IBM® Lotus® Symphonym Developer’s
Tutorial: Building A Simple Document
Worktlow Plug-in

<|lI!

IBM® Lotus® Symphonym Developer’s
Tutorial: Building A Simple Document
Worktlow Plug-in

<|lI!

i1 IBM® Lotus® SyrnphonyTM Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Contents
Preface .
Overview

Lesson 1 Add a Simple Side Shelf

Verify the Eclipse Development Environment
Create an Eclipse Plug-in for the Document
Workflow

Lesson 2 Create Ul on the Side Shelf

Define Variables . .

Complete the CreatePartControl Method
Add Helper Methods and Inner Classes .
Create the Library . Lo

© Copyright IBM Corp. 2008

13

.13
.13
.15
.17

Run the Application18

Lesson 3 Access and Modify the
Documents. e e .. 19

Open a Document from the lerary .o . 19
Using SelectionService and Accessmg the Content of

the Document . . B
Modifying the Current Document A |
Run the Application23

Conclusion.25

Appendix . Notices27

iii

iv IBM® Lotus® SymphonyTw Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Preface

Note: Before using this information and the product it supports, read the
information in "Notices".

This edition applies to release IBM Lotus Symphony Toolkit 1.0 (license number
L-AENR-7DSDUB) and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright IBM Corp. 2003, 2008. All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright IBM Corp. 2008 1

2 IBM® Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Overview

© Copyright IBM Corporation, 2008

When many people think of IBM Lotus Symphony, they rightly think of it as a
group of office productivity editors, but it fact it is much more. Because Symphony
is based on OpenOffice.org technology and the Eclipse and Lotus Expeditor rich
client platform, it’s by definition an extensible product. Lotus business partners
take advantage of this flexibility to add new features that enhance the base
product’s capabilities, delivered as a natural extension of Symphony’s user
interface. As you will learn in this tutorial, it is also possible to add
business-specific capabilities beyond editing. Whether you are enhancing the base
editing features or adding business-specific capabilities, the approach is the same:
Develop a plug-in that hooks into Symphony. The purpose of this tutorial is to
demonstrate how plug-ins are used to extend the functionality of the office suite in
a variety of ways.

In this tutorial you will create a simple document workflow plug-in. Using the
document workflow plug-in. When a document is opened, in the Lotus Symphony
window, the workflow information is displayed. Workflow information can be
changed and stored in the document. The document is built on a special template
and stored locally.

The following image shows the user interface with the document workflow
plug-in.

ok Bl J- B[]

E-:"‘_'._ls_-.uaﬂ =i
Eils Yie Ripdew Naly

A Document] =

2 | Bitreae < | 4] 1) B EE et b LB B9

1 = 1 ¥ 1 a1 u B 1 | | Taxl Propeilivs s Kl | wiwenEman Warkilew]
! | Socment Library
= A Foot
Ducemard &
Tem F [
Decument, 3

Tuner How Roanp (17 B
Ziyle Foal gely

P [T - | VeriBion
sk oms sl lherer Tuchy

Defwidi | states Complated
= a5l Bffects X

Brdarbaning
Hans || - |
i Zheideilir vaghs |

Hma |5 ot
Enphanin mark]
o Haan ~ i

Bi

{E

Etxly sphkuoas

(E) Barmal [
= (T} Esbovzad | | Shader
U Fapraged

- S Position

¥ |
s [to g ios |
|

= |jragl LEL Ex | Col b [5TO 825 Befwdi | TREENT HIT

With the document workflow plug-in, you will learn how to perform the following

actions:

* Declare an extension to add an application to the side shelf area (right pane
above).

4

* Open a document with Lotus Symphony APL
* Access and modify content of a document.

You will create the plug-in from start to finish and use pre-created snippets of code
to speed up the manual data entry process. This tutorial is intended for developers
who are familiar with Java " programming and would like to try the plug-in
development environment to extend Symphony. Eclipse and OpenOffice.org UNO
programming knowledge are preferred, but not necessary.

To create the Document Workflow plug-in, you just need to learn the following
three small lessons step by step:

Lesson 1: Show you how to build a simple Eclipse plug-in which adds a side shelf
to Lotus Symphony.

Lesson 2: Show you how to create the User Interface (UI) on the side shelf created
in lesson 1 using Eclipse’s Standard Widget Toolkit (SWT).

Lesson 3: Show you how to open documents from library, read workflow
information when the document is loaded and modify the workflow information

based on the contributions of lesson 2.

OK, now, let’s begin.

IBM® Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Lesson 1 Add a Simple Side Shelf

Verify the Eclipse Development Environment

1.

© Copyright IBM Corp. 2008

Set up the Lotus Symphony development environment according Symphony
Developer’s Guide provided by the toolkit. Then, switch to the Plug-in
development environment perspective by selecting Window > Open
Perspective > Other, then select Plug-in Development, and then click OK.

Click Run from the toolbar, launches Lotus Symphony. (If the Run option is
disabled, select Run > Run... to open the runtime configuration dialog. Select
Eclipse Client Services > Symphony and then the Run button.) If asked if you
want to clear the runtime workspace, select YES.

| B0~ BHFG B (-

=E{i i |
=¥ | |

»

Tips: After Lotus Symphony opens, close the Welcome page.
When Lotus Symphony window open, click File->New->Document, you will
see the following window:

ki - EL CIRETL 2y
T I T e S, =t
File Efit ¥ier Qrawts Tasli Tahle Legen Tinds Balp

- P[]

5 Hew Docminenl

FE w3 ¢ ¥ LR Eceae-|J) 8 e [~ ST i b

[3 1 2 o i 5 | 1) B retpropstes e

;HﬁPM
|

i E.= .

Lol Siwn
Timaz Yor Reswid 12 o]
i Sirle Bant galar

i [T (|
Twliground aolar

Bafls [

B 8 Brfecta

| freteriinang
i [Bz

| Btrikithremgh Coiioes

——

|
10§ Puzslion

]
i

B —
! M1 Tawd bragerties

= (Peged B ST Ea 1 Cul | 570 045 Defwali | |IEERT AP

This window is the standard Lotus Symphony document editor. In the next
section you will add an Eclipse plug-in to the development environment and
test that it works. Select File > Exit to close the runtime instance of Lotus

Symphony before continuing.

Create an Eclipse Plug-in for the Document Workflow
Create a new plug-in

To create a new plug-in, follow these steps:

1. Launch the Eclipse development environment
2. Click File > New > Project

3. Select Plug-in Project, and click Next

4

. Typecom.ibm.productivity.tools.samples.DocumentWorkflow in the Project

name field. Leave the rest of the default values.

Click Next.

6. Type a descriptive name in the Plug-in Name field, for example Document
WorkfTow Sample. Keep the rest of the default values.

7. Click Finish.

o

Add the plug-in dependency

The following table lists plug-in dependencies used by the document library:

Dependency Plug-in Description
org.eclipse.core.runtime, org.eclipse.ui Eclipse core plug-ins
com.ibm.productivity.tools.ui.views Lotus Symphony API plug-ins
com.ibm.productivity.tools.core

Note: Adding these plug-in dependencies adds the following to the
MANIFEST.MF file, which defines the plug-in. You can see the contents of this file
by selecting the Plug-in Manifest Editor’s MANIFEST.MF tab:

Require-Bundle: org.eclipse.ui,
org.eclipse.core.runtime,
com.ibm.productivity.tools.ui.views,

com.ibm.productivity.tools.core
Perform the following steps to add the plug-in dependency.

1. Click the Dependencies tab of the Document Workflow plug-in manifest.
2. Click Add.
3. Add the following plug-ins:

* com.ibm.productivity.tools.ui.views

¢ com.ibm.productivity.tools.core

The screen should look like the following image (the plug-in order is not
important)

6 IBM® Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Dependencies

Eeguired Flugims

Specify the list of pluzins required for the operation of this
plug=in:

I

‘-.d.:\- org. eclipse. core. runtime
?d.:-cm. ibm. productivity, tools, ui, views
%-.n:nn. ibm. productivity, tools, core

Add a side shelf

To add a side shelf, follow these steps:

1.

A S

Click the Extensions tab.

Click Add.

Add the following extension: com.ibm.rcp.ui.shelfViews.
Click Finish.

Right click the added extension and select New > shelfView.

Extensions

All Extensiomns

(& o T T: VI) <hu15Vi o

alata = .
Extension Details 2 = Extension. .
Set the properties of the zel {r Go Home

1D | 42 Go Back

Hame I = Ga Inta [

Foint |com ibmrep.uwishelf¥ [o11.pce 411

Cut

W Find declaring extension! Copy

@ . Pasztam
Open extension point desd

Externalize Strings. ..

Find Declaration

Show Deseriptiom

Selecting this menu choice adds a shelfview element to the extension

declaration. Select the newly added element and note that the Extension

Element Details are updated to show the possible attributes. Fill in the fields as

shown below.

Lesson 1 Add a Simple Side Shelf

7

Extensions
All Extensions

(= o gom, ibm. rep. ol shel £Viaws
Efl com. ibm productivity. tools. sampls

Extension Element Details
Set the properties of “shel f¥iew”

1 d com. iba. productivity. tools, samples. documentworkflow Shel fView
com. ibm. productivity, tools, samples, documentworkflow. Shel £¥1ew
BOTTOM

page EIGHT

showTitle! |true

The asterisk (*) indicates a required field. One of particular importance is the
class field which indicates the Java class that implements the shelfview’s
behavior (for example, this class defines what the side shelf area contains, how
it responds to user events.).

The id used in this tutorial is:
com.ibm.productivity.tools.samples.documentworkflow.ShelfView. You can copy
and paste it to the id field as figure above.

6. Click the plugin.xml tab
7. Copy and paste the following into the plugin.xml file.

“ertension
point="org. eclip=se _ui _wisws">

= ot eqory
rEme="Sawpnle Category”
id="com. ibw prodactivicy. tools . sanples "=

< foategorys

“wrien
rEme= "Domament Worlzflonr"
lcon=" "
category="com.ibm. productivity tools. samples"
class="com.ibm. productivity. tools . samples. dooumentworkf lowr. Shel firisw!
id="com. ibm productivity. tools . samples . domumentirork £l onr. Shel £iriewr"s

= Sl enr

</ extensions

The view attribute of the <shelfView> tag in the com.ibm.rcp.ui.shelfViews
extension must match exactly the id field of the <view> tag in the
org.eclipse.ui.views extension above. That is, the side-shelf content is defined
by the extensions’ <view>/<shelfView> pairs.

The steps above adds a new Eclipse ViewPart to the platform. You can create
your plug-in extensions with the Manifest Editor or enter the specifications
directly in the pTugin.xml file.

8. Right-click on the package
com.ibm.productivity.tools.samples.DocumentWorkflow in Package Explorer,
and then select New > Class.

8 IBM® Lotus® SymphonyN Developer’s Tutorial: Building A Simple Document Workflow Plug-in

T ﬂ.'l:"m hetivator. java [E} com. ibm. g1

TR = a g =1l -

= & =re 9 Project... #

= : o Into

= E‘ com. ﬂ“f' y'r-nni_ 8 Package te

& [J] Aetivator Dan in Hee ¥ind
ve| Open in Haw Window

B\ JRE Systen Libr Open Type Hisrarchy F4 G s
[B Pluzin Depende: Interface
= (Z WETA-IHF [[= Copy Chrl+C G Enun

= B} WARIFEST-MF | B cooy Gualified Hans @ hanotation

i build propertic o b Chrlsy &7 Source Folder

ﬁplﬂ.‘“\.xﬂl L= I T ™o _a. e P I flom:

9. Input the class information as showing in the following screen capture, Click
the Browse to search the superclass of org.eclipse.ui.part.ViewPart, and then
clicked Finish.

Java Class
Create a mew Java clazs.

Source folder: [com, ibm, productivity. tools. samples, Documentforkilows
Package: :;_mn ibm. productivity tools samples. douwﬂ_e__lli

Dﬂm'_lnsing type: i Browse.

Hame: ShelfView

Modifiers: @zu'hli.:) default privata protected
Dn‘n:ylct D final statig

Superclazs: "-":_o\r!. |clip:g.ui.;_ulu_'t.i|"i.nl’irt_|
e

¥hich method stubs would you like to create?
Dpuhlic static woid main(String[] arzs)

ngstructu'rs from superclass
Inhtriud abstract mathods

Do wou want to add comments as configured in the properties of the current project?
Dﬁlmrttl commants

@ [Finisk || Caneal |

A new Eclipse ViewPart named ShelfView is created in the
com.ibm.productivity.tools.samples.documentworkflow package.

Run the application

To run the application, follow these steps:
1. Check your plug-in

Before running the application, look at the plugin.xml file and the newly
created class:

The plugin.xml file should look like the following:

Lesson 1 Add a Simple Side Shelf 9

=%ml wersion="1l.0" encodincg="UTF-8"7=
“teclipse wersion="3.2"1*

<p lugin:
“extension
point="com_ ibm rcop i shel fiiews" =
Zzhelfifiew
id="com. ibw_productivity. tools. samples . documentworkflow . Shel £i71 e
page="EICGHT"
region="EOTTOM"
showTitle="tru="
wiew="com. itm. productivity tools. samples documentirork £low. Shel £ ew" /=
=/ extensi o
“Zextension
point="ory. eclipse i vwisws" =
= CEt eqory
name="Sammle Category"
id="com. ibwm_ productivity. tools . samples ">
= foategor e
i
name="Dooument Workflow"
icon=" "
category="comn.ibn. prodactivity . tools. samples"
class="com.ibn. productivity. tools. samples. documentoorkflow. Shel fWienw"
id="com. ibw_productivity. tools. samples . docunentworkflow . Shel fWiew"=
= i enrs
</ extensi o=
= plugin:

Double Click the ShelfView.java file in Package Explorer, the ShelfView.java
file looks like the following:

package con. ikm.productivity tools. sampl es | dooumentwork £1.on7;

import org.eclipse.swt sddgecs Composite;
import org.eclipse.ui. part. WiewPart ;

public class Zhel fWiew extends WiewPart |

public woid createPartControl (Composite argl) {
A TODO Aato-generated method stub

}

public woid secFoous () {
A TODO Mato-generated method stub

;

2. Click Run from the toolbar:

- -'.;:}-r ‘__jv‘.-{hv ._J 1.5,' ’-.:"' ‘H ¥ -
i %4 |Bun Symphong A& T

3. Lotus Symphony is launched. Click File > New > Document. Your screen
should look similar to the following image:

10 1BM® Lotus® Symphony" Developer’s Tutorial: Building A Simple Document Workflow Plug-in

L [B]]

T T P T L Symiftany

:[u- 1‘ nl:u e

B Mew Dactimeni
[l -S| o (8D st - | A B e Bl O h 7O E--5-%
— I z 3 i 5 d | [R)]) Text Pragarties % x| mDscumest Workllew T

&l & Funk

Fent]
Tinss B Msualidl| 1z
Sirle e
Sogeler | [Datontt B3
ool el
et o

ol Effects

\sdarlinizg
Bt B v e
Gerilitbreagh o0
LB & snrao
Bephailn ek |

- L ﬂ._-:. e 11|
Sugle wplh st

(2} Hermal [uetiens
i Omapomand [Jheder

] Z Bogragad

& Pasition

P e s =1 M Bt o
. T———

o |lewgut 171 In & Col 1 560 3% Defwili | OESESE HIF

Tip: If the newly added view does not display, check the console for a message
like org.eclipse. ui.PartInitException: Could not create view: XXX and
confirm that XXX = the view id. The view attribute of the <shelfView> tag in the
com.ibm.rcp.ui.shelfViews extension must match the id attribute of the <view> tag
in the org.eclipse.ui.views extension.

Congratulations! You have reserved space in the Lotus Symphony side shelf for
your application. Next, you will open a document from the document library, and
modify the document.

Lesson 1 Add a Simple Side Shelf 11

12 IBMP Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Lesson 2 Create Ul on the Side Shelf

Before starting the Lotus Symphony APIs, let’s add all the variables and methods
that will be required for the document workflow plug-in, and some helper
methods that are not specific to Lotus Symphony. We can then turn to the code
that is specific to extending Lotus Symphony. All the following lines of code are
within the ShelfView.java file.

Define Variables

The variables(field) are shown below. Copy and paste this block into the beginning
of the ShelfView. java file after the first open brace ({) of this class.

private Text owmerTxt;

private Text statusTik:;

private MchDocimentWiew selectedifiew = mall;
private TableWiewer wiewer;

final static public boolesn isWindows0S% = S+vystem. getProperty ("os.n=me")
.startsTlHchi "Mindowr=s") ;

Note: Use the menu choice Source > Organize Imports to add the needed import
statements after pasting a code snippet. For example, in the following snippet, you
will need to import the com.ibm.productivity.tools.ui.views.RichDocumentView
package.

private Text ownerT=t;

private Text statusTxt:

.{zij private RichlDocumentWView selectedView = null:;
private TableViewer viewer;

TableViewer and Text are defined by several packages. Be certain to select
org.eclipse.jface.viewers. TableViewer and org.eclipse.swt.widgets.Text.

Complete the CreatePartControl Method

The Document Workflow adds a viewable area to the side shelf of Lotus
Symphony. This area is defined in the createPartControl method using Eclipse’s
standard widgets, called SWT (Standard Widget Toolkit).

The SWT API is used to create user interface elements in Eclipse platform.
The following code snippet creates a document library group and a workflow

group in side shelf, and other SWT controls. Copy the following code and replace
the createPartControl method in the ShelfView. java files.

© Copyright IBM Corp. 2008 13

public void createPartControl (Composite parent) |
parent. set Layout (new RowLayoat (1) -
ff Group of Doowment Library
int v = 10 ;
Croup doclibGrp = new Growg (parernt, SWT.NULL) ;
doclibGrp. setText ("Dociment Library") ;
doclibGrp. setSize (390, 72);
doclibCGrp. setlocation(l0, -

viewer = new TableVWiewer {doclibGrp, SWI.MJILTI

| EWT.H SCROLL | EWT.VW _SCROLL) ;
viewer. getTakble () .setfize (120, 600 ;
viewer. getTakle () .setlocation(30, v + 2007
viewer. setContent Provider (new ViewContentProwideri)) ;
viewer. setlabel Provider (new Viewlsbel Provider ());
viewer. setDnpat (this) ;
hookDoubleClickiction() ;

Ff Group of user information

i = 10 + doclibGrp.gecBounds() height + 7;

Groupn work flowCrp = new Growp (parent, SWT.NULL) ;
workflowGrp. setText | "Mork flow") 7

workflowbrp. setBiza{390, JZ);

workflowbrp. setLocation{l0,) -

Label ownerLbl = new Label (workflowGrp, SWT.SHADOW NONE
| &WT_RIGHT)

owmer bl set Text ("thmer") -

ovmerlhl_setfize(d40, ZE);

ovmerlhl setLocation (10, ZZ)F

Label statusLbl = new Label (work flowuGrp, SWT. SHADOW MNONE
| 5WT.RIGHT) ;

statuslbl. secText ("Status") ;

statusLbl. setiize (40, Z22) ;

statusLbl. setlocation(l0, 46);

ovner Tut = new Text (workflowzrp, SWT.EBOEDER | STWT.LEFT) -

owner Tut . setBackground (new Color (this.getSite () .
getfhelll) .gethisplay(), 55, Z5EE, EE5));

owner Txt_ secBizel 80, 16);

owmner Tt secLocation (100, Z1);

statusTxt = new Text (work flowzrp, SWI.BOERDER | SWT._LEFT):

statusTrt. setBackgronmdinier Colorithis getiice().
getfhelll) .getDisplayi), 255, 25E, EE85)):

statusTxt. setBize (80, 16) ;

statusTrat. setlocationl 100, 48) 7

Button commitBtn = new Buttoni work flowGrp, SWT _BOFDER
| SWT.PUEH 1 ;
commitEthn. setText ("Commit ") ;
commitBtn. setiize (80, 20 ;
coumitEth. setLocationt 50, &7);
coumi EBtn. addielectionlistensr (new Selectionlistener ()4
public woid widgetDe fanlcfSelected(SelectionErent argd) |
}
public woid wdgetSelected|SelectionEwent argl)

conmi tWork £l owInfal) -

Reminder: Use the menu choice Source > Organize Imports to add the needed
import statements after pasting a code snippet. If there are methods and classes
missing, continue the copy and paste operation in the following document.

Label and SelectionEvent are defined by several packages. Be certain to select the
ones defined in the SWT packages.

14 1BM® Lotus® Symphony"" Developer’s Tutorial: Building A Simple Document Workflow Plug-in

You will need to import the following packages; you can check the list or just copy
and paste the following lines into the import area to replace the older.

import java.io.I0Exceptice;

import org. eclipse. core. runtcime . Filelocator;

import org. eclipse. core. rancime . Plat form;

import org. eclipse. jface viewers.DoubleClick Event ;

import org. eclipse. jface viewers.IDoubleClickListener;
import org. eclipse. jface viewers.ISelection:

import org. eclipse. jface viewers. IScracturedContent Provider 7
import org. eclipse. jface viewers. TBcructuredie lectdon;
import org. eclipse. jface viewers_ ITablelabel Provider;

import org. eclipse. jface viswers_ LabelProvider

import org. eclipse. jface viewers. TahleWiewsr ;

import org. eclipse. jface viewers. Wiewer

import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse.
import org. eclipse. widget s, Label ;

import org. eclipse. widgets. Text;

import org. eclipse.wi.part ViewPart;

import org. osgi. framework. Bumdle;

import com. itwm . productivity.tools.wi . views. BichDooamentWisr -

events . SelectionEvent ;
events . Selectionlistener;
graphics.Color;

graphics . Image;

1 agronat - Bowlasrout
widget s Bubton;

widget=s. Composite;

widget s, Grougp ;

idandgidag

Add Helper Methods and Inner Classes

SWT includes the low-level widgets that are common across different platforms.
For example, a label, a text entry field, a button, and so on. Eclipse developers can
use another framework called JFace to simplify the widget code by mapping
widget friendly data types like strings into application friendly objects like clients,
documents, and similar high-level classes. For example, the TableViewer works
with helper objects that handle the mapping of higher-level classes like documents
into lower-level data types expected by widgets, like strings. The next two classes
define these helper classes.

The following methods and inner classes are required; copy each of them to the
end of the ShelfView.java file one by one, before the last close brace (}) of this
class.

1. Copy ViewContentProvider inner class.

The ContentProvider provides the file name of sample documents listed in the
document library:

class WiewContent Provider implements IStracturedContentProvider
public woid impoatChanged(VWiewsr v, Object oldDaogeas,
Object newlopma) {
}

rublic void dispose() {
}

rublic Object[] getElements (bject parent) |

return new Stringl] { "Dooument 1", "Document ¢,
"Drooument 3" };

Lesson 2 Create Ul on the Side Shelf 15

2. Copy ViewLabelProvider inner class.

The LabelProvider provides the viewable text of file name of each sample
document in document library:

class WiewlabelProwider extends LabelProvider implemerts
ITsklelsbelProvider |

public Bcring getColimnText (Object obj, int index) {
return getText{obil;
}

public Image getColunnImadge (Object obj, int index) |
return get Image (obj) ;
}

rublic Image getImage{Object obj) {
return roall;
t

Class Image is defined by more than one package. Be certain to select the ones
defined in the SWT package.

3. Copy hookDoubleClickAction method.

The method handles double-click event in the document library:

private woid hockDoubleClickfction() {
viewzr. addboubleClickListener (new IDoubleClickListener() |
rublic woid doubleClick (DoubleClickEvent ewent) {
ISelection selection = viewer. getSelecticrmi);

Object obj = ((IScructuwredSelection)selection).
getFirstElement () 7

String displayllame = obj.toStringi) ;
String wrl = getDocumerncURL { displayMName) ;-

Fhe

4. Copy getDocumentURL method.

The method translates the display name of each sample document in the document
library into an absolute URL:

16 1BM® Lotus® Symphony"" Developer’s Tutorial: Building A Simple Document Workflow Plug-in

private String getDocumentURL(String displayllame)
String url = "";

String res = "doos/" + displayMame + ".odz";
url = getPesolwedPath(res);

returyn url ;

}

private String getPesolvedPath (String file) {
gcring resolwvedPath = mall;
Bundle bundle = Platform. getBundle(Activator PLUGIN ID) -
if (bundle != mally {
java.net. . UPL bumdleURL = bundle. getEntrsw("S") :
if (bmdleUBRL !'= rmall) |
try
rezolwedPath = FilelLocator _resolwe |
Fuandl eURL) getFilei);
} catch (I0Exception e) |
e_printStackTrace () ;
}

}

Scring ret = resolwvedPathtfile;
ifiisMindonrs0s) |

ret = ret_ substring(l) ;

ret = rec_replace('S', "W
I

return ret;

IOException and Platform are defined by more than one package. Be certain to
select the ones defined in the Java and Eclipse packages.

Create the Library

We use a dummy library in this tutorial, meaning that all files are local files.
Complete the following steps to create the library:

1. Open Windows Explorer, locate the tutorial directory, right-click the docs
directory, and then select Copy.

2. Switch to the Eclipse environment. Right click the

com.ibm.productivity.tools.sample.DocumentWorkflow plug-in, and select
Paste.

| i Tack Hierarchy 4z - ‘:Dv il
= 1;"'
g Hex ’
Go Into ntworlfl ow
Open 1n Hew Window
i Open Type Hierarchy F4
g
E = Copy CirltC
1B Paste Ctrlty
K Delete Dalate
E Build Path »
L Sowrce ALt#Shift4s P
L Refactor ALt4ShiFHT B

Lesson 2 Create Ul on the Side Shelf

The docs directory is created as shown in the following screen capture:

; .J,:'-a,l:kaﬁt Explorer X, Hierarchy
. Efpd- com, ibe_productivity tools samples. Docwment¥orkflow .
@ 2 sre
= B com ibm productivity. tools. samples. documentworkflow
] E[Activator. java
1) Shelf¥iew. java
(@, TRE System Library [jclDesktop ¥Win32 x86]
i# m Flug-in Dependencies
== does
@ Docoment 1, odt
@ Document 2, odt
@ Docoment 3. odt
(= META-INF
g @ build properties
g} plugin zal

Run the Application
1. Confirm the codes ShelfView.java file is correct, and click File > Save All.
2. Click Run from the toolbar.

S B0 REE ®P -
oSt} w257 70

. :-Fackage Explover X

The application is launched. Click File > New > Document, and your view
should be similar to the following screen capture.

@ B2 ¢ 130D o 4@ e i e S

5 ¥ 1 2 T s ol (&) Tumt Pruopetien 5 || mOncwmant Workflow o
Feomeand Liarary

= A Femk
Fermamt L

Bant. Siee: Brrnaeni
Timen dew bmadig v B0 e
oty Foamt galar
Lepidw (6 Befudt Teekilew
Burrnd oila tenar
L~ Sl

) il BEfacts o=l

Underlindag Celab
Hona |~ HEEEEAE

Buvle aptlend:

] & gornad [tmthine
L) Enpasvad |] Shuden
Led

- @ Porstion

=
- ST

i pagmi 10 L= 1 Col 1 SHD EW Sefanle | INSEET WEF

18 1BM® Lotus® Symphony™ Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Lesson 3 Access and Modify the Documents

Open a Document from the Library

Locate the hookDoubleClickAction method in the ShelfView.java file, and add the
following line to the end of this function. When you double-click a file entry in the
document library, the document is opened with the following code automatically:

BichDoomentiiewFactory. openfifien| url, false)

Note: Use the menu choice Source > Organize Imports to add the needed import
statements after pasting a code snippet. You will need to import
com.ibm.productivity.tools.ui.views.RichDocumentViewFactory package. Your
screen should look similar to the following image:

private woid hookDoubleClickAction() {
viewer.addDoubleClickListener (new IDoubleClickListeneri() 1
&k public void doubleClick{DoubleClickEvent event] {
ISelection selection = viewer.getSelection():
Object okh] = [((IStructuredielection)selection) .
getFirstElement () ;

String displayNeme = ob]j.toS3tring():
gtring url = gecDocuwmentURL | displayName)

RichDhocumentViewFactory. openView| url, false)

i:

Using SelectionService and Accessing the Content of the Document

The selection service provided by the Eclipse workbench allows efficient linking of
different parts within the workbench window. Each workbench window has its
own selection service instance which service keeps track of the selection in the
currently active part and propagates selection changes to all registered listeners.
Such selection events occur when the selection in the current part is changed or
when a different part is activated. Selection events can be triggered by user
interaction or programmatically.

Each Lotus Symphony view registers the selection provider, so it is possible to
monitor the selection change event in Lotus Symphony.

The following code demonstrates how to use the selection provider in Lotus
Symphony. Perform the following steps:

¢ Create an instance of ISelectionListener

The selection listener is invoked when users switch between opened views. It
will perform the following tasks at runtime:

1. Gets the selected RichDocumentView.

2. Gets the UNO model of the currently selected view.

3. Queries the workflow information from the document with the UNO API.
4. Updates the user interface of the document workflow plug-in:

© Copyright IBM Corp. 2008 19

20

Copy and paste the code into the ShelfView.java file. Copy it after the field
isWindowsOS defined.

privacre ISelectionlistener selectionlistencsy = new ISelectionlistener(){
public woid selectionChancged(ITorkbenchPart argl, final ISelection argl)

STt is sugyested to create a new Job for THO call which will be
Sfdrmroked by Symphony Gt process
fithe seletionChangedi) is called when selection happened within
S smphory dooument.
Job jJob = new Job("Update workflow info") {
public IStatus rum(IProgressMonitor progress) |

Tadaptable adaptable = { Iidaptakle) argl;

PichDooumentWiewSelection selection =
{ PichDocumentViewSelection)
adaptable. get Adapt er (M chhocwmertViewSelection. class) ;

selectedView = selection. getView();
Object model = selectedWiew. gqeclMOMod=11) ;

HTexTablesBupplier tahlesBurplier =
{ HTextTablesZupplier |

Tnobmtine. queryInter face| HTextTablestpplier. class, model
Vi

ifi tablesSwpplier == null)
return Status. 0K STATOS;

FManelccess nameiccess = tablesSupplier. getTextTables (),

try |

HlextTable table = (HTextTshle)

ThioPuart ime . queryInterface
| ¥TexmTahle. class namelccess. getBEyMNans

("Torkflon™y) ;

HCell cell = table.getCellByMame("BEZ") :

¥Tewt text = (XText) Tholwtime. queryInterface

(¥Text._ class, cell);

final String owmner = text . getitring () ;

cell = tabhle. getCellByName | "B3") -

text = (Hlext)UhnoBbmtine queryInter face (KText _class,
cell) -

final String reviewer = text. gecitringi) ;

SfExecute the STT UL related fumctions in display thread
Displasy.getDefanlt () _asyncExec (new Parmahle () {

mublic void nmil {
wpdat ellork flowlnfo | owmer , rewviawer) ;

}
s

} catch (NoZuchElementException e) |
& _princicackTrace() ;
} cacch (WrappedTargetException &) {
e.printStackTrace (] ;
+
return Status 0K STATUS;
i
}:
Job.schadulel);

1:

Notes 1. NoSuchElementException and XText are defined by more than one

package. Be certain to select the ones defined in the Sun packages not the Java

packages.

2. Please notice the following line in this step; it is used to get the UNO

document model of current document. The UNO document model is the entry
point to access and modify document content. You can get almost every object
within the document. In this tutorial, you will learn how to access a pre-defined

IBM® Lotus® Symphony™ Developer’s Tutorial: Building A Simple Document Workflow Plug-in

table named as workflow in the document.

Object model = selectedView.getUNOModel();

3. Use the menu choice Source > Organize Imports (Ctrl+Shift+O) to add the
needed import statements after pasting a code snippet. You will need to import
more packages. The following classes are listed here:

import org.eclipse. core. rancime. ThAdaptahle;

import com. star.container NoSuchE]l ement Exception;
imgrort com. star.container Xamelccess ;

ingnort com. star. lang. TrappedT arget Exception;
import com. star.table. ¥Cell ;

import com. star_ text HText;

import com. star. text HTextTahle;

import com. star.text HTextTablesBupplier;

inport com. star. uno ThoPimtime;

import com. ibm. productivicy. tools wl wiews. BichDocumerntWiewSelection;
import org.eclipse_ ui.Ifelectionlistener;

import org. eclipse_ ui.IWorkbenchPart ;

SEEEEEEE

* Use the updateWorkflowInfo method

The following code updates the user interface of document workflow plug-in.
Copy the following code after the end of the field selectionListener defined after
this method’s final close brace (} ;).

private void wpdatellorkflowInfolScring owmer, Strihg reviewer) |

owmer Txt . set Text {omer) 7
statusTxt . setText (reviewar) ;

}

* Register the selection listener

To make the selection listener work, register the listener into the selection
service. Copy the following code into the end of the createPartControl() method
before this method’s final close brace (}).
TMorkbenchifindow window = Plac formTT. getWorkbernchi).
et Act ivellorkbenchifindow) ;

ISelectionfervice service = window. getSelectionBerwvice():
service.addfelectionlisteneri{selectionlistensr) -

Use the menu choice Source > Organize Imports to add the needed import
statements after pasting a code snippet. You will need to import more packages.
The following import statements are listed here.

import orgoeclipse. wi. ISelectimmService;

import org.eclipse.wi. INorkbenchilindonw;
import org.eclipse.wi. FlakforwlI;

Modifying the Current Document

In this section, you will learn how to modify the current Lotus Symphony
document with content from the document workflow plug-in. Perform the
following steps to add workflow information into the Lotus Symphony document.
* Add function to a commit button

Locate the commitBtn in createPartControl, and change it as shown in the
following sample. The commitWorkflowInfo method is invoked when the widget
is selected.

Lesson 3 Access and Modify the Documents 21

22

conmitBtn. addSelectionlistener (hew Selectionbistener ()

public woid widgetDe fanltfelectediSel ectionEvent argl) |
S TODO Mato-generated method stub

t

public woid wmdgetfelectedlSel ectionEvent argl)

conmi Elork £l omInfol) ;

b

Add the commitWorkflowInfo method

This method reads content from the document workflow plug-in and invokes a
function to write data into the current document. Copy and paste it into the
ShelfView.java file after the last close brace (}) of the method createPartControl:

private woid commitWorkflowIntol | {
String owmer = owmner Txt.getText();
String reviemer = statusTxb_ getText () ;7

writelorkflowInfo (| owmer, reviewer)

I

Add writeWorkflowInfo method

This method commits workflow data into the current document. Copy and paste
the following function into the ShelfView.java file after last close brace (}) of the
method commitWorkflowInfo() .

private woid wricellork flowInfo (String owmer, String rewviewer) |
Object model = selectediiew. oqecUNIModell):

HlextTablesihwplier tablefupplier = (XTextTablestwpplier)
ThoPantinme . queryinterface (| XKTextTablesSupplier.class, model);

HMamebocess namelcoess = tablefupplier. getTextTables ()

try |
HTextTakhle table = | XTextTable ThoPwitime. queryInterfacs

{ ¥TextTable. class hamnsdccess. gecByNane ("WMork flow" 1) -

HCell cell = table.getCellByame("B2" I ;

Hlext text = (HText) UnoBatime. queryIinterfaced(
H¥Text _class, cell);

text. seticring | owmasr) ;

cell = table.getCellBylamel "B3") ;

text = ([HText) Uhobantime . cqueryInterface (KText.class,
cellh ;

text. setioring | reviewar) ;

} catch (HoSuchElement Exception =)
FAf TODD dato-generated catch block
e_printicackTrace () ;

} cacch (MrappedTargecException =) |
S TODO Aato-—generated catch block
a. princStackTrace () ;

IBM® Lotus® Symphony™ Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Run the Application

1.

2.

3.

4.

Confirm the codes in the ShelfView.java file is correct, and click File > Save
ALL.

Click Run from the toolbar.

RN AR R] =R
=r£]=>:—v>if-?+g* ;:Dnaf':]m@{?

The application is launched; click File > New > Document, your screen show
should be similar to the following screen capture:

@ Cocument @ Documnnt 2
B -F-F|ed IETD I Hoen- 1@ BEluta B h s IS E-E-f

A Documentd =

' a 1] 1 [5 T 21| Tt Prowartivs 5w || mDocumman Wekilew F |

Seemmant Labrary

= A Foot
Ducmant t
Tt 5% Bacoment ¥

D]
[—— i | At

PR - | | Tukfla
Sucker oad ‘zidar trerr Tuchy

Petwdd Shatas]
= et |

SrdarTaning

Hans |~ || ETEe]
- Sheibathemaght
Boan || -
Eeptinn mark

o Hasa || r—
Shrls sghisms

(2 formal [Clwdine
oy Cenporead [| dbader
O Pagrawed

ili
gE

s & 40e Posit Lom

B R —— |
= [Page) 1L Ea | G4l | 5TR GE% Befasdi | TRSENT HUT

Double click each document in the Document Library

The document is opened in a new tab window.

Switch between “Document 1” “Document 2” and “Document 3”

The owner and status in the workflow group is updated automatically.
Change the text of the owner and status, click Commit.

The modified content is updated into the Lotus Symphony document
automatically.

Lesson 3 Access and Modify the Documents 23

24 IBMP Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Conclusion

This tutorial leads you through the creation of a Lotus Symphony side shelf
extension. You learned how to create a plug-in, and plug-in extensions, and how to
use the Java APIs supported by Lotus Symphony to read and update content of
Lotus Symphony documents.

© Copyright IBM Corp. 2008 25

26 IBMP Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Appendix . Notices

Notices

The information contained in this publication is provided for informational
purposes only. While efforts were made to verify the completeness and accuracy of
the information contained in this publication, it is provided AS IS without
warranty of any kind, express or implied. In addition, this information is based on
IBM’s current product plans and strategy, which are subject to change by IBM
without notice. IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this publication or any other materials. Nothing
contained in this publication is intended to, nor shall have the effect of, creating
any warranties or representations from IBM or its suppliers or licensors, or altering
the terms and conditions of the applicable license agreement governing the use of
IBM software.

Copyright

Under the copyright laws, neither the documentation nor the software may be
copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form, in whole or in part, without the prior written consent of
IBM Corporation, except in the manner described in the documentation or the
applicable licensing agreement governing the use of the software.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 2003, 2008

Lotus Software

IBM Software Group

One Rogers Street

Cambridge, MA 02142

All rights reserved. Printed in the United States.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GS ADP Schedule Contract with IBM Corp.

Revision History: Original material produced for IBM Lotus Symphony Release
Beta 4.

List of Trademarks

IBM, the IBM logo, AIX, DB2, Domino, iSeries, i5/0S, Lotus, Lotus Notes,
LotusScript, Notes, Quickplace, Sametime, WebSphere, Workplace, z/OS, and
zSeries are trademarks or registered trademarks of IBM Corporation in the United

States, other countries, or both.

Additional IBM copyright information can be found at:

© Copyright IBM Corp. 2008 27

28

http:/ /www.ibm.com/legal /copytrade.shtml

This information also refers to products built on Eclipse™ (http://
www.eclipse.org)

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

The Graphics Interchange Format®© is the Copyright property of CompuServe
Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product and service names may be trademarks or service marks of
others.

IBM® Lotus® Symphonym Developer’s Tutorial: Building A Simple Document Workflow Plug-in

Printed in USA

	Contents
	Preface
	Overview
	Lesson 1 Add a Simple Side Shelf
	Verify the Eclipse Development Environment
	Create an Eclipse Plug-in for the Document Workflow

	Lesson 2 Create UI on the Side Shelf
	Define Variables
	Complete the CreatePartControl Method
	Add Helper Methods and Inner Classes
	Create the Library
	Run the Application

	Lesson 3 Access and Modify the Documents
	Open a Document from the Library
	Using SelectionService and Accessing the Content of the Document
	Modifying the Current Document
	Run the Application

	Conclusion
	Appendix . Notices

