
IBM® Lotus® Symphony™ Developer’s

Guide

���

IBM® Lotus® Symphony™ Developer’s

Guide

���

Note

Before using this information and the product it supports, read the information in “Part 8. Appendixes” on page 139.

Lotus Symphony V1.0.0 Edition (May 2008)

This edition applies to release V1.0.0 of IBM Lotus Symphony toolkit (license number L-AENR-7DSDUB) and to all

subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Part 1. About This Publication 1

Chapter 1. Intended Audience 1

Chapter 2. Requirements 1

Chapter 3. How to Use this Guide 1

Chapter 4. The Lotus Symphony Toolkit 3

Part 2. Product Overview 5

Chapter 1. Introduction to Lotus Symphony 5

Chapter 2. Lotus Symphony Architecture 5

2.1 Overview of Lotus Symphony Architecture . . 5

2.2 Overview of Eclipse 6

2.3 Overview of Lotus Expeditor 7

2.4 OpenOffice.org 8

Chapter 3. Lotus Symphony Programming Model . . 8

Part 3. Designing Lotus Symphony

Applications 11

Chapter 1. Rich Client Applications 11

Chapter 2. Lotus Symphony Back-end Service . . . 11

Chapter 3. Business Logic 11

Chapter 4. Lotus Expeditor Toolkit for Lotus

Symphony Developers 12

4.1. Update from jclDesktop to J2SE 12

Chapter 5. Packaging and Deployment 12

5.1 Design and develop components with Lotus

Expeditor toolkit 13

5.2 Group components into features with the

Lotus Expeditor toolkit 13

5.3 Package the features into the update site with

the Lotus Expeditor toolkit 13

5.4 Distribute the update site 13

5.5 Deploy the update site into Lotus Symphony 13

Chapter 6. Globalization 14

Chapter 7. Cross Platform Considerations 14

Chapter 8. Developing Applications for Lotus

Symphony and for Lotus Symphony in Lotus Notes . 14

Part 4. Extending Lotus Symphony . . 15

Chapter 1. Setting Up the Integrated Development

Environment 15

Chapter 2. Customizing the Lotus Symphony User

Interface 19

2.1 Adding a sample menu 19

2.2 Adding a control to the toolbar 21

2.3 Adding to the launcher button 24

2.4 Adding a New View in the Shelf View . . . 26

2.5 Using the Auto Recognizer 28

2.6 Adding an item to the status bar 35

2.7 Adding a Preferences Page 36

Chapter 3. Lotus Symphony Java APIs and

Extension Points 40

3.1 Selection Service 40

3.2 RichDocumentViewFactory 43

3.3 RichDocumentView 46

Chapter 4. Using the UNO API to Access a

Document Model 48

Chapter 5. Packaging and Deploying Your Plug-Ins 52

5.1 Prepare Custom Plug-in for Deployment . . 53

5.2 Create a Feature and an Eclipse Location

Update Site 54

5.3 Install a Custom Lotus Symphony

Application 59

5.4 Disable or Enable Custom Lotus Symphony

Applications 63

5.5 Uninstall Custom Lotus Symphony

Application 64

Part 5. Lotus Expeditor and Uno

Programming 65

Chapter 1. Developing Lotus Expeditor Applications 65

Chapter 2. UNO Programming 66

2.1 Getting the global service factory 66

2.2 Using the import and export functions . . . 68

2.3 Text documents 75

2.4 Spreadsheets 80

Part 6. Sample Plug-ins 83

Chapter 1. Hello World Sample Plug-in 84

1.1 Creating a new plug-in 84

1.2 Adding the plug-in dependency 84

1.3 Adding a side shelf element 84

1.4 Running the application 87

Chapter 2. Editor View Sample Plug-in 90

2.1 Creating a plugin 90

2.2 Creating a new button 92

2.3 Creating an editor view part 96

Chapter 3. Spreadsheet sample plug-in 99

3.1 Introduction to the scenario 99

3.2 Preview of the result 100

3.3 Prepare your development environment . . 100

3.4 Deploying the sample 100

3.5 Creating the sample 101

3.6 Core code demonstration 105

3.7 Extending the sample 106

Chapter 4. Writer Sample Plug-in 107

4.1 Introduction to the scenario 107

4.2. Preview of the result 108

4.3 Deploying the sample 109

4.4 Using the sample 109

4.5 Building the sample 111

Chapter 5. Customizing a Sample Plug-in 115

5.1 Introduction to the scenario 116

5.2 Preview of the result 116

5.3 Prepare development environment 116

5.4 Deploying the sample 116

5.5 Creating the sample 118

5.6 Core code demonstration 126

5.7 Extending the sample 127

Chapter 6. Convertor Sample Plug-in 127

© Copyright IBM Corp. 2003, 2008 iii

6.1 Introduction to the scenario 128

6.2 Preview of the result 128

6.3 Prepare development environment 129

6.4 Deploying the sample 129

6.5 Design overview 130

6.6 Creating the sample 130

6.7 Core code demonstration 133

6.8 Extending the sample 135

Part 7. Troubleshooting and Support 137

Chapter 1. Troubleshooting the Development

Environment 137

Chapter 2. Troubleshooting During Application

Development 137

Chapter 3. Troubleshooting During Deployment 137

Chapter 4. Contacting Support 138

Part 8. Appendixes 139

Appendix . References 139

Appendix . Notices 139

iv IBM® Lotus® Symphony™ Developer’s Guide

Part 1. About This Publication

Chapter 1. Intended Audience

This guide is intended for Java™ developers who have read the IBM® Lotus®

Symphony programming introduction in the Lotus Symphony forum and who

need a more in-depth understanding of the Lotus Symphony toolkit to create their

own applications. This developer’s guide is written to provide quick and easy

reference to the different components of the toolkit. For information about Lotus

Symphony programming, go to the Website at: http://symphony.lotus.com.

This guide does not include information about general Java programming. For

more information on the Java language and Java programming, go to the Website

at: http://www.java.sun.com. This guide also does not cover the details of Lotus

Symphony API (application programming interface) that are covered in the

Javadoc within the toolkit.

Chapter 2. Requirements

The Lotus Symphony Toolkit can be used in the Eclipse 3.2.2 development

environment on Microsoft® Windows® XP or Red Hat Enterprise 5.

To build plug-ins, you must have Lotus Symphony installed. Plug-ins created from

this toolkit can be deployed into Lotus Symphony on all platform supported by

Lotus Symphony.

For detailed information about software requirements for the Lotus Symphony

toolkit, see the readme.txt file that is included with the toolkit.

Chapter 3. How to Use this Guide

This document is composed of several major parts: product overview, designing

Symphony applications, extending IBM Lotus Symphony, IBM Lotus Expeditor and

UNO programming, example plug-ins, and troubleshooting and support.

Part 1: Chapter 4 : introduces the main composing of Symphony developer’s

toolkit and how to begin your Symphony development journey by this toolkit.

Part 2: Product overview

1. Chapter 1: introduces what Lotus Symphony is.

2. Chapter 2: introduces Lotus Symphony architecture outline and the components

based.

3. Chapter 3: introduces the programming model on custom Lotus Symphony

development.

Part 3: Designing Symphony applications

1. Chapter 1: introduces the Rich Client application.

2. Chapter 2: introduces Lotus Symphony backend service.

3. Chapter 3: introduces two ways to build office applications.

4. Chapter 4: the Lotus Expeditor toolkit for Lotus Symphony application

developers.

© Copyright IBM Corporation, 2008 1

5. Chapter 5: Lotus Symphony application’s package and deploy.

6. Chapter 6: globalization support in Lotus Symphony.

7. Chapter 7: multi-platform of Lotus Symphony application.

8. Chapter 8: developing applications for Lotus Symphony and Lotus Symphony

in Lotus Notes.

Part 4: Extending Lotus Symphony

1. Chapter 1: describes step by step how to set custom Lotus Symphony

development environment.

2. Chapter 2: introduces how to customizing user Lotus Symphony interface. Such

as custom menu, toolbar, launcher item, side shelf, auto recognizer, status bar

and preference.

3. Chapter 3: introduces how to use the Lotus Symphony java APIs and

extensions in Lotus Symphony toolkit.

4. Chapter 4: introduces how to use UNO APIs to operate three kinds of

document model after get it from Lotus Symphony APIs.

5. Chapter 5: describes step by step how to deploy a custom Lotus Symphony

application and manage it.

Part 5: Expeditor and UNO programming

1. Chapter 1: introduces developing application on Expeditor platform.

2. Chapter 2: introduces how to use UNO’s function in Lotus Symphony

development. Such as get global service factory, use import/export function,

export document to HTML file and JEPG image.

Part 6: Example plug-ins

1. Chapter 1: describes step by step how to create a hello world plug-in on Lotus

Symphony. This sample adds a side shelf to say hello.

2. Chapter 2 demonstrates how to create a simple editor in a view on Lotus

Symphony. This sample creates a sample editor on a view.

3. Chapter 3: demonstrates how to operate a spreadsheet on a Lotus Symphony

side shelf. This sample shows how to open a spreadsheet by opening two demo

files, set and get a cell’s value and its address dynamically, how to create a

chart and a data pilot.

4. Chapter 4: demonstrate how to manipulate writer document programmatically

on a Lotus Symphony side shelf. This sample creates a side shelf for operating

a writer document, such as creating sections, creating tables, creating user

defined fields.

5. Chapter 5: shows a typical sample application on Lotus Expeditor platform

which Lotus Symphony development based. This sample creates a custom

perspective and adds three views, an early startup when Lotus Symphony was

startup, a status bar and a custom help.

6. Chapter 6: shows how to load document implicitly and export to HTML and

JEPG by document type. This sample shows a button for loading documents

implicitly; a button for exporting and converting the loading document into

HTML file or JEPG image according its type, ODT and ODS into HTML file,

ODP into JEPG image array; a simple setter and getter operating to show

accessing metadata.

Part 7: Troubleshooting and support

1. Chapter 1 problem and solution about development environment setting up.

2 IBM® Lotus® Symphony™ Developer’s Guide

2. Chapter 2: problem and solution about Lotus Symphony hang when executing

UNO call in Java code.

3. Chapter 3: problem and solution about application does not work when

plug-ins deployed

4. Chapter 4: how to get support on Lotus Symphony form.

Part 8: Appendixes

The Appendixes of this developer’s guide.

Chapter 4. The Lotus Symphony Toolkit

To access the toolkit, see http://symphony.lotus.com. The Lotus Symphony

download page contains links to all the documentation and downloads. You can

extract the files for this toolkit on your local system.

4.1 Get started with the toolkit

If you want to get a quick development experience using the Lotus Symphony

toolkit, the best way is create a “Hello world” plug-in. To create this plugin, do the

following steps:

1. Set up the development environment. Refer to Part 4 Chapter 1: Setting up the

integrated development environment in this guide, to set up your development

environment.

2. Create a “Hello world” plug-in. Refer to part 6 chapter 1 Hello world sample

plug-in in this guide.

If you want to experience more, the next best choice is tutorial plug-in sample

DocumentWorkflow and the tutorial document in the Lotus Symphony toolkit.

4.2 Sample plug-ins

These plug-in samples show how to develop custom plug-ins and applications,

how to use the Lotus Symphony APIs and others support functions to add custom

UI (user interface elements) and create Lotus Symphony documents. The list of

sample plug-ins is as follows:

v com.ibm.productivity.tools.samples.helloworld

v com.ibm.productivity.tools.samples.DocumentWorkflow

v com.ibm.productivity.tools.samples.views

v com.ibm.productivity.tools.samples.spreadsheet

v com.ibm.productivity.tools.samples.writer

v com.ibm.productivity.tools.samples.customizing

v com.ibm.productivity.tools.samples.convertor

The examples found in this guide can be run directly from the Lotus Symphony

development environment. For instructions on accessing and running the samples,

refer to Part 6 Example plug-ins in this guide.

4.3 Related documentation

v Lotus Symphony Java Toolkit Javadoc Reference

v Lotus Symphony Java Toolkit Tutorial

v Lotus Symphony Java Toolkit readme.txt

Part 1. About This Publication 3

4 IBM® Lotus® Symphony™ Developer’s Guide

Part 2. Product Overview

Chapter 1. Introduction to Lotus Symphony

Lotus Symphony is a set of applications for creating, editing, and sharing word

processing documents, spreadsheets, and presentations. Designed to handle the

majority of office tasks, the Lotus Symphony tools support the Open Document

Format (ODF), enabling organizations to access, use, and maintain their documents

over the long term without worrying about end-of-life uncertainties or ongoing

software licensing and royalty fees. By using tools that support ODF, customers are

not locked into one particular vendor for their productivity tools. ODF helps

provide interoperability and flexibility.

With Lotus Symphony, users create, manage, edit, and import documents in ODF.

However, Lotus Symphony tools can also import, edit, and save documents in

Microsoft® Office formats or export those documents to ODF for sharing with

ODF-compliant applications and solutions.

Lotus Symphony offers more than a simple office application suite. Because it

leverages the Eclipse-based product IBM Lotus Expeditor and OpenOffice.org

technology, a variety of plug-ins that expand the functionality of Lotus Symphony

are available from the Lotus Symphony Web site, and third parties can build

additional plug-ins to extend Lotus Symphony.

Chapter 2. Lotus Symphony Architecture

Lotus Symphony is derived from OpenOffice.org and it is built on the Eclipse

plug-in framework and the Lotus Expeditor rich client platform. In essence, Lotus

Symphony is a package of Eclipse plug-ins.

2.1 Overview of Lotus Symphony Architecture

Lotus Symphony wraps the OpenOffice.org application as Eclipse components to

provide office document applications.

This picture shows a high-level outline of the Eclipse architecture as Lotus

Symphony uses it.

© Copyright IBM Corp. 2003, 2008 5

Eclipse is a general-purpose and open-source framework on which you can

develop applications. A plug-in is the smallest unit of Eclipse Platform function that

can be developed and delivered separately. Statically, Lotus Symphony is a set of

Eclipse plug-ins that re-packages OpenOffice.org; in runtime, Lotus Symphony

re-parent OpenOffice.org window into an Eclipse SWT(Standard Widget Toolkit)

control.

You can extend Lotus Symphony by creating plug-ins that extend the Lotus

Symphony plug-ins. Your plug-in can access any of the services that are exposed

by Lotus Symphony or its underlying platforms, for example, the Lotus Expeditor

platform or the Eclipse platform.

2.2 Overview of Eclipse

Eclipse is an integrated development environment. Eclipse offers the Rich Client

Platform (RCP), which is required if you want to use the Eclipse graphic toolkit to

build stand-alone applications. For more information about Eclipse and RCP, refer

to the following resources:

http://www.eclipse.org

http://wiki.eclipse.org/index.php/RCP_FAQ

The following table lists and describes some of the Eclipse platform components

that Lotus Symphony uses.

 Component Description

Platform Runtime Provides the foundational support for plug-ins and for the plug-in

registry, a mechanism for declaring extension points, and for extending

objects dynamically. The Eclipse runtime uses the standard OSGi

framework to define how plug-ins are packaged.

Help Provides a plug-in with HTML-based online help and search

capabilities. Help content is added via user’s plug-ins that are

recognized at runtime..

6 IBM® Lotus® Symphony™ Developer’s Guide

Component Description

JFace Provides the user interface (UI) framework, working in conjunction

with the Standard Widget Toolkit (SWT), for handling many common

UI programming tasks.

SWT Provides access to the UI facilities of the operating systems on which it

is implemented. SWT-built applications leverage the UI of the host

system more than do other Java toolkits, such as Swing.

Preferences An Eclipse-managed collection of indexed windows dialog boxes.

Plug-ins can add new Preferences pages using an extension.

Workbench Provides a highly scalable, open-ended, and multi-window

environment for managing views, editors, perspectives (task-oriented

layouts), actions, wizards, preference pages, and more.

OSGi Provides Eclipse with the value of OSGi, which includes life cycle

management. Lotus Symphony is based on Eclipse 3.2, which is based

on OSGi R4.

2.3 Overview of Lotus Expeditor

IBM Lotus Expeditor is a server-managed client solution that extends back-end

server services to new users who use a range of client devices spanning desktops,

laptops, mobile devices, and specialized devices.

There are several Lotus Expeditor solutions, including Lotus Expeditor for

Desktop, Lotus Expeditor for Devices, Lotus Expeditor Toolkit, and Lotus

Expeditor Server. The combination of the Lotus Expeditor clients and the Lotus

Expeditor server provide the end-to-end services necessary to deliver and manage

applications. Lotus Expeditor Toolkit provides a complete, integrated set of tools

that allow you to develop, debug, test, package, and deploy client applications.

Lotus Symphony is based on Lotus Expeditor for Desktop. In the remaining parts

of this document, when Lotus Expeditor is mentioned, it is intended to mean Lotus

Expeditor for Desktop.

Lotus Expeditor is an integrated client platform for desktops and laptops that

extends the J2EE programming model to clients. The client provides a rich client

platform that can operate disconnected from the enterprise such that enterprise

applications can operate when the client is online or offline.

The following table lists some of the Expeditor services that Lotus Symphony uses.

 Service Description

Application

manager

Enables users to directly install applications and components from

standard Eclipse update sites onto managed clients.

Embedded

browser

Provides a configurable embedded Web browser.

Spell check Is used to check misspelled words in document. It is based on the text

analyze framework.

Personalities Defines the framework that the platform uses to determine what

perspectives or windows, menus, actions, action bar items, and status

line controls are displayed when the application starts.

Application

launcher

Is represented in the user interface as a button with a drop-down menu

that contains the list of applications available to the user.

Eclipse UI

extensions

Common UI extensions provided by the Eclipse platform.

Part 2. Product Overview 7

2.3.1 J9 JCL Desktop

Lotus Symphony for Microsoft Windows® and Linux® operating systems uses a

compacted, custom Java Runtime Environment known as the J9 Java Class

Libraries (JCL) Desktop. While this pared down J9 Java Runtime Environment

enables a smaller footprint for the Lotus Symphony client, the J9 does not contain

the full number of Java classes included in the standard 1.4.2 or 1.5 Sun JVM. For

example, some of the classes not contained in the J9 JVM are AWT and Swing

classes, which are used for graphical user interface (GUI) objects in Java

applications. These packages are not part of the J9 JVM.

Accordingly, developers might encounter issues when creating plug-ins that

reference a class or package (such as AWT or Swing) that is not included in the J9

VM. For this, refer to part 3 chapter 1 in this guide.

2.3.2 The profile of Lotus Expeditor used by Lotus Symphony

Lotus Symphony uses a minimal profile of the Lotus Expeditor platform. The

following picture describes the profiled platform. Many components are removed

from the Lotus Expeditor platform, such as Web Application Perspective, Portlet

Viewer, WSRP, and SSO. The Lotus Symphony profiled lotus Expeditor platform

maintains a minimal set of components required by the rich client application

model.

2.4 OpenOffice.org

OpenOffice.org is the open source project through which Sun Microsystems has

released the technology for the StarOffice Productivity Suite. All of the source code

is available under the GNU Lesser General Public License (LGPL).

OpenOffice.org is based on Universal Network Objects (UNO) technology and is

the base component technology for OpenOffice.org. You can use and write

components that interact across languages, component technologies, computer

platforms, and networks. In Lotus Symphony, UNO is available on Linux, and

Windows for Java, C++ and OpenOffice.org Basic. UNO is available through the

component technology Microsoft COM for many other languages. UNO is used to

access Lotus Symphony back-end services, using its application programming

interface (API). The OpenOffice.org API is the comprehensive specification that

describes the programmable features of OpenOffice.org.

Chapter 3. Lotus Symphony Programming Model

Lotus Symphony is the combination of Eclipse-based Lotus Expeditor and

OpenOffice.org. Both of these products provide rich APIs for application

integration. In Lotus Symphony, the OpenOffice.org window is re-parented to a

SWT control in Eclipse. Most of the user interface items that you can add are

provided through Eclipse extension points, such as the menu, toolbar, status bar,

and preference page. With this approach, Lotus Symphony provides flexibility for

user interface integration with other Eclipse and Lotus Expeditor-based

applications.

The programming model of Lotus Symphony can be described as:

v User interface integration is based on Eclipse and Lotus Expeditor extension

points and plug-in framework.

8 IBM® Lotus® Symphony™ Developer’s Guide

v The document content level API is based on OpenOffice.org UNO capability.

v The Lotus Symphony API focuses on the integration between OpenOffice.org

and Eclipse and Lotus Expeditor.

v The add-in mechanism is based on Lotus Expeditor Application Manager.

In this way, Lotus Symphony inherits the user interface flexibility of Eclipse and

Lotus Expeditor and the rich functionality of UNO APIs.

The following screen capture shows the user interface items.

Part 2. Product Overview 9

10 IBM® Lotus® Symphony™ Developer’s Guide

Part 3. Designing Lotus Symphony Applications

This part provides information about planning and designing issues before you can

develop Lotus Symphony applications. It describes the recommended approach

using the design perspective in the following chapters. For more details about how

to develop Lotus Symphony application, refer to Part 4.

Chapter 1. Rich Client Applications

If you want to build a graphical user interface application, the rich client

programming model is recommended. The pattern is supported through the rich

client application model from Lotus Expeditor. Using Eclipse and Lotus Expeditor,

an application can be an aggregation of display components, including menus,

toolbars, views, status bars, and side shelves.

You can extend the Lotus Symphony editor by building plug-ins. Most of the user

interface components can be added through extension points. For details about

how to use the extension points, refer to Part 4.

If you want to access the document model of a loaded document, use the UNO

API. There is typical usage provided in Part 5 Chapter 2. You can also find

samples in the Lotus Symphony toolkit.

Chapter 2. Lotus Symphony Back-end Service

If you want to build an application without a graphical user interface, you can use

the UNO API directly. For example, converting file formats between ODF, PDF,

HTML, or MS office format, manipulating documents invisibly, or printing

document from file storage without user interaction.

UNO provides language bindings, including Java, C/C++, OLE automation and

OpenOffice.org basic. You can also regard the Lotus Symphony editor as a client of

the Lotus Symphony back-end service. Lotus Symphony incorporates the display

window of OpenOffice.org into a SWT control in the Eclipse environment, so that

the user interface of Lotus Symphony is re-designed and re-organized completely.

It is also possible for you to re-use the Lotus Symphony back-end service.

The major drawback of UNO is complexity. There is documentation on the Web;

you can find the OpenOffice.org software development kit and OpenOffice forum

for knowledge and support. The learning curve is still considerable.Use the public

APIs provided by Lotus Symphony first. You can get suggestions and help from

the Lotus Symphony forum about how to continue if the public APIs are not

enough.

Chapter 3. Business Logic

When you want to build an office application, you must decide how to distribute

and manage the business logic. You can have two choices here:

v Creating a template which contains the business logic represented by script code

v Creating a separated Eclipse plug-in which contains the business logic

© Copyright IBM Corp. 2003, 2008 11

With the first approach, it is easy to create light-weight solutions. You can use

OpenOffice.org Basic in Lotus Symphony documents, which is dependent on UNO

technology. However, it is hard to manage or extend the scope of business logic.

For enterprise solutions, use the second approach. An Eclipse plug-in is easy to

deploy or upgrade in Lotus Symphony. It is also easy to extend the functionality of

business logic, for example, accessing data from server. One of the most important

concepts of Lotus Expeditor is that you can create a managed client application. It

is also applied to your business logic.

Chapter 4. Lotus Expeditor Toolkit for Lotus Symphony Developers

Lotus Expeditor toolkit is the starting point for Lotus Symphony developers and it

provides a complete, integrated set of tools that allows you to develop, debug, test,

package, and deploy client applications.

There are several programming models defined by the Lotus Expeditor toolkit. For

example, the Web application model, the rich client application model, the portal

application model and the composite application model. From a developer’s

perspective, only the rich client application model is provided in Lotus Symphony.

For more information, refer to Lotus Expeditor documentation.

In the following sections, are typical issues related to using the Lotus Expeditor

toolkit from a design perspective.

4.1. Update from jclDesktop to J2SE

The default Java Runtime Environment (JRE) of Lotus Expeditor is IBM J9 VM

with the jclDesktop class libraries, an IBM-optimized subset of Java 5 that offers a

smaller footprint and faster class loading than standard JREs. It is also the default

virtual machine used by Lotus Expeditor Client for Desktop.

If you need more function, such as Swing, or AWT programming libraries that are

provided by the J2SE 5.0 virtual machine, it is possible to upgrade the default VM

used by the Lotus Symphony runtime. You can upgrade the VM to J2SE according

to the following guide:

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/
com.ibm.rcp.tools.doc.admin/JVMfeatures.html

or from the Lotus Expeditor’s local help content on Eclipse after you finished

setting up the Lotus Symphony development environment (refer to Part 4 Chapter

1) by following:

Start up Eclipse > Help > Help Contents > Assembling and Deploying Lotus

Expeditor Applications > Installing and launching the Lotus Expeditor Client

>Changing the virtual machine.

Chapter 5. Packaging and Deployment

Although both UNO and Lotus Expeditor provide packaging and deployment

options, the primary approach to package and deploy third-party components is

based on the update management functionality of Lotus Expeditor.

12 IBM® Lotus® Symphony™ Developer’s Guide

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.admin/JVMfeatures.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.admin/JVMfeatures.html

5.1 Design and develop components with Lotus Expeditor

toolkit

A Lotus Expeditor or Lotus Symphony component contains codes for certain

functionality. Additional components can be constructed in a specific structure.

A component can be represented as a plug-in or a bundle. A plug-in is a JAR file

with a plug-in manifest file named plugin.xml. The plug-in manifest describes the

plug-in to the framework and enables a plug-in to consume and provide

extensions from and to other plug-ins. A bundle is a JAR file with a bundle

manifest file named MANIFEST.MF. The bundle manifest describes the bundle to the

service framework and enables a bundle to consume and provide packages and

services from/to other bundles.

If a component can’t provide a complete implementation, fragments can be used to

complete or extend a component. For example, to support globalization, the

primary component can provide an implementation that contains translatable text

in a default language. Fragments can also be used to provide translations for

additional languages.

5.2 Group components into features with the Lotus Expeditor

toolkit

Lotus Symphony can be regarded as a set of plug-ins and fragments on disk.

Components are grouped together into features. A feature is the smallest unit of

separately downloadable and installable functionality. A feature is used to organize

the structure of the entire product. It contains important information for the

Update Manager to identify the dependency between features, and the version of

features.

For more details about how to create features step-by-step, refer to Part 4 Chapter

5.

5.3 Package the features into the update site with the Lotus

Expeditor toolkit

To make the plug-ins deployable, you are also required to generate an update site.

An update site is a set of features with a site.xml. The site.xml file defines root

features in the update site. An update site is the smallest unit that can be

recognized by the Update Manager.

For more details about how to create an update site, refer to Part 4 Chapter 5.

5.4 Distribute the update site

You can copy the update site into each client for deployment or you can put the

update site on a server, and provide the server URL for client deployment.

5.5 Deploy the update site into Lotus Symphony

Deploy update site manually via the user interface from Lotus Symphony.

For more information about how to deploy the update site, refer to Part 4 Chapter

5.

Part 3. Designing Lotus Symphony Applications 13

Chapter 6. Globalization

Globalization support in Lotus Symphony is based on International Components

for Unicode (ICU) technology provided in Lotus Expeditor platform. ICU4J is a set

of Java classes that extend the capabilities provided by the J2SE class libraries in

the areas of Unicode and internationalization support. The ICU4J classes enable

you to:

v Support multiple locales

v Support bidirectional text layouts

v Create translatable plug-ins

Chapter 7. Cross Platform Considerations

In the development phase, use Windows XP or Red Hat Enterprise 5 as the

primary development environment. The component developed can be deployed

into all platforms supported by Lotus Symphony. The Java APIs provided by Lotus

Symphony or Lotus Expeditor are platform independent. UNO APIs are also

designed for cross platform applications. Some functions can be platform

dependent, for example, OLE Automation bridge of UNO is only available on

Windows operating system.

Chapter 8. Developing Applications for Lotus Symphony and for Lotus

Symphony in Lotus Notes

Lotus Symphony is available as a standalone editor product, it is also provided in

Lotus Notes client version 8.0. Either it is or it is not. The same code base is used

in the two products. You can design applications that work for both products.

There are still some issues that you should be aware of in the design phase:

v Lotus Symphony is based on a profiled Lotus Expeditor, which is small and fast,

while Notes is based on a different set of functionality of Lotus Expeditor.

v The release cycle for Lotus Symphony and Lotus Notes is different. There might

be slight differences, in each release of Notes; it will use some levels of Lotus

Symphony code.

v Some functionality is only available in Notes. For example, support of

LotusScript® and the composite application editor.

14 IBM® Lotus® Symphony™ Developer’s Guide

Part 4. Extending Lotus Symphony

Chapter 1. Setting Up the Integrated Development Environment

The integrated development environment (IDE) is based on Eclipse 3.2.2 and Lotus

Symphony. All the steps in this procedure are for a Windows operating system, but

the process on the Linux operating system is similar. If you have any questions

during the set up process, refer to Part 7 Troubleshooting and support or get help

from the Lotus Symphony forum: http://symphony.lotus.com/software/lotus/
symphony/home.jspa.

1. Install Lotus Symphony and Eclipse.

a. Download Eclipse 3.2.2 SDK for Windows http://archive.eclipse.org/
eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-
win32.zip or Linux http://archive.eclipse.org/eclipse/downloads/drops/R-
3.2.2-200702121330/eclipse-SDK-3.2.2-linux-gtk.tar.gz and Lotus Symphony

from the Lotus Symphony Web site: http://symphony.lotus.com/software/
lotus/symphony/home.jspa.

b. Unpack Eclipse 3.2.2 to a local disk, for example, D:\eclipse.

c. Install Lotus Symphony to a local disk, for example, D:\IBM\Lotus\Symphony

as <Symphony installation home>.
2. Install Lotus Expeditor toolkit with Symphony Support.

a. Download Expeditor toolkit zip file from the Web site at:

http://www14.software.ibm.com/webapp/download/
nochargesearch.jsp?q=Lotus+Expeditor+Toolkit and extract it to a local disk.

Note: recommend 6.1.2 edition

b. Unzip Symphony_profile_tool.zip file which supports Lotus Symphony

development on Lotus Expeditor from Lotus Symphony toolkit’s

update_sites\expeditor_toolkit_additions folder to a local disk.

c. Start the Eclipse IDE.

d. From the main menu, click Help > Software Updates > Find and Install.

The Install/Update wizard is displayed.

e. Select Search for new features to install and click Next.

f. In the Update sites to visit window, select the New Local Site button.

g. From the select a local update site window, select the file that was

extracted in step a, expand it and select Expeditor_Toolkit_install, and then

click OK.

© Copyright IBM Corp. 2003, 2008 15

http://symphony.lotus.com/software/lotus/symphony/home.jspa
http://symphony.lotus.com/software/lotus/symphony/home.jspa
http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-win32.zip
http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-win32.zip
http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-win32.zip
http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-linux-gtk.tar.gz
http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/eclipse-SDK-3.2.2-linux-gtk.tar.gz
http://symphony.lotus.com/software/lotus/symphony/home.jspa
http://symphony.lotus.com/software/lotus/symphony/home.jspa
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit

h. Select the New Local Site button again and select the extracted file from

step b, expand it and select Symphony_profile_tool, and then click OK.

i. Select the check box next to the site name */Expeditor_Toolkit_install and

*/Symphony_profile_tool, and then click Finish (*means the folder name

containing the selected folder.).

j. In the search results page, select all of the features available and click Next.

The following figure shows the minimum needed features for Lotus

Symphony development (Because Symphony_profile_tool has dependence

on Expeditor_Toolkit_install, first select the two features under the desktop

and then select the features under Symphony_profile_tool to avoid an

exception).

16 IBM® Lotus® Symphony™ Developer’s Guide

Note: When selecting Lotus Expeditor’s feature on Red Hat or SuSE

operating systems, it can throw a NullPointerException. This exception

doesn’t cause problems during installation.

k. In the Feature License window, read the licensing information for each

feature that you are installing, and if you agree with the license, select to

accept the license and click Next.

l. Click Finish to begin the installation.

m. In the Feature verification window, verify that the feature information is

correct and click Install.

Note: When warned about installing an unsigned feature, click Install to

continue. This warning does not cause problems during installation.

n. When installation completes, you are prompted to restart your IDE for

changes to take effect. Click Yes to continue.

Note: Clicking Apply Changes does not properly configure the

environment.
3. Configure Lotus Symphony Support.

After restarting the IDE, you are presented with the Expeditor Toolkit

Configuration box. To configure the toolkit for usage with Lotus Symphony,

following these steps:

a. Select Symphony in the Test Environment.

b. Use the Browse button to select the Eclipse directory of the Lotus

Symphony installation location, for example, <Symphony installation

home>\framework\eclipse.

c. Click OK.

Part 4. Extending Lotus Symphony 17

4. Create your own project code in this Eclipse environment.

5. Launch Lotus Symphony.

a. Select Run > Run or Run > Debug.

b. Select the Client Services launch type and click the new icon or double

click Client Services, named it Symphony.

c. Click Run or Debug to start Symphony.

The build of Lotus Symphony that was tested with the toolkit does not

resolve all plug-ins correctly. Therefore, you can see an error similar to the

one following. If this error occurs, click OK to continue the launch process.

You can disable this checking operation by clearing the mark next to

Validate plug-in dependencies... at the bottom of the plug-ins tab of the

launcher.

18 IBM® Lotus® Symphony™ Developer’s Guide

Note: Use Java compiler 1.4 as plug-ins’ Java compiler. Java compiler 5.0

might not work correctly.

Note: On Red Hat systems, sometimes a java.lang.UnsatisfiedLinkError

exception is thrown when launching the Lotus Symphony. Try to fix it with

the command similar to the following:

ldconfig /opt/ibm/lotus/Symphony/framework/shared/eclipse/plugins/

com.ibm.productivity.tools.base.system.linux_3.0.1.*

Chapter 2. Customizing the Lotus Symphony User Interface

The followed examples are all need you build a plug-in project, and then edit the

plugin.xml file directly by the code provided below. If you are not familiar with

how to build a plug-in project, go to Part 6 Example plug-in to see the details.

2.1 Adding a sample menu

Lotus Symphony allows you to add new menus to its main menu. The addition is

achieved through the Eclipse extension point: org.eclipse.ui.actionSets.

For convenience, menus from third parties should be added under the menu

Add-ins. If another third party has defined the menu “Add-ins”, you can use it;

otherwise, you should define such a menu and use it.

To add a sample menu to the Add-ins menu, perform the following steps:

1. Extend org.eclipse.ui.actionSets extension point in the plugin.xml file:

The label property of the action element specifies the name of the menu item or

toolbar button label. The menubarPath and toolbarPath properties specify their

location in the menu bar and toolbar.

2. Implement the action class:

Part 4. Extending Lotus Symphony 19

20 IBM® Lotus® Symphony™ Developer’s Guide

The action class must implement IWorkbenchWindowActionDelegate, or

IWorkbenchWindowPulldownDelegate, for the action to be shown as a pull-down tool

item in the toolbar.

Package

The extension point is provided by Eclipse Rich Client Platform.

See Also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/
org.eclipse.platform.doc.isv/reference/extension-points/
org_eclipse_ui_actionSets.html

Example

The code above results in the following display of the menu:

2.2 Adding a control to the toolbar

Lotus Symphony allows you to add to the main toolbar. You should add your own

toolbar group. The addition is achieved through Expeditor extension point:

com.ibm.rcp.ui.controlSets.

To add items to the Lotus Symphony main toolbar, perform the following steps:

1. Make sure that your plug-in have the following dependencies:

v com.ibm.productivity.tools.core

v com.ibm.productivity.tools.ui.toolbar

v com.ibm.rcp.jfaceex

2. Extend the com.ibm.rcp.ui.controlSets extension point in plugin.xml:

Part 4. Extending Lotus Symphony 21

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

3. Provide a class to define your control:

22 IBM® Lotus® Symphony™ Developer’s Guide

4. Optional. Define an association in plugin.xml file if you want to associate your

toolbar with Lotus Symphony views.

com.ibm.productivity.tools.ui.toolbar.controlSetSODCAssociations is an

extension point defined to associate control sets with Lotus Symphony views so

that those associated control sets only display when a Lotus Symphony view is

activated. To extend this extension point, in the first place, a control set has

been defined.

The class attribute of control has to be a class that is a sub-class of

SODCActionContributionItem, which is defined in bundle

com.ibm.productivity.tools.ui.toolbar. More, the visible attribute of the control

set has to be set to false.

To associate this control set with a Lotus Symphony view, define the following

extension:

Part 4. Extending Lotus Symphony 23

Here, the visible attribute defines if this control set is displayed by default.

Package

com.ibm.rcp.platform.controlSets are defined in Lotus Expeditor platform.

com.ibm.productivity.tools.ui.toolbar.controlSetSymphonyAssociations are

defined in com.ibm.productivity.tools.ui.toolbar plugin.

See Also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/
org.eclipse.platform.doc.isv/reference/extension-points/
org_eclipse_ui_actionSets.html

Or, from the local help contents on Eclipse by following: Start up Eclipse > Help

menu> Help Centents > Platform Plug-in Developer Guide > Reference >

Extension Points Rference > org.eclipse.ui.actionSets.

Example

The sample code above results in the following display on the toolbar:

2.3 Adding to the launcher button

Lotus Symphony allows you to add its New button, which is under the main

menu area. The contribution is achieved through the Eclipse extension point:

com.ibm.rcp.ui.launcherSet.

The extension point com.ibm.rcp.ui.launcherSet supports many types of launch

items including:

v A URL launch item, which opens a URL.

v A perspective launch item, which opens a perspective.

v A native program launch item, which opens a native program on the system.

v A custom launch item other than a URL, perspective ID or native program.

The following markup adds a new perspective launch item:

24 IBM® Lotus® Symphony™ Developer’s Guide

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

Package

The extension point is provided by Lotus Expeditor.

See Also

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm_rcp_ui_launcherSet.html

Or from the Lotus Expeditor local help content on Eclipse after you finished

setting up the Lotus Symphony development environment (Refer to part 4 chapter

1) : Start up Eclipse > Help > Help Contents > Developing Applications for

Lotus Expeditor > Reference information > Extension points schemas >

com.ibm.rcp.ui.launcherSet.

Example

Part 4. Extending Lotus Symphony 25

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html

2.4 Adding a New View in the Shelf View

A sidebar is a stack of shelf views typically located on either the right or left side

of the Lotus Symphony user interface. Plug-in developers can add views to a

sidebar in the user interface, which is based on the Lotus Expeditor extension

point: com.ibm.rcp.ui.shelfViews.

Lotus Symphony makes use of the Eclipse IViewPart interface to tie each shelf

view to the workbench. Each view part has a view site that connects it to the

workbench, allowing the view to register any global actions with the site’s action

bars, including access to its own panel menu, a local toolbar, and the status line.

The view can also register any context menus with the site, or register a selection

provider to allow the workbench’s ISelectionService to include the part in its

tracking.

To add items to the Lotus Symphony shelf view, perform the following steps:

1. Make sure that your plug-in have the following dependencies:

v com.ibm.productivity.tools.ui.views

v com.ibm.productivity.tools.core

v com.ibm.rcp.jfaceex

v com.ibm.rcp.ui

v com.ibm.rcp.swtex

2. Extend the com.ibm.rcp.ui.shelfViews extension point in plugin.xml:

3. Add to the org.eclipse.ui.views extension point in the plugin.xml file for the

plug-in, as seen in the following example:

Make sure that the following attributes are specified:

26 IBM® Lotus® Symphony™ Developer’s Guide

v The name attribute describes the string to be displayed in the title bar.

v The id attribute is the unique identifier of the view and is used to refer to

the view when contributing to the shelfViews extension point.

v The class attribute specifies what class is referenced in this extension.

v The icon attribute describes the icon to be displayed in the top left corner of

the title bar. The standard size is 16 x 16 pixels.

v The view should be optimally viewed in a frame approximately 186 pixels

wide. The view is also resizable. Make sure that the content can be scrolled

(if applicable), and that any toolbars do not get cut off, or have chevrons

pointing to more actions.
4. Implement the view class:

Package

The extension point is provided by Lotus Expeditor.

See Also

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/
com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html

Or from the Lotus Expeditor local help content on Eclipse after you finished

setting up the Lotus Symphony development environment (refer to part 4 chapter

1) : Start up Eclipse > Help > Help Contents > Developing Applications for

Lotus Expeditor > Developing applications > Developing the application user

interface > Using personalities > Contributing to the sidebar.

Part 4. Extending Lotus Symphony 27

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html

Example

2.5 Using the Auto Recognizer

The auto recognizer is a framework to allow users to take actions based on the text

that they input in the Lotus Symphony editor. It assists users to do extra

operations on the content of a document by underlining items in a special pattern.

It provides a gateway to provide further information and activities related to the

identified item, specific to users’ needs. By using auto recognizer, Lotus Symphony

can provide a more collaborative environment.

Note: Auto recognizer is only available in the Writer application and only single

word patterns are supported.

Lotus Symphony provides the auto recognizer framework and also the auto

recognizer component, PropertyBroker, which is inherited from the Lotus

Expeditor platform. To use the auto recognizer, you must follow these steps:

1. Add dependencies on the com.ibm.rcp.autorecognizer and

com.ibm.rcp.propertybroker plugins.

2. Implement a detector to define how to detect patterns.

3. Add the action to the com.ibm.rcp.propertybroker.PropertyBrokerDefinitions

extension point.

4. Add the recognizer to the com.ibm.rcp.autorecognizer.Recognizer extension

point

The following figure is the overall architecture of the auto recognizer framework.

28 IBM® Lotus® Symphony™ Developer’s Guide

Adding the Auto Recognizer to the Extension Point

To add the auto recognizer, perform the following steps:

1. Add the com.ibm.rcp.autorecognizer.Recognizer extension point in the

plugin.xml file:

2. Implement a SampleDetector class to define how to detect the pattern. Only a

single word is detected by the underlying auto recognizer framework in the

document:

Part 4. Extending Lotus Symphony 29

Add an Action

To add an action, perform the following steps:

1. Add the com.ibm.propertybroker.PropertyBrokerDefinitions extension point

in the plugin.xml file:

2. Define the SampleAction.wsdl file:

30 IBM® Lotus® Symphony™ Developer’s Guide

Part 4. Extending Lotus Symphony 31

3. Implement a SampleAction class:

32 IBM® Lotus® Symphony™ Developer’s Guide

Part 4. Extending Lotus Symphony 33

Package

com.ibm.rcp.autorecognizer.

See Also

Property broker extension point in Lotus Expeditor:

http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html

Or from the Expeditor local help content on Eclipse after you finished setting up

Lotus Symphony development environment(refer to part 4 chapter 1) by

following: Start up Eclipse > Help > Help Contents > Developing Applications

for Lotus Expeditor > Reference information > Extension points schemas >

com.ibm.rcp.propertybroker.PropertyBrokerDefinitions.

Example

In following example, a plug-in defines that PropertyBroker and AutoRecognizer

are two keywords, and a special action (in this example, SampleAction) is added

to this pattern. When the keywords are found in the document, the words are

underlined which indicates that this is a special pattern. If users move the cursor

34 IBM® Lotus® Symphony™ Developer’s Guide

http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html

to the pattern, pull-down button displays and they can click the button to invoke

pattern-related actions. The source code for this example is provided above.

2.6 Adding an item to the status bar

Lotus Symphony allows the addition of arbitrarily sophisticated user interface

controls to the status bar and the toolbar, through the Lotus Expeditor extension

point com.ibm.rcp.ui.controlSets.

To add an item into status bar, complete the following steps:

1. Add the com.ibm.rcp.ui.controlSets extension point in the plugin.xml file:

The statusLine element defines a marker location for other status line items to

be added similarly to the menu element in actionSet. The statusLinePath

property specifies the path in the statusbar.

2. Implement the control class:

Part 4. Extending Lotus Symphony 35

The control class must implement IContributionItem and implement fill

(Composite parent).

Package

This extension point is provided by Lotus Expeditor.

See Also

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm_rcp_ui_controlSets.html

Or from the Lotus Expeditor local help content on Eclipse after you finished

setting up Lotus Symphony development environment(refer to part 4 chapter 1) :

Start up Eclipse > Help > Help Contents > Developing Applications for Lotus

Expeditor > Reference information > Extension points schemas >

com.ibm.rcp.ui.controlSets.

Example

2.7 Adding a Preferences Page

After a plug-in has added extensions to the Lotus Symphony user interface,

preferences page lets users control some of the behaviors of the plug-in through

user preferences.

Store plug-in preferences and show them to the user on pages in the Lotus

Symphony Preferences window. Plug-in preferences are key value pairs in which

the key describes the name of the preference and the value is one of several

different types.

The org.eclipse.ui.preferencePages extension point lets you add pages to the

Lotus Symphony preferences (File > Preferences). The preferences window

36 IBM® Lotus® Symphony™ Developer’s Guide

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html

presents a hierarchical list of user preference entries. Each entry displays a

corresponding preference page when selected.

To add a preference page, complete the following steps:

1. Add the org.eclipse.ui.preferencePages extension point in the plugin.xml

file:

This markup defines a preference page named ″Lotus Symphony Example″

which is implemented by the class ExamplePreferencePage.

2. Add the org.eclipse.core.runtime.preferences extension point in the

plugin.xml file:

The extension point org.eclipse.core.runtime.preferences lets plug-ins add

new preference scopes to the Eclipse preference mechanism and to specify the

class to run that initializes the default preference values at runtime.

3. Implement the page class.

The page class must implement the IWorkbenchPreferencePage interface.The

content of a page is defined by implementing a createContents method that

creates the SWT controls representing the page content:

Part 4. Extending Lotus Symphony 37

38 IBM® Lotus® Symphony™ Developer’s Guide

4. Implement the page class and initialize class.

The initialize class is used for preference initialization:

Note: If you want to contribute the preference page to root node, you can add

the following code in plugin.xml file. The id is the preference id when you

define your preference page. For example, WebBrowserPreferencePage is the id

for browser component provided within Symphony.

Part 4. Extending Lotus Symphony 39

Package

The extension point is provided by Eclipse Rich Client Platform.

See Also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/
org.eclipse.platform.doc.isv/reference/extension-points/
org_eclipse_ui_preferencePages.html

Or from the local help contents on Eclipse by following: Start up Eclipse > Help

menu> Help Contents > Platform Plug-in Developer Guide > Reference >

Extension Points Reference > org.eclipse.ui.preferencePages.

Example

Chapter 3. Lotus Symphony Java APIs and Extension Points

3.1 Selection Service

In Eclipse, the selection service provided by the Eclipse workbench allows efficient

linking of different parts within the workbench window. Each workbench window

has its own selection service instance. The service keeps track of the selection in

the currently active part and propagates selection changes to all registered

40 IBM® Lotus® Symphony™ Developer’s Guide

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html

listeners. Such selection events occur when the selection in the current part is

changed or when a different part is activated. Both can be triggered by user

interaction or programmatically.

Each Lotus Symphony view registers the selection provider, so it is possible to

monitor if a selection change event occurs.

When opening or creating a document by user interaction or programmatically, the

view is opened as an Eclipse ViewPart. The view registers the selection provider to

Eclipse workbench window. When an application registers a selection listener, the

listener is notified when the selection is changed in the view.

From the user’s point of view, a selection is a set of highlighted text or objects in a

view. Internally, a selection is a data structure holding the model objects which

correspond to the graphical elements selected in the view. Almost all text or objects

can be selected in the view for these kinds of applications: writer, spreadsheet, and

presentation. The selection can be presented in several ways and you can only get

the text content from the selection. It might be possible to present the selection

using HTML, ODF, or XML format.

Accessing the Current Selection

The Lotus Symphony workbench keeps track of the currently selected part in the

window and the selection within this part. Each view registers it as the selection

provider, even if you do not need to propagate its selection now. Your plug-in is

ready for future extensions by others.

To access the current selection of current Lotus Symphony view:

Retrieving Text Content From the Selection

To get the text content from the selection:

Tracking Selection Change

Typically views react on selection changes in the Lotus Symphony workbench

window, however, it is better to register an ISelectionListener to get notified

when the window’s current selection changes:

Part 4. Extending Lotus Symphony 41

Removing the Selection Listener

Remove the selection listener when you cannot handle events, such as when your

view has been closed. Use the dispose() method to remove your listener:

Package

com.ibm.productivity.tools.ui.views

See Also

JavaDoc in Lotus Symphony toolkit.

Example

The sample Translation buddy view behaves in this way: whenever the text

content selection changes in the Lotus Symphony writer view, the selected text is

displayed on the Input area of the view automatically.

42 IBM® Lotus® Symphony™ Developer’s Guide

3.2 RichDocumentViewFactory

The RichDocumentViewFactory class handles the creation, accessing and closing of a

rich document view. A listener can be registered through

com.ibm.productivity.tools.ui.views.listener extension points to monitor the

opening and closing of a rich document view. The factory class provides global

static methods to handle the rich document views.

The factory class is used to create, open or close rich document view

programmatically.

1. Create new document through the user interface or API, for example, click

File->New->Document.

2. Open the document through the user interface or API.

3. Close the document through the user Interface or API.

4. Get the list of opened views using the API.

Creating a New Rich Document View

Use the following example code to create a new rich document view by specifying

whether the document type is writer, spreadsheet or presentation type at creation

time:

Part 4. Extending Lotus Symphony 43

For more information about how to configure the map, see the Javadoc in the

Lotus Symphony toolkit.

Opening a Local File in a New Rich Document View

Use the following example code to open a file in a new rich document view:

You can also specify the configuration map as same as opening new document. In

the above code, you set the properties template to close mode. You can also decide

whether you want to load the document as a template.

Typically, the document is loaded in a new tab, which depends on the windows

and theme settings, of the preference page.

Getting the List of Opened Rich Document Views

Use the following example code to get the list of opened rich document views:

All rich document views opened in Lotus Symphony are returned.

Closing a Rich Document View

Use the following code to close a rich document view. The window tab is closed

when the view is closed:

Registering the Listener Using the Extension Point

The com.ibm.productivity.tools.ui.views.listener extension point is defined to

monitor the status of the RichDocumentView instance. If a listener is registered when

RichDocumentView is created, closed or a document is loaded, then the listener is

notified. Currently the following events for rich document views are supported:

v Type_Pre_Document_Open. A rich document is about to be opened in a view.

v Type_Post_Document_Open. A rich document is opened in a view.

v Type_Pre_Document_Close. A rich document is about to be closed in a view.

v Type_Post_Document_Close. A rich document is closed in a view.

v Type_Post_Open. A rich document view is opened.

v Type_Pre_View_Close. A rich document view is about to be closed.

v Type_Post_View_Close. A rich document view is closed.

To use the listener, perform the following steps:

1. Add the com.ibm.productivity.tools.ui.views.listener extension point:

44 IBM® Lotus® Symphony™ Developer’s Guide

2. Implement a RichDocumentViewListener class:

In this example, the getSource() event returns the RichDocumentView instance

which fires the event.

Package

com.ibm.productivity.tools.ui.views.

See also

JavaDoc in Lotus Symphony toolkit.

Example

Typically, when opening or loading a document, the document is opened in a new

tab, which depends on the windows and theme settings, in preference page. When

closing a document, the tab is closed.

Part 4. Extending Lotus Symphony 45

3.3 RichDocumentView

The RichDocumentView provides an interface for all Lotus Symphony view

instances and defines common functions on a Lotus Symphony view. The view

usually maps to an Eclipse ViewPart internally. New user interface items binding

to the ViewPart are configurable through this interface, like the menu, toolbar,

properties side bar and status bar.

Accessing Existing RichDocumentView Instances

You can get or create a RichDocumentView instance through

RichDocumentViewFactory first, then use the APIs defined in RichDocumentView

to perform the following tasks:

v Open another file in the view.

v Close the document in the view.

v Save the document in the view to another file.

v Add or remove a listener.

v Get the UNO model of the current document.

Using DefaultRichDocumentView Directly

In addition to the RichDocumentView interface, a default implementation named

DefaultRichDocumentView is also provided. The DefaultRichDocumentView is an

instance of Eclipse ViewPart and RichDocumentView. You can write a new

perspective that aggregates several Eclipse ViewParts into one page.

Extending a New View

You can extend the default implementation to define your own view.

46 IBM® Lotus® Symphony™ Developer’s Guide

The following example code demonstrates how to reuse the

DefaultRichDocumentView. The sample code implements a WriterView which

creates a writer document in the ViewPart. The ViewPart can be integrated into an

Eclipse perspective or displayed by an IWorkbenchPage. Refer to Eclipse and Lotus

Expeditor programming instructions about how to use it. The complete sample

code is also provided in the Lotus Symphony toolkit samples:

Operations on Rich Documents

The following code example demonstrates how to load a rich document in the rich

document view. The WriterView is created as above. There are also SaveOperation,

SaveAsOperation, and CloseOperation interface provided in the Lotus Symphony

Javadoc API. The usages are similar to LoadOperation; refer to the Javadoc API for

more details:

Monitoring Operations

The following code example demonstrates how to detect that a document is loaded

into the rich document view. The WriterView is created as above. The example

code demonstrates how to add an operation listener into the ViewPart when the

Part 4. Extending Lotus Symphony 47

ViewPart is created. When a load operation is issued, the monitor is called. The

OperationListener is applicable to all default operations and is documented in the

Lotus Symphony Javadoc API:

Chapter 4. Using the UNO API to Access a Document Model

Lotus Symphony Java API is only responsible for managing the Eclipse-based

Lotus Symphony view. If you want to access and modify content within the

document, use the UNO API, which is inherited from OpenOffice.org.

48 IBM® Lotus® Symphony™ Developer’s Guide

Accessing the Document Model

In Lotus Symphony, you can use the following code to get the UNO model of the

current document:

After you have the XModel object, you can access all UNO APIs within the model.

For example, if you want to detect the document type, you can use this example

code:

Using the Writer Document Model

If the document is a writer document, all UNO APIs can be used with Java. With

the UNO API, you can almost do anything you want in the document, for

example:

v Navigating objects like text, paragraph, or tables in document.

v Inserting or removing objects.

v Getting or setting the property of objects.

v Getting or setting selections.

v Accessing and modifying document metadata.

Some typical use cases are described in following sections. For more details, refer

to the OpenOffice.org SDK Developer’s Guide.

Part 4. Extending Lotus Symphony 49

Setting the Whole Text of a Document

Use the following sample code to change the whole text of a document:

Inserting a Table in a Document

Use the following sample code to insert a table into the document:

50 IBM® Lotus® Symphony™ Developer’s Guide

Setting Text in the Current Cursor

Use the following sample code to set content into the current cursor:

Using the Spreadsheet Document Model

If the document is a spreadsheet document, all UNO APIs for spreadsheet

documents can be used with Java. With the UNO API, you can almost do anything

you want in the document, for example:

v Accessing sheets, cells, and cell ranges in the document.

v Modifying content of sheets, cells, or cell ranges.

v Creating charts.

v Using functions.

A typical use case is described in the following section. For more details, refer to

the Spreadsheet sample in the Lotus Symphony toolkit samples and

OpenOffice.org SDK Developer’s Guide.

Setting the Content of a Cell

Use the following example code to set the content in column 2 row 3 in the first

sheet:

Part 4. Extending Lotus Symphony 51

Using the Presentation Document Model

If the document is a presentation document, all UNO APIs for presentation

document can be used with Java. With the UNO API, you can almost do anything

you want in the document, for example:

v Accessing and modifying pages and shapes in the document.

v Inserting and removing pages or shapes in the document.

v Playing the presentation.

For more details, refer to OpenOffice.org SDK Developer’s Guide.

Chapter 5. Packaging and Deploying Your Plug-Ins

After you have completed plug-in development, run your code in an installed

Lotus Symphony product environment, or distribute your plug-ins to customer’s in

a Lotus Symphony environment. To achieve it your application needs to be

packaged and deployed.

The content below in this chapter illustrates how to package and deploy an

application to Lotus Symphony based on the samples which can be found in the

Lotus Symphony toolkit.

52 IBM® Lotus® Symphony™ Developer’s Guide

Use following steps to install your custom application into Lotus Symphony:

1. Prepare your custom plug-in for deployment.

2. Create a feature and an Eclipse location update site.

3. Install a custom Lotus Symphony application.

4. Configuration your application.

5.1 Prepare Custom Plug-in for Deployment

The following steps prepare the plug-in for deployment:

1. Open Eclipse. Be sure to use the same workspace where you created your

plug-ins.

2. Expand your plug-in in the Package Explorer perspective.

3. Double-click the Build.Properties file.

4. Select the portions of the plug-in that you want to include in the build. For the

purposes of this example, all are chosen; however, this might not be necessary

in your scenario.

Part 4. Extending Lotus Symphony 53

5. Click File > Save.

5.2 Create a Feature and an Eclipse Location Update Site

Updates to the client platform are provided in the form of features. Features can

contain other features, or a set of related plug-ins. The Update Manager

component of the client platform handles the installation of the features, and a

user interface is provided to manage the installed features.

5.2.1 Creating a Feature

A feature contains a manifest that provides basic information about the feature and

its contents, including plug-ins and fragments. A feature is deployed and delivered

in the form of a JAR file.

Now that your plug-in is ready to be deployed, it needs to be packaged in a

manner that is recognized by the Eclipse update Manager. The Eclipse update

manager is an Eclipse tool that manages versions and deployment of plug-ins and

fragments.

Prior to creating a feature, you should have the plug-ins and fragments that will be

contained within the feature

1. Make sure that your plug-in is opened in the workspace you created.

2. From your workspace, select File > New > Project > Plug-in Development >

Feature Project, as shown in the following figure:

54 IBM® Lotus® Symphony™ Developer’s Guide

3. On the New Properties page, enter the Feature ID, Feature Name, and Feature

Version. The Feature Provider and Install Handler Library are optional.

Part 4. Extending Lotus Symphony 55

4. Click Next.

5. On the Referenced Plug-ins and Fragments page, select the plug-in that you

are making ready for deployment from the list, and then click Finish. The

wizard now creates your feature package and opens the feature on the

Overview tab of the feature.xml file. You can always come back to this view

(known as the feature manifest editor) by double clicking the feature.xml

file.

56 IBM® Lotus® Symphony™ Developer’s Guide

6. There are many options in this view. Change the following fields if necessary:

a. In the Branding Plug-in field, click Browse field.

b. Select the plug-in that you want to deploy and click OK.

c. In the Update Site URL field, enter the Eclipse update site URL.

d. In the Update Site Name field, enter the site name.

e. In the Supported Environments section, enter operating systems, platform,

and language specifications, if these are required by your plug-in. For our

example, this section is not necessary.

Note: This information is used to specify the site that is used to load your

feature using Eclipse Update Manager. When Update Manager looks for

updates, it will look for sites defined in your update site URL. If you have

not created an Eclipse update site yet, you can change this setting later.
7. Click the Information tab.

a. The Feature Information, Copyright, License and Sites to Visit tabs are

displayed. Feature information is displayed to the user by the update

manager when the feature is selected.

b. For each of these tabs, you can either enter a URL, if sites already exist, or

you can enter the information in the text area for each.

c. In the Optional URL field, enter a URL and name for any other relevant

update sites that you have.
8. Click the Plug-in tab.

a. Confirm that your plug-in is listed in the Plug-ins and Fragments window.

If it is not, click Add and select the plug-in that you want to include, and

then click OK.

b. Click Version.

c. Select Synchronize Versions on Build (recommended), as shown in the

following figure, and then click Finish. This step synchronizs your feature

version and plug-in version.

Part 4. Extending Lotus Symphony 57

9. Your feature and plug-in are now ready to deploy.

5.2.2 Creating an update site

An update site is the key mechanism to enable installation of the application,

which includes the features and plug-ins to be deployed. For more information on

update sites, including how to create one, see the Plug-in Development

Environment Guide > Getting Started > Update Sites section of the PDE Guide.

To create an update site, complete the following steps:

1. Open Eclipse. Be sure to open the workspace where you created your plug-in

and feature.

2. Select File > New > Project > Plug-in Development > Update Site Project.

58 IBM® Lotus® Symphony™ Developer’s Guide

3. The New Update Site wizard has only one page:

a. Enter a Project name. You should enter the plug-in name and append

another word to denote that it is an update site project.

b. Select Use the default location.

c. Click Finish. The wizard creates your update site within your Eclipse

workspace.
4. To add your feature(s):

a. Double-click the site.xml file located in the Package Explorer frame. This

step opens your site manifest editor in the editor frame (center frame).

b. To add your new feature, click Add Feature. If you are adding more than

one feature or plug-in or plan to in the future, you can choose to organize

them by category.

c. Select the feature that you are including in this update site. You can select

more than one by holding down the Ctrl key. When you are finished

selecting, click OK.
5. Click the Build All button. This step adds the /Features and /Plug-ins

directories to the Site project and populates them with JAR files containing

your feature and plug-in files. This step builds your update site locally.

6. Export this update site project to the file system, for example D:\customizing.

5.3 Install a Custom Lotus Symphony Application

In this option, customers can deploy applications to an existing Lotus Symphony

client in a standard update site installation.

Part 4. Extending Lotus Symphony 59

1. Launch Lotus Symphony and select File > Applications > Install.

2. Select Search for new features to install and click Next.

3. Click Add Folder Location and select the update site project from the local file

system, then click Finish button.

60 IBM® Lotus® Symphony™ Developer’s Guide

4. In Updates window, select the update site, and then click Next.

Part 4. Extending Lotus Symphony 61

5. To accept the terms in the license agreements in the Install window, and then

click Next.

6. Click Finish to install the imported feature.

62 IBM® Lotus® Symphony™ Developer’s Guide

7. After you have finished the installation, restart Lotus Symphony to see your

application and verify that it was successfully installed.

5.4 Disable or Enable Custom Lotus Symphony Applications

You can view and change the status for any plug-ins that you have installed in

Lotus Symphony. To disable custom application plug-ins, do the following steps:

1. Click File > Application > Application Management.

2. In the navigator, click <Symphony Install Home>\data\ applications\eclipse,

and find the custom application that you want to view and make changes to.

Part 4. Extending Lotus Symphony 63

3. Click Disable in right pane and accept the restart operation, to disable this

application. The application is not removed by this action.

To enable a disabled application, do the following steps:

1. Click File > Application > Application Management.

2. Make sure that select the Show Disable Features item is selected.

3. Click <Symphony Install Home>\data\applications\eclipse, to find the custom

application that you want to view and make changes to.

4. Click Enable in right pane and accept the restart operation, to enable the

selected application.

5.5 Uninstall Custom Lotus Symphony Application

1. Click File > Application > Application Management.

2. Click <Symphony Install Home>\data\applications\eclipse, to find the custom

application that you want to view and make changes to.

3. Click Uninstall in right pane and accept the restart operation, to uninstall the

selected application.

64 IBM® Lotus® Symphony™ Developer’s Guide

Part 5. Lotus Expeditor and Uno Programming

Chapter 1. Developing Lotus Expeditor Applications

This information focuses on how to extend Lotus Symphony with Lotus Expeditor

and Eclipse extension points. After you understand the rich client application

model in Lotus Expeditor, you can build rich client applications based on the Lotus

Symphony APIs. A large variety of applications can be built with this application

model, for example, the Lotus Notes 8 client. Lotus Notes 8 is based on Lotus

Expeditor platform and the Lotus Symphony editor is integrated as an office

component.

The composite application model is another programming pattern provided by

Lotus Expeditor. In this model, multiple applications cooperate by using

inter-component communications. With this approach, you can aggregate several

loosely coupled views into one perspective. The property broker is used to

communicate among different views. The Lotus Symphony editor supports the

composite application programming model in Lotus Notes.

1.1. Lotus Expeditor toolkit documentation

To develop plug-ins, use the Lotus Expeditor toolkit as development environment.

You can find documentations about Lotus Expeditor from Help> Help content>

Developing applications for Lotus Expeditor.

Note: The help content is available only after you install the Lotus Expeditor

toolkit into the Eclipse development environment.

1.2. Debugging and testing applications

You can use the Lotus Expeditor toolkit’s Client Services Launcher to run and

debug applications. The Client Services Launcher is very similar to Eclipse plug-in

development tools.

For more details refer to the Lotus Expeditor Application Developer’s Guide, or

you can find the information from Eclipse at Help > Help content > Developing

applications for Lotus Expeditor > Debugging and testing applications.

1.3. Packaging and deployment for local testing

You might be required to verify your applications in a locally installed instance of

Lotus Symphony during the development phase. You will need to export your

plug-ins to the local file system, and copy them into your Lotus Symphony

installation location.

For details, refer to the Lotus Symphony Application Developers Guide, or you can

find the information from Eclipse at Help > Help content > Developing

applications for Lotus Expeditor > Packaging and deploying applications >

Deploying projects for local testing.

© Copyright IBM Corp. 2003, 2008 65

1.4. Securing applications and data

Lotus Expeditor is a secure platform that protects your application data. This

capability is provided in the com.ibm.rcp.accounts.feature feature, which is known

as the account framework in Lotus Expeditor. It is available in a Lotus Symphony

package. The account framework provides a mechanism for you to manage

account information.

For details, refer to the Lotus Expeditor Application Developers Guide, or you can

find the information from Eclipse at Help > Help content > Developing

applications for Lotus Expeditor > Securing applications and data.

Chapter 2. UNO Programming

2.1 Getting the global service factory

The com.sun.star.lang.ServiceManager factory is the main factory in every UNO

application. It is the entrance point to the UNO world of Lotus Symphony. The

following tasks can be performed from the service manager:

v Instantiate services by their service name

v Enumerate all implementations of a certain service

v Add or remove factories for a certain service at runtime

The service manager is passed to every UNO component during instantiation.

To get the ServiceManager, use the following sample code:

66 IBM® Lotus® Symphony™ Developer’s Guide

Part 5. Lotus Expeditor and Uno Programming 67

2.2 Using the import and export functions

The import and export functions are common in all three applications inside Lotus

Symphony. For different kinds of document types, there can be a different UNO

interfaces to support loading and saving operations.

The following sections detail the common interface used in all three applications

and the specific document types that can have special interface support.

68 IBM® Lotus® Symphony™ Developer’s Guide

Loading new or existing components

The desktop can load new and existing components from a URL. The

com.sun.star.frame.XComponentLoader interface has one method to load and

instantiate components from a URL into a frame:

The URL is used to describe which resource should be loaded and in what

sequence to load the arguments. For the target frame, pass ″_blank″ and set the

search flags to 0 to open a new frame. In most cases you do not want to reuse an

existing frame.

The URL can be of these types: file:, http:, ftp:, or private:. For new documents, a

special URL scheme is used. The scheme is private:, followed by factory as the host

name. The resource is swriter for word processor documents. For example, a new

word processor document, uses private:factory/swriter.

Storing documents

Documents are stored through their interface com.sun.star.frame.XStorable.

The method storeAsUrl() is the exact representation of a File > Save As operation,

that is, it changes the current document location. In contrast, the method

storeToUrl() stores a copy to a new location, but leaves the current document URL

untouched.

For exporting purposes, a filter name can be passed to storeAsURL() and

storeToURL() that triggers an export operation to other file formats.

Exporting documents and drawing objects

Writer documents and Spreadsheet documents can be exported as HTML format

files. Presentation documents can export drawing objects as graphics through the

com.sun.star.drawing.GraphicExportFilter interface. After getting a

Part 5. Lotus Expeditor and Uno Programming 69

GraphicExportFilter from the ServiceManager, use its XExporter interface to inform

the filter which page, shape, or shape collection to export.

Functions in this interface include:

The aDescriptor parameter in the filter function holds all the necessary information

about the document, such as document title, author, file name, URL, and version.

All such properties are organized in a com.sun.star.beans.PropertyValue [] array.

Followings are some sample code for exporting function, exporting ODT and ODS

files to HTML; ODP to JPEG image files:

1. Get a file’s XComponent from a file path.

When exporting a document to whatever format, first get this file’s

com.sun.star.lang.XComponent object. The following sample code shows how

to get the ServiceManager as mentioned above:

70 IBM® Lotus® Symphony™ Developer’s Guide

2. Convert Lotus Symphony documents (odt, ods) file to a HTML file.

Part 5. Lotus Expeditor and Uno Programming 71

72 IBM® Lotus® Symphony™ Developer’s Guide

3. Convert current presentation document page as a JPEG image.

Part 5. Lotus Expeditor and Uno Programming 73

74 IBM® Lotus® Symphony™ Developer’s Guide

If you need to specify the exported JPEG image size, add the size information

to the filter’s property. The code snippet is as following:

Using the print function

Lotus Symphony documents, spreadsheets and presentations all provide the

print-related interface com.sun.star.text.XPagePrintable, and the print-related

properties com.sun.star.view.PrinterDescriptor and

com.sun.star.view.PrintOptions. Specifically, Lotus Symphony documents

support printing multiple pages on one page by setting the property

com.sun.star.text.PagePrintSettings. Lotus Symphony spreadsheets provide

access to the addresses of all printable cell ranges by the interface

com.sun.star.sheet.XPrintAreas. Lotus Symphony presentations have some

specific properties to define if the notes and outline view should be printed by

com.sun.star.presentation.DocumentSettings. For detailed information, refer to

the OpenOffice.org SDK.

2.3 Text documents

In the Lotus Symphony Documents API, a text document is a document model

that is responsible for managing text contents, through which you can understand

how the basic data is organized and represented in the graphical user interface.

You have to work with the model directly, when you want to change it through the

Lotus Symphony API to develop applications for your own usage. The model is

similar with OpenOffice 1.1, which also has a controller object that is used to

manipulate the visual representation of the document in the view areas instead of

being used to change a document.

Part 5. Lotus Expeditor and Uno Programming 75

The model is different from the controller, and we discuss the parts of a text

document model in the Lotus Symphony API and emphasize some differences

between Lotus Symphony documents API and OpenOffice 1.1 Writer API. To the

parts that are the same, we provide a reference to OpenOffice 1.1 development

guide directly.

The text document model in the Lotus Symphony API has these major architectural

areas that are the same as OpenOffice 1.1 API:

v Text (core content)

v Service manager (document internal)

v Draw page

v Text content suppliers (drawing objects)

v Text content suppliers (access content)

v Objects for styling and numbering (document wide)

The text is the core of the text document model. It consists of characters organized

in paragraphs and other text contents.

The service manager of the document model is responsible for creating all text

contents for the model, except for the paragraphs. And each document model has

its own service manager, such as the spreadsheet document model and

presentation document model. Almost all of the text contents in a text document

can be retrieved from text content suppliers which are provided by the model,

except the drawing shapes that can be found on the draw page.

The draw page is floating over the text and it is responsible for drawing contents.

Drawing contents can affect the layout of the text around it, such as wrap types.

There are also services that are for document-wide text styles and structures. The

style family suppliers are provided to customize document-wide paragraphs,

characters, pages and numbering patterns, and suppliers for line and outline

numbering.

For more ideas, refer to the Illustration 7.1 Text Document Model of the

OpenOffice 1.1 Development Guide.

Word processing

The document model provides the XTextDocument interface to work with text

through the method getText(). It returns a com.sun.star.text.Text service that

handles text in Lotus Symphony documents. The text service provides interface

XText and interface XEnumerationAccess. XText is responsible for editing a text and

XEnumerationAccess is responsible for iterating over text. This part is almost the

same as OpenOffice 1.1 with following exceptions. Developers can refer to section

7.3.1 Text Documents - Working with Text Documents - Word Processing of OpenOffice

1.1 Development Guide.

v Editing text

Method setAttributes() of

com.sun.star.accessibility.XAccessibleEditableText might not work because

the valid char index range of a character string might be beyond the length of

the string.

v Inserting text files

76 IBM® Lotus® Symphony™ Developer’s Guide

Currently, Lotus Symphony documents does not support this function.

Developers can create unexpected issues while using the associated APIs

provided by OpenOffice 1.1.

v Auto text

The auto text function can be used to organize reusable texts, which is the same

as OpenOffice 1.1.

Formatting

Lotus Symphony documents formatting is the same as OpenOffice 1.1. Refer to

section 7.3.2 Text Documents - Working with Text Documents - Formatting of the

OpenOffice 1.1 Development Guide.

Navigating

There are types of model cursors provided to navigate characters, words,

sentences, or paragraphs. The com.sun.star.text.TextCursor service is a good

example of a model cursor that is based on the interface

com.sun.star.text.XTextCursor.

The text view cursor enables you to navigate over the document in the view by

character, line, screen page, or document page. There is only one text view cursor.

The information about the current layout, such as the number of lines and page

number must be retrieved at the view cursor. The text view cursor is a

com.sun.star.text.TextViewCursor service that includes the service

com.sun.star.text.TextLayoutCursor.

Simultaneously, the text document model provides various suppliers that retrieve

all text contents in a document. Refer to section 7.3.3 Text Documents - Working with

Text Documents - Navigating of the OpenOffice 1.1 Development Guide.

Note: In certain scenarios, the interface com.sun.star.text.XSentenceCursor might

not work when the methods isStartOfSentence() or isEndOfSentence() are

called.

Tables

Lotus Symphony tables are text contents and consist of rows, rows consist of one

or more cells, and cells can contain text or rows. It is the same as OpenOffice 1.1

and there is no logical concept for columns. Refer to section 7.3.4 Text Documents -

Working with Text Documents - tables of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents enhanced the table to span pages that might

have certain influences when using table-related APIs.

The method insertByIndex() of the com.sun.star.table.XTableColumns interface

might not work because the design considers that inserting a column into a table

should not be beyond the column range of the table. This limitation means that

after the index number of insertion is beyond the range of the columns, the new

column is appended after the last column of the table.

The method removeByIndex() of the com.sun.star.table.XTableColumns interface

might not work because the prior limitation affects the column count of the table,

and leads to the failure.

Part 5. Lotus Expeditor and Uno Programming 77

The method autoFormat() of com.sun.star.table.XAutoFormattable might not

work when a table is formatted automatically. The auto-format item named

″default″ and some other auto-format items are selected randomly from the

com.sun.star.sheet.TableAutoFormats service. After that, the results of two

auto-formats should be checked to determine whether they are the same or not. In

certain scenarios, the only one auto-format item named “default” is retrieved from

com.sun.star.sheet.TableAutoFormats service, which is the same as the former

one.

Text fields

Text fields are text contents that are used to add another level of information to

text ranges. Usually their appearance fuses together with the surrounding text, but

actually the presented text comes from elsewhere and is generated only while

being painted. The types of Lotus Symphony fields are less than OpenOffice 1.1.

Lotus Symphony documents field commands only support insertion of the current

date, time, page number, total page numbers, and user field. If you use other

services described in OpenOffice 1.1 Development Guide, they might create

unexpected issues.

Fields are created through the com.sun.star.lang.XMultiServiceFactory and are

inserted through the TextContent(). The following text field services are available:

v com.sun.star.text.textfield.DateTime. Show a date or time value.

v com.sun.star.text.textfield.PageCount. Show the number of pages of the

document.

v com.sun.star.text.textfield.PageNumber. Show the page number (current,

previous, next).

v com.sun.star.text.textfield.User. Variable - User Field. Creates a global

document variable and displays it whenever this field occurs in the text. This

service depends on com.sun.star.text.FieldMaster.User.

All fields support the interfaces com.sun.star.text.XTextField,

com.sun.star.util.XUpdatable, com.sun.star.text.XDependentTextField and the

service com.sun.star.text.TextContent. The method getPresentation() of the

interface com.sun.star.text.XTextField is used to generate the textual

representation of the result of the text field operation, such as a date, time, variable

value of user field or TIME (fixed), depending on the Boolean parameter.

The method update() of the interface com.sun.star.util.XUpdatable affects only

the following field types:

v Date and time fields are set to the current date and time.

v The ExtendedUser fields that show parts of the user data set for Lotus

Symphony, such as the user fields that are set to the current values.

v All other fields ignore calls to update().

It is the same as OpenOffice 1.1 and some of these fields need a field master that

provides the data that displays in the field. This requirement applies to the field

types User. Refer to the section 7.3.5 Text Documents - Working with Text Documents

– Text Fields of OpenOffice 1.1 Development Guide.

Bookmarks

A bookmark is a kind of text content that marks a position inside of a paragraph

or a text selection that supports the com.sun.star.text.TextContent service. The

78 IBM® Lotus® Symphony™ Developer’s Guide

text document model provides the interface

com.sun.star.text.XBookmarksSupplier to retrieve and collect the bookmarks.

Refer to section 7.3.6 Text Documents - Working with Text Documents - Bookmarks of

the OpenOffice 1.1 Development Guide.

Indexes and index marks

Indexes are also a kind of text content that centralize the information which is

dispersed over the document. Index marks are another kind of text content which

is the same as OpenOffice 1.1.

Refer to section 7.3.7 Text Documents - Working with Text Documents – Indexes and

Index Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents do not feature a bibliographical index. The

Table of Contents function of Lotus Symphony documents has been enhanced,

which can influence the result of the related APIs.

Reference marks

A reference mark is a kind of text content that is acting as the target for the

com.sun.star.text.textfield.GetReference text fields. These text fields can show

the contents of reference marks in a text document and allow the user to jump to

the reference mark.

Refer to section 7.3.8 Text Documents - Working with Text Documents – Reference

Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony does not support

the com.sun.star.text.textfield.GetReference field. You might encounter

unexpected issues when using the related APIs.

Footnotes and endnotes

Footnotes and endnotes are a kind of text content that are responsible for

providing background information to the users on page footers or at the end of a

document. The footnotes and endnotes of Lotus Symphony documents are the

same as OpenOffice 1.1. Refer to section 7.3.9 Text Documents - Working with Text

Documents – Footnotes and Endnotes of the OpenOffice 1.1 Development Guide.

Shape objects in text

Shape objects are text contents that act independently of the ordinary text flow.

Shape objects can float in front or behind text, and be anchored to paragraphs or

characters in the text or page. It is the same as OpenOffice 1.1 and there are two

different kinds of shape objects in Lotus Symphony: base frames and drawing

shapes. Refer to section 7.3.10 Text Documents - Working with Text Documents – Shape

objects in Text of the OpenOffice 1.1 Development Guide.

Overall document features

Styles

Styles apply document-wide and can differentiate segments in a document that are

commonly formatted, and separate this information from the actual formatting. It

Part 5. Lotus Expeditor and Uno Programming 79

is a good way to unify the appearance of a document, and customize the

formatting of a document by altering a style, instead of using local format settings

after the document has been completed. Styles are sets of attributes that can be

applied to text or text contents in a text document in a single step.

Refer to section 7.4.1 Text Documents - Overall Document Features – Styles in Text of

the OpenOffice 1.1 Development Guide.

Line and outline numbering

Line and outline numbering is the same as OpenOffice 1.1 and Lotus Symphony

provides automatic numbering for texts. For instance, paragraphs can be numbered

or listed with bullets in a hierarchical structure, chapter headings can be numbered

and lines can be counted and numbered. Refer to section 7.4.3 Text Documents -

Overall Document Features – Line Numbering and Outline Numbering in Text of the

OpenOffice 1.1 Development Guide.

text section

It is the same as OpenOffice 1.1. A text section is a range of complete paragraphs

that can have its own format settings and source location. Refer to section 7.4.4

Text Documents - Overall Document Features – Text Sections in Text of the OpenOffice

1.1 Development Guide.

Page layout

The Lotus Symphony page layout is the same as OpenOffice 1.1. Refer to the

section 7.4.5 Text Documents - Overall Document Features –Page Layout of the

OpenOffice 1.1 Development Guide.

Text document controller

The text document controller provides access to the graphical user interface for the

model and has knowledge about the current view status in the user interface. Refer

to section 7.5 Text Documents - Text Document Controller of the OpenOffice 1.1

Development Guide.

Text view

Text views is the same as OpenOffice 1.1. Refer to the section 7.5.1 Text Documents -

Overall Document Features – Text Document Controller - TextView of the OpenOffice

1.1 Development Guide.

TextViewCursor

TextViewCursor is the same as OpenOffice 1.1. Refer to the section 7.5.2 Text

Documents - Overall Document Features – Text Document Controller - TextViewCursor of

the OpenOffice 1.1 Development Guide.

2.4 Spreadsheets

Spreadsheet documents derive all UNO APIs from OpenOffice.org 1.1.0. The

exposed APIs are almost the same as OOo1.1.0. Comparing to OOo1.1.0, functional

quality has been improved on the core function, so that the API quality is

enhanced accordingly when interfaces remain. Several APIs have been added or

changed.

80 IBM® Lotus® Symphony™ Developer’s Guide

Different spreadsheet elements are presented by different interfaces in different

services.

Operations of spreadsheet documents are mainly in those interfaces :

v com.sun.star.sheet.SpreadDocument. Whole document

v com.sun.star.sheet.XSpreadsheet. Sheet

v com.sun.star.frame.XStorable. Document saving and exporting

v com.sun.star.view.XPrintable. Document printing

v com.sun.star.util.XProtectable. Contains methods to protect and unprotect

spreadsheet with a password, and also including text in cells, cell ranges, table

rows, and columns

Operations of single cells are in these interface:

v com.sun.star.sheet.SheetCell. Used to present cell object

v com.sun.star.table.CellProperties . Used to format cells

Operations of cell range are in these interface: The service

com.sun.star.sheet.SheetCellranges contains most of the interface of a cell range. A

cell range can be named with com.sun.star.container.XNamed.

Operations on cell ranges are covered by com.sun.star.util.XReplaceable(Search, Find

and Replace), com.sun.star.table.TableSortDescriptor(Sort),

com.sun.star.sheet.SheetFilterDescriptor(Filter),

com.sun.star.sheet.SubtotalDescriptor(Subtotal functions). The spreadsheet interface

com.sun.star.sheet.XSheetOutline contains all the methods to control the row and

column outlines of a spreadsheet.

User interface refresh:

A spreadsheet document often gets a cell value by invoking an API. Compared to

filling in the cell value manually, the API updates cell values more frequently,

which can cause the update of a large range of spreadsheet cells because of cross

referencing among cells. To resolve this issue, use this method:

interface XCellRange;

void SyncDocument([in] boolean bEnable)

Note: This method is used to resolve the performance issue when changing the

values of a number of cells by the UNO API. This method must be called in pairs.

When SyncDocument is disabled, only cells that have a value changed are updated

in user interface. All of the formulas or charts depending on this cell do not get

refreshed until SyncDocument is enabled.

Sample code:

Part 5. Lotus Expeditor and Uno Programming 81

Import external data from a file:

Interface XAreaLinks;

A new parameter, bLink, is added to this method. When bLink == True, the source

area is inserted to aDestPos with linkage kept. When bLink == False, only the

value is inserted.

Do not use the following UNO APIs because they have not been fully tested:

 Interface and methods in service com.sun.star.sheet.DDELinks.

 Interface and methods in service com.sun.star.sheet.DatabaseImportDescriptor.

 Interface and methods in service com.sun.star.sheet.Scenarios.

 Methods in interface com.sun.star.sheet.XSheetAuditing.

 Methods to import data from a Web server.

Charts

In Lotus Symphony, charts are always embedded objects inside other Lotus

Symphony documents. The chart document UNO API is almost the same as

OpenOffice.org 1.1.0. Like the spreadsheet document, enhancements have been

added in the Lotus Symphony core function, which improves the API quality.

Charts can be added into spreadsheet documents with data in a cell range. In a

presentation document or a writer document, a chart can be added as an OLE

shape. The Lotus Symphony chart API provides the capability of creating charts,

accessing existing charts, and modifying chart properties and elements. Ideally all

the operations which can be accomplished with UI can be done by API (refer to

OpenOffice.org 1.1.0 Dev guide). Because of core function, the operations are not

supported by the APIs with discrete data source in spreadsheet.

82 IBM® Lotus® Symphony™ Developer’s Guide

Part 6. Sample Plug-ins

First, you need verify the Lotus Symphony development environment on Eclipse

as following steps:

1. Set up the Lotus Symphony development environment according Symphony

Developer’s Guide provided by the toolkit.

2. Click Run from the toolbar to launch Lotus Symphony. If the Run option is

disabled, select Run > Run to open the runtime configuration window. Select

Client Services > Symphony and then click the Run button. If asked whether

you want to clear the runtime workspace, select yes.

3. When the Lotus Symphony window open, click File > New > Document .

This window is the standard Lotus Symphony document editor. In the next

section you will add an Eclipse plug-in to the development environment and

test that it works.

Select File > Exit to close the runtime instance of Lotus Symphony before

continuing.

© Copyright IBM Corp. 2003, 2008 83

Chapter 1. Hello World Sample Plug-in

1.1 Creating a new plug-in

Launch the Eclipse development environment

1. Click File > New > Project .

2. Select Plug-in Project , and click Next .

3. Type com.ibm.productivity.tools.samples.helloworld in the Project name

field. Click Next.

4. Type a descriptive name in the Plug-in Name field, for example, hello world

sample.

5. Click Finish.

1.2 Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document

library, plug-in names are abbreviated:

 Plug-in Description

org.eclipse.core.runtime, org.eclipse.ui Eclipse core plug-ins

com.ibm.productivity.tools.ui.views

com.ibm.productivity.tools.core

Lotus Symphony API plug-in

Perform the following steps to add the plug-in dependency.

1. Click the Dependencies tab of the Hello world plug-in manifest.

2. Click Add.

3. Add the following plug-ins:

v com.ibm.productivity.tools.ui.views

v com.ibm.productivity.tools.core

Note: Add these plug-in dependencies to the MANIFEST.MF file, which defines the

plug-in. You can see the contents of this file by turning to the Plug-in Manifest

Editor’s MANIFEST.MF tab:

1.3 Adding a side shelf element

1. Click the Extensions tab.

2. Click Add.

3. Add the followings extension:com.ibm.rcp.ui.shelfViews.

4. Click Finish.

5. Right-click the added extension and select New > shelfView.

84 IBM® Lotus® Symphony™ Developer’s Guide

Selecting this menu choice adds a shelfview element to the extension

declaration. Select the newly added element and note that the Extension

Element Details is updated to show the possible attributes. Fill in the fields as

shown below.

The asterisk (*) indicates a required attribute. One of particular importance is

the class attribute which indicates the Java class that will implement the

shelfview’s behavior (that is, this class defines what the side shelf area will

contain and how it will respond to user events.).

6. Click the plugin.xml tab

7. Copy and paste the following into the plugin.xml file.

Part 6. Sample Plug-ins 85

The view attribute of the <shelfView> tag in the com.ibm.rcp.ui.shelfViews

extension must match the id attribute of the <view> tag in the

org.eclipse.ui.views extension exactly. That is, the side-shelf content is defined

by the extensions <view> / <shelfView> pairs.

The prior steps adds a new Eclipse ViewPart to the platform. You can create

your plug-in extensions with Manifest Editor or enter the specifications directly

in the plugin.xml file.

8. Right-click the package com.ibm.productivity.tools.samples.helloworld in

Package Explorer, and then click New > Class.

9. Input the class information as follows.You can click the Browse to search the

superclass of org.eclipse.ui.part.ViewPart.

86 IBM® Lotus® Symphony™ Developer’s Guide

A new Eclipse ViewPart named ShelfView is created in the

com.ibm.productivity.tools.samples.helloworld package.

1.4 Running the application

1. Check your plug-in.

Before running the application, take a look at the plugin.xml file and the newly

created class.

The plugin.xml file is like the following:

Part 6. Sample Plug-ins 87

2. Double-click the ShelfView.java file in Package Explorer, the ShelfView.java

file looks like the following:

88 IBM® Lotus® Symphony™ Developer’s Guide

3. Click Run from toolbar:

4. Lotus Symphony is launched, your screen should look similar to the following

image:

Part 6. Sample Plug-ins 89

Hint: If the new view does not display, check the console for a message like

org.eclipse.ui.PartInitException: Could not create view: XXX and confirm that

XXX = the view id. The view attribute of the <shelfView> tag in the

com.ibm.rcp.ui.shelfViews extension must match the id attribute of the <view>

tag in the org.eclipse.ui.views extension.

Congratulations! You have reserved space in the Lotus Symphony side shelf for

your application.

Chapter 2. Editor View Sample Plug-in

This sample demonstrates how to create a simple editor. When launched from

within the new button group, the editor is showed as a view part in a new

perspective.

You can find the whole project with all source code from Lotus Symphony toolkit

directory (where $symphony_toolkit is the home directory that the API toolkit is

installed to):

$symphony_toolkit/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.vie ws.

2.1 Creating a plugin

1. Set up the integrated development environment as discussed in Part 4 Chapter

1.

2. Select File > New > Project or right-click and select New > Project.

90 IBM® Lotus® Symphony™ Developer’s Guide

3. Select the Plug-in Project in the Project Category.

4. Click Next and type com.ibm.productivity.tools.samples.views as the project

name. Click Next, and then click Finish to finish creating the new project.

Part 6. Sample Plug-ins 91

5. Add dependencies. Select the Dependencies tab, and click Add to add the

required plug-ins:

v com.ibm.rcp.ui

v com.ibm.productivity.tools.ui.views

2.2 Creating a new button

1. Select the Extensions tab and click Add. In the new extensions window, select

com.ibm.rcp.ui.launcherSet, and then click Finish.

2. In the Extensions page, right-click the added extension and select New >

LauncherSet.

92 IBM® Lotus® Symphony™ Developer’s Guide

3. Leave the id and label properties of the LauncherSet unchanged, and save the

plugin.xml file.

Part 6. Sample Plug-ins 93

4. Right-click com.ibm.productivity.tools.samples.views.LauncherSet1, and select

New > perspectiveLaunchItem.

5. Set the properties of perspectiveLaunchItem as shown in the following sample

code:

Make sure that the perspectiveID is

com.ibm.productivity.tools.samples.views.WriterPerspective, and then save

the plugin.xml file.

94 IBM® Lotus® Symphony™ Developer’s Guide

6. Add an extension at extension point org.eclipse.ui.perspective.

Part 6. Sample Plug-ins 95

7. Select the plugin.xml tab. Change the extension declaration of the added

perspectives extension point as shown in the following sample code:

8. Create a Java class named

com.ibm.productivity.tools.samples.views.WriterPerspective:

2.3 Creating an editor view part

1. Select the Extensions tab and click Add.

2. Add new extensions org.eclipse.ui.views, then click Finish.

96 IBM® Lotus® Symphony™ Developer’s Guide

3. Select the plugin.xml tab, and add the markup as shown in the following

sample code:

4. Create a view class. Select New > Class to create a new Java class for the view.

Set the Class arguments as shown below:

 Package: com.ibm.productivity.tools.samples.views

 Name: WriterView

 Superclass:

com.ibm.productivity.tools.ui.views.DefaultRichDocumentView

and then click Finish.

5. Implement the WriterView class as shown in the following sample code:

Part 6. Sample Plug-ins 97

The following figure shows the result of creating an editor viewpart:

98 IBM® Lotus® Symphony™ Developer’s Guide

Chapter 3. Spreadsheet sample plug-in

This chapter shows how to begin to add a customized Lotus Symphony

spreadsheet UI plug-in and operate the Spreadsheet on a Lotus Symphony side

shelf.

Note: All sample code used within this chapter can be found in the Lotus

Symphony Toolkit, such as $symphony_toolkit/samples/eclipse/plugins/

com.ibm.productivity.tools.samples.spreadsheet. You can get this toolkit from the

site: http://symphony.lotus.com.

In the spreadsheet sample plug-in, it shows how to:

1. Add a customized shelf view.

2. Open a spreadsheet and get the model of this document.

3. Insert data into the spreadsheet.

4. Get the current selected cell’s value and its address dynamically.

5. Create a chart of this sheet.

6. Create a data pilot of this sheet.

The following figure shows this sample plug-in’s overview image.

3.1 Introduction to the scenario

When you want to import data from a database or from files into a spreadsheet,

first, you need open the spreadsheet and get its model for operating before you

can insert data into it. So open and insert a data into a sheet is a basic operator for

operating a spreadsheet. Then you might need to create a chart for this sheet to

make a overview of this sheet’s data. Or you might need to set focus and do

analysis on this sheet, in which case you should use the data pilot.

Part 6. Sample Plug-ins 99

3.2 Preview of the result

According to the scenario above, this plug-in first creates a shelf view, then adds a

list view on the side shelf to show the spreadsheet file list. Then it adds three text

fields and a button for setting data to a specified cell. It adds a button for creating

a chart and a button for creating a data pilot. When you select a cell in the sheet,

you get the value of this cell and its address on the side shelf dynamically.

3.3 Prepare your development environment

Refer to Part 4 chapter 1: Setting up the integrated development environment,

which shows how to prepare your Lotus Symphony development environment

step by step.

3.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing

project by using the Eclipse import function. Otherwise, the following sections

show you how to build this plug-in.

100 IBM® Lotus® Symphony™ Developer’s Guide

3.5 Creating the sample

Creating a new plug-in

1. Launch the Eclipse development environment.

2. Click File > New > Project.

3. Select Plug-in Project, and click Next.

4. Type com.ibm.productivity.tools.samples.spreadsheet in the Project name

field. Click Next.

5. Type a descriptive name in the Plug-in Name field, for example, Spreadsheet

sample.

6. Click Finish.

Part 6. Sample Plug-ins 101

Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document

library . The plug-in names are abbreviated.

 Plug-in Description

org.eclipse.core.runtime org.eclipse.ui Eclipse core plug-ins

com.ibm.productivity.tools.ui.views

com.ibm.productivity.tools.core

Lotus Symphony API plug-ins

Perform the following steps to add the plug-in dependency.

1. Click the Dependencies tab of the spreadsheet sample plug-in manifest.

2. Click Add.

3. Add the following plug-ins:

v com.ibm.productivity.tools.ui.views

v com.ibm.productivity.tools.core

102 IBM® Lotus® Symphony™ Developer’s Guide

Adding an element to the side shelf

1. Click the Extensions tab.

2. Click Add.

3. Add the following extension: com.ibm.rcp.ui.shelfViews.

4. Click Finish.

5. Right-click the added extension and select New > shelfView.

6. Click the plugin.xml tab.

7. Copy and paste the following sample code into the plugin.xml.

Part 6. Sample Plug-ins 103

8. Create a folder named ui and a class named ShelfView which extends

org.eclipse.ui.part.ViewPart under this folder. The main method in this class is

104 IBM® Lotus® Symphony™ Developer’s Guide

shown in the following sample code:

The method drawFileListGroup() creates a ListViewer to show the file lists for

this sample and opens the files in this list when you double-click the file name.

The method drawTableGroup() creates three text and a set button for setting

the specified cell value. It also creates a button named Chart to create a chart

for this sheet, and a button named Data Pilot to create a datapilot sample for

this sheet. There are also assistant classes for the class ShelfView, for the details

see the sample code.

3.6 Core code demonstration

The following section shows core code snippets for the function. For details, refer

to the sample code.

1. Add a side shelf to the Lotus Symphony.

Refer to the section Adding a side shelf element of Chapter 1 Hello world

sample plug-in .

2. Open a spreadsheet file and get this sheet’s model.

3. Set a value in a cell:

Part 6. Sample Plug-ins 105

Wherever you get data, setting a value in a cell is a basic operation. First get

the sheet’s model, then get the cell by specifying the position and setting the

value in this cell.

4. Create a chart for this sheet.

First get the chart object of this sheet by specifying the range, which decides

the cells’ data in this chart, then set this chart’s properties, such as specifying

this chart as a 3D chart or a pie chart.

5. Create a data pilot for this sheet:

First, set source range for this data pilot, and then set properties field for this

data pilot.

3.7 Extending the sample

Next, you can add a mapping table of this sheet in the side shelf and you can add

more functions to operating a spreadsheet, such as loading, saving, and closing a

sheet.You can also export this sheet file as a HTML file.

106 IBM® Lotus® Symphony™ Developer’s Guide

Chapter 4. Writer Sample Plug-in

This chapter provides method and instructions to create a UI plug-in used to

demonstrate how to manipulate a writer document programmatically. The sample

plug-in presents the following abilities provided by the Lotus Symphony API:

1. Loading documents

2. Adding a shelf view

3. Getting the UNO model of document

4. Creating sections

5. Creating tables

6. Creating user-defined fields

4.1 Introduction to the scenario

For the purpose of understanding the characteristic of various object types of a

writer document, we chose creating a Getting Things Done (GTD) document for

the development scenario.

GTD is a time management method for productivity success and increased focus. It

has the following concepts:

1. Context. A context refers to locations or situations, such as home, computer,

work and errands, that are suitable for doing a certain kind of to-dos.

2. Project. A project can be, for example, Repaint bedroom or Review report.

3. Action. An action is a to-do item.

A GTD document is represented as a list of contexts. Each context has a name to

identify it and contains a table for actions. Each action refers to a project. Users can

manipulate the document in the following ways:

1. Adding contexts

2. Adding projects

3. Adding actions

Part 6. Sample Plug-ins 107

4.2. Preview of the result

The UI of the plug-in to manipulate the writer document is as follows:

The plug-in creates a GTD document like this:

From this figure we can see that:

108 IBM® Lotus® Symphony™ Developer’s Guide

1. Each context is represented with a section element of the writer document. In

the section, the first line is the name of the context.

2. Actions are represented with a text table element of the writer document. Every

row is an action. The second column is its associated project.

3. Each project is represented with a user-defined field, which you can see by

double-clicking on a project. A project can be referenced by multiple actions in

multiple contexts, and using user-defined fields allows us to change a project

name easily.

You can learn the following tasks from this plug-in:

1. Getting the UNO model of a writer document.

2. How to create sections in a writer document and then inserting other types of

elements such as text, tables into them.

3. Text Tables: how to create them and then inserting content into their cells.

4. User-defined fields: How to create user-defined fields and insert them into the

document.

4.3 Deploying the sample

The standard deployment approach described in the developer guide applies to

this sample. Refer to Part 4 Chapter 5:Packaging and deploying your plug-ins.

4.4 Using the sample

Launch Lotus Symphony after this plug-in is deployed. You can see a sidebar on

the right of the window. The steps to create a GTD document are as follows:

1. Click Load Demo Document. An empty GTD document is opened in a new

page.

2. Input a name in the Context field, such as Office, then click Add. An empty

context is inserted into the end of the document:

Part 6. Sample Plug-ins 109

3. Input a name in the project field, such as Lotus Symphony, then click Add. A

project is created and displays in the field.

4. Input a name in the action field, such as Coding, select a project previously

created, and then click Add. An action is appended into the last row of the

table.

5. You can create more contexts, projects, and actions.

110 IBM® Lotus® Symphony™ Developer’s Guide

4.5 Building the sample

Prepare your development environment

Refer to Part 4 chapter 1: Setting up the integrated development environment,

which shows how to prepare your Lotus Symphony development environment

step by step.

Creating the sample

1. Create an empty plug-in named com.ibm.productivity.tools.samples.writer .

2. Open MANIFEST.MF file. On the Dependencies tab, add the following dependent

plug-ins:

v com.ibm.productivity.tools.ui.views

v com.ibm.rcp.ui

v com.ibm.productivity.tools.core
3. On the Extensions tab, add an extension on the extension point

com.ibm.rcp.ui.shelfViews. Change the part of the plugin.xml file

corresponding to the extension with:

4. Add a view extension by appending the following sample code in the

plugin.xml file:

5. Create a class com.ibm.productivity.tools.samples.writer.DemoView, override

the createPartControl method to create the controls shown on the plug-in UI.

Then add listeners to handle user events. The following sample code snippets

are the main methods of the class:

Part 6. Sample Plug-ins 111

112 IBM® Lotus® Symphony™ Developer’s Guide

Part 6. Sample Plug-ins 113

114 IBM® Lotus® Symphony™ Developer’s Guide

6. Debug and test the sample Eclipse plug-in.

7. Package and deploy the sample plug-in. Refer to Part 4 Chapter 5:Packaging

and deploying your plug-ins.

Chapter 5. Customizing a Sample Plug-in

In this sample plug-in,it shows :

1. the ways to use the Lotus Expeditor launch item.

2. a custom perspective with custom views and Symphony views.

3. how to create new Lotus Symphony documents of three kinds repeatedly.

4. how to add a status bar to show the new documents’ type.

5. a custom early startup when Lotus Symphony starts up.

6. a custom help document.

The following figure shows this sample plug-in’s overview image.

Part 6. Sample Plug-ins 115

Note: All sample code used within this chapter can be found in the Lotus

Symphony development Toolkit, such as $symphony_sdk/samples/eclipse/plugins/

com.ibm.productivity.tools.samples.customizing. You can get the toolkit from

the site: http://symphony.lotus.com.

5.1 Introduction to the scenario

On the Lotus Expeditor platform and in the Lotus Symphony development

environment, you might need custom views and Lotus Symphony views at same

time. You might need to use a custom view to operate a Lotus Symphony view.

You might need other typical Eclipse application and Lotus Expeditor such as a

status bar, an early startup, a custom spell checker, or a custom help document.

5.2 Preview of the result

This plug-in first creates a perspective, and then adds three views on this

perspective. One view is used for new buttons which creates three new Lotus

Symphony documents, the other one view is used to show description, and the

third view is used to show multiple Lotus Symphony document views. Then you

will add an early startup which is invoked when Lotus Symphony starts up, a

status bar, and a sample help topic.

5.3 Prepare development environment

Refer to Part 4 chapter 1: Setting up the integrated development environment,

which shows how to prepare your Lotus Symphony development environment

step by step.

5.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing

project using the Eclipse import function. Otherwise, the following sections show

116 IBM® Lotus® Symphony™ Developer’s Guide

you how to build this plug-in.

Part 6. Sample Plug-ins 117

5.5 Creating the sample

Create a new plug-in

1. Launch the Eclipse development environment.

2. Click File > New > Project.

3. Select Plug-in Project, and click Next.

4. Type com.ibm.productivity.tools.samples.customizing in the Project name

field. Click Next.

5. Type a descriptive name in the Plug-in Name field, for example Customizing

sample.

6. Click Finish.

118 IBM® Lotus® Symphony™ Developer’s Guide

Add the plug-in dependency

The following table lists some of the plug-in dependencies used by the document

library. The plug-in names are abbreviated:

 Plug-in Description

org.eclipse.core.runtime org.eclipse.ui Eclipse core plug-ins

com.ibm.productivity.tools.ui.views

com.ibm.productivity.tools.core

Lotus Symphony API plug-in

Perform the following steps to add the plug-in dependency.

1. Click the Dependencies tab of the Customizing sample plug-in manifest.

2. Click Add.

3. Add the following plug-ins:

v com.ibm.productivity.tools.ui.views

v com.ibm.productivity.tools.core

v com.ibm.rcp.textanalyzer

Part 6. Sample Plug-ins 119

Adding a perspective and views

1. Click the Extensions tab.

2. Click Add.

3. Add the following extension: org.eclipse.ui.perspectives.

4. Click Finish.

5. Right-click the added extension and select New > perspective.

6. Click the plugin.xml tab.

7. Copy and paste the following sample code into the plugin.xml file.

120 IBM® Lotus® Symphony™ Developer’s Guide

Part 6. Sample Plug-ins 121

122 IBM® Lotus® Symphony™ Developer’s Guide

Part 6. Sample Plug-ins 123

124 IBM® Lotus® Symphony™ Developer’s Guide

8. Create a class named Prespective which implements IPerspectiveFactory. The

main method in this class is shown in the following sample code.

The method createInitialLayout () specifies the layout of the views on the page.

Part 6. Sample Plug-ins 125

5.6 Core code demonstration

The Following section shows the core code snippet for the function. For more

details, refer to the sample code.

1. Add a launcher item to launch a perspective.

First, add the extension point com.ibm.rcp.ui.launcherSet, then add a new

perspectiveLaunchItem and set this item’s perspectiveId attribute value as the

perspective’s id which will be launched.

2. Add a custom view and Lotus Symphony views.

To add a custom view, refer to the Eclipse org.eclipse.ui.views extension point

reference. For Lotus Symphony views, refer to Part 5 Section 2.3 Chapter 2.

3. Add a status bar.

Refer to Part 4 Section 2.6 Chapter 2.

4. Add a custom early startup.

First, add the extension point org.eclipse.ui.startup, then create a class named

StartUp which implements org.eclipse.ui.IStartup.

5. Add a custom help topic:

126 IBM® Lotus® Symphony™ Developer’s Guide

First, add the extension point org.eclipse.help.toc, then specify the toc file

which defines the custom help file, as shown in the following sample code:

The following sampe code shows the content of the toc file.

5.7 Extending the sample

Next, you can add a custom dictionary for spell check. You can add activities

which are assigned a name and description that provide information about the

activity.

Chapter 6. Convertor Sample Plug-in

This plug-in sample shows a typical application of loading three kinds of Lotus

Symphony documents implicitly, which means loading a document into Lotus

Symphony but does not show it up on Lotus Symphony. The sample will export

this loaded document into HTML or JPEG format according its type. A sample

operation of accessing the meta-data of the document, to set and get a name will

modify this document.

Part 6. Sample Plug-ins 127

Note: All sample code used within this chapter can be found in the Symphony

developing Toolkit, such as $symphony_sdk/samples/eclipse/plugins/

com.ibm.productivity.tools.samples.convertor. You can get this Toolkit from the site:

http://symphony.lotus.com.

In this sample plug-in, it shows how to create:

1. A simple side shelf.

2. A button for loading documents implicitly.

3. A button for exporting and converting the loaded document into an HTML file

or JPEG image according its type: ODT and ODS into the HTML file or ODP

into JPEG image array.

4. A simple set and get operation to show how to access metadata.

The following figure shows this sample plug-in’s overview image.

6.1 Introduction to the scenario

You might want to load a Lotus Symphony document with its path, or you want

to load documents implicitly and convert Lotus Symphony documents into a

different type. You might also need to change some metadata of the document.

6.2 Preview of the result

According to the scenario above, this plug-in first creates a side shelf, and then

adds a button to load a document by its path implicitly, then it adds a button to

export this loaded document into a HTML file or JPEG image, and adds two

buttons to set and get this document’s metadata of modified name.

128 IBM® Lotus® Symphony™ Developer’s Guide

6.3 Prepare development environment

Refer to Part 4 chapter 1: Setting up the integrated development environment,

which shows how to prepare your Lotus Symphony development environment

step by step.

6.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing

project using the Eclipse import function. Otherwise, the following sections show

you how to build this plug-in.

Part 6. Sample Plug-ins 129

6.5 Design overview

This sample has these goals:

1. Add a side shelf.

2. Add two groups to load implicitly and export.

3. Add a group to change the document’s metadata.

6.6 Creating the sample

Creating a new plug-in

1. Launch the Eclipse development environment.

2. Click File > New > Project.

3. Select Plug-in Project, and click Next.

4. Type com.ibm.productivity.tools.samples.convertor in the Project name

field. Click Next.

5. Type a descriptive name in the Plug-in Name field, for example, Convertor

sample.

6. Click Finish.

130 IBM® Lotus® Symphony™ Developer’s Guide

Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document

library. The plug-in names are abbreviated:

 Plug-in Description

org.eclipse.core.runtime org.eclipse.ui Eclipse core plug-ins

com.ibm.productivity.tools.ui.views

com.ibm.productivity.tools.core

Lotus Symphony API plug-ins

Perform the following steps to add the plug-in dependency.

1. Click the Dependencies tab of the Convertor sample plug-in manifest.

2. Click Add.

3. Add the following plug-ins:

v com.ibm.productivity.tools.ui.views

v com.ibm.productivity.tools.core

Part 6. Sample Plug-ins 131

Adding shelf views

1. Click the Extensions tab.

2. Click Add.

3. Add the following extension: org.eclipse.ui.views.

4. Click Finish.

5. Right-click the added extension and select New > view.

6. Click the plugin.xml tab.

7. Copy and paste the following sample code into the plugin.xml file.

132 IBM® Lotus® Symphony™ Developer’s Guide

6.7 Core code demonstration

The following section shows core code snippets for the function. For details, refer

to this sample code.

1. Get the com.sun.star.lang.XMultiServiceFactory object reference. Refer to

Getting the global service factory.

2. Load the Lotus Symphony document by file path implicitly.

The following sample code shows how to load the Lotus Symphony document

implicitly.

Part 6. Sample Plug-ins 133

Create the implicit loading control by using the property named hidden and set

it to true.

3. Resolve the document type.

The following sample code shows how to resolve document type.

4. Export the documents into a HTML file.

134 IBM® Lotus® Symphony™ Developer’s Guide

Refer to Exporting documents and drawing objects.

5. Export the document into a JPEG image

Refer to Exporting documents and drawing objects .

6.8 Extending the sample

Next, you can add an auto-recognizer, and use this function to convert ODP file to

SWF file.

Part 6. Sample Plug-ins 135

136 IBM® Lotus® Symphony™ Developer’s Guide

Part 7. Troubleshooting and Support

Most of the troubleshooting information for the Lotus Expeditor toolkit is also

useful for Lotus Symphony developers. It involves a lots of known issues and

solutions for Lotus Expeditor developers. You can find the information from

Eclipse, Help > Help content > Lotus Expeditor Troubleshooting and support.

In following chapters, you will find some typical issues and solutions. If you have

more questions, contact support at Lotus Symphony Web site http://
symphony.lotus.com.

Chapter 1. Troubleshooting the Development Environment

Problem: When you setup your development environment, Lotus Symphony does

not run.

Solution: Check the development tools that you are using, and following the

process in Part 4 Chapter 1. If you are using another tool or version, you can have

unexpected errors. Make sure that you have correctly installed:

1. Eclipse 3.2.2

2. Lotus Expeditor toolkit 6.1.2

3. Lotus Symphony profile tool from the Lotus Symphony toolkit

Chapter 2. Troubleshooting During Application Development

Problem: As you develop Lotus Symphony applications, if there are UNO calls

within your code, sometimes Lotus Symphony hangs when the code is being

executed.

Solution: Create a new job for UNO calls, especially for the functions which are

invoked by Lotus Symphony backend. For example, the code within a listener

which is added to Lotus Symphony backend. The sample code would look like the

following:

Chapter 3. Troubleshooting During Deployment

Problem: Your application works fine in the development environment, but after

you deploy it into Lotus Symphony, when Lotus Symphony is launched, your

application does not work correctly.

Solution: Perform the following steps to resolve the problem:

© Copyright IBM Corp. 2003, 2008 137

1. Ensure that you are using the Lotus Symphony profile in the development

phase. For example, the default VM used by Lotus Symphony is jclDesktop. If

you have not upgraded the VM to J2SE, you should use the VM in

development phase. The target platform should be the Lotus Symphony

installation directory.

2. Check the $SymphonyDir\data\applications directory to ensure that your

plug-ins are installed successfully. Go through the feature and plug-in directory

one by one, to check if there are missing files.

3. Check the platform details when Lotus Symphony runs. Click Help > About

IBM Lotus Symphony, check the Feature Details, Plug-in Details and

Configuration Details. You should be able to find your applications in the list.

Configuration Details marks the status for each plug-in. If the status is

unexpected for your plug-ins, perhaps you will find out the root cause.

4. Check the log file for unexpected exceptions.The log files are located in

$SymphonyDir\data\logs.Check to see if there are exceptions.

5. Contact support if the problem remains.

Chapter 4. Contacting Support

To contact support, you can post problems in the Lotus Symphony forum. Include

the screen captures of error, all the log files, or platform configuration information

which will be helpful to identify issues.

The log files are available in the $SymphonyDir\data\logs directory.

The platform configuration information is available from Help > About IBM Lotus

Symphony > Configuration Details.

138 IBM® Lotus® Symphony™ Developer’s Guide

Part 8. Appendixes

Appendix . References

For Lotus Expeditor and Lotus Expeditor toolkit, refer to the following sites:

http://www.ibm.com/software/lotus/products/expeditor/

http://www-128.ibm.com/developerworks/lotus/products/expeditor/

For Lotus Notes 8, refer to the following site:

http://www-306.ibm.com/software/lotus/products/notes/

For composite applications, refer to the following sites:

http://www.ibm.com/developerworks/lotus/composite-apps/

http://www-306.ibm.com/software/lotus/products/notes/
compositeapplications.html

Appendix . Notices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106-0032, Japan

© Copyright IBM Corp. 2003, 2008 139

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 Software Interoperability Coordinator, Department 49XA

 3605 Highway 52 N

 Rochester, MN 55901

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

140 IBM® Lotus® Symphony™ Developer’s Guide

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work,

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Crop.

Sample Programs. (C) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information soft copy, the photographs and color

illustrations may not appear.

List of Trademarks

These terms are trademarks of International Business Machines Corporation in the

United States, other countries, or both:

 IBM

 AIX

 DB2

 DB2 Universal Database Domino

 Domino

 Domino Designer

 Domino Directory

 i5/OS

 Lotus

 Lotus Notes

 Notes

 OS/400

Part 8. Appendixes 141

Sametime

 WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, and Windows are registered trademarks of Microsoft Corporation in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

142 IBM® Lotus® Symphony™ Developer’s Guide

����

Printed in USA

	Contents
	Part 1. About This Publication
	Chapter 1. Intended Audience
	Chapter 2. Requirements
	Chapter 3. How to Use this Guide
	Chapter 4. The Lotus Symphony Toolkit

	Part 2. Product Overview
	Chapter 1. Introduction to Lotus Symphony
	Chapter 2. Lotus Symphony Architecture
	2.1 Overview of Lotus Symphony Architecture
	2.2 Overview of Eclipse
	2.3 Overview of Lotus Expeditor
	2.4 OpenOffice.org

	Chapter 3. Lotus Symphony Programming Model

	Part 3. Designing Lotus Symphony Applications
	Chapter 1. Rich Client Applications
	Chapter 2. Lotus Symphony Back-end Service
	Chapter 3. Business Logic
	Chapter 4. Lotus Expeditor Toolkit for Lotus Symphony Developers
	4.1. Update from jclDesktop to J2SE

	Chapter 5. Packaging and Deployment
	5.1 Design and develop components with Lotus Expeditor toolkit
	5.2 Group components into features with the Lotus Expeditor toolkit
	5.3 Package the features into the update site with the Lotus Expeditor toolkit
	5.4 Distribute the update site
	5.5 Deploy the update site into Lotus Symphony

	Chapter 6. Globalization
	Chapter 7. Cross Platform Considerations
	Chapter 8. Developing Applications for Lotus Symphony and for Lotus Symphony in Lotus Notes

	Part 4. Extending Lotus Symphony
	Chapter 1. Setting Up the Integrated Development Environment
	Chapter 2. Customizing the Lotus Symphony User Interface
	2.1 Adding a sample menu
	2.2 Adding a control to the toolbar
	2.3 Adding to the launcher button
	2.4 Adding a New View in the Shelf View
	2.5 Using the Auto Recognizer
	2.6 Adding an item to the status bar
	2.7 Adding a Preferences Page

	Chapter 3. Lotus Symphony Java APIs and Extension Points
	3.1 Selection Service
	3.2 RichDocumentViewFactory
	3.3 RichDocumentView

	Chapter 4. Using the UNO API to Access a Document Model
	Chapter 5. Packaging and Deploying Your Plug-Ins
	5.1 Prepare Custom Plug-in for Deployment
	5.2 Create a Feature and an Eclipse Location Update Site
	5.3 Install a Custom Lotus Symphony Application
	5.4 Disable or Enable Custom Lotus Symphony Applications
	5.5 Uninstall Custom Lotus Symphony Application

	Part 5. Lotus Expeditor and Uno Programming
	Chapter 1. Developing Lotus Expeditor Applications
	Chapter 2. UNO Programming
	2.1 Getting the global service factory
	2.2 Using the import and export functions
	2.3 Text documents
	2.4 Spreadsheets

	Part 6. Sample Plug-ins
	Chapter 1. Hello World Sample Plug-in
	1.1 Creating a new plug-in
	1.2 Adding the plug-in dependency
	1.3 Adding a side shelf element
	1.4 Running the application

	Chapter 2. Editor View Sample Plug-in
	2.1 Creating a plugin
	2.2 Creating a new button
	2.3 Creating an editor view part

	Chapter 3. Spreadsheet sample plug-in
	3.1 Introduction to the scenario
	3.2 Preview of the result
	3.3 Prepare your development environment
	3.4 Deploying the sample
	3.5 Creating the sample
	3.6 Core code demonstration
	3.7 Extending the sample

	Chapter 4. Writer Sample Plug-in
	4.1 Introduction to the scenario
	4.2. Preview of the result
	4.3 Deploying the sample
	4.4 Using the sample
	4.5 Building the sample

	Chapter 5. Customizing a Sample Plug-in
	5.1 Introduction to the scenario
	5.2 Preview of the result
	5.3 Prepare development environment
	5.4 Deploying the sample
	5.5 Creating the sample
	5.6 Core code demonstration
	5.7 Extending the sample

	Chapter 6. Convertor Sample Plug-in
	6.1 Introduction to the scenario
	6.2 Preview of the result
	6.3 Prepare development environment
	6.4 Deploying the sample
	6.5 Design overview
	6.6 Creating the sample
	6.7 Core code demonstration
	6.8 Extending the sample

	Part 7. Troubleshooting and Support
	Chapter 1. Troubleshooting the Development Environment
	Chapter 2. Troubleshooting During Application Development
	Chapter 3. Troubleshooting During Deployment
	Chapter 4. Contacting Support

	Part 8. Appendixes
	Appendix . References
	Appendix . Notices

