
ibm.com/redbooks

DB2 9: pureXML
Overview and Fast Start

Cynthia M. Saracco
Don Chamberlin

Rav Ahuja

Foreword by Sal Vella

Managing XML for maximum return

Revealing XML in DB2 9

Using SQL and XQuery to
query XML data

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 9: pureXML
Overview and Fast Start
June 2006

International Technical Support Organization

SG24-7298

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2006)

This edition applies to Version 9.1 of IBM DB2 Universal Database.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Foreword . ix
Preface . x
The team that produced this redbook. xi
Become a published author . xi
Comments welcome. xii
Notices . xii

Chapter 1. Managing XML for maximum return . 1
1.1 Why XML?. 2
1.2 Managing XML: The need and benefits . 3
1.3 Managing XML: The options . 4

1.3.1 Large objects and tables . 4
1.3.2 Decomposition (“shredding”) into tables . 5
1.3.3 XML-only data management . 6
1.3.4 Hybrid data management . 7

1.4 Managing XML: The IBM solution . 8
1.4.1 Relational extensions for XML . 8
1.4.2 pureXML storage and management . 9
1.4.3 Early successes . 11

1.5 Summary . 13

Chapter 2. What’s new in DB2 9: XML to the core 15
2.1 Introduction . 16
2.2 Potential benefits. 17
2.3 Architectural overview . 17
2.4 Logical storage . 18
2.5 Physical storage . 20
2.6 Indexing. 22
2.7 Query language and optimization . 23
2.8 XML schemas and validation . 25
2.9 Administrative support. 26
2.10 Programming language extensions. 26
2.11 Summary . 27

Chapter 3. Get off to a fast start with pureXML . 29
3.1 Creating database objects. 30
© Copyright IBM Corp. 2006. All rights reserved. iii

3.1.1 Creating a test database . 30
3.1.2 Creating sample tables . 30
3.1.3 Creating views. 31
3.1.4 A note about indexes . 31

3.2 Storing XML data. 32
3.2.1 Using INSERT statements . 32
3.2.2 Using DB2 IMPORT . 34

3.3 Validating your XML data . 36
3.3.1 Step 1: Creating an XML schema . 36
3.3.2 Step 2: Registering the XML schema . 40
3.3.3 Step 3: Importing XML data with validation. 41

3.4 Summary . 42

Chapter 4. Querying XML data with SQL . 43
4.1 Sample database . 44
4.2 Query environment . 45
4.3 SQL-only queries. 47
4.4 SQL/XML queries . 48

4.4.1 “Restricting” results based on XML element values 48
4.4.2 “Projecting” XML element values . 50
4.4.3 Creating relational views of XML data. 53
4.4.4 Joining XML and relational data . 54
4.4.5 Using “FLWOR” expressions in SQL/XML . 54
4.4.6 Publishing relational data as XML. 56

4.5 Update and delete operations . 58
4.5.1 Updating XML data . 59
4.5.2 Deleting XML data. 61
4.5.3 Indexing. 61

4.6 Summary . 61

Chapter 5. Querying XML data with XQuery . 63
5.1 About XQuery . 65
5.2 Sample database . 65
5.3 Query environment . 67
5.4 XQuery examples . 68

5.4.1 Using DB2 XQuery as a top-level query language 69
5.4.2 Retrieving specific XML elements . 70
5.4.3 Filtering on XML element values. 72
5.4.4 Transforming XML output . 75
5.4.5 Using conditional logic . 77
5.4.6 Using the “let” clause . 78

5.5 XQueries with embedded SQL . 79
5.5.1 Indexing. 81
iv DB2 9: pureXML Overview and Fast Start

5.6 Summary . 81

Chapter 6. Developing Java applications for XML data 83
6.1 Follow typical programming “best practices” . 84
6.2 Configure your environment . 84

6.2.1 DB2 Developer Workbench. 85
6.2.2 Sample data . 85
6.2.3 Database configuration parameters . 86

6.3 Connect to your database . 86
6.4 Insert XML data . 88

6.4.1 Insert file without validation . 88
6.4.2 Insert file with validation . 89
6.4.3 Insert character string without validation. 90
6.4.4 Insert character string with validation . 91

6.5 Query XML data . 91
6.5.1 Retrieve full XML documents . 92
6.5.2 Retrieve portions of XML documents . 93
6.5.3 Filtering on relational and XML predicates . 94
6.5.4 Use XQuery as a top-level language . 95

6.6 Update and delete XML data. 97
6.6.1 Delete examples . 97
6.6.2 Update examples . 98

6.7 Query builder. 100
6.7.1 Prepare your workspace . 101
6.7.2 Build your query . 101
6.7.3 Execute your query . 102

6.8 Stored procedures. 102
6.8.1 Prepare your workspace . 103
6.8.2 Create your procedure . 103
6.8.3 Deploy and test your procedure . 105

6.9 Summary . 106

Chapter 7. Case study: Storebrand . 107
7.1 Case Study overview. 109
7.2 Why IBM? . 109
7.3 Creating a single view of business-critical data. 109
7.4 IBM DB2 9 pureXML support enhances SOA . 110
7.5 Improved quality and speed of offerings enhance customer service . . . 111
7.6 DB2 9 improves business agility . 111
7.7 Key Components. 112

Related publications . 113
Online resources . 113
How to get IBM Redbooks . 113
 Contents v

Help from IBM . 113

Index . 115
vi DB2 9: pureXML Overview and Fast Start

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Celeron®
DB2 Universal Database™
DB2®
DB2 9®
developerWorks®

Eserver

IBM®
Itanium®
pureXML™
Rational®

Redbooks (logo)™
WebSphere®
Xeon®

The following terms are trademarks of other companies:

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft™, Windows™, Windows NT™, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino™, Intel Centrino logo, Celeron®, Intel
Xeon™, Intel SpeedStep®, Itanium®, and Pentium™ are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Linux™ is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii DB2 9: pureXML Overview and Fast Start

Foreword

Services Oriented Architectures (SOA) are an integral part of building an agile

enterprise capable of making decisions quickly, and responding rapidly to new

products and services opportunities, as well as to competitive threats. The explo-

sive growth of XML data in businesses today across multiple industries has

underscored the role of XML as the "fabric of Services Oriented Architectures"

and the need to integrate XML data into enterprise information infrastructure.

DB2 9 (previously code-named “Viper”) enables an information-centric approach

to service oriented architecture implementations, which rely upon the ability to

access a myriad of data stored across multiple formats. With its dual pure XML

data management and traditional relational data capability, DB2 9 delivers infor-

mation as a service in SOA environments, connecting information on-the-fly,

where you need it, and when you need it!

XML data requires the same coveted qualities of service that relational data-

bases provide: high availability, reliability, protection, and performance. The

pureXML™ technology in DB2 9 unlocks the latent potential of XML by providing

simple efficient access to XML with the same levels of security, integrity, and

resiliency taken for granted with relational data. With pureXML innovation in

DB2 9, your organization can expect breakthrough increases in availability,

speed, and versatility of your XML information, along with dramatically reduced

development and administrative costs.

This IBM Redbook serves as an introduction to the hybrid XML data services in

DB2 9 for Linux, UNIX, and Windows. It also provides data server professionals

a fast start for using and exploring pureXML capabilities in DB2 9 and get them

started with leveraging XML information for maximum return.

Sal Vella

V.P., IBM DB2 Development
© Copyright IBM Corp. 2006. All rights reserved. ix

Preface
The new IBM DB2 9, (formerly codenamed “Viper”), features hybrid data
management technology that incorporates proven relational capabilities with
first-class support for storing, searching, sharing, validating, and managing XML
data. The result is a reliable, scalable platform that provides high performance for
accessing and integrating “traditional” corporate data as well as XML data.

Benefits of storing – or persisting – XML in a database management system vary
according to the specific system in use. Potential benefits include:

� Improved employee productivity
� Improved IT resource utilization
� Reduced labor costs
� Quicker “time to value” for certain applications

You'll learn how this is possible as we explore different options for managing
XML data and review the IBM solution.

This book is intended for IT managers, IT architects, DBAs, programmers, and
other data server professionals.

This IBM Redbook is organized as follows:

� Chapter 1: Maximizing XML for maximum return. This chapter discusses the
business case for XML technology in general and DB2 XML in particular. It
includes case studies with quantified benefits, such as labor savings and
code savings.

� Chapter 2: What's new in DB2 9: XML to the core. Technical overview of the
release covering all major XML features.

� Chapter 3: Get off to a fast start with pureXML. First steps using DB2 9 XML,
including database and table creation, inserting and importing data, and
validating data. Java programming example provided in a side file.

� Chapter 4: Querying XML data with SQL. Tutorial about using SQL and
SQL/XML to query XML data in DB2 9. Java programming example provided
in a side file.

� Chapter 5: Querying XML data with XQuery. Tutorial about using XQuery to
query XML data in DB2 9. Java programming example provided in a side file.

� Chapter 6: Developing Java applications for XML data. Tutorial on Java
application development and the DB2 Developer Workbench.

� Chapter 7: Case study: Storebrand. Storebrand improves agility by
integrating business processes with an IBM solution.
x DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software
http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software

The team that produced this redbook
This redbook was produced by a team of IBM specialists at the IBM Silicon
Valley Laboratory and Almaden Research Center, San Jose, CA, U.S., and at
the IBM Toronto Lab, Toronto, Canada.

Cynthia M. Saracco is an IBM Senior Software Engineer, who works at IBM
Silicon Valley Laboratory in the DB2 XML organization. She works on database
management, XML, Web application development, and related topics.

Don Chamberlin is an IBM Fellow at Almaden Research Center. He is one of
IBM’s representatives in the W3C XML Query Working Group. He is also a
co-author of the Quilt language proposal, which formed the basis for the XQuery
design. Don is best known as co-inventor of the SQL database language and as
author of two books on the DB2 database system. He holds a B.S. from Harvey
Mudd College and a Ph.D. from Stanford University. He is also an ACM Fellow
and a member of the National Academy of Engineering.

Rav Ahuja is a worldwide DB2 program manager based at the IBM Toronto Lab.
He has been working with DB2 for Linux, UNIX, and Windows since version 1
and has held various roles in DB2 development, technical support, marketing,
and product strategy. He works with customers and partners around the globe
helping them build and benefit from DB2 and services-based solutions. Rav is a
frequent contributor to DB2 papers, articles, and books. He holds a Computer
Engineering degree from McGill University and MBA from University of Western
Ontario.

Thanks to the following people for their contributions to this project:

Thore Thomassen
Storebrand Group

Seeling Cheung, Sarah Furr, Grant Hutchison, George Lapis, Nancy Miller,
Matthias Nicola, Sriram Padmanabhan, Leslie Parham, Mackelly Ray, Gary
Robinson, Hardeep Singh, Bert Van der Linden, and Susan Visser
IBM

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.
 Foreword xi

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Notices
Chapters two through six in this IBM Redbook are based on articles that have
been published in IBM developerWorks. They are updated and republished here
with the permission of IBM developerWorks. Chapter one and chapter seven are
IBM White Papers we have reprinted here.
xii DB2 9: pureXML Overview and Fast Start

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Managing XML for maximum
return

In an industry rife with acronyms, one three-letter combination makes many
information technology leaders shudder: ROI (return on investment). Perhaps
that’s because ROI for any given project – or any given investment in supporting
infrastructure – is usually difficult to quantify or predict. Yet few technology
initiatives are funded without a convincing business case that describes the
anticipated business value.1

This chapter explores the need for – and value of – managing XML data. It also
reviews key technology alternatives and outlines which options may be most
appropriate based on your business needs. But first, it addresses perhaps the
most obvious question: why should you care?

1

1 Information in this chapter was originally published as Managing XML for
Maximum Return, by C. M. Saracco in an IBM White Paper, November 2005.

ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf
© Copyright IBM Corp. 2006. All rights reserved. 1

ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf

1.1 Why XML?

Since its debut in the 1990s, XML (eXtensible Markup Language) has emerged
as a critical enabler to various technology initiatives. Service-oriented
architectures (SOA), enterprise application integration (EAI), enterprise
information integration (EII), Web services, and standardization efforts in many
industries all rely on or make use of XML as an underlying technology.

Why? XML provides a neutral, flexible way of exchanging data among different
devices, systems, and applications. Data is maintained in a self-describing
format to accommodate a variety of ever-evolving business needs. Free software
is available to help firms create, process, and transform XML data. All major
industry vendors provide some level of XML support in their software offerings,
and many have sought to exert considerable influence over XML-related
standards - a sure sign of the technology's importance. Indeed, few industry
analysts question the importance of XML today, and some are quite bullish on its
prospects. ZapThink, for example, projects that the market for XML information
exchange will approach nearly $3.8 billion by the end of the decade.

The business drivers behind XML's popularity are straightforward:

� A demand for increased business agility and efficiency
� A need to contain costs and “do more with less”
� A mandate to conform to regulatory requirements or comply with

de facto industry standards

Let's look briefly at each of these in turn.

Building an agile business that can quickly respond to new market demands and
competitive pressures implies that the underlying IT infrastructure must be easy
to adapt and evolve. For example, tracking new information about customer
preferences or buying behaviors cannot translate into a significant overhaul of a
firm's production database; such an undertaking would be too time-consuming
and costly. Similarly, firms cannot afford to have the success of a new business
partnership or acquisition hampered by an inability to exchange information
between different systems.

Cost containment implies a need to make maximum use of new and existing IT
assets. It counters the notion of “rip-and-replace” inherent in some technology
proposals. SOA enables firms to create building blocks – or services – for their IT
assets, thereby promoting greater code reuse and a more adaptable
infrastructure. XML is emerging as the preferred format for services to receive
and publish data. It runs on a wide range of hardware devices, it's supported by
proprietary and open source software, and it can accommodate a variety of data
content.
2 DB2 9: pureXML Overview and Fast Start

Regulatory requirements and industry-specific initiatives are also driving the
deployment of XML. As more business transactions are conducted through
Web-based interfaces and electronic forms, government agencies and
commercial enterprises bear greater responsibility for preserving the original
order, request, claim, or submission. Doing so can be essential for legal reasons
and good customer relations. Again, XML provides a straightforward means of
capturing and maintaining the data associated with these electronic transactions;
indeed, electronic forms are commonly based on XML. Furthermore,
consortiums in many vertical industries and application-specific areas have
already begun to define XML-based schemas to promote exchange of data.
These include such diverse efforts as ACORD in the insurance industry, FpML
and FIXML in the financial services industry, RosettaNet in supply chain
management (SCM), XBRL for reporting in business reporting applications, and
others.

Finally, many firms are revisiting their proprietary electronic data interchange
(EDI) efforts in favor of XML-based solutions. Cost savings are part of the
reason. According to one study published in Computer Economics, XML often
supports business-to-business transactions more economically than EDI.
Indeed, 88% of the surveyed XML users received a full return on their
investments compared with only 65% of the EDI users. Furthermore, EDI
solutions were more likely to exceed total cost of ownership (TCO) expectations
than XML-based solutions. More than 40% of the EDI users suffered from
higher-than-anticipated TCO, while only 17% of the XML users did so.

1.2 Managing XML: The need and benefits

All this is leading many organizations to search for a way to effectively manage
their messages and documents written in XML. Often, their motivation is
straightforward: as XML becomes more critical to the operations of an enterprise,
it becomes an asset that needs to be shared, searched, secured, and
maintained. Depending on its use, XML data may also need to be updated,
audited, and integrated with other data. File systems aren't well-suited to
supporting many of these tasks, particularly when scalability, concurrency,
recovery, transaction management, and usability issues are taken into
consideration. Database management software is a more appropriate choice,
although until recently support for XML in many commercial offerings was
somewhat limited.
 Chapter 1. Managing XML for maximum return 3

Benefits of storing – or persisting – XML in a database management system vary
according to the specific system in use. In a moment, we'll discuss several
common architectural options and the trade-offs among them. However,
potential benefits include:

� Improved employee productivity
� Improved IT resource utilization
� Reduced labor costs
� Quicker “time to value” for certain applications

You'll learn how this is possible as we explore different options for managing
XML data and review the IBM solution.

1.3 Managing XML: The options

The growing use of XML hasn't been lost on database management systems
(DBMS) vendors. Relational DBMS vendors began extending their products to
accommodate “unstructured” and “semi-structured” data years ago, while other
vendors built new, specialized DBMS products specifically to support XML. More
recently, some relational DBMS vendors, such as IBM, moved to merge these
two distinct efforts into one offering. The result is a multi-functional DBMS that
works efficiently with data modeled in both tabular and hierarchical structures.
Because XML files typically consist of nested hierarchies, the ability to effectively
store, search, and update data in these hierarchies is significant.

Early attempts to support “non-traditional” forms of data often involved
straightforward extensions to commercial relational DBMS products, and some
of these extensions were ultimately applied to managing XML data. For example,
character and binary large objects (CLOBs and BLOBs) are two data types
commonly used to store the entire contents of an XML file as a single column in a
row of a table. Furthermore, some vendors enable users to “shred” or
decompose an XML document across multiple columns in one or more tables.

These early efforts to extend relational DBMS products to accommodate various
forms of “non-traditional” data had merit and can be successfully used to address
the needs of certain XML-based applications. However, each of these
technologies introduced limitations that ultimately led some vendors to offer
“native” support for XML data, which we'll discuss shortly.

1.3.1 Large objects and tables

Character or binary large objects (CLOBs or BLOBs) are one means of storing
XML data in a tabular structure. By storing the XML document intact in a column
of a row within a table, users don't need to break their document into pieces and
4 DB2 9: pureXML Overview and Fast Start

map these pieces into various columns of one or more tables. Thus, the data
modeling effort is simple and straightforward. Furthermore, complex joins aren't
needed to reconstruct the original XML document because the document was
never decomposed prior to storage.

However, using large objects – character or binary – has its drawbacks.
Searching and retrieving a subset of the document can be expensive. New
indexing technology may be needed to avoid the high cost of parsing XML for
each query to determine which portions of the document satisfy the specified
search criteria. Furthermore, updating large objects can be expensive. Often,
client applications must provide the entire document to the DBMS for update,
even if the client application only changed a small portion of it. This can result in
unacceptably high processing costs, particularly if the XML document is very
large.

1.3.2 Decomposition (“shredding”) into tables

Performance problems for retrieving and updating portions of XML documents
stored in large object columns led some vendors to offer document
decomposition technology. This approach enables an administrator to map the
elements and attributes of an XML document to columns in one or more tables.
XML document values are then stored in these tables without their original tags.

“Shredding” XML data enables users to work with it in a purely tabular format,
which implies several advantages. Users can leverage their existing SQL
programming skills, as well as popular query and reporting tools, to work directly
with selected portions of the “converted” XML data. This minimizes the need to
develop new skills, which can translate into a higher level of productivity and
even shorter application development cycles. Furthermore, runtime performance
issues may be more predictable. No new indexing technology needs to be
introduced, and updates against the converted XML data can be handled as
efficiently as any other updates to data in standard SQL columns.

Unfortunately, the benefits of decomposing XML data often depend on the nature
of the underlying XML document. This is because many XML documents contain
heavily nested parent/child relationships and irregular structures. Shredding such
documents may require a large number of tables, some of which may need to
have values generated for foreign keys to capture the relationships inherent in
the original XML documents. As an example, one firm with 1500 electronic forms
needed more than 30,000 tables to contain their data.

Even in simpler cases, the contents of a single electronic form can seldom be
normalized into a single table. Thus, mapping the XML data to a relational
schema and managing the resulting environment can result in considerable labor
for a database administrator. In some cases, it may not even be practical to
 Chapter 1. Managing XML for maximum return 5

shred an XML document, not only because of its internal complexity but because
it may have many sparse attributes (information that's “missing” or irrelevant for a
given record). Modeling such documents using a normalized relational data
model is often too complex and expensive; however, de-normalizing the model
may not be feasible because of built-in database limits for the maximum widths
of rows or the maximum number of columns per table.

Moreover, querying a “shredded” document can require complex SQL
statements that include many joins. Such statements are often difficult to develop
and tune; this increases development costs, impedes “time to value,” and
ultimately causes runtime performance problems that impact the productivity of
multiple users.

Furthermore, changes to the XML schema often break the mapping between the
original XML schema and the relational database schema, resulting in added
labor costs. For example, the introduction of multiple e-mail addresses for a
single customer may require that a new table be created to comply with good
database design principles (particularly normalization). However, introducing this
new table implies implementing new primary/foreign key constraints, granting
appropriate user access privileges, changing certain application logic, and so on.
Such work can be substantial. Consider a relatively optimistic case in which a
firm might need to update its 1000 electronic forms once or twice a year, and
each form was mapped to a mere three tables. This would result in 3000 to 6000
schema changes that would have to be manually managed.

Finally, any inherent ordering of elements or any digital signatures associated
with the original XML document are lost when the document is decomposed into
columns spanning one or more tables. For some applications, preserving the
original form of the XML document – along with any digital signature – is critical.

1.3.3 XML-only data management

Technical challenges associated with managing XML data in commercial
relational DBMSs as large objects or through decomposition services prompted
several firms to build XML-only database management products from scratch. By
storing data in a hierarchical format and supporting a query language designed
explicitly for XML data (XQuery), these products avoided many of the
performance, schema management, and usability problems associated with
other approaches.

However, this new breed of XML-only DBMS offerings failed to garner significant
customer interest or support. Industry analysts estimate that the combined
revenues of all XML-only DBMS products represent a tiny fraction of overall
DBMS sales. Indeed, several early entrants into the XML DBMS field have gone
out of business, shifted their focus, or been acquired by other firms.
6 DB2 9: pureXML Overview and Fast Start

The reasons why XML-only DBMS products have struggled vary. Many firms are
reluctant to introduce a new, unproven DBMS environment into their IT
infrastructures. Integration with existing relational DBMS products may be limited
or non-existent, which poses a problem for the many firms that need a cohesive,
enterprise-wide view of their critical data assets. Support for high levels of
scalability, reliability, and availability are seldom robust in new DBMS products.
Finally, few database administrators and application programmers have
substantial skills in managing XML databases or querying collections of XML
data using XQuery. Thus, introducing a new, unproven DBMS into an IT
infrastructure can compromise its efficiency. Although skilled XML programmers
may enjoy some productivity gains, high integration costs and system
management challenges often mitigate overall benefits.

1.3.4 Hybrid data management

The growing use of XML and the lack of a comprehensive, efficient solution for
managing this data along with other forms of corporate data have led to the
development of hybrid database management software. Such software seeks to
provide first-class support for both tabular and XML data structures, as well as
SQL and XQuery. The objective of such systems is to preserve the benefits
associated with commercial relational DBMS offerings – including high levels of
scalability, reliability, availability, concurrency, and customer support – while
making it easy to manage and integrate existing corporate data with data
modeled in hierarchical XML structures.

Achieving this objective is best accomplished by building on a proven relational
DBMS base and crafting new core capabilities within the system to efficiently
index, search, and store XML data. Ideally, such a DBMS should optionally
support validating XML data prior to storage and provide a simple means of
coping with changing schemas.

For firms with existing relational DBMS environments, this approach enables
them to derive new value from their investment. A hybrid DBMS enables users to
seamlessly share, store, retrieve, and update both existing corporate data and
XML data that had previously existed only in flat files or transient messages.
Furthermore, it minimizes the amount of new skills required to incorporate XML
data into their database environments, reducing labor costs and potentially
speeding up project delivery cycles.

For firms concerned only with XML data management, the hybrid approach
offers them a reliable and scalable infrastructure, the ability to leverage
“relational” tools against their hierarchical XML data through the use of SQL/XML
functions, the option of searching data in a query language designed for XML
(XQuery), and the backing of major industry vendors. In addition, labor-intensive
tasks such as mapping XML schemas to relational schemas and writing complex
 Chapter 1. Managing XML for maximum return 7

SQL statements simply to query “converted” XML data are minimized or
eliminated, which can improve both staff productivity and development cycle
time.

1.4 Managing XML: The IBM solution

IBM's solution for managing XML data provides customers with a highly flexible,
reliable, and efficient DBMS environment. Firms can use large objects or
decomposition technology to model their XML data in tables, just as they've been
able to do for years. However, DB2 9 (formerly codenamed “Viper”) allows users
to store, query, and process XML data in its hierarchical structure without
sacrificing traditional DBMS support for transaction management, security, query
optimization, and the like. We'll briefly review the first two options and then focus
on the new capabilities in DB2's release 9 for managing XML data in its native
format.

1.4.1 Relational extensions for XML

For years, DB2 customers have been able to use large objects, user-defined
types, user-defined functions, and administrative tools to store XML data within
tables. IBM continues to support these options and has even provided new
capabilities in its DB2 9 release. Collectively, IBM's relational extensions for
managing XML data with large objects or through XML decomposition and
publishing technologies enable users to:

� Store XML data in a single column with minimal DBMS awareness of the
internal structure of the XML data.

� Extract elements from an XML document and store their contents in multiple
columns of one or more tables, in effect “converting” the XML data to tabular
data. With DB2 9, new shredding technology supports larger XML documents
and offers potential performance improvements.

� Store XML data type definitions (DTDs) for use in validating XML data.

� Compose and publish XML fragments from tables through the use of
SQL/XML functions and mapping files. For example, users can write SQL
queries that return results as well-formed XML.

� Invoke system-supplied stored procedures to administer their databases,
generate XML documents, or “shred” XML documents into tables.

� Invoke system-supplied functions to insert XML documents, retrieve XML
documents, extract element content or attribute values, and update XML
documents.
8 DB2 9: pureXML Overview and Fast Start

These capabilities are most useful for situations in which users primarily want to
perceive XML data as being part of a tabular data model that can be queried
using SQL or SQL/XML functions. Applications that require high performance for
searching and retrieving subsets of XML documents, that must cope with
frequently changing XML schemas, or that require extensive use of XQuery and
navigational expressions may be better served through new DB2 capabilities for
native storage and management of XML data.

1.4.2 pureXML storage and management

DB2 9 features extensive new support for XML as a first-class data type. This
“pure” support for XML includes new storage techniques for efficient
management of hierarchical structures inherent in XML documents, new
indexing technology to speed up retrieval of subsets of XML documents, new
capabilities for validating XML data and managing changing XML schemas, new
query language support (including native support for XQuery as well as new
SQL/XML enhancements), new query optimization techniques, integration with
popular application programming interfaces (APIs), and extensions to popular
database utilities. The result is a single DBMS platform that offers the benefits of
a commercial relational environment and a pureXML data environment.

Figure 1-1 illustrates the overall architecture of DB2 9. Both tabular and
hierarchical storage models are supported through common engine components.
Furthermore, client applications that need to work with both traditional SQL and
XML data can use either SQL/XML or XQuery statements (or a combination of
both). Full support for DB2 transaction semantics, security mechanisms, and
distributed computing constructs (such as stored procedures) are supported for
both SQL and XML data.

Figure 1-1 DB2 9: pureXML and hybrid data management
 Chapter 1. Managing XML for maximum return 9

With DB2 9, collections of XML documents are captured in tables that contain
one or more columns based on a new XML data type. This enables users to
employ familiar SQL data definition language (DDL) statements to create
database objects for storing their XML, although DB2 will treat the XML data
differently internally. Specifically, it will automatically employ a custom storage
management architecture that preserves the hierarchical structure of the original
XML data and supports rapid retrieval of such data (or portions of it).

Tables created with XML data types may also contain columns with “traditional”
SQL data types, including numeric data, character strings, date/time data, and
others. Here's a simple example of how to define a table that maintains both
types of data:

CREATE TABLE mytable (msgID INT PRIMARY KEY NOT NULL, msg XML)

After creating tables, users can issue INSERT statements or invoke the DB2
IMPORT facility to add data to their tables; such data may include both
“traditional” SQL data types as well as DB2's new XML data type. Inserting or
importing data in this manner makes it easy for customers to leverage their
existing DB2 skills. However, these mechanisms hide the fact that DB2 manages
the XML data in a way that's quite different from how it manages traditional SQL
data types. In short, a parsed representation of each XML document is stored in
its hierarchical format. If users instruct DB2 to validate their XML data prior to
storage based on an XML schema, DB2 will annotate all nodes in the XML
hierarchy with information about the schema types; otherwise, it will annotate the
nodes with default type information. Furthermore, DB2 will automatically split
portions of XML documents across multiple database pages as needed.

To help speed up searches, users can create indexes for specific elements or
attributes of their XML documents. Such indexes are defined over XML patterns
– essentially, XPath expressions without predicates – and can speed up the
retrieval of queries targeting specific portions of XML documents. Full text search
over XML documents is also supported, and specialized text indexes can be
defined to improve performance of such searches.

Because DB2 9 is a “bilingual” product, users can search both XML data and
traditional SQL data types with SQL or XQuery. Indeed, a single query can span
XML and traditional SQL data stored within a single database. Furthermore, with
WebSphere Information Integrator, firms can even write SQL-based queries that
join and union XML data maintained in external files with data in DB2 and other
non-IBM data sources. While details of supported query language capabilities
are beyond the scope of this book, it's important to note that IBM's
implementation is based on existing and rapidly emerging standards for both
SQL and XQuery.
10 DB2 9: pureXML Overview and Fast Start

To efficiently process queries of XML data, DB2 leverages cost-based query
optimization technology to evaluate different data access strategies and select a
low-cost option. The large size of many XML documents, the complexity of query
predicates found in many XPath expressions, and the need to preserve the order
of elements contained within XML documents prompted IBM to develop new
query operators and a new join algorithm specifically to speed up searches of
XML data. The join algorithm provides for concurrent evaluation of “and” and “or”
query predicates, as well as employs multiple cursors on XML indexes to locate
the desired information quickly. Use of this new join technology is transparent to
application programmers; DB2 will automatically evaluate queries and determine
when it's beneficial to use it.

To serve a wide range of programmer needs, DB2 enables data stored in XML
columns to be accessed through Java (JDBC), C (embedded SQL and call-level
interface), COBOL (embedded SQL), PHP, and Microsoft's .NET environment
(through the DB2.NET provider). To help administrators monitor and tune their
databases, familiar facilities such as DB2 Snapshot, RUNSTATS, and EXPLAIN
provide a “snapshot” of database activities at a given point-in-time, collect
statistics about the nature of data within a database (including XML data), and
report on the access path selected by the query optimizer (including new
information about the use of indexes on XML data). Furthermore, DB2's built-in
repository stores information relevant for validating XML data (including XML
schemas and data type definitions) as well as other XML artifacts.

1.4.3 Early successes

Interest in DB2's new XML support has been strong, with firms in various
industries evaluating an early release of the technology. Storebrand, one of
Norway's largest providers of insurance and financial services, is among these
firms. Storebrand Group was an early adopter of SOA and Web services,
perceiving these technologies as important for helping the firm improve its
customer focus and deliver greater value at a lower cost. According to
Storebrand Senior Enterprise Architect Thore Thomassen, the firm considers
XML to be an important integration mechanism. As such, XML data is an
important asset that must be stored, managed, shared, and analyzed to support
various business initiatives.

Thomassen noted that the firm's early experiments with the alpha release of DB2
9 were promising. Although Storebrand found each of DB2's three storage
options – large objects, decomposition (or shredding), and use of native XML
columns – to be useful, Thomassen discovered distinct advantages for native
XML columns in certain comparative test situations. For example, preliminary
work in test environments indicated that DB2's native XML data type could help
them:
 Chapter 1. Managing XML for maximum return 11

� Reduce the time it took to generate an internal report from more than one day
to fewer than ten minutes.

� Cut the I/O portions of select Web services an average of 65% and decrease
the maintenance time for these Web services by 20%.

� Implement a schema change (in response to new business requirements) in a
few minutes instead of requiring a full day to prototype and test the change
and a full week to deliver it.

� Minimize the labor required to program six new database search and retrieval
scenarios. Using the native XML data type, a programmer completed the task
in a ½ hour. By contrast, the same work required two hours with
decomposition and eight hours with CLOBs.

In particular, Thomassen reviewed the results of one test project and noted,
“Development time using the (DB2) XML native store is overall radically
improved over shredding. Also, shredding often results in complex mappings,
which mean that the developer needs deep competence in constructing SQL.”

For more information regarding Storebrand benefits by using DB2 9, refer to
Chapter 7, “Case study: Storebrand” on page 107.

Indeed, internal IBM studies have also demonstrated similar potential benefits.
One comparative study published on IBM developerWorks involved a
Web-based PHP application that used XML for capturing customer input and
publishing data. Specifically, it explored the design and coding requirements for
storing and searching the application's data using a traditional relational
database environment (in which XML is shredded prior to storage) and DB2's
native XML data type. Storing the XML data in its native format simplified the
database schema considerably, resulting in only three tables of two columns
each instead of four tables with up to nine columns each. Furthermore, certain
aspects of the application, such as populating the database, were written with
only one-third of the code. Finally, accommodating a new user requirement that
resulted in an XML schema change was a more straightforward undertaking
because administrators didn't need to change the underlying database schema
and application programmers didn't need to rewrite the logic of their code.

For more information, refer to the article, “Use DB2 native XML with PHP” , in
IBM developerWorks by Hardeep Singh and Amir Malik, October 27, 2005, at:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511si
ngh/
12 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511singh/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511singh/

1.5 Summary

XML messages and documents have emerged as key assets in many
organizations, forcing IT executives and architects to find an effective means of
managing this data for maximum advantage. Previous technology initiatives
often fell short of achieving this goal. However, the new IBM DB2 9 release
features hybrid data management technology that incorporates proven relational
capabilities with first-class support for storing, searching, sharing, validating, and
managing XML data. The result is a reliable, scalable platform that provides high
performance for accessing and integrating “traditional” corporate data as well as
XML data.

Early adopters are already noting the labor savings, shortened development
cycles, and improved flexibility that DB2's XML support offers. In today's
environment, such benefits can quickly translate into key competitive
advantages.
 Chapter 1. Managing XML for maximum return 13

14 DB2 9: pureXML Overview and Fast Start

Chapter 2. What’s new in DB2 9: XML to
the core

The new DB2 9 release, (formerly codenamed “Viper”), features a significant
architectural departure from prior versions. For the first time since its debut, DB2
Universal Database for Linux, UNIX, and Windows is providing a new query
language, new storage technology, new indexing technology, and other features
to support XML data and its inherent hierarchical structure. But don't worry, all of
DB2's traditional database management features remain, including its support for
SQL and tabular data structures. Explore DB2 9's new XML technology and learn
why IBM now considers DB2 a “hybrid” or multi-structured database
management system (DBMS).1

2

1 Information in this chapter was originally published as "What's new in DB2 9:
XML to the Core" by C. M. Saracco in IBM developerWorks, February 2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco
/index.html
© Copyright IBM Corp. 2006. All rights reserved. 15

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html

2.1 Introduction

Managing new forms of data often presents new challenges. Many IT leaders
have discovered that's precisely the case when it comes to data in Extensible
Markup Language (XML) format.

All too often, the obvious choices for managing and sharing XML data just don't
cut it. File systems are fine for simple tasks, but they don't scale well when you
need to cope with a large number of documents. Concurrency, recovery,
security, and usability issues become unmanageable. Commercial relational
database management systems (DBMSs) address those issues but fall short in
other areas. They offer two fundamental database design options – storing each
XML document intact as a single large object or “shredding” it into multiple
columns often across multiple tables. In many situations, these options introduce
performance problems, administrative challenges, increased query complexity,
and other issues. Finally, XML-only DBMSs introduce a new, largely unproven
environment into an IT infrastructure, raising concerns about integration, staff
skills, and long-range viability.

The DB2 9 release of DB2 for Linux, Unix, and Windows platforms introduces
another option. This new release supports XML data as a first-class type. To do
so, IBM extended DB2 to include:

� New storage techniques for efficient management of hierarchical structures
inherent in XML documents

� New indexing technology to speed up searches across and within XML
documents

� New query language support (for XQuery), a new graphical query builder (for
XQuery), and new query optimization techniques

� New support for validating XML data based on user-supplied schemas

� New administrative capabilities, including extensions to key database utilities

� Integration with popular application programming interfaces (APIs)

It's important to note that DB2's “native” support for XML, or pureXML, is in
addition to its existing support for other technologies, including SQL, tabular data
structures, and various DBMS features. As a result, users can create a single
database object that manages both “traditional” SQL data and XML documents.
Furthermore, they can write a single query that searches and integrates both
forms of data.

This chapter explores these features as we delve into DB2's pureXML support.
First, though, let's consider why proper management of XML data is important.
16 DB2 9: pureXML Overview and Fast Start

2.2 Potential benefits

With an increasing number of firms turning to XML to help them implement
service-oriented architectures (SOA), exchange data among disparate systems
and applications, and adapt to rapidly changing business conditions, many savvy
IT leaders are looking for ways to effectively share, search, and manage the
wealth of XML documents and messages that their firms are generating. DB2's
new XML support is designed to help firms minimize the time and effort it takes to
persist and use their XML data. This, in turn, can reduce development costs and
improve business agility.

For example, the article, “Use DB2 native XML with PHP” , in IBM
developerWorks by Hardeep Singh and Amir Malik, October 27, 2005, at:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511si
ngh/

illustrates how DB2's new XML support reduces the complexity of the database
design and application code required to support an e-commerce Web site.
Similarly, Chapter 1, “Managing XML for maximum return” on page 1, discusses
early customer and IBM experiences involving comparative test scenarios that
also indicate potential labor savings and improved cycle time.

What's behind these benefits? DB2 enables users to store XML documents intact
with full DBMS knowledge of the document's internal structure. This eliminates or
minimizes administrative and programming tasks associated with other
alternatives. Furthermore, it can speed up searches across and within
documents, and it enables customers to more readily accommodate changes to
business requirements reflected in XML schemas.

2.3 Architectural overview

DB2 allows client applications to work with both tabular and XML data structures
through the query language of their choice – SQL (including SQL with XML
extensions, often referred to as “SQL/XML”) or XQuery. As shown in Figure 2-1,
engine-level components within DB2 support queries specified in either
language.
 Chapter 2. What’s new in DB2 9: XML to the core 17

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511singh/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511singh/

Figure 2-1 The architecture of the new DB2 9 release

To efficiently manage traditional SQL data types and XML data, DB2 includes
two distinct storage mechanisms. We'll discuss the new XML storage technology
shortly. However, it's important to note that the underlying storage mechanism
used for a given data type is transparent to the application. In other words, the
application doesn't need to explicitly specify which storage mechanism to use or
manage physical aspects of storage, such as splitting portions of XML
documents across multiple database pages. It simply enjoys the runtime
performance benefits of storing and querying data in a format that's efficient for
the target data.

Let's delve into the new DB2 XML features from a user's point of view.

2.4 Logical storage

Collections of XML documents are stored in DB2 tables containing one or more
columns of the new XML data type. This enables administrators to use familiar
SQL data definition language (DDL) statements to create database objects for
persisting their XML data. However, this familiar interface masks the fact that
DB2 stores the XML data differently, using new technology to preserve the XML
data's hierarchical structure and support efficient searches spanning all or part of
the original XML data.

To make it easy for users to integrate traditional forms of business data with XML
data, DB2 administrators can create tables that contain columns of both
traditional SQL data types and the new XML data type. Example 2-1 shows one
such table.

Integration of XML & Relational Capabilities

DB2 Server

Relational
Interface

Relational

XML

DB2
Engine

XML
Interface

DB2 Client /
Customer Client

Application

SQL/XML

XQuery

CLIENT DB2 Storage
18 DB2 9: pureXML Overview and Fast Start

Example 2-1 Creating a table with an XML column

create table items (
 id int primary key not null,
 brandname varchar(30),
 itemname varchar(30),
 sku int,
 srp decimal(7,2),
 comments xml

)

The first five columns of this table use traditional SQL data types to track
information about each item for sale, including its ID number, brand name, item
name, stock-keeping unit (SKU), and suggested retail price (SRP). A
“comments” column contains XML data with feedback customers have shared
regarding the item.

Note that the internal structure of the XML data isn't specified when creating a
table with an XML column. This is by design. XML documents are
self-describing, and their internal structure can vary considerably. DB2's only
requirement for storing XML data is that it must be “well-formed”, that is, it must
adhere to certain syntax rules specified in the “W3C standard for XML”. See
“Resources” at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602sa
racco/index.html#resources

DB2's liberal approach provides users with considerable flexibility and makes it
easy to store collections of XML documents that contain different attributes and
internal structures due to evolving business requirements or situations where
certain information is missing or irrelevant.

However, users who want to ensure that XML data conforms to their own
structural rules can instruct DB2 to validate their data prior to storage. This is
discussed in greater detail in 2.8, “XML schemas and validation” on page 25.
Doing so essentially involves creating XML schemas (which are also part of the
W3C XML standard) and registering these schemas with DB2. See “Resources”
at the following Web site for more information on XML schemas:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602sa
racco/index.html#resources

At this point, you may be wondering how users populate a DB2 table with XML
data. The answer is simple – they use one of two familiar DB2 mechanisms to do
so. SQL INSERT statements as well as the DB2 IMPORT facility accommodate
XML data in addition to other data types. (DB2 IMPORT issues INSERT
statements behind the scenes.) If you're wondering why DB2 only supports data
 Chapter 2. What’s new in DB2 9: XML to the core 19

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources

inserts through SQL and not XQuery, that answer is pretty simple, too – the first
version of the emerging XQuery standard focuses on database read activities,
not write activities. In the absence of a clearly accepted standard, IBM opted to
offer its users two familiar means for persisting new XML data. See “Resources”
at the following Web site for more information about the XQuery standard:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602sa
racco/index.html#resources

2.5 Physical storage

As a practical matter, most users won't need to concern themselves with DB2's
new physical storage management architecture for XML data. However, to help
you understand what DB2 is doing behind the scenes, let's briefly discuss its
internal approach to storing XML data.

DB2 stores and manipulates XML data in a parsed format that reflects the
hierarchical nature of the original XML document. As such, it uses trees and
nodes as its model for storing and processing XML data. If users instruct DB2 to
validate their XML data against a registered XML schema prior to storage, DB2
will annotate all nodes in the XML hierarchy with information about the schema
types; otherwise, it will annotate the nodes with default type information.

Given the earlier definition of an “items” table, let's review a sample XML
document to be stored in that table. As shown in Figure 2-2, this XML document
contains multiple elements represented in a hierarchy, including a root
“Comments” element and one or more individual “Comment” elements pertaining
to a given item. Associated with each comment is a comment identifier, customer
information that may include sub-elements for the customer's name and e-mail
address, the text of the customer's message or comment, and an indicator of
whether or not the customer would like a reply.
20 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources

Figure 2-2 Sample XML document and its hierarchical representation

Upon storage, DB2 will preserve the internal structure of this document,
converting its tag names and other information into integer values. Doing so
helps conserve disk space and also improves the performance of queries that
use navigational expressions. For example, DB2 might convert the “Comments”
tag in Figure 2-2 to a “0” upon storage. However, users aren't aware of this
internal representation.

Finally, DB2 will automatically split portions of a document – that is, nodes of the
document tree – across multiple database pages as needed. Indeed, DB2 can
split a collection (or sub-tree) of nodes at any level of the document hierarchy as
needed. In such cases, DB2 automatically generates and maintains a “regions”
index to provide an efficient means of tracking the physical representation of the
entire document.

<Comments>
<Comment>

<Comment ID>133</CommentID>
<Customer>

<Name>John Doe</Name>
<Email>johndoe@any_isp.com</Email>

</Customer>
<Message>Heels on shoes wear out too quickly.</Message>
<ResponseRequested>No</ResponseRequested>

</Comment>
. . .

</Comments>

Comment

Email

ResponseRequestedMessageCustomerCommentID

johndoe@any_isp.com

Heels on ... NoJohnDoe133

Name

Comments
 Chapter 2. What’s new in DB2 9: XML to the core 21

2.6 Indexing

Along with new hierarchical storage management support for XML, DB2 features
new indexing technology to speed up searches involving XML data. Like their
relational counterparts, these new XML indexes are created with a familiar SQL
DDL statement: CREATE INDEX. However, in addition to specifying the target
column to index, users also specify an “xmlpattern” – essentially, an XPath
expression without predicates – to identify the subset of the XML document of
interest.

For example, using the earlier “items” table definition and the corresponding
sample XML document shown in Example 2-2, an administrator might issue the
following statement to index all comment identifiers (“CommentID” values)
contained in the “comments” column. Recall that the “CommentID” element in
our sample document is a child of the “Comment” element, which itself is a child
of the root “Comments” element.

Example 2-2 Creating an index for an XML column

create index myindex on items(comments) generate key
using xmlpattern '/Comments/Comment/CommentID' as sql double

A few details are worth noting. The path specified in the “xmlpattern” clause is
case specific. Thus, “/Comments/Comment/CommentID” will not index the same
XML element values as “/comments/comment/commentid.” Furthermore,
because DB2 doesn't require a single XML schema for a given XML column,
DB2 may not know what data type to associate with the specified pattern. Users
must specify the data type explicitly using one of the supported SQL types
(VARCHAR, VARCHAR HASHED, DOUBLE, DATE, and TIMESTAMP).

Finally, although an SQL DDL statement is used to create an XML index, an
index over XML data isn't the same as an index over columns of traditional SQL
data types. While details of DB2's XML indexing technology are beyond the
scope of this chapter, you may have noticed two significant differences:

� Indexes on XML data typically involve only a subset of the document's
(column's) contents. By contrast, indexes on traditional SQL data always
involve the entire column's content.

� A single row in a table may result in multiple XML index entries because a
single XML document may contain zero, one, or many “nodes” that match the
specified xmlpattern. By contrast, a non-XML index contains one entry for
each row in the table.

For certain applications, full-text search can be critical. IBM has extended DB2's
previous text search capabilities to include data stored in XML columns.
22 DB2 9: pureXML Overview and Fast Start

Extensions to the CREATE INDEX statement enable administrators to create full
text indexes to help improve the performance of such searches.

2.7 Query language and optimization

DB2's new XML support includes new query language capabilities. Programmers
can now search for data using SQL or XQuery, a new query language that
supports navigational (or path-based) expressions. Indeed, applications can
freely employ statements from both query languages, and a single query
statement can actually incorporate both SQL and XQuery.

We don't have time to explore the breadth and depth of these capabilities in this
chapter, so let's just discuss a few highlights. If you're an SQL programmer with
no prior XML experience, you'll be relieved to learn that a simple SQL statement
will enable you to retrieve the contents of data stored in XML columns. For
example, these two familiar queries will return all the data in the “items” table
related to a specific stock-keeping unit (SKU), including XML documents with
customer comments. See Example 2-3.

Example 2-3 Querying XML data with SQL

select * from items where sku = 112233

select id, brandname, itemname, sku, srp, comments from items
 where sku = 112233

Now let's consider a slightly different situation, in which you want to retrieve only
the messages contained within customer comments of the “items” table, and you
want to do so using XQuery. Here's perhaps the simplest way to formulate the
statement. See Example 2-4.

Example 2-4 Querying XML data with XQuery

xquery db2-fn:xmlcolumn('ITEMS.COMMENTS')/Comments/Comment/Message

Because DB2 supports two query languages, users must prefix XQuery
statements with the keyword “xquery.” The “db2-fn:xmlcolumn” function is one
way to specify the target data to be queried. It requires a parameter specifying
the XML column of the desired table: in this case, the COMMENTS column of the
ITEMS table. You've further restricted your target data to a specific subset of
XML data: namely, values of the “'Message” element, which is a child of the
“Comment” element, which itself is a child of the root “Comments” element. (See
Figure 2-2 on page 21).
 Chapter 2. What’s new in DB2 9: XML to the core 23

The same query can be formulated using FLWOR expressions commonly
associated with XQueries. FLWOR expressions – an informal way of referring to
for, let, where, order by, and return clauses – enable programmers to iterate
over groups of nodes within XML documents and to bind variables to
intermediate results. For this sample query, you can use for and return
expressions to retrieve messages from customer comments, as shown in
Example 2-5.

Example 2-5 Using FOR and RETURN clauses of XQuery

xquery for $y in db2-fn:xmlcolumn('ITEMS.COMMENTS')/Comments/Comment
return ($y/Message)

It's worth noting that DB2 9 ships with a Developer Workbench, an Eclipse-based
development tool that includes a graphical XQuery builder to help users generate
and test queries.

Both SQL and XQuery can be combined in a single statement to restrict
searches for both XML and non-XML columns. For example, consider the
following XQuery statement (Example 2-6).

Example 2-6 Combining SQL and XQuery in one statement

xquery db2-fn:sqlquery('select comments from items
where srp > 100')/Comments/Comment/Message

The db2-fn:sqlquery clause restricts the input to the broader XQuery statement;
specifically, only customer comments associated with items carrying a
suggested retail price (srp) of more than $100 are passed as input. Further
XQuery information indicates that DB2 should only return the “Message” portions
of such comments.

A number of papers and Web sites can help you get up to speed on DB2's
SQL/XML extensions, DB2's support for XQuery, and the emerging XQuery
standard. See “Resources” at the following Web site for pointers:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602sa
racco/index.html#resources

Finally, this discussion of query languages may leave you wondering about a
related topic: query optimization. DB2 has two query language parsers: One for
XQuery and one for SQL. Both generate a common, language-neutral, internal
representation of queries. This means that queries written in either language are
afforded the full benefits of DB2's cost-based query optimization techniques,
which include efficient rewriting of query operators and selection of a low-cost
data access plan. In addition, DB2 can leverage new query and join operators,
24 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources

as well as new index processing techniques, to provide strong runtime
performance for queries involving XML documents.

2.8 XML schemas and validation

The flexible nature of XML sometimes concerns database professionals who
worry about data quality. As we've already noted, DB2 enables users to store
any well-formed XML document in any column defined on the new XML data
type. Thus, a single column can contain documents with different structures (or
schemas) as well as different content. When the nature of the data to be
captured is unclear or difficult to predict, such flexibility can be an absolute
necessity. But in other cases, it can be a liability. That's why DB2 gives users the
option of registering their XML schemas and instructing DB2 to validate XML
documents against these schemas prior to storage.

If you're not familiar with XML schemas, they're simply well-formed XML
documents that dictate the structure and content of other documents. For
example, XML schemas specify which elements are valid, in what order these
elements should appear in a document, which XML data types are associated
with each element, and so on. Various tools can help you create XML schemas
from existing XML documents, including IBM WebSphere Studio line and its
follow-on brand of Rational products.

Users can elect to store different XML documents that correspond to different
registered schemas within a single column. This is significant because evolving
business needs can impact the structure and content of XML data that needs to
be captured. Considering our earlier “items” table, imagine that several months
after this table was deployed you decided to capture additional information in the
XML column, such as more customer contact information, a record of the actions
taken in response to certain comments, and so on. DB2 can accommodate these
new enhancements without forcing users to change the table's structure or any
applications that rely on it. Indeed, existing data (based on an “old” XML schema)
can remain in place, and new data can be added that complies with one or more
new schemas. In this way, administrators can support new business
requirements with minimal deployment time and cost. Furthermore, they don't
need to compromise the integrity of their XML to do so - they can simply supply
DB2 with new information about what's “valid” for their XML data.

Registering an XML schema in DB2's internal repository is simple. DB2 provides
stored procedures to automate the process, or administrators can manually issue
corresponding commands. A single schema can be used to validate multiple
XML columns in multiple tables, if desired.
 Chapter 2. What’s new in DB2 9: XML to the core 25

2.9 Administrative support

DB2's new support for XML includes extensions to familiar tools and utilities to
help administrators manage and tune their databases. For example, backup and
restore facilities – including high availability data replication for failover situations
– all support documents stored in XML columns. Similarly, extensions to the
IMPORT and EXPORT facilities now operate on both traditional SQL and XML
data. Thus, you could issue a single IMPORT command to populate the entire
“items” table (reading XML data from native files) and issue a single EXPORT
command to write all the table's data to external files.

In addition, DB2's graphical administrative tool, the DB2 Control Center, enables
administrators to browse tables containing XML data, create and manage
XML-based indexes, issue SQL/XML and XQuery statements, and perform a
number of other administrative tasks. Since performance is often a key concern,
appropriate DB2 facilities have also been extended to accommodate XML data.
These include the DB2 Snapshot Monitor, which provides a point-in-time
summary or “snapshot” of DB2 activities; RUNSTATS, which collects statistics
about the nature of the data stored in a DB2 database; and EXPLAIN, which
reports on which access path the query optimizer selected to satisfy a given
request. Examining EXPLAIN output can enable an administrator to determine
which XML indexes are being used.

2.10 Programming language extensions

DB2's new XML support wouldn't be very useful if the XML stored in its
databases wasn't readily accessible to programmers. Recognizing this, IBM
implemented enhancements to its various programming language interfaces to
support easy access to its XML data. These enhancements span Java (JDBC),
C (embedded SQL and call-level interface), COBOL (embedded SQL), PHP, and
Microsoft's .NET environment (through the DB2.NET provider).

Because the application programming interface (API) varies according to the
programming language in use, we won't be reviewing each of these extensions
here. However, you can read a summary of these extensions in a recently
published conference paper Native XML Support in DB2 Universal Database,
see “Resources” at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602sa
racco/index.html#resources
26 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/index.html#resources

Or refer to the article, “Use DB2 native XML with PHP” , in IBM developerWorks
by Hardeep Singh and Amir Malik, October 27, 2005, at:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511si
ngh/

2.11 Summary

The DB2 9 release is the first IBM implementation of a “hybrid” or
multi-structured database management system. In addition to supporting a
tabular data model, DB2 also supports the native hierarchical data model found
in XML documents and messages. Users can freely mix and match storage of
traditional SQL data and XML in a single table. They can also query and
integrate both forms of data using SQL (with XML extensions, if desired) and
XQuery, the emerging standard for querying XML data. By building on a proven
database management infrastructure, IBM is providing DB2 9 users with
sophisticated support for both relational and pureXML DBMS technologies.
 Chapter 2. What’s new in DB2 9: XML to the core 27

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0511singh/

28 DB2 9: pureXML Overview and Fast Start

Chapter 3. Get off to a fast start with
pureXML

In this chapter, learn how to create database objects for managing your XML
data and how to populate your DB2 database with XML data.1

DB2's new release 9, (formerly codenamed “Viper”), is the first database
management system to support both tabular (SQL-based) and hierarchical
(XML-based) data structures in their native format. If you're curious about DB2's
new “native” support for XML and want to get off to a fast start, you've come to
the right place. We walk through several common tasks, such as:

� Creating database objects for managing XML data, including a test database,
sample tables, and views

� Populating the database with XML data using INSERT and IMPORT
statements

� Validating your XML data. Develop and register your XML schemas with DB2,
and use the XMLVALIDATE option when importing data.

3

1 Information in this chapter was originally published as “Get off to a fast start
with XML in DB2 9”, by C. M. Saracco in IBM developerWorks, March 2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/
© Copyright IBM Corp. 2006. All rights reserved. 29

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/

3.1 Creating database objects

To get started, let's create a single DB2 Unicode database. In DB2 9, only
Unicode databases can store both XML documents and more traditional forms of
SQL data, such as integer, date/time, varying length character strings, and so on.
Later, you'll create objects within this database to manage both XML and other
types of data.

3.1.1 Creating a test database

To create a new DB2 Unicode “test” database, open a DB2 command window
and issue a statement specifying a Unicode codeset and a supported territory, as
shown in Example 3-1.

Example 3-1 Creating a database for storing XML data

create database test using codeset UTF-8 territory us

Once you create a Unicode database, you don't need to issue any special
commands or take any further action to enable DB2 to store XML data in its
native hierarchical format. Your DB2 system is ready to go.

3.1.2 Creating sample tables

To store XML data, create tables that contain one or more XML columns. These
tables serve as logical containers for collections of documents; behind the
scenes, DB2 actually uses a different storage scheme for XML and non-XML
data. However, using tables as a logical object for managing all forms of
supported data simplifies administration and application development issues,
particularly when different forms of data need to be integrated in a single query.

You can define DB2 tables to contain only XML columns, only columns of
traditional SQL types, or a combination of both. This chapter models the latter.
Example 3-2 connects to the “test” database and creates two tables. The first is
an “items” table that tracks information about items for sale and comments that
customers have made about them. The second table tracks information about
“clients,” including contact data. Note that “comments” and “contactinfo” are
based on the new DB2 XML data type, while all other columns in the tables are
based on traditional SQL data types.

Example 3-2 Creating tables for XML data

connect to test;
30 DB2 9: pureXML Overview and Fast Start

create table items (
 id int primary key not null,
 brandname varchar(30),
 itemname varchar(30),
 sku int,
 srp decimal(7,2),
 comments xml
);

create table clients(
 id int primary key not null,
 name varchar(50),
 status varchar(10),
 contactinfo xml
);

If you look closely at these table definition examples, you'll notice that neither
specified the internal structure of the XML documents to be stored in the
“comments” or “contactinfo” columns. This is an important DB2 feature. Users
don't need to pre-define an XML data structure (or, more accurately, an XML
schema) in order to store their data. Indeed, DB2 can store any well-formed XML
document in a single column, meaning that XML documents based on different
schemas – or documents not associated with any registered schema – can be
stored within the same DB2 column. This chapter discusses this feature further
when we explore how to store data in DB2.

3.1.3 Creating views

Optionally, you can create views over tables containing XML data, just as you
can create views over tables containing only traditional SQL data types.
Example 3-3 creates a view of clients with a “Gold” status.

Example 3-3 Creating a view that contains XML data

create view goldview as
select id, name, contactinfo
from clients where status='Gold';

3.1.4 A note about indexes

Finally, it's worth noting that you can create specialized indexes on your XML
columns to speed up searches of your data. Because this is an introductory
chapter and the sample data is small, this chapter will not cover that topic.
However, in production environments, defining appropriate indexes can be
 Chapter 3. Get off to a fast start with pureXML 31

critical to achieving optimal performance. See “Resources,” at the following Web
site, for help on how to learn more about DB2's new indexing technology:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/

3.2 Storing XML data

With your tables created, you can now populate them with data. You can do so
by issuing SQL INSERT statements directly or by invoking the DB2 IMPORT
facility, which issues INSERT statements behind the scenes.

3.2.1 Using INSERT statements

With INSERT, you supply DB2 with the raw XML data directly. That's perhaps
easiest to do if you've written an application and stored the XML data in a
variable. But if you're just getting started with DB2 9 and don't want to write an
application, you can issue your INSERT statements interactively. (Many people
find it convenient to use the DB2 Command Editor, although you can also use
the command line processor, if you'd prefer.)

To use the DB2 Command Editor, launch the DB2 Control Center. From the
“Tools” pull-down menu at the top, select the Command Editor. A separate
window will appear, which should look like Figure 3-1.
32 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/

Figure 3-1 DB2 Command Editor

Type the following statements (see Example 3-4) into the upper pane.

Example 3-4 Inserting XML data interactively

connect to test;

insert into clients values (77, 'John Smith', 'Gold',
 '<addr>111 Main St., Dallas, TX, 00112</addr>')

Click the green arrow at left to execute the command.

In this case, the input document was quite simple. If the document was large or
complex, it would be impractical to type the XML data into the INSERT statement
as shown. In most cases, you'd write an application to insert the data using a
 Chapter 3. Get off to a fast start with pureXML 33

host variable or a parameter marker. For a brief Java coding example, refer to
the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/sidefile1.html

However, since this is an introductory tutorial, we won't be discussing application
development topics in detail. Instead, we'll discuss another option for populating
DB2 XML columns with data – using the IMPORT facility.

3.2.2 Using DB2 IMPORT

If you already have your XML data in files, the DB2 IMPORT facility provides a
simple way for you to populate your DB2 tables with this data. You don't need to
write an application. You just need to create a delimited ASCII file containing the
data you want to load into your table. For XML data stored in files, a parameter
specifies the appropriate file names.

You can create the delimited ASCII file using the text editor of your choice. (By
convention, such files are usually of type .del.) Each line in your file represents a
row of data to be imported into your table. If your line contains an XML Data
Specifier (XDS), IMPORT will read the data contained in the referenced XML file
and import that into DB2. For example, the first line in Figure 3-2 contains
information for Ella Kimpton, including her ID, name, and customer status. Her
contact information is included in the Client3227.xml file.

Figure 3-2 Sample delimited ASCII file for input to DB2 IMPORT

The content of the Client3227.xml file is shown in Figure 3-3. As you can see, the
file contains XML elements for Ella Kimpton's address, phone numbers, fax
number, and e-mail.
34 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/sidefile1.html

Figure 3-3 Sample client XML file

Perhaps you're curious about importing data if you don't have XML files for all the
rows you wish to insert. That's easy to do. Omit the XDS information from your
input file. For example, the items.del file in Figure 3-4 omits the name of an XML
file for Item 3641 (the “Dress to Impress” suit). As a result, the XML column for
this row will not contain any data.

Figure 3-4 Sample delimited ASCII file with no XML Data Specifier for one row

With your XML files and delimited ASCII files available, you're now ready to use
DB2 IMPORT. The following statement in Example 3-5 will import the contents
specified in the clients.del file in the C:/XMLFILES directory into the “clients”
table.

Example 3-5 Importing data into the “clients” table

import from clients.del of del xml from C:/XMLFILES insert into
user1.clients;
 Chapter 3. Get off to a fast start with pureXML 35

The clients.del file shown in Figure 3-2 on page 34 contains data for six rows,
including references to six XML files. Successfully executing an IMPORT
command will result in output similar to Figure 3-5.

Figure 3-5 Sample output of DB2 IMPORT

Independent software vendors, such as Exegenix, offer tools that can help you
convert Word, PDF, and other document formats into XML for import into DB2.

3.3 Validating your XML data

The INSERT and IMPORT examples just discussed will write any well-formed
XML data to your tables. They don't validate that data – that is, they don't verify
that the data conforms to a particular XML schema and therefore adheres to a
certain structure. It's possible to direct DB2 to do that, however. Let's explore
one way to do so.

3.3.1 Step 1: Creating an XML schema

To validate XML data, you need to define an XML schema that specifies
acceptable XML elements, their order and data types, and so on. XML schemas
are a W3C industry standard and are written in XML. While it's beyond the scope
of this paper to explain the features of XML schemas, various tutorials are
available on the Web. See “Resources” at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/
36 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/

There are many ways to develop XML schemas, ranging from using your favorite
text editor to manually create your schema to using tools to graphically design or
generate a schema. Independent software vendors, such as MDXSYS Limited,
provide such XML tools, and IBM also offers XML schema generation support
through its Java-integrated development environment.

For example, with IBM WebSphere Studio, you can import the Client3227.xml
file, shown in Figure 3-3, into a Web project. Right-click, using your mouse, and
elect to Generate → XML Schema. This will generate a valid XML schema for
your particular input file, as shown in Figure 3-6. You can then modify the file (if
necessary) and register it with DB2.

Figure 3-6 Using WebSphere Studio to generate an XML schema from an XML file

Let's assume you need to make your XML schema rather flexible so that you can
collect different types of contact information for different customers. For example,
some customers may provide you with multiple phone numbers or e-mail
addresses, while others may not do so.
 Chapter 3. Get off to a fast start with pureXML 37

The XML schema shown in Figure 3-7, which was derived from the schema
generated by WebSphere Studio, allows for this flexibility. It includes additional
specifications about the minimum and maximum number of occurrences
(“minOccurs” and “maxOccurs”) allowed for a given element. In this case, the
customer isn't required to give you any of the contact information you'd like to
collect. However, if a customer chooses to give you e-mail information, this
schema will enable conforming documents to contain up to five e-mail addresses
(that is, five “email” element values).
38 DB2 9: pureXML Overview and Fast Start

Figure 3-7 Sample XML schema for client contact information

As you may have noted, XML schemas also contain type information. While the
schema shown in Figure 3-7 simply specifies that all base elements are to be
treated as strings, most production XML schemas make use of other data types
as well, such as integer, decimal, date, and so on. If you validate XML
documents against a given schema as part of your INSERT or IMPORT
operation, DB2 will automatically add type annotations to your XML documents.
 Chapter 3. Get off to a fast start with pureXML 39

3.3.2 Step 2: Registering the XML schema

Once you've created an appropriate XML schema, you need to register the
schema with DB2. IBM provides multiple ways to do this. You can launch
graphical wizards from the DB2 Control Center to guide you through the process,
invoke system-supplied stored procedures, or issue DB2 commands directly.
Let's use the latter method here, because it may help you more readily
understand what DB2 is doing behind the scenes on your behalf.

If your schema is very large, you may need to increase your application heap
size before attempting to register it. For example, issue the following statements
shown in Example 3-6.

Example 3-6 Increasing the application heap size

connect to test;
update db cfg using applheapsz 10000;

Next, register your XML schema. If your XML schema does not reference other
XML schemas, you may register and complete the process with a single
command. Otherwise, you will need to issue individual commands to register
your primary XML schema, add the other required schemas, and complete the
registration process. When a schema document becomes very large, it's
common to divide its content into multiple files to improve maintenance,
readability, and reuse. This is akin to breaking up a complex application or
component into multiple modules. For details on this topic, refer to the W3C
“XML Schema primer”. See “Resources” at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/

This chapter uses a simple, independent XML schema. You can register it with
DB2 using the following command shown in Example 3-7.

Example 3-7 Registering an XML schema

register xmlschema 'http://mysample.org' from 'C:/XMLFiles/ClientInfo.xsd' as
user1.mysample complete;

In this example, ClientInfo.xsd is the name of the XML schema file. It's located in
the C:/XMLFiles directory. This XML schema will be registered in DB2's internal
repository under the SQL schema “user1” and the XML schema “mysample.”
The http://mysample.org parameter is just a placeholder in this example. It
specifies the uniform resource indicator (URI) referenced by XML instance
documents; many XML documents use namespaces, which are specified using a
URI. Finally, the “complete” clause will instruct DB2 to complete the XML schema
registration process so that the schema may be used for validating XML data.
40 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/

It's worth noting that the schema registration process doesn't involve specifying
table columns to which the schema will be applied. In other words, schemas
aren't the equivalent of SQL column constraints. A given schema can validate
data for a variety of XML columns in different tables. However, validation isn't
automatic. DB2 allows any well-formed XML document to be stored in an XML
column. If you want to validate your data against a registered schema prior to
storage, you need to instruct DB2 to do so.

3.3.3 Step 3: Importing XML data with validation

With an XML schema created and completely registered in DB2, you're now able
to have DB2 validate XML data when inserting or importing it into a table. Let's
revisit the earlier IMPORT scenario (see 3.2.2, “Using DB2 IMPORT” on
page 34) with schema validation in mind.

If you've already populated your “clients” table, you might find it convenient to
delete its contents or drop and recreate the table. This is only necessary if you
plan to add the same data to the table as you did previously. Recall that “clients”
was defined with a primary key on the client ID column, so attempting to import
duplicate rows will fail.

To validate the XML data while importing it into the “clients” table, use the
XMLVALIDATE clause of DB2 IMPORT. The following statement in Example 3-8
instructs DB2 to use your previously registered XML schema (user1.mysample)
as the default XML Data Specifier (XDS) for validating the XML files specified in
the clients.del file prior to inserting them into the “clients” table.

Example 3-8 Importing XML data with validation

import from clients.del of del xml from C:/XMLFILES
xmlvalidate using xds default user1.mysample
insert into user1.clients;

If DB2 determines that an XML document doesn't conform to the specified
schema, the entire row associated with that document will be rejected. Figure 3-8
illustrates sample output from an IMPORT operation in which one row of six was
rejected because its XML document didn't conform to the specified schema.
 Chapter 3. Get off to a fast start with pureXML 41

Figure 3-8 Sample output from DB2 IMPORT, with one row rejected

It's worth noting that XMLVALIDATE can also be used with INSERT statements
to instruct DB2 to validate XML data before inserting it. The syntax is similar to
the IMPORT example just shown, in that you specify a registered (and
completed) XML schema when invoking the XMLVALIDATE clause. For more
information about this, refer to “A simple Java example” at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco/sidefile1.html

3.4 Summary

DB2 9 provides significant new capabilities for supporting XML, including a new
XML data type and underlying engine-level components that automatically store
and process XML data in an efficient manner. To help you get up to speed
quickly on these features, this chapter described how to create a test database
and sample tables for storing XML documents. It also reviewed how you can
populate your database with XML data. Finally, it summarized DB2's ability to
validate XML data against user-supplied XML schemas and provided examples
to show you how to get started.

Now that you've learned how to store XML data using DB2's new “native” XML
capabilities, you're ready to query that data. You'll see how to do that in
subsequent chapters, which will introduce you to DB2's new XQuery support as
well as its XML extensions to SQL (sometimes called “SQL/XML”).
42 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco/sidefile1.html

Chapter 4. Querying XML data with SQL

In this chapter, learn how to query data stored in XML columns using SQL and
SQL/XML using DB2 9, (formerly codenamed “Viper”). A subsequent chapter
(Chapter 5, “Querying XML data with XQuery” on page 63) will illustrate how to
query XML data using XQuery, a new language supported by DB2.1

Although DB2's hybrid architecture represents a significant departure from
previous releases, exploiting its new XML capabilities doesn't have to be a
painful process. If you're already familiar with SQL, you can immediately apply
your skills to working with XML data stored natively in DB2. See how in this
chapter.

You may be surprised to learn that DB2 also supports “bilingual” queries –
that is, queries that combine expressions from both SQL and XQuery. Which
language (or combination of languages) you should use depends on your
application needs, as well as your skills. Combining elements of two query
languages into one query isn't as tough as you may think. And doing so can offer
you powerful capabilities for searching and integrating traditional SQL and XML
data.

4

1 Information in this chapter was originally published as “Query DB2 XML data
with SQL” by C. M. Saracco in IBM developerWorks, March 2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco2/
© Copyright IBM Corp. 2006. All rights reserved. 43

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/

4.1 Sample database

The queries in this chapter will access the sample tables created in Chapter 3,
“Get off to a fast start with pureXML” on page 29. As a quick review, the sample
“items” and “clients” tables are defined as shown in Example 4-1.

Example 4-1 Table definitions

create table items (
id int primary key not null,
brandname varchar(30),
itemname varchar(30),
sku int,
srp decimal(7,2),
comments xml

create table clients(
id int primary key not null,
name varchar(50),
status varchar(10),
contactinfo xml
)

Sample XML data included in the “items.comments” column is shown in
Figure 4-1, while sample XML data included in the “clients.contactinfo” column is
shown in Figure 4-2. Subsequent query examples will reference specific
elements in one or both of these XML documents.
44 DB2 9: pureXML Overview and Fast Start

Figure 4-1 Sample XML document stored in “comments” column of “items” table

Figure 4-2 Sample XML document stored in “contactinfo” column of the “clients” table

4.2 Query environment

All the queries in this chapter are designed to be issued interactively, which you
can do through the DB2 command line processor or the DB2 Command Editor of
the DB2 Control Center. The screen images and instructions in this chapter focus
 Chapter 4. Querying XML data with SQL 45

on the latter. (DB2 9 also ships with an Eclipse-based Developer Workbench that
can help programmers graphically construct queries. However, this chapter does
not discuss application development issues or the Developer Workbench.)

To use the DB2 Command Editor, launch the Control Center and select Tools →
Command Editor. A window similar to Figure 4-3 will appear. Type your queries
in the upper pane, click on the green arrow in the upper left corner to run them,
and view your output in the lower pane or in the separate “Query results” tab.

Figure 4-3 The DB2 Command Editor, which can be launched from the DB2 Control Center
46 DB2 9: pureXML Overview and Fast Start

4.3 SQL-only queries

Even if your knowledge of SQL is limited, you'll still be able to query XML data
with little effort. For example, the following query (Example 4-2) selects the full
contents of the “clients” table, including the XML information stored in the
“contactinfo” column.

Example 4-2 Simple SELECT statement

select * from clients

Of course, you can write more selective SQL queries that incorporate relational
projection and restriction operations. The following query (Example 4-3) retrieves
the IDs, names, and contact information for all customers with a “Gold” status.
Note that “contactinfo” contains XML data, while the other two columns do not.

Example 4-3 Simple SELECT statement with projection and restriction

select id, name, contactinfo
from clients
where status = 'Gold'

And, as you might expect, you can create views based upon such queries, as
seen here with “goldview” (Example 4-4).

Example 4-4 Creating a view that contains an XML column

create view goldview as
select id, name, contactinfo
from clients
where status = 'Gold'

Unfortunately, there's a lot you cannot do with just SQL. Plain SQL statements
enable you to retrieve full XML documents (as you've just seen), but you cannot
specify XML-based query predicates and you cannot retrieve partial XML
documents or specific element values from an XML document. In other words,
you cannot project, restrict, join, aggregate, or order by fragments of XML
documents using plain SQL. For example, you cannot retrieve just the e-mail
addresses of your Gold customers or the names of clients who live in zip code
“95116.” To express these types of queries, you need to use SQL with XML
extensions (SQL/XML), XQuery, or a combination of both.

The next section explores several fundamental features of SQL/XML. And in
Chapter 5, “Querying XML data with XQuery” on page 63, learn how to write
XQuery as well as how to combine XQuery with SQL.
 Chapter 4. Querying XML data with SQL 47

4.4 SQL/XML queries

As the name implies, SQL/XML is designed to bridge between the SQL and XML
worlds. It evolved as part of the SQL standard effort and now includes
specifications for embedding XQuery or XPath expressions within SQL
statements. XPath is a language for navigating XML documents to find elements
or attributes. XQuery includes support for XPath.

It's important to note that XQuery (and XPath) expressions are case-sensitive.
For example, XQuery that references the XML element “zip” will not apply to
XML elements named “ZIP” or “Zip.” Case sensitivity is sometimes difficult for
SQL programmers to remember, because SQL query syntax permits them to use
“zip,” “ZIP,” and “Zip” to refer to the same column name.

DB2 9 features more than 15 SQL/XML functions that enable you to search for
specific data within XML documents, convert relational data into XML, convert
XML data into relational data, and perform other useful tasks. This chapter does
not cover the full breadth of SQL/XML. However, it reviews several common
query challenges and how key SQL/XML functions can address these
challenges.

4.4.1 “Restricting” results based on XML element values

SQL programmers often write queries that restrict the rows returned from the
DBMS based on some condition. For example, the SQL query in Example 4-3
restricts the rows retrieved from the “clients” table to include only those
customers with a “Gold” status. In this case, the customer's status is captured in
an SQL VARCHAR column. But what if you want to restrict your search based on
some condition that applies to data in an XML column? The XMLExists function
of SQL/XML provides one means to do this.

XMLExists enables you to navigate to an element within your XML document and
test for a specific condition. When specified as part of the WHERE clause,
XMLExists restricts the returned results to only those rows that contain an XML
document with the specific XML element value (in other words, where the
specified value evaluates to “true”).

Let's look at a sample query problem raised earlier. Imagine that you need to
locate the names of all clients who live in a specific zip code. As you may recall,
the “clients” table stores customers’ addresses (including zip codes) in an XML
column. (See Figure 4-2 on page 45.) Using XMLExists, you can search the XML
column for the target zip code and restrict the returned result set accordingly.
The following SQL/XML query (Example 4-5) returns the names of clients who
live in zip code 95116.
48 DB2 9: pureXML Overview and Fast Start

Example 4-5 Restricting results based on an XML element value

select name from clients
where xmlexists('$c/Client/Address[zip="95116"]'
passing clients.contactinfo as "c")

The first line is an SQL clause specifying that you only want to retrieve
information in the “name” column of the “clients” table. The WHERE clause
invokes the XMLExists function, specifying an XPath expression that prompts
DB2 to navigate to the “zip” element and check for a value of 95116. The
“$c/Client/Address” clause indicates the path in the XML document hierarchy
where DB2 can locate the “zip” element. Using data accessible from node “$c”
(which we'll explain shortly), DB2 will navigate through the “Client” element to its
“Address” sub-element to inspect zip code (“zip” values). The final line resolves
the value of “$c”: it's the “contactinfo” column of the “clients” table. Thus, DB2
inspects the XML data contained in the “contactinfo” column, navigates from the
root “Client” element to “Address” and then to “zip,” and determines if the
customer lives in the target zip code. If so, the XMLExists function evaluates to
“true,” and DB2 returns the name of the client associated with that row.

A common mistake involves formulating the XMLExists query predicate, as
shown in Example 4-6.

Example 4-6 Incorrect syntax for restricting results based on an XML element value

select name from clients
where xmlexists('$c/Client/Address/zip="95116" '
passing clients.contactinfo as "c")

While this query will execute successfully, it will not restrict the results to clients
living in zip code 95116. (This is due to the semantics specified in the standard;
it's not unique to DB2.) To restrict results to clients living in zip code 95116, you
need to use the syntax shown earlier in Example 4-5.

You may be curious how to include a query that restricts XML data in an
application. While this chapter does not discuss application development topics
in detail, we include a simple Java example that uses a parameter marker within
an SQL/XML statement to restrict output to information about customers who live
in a given zip code. You can find this example at the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco2/sidefile1.html
 Chapter 4. Querying XML data with SQL 49

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/sidefile1.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/sidefile1.html

4.4.2 “Projecting” XML element values

Now let's consider a slightly different situation, in which you want to project XML
values into your returned result set. In other words, we want to retrieve one or
more element values from our XML documents. There are multiple ways to do
this. Let's first use the XMLQuery function to retrieve a value for one element,
and then use the XMLTable function to retrieve values for multiple elements and
map these into columns of an SQL result set.

Let's consider how to solve a problem posed earlier: how to create a report listing
the e-mail addresses of the Gold customers. The following query in Example 4-7
invokes the XMLQuery function to accomplish this task.

Example 4-7 Retrieving e-mail information for qualifying customers

select xmlquery('$c/Client/email'
passing contactinfo as "c")
from clients
where status = 'Gold'

The first line specifies that you want to return values for the “email” sub-element
of the root “Client” element. The second and third lines indicate where DB2 can
find this information – in the “contactinfo” column of the “clients” table. The fourth
line further qualifies your query to indicate that you're only interested in e-mail
addresses of Gold customers. This query will return a set of XML elements and
values. For example, if you had 500 Gold customers, each with one e-mail
address, your output would be a one-column result set with 500 rows, as shown
in Example 4-8.

Example 4-8 Sample output for previous query

1
--

<email>user5976@anyprovider.com</email>
. . .
<email>someID@yahoo.com</email>

If you have multiple e-mail addresses for individual Gold customers, you may
want to instruct DB2 to return only the primary address (that is, the first e-mail
address found in the customer's “contactinfo” document). You can modify the
XPath expression in the first line of your query to do so, see Example 4-9.
50 DB2 9: pureXML Overview and Fast Start

Example 4-9 Retrieving the first e-mail address for each qualifying customer

select xmlquery('$c/Client/email[1]'
passing contactinfo as "c")
from clients
where status = 'Gold'

Finally, if you lack e-mail addresses for some Gold customers, you may want to
write a query to exclude nulls from the result set. To do so, modify the previous
query by adding another predicate to the WHERE clause to test for missing
e-mail information. You're already familiar with the SQL/XML function that
enables you to do that – it's XMLExists. Example 4-10 shows how you can
rewrite the previous query to filter out any rows for Gold customers whose
contact information (stored as XML) lacks an e-mail address.

Example 4-10 Retrieving the first e-mail address for each qualifying customer for whom
we have at least one e-mail address

select xmlquery('$c/Client/email[1]'
passing contactinfo as "c")
from clients
where status = 'Gold'
and xmlexists('$c/Client/email' passing contactinfo as "c")

Now let's consider a slightly different situation, in which you need to retrieve
multiple XML element values. XMLTable generates tabular output from data
stored in XML columns and is quite useful for providing programmers with a
“relational” view of XML data. Like XMLExists and XMLQuery, the XMLTable
function causes DB2 to navigate through the XML document hierarchy to locate
the data of interest. However, XMLTable also includes clauses to map the target
XML data into result set columns of SQL data types.

Consider the following query (Example 4-11), which projects columns from both
relational data and XML data stored in the “items” table. (See Figure 4-1 on
page 45 to review the “items” table.) The comment IDs, customer IDs, and
messages are stored in XML documents in the “comments” column. The item
names are stored in an SQL VARCHAR column.

Example 4-11 Retrieving multiple XML elements and converting each to a traditional
SQL data type

select t.Comment#, i.itemname, t.CustomerID, Message from items i,
xmltable('$c/Comments/Comment' passing i.comments as "c"
columns Comment# integer path 'CommentID',

CustomerID integer path 'CustomerID',
Message varchar(100) path 'Message') as t
 Chapter 4. Querying XML data with SQL 51

The first line specifies the columns to be included in your result set. Columns
surrounded by quotation marks and prefixed with the “t” variable are based on
XML element values, as the subsequent lines of the query indicate. The second
line invokes the XMLTable function to specify the DB2 XML column containing
the target data (“i.comments”) and the path within the column's XML documents
where the elements of interest are located (within the “Comment” sub-element of
the root “Comments” element). The “columns” clause, spanning lines 3 to 5,
identifies the specific XML elements that will be mapped to output columns in the
SQL result set, specified on line 1. Part of this mapping involves specifying the
data types to which the XML element values will be converted. In this example,
all XML data is converted to traditional SQL data types.

Figure 4-4 shows sample results from running this query. As you can see, the
output is a simple SQL result set. Note that the column names have been folded
into upper case – a normal occurrence with SQL.

Figure 4-4 Sample output from query using the XMLTable function
52 DB2 9: pureXML Overview and Fast Start

If desired, you can use XMLTable to create result sets that include XML columns
as well. For example, the following statement (Example 4-12) produces a result
set similar to the previous one, except that “Message” data is contained in an
XML column rather than an SQL VARCHAR column.

Example 4-12 Retrieving multiple XML elements and converting them to traditional SQL
or XML data types

select t.Comment#, i.itemname, t.CustomerID, Message from items i,
xmltable('$c/Comments/Comment' passing i.comments as "c"
columns Comment# integer path 'CommentID',

CustomerID integer path 'CustomerID',
Message XML by ref path 'Message') as t

4.4.3 Creating relational views of XML data

As you might imagine, SQL/XML functions can be used to define views. This is
particularly useful if you'd like to present your SQL application programmers with
a relational model of data stored in XML columns.

Creating a relational view over data in an XML column isn't much more
complicated than projecting XML element values. You simply write an SQL/XML
SELECT statement that invokes the XMLTable function and use this as a basis
for your view definition. The following example (Example 4-13) creates a view
based on information in XML and non-XML columns of the “items” table. (It's
similar to the query in Example 4-11 on page 51.)

Example 4-13 Creating a view, based on the output of XMLTable

create view commentview(itemID, itemname, commentID, message,
mustrespond) as
select i.id, i.itemname, t.CommentID, t.Message, t.ResponseRequested
from items i,
xmltable('$c/Comments/Comment' passing i.comments as "c"
columns CommentID integer path 'CommentID',

Message varchar(100) path 'Message',
ResponseRequested varchar(100) path 'ResponseRequested') as t;

Although it's easy to create relational views over XML column data, you should
consider their use carefully. DB2 doesn't use XML column indexes when queries
are issued against such views. Thus, if you indexed the ResponseRequested
element and issued an SQL query that restricted the results of the "mustrespond"
column to a certain value, DB2 would read all the XML documents and search for
the appropriate “ResponseRequested” value. Unless you have a small amount of
data, this would slow runtime performance. However, if the queries you plan to
 Chapter 4. Querying XML data with SQL 53

run against such views also contain highly restrictive predicates involving
indexed columns of traditional SQL types (“i.id” or “i.itemname” in this example),
you can mitigate potential runtime performance problems. DB2 uses the
relational indexes to filter qualifying rows to a small number, and then applies
any additional XML query predicates to these interim results before returning the
final result set.

4.4.4 Joining XML and relational data

By now, you may be wondering about joining XML data with non-XML data
(relational data based on traditional SQL types, for example). DB2 enables you
to do this with a single SQL/XML statement. While there are different ways to
formulate such joins, depending on your database schema and workload
requirements, we'll cover one example here. And you may be surprised to learn
that you already know enough about SQL/XML to get the job done.

Recall that the XML column in the “items” table contains a “CustomerID”
element. This can serve as a join key for the integer-based “id” column in the
“clients” table. So, if you want a report of the names and status of clients who've
commented on one or more of your products, you'd have to join XML element
values from one table with SQL integer values from another. And one way to
accomplish this is to use the XMLExists function, as shown in Example 4-14.

Example 4-14 Joining XML and non-XML data

select clients.name, clients.status from items, clients
where xmlexists('$c/Comments/Comment[CustomerID=$p]'
passing items.comments as "c", clients.id as "p")

The first line identifies the SQL columns to be included in the query result set and
the source tables referenced in the query. The second line includes your join
clause. Here, XMLExists determines if the “CustomerID” value in one target
source is equal to a value derived from another target source. The third line
specifies these sources: the first is the “comments” XML column in the “items”
table, and the second is the integer “id” column in the “clients” table. Thus, if
customers have commented on any item and information about this customer is
available in the “clients” table, the XMLExists expression will evaluate to “true”
and the client's name and status information will be included in the report.

4.4.5 Using “FLWOR” expressions in SQL/XML

Although we've only discussed a few functions, SQL/XML provides many
powerful capabilities for querying XML data and integrating that data with
54 DB2 9: pureXML Overview and Fast Start

relational data. Indeed, you've already seen some examples of how to do that,
but we'll discuss a few more here.

Both the XMLExists and XMLQuery functions enable you to incorporate XQuery
into SQL. Our previous examples show how to use these functions with simple
XPath expressions to navigate to a portion of an XML document of interest. Now
let's consider a simple example in which you include XQuery in your SQL
queries.

XQueries may contain some or all of the following clauses: for, let, where, order
by, and return. Collectively, they form FLWOR (pronounced flower) expressions.
SQL programmers may find it convenient to incorporate XQueries into their
SELECT lists to extract (or project) fragments of XML documents into their result
sets. And while that's not the only way the XMLQuery function can be used, it's
the scenario this chapter covers. (Chapter 5, “Querying XML data with XQuery”
on page 63 will discuss XQuery in greater depth.)

Let's imagine that you want to retrieve the names and primary e-mail addresses
of your “Gold” customers. In some respects, this task is similar to one we
undertook earlier (see Example 4-9 on page 51), when we explored how to
project XML element values. Here, you pass XQuery (with for and return
clauses) as input to the XMLQuery function. See Example 4-15.

Example 4-15 Retrieving XML data using for and return clauses of XQuery

select name, xmlquery('for $e in $c/Client/email[1] return $e'
passing contactinfo as "c")
from clients
where status = 'Gold'

The first line specifies that customer names and output from the XMLQuery
function will be included in the result set. The second line indicates that the first
“email” sub-element of the “Client” element is to be returned. The third line
identifies the source of our XML data – the “contactinfo” column. Line 4 tells us
that this column is in the “clients” table. Finally, the fifth line indicates that only
“Gold” customers are of interest to us.

Because this example was so simple, you could write the same query here.
Instead, you could write the same query in a more compact manner, much as
you did previously. See Example 4-16.

Example 4-16 Rewriting the previous query in a more compact manner

select name, xmlquery('$c/Client/email[1]'
passing contactinfo as "c")
from clients
 Chapter 4. Querying XML data with SQL 55

where status = 'Gold'

However, the return clause of XQuery enables you to transform XML output as
needed. For example, you can extract e-mail element values and publish these
as HTML. The following query (Example 4-17) will produce a result set in which
the first e-mail address of each Gold customer is returned as an HTML
paragraph.

Example 4-17 Retrieving and transforming XML into HTML

select xmlquery('for $e in $c/Client/email[1]/text()
return <p>{$e}</p>'
passing contactinfo as "c")
from clients
where status = 'Gold'

The first line indicates that you're interested in the text representation of the first
e-mail address of qualifying customers. The second line specifies that this
information is to be surrounded by HTML paragraph tags before it is returned. In
particular, the curly brackets ({ }) instruct DB2 to evaluate the enclosed
expression (in this case, “$e”) rather than treat it as a literal string. If you omit the
curly brackets, DB2 would return a result set containing “<p>$e</p>” for every
qualifying customer record.

4.4.6 Publishing relational data as XML

Up until now, we've concentrated on ways to query, extract, or transform data
contained within a DB2 XML column. And, as you've seen, these capabilities are
all available through SQL/XML.

SQL/XML provides other handy features as well. Among these is the ability to
convert or publish relational data as XML. This chapter only covers three
SQL/XML functions in this regard: XMLElement, XMLAgg, and XMLForest.

XMLElement lets you convert data stored in traditional SQL columns into XML
fragments. That is, you can construct XML elements (with or without XML
attributes) from your base SQL data. The following example (Example 4-18)
nests its use of the XMLElement function to create a series of item elements,
each of which contains sub-elements for the ID, brand name, and stock-keeping
unit (“sku”) values obtained from the “items” table.
56 DB2 9: pureXML Overview and Fast Start

Example 4-18 Using XMLElement to publish relational data as XML

select xmlelement (name "item",
 xmlelement (name "id", id),
 xmlelement (name "brand", brandname),
 xmlelement (name "sku", sku)) from items

where srp < 100

Running this query will produce a result similar to Example 4-19.

Example 4-19 Sample output from previous query

<item>
 <id>4272</id>
 <brand>Classy</brand>
 <sku>981140</sku>
</item>
. . .
<item>
 <id>1193</id>
 <brand>Natural</brand>
 <sku>557813</sku>
</item>

You can combine XMLElement with other SQL/XML publishing functions to
construct and group XML values together, nesting them in hierarchies as
desired. Example 4-20 uses XMLElement to create customerList elements
whose contents are grouped by values in the “status” column. For each
“customerList” record, the XMLAgg function returns a sequence of customer
elements, each of which includes sub-elements based on our “name” and
“status” columns. Furthermore, you see that customer element values are
ordered by customer name.

Example 4-20 Aggregating and grouping data

select xmlelement(name "customerList",
xmlagg (xmlelement (name "customer",
xmlforest (name as "fullName", status as "status"))
order by name))
from clients
group by status

Let's assume our “clients” table contains three distinct “status” values: “Gold,”
“Silver,” and “Standard.” Running the previous query will cause DB2 to return
three customerList elements, each of which may contain multiple customer
 Chapter 4. Querying XML data with SQL 57

sub-elements that further contain name and status information. Thus, the output
will appear similar to Example 4-21.

Example 4-21 Sample output from previous query

<customerList>
 <customer>
 <fullName>Chris Bontempo</fullname>
 <status>Gold</status>
 </customer>
 <customer>
 <fullName>Ella Kimpton</fullName>
 <status>Gold</status>
 </customer>
. . .
</customerList>
<customerList>
 <customer>
 <fullName>Lisa Hansen</fullName>
 <status>Silver</status>
 </customer>
. . .
</customerList>
<customerList>
 <customer>
 <fullName>Rita Gomez</fullName>
 <status>Standard</status>
 </customer>
. . .
</customerList>

4.5 Update and delete operations

Although the focus of this chapter is on searching and retrieving data stored in
XML columns using SQL, it's worth spending a few moments considering two
other common tasks: updating and deleting data in XML columns.

DB2 enables users to update and delete XML data using SQL and SQL/XML
statements. Indeed, because the initial draft of the XQuery standard does not
address these issues, DB2 users must rely on SQL for these tasks.
58 DB2 9: pureXML Overview and Fast Start

4.5.1 Updating XML data

DB2 enables you to update an XML column with an SQL UPDATE statement
or through the use of a system-supplied stored procedure
(DB2XMLFUNCTIONS.XMLUPDATE). In both cases, updates to the XML
column occur at a document level rather than an element level. However,
programmers who update using the stored procedure do not need to supply the
full XML document to DB2; they only need to specify the XML elements to be
updated, and DB2 preserves the unchanged document data as well as updates
the specified elements. Programmers issuing UPDATE statements need to
specify the full document (not just the elements they want to change).

For example, if you want to issue an UPDATE statement to change the e-mail
address of a particular client's contact information, you have to supply the full set
of contact information to be included in the XML column, not just the new e-mail
element value. Referring to Figure 4-2 on page 45, this would include “Address”
information, “phone” information, “fax” information, and “email” information.

Consider the following statement shown in Example 4-22.

Example 4-22 Sample UPDATE statement

update clients set contactinfo=(
xmlparse(document '<email>newemail@someplace.com</email>'))
where id = 3227

If you recall how we inserted XML data in Chapter 3, “Get off to a fast start with
pureXML” on page 29, much of this statement should look familiar. Like any SQL
UPDATE statement, this example first identifies the table and column to be
updated. Because the target column contains XML data, you need to supply a
well-formed XML document as the new target value. While most production
environments use host variables or parameter markers in applications to update
their XML data, I've shown a simple way to do so interactively. The second line
uses the XMLParse function to convert the input string into XML. Explicitly
invoking XMLParse, as we do here, is optional with DB2 9. The final line is a
standard SQL clause restricting the update to a particular row in your table.

If you execute the previous UPDATE statement, the “contactinfo” column for
customer 3227 would contain only e-mail information, as shown in
Example 4-23.

Example 4-23 Effect of executing previous UPDATE statement

<email>newemail@someplace.com</email>
 Chapter 4. Querying XML data with SQL 59

The address, phone numbers, and fax number for this customer (shown in
Figure 4-2 on page 45) would be lost. Furthermore, some of the earlier queries
you wrote to extract the e-mail addresses of customers would never pick up this
one. Why? The earlier queries included XPath or XQuery expressions that
navigated through a specific document hierarchy in which Client was the root
element and email was a sub-element. After updating this document as shown,
email would now be the root element for this customer's XML record; therefore,
its value wouldn't be found at the expected location in the hierarchy.

If you want to update this customer's e-mail address interactively and retain all
other existing contact information, rewrite your query, as shown in Example 4-24.

Example 4-24 Revised UPDATE statement

update clients set contactinfo=
(xmlparse(document
''<Client>

<Address>
<street>5401 Julio Ave.</street>
<city>San Jose</city>
<state>CA</state>
<zip>95116</zip>

</Address>
<phone>

<work>4084633000</work>
<home>4081111111</home>
<cell>4082222222</cell>

</phone>
<fax>4087776666</fax>
<email>newemail@someplace.com</email>

</Client>'))
where id = 3227

Perhaps you're wondering if you might be able to avoid supplying the full XML
document by updating through a view. For example, the commentview defined in
Example 4-13 on page 53 uses the XMLTable function to extract certain
elements of an XML column and transform these into SQL columns in the view.
Is it possible, then, to update the value of one of these SQL columns and have
the result written back to the correct sub-element of the original XML document?
No. DB2 distinguishes between view columns based on SQL types and view
columns that are derived from the output of a function (in this case, the
XMLTable function). Updates to the latter are not supported.
60 DB2 9: pureXML Overview and Fast Start

4.5.2 Deleting XML data

Deleting rows that contain XML columns is a straightforward process. The SQL
DELETE statement enables you to identify (or restrict) the rows you want to
delete through a WHERE clause. This clause may include simple predicates to
identify non-XML column values or SQL/XML functions to identify XML element
values contained within XML columns.

For example, here's how you can delete all customer information for customer ID
3227. See Example 4-25.

Example 4-25 Deleting data for a specific client

delete from clients
where id = 3227

Do you remember how to restrict SQL SELECT statements to return only rows
for customers living in zip code 95116? If so, you can easily apply that
knowledge to deleting rows that track those customers. Here's how to do so
using XMLExists. See Example 4-26.

Example 4-26 Deleting data for clients within a specific zip code

delete from clients
where xmlexists('$c/Client/Address[zip="95116"]'
passing clients.contactinfo as "c");

4.5.3 Indexing

Finally, it's worth noting that you can create specialized XML indexes to speed up
access to data stored in XML columns. Because this is an introductory chapter
and the sample data is small, this chapter does not cover that topic here.
However, in production environments, defining appropriate indexes can be
critical to achieving optimal performance. The “Resources” section at the
following Web site can help you learn more about new DB2 indexing technology:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco2/

4.6 Summary

This chapter covered a lot of ground, highlighting several key aspects of
SQL/XML and how you can use it to query data in XML columns. There's
certainly more you can do with SQL and SQL/XML functions than we've
 Chapter 4. Querying XML data with SQL 61

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/

discussed here. This chapter includes a simple Java example that illustrates how
you can use parameter markers with SQL/XML to query data in XML columns.
Refer to the following Web site:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603sa
racco2/sidefile1.html

We'll discuss application development issues in greater detail in Chapter 6,
“Developing Java applications for XML data” on page 83. However, the next
chapter will explore some interesting aspects of XQuery, a new query language
supported by DB2 9.
62 DB2 9: pureXML Overview and Fast Start

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/sidefile1.html

Chapter 5. Querying XML data with
XQuery

In this chapter, learn how to query data stored in XML columns using XQuery.1

As you know, the new architecture of DB2 9, (formerly codenamed “Viper”),
supports both tabular and hierarchical data structures. Indeed, previous chapters
have summarized DB2's new XML features, described how to create database
objects and populate them with XML data, and explained how to work with XML
data using SQL and SQL/XML. This chapter continues to explore DB2 XML
capabilities by focusing on its new support for XQuery.

DB2 treats XQuery as a first-class language, allowing users to write XQuery
expressions directly rather than requiring that users embed or wrap XQueries in
SQL statements. Furthermore, DB2 query engine processes XQueries natively,
meaning that it parses, evaluates, and optimizes XQueries without ever
translating them into SQL behind the scenes. Of course, if you choose to write
“bilingual” queries that include both XQuery and SQL expressions, DB2 will
process and optimize these queries as well.

5

1 Information in this chapter was originally published as “Query DB2 XML data
with XQuery” by D. Chamberlin, C. M. Saracco, IBM developerWorks, April 2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604sa
racco/
© Copyright IBM Corp. 2006. All rights reserved. 63

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/

As with SQL/XML in Chapter 4, “Querying XML data with SQL” on page 43, this
chapter reviews several common query tasks and looks at how you can use
XQuery to accomplish your goals. But first, let's briefly consider how XQuery
differs from SQL.
64 DB2 9: pureXML Overview and Fast Start

5.1 About XQuery

XQuery differs from SQL in a number of key respects, largely because the
languages were designed to work with different data models that have different
characteristics. XML documents contain hierarchies and possess an inherent
order. Tabular data structures supported by SQL-based DBMSs are flat and
set-based; as such, rows are unordered.

The differences between these data models result in a number of fundamental
differences in their respective query languages. For example, XQuery supports
path expressions to enable programmers to navigate through XML's hierarchical
structure, while plain SQL (without XML extensions) does not. XQuery supports
both typed and untyped data, while SQL data is always defined with a specific
type. XQuery lacks null values because XML documents omit missing or
unknown data. SQL, of course, uses nulls to represent missing or unknown data
values. XQuery returns sequences of XML data; SQL returns result sets of
various SQL data types.

These are just a subset of the fundamental differences between XQuery and
SQL. It's beyond the scope of this introductory chapter to provide an exhaustive
list, but an IBM Systems Journal paper discusses language differences in more
detail. For more information, refer to the following Web site:

http://www.research.ibm.com/journal/sj/452/ozcan.html

For now though, let's just explore some basic aspects of the XQuery language
and how you can use it to query XML data in DB2 9.

5.2 Sample database

The queries in this chapter access the sample tables created in Chapter 3, “Get
off to a fast start with pureXML” on page 29. As a quick review, Example 5-1
defines the sample “items” and “clients” tables.

Example 5-1 Table definitions

create table items (
id int primary key not null,
brandname varchar(30),
itemname varchar(30),
sku int,
srp decimal(7,2),
comments xml
)

 Chapter 5. Querying XML data with XQuery 65

http://www.research.ibm.com/journal/sjpip.html

create table clients(
id int primary key not null,
name varchar(50),
status varchar(10),
contactinfo xml
)

Sample XML data included in the “items.comments” column is shown in
Figure 5-1, while sample XML data included in the “clients.contactinfo” column is
shown in Figure 5-2. Subsequent query examples will reference specific
elements in one or both of these XML documents.

Figure 5-1 Sample XML document stored in "comments" column of “items” table
66 DB2 9: pureXML Overview and Fast Start

Figure 5-2 Sample XML document stored in “contactinfo” column of the “clients” table

5.3 Query environment

All the queries in this chapter are designed to be issued interactively. You can do
this through the DB2 command line processor or the DB2 Command Editor of the
DB2 Control Center. The screen images and instructions in this chapter focus on
the latter. (DB2 9 also ships with an Eclipse-based Developer Workbench that
can help programmers graphically construct queries. This chapter does not
discuss application development issues or the Developer Workbench.)

To use the DB2 Command Editor, launch the Control Center, and select
Tools → Command Editor. A window similar to Figure 5-3 will appear. Type
your queries in the upper pane, click on the green arrow in the upper left corner
to run them, and view your output in the lower pane or in the separate “Query
Results” tab.
 Chapter 5. Querying XML data with XQuery 67

Figure 5-3 The DB2 Command Editor, which can be launched from the DB2 Control Center

5.4 XQuery examples

Just as in Chapter 4, “Querying XML data with SQL” on page 43, this chapter
steps through several common business scenarios and shows how to use
XQuery to satisfy requests for XML data. It also explores more complex
situations that involve embedding SQL within XQuery.

XQuery provides several different kinds of expressions that may be combined in
any way you like. Each expression returns a list of values that can be used as
input to other expressions. The result of the outermost expression is the result of
the query.
68 DB2 9: pureXML Overview and Fast Start

This chapter focuses on two important kinds of XQuery expressions: “FLWOR”
expressions and path expressions. A FLWOR expression is much like a
SELECT-FROM-WHERE expression in SQL: it is used to iterate through a list of
items and to optionally return something that is computed from each item. A path
expression, on the other hand, navigates through a hierarchy of XML elements
and returns the elements that are found at the end of the path.

Like a SELECT-FROM-WHERE expression in SQL, an XQuery FLWOR
expression may contain several clauses that begin with certain keywords. The
following keywords are used to begin clauses in a FLWOR expression:

� for: Iterates through an input sequence, binding a variable to each input item
in turn

� let: Declares a variable and assigns it a value, which may be a list containing
multiple items

� where: Specifies criteria for filtering query results

� order by: Specifies the sort order of the result

� return: Defines the result to be returned

A path expression in XQuery consists of a series of “steps,” separated by slash
marks or characters (/). In its simplest form, each step navigates downward in an
XML hierarchy to find the children of the elements returned by the previous step.
Each step in a path expression may also contain a predicate that filters the
elements that are returned by that step, retaining only elements that satisfy some
condition. For example, assuming that the variable $clients is bound to a list of
XML documents containing <Client> elements, the four-step path expression
$clients/Client/Address[state = “CA”]/zip will return the list of zip codes for clients
whose addresses are in California.

In many cases, it is possible to write a query by using either a FLWOR
expression or a path expression.

5.4.1 Using DB2 XQuery as a top-level query language

To execute an XQuery directly in DB2 9 (as opposed to embedding it in an SQL
statement), you must preface the query with the keyword xquery. This instructs
DB2 to invoke its XQuery parser to process your request. Note that you only
need to do this if you are using XQuery as the outermost (or top level) language.
If you embed XQuery expressions in SQL, you do not need to preface them with
the xquery keyword. However, this chapter uses XQuery as the primary
language, so all the queries are prefaced with xquery.

When running as a top-level language, XQuery needs to have a source of input
data. One way in which an XQuery can obtain input data is to call a function
 Chapter 5. Querying XML data with XQuery 69

named db2-fn:xmlcolumn with a parameter that identifies the table name and
column name of an XML column in a DB2 table. The db2-fn:xmlcolumn function
returns the sequence (of XML documents) that is stored in the given column. For
example, the following query (Example 5-2) returns a sequence of XML
documents containing customer contact information.

Example 5-2 Simple XQuery to return customer contact data

xquery db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')

As you may recall from our database schema (see 5.2, “Sample database” on
page 65), we stored such XML documents in the “contactinfo” column of the
“clients” table. Note that the column and table names are specified in upper case
here. This is because table and column names are typically folded into upper
case before being written to DB2's internal catalog. Because XQuery is
case-sensitive, lower-case table and column names would fail to match
upper-case names in the DB2 catalog.

5.4.2 Retrieving specific XML elements

Let's start with a basic task. Suppose you want to retrieve the fax numbers of all
clients who have provided you with this information. Example 5-3 depicts one
way you can write this query.

Example 5-3 FLWOR expression to retrieve client fax data

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/fax
return $y

The first line instructs DB2 to invoke its XQuery parser. The next line instructs
DB2 to iterate through the fax sub-elements of the Client elements contained in
the CLIENTS.CONTACTINFO column. Each fax element is bound in turn to the
variable $y. The third line indicates that, for each iteration, the value of $y is
returned. The result is a sequence of XML elements, as shown in Example 5-4.

Example 5-4 Sample output for previous query

<fax>4081112222</fax>
<fax>5559998888</fax>

As an aside, the output will also contain some information that's not of great
interest in this chapter: XML version and encoding data, such as <?xml
version=”1.0” encoding=”windows-1252” ?>, and XML namespace information,
such as <fax xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”>. To
70 DB2 9: pureXML Overview and Fast Start

make the output easier for you to follow, we've omitted that information in this
chapter. However, it can be important for a number of XML applications. If you
use the DB2 command line processor to run your queries, you can use the -d
option to suppress the XML declaration information and the -i option to print the
results in an attractive manner.

The query shown in Example 5-3 could be expressed somewhat more concisely
as a three-step path expression, as shown in Example 5-5.

Example 5-5 Path expression to retrieve client fax data

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/fax

The first step of the path expression calls the db2-fn:xmlcolumn function to
obtain a list of XML documents from the CONTACTINFO column of the CLIENTS
table. The second step returns all the Client elements in these documents, and
the third step returns the fax elements nested inside these Client elements.

If you're not interested in obtaining XML fragments from your query but instead
want just a text representation of qualifying XML element values, you can invoke
the text() function in your return clause, as shown in Example 5-6.

Example 5-6 Two queries to retrieve text representation of client fax data

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/fax
return $y/text()

(or)

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/fax/text()

The output of these queries will be similar to that shown in Example 5-7.

Example 5-7 Sample output from previous queries

4081112222
5559998888

The results of the sample queries are relatively simple because the fax element
is based on a primitive data type. Of course, elements may be based on complex
types: that is, they may contain sub-elements (or nested hierarchies). The
Address element of our client contact information is one example of this.
According to the schema defined in Chapter 3, “Get off to a fast start with
 Chapter 5. Querying XML data with XQuery 71

pureXML” on page 29, it may contain a street address, apartment number, city,
state, and zip code. Consider what the following XQuery in Example 5-8 will
return.

Example 5-8 FLWOR expression to retrieve complex XML type

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/Address
return $y

If you guessed a sequence of XML fragments containing Address elements and
all their sub-elements, you're right (Example 5-9).

Example 5-9 Sample output from previous query

<Address>
 <street>5401 Julio Ave.</street>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95116</zip>
</Address>
. . .
<Address>
 <street>1204 Meridian Ave.</street>
 <apt>4A</apt>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95124</zip>
</Address>

5.4.3 Filtering on XML element values

You can refine the previous XQuery examples to be more selective. For
example, let's explore how you can return the mailing addresses of all customers
who live in zip code 95116.

Note: This sample output is formatted to make it easier for you to read. The
DB2 Command Editor displays each customer address record on one line.
72 DB2 9: pureXML Overview and Fast Start

As you might imagine, the XQuery where clause enables you to filter results
based on the value of the zip element in your XML documents. Example 5-10
illustrates how to add a where clause to the previous FLWOR expression in
Example 5-8 to obtain only the addresses that interest you.

Example 5-10 FLWOR expression with a new where clause

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/Address
where $y/zip="95116"
return $y

The added where clause is pretty easy to understand. The for clause binds the
variable $y to each address in turn. The where clause contains a small path
expression that navigates from each address to its nested zip element. The
where clause is true (and the address is retained) only if the value of this zip
element is equal to 95116.

The same result could be obtained by adding a predicate to the path expression,
as shown in Example 5-11.

Example 5-11 Path expression with additional filtering predicate

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/Address[zip="95116"]

Of course, you can filter on zip code values and return elements unrelated to
street addresses. Furthermore, you can also filter on multiple XML element
values in a single query. The following query (Example 5-12) returns e-mail
information for customers who live in a specific zip code in New York City
(10011) or anywhere in the city of San Jose.

Example 5-12 Filtering on multiple XML element values with a FLWOR expression

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client
where $y/Address/zip="10011" or $y/Address/city="San Jose"
return $y/email

Note that we've changed the for clause so that it binds variable $y to Client
elements rather than to Address elements. This enables us to filter the Client
elements by one part of the subtree (Address) and return another part of the
subtree (email). The path expressions in the where clause and return clause
must be written relative to the element that is bound to the variable (in this case,
$y).
 Chapter 5. Querying XML data with XQuery 73

The same query can be expressed somewhat more concisely as a path
expression. See Example 5-13.

Example 5-13 Filtering on multiple XML element values with a path expression

xquery
db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client[Address/zip="10011"
or Address/city="San Jose"]/email;

What's not so obvious from reviewing either form of this query is that the returned
results will differ in two significant ways from what an SQL programmer might
expect:

� You won't get XML data returned for qualifying customers who didn't give you
their e-mail addresses. In other words, if you have 1000 customers who live in
San Jose or zip code 10011, and 700 customers each gave you one e-mail
address, you'd get a list of these 700 e-mail addresses returned. This is due
to a fundamental difference between XQuery and SQL mentioned earlier --
XQuery doesn't use nulls.

� You won't know which e-mail addresses were derived from the same XML
document. In other words, if you have 700 customers who live in San Jose or
zip code 10011, and each gave you two e-mail addresses, you'd get a list of
1400 e-mail elements returned. You would not get a sequence of 700
records, each consisting of two e-mail addresses.

Both situations can be desirable under some circumstances and undesirable
under others. For example, if you need to e-mail a notice to every qualifying
account you have on record, then iterating through a list of customer e-mail
addresses in XML format is easy to do in an application. However, if you want to
e-mail only one notice to every customer, including those who only provided you
with their street addresses, then the XQuery previously shown won't be
sufficient.

There are multiple ways you can rewrite this query so that the returned results
represent missing information in some fashion and indicate when multiple e-mail
addresses were derived from the same customer record (that is, the same XML
document). Let's explore one way shortly. However, if all you want to do is
retrieve a list containing one e-mail address per qualifying customer, you could
modify the return clause of the previous query slightly. See Example 5-14.

Example 5-14 Retrieving only the first e-mail element per customer

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client
where $y/Address/zip="10011" or $y/Address/city="San Jose"
return $y/email[1]
74 DB2 9: pureXML Overview and Fast Start

This query causes DB2 to return the first e-mail element it finds within each
qualifying XML document (customer contact record). If it doesn't find an e-mail
address for a qualifying customer, it won't return anything for that customer.

5.4.4 Transforming XML output

A powerful aspect of XQuery is its ability to transform XML output from one form
of XML into another. For example, you can use XQuery to retrieve all or part of
your stored XML documents and convert the output into HTML for easy display in
a Web browser. The following query in Example 5-15 retrieves the addresses of
our clients, sorts the results by zip code, and converts the output into XML
elements that are part of an unordered HTML list.

Example 5-15 Querying DB2 XML data and returning results as HTML

xquery
 {
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client/Address
order by $y/zip
return {$y}
}

The query begins simply enough with the xquery keyword to indicate to the DB2
parser that XQuery is being used as the primary language. The second line
causes the HTML markup for an unordered list () to be included in the
results. It also introduces a curly bracket, the first of two sets used in this query.
Curly brackets instruct DB2 to evaluate and process the enclosed expression
rather than treat it as a literal string.

The third line iterates over client addresses, binding the variable $y to each
address element in turn. The fourth line includes a new order by clause,
specifying that results must be returned in ascending order (the default order)
based on customer zip codes (the zip sub-element of each address bound to $y).
The return clause indicates that the Address elements are to be surrounded by
HTML list item tags before they are returned. And the final line concludes the
query and completes the HTML unordered list tag.

The output will appear similar to that in Example 5-16.

Example 5-16 Sample HTML output of previous query

 <Address>
 <street>9407 Los Gatos Blvd.</street>
 <city>Los Gatos</city>
 Chapter 5. Querying XML data with XQuery 75

 <state>CA</state>
 <zip>95032</zip>
 </Address>

 <Address>
 <street>4209 El Camino Real</street>
 <city>Mountain View</city>
 <state>CA</state>
 <zip>95033</zip>
 </Address>

. . .

Let's consider a topic raised earlier: how to write an XQuery that will indicate
missing values in the returned results as well as indicate when a single XML
document (such as a single customer record) contains repeating elements (such
as multiple e-mail addresses). One way to do so involves wrapping the returned
output in a new XML element, as shown in the following query in Example 5-17.

Example 5-17 Indicating missing values and repeating elements in an XQuery result

xquery
for $y in db2-fn:xmlcolumn('CLIENTS.CONTACTINFO')/Client
where $y/Address[zip="10011"] or $y/Address[city="San Jose"]
return <emailList> {$y/email} </emailList>

Running this query causes a sequence of “emailList” elements to be returned,
one per qualifying customer record. Each emailList element will contain e-mail
data. If DB2 finds a single e-mail address in a customer's record, it will return that
element and its value. If it finds multiple e-mail addresses, it will return all e-mail
elements and their values. Finally, if it finds no e-mail address, it will return an
empty emailList element. Thus, the output might appear as shown in
Example 5-18.

Example 5-18 Sample output of previous query

<emailList>
 <email>love2shop@yahoo.com</email>
</emailList>
<emailList/>
<emailList>
 <email>beatlesfan36@hotmail.com</email>
 <email>lennonfan36@hotmail.com</email>
76 DB2 9: pureXML Overview and Fast Start

</emailList>
. . .

5.4.5 Using conditional logic

XQuery's ability to transform XML output can be combined with its built-in
support for conditional logic to reduce the complexity of application code. Let's
consider a simple example. The “items” table includes an XML column
containing comments customers have made about products. For customers who
have requested a response to their comments, you may want to create new
“action” elements containing the product ID, customer ID, and message so you
can route this information to the appropriate person for handling. However,
comments that don't require a response are still important to the business, and
you don't want to just ignore them. Instead, create an “info” element with just the
product ID and message. Here's how you can use an XQuery if-then-else
expression to accomplish this task. See Example 5-19.

Example 5-19 Using an if-then-else expression in an XQuery

xquery
for $y in db2-fn:xmlcolumn('ITEMS.COMMENTS')/Comments/Comment
return (

 if ($y/ResponseRequested = 'Yes')
 then <action>
 {$y/ProductID,

 $y/CustomerID,
 $y/Message}

 </action>
 else (<info>

 {$y/ProductID,
 $y/Message}
 </info>

)
)

Most aspects of this query should be familiar to you by now, so let's just
concentrate on the conditional logic. The if clause determines whether the value
of the ResponseRequested sub-element for a given comment is equal to “Yes.” If
so, the then clause is evaluated, causing DB2 to return a new element (“action”)
that contains three sub-elements: ProductID, CustomerID, and Message.
Otherwise, the else clause is evaluated and DB2 returns an “info” element
containing only product ID and message data.
 Chapter 5. Querying XML data with XQuery 77

5.4.6 Using the “let” clause

You have now seen how to use all the parts of a FLWOR expression except for
one: the let clause. This clause is used to assign a value (possibly containing a
list of several items) to a variable that can be used in other clauses of the
FLWOR expression.

Suppose that you want to make a list of how many comments were received for
each product. This can be done with the following query (Example 5-20).

Example 5-20 Using the let clause

xquery
for $p in distinct-values
 (db2-fn:xmlcolumn('ITEMS.COMMENTS')/Comments/Comment/ProductID)
let $pc := db2-fn:xmlcolumn('ITEMS.COMMENTS')
 /Comments/Comment[ProductID = $p]
return
 <product>
 <id> { $p } </id>
 <comments> { count($pc) } </comments>
 </product>

The distinct-values function in the for clause returns a list of all the distinct
values of ProductID that are found inside comments in the COMMENTS column
of the ITEMS table. The for clause binds variable $p to each of these ProductID
values in turn. For each value of $p, the let clause scans the ITEMS column
again and binds the variable $pc to a list containing all the comments whose
ProductID matches the ProductID in $p. The return clause constructs a new
“product” element for each distinct ProductID value. Each of these “product”
elements contains two sub-elements: an “id” element containing the ProductID
value and a “comments” element containing a count of how many comments
were received for the given product.

The result of this example query might look something like the one shown in
Example 5-21.

Example 5-21 Sample output for the previous query

<product>
 <id>3926</id>
 <comments>28</comments>
</product>
<product>
78 DB2 9: pureXML Overview and Fast Start

 <id>4097</id>
 <comments>13</comments>
</product>

5.5 XQueries with embedded SQL

By now, you've seen how to write XQueries that retrieve XML document
fragments, create new forms of XML output, and return different output based on
conditions specified in queries themselves. In short, you've learned a few ways
to use XQuery to query XML data stored in DB2.

To be sure, there's more to learn about XQuery than this brief chapter covers.
But we cannot neglect a broad topic that we haven't covered yet: how to embed
SQL within XQuery. Doing so can be useful if you need to write queries that filter
data based on XML and non-XML column values.

As you might recall from Chapter 4, “Querying XML data with SQL” on page 43,
the chapter described how you can embed simple XQuery expressions within an
SQL statement to accomplish this task. Here, let's look at how to do the opposite:
embed SQL within XQuery to restrict results based on both traditional SQL data
values and specific XML element values.

In place of the db2-fn:xmlcolumn function, which returns all the XML data in a
column of a table, you can call the db2-fn:sqlquery function, which executes
an SQL query and returns only the selected data. The SQL query passed to
db2-fn:sqlquery must return XML data. This XML data can then be further
processed by XQuery.

The query in Example 5-22 retrieves information about comments involving
products with a suggested retail price (“srp”) of more than $100 that include a
customer request for a response. Recall that pricing data is stored in an SQL
decimal column, while customer comments are stored as XML. The returned
data, including the product ID, customer ID, and customer message, is included
in a single XML “action” element for each qualifying comment stored in the
database.

Example 5-22 Embedding SQL within an XQuery

xquery
for $y in
db2-fn:sqlquery('select comments from items where srp >
100')/Comments/Comment
where $y/ResponseRequested="Yes"
return (
 Chapter 5. Querying XML data with XQuery 79

 <action>
 {$y/ProductID,
 $y/CustomerID,
 $y/Message}
 </action>
)

Again, most of this query should look familiar to you by now, so let's just
concentrate on the new function: db2-fn:sqlquery. DB2 processes the SQL
SELECT statement supplied to this function to determine which rows contain
information about items priced at more than $100. The documents stored in
these rows serve as inputs to a path expression that returns all the nested
Comment elements. Subsequent portions of the query use the XQuery where
clause to filter returned data further and to transform portions of the selected
comments into new XML fragments.

With this in mind, let's consider how you might solve a slightly different problem.
Imagine that you want a list of all e-mail addresses for “Gold” clients who live in
San Jose. Furthermore, if you have multiple e-mail addresses for a single client,
you want all of them to be included in the output as part of a single client record.
Finally, if a qualifying “Gold” client didn't give you an e-mail address, you want to
retrieve that client’s mailing address. Example 5-23 illustrates one way to write
such a query.

Example 5-23 Embedding SQL within an XQuery that includes conditional logic

xquery
for $y in
db2-fn:sqlquery('select contactinfo from clients where status=''Gold'' ')/Client
where $y/Address/city="San Jose"
return (
 if ($y/email) then <emailList>{$y/email}</emailList>
 else $y/Address
)

Two aspects of this query deserve some explanation. First, the SELECT
statement embedded in the second line contains a query predicate based on the
“status” column, comparing the value of this VARCHAR column to the string
“Gold”. In SQL, such strings are surrounded by single quotes. Note that although
the example may appear to use double quotes, it actually uses two single quotes
before and after the comparison value (“Gold”). The “extra” single quotes are
escape characters. If you use double quotes around your string-based query
predicate, instead of pairs of single quotes, you'll get a syntax error.

In addition, the return clause in this query contains conditional logic to determine
if an e-mail element is present in a given customer's record. If so, the query will
80 DB2 9: pureXML Overview and Fast Start

return a new “emailList” element containing all the customer's e-mail addresses
(that is, all the e-mail elements for that customer). If not, it will return the
customer's mailing address (that is, the Address element for that customer).

5.5.1 Indexing

Finally, it's worth noting that you can create specialized XML indexes to speed up
access to data stored in XML columns. Because this is an introductory chapter
and the sample data is small, we won't cover that topic here. However, in
production environments, defining appropriate indexes can be critical to
achieving optimal performance. See “Resources” at the following Web site for
more info about DB2's new indexing technology:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604sa
racco/

5.6 Summary

XQuery differs from SQL in significant ways, several of which are highlighted in
this chapter. Learning more about the language will help you determine when it
can be most beneficial to your work, as well as help you understand when it can
be useful to combine XQuery with SQL. In Chapter 6, “Developing Java
applications for XML data” on page 83, we'll delve into another topic you may find
interesting: how to develop Java applications that exploit DB2 XML capabilities.
For now though, refer to this simple Java example that depicts how a Java
application might embed an XQuery.

� A simple Java coding example

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-060
3saracco2/sidefile1.html
 Chapter 5. Querying XML data with XQuery 81

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0603saracco2/sidefile1.html

82 DB2 9: pureXML Overview and Fast Start

Chapter 6. Developing Java
applications for XML data

In this chapter, you'll learn the basics of how to write Java applications that
access the new XML data using DB2 9 (formerly codenamed “Viper”). You'll see
how to insert, query, update, and delete XML data, as well as how to create
stored procedures that access XML data, and more.1

Writing Java applications that access XML data stored natively in DB2 9 isn't
much different from writing Java applications that access relational data. Indeed,
if you're familiar with Java Database Connectivity (JDBC), you already know
much of what you need to begin writing your first DB2 XML application.

In this chapter, we'll step through several common programming scenarios, such
as inserting XML data, querying XML and non-XML data, updating XML data,
deleting XML data, and creating stored procedures that access XML data. But
first, let's review a few fundamental guidelines for developing any type of DB2
database application.

6

1 Information in this chapter was originally published as "Develop Java
applications for DB2 XML data”, C. M. Saracco, IBM developerWorks, April
2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605sa
racco/
© Copyright IBM Corp. 2006. All rights reserved. 83

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605saracco/

6.1 Follow typical programming “best practices”

Although DB2's pureXML support is new, good database application
programming practices haven't changed. Before diving into the details of DB2's
XML technology, keep these general principles in mind:

� Ask only for what you need: Do not retrieve the entire contents of a table – or
the entire contents of many XML documents – if you only need a subset of
this information. You'll just drive up processing costs and slow runtime
performance.

� Avoid duplicating the work of a database server: Instruct DB2 to filter and
process data according to your needs rather than doing this work in your
application. For example, if you have DB2 return results in a specified order,
you won't need to sort the data yourself. Similarly, if you have DB2 ensure
that only distinct results are returned, you won't have to double-check for
duplicates. Data-centric processing is best performed by the database server,
not your application.

� Make your code easy to maintain: Include comments or Javadoc in your
code, particularly if your application contains complex queries.

� Consider the scope of your transactions carefully: By default, JDBC treats
each query as an independent transaction. Determine if this is appropriate for
your needs, and also consider how the scope (and isolation level) you define
for your transactions can impact overall concurrency requirements.

� Minimize traffic in networked environments: You'll enjoy better runtime
performance if you avoid transferring data unnecessarily between your
application and DB2. Retrieving only the data you need is one way to do this.
Invoking database stored procedures can also help, depending on the nature
of your work.

6.2 Configure your environment

DB2 doesn't require any special configuration to enable you to develop or run
Java applications that work with XML data. Indeed, you can write, test, and
debug your Java programs using the integrated development environment (IDE)
of your choice or by working directly with a supported Java Developer Kit (JDK)
from the command line. However, because DB2 9 ships with a Developer
Workbench, the examples in this chapter use its development environment. This
section discusses how to configure the Developer Workbench, reviews some
sample data, and explores database configuration parameters that may be of
interest to you.
84 DB2 9: pureXML Overview and Fast Start

6.2.1 DB2 Developer Workbench

The DB2 Developer Workbench is based on the Eclipse 3.1 platform, an open
source project available for free download. To compile and run any DB2 XML
application with this workbench, you need to create a project and include
appropriate DB2 libraries in the project's build path, including the libraries that
support DB2's JDBC 3.0-compliant driver. To configure your environment,
complete the following steps:

1. Launch the DB2 Workbench. For example, from the Windows Start menu,
select DB2 → IBM DB2 Developer Workbench V9.1 → Developer
Workbench.

2. Create a new project. We'll use a simple project initially. Switch to the Java
perspective (Window → Open Perspective → Java), and select File →
New → Project. Follow the wizards to specify a project name. For other
items, retain the default settings.

3. Add the DB2 libraries into your project's build path. Highlight your project,
right-mouse click, and select Properties. Select Java Build Path, and click
the Libraries tab. Add the appropriate DB2 external .jar files, such as
db2jcc.jar, db2jcc_javax.jar, and db2jcc_license_cu.jar.

4. Optionally, create a package for your application. Highlight your project,
right-mouse click and select New → Package.

For details about creating projects and packages, consult the online help
information.

6.2.2 Sample data

The examples in this chapter work with the “clients” table created in Chapter 3,
“Get off to a fast start with pureXML” on page 29. As a quick review, this table
was defined as Example 6-1.

Example 6-1 Sample code listing at maximum width

create table clients(
 id int primary key not null,
 name varchar(50),
 status varchar(10),
 contactinfo xml
)

 Chapter 6. Developing Java applications for XML data 85

Figure 6-1 depicts a sample XML file that will be inserted into the “contactinfo”
column of this table shortly.

Figure 6-1 Sample XML file to be inserted into the “clients” table

6.2.3 Database configuration parameters

The examples in this tutorial are simple and work with a small amount of XML
data, so you shouldn't need to alter default database configuration parameters to
get them to run. However, default values may not be sufficient for some
production environments. In particular, settings for the log size, Java heap, query
statement heap, and application heap may need to be increased. If these values
are set inappropriately, your runtime performance may be slow or you may be
unable to insert large XML documents into DB2 tables due to insufficient log
space.

You can review and change DB2 database configuration parameters from the
DB2 Control Center (select Tools → Configuration Assistant) or the DB2
command line processor. Consult the product manuals for details.

6.3 Connect to your database

Working with DB2 XML data requires establishing a connection to the database
that contains your data. There's nothing special about this code: it's the same
logic that you'd write to connect to any DB2 database.

Example 6-2 contains a helper class with methods for establishing and closing a
DB2 database connection.
86 DB2 9: pureXML Overview and Fast Start

Example 6-2 Helper class to acquire and release database connections

public class Conn {
 // for simplicity, I've hard-coded account and URL data.
 private static String user = "user1";
 private static String pwd = "mypassword";
 private static String url = "jdbc:db2:test";

 // this method gets a database connection
 public static Connection getConn(){
 Connection conn=null;

 // load the appropriate DB2 driver and
 // get a connection to the "test" database
 try {
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 conn = DriverManager.getConnection(url, user, pwd);
 . . .
 }
 catch (Exception e) { e.printStackTrace();}
 return conn;

 } // end getConn();

 // this method closes a database connection
 public static void closeConn(Connection conn){
 try {
 if(conn == null) { return; }
 conn.close();
 }
 catch (Exception e) { e.printStackTrace(); }
 finally {
 try { conn.close(); }
 catch (Exception e) { }
 }
 } // end closeConn();
} // end class

You will call these methods in applications that perform broader tasks, such as
inserting and querying XML data.
 Chapter 6. Developing Java applications for XML data 87

6.4 Insert XML data

Because the initial XQuery specification did not address database write
operations (such as inserting data), DB2 relies on familiar SQL INSERT
statements to enable programmers to write new XML data to tables that contain
XML columns. DB2 can store any well-formed XML document of up to 2 GB.

Often, Java programmers need to insert XML data contained in files into DB2,
although it's also possible to insert XML data from character strings, from binary
data (including large objects), and from SQL sub-select statements. A review of
how to insert XML data from files and from simple character strings is provided
here. Consult the DB2 9 manuals for details on other insert scenarios.

DB2 9 also enables you to insert XML documents with or without validating them
against previously registered XML schemas. The samples in this chapter cover
both approaches.

6.4.1 Insert file without validation

The insertFile() method in Example 6-3 illustrates how to insert data from an
XML file into the “clients.contactinfo” column. This method begins by defining
several variables for later use. The first three correspond to the ID, name, and
status columns in the “clients” table. The fourth is the name of the XML file to be
inserted into the “contactinfo” column. For simplicity, values have been
hard-coded in this method; in a production environment, input values would be
obtained differently.

After establishing a database connection, create a simple string for your INSERT
statement. As you can see, it looks like any other DB2 INSERT statement and
uses parameter markers for your four input column values. The INSERT
statement is prepared as usual, and its four parameter markers are set. To set
the marker for the XML column, open a FileInputStream, passing in the location
of our XML file. Also obtain the length of this file, and use this information as
input to the setBinaryStream() method. Finally, execute the statement, check
for errors, and close the connection.

Example 6-3 Inserting XML data from a file

public static void insertFile(){
 try {
 // for simplicity, I've defined variables with input data
 int id = 1885;
 String name = "Amy Liu";
 String status = "Silver";
 String fn = "c:/XMLFiles/Client1885.xml"; // input file
88 DB2 9: pureXML Overview and Fast Start

 // get a connection
 Connection conn = Conn.getConn();

 // define string that will insert file without validation
 String query = "insert into clients (id, name, status, contactinfo) values (?, ?, ? ,?)";

 // prepare the statement
 PreparedStatement insertStmt = conn.prepareStatement(query);
 insertStmt.setInt(1, id);
 insertStmt.setString(2, name);
 insertStmt.setString(3, status);
 File file = new File(fn);
 insertStmt.setBinaryStream(4, new FileInputStream(file), (int)file.length());

 // execute the statement
 if (insertStmt.executeUpdate() != 1) {
 System.out.println("No record inserted.");
 }
 . . .
 conn.close();
 }
 catch (Exception e) { . . . }
}

6.4.2 Insert file with validation

Inserting an XML file with validation requires very little additional programming
effort. Assuming you have created and registered the ClientInfo.xsd file as
discussed in Chapter 3, “Get off to a fast start with pureXML” on page 29, you
only need to modify one line of code in Example 6-3 to instruct DB2 to insert the
XML file with validation. This code involves the definition of the query string.

As shown in Example 6-4, the revised INSERT statement invokes the
XMLValidate function before specifying a parameter marker for the XML data.
This function also requires that you specify the XML schema identifier to be used
for validation. Here, we refer to a previously-registered schema known as
“user1.mysample”.

Example 6-4 Inserting XML data from a file with validation

String query = "INSERT INTO clients (id, name, status contactinfo) " +
 "VALUES (?, ?, ?, xmlvalidate(? according to xmlschema id
user1.mysample))";
 Chapter 6. Developing Java applications for XML data 89

If your input XML file contains data that is valid according to the specified
schema, DB2 inserts the row. If not, the entire statement fails, and no data for
this row is inserted.

6.4.3 Insert character string without validation

The insertString() method shown in Example 6-5 illustrates how you can insert
a well-formed XML document assigned to a character string variable into DB2.
The logic is not much different from the previous example of inserting data from a
file. Instead of using the setBinaryStream() method of your prepared statement,
use the setString() method. For simplicity, the XML document in the xml
variable definition has been hard-coded in this example.

Example 6-5 Inserting XML data from a character string

public static void insertString(){
 try {
 // for simplicity, I've defined variables with input data
 int id = 1885;
 String name = "Amy Liu";
 String status = "Silver";
 String xml =
 "<?xml version=\"1.0\"?>" +
 "<Client>" +
 "<Address> " +
 "<street>54 Moorpark Ave.</street>" +
 "<city>San Jose</city>" +
 "<state>CA</state>" +
 "<zip>95110</zip>" +
 "</Address>" +
 "<phone>" +
 "<work>4084630110</work>" +
 "<home>4081114444</home>" +
 "<cell>4082223333</cell>" +
 "</phone>" +
 "<fax>4087776688</fax>" +
 "<email>sailer555@yahoo.com</email>" +

 Connection conn = Conn.getConn();

 // define string that will insert file without validation
 String query = "insert into clients (id, name, status, contactinfo) values (?, ?, ? ,?)";

Note: Escape characters (backward slashes) are included before quotation
marks that are part of the XML document (such as the XML version number in
the example below).
90 DB2 9: pureXML Overview and Fast Start

 // prepare the statement
 PreparedStatement insertStmt = conn.prepareStatement(query);
 insertStmt.setInt(1, id);
 insertStmt.setString(2, name);
 insertStmt.setString(3, status);
 insertStmt.setString(4, xml);

 // execute the statement
 if (insertStmt.executeUpdate() != 1) {
 System.out.println("No record inserted.");
 }
 . . .
 conn.close();
 }
 catch (Exception e) { . . . }
}

6.4.4 Insert character string with validation

As you might expect, validating XML documents that are provided as character
strings requires little extra programming effort. Indeed, only one line of code
needs to be modified: the definition of the query variable. You simply need to
change the INSERT statement to invoke the XMLValidate function, just as you
did in Example 6-4.

Here's the revised statement shown in Example 6-6.

Example 6-6 Inserting XML data from a character string with validation

String query = "INSERT INTO clients (id, name, status contactinfo) " +
 "VALUES (?, ?, ?, xmlvalidate(? according to xmlschema id
user1.mysample))";

6.5 Query XML data

Now that you know how to insert XML data into DB2 using a Java program,
you're ready to query XML data. There are several examples in this section to
step through, starting with a simple task (such as retrieving a full XML document)
and progressing to more difficult tasks (such as returning portions of XML
documents based on XML and relational query predicates).

Although DB2 supports both SQL and XQuery as top-level languages, XQuery
doesn't provide a means to resolve parameter markers. As a practical matter,
 Chapter 6. Developing Java applications for XML data 91

this means that any XQueries in your application that require more than
hard-coded query predicates must be wrapped in a SQL statement using a
SQL/XML function, such as XMLQuery or XMLExists. Chapter 4, “Querying XML
data with SQL” on page 43 discusses these functions in greater detail. Here,
you'll see how to use them in a Java program. And, just for fun, you'll also see
how to include an XQuery with hard-coded query predicates in an application.

6.5.1 Retrieve full XML documents

Our first query-based method is rather simple. It merely retrieves the full contact
information for a given client. A query of this nature can be expressed easily in
SQL. So, if you're familiar with JDBC, this code should be easy for you to
understand.

The simpleQuery() method in Example 6-7 declares several variables and then
establishes a database connection using a helper method defined in
Example 6-2 on page 87. The query string contains a simple SQL statement to
select all contact information for a specific client. After executing the statement,
the application prints the results that have been fetched into a character string
variable (stringDoc).

Example 6-7 Retrieving full XML documents with SQL

import java.sql.*;
 . . .
public static void simpleQuery() {
 PreparedStatement selectStmt = null;
 String query = null, stringDoc = null;
 ResultSet rs = null;
 int clientID = 1885;

 try{
 // get a connection
 Connection conn = Conn.getConn();

 // define, prepare, and execute the query
 // this will retrieve all XML data for a specific client
 query = "select contactinfo from clients where id = " + clientID
 selectStmt = conn.prepareStatement(query);
 rs = selectStmt.executeQuery();

 // check for results
 if (rs.next() == false) {
 System.out.println("Can't read document with id " + clientID);
 }
92 DB2 9: pureXML Overview and Fast Start

 // fetch XML data as a string and print the results
 else {
 stringDoc = rs.getString(1);
 System.out.println(stringDoc);
 }
 . . .
 conn.close();
 }
 catch (Exception e) { . . . }
}

This program prints a single row of data containing all the XML contact
information for the specified customer.

Although not shown here, it's also possible to use XQuery to retrieve one or more
entire XML documents, provided you don't need to incorporate parameter
markers in your XQuery. Later in this chapter, you'll see a Java excerpt that uses
XQuery to retrieve XML data.

6.5.2 Retrieve portions of XML documents

A common programming task involves retrieving portions of XML documents.
The Java code in this example (Example 6-8) retrieves the names and primary
e-mail addresses of customers with a status of “Silver.” Customer name and
status information are stored in SQL VARCHAR columns, while e-mail
addresses are contained in XML documents in the “contactinfo” column.

In the interest of brevity, I've omitted code previously shown, including only those
lines that are new or different.

Example 6-8 Retrieving relational data and XML fragments with SQL/XML

. . .
String status = "Silver";

try{
 // get a database connection

 // define, prepare, and execute a query that includes
 // (1) a path expression that will return an XML element and
 // (2) a parameter marker for a relational column value
 String query = "SELECT name, xmlquery('$c/Client/email[1]' " +
 " passing contactinfo as \"c\") " +
 " from clients where status = ?";
 Chapter 6. Developing Java applications for XML data 93

 PreparedStatement selectStmt = conn.prepareStatement(query);
 selectStmt.setString(1, status);
 ResultSet rs = selectStmt.executeQuery();

 // iterate over and print the results
 while(rs.next()){
 System.out.println("Name: " + rs.getString(1) +
 " Email: " + rs.getString(2));
 }
 . . .
 // release resources
}
catch (Exception e) { . . . }

This code issues a SQL/XML statement that calls the XMLQuery function. It
supplies a path expression to this function that causes DB2 to navigate to the
first “email” element beneath the root “Client” element of the target XML
documents. (Note that the path expression is case-sensitive.) The $c variable
and the SQL FROM clause indicate where these target documents can be found:
in the “contactinfo” column of the “clients” table. The SQL WHERE clause further
restricts the target XML documents to those found only in rows in which the
client's “status” is of a certain value (“Silver,” in this method).

Output from this program may appear similar to Example 6-9.

Example 6-9 Sample output from previous application

Name: Lisa Hansen Email:

Name: Amy Liu Email: <email>sailer555@yahoo.com</email>
. . . .

In this sample output, no e-mail information was returned for a qualifying
customer (Lisa Hansen) because this element didn't exist in her XML
“contactinfo” document.

6.5.3 Filtering on relational and XML predicates

Java programs can also instruct DB2 to filter query output based on conditions
that apply to both XML and non-XML data. The following example builds on the
previous one, returning the names and primary e-mail addresses of “Silver”
customers who live in San Jose, California. This single query is projecting data
from XML and non-XML columns as well as restricting data based on the
contents of both XML and non-XML columns.
94 DB2 9: pureXML Overview and Fast Start

The excerpt below (Example 6-10) includes only portions of code that have
changed from the previous example. In this case, the SELECT statement now
invokes XMLExists as part of the WHERE clause to restrict results to customers
who live in the specified city and state (defined in the city and state variables,
respectively).

Example 6-10 Filtering XML data based on XML element values

. . .
String status = "Silver";
String state = "CA";
String city = "San Jose";
. . .
try{

 String query = "SELECT name, xmlquery('$c/Client/email[1]' " +
 " passing contactinfo as \"c\") " +
 " from clients where status = ?"
 " and xmlexists('$c/Client/Address[state=$state][city=$city]' " +
 " passing contactinfo as \"c\", " +
 " cast(? as char(2)) as \"state\", " +
 " cast(? as varchar(30)) as \"city\")";
 PreparedStatement selectStmt = conn.prepareStatement(query);
 selectStmt.setString(1, status);
 selectStmt.setString(2, state);
 selectStmt.setString(3, city);
 . . .
}

Most of the query should be familiar to you, so this section just concentrates on
its final four lines. The XMLExists function instructs DB2 to determine if a given
XML document contains a client address that includes a specific city and state.
The PASSING clause specifies where XML documents can be found: in the
“contactinfo” column. The CAST function is called twice to cast the values of the
input parameters (for city and state) to appropriate data types.

The output from this program is similar to the output shown in Example 6-9,
assuming both Lisa Hansen and Amy Liu live in San Jose, California.

6.5.4 Use XQuery as a top-level language

Although DB2 fully supports XQuery as a top-level language, the initial XQuery
specification didn't address parameter markers. As a practical matter, this
restricts the use of XQueries in Java applications. Previous sections illustrated
how you can embed XQueries in SQL (using the XMLQuery and XMLExists
 Chapter 6. Developing Java applications for XML data 95

functions, for example) to incorporate parameter markers. This section explores
what you can do with pure XQuery in your Java applications.

Example 6-11 contains an XQuery similar to one presented in Chapter 5,
“Querying XML data with XQuery” on page 63. This XQuery determines which
customers live in San Jose, California. For each such customer, it constructs an
XML fragment containing an “emailList” that includes all the e-mail addresses for
that customer. Finally, it returns a sequence of emailLists.

Example 6-11 Retrieving XML fragments with XQuery

try{
 // get a database connection
 Connection conn = Conn.getConn();

 // define, prepare, and execute an XQuery (without SQL).
 // note that we must hard-code query predicate values.
 String query = "xquery for $y in db2-fn:xmlcolumn" +
 "('CLIENTS.CONTACTINFO')/Client " +
 "where $y/Address/city=\"San Jose\" and $y/Address/state=\"CA\" " +
 "return <emailList> { $y/email } </emailList>";
 PreparedStatement selectStmt = conn.prepareStatement(query);
 ResultSet rs = selectStmt.executeQuery();

 // iterate over all items in the sequence and print results.
 while(rs.next()){
 System.out.println(rs.getString(1));
 }

 // release all resources
 . . .
 // catch and handle any exceptions
 . . .
}

Two aspects of this query are worth noting. First, the query string begins with the
keyword xquery. This instructs DB2 to use its XQuery parser to process the
query. You need to do this whenever you use XQuery as the outermost
language. Second, the query refers to the table and column names in upper
case. XQuery is a case-sensitive language. Since DB2 typically folds table and
column names into upper case when writing this information to its internal
catalogs, the XQuery must match this information.

Sample output from this program is shown in Example 6-12. Because one
“emailList” item is returned per qualifying customer, a quick scan of this output
indicates that four customers qualified. The first qualifying record contains one
e-mail address. The second contains none (perhaps because the customer didn't
96 DB2 9: pureXML Overview and Fast Start

supply this information); as a result, its emailList is empty. The third qualifying
record indicates that there are two e-mail addresses on record for this customer.
The fourth contains one e-mail address for the customer.

Example 6-12 Sample output from previous application

<emailList><email>newemail@someplace.com</email></emailList>

<emailList/>

<emailList><email>beatlesfan36@hotmail.com</email>
<email>lennonfan36@hotmail.com</email></emailList>

<emailList><email>sailer555@yahoo.com</email></emailList>

You may wonder why the names of each qualifying customer were not included
in our results. The answer is simple: XQuery works with XML data, and the
customer names are stored in a SQL VARCHAR column. So, if you want the
output to include the names of qualifying customers as well as their e-mail
addresses, you would have to write a query that includes both SQL and XQuery.

6.6 Update and delete XML data

To update and delete XML data stored in DB2, you use SQL UPDATE and
DELETE statements. These statements can include SQL/XML functions that
restrict the target rows and columns based on XML element values stored within
XML columns. For example, you can delete rows containing information about
customers who live in a specific zip code or update XML (and non-XML data)
only for customers who live in a given state.

Because the syntax for using SQL/XML functions in UPDATE and DELETE
statements is the same syntax for using them in SELECT statements, the full
code samples won't be repeated here. Instead, just brief excerpts are included.
Let's consider the DELETE operations first.

6.6.1 Delete examples

Deleting a row that contains XML data is simple. Just use the SQL DELETE
statement with a WHERE clause (if desired) to restrict the rows to be deleted.
For example, the following code in Example 6-13 deletes the row for client ID
1885.
 Chapter 6. Developing Java applications for XML data 97

Example 6-13 Deleting data based on a relational data value

. . .
 int clientID = 1885;
String query = "delete FROM clients WHERE id = ?";
 . . .
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setInt(1, clientID);
if (stmt.executeUpdate() == 0) {
 System.out.println("No records deleted.");
}
else { System.out.println("Record(s) deleted."); }
 . . .

If you want to restrict your DELETE operations based on XML element values,
simply invoke the appropriate SQL/XML functions in your WHERE clause.
Example 6-14 uses the XMLExists function to specify that information about all
clients who live in Maine (abbreviated “ME”) should be deleted.

Example 6-14 Deleting data based on an XML element value

String state = "ME";
String query = "delete from clients " +
" where xmlexists('$y/Client/Address[state=$state]' " +
" passing clients.contactinfo as \"y\", " +
" cast(? as char(2)) as \"state\")";
. . .
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setString(1, state);
. . .

6.6.2 Update examples

You can update data in an XML column using the SQL UPDATE statement or a
stored procedure, such as DB2XMLFUNCTIONS.XMLUPDATE. In both cases,
updates to the XML column occur at a document level rather than an element
level. However, programmers who update using the stored procedure don't need
to supply the full XML document to DB2. They only need to specify the XML
elements to be updated, and DB2 preserves the unchanged document data as
well as updates the specified elements. Programmers issuing UPDATE
statements need to specify the full document (not just the elements they want to
change).

An article, “XML application migration from DB2 8.x to DB2 Viper, Part 1: Partial
updates to XML documents in DB2 Viper”, by Hardeep Singh in IBM
98 DB2 9: pureXML Overview and Fast Start

DeveloperWorks, May 11, 2006, discusses the XMLUPDATE stored procedure
and provides you with sample code.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605si
ngh

We do not discuss the XMLUPDATE stored procedure here. Instead, this section
reviews two code samples that issue UPDATE statements. You should find the
logic of both examples familiar. One uses an XML file to update the “clients”
table, while another uses a character string containing XML.

Example 6-15 updates the contact information for client ID 1333 by using XML
data contained in a file. Note that the new XML data is validated against a
registered schema as part of the update operation.

Example 6-15 Updating XML data from a file

int clientID = 1333;
String fn = "c:/XMLFiles/Client1333.xml"; // input file
String query = "update clients set contactinfo = " +
 "xmlvalidate(? according to xmlschema id user1.mysample) " +
 "where id = ?";
. . .
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setInt(2, clientID);
File file = new File(fn);
stmt.setBinaryStream(1, new FileInputStream(file), (int)file.length());
. . .

Of course, you can also use an XML query predicate to specify the customer
contact records that you want to update. Again, you need to use SQL/XML
functions to do so. Imagine that a customer, Amy Wang, wants you to update her
fax number but she doesn't remember her client ID. Instead, she supplies her
home phone number to help you locate her information. The following code
excerpt (Example 6-16) uses XMLExists to restrict updates only to the record
containing Amy's home phone number. Note that Amy's full contact information
is supplied as a Java string containing the revised XML document.

Example 6-16 Updating XML data with a character string

String homeph = "4081114444";
String xml =
 "<?xml version=\"1.0\"?>" +
 "<Client>" +
 "<Address> " +
 "<street>54 Moorpark Ave.</street>" +
 "<city>San Jose</city>" +
 Chapter 6. Developing Java applications for XML data 99

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605singh

 "<state>CA</state>" +
 "<zip>95110</zip>" +
 "</Address>" +
 "<phone>" +
 "<work>4084630110</work>" +
 "<home>4081114444</home>" +
 "<cell>4082223333</cell>" +
 "</phone>" +
 "<fax>4087773111</fax>" +
 "<email>sailer555@yahoo.com</email>" +
 "</Client>";

String query = "update clients set contactinfo = ?" +
 "where xmlexists('$y/Client/phone[home=$homeph]' " +
 " passing clients.contactinfo as \"y\", " +
 " cast(? as varchar(11)) as \"homeph\")";
. . .
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setString(1, xml);
stmt.setString(2, homeph);
. . .

6.7 Query builder

If you need help writing queries for your application, the Developer Workbench
provides wizards that generate SQL/XML and XQueries. Because most Java
programmers write applications that require parameter markers, they frequently
use SQL/XML. This section steps through a brief example of how to use the SQL
query builder to generate a SQL/XML statement similar to one included in
Example 6-8 on page 93.

To generate an SQL/XML statement, perform the following steps:

1. Prepare your workspace.
2. Specify the characteristics of your query.
3. Execute your query.

Let's step through each of these in turn.
100 DB2 9: pureXML Overview and Fast Start

6.7.1 Prepare your workspace

SQL statements are created as part of a “Data project” accessible from the
workbench's Data perspective. To create such a project, complete the following
steps:

1. Open the Data perspective. Select Window → Open Perspective →
Other → Data.

2. Create a connection to your target database. Right-mouse click inside the
Database Explorer pane in the lower left corner. Select New Connection and
specify your database name, user name, and password.

3. Create a new Data project. Right-mouse click inside the Data Project Explorer
pane in the upper left corner. Select New → Project → Data → Data
Development Project. When prompted, give the project a name of your
choice, and associate it with the database connection you created previously.

With a database connection open and a Data project created, you're ready to
build queries.

6.7.2 Build your query

To keep this tutorial simple, create a SQL/XML statement that returns the
primary e-mail address of clients who have a certain status. The query will be
similar to Example 6-17.

Example 6-17 Sample SQL/XML query

SELECT name, xmlquery('$c/Client/email[1]'
passing contactinfo as "c")
from clients where status = ?

Follow these steps to generate your query:

1. Launch the SQL Builder. Within your Data project, highlight the SQL Scripts
folder and right-mouse click. Select New → SQL Statement. When
prompted, accept the default for your project name and specify a name for
your SQL statement. Accept the default for the statement type (SELECT) and
elect to use the SQL builder. Click Finish.

2. Specify the table to be queried. Right-mouse click in the center pane and
select Add Table. Expand your schema folder and select the “clients” table.

3. Specify the columns of interest. For this example, you need to include one
column and the output of one function (XMLQuery) in the result set. To do so,
complete the following steps:

a. Check the “names” column displayed in the center pane.
 Chapter 6. Developing Java applications for XML data 101

b. Click the first row displayed in the Column tab beneath the center pane.
Click the far right corner of this cell to display an arrow key and select
Build Expression. Press Enter.

c. Select Function from the displayed menu.

d. Select XML as the function category and XMLQuery as the function. Next
to Parameter Value 1, click the arrow in the Value cell and select Edit
Expression.

e. Specify the appropriate path expression in the String Constant Builder:
$c/Client/email[1], and click Finish twice.

f. Alter the generated SQL statement to include a PASSING clause in the
XQuery function. The final XQuery function should read:
'$c/Client/email[1]' passing contactinfo as "c"

4. Specify the query predicate (WHERE clause). For this example, you need to
add one query predicate for a relational column.

a. Under the Conditions tab beneath your SQL/XML statement, click the first
row displayed in the Column tab. Click the arrow key in the far right of this
cell and select the status column.

b. Click the Operator cell and select the equality (“=”) operator.

c. Click the arrow key in the far right of the Value cell and select Build
Expression. Press Enter.

d. Select Constant and then String Constant when prompted.

e. Specify a host variable name for user input (such as “status”). Click
Finish.

6.7.3 Execute your query

After building your query, you're ready to run it.

1. Locate the query in your Data project, right-mouse click and select Run SQL.

2. When prompted, specify an input value for the customer status (such as
“Gold” or “Silver”), and click OK.

3. Review the results in the Data Output pane.

6.8 Stored procedures

In networked environments, stored procedures often reduce the communication
required between client applications and DB2. This, of course, improves runtime
102 DB2 9: pureXML Overview and Fast Start

performance. With DB2 9, stored procedures may include XML parameters and
variables.

While it's beyond the scope of this chapter to discuss stored procedure
development in detail, a review is provided for one simple scenario so you can
see how a DB2 stored procedure can be written to retrieve portions of XML
documents. This scenario uses wizards in the Developer Workbench to
generate, deploy, and run the necessary SQL stored procedure code. If desired,
you can develop and deploy an equivalent SQL stored procedure using DB2's
command line processor. In addition, you can write XML-based stored
procedures in Java.

For this example, you will write a stored procedure that retrieves the names and
primary e-mail addresses of clients with a certain status, just as you did earlier.
Although this procedure is quite simple, it helps you understand how to generate
SQL-based procedures that query and return XML data using built-in wizards.

To create this procedure, perform a few simple steps:

1. Prepare your workspace.
2. Specify the contents of your procedure.
3. Deploy and test your procedure.

Let's step through each of these in turn.

6.8.1 Prepare your workspace

Stored procedures are defined as part of a Data project. If you haven't already
done so, open the Data perspective, establish a database connection, and
create a Data project. For details, see 6.7.1, “Prepare your workspace” on
page 101.

6.8.2 Create your procedure

Our SQL-based stored procedure invokes a single SQL/XML statement to query
the “clients” table based on input from the caller. This procedure returns a single
result set that contains a SQL VARCHAR column (for the client's name) and an
XML column (for the client's e-mail). The query will be similar to Example 6-18.

Example 6-18 Sample SQL/XML query

SELECT name, xmlquery('$c/Client/email[1]'
passing contactinfo as "c")
from clients where status = ?
 Chapter 6. Developing Java applications for XML data 103

The process for building a SQL stored procedure that accesses XML data is no
different from building a SQL procedure that accesses non-XML data. Here's one
way to do so:

1. Define a new stored procedure. Expand your new Data project, highlight
Stored Procedures, and right-mouse click. Select New → Stored
Procedure. Follow the prompts to verify the project name and specify a
stored procedure name. Keep the default language type as SQL.

2. Specify your SQL statements. When prompted, you can type your query
statement directly or use the wizards to help you create one. The following
steps are for the latter.

a. Click Create SQL.

b. Accept the defaults for the statement type (SELECT) and development
process (guided through statement creation with wizards).

c. Select the clients table as the target for your statement.

d. Under the Columns tab, include two columns in the final result set. Select
names, then select Add → Function → Next. In the following window,
specify the function category as XML, and XMLQuery as the function
signature. Click Finish.

e. Under the Conditions tab, construct the SQL WHERE clause. Specify
clients.status as the column, equals (“=”) as the operator, and :input as
the value.

f. Modify the resulting SQL statement to include the appropriate path
expression for retrieving the first e-mail address in the “contactinfo”
column. Specifically, change the XMLQUERY line to read:
xmlquery('$c/Client/email[1]' passing contactinfo as "c")

g. Parse your query to verify there are no syntax errors.

3. Specify deployment information. In particular, you may find it helpful to
Enable Debugging.

4. Optionally, review the generated SQL code. Click Show SQL. (See
Figure 6-2 for a sample of what should appear.)

5. Complete the stored procedure. Click Finish.
104 DB2 9: pureXML Overview and Fast Start

Figure 6-2 Sample code generated for SQL stored procedure involving XML data

6.8.3 Deploy and test your procedure

With your procedure created, you're now ready to deploy and test it. Follow these
steps:

1. Deploy the procedure. Locate the procedure in your Data project, right-mouse
click and select Deploy. Accept the defaults and click Finish. The Data
Output pane in the lower right corner should note that your procedure has
been successfully deployed.

2. Run the procedure. Locate the procedure in your Data project, right-mouse
click, and select Run. When prompted, specify an input value for the
customer status (such as “Gold” or “Silver”). Click OK, and view the results of
your stored procedure in the Data Output pane.

You can call the stored procedure outside the Developer Workbench, if desired.
For example, if you had named your procedure “getInfo,” you could invoke the
DB2 command line processor, connect to the database, and issue this statement
shown in Example 6-19.

Example 6-19 Invoking your stored procedure

call getInfo('Silver')
 Chapter 6. Developing Java applications for XML data 105

6.9 Summary

Writing Java applications that work with DB2 XML data involves using familiar
JDBC code to execute queries and process their results. IBM provides an
Eclipse-based Developer Workbench with DB2 to help you code, test, and debug
your work. Included in this workbench are wizards for exploring the contents of
your databases, writing stored procedures that access XML and non-XML data,
writing XQueries that access XML data, and writing SQL/XML statements that
access XML and non-XML data.
106 DB2 9: pureXML Overview and Fast Start

Chapter 7. Case study: Storebrand

With roots dating back to 1767 and fiscal year 2004 profits of 2.4 billion NOK
(358 million USD), Storebrand Group is Norway’s oldest and one of its biggest
financial services companies, and a leading player throughout Scandinavia. The
company provides life insurance, pension products, commercial retail banking
and asset management to many of Norway’s largest companies as well as to
private individuals, municipalities, and public sector entities.1

� Business need: Improve business agility, ability to make timely and informed
business decisions, and provide better customer service

� Solution: Implement a service-oriented architecture based on IBM DB2® and
IBM WebSphere® solutions, including IBM DB2 9 data server (formerly
known as “Viper”)

� Benefits: Expected ability to handle five times as many customers; reduced
order processing time; faster time to market with new products and product
combinations; improved customer service through 24x7 online access and
ability to view all orders; richer ability to query stored customer and product

7

1 Information in this chapter was originally published as Storebrand improves
agility by integrating business processes with IBM solution, IBM White Paper,
May 17, 2006.

http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDo
cument&Site=software
© Copyright IBM Corp. 2006. All rights reserved. 107

http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software
http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software
http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software
http://www-306.ibm.com/software/success/cssdb.nsf/cs/HSAZ-6PW3MW?OpenDocument&Site=software

data for business insight; dramatically reduced time, complexity and cost to
conduct database queries; improved productivity for programmers
108 DB2 9: pureXML Overview and Fast Start

7.1 Case Study overview

“With pureXML support available in IBM DB2 9, it is far easier, faster and less
expensive to run queries, share and retrieve data, and make document changes
in response to new business requirements without impacting applications.” –
Thore Thomassen

“Our development time using DB2 9 database is a radical improvement over
existing XML shred technology. We are now able to make schema changes in
minutes rather than days and will be able to dramatically improve our customer
response time.” – Thore Thomassen

7.2 Why IBM?

Storebrand is a longtime IBM customer and has worked with IBM in the testing
and development of new products.

A well-recognized name in Norway, Storebrand rose to prominence due to its
readiness and ability to meet the challenges of new situations. To maintain its
reputation, ensure continued brisk growth, and improve its focus on customers in
a highly competitive market, Storebrand sought to become a more agile
business, one able to flexibly and quickly respond to customer needs. To achieve
its goal, however, required overcoming significant hurdles: integrating its
disparate products and IT infrastructures and then finding an optimal way to
query its product and customer data.

Many of Storebrand’s products and sub-products have their own IT solutions and
associated business processes. Product and customer data is spread across
numerous databases and a mix of mainframe, UNIX®, and Microsoft®
Windows®-based platforms. Storebrand wanted to link all its products and
processes to simplify and expedite orders, increase product customization,
create product packages, speed time to market for new products and improve
quality control, all while driving down costs. More recently, the company has
sought a way to efficiently store and query transaction data to improve its ability
to respond to customer requests and to make timely and informed business
decisions.

7.3 Creating a single view of business-critical data

To create a unified and responsive information architecture for handling orders of
financial products, Storebrand developed a service-oriented architecture (SOA)
 Chapter 7. Case study: Storebrand 109

— applications and information that can be broken apart as components and
reused via a Web-services interface to create new business processes. IBM
Global Services helped Storebrand implement its SOA using IBM DB2 Universal
Database, IBM WebSphere Application Server, and IBM WebSphere MQ on IBM
System z and IBM System i servers.

Storebrand has transformed tailor-made transactions to more efficient,
standardized transactions through its SOA. A business services gateway based
on Web services handles incoming transactions and provides Storebrand’s
legacy applications with reusable business services. Storebrand’s integration
architecture offers distributed transactions while also providing consistency and
synchronization among legacy system applications.

7.4 IBM DB2 9 pureXML support enhances SOA

As a flexible way of exchanging data among devices, systems, and applications,
XML and the ability to store it are key to Storebrand. All its product offerings are
stored as XML documents known as a collection of large objects (CLOBs). While
CLOBs enable more data to be stored in a database, they are difficult to retrieve
and update. The next evolution of the company’s SOA will include IBM DB2 9
database, which is the industry’s first hybrid database management system
(DBMS) that supports pure XML — that is, XML documents in their original
structure — in addition to SQL and tabular data structures. DB2 9 provides
performance improvements and greater flexibility for storing, searching, and
managing XML. Storebrand is testing DB2 9 and plans to deploy it to store
transaction records and business services.

By simplifying and speeding up queries and reporting capability, DB2 9 will
enhance Storebrand’s ability to make informed business decisions about its
product offerings, while simultaneously reducing IT resource costs. “With the
pure XML support available in IBM DB2 9, it is far easier, faster, and less
expensive to run queries, share and retrieve data, and make document changes
in response to new business requirements without impacting applications,”
explains Thore Thomassen, senior enterprise architect for Storebrand Group.

The ability to query data rapidly will also improve Storebrand’s responsiveness to
customers. “Until IBM DB2 9, it was impossible to comprehensively query
product and customer data because of the way the information had to be stored,”
says Thomassen. “With DB2 9, we can, for example, easily and quickly respond
to a corporate customer’s request for order and status information on products
purchased by one of its subsidiaries.”
110 DB2 9: pureXML Overview and Fast Start

7.5 Improved quality and speed of offerings enhance
customer service

With its SOA, Storebrand can more flexibly handle orders. It can provide
customers with around-the-clock access to account information, accept orders
24x7 online, and control transaction flow to legacy systems to avoid performance
bottlenecks. Storebrand has been able to shrink order processing time for many
products. For example, an application for a license to implement a pension plan
previously took up to three weeks to process but can now be completed in 10
minutes. Faster processing gives Storebrand the ability to handle five times the
number of customer orders. Much of the manual data re-entry done by individual
departments has also been eliminated, leading to fewer mistakes, higher quality,
and more efficient customer service.

Storebrand can also rapidly introduce new products and product combinations
simply by gluing together existing XML-based product definitions that it has for
each of its products and sub-products. “This ability speeds our time to market,
which is extremely important because customers will go elsewhere if they can’t
find the products they want,” says Thomassen. The XML format also allows for
variations in data, helping Storebrand to easily add new sub-products to a
package without changing or slowing the transaction.

7.6 DB2 9 improves business agility

Storebrand conducted multiple tests using DB2 9 and found that it was able to
perform queries, program searches, and make changes to pure XML data far
more quickly and easily, while also improving programmers’ productivity. The
alternatives tested involved querying XML stored as CLOBs and shredding XML,
which involves decomposing the data into multiple columns and sometimes
tables to query it. These options have performance, cost, and manageability
limitations.

Using DB2 9, queries that once took up to 36 hours shrunk to 10 minutes or less.
Programming search processes required 30 minutes for pure XML data versus
two to eight hours with the alternatives. The time it took programmers to prepare
for a search shortened from one week to one half day. Updating XML schema in
response to a business change was also much faster — five minutes compared
to one week with shredding. Storebrand also achieved a 65 percent reduction in
the amount of I/O code by converting 20 of its services to pure XML. “Our
development time using DB2 9 database as our pure XML store is a radical
improvement over existing XML shred technology. We are now able to make
schema changes in minutes rather than days and will be able to dramatically
improve our customer response time,” says Thomassen. “In combination with our
 Chapter 7. Case study: Storebrand 111

service-oriented architecture, DB2 9 can help us achieve, with far greater ease,
our goal of using information on demand to readily respond to market changes
and customer demand.”

7.7 Key Components

Software:

� IBM DB2 9 (formerly codenamed “Viper”)
� IBM DB2 Universal Database™
� IBM WebSphere Application Server
� IBM WebSphere MQ

Servers:

� IBM System i™
� IBM System z™

Services:

� IBM Global Services

For more information, please contact your IBM sales representative or IBM
Business Partner.

Visit our Web site at:

http://www.ibm.com/db2

http://www.ibm.com/websphere

For more information on Storebrand, visit:

http://www.storebrand.no

Products and Services Used:

IBM products and services that were used in this case study:

� Hardware: iSeries Servers and zSeries Servers

� Software: DB2 Universal Database, WebSphere Application Server, and
WebSphere MQ

� Operating System: UNIX

� Services: IBM Global Services
112 DB2 9: pureXML Overview and Fast Start

http://www.ibm.com/db2
http://www.ibm.com/websphere
http://www.storebrand.no

Related publications

The Web sites and publications listed in this section are considered particularly
suitable for a more detailed discussion of the topics covered in this redbook.

Online resources
These Web sites and URLs are also relevant as further information sources:

� Information and resources for DB2 9 on Linux, UNIX, and Windows:

http://www.ibm.com/db2/viper

� Information and resources for pureXML support in DB2 9:

http://www.ibm.com/db2/xml

� IBM Systems Journal issue entitled "Celebrating 10 Years of XML":

http://www.research.ibm.com/journal/sj45-2.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2006. All rights reserved. 113

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/db2/viper
http://www.ibm.com/db2/xml
http://www.research.ibm.com/journal/sj45-2.html

114 DB2 9: pureXML Overview and Fast Start

Index

Symbols
.NET environment 11
“native” support for XML 9

A
application heap size 40
application programming interfaces (APIs) 9

B
bilingual 10
binary large objects 4
BLOBs 4

C
C 11
call-level interface 11
CLOBs 4
COBOL 11
Control Center 67
Curly brackets 75

D
data type definitions (DTDs) 8
database management systems (DBMS) 4
DB2 Command Editor 67
DB2 Snapshot 11
DB2.NET 11
de-normalizing 6
Developer's Workbench 24
developerWorks 12
document decomposition technology 5

E
Eclipse 24
electronic data interchange (EDI) 3
enterprise application integration (EAI) 2
enterprise information integration (EII) 2
Exegenix 36
EXPLAIN 11
Extensible Markup Language (XML) 16
© Copyright IBM Corp. 2006. All rights reserved.
F
first-class data type 9
Full text search 10

H
hybrid DBMS 7

I
IMPORT 10
indexes 10
INSERT 10

J
Java (JDBC) 11
joins 6

M
MDXSYS Limited 37
multi-structured database management system 15
multi-structured database management system
(DBMS) 15

N
namespaces 40
native support 9
normalized 6

P
parent/child relationships 5
persisting x, 4, 120
PHP 11

Q
query optimization 24

R
Redbooks Web site 113

Contact us xii
RUNSTATS 11
 115

S
Service-oriented architectures (SOA) 2
Shredding 5
specialized text indexes 10
SQL 7
Storebrand 11
supply chain management (SCM) 3

T
top-level language 69
total cost of ownership (TCO) 3

U
Unicode 30
uniform resource indicator (URI) 40

W
WebSphere Information Integrator 10

X
XML (eXtensible Markup Language) 2
XML Data Specifier (XDS) 41
XML patterns 10
XML-based schemas 3
XMLExists function 48
XPath 48
XPath expressions 10
XQuery 6
XQuery parser 69
116 DB2 9: pureXML Overview and Fast Start

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

DB2 9: pureXM
L Overview

 and Fast Start

®

SG24-7298-00 ISBN 073849557

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 9: pureXML
Overview and Fast Start

Managing XML for
maximum return

Revealing XML in
DB2 9

Using SQL and
XQuery to query XML
data

Potential benefits of storing – or persisting – XML in a
database management system include:

� Improved employee productivity
� Improved IT resource utilization
� Reduced labor costs
� Quicker “time to value” for certain applications

This IBM Redbook covers a technical overview of DB2 9,
formerly codenamed “Viper”, and is based on:

� “Managing XML for Maximum Return”
(IBM, November 2005)

� “What's new in DB2 9: XML to the core”
(IBM developerWorks, February 2006)

� “Get off to a fast start with XML in DB2 9”
(IBM developerWorks, March 2006)

� “Query DB2 XML data with SQL”
(IBM developerWorks, March 2006)

� “Query DB2 XML data with XQuery”
(IBM developerWorks, April 2006)

� “Develop Java applications for DB2 XML data”
(IBM developerWorks, April 2006)

� Storebrand Case study (IBM White paper, May 17, 2006)

This book is intended for IT managers, IT architects, DBAs,
programmers, and other data server professionals.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	This information was developed for products and services offered in the U.S.A.
	IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM repr...
	IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this d...
	The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with lo...
	This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information ...
	Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an e...
	IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
	Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or othe...
	This information contains examples of data and reports used in daily business operations. To illustrate them as completely as po...
	COPYRIGHT LICENSE: This information contains sample application programs in source language, which illustrates programming techn...
	Trademarks
	The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:
	The following terms are trademarks of other companies:
	Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
	Microsoft™, Windows™, Windows NT™, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
	Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino™, Intel Centrino logo, Celeron®, Intel Xeon™, Intel SpeedSt...
	UNIX™ is a registered trademark of The Open Group in the United States and other countries.
	Linux™ is a trademark of Linus Torvalds in the United States, other countries, or both.
	Other company, product, or service names may be trademarks or service marks of others.

	Foreword
	Preface
	The team that produced this redbook
	Become a published author
	Comments welcome
	Notices

	Chapter 1. Managing XML for maximum return
	1.1 Why XML?
	1.2 Managing XML: The need and benefits
	1.3 Managing XML: The options
	1.3.1 Large objects and tables
	1.3.2 Decomposition (“shredding”) into tables
	1.3.3 XML-only data management
	1.3.4 Hybrid data management

	1.4 Managing XML: The IBM solution
	1.4.1 Relational extensions for XML
	1.4.2 pureXML storage and management
	1.4.3 Early successes

	1.5 Summary

	Chapter 2. What’s new in DB2 9: XML to the core
	2.1 Introduction
	2.2 Potential benefits
	2.3 Architectural overview
	2.4 Logical storage
	2.5 Physical storage
	2.6 Indexing
	2.7 Query language and optimization
	2.8 XML schemas and validation
	2.9 Administrative support
	2.10 Programming language extensions
	2.11 Summary

	Chapter 3. Get off to a fast start with pureXML
	3.1 Creating database objects
	3.1.1 Creating a test database
	3.1.2 Creating sample tables
	3.1.3 Creating views
	3.1.4 A note about indexes

	3.2 Storing XML data
	3.2.1 Using INSERT statements
	3.2.2 Using DB2 IMPORT

	3.3 Validating your XML data
	3.3.1 Step 1: Creating an XML schema
	3.3.2 Step 2: Registering the XML schema
	3.3.3 Step 3: Importing XML data with validation

	3.4 Summary

	Chapter 4. Querying XML data with SQL
	4.1 Sample database
	4.2 Query environment
	4.3 SQL-only queries
	4.4 SQL/XML queries
	4.4.1 “Restricting” results based on XML element values
	4.4.2 “Projecting” XML element values
	4.4.3 Creating relational views of XML data
	4.4.4 Joining XML and relational data
	4.4.5 Using “FLWOR” expressions in SQL/XML
	4.4.6 Publishing relational data as XML

	4.5 Update and delete operations
	4.5.1 Updating XML data
	4.5.2 Deleting XML data
	4.5.3 Indexing

	4.6 Summary

	Chapter 5. Querying XML data with XQuery
	5.1 About XQuery
	5.2 Sample database
	5.3 Query environment
	5.4 XQuery examples
	5.4.1 Using DB2 XQuery as a top-level query language
	5.4.2 Retrieving specific XML elements
	5.4.3 Filtering on XML element values
	5.4.4 Transforming XML output
	5.4.5 Using conditional logic
	5.4.6 Using the “let” clause

	5.5 XQueries with embedded SQL
	5.5.1 Indexing

	5.6 Summary

	Chapter 6. Developing Java applications for XML data
	6.1 Follow typical programming “best practices”
	6.2 Configure your environment
	6.2.1 DB2 Developer Workbench
	6.2.2 Sample data
	6.2.3 Database configuration parameters

	6.3 Connect to your database
	6.4 Insert XML data
	6.4.1 Insert file without validation
	6.4.2 Insert file with validation
	6.4.3 Insert character string without validation
	6.4.4 Insert character string with validation

	6.5 Query XML data
	6.5.1 Retrieve full XML documents
	6.5.2 Retrieve portions of XML documents
	6.5.3 Filtering on relational and XML predicates
	6.5.4 Use XQuery as a top-level language

	6.6 Update and delete XML data
	6.6.1 Delete examples
	6.6.2 Update examples

	6.7 Query builder
	6.7.1 Prepare your workspace
	6.7.2 Build your query
	6.7.3 Execute your query

	6.8 Stored procedures
	6.8.1 Prepare your workspace
	6.8.2 Create your procedure
	6.8.3 Deploy and test your procedure

	6.9 Summary

	Chapter 7. Case study: Storebrand
	7.1 Case Study overview
	7.2 Why IBM?
	7.3 Creating a single view of business-critical data
	7.4 IBM DB2 9 pureXML support enhances SOA
	7.5 Improved quality and speed of offerings enhance customer service
	7.6 DB2 9 improves business agility
	7.7 Key Components

	Related publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	DB2 9: pureXML Overview and Fast Start
	DB2 9: pureXML Overview and Fast Start

	Back cover

