solutions”, which itself is a group consisting of sub-
components, and a DB2 database. In the “Located here” column you can see that the “Friendly
Computer Shop” is a heterogeneous e- business application which is distributed across three
clusters. Now, let’s assume that we need to apply service to the database component of “Friendly
Computer Shop”. During this service period, the “SAP Solution” should be shut down. Therefore, the
operator selects “mySAP Solutions”:

The resource table now shows the components belonging to “mySAP Solutions”, which are
distributed across three different clusters, and the information area shows its details. In the status
section you can see that “mySAP Solutions” is currently online. There you can also find the “Request
offline” button, which can be used to stop “mySAP Solutions”. The operator now clicks on “Request
offline”. A new panel appears that can be used to enter a comment, telling other users why “mySAP
Solutions” is shut down:

After a comment has been entered, press Submit to tell the automation manager to initiate a
shutdown of “mySAP Solutions” and all its sub-components.

A message appears that confirms that the request has been submitted successfully. Now the
automation manager will shut down all components belonging to “mySAP Solutions”, which
are distributed across multiple clusters, in the correct order. The operator does not need to
know the relationships between the application components and how exactly the individual
components are stopped – the automation handles all this.

After some time all components of “mySAP Solutions” are successfully stopped by the
automation. The icons in the resource table show that all components are offline. In the
information area for “mySAP Solutions” you can see an icon showing that an offline request has
been submitted by an operator against this resource ():

Moving the mouse cursor over this icon provides a flyover help that displays the user id that has
submitted this request. You can click on this icon to get even more details about the submitted
request:

Here you can see the type of request, the user that submitted it, the date when it was
submitted and in particular it shows the comment that has been entered, when the request
was submitted.

As long as the offline request stays on “mySAP Solutions”, the automation will keep the SAP
application including its sub-components offline. Once the service period is over, all the operator has
to do is to cancel the offline request using the “Cancel request” button. This has the result that the
automation manager will start up all components belonging to “mySAP Solutions” again, because
this is the desired state that has been defined in the automation policy. Again, the operator does not
need to know about a start-up sequence, specific start procedures, the location of the sub-
components, or any other relationship between them. This is all handled by automation and the
results will be automatically displayed in the operations console:

Using two typical operator scenarios you hopefully got an impression how to work with the System
Automation operations console.

You have only seen a subset of all available functions. For example, you can also use the SA
operations console to exclude whole systems from automation. This will move all workload away
from that system. You can switch between application configuration choices defines in a so called
choice group. You can activate and de-activate automation policies. You can search for resources
by name or do a domain wide search for all resources with operator requests, and you can view
automation logs to get a history of actions performed by the automation or to look for errors.

IBM Software Group | Tivoli software

IBM Tivoli System Automation – summary

e On Demand businesses require high resource availability
• Downtime can cause lost sales and customer shifts to competitors

e Tivoli System Automation provides high availability for AIX, Linux

and z/OS applications

e On Demand applications are heterogeneous by nature
• Relationships between applications can span multiple clusters

e End-to-End automation introduces a new cluster-spanning level of automation

e Policy-based automation can help reduce Total Cost of Operation, including implementation

time
• New resources or systems can be added without programming knowledge
• Comprehensive, free policy samples for System Automation for Multiplatforms
• XML-based policy syntax

e Reduced complexity through resource relationships and grouping

e Common Web-based Operations Console

IBM’s end-to-end high availability solution
“Life is hard, but e2e can be so easy!”

10 © 2006 IBM Corporation

Thanks very much, Isabell.

So to summarize: On demand businesses require high availability, and IBM Tivoli System
Automation addresses pain points like:

•Application availability,
•Complexity and operations costs
•Automation implementation and maintenance costs
•Education requirements related to automation
•Rapid changes to an IT landscape

IBM Tivoli System Automation overcomes these problems through policy-based
automation that supports grouping of resources and relationships. And it can do this in
environments where applications run on diverse platforms. All of this is meant to help
you to remain competitive, to be flexible and responsive, and to operate in a cost
effective manner.

IBM Software Group | Tivoli software

Want more information?

e Tivoli System Automation for Multiplatforms home page:
ibm.com/software/tivoli/products/sys-auto-linux

e Data sheet:
ftp.software.ibm.com/software/tivoli/datasheets/ds-sys-auto-multiplatforms.pdf

e Sample policies:
ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

e Reference library:
publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.1.html

e Education:
ibm.com/software/tivoli/education

11 © 2006 IBM Corporation

For more information related to IBM Tivoli System Automation for Multiplatforms, please refer to the
resources listed here. And as we’ve said, we’ll be offering you more in-depth sessions in the future.

Thanks for your interest!

 25

