
IBM Enterprise Content Management
July 2007

4.0 Compound  
Document Model

IBM   Information Management   software



4.0 Compound Document Model
Page �

Overview

With the advent of various powerful editing and document composition tools 

that are able to create compound documents, many companies have realized 

the importance of providing enterprise-wide secure access to these documents 

and their component parts. A compound document is essentially a collection of 

components that are used together to form a single complete document. 

Often also referred to as composite documents, this can be a very convenient and 

efficient way of creating a new document from existing components, enabling the 

easy re-use of intellectual property.

Using compound documents can provide benefits to the organization by allowing 

independent editing of various components, reuse of components in other 

documents, enhanced integrity during the publishing process, and savings in 

time. These capabilities allow large groups of users to collaborate on the creation 

of documents using a mix of applications, while assuring the integrity of the total 

documents as they pass through the process of creation, revision and distribution. 

Different people using different applications may create portions of these 

documents at different times. Each portion of the document may have a different 

creation, approval and update cycle; yet the consumers of the document should 

see only a consistent result.

In our research we have found that each compound document solution views the 

way in which the components of the document are created, related, maintained, 

viewed and rendered in different ways. This has led IBM to develop the IBM 

FileNet P8 Compound Document model.

IBM FileNet P8 4.0 Compound Document Model

The goal of the FileNet P8 Compound Document model is to provide a framework 

that is extensible to encompass and facilitate many different compound document 

models such as DITA, DocBook, HTML, OLE, CAD, etc.  

Overview .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3

IBM FileNet P8 4.0 Compound 
Document Model .  .  .  .  .  .  .  .  .  .  .           3

The Compound Document .   .   .   .   .  3

What Makes Up a Compound 
Document?  .  .  .  .  .  .  .  .  .  .  .  .  .             5

Shared Components .   .   .   .   .   .   .   .  5

Compound Document  
Relationship Types  .  .  .  .  .  .  .  .  .         6

Versioning .  .  .  .  .  .  .  .  .  .  .  .  .  .             7

Exploring a Compound Document 
Structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .               7

Ordering Components in the 
Compound Document Structure .   .  8

Server-based Component Ordering . 8

Application-based  
Component Ordering  .  .  .  .  .  .  .  .        9

Compound Document Security and 
Integrity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                9

Compound Document State Setting	 9

Parent and Relationship Security .  .  9

Cascade Delete Behavior .  .  .  .  .      10

Prevent Delete Behavior  .   .   .   .   .   . 11

Workplace User Interface  .  .  .  .  .      12

Development .  .  .  .  .  .  .  .  .  .  .  .             13

Table of Contents



4.0 Compound Document Model
Page �

Note: In the P8 4.0 release this is not a direct functional match with the Content Services Compound Document capabilities. 

Although the capabilities of the Content Engine will support Content Services Compound Document solutions, there are some 

out-of-the-box capabilities and User Interface components that currently do not have direct functional equivalents but may be 

added in the future.

The core P8 Compound Document capabilities are open, extensible and constructed in a way that many compound document 

models can be used simultaneously.

The core of any compound document model is to allow for the interconnection or linking of the various components of each 

document. For those who are familiar with IBM FileNet Content Manager you may be aware of many capabilities that exist today 

which support such interrelationships. Examples of these are Link objects, Object Value Properties and Referential Containment 

Relationships.

The goal of P8 4.0 is to formalize the Compound Document capabilities that exist today and to add capabilities which have 

been found to be common across all solutions. This formalizing of compound document capabilities is intended to provide our 

partners and customers a stable, supported foundation on which to implement their desired solutions.

The Compound Document

In the P8 Compound Document model a parent document maintains relationships to immediate children. Those children in turn 

may be compound documents with children of their own. There is no anticipated limitation to the depth of the hierarchy. 

Although in many compound document models, the relationships indicate a hierarchal structure, this is by no means mandatory. 

The structure can also be articulated in a head-to-tail structure that indicates a relationship but not necessarily direct inclusion of 

the child document into the parent. 

In the following diagram a single compound document is detailed as an example. Note that from the root parent document we 

have a hierarchy of child components with homogeneous data. In this example this constitutes the document itself. In addition, 

there are additional relationships to language translations and rendered versions of the assembled hierarchy. There are many 

other permutations and structures of compound documents that the Content Engine is now able to describe.

 



4.0 Compound Document Model
Page �

This model gives the largest degree of freedom for implementations. Child components may be complex compound documents 

in their own right with creation and review cycles following different ownership, creation and review cycles from the parent 

document.



4.0 Compound Document Model
Page �

What Makes Up a Compound Document?

The component parts of a compound document obviously include the parent and child documents in the structure. What they 

also include is the metadata on both and also on the relationship which connects them. If you are familiar with the Content 

Engine, you will be aware that document classes can have additional metadata properties assigned to them and that they can be 

sub-classed to derive additional classes from a similar parent. These properties are part of the compound document.

In addition to this, the compound document relationship is an object which can have additional properties assigned and can be 

sub-classed. 

The result is a very rich structure for your application. A single compound document may have many different document types 

included and also have many different relationship types used to include child documents.

 

Shared Components

A single document or a compound document sub-tree may be used in many compound document structures as a child 

component simultaneously. This is commonly used in the cases of a company logo used in standard letters or a common title 

block on an engineering drawing. The benefit here is the consistency and control this enforces across all compound documents.

 



4.0 Compound Document Model
Page �

Compound Document Relationship Types

A formal compound document relationship type is being introduced in Content Engine 4.0. The relationship will allow parent 

documents to be associated with the components which it is made up of. The components can be native content engine 

documents or versions, documents accessible via Content Federation Services and external document accessible via a URI. 

This allows an unprecedented level of inclusiveness for compound document authors in your organization.

In addition to the storage location of component documents, the relationship capabilities support the following types of 

associations:

Link to static child component Versioning of the child component does not affect the relationship.

Link to latest major version The relationship always points to the latest major version of the child document

Link to latest version The relationship points to the latest version of the child document regardless of the major/

minor status. This is sometimes referred to as the “tip” version

Link to latest version with 

Label value set to X

A compound document label property is being introduced in all document classes. The child 

document will have such a label property. Each version of the child document could have 

this property set to a different value. The relationship will point to the latest version of the child 

component which has the label property set to a specified value.

Link to URL A child component in this case is referred to by a URL such as a web URL. This enables the 

inclusion of components not under Content Engine control.

Note: Relationships can be within the same object store and also across object stores. The primary qualification for cross object 

store relationships is that the object stores must be within the same Content Engine domain.



4.0 Compound Document Model
Page �

The compound document relationship is designed to be sub-typed to suit your application document needs. This allows for type 

naming, custom property additions, default value setting, event triggering, auditing, etc.

Versioning

Another significant enhancement to support compound documents is the propagation of relationships during the versioning 

process of the parent document. When a compound document parent document has relationships with child documents and 

the parent document is versioned, these relationships are propagated to the next version. 

 

Figure 1 – Versioning a Compound Document Component

It is important to note that the prior version of the parent document is left intact during this process including its relationships. This 

means that any manipulation of the new version will not affect it. 

Exploring a Compound Document Structure

In order to allow applications and user interfaces to make use of a compound document, the Content Engine has extended the 

document object to allow for exploration of parent and child relationships. From any document in an object store the following 

can be retrieved.

Child relationships This will retrieve any relationship objects that connect to compound document child objects of the 

current document. The relationship object will have a relationship type and may also have type 

specific metadata

Child documents This will retrieve child document objects of the current document

Parent relationships This will retrieve any relationship objects that connect to parent documents of the current document

Parent documents This will retrieve parent documents of the current document

Note: Since the parent document+relationship and child document are governed by independent security, it is possible that you 

will not be able to retrieve all relationships/documents if you do not have the required permissions. 



4.0 Compound Document Model
Page �

Ordering Components in the Compound Document Structure

In many Compound Document solutions, the order of the relationships between components is a critical part of the document 

structure. The Content Engine ensures that relationships and component documents will always be presented in a reliable order. 

This order is maintained independently at each level of the structure. 

 

Ordering can be provided in two different ways depending on the needs of the application.

Server-based Component Ordering

Given no additional input by the application, the Content Engine will manage a consistent ordering of the child components at 

each level of the hierarchy. If child relationships are created sequentially, this order will be maintained for all future actions. 

The Content Engine APIs and the Workplace application both allow the components to be reordered.



4.0 Compound Document Model
Page �

Application-based Component Ordering

Compound Document applications can choose to directly control the component ordering rather than defer to the content 

engine. The application can provide integer numbering for the components. The Content Engine will maintain and deliver the 

components based on this application defined ordering. 

The server will not prevent collisions of sort order number values between components where the user supplies the sort order 

number.

Compound Document Security and Integrity

There are a number of capabilities and settings that allow compound document applications to maintain the integrity of their 

document structures.

Compound Document State Setting

In addition to security, the ability to create relationships to child components from a document is controlled by a document 

instance state setting named CompoundDocumentState. The two allowable states for this property are idmStandardDocument 

and idmCompoundDocument. If this property is not set to idmCompoundDocument, the document is considered to not be a 

compound document and therefore is not allowed to create relationships to child components.

The goal of this state setting is twofold. The first is to allow Workplace to represent whether a document is a compound document 

parent in result sets without incurring additional performance overhead. Workplace is also able to enable and disable compound 

document actions based on this state.

The second is to easily allow Compound Document applications to differentiate between documents that are compound in 

nature and therefore under their control.

This can be toggled between StandardDocument and CompoundDocument. A prerequisite for converting a 

CompoundDocument into a StandardDocument is that all child relationships must be removed before the Content Engine will 

allow this change.



4.0 Compound Document Model
Page 10

Parent and Relationship Security

In a single compound document it is clear that the parent and child in any relationship have the ability to maintain separate 

security. The compound document relationship object, however, does not maintain a separate access control list. Access to 

existing relationship objects, and their creation and deletion is controlled by the parent object’s access control list. 

Create Relationship to Child 

Component

User must have FN_ACCESS_LINK rights on 

the parent component to create component 

relationship object that references the parent.

User must have FN_ACCESS_READ rights 

on the child component to create component 

relationship object that references the child.

The Compound Document State property 

must already be set to CompoundDocument 

to permit adding a component relationship 

object.

Delete Relationship Users must have FN_ACCESS_UNLINK 

rights on the parent component to delete 

component relationship object that 

references the parent.

Any user with FN_ACCESS_UNLINK rights 

on the parent component is also granted 

DELETE rights on any direct child component 

relationships object.

Update Relationship 

Properties

Users must have FN_ACCESS_WRITE 

rights on the parent component to modify 

properties on a component relationship 

object.

Property update rights allow users to modify 

order number, change child document 

referenced, and modify custom properties on 

component relationship objects.

Cascade Delete Behavior

The compound document model provides a capability to further solidify the relationship between a parent and a child 

component. This is provided as a relationship property titled Cascade Delete. If this is set for a relationship, when the parent 

is requested to be deleted, the child component referred to by this relationship will also be deleted. This is appropriate for 

compound document solutions where all components in the structure are considered to be the same document. Having 

sufficient access to all documents in the structure that are connected with relationships set to cascade delete is required. If you 

do not have the correct level of access, you will not be allowed to complete the action.



4.0 Compound Document Model
Page 11

Prevent Delete Behavior

In order to further control and maintain compound document integrity a relationship property called ComponentPreventDelete 

can be used. 

ALLOW_BOTH_DELETE (default) No control on delete behavior

PREVENT_CHILD_DELETE This prevents a child component from being deleted if it is included in an compound 

document with a relationship set with this value.

When an independent author is working with a child component and is unaware of 

the compound document hierarchy it is included in, this will prevent the deletion of 

the document if its existence is critical to the integrity of the document as a whole.

Both an individual deletion request on the child and also a cascade delete that 

involves that child will be prevented.

PREVENT_PARENT_DELETE This prevents the parent being deleted if any of the relationships to child 

components are set to this value.

This could be used ensure that a parent document would not be deleted if there 

were child components which would be considered orphaned if it were to be 

removed.

PREVENT_BOTH_DELETE Neither the parent nor the child can be separately deleted.



4.0 Compound Document Model
Page 12

Workplace User Interface

The Workplace application has been extended to expose the compound document model extensions to the user. This allows for 

the creation, modification and deletion of relationships. It also allows for the exploration of parent and child relationships from any 

document. 

The capabilities are generic to the compound document framework. The user interface does not, for example, implement 

Microsoft OLE Compound Document capabilities. This would require additional development at this time.

 



©	 Copyright IBM Corporation 2007

		
IBM Corporation 
3565 Harbor Boulevard 
Costa Mesa, CA 92626-1420 
USA

Printed in the USA

07-07

All Rights Reserved.

IBM and the IBM logo are trademarks of IBM 
Corporation in the United States, other countries 
or both. All other company or product names 
are registered trademarks or trademarks of their 
respective companies. 

	 For more information, visit  
ibm.com/software/data/cm.

		

IMW12876-USEN-00

Development

There are a number of development API languages that can be used to develop 

applications against the Content Engine. Compound document capabilities are 

exposed in these APIs

	 CE 4.0 JAVA API; CE 4.0 .Net API; CE Web Services API

The following APIs have partial or no exposure of the compound document.

	 CE 3.5 JAVA API – It is possible to discover if a document is a compound 
document parent. Compound document method extensions and relationship 
objects are not exposed. In a single application it is possible to combine CE 3.5 
and 4.0 JAVA API code to form a single solution.

	 CE COM APIs – It is possible to discover if a document is a compound document 
parent. Compound document method extensions and relationship objects are 
not exposed. 


