
IBM Tivoli NetView for z/OS 5.2:
Prototype for Enhanced Monitoring of TCP/IP Connections
White Paper
Paul Quigley (quigleyp@us.ibm.com)

December 2006

Copyright Notice
Copyright © 2006 IBM Corporation, including this documentation and all software. All rights
reserved. May only be used pursuant to a Tivoli Systems Software License Agreement, an IBM Soft-
ware License Agreement, or Addendum for Tivoli Products to IBM Customer or License Agreement.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM Corpora-
tion. IBM Corporation grants you limited permission to make hardcopy or other reproductions of any
machine-readable documentation for your own use, provided that each such reproduction shall carry
the IBM Corporation copyright notice. No other rights under copyright are granted without prior writ-
ten permission of IBM Corporation. The document is not intended for production and is furnished “as
is” without warranty of any kind. All warranties on this document are hereby disclaimed, including the
warranties of merchantability and fitness for a particular purpose.
Note to U.S. Government Users—Documentation related to restricted rights—Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks
The following are trademarks of IBM Corporation or Tivoli Systems Inc.: IBM, Tivoli, AIX, Cross-Site,
NetView, OS/2, Planet Tivoli, RS/6000, Tivoli Certified, Tivoli Enterprise, Tivoli Ready, TME. In Den-
mark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.
Lotus is a registered trademark of Lotus Development Corporation.
PC Direct is a trademark of Ziff Communications Company in the United States, other countries, or
both and is used by IBM Corporation under license.
ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel Corporation in the
United States, other countries, or both.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC. For fur-
ther information, see http://www.setco.org/aboutmark.html.
Other company, product, and service names may be trademarks or service marks of others.

Notices
References in this publication to Tivoli Systems or IBM products, programs, or services do not imply
that they will be available in all countries in which Tivoli Systems or IBM operates. Any reference to
these products, programs, or services is not intended to imply that only Tivoli Systems or IBM prod-
ucts, programs, or services can be used. Subject to valid intellectual property or other legally pro-
tectable right of Tivoli Systems or IBM, any functionally equivalent product, program, or service can
be used instead of the referenced product, program, or service. The evaluation and verification of
operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent
applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A.
Printed in Ireland.

•
•
•
•
•

I

Table of Contents

Introduction
About this Paper . III
IBM Tivoli NetView for z/OS (NetView) provides many functions to manage and au-
tomate network resources, including TCP/IP resources. NetView 5.1 introduced a
policy-based function to monitor TCP/IP connections with the local TCP/IP stack.
Included with the monitoring function you can define thresholds for connections
that are idle or that exceed a minimum or maximum number of bytes that are sent
across the connection. III
Audience. IV
Terminology . IV
Acronym Definitions . V
About the Author. V

White Paper : Prototype for Enhanced Monitoring of TCP/IP
Connections
Overview and Comparison . 1
Usage Examples . 2
Overview of NetView Connection Monitoring . 2
Overview of Prototype Connection Monitoring . 3
Comparison: FKXECMON versus CONNMON . 5
Restrictions . 5
Overview of NetView Dynamic TCP/IP Stack Discovery . 6

. Defining Connection Monitoring and Thresholding 8
Overview . 8
Stack Policy . 8
Connection Monitoring and Thresholding Policy . 9

LPORT Keyword . 12
USEIPADDR Keyword . 12
IPCONN Example 1 . 13
IPCONN Example 2 . 13
IPCONN Example 3 . 14

Notification Policy . 14
Notification with AON . 14
Notification without AON . 15

ACTMON Policy . 15
AUTOOPS Policy . 15
CNMSTYLE Customization . 16

TCPCONN Definitions . 16
Definitions for CONNMON Prototype . 16
Command Definitions . 18
DSIAUTB Definitions . 18

Communications Server for z/OS Customization . 18
NetView SNMP Customization . 19
NetView Security Considerations . 19
CONNMON Timer . 20

Enable the CONNMON Prototype . 21

II Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

Table of Contents

Download the CONNMON Prototype Package . 21
Copy NetView Files . 21
Edit DSIPARM Members . 22

Edit CNMSTYLE Members . 22
Edit NetView Command Definitions (CNMCMD) . 23
Command Authorization . 23
Connection Monitoring and Thresholding Policy . 23

NetView TCPCONN Command . 25
Overview of TCPCONN Usage . 25
TCPCONN Example . 26

TCP/IP MIB Connection Data . 27
Retrieving Port Data . 29
TCP/IP MIB Port Data . 29
Correlate GETPORTS Data with IPCONN Policy . 31

IPCONN Policy without LPORT . 31
IPCONN Policy with LPORT . 31

GETPORTS Timer . 32
Discussion of Customer Modifiable Variables . 33
CONNMON Customer_Vars . 33
GETPORTS Customer_Vars . 33

CONNMON Prototype Design . 35
CONNMON EXEC . 35
GETPORTS EXEC . 36

Performance Tests . 37
Overview of Tests Run . 37
FKXECMON Base Measurements . 38
Test 1: Basic NetView IPCONN Policy . 39
Test 2: IPCONN with LPORT, no Port Data in Storage . 40
Test 3: IPCONN with LPORT, Port Data in Storage . 40

Messages . 42
Messages Issued by CONNMON EXEC . 42
Messages Issued by GETPORTS EXEC . 43

Common Errors . 44
No Port Data . 44
Command Authorization Errors . 44
Monitoring Is not Scheduled . 44
DSI651I Message Issued . 44
EZL572I Message Issued . 45

Support for the CONNMON Prototype . 46

Conclusion
Summary . 47
Resources. 47

•
•
•
•
•

III

Introduction

About this Paper

IBM Tivoli NetView for z/OS (NetView) provides many functions to manage and
automate network resources, including TCP/IP resources. NetView 5.1 introduced a
policy-based function to monitor TCP/IP connections with the local TCP/IP stack.
Included with the monitoring function you can define thresholds for connections that are
idle or that exceed a minimum or maximum number of bytes that are sent across the
connection.

Two actions are supported when a threshold condition is detected. The connection can be
broken and notification policy can be invoked to notify operators and key support personnel
of the threshold condition. Using the notification policy you can generate messages or e-
mails to notify your personnel.

The connection monitoring and thresholding function uses SNMP MIB data to gather
information about each connection with the local TCP/IP stack. The connection data is
retrieved from the ibmTcpipMvsTcpConnTable MIB table.

There are several problems inherent with this approach. In general, SNMP can be slow and
consume CPU cycles. Second, the ibmTcpipMvsTcpConnTable MIB table is extremely
large. Detailed information about each connection is contained in 55 MIB variables within
the ibmTcpipMvsTcpConnTable MIB table.

In an average customer environment there may be tens of thousands of active connections
with applications such as TN3270, FTP, Web browser, SMTP, printer, CICS, and so on.

When using SNMP to WALK the ibmTcpipMvsTcpConnTable MIB table all MIB
variables for all connections are retrieved. For example, for a small environment you may
have 10,000 connections. The ibmTcpipMvsTcpConnTable MIB will contain 550,000
MIB variables. There is no way to filter the amount of data retrieved. The policy definitions
allow you to look for a specific type of connection based on the application name but the
code must still retrieve all MIB variables for all connections.

As a result, the NetView connection monitoring and thresholding function has not been
implemented by many customers.

This paper will discuss a prototype written by the author that includes several
improvements over the NetView code. The prototype will be made available to customers
to use. Support for the prototype will be provided by the author as time permits.

IV Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

Introduction

Audience

This document is primarily intended for system programmers and network administrators
responsible for the management of TCP/IP resources.

For example, many customers have printers connected to their z/OS systems using TCP/IP.
The connection monitoring and thresholding function, provided by NetView and the
prototype discussed in this document, can be used to ensure that connections to the printers
are broken if idle to prevent a situation where all ports allocated to the printer application
are in use even though no print jobs are scheduled.

Terminology

Throughout this document several terms will be used. They are summarized here:

• IPCONN: NetView policy definition statement for TCP/IP connection
monitoring and thresholding.

• TCPCONN: NetView command to display TCP/IP connection data.

• FKXECMON: Name of the NetView routine used to perform TCP/IP connection
monitoring and thresholding. FKXECMON is shipped as a compiled REXX
EXEC.

• CONNMON: Can be used to refer to three items; the name of the prototype, the
name of the REXX EXEC used by the prototype to perform TCP/IP monitoring
and thresholding, or the name of the in-storage file name used by the prototype to
hold port data.

– The CONNMON routine will also be referenced as CONNMON REXX
EXEC or CONNMON EXEC.

– the CONNMON in-storage file name is referenced as the CONNMON file.

– Any general discussion will be referenced as CONNMON prototype.

The CONNMON routine is an enhanced version of FKXECMON and can be used
in place of FKXECMON. It is provided as an interpreted REXX EXEC.

The CONNMON routine replaces the FKXECMON routine.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections V

•
•
•
•
•

Introduction

Acronym Definitions

Several acronyms are used throughout this document and are defined here.

AON: Automated Operations Network (NetView for z/OS component)

AON/TCP: Automated Operations Network / Transmission Control Protocol

CICS: Customer Information Control System

CPU: central processing unit

FTP: File Transfer Protocol

MIB: Management Information Base

NMI: network management interface

REXX: Restructured Extended Executor programming language

SNMP: Simple Network Management Protocol

TCP/IP: Transmission Control Protocol / Internet Protocol

About the Author

Paul Quigley is a member of the Tivoli Technical Training Course Development
organization with responsibilities for developing customer courses for the IBM Tivoli
NetView for z/OS and IBM Tivoli System Automation for z/OS products. He has worked
on mainframe-based systems and network management, monitoring, and automation for 25
years with an extensive background using the IBM Tivoli NetView for z/OS platform and
products. Paul has held various positions within IBM ranging from software test to product
design and development to product support and has worked with many customers
worldwide to understand their requirements and solve their problems.

VI Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

Introduction

•
•
•
•
•

1

White Paper: Prototype for Enhanced
Monitoring of TCP/IP
Connections

1 Overview and Comparison

The purpose of the connection monitoring and thresholding function is to identify TCP/IP
connections that are either idle, sending more bytes than allowed, or sending fewer bytes
than expected.

Without getting too deep into the policy definition at this point, an example can be used to
illustrate the functionality.

In this example, connections into application APPLX on stack TIVED1 are being
monitored from NetView domain AOFDA based on an IPCONN APPLX policy definition.

2 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

Note: The LPORT keyword shown in this example is only available with the
CONNMON prototype. In addition, TCPCONN exploitation is shown and is only
available with the CONNMON prototype.

User USER4 has established a connection with application APPLX using port 4050. All
connections with APPLX will be monitored. Based on the THRESH keyword of the
IPCONN APPLX policy, any connection with APPLX will automatically be broken
(dropped) if the connection is idle for more than four minutes.

In the example, the connection between APPLX and USER4 has been idle for greater than
four minutes and has been broken automatically by the connection monitoring code.

1.1 Usage Examples

Connection monitoring and thresholding can be used to:

Monitor TCP/IP connections to a z/OS printer application and break the
connections when they have been idle to maximize printer availability.

Monitor FTP connections for sessions that exceed a maximum byte count and
generate a message for key support personnel to increase awareness of large FTP
transfers during first shift.

1.2 Overview of NetView Connection Monitoring

NetView provides function to monitor TCP/IP connections and perform thresholding
based on the name of the application.

The NetView connection monitoring and thresholding is a function of the AON/TCP
component.

The routine that is scheduled is known as FKXECMON. For simplicity, the NetView
connection monitoring and thresholding will be referred to as FKXECMON in this
document.

The initial delivery of FKXECMON was NetView 5.1:

• Policy-based using IPCONN policy

• Timer-driven using an interval defined in the policy

• Utilize SNMP commands only

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 3

•
•
•
•
•

White Paper

– WALK of ibmTcpipMvsTcpConnTable MIB table to collect the connection
data

• Support definition of thresholds

– Using the THRESH keyword of the IPCONN policy

• Supports definition of actions to take

– Part of the THRESH keyword definition

There are some disadvantages which have limited the customer use of FKXECMON:

• SNMP use can consume CPU cycles.

• SNMP v1 and v2 implementation is not as secure as v3.

• Connection MIB table (ibmTcpipMvsTcpConnTable) can be very large.

At the time of publishing this document, the ibmTcpipMvsTcpConnTable MIB
table contains 55 MIB variables for each connection. FKXECMON must retrieve
the entire ibmTcpipMvsTcpConnTable MIB table to determine the active
connections and then use six (6) of the 55 MIB variables for the connections that
FKXECMON is interested in. In other words, all 55 MIB variables are retrieved
for every connection. FKXECMON ignores the remaining MIB variables as well
as connections not being monitored.

• Processing the MIB data can be error prone as new connections are started and old
connections end.

• Since the monitoring is at the application level there may be ports monitored that
you do not want to be monitored.

After the TCP/IP connection data is retrieved from the
ibmTcpipMvsTcpConnTable MIB table, a comparison is done to filter the
connection data based on the ibmMvsTcpConnResourceName MIB variable. The
ibmMvsTcpConnResourceName MIB variable is compared to the name of the
IPCONN policy.

Connections that do not match the IPCONN policy are ignored after retrieving and
processing data for all of the connections. This may not be the best approach, but it was the
only method available when the connection monitoring function was developed.

1.3 Overview of Prototype Connection Monitoring

The prototype of connection monitoring and thresholding will be called CONNMON in this
document.

4 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

The CONNMON prototype is a subtower of the TCPCONN tower. If AON/TCP is enabled
then the CONNMON prototype code will supersede the AON/TCP code.

CONNMON is a rewrite of FKXECMON that contains several enhancements:

• NetView 5.2 introduced the TCPCONN command to display active connection
data based on an improved network management interface (NMI) with
Communications Server for z/OS. CONNMON utilizes the TCPCONN command
to gather active connection data by local stack TCP/IP address and local port
instead of an SNMP WALK of the ibmTcpipMvsTcpConnTable MIB table.

TCPCONN is a more robust interface. Using TCPCONN reduces the amount of
data collected, parsed, and interrogated.

TCPCONN does not store detailed connection data. Therefore, it is still necessary
to use SNMP to retrieve the detailed connection data. The overall amount of
SNMP data retrieved is much less with this approach and is therefore quicker.

• Enhance IPCONN policy with an additional parameter, LPORT, to identify one or
more port numbers, including a range of ports to improve performance by
reducing the amount of connection data to interrogate.

Defining a range of ports to monitor may also simplify the amount of IPCONN
policy definitions. For example, with FKXECMON you may have to define 10
IPCONN port statements for 10 different ports that an application may use. With
CONNMON you only need to define one IPCONN policy definition and specify
the port range with the LPORT keyword.

• Port data can be stored statically in NetView storage or retrieved dynamically. If
all ports to be monitored are static then performance can be improved by loading
static port data in NetView storage instead of retrieving port data dynamically
from SNMP MIB variables every time the CONNMON routine is invoked.

• New CNMSTYLE common global definitions to control port data collection and
logging to simplify policy definitions.

• CONNMON can be run independent of AON/TCP.

Compared with FKXECMON, the CONNMON prototype monitors connections based on
the local port or the application name.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 5

•
•
•
•
•

White Paper

1.4 Comparison: FKXECMON versus CONNMON

Because of the differences in collecting the connection data (SNMP WALK
ibmTcpipMvsTcpConnTable versus TCPCONN) there are functional differences between
the NetView supplied code (FKXECMON) and the prototype code (CONNMON):

The CONNMON prototype is functionally comparable to FKXECMON. The only function
CONNMON does not support is monitoring connections on a remote TCP/IP stack.

• Monitoring connections on a remote TCP/IP stack can be accomplished through
the use of RMTCMD communication between the NetView domains. This was
not implemented in the prototype code but can be implemented at a later date by
the NetView development team if they choose to adopt the CONNMON prototype.

The biggest advantage to using the CONNMON prototype is the improved
performance and flexibility over the AON/TCP FKXECMON.

1.5 Restrictions

The CONNMON prototype does not support:

• Non-Netview connection to target host. FKXECMON uses SNMP so NetView is
not required at the target host.

This design uses TCPCONN, requiring monitoring to be done locally.

ApplicationApplication or portMonitoring level

Hard-coded for loopback
only

TCPCONN KEEP – very
flexible

Data filtering

Not applicable• Static port data can be kept
in storage
• New LPORT parameter
reduces amount of data
collected
• Data filtered with
TCPCONN.KEEP

Performance
Improvements

SNMP WALK of a
potentially huge MIB
table followed by SNMP
GET commands

TCPCONN to determine
active connections
followed by SNMP GET
commands for details

Data collection

AON/TCP policyBase policy plus
CNMSTYLE

Definitions

SNMPNot applicableCommunication to
remote z/OS host

NetView 5.2PrototypeTask

ApplicationApplication or portMonitoring level

Hard-coded for loopback
only

TCPCONN KEEP – very
flexible

Data filtering

Not applicable• Static port data can be kept
in storage
• New LPORT parameter
reduces amount of data
collected
• Data filtered with
TCPCONN.KEEP

Performance
Improvements

SNMP WALK of a
potentially huge MIB
table followed by SNMP
GET commands

TCPCONN to determine
active connections
followed by SNMP GET
commands for details

Data collection

AON/TCP policyBase policy plus
CNMSTYLE

Definitions

SNMPNot applicableCommunication to
remote z/OS host

NetView 5.2PrototypeTask

6 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

• IPv6 connections.

IPv6 support requires version neutral MIBs from Communications Server for z/
OS. Some of the detailed connection data is missing with the newer version
neutral MIBs. Therefore, IPv6 support is not possible at this point in time.

CONNMON does contain code to filter IPv6 connection data that may appear
through the use of the TCPCONN command. This code allows CONNMON to be
IPv6 tolerant.

Note that FKXECMON does not support IPv6 either.

• SNMPv3 requests.

Note that FKXECMON does not support SNMPv3 either.

• Web browser connections (default port 80).

Web browser connections are highly transient, rendering any monitoring functions
useless. These should be filtered with TCPCONN KEEP definitions in
CNMSTYLE.

FKXECMON retrieved all connections to all ports and all local addresses. Web
browser connection data is retrieved but ignored since FKXECMON is only
interested in a subset of the connections based on the IPCONN policy.

• Connections to the loopback address (127.0.0.1).

CONNMON requires the loopback address can be filtered with TCPCONN KEEP
definitions in CNMSTYLE.

FKXECMON is hardcoded to filter these connections.

1.6 Overview of NetView Dynamic TCP/IP Stack Discovery

Connection monitoring and thresholding requires TCP/IP stack policy definitions to define
the stack to NetView. Regardless of whether you are running FKXECMON or the
CONNMON prototype it is important to understand what you need to define for your local
TCP/IP stack.

With NetView 5.2, the TCP/IP stacks on every system where NetView is running are
dynamically discovered. As the stacks are discovered the policy definitions (TCP390
definition statement) are also dynamically created.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 7

•
•
•
•
•

White Paper

There may be cases where you still need to define a small subset of the TCP/IP stack policy.
For example, SNMP requests need the SNMP community name defined for the stack
policy. You should define the stack policy and include the SNMP community name on the
stack policy definition.

When NetView discovers the TCP/IP stack it will combine your static policy definitions
such as the community name with the dynamically discovered policy definitions.

For example, suppose you have a stack whose short name is TIVED1 and you need to
implement connection monitoring. You would then define the stack policy for TIVED1
with only the community name defined:

TCP390 TIVED1 COMMUNITYNAME=publicv2c

As NetView dynamically discovers the stack, it will add all other related information to the
policy definition. You can verify this by issuing a POLICY
ENTRY=TCP390,TYPE=TIVED1 command:

POLICY ENTRY=TCP390,TYPE=TIVED1
EZL115I TCP390 TIVED1 TCPNAME TCPIP
EZL115I TCP390 TIVED1 IPADDR 10.44.15.200
EZL115I TCP390 TIVED1 IPADDRTYPE 01
EZL115I TCP390 TIVED1 PRIMARYINTERFACE 10.44.15.200
EZL115I TCP390 TIVED1 PRIMARYINTERFACETYPE 01
EZL115I TCP390 TIVED1 HOSTNAME TIVED1.TIVED.IBM.COM
EZL115I TCP390 TIVED1 COMMUNITYNAME publicv2c
EZL115I TCP390 TIVED1 DOMAIN LOCAL
EZL115I TCP390 TIVED1 DYNDISC YES
EZL115I TCP390 TIVED1 HIER2 SP-APPL
EZL115I TCP390 TIVED1 HIER3 NETSP
EZL115I TCP390 TIVED1 FORMAT STACK
EZL115I TCP390 TIVED1 STATUS (NORMAL,DEGR*,THRESH*)
EZL115I TCP390 TIVED1 IDSAUTO Y
EZL115I TCP390 TIVED1 IDSINTVL 00:10
EZL115I TCP390 TIVED1 UNIXSERV YES
EZL002I END

The static policy items such as COMMUNITYNAME are merged with the dynamic policy
(TCPNAME, IPADDR, HOSTNAME, and so on).

The dynamic stack discovery feature means fewer policy definitions which can correlate to
fewer keystroke errors and improved time to value. The policy will be updated every time
the stack initializes to pick up changes to pertinent information.

8 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

2 Defining Connection Monitoring and
Thresholding

2.1 Overview

This section will discuss the definitions needed to implement connection monitoring and
thresholding with the CONNMON prototype:

• TCP/IP stack policy (TCP390 policy definition)

• Connection monitoring and thresholding policy (IPCONN policy definition)

• Notification policy (NOTIFY policy definition) if running AON/TCP

• CNMSTYLE customization

In addition, an overview of customization for NetView and Communications Server for z/
OS is provided.

2.2 Stack Policy

Each local TCP/IP stack must be defined for connection monitoring to occur. TCP/IP stacks
are defined using the TCP390 policy definition statement. NetView 5.2 will dynamically
discover your TCP/IP stacks and create the necessary TCP390 policy definitions for each
stack. The TCP390 policy definition that is created will be merged with any user overrides
(for example, COMMUNITYNAME).

The default NetView DSIPARM member for TCP/IP stack policy definition is
CNMPOLCY.

The complete syntax for the TCP390 policy definition can be found in the IBM Tivoli
NetView for z/OS: Administration Reference manual. Two keywords are pertinent to a
discussion of the CONNMON prototype:

TCP390 stack_name,
DOMAIN=LOCAL | remote_domainID,
…
COMMUNITYNAME=community_name

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 9

•
•
•
•
•

White Paper

• COMMUNITYNAME=community_name

Required to retrieve detailed connection data from SNMP MIBs. Detailed
connection data is not known to TCPCONN for active connections so it must be
retrieved from SNMP MIBs.

– Where community_name is the SNMP community name defined to TCP/IP.
community_name can be mixed case format.

– Appropriate security measures should be taken to prevent unauthorized
personnel from obtaining the community name.

• DOMAIN=LOCAL

The DOMAIN keyword is used by CONNMON to identify the local TCP/IP stack.

The local TCP/IP stack will be used as the default stack if one is not specified on
the IPCONN policy.

– The domain is determined by dynamic stack discovery. You do not need to
code this keyword.

As discussed in Section 1.6 (Overview of NetView Dynamic TCP/IP Stack Discovery) you
should define the SNMP community name and allow NetView to discover the local stack
information dynamically.

2.3 Connection Monitoring and Thresholding Policy

Connection monitoring and thresholding is enabled with IPCONN policy definitions.
IPCONN policy was introduced in NetView 5.1 and is enhanced for the CONNMON
prototype.

IPCONN policy is also discussed in the IBM Tivoli NetView for z/OS: Administration
Reference manual. The focus in this document will be on the enhancements to IPCONN
policy for the CONNMON prototype.

A word of caution about the location of IPCONN policy statements: NetView provides
sample IPCONN policy statements in FKXCFG01 that are commented-out. If you have
implemented connection monitoring and thresholding using FKXECMON then you will
need to move your IPCONN policy statements to CNMPOLCY for the CONNMON
prototype.

10 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

This is the same basic IPCONN policy definition used by FKXECMON with a few
enhancements focusing on improving performance and ease of use:

• New keywords for the CONNMON prototype.

– LPORT can be used to reduce the amount of port data searched by the
CONNMON prototype.

– MAXRECS can be used to limit the amount of connection data retrieved
when the TCPCONN command is invoked.

– USEIPADDR can be used to limit the amount of connection data retrieved by
specifying YES to use only the IP address of the primary interface for the
local TCP/IP stack when issuing the TCPCONN command. The TCPCONN
command will be issued with the LADDR= parameter.

All new keywords are optional.

• Changed keywords for the CONNMON prototype:

– The SP=stack_policy_name is optional for the CONNMON prototype. If the
SP keyword is not specified, the local TCP/IP stack will be used.

The supported IPCONN keyword values are:

• proc_name: The name of the start procedure associated with the application being
monitored. For example, CICS01 or TCPIP.

Wildcard values (*) are supported.

• stack_policy_name: The name of the stack to use to monitor connections with this
application. This should match a TCP390 policy definition name.

IPCONN proc_name,

{ SP=stack_policy_name, }
{ LPORT=(local_port,…,local_port), }
{ LPORT=(beg_port_num:end_port_num), }
{ MAXRECS=100 | nnn | -nnn, }
{ USEIPADDR=NO | YES,}
THRESH=(byte_count,type,interval,actions),
.
.
THRESH=(byte_count,type,interval,actions),

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 11

•
•
•
•
•

White Paper

The stack_policy_name is optional for the CONNMON prototype. If not specified,
CONNMON will use the local stack defined by TCP390 ... DOMAIN=LOCAL as
the default stack.

• local_port: Optional, one or more ports the application will use. If specified, this
will reduce the amount of port data interrogated by the monitoring routine,
CONNMON, reducing overall CPU cycles.

• nnn: Optional, number of connection records retrieved with the TCPCONN
command. 100 is the default. This will retrieve the 100 oldest matching (based on
TCPCONN parameters) connections.

This value can also be a negative number to retrieve the most recent nnn
connections.

Note: The default value used by CONNMON differs from the TCPCONN
command default. The TCPCONN command uses a default of negative 100 to
retrieve connection data for the most recent 100 connections. For more details
read the help for TCPCONN command.

• interval: Time interval, in hh:mm:ss format, defines the threshold for how long a
session is allowed to be inactive.

• byte_count: The number of bytes out known to the TCP/IP stack with the
ibmMvsTcpConnBytesOut MIB variable.

byte_count can be an asterisk (*) to identify an idle connection threshold.

• type: The type of byte count threshold:

– MINimum

– MAXimum

This parameter is ignored if the byte_count is an asterisk (*).

• actions: Actions to take:

– NONE: Take no action: Do not issue any messages or drop connection. This is
the default action.

– NOTIFY: Invoke notification policy to notify the appropriate personnel.

If running CONNMON without AON/TCP then only a message can be generated.

– DROP: Break the connection, log the appropriate message to DSILOG.

DROP and NOTIFY can be coded together.

Note: FKXECMON does not support the new keywords: LPORT, MAXRECS, and
USEIPADDR.

12 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

2.3.1 LPORT Keyword

The LPORT keyword is not required on the IPCONN policy definition. It can be used to
improve performance by specifying one or more local ports to use for the connection
monitoring and thresholding function.

Specifying the LPORT keyword will reduce the amount of connection data retrieved when
using the TCPCONN command.

LPORT can also be used to consolidate several existing IPCONN policy definitions for the
same application (required by FKXECMON) into one IPCONN policy definition for
CONNMON.

Examples:

• Single port number: LPORT=(23)

• List of port numbers: LPORT=(23,623,9090)

• Range of port numbers: LPORT=(4090:4999)

Specifying a range of port numbers can be useful for z/OS applications that do not bind to
(open) a specific port number.

A TCPCONN LADDR=stack_IPaddr,LPORT=local_port command will be issued for
every port specified with the LPORT keyword.

Caution: Specifying a large range of port numbers will result in processing overhead to
build and issue the appropriate TCPCONN commands.

2.3.2 USEIPADDR Keyword

The USEIPADDR keyword is optional on the IPCONN policy definition. It can be used to
limit the amount of connection data being retrieved with the TCPCONN command.

• USEIPADDR=NO: Scan all interfaces for connection data. Issue TCPCONN
commands without LADDR parameter to retrieve connection data for all
interfaces for the specified TCP/IP stack.

This is the default value.

This option is consistent with the functionality provided by FKXECMON.

• USEIPADDR=YES: Scan only the local stack IP address for connection data.
Issue TCPCONN commands with the LADDR= parameter and a value of the
local stack IP address.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 13

•
•
•
•
•

White Paper

This option potentially reduces the amount of connection data retrieved with the
TCPCONN command.

It is anticipated this option will not be heavily utilized since connections with
most TCP/IP stacks can be established using any interface defined to the stack.

2.3.3 IPCONN Example 1

This example will illustrate the basic IPCONN policy with the use of the LPORT
USEIPADDR keywords:

IPCONN TCPIP*,
SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY),
USEIPDADDR=NO,
LPORT=(23)

This will monitor local port 23 on stack TIVED1 for connections with any application name
that begins with the character string of TCPIP.

If the session is idle for four minutes, regardless of the number of bytes sent,
consult the NOTIFY policy to notify an operator.

If the session has had less than 2147 bytes received during the previous 30
seconds, consult the NOTIFY policy to notify an operator.

The timer will be scheduled to run using the interval defined by CONNMONINTVL in
CNMSTYLE.

2.3.4 IPCONN Example 2

This example illustrates use of the default stack:

IPCONN FTP*,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY)

This will monitor connections to any local port opened by an application whose job name
begins with the character string of FTP. Since no SP= keyword is defined, the local TCP/
IP stack (TCP390 DOMAIN=LOCAL) will be used as a default.

If the session is idle for four minutes, regardless of the number of bytes sent,
consult the NOTIFY policy to notify an operator.

14 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

If the session has had less than 2147 bytes received during the previous 30
seconds, consult the NOTIFY policy to notify an operator.

The timer will be scheduled to run using the interval defined by CONNMONINTVL in
CNMSTYLE.

2.3.5 IPCONN Example 3

This example illustrates the use of the default stack plus a range or ports:

IPCONN MYAPP*,
LPORT=(9010:9019),
USEIPADDR=YES,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY)

This will monitor connections to local ports 9010 through 9019 (opened by an application
whose job name begins with the character string of MYAPP) and the IP address of the
primary interface for the local stack only. Since no SP= keyword is defined, the local TCP/
IP stack will be used.

If the session is idle for four minutes, regardless of the number of bytes sent,
consult the NOTIFY policy to notify an operator.

If the session has had less than 2147 bytes received during the previous 30
seconds, consult the NOTIFY policy to notify an operator.

The timer will be scheduled to run using the interval defined by CONNMONINTVL in
CNMSTYLE.

2.4 Notification Policy

2.4.1 Notification with AON

If you are running AON you have access to the Notification policy. You should see a
NOTIFY policy definition statement in FKXCFG01 similar to:

NOTIFY IPCONN,ALERT=NO,MSG=YES,DDF=NO,INFORM=NO

Modify the NOTIFY IPCONN statement as appropriate. For example, define
ALERT=YES if you want NPDA alerts generated from connection monitoring and
thresholding messages.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 15

•
•
•
•
•

White Paper

Change INFORM from NO to the name of your Inform policy to generate e-mail
notifications.

2.4.2 Notification without AON

If you are not running AON/TCP then the NOTIFY policy, if coded, is ignored and
messages are generated from the CONNMON routine directly using the REXX SAY
instruction. The message text will be the same as notification with AON but the message is
incapable of being routed to support personnel in an e-mail.

2.5 ACTMON Policy

The ACTMON IPCONN policy definition is used by AON/TCP FKXECMON to schedule
the connection monitoring timer. This definition is obsolete and is replaced by a
CNMSTYLE definition with the CONNMON prototype.

Delete the ACTMON IPCONN policy definition on your system. It is typically found in
DSIPARM member FKXCFG01.

2.6 AUTOOPS Policy

AON/TCP provides an AUTOOPS policy definition for connection monitoring and
thresholding. This definition is obsolete and is replaced by a CNMSTYLE definition with
the CONNMON prototype.

Delete the AUTOOPS CONNOPER,ID=AUTCMON policy definition on your
system. It is typically found in DSIPARM member FKXCFG01.

If you are running AON/TCP you will see an EZL572I message and can ignore it:

EZL572I OPERATOR CGLOBALS NOT INITIALIZED - UNABLE TO ROUTE
COMMAND FKXECMON

This occurs when AON/TCP initializes. AON/TCP will detect the existence of the
IPCONN policy definitions and attempt to schedule FKXECMON under the autotask
defined by the AUTOOPS CONNOPER statement.

16 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

2.7 CNMSTYLE Customization

CNMSTYLE customization consists of two groupings:

• Enable and define TCPCONN parameters

• Enable and define CONNMON parameters

2.7.1 TCPCONN Definitions

TCPCONN requires definitions in CNMSTYLE.

1. Enable the TCPIPCOLLECT and TCPCONN towers:

TOWER = *SA *AON *MSM *Graphics MVScmdMgt NPDA *NLDM
TCPIPCOLLECT *AMI *TARA DVIPA

TOWER.TCPIPCOLLECT = TCPCONN *PKTS

2. Define TCPCONN collection:

INIT.TCPCONN = Yes
function.autotask.TCPCONN.TCPIP = autotask_name

Select a valid autotask_name for your environment.

3. Define TCPCONN.KEEP statements to filter connections to the loopback address
and Web browser connections:

* Do not keep loopback connection data
TCPCONN.KEEP.TCPIP.A = NOT 127.0.0.1/*,*/*
* Do not keep Web browser (port =80) connection data
TCPCONN.KEEP.TCPIP.B = NOT */80,*/*
* Keep data for all other connections
TCPCONN.KEEP.TCPIP.Z = */*,*/*

Define additional TCPCONN.KEEP statements for any other connections to be
filtered.

2.7.2 Definitions for CONNMON Prototype

Several customization parameters can be found in DSIPARM member CONNSTYL which
is available as part of the CONNMON prototype.

You will need to add this statement to your CNMSTYLE:

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 17

•
•
•
•
•

White Paper

%INCLUDE CONNSTYL

This section will discuss each of the parameters in further detail.

2.7.2.1 Define CONNMON tower

By default, the CONNMON prototype assumes you are also running AON/TCP. If true
then you can skip this definition.

If you are not running AON/TCP you need to define CONNMON as a subtower of the
TCPCONN tower. Uncomment the TOWER.TCPIPCOLLECT.TCPCONN statement in
CONNSTYL:

TOWER.TCPIPCOLLECT.TCPCONN = CONNMON

2.7.2.2 Define the autotask for monitoring

The default autotask used for connection monitoring is AUTCMON. Modify this statement
to a valid autotask name in your environment:

function.autotask.CONNMON = OPER5

AUTCMON is the autotask also used by FKXECMON.

2.7.2.3 Define default interval for scheduling monitoring timer

The default interval for scheduling the CONNMON routine is one minute.

COMMON.CNMSTYLE.CONNMONINTVL = 00:01:00

2.7.2.4 Define name of in storage NetView file to store port data

Port data will be collected by the GETPORTS REXX EXEC and stored locally in NetView
storage under the name defined by the CONNMONFILE variable:

COMMON.CNMSTYLE.CONNMONFILE = CONNMON | file_name

The default file name will be CONNMON.

2.7.2.5 Define TCP/IP port detection and logging

Define TCP/IP port detection and logging.

COMMON.CNMSTYLE.CONNMONPORTS = { STATIC | DYNAMIC |
DYNAMIC,hh:mm }

18 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

Each of these options can affect your overall performance. For example, STATIC is the
best performance option since it will retrieve port data only once. However, if your
applications open ports dynamically you may need to code DYNAMIC to query port data
each time connection monitoring (CONNMON) is invoked. This will require additional
CPU cycles to retrieve the current port data.

• STATIC: Retrieve TCP/IP port data once (initially) and store in NetView storage.

This is the default value.

• DYNAMIC: Retrieve TCP/IP port data, each time monitoring is invoked, from
the ibmTcpipMvsTcpListenerTable MIB table. No data is kept in storage.

This should be used when active ports are dynamic.

• DYNAMIC,hh:mm: Retrieve TCP/IP port data periodically (for example,
hourly) and store port data in NetView storage.

This will schedule an additional timer based on the interval (hh:mm) to retrieve
TCP/IP port data from the ibmTcpipMvsTcpListenerTable MIB and keep it in
NetView storage.

Defining DYNAMIC with a time interval (hh:mm) will schedule the GETPORTS
command based on the time interval. When CONNMON is invoked it will query the port
data stored in the CONNMON file independent of the GETPORTS timer.

2.7.3 Command Definitions

DSIPARM member CONNCMD contains the necessary NetView command definitions
for the CONNMON and GETPORTS REXX EXECs.

2.7.4 DSIAUTB Definitions

DSIPARM member CONNAUTB contains the necessary NetView command
authorization definitions for the CONNMON and GETPORTS REXX EXECs.

2.8 Communications Server for z/OS Customization

To support use of the TCPCONN command Communications Server for z/OS
customization may be required to enable the NMI:

• Add this statement to your TCP/IP profile member:

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 19

•
•
•
•
•

White Paper

NETMONITOR TCPCONNSERVICE

• Check value of MINLIFETIME:

Defined as: The minimum connection lifetime, specified in seconds, for
connections reported by the TCP connection information server.

The default is 3 seconds; you may want to change to be higher.

2.9 NetView SNMP Customization

SNMP MIBs are retrieved using the NetView SNMP command. There are several tasks for
customizing NetView SNMP:

• Run CNMSJ032 to copy MIB source files to the appropriate USS directories.

CNMSJ032 will perform tasks for other NetView functions. Review the
commentary in the JCL before running the job.

If CNMSJ032 ends with a return code of four you should check for existing MIB
source files in /etc/netview/mibs directory.

• Review CNMSTYLE definitions:

For example, if you modified the USS directories in CNMSJ032 then you may
need to modify the MIBPATH definition:

COMMON.CNMSNMP.MIBPATH = /usr/lpp/netview/v5r2/mibs:/etc/
netview/mibs

• Customize OSNMPD:

Modify your TCP/IP profile to start OSNMPD.

Define SNMP community names.

2.10 NetView Security Considerations

Both CONNMON and GETPORTS routines are coded to bypass further security checks (to
be consistent with FKXECMON) once they are invoked. This requires definitions for
DSIAUTB that are provided in member CONNAUTB. This approach reduces the number
of command authorization checks, resulting in less overhead.

20 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

The autotask running the CONNMON and GETPORTS routines will need to have
sufficient authority to invoke them. One method is to permit the autotask access within the
NetView Command Authorization Table (CAT).

The autotask is defined in CONNSTYL:

function.autotask.CONNMON = OPER5

By default, commands not protected in the sample NetView CAT table are permitted.

If your organization follows the same philosophy then the CONNMON and GETPORTS
routines will be permitted. If your organization protects all commands then you will need
to permit access to the CONNMON and GETPORTS routines.

2.11 CONNMON Timer

When connection monitoring and thresholding is properly configured you can issue a LIST
TIMER command to display the timer information. It will look similar to:

LIST TIMER=FKXECMON,OP=ALL

DISPLAY OF OUTSTANDING TIMER REQUESTS
TYPE: AFTER TIME: 10/31/06 11:31:43
 COMMAND: FKXECMON TIVED1
 OP: OPER5 (OPER5) ID: FKXECMON
TIMEFMSG: NO GMT
1 TIMER ELEMENT(S) FOUND FOR ALL
END OF DISPLAY

In this example, the autotask used for the monitoring is OPER5. The command is scheduled
as an AFTER timer based on the interval defined with the
COMMON.CNMSTYLE.CONNMONINTVL statement in CONNSTYL.

The command scheduled will be FKXECMON even when using the CONNMON prototype
due to the way the CONNMON EXEC is defined (command synonym of FKXECMON).

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 21

•
•
•
•
•

White Paper

3 Enable the CONNMON Prototype

This section is intended to be used as a checklist to complete the enablement of the
CONNMON prototype. Topics discussed will be the necessary and optional tasks for
enabling of the CONNMON prototype. The discussion of several tasks will be dependent
on whether or not you have AON/TCP active.

Each CNMSTYLE statement and IPCONN policy definition shown in this section was
discussed in detail in earlier sections of this document.

3.1 Download the CONNMON Prototype Package

1. Access NetView Downloads Web page:

http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliNetViewforzOS.html

2. Download the CONNMON package.

3. Unzip CONNMON.zip.

This will result in several parts being created that you must FTP to the systems
where you want connection monitoring and thresholding implemented.

4. Print CONNMON_White_Paper.PDF.

3.2 Copy NetView Files

The files included in the CONNMON prototype affect NetView DSICLD and DSIPARM:

1. FTP REXX EXECs to a NetView DSICLD data set:

– GETPORTS.REX

– CONNMON.REX

2. FTP definition members to a NetView DSIPARM data set:

– CONNSTYL.PRM

– CONNCMD.PRM

– CONNAUTB.PRM

– CONNMON.PRM

22 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

Choose data sets that are concatenated before the NetView-supplied DSICLD and
DSIPARM data sets.

3.3 Edit DSIPARM Members

3.3.1 Edit CNMSTYLE Members

Several style sheet statements are provided with the CONNMON prototype. These
instructions reference NetView member CNMSTGEN as an example.

• Edit CNMSTYLE (CNMSTGEN or CNMSTUSR):

– Add %INCLUDE CONNSTYL to include the CONNMON definitions

• If you are not running AON/TCP, enable the CONNMON tower as a subtower of
TCPCONN. If you are running AON/TCP you can skip this step.

– Uncomment this statement in CONNSTYL

TOWER.TCPIPCOLLECT.TCPCONN = CONNMON

Note: If you are running AON/TCP it will schedule FKXECMON under the
AUTCMON autotask by default.

• Review member CONNSTYL and determine if customization is necessary.

– COMMON.CNMSTYLE.CONNMONINTVL

– COMMON.CNMSTYLE.CONNMONPORTS

– COMMON.CNMSTYLE.CONNMONFILE

• Customize NetView for TCPCONN.

If you are running AON/TCP you should have already customized the FKXCFG01
policy member to use AUTCMON as the autotask for the monitoring and thresholding
code.

If you are not running AON/TCP you will need to define the autotask in CNMSTYLE:

• Select an autotask to use for the connection monitoring and thresholding code.

function.autotask.CONNMON = OPER5

This example will use OPER5 as the CONNMON autotask. Choose a valid task
name for your environment.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 23

•
•
•
•
•

White Paper

• Select a time interval on the supplied initcmd statement to schedule the initial
invocation to FKXECMON:

AUTOTASK.?CONNMON.InitCmd = AFTER 00:10:00,FKXECMON

This example uses a ten minute delay to allow sufficient time for NetView
initialization to occur. You can choose a lower time interval. The time interval
chosen is dependent on the amount of time it takes for NetView to dynamically
discover the local TCP/IP stack.

3.3.2 Edit NetView Command Definitions (CNMCMD)

CNMCMD defines commands to NetView.

• Define CONNMON commands in CNMCMDU:

– Add %INCLUDE CONNCMD to define the CONNMON prototype
commands

If you are running AON/TCP you may see a DSI234I message related to the command
definition for CONNMON to define it with a command synonym of FKXECMON:

DSI234I DUPLICATE COMMAND 'FKXECMON' DETECTED

You can ignore this message.

3.3.3 Command Authorization

• Define CONNMON commands in DSIAUTBU for authorization:

– Add %INCLUDE CONNAUTB

3.3.4 Connection Monitoring and Thresholding Policy

Define IPCONN policy definitions to enable connection monitoring and thresholding
function. You should code the IPCONN policy definitions in CNMPOLCY to avoid
confusion with the samples provided by AON/TCP. The AON/TCP samples are
commented out by default and should be left commented out.

If you are running AON/TCP:

• Remove (or comment out) any existing IPCONN policy definitions in
FKXCFG01 or any other policy definition member.

24 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

This will ensure that you use the enhanced IPCONN policy definitions used by the
CONNMON prototype. The CONNMON prototype supports the existing NetView
IPCONN policy definitions but you will be unable to take further advantage of the
performance and ease of use enhancements provided by the CONNMON
prototype.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 25

•
•
•
•
•

White Paper

4 NetView TCPCONN Command

4.1 Overview of TCPCONN Usage

Information on the TCPCONN command can be found by accessing the NetView help
(HELP TCPCONN) or by reading the IBM Tivoli NetView for z/OS: Command Reference
Volume 1 manual.

CONNMON uses TCPCONN command with these parameters

• QUERY

Queries connection records matching the input criteria.

• LADDR=local_stack_ipaddr

Specifies the IP address of the local stack for the QUERY.

• LPORT=local_port

Specifies the local port number, in decimal format.

• MAXRECS=max_conn_records

Specifies the maximum number of connection records to return from TCPCONN
QUERY.

A positive value specifies the set of connection records ending with the oldest
matching connection.

A negative value specifies the set of records starting with the most recent
matching connection.

The default value is 100 for CONNMON.

Note: The default value used by CONNMON differs from the TCPCONN
command default. The TCPCONN command uses a default of negative 100 to
retrieve connection data for the most recent 100 connections. For more details
read the help for TCPCONN command.

Default values are used for all other TCPCONN parameters.

Reminder: TCPCONN exploits an NMI with Communications Server for z/OS. Use of
TCPCONN by itself should improve the performance of the connection monitoring and
thresholding function.

26 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

4.2 TCPCONN Example

To retrieve connection data for a TCP/IP stack with local address of 10.44.15.200 and local
port 23, the TCPCONN command would look like:

TCPCONN QUERY LPORT=23 LADDR=10.44.15.200

An example response would look similar to:

The response will contain six parameters:

• TCPNAME (TCPIP)

Not used by CONNMON

• Local IP address of the stack (10.44.15.200)

• Local IP port on the stack (23)

• Remote IP address (10.44.15.200)

• Remote IP port (1028)

• Time stamp, in binary format (×*ÌÅ>*è*)

Not used by CONNMON

After issuing a TCPCONN command, CONNMON has a list of four-tuples that represent
the TCP/IP connection matching the IPCONN criteria. Using the four-tuples CONNMON
will issue an SNMP GET command to retrieve the detailed connection data needed to
perform its thresholding.

Note: TCPCONN supports IPv6. The response may contain IPv6 data. CONNMON will
filter the IPv6 data.

BNH772I NUMBER OF CONNECTIONS: 1 , MISSED BUFFERS: 0
TCPIP 10.44.15.200 23 10.44.15.200 1028 ×*ÌÅ>*è*
BNH772I NUMBER OF CONNECTIONS: 1 , MISSED BUFFERS: 0
TCPIP 10.44.15.200 23 10.44.15.200 1028 ×*ÌÅ>*è*

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 27

•
•
•
•
•

White Paper

5 TCP/IP MIB Connection Data

Once CONNMON has determined the four-tuple representation of a connection it will use
the four-tuple to retrieve MIB variable data from the ibmTcpipMvsTcpConnTable MIB
table.

The MIB variables used are:

• ibmMvsTcpConnBytesIn

• ibmMvsTcpConnBytesOut

The number of bytes for the connection. This is compared to the maximum or
minimum byte count threshold of the IPCONN policy definition.

• ibmMvsTcpConnSndWnd

Used to determine if the connection is hung.

• ibmMvsTcpConnResourceName

Contains the application name for the connection. For example, SMTP. This is
compared to the IPCONN policy name if no LPORT parameter is specified. If
LPORT is specified the resource name is ignored.

• ibmMvsTcpConnResourceId

Decimal value that represents the connection. The resource ID is used in
messages.

• ibmMvsTcpConnLastActivity

When the byte count for the threshold is an asterisk (*) the last activity data is
used to determine if the connection is idle.

When the byte count for the threshold is a numeric the last activity data is
compared to the interval specified on the THRESH keyword of the IPCONN
policy definition.

Using the four-tuple from the TCPCONN example, 10.44.15.200.23 representing the local
stack and local port and 10.44.15.200.1028 representing the remote client and the remote
port, an SNMP GET command will be issued for the MIB details:

• ibmMvsTcpConnBytesIn.10.44.15.200.23.10.44.15.200.1028

• ibmMvsTcpConnBytesOut.10.44.15.200.23.10.44.15.200.1028

• ibmMvsTcpConnSndWnd.10.44.15.200.23.10.44.15.200.1028

28 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

• ibmMvsTcpConnResourceName.10.44.15.200.23.10.44.15.200.1028

• ibmMvsTcpConnResourceId.10.44.15.200.23.10.44.15.200.1028

• ibmMvsTcpConnLastActivity.10.44.15.200.23.10.44.15.200.1028

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 29

•
•
•
•
•

White Paper

6 Retrieving Port Data

The GETPORTS REXX EXEC uses SNMP MIB data to determine the active ports for the
local TCP/IP stack. GETPORTS can be scheduled on a timer basis depending upon the
CONNMONPORTS definition in CONNSTYL:

COMMON.CNMSTYLE.CONNMONPORTS = (STATIC | DYNAMIC |
DYNAMIC,hh:mm:ss)

STATIC: This is the default value. GETPORTS will be called once during NetView
initialization to collect port data and store for later use by the CONNMON EXEC. This
option provides the best overall performance and should be used if the TCP/IP ports you
are monitoring do not change.

DYNAMIC: GETPORTS will be called from the CONNMON EXEC every time
CONNMON is driven to dynamically collect data for the currently active ports. This option
should be used if the TCP/IP ports you are monitoring change frequently. This option is
also consistent with the functionality provided by FKXECMON.

DYNAMIC,hh:mm:ss: GETPORTS will be scheduled on a timer basis using the
hh:mm:ss interval specified. GETPORTS will collect the port data and store for later use
by the CONNMON EXEC. This option can be used if the TCP/IP ports you are monitoring
change but not frequently.

6.1 TCP/IP MIB Port Data

Local TCP/IP port data is retrieved from the ibmTcpipMvsTcpListenerTable MIB table.
There are two MIB variables within the ibmTcpipMvsTcpListenerTable MIB table that are
used:

• ibmMvsTcpListenerResourceName

Contains the application name (job name) of the listener on the local port. For
example:

– ibmMvsTcpListenerResourceName.16 = TCPIP

• ibmMvsTcpListenerLocalPort

Contains the local port number for the listener. For example:

– ibmMvsTcpListenerLocalPort.16 = 23

The GETPORTS EXEC will correlate the two MIB variables such that the application
known as TCPIP is listening on local port 23.

30 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

GETPORTS will update the list of ports in the file in NetView storage (defined by
COMMON.CNMSTYLE.CONNMONFILE = CONNMON in CONNSTYL). You can
view the list of ports by browsing the file.

BROWSE CONNMON

GETPORTS has detected 16 active ports:

• TCPIP has opened two ports

• RXSERVE has opened two ports

• OSNMPD has opened one port

• FTPD1 has opened one port

• BPXOINIT has opened one port

• AUTONETV has opened four ports

• SMTP has opened one port

• INETD4 has opened four ports

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 31

•
•
•
•
•

White Paper

6.2 Correlate GETPORTS Data with IPCONN Policy

This section will attempt to tie the IPCONN policy definition with the port data retrieved
by GETPORTS.

The example IPCONN policy definition used in this section will be:

IPCONN TCPIP*,SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY)

6.2.1 IPCONN Policy without LPORT

If you specify IPCONN TCPIP* without the LPORT keyword to monitor connections with
TCPIP, CONNMON will retrieve all ports from the CONNMON file and build a list of
ports with a matching resource name. For example, ports 23 and 1024 will be used from the
16 active ports in the GETPORTS example.

That translates into two TCPCONN commands being issued:

• TCPCONN LPORT=23 LADDR=nnn.nnn.nnn.nnn

• TCPCONN LPORT=1024 LADDR=nnn.nnn.nnn.nnn

This is a case where additional overhead will occur by retrieving the connection data for
port 1024. To avoid that code LPORT=(23) on the IPCONN TCPIP* policy.

Note: The LADDR parameter of the TCPCONN command is shown here for
completeness. Its value is not relevant to this discussion so it is shown as nnn.nnn.nnn.nnn.

6.2.2 IPCONN Policy with LPORT

Using the LPORT keyword will reduce wasted CPU cycles if you know what the local port
is.

By adding LPORT=(23) to the existing IPCONN TCPIP* policy definition the
CONNMON EXEC will look for connections only to local port 23 and ignore any local port
data saved by the GETPORTS EXEC.

This is the option for optimum performance.

32 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

6.3 GETPORTS Timer

If you specify that you want ports to be discovered dynamically for
COMMON.CNMSTYLE.CONNMONPORTS and provide an interval, GETPORTS will
be scheduled based on the interval provided with a timer ID of GETPORTS.

The NetView LIST TIMER command can be used to display the timer information:

LIST TIMER=GETPORTS,OP=ALL

DISPLAY OF OUTSTANDING TIMER REQUESTS
TYPE: AFTER TIME: 10/26/06 10:00:27
 COMMAND: GETPORTS TIVED1
 OP: AUTCMON (AUTCMON) ID: GETPORTS
TIMEFMSG: NO GMT
1 TIMER ELEMENT(S) FOUND FOR ALL
END OF DISPLAY

In this example, GETPORTS is scheduled as an AFTER timer on the AUTCMON task.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 33

•
•
•
•
•

White Paper

7 Discussion of Customer Modifiable Variables

Each REXX EXEC supplied with the CONNMON prototype package, CONNMON and
GETPORTS, contains a subroutine (Customer_Vars) that defines default values for
variables used within the EXEC. The defaults are used when policy definitions or
CONNSTYL statements are not defined properly.

In general, you should specify as many keywords and parameters as possible on the policy
definitions or CONNSTYL statements.

7.1 CONNMON Customer_Vars

/* Define a default SNMP community name in case it is not defined on */
/* a stack policy definition (TCP390). The preferred method is to use */
/* the COMMUNITYNAME keyword on your TCP390 definition. */
Default_Cname = 'publicv2c'

/* Define a default file name to contain port data. The preferred */
/* method is to define the file name in CNMSTYLE with: */
/* COMMON.CNMSTYLE.CONNMONFILE = CONNMON */
Default_filename = 'CONNMON'

/* Define a default time interval used to schedule this routine. */
/* The preferred method to define the interval is in CNMSTYLE with: */
/* COMMON.CNMSTYLE.CONNMONINTVL = 00:10:00 */
Default_interval = '00:10:00'

/* Define a default value for the MAXRECS parm of the TCPCONN cmd. */
/* The preferred method to define MAXRECS on the IPCONN policy */
/* definition. */
Default_MaxRecs = 100

/* Define a default value for the USEIPADDR keyword of IPCONN */
/* The preferred method to define USEIPADDR on the IPCONN policy */
/* policy definition. */
/* definition. */
Default_UseIpAddr = 'NO'

7.2 GETPORTS Customer_Vars

/* MaxPorts value is used on SNMP GETBULK command: -Cr<MaxPorts>. */
/* By default this setting will retrieve data for "up to" 100 ports. */
/* Adjust higher if you are running more than 100 ports. */

34 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

/* Adjust lower if you are running less than 100 ports. Otherwise, */
/* extraneous data will be retrieved with the GETBULK and ignored in */
/* the GETBULK PIPE. Extraneous data means additional cycles. */
MaxPorts = 100

/* Define a default SNMP community name in case it is not defined on */
/* a stack policy definition (TCP390). The preferred method is to use */
/* the COMMUNITYNAME keyword on your TCP390 definition. */
Default_Cname = 'publicv2c'

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 35

•
•
•
•
•

White Paper

8 CONNMON Prototype Design

8.1 CONNMON EXEC

This section provides an overall flow of the logic in the CONNMON EXEC.

The primary changes for CONNMON (compared to FKXECMON) are related to the
processes to:

• Retrieve the IPCONN policy definitions

• Retrieve the port data

• Use the port data in conjunction with the IPCONN policy to build a list of
TCPCONN commands with a local TCP/IP stack address and port

• The TCPCONN response is then formatted into a list of four-tuples (4-tuples) that
are used to retrieve the detailed SNMP MIB variables such as
ibmMvsTcpConnLastActivity

The logic to compare the MIB details and take the appropriate actions (NOTIFY and
DROP) is relatively unchanged.

Parse and validate input
Initialize local variables including default settings

Retrieve IPCONN policy definitions Resolve IP address
Resolve SNMP community name

For each TCP/IP stack:

Retrieve port data from GETPORTS

Loop through IPCONN policy definitions
and port data to build and issue

TCPCONN LADDR=nnn.nnn.nnn.nnn LPORT=xx commands

Use TCPCONN response to build 4-tuples
Use 4-tuples to retrieve detailed SNMP MIBs

Compare MIB details to IPCONN THRESH keywords

AON: Invoke NOTIFY policy
No AON: Issue a REXX SAY

DROP (break) the connection

If action=NOTIFY:

If action=DROP:

Reschedule CONNMON timer

If DYNAMIC ports then
data is in named SAFE

Else data is in storage

Parse and validate input
Initialize local variables including default settings

Retrieve IPCONN policy definitions Resolve IP address
Resolve SNMP community name

For each TCP/IP stack:

Retrieve port data from GETPORTS

Loop through IPCONN policy definitions
and port data to build and issue

TCPCONN LADDR=nnn.nnn.nnn.nnn LPORT=xx commands

Use TCPCONN response to build 4-tuples
Use 4-tuples to retrieve detailed SNMP MIBs

Compare MIB details to IPCONN THRESH keywords

AON: Invoke NOTIFY policy
No AON: Issue a REXX SAY

DROP (break) the connection

If action=NOTIFY:

If action=DROP:

Reschedule CONNMON timer

If DYNAMIC ports then
data is in named SAFE

Else data is in storage

36 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

8.2 GETPORTS EXEC

This section provides an overall flow of the logic in the GETPORTS EXEC.

GETPORTS is new with the CONNMON prototype. It will retrieve port data from the
ibmTcpipMvsTcpListenerTable MIB table and store the data in the CONNMON file
(default file name is CONNMON) as well as a named safe (using the same name as the in-
storage file, CONNMON).

If a time interval is specified on the COMMON.CNMSTYLE.CONNMONPORTS
statement in CONNSTYL then GETPORTS will reschedule itself.

The in-storage file name (and named safe) is controlled by the
COMMON.CNMSTYLE.CONNMONFILE statement in CONNSTYL.

P a rs e an d v a lid a te in p u t
In it ia l iz e lo c a l v a ria b le s in c lu d in g d e fa u lt se tt in g s

R e s o lv e IP a d d re s s
R e s o lv e S N M P c o m m u n ity n a m e

R e tr ie v e p o rt d a ta fro m ib m T c p ip M v s T c p L is te n e rT a b le

S to re p o rt d a ta (p o rt_ n u m b e r a n d a p p lic a t io n) in f ile
T e m p o ra rily s to re p o rt d a ta in C O N N M O N n a m e d s a fe

If D Y N A M IC ,h h :m m :s s is d e f in e d
re s c h e d u le G E T P O R T S t im e r

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 37

•
•
•
•
•

White Paper

9 Performance Tests

9.1 Overview of Tests Run

Several sample tests were run to validate the performance of the CONNMON prototype
versus FKXECMON. The results are discussed in this section of the document.

Overall parameters for the measurements:

• All tests were performed on a second level z/OS system.

• All tests were performed with all required REXX EXECs loaded into NetView
storage: FKXECMON, CONNMON, and GETPORTS.

• All tests were run on an autotask that was dedicated to run only these
measurements. No other workload was scheduled on the autotask.

• All tests were run using five TN3270 connections into local port 23 and one FTP
connection. Each TN3270 connection was logged on to TSO.

• Only IPCONN policy for TCPIP connections was defined. There was no
IPCONN policy for FTP connections defined.

• All connections were established in an identical manner. All tests were run using
an IDLE threshold specification.

• DROP was not used during these tests to keep the sessions active and IDLE.

• All NetView timers were purged to prevent any interference.

• No entry, exit, or program tracing was allowed.

• A null Command Authorization Table was loaded to eliminate any overhead due
to security checking.

• NOTIFY policy determines the types of notifications to occur for a given event.
All notifications were disabled when running FKXECMON:

NOTIFY IPCONN,ALERT=NO,MSG=NO,DDF=NO,INFORM=NO

No tests were performed for:

• Missing SP= keyword and using the default local stack

• USEIPADDR=YES

The z/OS system used for these measurements is not a production system and is not overly
utilized as a result. Furthermore, it may not be a well tuned z/OS system.

38 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

There were two measurements taken for each test. A test EXEC was written to invoke each
connection monitoring routine (FKXECMON and COMMON) repeatedly, inside a
program loop. The test EXEC called the respective connection monitoring routine 200
times for each specific test run.

• First, the REXX TIME() function was used to evaluate the overall elapsed time it
took a connection monitoring routine to complete.

The elapsed time represents the actual clock time used by the task within the given
time period.

An average elapsed time was then derived for each test.

• Second, the NetView TASKUTIL command was used to evaluate the NetView
CPU time used by the task running the connection monitoring routine.
TASKUTIL was invoked before the program loop and afterwards.

The NetView CPU time represents the amount of CPU cycles used by the task
within the given time period.

An average NetView CPU time was then derived for each test.

The unit of measurement is seconds.

9.2 FKXECMON Base Measurements

To establish a baseline, the base measurements for FKXECMON will be taken using
IPCONN policy supported by FKXECMON:

IPCONN TCPIP*,SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY),
ACTMON=IPCONN

FKXECMON will be used in this test to establish a baseline for comparisons with the
CONNMON prototype.

Test results:

TESTRUN 200

Total Clock Time was: 421.431374

Average Clock Time was: 2.10715687

Total NetView TASKUTIL CPU Time was: 185.49

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 39

•
•
•
•
•

White Paper

Average NetView TASKUTIL CPU Time was: 0.92745

Summary of test results:

This test was performed solely to establish a baseline for the remaining tests.

This baseline is representative of a controlled test environment. In a production
environment there would be tens of thousands of connections retrieved by FKXECMON
and this baseline would actually be much worse.

9.3 Test 1: Basic NetView IPCONN Policy

The first test will use identical IPCONN policy as the FKXECMON baseline, with no
enhancements for the CONNMON prototype. This will establish a CONNMON prototype
baseline. The remaining tests will measure the effects of the additional enhancements
provided by the CONNMON prototype.

The policy is consistent with FKXECMON in NetView 5.2 including the retrieval of port
data dynamically:

IPCONN TCPIP*,SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY)

COMMON.CNMSTYLE.CONNMONPORTS = (DYNAMIC)

Test results:

TESTRUN 200

Total Clock Time was: 658.153965

Average Clock Time was: 3.29076983

Total NetView TASKUTIL CPU Time was: 47.86

Average NetView TASKUTIL CPU Time was: 0.2393

Summary of test results:

Use of the TCPCONN command to gather connection data represents, on average, a .68815
second improvement from the previous test. This translates into a huge 74.2%
improvement over the FKXECMON baseline measurement.

If this was a production system the improvement would be even greater because the
FKXECMON baseline would be much worse.

40 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

9.4 Test 2: IPCONN with LPORT, no Port Data in Storage

The second test will add the LPORT keyword to the IPCONN policy for one local port. The
retrieval of port data will remain dynamic. This will test the benefits of using the LPORT
keyword on the overall connection monitoring and thresholding process.

IPCONN with LPORT coded and dynamic port data

IPCONN TCPIP*,SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY),
LPORT=(23)

COMMON.CNMSTYLE.CONNMONPORTS = (DYNAMIC)

Test results:

TESTRUN 200

Total Clock Time was: 603.727995

Average Clock Time was: 3.01863998

Total NetView TASKUTIL CPU Time was: 41.99

Average NetView TASKUTIL CPU Time was: 0.20995

Summary of test results:

Use of the LPORT keyword on the IPCONN policy definition represents, on average, a
.02935 second improvement from the previous test. This translates into a 12.3%
improvement.

In the test environment TCPIP has two local ports. By specifying one, LPORT=(23), the
amount of data was reduced affecting the overall time by 12%.

This example will vary based on the application involved. If you have an application with
several ports open but only one or two of the ports is used for connections then you should
code the LPORT keyword.

9.5 Test 3: IPCONN with LPORT, Port Data in Storage

The third test will add the use of static port data and use the IPCONN policy for a single
local port. This will test the benefits of using the LPORT keyword and static port data on
the overall connection monitoring and thresholding process.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 41

•
•
•
•
•

White Paper

IPCONN with LPORT coded and static port data in storage

IPCONN TCPIP*,SP=TIVED1,
THRESH=(*,MIN,00:04:00,NOTIFY),
THRESH=(2147,MIN,00:00:30,NOTIFY),
LPORT=(23)

COMMON.CNMSTYLE.CONNMONPORTS = (STATIC)

Test results:

TESTRUN 200

Total Clock Time was: 499.671340

Average Clock Time was: 2.4983567

Total NetView TASKUTIL CPU Time was: 31.18

Average NetView TASKUTIL CPU Time was: 0.1559

Summary of test results:

Use of static port data represents, on average, a .05405 second improvement from the
previous test. This translates into a 25.7% improvement.

As anticipated, this is a measurable improvement.

42 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

10 Messages

10.1 Messages Issued by CONNMON EXEC

The messages issued by the CONNMON routine are the same as those issued by
FKXECMON.

In this example FKX101I message the connection between the client 99.44.15.209:1027
and the TIVED1 stack 10.44.15.200:23 has been idle longer than the defined threshold on
the IPCONN TCPIP* policy definition:

FKX101I IDLE TIME THRESHOLD EXCEEDED FOR CONNECTION 2744/
0000000AB8 BETWEEN 10.44.15.200:23 AND 99.44.15.209:1027.
ACTION=NOTIFY SP=TIVED1 POLICY=TCPIP*.

The session identifier is 2744 (decimal) or 0000000AB8 (hex). The action defined in the
policy is NOTIFY which causes the FKX101I message to be issued.

You can use the NetView HELP command to display information pertaining to each
message.

FKX101I IDLE TIME THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=NOTIFY SP=local_stack_name
POLICY=IPCONN_policy.

FKX102I IDLE TIME THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=DROP SP=local_stack_name
POLICY=IPCONN_policy.

FKX104I MINIMUM BYTES THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=NOTIFY SP=local_stack_name
POLICY=IPCONN_policy.

FKX105I MINIMUM BYTES THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=DROP SP=local_stack_name
POLICY=IPCONN_policy.

FKX107I MAXIMUM BYTES THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=NOTIFY SP=local_stack_name
POLICY=IPCONN_policy.

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 43

•
•
•
•
•

White Paper

FKX108I MAXIMUM BYTES THRESHOLD EXCEEDED FOR CONNECTION
connection_ID BETWEEN local_addr_and_port AND
remote_addr_and_port. ACTION=DROP SP=local_stack_name
POLICY=IPCONN_policy.

10.2 Messages Issued by GETPORTS EXEC

GETPORTS is new and does not issue messages recognized with a NetView product prefix
such as FKX.

GETPORTS will use a REXX SAY instruction to display an error message relating to the
type of data collection (STATIC or DYNAMIC):

CONNMON - Invalid collection type definition:' Type

GETPORTS encountered an error with the CNMSTYLE.CONNMONPORTS
definition statement. It did not contain a type of STATIC or DYNAMIC.

A default collection type of STATIC will be used.

44 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

11 Common Errors

This section summarizes some common errors and their possible causes.

11.1 No Port Data

If the GETPORTS routine is not scheduled issue a BROWSE CONNMON command to
verify that you have the sample file properly defined. You should see the NetView browse
panel with one line:

* sample file for CONNMON prototype - do not delete

If you see a different display, check the COMMON.CNMSTYLE.CONNMONFILE
statement in CONNSTYL.

11.2 Command Authorization Errors

If you receive command authorization error messages:

• You did not code a %INCLUDE CONNAUTB in DSIAUTBU

• DSIAUTB has been modified and is missing the %INCLUDE DSIAUTBU

11.3 Monitoring Is not Scheduled

If you do not see a timer ID of FKXECMON then there is an error in your CONNSTYL
definitions for the autotask or the initcmd:

• function.autotask.CONNMON = OPER5

• AUTOTASK.?CONNMON.InitCmd = AFTER 00:10:00,FKXECMON

11.4 DSI651I Message Issued

Message DSI651I is issued from the CONNMON EXEC when it is unable to determine the
local stack IP address or host name:

DSI651I KEYWORD MISSING - ONE OF FOLLOWING REQUIRED: IPADDR

©Copyright IBM Corp. 2006 Prototype for Enhanced Monitoring of TCP/IP Connections 45

•
•
•
•
•

White Paper

The most likely cause of this error is a very short interval defined on the
COMMON.CNMSTYLE.CONNMONINTVL statement in CONNSTYL. This error will
occur when the CONNMON EXEC is driven before the dynamic stack discovery code has
completed.

To correct this error change the interval to a larger value.

11.5 EZL572I Message Issued

Message EZL572I is issued by AON initialization processing when AON is unable to route
a request to an autotask:

EZL572I OPERATOR CGLOBALS NOT INITIALIZED - UNABLE TO ROUTE
COMMAND FKXECMON

You can ignore this message. It occurs because AON has detected the occurrence of
IPCONN policy definitions and attempted to schedule its FKXECMON EXEC but could
not find an appropriate autotask.

The parameters defined in member CONNSTYL will be used to schedule the CONNMON
EXEC.

To eliminate the EZL572I message, delete the AUTOOPS
CONNOPER,ID=AUTCMON policy definition on your system. It is typically found in
DSIPARM member FKXCFG01.

46 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

White Paper

12 Support for the CONNMON Prototype

The CONNMON prototype was developed and tested on a NetView 5.2 running on z/OS
1.6 and Communications Server for z/OS 1.6.

Support for the CONNMON prototype is available as time permits by contacting the author
of this document.

•
•
•
•
•

47

Conclusion

Summary

The primary purpose for writing this White Paper was to conceptually prove that the use of
TCPCONN to retrieve TCP/IP connection data improved the performance of the NetView
connection monitoring and thresholding function. The performance tests validated the
author’s assumptions.

Enhancements were suggested for the IPCONN policy definition which further improved
the performance of the NetView connection monitoring and thresholding.

The prototype REXX routine (CONNMON) will also be available on the NetView for z/
OS downloads Web page.

Resources

Consult the following manuals for further information:

IBM Tivoli NetView for z/OS 5.2:

• Command Reference Volume 1

• Administration Reference

• Security Reference

• Messages and Codes

• Installation: Configuring Additional Components

Communications Server for z/OS 1.6:

• IP Configuration Reference

48 Prototype for Enhanced Monitoring of TCP/IP Connections ©Copyright IBM Corp. 2006

•
•
•
•
•

Conclusion

	IBM Tivoli NetView for z/OS 5.2:
	Prototype for Enhanced Monitoring of TCP/IP Connections
	Introduction
	Acronym Definitions

	White Paper : Prototype for Enhanced Monitoring of TCP/IP Connections
	1 Overview and Comparison
	1.1 Usage Examples
	1.2 Overview of NetView Connection Monitoring
	1.3 Overview of Prototype Connection Monitoring
	1.4 Comparison: FKXECMON versus CONNMON
	1.5 Restrictions
	1.6 Overview of NetView Dynamic TCP/IP Stack Discovery

	2 Defining Connection Monitoring and Thresholding
	2.1 Overview
	2.2 Stack Policy
	2.3 Connection Monitoring and Thresholding Policy
	2.3.1 LPORT Keyword
	2.3.2 USEIPADDR Keyword
	2.3.3 IPCONN Example 1
	2.3.4 IPCONN Example 2
	2.3.5 IPCONN Example 3

	2.4 Notification Policy
	2.4.1 Notification with AON
	2.4.2 Notification without AON

	2.5 ACTMON Policy
	2.6 AUTOOPS Policy
	2.7 CNMSTYLE Customization
	2.7.1 TCPCONN Definitions
	2.7.2 Definitions for CONNMON Prototype
	2.7.3 Command Definitions
	2.7.4 DSIAUTB Definitions

	2.8 Communications Server for z/OS Customization
	2.9 NetView SNMP Customization
	2.10 NetView Security Considerations
	2.11 CONNMON Timer

	3 Enable the CONNMON Prototype
	3.1 Download the CONNMON Prototype Package
	3.2 Copy NetView Files
	3.3 Edit DSIPARM Members
	3.3.1 Edit CNMSTYLE Members
	3.3.2 Edit NetView Command Definitions (CNMCMD)
	3.3.3 Command Authorization
	3.3.4 Connection Monitoring and Thresholding Policy

	4 NetView TCPCONN Command
	4.1 Overview of TCPCONN Usage
	4.2 TCPCONN Example

	5 TCP/IP MIB Connection Data
	6 Retrieving Port Data
	6.1 TCP/IP MIB Port Data
	6.2 Correlate GETPORTS Data with IPCONN Policy
	6.2.1 IPCONN Policy without LPORT
	6.2.2 IPCONN Policy with LPORT

	6.3 GETPORTS Timer

	7 Discussion of Customer Modifiable Variables
	7.1 CONNMON Customer_Vars
	7.2 GETPORTS Customer_Vars

	8 CONNMON Prototype Design
	8.1 CONNMON EXEC
	8.2 GETPORTS EXEC

	9 Performance Tests
	9.1 Overview of Tests Run
	9.2 FKXECMON Base Measurements
	9.3 Test 1: Basic NetView IPCONN Policy
	9.4 Test 2: IPCONN with LPORT, no Port Data in Storage
	9.5 Test 3: IPCONN with LPORT, Port Data in Storage

	10 Messages
	10.1 Messages Issued by CONNMON EXEC
	10.2 Messages Issued by GETPORTS EXEC

	11 Common Errors
	11.1 No Port Data
	11.2 Command Authorization Errors
	11.3 Monitoring Is not Scheduled
	11.4 DSI651I Message Issued
	11.5 EZL572I Message Issued

	12 Support for the CONNMON Prototype

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

