Versioning and Cloning Processes
In
IBM DB2 UDB Warehouse Manager

April 25, 2003

Andrew Perkins

IBM Americas Advanced Technical Support
Data Management - Business Intelligence
aperkin@us.ibm.com

TABLE OF CONTENTS

LI [01 (o To [T o] o [PPSR 1
1.1 HAaVe YOU EVEr WISNEA7 ...ttt e e e e e e e s 1
P2] 1o 1 o i 1 0 PP 2
3 Simple Cloning — Implementing Rudimentary Versioningcccccoviiiiiiiiiieiieieiiiieeeenn 3
3.1 Implementing VEerSioning e 3
3.2 ClONING NEW VEISION ...ttt e ettt e e e e e e ettt e e e e e e e e aee ittt eeeaeeeeaannnnneeeeaaeeeaanns 4
3.2.1 Exporting the process template ... 5
3.22 Editing the tag file ... 6
3.2.3 Importing the CloNed ProCESS.cooo i 8
3.3 Re-cloning or Maintaining ClONESuuuuuiiiii e 8
3.3.1 Making version-specific modifications............coooorriiiiiiii i 9
3.3.2 Modifying @ process templatecooooee i 9
Bu4 SUIMIMIAIY ettt e e oottt e e e e e e e ettt et e e e e e e e e e s bbeeeeeeeaeeea s nnnssnneeeaaeeaaanns 10
I Y = U1 7 (o 11 o U PPEPPRSPP 11
o T I o TR @ o F= 1 =T oo = PP SOPPRRRRR 11
4.2 THE APPIOGCKH .. 12
4.3 Developing the Master Template ProCeSSES..........uuuuuuiumiiiiiiiiiiiiiiiiiiiiiieeees 14
4.3.1 Testing the Master Templatesoooorr i 16
O 1 o oo Vo PP PPPPRRRRR 17
441 Manual CloNING ...coooeiieeeeeeee e 17
4.4.2 Automating the CloNiNG PrOCESS.......ccoeiiiiiieeeeeee e 18
4.5 SUIMMIAIY ittt ettt e e e e e e e bttt et e e e e e e e s abt ettt e e e e e e e e nbbbeeeeeaeeeea s nnnbbnneeaaaeeaaanns 29

5 Moving processes from the development environment to the test environment to the
Production ENVIFONMENTcoiiiiiiiiiei ettt e e 30
D1 T RE ST ALY .. 30
5.2 A small twist 0N thiS Strat@gyuuuuuuumiiiii e 31

S 10 40 0= o2 PP P TR 32

Cloning Processes In IBM DB2 UDB Warehouse Manager

1 Introduction

1.1 Have you ever wished?

DB2 UDB Warehouse Manager (WHM) has a very nice GUI development environment that is
It provides a nice process modeler to develop ETL

Version 1

called the Data Warehouse Center (DWC).
workflows. While developing your
processes, have you:

1. Wished that you could create a
new ‘version’ of a process to
apply the next round of
modifications?

Ever wanted to create a new
process similar to one that
already exists and wished that
you could copy the current
process as a starting point?
Have you ever had a large
number (10 to hundreds) of
processes that all looked the

— SalesTable

VerS|on 2

s Model - Pivot Food Sales

EBlq
Coda
FTP File

b

FTPFile

0O

"CENSUS' i %
@ - lomData

MAMA_MIA_

"CENSUS" T
E
Load Data

B

DAMA_MIA_

SALES

SQL Step

/

B

SALES_
TARGET

PivatFaod

e

PIVOT_
RESTAURANT

& CATERNG

SALES_
TARGET

PIVOT_
RESTAURANT

& -CATERNG

%

Load OLAR

Load OLAP
Cube

same with variations in file
names, step names, UDP

Figure 1-1 Create a new version

parameters, etc?

When developing processes in Warehouse Manager, we sometimes find that we would like to
create a new process that is very similar to one that already exists. The reasons for this may
be varied. We may need to make a modification to a current production process but still need

to keep the old process intact.

We may have several processes that have the same structure

with the only difference being the data objects. Or we may have an extreme need to create

hundreds of similar processes from
some type of template.

The aim of this paper is to document
the process cloning techniques that
were developed for use in deploying
hundreds of processes to meet the
requirements of a particular global
customer. We will see how to use a
simple cloning technique to provide
rudimentary process versioning as well
how to develop a template for more
extensive cloning. We will also explore
some of the design issues that have to

a Sal

m]
cass)
& / LoagData _

MAMA_MIA_
sALES

RESTAURANT
_CATERING

RESTAURANT
_CATERING

=)

TARGET

=

sALES_
TARGET

» Customizing Process Name

» Customizing File Name

» Customizing Step Name(s)

» Customizing UDP and script parms

be considered when developing
processes that need to be cloned.

Figure 1-2 Mass Cloning

Of course, we must have a disclaimer that states that these techniques may not work in all
instances and should be used only as a guide to developing your own techniques.

Page 1

Cloning Processes In IBM DB2 UDB Warehouse Manager

Also, keep in mind that these techniques reflect the capabilities of the DWC at the DB2 V7.2
level. DB2 V8 brings many new features to the DWC that would positively impact these
techniques, for example, the capability to export a process without exporting dependent
processes.

2 Cloning 101

While the DWC is very nice graphical environment for developing our process models, it does
not lend itself to the batch orientation of cloning a process. We can only copy steps to a new
process but can’t copy a set of steps, or a process, and include the flow control information. All
object names, such as Process and Step names, have to be unique across the Control
Database (CDB). So, this adds up to a lot of labor to copy all the steps of a process and add
back in the control flows. Therefore, we would like to find a better way to help us clone
processes.

It is important in developing our cloning techniques that we do not do anything that would
cause WHM to become unsupported, like modifying the contents of the Control Database
(CDB). The key to our cloning is using the external tag representation of our process that is
obtained using the Export to tag file capability of DWC. We will limit any modifications we
make to this tag file. Even then, we have to be careful not to modify objects inadvertently.

Basically, we will create a process that has replaceable tokens, export the process to a tag
file, edit the tag file to replace the tokens with actual values and import the modified tag file
back into the DWC. This is somewhat similar to what is done with the WHM ISP Toolkit which
uses predefined templates with replaceable tokens with which another vendor can use to build
DWC processes from within their own tool. Evolutionary Technologies, for example, uses this
to create DWC process from within their tool, ETI*Extract. The primary difference is that we
are actually using DWC to create our templates.

When we export a process to a tag file, we create a primary file with the extension of tag,
flename.tag, and there may also be a number of other files with a numeric extension, i.e.
filename.1, filename.2, etc. These extra files, called blobs, are created to hold information that
cannot be embedded in the tag file. For example, if we use a SQL step and we use the SQL
Wizard to build our SQL, a blob file is created to hold the metadata from the SQL Wizard but
the entire composed SQL statement is also contained in the tag file. These blob files are very
sensitive to changes in length of strings and should not be modified during the cloning
process.

As we design processes that we want to be cloned, we have to make certain tradeoffs to
ensure that our resulting process can easily be cloned, especially when we have to do mass
cloning to create hundreds of processes. In this size of effort, our goal is to avoid having to
manually edit any of the cloned processes.

Page 2

Cloning Processes In IBM DB2 UDB Warehouse Manager

3 Simple Cloning — Implementing Rudimentary Versioning

In a lot of instances, all we may want to do is to copy an existing process to create a new
‘version’ of the process. This could be to make changes to a current process while retaining
the current process. Or perhaps, we know that we have a handful of processes that all look
pretty much the same and we just want to copy a process to give us a starting point to develop
the new one. In this section, we will take a look at a simple cloning technique that will allow us
to implement this type of simple cloning in the context of implementing rudimentary process
versioning.

3.1 Implementing Versioning

To create a new ‘version’ of a process, we want to be able to copy all of the steps in the
process to a new process with a new name. We are not looking to change the contents of the
process, but just make a new copy of the process. One of the first things that we have to
consider is that every object in a CDB must have a unique name. Therefore we have to have
a new name for each ‘version’ of a process as well as each step within that process.

To accomplish this, we need something in each process and step name to replace during the
cloning process to make it unique. We will use a token which is simply a string enclosed within
square brackets, i.e. [token_name]. We need to determine what token(s) we need to be able
to clone these processes. In this case, we will simply use one token: [version]. Cloning works
at a process level. In other words, we clone a process, not a step. We can also provide
tokens to the Subject Area name so that our cloned processes will be organized separately
from our source processes.

Now that we have made some decisions regarding how we want our ‘versioning’ to look, we
can start to create a template out of the current processes. To do that, we have to insert our
[version] token into the name of every process and step as they are created. These tokenized
processes become our base or template process from which we clone and create version
instances of these template processes.

Figure 3-1 shows a set of template processes. Notice that in the Subject Area name, the
Process names and the step name we have appended to the end of each a string V[version].
The part of the string enclosed in square brackets is the token that we will use for substituting
the actual version number. For example, after we clone a version 1 process, this string will
become V1.

Page 3

Cloning Processes In IBM DB2 UDB Warehouse Manager

i-;jz:DataWarehouse Center = Dl!
Warehouse Selected Edit Wiew Tools Help _-_\'_,* j
D97 SfEE 28 @3

?E Warehouse TBC Sample Yiversion] - Build Sample Fact Table Yversion] |
E-{_| Subject Areas Mame TTyne Toubee |

DB2 MQ Derno SOL Fact Table Join Wiversion] saL saL
Exira Scenarios éﬂL Select Time Yversion] sSaL SaL
esting BR INVENTORY

B PRODUCTION_COSTS

i I [
& - Process Gelected Edi View Help e
qf*; Build Sample Product Dimension Yversion] s | —. by 2|
139 Build Sample Scenario Dimension Yversion] H 1 | E
% Build Sample Time Dimension Y[version] fE} Q ;!
Beverage Company Sales S
& {___i Warehouse Sources & iml @ @ @

n
-] Warehouse Targets B e 1 MENTORY PRODUCTI SALES

Ty ersian|
B-{_] ¥arshouse Schemas % ey \‘ /
®-{ | Adrministration = = ¥

=B =
sa ﬂ Faet Table
Join Wversion
g s
? i i
A &9]
“TARGET
= FACT TRBLE"

T | sk

Figure 3-1 Process templates of the TBC Sample processes

We can also use these templates as a set of Master Templates of our processes to which we
make only ‘official’ changes. Once the Master Template has been created or modified and
approved, then we can clone our version instances. We can then make version specific
changes to the version instance before testing and moving to the production environment.

3.2 Cloning new version

Now that we have process templates created, we can clone these processes to create version
instances. To do this, we need to export a process, edit the tag file to change the [version]
token to the appropriate value and then import the new tag file. This procedure will result in a
new process with new names for the process and all of the steps. The contents of the step
definitions are still the same.

We will also have to be concerned with DWC created target tables because if we have two
processes that have the same DWC created table as a target table, then one will fail when we
do a promote to test mode since DWC will attempt to create a table that already exists. To
avoid this, we can simply add the [version] token to the DWC created table name.

As stated earlier, we want to manage our clones at the process level. That means that we need
to be able to independently export a single process. We will digress to discuss the behavior of
the export utility.

The V7.2 export utility will look for certain kinds of dependencies between processes and export

those processes in addition to the requested process. For example, Step S1 in process P1
populates Table T1 and T1 is used as a source for Step S2 in Process P2:

Page 4

Cloning Processes In IBM DB2 UDB Warehouse Manager

T0>S1>T1>S2->T2. In this case, if we select only P2 to be exported, the V7.2 export utility
will also export P1. Also, if we use shortcuts, all process linked via incoming shortcuts are
exported as a group. Therefore, we may have to design around this behavior.

However, in V8 the export utility has parameters to modify this behavior and will allow us to
independently export a process even if we have these dependencies. There is one caveat
when we export a process that has a shortcut. We can choose to export only the one process
but include the shortcut definitions. When we import this process the step associated with the
shortcut must already exist. In this case, we must ensure that we clone the processes in the
correct order or, especially the first instance of a version, clone all processes at the same time.

There is also a special build of the new export utility for V7.2 FP7, command line only, which
can be requested via IBM support channels. We highly recommend using the new version of
the export utility in any cloning scenario.

3.2.1 Exporting the process template

The first thing that we have to do when cloning any process template is to export the process
template to the tag file, also known as the Interchange File. Create a special subdirectory to
keep these process template tag files. For our TBC Sample, we will create a subdirectory
called TBC_Sample_Master and under this we create a subdirectory for each process.

=T

duback ~ = - [i] | @isearch |%Fnld5rs £ Histary | =0 x5 | Ed-

Address [c:\cLonINGTBC_Sample_Master|ProductDim =] e

NP
Jﬂle Edit Wiew Favorites Tools Help |
|
|

Falders ¥ | | Mame ~ I Size | Type ! Modified I
L =0 cLowmng d E‘ produckdim, 1 1KE 1File 3/5/2003 6:12 PM
= = [0 TBC_Sample_Master productdim.ing LKE INPFile 3[5(2003 3131 PM
] FactTable = % productdim.tag 65KE TAG File 3/5/2003 6:12 PM
' ProductDim
"1 SeenarioDim

i [[_] TBC_Sample_¥1
| | m-{1os2 |
{3 objectis] (Disk free space: 2.19 GE) 85,4 KB |£~_'7-‘_J‘ ¥y Computer %

Figure 3-2 Directory structure for process template tag files

Once we export a process template to the tag file, we don’t have to export it again unless the
process template changes. We can then clone it multiples times without exporting it over and
over. It also provides a good backup of our process templates.

Since we make use of shortcuts between all of our processes, we have to be careful of the
order in which we clone our processes. Normally we want to clone one process at a time.
However, this is the first time we are cloning for V1. We can either figure out the correct
sequence to clone the individual processes or we can clone all of the related processes at
once.

Ok, we are now ready to export our TBC Sample process templates in order to create our first
version, V1.

We decide for this first time to clone all processes at once, so we select all four of our

processes during the export process. We can create a special subdirectory,
TBC_Sample_Master\all_processes, to hold the tag file and its associated files.

Page 5

Cloning Processes In IBM DB2 UDB Warehouse Manager

[N all_processes (=]
Jﬂle Edit Wiew Favorites. Tools Help |ﬁ

J s Back v = | @ 5earch ||:E§F0|ders £ #History |E‘E' I s | EH-

J Address II:I CHCLONIMNG, TEC_Sample_Masterl all_processes j fv\'Go
Folders || Mame ¢ | Size:l Tvpe | Modified
-] CLONING :I allprocs.l 1KE 1File 3/5/2003 8
: B[] TBC_Sample_Master [#]alpracs.2 1KE 2File 3/5/2003 5
{-:] all_processes J aIIprocs.S 6KE 3File 352003 8
(] FactTable [#] allpracs.inp 1KE INP File 3(5i2003 8
-1 ProductDim [£] allprocs.tag 223KE TAG File 3(5/2003 8
D Scenariolirn
{1 TimeDim
B+ TBC_Sample_v1
-] DB2
i {1 DB2 Extra doc =1 | 3|
|5 object(s) (Disk free space: 2,19 GE) |228 KB |@‘ MMy Computer 4

Figure 3-3 Subdirectory for export of all four processes

We see that we have the allprocs.tag file and three blob files and the allprocs.inp file in the
all_processes folder. The all_processes.inp file tells the export utility which processes to export
during this execution.

3.2.2 Editing the tag file

The actual cloning takes place at this point. We first want to create a directory structure for our
TBC Sample V1 processes that looks just like the subdirectory structure for our
TBC_Sample_Master directory. We will copy the process template tag file to this new
structure before editing. Make sure to copy all of the files. In our case we copy all five files
from TBC_Sample_Master\all_processes to the TBC_Sample_V1\all_processes subdirectory.

BN all_processes ;‘Q‘ﬂ
J Fle Edit Wiew Favorites Tooks Help |ﬁ
J “aBack = = - | Ghsearch |%Fnlders & BHistory | oz x o | EER
Jﬂddrass IA_"[CCLOMINGYTBC_Sample_¥1iall_processes ﬂ ﬁGU
Folders % || MName 2 I Size I Type I Modified
E‘] TBC_Sample_Master - allprocs. 1 1KE 1File 3/5/2003 8
. L[] all_processes allprocs‘Z 1KB ZFile 3/5/2005 &
FactTable allprocs.3 6KE 3File 3/5/2003 8
ProductDim J allprocs.inp 1KE IMPFile 3/s/2003 8
Scenariolim % allpracs.tag 219KE TAG File 3/502005 &
PraductDim
i ScenarioDim
o {1 TimeDim sl |]
|5 object(s) (Disk free space: 2,19 GE) |225 KB |k_5_,]‘ My Computer e

Figure 3-4 Directory structure for TBC Sample V1 processes

We edit the allprocs.tag file under the V1 subdirectory structure. We can use notepad or any
other text editor to do a find and replace changing the token, [version] to the value 1.

Page 6

Cloning Processes In IBM DB2 UDB Warehouse Manager

& allprocs.tag - Notepad L =1of |

File Edit Format Help

[:DISKCNTL. SEQUENCEC 1, —) f]
ICOMMENT . SYSTEM(VT. 2. 0)
TCOMMENT . Z

ICOMMENT. DEZ Uniwversal Database 7.2
ICOMMENT. Source Database name: tho md
(COMMENT. Qutput File name: allprocs.tag
COMMENT. Time: 03,0503 20:05:23
TCOMMENT . -
ICOMMENT. Start Process export
(COMMENT. Exporting Process Build Sample Product Dimension v[wersiaon]
TCOMMENT . -
ICOMMENT. Begin INFOSRPS Instance
TCOMMENT .
TACTION. OBIINST(MERSE]
IOBIECT. TYPE(INFOGRPS)
IINSTANCE.
MAMECTEBC Sample v[wersion])
SHRTDESC(The Data warehouse Center's "The Eeverage Company” sample
subject area.)
CONTACT(Default vwlser]
TCOMMENT .
ICOMMENT. End INMFOSRPS Instance
TCOMMENT . -
TCOMMIT. CHEPIDELO)
PCOMMENT . i
ICOMMENT. Begin IWHSCGRP Instance
TCOMMENT .
TACTION. OBIINST (MERSE]
(OBJECT. TYPE (IWHSCGRP]
TINSTANCE.
MAME(-0000507)
SHRTDESC(Thisz is the default Data warehouse Center Security Group created‘:J

Figure 3-5 Tag file before changing token, [version]

In Figure 3-5, we can see a couple of tokens embedded in a string beginning as V[version].
One has the process name in a comment and one is in the Subject Area (INFOGRPS)
definition. In Figure 3-6, we can see that both of these tokens have been changed to 1

resulting in the string V1.

i allprocs.tag - Notepad — ;Iglll

File Edit Format Help

TDISKCNTL. SEQUENCEL 1,-) E]
ICOMMENT. SYSTEM(VT. 2. 0]
EOMMERTS SR R B s sy

COMMENT. DEZ Unjwersal patabase 7.2
ICOMMENT. Source Database name: tho_md
ICOMMENT. Output File name: allprocs.tag
ICOMMENT. Time: 03,/05/03 20:05:23
SEOMMERNT, s ma s a
ICOMMENT. Start Process export

COMMENT. Exporting Process Build sample Product Dimension vl
DCOMMENT) ——mmmm e o
ICOMMENT. Begin INFOGRPS Instance
TCOMMERNT .

TACTION. OBIINST (MERGE]

IOBJECT. TYPE (INFOSRPS)

tINSTANCE.

b %l xl|leverage company" sample
su
.o Find what: |[versi0n] Find Next |

C

Cg Beplace with: I‘I Replace |
Hse]

-CO Replace All |
= Cancel
*CO T Match case _I

LA

Hols}

DIM
TIAME [— Yoo |
SHRTDESC(This is the default pata warehouse Center Security Group created‘:J

Figure 3-6 Replacing the token, [version], with a value, 1

Page 7

Cloning Processes In IBM DB2 UDB Warehouse Manager

3.23

Importing the cloned process

With the editing of the tag file, we have essentially cloned our four processes. All that is left is
to import the tag file into the DWC. After the import, as we can see in Figure 3-7, we have a

new Subject Area, TBC Sample V1. We also have our four processes with all process and step
names reflecting the change of the [version] token to 1 resulting in all names ending with the

string V1.
-l
Warehouse Selected Edit View Tools Help mﬂ

BE38a0E% @8 &3

fﬂ Warehouse
Fjij Subject Areas
DB2 MQ Demo
Extra Seenarios
testing
TBC Bample Yversion]
=] 7 Processes
?aﬁ Build Sample Fact Table Viversion]
Buile Sample Product Dimension Yversio
b Build 8ample Scenario Dimension Y[versi

TBC Sample ¥1 - Build Sample Fact Table V1

Mame

!Tvpe ISuht\fpe

SOL Fact Table Join v1

gﬂl Select Tima V1

BB INVENTORY

BH PRODUCTION_COSTS
B "TARGET FACT TABLE"
B saLes

gaL
gaL

saL
g0l

82, Pracess Model - Build Sample Fact Table ¥1
Process Selected Edit Wiew Help

55 @3

5 E@ﬂ Build Bample Time Dimension Wversion]
{8 TBC Sample V1
27 Process

y | &

H
Select Time

B B

W INVENTORY PRODUCTL..
kY

Fact Table
Join 1

!

=

“TARGET
FACT TABLE"

=

Buid Sarnale Fact Table Vi saes
- Build Sample Product Dimensian Y1

4 ?qa Build 8ample Scenario Dimension Y1
E ucﬁ Build Sample Time Dimension %1

t E,\ The Bewerage Company Sales

EF &

H {___\ Warehouse Sources

ek

#-{ T Warehouse Targets
{:\ Warehouse Bchemas

|
4 % & ¥ K I

() Administration
4l

ot

4]

~
\
e

Figure 3-7 The resulting cloned processes

Now that we have newly cloned processes, we are ready to proceed with whatever we need to
do. We may just want to put the V1 processes into the production environment. Perhaps we
need to make some version specific change to the processes before testing and moving into
the production environment. Or, perhaps we can now use this cloned process to create an
entirely new, but similar, process.

3.3 Re-cloning or maintaining clones

Now that we have a cloned process, what happens when we need to make a change? We will

take a look at a couple of possible maintenance scenarios and discuss how we might address
them with our versioning technique.

The steps involved in cloning a single process is the same as for cloning all processes, except
that we will deal with only one process. The files will go into the subdirectory that we created
for each individual process. We should also ensure that we use the new export utility.

Page 8

Cloning Processes In IBM DB2 UDB Warehouse Manager

3.3.1 Making version-specific modifications

Assuming that our process templates are the desired, official design of a process, there may be
times when, for some reason, the standard process may not work for a particular version
instance. Maybe the standard process is dependent on some hardware feature that is not
currently available but is expected to be a temporary condition or perhaps there is a product
bug introduced that causes temporary design changes. We may decide that instead of
modifying the standard process template, we make a modification to the version instance
process directly since we expect that by the next version, the situation will be remedied. We
would then modify the cloned process, test it and move it into the production environment which
will leave our proper design reflected in the standard process template. Future fixes would
have to be applied directly to the V1 process.

Build
Fact
Table
Template
@ @ Clone to V1
® Directly edit V1 before moving
Build to production environment
Fact
@ Table V1

Figure 3-8 Making version-specific modifications

For example, we might have a need to add an extra step to our Build Sample Fact Table
process due to work around a database design that could not be implemented in time but we
expect that the database design change will have occurred for our next version. After cloning
the Build Sample Fact Table V1, then we could edit it directly and make the needed change.
This will leave our correctly designed template unchanged.

We may also need to make emergency fixes to a process. This type of change should be
made first to the version instance process. Then, if appropriate, the same fix may be applied to
the standard process template for future versions.

3.3.2 Modifying a process template

We may have situations where the one of standard process templates is modified but we want
to reflect those changes without changing the version number. For example, we need to make
a minor modification to process that builds the time dimension, Build Sample Time Dimension.
This process is currently at the V1 level but we don'’t’ really want to create a V2 as that
connotates a major change. We really want some designation that identifies this as a minor
change.

We can simple use something like 1.1 for the version or we could designate a minor ‘release’ of

a process the process by adding another token, [release]. In this situation, we would then have
names similar to “Build Sample Fact Table v[version]r[release]’. We could make a change to

Page 9

Cloning Processes In IBM DB2 UDB Warehouse Manager

the standard process template and clone that process with the same version but with a new
release. We would then have multiple releases of a process within the same version.

Developement CDB
Build
Time Dim
Template
©)
@ Modify template process and
clone to V1R2
@ Test V1IR2 and move to Production
Build Build CDB via tag export/import
Time Dim Time Dim ® Modify shortcuts to point to
ViR1 ViR2
V1iR2
2 @
Production CDB a
Build
Time Dim
/ vinRz \
Build Build
Scenario @ @ Fact
Dim Table
V1R21 V1R21
Build
Time Dim
V1iR1
NOTE: If V1R2 does not work in production, you can modify the shortcuts to point back to V1R1

Figure 3-9 Modify a process template and re-clone

In Figure 3-9, we have created a V2R2 of the Build Time Dimension process which we test and
move into the production environment. We would then have all processes at the V1R1 level
with the exception of the Build Time Dimension process which would be at the V1R2 level. We
may have to manually update shortcuts to/from the Build Time Dimension process to reflect the
new version and release of this Build Time Dimension process. This also gives a bit of a
fallback in case there is some problem with the new process as we can adjust the shortcuts
back to point back to the VIR1 process. Once we are convinced the new process is working,
then we simple delete the V1R1 process from the production control database, if desired.

Using this technique has the added benefit that we can see a history of changes made to a
process if we keep in the development control database all of the old processes or export them
to tag files and archive them. We have to remember, however, that importing/exporting tag
files may not work across versions of the DWC.

3.4 Summary

In Section 3, we have learned some basic, manual cloning techniques in the context of
providing some rudimentary process versioning capabilities. Again, this is not the only way that
cloning can be implemented, but rather this is a starting point for developing a
versioning/cloning strategy for you.

Page 10

Cloning Processes In IBM DB2 UDB Warehouse Manager

4 Mass Cloning

In Section 3, we saw an example of how a simple cloning technique can be used and how to
implement rudimentary process versioning. In Section 4, we will be going to the opposite end
of the cloning spectrum showing how cloning techniques were used by a large, global customer
to clone hundreds of processes with tens of thousands of steps from a set of six templates.
The process templates were designed such that there were no manual changes needed to the
cloned processes. The cloning process was also automated, including the promotion of all of
the cloned steps to production mode.

4.1 The Challenge

The objective of this customer’s process was to take 160+ flat files from their Mainframe MVS
system, get them down to the warehouse Regatta machine and loaded into their DB2
warehouse. There was actually no extraction and no transformation that needed to be done, so
this was pretty much a data movement and load scenario. Even without having to do extraction
and transformation, this was a very complicated set of processes due to a number of issues:
e asource file is really a set of files including one or more zipped data files, an audit file
and an indicator file
e the distributed system had to remotely detect when any one of the 160+ files is ready to
be loaded
e the source files are pushed from various regions around the globe on their own
schedule and could arrive at any time day or night and must be loaded as soon as
possible after they arrive
e the warehouse has a high availability requirement, 24 x 7, and no batch window
there are complicated inter and intra-process coordination requirements
e there are requirements that the process must be able to detect when a table is offline for
backup purposes and to pause and wait. It also has to detect whether an incremental or
a full backup is in process and adjust the wait time accordingly
interface with their host-based Infoman problem reporting system via an AlX executable
e interesting use of the External Trigger to start each process and also to link processes
at execution time instead of using shortcuts

But, none of these will be discussed in this paper. We will concentrate on how we will develop
and deploy the hundreds of processes and tens of thousands of steps.

This customer had defined some standard approaches to accomplishing this work. They
analyzed each target table and, based on its characteristics in terms of size, uptime
requirements, incremental vs. full replace, etc they determined that each incoming file could be
loaded into the warehouse using one of five standard load strategies. For example, one
strategy was to do a bulk load into a staging table and then do an insert into...select from type
of process to append to the production table. This would allow the production table to remain
online. Another load strategy would load replace directly to the production table which does not
have such a strict 24x7 requirement.

Page 11

Cloning Processes In IBM DB2 UDB Warehouse Manager

They also noticed that the 'ftp' part of the process was the same for every file (set of files).
Actually, they later added another ftp strategy to handle a load strategy that utilized a different
set of files. So, any file could be downloaded and loaded into the warehouse using a
combination of 1 of 2 ftp strategies and 1 of 5 load strategies.

Each file required two processes, one ftp and one load process. Given 164 files, that is 328
processes. The ftp process contained about 25steps and a typical load was around 40 steps
for a total of up to 65 steps per file. That gives us 164 x 65 = 10,660 steps.

And, once these 328 process and 10,660 steps are developed, how do we actually get these
moved from the development environment to the test (QA) environment to the production
environment? Then get 10,660 steps promoted from development mode to production mode?

And, this was just for phase 1... Phase two could quadruple the number of processes and
steps.

It is quite a daunting task to develop this many processes manually.

4.2 The Approach

Of course, we developed cloning techniques. We incorporated versioning, ability to copy a
process to create a new similar process as well as mass cloning. However, the basic process
is the same as the simple cloning already discussed. We developed template processes, albeit
more complicated templates with many more tokens, exported these templates to tag files, did
global find and replace on the tokens and finally imported the new tag files into the DWC.

We absolutely had to automate the cloning process as well as the promotion of the cloned
processes from development mode to production mode. And, of course, we ran into many
issues that we had to solve along the way.

In our simple cloning example, we had process templates and version instances. In this
scenario, we took this one step further. We had Master Template Processes, Master
Version Template Processes and File Instance Processes. A Master Template Process was
a fully tokenized process. We had [version] and [release] tags as in the above example, but we
had many more tags in the actual step definitions. The Master Template Process is our official
standard process and is where official, approved changes are made. The Master Version
Processes are cloned from the Master Template Processes and are in themselves templates,
with only the [version] and [release] tokens being changed. Version/Release specific changes
can be made here. File Instance Processes are cloned from Master Version Template
Processes for a specific instance of a source file. All tokens are changed at this time as
appropriate for the source file.

Page 12

Cloning Processes In IBM DB2 UDB Warehouse Manager

Figure 4-1 Relationship between Master Templates, Master Version Templates and File Instance
Processes

As discussed earlier, this customer determined that there are two possible ftp strategies and
five possible load strategies. A particular source file would need one ftp process and one load
process to accomplish the objective of being loaded into the data warehouse. These actually
translate very nicely into Master Template Processes. We have a total of seven Master
Template Processes, FTP1, FTP2, LOAD1, LOAD2, LOADS3, LOAD4 and LOADS. In Figure 4-
1 we have the FTP1 Master Template Process and the LOAD3 Master Template Process at the
top of the chart. From these we can clone Master Version Templates and in the middle layer
we see a FTP1 V1R1 Master Version and a FTP1 V2R0 Master Version and also for LOADS.
Then to get a process we can actually execute, we clone the Master Version Processes to get
File Instance Processes. In this example, every source file has a unique fileid which we include
as a token in the process and step names. So, we can see that from the FTP1 V1R1 Master
Version Process and the LOADS3 V1R1 Master Version Process, we cloned a File Instance
Process for FILEOOO1.

From this chart, we can see that:

e FILEOOO1 consists of a FTP1 V1R1 process and a LOAD3 V1R1 process
e FILEOOO2 consists of a FTP1 V2RO process and a LOAD3 V2RO process

Page 13

Cloning Processes In IBM DB2 UDB Warehouse Manager

_loix
Warehouse Selected Edit VWiew Tools Help w ﬂ
B9 Bad3E 830 @3
=[] Subject Areas =] |[=znnlial FTP viversion].rireleas el - [fleid] FTP1 viversion].frelease]
: | [applid] FTP wiversion] rirelease] Harne
W e .I.E [fileid] FTP1 [wersion].[release] - Startthe XTSerer feo
Tem Iate = LA L sl EEEE &5 [fileid] FTP1 [version].[release] Cleanup: remove uncompressed file
lemplate| "f:- [fileid] FTF2 vlversion].rirelease] 25 [fileid] FTP1 fersion] [release] Cleanup: Remove GTL file
| [apniid] FTP v0.r1 :.‘3 [fileid] FTP1 [version].[release] Cleanup: Remove GZ file
| [applid] FTP 1.0 2% [fileid] FTP1 [ersion] [release] fip files: verify CTL file exists
m—‘ S — H_”\! [ﬂlefd] FTP1 [\rers?nn] [release] fip files: delete mainframe EMS file
Version | \.i;] TP v 11 .lg‘ [ﬂle!d] FTP1 [\rersfnn] [release] fip files: fip CTL file
== e) 2% [Mleid] FTP1 [version].[release] fin flles: fip ENS file
] {2221:31 ::gig :[E\Ir.:slnn] relRasg] IE [fileid] FTP1 [version].[release] fip files: fip GZ file to AlX serer
&] {applid] LOAD vl ra !E [fileid] FTP1 [version].[release] fip files: wverify ENS file exists
: | {applid] LOAD v r1 &3 [fleid] FTP1 wersion]frelease] Load: Uncompress the GZfile
]Andy's Playgraund &‘% [fileid] FTP1 ersionl[release] Startthe load process
| CMIS FTR O ||l 28 mieic FTP1 mersian).release]. verily MF ENS deleted]
| Cis FTP w1 10 25 #FAILURE™ : [fileid] FTP1 [version] release] ftp files: delete MF ENS file
T — 23 ~FAILURE™ : [fileid] FTP1 arsion] [release] ftp files: fip CTL file
Process ——»B@ﬂ 0034 FTR1 v1.10 25 ~FAILURE™ : [fileid] FTP1 rarsion] [release] ftp files: fip EMS file
c“eﬁ__‘ 0049 FTP1 wi.rd .'E TERAILURE™ : [fileid] FTP1 [version].[release] fip files: fip GZ file to Al
H %, 0054 FTP1 w110 L3 —FAILURE™ : [fileid] FTP1 [version]l.[release] Load: Uncompress the GZ file
uqﬁl 0078 FTP1 w100 .‘.E FAILURE™ : [fileid] FTP1 [version].[release] Start Load Process
* T 0079 FTPY w0 :I@ i i _”L]
| CMIS FTPw2.N
| cmis LoaD vo.r = 2 % 4 ¥ o

Figure 4-2 Master Templates, Master Version and Process Instances in DWC

Figure 4-2 shows us the Master Template for FTP1, the Master Version for FTP1 v1r0 and
several Process Instances for specific fileids. The Process Instances are the processes that we
can actually execute.

4.3 Developing the Master Template Processes

Developing the templates to be used in mass cloning can be complex. Besides ensuring that
each cloned process and step has a unique name, we need to determine what changes from
one file instance to another and determine how to tokenize these differences. Plus, having
tokens embedded in the actual workflow imposes some other limitations and considerations.
Let’s review some of these considerations:

e After cloning, each process and step must have a unique name. In this case, just using
a combination of [version] and/or [release] tokens is not sufficient. Fortunately, each
source file already has an assigned numeric fileid. Therefore, to ensure unique names
when we clone to the File Instance Process level, we also use a token for fileid, [fileid].

e |t does not appear that we can use tokens for database and table object names. This
may limit using certain type of steps, such as a SQL step as we have to connect table
objects to these steps. We use alternative technologies that could be defined as User
Defined Programs (UDPs) that would take database and table names as parameters.
These parameters could then be tokenized. We used technologies such as SQL Stored
Procedures, Shell Scripts and a C program that took a SQL statement as a parameter
and processed it.

e We took pains to avoid creating blob files as part of the export process. That way we
did not have to worry about moving those around during the cloning process and
inadvertently losing or otherwise changing them. A blob file gets created when there is
a SQL Step in which the SQL Wizard was used to create the SQL statement. In the
cases where we were able to use a SQL Step, we still used the SQL Wizard to create
the SQL Statement, but we did an ‘edit’ of the generated SQL statement and added a

Page 14

Cloning Processes In IBM DB2 UDB Warehouse Manager

blank character to the end of the statement. Once you edit the generated SQL
statement, the SQL Wizard can no longer be used and a side effect of this is that the
blob file does not get created.

e We had to ensure that each process was independent from an export utility viewpoint.
We had to ensure that we had no data dependencies and we could not use shortcuts.
This becomes easier with the new version of the export utility.

e We could not use shortcuts for two reasons. First, due to the capabilities of the export
utility at that time, we wanted to avoid those process dependencies. But, even more
important, was the fact that an ftp process may have to invoke a different load process
depending on the source file. For example, FILEOO1 may need FTP1 and LOAD1 but
FILEO002 may need FTP1 and LOADS. So, we could not link these processes at
development time with a shortcut but rather at the time we create the File Instance
Processes during the cloning process, so the cloning process had to determine how to
link the two processes. We ended up using the External Trigger mechanism as we
could pass parameters to it and we could tokenize that parameter.

Keeping these considerations in mind we start development on our seven Master Template
Processes. As you can see in Figure 4-3, this looks very similar to our previous example in that
we put tokens in the process and step names: [fileid], [version] and [release].

i"g: Process Model - [fileid] FTP1 ¥[version].r[release] - O] x|
Process Selected Edit View Help w ﬂ
(v @ o
i. = -
Ea i
= —_—
% [z filenams [f":'e‘:]sizl]r’ E [
I el LRI release] ftp fi
[“fdwmngr? “FAILURE™
SQL _I downlozds[[fileid] FTF1 [(
@ ‘l.g, \, fileid]_[msfil. wersion]. [rele..
E g ~ -~ ;
aa s
D # i I
4 & [fileid] FTP1 [
T wersion].[
== release] ftp
¥
i@ = ;2\5“
— P n -
3 [fileid] FTP1 [FAILURE®
[m‘]'sé"ze.'.“ mmmmmmmmm 10 ileid] FTR1 [
: release] fip fi wersion]. [rele
| -
1| | o |

Figure 4-3 A snippet of the FTP1 Master Template Process

But, embedding tokens in the process and step names is not enough for Mass Cloning. We
have to be able to embed tokens into the properties of the steps themselves. In Figure 4-4, we
can see how we used tokens in the parameter list for a “Copy File using FTP” UDP. You can
see tokens for the remote host name, [mvsipaddr], the remote userid [mvsuserid], the password
[mvspassword]. You can also see that we use DWC tokens for the remote filename, &STBNS,
and the local filename, &TTBN. These tokens will be resolved by the Warehouse Server at
execution time by examining the file objects connected to the step with data flows.

Page 15

Cloning Processes In IBM DB2 UDB Warehouse Manager

.i;é'_ Properties - [fileid] FTP1 [version].[release] ftp files: ftp CTL file il ll

[applic] FTP viversion].Hrelease] - fileid] FTP1 wversion]frelease] - [fileid] FTP1 [version] [release] fp files: fip CTLfile
] -

| Parameters | Column Mapping | Processing Options |

I |[ﬂ|eid] FTP1 [version].[release] fip files: fip CTLfile

Adrninistrator |[whadm|n]

Description ‘ﬂp the CTL file to the Warehouse Server NT system

Motes |
Wser Defined Program subtype |-Cl_lsmrmzed Copy File using FTP ;l
;JSET D?_ﬂﬂEd Pragram sublype [This is a customized version of the supplied Copy File using FTP UDP

gscription

i-;: Properties - [fileid] FTP1 [version].[release] ftp files: ftp CTL file D ﬂ
[applid] FTP wiversion].rrelease] - [ileid] FTP1 viversion].iirelease] - [ileld] FTP1 [version].[release] fp files: fp CTL1le
Liser Defined Program ﬂiﬁ"é}éﬂfﬁé‘ié@;’ Zalumn Mapping| Processing Options|
Parameter name Parametervalue
Remote host anrne [mwsipadd] .
GET or PUT keywards GET
Remote user ID [rwsuserid]
Remote pagsword [mvspassword]
Remote file LETBMNE
Local file &TTEM
Transfer Type 1
5
OK Cancel | Help |

Figure 4-4 Tokens embedded in the properties of an ftp step

Please note that this is not the normal GUI interface to the “Copy File using FTP” UDP. We
customized the registration of this UDP. The reason we did this is that the original step
definition has the Password parameter as a parameter type of PASSWORD. When the export
utility creates the tag file, any values associated with PASSWORD parameter types are stripped
out of the tag file. Well, that just would not do for cloning since our password token would be
remove from the tag file. If the passwords were stripped from the tag file, then, after cloning,
we would have to go back in and edit each and every step that had a PASSWORD parameter
by hand. To avoid that, we re-registered this program and defined the Password parameter as
a CHAR parameter type. Therefore, when we export the process to a tag file, the password
token is also included. Now, we can replace that token with the real password value during our
cloning process. The drawback is that the password is in the clear.

4.3.1 Testing the Master Templates

During the development of our Master Templates, we will likely want to do testing as we
develop the Master Templates. There could be several ways to approach the development
process of these templates. We will look at two development approaches.

4.3.1.1 Develop a process then convert to a Master Template

One approach is to develop and test the process initially without using tokens and then convert
the process into a Master Template. This may be a good approach when initially developing a
brand new process. This is the easiest way to incrementally develop and test a process in a
unit testing environment. In this approach, we do not need to know upfront what the tokens
are. However, we will have to retrofit this process into a Master Template by adding the tokens.
We may also find that there are some development changes because some of our steps may
not lend themselves to be easily cloned.

Page 16

Cloning Processes In IBM DB2 UDB Warehouse Manager

After we have developed a Master Template and it needs to be modified, a process can be
cloned for the purpose of modification. We would then modify this cloned process and test it.
Again we will have to manually retrofit the changes back into the Master Template process.

4.3.1.2 Develop a process as a Master Template

This approach is to develop the process as a Master Template initially. We would then have to
create a clone for testing. The advantage of this is that we are testing the fact that the process
can be cloned. We need to understand what are tokens are upfront, or have the ability to
create these as we develop the process. With this approach, we will be assured that the
resulting process will be able to be cloned and we do not have the redevelopment effort to
create a Master Process from the initial process. On the other hand, we will have to create a
clone anytime we make a modification and want to test.

With this approach, modifications would be handled in a similar manner.

4.3.1.3 Combining the approaches

In reality, we will probably use a combination of these two approaches depending where we are
in the development cycle. Early in the cycle, as we evaluate our process design, we will
probably develop and test without tokens. However, as our process design solidifies, we will
start developing our Master Templates. We can switch between the two approaches as
needed.

4.4 Cloning

Now that we have one or more Master Template Processes developed, we have done the hard
part. The process of the cloning is actually fairly straightforward. In this section, we will
examine the cloning process and see how we may automate it. Again, this is in context of how
this customer approached cloning, especially in the area of automating the process. While you
may not be able to directly use this customer’s tools, it does provide a starting point for you to
base your own cloning process.

In this scenario, we actually have to clone twice. Once to create a Version Master from a
Master Template and again when we need to create a Process Instance from the Version
Master. Refer to Figure 4-1.

4.4.1 Manual cloning

Manual cloning is always a possible way to create clones. It is a low tech way to create clones.
It is very feasible when you only need a few clones. However, it is more labor intensive and
error-prone.

Manual cloning in this Mass Cloning example works just the same as in the simple example. In

this section we will not go into the details of how to manually clone. We will explore the steps
necessary to manually clone in this new example.

Page 17

Cloning Processes In IBM DB2 UDB Warehouse Manager

The first thing that we want to do is to create a Version Master of our Master Template Process.
To do this, we simply export the Master Template Process to a tag file. We probably should not
allow any blobs to be created. We will copy the tag file and edit it to replace the [version] and
[release] tokens to the desired values. And, finally, import it back into the DWC. At this point,
any version or release specific modifications can be made.

The next step would be to clone actual Process Instances from the Version Master. Again, we
need to export the Version Master to a tag file. We may still have the tag file created during its
cloning. We will copy the Version Master tag file and again edit it to replace the remaining
tokens to their desired values. This can be a time-consuming process if we have used a lot of
tokens in the process. It is also error-prone and is subject to the typing skills of the person
editing the tag file. Once the tag file has been edited, we simply import the tag file into the
DWC. Of course, to actually execute the steps, we have to promote the steps to test mode or
production mode.

To create additional unique Process Instances, we simply clone each one from the Version
Master.

4.4.2 Automating the cloning process

As we see in the previous section, manually cloning processes can be very effective if our
requirements are small. However, this customer needed to create hundreds of process from a
set of seven templates. Cloning hundreds of processes manually would consume too much
time and is virtually impossible to do error free. And this would have to be repeated every time
we have a software release. So we had to find some way to automate cloning. This section will
examine how we accomplished this automation.

Referring back to Figure 4-1 and to the previous section, we can see that there are some
obvious places where we can automate the process. First, we have an opportunity to automate
the process of cloning a Version Master from the Master Template. Second, we have an
opportunity to automate the cloning of a Process Instance from a Version Master. However, we
have another opportunity for automation that may not be obvious which is the promotion of
steps to test mode and then to production mode. With tens of thousands of steps in hundreds
of processes, manually using the DWC GUI to promote these steps would take a lot of effort
and time.

Fortunately there are some batch command capabilities with WHM that allows us to create
some Windows command or bat files that can help us automate the process. Figure 4-5 shows
where in the cloning process we were able to provide some automation tools. We have a bat
file that clones a Version Master from the Master Template, cre8ver.bat. There is another bat
file that clones a Process Instance from the Version Master and there is a bat file that promotes
or demotes the steps of a process.

Page 18

Cloning Processes In IBM DB2 UDB Warehouse Manager

Figure 4-5 Points of automation in the cloning process

We will now examine each of these bat files to see how they work.

4.4.2.1 Technologies used

To accomplish automating cloning, we need to have command or batch versions of the manual
tasks that we used in the Manual Cloning method.

First, we need to export processes to tag files. In the manual method, we just used the DWC
GUI to accomplish the export. There is a command interface to the export utility, iwh2exp2,
which we will use in our automated method. Conversely, we need to import the cloned tag file
and we will use the command interface to the import utility, iwh2imp2.

Second, we need a way to promote and/or demote steps between development mode, test
mode and production mode. For this, we will use WHM'’s external trigger mechanism. This
allows us to promote and demote steps from a command line.

Finally, we need a way to accomplish global find and replace actions on a text file from a
command line interface. This proved to be a bit tricky to find and at the right price. In the
Windows environment, our search found several nice editing tools, but they were all graphical
based. What we wanted was a capability like the sed stream editor in Unix. Fortunately, we
found a Windows port of a number of GNU Unix utilities in a package call unxutils which can be
found at a number of sites on the web.

With this set of tools, we were ready to begin our journey to automation.

4.4.2.2 Cloning a Version Master from a Master Template — cre8ver.bat

The purpose of this bat program is to create a Version Master from one Master Template.

Page 19

Cloning Processes In IBM DB2 UDB Warehouse Manager

When executing this program, we need to know which Master Template to clone and the
replacement values for [version] and [release]. Recall that we have seven templates that fall
into two categories, FTP and LOAD. We will take advantage of having two template types. So,
the input parameters to the cre8ver.bat program are:

Process Type: FTP | LOAD | SMRY Note: SMRY is for future use
Process Type Suffix: A string to append to the Process Type: 1, 2, 3, etc
Version: A string to replace the [version] token

Release: A string to replace the [release] token

Home directory path: path to store the tag files

ok~

Invocation: cre8ver LOAD 3 1 5 c:\tagfiledir would clone the LOAD3 Master Template and
create the LOADS v1r Version Master

We also want the flexibility to have the Master Template in one control database with the
Version Master in a different control database. Therefore, we need information about the two
control databases. The cre8ver.bat program needs to be customized.

set scdb=src_cdb
set scuser=src_user
set scpwd=src_pwd

set tcdb=tgt_cdb
set tcuser=tgt_user
set tcpwd=tgt_pwd

We want to verify our parameters and set up the variables that we will use during the execution
of the program.

REM Check parms
if "%5"==""goto parmsreqd
REM Setup variables

set proctype=%1

set procsufx=%2

set version=%3

set release=%4

set homedir=%5

set workdir=%homedir%\tagfiles\templates\version_%version%%release%
set filename=create_%proctype%%sprocsufx%

set logfile=%homedir%\logging\%filename%.log

set inpfile=%workdir%\%filename%.inp

set tagfile=%workdir%\%filename%.tag

set tagfile1=%workdir%\%filename%.1

set newtagfile=%workdir%\%proctype%Yoprocsufx%_process_vyeversion%%release%.tag
set db2sqgl=%workdir%\%filename%.sql

set db2rpt=%workdir%\%filename%.rpt

set db2rpttemp=%workdir%\%filename%.rpttemp

We next need to do some preliminary work to possibly set up directories, erase old files and log
some information.

REM try to make the directory

Page 20

Cloning Processes In IBM DB2 UDB Warehouse Manager

md Y%workdir%

REM erase all old work files if they still exist

erase /Q Y%workdir%\%filename%.*

REM erase old tag and import log files

erase /Q Y%workdir%\%proctype%%oprocsufx%_process_vY%version%%release%.*
REM create logfile and log setup info

echo crever starting > %logfile%

echo PARMS: >> %logfile%

echo Process Type: %proctype% >> %logfile%
echo Process Suffix: %procsufx% >> %logfile%
echo Version to create: %version% >> %logfile%
echo Release to create: %release% >> %logfile%
echo Work directory: %workdir% >> %logfile%
echo INP file: %inpfile% >> %logfile%

echo Tag file: %tadfile% >> %logfile%

echo New Tag file: %newtagfile% >> %logfile%

Now, we can export the Master Template to a tag file. The batch version of the export utility
uses a control file that tells what processes to export. We decided to create this on the fly.
Therefore, we need to know the full name of our Master Template Process. We could make an
assumption, or we can query the control database. We chose to query the control database.

REM create the INP file with the correct process name based on the process type and process suffix

echo connect to %scdb% user Y%scuser¥% using %scpwd% > %db2sql%
echo select name from iwh.process where name like

"% Y% Yoproctype % Yoprocsufx% % %[version]%%[release] % %' >> %db2sql%
db2cmd -c -i -w db2 +0 -s -| %logfile% -r %db2rpt% -f %db2sq|%

type %db2rpt% | sed -e 11!d -e "s/["$//" > %db2rpttemp%

echo "<PROC">> %inpfile%

type %db2rpttemp% >> %inpfile%
echo *<IR">>> %inpfile%

echo "<SCHEMA">>> %inpfile%
echo "<UDP">>> %inpfile%

REM execute iwh2exp to export the process to a tagfile

iwh2exp2 %inpfile% %scdb% Y%scuser% Yescpwd% /S

Now that we have our tag file, we can edit it and replace the [version] and [release] tags
creating a new file in the process. We use a simple invocation of the sed stream editor to
accomplish the global find and replace. Sed is a very powerful utility typically found in Unix
environments but has been ported to the Windows environment by the GNU organization. It
has a very powerful ‘programming’ language which, in the Unix tradition, seems very complex.
We use sed to do a global find and replace to replace the [version] and [release] tokens to
values provided in the parameters. For more information on sed, you can search the web to
find various fags and documents, check any Unix OS documentation or consult one of the
many books written about sed.

REM substitute the [version] and [release] tokens

Page 21

Cloning Processes In IBM DB2 UDB Warehouse Manager

type %tadfile% | sed -e "s/\[version\]/%version%/g" -e "s/\[release\]/%release%/g" > Yonewtadfile%

We import the new tag file into the target control database.

REM import the new tagfile into the control database

iwh2imp2 Y%newtadfile% Y%workdir% %tcdb% %tcuser% %tcpwd%

Finally, we finish up our bat program and exit.

goto end

‘parmsreqd

echo Invalid parameters...usage: crever proctype procsuffx version release workdir >> %logfile%
REM exit 8

:end
REM erase all old work files
erase /Q %workdir%\%filename%.*

echo *** cre8ver finished *** >> %logfile%
REM exit 0

4.4.2.3 Cloning a Process Instance from the Version Master - replicate.bat

This is the workhorse bat program which clones the Process Instances from the Version
Masters. It is also the most complicated. This will be invoked one for each source file, which
could be hundreds of times, and it will build all of the processes necessary to get the source file
into the warehouse database.

This program assumes that there is a current export of the Version Master in the appropriate
directory. We do not want to export the tag file every time this program executes because we
would be exporting the same process over and over, which is unnecessary overhead.

For each source file, we want the program to clone the appropriate FTP process, the
appropriate LOAD process and, in the future, the appropriate SMRY process. We want to be
able to include or exclude any of the process types. We also need to know what version and
release to use and all of the replacement values for all of the tokens. There could be many
tokens. We also want to be able to generate the tag file only or to generate the tag file and
load into the control database. It is conceivable that we may not have connectivity to the target
database, so this would allow us to create the tag files, move them to the target machine and
then import them.

The parameter list consists of a set of positional parameters, followed by a variable number of
parameters. The positional parameters are:

Version: version number used to select the Master Processes

Release: release number used to select the Version Master Processes

Fileid: fileid of the source file and will replace all occurrences of the [fileid] token

FTP process suffix: along with the version and release parameters identifies which FTP
Version Master will be used

A

Page 22

Cloning Processes In IBM DB2 UDB Warehouse Manager

5.

6.

7.
8.

LOAD process suffix: along with the version and release parameters identifies which
LOAD Version Master will be used

Summary process suffix: for future use but similar function as the FTP and LOAD suffix
parameters

Action: GENONLY | GENIMPORT Create tag file only or create tag file and import
Home directory: where to find and save tag files

After parameter #8 is a variable number of parameters in the form of sed search arguments.
There is one search parameter for each token.

replicate 1 T 0045 1 3 n GENIMPORT c:/tagfiledirectory [token1]\value1

L/ \ N

directory to place the cloned tagfiles

f

fileid no summary process

Release
FTP LOAD generate tagfile and import sed search and replace arguments

suffix suffix

Example: replicate 1 2 0045 1 3 n GENIMPORT c:/tagfiledirectory [token1]\valuel ...
would create a FTP1 vir2 process and a LOAD3 v1r2 process for source file id 0045. A
Summary process would not be created. Tokens would be replaced as defined...i.e. value1
would replace all occurrences of [token1] and so on.

We need information about the source control database and, if the action is GENIMPORT,
about the target control database. The source control database and the target database may
be different or the same.

@ECHO OFF

set scdb=src_cdb
set suser=src_user
set spwd=src_pwd

set tcdb=tgt_cdb
set tuser=tgt_user
set tpwd=tgt_pwd

We want to verify our parameters and set up the variables that we will use during the execution
of the program.

if "%9"=="" goto invalidparms

set version=%1
set release=%2
set fileid=%3
set ftp=%4

set load=%5

set smry=%6
set action=%7
set homedir=%8

Page 23

Cloning Processes In IBM DB2 UDB Warehouse Manager

if /i %action% EQU GENONLY goto setgenonly
if /i %oaction% EQU GENIMPORT goto setgenimport
goto invalidparms

:setgenonly
set import=N
goto continue1

:setgenimport
set import=Y
goto continue1

:continuet

set tagdir=%homedir%\tagfiles

set masterversiontagfiledir=%tagdir%\templates\version_%version%%release%
set deleteENSfile=%tagdir%\templates\master\delete_ ENS.ftp

set outputtagfiledirectory=%tagdir%\%tcdb%\version%version%%release%

set outputscriptfiledirectory=%homedir%\scripts\fip_delete

set logdir=%homedir%\logging

set repllog=%logdir%\repl¥%fileid%.log
set sedcmdfile=%outputtagfiledirectory%\%fileid%_sedcmd.tmp

We create log entries and needed directories.

echo Starting Log %reppllog% > %repllog%

echo Version: %version% >> %repllog%

echo Release: %release% >> %repllog%

echo File ID: %fileid% >> Y%repllog%

echo Ftp process: %ftp% >> %repllog%

echo Load process: %Load% >> %repllog%
echo Summary process: %smry% >> %repllog%
echo Action: %action% >> %repllog%

echo Home directory: %homedir% >> %repllog%

echo Master version tag file directory: %masterversiontagdfiledir% >> %repllog%
echo Delete ENS file: %deleteENSfile% >> %repllog%

echo Tag file directory: %outputtagfiledirectory% >> %repllog%

echo Output script file directory: %outputscriptfiledirectory% >> %repllog%

REM make the tag file directory

md Y%outputtagfiledirectory%

This section will read in the variable list of parameters and set up the control file for the sed
utility. In this program we use a sed control file to provide the entire find and replace
commands as it is too unwieldy to do that via the command line option.

REM

REM finish with the parms by

REM starting at parm 9, generate file that contains the commands to sed
REM

REM first setup the fileid search command
echo *** Generating sed substitute commands ***
echo s/\[fileid\]/%fileid%/gi >> Y%repllog%

echo s/\[fileid\]/%fileid%/gi > Yosedcmdfile%

>> Y%repllog%

Page 24

Cloning Processes In IBM DB2 UDB Warehouse Manager

echo s/\[loadtype\]/%load%/gi >> Y%sedcmdfile%

REM
REM special substitute for taking care of changing the first step in the ftp step to convert
REM the string FTP1 or FTP2 to FTP... this is for the use of the ftp driver program
REM

echo s/FTP%ftpY%-%ver%/FTP-%ver%/g >> Y%sedcmdfile%

:nextsedcmd

set searchcmd=%9

if "%searchcmd%"=="" goto chkftp

echo s/%searchcmd%/gi >> %repllog%
echo s/%searchcmd%/gi >> %sedcmdfile%
shift /8

goto nextsedecmd

We need to check the FTP parameter to determine if we are generating the FTP process and, if

so, the FTP suffix. We execute the sed utility to do the find and replace of the tokens and save
it in another directory. We use the sed control file created above. We also create something
called the delete_ENS ftp script file. This is something we need during the execution of our
FTP process and is outside the scope of this paper. But, notice that we use the sed utility and
the same sed control file to create it. However, we don’t necessarily have all of the tokens that
we have in the tag file but it is ok because, if sed does not find the token, it just ignores that
command and continues with the next.

REM
REM check to see if we need to generate the ftp process
REM

:chkftp
if /i %ftp% NEQ n goto genftp
goto genload

:genftp

REM
REM create the ftp tag file for this fileid
REM

echo Generating the ftp process for %fileid% >> %repllog%
sed -f %sedcmdfile% Y%masterversiontagfiledir%e\FTP%ftp%_process_v%version%%release%.tag >
Y%outputtagfiledirectory%\%fileid%_ftp%ftp%_process_vy%version%%release%.tag

REM
REM create the delete_ ENS ftp script file
REM

echo Generating the delete_ens ftp script for file %fileid% >> %repllog%
sed -f %sedcmdfile% %deleteENSfile% > Y%outputscriptfiledirectory%\%fileid%_delete ENS.ftp
echo ftp tag file and delete_ens script created >> %repllog%

We check to see if we need to generate the load process and, if so, create it using the sed
utility.

REM
REM create the load tag file for this fileid
REM

Page 25

Cloning Processes In IBM DB2 UDB Warehouse Manager

:genload

echo Generating the load process for file %fileid% >> %repllog%

if /i "%load%"=="n" goto gensmry

sed -f %sedcmdfile% Y%emasterversiontagfiledir¥%\load%load%_process_v%version%%release%.tag >
Y%outputtagfiledirectory%\%fileid%_load%load%_process_v%version%%release%.tag

echo Load tag file created >> %repllog%

This is to create a summary process tag file in the future.

REM
REM create the summary tag file for this fileid
REM

gensmry
if /i "%smry%"=="n" goto importtags

echo Generating the summary process for file %fileid% >> %repllog%
if /i "Y%smry%"=="n" goto import

echo Summary processing not valid at this time... >> %repllog%

If our action parameter is GENIMPORT, we need to import the generated tag file(s) into the
target control database.

REM
REM check to see if we need to do imports
REM

:importtags
if /i %import% NEQ Y goto end
echo Beginning import of tadfiles for file %fileid% >> %repllog%

REM
REM import the ftp process
REM

if /i %ftp% EQU n goto impload

echo importing ftp tag file for %fileid% to the %tcdb% Control Database >> %repllog%

iwh2imp2 %outputtagfiledirectory%\%fileid%_ftp%ftp%_process_vY%version%%release%.tag %logdir% Y%tcdb%
Yotuservo Yotpwd%

echo Finished importing ftp process

REM
REM import the load process
REM

:impload

if /i %Load% EQU n goto impsumry

echo importing load tag file for %fileid% to the %tcdb% Control Database>> %repllog%

iwh2imp2 %outputtagfiledirectory%\%fileid%_load%load%_process_v%version%%release%.tag Y%logdirve
Yotcdb% Yotusero Yotpwd%e

goto end

REM
REM import the summary process
REM

simpsumry

echo importing summary tag file for %fileid% to the %tcdb% Control Database>> %repllog%
echo Summary processing not valid at this time... >> %repllog%

goto end

Page 26

Cloning Processes In IBM DB2 UDB Warehouse Manager

Finally, we finish up our bat program and exit.

sinvalidparms

echo one or more parms is missing ... exiting program with rc 8
REM exit /b 8

goto exit

:end

echo program finished ... exiting program with a rc 0 >> %repllog%
REM exit /b 0

exit

erase /Q %outputtagfiledirectory%*.tmp

4.4.2.4 Promote/Demote steps

This bat program will promote or demote steps between development mode, test mode and
production mode within the DWC.

This program uses the WHM External Trigger process to accomplish the promotion or
demotion. To do this we call the client portion of the External Trigger mechanism which will
promote or demote one step one level. If we have tens of thousands of steps, we don’t
necessarily want to have to explicitly call this program tens of thousands of times. What we
would like to be able to do is to provide a process name search string and promote/demote all
steps in all of the processes that match the search string. We use this search string to query
the control database to find all matching process names and all steps of these matching
processes.

We need to know if we are going to promote or demote these steps and to what mode. We
have four possibilities: Promote to test mode, Promote to production mode, Demote to test
mode, Demote to development mode. We also need a search string for the process name.
The parameters are:

1. Action: PT | PP | DT | DD where PT = promote to test mode, PP = promote to production
mode, DT = demote to test mode, DD = demote to development mode

2. Search string: any DB2 style search string, including wildcards

3. Work directory: for temporary work files

4. RunlID: used in names of temporary files

Invocation: prodem PT FTP1 c:\workfiles will promote all steps to test mode for all FTP1
processes, all versions and releases.

This program needs to be customized to provide information about the control database as well
as information needed to connect to the External Trigger Server.

@ECHO OFF

set scdb=tgt_cdb
set scuser=tgt_usr
set scpwd=tgt_pwd

set whserver=192.168.0.101

Page 27

Cloning Processes In IBM DB2 UDB Warehouse Manager

set whport=11004

set whuser=tgt_user
set whpasswd=tgt_pwd
set whwait=1

We want to verify our parameters and set up the variables that we will use during the execution
of the program.

REM Check parms

if "%4"=="" goto parmsreqd

REM Setup variables

set action=%1

set searcharg=%2

set workdir=%3

set runid=%4

set db2sqgl=%workdir%\%runid%_sql.tmp

set db2rpt=%workdir%\%runid%_rpt.tmp

set logfile=%workdir%\%runid%_prodem.log

set prodemfile=%workdir%\%runid%_prodem.bat

REM erase the old files
erase Y%workdir%\%runid%_*
REM create logfile and log setup info

echo prodem starting > %logfile%

echo PARMS: >> %logfile%

echo Action: %action% >> %logfile%

echo Search Argument: %searcharg% >> %logdfile%
echo Work directory: Y%workdir% >> Y%logfile%

echo Runid: %runid% >> %logfile%

We first need to determine what action is being requested and convert it to what XTClient
expects. We could have used the same parameter values as XTClient but we wanted to use
parameter values that were a bit more descriptive. For example, we thought that using PT for
promote to test was a bit more meaningful than using the numeral 2.

set whcommand=none

if /i %action% EQU PT set whcommand=2

if /i %action% EQU PP set whcommand=3

if /i %action% EQU DT set whcommand=4

if /i %action% EQU DD set whcommand=5

if %owhcommand% EQU nont goto parmsreqd

We need to query the control database to get our list of steps. We create the connect and sq|l
statement based on parameters and variables and echo to a sql script file. The sqgl statement
actuall creates the External Trigger client commands. We then execute the sql script, returning
the results in a report file. Note that the syntax to invoke the XTClient changes in DB2 V8 from
java XTClient to java db2_vw_xt.XTClient.

Echo connect to %scdb% user Y%scuser¥% using %scpwd% > %db2sql%

Page 28

Cloning Processes In IBM DB2 UDB Warehouse Manager

echo select ‘java XTClient %whserver% %whport% %whuser% Y%whpasswd% “ concat bv.name
concat ” Y%ewhcommand% %whwait%’ from iwh.businessview bv, iwh.process p, iwh.relationship r where
p.name like ‘Y%searcharg%’ >> %db2sql% and p.iwhid=r.source_iwhid and bv.iwhid=r.target_iwhid >>
%db2sql%

db2cmd —c —i —w db2 +0 —s —| %logfile% -r %db2rpt% -f %db2sql%
We now have a sql report that contains the External Trigger command for each step name
returned. This report has extra lines, headers and such that we need to eliminate. Which we

accomplish with the sed utility which creates the bat file. We then call the bat file to be
executed.

type %db2rpt% | sed -n -e /java/p > Y%prodemfile%
cat Y%prodemfile% >> %logfile%

call %prodemfile% >> %logfile%

Finally, we finish up our bat program and exit.

goto end

parmsreqd

echo Invalid parameters...usage: prodem action searcharg workdir runid >> %logfile%
REM exit 8

:end
echo *** prodem finished *** >> %logfile%
REM exit 0

We would repeat this process as needed to get the steps to the desired mode. For example, to
get the steps for a newly cloned set of processes to production mode, we would execute
prodem with an action of PT followed by an execution with an action of PP.

4.5 Summary

We have explored how we used an automated mass cloning technique at this customer to
clone well over 300 processes with nearly 10,000 steps from seven process templates which
are currently in their production environment. At the time of this paper, they are well into their
phase 2 which could quadruple the number of processes and steps

A note from the author:

| developed these cloning techniques while working with this customer project as an ETL
consultant and the Warehouse Manager developer. While we were designing the ETL
workflows, running tests and finally developing the templates, | evolved the cloning techniques
from a mere hope, to a manual process and finally to an automated process over a period of 4-
6 weeks. Even though this is a large customer, the development team was small. It consisted
of a Project Manager, a part-time Architect, the customer’s technical lead, me and on demand
resources to develop SQL Stored Procedures and AlX shell scripts.

Page 29

Cloning Processes In IBM DB2 UDB Warehouse Manager

As | understand, it took about 6 months from development start to first production. They ran in
parallel with the current system for a couple of months before turning off the old system
completely. | was involved for about 9 weeks during the heaviest period of development.

5 Moving processes from the development environment to the test
environment to the production environment

Most customers do not develop, test and run production in one environment. It is typical to
have a development environment, a test (or QA) environment and a production environment.
Each environment has its own Warehouse Manager Server, Control Database and Warehouse
Database. The development environment is used for developing and unit testing individual
processes. The test environment is used for system and/or user acceptance testing. Then, of
course, the production environment is where the final set of processes will actually execute.

In this section, we will explore how this customer moves processes between environments and
how they use cloning to help. We will then present a slight twist on this idea.

5.1 The strategy

As part of the overall picture, we needed a strategy of moving processes to the different
environments. At this customer, the test environment is basically a mirror image of the
production environment even with the same names of objects like database names, schema
names, agent names, etc. The primary difference is with userids and their passwords.

We used the development environment for general development activities and the development
of the Master Template processes. We also used the development environment to store the
cloned Version Masters. For unit testing, we also cloned Process Instances into the
development environment. We did not clone all 300 processes and 10,000 steps into the
development environment, rather we cloned only what was needed for unit testing. See Figure
4-2 for a screen shot from our development DWC GUI.

When we were ready to create a software release for system/user acceptance testing, we
would start with a brand new control database. Into this database we would clone all 300+
processes and promote all steps to production mode. We would have to manually modify the
agent and database userids and passwords. Once this software release passed testing, we
would use db2move to copy over the entire control database into the production environment.
Of course, we would have to again manually change the appropriate agent and database
userids and passwords.

For subsequent releases to the test environment, we made a decision to re-clone into an empty
test control database and move the entire database into the production environment with
db2move. We did this for several reasons. First, any change to a Master Template Process
would affect many Process Instances. If we import a modified process that has deleted steps
and imported over an already existing process, we could end up with orphaned steps in the test
control database, and subsequently, in the production control database. This would not affect
the actual execution of the processes but, over time, could clutter the control database. To

Page 30

Cloning Processes In IBM DB2 UDB Warehouse Manager

eliminate orphans, we could first delete the existing processes before importing. Unfortunately,
at the time of writing, there is no batch method to delete steps and processes from a control
database.

There is one side point about using db2move to copy the test control database to the
production environment. WHM records in its log table, some runtime information and statistics.
When we replace the production control database with the test control database, we lose that
information. If that is a concern, we could save the contents of the production log information.
However, a db2move has less impact on our schedule than re-cloning everything into the
production control database. At the time of this paper, there are some techniques in
development by Dr. Paul Wilms on how to create a long-term history of runtime information.
Conceivably, this historical information could be exported before the db2move of the test control
database to the production environment. Then it could be imported into the new production

control database to preserve this runtime history.
db2move —
PROD CDB

- clone
Dev CDB

T

Figure 5-1 Managing process cloning and movement

5.2 A small twist on this strategy

There is a danger in storing the Master Templates and Version Master processes in the
development control database. They could inadvertently get modified or deleted. This
happened to us. We were lucky in that we had recently cloned and still had the tag files. We
learned to nightly export the Master Templates and Version Master processes into a backup
directory which we automatically scheduled using the DWC scheduling facility.

Perhaps a more secure alternative is to create a separate control database just to contain the
Master Templates and Version Masters. This control database would never be an active
control database for a Warehouse Server. We could also limit update of this database to
certain personnel.

We would still use the development control database for the actual creation and modification of
Master Templates. Once a Master Template is ready, then we would simply export it from the
development control database and import it into this Master control database. When we need
to clone a new Version Master, the source and target control databases would both be the
Master control database. Then when a developer needs a Process Instance for unit testing,
then it can be cloned from the Master control database to the development control database.
When we are ready for a software release to testing, we would then clone from the Master
control database to the test control database. After that, the process is the same.

Page 31

Cloning Processes In IBM DB2 UDB Warehouse Manager

Figure 5-2 Using a Master control database

6 Summary

In this paper we explored how to clone Warehouse Manager processes by using two examples,
one a simple cloning technique to version processes and a much more complex cloning
technique developed for a large customer to massively clone WHM processes. Most customers
won’t have the need to clone on such a large scale, but the techniques discussed can help to

develop their own cloning strategy.

Page 32

