41IIH

IBM Lotus Symphony Developer’s Guide

Note: Before using this information and the product it supports, read the information

in Notice page.

Symphony Beta 4 Edition (Jan 2008)

This edition applies to release Beta 4 of IBM Lotus Symphony toolkit (license
number L-AENR-7AYBEZ2) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corp. 2003, 2008. All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSAADP Schedule Contract with IBM Corp.

1I

Part 1. About this publication

Chapter 1. Intended audience

This guide is intended for Java™ developers who have read the IBM® Lotus®
Symphony programming introduction in the Lotus Symphony forum and who need a
more in-depth understanding of the Lotus Symphony toolkit to create their own
applications. This developer’s guide is written to provide quick and easy reference to
the different components of the toolkit. For information about Lotus Symphony
programming, go to the Website at: http://symphony.lotus.com.

This guide does not include information about general Java programming. For more
information on the Java language and Java programming, go to the Website http://
www.java.sun.com. This guide also does not cover the details of Lotus Symphony API
(application programming interface) that are covered in the Javadoc within the toolkit.

Chapter 2. Requirements

For information about software requirements for the Lotus Symphony toolkit, see the
readne. t xt file that is included with the toolkit.

Chapter 3. Accessing the toolkit on the web

To access the toolkit, see http://symphony.lotus.com. The Lotus Symphony download page

contains links to all the documentation and downloads. You can extract the files for this
toolkit on your local system.

Chapter 4. Symphony toolkit

4.1 Samples

The examples found in this guide can be run directly from Eclipse development
environment. For instructions on accessing and running the samples, refer to the
tutorials within the toolkit.

http://symphony.lotus.com/
http://www.java.sun.com/
http://www.java.sun.com/
http://symphony.lotus.com/

4.2 Convention

The following convention is used for sample code in this guide:

ProgramExample

4.3 Related documentation

® Lotus Symphony Java Toolkit Javadoc Reference
® [otus Symphony Java Toolkit Tutorial

Part 2. Product overview

Chapter 1. Introduction to Lotus Symphony

Lotus Symphony is a set of applications for creating, editing, and sharing word
processing documents, spreadsheets, and presentations. Designed to handle the
majority of office tasks, the Lotus Symphony tools support the Open Document
Format (ODF), enabling organizations to access, use, and maintain their documents
over the long term without worrying about end-of-life uncertainties or ongoing
software licensing and royalty fees. By using tools that support ODE customers are
not locked into one particular vendor for their productivity tools. ODF helps provide
interoperability and flexibility.

With Lotus Symphony, users create, manage, edit, and import documents in ODF.
However, Lotus Symphony tools can also import, edit, and save documents in
Microsoft® Office formats or export those documents to ODF for sharing with ODF-
compliant applications and solutions.

Lotus Symphony offers more than simple office application suite. Because it leverages
the Eclipse-based product IBM Lotus Expeditor and OpenOffice.org technology, a
variety of plug-ins that expand the functionality of Lotus Symphony are available
from the Lotus Symphony Web site, and third parties can build additional plug-ins to
extend Lotus Symphony.

Chapter 2. Lotus Symphony architecture

Lotus Symphony is derived from OpenOffice.org and it is built on the Eclipse plug-in
framework and the Lotus Expeditor rich client platform. In essence, Lotus Symphony is
a package of Eclipse plug-ins.

2.1 Overview of Lotus Symphony architecture

Lotus Symphony wraps the OpenOffice.org application as Eclipse components to
provide office document applications.

The following picture shows a high-level outline of the Eclipse architecture as Lotus
Symphony uses it.

Enterprise/|SV application(e.g. Symphony editor)

Java ™ Class Library (jciDeskiop)
Java ™ Virtual Machine (IBM J9 Technology for jciDesktop)

Eclipse is a general-purpose and open-source framework on which you can develop
applications. A plug-in is the smallest unit of Eclipse Platform function that can be
developed and delivered separately. Statically, Lotus Symphony is a set of Eclipse
plug-ins which re-packages OpenOffice.org; in runtime, Lotus Symphony re-parent
OpenOffice.org window into an Eclipse SWT(Standard Widget Toolkit) control.

You can extend Lotus Symphony by creating plug-ins that contribute to or extend the
Lotus Symphony plug-ins. Your plug-in can access any of the services that are
exposed by Lotus Symphony or its underlying platforms, for example, the Lotus
Expeditor platform or Eclipse platform.

2.2 Overview of Eclipse

Eclipse was originally an integrated development environment. Eclipse offers the Rich
Client Platform (RCP), which is required if you want to use the Eclipse graphic toolkit
to build stand-alone applications. For more information about Eclipse and RCP, refer
to the following resources:

http://www.eclipse.org

http://wiki.eclipse.org/index.php/RCP_FAQ

The following table lists and describes some of the Eclipse platform components that
Lotus Symphony uses.

http://wiki.eclipse.org/index.php/RCP_FAQ
http://www.eclipse.org/

2.3 Overview of Lotus Expeditor

IBM Lotus Expeditor is a server-managed client solution that extends back-end server
services to new users who use a range of client devices spanning desktops, laptops,
mobile devices and specialized devices.

There are several Expeditor solutions, including Lotus Expeditor for Desktop, Lotus
Expeditor for Devices, Lotus Expeditor Toolkit and Lotus Expeditor server. The
combination of the Lotus Expeditor clients and the Lotus Expeditor server provide the
end-to-end services necessary to deliver and manage end-to-end applications. Lotus
Expeditor Toolkit provides a complete, integrated set of tools that allow you to
develop, debug, test, package and deploy client applications. Lotus Symphony is
based on Lotus Expeditor for Desktop. In the remaining parts of this document, when
Lotus Expeditor is mentioned, it is intended to mean Lotus Expeditor for Desktop.

Lotus Expeditor Client for Desktop is an integrated client platform for desktops and
laptops that extends the J2EE programming model to clients. The client provides a

rich client platform that can operate disconnected from the enterprise such that

enterprise applications can operate when the client is online and offline.

The following table lists some of the Expeditor services that Lotus Symphony uses.

Service
Application manager

Embedded browser
Spell check

Personalities

Application launcher

Eclipse Ul extensions
Spell check

Description

Enables users to directly install applications and components from
standard Eclipse update sites onto managed clients.

Provides a configurable embedded Web browser.

Spell check functionality is used to check misspelled
words in document. It is based on Text Analyze
framework.

Personalities define the framework that the platform uses
to determine what perspectives or windows, menus,
actions action bar items and status line controls are

displayed when the application starts.

The Launcher is represented in the user interface as a button with
a drop down menu that contains the list of applications available
to the user.

Common Ul extensions provided by Eclipse platform.
Spell check functionality is used to check misspelled
words in document. It is based on Text Analyze
framework.

2.3.1 J9 JCL Desktop

Lotus Symphony for Microsoft® Windows® and Linux® operating systems uses a
compacted, custom Java Runtime Environment known as the J9 Java Class Libraries
(JCL) Desktop. While this pared down J9 Java Runtime Environment enables a
smaller footprint for the Lotus Symphony client, the J9 does not contain the full
number of Java classes included in the standard 1.4.2 or 1.5 Sun JVM. For example,
some of the classes not contained in the J9 JVM are AWT and Swing classes, which
are used for graphical user interface (GUI) objects in Java applications. These
packages are not part of the J9 JVM.

Accordingly, developers might encounter issues when creating plug-ins that references
a class or package (such as AWT or Swing) that is not included in the J9 VM.

2.3.2 The profile of Lotus Expeditor used by Lotus Symphony

Lotus Symphony uses a minimal profile of the Lotus Expeditor platform. The
following picture describes the profiled platform. Many components are removed
from the Expeditor platform, such as Web Application Perspective, Portlet Viewer,
WSRP, and SSO. The Lotus Symphony profiled Expeditor platform maintains a
minimal set of components required by the rich client application model.

I Eopee e, M B~

Entemprise / ISV Applications

Erribedded Rich Client Spall Check Compsite Application
Browser Perspecte AT Infastructure

Preferance

Ui Mabile Extersios Personalities Aoplication Launches Application Manager

Eclipse Ll Extensions Help System DrawdD

Eclipse Core Extension Point Framework (Eclipse)

Property
Broker

¥sD| SDC| BME

05GI R4
Java ™ Class Library (jciDesktop)
Java ™ VMirtual Machine (IBM J9 Technology for jclDeskiop)

Windows® X Pro Windows® *F Tablst Window=® *F Home ‘Windows® 2000 RedHat RHEL WS 4 SUSE Enterprise Line:

2.4 OpenOffice.org

OpenOffice.org is the open source project through which Sun Microsystems has
released the technology for the StarOffice” Productivity Suite. All of the source code
is available under the GNU Lesser General Public License (LGPL).

OpenOffice.org is based on Universal Network Objects (UNO) technology and is the
base component technology for OpenOffice.org. You can utilize and write components
that interact across languages, component technologies, computer platforms, and
networks. In Lotus Symphony, UNO is available on Linux, and Windows for Java, C+
+ and OpenOffice.org Basic. UNO is available through the component technology
Microsoft COM for many other languages. UNO is used to access Lotus Symphony
back-end services, using its application programming interface (API). The
OpenOffice.org API is the comprehensive specification that describes the
programmable features of OpenOffice.org.

Chapter 3. Lotus Symphony programming model

Lotus Symphony is the combination of Eclipse-based Lotus Expeditor and
OpenOffice.org. Both of these products provide rich APIs for application integration.
In Lotus Symphony, the OpenOffice.org window is re-parented to a SWT control in
Eclipse. Most of the user interface contribution items are provided through Eclipse
extension points, such as the menu, toolbar, status bar and preference page. With this

approach, Lotus Symphony provides flexibility for user interface integration with

other Eclipse and Lotus Expeditor-based applications.

The programming model of Lotus Symphony can be described as:

® User interface integration is based on Eclipse/Expeditor extension points and
plug-in framework.

® Document content level API is based on OpenOffice.org UNO capability.

® Lotus Symphony API focuses on the integration between OpenOffice.org and
Eclipse/Expeditor.

® Add-in mechanism is based on Expeditor Application Manager.

In this way, Lotus Symphony inherits the user interface flexibility of Eclipse and

Lotus Expeditor and rich functionality of UNO APIs.

The following screen capture shows the user interface items.

':i-ﬁ_'-’ﬂ;er Document — Document — IBE Lotus Notes - E-)-(‘
File Edit V¥Yiew Create Tools{idd-ins) Table Layout Hindow Help MEI]U
Launcher
*LBleE-8-9(ee¢ (¥ Toolbar
Elcreate - | (1] @ [100%] o
iz - w2 s o
= Side Shelf
: Text Properties = x| i
E A Font [
Font: Size: AUtO
|| [1ines Hew Renslw][12 [v] Recognizer
Hide futo Recognize Mark o - =
| Auto Hecognizer Freterences. .. ::“
= Background color:
1 =
[Defaut v
et N | L
B & Effects
o
Underlining: ol
I T
[Home [l pefatt |
- ;trikethroug%\:__ _ tions . i‘V
|5 T g .
- E] [811 Thxt Froperties] Statl.lb
[i all . L Bay
« |) Paze 1 1/ 1 |In3Col 21 Default |100% INSEET STD %

Part 3. Extending Lotus Symphony

Chapter 1. Setting up the integrated development

environment

The integrated development environment (IDE) is based on Eclipse 3.2 and Lotus
Symphony. All the steps in this procedure are for a Windows operating system, but the
process on the Linux operating system is similar.

1.

Install Lotus Symphony and Eclipse 3.2.

a)
b)

c)

Download Eclipse 3.2 and Lotus Symphony.

Unpack Eclipse 3.2 to a local disk, for example, D:\eclipse as
<ECLIPSE HOME>.

Install Lotus Symphony to a local disk, for example, D:\Lotus\Lotus
Symphony as <SYMPHONY HOME>.

Install the J9 launching plug-in and the J9 SDK.

Download Lotus Expeditor Toolkit zip file from the site: http://
www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus
+Expeditor+Toolkit.

Extract the downloaded zip file; copy the J9 JDT launching plug-in ZIP file
from \Expeditor\C10FQMUL\Expeditor Toolkit install\plugins\, such as
org.eclipse.jdt.launching.j9 6.1.1.jar, from directory plugins just unzipped to
the Eclipse subdirectory in the directory where you installed Eclipse, for
example, <ECLIPSE HOME>\plugins\.

Extract and unzip the contents of the downloaded J9 SDK zip file from
\Expeditor\C10FQML\Expeditor Toolkit install\plugins\, such as
com.ibm.pvc.wct.runtimes.jcl.desktop.sdk.win32.x86 6.1.1.200707311521
on Windows platform, from directory plugins just unzipped to a directory,
such as D:\J9 SDK\.
Note 1: There is also another way to install J9 SDK for the Symphony based
development, to see details, follow the site: http://www-128.ibm.com/
developerworks/lotus/library/expeditor-toolkit/.

Start the Eclipse IDE.
Make sure that it is starting up in a new or freshly cleaned workspace. Remnants
from prior installations might cause problems, so create a new workspace for each

installation.
Set the target platform.

a)

Select Window > Preferences.

http://www-128.ibm.com/developerworks/lotus/library/expeditor-toolkit/
http://www-128.ibm.com/developerworks/lotus/library/expeditor-toolkit/
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit
http://www14.software.ibm.com/webapp/download/nochargesearch.jsp?q=Lotus+Expeditor+Toolkit

b) In the left panel, select Plug-in Development > Target Platform.

c¢) In the location field, click Browse and select the Eclipse under the Lotus
Symphony installation root directory, for example, <SYMPHONY HOME>
\framework\eclipse.

d) Click Reload.

Set up the J9 JRE runtime.

a) Select Window > Preferences.

b) In the left panel, select Java > Installed JREs.

¢) Click Add and enter the following settings in the window:

JRE type:]9 VM

JRE name: JCL Desktop

JRE home directory: <J9 SDK>\jre
Default VM arguments: -jcl:max

d) Click OK to return to the Installed JREs window, and then select the
configuration you just created (JCL Desktop).

e) Click Edit to access the Edit JRE window.

f) Click Add External JARs and browse to <JRE_HOVE>\ | i b\ j cl max
\ ext , where <JRE_ HOME> is the home directory of J9 SDK(<J9 SDK>
\jre).

g) Select all the JAR files listed and click Open. The JAR files display under the
JRE system libraries in the Edit JRE window.

h) Click Add External JARs again and browse to <JRE_HOVE>\| i b
\'j cl max\ opt - ext . Select all the files, and click Open to return to the
Edit JRE window.

i) Click OK to return to the Installed JREs window.

j) Select the JCL Desktop option to make it the default.

Note 2: When can’t get through with d) or finished step 5, select the JRE installed

in this step and click the Edit to make sure that the JAR files in the directory of

<JRE_HOVE>\I1i b\ cl max\ ext and <JRE_HOVE>\1i b\j cl max

\ opt - ext are really added to the JRE system libraries’ list in the Edit JRE

dialogue window. If not, select the JCL Desktop and click edit, then repeat the

step f) to i) in this step 5 at Edi t JRE dialogue window.

Create your own project code in this Eclipse workspace.

Create a new runtime configuration in the Eclipse IDE:

a) Select Run > Run....

b) In the left panel, select Eclipse Application from the configuration list.

¢) Right-click and select New.

d) Enter a name, for example, Lotus Symphony.

e) Select Clear workspace data before launching.

f) Under Program to Run, select Run a product.

g) For Run a product, select
com.ibm.productivity.tools.standalone.branding.productivitytools from
the product list.

h) In the Runtime JRE, select JCL Desktop which was created in step 5.

10

i) Select the Arguments tab, and set the arguments as described in the following
steps:

Set the Program arguments:

-personality com.ibm.productivity.tools.standalone.personality

-debug

-console

Set the VM arguments:

-Xbootclasspath/a:${rcp home}/rcp/eclipse/plugins/com.ibm.rcp.base ${rcp version}/

rcpbootcp.jar

Set the variables for arguments:

i) Click Variables.

ii) On the Select Variable window, click Edit Variables.

iii) On the Preferences window, click New.

iv) Enter r cp_homne for the name.

Note 3: If the dir path contains space character, sometime it may make the

Eclipse can’t parse the path and find the file rcpbootcp.jar correctly. If this

happens when you finished all of steps and launch the Symphony , you can

change the install directory of the Symphony or change its long name to a short
name to avoid space character, such as change “Program Files” to “Progra~1".

v) Enter the path where you installed Lotus Symphony for the value, for
example, <SYMPHONY HOME>\ f r amewor k.

Note 4: All path separators slash (/) in directories listed in the following

arguments can also be backslash (\) on Windows, but the slash must be used on

Linux systems.

There are also several variables in the argument strings, which are resolved in

next step.

vi) Click OK to finish adding this variable.

vii) Click New again.

viii)Enter r cp_ver Si on for another variable.

ix) Enter the current version number of the com.ibm.rcp.base plug-in. You
can find its exact version number from your installed Lotus Symphony
directory. For example, if the installed plug-in is located in directory
<SYMPHONY HOME>\ f r amewor k\ r cp\ ecl i pse\
pl ugi ns\com i bmrcp. base_6. 1. 0. 0- 200701121347, then
its version number is 6.1.0.0-200701121347.

x) Click OK to finish adding this variable.

xi) On Preferences window, click OK to finish adding variables.

xii) Click Cancel on the Select Variable window.

Note 5: If you select OK on Select Variable window, the first variable "$

{build_project}" in the list is added automatically to Program arguments

field, and it causes a launching error. In this case, delete ${build project} from

this field, and continue again.

11

j) Select Close to finish creating the new configuration.
8. To run or debug, select Run > Run or Debug > Debug.
Note6: Please use Java compiler 1.4 as plugins’ Java compiler. Java compiler 5.0 may
not work correctly.
Note 7: On Redhat system, sometimes a java.lang.UnsatisfiedLinkError exception is
thrown when launching the Lotus Symphony. Try to fix it with the command like the
following:
lddconfig /opt/ibm/lotus/Symphony/framework/shared/eclipse/plugins/

com.ibm.productivity.tools.base.system.linux 3.0.1.20080123-2030

Chapter 2. Customizing the Lotus Symphony user

interface

The followed examples are all need you build a plug-in project firstly, and then edit
the plugin.xml file directly by the code provided below. If you don’t familiar with how
to build a plug-in project, please go to the Part 5 Example plug-in to see the details.

2.1 Contributing to menu

Lotus Symphony allows the contribution of new menus to its main menu. The
contribution is achieved through the Eclipse extension point:
org.eclipse.ui.actionSets.

For convenient, we recommend menus of third parties contributed to somewhere
under the menu “Add-ins”. If other third party has defined the menu “Add-in”, you
can use it; otherwise, you should define such a menu and use it.

Adding to the menu

To add to the menu and toolbar, do the following steps:
1) Extend Or g. ecli pse. ui.acti onSets extension point in the
pl ugi n. xm file:

<extension point="org.eclipse.ui.actionSets">
<actionSet id="com.ibm.lotus.symphony.example.ui.actionSet"
label="example action set"
visible="true">
<menu
id="com.ibm.lotus.symphony.addinsmenu"
label="Add-ins"

path="com.ibm.rcp.ui.actionsmenu">

12

<separator name="additions"/>
</menu>

<action id="com.ibm.lotus.symphony.example.ui.exampleAction"
menubarPath="com.ibm.lotus.symphony.addinsmenu/additions"
label="Sample Menu"
tooltip="Sample Menu Tooltip"
class="com.ibm.lotus.symphony.example.ui.ExampleAction"
enablesFor="1">

</action>

</actionSet>

</extension>
The label property of the action element specifies the name of the menu item or

toolbar button label. The menubarPath and toolbarPath properties specify their
location in the menu bar and toolbar.

2) Implement the action class:

import org.eclipse.jface.action.IAction;

import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.ui.IWorkbenchWindow;

import org.eclipse.ui.IWorkbenchWindowActionDelegate;

public class ExampleAction implements IWorkbenchWindowActionDelegate ({

private IWorkbenchWindow window;

/*
* (non-Javadoc)

*

* @see org.eclipse.uil.IWorkbenchWindowActionDelegate#dispose ()
=y

public void dispose () {

}

/*
* (non-Javadoc)

*

* @see org.eclipse.uil.IWorkbenchWindowActionDelegate#init (org.eclipse.ui.IWorkben
w3 chWindow)
=y

public void init (IWorkbenchWindow window) {

this.window = window;

/*

13

*

*

*/

(non-Javadoc)

@see org.eclipse.ui.IActionDelegate#selectionChanged (org.eclipse.jface.action.I

Action, org.eclipse.jface.viewers.ISelection)

public void selectionChanged (IAction action, ISelection selection) {

/*

*

*

(non-Javadoc)

* @see org.eclipse.ui.IActionDelegate#run(org.eclipse.jface.action.IAction)

*/

public void run(final IAction action) {

MessageDialog.openInformation (window.getShell (), "Information",

"Menu pressed") ;

The action class must implement | Wor kbenchW ndowAct i onDel egat e, or
| Wor kbenchW ndowPul | downDel egat e, for the action to be shown as a pull-
down tool item in the toolbar.

Package
The extension point is provided by Eclipse Rich Client Platform.
See also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/

org.eclipse.platform.doc.isv/reference/extension-points/

org_eclipse_ui_actionSets.html

File

Example

The code above results in the following display of the menu:

@Het Document — Document — IEN Lotus Syaphony

Edit ¥iew Create BGLESHS Tool=z Table Layout Window Help

14

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

2.2 Contributing to toolbar

Lotus Symphony allows the contribution to main toolbar. It is suggested to contribute
you own toolbar group. The contribution is achieved through Expeditor extension
point: com.ibm.rcp.ui.controlSets.

To contribute items to Symphony main toolbar, you can perform the following steps:
1) Make sure your plugin have the following dependencies:
® com.ibm.productivity.tools.core
® com.ibm.productivity.tools.ui.toolbar
® com.ibm.rcp.jfaceex
2) Extend com.ibm.rcp.ui.controlSets extension point in plugin.xml:
<extension
point="com.ibm.rcp.ui.controlSets">
<controlSet
id="com.ibm.productivity.tools.sample.documentworkflow.controlset"
label="Sample Control Set"
preferredwWwidth="20%"
visible="false">
<toolBar
id="com.ibm.productivity.tools.sample.documentworkflow.toolBar"
path="BEGIN GROUP">
</toolBar>
<control

class="com.ibm.productivity.tools.sample.documentworkflow.SampleControl

id="com.ibm.productivity.tools.sample.documentworkflow.control"
toolbarPath="com.ibm.productivity.tools.sample.documentworkflow.toolBar
0>
</control>
</controlSet>

</extension>

2) Provide class to define your control:

import org.eclipse.jface.action.Action;

import org.eclipse.jface.action.IAction;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.ui.PlatformUI;
import com.ibm.productivity.tools.ui.toolbar.SODCActionContributionItem;

public class SampleControl extends SODCActionContributionItem {

15

public IAction createAction() {

Action action = new Action () {

public void run() {
MessageDialog.openInformation (PlatformUI.getWorkbench ()
.getActiveWorkbenchWindow () .getShell (), "Information",

"Control pressed");

}i

action.setText ("Sample") ;

action.setToolTipText ("Sample") ;
// action.setImageDescriptor (Activator.imageDescriptorFromPlugin (
// Activator.PLUGIN ID, "docs/itemCampo.png"));

return action;

}
3) (Optional) Define association in plugin.xml if you want to associate your toolbar

with Symphony views.

com.ibm.productivity.tools.ui.toolbar.controlSetSODCAssociations is an extension
point defined to associate control sets with Symphony views so that those associated
control sets only show up when a Symphony view is activated. To extend this
extension point, in the first place, a control set has been defined.

The class attribute of control has to be a class that is a sub-class of
SODCActionContributionltem, which is defined in bundle
"com.ibm.productivity.tools.ui.toolbar". More, the visible attribute of control set has
to be "false".

To associate this control set with symphony view, define below extension:
<extension
point="com.ibm.productivity.tools.ui.toolbar.controlSetSODCAssociations">
<controlSetSODCAssociation>
<controlSet
id="com.ibm.productivity.tools.sample.documentworkflow.controlset"
visible="true">
</controlSet>
</controlSetSODCAssociation>

</extension>
Here, the visible attribute defines if this controlset is visible by default .

16

Package

com.ibm.rcp.platform.controlSets are defined in Lotus Expeditor platform.
com.ibm.productivity.tools.ui.toolbar.controlSetSymphonyAssociations are defined in
com.ibm.productivity.tools.ui.toolbar plugin.

See also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/
ore.eclipse.platform.doc.isv/reference/extension-points/
org_eclipse_ui_actionSets.html

Example

The code above results in the following display of the menu:

- =~ fiz- 98 Sample

2.3 Contributing to launcher button

Lotus Symphony allows the contribution to its “New” button which is under the main
menu area. The contribution is achieved through the Eclipse extension point:
comibmrcp.ui.launcher Set .

Launching items

The extension point com.ibm.rcp.ui.launcherSet supports many types of launch items
including:
® A URL launch item, which opens a URL.
® A perspective launch item, which opens a perspective.
® A native program launch item, which opens a native program on the system.
® A custom launch item other than a URL, perspective ID or native program.
The following markup adds a new perspective launch item:
<extension
point="com.ibm.rcp.ui.launcherSet">
<LauncherSet
id="sym.guide.test.LauncherSet"

label="sym.guide.test.LauncherSet">

<urlLaunchItem

17

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

iconUrl="http://www.ibm.com/i/v14/t/us/en/search.gif"
id=" com.ibm.productivity.tools.sample.tests.googleLauncherItem"
label="Test URL Launcher Item - Google"

url="http://www.google.com/"/>

</LauncherSet>

</extension>
Package
The extension point is provided by Lotus Expeditor.
See also

http://publib.boulder.ibm.com/infocenter/ledoc/v6rl 1/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm_rcp_ui_launcherSet.html

Example

View Help

#% Home

4 Lotus Symphony Docurnents

o Lotus Symphony Presentations
() Latus Symphony Spreadsheets

7% Horne IBM Lotus Symphony BETA

(8 Web Browser
w Test URL Launcher ltefn - Google

2.4 Contributing to side shelf

T Be Free. Work Smatrt.

A side bar is a stack of shelf views typically located on either the right or left side of
the Lotus Symphony user interface. Plug-in developers can add views to a side bar in

the user interface which is based on the Lotus Expeditor extension point:
comibmrcp.ui.shel fViews.

18

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html

Adding a new view in the shelf view

Lotus Symphony makes use of the Eclipse [ViewPart interface to tie each shelf view
to the workbench. Each view part has a view site that connects it to the workbench,
allowing the view to register any global actions with the site’s action bars, including
access to its own panel menu, a local toolbar, and the status line. The view can also
register any context menus with the site, or register a selection provider to allow the
workbench’s ISelectionService to include the part in its tracking.

To contribute items to Symphony shelf view, you can perform the following steps:
1) Make sure your plugin have the following dependencies:
® com.ibm.productivity.tools.ui.views
com.ibm.productivity.tools.core
com.ibm.rcp.jfaceex
com.ibm.rcp.ui

® com.ibm.rcp.swtex
2) Extend the com.ibm.rcp.ui.shelfViews extension point in plugin.xml:
<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView

id="com.ibm.productivity.tools.sample.ShelfView"
page="LEFT"
region="BOTTOM"
showTitle="true"
view="com.ibm.productivity.tools.sample.ShelfView"/>

</extension>

3) Add the view a contribution to the org.eclipse.ui.views extension point in the
plugin.xml file for the plug-in, as seen in the following example:
<extension
point="org.eclipse.ui.views">
<category
name="Sample Category"
id="com.ibm.productivity.tools.sample">
</category>
<view
name="Document Sample"
icon=" "
category="com.ibm.productivity.tools.sample"
class="com.ibm.productivity.tools.sample.ShelfView"
id="com.ibm.productivity.tools.sample.ShelfView">
</view>

</extension>

19

Make sure that the following attributes are specified:

The name attribute describes the string to be displayed in the title bar.

The id attribute is the unique identifier of the view and is used to refer to the view
when contributing to the shel f Vi ews extension point.

The class attribute specifies what class is referenced in this extension.

The icon attribute describes the icon to be displayed in the top left corner of the title
bar. The standard size is 16 x 16 pixels.

The view should be optimally viewed in a frame approximately 186 pixels wide. The
view is also resizable. Make sure that the content can be scrolled (if applicable), and
that any toolbars do not get cut off, or have chevrons pointing to more actions.

4) Implement the view class:

package com.ibm.productivity.tools.sample;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.ui.part.ViewPart;
public class ShelfView extends ViewPart {

public void createPartControl (Composite arg0) {

// TODO Auto-generated method stub

public void setFocus () {

// TODO Auto-generated method stub

Package
The extension point is provided by Lotus Expeditor.
See also

http://publib.boulder.ibm.com/infocenter/ledoc/vérl1/index.jsp?topic=/
com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html

20

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html

Example

@Hule — JHN Lotuz S5ymphony
File View Window Help

mlocument Sample A

@ IBEM Lotus Symphony EETA

Be Free. Work Smatrt.

2.5 Auto recognizer

Auto recognizer is a technique to allow users to take actions based on the text they
input in the Lotus Symphony editor. It assists users to do extra operations on the
content of a document by underlining items in a special pattern. It provides a gateway
to provide further information and activities related to the identified item, specific to
users' needs. By using auto recognizer, Lotus Symphony can provide a more
collaborative environment.

Note: Auto recognizer is only available in the Writer application and only single word
patterns are supported.

Using the auto recognizer

Lotus Symphony provides the auto recognizer framework and also the auto recognizer

component, PropertyBroker, which is inherited from the Lotus Expeditor

platform. To use the auto recognizer, you must do the following things:

1. Adding dependencies the com.ibm.rcp.autorecognizer and the
com.ibm.rcp.propertybroker plugins.

2. Implement a detector to define how to detect patterns.

3. Add the action to the com.ibm.rcp.propertybroker.PropertyBrokerDefinitions
extension point.

4. Add the recognizer to the com.ibm.rcp.autorecognizer.Recognizer extension point

The following picture is the overall architect of auto recognizer.

21

Extension Point! ™
com.ibm.rcp autorecognizer.Recognized

-
sapwertt

| Recognizers |

e

Get Action List

contribute
Broker
Component

Adding the auto recognizer to the extension point

file:

To add the auto recognizer, perform the following steps:
1. Add the com.ibm.rcp.autorecognizer.Recognizer extension point in the plugin.xml

<extension

point="com.ibm.rcp.autorecognizer.Recognizer">
<types>

<define-method id="SampleRecognizer">
<type

datatype="SampleType"
default-name="SampleType"

multi-segment="true"

namespace="http://www.ibm.com/wps/c2a"/>

</define-method>

<custom
class="com.ibm.productivity.tools.samples.C2A.recognizer.SampleDetector"/>
</types>
</extension>

2. Implement a SampleDetector class to define how to detect the pattern. Only a single

word will be detected by the underlying auto recognizer framework in the document
public class SampleDetector implements IDetect {

22

private String m Itemlist[] = {"PropertyBroker","AutoRecognizer"};

public static ArrayList taglist= new ArrayList();

/* (non-Javadoc)

* @see com.ibm.rcp.autorecognizer.recognizer.IDetect#detect (java.lang.String)
Y/
public DetectResult detect (String word) {

try {

for (int 1 = 0; 1 < m Itemlist.length; i++) {

if (m _Ttemlist[i].equals(word)) ({
DetectResult rlt = new DetectResult ()
rlt.start = 0;
rlt.offset = word.length();
rlt.value = word;

return rlt;

}
} catch (Exception e) {

e.printStackTrace();

}

return null;

Add an action

To add an action, perform the following steps:
1) Addthecom i bm propertybroker. PropertyBrokerDefinitions

extension point in the pl ugi n. xm file:

<extension

point="com.ibm.rcp.propertybroker.PropertyBrokerDefinitions">

<handler

class="com.ibm.productivity.tools.samples.C2A.actions.SampleAction"
file="wsdl/SampleAction.wsdl"
type="SWT_ ACTION"/>

</extension>

2) Define the wsdl file:

<definitions name="Sample Service"
targetNamespace="http://www.ibm.com/wps/c2a"

xmlns="http://schemas.xmlsoap.org/wsdl/"

23

xmlns:portlet="http://www.ibm.com/wps/c2a"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.ibm.com/wps/c2a"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<types>
<xsd:schema targetNamespace="http://www.ibm.com/wps/c2a">
<xsd:simpleType name="SampleType">
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="Sample Status">
<xsd:restriction base="xsd:boolean">
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

</types>

<message name="Sample Keyword">
<part name="keyword" type="tns:SampleType"/>

</message>

<message name="Sample Status">
<part name="sample status" type="tns:Sample Status"/>

</message>

<portType name="Sample Service">
<operation name="sample event">
<input message="tns:Sample Keyword"/>
<output message="tns:Sample Status"/>
</operation>

</portType>

<binding name="SampleBinding" type="tns:Sample Service">

<portlet:binding/>

<operation name="sample event">

<portlet:action name="SampleAction"

type="standard"

caption="SampleAction"

description="Sample Event"

24

actionNameParameter="ACTION NAME"/>

<input>
<portlet:param name="keyword" partname="keyword" caption="Sample.Event"/>

</input>

<output>
<portlet:param name="sample status" partname="sample status"
caption="Sample.Status"/>

</output>

</operation>
</binding>

</definitions>

3) Implement a SampleAction class:

public class SampleAction implements IHandler ({

public void addHandlerListener (IHandlerListener arg0) {

//do nothing

public void dispose () {
//do nothing
}
/**
* while clicking the context menu, this method will be invoked.
=y
public Object execute (ExecutionEvent event) throws ExecutionException {
final PropertyChangeEvent evt = (PropertyChangeEvent) event.getTrigger();

Display.getDefault () .asyncExec (new Runnable () {

/* (non-Javadoc)
* @see java.lang.Runnable#run ()
Y/
public void run() {
//open an message box.
Display dsp = Display.getCurrent();
Shell sh = new Shell (dsp);
MessageBox box = new MessageBox (sh, SWT.ICON INFORMATION) ;
box.setText ("Event") ;
box.setMessage ("Sample event triggered by: "

+ evt.getPropertyValue () .getValue());

box.open();

25

}) i

return null;

public boolean isEnabled() {

return false;

public boolean isHandled() {

return false;

public void removeHandlerListener (IHandlerListener arg0) {

//Do nothing

Package
com.ibm.rcp.autorecognizer.
See also

Property broker extension point in Lotus Expeditor:
http://publib.boulder.ibm.com/infocenter/ledoc/v6rl/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm_rcp_propertybroker PropertyBrokerDefinitions.html

Example

In following example, a plug-in defines that “PropertyBroker” and “AutoRecognizer”
are two keywords, and add a special action (in this example, the SampleAction) to
this pattern. When the keywords are found in the document, the words are underlined
which indicates that this is a special pattern. If users move the cursor to the pattern,
pull-down button displays and they can click the button to invoke pattern-related
actions. The source code for this example is provided above.

26

http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html

This iz vword Te coghimer Leymordl: Daans g, | ¥ |

Thic icword re cogrimer Leyword? dutoFec oatizer | .
7 Samplefction

Hide Auto Recognize Marlk

Auto Becognizer Preferences. ..

2.6 Contributing to status bar

Lotus Symphony allows the addition of arbitrarily sophisticated user interface controls
to the status bar and the toolbar, through the Lotus Expeditor extension point
comibmrcp.ui.control Sets.

Adding an item to the status bar

To add an item into status bar, complete the following steps:
1) Add thecom i bm rcp. ui . control Set s extension point in the
pl ugi n. xm file:

<extension
point="com.ibm.rcp.ui.controlSets">
<controlSet
visible="true"
id="example.ControlSet">
<statusLine
path="BEGIN_ GROUP"
id="example.statusline">
<groupMarker name="additions"/>
</statusLine>
<control
statusLinePath="example.statusline/additions"
class="com.ibm.Lotus.Symphony.example.ExampleStatusbarItem"
id="example.control"/>
</controlSet>
</extension>
The statusLine element defines a marker location for other status line items to be
added similarly to the menu element in actionSet.
The statusLinePath property specifies the path in the statusbar.

2) Implement the control class:

package com.ibm.Lotus.Symphony.example;

27

import org.eclipse.jface.action.ContributionItem;
import org.eclipse.swt.SWT;
import org.eclipse.swt.custom.CLabel;

import org.eclipse.swt.widgets.Composite;

public class ExampleStatusbarItem extends ContributionItem {
public void fill (Composite parent) {
CLabel label = new CLabel (parent, SWT.SHADOW IN | SWT.LEFT);
label.setSize (300, 20);
label.setText ("status") ;

label.setToolTipText ("text");

)
The control class must implement | Cont ri butionltem and implement fill
(Conposite parent).

Package
This extension point is provided by Lotus Expeditor.
See also

http://publib.boulder.ibm.com/infocenter/ledoc/vérl1/index.jsp?topic=/
com.ibm.rcp.doc.schemas/reference/extension-points/
com_ibm rcp ui_controlSets.html

Example

- status

2.7 Preferences page

After a plug-in has added extensions to the Lotus Symphony user interface, let users
control some of the behavior of the plug-in through user preferences.

Store plug-in preferences and show them to the user on pages in the Lotus Symphony

Preferences window. Plug-in preferences are key/value pairs in which the key
describes the name of the preference and the value is one of several different types.

28

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html

Adding a preferences page

The or g. ecl i pse. ui . pr ef er encePages extension point lets you add pages
to the Lotus Symphony preferences (File > Preferences). The preferences window
presents a hierarchical list of user preference entries. Each entry displays a
corresponding preference page when selected.

To add a preference page, complete the following steps:
1) Add the or g. ecl i pse. ui . pr ef er encePages extension point in the
pl ugi n. xm file:

<extension
point="org.eclipse.ui.preferencePages">
<page
class="com.ibm.lotus.symphony.example.preferences.ExamplePreferencePage"
id="com.ibm.lotus.symphony.example.preferences.ExamplePreferencePage"
name="Lotus Symphony Example"
category="com.ibm.productivity.tools.core.preferences.documenteditors.Doc
umentEditors" />

</extension>

This markup defines a preference page named "Lotus Symphony Example" which is
implemented by the class Exanpl ePr ef er encePage.

2) Add the or g. ecl i pse. core. runti me. pref er ences extension point in
the pl ugi n. xm file:
<extension
point="org.eclipse.core.runtime.preferences">
<initializer
class="com.ibm.lotus.symphony.example.preferences.Preferencelnitializer"/>

</extension>

The extension point Or g. ecl i pse. core. runti me. pr ef er ences lets plug-
ins add new preference scopes to the Eclipse preference mechanism and to specify the
class to run that initializes the default preference values at runtime.

3) Implement the page class.

The page class must implement the | VWr kbenchPr ef er encePage interface. The
content of a page is defined by implementing acr eat eCont ent s method that
creates the SWT controls representing the page content:

import org.eclipse.jface.preference.IPreferenceStore;

import org.eclipse.jface.preference.PreferencePage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.GridData;

29

import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.IWorkbench;

import org.eclipse.ui.IWorkbenchPreferencePage;

//import sym.guide.test.Activator;

public class ExamplePreferencePage extends PreferencePage implements
IWorkbenchPreferencePage {

private Text usrID;

public ExamplePreferencePage () {
super () ;
setPreferenceStore (Activator.getDefault () .getPreferenceStore());

setDescription ("example preference") ;

protected Control createContents (Composite parent) {
Composite composite = new Composite (parent, SWT.NULL) ;
composite.setLayout (new GridLayout (2, false));
Label usrLabel = new Label (composite, SWT.NONE) ;
usrLabel.setText ("User") ;
usrID = new Text (composite, SWT.BORDER|SWT.RIGHT) ;
usrID.setLayoutData (new GridData (100, SWT.DEFAULT)) ;
initializeValues() ;

return composite;

private void initializeValues() {
IPreferenceStore store = getPreferenceStore();
String userID = store.getString("USER ID");

usrID.setText (userID) ;

protected void performApply () {
IPreferenceStore store = getPreferenceStore();

store.setValue ("USER ID", usrID.getText()):

public boolean performOk () {

performApply () ;

30

return super.performOk() ;

protected void performDefaults () {
IPreferenceStore store = getPreferenceStore();

usrID.setText (store.getDefaultString ("USER ID"));

public void init (IWorkbench arg0O) {

}
4) Implement the page class and initialize class.

The initialize class is used for preference initialization:

package com.ibm.lotus.symphony.example.preferences;

import org.eclipse.core.runtime.preferences.AbstractPreferencelnitializer;

import org.eclipse.jface.preference.IPreferenceStore;
//import sym.guide.test.Activator;

public class PreferencelInitializer extends AbstractPreferencelInitializer {
/*
* (non-Javadoc)

*

* @see

org.eclipse.core.runtime.preferences.AbstractPreferencelnitializer#initial

* izeDefaultPreferences ()
=y
public void initializeDefaultPreferences () {

IPreferenceStore store = Activator.getDefault ().getPreferenceStore() ;

store.setDefault ("USER_ID", "tom");

Package
The extension point is provided by Eclipse Rich Client Platform.
See also

http://publib.boulder.ibm.com/infocenter/wsphelp/index.ijsp?topic=/

31

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html

org.eclipse.platform.doc.isv/reference/extension-points/

org_eclipse ui_preferencePages.html

Example

@ Preferences

[type filter text Lotus Sy... Example - ~

= IEM Lotus Symphony example preference
cohecessibility

- Color Scheme User;- tuﬁ:
Colors B T
File Superwision
File Type Associations
Fonts

[+ Language Settings

[+ Lotus Symphony Documents

B Lotus Symphony Example
[+l Lotus Symphony Fresentati
[+ Lotus Symphony Spreadshee
Macro Security

Memary

[Restore Eefaults] [Apply]

[0K || rcancel |

Chapter 3. Lotus Symphony JavaAPIs and extension

points

3.1 Selection service

In Eclipse, the selection service provided by the Eclipse workbench allows efficient
linking of different parts within the workbench window. Each workbench window has
its own selection service instance. The service keeps track of the selection in the
currently active part and propagates selection changes to all registered listeners. Such
selection events occur when the selection in the current part is changed or when a
different part is activated. Both can be triggered by user interaction or
programmatically.

Each Lotus Symphony view registers the selection provider, so it is possible to
monitor if a selection change event occurs.

When opening or creating a document by user interaction or programmatically, the

32

view is opened as an Eclipse Vi ewPar t . The view registers the selection provider to
Eclipse workbench window. When an application registers a selection listener, the
listener is notified when the selection changed in the view.

Selection in the view

From the user’s point of view, a selection is a set of highlighted text or objects in a
view. Internally, a selection is a data structure holding the model objects which
correspond to the graphical elements selected in the view. Almost all text or objects
can be selected in the view for these kinds of applications: writer, spreadsheet, and
presentation. The selection can be presented in several ways and you can only get the
text content from the selection. It might be possible to present the selection using
HTML or ODF XML format.

Accessing the current selection

The Lotus Symphony workbench keeps track of the currently selected part in the
window and the selection within this part. Each view registers it as the selection
provider, even if you do not need to propagate its selection now. Your plug-in is ready
for future extensions by others.

To access the current selection of current Lotus Symphony view:
IWorkbenchWindow window = PlatformUI.getWorkbench () .getActiveWorkbenchWindow () ;
ISelectionService service = window.getSelectionService();

ISelection selection = service.getSelection();

Retrieving text content from the selection

To get the text content from the selection:

IWorkbenchWindow window = PlatformUI.getWorkbench () .getActiveWorkbenchWindow () ;

ISelectionService service = window.getSelectionService();

ISelection selection = service.getSelection();

IAdaptable adaptable = (IAdaptable)selection;

RichDocumentContentSelection textSel = (RichDocumentContentSelection)
adaptable.getClass (RichDocumentContentSelection.class);

String text = textSel.getText();

33

Tracking selection change

Typically views react on selection changes in the Lotus Symphony workbench
window, however, it is better to register an | Sel ecti onLi st ener to get notified
when the window’s current selection changes:
IWorkbenchWindow window = PlatformUI.getWorkbench () .getActiveWorkbenchWindow () ;
ISelectionService service = window.getSelectionService () ;
ISelectionListener listener = new ISelectionListener ()
{
public void selectionChanged(IWorkbenchPart part, ISelection selection) {
//do something..
}
}i

service.addSelectionListener (listener);

Removing the selection listener

Remove the selection listener when you cannot handle events, such as when your view
has been closed. Use the di spose() method to remove your listener:
public void dispose()
{
IWorkbenchWindow window = PlatformUI.getWorkbench () .getActiveWorkbenchWindow () ;
ISelectionService service = window.getSelectionService();
service.removeSelectionListener (listener);

super.dispose () ;

Package
com.ibm.productivity.tools.ui.views
See also
JavaDoc in Lotus Symphony toolkit.
Example

The sample Translation buddy view behaves in this way: whenever the text content

34

selection changes in the Lotus Symphony writer view, the selected text is displayed on
the Input area of the view automatically.

@Lpplicatiun Development for Lotuz Notes Domino, S5ametime. .. E@@
File Edit V¥iew Create Tools Add-ins Table Layout Window Help

-‘;f-' Application Development for Lotus M., =

b3 ’ =3 i _%:ll % Send to Urnte meeting... || |58 || Bl Create - |] @ ¥

Default Text W b 2 = - EE = =~ =E

@ Translation buddy amll = ; 7 2

i & Lo ol En B e ebel e rrag e e e ~

Input: security—rich Degigrer
environments that can
integrate with existing
systems and
infrastructure while
supporting customer
choice to use open
ztandards. o3

Source: Eng;-llsh V-I

Targzet: EI-:hinese : V".
= : t0 uge opet
[Tranzlate]

Output: [TEn AOSEES HRLHHEELE | _
SR TE AR Lotus Notes and Domino supparts
Br Rl L] the IEM strategy and continues to
TR RL R R = ALEEY gl b
(Tl = = e i R evolve in its long-standing support of 3]
Fﬁﬁﬁ&ﬁﬂﬁﬁx%ﬁﬂﬂiﬁ : et it " m

+ |Page'l 1 /1 |[In...11 [Default :IDD?_IHSERT |STD |HYF

3.2 RichDocumentViewFactory

The Ri chDocument Vi ewFact ory class handles the creation, accessing and
closing of a rich document view. A listener can be registered through

com i bm productivity.tools.ui.views.!|istener extension points to
monitor the opening and closing of a rich document view. The factory class provides
global static methods to handle the rich document views.

The factory class is used to create, open or close rich document view

programmatically.

1) Create new document through the user interface or API, for example, click File-
>New->Document.

2) Open the document through the user interface or API.

3) Close the document through the user Interface or API.

4) Get the list of opened views using the API.

35

Creating a new rich document view

Use the following example code to create a new rich document view by specifying
whether the document type is writer, spreadsheet or presentation type at creation time:

RichDocumentViewFactory.openView (RichDocumentType.DOCUMENT TYPE) ;

For more information about how to configure the map, see the Javadoc in the toolkit.
Opening a local file in a new rich document view

Use the following example code to open a file in a new rich document view:
String fileName = ; //e.g. c:\\temp.odt

RichDocumentViewFactory.openView (fileName, false);
You can also specify the configuration map as same as opening new document. In the
above code, you set the properties side bar to close mode. You can also decide whether

you want to load the document as a template.

Typically, the document is loaded in a new tab, which depends on the windows and
theme settings, of the preference page.

Getting the list of opened rich document views

Use the following example code to get the list of opened rich document views:

RichDocumentView[] views = RichDocumentViewFactory.getViews () ;

All rich document views opened in Lotus Symphony are returned.
Closing a rich document view

Perform the following code to close a rich document view. The window tab is closed
when the view is closed:
RichDocumentView view = ...; // get an instance of rich document view

RichDocumentViewFactory.closeView(view);

Registering the listener using the extension point

Thecom i bm productivity.tools.ui.views.|istener extension
point is defined to monitor the status of RichDocumentView instance. If a listener is

36

registered when Ri chDocunent Vi ewis created, closed or a document is loaded,
the listener is notified. Currently the following events are supported:

® Type Pre Document Open — a rich document is about to be opened in a view
Type Post Document Open — a rich document is opened in a view

Type Pre Document Close — a rich document is about to be closed in a view
Type Post Document Close — a rich document is closed in a view

Type Post Open — a rich document view is opened

Type Pre View Close — a rich document view is about to be closed

Type Post View_ Close — a rich document view is closed

To use the listener, perform the following steps:
1) Addthecom i bm productivity.tools.ui.views.l|istener
extension point:
<extension
id="SampleListener"
name="Sample Listener"
point="com.ibm.productivity.tools.ui.views.listener">
<listener
class="com.ibm.productivity.tools.sample.views.SampleListener"
id="SamplelListener"
/>

</extension>

2) ImplementaRi chDocunent Vi ewli st ener class:

public class SamplelListener implements RichDocumentViewListener ({

public void handleEvent (RichDocumentViewEvent event) {

System.out.println(event.getType());

In this example, the get Sour ce() event returns the R chDocunent Vi ew
instance which fires the event.

Package
com.ibm.productivity.tools.ui.views.
See also

JavaDoc in Lotus Symphony toolkit.

37

Example

Typically, when opening or loading a document, the document is opened in a new tab,
which depends on the windows and theme settings, in preference page. When closing

a document, the tab is closed.
@le' Document — Document — IBN Lotus Symphony

File Edit ¥iew Create MySample Tools Add-inz Table Layout ¥Window Help

HE & B § (| Sendto Unyte meeting.. | [E] Create + iDefau.‘Lt Text v|

v
s

e VT ST TG 5 ' 7 | [2)]]: Text Properties = x

Font: Size:

_‘ | |2 A Font

|Times Hew Roms[v||12 V|

Style: Font color:
[
- Regilar ¥ | Default ¥

Background color;
— | [pagmre v

© & Effects

Underlining:
|None M ||Default |
Strikethrough: Uptions:
vl L el
L E] [

£ f |

W

1
411 Text Properties]

+ |Paget 1/1|In1Colt|Default 49% |THSERT STD Mye | |

3.3 RichDocumentView

The Ri chDocunent Vi ewprovides an interface for all Lotus Symphony view
instances and defines common functions on a Lotus Symphony view. The view
usually maps to an Eclipse Vi ewPar t internally. New user interface items binding to
the ViewPart are configurable through this interface, like the menu, toolbar, properties
side bar and status bar.

Accessing existing RichDocumentView instances

You can get or create a R chDocument Vi ewinstance through

Ri chDocunent Vi ewFact ory first, then use the APIs defined in
Ri chDocunent Vi ewto perform the following tasks:

® Open another file in the view.

® Close the document in the view.

® Save the document in the view to another file.

38

® Add or remove a listener.
® Get the UNO model of the current document.

Using DefaultRichDocumentView directly

Beside the RichDocumentView interface, a default implementation named
DefaultRichDocumentView is also provided. The DefaultRichDocumentView is an
instance of Eclipse ViewPart and RichDocumentView. You can write a new
perspective which aggregates several Eclipse ViewParts into one page.

Extending a new view

You can extend the default implementation to define your own view.

The following example code demonstrates how to reuse the
DefaultRichDocumentView. The sample code implements a WriterView which creates
a writer document in the ViewPart. The ViewPart can be integrated into an Eclipse
perspective or displayed by an IWorkbenchPage. Refer to Eclipse and Lotus Expeditor
programming instructions about how to use it. The complete sample code is also
provided in the Productivity Tools toolkit:

public class WriterView extends DefaultRichDocumentView {

/*x
* The constructor.
*/

public WriterView () {

super () ;

}

public void createPartControl (Composite parent) {
super.createPartControl (parent) ;

createWriter () ;

private void createWriter ()

{

NewOperation operation = OperationFactory.createNewOperation

(RichDocumentType.DOCUMENT TYPE) ;

operation.execute (this);

39

Operations on rich documents

The following code example demonstrates how to load a rich document in the rich
document view. The WriterView is created as above. There are also SaveOperation,
SaveAsOperation, CloseOperation provided in the Javadoc API. The usage is similar
to LoadOperation to the Javadoc API for more details:
private void loadDocument ()
{
LoadOperation operation = OperationFactory.createlLoadOperation ("c:\
\text.odt", false);

this.executeOperation (operation) ;

Monitoring operations

The following code example demonstrates how to detect that a document is loaded into the rich
document view. The WriterView is created as above. The example code demonstrates how to add
an operation listener into the Vi ewPar t when the Vi ewPar t is created. When a load operation
is issued, the monitor is called. The Qper at i onLi st ener is applicable to all default
operations and is documented in the Javadoc API:

public class WriterView extends DefaultRichDocumentView {

/**
* The constructor.
“Y
public WriterView () {
super () ;

}

public void createPartControl (Composite parent) {
super.createPartControl (parent) ;
monitorLoading () ;

}

private void monitorLoading()

{

OperationlListener listener = new OperationListener ()
{

public void afterExecute (Operation operation, RichDocumentView view) {

if (operation instanceof LoadOperation)

40

System.out.println("document is loaded:"
+ ((LoadOperation)operation).getFileName()) ;
Object document = ((LoadOperation)operation) .getUNOModel () ;

afterLoading (document) ;

public void beforeExecute (Operation operation, RichDocumentView view) {
if (operation instanceof LoadOperation)
System.out.println("document is about to be loaded:"

+ ((LoadOperation)operation).getFileName()) ;

}i
this.addOperationListener(listener);

}

Chapter 4. Using the UNO API to access a document

model

Lotus Symphony Java API is only responsible for managing the Eclipse-based Lotus
Symphony view. If you want to access and modify content within the document, use
the UNO API, which is inherited from OpenOffice.org.

Accessing the document model

In Lotus Symphony, you can use the following code to get the UNO model of the
current document:

RichDocumentView view = ...;

Object obj = view.getUNOModel () ;

XModel model = (XModel)UnoRuntime.queryInterface(XModel.class, obj);

After you have the XModel object, you can access all UNO APIs within the model.
For example, if you want to detect the document type, you can use this example code:
public String detectDocumentType (XModel model)

{

String type = "";

41

XServiceInfo info = (XServiceInfo)UnoRuntime.querylInterface
(XServiceInfo.class, model);
if(info.supportsService ("com.sun.star.text.TextDocument"))
type = "Writexr";
else 1if(info.supportsService ("com.sun.star.sheet.SpreadsheetDocument"))
type = "Spreadsheet";
else if(info.supportsService
("com.sun.star.presentation.PresentationDocument"))

type = "Presentation";

return type;

Using the writer document model

If the document is a writer document, all UNO APIs can be used with Java. With the
UNO API, you can almost do anything you want in the document, for example:
Navigating objects like text, paragraph, or tables in document.

Inserting or removing objects.

Getting or setting the property of objects.

Getting or setting selections.

Accessing and modifying document metadata.

Some typical use cases are described in following sections. For more details, refer to
the OpenOftice.org SDK Developer’s Guide.

Setting the whole text of a document

Use the following example code to change the whole text of a document:
public void setWholeTextofDocument (XModel model)
{

XTextDocument xdoc = (XTextDocument) UnoRuntime.queryInterface (

XTextDocument.class, model) ;
XText xdocText= xdoc.getText () ;
//simple text insertion
xdocText.setString ("The whole text of this document.\n" +

"The second line...");

4

Inserting a table in a document

Use the following example code to insert a table to the document:

public void insertTable(XModel model)
{
XMultiServiceFactory xDocFactory = (XMultiServiceFactory)
UnoRuntime.queryInterface (XMultiServiceFactory.class,
model) ;
XTextDocument xdoc = (XTextDocument) UnoRuntime.queryInterface (
XTextDocument.class, model);

XText xdocText= xdoc.getText () ;

// Create a new table from the document's factory
try {
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface (
XTextTable.class, xDocFactory .createlInstance (
"com.sun.star.text.TextTable"));
// Specify that we want the table to have 4 rows and 4 columns

xTable.initialize(4, 4);

// Insert the table into the document

xdocText.insertTextContent (xdocText.getStart (), xTable, false);

} catch (Exception e) {
// TODO Auto-generated catch block

e.printStackTrace();

Setting text in the current cursor

Use the following example code to set content in the current cursor:
public void setSelection(XModel model, String content) {
//the controller of the model
XController xController = model.getCurrentController();
// Query TextViewCursor
XTextViewCursorSupplier xViewCursorSupplier =
(XTextViewCursorSupplier)UnoRuntime.queryInterface (

XTextViewCursorSupplier.class, xController);

43

//get the view cursor
XTextViewCursor viewCursor = xViewCursorSupplier.getViewCursor();
//set the content to the view cursor

viewCursor.setString(content);

Using the spreadsheet document model

If the document is a spreadsheet document, all UNO APIs for spreadsheet document
can be used with Java. With the UNO API, you can almost do anything you want in
the document, for example:

Accessing sheets, cells, and cell ranges in the document.
Modifying content of sheets, cells, or cell ranges.
Creating charts.

Using functions.

A typical use case is described in the following section. For more details, refer to the
OpenOffice.org SDK Developer’s Guide.

Setting the content of a cell

Use the following example code to set the content in column 2 row 3 in the first sheet:

public void setCellText (XModel model, String content)

{

//query the sheet document
XSpreadsheetDocument sheetDocument = (XSpreadsheetDocument)
UnoRuntime.queryInterface (XSpreadsheetDocument.class, model);
XSpreadsheets xSheets = sheetDocument.getSheets();
XSpreadsheet xSheet = null;
try
{
com.sun.star.container.XIndexAccess xSheetsIA =
(com.sun.star.container.XIndexAccess)
UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class,
xSheets);
//get the first sheet in the document
xSheet = (com.sun.star.sheet.XSpreadsheet) UnoRuntime.queryInterface (

com.sun.star.sheet.XSpreadsheet.class, xSheetsIA.getByIndex(0));

com.sun.star.table.XCell xCell = null;

// —--- Get cell of column 2 row 3- (column, row) --—-—

44

xCell = xSheet.getCellByPosition(1, 2);
com.sun.star.text.XText xText = (com.sun.star.text.XText)
UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
xText.setString(content);
}
catch (Exception ex)
{

ex.printStackTrace () ;

Using the presentation document model

If the document is a presentation document, all UNO APIs for presentation document
can be used with Java. With the UNO API, you can almost do anything you want in
the document, for example:

® Accessing and modifying pages and shapes in the document.

® Inserting and removing pages or shapes in the document.

® Playing the presentation.

For more details, refer to OpenOffice.org SDK Developer’s Guide.
Chapter 5. Packaging and deploying your plug-ins

After you have completed plug-in development, you ought to run your code in
installed Lotus Symphony product environment, or distribute your plug-ins to
customer Lotus Symphony environment. To achieve it your application needs to be
packaged and deployed.

The content below in this chapter illustrates how to package and deploy an application
to Lotus Symphony based on the samples which can be found from IBM Lotus
Symphony toolkit.

5.1 Creating a feature

A Feature contains a manifest that provides basic information about the feature and its
contents, including plug-ins and fragments. A feature is deployed and delivered in the
form of a JAR file.

Now that your plug-in is ready to be deployed, it will need to be packaged in a manner

that will be recognized by Eclipse Update Manager. Eclipse Update Manager is an
Eclipse tool that manages versions and deployment of plug-ins and fragments.

45

Next, you need to create a Feature for your plug-in(s):

1. Make sure your plug-in is open in the Workspace you created.

2. Select File — New — Project. This will launch the New Project Wizard.
3. Select Feature Project wizard, and then click Next, as shown in the following figure:
& New Project [‘5_(|

Select a wizard

_reate a Feature project

‘Wizards:

| byvpe Filker bext

- lﬁ— Plug-in Project

F- 22 General

H- = CYS

bl (2 Java

== Plug-in Development

I = OO T T
b1 =}

56

: Eﬁ‘ Feature Project
Smple FrAQMERE Project
n'_"_ﬁ Plug-in From existing JaR archives
5 "fi Plug-in Project

" Update Site Project

e

4. On the New Properties page for the New Feature wizard, complete the Properties as
follows:

46

&= Hew Feature

Feature Properties
Define properties that will be placed in the feature xzml file

Rk T Sl - om. 1 b, productivity tools, 54

Use default location

Feature properties

Feature ID: !_u:-:um. ibm_._E’ndu-:tivitE. tools. smgl:feature |
Feature Name: E-S_aal_np.-le Feature -|
Feature Verzion: |1“|:||:| _i
Feature Frovider: ;IBH |
[
|

In=tall Handler Library: I

7 | <Back || HWext> || (Finish || Cancal |

5. Click Next.

6. On the Referenced Pug-ins and Fragments page, select the plug-in you are making
ready for deployment from the list, and then click Finish.

The wizard now creates your feature package and opens the feature on the Overview
tab of the feature.xml file. You can always come back to this view (known as the
feature manifest editor) by double clicking the feature.xml file.

7. There are many options in this view. Change the following fields if necessary:

a. In the Branding Plug-in field, click the Browse... field.

b. Select the plug-in you wish to deploy and click OK, as shown in.

c. In the Update Site URL field, enter the Eclipse Update Site URL.

d. In the Update Site Name field, enter the site name.

This information is used to specify the site that will be used to load your feature using
Eclipse Update Manager. When Update Manager looks for updates, it will look for
sites defined in your update site URL. If you have not created an Eclipse update site
yet, you can change this setting later.

e. In the Supported Environments section, enter OS, platform, and language
specifications, if these are required by your plug-in. For our example, this is not
necessary.

8. Click the Information tab.

47

The Feature Information, Copyright, License and Sites to Visit tabs are displayed.
Feature information is displayed to the user by the update manager when the feature is
selected.

9. For each of these tabs, you can either enter a URL, if sites already exist, or you can
enter the information in the Text area for each.

10. In the Optional URL field, enter a URL and name for any other relevant Update
sites you have.

11. Click the Plug-in tab.

12. Confirm that your plug-in is listed in the Plug-ins and Fragments window. If it is
not, click Add... and select the plug-in you wish to include, and then click OK.

13. Click the Version button.

14. Select Synchronize Versions on Build (recommended), as shown in the following
figure, and then click Finish. This will synchronize your feature version and plug-in

version:
& Feature Versions E]
Yersion Synchronization ' W

|
A
Choose a method ko synchronize Feature and plug-in wersions, :- ':-'

Synchronization Opkions

() Svnchronize versions on build {recommended)

() Copy wersions Fram plug-in and Fragment manifests

{) Force Feature version into plug-in and Fragment manifests

(7 Finish] [Zancel

15. Your feature and plug-in are now ready to deploy.

48

5.2 Creating an update site

An update site is the key mechanism to enable installation of the application, which
includes the features and plug-ins to be deployed. For more information on update
sites, including how to create one, please see the Getting Started > Update Sites
section of the PDE Guide.

The steps of creating an update site are:

1. Open Eclipse. Be sure to open the workspace where you created your plug-in and
feature.

2. Select File — New — Project.

3. Select Update Site Project, as shown in the following figure, and then click Next to
launch the wizard.

& New Project

Select a wizard

Create an Update Site project |

Wizards:

kype filber bext

ff} Flug-in Projeck

22 General

(= CYS

I+ lava

== Plug-in Developrment
& r{i Feature Patch

h -"_,'_{__5 ¥
sl Feature Projeck

[+
|

I+

i -glfﬁ Fragrment Project

LR Flug-in From existing JAR archives
B el Jg=ir-Prajack

e

Update Site Projeck

A

4. The New Update Site wizard has only one page:

a. Enter a Project name. You should enter the plug-in name and append another word
to denote that this is an update site project.

b. Select Use the default location.

c. Check the Generate a Web page listing all available resources within the site if you

49

want it deployed through web site.

5. Click Finish. The wizard creates your update site within your Eclipse workspace.

6. To add your feature(s), double-click the site.xml file located in the Package Explorer
frame.

7. This will open your site manifest editor in the editor frame (center frame).To add
your new feature, click Add Feature. If you are adding more than one feature/plug-in or
plan to in the future, you may choose to organize them by category.

8. Select the feature you are including in this update site. You can select more than one
by holding down the Ctrl key. When finished selecting, click OK.

9. Click the Build All button. This adds the /Features and /Plug-ins directories to the
Site project and populates them with JAR files containing your feature and plug-in
files. This will now build your update site locally.

10. Export this update site project to file system, e.g. F:\deploy\PT sample.

5.3 Deploying with an update site

In this option, customers can deploy applications to an existing Lotus Symphony

client in a standard update site installation.

Launch Lotus Symphony and choose the File > Applications > Install menu item.

e Select "Search for new features to install" and next.

e Click "Add Folder Location" and select the update site project which is just
created in local file system, then click Finish button.

50

Application Locations

To install applications, add the location of the application folder, ZIFSTAR file, or"._-._'fl .
remote location (UREL) to the liszt. To Edit or Remowe a location, first highlight the ‘)‘—f
h

location name.

Location list: Select the locations to check for awailable locations

V.ﬂPT_saf“PleJ'rSﬁmP]-E [Add Remote Location. .. J

I_ Add Folder Location. .. .|

[Add Zip/Ter Location. .. |

I_ Import locatiom. ..]

[Export locatiom. ..]

lg;nore features not applicable to thi= enviromment

Hest > [Einish || Caneal |

e In"Updates" dialog, select the update site, and then click Next.

@ Updates

Zearch Results N
Select features to install from the search result list. 'r

Select the features to install:

Deselect A1l

Mo Trf
floyre 1Tro

v i
Froperties

Select Required

Error Details

1 of 1 zelected
Show the latest wersion of a feature only

51

e Accept the terms in the license agreements in Install dialog, click Next, and

Finish in next dialog.

Feature Licensze

Some of the features hawve licensze agreementsz that you need to accept before

proceeding with the installation.

. 1bm. productivi

< T ¥

Usze of thiz feature 1z subject to the same
and conditions which govern the use of the
which ineluded this feature.

terms

Froduct

@I accept the termsz in the licensze agreementsz

'::}I do not accept the terms in the license agreements

[

< Back][Hext >] Finizh

Click “Finish” to install

& Install

Installation

Features to install:

the imported feature.

The following features will be installed

Feature Hame

om. 1bm. productivity,

Feature Version Feature Size

Required space; Unlmown
Free space: 20,12 GE

I

Cancel

52

After the mentioned steps, there is a new menu appearing in menu bar which shows you have
successful installed your applications.

53

Part 4. Expeditor and UNO programming

Chapter 1. Developing Lotus Expeditor applications

There are several application models that are defined in Lotus Expeditor, although
some of them are not available in Lotus Symphony, for example, the Web application
model and portlet application model.

When opening a document from the user interface or API, the document is opened
using the following steps:

1) Anew perspective is created as a new tab window.

2) A Lotus Symphony view is created in the perspective as an Eclipse Vi ewPart .

3) Anew SWT control is created in the view.

4) The SWT control loads the document.

This guide focuses on how to extend Lotus Symphony with Expeditor and Eclipse
extension points. After you understand the rich client application model in Lotus
Expeditor, you can build your own rich client applications based on the Lotus
Symphony APIs. A large variety of applications can be built with this application
model, for example, the Lotus Notes 8 client. Lotus Notes 8 is based on Lotus
Expeditor platform and the Lotus Symphony editor is integrated as an office
component.

The composite application model is another programming pattern provided by Lotus
Expeditor. In this model, multiple applications cooperate by using inter-component
communications. With this approach, you can aggregate several loosely coupled views
into one perspective. The property broker is used to communicate among different

views. The Lotus Symphony editor supports the composite application programming
model in Lotus Notes.

Chapter 2. UNO programming

2.1 Getting the global service factory

The com sun. st ar. | ang. Servi ceManager factory is the main factory in

54

every UNO application. It is the entrance point to the UNO world of Lotus Symphony.
The following tasks can be performed from the service manager:

e Instantiate services by their service name.

e Enumerate all implementations of a certain service.

e Add or remove factories for a certain service at runtime.

The service manager is passed to every UNO component during instantiation.

To get the ServiceManager, use the following example code:
public static XMultiServiceFactory getServiceFactory () {
XConnection conn = ProductivityToolsUtil.getUNOConnection () ;
XBridge mBridge;
try {
XComponentContext ctx = com.sun.star.comp.helper.Bootstrap
.createInitialComponentContext (null) ;
Object x = ctx.getServiceManager ().createInstanceWithContext (
"com.sun.star.bridge.BridgeFactory", ctx);
XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime

.queryInterface (XBridgeFactory.class, X);

//

// create a nameless bridge with no instance provider
//

try {

mBridge = xBridgeFactory.createBridge ("SODC Bridge", "urp",
conn, null);
} catch (BridgeExistsException beexp) {
mBridge = xBridgeFactory.getBridge ("SODC Bridge") ;
}
// get the remote instance
x = mBridge.getInstance ("StarOffice.ServiceManager") ;
//
// Did the remote server export this object?
if (null == x)

return null;

//

// Query the initial object for its main factory interface

//

XMultiComponentFactory xOfficeMultiComponentFactory =

(XMultiComponentFactory) UnoRuntime

.queryInterface (XMultiComponentFactory.class, x);
//
// Retrieve the component context

// Query on the XPropertySet interface.

55

//
XPropertySet xProperySet = (XPropertySet) UnoRuntime
.queryInterface (XPropertySet.class,
xOfficeMultiComponentFactory) ;
//
// Get the default context from the editor service.
//
Object oDefaultContext = null;
try {
oDefaultContext = xProperySet
.getPropertyValue ("DefaultContext") ;
} catch (UnknownPropertyException e) {
e.printStackTrace () ;
} catch (WrappedTargetException e) {
e.printStackTrace () ;
}
if (oDefaultContext == null)
return null;
XComponentContext context = (XComponentContext) UnoRuntime
.queryInterface (XComponentContext.class, oDefaultContext);
return (XMultiServiceFactory) UnoRuntime.queryInterface (
XMultiServiceFactory.class, context.getServiceManager())
} catch (Exception e) {
e.printStackTrace () ;
}

return null;

2.2 Using the import/export function

The import/export function is common in all three applications inside Lotus
Symphony. For different kinds of document types, there can be a different UNO
interfaces to support loading and saving operations.

The following sections detail the common interface used in all three applications, and
then specific document types which can have special interface support.

Loading new or existing components

The Desktop can load new and existing components from a URL. The
com.sun.star.frame. XComponentLoader interface has one single method to load and

56

instantiate components from a URL into a frame:

com.sun.star.lang.XComponent loadComponentFromURL([in] string aURL, [in] string
aTargetFrameName, [in] long nSearchFlags, [in] sequence<
com.sun.star.beans.PropertyValue > aArgs);

The URL is used to describe which resource should be loaded and in what sequence to

load the arguments. For the target frame, pass " blank" and set the search flags to 0 to

open a new frame. In most cases you will not want to reuse an existing frame.

The URL can be of these types: file:, http:, ftp:, or private:. For new documents, a

special URL scheme is used. The scheme is private:, followed by factory as the host

name. The resource is swri t er for word processor documents. For example, a new

word processor document, uses pri vate: factory/switer.

Storing documents

Documents are stored through their interface com sun. star. frame. XSt or abl e.

void storeASURL ([in] string aURL, sequence< comsun.star.beans.PropertyValue >
aArgs)
void storeToURL ([in] string aURL, sequence< com sun.star.beans.PropertyValue >

aArgs)

The method storeAsUrl() is the exact representation of a File > Save As operation,
that is, it changes the current document location. In contrast, method storeToUrl()
stores a copy to a new location, but leaves the current document URL untouched.

For exporting purposes, a filter name can be passed to st or eAsURL() and
storeToURL() that triggers an export operation to other file formats.

/** Store a document, using the MS Word 97/2000/XP Filter */

protected void storeDocComponent (XComponent xDoc, String storeUrl) throws
java.lang.Exception {

XStorable xStorable = (XStorable)UnoRuntime.queryInterface (XStorable.class, xDoc);

PropertyValue[] storeProps = new PropertyValue[l];

storeProps[0] = new PropertyValue() ;

storeProps[0] .Name = "FilterName";

storeProps[0] .Value = "MS Word 97";

xStorable.storeAsURL (storeUrl, storeProps) ;

}

57

Interface for exporting presentation documents and drawing

objects

Presentation documents and drawing objects can export drawing objects as graphics
through the com.sun.star.drawing.GraphicExportFilter interface. After getting a
GraphicExportFilter from the ServiceManager, use its XExporter interface to inform
the filter which page, shape, or shape collection to export.

Functions in this interface include:

void setSourceDocument ([in] comsun.star.lang.XComponent xDoc)
boolean filter([in] sequence< comsun.star.beans.PropertyValue > aDescriptor)

void cancel ()

The aDescriptor parameter in the filter function holds all the necessary information
about the document, such as document title, author, file name, URL, and version. All
such properties are organized in a com.sun.star.beans.PropertyValue [] array.

Following is example code is from the HTML filter inside Lotus Symphony:

try

Reference < XMultiServiceFactory > xMSF (comphelper getProcessServiceFactory
0)
if (!xMSF.is ())

return false;

Reference< XExporter > xGraphicExporter (xMSF->createlInstance(OUString
(RTL CONSTASCII USTRINGPARAM
("com.sun.star.drawing.GraphicExportFilter"))), UNO QUERY);

Reference< XFilter > xFilter (xGraphicExporter, UNO QUERY);

DBG ASSERT (xFilter.is(), "no com.sun.star.drawing.GraphicExportFilter?");
if(!'xFilter.is())

return false;

Sequence< PropertyValue > aFilterData(((m eFormat==FORMAT JPG) && (m nCompression
'= -1))? 3 : 2);

aFilterData[0] .Name = OUString(RTL CONSTASCII USTRINGPARAM ("PixelWidth"));

aFilterData[0].Value <<= (sal Int32)m nWidthPixel;

aFilterData[l].Name = OUString(RTL CONSTASCII USTRINGPARAM ("PixelHeight"));

aFilterData[l].Value <<= (sal Int32)m nHeightPixel;

58

if ((m_eFormat==FORMAT JPG) && (m_nCompression != -1))
{
aFilterData[2] .Name = OUString (RTL7CONSTASCIIiUSTRINGPARAM("Quality"))2

aFilterData[2].Value <<= (sal Int32)m nCompression;

Sequence< PropertyValue > aDescriptor(3);

aDescriptor[0] .Name = OUString(RTL CONSTASCII USTRINGPARAM ("URL"));

aDescriptor[1l].Name = OUString(RTL CONSTASCII USTRINGPARAM ("FilterName"));

aDescriptor[1l].Value <<= OUString(RTL_CONSTASCII_USTRINGPARAM
(m_eFormat==FORMAT GIF ? "GIF" : "JPG"));

aDescriptor([2] .Name = OUString(RTL CONSTASCII USTRINGPARAM("FilterData"));

aDescriptor([2].Value <<= aFilterData;

for (USHORT nSdPage = 0; nSdPage < m nSdPageCount; nSdPage++)

{

SdPage* pPage = pDoc->GetSdPage(nSdPage, PK STANDARD) ;

OUString aFull (m_aExportPath);

aFull += *m pImageFiles[nSdPage];

aDescriptor[0] .Value <<= aFull;

Reference< XComponent > xPage(pPage->getUnoPage (), UNO QUERY);
xGraphicExporter->setSourceDocument (xPage);

xFilter->filter (aDescriptor);

if (mpProgress)

mpProgress->SetState (++m nPagesWritten);
}

catch(Exceptioné&)

{

return false;

return true;
Using the print function

Lotus Symphony documents, spreadsheets and presentations all provide the print-
related interface cOm sun. st ar . t ext . XPagePr i nt abl e, and the print-related
properties COmM sun. star. vi ew. Pri nt er Descri pt or and

59

com sun. star. vi ew. Print Qpti ons. Specifically, Lotus Symphony
documents support printing multiple pages on one page by setting the property
com sun. star. text. PagePrint Settings. Lotus Symphony spreadsheets
provide access to the addresses of all printable cell ranges by the interface

com sun. star. sheet . XPri nt Ar eas. Lotus Symphony presentations have
some specific properties to define if the notes and outline view should be printed by
com sun. star. present ati on. Docunent Set ti ngs. For the detailed
information, refer to the OpenOffice.org SDK.

2.3 Text Documents

In the Lotus Symphony Documents API, a text document is a document model that is
responsible for managing text contents, through which, you can understand how the
basic data is organized and represented in the graphical user interface.

e You have to work with the model directly, when you want to change it through
the Lotus Symphony API to develop applications for your own usage. The
model is similar with OpenOffice 1.1, which also has a controller object that is
used to manipulate the visual representation of the document in the view areas
instead of being used to change a document.

The model is different from the controller, and we discuss the parts of a text document
model in the Lotus Symphony API and emphasize some differences between Lotus
Symphony Documents API and OpenOffice 1.1 Writer API. To the same parts, we
provide reference to OpenOffice 1.1 development guide directly.

The text document model in the Lotus Symphony API has these major architectural
areas that are the same as OpenOffice 1.1 API:

e Text(core content)

e Service manager (document internal)

e Draw page

e Text content suppliers(drawing objects)

e Text content suppliers (access content)

e Objects for styling and numbering(document wide)

The text is the core of the text document model. It consists of characters organized in
paragraphs and other text contents. So, all providers are surrounded with the character
strings.

The service manager of the document model is responsible for creating all text
contents for the model, except for the paragraphs. And each document model has its
own service manager, such as the spreadsheet document model and presentation
document model. Almost all of the text contents in a text document can be retrieved

60

from text content suppliers which are provided by the model, except the drawing
shapes that can be found on the DrawPage.

The DrawPage is floating over the text and it is responsible for drawing contents.
Drawing contents can affect the layout of the text around, such as wrap types.

There are also services that are for document-wide text styles and structures. The style
family suppliers are provided to customize document-wide paragraphs, characters,
pages and numbering patterns, and suppliers for line and outline numbering.

For more intuitionist ideas, refer to the Illustration 7.1 Text Document Model of
OpenOffice 1.1 Development Guide.

Working with text documents

Word processing

The document model provides the XText Docunent interface to work with text
through the method get Text () . Itreturns a cOom sun. st ar . t ext . Text
service that handles text in Lotus Symphony documents. The text service provides
interface XText and interface XEnumer at i onAccess. XText is responsible for
editing a text and XEnumer at i onAccess is responsible for iterating over text.
This part is almost the same as OpenOffice 1.1 with following exceptions. Developers
can refer to section 7.3.1 Text Documents - Working with Text Documents - Word
Processing of OpenOffice 1.1 Development Guide.

Editing text

Method set Attri butes() of
com sun. star.accessi bility. XAccessi bl eEdi t abl eText
might not work because the valid char index range of a character string might
be beyond the length of the string.

Inserting text files

Currently, Lotus Symphony Documents does not support such function.
Developers will meet unexpected issues while using the associated APIs
provided by OpenOffice 1.1.

Auto text

The auto text function can be used to organize reusable texts, which is the
same as OpenOffice 1.1.

61

Formatting

Lotus Symphony Documents formatting is the same as OpenOffice 1.1. Refer to
section 7.3.2 Text Documents - Working with Text Documents - Formatting of the
OpenOffice 1.1 Development Guide.

Navigating

There are types of model cursors provided to navigate character, words, sentences, or
paragraphs. The com sun. st ar. t ext. Text Cur sor service is a good example
of a model cursor that is based on the interface

com sun. star.text. XText Cursor.,

The text view cursor enables you to navigate over the document in the view by
character, line, screen page, or document page. There is only one text view cursor. The
information about the current layout, such as the number of lines and page number
must be retrieved at the view cursor. The text view cursor is a

com sun. star. text. Text Vi ewCur sor service that includes the service
com sun. star.text. Text Layout Cur sor.

Simultaneously, the text document model provides various suppliers that retrieve all
text contents in a document. Refer to section 7.3.3 Text Documents - Working with
Text Documents - Navigating of the OpenOffice 1.1 Development Guide.

Note: In certain scenarios, the interface
com sun. star.text. XSent enceCur sor might not work when the methods
i sStart O Sent ence() orisEndOfSentence() are called.

Tables

Lotus Symphony tables are text content and consist of rows, rows consist of one or
more cells, and cells can contain text or rows. It is the same as OpenOffice 1.1 and
there is no real logical concept for columns. Refer to section 7.3.4 Text Documents -
Working with Text Documents - tables of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents enhanced the table to span pages that might have
certain influences when using table related APIs.

The method i nsert Byl ndex() of the
com sun. star. tabl e. XTabl eCol umms interface might not work because the
design considers that inserting a column into a table should not be beyond the column

62

range of the table. This limitation means that after the index number of insertion is
beyond the range of the columns, the new column is appended after the last column of
the table.

The method r enoveByl ndex() of the
com sun. star. t abl e. XTabl eCol umms interface might not work because the
prior limitation affects the column count of the table, and leads to the failure.

The method aut oFor mat () of com sun. st ar. t abl e. XAut oFor matt abl e
might not work when a table is formatted automatically. The auto-format item named
"default" and some other auto-format items will be selected randomly from the

com sun. st ar. sheet . Tabl eAut oFor mat s service. After that, the results of
two auto-formats should be checked to determine whether they are same or not. In
certain scenarios, the only one auto-format item named “default” is retrieved from
com sun. st ar. sheet . Tabl eAut oFor mat s service, which is the same as the
former one.

Text fields

Text fields are text contents that are used to add another level of information to text
ranges. Usually their appearance fuses together with the surrounding text, but actually
the presented text comes from elsewhere and are generated only while being painted.
The types of Lotus Symphony fields are less than OpenOffice 1.1. Lotus Symphony
documents field commands only support insertion of the current date, time, page
number, total page numbers and user field. If you use other services described in
OpenOffice 1.1 Development Guide, they might create unexpected issues.

Fields are created through the
com sun. star. |l ang. XMul ti Servi ceFact ory and are inserted t hr ough
inserting TextContent (). The following text field services are available:
com.sun.star.text.textfield.DateTime -

Show a date or time value.
com.sun.star.text.textfield.PageCount-

Show the number of pages of the document.
com.sun.star.text.textfield.PageNumber-

Show the page number (current, previous, next).
com.sun.star.text.textfield.User-

Variable - User Field. Creates a global document variable and displays it whenever
this field occurs in the text. This service depends on
com.sun.star.text.FieldMaster.User.

All fields support the interfaces com sun. st ar . t ext. XText Fi el d,
com sun. star. util.XUpdat abl e,

63

com sun. st ar. t ext. XDependent Text Fi el d and the service

com sun. st ar. t ext. Text Cont ent . The method get Present ati on() of
the interface COM sun. st ar. t ext . XText Fi el d is used to generate the textual
representation of the result of the text field operation, such as a date, time, variable
value of user field or TIME (fixed), depending on the boolean parameter.

The method updat e() of the interface com sun. star. util. XUpdat abl e
affects only the following field types:

e Date and time fields are set to the current date and time.

e The ExtendedUser fields that show parts of the user data set for Lotus

Symphony, such as the user fields that are set to the current values.

e All other fields ignore calls to update().
It is the same as OpenOffice 1.1 and some of these fields need a field master that
provides the data that displays in the field. This requirement applies to the field types
User. Refer to the section 7.3.5 Text Documents - Working with Text Documents — Text
Fields of OpenOffice 1.1 Development Guide, returns a com.sun.star.text. TextFieldMasters
container holding the text field masters of the document. This container provides a
com.sun.star.container. XNameAccess interface. All field masters are named by the service name
followed by the name of the field master

Bookmarks

A bookmark is a kind of text content that marks a position inside of a paragraph or a
text selection that supports the com sun. st ar . t ext. Text Cont ent service.
The text document model provides the interface

com sun. st ar. t ext. XBookmar ksSuppl i er to retrieve and collect the

bookmarks.

Refer to section 7.3.6 Text Documents - Working with Text Documents - Bookmarks of
the OpenOffice 1.1 Development Guide.

Indexes and index marks

Indexes are also a kind of text content that centralize the information which is
dispersed over the document. Index marks are another kind of text content which is
the same as OpenOffice 1.1.

Refer to section 7.3.7 Text Documents - Working with Text Documents — Indexes and
Index Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents do not feature a bibliographical index. The Table
of Contents function of Lotus Symphony documents has been enhanced, which can

64

influence the result of the related APIs.
Reference marks

A reference mark is a kind of text content that is acting as the target for the

com sun. star.text.textfiel d. Get Ref er ence text fields. These text
fields can show the contents of reference marks in a text document and allow the user
to jump to the reference mark.

Refer to section 7.3.8 Text Documents - Working with Text Documents — Reference
Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony does not support t he

com sun. star.text.textfiel d. Get Ref er ence field. You might
encounter unexpected issues when using the related APIs.

Footnotes and endnotes

Footnotes and endnotes are a kind of text content that are responsible for providing
background information to the users on page footers or at the end of a document. The
footnotes and endnotes of Lotus Symphony documents are the same as with
OpenOffice 1.1. Refer to section 7.3.9 Text Documents - Working with Text
Documents — Footnotes and Endnotes of the OpenOffice 1.1 Development Guide.

Shape objects in text

Shape objects are text contents that act independently of the ordinary text flow.
TShape objects can float in front or behind text, and be anchored to paragraphs or
characters in the text or page and so on. It is the same as OpenOffice 1.1 and there are
two different kinds of shape objects in Lotus Symphony, base frames and drawing
shapes. Refer to section 7.3.10 Text Documents - Working with Text Documents —
Shape objects in Text of the OpenOffice 1.1 Development Guide.

Overall document features

Styles

Styles apply document-wide and can differentiate segments in a document that are

65

commonly formatted, and separate this information from the actual brushfire
formatting. TIt is a good way to unify the appearance of a document, and customize
the formatting of a document by altering a style, instead of local format settings after
the document has been completed. Styles are sets of attributes that can be applied to
text or text contents in a text documenting a single step.

Refer to section 7.4.1 Text Documents - Overall Document Features — Styles in Text of
the OpenOffice 1.1 Development Guide.

Line numbering and outline numbering

It is the same as OpenOffice 1.1 and Lotus Symphony provides automatic numbering
for texts. For instance, paragraphs can be numbered or listed with bullets in a
hierarchical structure, chapter headings can be numbered and lines can be counted and
numbered. Refer to section 7.4.3 Text Documents - Overall Document Features — Line
Numbering and Outline Numbering in Text of the OpenOftice 1.1 Development
Guide.

It is the same as OpenOffice 1.1. A text section is a range of complete paragraphs that
can have its own format settings and source location Refer to section 7.4.4 Text
Documents - Overall Document Features — Text Sections in Text of the OpenOftice 1.1
Development Guide.

Page Layout

The Lotus Symphony Page Layout is the same as OpenOffice 1.1. Refer to the section
7.4.5 Text Documents - Overall Document Features —Page Layout of OpenOffice 1.1
Development Guide.

Text document controller

The text document controller provides access to the graphical user interface for the
model and has knowledge about the current view status in the user interface. Refer to
section 7.5 Text Documents - Text Document Controller of the OpenOffice 1.1
Development Guide.

66

Text View

It is the same as OpenOffice 1.1 and refers to the section 7.5.1 Text Documents -
Overall Document Features — Text Document Controller - TextView of OpenOffice 1.1
Development Guide.

TextViewCursor

It is the same as OpenOffice 1.1 and refers to the section 7.5.2 Text Documents -
Overall Document Features — Text Document Controller - TextViewCursor of
OpenOffice 1.1 Development Guide.

2.4 Spreadsheets

Spreadsheet documents derive all UNO API from OOo1.1.0(OpenOffice.org 1.1.0).
The exposed APIs are almost the same as O0Oo01.1.0. Comparing to OOo01.1.0,
functional quality has been improved on the core function, so that the API quality is
enhanced accordingly when interfaces remain. In development, Several APIs have
been added or changed.

Different spreadsheet elements are presented by different interfaces in different
services.

Spreadsheet document: Operations of spreadsheet documents are mainly in
com.sun.star.sheet.SpreadDocument — whole document,

com.sun.star.sheet. XSpreadsheet - sheet, com.sun.star.frame.XStorable — document
saving and exporting, com.sun.star.view. XPrintable — document printing, and
com.sun.star.util. XProtectable contains methods to protect and unprotect spreadsheet
with a password, and text in of a cell. In cells and , as well as cell ranges, table rows,
columns, and Single cell:

com.sun.star.sheet.SheetCell is used to present cell object, and
com.sun.star.table. CellProperteis is used to format cell(s).

Cell Range: The service com.sun.star.sheet.SheetCellranges contains most of
interface of cell range. A cell range can be named with

com.sun.star.container. XNamed. Operations on cell ranges are covered by
com.sun.star.util. XReplaceable(Search, Find and Replace),

com.sun.star.table. TableSortDescriptor(Sort),
com.sun.star.sheet.SheetFilterDescriptor(Filter),
com.sun.star.sheet.SubtotalDescriptor(Subtotal functions). The spreadsheet interface
com.sun.star.sheet. XSheetOutline contains all the methods to control the row and
column outlines of a spreadsheet.

67

Enhancement

User interface refresh:

A spreadsheet document often gets a cell value by invoking an API. Compared to
filling in the cell value manually, the API updates cell values more frequently, which
can cause a large range of spreadsheet cells because of cross referencing among cells.
To resolve this issue, use this method:

interface XCellRange;

void SyncDocument([in] boolean bEnable)

Note: This method is used to to resolve the performance issue when changing the
values of a number of cells by the UNO API. This method must be called in pairs.
When SyncDocument is disabled, only cells that have a value changed is updated in
user interface. All of the formulas or charts depending on this cell do not get refresh
until SyncDocument is enabled.

/** whether to sync document data and update document status when changing
content in cells.
SyncDocument(FALSE) and SyncDocument(TRUE) should be called in pairs.
@param bEnable
when bEnable is TRUE, it will sync immediately and set document modified.
when FALSE, some data and UI don't update immediately when changing content
in cells.
*/

Example:
SyncDocument (FALSE) ; //disable to update some of UI and document data
for (1=0;1<100; 1++)
setcell (a, i, 1);

SyncDocument (TRUE) ; //enable and update immediately.

Import external data from a file:

Interface XAreaLinks;

insertAtPosition([in] com.sun.stat.Table.CellAddress aDestPos,
[in] string arFileName,
[in] string asSourceArea,
[in] string aFilter,
[in] string aFilterOptions,
[in] boolean bLink) ;

A new parameter, bLink, is added to this method.
When bLink == True, the source area will be inserted to aDestPos with linkage kept.
When bLink == False, only the value will be inserted.

68

Do not use the following UNO APIs:

Interface and methods in service com.sun.star.sheet. DDELinks(Not fully tested).
Interface and methods in service com.sun.star.sheet. DatabaselmportDescriptor
(Not fully tested).

Interface and methods in service com.sun.star.sheet.Scenarios(Not fully tested).
Methods in interface com.sun.star.sheet. XSheetAuditing(Not fully tested).
Methods to import data from a Web server(Not fully tested).

2.5 Charts

In IBM Lotus Symphony, charts are always embedded objects inside other Lotus
Symphony documents. The chart document UNO API is almost the same as
00o01.1.0. Like the spreadsheet document, enhancements have been added in the
Lotus Symphony core function, which will improve the API quality.
Chart can be added into spreadsheet document with source in a cell range. In
presentation document or a writer document, a chart can be added as an OLE shape.
Symphony Chart API provides capability of creating chart, accessing existing chart,
and modifying chart property and elements. Ideally all the operations in chart which
can be accomplished with Ul can be done by API (refer to OO.1.1.0 Dev guide). For
the reason of limitation of chart core function, the following operations are not
supported by API:

® Chart with discrete data source in spreadsheet

® Trend Line

69

Part 5. Example plug-in

The example demonstrates how to create a simple editor. When launched from within
the new button group, the editor is showed as a view part in a new perspective.

You can find the whole project with all source code from symphony toolkit directory
(where $symphony toolkit is the home directory that the API toolkit is installed to):
$symphony _toolkit/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.views.

Creating a plugin

1. Set the development environment as in Chapter 1 of Part 3.
2. Select File > New > Project... menu item or click right mouse button and select
New > Project... Context menu.

& Plug—in Development — Eclipse S5DE

File Edit Sowrce Refactor HNavigate Search Project ClearCaze Run

- . = B
L™ @ ¥ i A

E=] Copy Crrl+e il Product Configuration

Bualified Hame 8] Target Definition
[Paste Ctrl+¥ | B¥ Packaze
¥ Delete Delate (& Class
i 1 i,

B 1 Pk b 'ﬁ Interface

ﬁ}ﬁ Source Folder

S :
Eaig Import. . . C3 Folder
E:&Expgrt.] ¥ File

Open Froject F:j. G,

3. Select Plug-in Project in the Project Category.
4. Click Next button, type "com.ibm.productivity.tools.samples.views" as Project

70

name. Select Next button, and then click Finish button to finish creating the new
project.

&= Hew Plug—in Project

Plug-in Project ; ;ﬂ
h-m | =
Create a new plugz-in project

Froject name: |c-:-m. ibm. productiwity. tools. samples. wiews |

Use default location

|' =elipsay wssymphont/ com 1bm: praductaivity. taels =ampl browss

d Froject Settings
Create a Java project

Source folder: !_s_r_f.'_ |

Output folder: !]Ein |

Target Platform
This plugz-in 1= targeted to run with:

lE‘j‘!ﬂ;n:lil:use Yersiomn: !3.2 vl
Eatlll |

Dg.n 05G1 framework:

(_i?} [¢ Back][Hext »] Finash

5. Add dependencies: Select Dependencies tab, and click the Add...button to add
required plug-ins. There are 2 plug-ins that be needed to add:

e com.ibm.rcp.ui

e com.ibm.productivity.tools.ui.views

Creating a new button

1. Select Extensions tab, click Add... button

® In the new extensions dialog, select "com.ibm.rcp.ui.launcherSet", then click
Finish button.

2. In the Extensions page, select the added newly extension, click right mouse button

on it and select New > LauncherSet context menu item.

71

M com.ibm produstie .. X a: cam. ibm. rep.ui 2 =1

Extensions =

A1l Extenszions Extension Details

- : Set the properties of the selected
om. ibm. rep. ui. laune o)

I B Launch

Delete 4= Extensiomn. ..

ﬁ"j Ga Home ibm. rep. ui. launcherSet |

G Fe Back

i
—

xzo lnto

claring extenszion point

Collap=ze A1l enzion point desecription

Cut

Copy
Paste

Externalize Strings. ..

Find Declaration

— - - : Show Description

| ¥ Body Text

Dependencies i Buntime |Extensions |Extension Points I Build! MANIFEST, MF | plugin. xml | y
® [eave the id and label properties of the newly added LauncherSet unchanged,
save the plugin.xml.

. . » :
@: com. ibm. rep. ul 2 ="Im|

Extensions =

All Extensions ﬁxtensiun Element Details

; : Set the properties of “LauncherSet”
= com. 1bm. rep. ui. launcherSet Add. ..

@ com. ibm. produstivity tor id#! |tu:--:-15. zamples. wiews. Lau.ncherSetl|
Edit ; -
R label® |c-:-m. ibm. productivity. tools. sampl|
Up
Town

& il 2

[p Body Text

Dependencies | Buntime |Extensions | Extension Points|Build MAWIFEST. NF | plugzin. xzml | %

72

® Right click the item “com.ibm.productivity.tools.samples.views.LauncherSet1”,
select the menu item “New->perspectiveLaunchltem”.

-r'l- ¥com. 1bm. productivity tools samples. views. X

Extensions
All Extencions Extension Element Det
Set the properties of "L
[zl fr= com.1bm.recp. ui. launcherSet | | Add. .. e
i El —y ader Teom, ibm e educt
BT (1) orlLeonchten =
L et
Delete B perzpectivelannchTtem
Ii| nativeProgramLaunchltem
- T — K
g vo-deme [1anunehTtemType
Y 3o Bacl '
b e Ii| launchTtem
it [handler
Collap=ze A1l Ii| FolderItem
%| groupMarlker
Cut |:I r oup
- Ii| separator)
Faste 4= Extension. ..
Rewert
Save
Externalize Strings. ..

® Set the properties of newly added perspectiveLaunchItem as the following;
make sure the perspectivelD is
“com.ibm.productivity.tools.samples.views. WriterPerspective”, then save the

plugin.xml.
tractlontr. . . | |1[SampleView java |m Foo. java | m Defanl tRichlocume. . . | |1| WriterView java ﬂ com. ibm, productiv. . X 1 =
iions =
ensions Extension Element Details
5 = Set the properties of "perspectiveLaunchTten”
1bm. rep. ui. launcherSet Add. .. I 1
1d#: {eom. ibm. productivity. tools: samples. views. perspectivelaunchlten]|

zom. ibm, productivity. tools. samples. views. LauncherSetl (Launch

ﬂ Sample Writer Editor (perspectiveLaunchltem) A perspectivelds: Icom ibm. productivity. tools. samples. views. WriterFerspective |
eclipse ui. perspectives I Label: [Sanple Hriter Editor |
eclipse. ui. views -

Towm path! | |
antoltart; |false V|
iconlrl: Eresourcesf)\tualizar]]oc.png ‘ lErowse. s]
iconlrlMedium: |resourcesf)\tualizar]]oc.png ‘ lErowse. .]
iconlrllarze |resourcesf)\tualizar]]oc.png ‘ lErowse. i]

® Add an extension at extension point “org.eclipse.ui.perspective”.

73

& Hew Extension @

Extension Point Selection

Create a new org eclipse. ul.perspectives extenszion. -D-—r

Extenzion Points iExtensIun wlzard_gl

Extenzion Point filter: |

ndj;'l:-rg. eclipse. ul. importfizards Lol
=] prg eclipse. ui.intro

=] org. eclipse. ui. keywords

=] orz. eclipse. ui. menus

={?nrg. eclipse. ui. newlizards

=] org. eclipze.ui.perspectiveExtenszions

- eclipse,. ul. perzpectives

47 org eclipse. ui. popupMenus =

nﬁj" org. eclipse. ui. preferencelagzes

=] org. eclipse. ui.preferenceTranszfar

El'u:-w orly extenszion points from the regquired plugzins=

Extenzion Point Description orgz eclipse uil.perspectiwves

(mo desecription awailable)

Available templates for org eclipse. uil.perspectives:

Switch to the plugin.xml tab; change the extension declaration of the added
perspectives extension point as the following:
<extension point="org.eclipse.ui.perspectives">
<perspective
class = "com.ibm.productivity.tools.samples.views.WriterPerspective"”
name = "Sample Writer Editor"
id = "com.ibm.productivity.tools.samples.views.WriterPerspective"
/>
</extension>
Create a java class named
“com.ibm.productivity.tools.samples.views. WriterPerspective”:

package com.ibm.productivity.tools.samples.views;

import org.eclipse.ui.IPagelayout;

import org.eclipse.ui.IPerspectiveFactory;

/**

74

* Perspective class of writer editor sample
*/

public class WriterPerspective implements IPerspectiveFactory ({

public static final String PERSPECTIVE ID =
"com.ibm.productivity.tools.samples.views.WriterPerspective";
/* (non-Javadoc)
* @see org.eclipse.ul.IPerspectiveFactory#createInitiallayout
(org.eclipse.ui.IPageLayout)
=y
public void createInitiallayout(IPageLayout layout) {
//set editor area to invisible so that our view can show maximized.

layout.setEditorAreaVisible (false) ;

//add our writer view to this perspective
layout.addView (WriterView.VIEW ID, IPagelLayout.LEFT, 1f, layout.getEditorArea

)7

Creating an editor view part

1. Select Extensions tab, click Add... button.
2. Add new extensions "org.eclipse.ui.views", then click Finish button.

& New Eztenszion @

Extension Point Selection

Create a new org eclipse.ul. views extenzion, _D—

Extenszion Foints ‘E}ctensian Hizards

Extension Foint filter: ’

={]org eclipse ui.preferenceTransfer

[

={ org. eclipze ui. presentationFactories
f,j}org_ enlipse nl. propertyPages

= org. eclipse ui. startup

={org. eclipze. ui. systemSummarySections
=i org. eclipze ui. themes

={ arg. eclipze, 1ewhotlons

SEOrE. e . Wle

= org. eclipze. ui. workingSets

||

Ehow only extension points from the required plug-ins

Extension Point Description! org eclipse. ul.wiews

[no description awailable)

75

Switch to "plugin.xml" page, add the markup as the following:
<extension
point="org.eclipse.ui.views">
<view
allowMultiple="true"
class="com.ibm.productivity.tools.samples.views.WriterView"
id="com.ibm.productivity.tools.samples.views.WriterView"
name="Writer View" />

</extension>

4. Create a view class: Select menu New>Class to create a new Java class for the
view, set the Class arguments as below, and then click Finish button:

Package: com.ibm.productivity.tools.samples.views

Name: WriterView

Superclass: com.ibm.productivity.tools.ui.views.DefaultRichDocumentView

5. Implement the WriterView class as the following:

package com.ibm.productivity.tools.samples.views;
import org.eclipse.swt.widgets.Composite;

import com.ibm.productivity.tools.ui.views.DefaultRichDocumentView;
import com.ibm.productivity.tools.ui.views.RichDocumentType;
import com.ibm.productivity.tools.ui.views.operations.NewOperation;

import com.ibm.productivity.tools.ui.views.operations.OperationFactory;
public class WriterView extends DefaultRichDocumentView {

public static final String VIEW ID =

"com.ibm.productivity.tools.samples.views.WriterView";

public WriterView() {

super () ;

public void createPartControl (Composite parent) {
// must call super to create part control

super.createPartControl (parent) ;
NewOperation operation = OperationFactory.createNewOperation

(RichDocumentType.DOCUMENT TYPE) ;

this.executeOperation(operation);

76

Below is the result on display:
@Ho:e — IBH Lotus Symphony

File View WySample Window Help

@’ Home =

?_U Laotus Symphony Documents
@I Lotus Symphony Presentations
a_d,) Lotus Symphony Spreadsheets
@ Web Browser

@ Home

|2 Sample Writer Editor

Be Free. Work Smart.

phony BETA

Visit www.ibm.com/software/lotus/Symphony for more info!
Symphony Internet Resources offers something for everyone — a community-
site, a template gallery, and tips and support to help you succeed. Your busin

71

Part 6. Appendixes

Appendix . References

For Lotus Expeditor and Lotus Expeditor toolkit, please reference to the following
site:

http://www.ibm.com/software/lotus/products/expeditor/
http://www-128.ibm.com/developerworks/lotus/products/expeditor/

For Lotus Notes 8, please reference to the following site:
http://www-306.ibm.com/software/lotus/products/notes/

For composite application, please reference to the following site:
http://www.ibm.com/developerworks/lotus/composite-apps/
http://www-306.1bm.com/software/lotus/products/notes/compositeapplications.html

78

http://www-306.ibm.com/software/lotus/products/notes/compositeapplications.html
http://www.ibm.com/developerworks/lotus/composite-apps/
http://www-306.ibm.com/software/lotus/products/notes/
http://www-128.ibm.com/developerworks/lotus/products/expeditor/
http://www.ibm.com/software/lotus/products/expeditor/

Appendix . Notices

Notices

The information contained in this publication is provided for informational purposes
only. While efforts were made to verify the completeness and accuracy of the
information contained in this publication, it is provided AS IS without warranty of any
kind, express or implied. In addition, this information is based on IBM's current
product plans and strategy, which are subject to change by IBM without notice. IBM
shall not be responsible for any damages arising out of the use of, or otherwise
related to, this publication or any other materials. Nothing contained in this
publication is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of IBM software.

Copyright

Under the copyright laws, neither the documentation nor the software may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form, in whole or in part, without the prior written consent of IBM
Corporation, except in the manner described in the documentation or the applicable
licensing agreement governing the use of the software.

Licensed Materials - Property of IBM
© Copyright IBM Corporation 2003, 2008
Lotus Software

IBM Software Group

One Rogers Street

Cambridge, MA 02142

All rights reserved. Printed in the United States.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GS ADP Schedule Contract with IBM Corp.

Revision History:
Original material produced for IBM Lotus Symphony Release Beta 4.

List of Trademarks

IBM, the IBM logo, AlX, DB2, Domino, iSeries, i5/0S, Lotus, Lotus Notes,

79

LotusScript, Notes, Quickplace, Sametime, WebSphere, Workplace, z/OS, and
zSeries are trademarks or registered trademarks of IBM Corporation in the United
States, other countries, or both.

Additional IBM copyright information can be found at: http://www.ibm.com/legal/
copytrade.shtml

This information also refers to products built on Eclipse™ (http://www.eclipse.org)

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

The Graphics Interchange Format®© is the Copyright property of CompuServe
Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of
others.

80

file:///C:/Documents and Settings/zjinbj/��/today/Symphony Developer's Guide.doc
http://www.ibm.com/legal/copytrade.shtml_
http://www.ibm.com/legal/copytrade.shtml_

	Part 1. About this publication
	Chapter 1. Intended audience
	Chapter 2. Requirements
	Chapter 3. Accessing the toolkit on the web
	Chapter 4. Symphony toolkit
	4.1 Samples
	4.2 Convention
	4.3 Related documentation

	Part 2. Product overview
	Chapter 1. Introduction to Lotus Symphony
	Chapter 2. Lotus Symphony architecture
	2.1 Overview of Lotus Symphony architecture
	2.2 Overview of Eclipse
	2.3 Overview of Lotus Expeditor
	2.3.1 J9 JCL Desktop
	2.3.2 The profile of Lotus Expeditor used by Lotus Symphony

	2.4 OpenOffice.org

	Chapter 3. Lotus Symphony programming model

	Part 3. Extending Lotus Symphony
	Chapter 1. Setting up the integrated development environment
	Chapter 2. Customizing the Lotus Symphony user interface
	2.1 Contributing to menu
	2.2 Contributing to toolbar
	2.3 Contributing to launcher button
	2.5 Auto recognizer
	2.6 Contributing to status bar
	2.7 Preferences page

	Chapter 3. Lotus Symphony Java APIs and extension points
	3.1 Selection service
	Selection in the view
	Accessing the current selection
	Retrieving text content from the selection
	Tracking selection change
	Removing the selection listener
	Package
	See also
	Example

	3.2 RichDocumentViewFactory
	Creating a new rich document view
	Opening a local file in a new rich document view
	Getting the list of opened rich document views
	Closing a rich document view
	Registering the listener using the extension point
	Package
	See also
	Example

	3.3 RichDocumentView
	Accessing existing RichDocumentView instances
	Using DefaultRichDocumentView directly
	Extending a new view
	Operations on rich documents
	Monitoring operations

	Chapter 4. Using the UNO API to access a document model
	Accessing the document model
	Using the writer document model
	Setting the whole text of a document
	Inserting a table in a document
	Setting text in the current cursor

	Using the spreadsheet document model
	Setting the content of a cell

	Using the presentation document model

	Chapter 5. Packaging and deploying your plug-ins
	5.3 Deploying with an update site

	Part 4. Expeditor and UNO programming
	Chapter 1. Developing Lotus Expeditor applications
	Chapter 2. UNO programming
	2.1 Getting the global service factory
	2.2 Using the import/export function
	Loading new or existing components
	Storing documents
	Interface for exporting presentation documents and drawing objects
	Using the print function

	2.3 Text Documents
	Working with text documents
	Word processing
	Formatting
	Navigating
	Tables
	Text fields
	Bookmarks
	Indexes and index marks
	Reference marks
	Footnotes and endnotes
	Shape objects in text

	Overall document features
	Styles
	Line numbering and outline numbering
	Page Layout

	Text document controller
	Text View
	TextViewCursor

	2.4 Spreadsheets
	Enhancement

	2.5 Charts

	Part 5. Example plug-in
	Creating a plugin
	Creating a new button
	Creating an editor view part

	Part 6. Appendixes
	Appendix . References
	Appendix . Notices

