

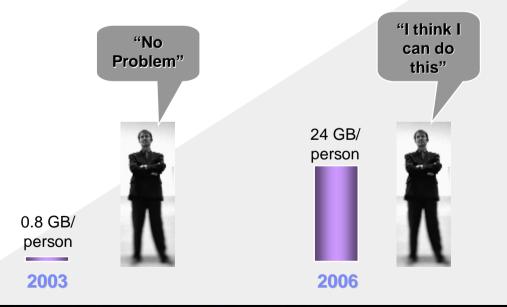
IBM服务管理体验之旅

高效管理随需而变 优化服务实践共赢

优化基础设施存储管理 提高运营效率——IBM Tivoli Storage Productivity Center

Agenda

- § 存储管理现状及面临的问题
- § IBM 端到端存储架构管理解决方案
- § IBM 解决方案技术特点及优势
- § 案例分享
- § 总结

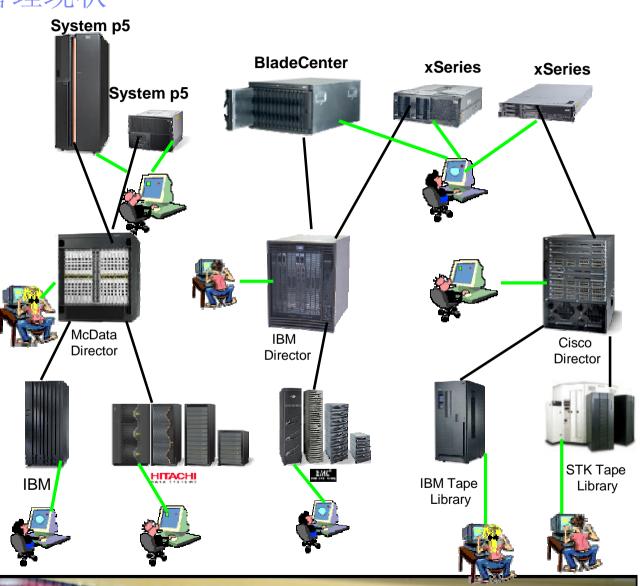

IBM服务管理体验之旅

128 GB/

数据存储量在极速增长

世界范围内平均每个人拥有的数据量

如何在有限的预算/成本之内管理极速增长的数据与存储?


person "Mr. CIO, we have a problem" 2010

大型数据中心的存储管理现状

- § 一个大型企业数据中心存储 使用现状:
- 具有230TB+的存储容量,并且 每年以30%的速度递增;
- 具有10台+磁盘阵列,512端口 +光纤交换机,200台+业务服 务器;
- 磁盘阵列涉及2+不同品牌、型号;
- 通过存储设备的管理工具进行 配置管理,通过Call-home等 进行故障管理,无性能管理;
- 只有少于3个存储管理员;

存储管理面临的主要问题

Ø如何超越孤岛式存储管理,从而实现端到端的存储展现与管理?

Ø是否能够自动生成统一的存储资源Topology图,从而直观掌控存储资源并判断存储系统的运行状态?

Ø如何及时发现的核心存储故障,以便进行及时处理,避免影响应用可用性?

Ø如何对磁盘阵列的性能进行综合评估,以便发现性能瓶颈,避免潜在的风险?

Ø如何构建统一存储管理平台,从而能够集中监控和管理复杂的异构核心存储系统?

Ø如何有效实现核心存储系统的运维报告管理,以便定期存储系统评估报告?

可视化 可控化 自动化

IBM 端到端存储架构管理

IBM服务管理体验之旅

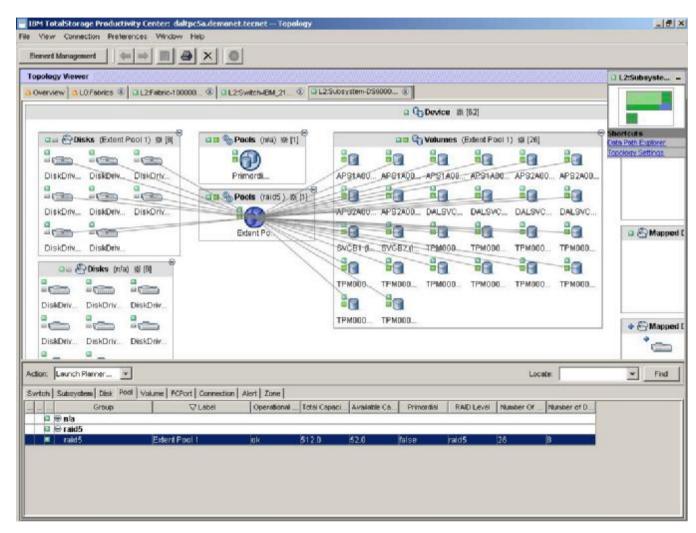
目录↵

IBM 存储管理的成功实践

- § 端到端SAN拓扑管理
- § 存储故障与性能管理
- § SAN配置管理
- § 资产与容量管理

1.3 存储架构总体健康状态评估4	
第二章 存储资产与容量管理5	
2.1 存储资产统计5	
2.1.1 磁盘阵列5	
2.1.2 SAN 交换机5	
2.1.3 其他存储5	
2.2 存储容量管理6	
2.2.1 容量使用统计6	
2.2.2 趋势分析	
第三章 SAN 拓扑、配置及变更7	
3.1 拓扑管理	
3.2 配置分析8	
3.3 变更分析9	
第四章 存储性能负载分析11	
4.1 生产磁盘阵列11	
4.1.1 吞吐量11	
4.1.2 缓存命中率	
4.1.3 写缓存延迟率	
4.1.4 数据传输率	
4.1.5 响应时间	
4.1.6 端口数据传输率	
4.2 镜像磁盘阵列	
4.2.1 后端吞吐量	
4.2.2 后端响应时间	
4.3 SAN 网络	
4.3.1 吞吐量	
4.3.2 場口致站下標準	
e.	

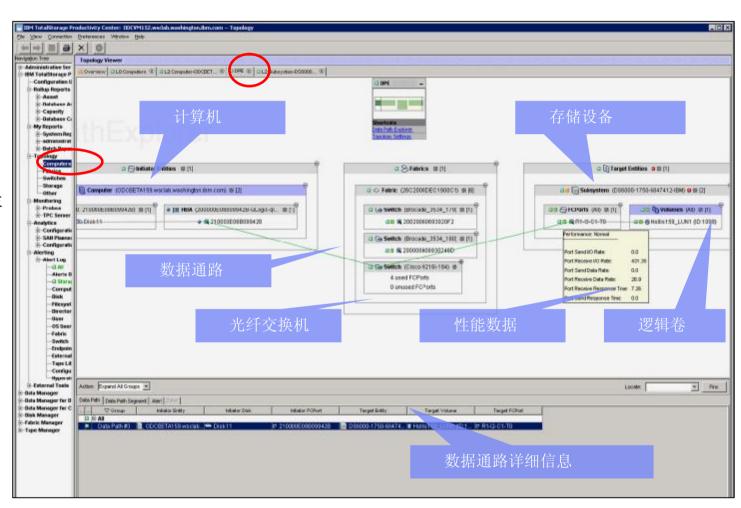
1.1 存储资产一览


1.1.1 生产磁盘阵列 1.1.2 镜像磁盘阵列 1.1.3 SAN 交换机... 1.2 本报告期内重要事件 1.2.1 硬件故障....

1.2.2 性能违例与瓶颈

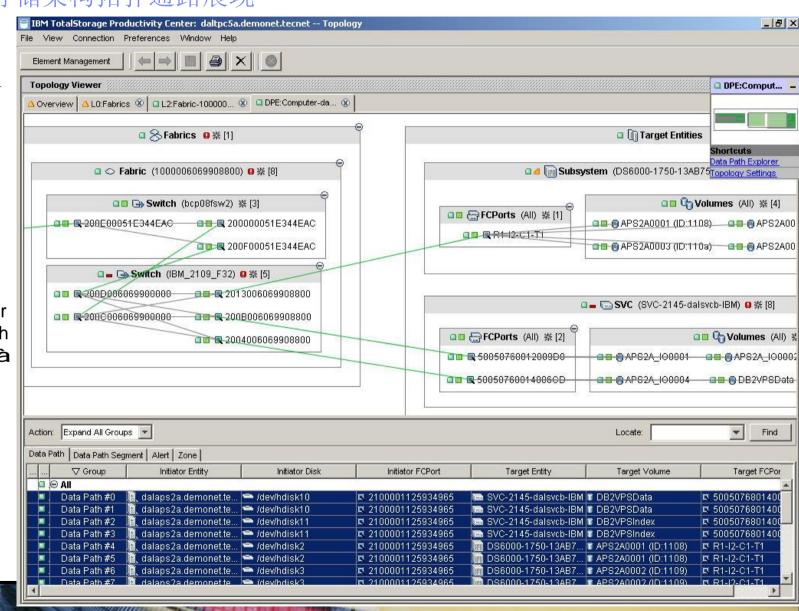
SAN存储架构拓扑展现

- § SAN拓扑网络的自动 生成:
- § 分层拓扑展现
 - **拓扑概览**: 展现计算 机与**SAN**交换机以及 磁盘阵列之间的连接 关系;
 - **SAN交换机端口连接:** 展现每个**SAN**交换机 端口的连接情况及实 时流量性能:
 - 磁盘阵列内部逻辑划 分及连接: 展现磁盘 阵列中物理磁盘、存 储池和逻辑卷的逻辑 对应关系以及实时性 能;



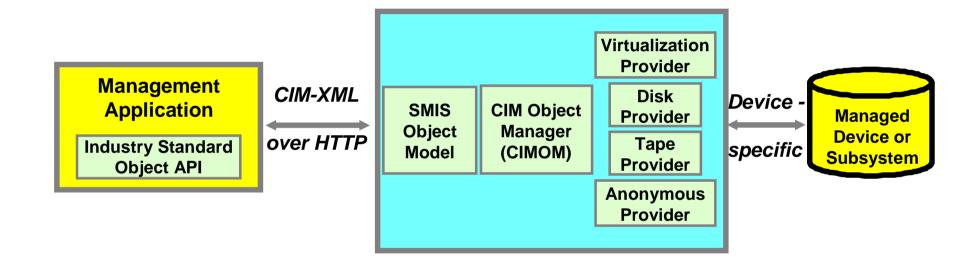
端到端SAN存储架构拓扑

- § 整个SAN的性能 状态一目了然
- § 端到端视图 从应用服务器到存储的整个路径
- § 减少排查问题时 间



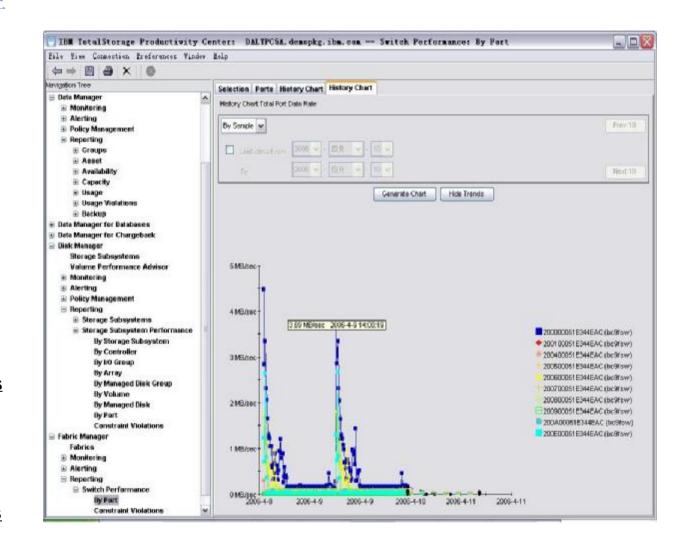
端到端SAN存储架构拓扑通路展现

- § 端到端数据通 路展示;
 - 选中服务器,并展现其数据通路;
 - 自动展现其数据通路,
 LVà Server
 FCà Switch à Disk FC à Volume:
 - 同时标示实 时性能数 据;
 - 展示所有通路;



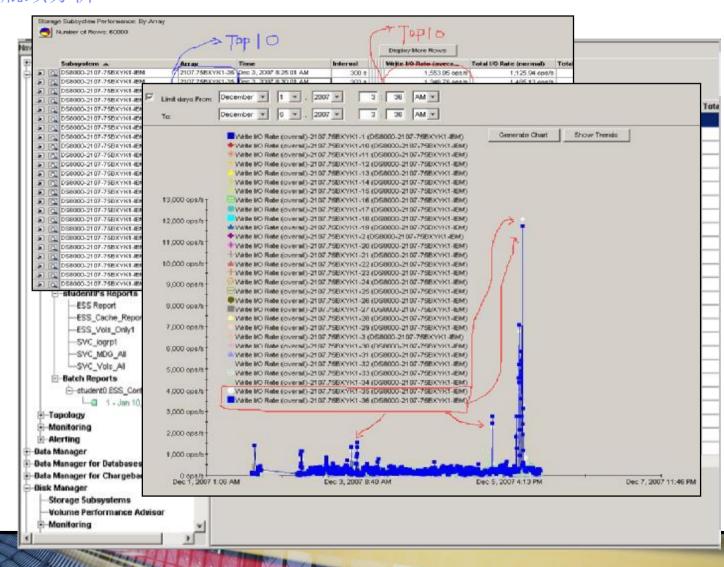
端到端的存储性能监控 — 原理与规范

§ 存储设备性能管理,基于开放式工业标准SMI-S完成



端到端的存储性能监控

- § 性能数据采集
 - 采样频率
 - 持续时间
 - 采集任务调度
- § 磁盘阵列性能监控
 - By subsystem
 - By controller
 - By array
 - By Volume
 - By Port
 - Constraint Violations
- § SAN交换机性能监控
 - By Port
 - Constraint Violations

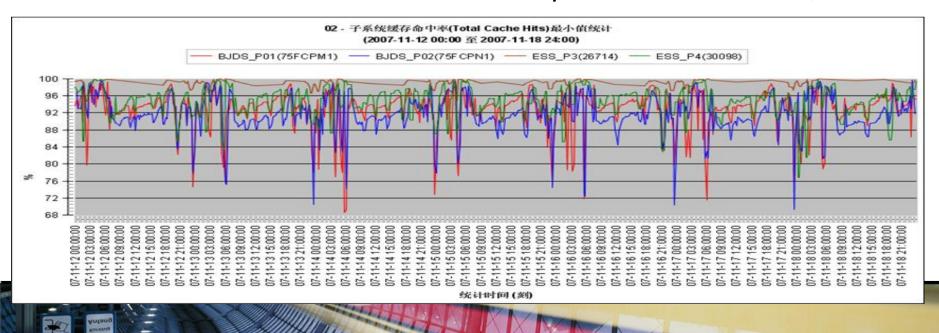


端到端的存储性能监控 — TOP 性能报告与瓶颈分析

- § 自动生成典型指标 的性能负载**Top**报 告:
- § 详细性能展现;
- § 问题关联分析:

端到端的存储性能监控 — 重要的性能报告

§ 存储子系统:


- -存储子系统控制器性能报告
- -存储子系统控制器缓存性能
- -I/O Group 性能
- -Array 性能
- -Managed Disk Group 性能(SVC)
- -光纤端口性能

§ 存储子系统:

- -Top 25 卷 I/O Rate
- -Top 25 卷 Data Rate
- -Top 25 卷 Cache Hit
- -Top 25 卷 Response Time
- -Top 25 卷 Disk

§ SAN 交换机:

- -交换机 端口错误报告
- -Top 25 Switch Ports Ops Rate 报告
- -Top 25 Switch Ports Data Rate 报告

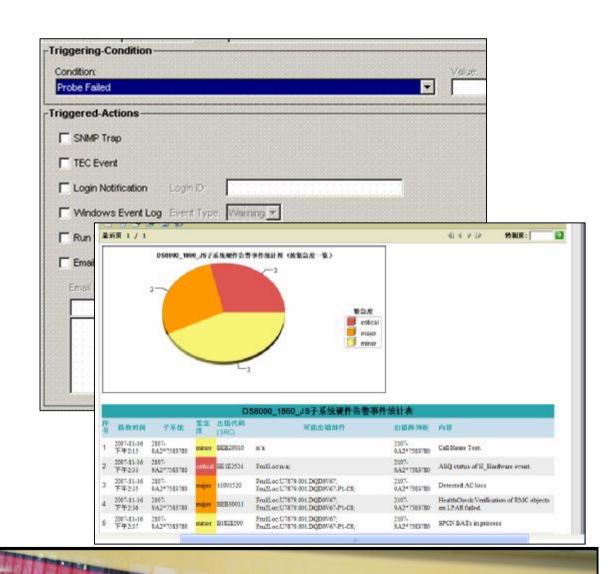
端到端的存储性能监控

— 异构存储的集中管理

扩展的管理支持

扩展的 3rd 方存储管理 (供应与性能管理)

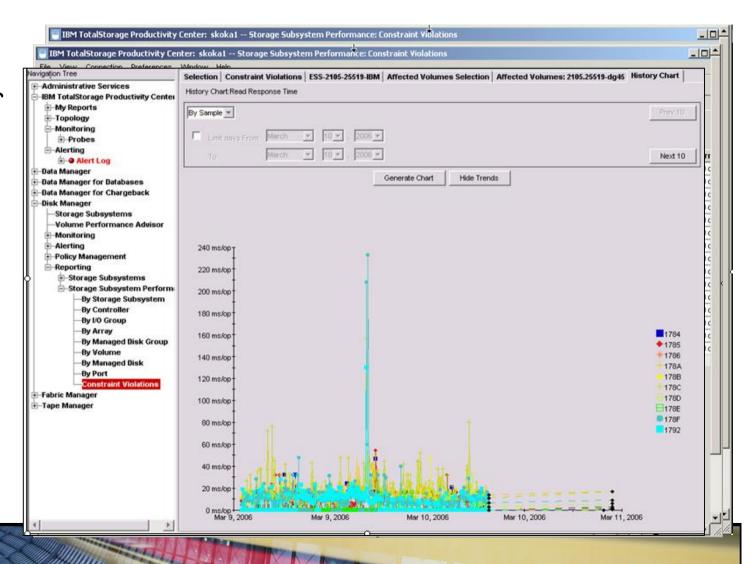
扩展的Fabric 管理 SMI-S 性能管理



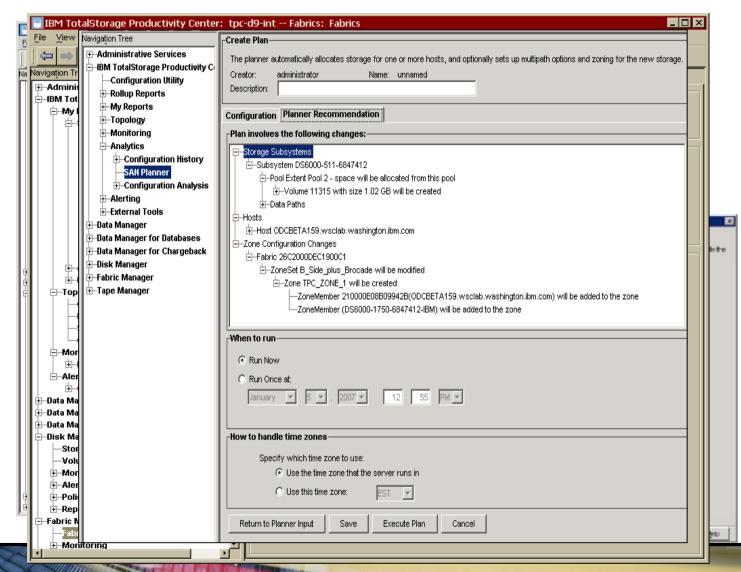
Refer to http://www.cnia.org/ctp fer the latest SMI-S compliant storage

事件与故障管理

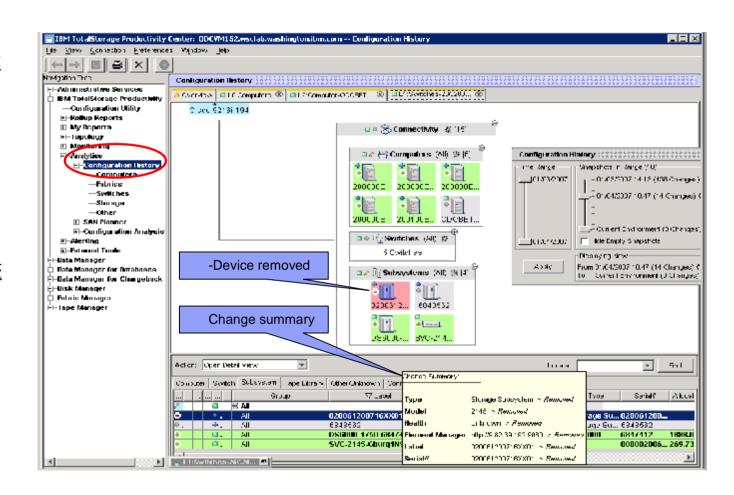
- § 事件与故障
 - 磁盘阵列事件
 - 光纤交换机
 - 规则违例事件
- § 事件管理平台集成
 - Ominibus
 - 其他事件管理平台 SNMP Trap



事件与故障管理 一 违例事件分析


- 根据需求定制违例 规则,如文件类型、 容量、存储性能 等;
- § 日常监控中,自动 生成违例事件;
- § 违例报告展现;
- § 问题关联分析;

存储配置管理 —存储设备配置


- § 统一配置管理是业 界管理趋势
 - 磁盘存储阵列 配置管理
 - SAN交换机配 置管理
- SAN配置规划-SAN Planer

存储配置管理—配置变更

- § 配置变更管理 使IT管理 员能够对存储的配置变化 进行跟踪、审计、评估, 并和当前配置进行比对;
- **§ 自动化** 根据既定策略 进行存储配置;
- § 整体视图 为所有 拓扑及详细信息提供统 一视图;
- **§ 快捷** 迅速进行问题 与故障定位;

存储配置管理——存储配置违例检测

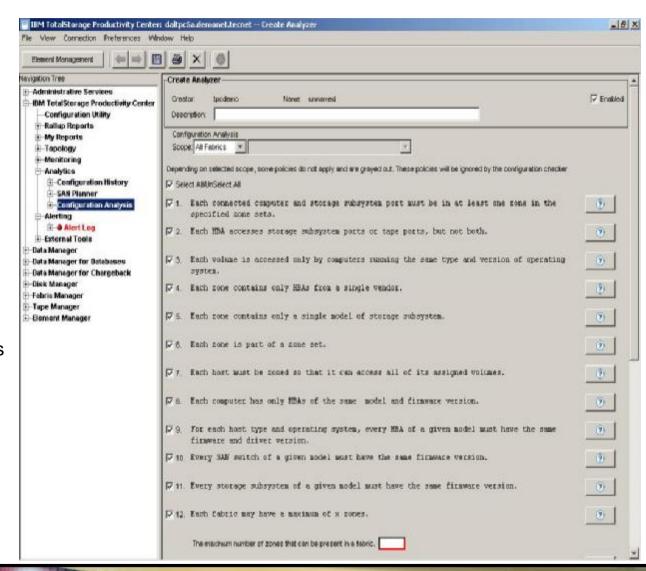
§ 监控与通知

提供基于经验和规范的配置违例规则:

§ 自动化

进行系统违例检查:

§ 便捷标示


在SAN拓扑图中标示策略违例, 一目了然;

§ 安全事件通知

把安全违例事件及时通知管理员; SNMP traps, tech events, emails

§ 客户化

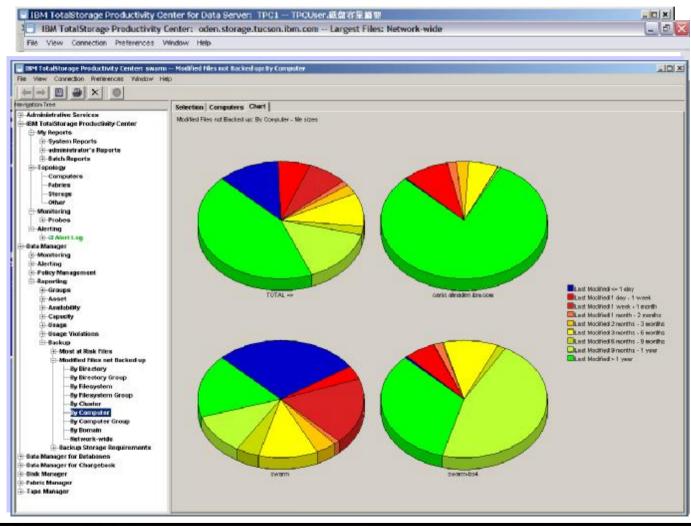
可以通过XML进行自己的最佳实践定制:

资产与容量管理

—存储环境综合分析

§ 存储容量分析

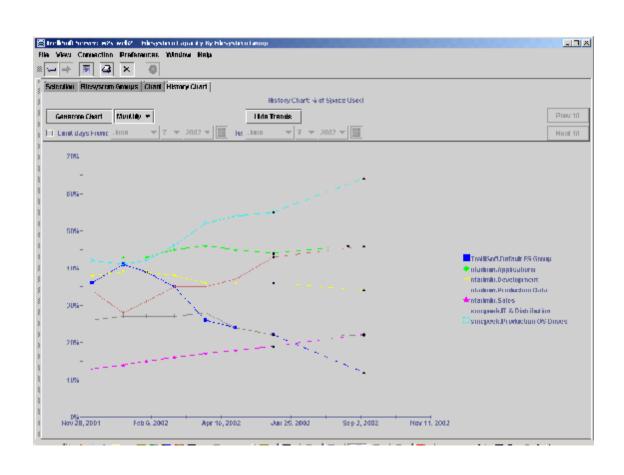
- 更好的掌控企业存储资源
- 更有效的利用存储空间
- 文件系统/数据库


§ 文件分类分析

- 非活动文件
- 重复文件
- 孤立文件等

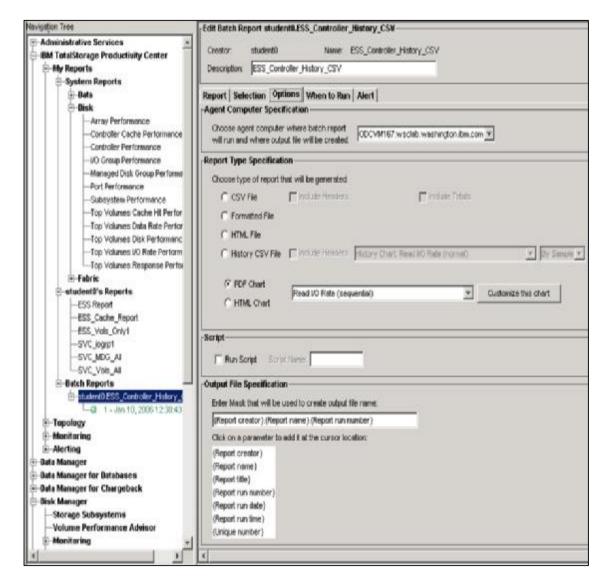
§ 文件访问性分析

- 访问时间/创建时间
- 目录/文件系统/服务器等 不同粒度
- 对文件使用情况进行全 面掌控



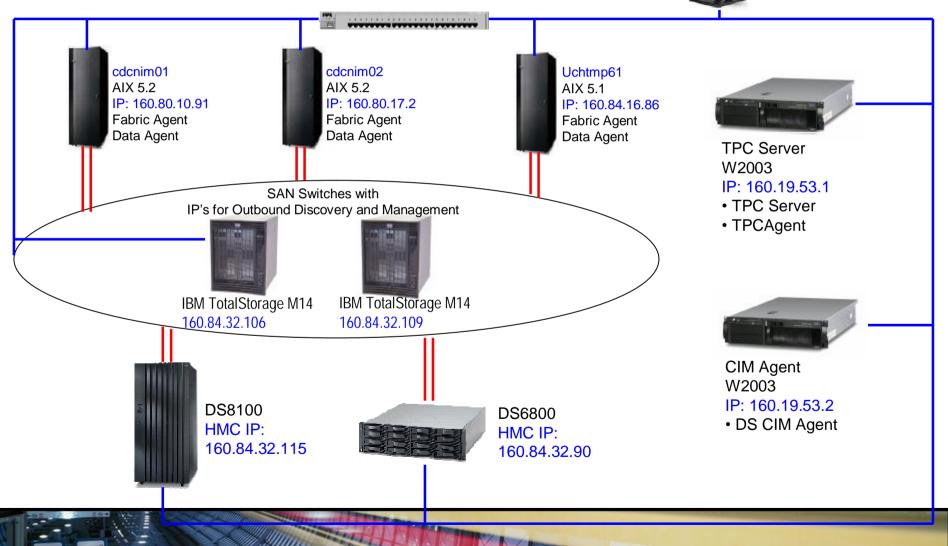
资产与容量管理 —历史数据分析与趋势预测

- § 根据历史数据进行未 来趋势预测
- § 识别容量增长最快的 用户、文件系统和数 据库表空间
- § 识别性能负载压力增 长最快的存储设备或 磁盘卷
- § 进行容量和性能规划



报告与报表

- § TPC 具备强大的报 表功能,内置300多 种报表模板;
- § 支持PDF、CSV、 HTML等格式的报表 导出;
- § 支持用户自定义报 表:
- § 支持批处理报表, 通过调度在后台生 成定制报表;



IBM服务管理体验之旅

典型的TPC应用部署环境

TotalStorage Productivity Center Management Console

Agenda

- § 存储管理现状及面临的问题
- § IBM 端到端存储架构管理解决方案
- § IBM 解决方案技术特点及优势
- § 案例分享
- § 总结

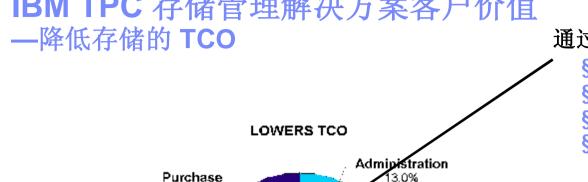
IBM 端到端的集中存储管理

整合管理

实现一个整合拓扑管理、性能管理、配置管理、 容量管理等功能的端到端的集中管理平台, 来满足企业级和中小企业用户的需求

基于规范

基于SMI-S进行统一存储管理,支持异构存储设备


主动预警

对存储容量和性能进行前瞻性预测与规划,从而使用户更有效的掌控存储

IBM TPC 存储管理解决方案客户价值

Downtime 20.0%

通过集中管理降低了管理成本

- § 更好的管理数据量的增张
- § 使用通用的高级操作管理异构的存储系统
- § 通过将存储分层简化了存储管理
- § 使用通用的设备驱动和FC HBA负载平衡 软件简化了服务器管理
- § 降低了存储容量供应的时间
- §提高了大多数存储子系统的性能

Environmentals 14.0% Hardware Mgmt.

更好的使用率降低了购买费用和 其他外围费用

Backup/ Restore 30.0%

§降低了硬件成本

20.0%

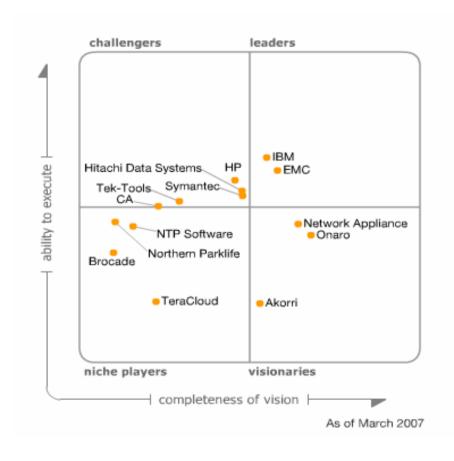
- §通过通用高级功能降低了存储软件成本
- §基于容量分析是存储购买更加有效率

显著降低了当机时间

- § 预测空间不足的情况
- § 发现SAN的可用性问题

降低了 Backup/Restore 成本

§ 监控和自动化备份和归档企业数据操作


IBM TPC 存储架构管理解决方案

一 技术领先者与市场领导者

§ 优势

- 开放性:全面的开放系统SRM解决方案,提供了广泛的异构平台支持,包括:操作系统、应用系统、光纤设备和存储磁盘阵列
- 易用性: 相对于其他类似解决方案, TPC更加容易安装、部署和使用;
- 整合性: 所有的产品功能都整合到一个 统一的平台上;
- 可扩展性:管理控制台能够应对在大规模环境中部署所带来的挑战;
- IBM存储监控与管理的唯一解决方案

Gartner

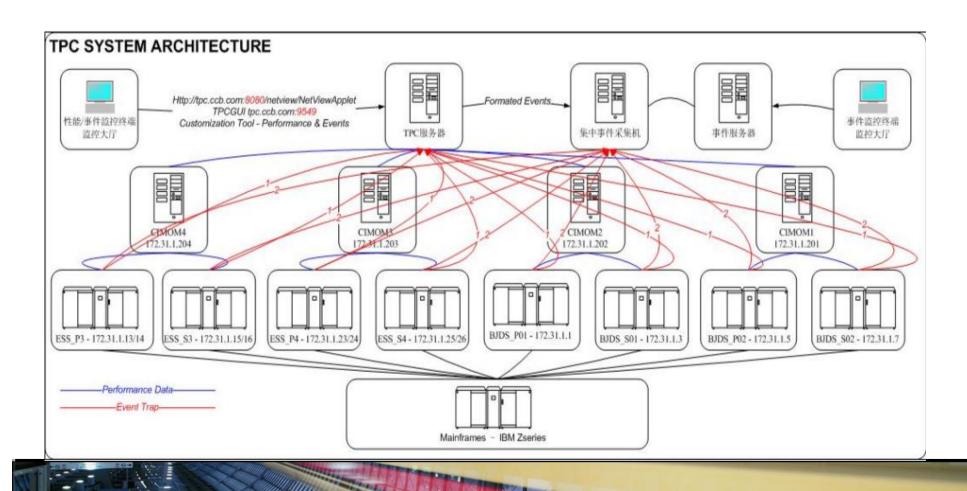
Gartner SRM MQ- 1Q 2007

Agenda

- § 存储管理现状及面临的问题
- § IBM 端到端存储架构管理解决方案
- § IBM 解决方案技术特点及优势
- § 案例分享——XXX银行数据中心
- § 总结

XX银行数据中心存储管理面临的问题

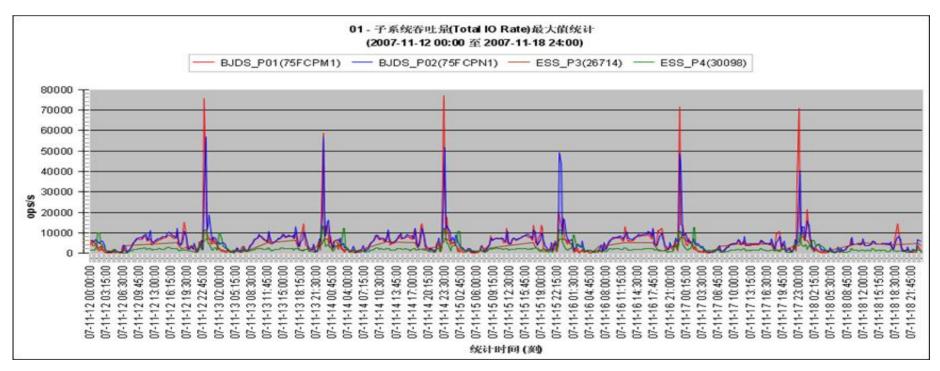
- § 存储管理方式落后
 - 存储故障得不到实时的报警,无法及时响应处理;
 - 没有进行有效的存储性能监控,无法排查性能瓶颈;
 - 难以对存储设备容量与分配进行准确统计分析;
 - 无法对存储系统健康运行状况进行整体评估;
 - 没有拓扑与变更管理......
- § 存储环境复杂,运维服务要求水平高
 - 10台+生产磁盘阵列,4台+测试磁盘阵列;
 - 500TB+存储容量,500端口+SAN交换机;
 - 存储环境为用户核心业务系统存储,可用性要求非常高;
 - 只有一个存储运维人员:


存储系统的健康运转难以保障,IT与运维人员工作压力非常巨大!

IBM TPC 集中存储管理方案

- § 故障与事件管理
- § 存储性能分析

- § 拓扑管理
- § 资产与容量管理
- § 存储运行整体评估
- § 每周/每月定期报告



性能分析与管理

- § I/O Rate
- § Data Rate
- § Cache Hit
- § Response Time

- § Write Cache Full
- § Port Data Rate
- § Port OPS Rate

- § 横向对比评估
- § 纵向对比评估
- § 阀值告警

事件与故障管理

§ 事件采集 § 事件解析 § 事件转发 § 事件展现

Jun 7, 2007 4:58:00 PM CST

Manufacturer=IBM

ReportingMTMS=2107-932*75FCPP0

ProbNm=16

LparName=unknown

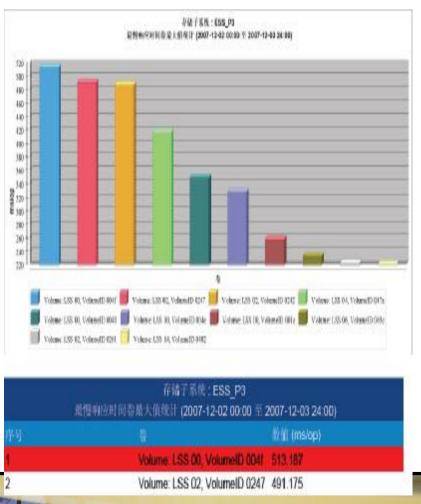
FailingEnclosureMTMS=2107-932*75FCPP0

SRC=BEB20021

EventText=2107 (DS 8000) Problem

```
PPRC Links Up
UNIT: Mnf Type-Mod SerialNm LS
PRI: IBM 2105-800 97-30098 01
SEC: IBM 2105-800 97-30109 01
Path: Type PP PLink SP SLink RC
1: FIBRE 0008 XXXXXX 0008 XXXXXX OK
2: FIBRE 0028 XXXXXX 0028 XXXXXX OK
3: FIBRE 0088 XXXXXX 0088 XXXXXX OK
4: FIBRE 0088 XXXXXX 0088 XXXXXX OK
```


Table 3. BEB2xxxx System Reference Codes						
System Reference	Description					
Code						
BEB20010	Call Home Test.					
BEB20020	Connection Established.					
BEB20021	Secure IBM service connection established.					
BEB20030	VPN Call Back Failed.					
BEB21000	Backup critical data failed.					


序号	接收时间	子系统	緊急 度	出错代码 (SRC)	可能出错部件	出错阵列柜	内容
1	2007-11-16 下午2:15	2107- 9A2*7583780	minor	BEB20010	n/a	2107- 9A2*7583780	Call Home Test.
2	2007-11-16 下午2:33	2107- 9A2*7583780	critical	BE1E2524	FrulLoc:n/a;	2107- 9A2*7583780	ASQ status of H_Hardware event.
3	2007-11-16 下午2:35	2107- 9A2*7583780	major	11001520	Fru1Loc:U7879.001.DQD0V67; Fru2Loc:U7879.001.DQD0V67-P1-C8;	2107- 9A2*7583780	Detected AC loss
4	2007-11-16 下午2:36	2107- 9A2*7583780	major	BEB30011	Fru1Loc:U7879.001.DQD0V67; Fru2Loc:U7879.001.DQD0V67-P1-C8;	2107- 9A2*7583780	HealthCheck:Verification of RMC objects on LPAR failed.
5	2007-11-16 下午2:37	2107- 9A2*7583780	minor	B182E500	Fru1Loc:U7879.001.DQD0V67; Fru2Loc:U7879.001.DQD0V67-P1-C8;	2107- 9A2*7583780	SPCN BATs in process

周报/月报自动化和定制

- § 根据客户实际的存储管理需要定制存储系统运行周报/月报
- § 定期自动生成周报/月报;

客户价值

§ 量身定制的存储管理解决方案;

IBM存储管理绝不仅仅是一个工具或一个平台,而是从用户实际的存储管理需求出发,基于IBM存储管理的最佳实践经验来量身设计的解决方案;

§ 有效的存储事件及故障管理;

Call-Home是目前对存储磁盘阵列故障管理的通常方式,但出于安全考虑,多数银行电信企业不会使用这种方式,这就使得磁盘阵列处于风险之中,IBM解决方案为用户提供了集中的故障管理,规避了以上风险;

§ 端到端存储性能管理;

IBM为用户提供了有效的存储性能管理,包括整个数据通路上的性能监控和瓶颈分析,使用户不仅能够掌控整个磁盘阵列的性能状态,还能够从业务的角度分析其每个环节的性能情况,从而规避潜在的故障,提高应用可用性;

§ 自动化运维报告定制;

IBM技术团队通过与用户运维人员共同分析存储运维需求,定制了每周和每月的运维报告,并根据需要定时自动生成,不仅大大减轻用户运维人员工作负荷,还大幅提高了运维服务水平;

IBM 企业级存储架构管理解决方案 一总结

可视化

- 端到端SAN拓扑展现与自动更新;
- 存储资源与资产统计分析;
- 存储事件与故障监控管理;
- 磁盘阵列/SAN交换机性能管理;

可控化

- 磁盘阵列/SAN交换机配置管理;
- 存储配置变更管理;
- 问题分析与追溯;
- 存储健康状况评估分析;

自动化

- 自动化存储运维报告;
- 自动化存储流程管理;

Hindi

Traditional Chinese

Gracias

Spanish

Russian

Thank

Obrigado

Brazilian Portuguese

Danke

Grazie Italian

Simplified Chinese

Merci French

ありがとうございました

Japanese

감사합니다

Korean

