
IBM
®

DB2
®

Universal Database

Image, Audio, and Video Extenders
Administration and Programming

Version 7

SC26-9929-00

���

IBM
®

DB2
®

Universal Database

Image, Audio, and Video Extenders
Administration and Programming

Version 7

SC26-9929-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix C. Notices” on page 575.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii
Who should use this book xiii
How to use this book xiii
Platform-specific information xiv
Highlighting conventions xiv
How to read the syntax diagrams. xv
Related information xvi
How to send your comments xviii

Part 1. Introduction. 1

Chapter 1. Overview 3
Exploiting DB2 3
Powerful new ways to search for information 4
The DB2 extenders 4
The SDK and run-time environments 5
Using the extenders 5
Examples 5

Example 1: Retrieving a video by its
characteristics 6
Example 2: Searching for images by content 8

Operating environments 11

Chapter 2. DB2 extender concepts. . . . 13
Object-oriented concepts 13

Large objects 14
User-defined types 14
User-defined functions 15
UDF and UDT names 16
Triggers 16

Extender data structures 17
Administrative support tables 17
Handles 19
QBIC catalogs 19
Video indexes 21
Shot catalogs 21

Partitioned database concepts (EEE only) . . 22
Parallel processing 24
Scalability 24

Using DB2 extenders in a partitioned
database environment 24

Security and recovery 24

Chapter 3. How the extenders work . . . 27
An extender scenario 27
Starting extender services 28
Preparing a database 28
Preparing a table 30
Altering a table 31
Inserting data into a table 32
Selecting data from a table 34
Displaying and playing objects. 35
Updating data in a table 36
Deleting data from a table 37

Part 2. Administering image,
audio, and video data 39

Chapter 4. Administration overview . . . 41
Administration tasks you can perform with
the DB2 extenders 41

Chapter 5. Managing extender servers . . 47
Establishing the extender environments . . . 47
Adding and dropping database partitions
(EEE only) 48
Stopping and starting extender servers . . . 49
Displaying server status 50
Creating and managing multiple server
instances 50

Creating multiple DB2 extenders server
instances 50
Listing instances 51
Running multiple instances concurrently 51
Setting the current instance 52
Removing instances 52
Migrating instances 52

Chapter 6. Preparing data objects for
extender data 53
Enabling databases. 53

Examples 54
Enabling tables 56

© Copyright IBM Corp. 1996, 2000 iii

|
||
|
||
||
||
||
||
||

Enabling columns 59
Disabling data objects 60

Chapter 7. Redistributing extender data in
a partitioned database system (EEE only) . 61
Redistributing DB2 data 61
Redistributing extender data 61

Chapter 8. Tracking data objects and
media files 63
Checking the status of data objects 63
Finding table entries that reference files . . . 64
Finding files referenced by table entries . . . 65
Checking if media files exist 66

Chapter 9. Cleaning up administrative
support tables 69

Part 3. Programming for image,
audio, and video data 71

Chapter 10. Programming overview . . . 73
Using extender UDFs and APIs 73
Tasks you can perform with extender UDFs
and APIs 74
Sample table for extender examples 75
Before you begin programming for DB2
extenders 76

Including extender definitions 78
Specifying UDF and UDT names 79
Transmitting large objects 79
Handling return codes 83

Unicode support 83

Chapter 11. Storing, retrieving, and
updating objects 85
Image, audio, and video formats 85
Image conversion options 86
Storing an image, audio, or video object . . 88

DB2Image, DB2Audio, and DB2Video UDF
formats 88
Storing an object that resides on the client 91
Storing an object that resides on the server 93
Specifying database or file storage . . . 93
Identifying the format for storage 94
Storing an object with user-supplied
attributes 96
Storing a thumbnail (image and video
only) 98

Storing a comment 99
Retrieving an image, audio, or video object 100

Content UDF formats for retrieval . . . 100
Retrieving an object to the client 102
Retrieving an object to a server file . . . 103
Retrieving and using attributes 105
Retrieving comments 107

Updating an image, audio, or video object 108
Content UDF formats for updating . . . 109
Replace UDF formats for updating . . . 111
Updating an object from the client . . . 114
Updating an object from the server . . . 115
Specifying database or file storage for
updates 115
Identifying the format for update . . . 116
Updating an object with user-supplied
attributes. 118
Updating a thumbnail (image and video
only) 119
Updating a comment 120

Chapter 12. Displaying or playing an
image, audio, or video object 123
Using the display or play APIs 123

Identifying a display or play program 123
Specifying BLOB or file content 124
Specifying a wait indicator 125

Displaying a thumbnail-size image or video
frame 126
Displaying a full-size image or video frame 127
Playing an audio or video 127

Chapter 13. Querying images by content 129
How to query by image content 129
Managing QBIC catalogs 130

Creating a QBIC catalog 131
Opening a QBIC catalog 132
Changing the auto catalog setting . . . 134
Adding a feature to a QBIC catalog . . . 135
Removing a feature from a QBIC catalog 136
Retrieving information about a QBIC
catalog 136
Manually cataloging an image 138
Uncataloging an image 139
Recataloging images 140
Redistributing a QBIC catalog (EEE Only) 140
Closing a QBIC catalog 141
Deleting a QBIC catalog 141
QBIC catalog sample program 142

Building queries 146

iv IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Specifying a query string 146
Using a query object 149

Issuing queries by image content 157
Querying images 157
Retrieving an image score 159
QBIC query sample program 160

Chapter 14. Detecting video scene
changes 169
What is a video scene change? 169
Finding and using scene changes 170

Shot detection data structures 171
Getting a shot or frame 177
Cataloging shots 182

Part 4. Reference. 193

Chapter 15. User-defined types and
user-defined functions 197
Schema 197
User-defined types 197
User-defined functions 197

AlignValue 202
AspectRatio 204
BitsPerSample 205
BytesPerSec 206
Comment 207
CompressType 209
Content 210
DB2Audio 216
DB2Image 220
DB2Video 225
Duration 229
Filename 230
FindInstrument 231
FindTrackName 232
Format 233
FrameRate 234
GetInstruments 235
GetTrackNames 236
Height 237
Importer 238
ImportTime 239
MaxBytesPerSec 240
NumAudioTracks 241
NumChannels 242
NumColors 243
NumFrames 244
NumVideoTracks 245

QbScoreFromName 246
QbScoreFromStr 248
QbScoreTBFromName 249
QbScoreTBFromStr 251
Replace 253
SamplingRate 257
Size 258
Thumbnail 259
TicksPerQNote 261
TicksPerSec 262
Updater 263
UpdateTime. 264
Width. 265

Chapter 16. Application programming
interfaces 267
DBaAdminGetInaccessibleFiles 268
DBaAdminGetReferencedFiles 270
DBaAdminIsFileReferenced 272
DBaAdminReorgMetadata 274
DBaDisableColumn 276
DBaDisableDatabase 278
DBaDisableTable 280
DBaEnableColumn 282
DBaEnableDatabase 284
DBaEnableTable 286
DBaGetError 288
DBaGetInaccessibleFiles 289
DBaGetReferencedFiles 291
DBaIsColumnEnabled 293
DBaIsDatabaseEnabled 295
DBaIsFileReferenced 297
DBaIsTableEnabled 299
DBaPlay 301
DBaPrepareAttrs 304
DBaReorgMetadata 305
DBiAdminGetInaccessibleFiles 307
DBiAdminGetReferencedFiles 309
DBiAdminIsFileReferenced 311
DBiAdminReorgMetadata 313
DBiBrowse 315
DBiDisableColumn 318
DBiDisableDatabase 320
DBiDisableTable 321
DBiEnableColumn 323
DBiEnableDatabase 325
DBiEnableTable 327
DBiGetError 329
DBiGetInaccessibleFiles 330
DBiGetReferencedFiles 332

Contents v

DBiIsColumnEnabled 334
DBiIsDatabaseEnabled 336
DBiIsFileReferenced 338
DBiIsTableEnabled 340
DBiPrepareAttrs 342
DBiReorgMetadata 343
DBvAdminGetInaccessibleFiles 345
DBvAdminGetReferencedFiles 347
DBvAdminIsFileReferenced 349
DBvAdminReorgMetadata 351
DBvBuildStoryboardFile 353
DBvBuildStoryboardTable 355
DBvClose 357
DBvCreateIndex 358
DBvCreateIndexFromVideo 359
DBvCreateShotCatalog 360
DBvDeleteShot 362
DBvDeleteShotCatalog 364
DBvDetectShot 366
DBvDisableColumn 368
DBvDisableDatabase 370
DBvDisableTable 371
DBvEnableColumn 373
DBvEnableDatabase 375
DBvEnableTable 377
DBvFrameDataTo24BitRGB 379
DBvGetError 381
DBvGetFrame 382
DBvGetInaccessibleFiles. 383
DBvGetReferencedFiles 385
DBvInitShotControl 387
DBvInitStoryboardCtrl 388
DBvInsertShot 389
DBvIsColumnEnabled 391
DBvIsDatabaseEnabled 393
DBvIsFileReferenced 395
DBvIsIndex 397
DBvIsTableEnabled 398
DBvMergeShots 400
DBvOpenFile 402
DBvOpenHandle 404
DBvPlay 406
DBvPrepareAttrs 409
DBvReorgMetadata 410
DBvSetFrameNumber 412
DBvSetShotComment 414
DBvUpdateShot 416
DMBRedistribute (EEE Only) 418
QbAddFeature 419
QbCatalogColumn 421

QbCatalogImage 423
QbCloseCatalog 425
QbCreateCatalog 426
QbDeleteCatalog 428
QbGetCatalogInfo. 430
QbListFeatures 431
QbOpenCatalog 433
QbQueryAddFeature. 435
QbQueryCreate 437
QbQueryDelete 438
QbQueryGetFeatureCount 439
QbQueryGetString 441
QbQueryListFeatures 443
QbQueryNameCreate 445
QbQueryNameDelete 447
QbQueryNameSearch 448
QbQueryRemoveFeature 450
QbQuerySearch 452
QbQuerySetFeatureData 454
QbQuerySetFeatureWeight 456
QbQueryStringSearch 457
QbReCatalogColumn. 459
QbRemoveFeature 461
QbSetAutoCatalog 463
QbUncatalogImage 465

Chapter 17. Administration commands for
the client 467
Entering DB2 extender administration
commands 467
Getting online help for DB2 extender
commands 468
ADD QBIC FEATURE 469
CATALOG QBIC COLUMN 470
CLOSE QBIC CATALOG 471
CONNECT 472
CREATE QBIC CATALOG 473
DELETE QBIC CATALOG 475
DISABLE COLUMN 476
DISABLE DATABASE 477
DISABLE TABLE 478
DISCONNECT SERVER AT NODENUM
(EEE Only) 479
DISCONNECT SERVER FOR DATABASE
(EEE Only) 480
DISCONNECT SERVER FOR DATABASE AT
NODENUM (EEE Only) 481
ENABLE COLUMN 482
ENABLE DATABASE 483
ENABLE TABLE 484

vi IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

||

GET EXTENDER STATUS 486
GET INACCESSIBLE FILES 487
GET QBIC CATALOG INFO 489
GET REFERENCED FILES 490
GET SERVER STATUS 492
OPEN QBIC CATALOG. 493
QUIT 494
RECONNECT SERVER AT NODENUM
(EEE Only) 495
RECONNECT SERVER FOR DATABASE
(EEE Only) 496
RECONNECT SERVER FOR DATABASE AT
NODENUM (EEE Only) 497
REDISTRIBUTE NODEGROUP (EEE Only) 498
REMOVE QBIC FEATURE 500
REORG 501
SET QBIC AUTOCATALOG 503
START SERVER (Non-EEE Only). 504
STOP SERVER (Non-EEE Only) 505
TERMINATE 506

Chapter 18. Administration commands for
the server 507
DMBICRT 508
DMBIDROP. 511
DMBILIST 512
DMBIMIGR 513
DMBSTART. 514
DMBSTAT 516
DMBSTOP 517

Chapter 19. Diagnostic information . . . 519
Handling UDF return codes 519
Handling API return codes. 520
SQLSTATE codes 521
Messages 525
Diagnostic tracing. 553

Start tracing. 554

Stop tracing. 554
Reformat trace information 554
Show trace status 554

Part 5. Appendixes 555

Appendix A. Setting environment
variables for DB2 extenders 557
How environment variables are used to
resolve file names. 557
How environment variables are used to
identify display or play programs 558
How the DB2MMDATAPATH environment
variable is used (EEE only) 559
Setting environment variables. 560

Setting environment variables in AIX,
HP-UX, Solaris servers and clients . . . 560
Setting environment variables in OS/2
servers and clients 562
Setting environment variables in
Windows servers and clients 563

Appendix B. Sample programs and media
files 565
Sample programs 565
Sample image, audio, and video files . . . 567
Sample Net.Data macro file 567

Appendix C. Notices 575
Programming interface information 577
Trademarks 577

Glossary 579

Index 583

Contacting IBM 593
Product Information 593

Contents vii

||
||
||
||

viii IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Figures

1. A multimedia database table 6
2. A query that accesses videos 7
3. An application that accesses and plays

videos 7
4. Searching for images by content 9
5. An application that searches for images

by content 10
6. DB2 extender platforms 12
7. Administrative support tables 18
8. Handles 19
9. Nodegroups in a database 23

10. The employee table 27
11. The employee table with an audio

column added 28
12. Inserting data into a table 33
13. Selecting data from a table 35
14. Displaying and playing objects 36
15. Updating data in a table 37
16. Sample code that enables a database 54
17. Sample code that enables a table 58
18. Sample code that enables a column 59

19. Sample code that checks if a database is
enabled. 64

20. Sample code that checks if a file is
referenced by user tables 65

21. Sample code that gets a list of
referenced files 66

22. Sample code that cleans up
administrative support tables 69

23. A table used in DB2 extender
programming examples 75

24. An application that uses a DB2 extender 77
25. Query by image content 129
26. QBIC catalog sample program 143
27. QBIC query sample program 162
28. A video storyboard 170
29. How values in the DBvStoryboardCtrl

structure are used 188
30. Web application that runs the Sample

Net.Data macro file 568
31. Net.Data sample macro file 569

© Copyright IBM Corp. 1996, 2000 ix

x IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Tables

1. User-defined functions created by the
Image Extender 29

2. User-defined functions created by the
Audio Extender 31

3. Administration tasks and facilities for
the DB2 extenders 42

4. Tasks you can perform with DB2
extender APIs 74

5. Formats that can be processed by the
DB2 extenders 85

6. Image conversion options 87
7. Attributes managed by the DB2

extenders 105
8. QBIC Feature Names 135

9. Feature values that can be specified in
query string 147

10. What the Image Extender examines in
QbImageSource. 151

11. DBvShotControl fields 173
12. DBvStoryboardCtrl fields 175
13. Columns in the shot catalog view 183
14. User-defined types created by the DB2

extenders 197
15. DB2 Extender UDFs 198
16. SQLSTATE codes and associated

message numbers 521
17. Environment variables for DB2

extenders 557

© Copyright IBM Corp. 1996, 2000 xi

xii IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

About this book

This book describes how to use DB2 extenders to prepare and maintain a
DB2® database for image, audio, or video data. It also describes how you can
use user-defined functions (UDFs) and application programming interfaces
(APIs) provided by DB2 extenders to access and manipulate these types of
data. By incorporating UDFs in your program’s SQL statements, and
incorporating APIs, you can access nontraditional data, such as images and
video clips, and traditional numeric data and character data.

References in this book to ″DB2″ refer to DB2 UDB.

Who should use this book

This book is intended for DB2 database administrators who are familiar with
DB2 administration concepts, tools, and techniques.

This book is also intended for DB2 application programmers who are familiar
with SQL and with one or more programming languages that can be used for
DB2 application programs.

This book is for people who will work with the DB2 Image, Audio, and Video
Extenders. People who work with the Text Extender should see DB2 Text
Extender Administration and Programming.

How to use this book

This book is structured as follows:
“Part 1. Introduction”
This part gives an overview of the DB2 extenders. Read this part if you are
new to administering or programming with the DB2 extenders.
“Part 2. Administering Image, Audio, and Video Data”
This part describes how to prepare and maintain a DB2 database for
image, audio, and video data. Read this part if you need to administer a
DB2 database that contains image, audio, or video data.
“Part 3. Programming for Image, Audio, or Video Data”
This part describes how to use the DB2 extender UDFs and APIs to request
operations on image, audio, or video data. Read this part if you need to
access and manipulate image, audio, or video data in a DB2 application
program.
“Part 4. Reference”

© Copyright IBM Corp. 1996, 2000 xiii

This part presents reference information for DB2 extender UDFs, APIs,
administrative commands, and diagnostic information such as messages
and codes. Read this part if you are familiar with DB2 extender concepts
and tasks, but need information about a specific DB2 extender UDF, API,
command, message, or code.
“Appendixes”
The appendixes describe:
– How to set environment variables that are used by the DB2 extenders to

find files and to identify display or player programs for image, audio,
and video objects

– How to install and use sample programs and media files that are
provided with the extenders

Platform-specific information

DB2 Extenders can be used in conjunction with the single-partition database
environment of DB2 Universal Database, or with the multi-partition database
environment of DB2 Universal Database Enterprise-Extended Edition.

This book contains information on using DB2 extenders in either environment.
Information that pertains only to using the extenders in the multipartition
environment of DB2 Universal Database Enterprise-Extended Edition is
marked ″EEE Only.″ Information that pertains only to using the extenders in
the single partition environment of DB2 Universal Database is marked
″Non-EEE Only.″ Information that is not marked as pertaining to a specific
environment applies to both environments.

Highlighting conventions

This book uses the following conventions:

Bold Bold text is used to indicate a definition of a new term.

Italics Italics indicate variable parameters that are to be replaced with a
value, or it emphasizes words that are used in text.

UPPERCASE
Uppercase letters indicate:
v Data types
v Directory names
v Field names
v API calls
v Commands
v Keywords
v Variable names

xiv IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Example
Example text indicates a system message or value you type. Example
text is also used for coding examples.

How to read the syntax diagrams

Throughout this book, command, and SQL syntax are described using syntax
diagrams. Read the syntax diagrams as follows:
v Read the syntax diagrams from left to right and top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the
next line.
The �─── symbol indicates that a statement is continued from the previous
line.
The ──�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required item ��

v Optional items appear below the main path.

��
optional item

��

v If you can choose from two or more items, they appear in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� required choice1
required choice2

��

If choosing none of the items is an option, the entire stack appears below
the main path.

��
optional choice1
optional choice2

��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items.

About this book xv

�� "

optional choice1
optional choice2

��

v Keywords appear in uppercase (for example, /DB2IMAGE:). They must be
spelled exactly as shown. Variables appear in lowercase (for example,
srcpath). They represent user-supplied names or values in the syntax.

v If punctuation marks, parentheses, arithmetic operators, or other such
symbols are shown, you must enter them as part of the syntax.

Related information

DB2 Universal Database

Quick Beginnings, GC09-2968 (OS/2®), GC09-2971 (Windows®),
GC09-2970 (UNIX). These books describe how to plan for, install,
configure, and migrate DB2 Universal Database on the appropriate
platform.
DB2 Universal Database Enterprise-Extended Edition Quick Beginnings,
GC09-2964 (AIX®), GC09-2963 (Windows). These books describe how to
plan for, install, and configure DB2 Universal Database
Enterprise-Extended Edition on the appropriate platform.
Administration Guide: Planning, (Volume 1), SC09-2946. This book
provides an overview of database concepts, information about design
issues (such as logical and physical database design), and a discussion
of high availability
Administration Guide: Implementation, (Volume 2), SC09-2944. This book
provides information on implementation issues such as implementing
your design, accessing databases, auditing, backup and recovery.
Administration Guide: Performance, (Volume 3), SC09-2945. This book
provides information on database environment and application
performance evaluation and tuning.
Application Development Guide, SC09-2949. This book describes how to
develop applications that access DB2 databases using embedded SQL or
JDBC. It also describes how to write stored procedures and
user-defined functions, how to define user-defined types, and how to
use triggers.
CLI Guide and Reference, SC09-2950. This book describes how to develop
applications that access DB2 databases using the DB2 Call Level
Interface, a callable SQL interface that is compatible with the Microsoft
ODBC specification.

xvi IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|

|

|

|

|

|

Command Reference, SC09-2951. This book describes how to use the DB2
command line processor and gives reference information about DB2
commands.
Message Reference, GC09-2978 and GC09-2979. This book lists and
describes the messages and codes used by DB2, and describes actions a
user can take to recover from the specified error or problem.

DB2 Universal Database Text Extender

DB2 Universal Database Text Extender Administration and Programming,
Version 7, SC26-9930. This book describes how to administer a DB2
database for text data. It also describes how to use application
programming interfaces that are provided by the DB2 Text Extender to
access and manipulate text data.

DB2 Universal Database XML Extender

DB2 Universal Database XML Extender Administration and Programming.
This book describes how to administer a DB2 database for XML
documents. It also describes how to use application programming
interfaces that are provided by the DB2 XML Extender to access and
manipulate XML documents and data.

DB2 Universal Database Spatial Extender

Spatial Extender User’s Guide and Reference, SC27-0701. This book
provides information about installing, configuring, administering,
programming, and troubleshooting the Spatial Extender. Also provides
significant descriptions of spatial data concepts and provides reference
information (messages and SQL) specific to the Spatial Extender..

DB2 Universal Database for OS/390 Image, Audio, and Video Extenders

DB2 Universal Database for OS/390 Version 6 Image, Audio, and Video
Extenders Administration and Programming, SC26-9650. This book
describes how to administer a DB2 for OS/390 database server for
image, audio, and video data. It also describes how to use user-defined
functions and application programming interfaces that are provided by
the DB2 for OS/390 Image, Audio, and Video Extenders to access and
manipulate image, audio, and video data.

DB2 Universal Database for OS/390 Text Extender

DB2 Universal Database for OS/390 Version 6 Text Extender Administration
and Programming, SC26-9651. This book describes how to administer a
DB2 for OS/390 database server for text data. It also describes how to
use user-defined functions and application programming interfaces that
are provided by the DB2 for OS/390 Text Extender to access and
manipulate text data.

World Wide Web

DB2 extenders web site. This web site contains information about the
DB2 extenders as well as technologies that are pertinent to the
extenders. The URL of the DB2 extenders home page is:

About this book xvii

|

|

|
|

|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/software/data/db2/extenders

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 extenders
documentation. You can use any of the following methods to provide
comments:
v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/data/db2/extenders

The Web site has a feedback page that you can use to enter and send
comments.

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to
include the name of the product, the version number of the product, and
the name and part number of the book (if applicable). If you are
commenting on specific text, please include the location of the text (for
example, a chapter and section title, a table number, a page number, or a
help topic title).

v Mail comments to:

IBM Corporation,
Department HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

v Fax comments to 800-426-7773 (in the United States or Canada).
v Give comment to an IBM representative.

When you send information to IBM, you grant IBM a nonexclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

For more information on contacting IBM, see “Contacting IBM” on page 593.

xviii IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|

|

Part 1. Introduction

Chapter 1. Overview 3
Exploiting DB2 3
Powerful new ways to search for information 4
The DB2 extenders 4
The SDK and run-time environments 5
Using the extenders 5
Examples 5

Example 1: Retrieving a video by its
characteristics 6
Example 2: Searching for images by content 8

Operating environments 11

Chapter 2. DB2 extender concepts. . . . 13
Object-oriented concepts 13

Large objects 14
User-defined types 14
User-defined functions 15
UDF and UDT names 16

Function path 16
Overloaded function names 16

Triggers 16
Extender data structures 17

Administrative support tables 17
Handles 19
QBIC catalogs 19
Video indexes 21
Shot catalogs 21

Partitioned database concepts (EEE only) . . 22
Parallel processing 24
Scalability 24
Using DB2 extenders in a partitioned
database environment 24

Security and recovery 24

Chapter 3. How the extenders work . . . 27
An extender scenario 27
Starting extender services 28
Preparing a database 28
Preparing a table 30
Altering a table 31
Inserting data into a table 32
Selecting data from a table 34
Displaying and playing objects. 35
Updating data in a table 36
Deleting data from a table 37

© Copyright IBM Corp. 1996, 2000 1

2 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 1. Overview

DB2 (DB2) Universal Database (UDB) is a powerful, object-relational database
manager. It stores and protects traditional numeric and character data, as well
as large, complex objects (LOBs). DB2 extenders help you exploit DB2 ’s
object-relational features. The extenders define distinct data types and special
functions for image, audio, video, and text objects. By doing this, the
extenders save you the time and effort of defining these data types and
functions in your applications. The data types and functions are available
through SQL. Because of that, the extenders give your applications a single
point of access to any or all of these types of data, along with traditional
numeric and character data. In addition, the extenders give your applications
new ways to search for information. For example, your applications can
search for images by their visual characteristics, using visual examples of
color or texture.

Exploiting DB2

The DB2 extenders exploit the object-oriented features of DB2. In particular,
with DB2 you can:
v Store LOBs of up to 2 gigabytes in a DB2 database.
v Define distinct data types for these large, complex objects. You use these

user-defined types (UDTs) to identify the type of data that is represented by
an object, for example, an image or an audio.

v Define specific functions that can be requested on a user-defined type of
data. For example, you can define a function to count the number of colors
in an image or to get the sampling rate of an audio. You request these
user-defined functions (UDFs) in an SQL statement in the same way as
other SQL functions.

The DB2 extenders create UDTs and UDFs for image, audio, video, and text
objects. The UDTs and UDFs can be important aids in helping you:
v Develop applications. Because the extenders define the data types and

functions, you do not have to define them in your applications.
v Ensure consistency. The same set of extender UDTs and UDFs are available

to all of your applications. This offers a ready-made level of consistency
that might otherwise be difficult to achieve across applications that handle
large objects.

v Create powerful queries. Because the UDFs are requested in the same way
as other SQL functions, your applications can include multi-data-type
queries. One SQL statement can access image, audio, video, and text

© Copyright IBM Corp. 1996, 2000 3

|

|

|
|

|

|
|
|

|
|
|
|
|

objects, together with traditional numeric and character data. You can
specify UDFs and UDTs in embedded SQL statements as well as in DB2
Call Level Interface (DB2 CLI) calls.

And because the objects that the extenders process can be stored in a DB2
database, the same security, integrity, and recovery protections are in place for
those objects as for traditional data types stored in the database.

In addition, the DB2 extenders exploit the partitioned database environment
of DB2 Universal Database Enterprise- Extended Edition. Partitioning allows
applications to use a database that is too large for a single computer.
Partitioning also allows SQL operations to perform in parallel, thereby
speeding up SQL queries or utilities.

Powerful new ways to search for information

The DB2 extenders give your applications a lot of flexibility in searching for
information. Your applications can search for objects that are associated with
traditional types of data that are stored in a database. For example, they can
search for an audio clip by its description or by the date it was recorded. Your
applications can also search for objects by their inherent characteristics, such
as the playing time of a video clip. The extenders automatically determine
and store these characteristics for use in searches.

Your applications can even search for images by content. Imagine an
application that uses visual examples to search for images. With such an
application, users could select an example image and have the application
find other images that have colors or textures similar to those in the example.
With DB2 extenders’ Query by Image Content (QBIC) capability, you can
create applications that search for images in this visual way.

The DB2 extenders

The DB2 extenders comprise a separate Image Extender, Audio Extender,
Video Extender, and Text Extender.

This book covers the Image, Audio, and Video Extenders. All further
references to “extenders” or “DB2 extenders” in this book refer to the Image,
Audio, and Video Extenders, unless otherwise noted. For information about
the Text Extender, see Text Extender Administration and Programming. For
information about the XML Extender, see XML Extender Administration and
Programming.

DB2 extenders

4 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

The SDK and run-time environments

The DB2 extenders installation package provides a Software Developers Kit
(SDK) and client and server run-time environments. You can develop DB2
extender applications on a client or server machine in which you have
installed the DB2 extender SDK.

You can run DB2 extender applications in a server machine that includes the
DB2 extender client run-time code and server run-time code. (The client
run-time code is automatically installed when you install the server run-time
code.) You can also run DB2 extender applications on a client machine in
which the DB2 extender client run-time code is installed. If you run an
extender application from a client machine, you need to ensure that a
connection can be made to the server.

Using the extenders

You can request the extender UDFs in a DB2 application program, or you can
request them interactively using the DB2 command-line processor.

The extenders also provide the following application programming interfaces
(APIs):
v Administrative APIs to prepare and maintain a database for image, audio,

and video data.
v Display and play APIs to display images and play video and audio clips.
v QBIC APIs to prepare images for, and request searches by content. (A

content search can also be requested through UDFs.)
v Video shot detection APIs to identify sequences of frames that are based on

scene changes in a video.

The DB2 extenders also provide a command-line processor that you use to
issue administrative commands. To differentiate the command-line processor
provided by the extenders from the command-line processor provided by
DB2, we’ll refer to the former as the “db2ext command-line processor ” and
the latter as the “DB2 command-line processor”.

Examples

An advertising agency maintains a DB2 database of its advertisements. In the
past, the agency stored numeric and character data about each ad campaign,
such as the name of the client and the date that an advertisement was
completed. With the installation of DB2 UDB and the DB2 extenders, the
agency now also stores the content of the advertisements in the database. This
includes images of print advertisements, videos of television advertisements,
and recordings of radio advertisements. As Figure 1 on page 6 shows, all of

Extenders

Chapter 1. Overview 5

|

the related advertising information is in one database table that is named
ADS.

Example 1: Retrieving a video by its characteristics
An account manager in the advertising agency needs to see the video
advertisements created for the IBM account in 1997, but only advertisements
whose duration is 30 seconds or less.

Figure 2 on page 7 shows a query that accesses the videos. Notice that the
Video Extender UDFs named Filename and Duration in the query.

Figure 1. A multimedia database table. The table contains image, audio, and video data as well as traditional data
types. A video, audio, and image are shown.

Examples

6 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

The query returns the file names of the desired videos. The account manager
can then start his favorite video player and play the content of each video file.

Figure 2 is an example of a query that the account manager can issue
interactively. More typically, the account manager would use an application
program to find and play videos. For example, Figure 3 shows some key
elements of such an application coded in C. The application retrieves the
video file names in a DB2 host variable named hvVid_fname. Also notice that
the application uses a play API, named DBvPlay, to play the videos.

SELECT FILENAME(ADS_VIDEO)
FROM ADS
WHERE CLIENT='IBM' AND
SHIP_DATE>='01/01/1997' AND
DURATION(ADS_VIDEO) <=30

Figure 2. A query that accesses videos

#include <dmbvideo.h>

int count = 0;

EXEC SQL BEGIN DECLARE SECTION;
char hvClient[30]; /*client name*/
char hvCampaign[30]; /*campaign name*/
char hvSdate[8]; /*ship date*/
char hvVid_fname [251] /*video file name*/
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c1 CURSOR FOR
SELECT CLIENT, CAMPAIGN, SHIP_DATE, FILENAME(ADS_VIDEO)

FROM ADS
WHERE CLIENT='IBM' AND

SHIP_DATE≥'01/01/1997' AND
DURATION(ADS_VIDEO)≤30

FOR FETCH ONLY;

Figure 3. An application that accesses and plays videos (Part 1 of 2)

Examples

Chapter 1. Overview 7

Example 2: Searching for images by content
A graphic illustrator in the advertising agency is developing a new print
advertisement for a client. The illustrator wants to use a particular shade of
blue in the background of the advertisement, and wants to see if the color has
been used before in printed advertisements created by the agency. To do that,
the graphic illustrator runs an application that searches for images by content.
The images are stored in a database table (see Figure 1 on page 6). The
application asks the user to supply a visual example, that is, an image that
demonstrates the color of interest. The application then analyzes the color in
the example and finds images whose color best matches the example.

Figure 4 on page 9 shows a visual example and the retrieved images that most
closely match its color.

EXEC SQL OPEN c1;
for (;;){

EXEC SQL FETCH c1 INTO :hvClient, :hvCampaign,
:hvSdate, :hvVid_fname;

if (SQLCODE != 0)
break;

printf("\nRecord %d:\n", ++count);
printf("Client = '%s'\n", hvClient);
printf("Campaign = '%s'\n", hvCampaign);
printf("Sdate = '%s'\n", hvSdate);

rc=DBvPlay(NULL,MMDB_PLAY_FILE,hvVid_fname,MMDB_PLAY_WAIT);
}
EXEC SQL CLOSE c1;

Figure 3. An application that accesses and plays videos (Part 2 of 2)

Examples

8 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Figure 5 on page 10 shows some key elements of the application. Notice that
the application uses a QBIC API named QbQueryCreate to create a QBIC
query, QbQueryAddFeature and QbQuerySetFeatureData to add the color
selection to the query, QbQuerySearch to issue the query, and QbQueryDelete to
delete the query. The application also uses a graphical API, named DBiBrowse,
to display the retrieved images.

Figure 4. Searching for images by content. A visual example is used to search for images by average color.

Examples

Chapter 1. Overview 9

#include <dmbqbqpi.h>

#define MaxQueryReturns 10

static SQLHENV henv;
static SQLHDBC hdbc;
static SQLHSTMT hstmt;
static SQLRETURN rc;

void main(int argc, char* argv[])
{
char line[4000];
char* handles[MaxQueryReturns];
QbQueryHandle qHandle=0;
QbResult results[MaxQueryReturns];
SQLINTEGER count;
SQLINTEGER resultType=qbiArray;

SQlAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, (SQLCHAR*)"qtest", SQL_NTS,

(SQLCHAR*)"", SQL_NTS, (SQLCHAR*)"", SQL_NTS);

if (argc !=2) {
printf("usage: query colorname\n");

exit(1);
}

QbImageSource is;
is.type = qbiSource_AverageColor;

/* run the get color subroutine */
getColor(argv[1], is.average.Color);

QbQueryCreate(&qhandle);
QbQueryAddFeature(qhandle, "QbColorFeatureClass");
QbQuerySetFeatureData(qhandle, "QbColorFeatureClass",&is);
QbQuerySearch(qhandle, "ADS", "ADS_IMAGE", 10, 0, resultType

&count, results);
for (int j = 0; j <count; j++) {
printf(j,":\n");

DBiBrowse("usr/local/bin/xv %s", MMDB_PLAY_HANDLE, handles[j],
MMDB_PLAY_WAIT);

}

Figure 5. An application that searches for images by content (Part 1 of 2)

Examples

10 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Operating environments

The DB2 extenders Version 7 operate with DB2 Universal Database Version 7.1
(or higher) in a client/server environment. The minimum version and release
levels that are required for the supported platforms are the same as those for
DB2 Universal Database Version 7.1.

The supported client platforms are: OS/2, AIX, Windows NT® and later,
Windows 95, Windows 98, Solaris Operating Environment, and HP-UX.

The supported servers are: OS/2, AIX, Windows NT and later, Solaris
Operating Environment, and HP-UX.

Figure 6 on page 12 shows the supported platforms.

Another DB2 extenders product, DB2 Universal Database for OS/390
Extenders supports OS/390 clients and servers. For more information about
DB2 Universal Database for OS/390 Extenders, see DB2 Universal Database for
OS/390 Image, Audio, and Video Extenders Administration and Programming or
DB2 Universal Database for OS/390 Text Extender Administration and
Programming.

The DB2 extenders can operate in a single-partition database environment.

EEE Only: The extenders can also operate in a multipartition database
environment on the following platforms: AIX, Solaris Operating Environment,
and Windows NT and later.

To operate in a multipartition database environment DB2 extenders must be
used with DB2 Universal Database Enterprise-Extended Edition.

QbQueryDelete(qhandle);

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);
}

Figure 5. An application that searches for images by content (Part 2 of 2)

Examples

Chapter 1. Overview 11

|
|
|
|

|
|

|
|

|
|

|

Figure 6. DB2 extender platforms

Examples

12 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 2. DB2 extender concepts

This chapter describes concepts that you need to understand before using the
DB2 extenders.

Topic See

Object-oriented concepts Page 13
Extender data structures Page 17
Partitioned database concepts Page 22
Extender security and recovery Page 24

For more information about object-oriented concepts, see the DB2 Application
Development Guide.

Object-oriented concepts

DB2 supports object orientation, the concept that anything, real or abstract,
can be represented in an application as an object that comprises a set of
operations and data values. For example, a document can be represented by a
document object that comprises document data and operations that can be
performed on the document, such as filing, sending, and printing. A video
clip can be represented by a video object that comprises video data and
operations such as playing the video clip or finding a specific video frame.
Like real-world objects, representational objects have attributes. For example,
a video object can be given attributes such as compression type and sampling
rate.

Objects can be grouped together into types. Objects of the same type have the
same attributes and behave in the same way, that is, they are associated with
the same operations. For example, if a video type is defined to have a
compression type attribute, then all objects of the video type have that
attribute. If an object of the video type can be played, then all objects of the
video type can be played.

DB2’s support for object orientation allows you to store instances of object
types in columns of tables, and operate on them by means of functions in SQL
statements. For example, you can store video objects in a table column and
operate on them using SQL functions. In addition, you can share the attributes
and behavior of the stored objects among your applications. All the
applications “see” the same set of attributes and behavior for the same object
type.

© Copyright IBM Corp. 1996, 2000 13

Video objects are typically large and complex. So too are image and audio
objects. As part of its support for object orientation, DB2 allows you to store
large objects (LOBs) in a database. It also gives you ways to define and
manipulate LOBs through user-defined types (UDTs), user-defined functions
(UDFs), and triggers.

Large objects
DB2 allows you to store large objects (LOBs) in a database as:
v Binary large objects (BLOBs)
v Character large objects (CLOBs)
v Double-byte character large objects (DBCLOBs)

BLOBs are binary strings. Image, audio, and video objects are stored as BLOBs
in a DB2 database. CLOBs are character strings made up of single-byte
characters with an associated code page. This data type is used for text objects
that contain single-byte characters. DBCLOBs are character strings made up of
double-byte characters with an associated code page. This data type is used
for text objects where double-byte characters are used.

Each LOB can be up to two gigabytes in length; however, DB2 allows many
LOB columns per table. You can store up to 24 gigabytes of LOB space per
row and up to 4 terabytes of LOB space per table.

Because of its size, a LOB’s content is not directly stored in the user’s table.
Instead each LOB is identified in the table by a large object descriptor. The
descriptor is used to access the large object stored elsewhere on the disk.

The DB2 extenders give you the added flexibility of keeping the content of a
LOB in a file and pointing to it from the database. You make this designation
when you use a DB2 extender to store an object.

User-defined types
Image, video, and audio objects are represented in the database as BLOBs. A
user-defined type (UDT), also known as a distinct type, provides a way to
differentiate one BLOB from another. For example, a UDT can be created for
image objects and another for audio objects. Though stored as BLOBs, the
image and audio objects are treated as types distinct from BLOBs and distinct
from each other.

You create UDTs with an SQL CREATE DISTINCT TYPE statement. For
example, suppose you are developing an application that processes
geographic features on maps. You can create a distinct type named map for
map objects as follows:
CREATE DISTINCT TYPE map AS BLOB (1M)

Object-oriented concepts

14 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

The map-type object is represented internally as a BLOB of 1 megabyte in
length, but is treated as a distinct type of object.

You can use UDTs like SQL built-in types to describe the data stored in
columns of tables. In the following example, a table is created with a column
designed to hold map-type data:
CREATE TABLE places

(locid INTEGER NOT NULL,
location CHAR (50),
grid map)

Each DB2 extender creates a UDT for its type, that is, image, audio, and
video.

User-defined functions
A user-defined function (UDF) is a way to create SQL functions and thus add
to the set of built-in functions supplied with DB2. In particular, you can create
UDFs that perform operations unique to image, audio, and video objects. For
example, you can create UDFs to get the compression format of a video or
return the sampling rate of an audio. This provides a way of defining the
behavior of objects of a particular type. Video objects, for example, behave in
terms of the functions created for the video type, and image objects behave in
terms of the functions created for the image type.

You create UDFs with an SQL CREATE FUNCTION statement. The statement
specifies, among other things, the data type to which the UDF can be applied.
For example, the following statement creates a UDF named map_scale that
calculates the scale of a map. Notice that the UDF identifies map as the data
type to which it can be applied. The code that implements the function is
written in C and is identified in the EXTERNAL NAME clause:
CREATE FUNCTION map_scale (map)

RETURNS SMALLINT
EXTERNAL NAME 'scale!map'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION

UDFs can be used in an SQL statement in the same way as built-in functions.
In the following example, the map_scale UDF is used in an SQL SELECT
statement to return the scale of a map stored in a table column named grid:
SELECT map_scale (grid)

FROM places
WHERE location='SAN JOSE, CALIFORNIA'

Each DB2 extender creates a set of UDFs for its type, that is, image-specific,
audio-specific, and video-specific UDFs. You use these UDFs in SQL

Object-oriented concepts

Chapter 2. DB2 extender concepts 15

statements to request extender functions such as storing an image in a table,
getting the frame rate of a video, or adding comments about an audio.

UDF and UDT names
The full name of a DB2 function is schema-name.function-name, where
schema-name is an identifier that provides a logical grouping for SQL objects.
The schema name for DB2 extender UDFs is MMDBSYS. The MMDBSYS
schema name is also the qualifier for the DB2 extender UDTs.

You can use the full name anywhere you refer to a UDF or a UDT. For
example, MMDBSYS.CONTENT identifies a UDF whose schema name is
MMDBSYS and whose function name is CONTENT. MMDBSYS.DB2IMAGE
identifies a UDT whose schema is MMDBSYS and whose distinct-type name
is DB2IMAGE. You can also omit the schema name when you refer to a UDF
or UDT; in this case, DB2 uses the function path to determine the function or
distinct data type that you want.

Function path
The function path is an ordered list of schema names. DB2 uses the order of
schema names in the list to resolve references to functions and distinct data
types. You can specify the function path by specifying the SQL statement SET
CURRENT FUNCTION PATH. This sets the function path in the CURRENT
FUNCTION PATH special register.

For the DB2 extenders, it is a good idea to add the mmdbsys schema to the
function path. This allows you to enter DB2 extender UDF and UDT names
without having to prefix them with mmdbsys. The following is an example of
adding the mmdbsys schema to the function path:
SET CURRENT FUNCTION PATH = mmdbsys, CURRENT FUNCTION PATH

Do not add mmdbsys as the first schema in the function path if you log on
as mmdbsys: If you log on with the mmdbsys user ID, the first schema in
your function path is set to mmdbsys. If you then try to set the first schema in
the function path to mmdbsys with a SET CURRENT FUNCTION PATH
statement, your function path will begin with two mmdbsys schemas—an
error condition.

Overloaded function names
Function names can be overloaded. This means that multiple UDFs, even in
the same schema, can have the same name. However, two functions cannot
have the same signature. A signature is the qualified function name
concatenated with the defined data types of all the function parameters.

Triggers
A trigger defines a set of actions that are activated by a change to a table.
Triggers can be used to perform actions such as validating input data,
automatically generating a value for a newly inserted row, reading from other

Object-oriented concepts

16 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

tables for cross-referencing purposes, or writing to other tables for auditing
purposes. Triggers are often used for integrity checking or to enforce business
rules.

You create a trigger using an SQL CREATE TRIGGER statement. The
following statement creates a trigger to enforce a business rule regarding parts
inventory. The trigger reorders a part when the number on hand is less than
ten percent of the maximum number stocked.
CREATE TRIGGER reorder

AFTER UPDATE OF on_hand, max_stocked ON parts
REFERENCING NEW AS n_row
FOR EACH ROW MODE DB2SQL

WHEN (n_row.on_hand < 0.10 * n_row.max_stocked)
BEGIN ATOMIC

VALUES(issue_ship_request(n_row.max_stocked -
n_row.on_hand,
n_row.partno));

END

The DB2 extenders create and maintain administrative support tables to
record information about image, audio, and video data stored in a database.
(See “Administrative support tables” for more information about these tables.)
The extenders use triggers to update these tables when image, audio, or video
data is inserted into, updated in, or deleted from a database.

Extender data structures

The Image, Audio, and Video Extenders create and use administrative support
tables and handles to store and access image, audio, and video data. The
Image Extender also creates and uses QBIC catalogs to access images by
content. The Video Extender also uses index files and shot catalogs to access
information about scene changes in a video.

Administrative support tables
Administrative support tables, also called metadata tables, contain the
information that the extenders need to process user requests on image, audio,
and video objects. The information in administrative support tables is often
referred to as “metadata”.

As Figure 7 on page 18 illustrates, some of the administrative support tables
identify user tables and columns that are enabled for an extender. These tables
reference other administrative support tables that are created to hold attribute
information about objects in enabled columns. In these tables, the extenders
maintain information about attributes that are unique to a particular
extender-defined data type, as well as information about attributes that are
common across extender data types. For example, the Image Extender
maintains information about the width, height, and number of colors in an

Object-oriented concepts

Chapter 2. DB2 extender concepts 17

image, as well as information about attributes common to image, audio, and
video objects, such as the identification of the person who imported the object
into the database or who last updated the object.

The administrative support tables can also contain the contents of stored
objects in BLOB format. Alternatively, an object can be kept in a file and
referenced by the administrative support tables. For example, a video clip can
be stored as a BLOB in an administrative support table or kept in a file that is
referenced by the table.

Figure 7. Administrative support tables

Data structures

18 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Handles
When you store an image, audio, or video object in a user table, the object is
not actually stored in the table. Instead, an extender creates a character string
called a handle to represent the object, and stores the handle in the table. The
extender stores the object in an administrative support table, or stores a file
identifier in an administrative support table if you keep the content of the
object in a file. It also stores the object’s attributes and handle in
administrative support tables. In this way, the extender can link the handle
stored in a user table with the object information stored in the administrative
support tables. Figure 8 illustrates the information stored for two images in a
user table.

QBIC catalogs
A QBIC catalog is a set of files that hold data about the visual features of
images. The Image Extender uses this data to search for images by content.

You create a QBIC catalog for each column of images in a user table that you
want to make available for searching by content. When you create a QBIC
catalog you identify the features for which you want the Image Extender to
analyze, store, and later query data. You can also add or drop features from a
QBIC catalog after the catalog is created.

Figure 8. Handles

Data structures

Chapter 2. DB2 extender concepts 19

A QBIC catalog can hold data for the following image features:

Average color The sum of the color values for all pixels in an image divided
by the number of pixels in the image. (A pixel is the smallest
element of an image that can be assigned color and intensity.)
For example, if 50% of an image consists of blue pixels and
the other 50% red pixels, the image has an average color value
of purple. Average color is used to search for images that have
a predominant color. If an image has a predominant color, the
average color will be similar to the predominant color.

Histogram color
Measures the distribution of colors in an image against a
spectrum of 64 colors. For each of the 64 colors, histogram
color identifies the percentage of pixels in an image that have
that color. For example, the histogram color of an image might
be 40% white pixels, 50% blue, and 10% red; none of the
pixels in the image have any of the remaining colors in the
histogram spectrum. Histogram color is used to search for
images that have a variety of colors.

Positional color
The average color value for the pixels in a specified area in an
image. For example, the upper right-hand corner of an image
might show a bright yellow sun; the positional color of this
area of the image is bright yellow. Positional color is used to
search for images that have a predominant color in a
particular area.

Texture Measures the coarseness, contrast, and directionality of an
image. Coarseness indicates the size of repeating items in an
image (for example, pebbles versus boulders). Contrast
identifies the brightness variations in an image (light versus
dark). Directionality indicates whether a direction
predominates in an image (as in the vertical direction of a
picket fence) or does not predominate (as in an image of
sand). Texture is used to search for images that have a
particular pattern.

To make an image available for searching by content, you catalog the image.
When you catalog an image, the Image Extender analyzes the image, by
computing the feature values for the image, and stores the values in a QBIC
catalog.

When you search for an image by content, your query identifies one or more
features for the search (such as average color), a source for each feature (such
as an example image), and a target set of cataloged images. The Image
Extender computes the feature value of the source and compares it to the

Data structures

20 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

cataloged feature values for the target images. It then computes a score that
indicates how similar the feature values of the target images are to the source.

You can have the Image Extender return the images whose features are most
similar to the source. The Image Extender will return the handle of each
image and the image score. You can also have the Image Extender return only
the score of a single image.

Video indexes
A video index is a file that the Video Extender uses to find a specific shot or
frame in a video clip.

The Video Extender can detect scene changes in a video. A scene change is a
point in a video clip where there is a significant difference between two
successive frames. This happens, for example, when a camera changes its
point of view while recording a video. The frames between two scene changes
constitute a shot.

You can use the Video Extender’s scene detection capabilities to find a shot, or
even an individual frame, in a video clip. To do this, the extender needs
indexing information for the shot or frame. This indexing information is
stored in an index file.

Shot catalogs
A shot catalog is used to store data about shots in a video clip. The shot
catalog can be stored in a database or in a file.

A shot catalog stored in a file contains the following shot-related data:
v Shot catalog file name
v Values that control how the Video Extender detects a shot, for example, the

minimum number of frames in a shot
v Values that control how many frames and which frames will be stored as

representative frames for a shot
v Shot number
v Starting frame number
v Ending frame number
v Representative frame number
v Name of a file that contains the contents of the representative frame

You can access the data in the shot catalog file or access a view of the shot
catalog stored in a database. The view contains columns for the following
shot-related data:
v Shot handle
v Video table name

Data structures

Chapter 2. DB2 extender concepts 21

v Video column names
v Video handle
v Video file name
v Starting frame number
v Ending frame number
v Representative frame number
v Representative frame data
v Comment

Partitioned database concepts (EEE only)

DB2 extenders can operate with DB2 Extended Enterprise Edition, and in this
way take advantage of the partitioned database support provided by DB2
Extended Enterprise Edition.

A partitioned database is a database that is distributed across two or more
independent machines. To the end-user and application developer, the
database appears as a single database on a single machine. Partitioning allows
applications to efficiently use a database that is simply too large to be handled
by one machine.

A partitioned database is composed of two or more partitions. Each partition
is managed by its own database partition server. A database partition server
includes a database manager and the collection of data and system resources
that it manages. Typically, one database partition server is assigned to each
machine. However, it is possible to have multiple database partition servers
on a single machine. Each database partition server holds a portion of the
entire database. A database partition server is also sometimes called a node.

As Figure 9 on page 23 illustrates, database partitions can be grouped logically
and assigned a name. Each group of database partitions is known as a
nodegroup. Defining nodegroups allows you, for example, to limit application
queries to selected database partitions, and thereby speed up transaction
times. A nodegroup can contain one database partition only, or it can contain
multiple database partitions. If a nodegroup contains multiple database
partitions, it is known as a multipartition nodegroup. All database partitions
named to a multipartition nodegroup must reside within the same database.

Data structures

22 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Using the extenders in a partitioned database system means you can:
v Reduce input/output and processing bottlenecks by distributing data across

multiple partitions.
v Increase your database size by adding more machines and redistributing

data across them.

Nodegroup 3

Nodegroup 2

Nodegroup 1

Database

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Figure 9. Nodegroups in a database

Partitioned database concepts

Chapter 2. DB2 extender concepts 23

Parallel processing
A partitioned database can use multiple CPUs to satisfy requests for
information. Retrieval and update requests are automatically allocated into
sub-requests and executed in parallel on the database partition servers on
each machine.

As an illustration of the power of processing in a partitioned database system,
assume that you have 100,000,000 records that you want to scan in a
single-partition database. This scan would require that a single database
manager search 100,000,000 records. Now suppose that these records are
spread evenly over 20 database partition servers; each database manager only
has to scan 5,000,000 records. If each database manager scans at the same time
and with the same speed, the time required to complete the scan should be
approximately 5% of that required of a single-partition system handling this
task.

Scalability
As your database increases in size, you can add database partition servers to
the database system to gain improved performance, a process known as
scaling the database system.

When you scale a database, you add a database partition server, which in turn
adds a database partition to each existing database in the database system.
You can then assign the new database partition to an existing nodegroup for
that database. Finally, you can redistribute data in that nodegroup to make
use of the new database partition.

Using DB2 extenders in a partitioned database environment
By using DB2 extenders in a partitioned database environment, you can
exploit features that support especially well the manipulation of LOBs. Large
repositories of LOBs (which can be up to 2 gigabytes in length each) can be
stored in one database, since a database can be spread across many machines.

Also, DB2 extenders participate in the parallel processing of SQL operations as
managed by DB2 Extended Enterprise Edition. When DB2 Extended
Enterprise Edition runs a query in parallel, any DB2 Extender UDF in the
query is also run in parallel on the individual database partitions.

Security and recovery

Image, audio, and video objects stored as BLOBs in a DB2 database are
afforded the same security and recovery protection as traditional numeric and
character data. So too is the information stored for these objects in metadata
tables. Users must have the required privilege to select, insert, or update
objects.

Partitioned database concepts

24 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

A user issues UDFs to select, insert, update, or delete objects from a user
table. To perform the requested operations, the UDFs must be able to access,
and if necessary update, the administrative support tables that hold attribute
information for the objects. The extenders allow the UDFs to perform these
operations on the administrative support tables if the user has the appropriate
privilege on the user table.

Some extender-related administrative operations require DBADM authority.
See “Chapter 16. Application programming interfaces” on page 267 for the
authority required by DB2 extender administrative APIs. See “Chapter 17.
Administration commands for the client” on page 467 for the authority
required by DB2 extender administrative commands.

When the content of an image, audio, or video is stored in a file referenced
from the database, the metadata for the object is protected by DB2. The file
must be in a directory that can be read by PUBLIC, that is, by all users.

BLOBs and metadata can be backed up and recovered in the same way as
other data in DB2. Object contents stored in a file can be backed up and
recovered using non-DB2 tools. Also, QBIC catalogs and video indexes can be
backed up and recovered using non-DB tools. For information about backing
up a QBIC catalog, see page 132. For information about backing up a video
index, see page 179.

Security/recovery

Chapter 2. DB2 extender concepts 25

Security/recovery

26 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 3. How the extenders work

The DB2 extenders do a lot of work to handle image, audio, and video data
requests. A good way to illustrate how the extenders work is to examine what
they do when you use them. This chapter describes a scenario that includes
the Image and Audio Extenders. It discusses the operations that users perform
and how the extenders respond.

An extender scenario

The personnel department of a company wants to create a personnel database
(in DB2 for AIX) that includes pictures of each employee.

A Database with pictures: As Figure 10 shows, an employee table in the
database will contain the identification and name of each employee, as well as
the employee’s picture.

To prepare the personnel database for image processing, a system
administrator, that is, someone with SYSADM authority, begins by starting
extender services. The system administrator then creates the database and
enables it for use by the Image Extender.

A database administrator (DBA), or someone with equivalent authority,
creates the employee table and then enables it and the employee picture
column for use by the Image Extender.

A Database with sound: After the personnel database and employee table are
prepared for image processing, the personnel department decides to add an
audio recording for each employee to the table. This is shown in Figure 11 on
page 28.

Figure 10. The employee table

© Copyright IBM Corp. 1996, 2000 27

The system administrator alters the table by adding a new column and
enables the database, table, and column for use by the Audio Extender.

Users in the personnel department then insert data into, select and display
data from, update data in, and delete data from the table.

Starting extender services

The extenders use services in the server as part of their operation. If these
services are not already available as a function of normal “start-up”
operations for the server, the system administrator starts them.

What the system administrator does: The system administrator logs on to the
AIX server as the extender instance owner. The system administrator then
issues the following command on the server:
DMBSTART

What happens: Extender services are started for the extender instance on the
server. The DMBSTART command also starts a DB2 instance if it is not
already running.

Preparing a database

The system administrator creates and enables the personnel database for use
by the Image Extender.

Figure 11. The employee table with an audio column added

Scenario

28 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

What the system administrator does: The system administrator creates the
personnel database in DB2 for AIX using the following SQL statement:
CREATE DATABASE personnl /*name of the database*/

ON /persdb /*name of the database directory*/
WITH "Personnel database" /*comment*/

The system administrator connects to the database and enables it for use by
the Image Extender. The system administrator uses the db2ext command-line
processor to issue the following commands:
CONNECT TO personnl
ENABLE DATABASE FOR DB2IMAGE

What happens: In response to the ENABLE DATABASE command, the Image
Extender:
v Creates a user-defined type that is named DB2IMAGE for image objects.
v Creates administrative support tables for image objects.
v Creates user-defined functions for image objects. The UDFs are listed in

Table 1.

Table 1. User-defined functions created by the Image Extender

UDF name Description

Comment Get or update user comments

Content Get or update the content of an image

DB2Image Store the content of an image

Filename Get the name of the file that contains an image

Format Get the image format (for example, GIF)

Height Get the height of an image in pixels

Importer Get the user ID of the importer the of an image

ImportTime Get the timestamp when an image was imported

NumColors Get the number of colors used in an image

QbScoreFromName Get the similarity score of an image (using a named query)

QbScoreFromStr Get the similarity score of an image (using a query string)

QbScoreTBFromName Get a table of similarity scores for a column of images (using a
named query)

QbScoreTBFromStr Get a table of similarity scores for a column of images (using a
query string)

Replace Update the content and user comments for an image

Size Get the size of an image in bytes

Thumbnail Get a thumbnail-sized version of an image

Updater Get the user ID of the updater of an image

Preparing a database

Chapter 3. How the extenders work 29

Table 1. User-defined functions created by the Image Extender (continued)

UDF name Description

UpdateTime Get the timestamp when an image was updated

Width Get the width of an image in pixels

Preparing a table

The DBA creates the employee table and enables it and the picture column for
use by the Image Extender.

What the DBA does: For convenience, the DBA adds the mmdbsys schema in
the current function path by using the following SQL statement:
SET CURRENT FUNCTION PATH = mmdbsys, CURRENT FUNCTION PATH

This allows UDT and UDF names to be specified without having to prefix
them with the mmdbsys schema name. (The mmdbsys schema does not have
to be the first schema in the function path.) See “UDF and UDT names” on
page 16 for more information about UDT and UDF names.

The DBA creates the employee table. The DBA uses the DB2 command-line
processor to issue the following SQL statement:
CREATE TABLE employee /*name of the table*/

(id CHAR(6) /*employee identification*/
name VARCHAR(40) /*employee name*/
picture DB2IMAGE) /*employee picture*/

The DBA then uses the db2ext command-line processor to issue the following
commands:
ENABLE TABLE employee FOR DB2IMAGE
ENABLE COLUMN employee picture FOR DB2IMAGE

What happens: In response to the ENABLE TABLE command, the Image
Extender:
v Identifies the employee table for use.
v Creates administrative support tables that hold attribute information for

image objects in enabled columns.

In response to the ENABLE COLUMN command, the Image Extender:
v Identifies the picture column for use.
v Creates triggers. These triggers update various administrative support

tables in response to insert, update, and delete operations on the employee
table.

Preparing a database

30 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Altering a table

The DBA adds an audio column to the employee table and enables it for use
by the Audio Extender.

What the DBA does: The DBA uses the db2ext command-line processor to
enable the personnel database for use by the Audio Extender:
ENABLE DATABASE FOR DB2AUDIO

The DBA then issues the following SQL statement to alter the employee table.
The DBA uses the DB2 command line processor to issue the SQL statement.
ALTER TABLE employee /*name of the table*/

ADD voice DB2AUDIO /*employee audio recording*/

The DBA uses the db2ext command-line processor to enable the employee
table and the voice column for use by the Audio Extender:
ENABLE TABLE employee FOR DB2AUDIO
ENABLE COLUMN employee voice FOR DB2AUDIO

What happens: In response to the ENABLE DATABASE command, the Audio
Extender:
v Creates a user-defined type that is named DB2AUDIO for audio objects.
v Creates administrative support tables for audio objects.
v Creates user-defined functions for audio objects. The UDFs are listed in

Table 2.

Table 2. User-defined functions created by the Audio Extender

UDF name Description

AlignValue Get the bytes per sample value of the audio

BitsPerSample Get the number of bits used to represent the audio

BytesPerSec Get the average number of bytes per second of audio

Comment Get or update user comments

Content Get or update the content of an audio

DB2Audio Store the content of an audio

Duration Get the playing time of an audio

Filename Get the name of the file that contains an audio

FindInstrument Get the number of the audio track that records a specific
instrument in an audio

FindTrackName Get the track number of a named track in an audio
recording

Format Get the audio format

Altering a table

Chapter 3. How the extenders work 31

Table 2. User-defined functions created by the Audio Extender (continued)

UDF name Description

GetInstruments Get the names of the instruments recorded in an audio

GetTrackNames Get the track names in an audio

Importer Get the user ID of the importer of an audio

ImportTime Get the timestamp when an audio was imported

NumAudioTracks Get the number of recorded tracks in an audio

NumChannels Get the number of audio channels

Replace Update the content and user comments for an audio
recording

SamplingRate Get the sampling rate of the audio

Size Get the size of an audio in bytes

TicksPerQNote Get the number of clock ticks per quarter note used in
recording an audio

TicksPerSec Get the number of clock ticks per second used in
recording an audio

Updater Get the user ID of the updater of an audio

UpdateTime Get the timestamp when an audio was updated

In response to the ENABLE TABLE command, the Audio Extender:
v Identifies the employee table for use.
v Creates administrative support tables that hold attribute information for

audio objects in enabled columns.

In response to the ENABLE COLUMN command, the Audio Extender:
v Identifies the voice column for use.
v Creates triggers. These triggers update various administrative support

tables in response to insert, update, and delete operations on the employee
table.

Inserting data into a table

A user inserts a record for Anita Jones into the employee table. The record
includes Anita’s identification (128557), name, picture, and voice recording.
The source image and audio content are in files on the server. The image is
stored in the table as a BLOB; the content of the audio remains in the server
file (the table entry refers to the server file).

Altering a table

32 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

What the user does: The user inserts the record into the employee table by
using an application program that includes the statements that are shown in
Figure 12.

What happens In response to the DB2Image UDF in the INSERT statement,
the Image Extender:
v Reads the attributes of the image, such as its height, width, and number of

colors, from the source image file header.
v Creates a unique handle for the image, and records in an administrative

support table:
– The handle for the image
– A timestamp
– The image size in bytes
– The comment “Anita’s picture”
– The content of the image

EXEC SQL BEGIN DECLARE SECTION;
long hvInt_Stor;
long hvExt_Stor;
EXEC SQL END DECLARE SECTION;

hvInt_Stor = MMDB_STORAGE_TYPE_INTERNAL;
hvExt_Stor = MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557', /*id*/
'Anita Jones', /*name*/
DB2IMAGE(/*Image Extender UDF*/

CURRENT SERVER, /*database server name in*/
/CURRENT SERVER register*/

'/employee/images/ajones.bmp' /*image source file*/
'ASIS', /*keep the image format*/
:hvInt_Stor, /*store image in DB as BLOB*/
'Anita''s picture'), /*comment*/

DB2AUDIO(/*Audio Extender UDF*/
CURRENT SERVER, /*database server name in*/

/*CURRENT SERVER register*/
'/employee/sounds/ajones.wav', /*audio source file*/
'WAVE', /* audio format */
:hvExt_Stor, /*retain content in server file*/
'Anita''s voice') /*comment*/

);

Figure 12. Inserting data into a table

Inserting data

Chapter 3. How the extenders work 33

The image source is in a server file that is named ajones.bmp. The content
of the file is inserted into the administrative support table record as a
BLOB. The format of the stored image is the same as the source image; no
format conversion is done.

v Stores a record in an administrative support table. The record contains
image-specific attributes, such as the number of colors in the image, as well
as a thumbnail-sized version of the image.

In response to the DB2Audio UDF in the INSERT statement, the Audio
Extender:
v Reads the attributes of the audio, such as the number of audio tracks and

channels, from the audio file header.
v Creates a unique handle for the audio
v Stores a record in an administrative support table. The record contains:

– The handle for the audio
– A timestamp
– The audio size in bytes
– The comment “Anita’s voice”

The audio content is in a server file that is named ajones.wav; the
administrative support table record refers to the file.

v Stores a record in another administrative support table. The record contains
audio-specific attributes such as the sampling rate of the audio.

Triggers insert the image and audio attribute data into various administrative
support tables.

Selecting data from a table

A user retrieves information about how recently Robert Smith’s image and
voice recording were stored in the employee table.

What the user does: The user gets the information by using an application
program that includes the SQL statements that are shown in Figure 13 on
page 35.

Inserting data

34 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

What happens: In response to the ImportTime UDF for the PICTURE column,
the Image Extender returns a timestamp that contains the date and time that
the image was stored. In response to the ImportTime UDF for the VOICE
column, the Audio Extender returns a timestamp that contains the date and
time that the voice recording was stored.

Displaying and playing objects

A user displays Robert Smith’s image and plays Robert Smith’s voice
recording. The image is stored in the employee table as a BLOB; the content
for the voice recording is in a server file.

What the user does: The user displays the image and plays the voice
recording by using an application program that includes the SQL statements
that are shown in Figure 14 on page 36.

EXEC SQL BEGIN DECLARE SECTION;
char[255] hvImg_Time;
char[255] hvAud_Time;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT IMPORTTIME(PICTURE), /*when image was stored*/
IMPORTTIME(VOICE) /*when audio was stored*/
INTO :hvImg_Time, :hvAud_Time
FROM EMPLOYEE
WHERE NAME='Robert Smith';

Figure 13. Selecting data from a table

Selecting data

Chapter 3. How the extenders work 35

What happens: DB2 retrieves the handle of Robert Smith’s image and voice
recording. Then, in response to the DBiBrowse API, the Image Extender gets
the image content associated with the retrieved image handle. The Image
Extender retrieves the image content from the database and puts it into a
temporary client file for display by an image browser. The NULL parameter
indicates that the default image browser for the user’s system will be used.
The browser will run independently of the calling program, meaning that the
calling program will not wait for the image browser to finish before
continuing.

In response to the DBaPlay API, the Audio Extender gets the file name of the
audio associated with the retrieved audio handle and passes the file name to
the audio player. The NULL parameter indicates that the default audio player
for the user’s system will be used. The calling program will wait for the user
to end the audio player before continuing.

Updating data in a table

Anita Jones replaces her picture in the employee table with a more recent
picture. The content of the newer picture is in a server file.

EXEC SQL BEGIN DECLARE SECTION;
char hvImg_hdl [251];
char hvAud_hdl [251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT PICTURE, /*Get image handle*/
VOICE /*Get audio handle*/

INTO :hvImg_hdl, :hvAud_hdl
FROM EMPLOYEE
WHERE NAME='Robert Smith';

rc=DBiBrowse(
NULL, /*Use default image browser*/
MMDB_PLAY_HANDLE, /*Use handle*/
hvImg_hdl, /*Image handle*/
MMDB_PLAY_NO_WAIT); /*Run browser independently*/

rc=DBaPlay(
NULL, /*Use default audio player*/
MMDB_PLAY_HANDLE, /*Use handle*/
hvAud_hdl, /*Audio handle*/
MMDB_PLAY_WAIT); /*Wait for player to end*/

/*before continuing*/

Figure 14. Displaying and playing objects

Displaying and playing objects

36 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

What the user does: The user replaces the picture in the employee table by
using an application program that includes the SQL statements that are shown
in Figure 15.

What happens: In response to the Replace UDF in the UPDATE statement, the
Image Extender reads the attributes of the new image. The Image Extender
uses the attributes of the new image to update the attributes stored in the
administrative support tables for the old image. The image source is in a
server file that is named newone.bmp. The content of the file is inserted into
the administrative support table record as a BLOB, replacing the BLOB
content of the old image.

Triggers replace the image attribute data in various administrative support
tables.

Deleting data from a table

A user deletes Anita Jones’s record from the employee table.

What the user does: The user deletes the record from the employee table by
using an application program that includes the following SQL statement:
DELETE FROM EMPLOYEE

WHERE NAME='Anita Jones';

What happens: Triggers delete entries for Anita Jones in various
administrative support tables.

EXEC SQL BEGIN DECLARE SECTION;
char hvComment [16385];
long hvStorageType;

EXEC SQL END DECLARE SECTION;

strcpy(hvComment, "Picture taken at Anita's promotion");
hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET PICTURE=REPLACE(

PICTURE, /*image handle*/
'/myimages/newone.bmp', /*source image content*/
'BMP', /*source format*/
:hvStorageType, /*store image in table as BLOB*/
:hvComment) /*replace comment*/

WHERE NAME='Anita Jones';

Figure 15. Updating data in a table

Updating data

Chapter 3. How the extenders work 37

Deleting data

38 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Part 2. Administering image, audio, and video data

Chapter 4. Administration overview . . . 41
Administration tasks you can perform with
the DB2 extenders 41

Chapter 5. Managing extender servers . . 47
Establishing the extender environments . . . 47
Adding and dropping database partitions
(EEE only) 48
Stopping and starting extender servers . . . 49
Displaying server status 50
Creating and managing multiple server
instances 50

Creating multiple DB2 extenders server
instances 50
Listing instances 51
Running multiple instances concurrently 51
Setting the current instance 52
Removing instances 52
Migrating instances 52

Chapter 6. Preparing data objects for
extender data 53
Enabling databases. 53

Examples 54
Enabling tables 56
Enabling columns 59
Disabling data objects 60

Chapter 7. Redistributing extender data in
a partitioned database system (EEE only) . 61
Redistributing DB2 data 61
Redistributing extender data 61

Chapter 8. Tracking data objects and
media files 63
Checking the status of data objects 63
Finding table entries that reference files . . . 64
Finding files referenced by table entries . . . 65
Checking if media files exist 66

Chapter 9. Cleaning up administrative
support tables 69

© Copyright IBM Corp. 1996, 2000 39

|
||
|
||
||
||
||
||
||

40 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 4. Administration overview

This chapter provides an overview of the administration tasks involved when
you create applications that use the DB2 Extenders.

The DB2 extenders offer two ways to perform most administration tasks:
v Administration application programming interfaces (APIs). You can include

the DB2 extender APIs in your C language program. See “Chapter 16.
Application programming interfaces” on page 267 for reference information
on these APIs.

v Administration commands. You can submit administration commands to
the db2ext command-line processor. These commands do not run on the
DB2 command line. See “Chapter 17. Administration commands for the
client” on page 467 for instructions on entering administration commands
and for additional reference information.

Administration tasks you can perform with the DB2 extenders

There are five categories of administrative tasks:
v Managing extender services. The DB2 extenders run on their own servers

on top of DB2. Before applications can use extender data, the system
administrator starts the extender services, and the user connects to the
database that holds the extender data.

v Preparing data objects for extender data. You prepare databases, tables, and
columns to hold extender data by enabling them. When you enable a data
object, the extenders create and maintain administrative support tables (also
called metadata tables) to manage the extender data.

v EEE only. Redistributing extender data in a partitioned environment. When
you add or drop partitions from a partitioned database, you can
redistribute data to take advantage of the new node configuration.

v Tracking data objects and media files. As you debug applications that use
the DB2 extenders, it is useful to know which data objects are enabled for
extender data. It is also useful to understand the correlation between user
tables and external media files.

v Cleaning up administrative support tables. As you work with the DB2
extenders, obsolete entries can eventually accumulate in the administrative
support tables. Deleting the obsolete metadata can improve performance
and reclaim storage space.

© Copyright IBM Corp. 1996, 2000 41

Table 3 lists all the tasks involved in administering extender data. The table
specifies which tools are provided to perform each task, and where to find
more information.

In the Extender API column, x represents the third character of each API
statement. This character varies according to the extender you are using:

Character Extender

a Audio
i Image
v Video

For example, the API for enabling a table for image data is DBiEnableTable,
the API for enabling a table for audio is DBaEnableTable, and the API for
enabling a table for video is DBvEnableTable. A value of No in the Extender
API column means that there is no extender API for the task. A value of No in
the Extender Command column means that there is no extender command for
the task.

QBIC requires additional administration: If you plan to use the Image
Extender’s Query by Image Content (QBIC) capability, you need to perform
additional administrative tasks, such as creating a QBIC catalog. For
information about these tasks, see “Chapter 13. Querying images by content”
on page 129.

Table 3. Administration tasks and facilities for the DB2 extenders

Task Extender API Extender Command See

Managing extender services

Start the extender services No DMBSTART p. 47

Get status of the extender
services

No DMBSTAT p. 50

Stop the extender services No DMBSTOP p. 49

Connect to a database No CONNECT p. 47

Start an extender service for
your database

No START SERVER p. 49

Get status of an extender
service for your database

No GET SERVER STATUS p. 50

Stop an extender service for
your database

No STOP SERVER p. 49

Create and manage
extenders instances

No
DMBICRT, DMBILIST,
DMBIDROP,
DMBIMIGR

p. 50

Administration overview

42 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

Table 3. Administration tasks and facilities for the DB2 extenders (continued)

Task Extender API Extender Command See

Preparing data objects for multimedia data

Enable a database DBxEnableDatabase ENABLE DATABASE p. 53

Disable a database DBxDisableDatabase DISABLE DATABASE p. 60

Enable a table DBxEnableTable ENABLE TABLE p. 56

Disable a table DBxDisableTable DISABLE TABLE p. 60

Enable a column DBxEnableColumn ENABLE COLUMN p. 59

Disable a column DBxDisableColumn DISABLE COLUMN p. 60

Redistributing extender data in a partitioned environment (EEE only)

Redistribute extender data
based on a new nodegroup
configuration

DMBRedistribute
REDISTRIBUTE
NODEGROUP

p. 61

Tracking data objects and media files

Find out if databases are
enabled

DBxIsDatabaseEnabled
GET EXTENDER
STATUS

p. 63

Find out if tables are
enabled

DBxIsTableEnabled
GET EXTENDER
STATUS

p. 63

Find out if columns are
enabled

DBxIsColumnEnabled
GET EXTENDER
STATUS

p. 63

Find table entries that
reference files in tables
whose qualifier is the
current user ID

DBxIsFileReferenced No p. 64

Find table entries that
reference files in all tables of
a specific qualifier or all
tables in a database

DBxAdminIsFileReferenced No p. 64

Find files referenced by
table entries in tables whose
qualifier is the current user
ID

DBxGetReferencedFiles
GET REFERENCED
FILES

p. 65

Find files referenced by
table entries in all tables of a
specific qualifier or all tables
in a database

DBxAdminGetReferencedFiles
GET REFERENCED
FILES

p. 65

Find inaccessible files
referenced by table entries
in all tables whose qualifier
is the current user ID

DBxGetInaccessibleFiles
GET INACCESSIBLE
FILES

p. 66

Administration overview

Chapter 4. Administration overview 43

Table 3. Administration tasks and facilities for the DB2 extenders (continued)

Task Extender API Extender Command See

Find inaccessible files
referenced by table entries
in all tables of a specific
qualifier or all tables in a
database

DBxAdminGetInaccessibleFiles
GET INACCESSIBLE
FILES

p. 66

Cleaning up administrative support (metadata) tables

Clean up metadata tables
for a specific user table or
all user tables whose
qualifier is the current user
ID

DBxReorgMetadata REORG p. 69

Clean up metadata tables
for all user tables with a
specific qualifier or all user
tables in a database

DBxAdminReorgMetadata REORG p. 69

Sequence of administration tasks: The following list is an ordered summary
of the administration tasks you perform when you use the extenders the first
time. You use DB2 commands or statements to perform some tasks. You
perform other tasks with the DB2 extenders. This sequence assumes that your
DB2 system is running.

Required tasks:
1. Start the extender services.
2. Create a database (by using DB2).
3. Connect to the database database server.
4. Enable the database.
5. Create a table and column (by using DB2).
6. Enable a table in the database.
7. Enable a column in the table.

Optional tasks:
1. Track data objects and media files.
2. Set the function path (using DB2).
3. Clean up administrative support tables.

Examples: Most of the examples in the next five chapters assume that a
system administrator (SYSADM) or a database administrator (DBA) is
performing the tasks. A few tasks do not require DBA or SYSADM authority.

Administration overview

44 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

The examples assume that the DBA has added the MMDBSYS schema in the
current function path. This allows the DBA to specify UDT names without
prefixing them with the MMDBSYS schema name. For more information
about UDT names, see “UDF and UDT names” on page 16.

Many of the API examples in this section are based on the sample application
code that is supplied with extenders. The sample code is in the SAMPLES
subdirectory on the client.

Administration overview

Chapter 4. Administration overview 45

Administration overview

46 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 5. Managing extender servers

The DB2 Extenders run in the DB2 client/server environment. This
environment consists of a database server and one or more remote database
clients. The DB2 extender services run on the server. Before you can access
them, you have to start them.

After the environment is set up, you can stop and restart extender services
from the client. From either the client or the server, you can get the status of
the extenders.

EEE Only: In a multipartition environment, you can also add and drop
database partitions.

Establishing the extender environments

From the operating system command line on the server, enter the DMBSTART
command to start the extender services:
dmbstart

The DMBSTART command starts extender services for all databases that are
enabled to hold extender data. The command also starts DB2 if it is not
running. You need SYSADM, SYSCTRL, or SYSMAINT authority to run the
command. On AIX, you must be logged on as the extender instance owner.

At this point, your C language application can access extender services
through the APIs, if the application establishes a connection to the database.
Similarly, if you want to use the db2ext command line, you must connect to
the database you want to work with. The db2ext command line requires an
independent connection separate from one that is used by the DB2 command
line.

Open the db2ext command-line processor on the client and run the DB2
extenders CONNECT command. In the following example, the command
connects to the PERSONNL database. It accesses tables with the ANITAS
qualifier using the ANPASS password:
connect to personnl user anitas using anpass

EEE Only: If you are using DB2 extenders in a partitioned database
environment, the DMBSTART command will start extender services in all
database partition servers defined for the instance. If you want to start
extender services at one database partition server only, you do so by

© Copyright IBM Corp. 1996, 2000 47

specifying in the command the node you want to start. The example below
shows what you would type to start extender services at node number 2.
dmbstart nodenum 2

EEE Only: Before you start a single database partition server, you must start
DB2 at that node.

Now you can run the rest of the DB2 extender commands that are listed in
“Chapter 17. Administration commands for the client” on page 467.

Adding and dropping database partitions (EEE only)

In order to use extenders in a partitioned database environment, the partitions
defined for the extenders must match those defined for DB2. The DMBSTART
command starts the extender servers on each of the nodes that are defined for
the current instance. The server will automatically detect if the node it is
running on has been recently created and perform any necessary initialization.
If a node is dropped from DB2, the extender files associated with that node
must be manually deleted.

For more information on DB2 commands for adding and dropping partitions,
refer to IBM DB2 Universal Database Enterprise Extended-Edition Quick
Beginnings.

The following steps are required to add a database partition:
1. Create a partition for DB2 by using the command DB2NCRT or the

command DB2START ADDNODE.
2. Create a partition for the extenders by using the extender command

DMBSTART NODENUM.
3. Redistribute DB2 data to take advantage of the new node configuration

using the DB2 command REDISTRIBUTE NODEGROUP.
4. Redistribute extender data to take advantage of the new node

configuration using the extender command REDISTRIBUTE NODEGROUP.

The following steps are required to drop a database partition:
1. Redistribute DB2 data to remove it from the partition you want to drop

using the DB2 command REDISTRIBUTE NODEGROUP.
2. Redistribute extender data to remove it from the partition you want to

drop using the extender command REDISTRIBUTE NODEGROUP.
3. Drop a partition for DB2 by using the DB2 command DB2NDROP or the

command DB2STOP DROP.
4. Drop a partition for the extenders by using the extenders command

DMBSTART NODENUM.

Establishing environments

48 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

5. Manually remove the extender files that are associated with the dropped
partition.

The extender data for a database partition is in a subdirectory named
nodenum, where num is the node number corresponding to the database
partition. The subdirectory is in a directory that is specified by the value of
the DB2MMDATAPATH environment variable. To remove extender data for a
dropped database partition, delete the appropriate nodenum subdirectory and
all subdirectories below it. (For more information about DB2MMDATAPATH,
see “How the DB2MMDATAPATH environment variable is used (EEE only)”
on page 559.)

Stopping and starting extender servers

When you stop applications that use extender services, the server remains
active until you explicitly stop it, or until the server machine recycles. You can
stop all the extender servers by entering the DMBSTOP command from the
server machine on the command line for the operating system.

To stop and restart extender services from the client, run the STOP SERVER
and START SERVER commands from the db2ext command line. These
commands stop and start extender services for the current database.

EEE Only: In a partitioned database environment, DMBSTART can be used to
start either all database partition servers defined for the instance, or a single
database partition server only. DMBSTART without any parameters will start
all database partition servers. If you want to start one database partition
server only, you do so by specifying in the command the node you want to
start, as shown below:
dmbstart nodenum 2

Once you have started the server at a particular node, you must reconnect
that server to the database. Use the extender command RECONNECT
SERVER, as shown below:
reconnect server at nodenum 2

EEE Only: If you are using DB2 extenders in a partitioned database
environment, DMBSTOP without any parameters will stop all database
partition servers that are defined for the instance. If you want to stop one
database partition server only, you must first disconnect that server from the
database. Use the extenders command DISCONNECT SERVER, as shown
below:
disconnect server at nodenum 2

Adding or dropping partitions

Chapter 5. Managing extender servers 49

You can then run DMBSTOP, specifying in the command the node you want
to stop. The example below shows what you would enter from the command
line of the server to stop extender services at node number 2.
dmbstop nodenum 2

EEE Only: Do not run DMBSTOP at a specific node unless your database is
running in maintenance mode. In addition, you need to make sure that no
extender activities will be triggered on this node while it is turned off.
Otherwise, you may encounter unexpected behavior.

Displaying server status

From the server, you can display the extender server status with the
DMBSTAT command. For example, the following command lists the databases
that are enabled and whether the extenders are up and running. Connect to
the server before running this command.
dmbstat

From the client, you can get the status of the extender server for a database
by using the GET SERVER STATUS command. For example, the following
command lists the status of the personnl database:
get server status personnl

Creating and managing multiple server instances

You can create and use multiple instances of the DB2 extenders server. You
should create multiple instances if you have created multiple instances of the
DB2 server. Each instance of the DB2 extenders server is associated with an
instance of the DB2 server and has the same name. You can also list the
instances of the DB2 extenders server that are available on a system, run
multiple instances concurrently, and remove instances.

Creating multiple DB2 extenders server instances
An initial or default DB2 extenders instance is created when you install the
DB2 extenders and is named the same as the default DB2 instance. On
Windows and OS/2, the default DB2 extenders instance is named DB2. On
UNIX, the default DB2 extenders instance has the same name as was given to
the initial default DB2 instance. To create additional instances of the DB2
extenders server, you must have SYSADMIN authority, and on UNIX you
must have root authority.

Use the DMBICRT command to create an additional instance of DB2 Image,
Audio, Video Extenders server. If you want to create a DB2 extenders server
instance for the DB2 instance DEVINST, at an operating system command
line, enter:

Stopping and starting servers

50 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

dmbicrt devinst

When you execute the DMBICRT command, a subdirectory for the instance is
created and the instance is added to the list of instances that is maintained by
the DB2 extenders.

EEE Only:

v The default DB2 extenders server instance is named DB2MPP in Windows.
v When using DMBICRT to create additional instances of the DB2 Image,

Audio, Video Extenders server, you must specify the directory DB2
extenders uses for various operations in a partitioned database
environment. This is the directory specified in the DB2MMDATAPATH
environment variable in UNIX and registry entry in Windows. It must be a
shared directory and must exist on all the nodes for the instance.

v You must also specify a range of TCP/IP ports to use in Windows; in
UNIX, the port range must be added to the /etc/services file (see
“DMBICRT” on page 508).

Listing instances
Use the DMBILIST command to list all instances of the DB2 extenders server
that are available on a system. To find out which instance is active, enter the
following command:
echo %DB2INSTANCE% (in Windows or OS/2)

echo $DB2INSTANCE (in UNIX)

Running multiple instances concurrently
To run multiple instances of the DB2 extenders server concurrently, perform
the following steps:

In Windows or OS/2

From a command line:
1. Set the DB2INSTANCE variable to the name of the instance that you want

to start by entering:
set db2instance=instanceName

2. Start extender services.

In UNIX

1. Log in as the instance owner or a user with system administration
authority for the instance.

2. Set the environment.
3. Start database manager.

Creating and managing multiple server instances

Chapter 5. Managing extender servers 51

|
|

|
|
|

|

|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|

|

|
|

|

|

|

|
|

|

|

Setting the current instance
When you run commands to start or stop services for an instance, the
commands apply to the current instance. You specify which instance of the
DB2 extenders server to use by setting the DB2INSTANCE variable to the
instance name.

Removing instances
To remove an instance of the DB2extenders, perform the following steps:
1. Stop all applications that are currently using the instance.
2. Stop extender services and all db2ext command-line processor sessions,

using the DMBSTOP and db2ext TERMINATE commands.
3. Back up the files in the DB2 extenders instance directory that you want to

save, such as the QBIC catalog files. The files in this directory are removed
when the instance is dropped.

4. Enter the DMBIDROP command for the instance to drop. For example, to
drop the DEVINST instance, enter:
dmbidrop devinst

Removing an instance of DB2 extenders using the DMBIDROP command does
not remove the associated DB2 instance. You must remove the associated DB2
instance separately. If you drop the DB2 instance associated with an instance
of DB2 extenders, the DB2 extenders instance is not removed. However, you
cannot use it.

Migrating instances
On UNIX systems, after you install a new version of DB2 UDB and DB2
extenders, you should migrate your DB2 extenders instances.

To migrate existing DB2 extenders instances created with an earlier version:
1. Migrate the DB2 UDB instance associated with the DB2 extenders instance.
2. Enter the DMBIMIGR command to migrate the instance. For example, to

migrate the OLDINST instance, enter:
dmbimigr oldinst

Creating and managing multiple server instances

52 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|
|
|
|

|

|

|

|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|

|

|

|
|

|

|

Chapter 6. Preparing data objects for extender data

You prepare databases, tables, and columns to hold extender data by enabling
them. First enable the database. Then enable a table in the database. Finally,
enable a column in the table.

When you no longer want extender data in your data objects, you can disable
the objects.

You can enable and disable objects either using the APIs in your C language
program or from the db2ext command line. In this chapter, examples are
provided for each method.

Enabling databases

Use the DBxEnableDatabase API (where x is a for audio, i for image, or v for
video) or the ENABLE DATABASE command to enable a database for a DB2
extender.

When you enable a database, the extender:
v Creates a user-defined type (UDT) named DB2xxxxx for your data objects,

where xxxxx is either Image, Audio, or Video. The UDT is used to define a
column in the user table that holds handles for objects of that type.

v Creates administrative support tables (also called metadata tables) for the
database. These tables are not user tables (tables in which users store
business data). The extenders use them to manage extender data. Do not
edit them manually.

v Creates the user-defined functions (UDFs) associated with the extender. The
UDFs are listed in “User-defined functions” on page 197.

When enabling a database, you must also specify table spaces to hold the
administrative support tables (and their indexes) for the database. One or
more of the table spaces that are specified can be a null value, in which case a
default table space is used.

You need DBA authority to enable a database.

EEE Only: When enabling a database for an extender in a partitioned
environment, the table space you specify should be defined in a nodegroup
that includes all the nodes in the partitioned database system. Also, the table
space specified should be located in the same nodegroup as the user table.

© Copyright IBM Corp. 1996, 2000 53

Examples
In the following examples, a database is enabled to hold image data using the
default table space.

Using the API: The code in Figure 16 connects to an existing database before
enabling it. This example is written using the DB2 call level interface. It
includes some set-up and error-checking code. The complete sample program
is in the ENABLE.C file in the SAMPLES subdirectory.

/*---- Set-up ---*/
#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include "dmbimage.h" /* image extender function prototypes (DBi) */
#include "utility.h" /* utility functions */

#define MMDB_ERROR_MSG_TEXT_LEN 1000
#define SERVER_IS_DB2390 (strcmp(dbms,"DB2")==0 || strcmp(dmbs,"DSN06010")==0)

int
main(int argc, char *argv[])
{

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHSTMT hstmt = SQL_NULL_HSTMT;
SQLCHAR uid[18+1];
SQLCHAR pwd[30+1];
SQLCHAR dbname[SQL_MAX_DSN_LENGTH+1];
SQLCHAR buffer[500];
SQL SMALLINT dbms_sz = 0;
char dbms[20];

SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER sqlcode = 0;
char errorMsgText[MMDB_ERROR_MSG_TEXT_LEN+1];
char *program = "enable;
char *step;

Figure 16. Sample code that enables a database (Part 1 of 3)

Enabling databases

54 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

/*---- Prompt for database name, userid, and password ----*/
if (argc > 5) || (argc >=2 && strcmp(argv[1],"?")== 0))

{
printf("Syntax for enable - enabling a DB2 UDB database: \n"

" enable database_name userid password\n");
exit(0);

}

if (argc == 4) {
strcpy((char *)dbname, argv[1]);
strcpy((char *)uid , argv[2]);
strcpy((char *)pwd , argv[3]);
}

else {
printf("Enter database name:\n");
gets((char *) dbName);
printf("Enter userid:\n");
gets((char *) uid);
printf("Enter password:\n");
gets((char *) pwd);
}

/*----- connect to the database ---*/
rc = cliInitialize(&henv, &hdbc, dbname, uid, pwd);
cliCheckError(henv, hdbc, SQL_NULL_HSTMT, rc);
if (rc < 0) goto SERROR;

/*----- find out if application is connected to DB2/UDB or DB2/390?------------*/
rc = SQLGetInfo(hdbc, SQL_DBMS_NAME, (SQLPOINTER) &dbms,

sizeof(dbms), &dbms_sz);
cliCheckError(henv, hdbc, SQL_NULL_HSTMT, rc);
if (rc < 0) goto SERROR;

Figure 16. Sample code that enables a database (Part 2 of 3)

Enabling databases

Chapter 6. Preparing data objects for extender data 55

Using the db2ext command line: In this example, the database is already
connected.
enable database for db2image

Enabling tables

Use the DBxEnableTable API (where x is a for audio, i for image, or v for
video) or the ENABLE TABLE command to enable a table for a DB2 extender.

When enabling a user table, you must also specify table spaces to hold the
administrative support tables (and their indexes) that go with it. One or more
of the table spaces that are specified can be a null value, in which case a
default table space is used.

EEE Only: When enabling a table for an extender in a partitioned
environment, the table space that you specify should be defined in a
nodegroup that includes all the nodes in the partitioned database system.
Also, the table space specified must be located in the same nodegroup as the
user table.

/****** enable server for image extender **/
if (!SERVER_IS_DB2390)

{
printf("%s: Enabling database......\n", program);
}

printf("%s: This may take a few minutes, please wait......\n", program);

if (!SERVER_IS_DB2390)
{
step="DBiEnableDatabase with NULL tablespace"
rc=DBiEnableDatabase(NULL);
}

if (rc < 0) {
printf ("%s: %s failed!\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
if (sqlcode)

printf("sqlcode=%i, ",sqlcode);
}else if (rc > 0) {

printf("%s: %s, warning detected.\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("warning MsgText=%s\n", errorMsgText);

} else
printf("%s: %s OK\n", program, step);

/****** end of enable server ***/

Figure 16. Sample code that enables a database (Part 3 of 3)

Enabling databases

56 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EEE Only: You cannot use a DB2 extender column as a partitioning key
column in a partitioned database environment.

You need Control or Alter authority for the user table. The database must be
enabled before you enable a table in it.

In the following examples, a table is enabled to hold image data using the
default table space. The database is already enabled.

Using the API: In Figure 17 on page 58, before enabling the table, the code
creates the table and commits changes. The example includes some
error-checking code. The complete sample program is in the ENABLE.C file in
the SAMPLES subdirectory.

Enabling tables

Chapter 6. Preparing data objects for extender data 57

|
|

Using the db2ext command line: In this example, the table already exists, and
the database is enabled.

SQLCHAR szCreate_DB2UDB[]="CREATE TABLE %s(%s mmdbsys.DB2Image,
%s mmdbsys.DB2Video, %s mmdbsys.DB2Audio, artist varchar(25), title varchar(25)
stock_no char(11), tw char(10), price char(10))";

SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER sqlcode = 0;
char errorMsgText[MMDB_ERROR_MSG_TEXT_LEN+1];
char tableName[8+18+1] = "sobay_catalog";
char audioColumn[18+1] = "music";
char imageColumn[18+1] = "covers";
char videoColumn[18+1] = "video";
char *program = "enable";
char *step;

/*-----create table --*/
printf("%s: Creating table\n", program);
if (!SERVER_IS_DB2390)

sprintf((char*) buffer, (char*) szCreate_DB2UDB,
tableName, imageColumn, videoColumn, audioColumn):

rc = SQLAllocStmt(hdbc, &hstmt);
cliCheckError(SQL_NULL_HENV, hdbc, SQL_NULL_HSTMT, rc);
rc = SQLExecDirect(hstmt, buffer, SQL_NTS);
cliCheckError(SQL_NULL_HENV, SQL_NULL_HDBC, hstmt, rc);

/*---- enable table for image extender ---------------------------------*/
printf("%s: Enabling table......\n", program);
step="DBiEnableTable";
if (!SERVER_IS_DB2390)

rc = DBiEnableTable(NULL,tableName);
}

if (rc < 0) {
printf("%s: %s failed!\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
if (sqlcode)

printf("sqlcode=%i, "sqlcode");
printf("errorMsgText=%s\n", errorMsgText);

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("warningMsgText=%s\n", errorMsgText);

} else
printf("%s: %s OK\n", program, step)

/*---- end of enable table --*/

Figure 17. Sample code that enables a table

Enabling tables

58 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

enable table employee for db2image

Enabling columns

Use the DBxEnableColumn API (where x is a for audio, i for image, or v for
video) or the ENABLE COLUMN command to enable a column for a DB2
extender. When you issue the API or command, you specify the pertinent
table and column.

When you enable a column, the extender adds information to the
administrative support tables that belong to the user table. You need Control
or Alter authority for the user table the column is in. Both the database and
table must be enabled before you enable the column.

In the following examples, the PICTURE column in the EMPLOYEE table is
enabled to hold image data. The database and table are already enabled.

Using the API: This example includes some error-checking code. The
complete sample program is in the ENABLE.C file in the SAMPLES
subdirectory.

Using the db2ext command line: In this example, the column already exists,
and the database and table are enabled.
enable column employee picture for db2image

char imageColumn[18+1] = "covers";

/*---- enable column for image extender ----*/
printf("%s: Enabling columns......\n", program);
step="DBiEnableColumn";
rc = DBiEnableColumn(tableName, imageColumn);
if (rc < 0) {

printf("%s: %s failed!\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
if (sqlcode)

printf("sqlcode=%i, ", sqlcode);
printf("errorMsgText=%s\n", errorMsgText)

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("warningMsgText=%s\n", errorMsgText);

} else
printf("%s: %s OK\n", program, step);

/*---- enable column for image extender ----*/

Figure 18. Sample code that enables a column

Enabling tables

Chapter 6. Preparing data objects for extender data 59

Disabling data objects

If you remove extender data from a database, table, or column, you no longer
need it to be enabled. You have two ways to disable data objects: the
DISABLE commands and the APIs. For more information about the extender
commands, see “Chapter 17. Administration commands for the client” on
page 467. For more information about the extender APIs, see “Chapter 16.
Application programming interfaces” on page 267.

Before dropping a table or database that contains extender data, disable it and
stop the server for that database.

Disabling

60 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 7. Redistributing extender data in a partitioned
database system (EEE only)

DB2 Extended Enterprise Edition allows you to add and delete database
partition servers (also called nodes) in a partitioned database environment.
After nodes have been added (or before they are deleted), existing data can be
redistributed to take advantage of the new configuration.

You must perform two steps to redistribute extender data. First, you must
redistribute DB2 data. Then, you can redistribute DB2 extender data.

Redistributing DB2 data

Before you redistribute data, you must redistribute DB2 data using the DB2
command REDISTRIBUTE NODEGROUP.

For more information on redistributing DB2 data, refer to the DB2
Administration Guide.

Redistributing extender data

After you have redistributed DB2 data, you are ready to redistribute extender
data. Enter the extender command REDISTRIBUTE NODEGROUP to start
extender data redistribution.
redistribute nodegroup

The REDISTRIBUTE NODEGROUP command redistributes audio, image, and video
extender data, and QBIC feature data, placing it at the same node as its
corresponding user data.

If the redistribution process returns an error, you can rerun the command. You
can rerun the command with or without the CONTINUE parameter, according
to the instructions provided by the command response. This option instructs
the system to continue from where it stopped, rather than starting from the
beginning. The CONTINUE parameter cannot be used the first time you run
the REDISTRIBUTE NODEGROUP command after running DB2’s
REDISTRIBUTE NODEGROUP command.

To maintain data integrity, redistribute one nodegroup at a time. Wait until
one nodegroup has finished redistribution before starting another.

You must connect to the database before using this command.

© Copyright IBM Corp. 1996, 2000 61

You need SYSADM or DBADM authority to run this command.

Redistributing data

62 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 8. Tracking data objects and media files

As you create and debug applications that use the DB2 extenders, it is useful
to know which data objects are enabled for extender data. For example, if you
can determine that a certain table is enabled for image data, your application
can successfully store image files in that table.

It is also useful to understand the correlation between user tables and external
media files, for example, which tables refer to a specific file or which files are
referenced by a specific table. It is also useful to discover if your tables refer
to files that no longer exist on the system.

You need appropriate privileges: You need to have access to a table in order
to track data in the table. If you want to perform comprehensive tracking
operations, such as find which entries in all user tables in the database refer
to a file, you need SYSADM authority, DBADM authority, or SELECT
privilege on enabled columns in all searched user tables and associated
administrative support tables. If you do not have access to all the tables, the
extenders will return tracking information only for those tables that you can
access. They will also return a code indicating that you do not have access
authority to some of the required tables.

Checking the status of data objects

You can check whether databases, tables, and columns are enabled to hold
extender data. The following example determines if the current database is
enabled for the Image Extender. The database is already connected. The
complete sample program is in the API.C file in the SAMPLES subdirectory.

Using the API: The sample code in Figure 19 on page 64 includes some
error-checking code.

© Copyright IBM Corp. 1996, 2000 63

Using the db2ext command line:
get extender status

Checking the status of user tables and columns is similar to checking the
status of a database. Use the DBxIsTableEnabled and DBxIsColumnEnabled
APIs, or the GET EXTENDER STATUS command.

Finding table entries that reference files

You can check which entries in user tables refer to an external media file. Use
the DBxAdminIsFileReferenced API to check which entries in all or a subset of
user tables in the current database refer to an external media file. Use the
DBxIsFileReferenced API to check which entries in a specific user table refer
to an external media file.

Using the API: The sample code in Figure 20 on page 65 returns the number
of times a file is referenced and where it is referenced. It includes some
error-checking code. The complete sample program is in the API.C file in the
SAMPLES subdirectory.

/*---- Query the database using DBiIsDatabaseEnabled API. ----------*/
step="DBiIsDatabaseEnabled API";
rc = DBiIsDatabaseEnabled(&status);
if (rc < 0) {

printf("%s: %s FAILED!\n", argv[0], step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);
fail = TRUE;

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", argv[0], step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);

} else {
if (status == 1) {

printf("%s: \"%s\" database is enabled for Image Extender\n",
argv[0], dbName);

printf("%s: %s PASSED\n\n", argv[0], step);
} else if (status == 0) {

printf("%s: \"%s\" database is not enabled for Image Extender\n",
argv[0], dbName);

printf("%s: %s PASSED\n\n", argv[0], step);
} else

printf("%s: %s FAILED, invalid status!\n", argv[0], step);
}

Figure 19. Sample code that checks if a database is enabled

Checking for enablement

64 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Finding files referenced by table entries

Use the DBxAdminGetReferencedFiles API or the GET REFERENCED FILES
command to list the external media files that are referred to by all or a subset
of the user tables in the current database. Use the DBxGetReferencedFiles API
or the GET REFERENCED FILES command to list the external media files that
are referenced in a specific table.

/*---- Query the database using DBiAdminIsFileReferenced API. ------*/
step="DBiAdminIsFileReferenced API";
rc = DBiAdminIsFileReferenced((char*) uid, filename, &count, &filelist);
if (rc < 0) {

printf("%s: %s FAILED!\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsg Text);

} else {
if (count == 0)

printf("%s: \"%s\" file is not referenced\n",
program, filename);

else {
printf("%s: \"%s\" file is referenced %d times\n",

program, filename);
for (i=0; i < count; i++)

{
/* filename is NULL for any IsFileReferenced APIs */

printf ("filename = %s\n", filelist[i].filename);
printf ("\tqualifier = %s\n", filelist[i].tqualifier);
printf ("\ttable = %s\n", filelist[i].tname);
printf ("\thandle = %s\n", filelist[i].handle);
printf ("\tcolumn = %s\n", filelist[i].column);
if (filelist[i].filename)

free (filelist[i].filename);
}

}
if (filelist)

free (filelist);
printf("%s: %s PASSED\n\n", argv[0], step);

}

Figure 20. Sample code that checks if a file is referenced by user tables

Listing referenced files

Chapter 8. Tracking data objects and media files 65

Using the API: The sample code in Figure 21 returns the number of files it
finds and a list of the files. The complete sample program is in the API.C file
in the SAMPLES subdirectory.

Using the db2ext command line:
get referenced files user anitas for db2image

Checking if media files exist

Suppose that someone deletes a media file from the system but does not
update the user table that references it. You might want to list all the
inaccessible media files that your user tables reference.

Use the DBxAdminGetInaccessibleFiles API or the GET INACCESSIBLE FILES
command to list the inaccessible media files that are referenced by all or a

/*---- Query the database using DBiAdminGetReferencedFiles API. ----------*/
step="DBiAdminGetReferencedFiles API"
rc = DBiAdminGetReferencedFiles((char*) uid, &count, &filelist);
if (rc < 0) {

printf("%s: %s FAILED!\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf{"sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", program, step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);

} else {
if (count == 0)

printf("%s: no referenced files\n", program);
else {

printf("%s: %d referenced files\n", program, count);
for (i=0; i < count; i++)

{
printf ("filename = %s\n", filelist[i].filename);
printf ("\tqualifier = %s\n", filelist[i].tqualifier);
printf ("\ttable = %s\n", filelist[i].tname);
printf ("\thandle = %s\n", filelist[i].handle);
printf ("\tcolumn = %s\n", filelist[i].column);

if (filelist[i].filename)
free (filelist[i].filename);

}
}
if (filelist)

free (filelist);
printf("%s: %s PASSED\n\n", argv[0], step);

}

Figure 21. Sample code that gets a list of referenced files

Listing referenced files

66 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

subset of the user tables in the current database. Use the
DBxGetInaccessibleFiles API or the GET INACCESSIBLE FILES command to
list the inaccessible media files that are referenced by a specific table.

Checking for inaccessible media

Chapter 8. Tracking data objects and media files 67

Checking for inaccessible media

68 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 9. Cleaning up administrative support tables

As you work with the DB2 extenders, obsolete entries can eventually
accumulate in the administrative support tables. Someone might delete a
media file but not the references to it in the database. Deleting the obsolete
metadata can improve performance and reclaim storage space.

Using the API: The sample code in Figure 22 cleans up the image metadata
for all user tables that are owned by ANITAS. It includes some error-checking
code. The complete sample program is in the API.C file in the SAMPLES
subdirectory.

Using the db2ext command line:
reorg database user anitas for db2image

If you are not a DBA but have CONTROL authority, you can use the
DBxReorgMetadata APIs or the REORG command to clean up metadata for
the tables you own.

/*---- query database using DBiAdminReorgMetadata API ----*/
step="DBiAdminReorgMetadata API";
rc = DBiAdminReorgMetadata("anitas");
if (rc < 0) {

printf("%s: %s FAILED!\n", argv[0], step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);
fail = TRUE;

} else if (rc > 0) {
printf("%s: %s, warning detected.\n", argv[0], step);
printMsg(rc);
DBiGetError(&sqlcode, errorMsgText);
printf("sqlcode=%i, errorMsgText=%s\n", sqlcode, errorMsgText);

} else
printf("%s: %s PASSED\n\n", argv[0], step);

/*---- end of query using DBiAdminReorgMetadata API ----*/

Figure 22. Sample code that cleans up administrative support tables

© Copyright IBM Corp. 1996, 2000 69

70 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Part 3. Programming for image, audio, and video data

Chapter 10. Programming overview . . . 73
Using extender UDFs and APIs 73
Tasks you can perform with extender UDFs
and APIs 74
Sample table for extender examples 75
Before you begin programming for DB2
extenders 76

Including extender definitions 78
Specifying UDF and UDT names 79
Transmitting large objects 79

If the object is transmitted between a
table and a server file 79
If the object is transmitted to or from a
client buffer 80
Using LOB locators 80
If the object is transmitted to or from a
client file 81
Specifying file names when you
transmit objects 82

Handling return codes 83
Unicode support 83

Chapter 11. Storing, retrieving, and
updating objects 85
Image, audio, and video formats 85
Image conversion options 86
Storing an image, audio, or video object . . 88

DB2Image, DB2Audio, and DB2Video UDF
formats 88
Storing an object that resides on the client 91
Storing an object that resides on the server 93
Specifying database or file storage . . . 93
Identifying the format for storage 94

Identifying the format for storage
without conversion. 95
Identifying the formats and conversion
options for storage with format
conversion 95

Storing an object with user-supplied
attributes 96
Storing a thumbnail (image and video
only) 98
Storing a comment 99

Retrieving an image, audio, or video object 100
Content UDF formats for retrieval . . . 100

Retrieving an object to the client 102
Retrieving an object to a client without
format conversion. 102
Retrieving an image to a client with
conversion 103

Retrieving an object to a server file . . . 103
Retrieving and using attributes 105
Retrieving comments 107

Updating an image, audio, or video object 108
Content UDF formats for updating . . . 109
Replace UDF formats for updating . . . 111
Updating an object from the client . . . 114
Updating an object from the server . . . 115
Specifying database or file storage for
updates 115
Identifying the format for update . . . 116

Identifying the format for update
without conversion 117
Identifying the formats and conversion
options for update with format
conversion 117

Updating an object with user-supplied
attributes. 118
Updating a thumbnail (image and video
only) 119
Updating a comment 120

Chapter 12. Displaying or playing an
image, audio, or video object 123
Using the display or play APIs 123

Identifying a display or play program 123
Specifying BLOB or file content 124
Specifying a wait indicator 125

Displaying a thumbnail-size image or video
frame 126
Displaying a full-size image or video frame 127
Playing an audio or video 127

Chapter 13. Querying images by content 129
How to query by image content 129
Managing QBIC catalogs 130

Creating a QBIC catalog 131
Opening a QBIC catalog 132
Changing the auto catalog setting . . . 134
Adding a feature to a QBIC catalog . . . 135

© Copyright IBM Corp. 1996, 2000 71

Removing a feature from a QBIC catalog 136
Retrieving information about a QBIC
catalog 136
Manually cataloging an image 138

Manually cataloging a single image 138
Manually cataloging a column of
images 138

Uncataloging an image 139
Recataloging images 140
Redistributing a QBIC catalog (EEE Only) 140
Closing a QBIC catalog 141
Deleting a QBIC catalog 141
QBIC catalog sample program 142

Building queries 146
Specifying a query string 146

Feature value 147
Feature weight 148
Examples 149

Using a query object 149
Creating a query object 149
Adding a feature to a query object . . 150
Specifying the data source for a feature
in a query object 150
Setting the weight of a feature in a
query object. 153
Saving and reusing a query string . . 154
Retrieving information about a query
object 155
Removing a feature from a query
object 156
Deleting a query object 156

Issuing queries by image content 157
Querying images 157
Retrieving an image score 159

Retrieving the score of a single image 159
Retrieving the score of multiple images 159

QBIC query sample program 160

Chapter 14. Detecting video scene
changes 169
What is a video scene change? 169
Finding and using scene changes 170

Shot detection data structures 171
DBvIOType 172
DBvShotControl 172
DBvShotType 174
DBvFrameData. 175
DBvStoryboardCtrl 175
Initializing values in shot detection
data structures 176

Getting a shot or frame 177
Opening a video for shot detection . . 177
Indexing a video 178
Getting a frame 179
Getting a shot 180
Converting the format of a retrieved
frame 181
Closing a video file 182
Displaying a retrieved frame 182

Cataloging shots 182
Before you create a catalog (database
only) 183
Creating a shot catalog (database only) 183
Storing information about a single shot
(database only) 185
Storing information about all the shots
in a video 186
Building a storyboard 187
Displaying a storyboard 189
Storyboard sample programs 189
Specifying a comment for a shot
(database only) 189
Changing the information that is
stored for a shot (database only) . . . 190
Merging shot information in a shot
catalog (database only) 191
Deleting shot information from a shot
catalog (database only) 192
Deleting a shot catalog (database only) 192

72 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

||

Chapter 10. Programming overview

This chapter provides an overview of programming for the DB2 extenders. It
gives information that you need before you begin programming for the
extenders, and presents a sample application that illustrates how to code for
an extender.

Using extender UDFs and APIs

The DB2 extenders provide user-defined functions to store, access, and
manipulate image, audio, and video data in a database. You code requests for
these UDFs in your application program using SQL statements in the same
way that you request SQL built-in functions. Like built-in functions, UDFs are
run in the database server.

The following SQL statements in a C application program request an Image
Extender UDF named DB2Image to store an image in a database table; the
content of the source image is in a server file:
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557', /*id*/
'Anita Jones', /*name*/
DB2IMAGE(/*Image Extender UDF*/

CURRENT SERVER, /*database */
'/employee/images/ajones.bmp', /*image content*/
'ASIS', /*keep the image format*/
:hvStorageType, /*store image in DB as BLOB*
'Anita''s picture') /*comment*/

);

You use extender application programming interfaces to display images and
play audio or video objects. You code these APIs using client function calls in
C. The functions are run in your database client workstation.

The following C statements include an API that is named DBiBrowse. The API
retrieves the data for an image handle and starts a browser to display the
image:
EXEC SQL BEGIN DECLARE SECTION;

char hvImg_hdl[251];
EXEC SQL END DECLARE SECTION

© Copyright IBM Corp. 1996, 2000 73

EXEC SQL SELECT PICTURE INTO :hvImg_hdl
WHERE NAME= 'Robert Smith';

rc=DBiBrowse(
"ib %s", /*image browser*/
MMDB_PLAY_HANDLE, /*use image handle*/
hvImg_hdl, /*image handle*/
MMDB_PLAY_NO_WAIT); /*run browser independently*/

UDFs must run under the user ID of the instance: DB2 extender UDFs must
run under the same user ID as the DB2 extender instance. In addition, if you
create a DB2 extender instance or use an existing DB2 extender instance, the
UDFs must run under the same user ID as the DB2 instance.

DB2 must be configured properly: You must configure DB2 properly to
ensure the proper operation of the DB2 extenders, especially the proper
operation of DB2 extender UDFs. In particular, the APP_CTL_HEAP_SZ
database configuration parameter must be set properly.

Tasks you can perform with extender UDFs and APIs

Table 4 lists the tasks that you can perform with the extender UDFs and APIs
and shows where each task is described.

Table 4. Tasks you can perform with DB2 extender APIs

Task See

Store an image, audio, or video object Page 88

Retrieve an image, audio, or video object Page 100

Retrieve and use image, audio, and video attributes Page 105

Retrieve comments associated with an image, audio, or video
object

Page 107

Update an image, audio, or video object Page 108

Display an image object Page 123

Display a thumbnail-size image or video frame Page 126

Play an audio or video object Page 127

Query images by content Page 129

Detect video scene changes Page 169

Using UDFs and APIs

74 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Sample table for extender examples

Throughout this chapter you will see programming examples that use the DB2
extenders. The examples assume that you created a database table that is
named EMPLOYEE, and that the table contains personnel information. The
table includes columns for the identification and name of employees.
Depending on the extender, the table also includes a column for employee
pictures, voice greetings, and video clips.

Figure 23 illustrates the structure of the employee table and shows the SQL
statement used to create the table.

Figure 23. A table used in DB2 extender programming examples

Sample table

Chapter 10. Programming overview 75

Before you begin programming for DB2 extenders

Before you develop a program that uses the DB2 extenders, you should be
familiar with the DB2 application development process and programming
techniques as described in DB2 Application Development Guide. The process for
developing programs that use DB2 extenders is essentially the same as that
for traditional DB2 applications.

Your application program code will differ from a traditional DB2 application
because of the new data types and functions that are defined by the
extenders. For example, Figure 24 on page 77 shows an application coded in C
that uses the Image Extender to identify GIF images stored in a database
table. After the images are identified, the program calls an image browser to
display them.

As the example illustrates, an application that uses a DB2 extender needs to
perform the following functions:

�1�Include extender definitions. The dmbimage.h file in the example is the
include (header) file for the Image Extender. The include file defines the
constants, variables, and function prototypes for the extender.
�2�Define host variables as necessary to contain input to or output from a
UDF, or input to an API call. In the example, hvFormat, hvSize, hvWidth,
hvHeight, and hvComment are host variables that are used to contain data
that is retrieved by the Image Extender UDFs. The host variable hvImg_hdl
is used to contain an image handle that is specified as input to an Image
Extender API call.
�3�Specify UDF requests as necessary. In the example, SIZE, WIDTH, HEIGHT,
COMMENT, and FORMAT are Image Extender UDFs.
�4�Specify API calls as necessary. In the example, DBiBrowse is an API call
to a local C function that displays images whose handles are retrieved
from a table.

Before you begin

76 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlcodes.h>
#include <dmbimage.h> �1�

int count=0;

long
main(int argc,char *argv[])
{
EXEC SQL BEGIN DECLARE SECTION; �2�

char hvImg_hdl[251]; /* image handle */
char hvDBName[19]; /* database name */
char hvName[40]; /* employee name */
char hvFormat[9]; /* image format */
long hvSize; /* image size */
long hvWidth; /* image width */
long hvHeight; /* image height */
struct {

short len;
char data[32700]

} hvComment; /* comment about the image */
EXEC SQL END DECLARE SECTION;

/* Connect to database */

strcpy(hvDBName, argv[1]); /* copy the database name */

EXEC SQL CONNECT TO :hvDBName IN SHARE MODE;
/*
* Set current function path

*/
EXEC SQL SET CURRENT FUNCTION PATH = mmdbsys, CURRENT FUNCTION PATH;

Figure 24. An application that uses a DB2 extender (Part 1 of 2)

Before you begin

Chapter 10. Programming overview 77

Including extender definitions
You need an include (header) file in your application program for each
extender that you use. Each include file defines constants, variables, and
function prototypes that are used by the extender. The names of the include
files are:

Include file Extender

dmbimage.h Image

dmbqbapi.h Image (query by image content)

/*
* Select (query) using Image Extender UDF
*
* The SQL statement below finds all images in GIF format.
*/

EXEC SQL DECLARE c1 CURSOR FOR
SELECT PICTURE, NAME, �3�

SIZE(PICTURE), WIDTH(PICTURE),
HEIGHT(PICTURE), COMMENT(PICTURE)

FROM EMPLOYEE
WHERE PICTURE IS NOT NULL AND

FORMAT(PICTURE) LIKE 'GIF%'
FOR FETCH ONLY;

EXEC SQL OPEN c1;
for (;;) {

EXEC SQL FETCH c1 INTO :hvImg_hdl, :hvName, :hvSize,
:hvWidth, :hvHeight, :hvComment;

if (SQLCODE != 0)
break;

printf("\nRecord %d:\n", ++count);
printf("employee name = '%s'\n", hvName);
printf("image size = %d bytes, width=%d, height=%d\n",

hvSize, hvWidth, hvHeight);
hvComment.data[Comment.len]='\0';
printf("comment len = %d\n", hvComment.len);

printf("comment = %s\n", hvComment.data);
/*
* The API call below displays the images
*/
�4� rc=DBiBrowse ("ib %s",MMDB_PLAY_HANDLE,hvImg_hdl,

MMDB_PLAY_WAIT);
}

EXEC SQL CLOSE c1;

/* end of program */

Figure 24. An application that uses a DB2 extender (Part 2 of 2)

Before you begin

78 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

dmbaudio.h Audio

dmbvideo.h Video

dmbshot.h Video (scene change detection)

You bring the include file into a C program with the #include directive. For
example, the following directive brings in the include file for the Image
Extender:
#include <dmbimage.h>

Specifying UDF and UDT names
The full name of a DB2 Extender UDF is mmdbsys.function-name. The full
name of a DB2 extender UDT is mmdbsys.type-name, where mmdbsys is the
schema-name of the function or distinct type. For example, the full name of
the Content UDF is mmdbsys.Content; the full name of the DB2Image data
type that is created by the Image Extender is mmdbsys.DB2Image. You can
omit the mmdbsys schema-name if you previously set the current function
path to mmdbsys, for example:
SET CURRENT FUNCTION PATH = mmdbsys, CURRENT FUNCTION PATH

SET CURRENT PATH = mmdbsys, CURRENT PATH

Transmitting large objects
You can transmit large objects such as images, audio clips, and video clips
between your application and a DB2 database in various ways. The method
you use depends on whether the object is transmitted to or from a file or
memory buffer. The method you use also depends on whether the file is in
your client machine or in the database server machine.

If the object is transmitted between a table and a server file
When you transmit an object between a database table and a server file,
specify the file path in the appropriate extender UDF request. Because the
extender UDF and the file are both on the server, the extender will be able to
find the file. For example, in the following SQL statement, an image whose
content is in a server file is stored in a database table:
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2Image(

CURRENT SERVER,
'/employee/images/ajones.bmp',

Before you begin

Chapter 10. Programming overview 79

'ASIS',
:hvStorageType,
'Anita''s picture')

);

If the object is transmitted to or from a client buffer
The extenders cannot directly access a memory buffer. If you want to transmit
an object to or from a buffer on your client machine, you need a way to do it
other than by specifying a buffer location. One way to transmit an object to or
from a buffer is through a host variable. This is the way you normally
transmit objects between an application and a DB2 database.

You define and use host variables for large objects in the same way as for
traditional character and numeric objects. You declare the host variables in a
DECLARE section, assign them values for transmission, or access values that
are transmitted to them.

When you declare a host variable for image, audio, or video data, specify a
data type of BLOB. When you use a UDF to store, retrieve, or update an
object, you specify the appropriate host variable as an argument in the UDF
request. Use the same format as for other host variables that you specify in an
SQL statement.

For example, the following SQL statements declare and use a host variable
that is named hvaudio to transmit an audio clip to the database:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB (2M) hvaudio;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2Audio(

CURRENT SERVER,
:hvaudio,
'WAVE',
CAST(NULL as LONG VARCHAR),
'Anita''s voice')

);

Using LOB locators
Large objects such as audio and video clips can be very large, and using host
variables might not be the most efficient way of manipulating them. A LOB
locator might be a better way to manipulate LOBs in your applications.

A LOB locator is a small (4-byte) value stored in a host variable that your
program can use to refer to a much larger LOB in the DB2 database. Using a
LOB locator, your program can manipulate the LOB as if the LOB was stored
in a regular host variable. The difference is that there is no need to transport

Before you begin

80 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

the LOB between the database server and the application on the client
machine. For example, when you select a LOB in a database table, the LOB
remains on the server, and the LOB locator moves to the client.

You declare a LOB locator in a DECLARE section and use it in the same way
as a host variable. When you declare a LOB locator for image, audio, or video
data, specify a data type of BLOB_LOCATOR. For example, the following SQL
statements declare and use a LOB locator that is named video_loc to retrieve
a video clip from a database table:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR video_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT(VIDEO)
INTO :video_loc
FROM EMPLOYEE
WHERE NAME='Anita Jones';

UDFs use LOB locators: DB2 extender UDFs that store, retrieve, and update
image, audio, and video objects use LOB locators. These UDFs in DB2
extenders V1 did not use LOB locators, and because of this, could not process
objects larger than 2 MB. This restriction forced users to transmit objects larger
than 2 MB in segments. Because these UDFs now use LOB locators, the 2 MB
restriction is removed.

If the object is transmitted to or from a client file
Use a file reference variable to transmit objects to and from a file on a client.
Using a file reference variable saves you from having to allocate buffer space
for a large object in your application program. When you use a file reference
variable with a UDF, DB2 passes the BLOB content directly between the file
and the UDF.

You declare a file reference variable in a DECLARE section and use it in the
same way as a host variable. When you declare a file reference variable for
image, audio, or video data, specify a data type of BLOB_FILE. However,
unlike a host variable, which contains the content of an object, the file
reference variable contains the name of the file. The size of the file can be no
larger than the size of the BLOB defined for the UDF.

You have various options for how to use a file reference variable for input
and output. You choose the option you want by setting the FILE_OPTIONS
field in the file reference variable structure in your program. You can choose
from the following options:

Option for input:

Before you begin

Chapter 10. Programming overview 81

SQL_FILE_READ. This file can be opened, read, and closed. The length of
the data in the file (in bytes) is determined when the file is opened. The
data_length field of the file reference variable structure holds the length of
the file (in bytes).

Options for output:
SQL_FILE_CREATE. This option creates a new file if it does not already
exist. If the file already exists, an error message is returned. The
data_length field of the file reference variable structure holds the length of
the file (in bytes).
SQL_FILE_OVERWRITE. This option creates a new file if it does not
already exist. If the file already exists, the new data overwrites the data in
the file. The data_length field of the file reference variable structure holds
the length of the file (in bytes).
SQL_FILE_APPEND. This option appends the output to the file if the file
already exists. If the file does not exist, it creates a new file. The
data_length field of the file reference variable structure holds the length of
the data that is added to the file (in bytes), not the total length of the file.

For example, the following statements declare a file reference variable that is
named Img_file and use it to store an image, whose content is in a client file,
into a database table. Notice the SQL_FILE_READ assignment in the
FILE_OPTIONS field:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_FILE Img_file;
EXEC SQL END DECLARE SECTION;

strcpy (Img_file.name,"/employee/images/ajones.bmp");
Img_file.name_length=strlen(Img_file.name);
Img_file.file_options=SQL_FILE_READ;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2Image(

CURRENT SERVER,
:Img_file,
'ASIS',
CAST(NULL as LONG VARCHAR),
'Anita''s picture')

);

Specifying file names when you transmit objects
The DB2 extenders give you flexibility in how to specify file names when you
store, retrieve, or update objects.

Although you can specify a fully qualified file name, (that is, a complete path
followed by the file name) for store, retrieve, and update operations, it’s
preferable to specify a relative file name. In AIX, HP-UX, and Solaris, a

Before you begin

82 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

relative file name is any file name that does not begin with a slash. In OS/2
and Windows, a relative file name is any file name that does not begin with a
drive letter followed by a colon and backslash.

If you specify a relative file name, the extenders will use the directory
specifications in various client and server environment variables as a search
path to resolve the file name. A full path name consists of a leading part,
which is typically related to mount points, and a trailing pathname, which
uniquely identifies the needed file. The trailing pathname is specified in
UDFs. Environment variables supply a list of leading pathnames to search
when trying to resolve relative file names. See “Appendix A. Setting
environment variables for DB2 extenders” on page 557 for information about
the environment variables that the DB2 extenders use to resolve file names.

The extenders also convert file name formats as appropriate. When a file
name is passed to the server, it is converted to the appropriate format for the
server’s operating system. For example, an OS/2 file name such as
c:\dir1\abc.bmp is converted to /dir1/abc.bmp when passed to an AIX
server.

Handling return codes
All embedded SQL statements or DB2 CLI calls in your program, including
those that request DB2 extender UDFs, generate codes that indicate whether
the embedded SQL statement or DB2 CLI call ran successfully. Other DB2
extender APIs, such as administrative APIs, also return codes that indicate
success or lack of success. Your program should check and respond to the
codes that are returned by embedded SQL statements, CLI calls, and APIs.

For information on handling these return codes, see “Chapter 19. Diagnostic
information” on page 519.

In situations where an extender API cannot successfully compelete its unit of
work, a rollback operation is performed. The API also returns an error code.
The rollback operation is done so that the database can be returned to its
previous consistency point. Refer to “Chapter 16. Application programming
interfaces” on page 267 for details.

Unicode support

Observe the following points regarding Unicode support for the Image,
Audio, and Video Extenders:
v The only parameters that can be a Unicode string are the comment fields in

the following UDFs:
– mmdbsys.db2image() import an image
– mmdbsys.db2audio() import an audio

Before you begin

Chapter 10. Programming overview 83

|
|

|
|

|

|

– mmdbsys.db2video() import a video
– mmdbsys.replace() replace an image, an audio, or a video
– mmdbsys.comment() comment update

v If you are planning to access an Unicode database, you must use a DB2
extenders instance set up to support Unicode. An Unicode instance will
only handle Unicode database.
In order for an extender instance to support Unicode, you set the
environment variable DB2CODEPAGE to 1208 before invoking DMBSTART.

Before you begin

84 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|

|

|
|
|

|
|

Chapter 11. Storing, retrieving, and updating objects

This chapter describes how to use the DB2 extender user-defined functions to
store, retrieve, and update an image, audio, or video.

Image, audio, and video formats

Table 5 lists the formats in which you can store, retrieve, or update image,
audio, and video objects. For image objects only, you can have the Image
Extender convert the format of the image as it stores, retrieves, or updates it.
(Audio and video object formats cannot be converted when stored, retrieved,
or updated.)

The Read and Write columns in the table indicate which formats can be read
and which formats can be converted when written. When the entry in the
Read column in the table is x, the corresponding object format can be used
when storing, retrieving, or updating. When the entry in the Write column is
x, an object (image only) can be converted to the corresponding format when
stored, retrieved, or updated. For example, an image in BMP format can be
converted to a GIF format when stored, retrieved, or updated. An image in
JPG format can be converted to TIF format. But an image in TIF format
cannot be converted to JPG format.

Although listed in the table in uppercase, format specifications in store,
retrieve, or update requests are not case sensitive. For example, the
specifications GIF, gif, and Gif are equivalent.

Table 5. Formats that can be processed by the DB2 extenders

Format Description Read Write

Image Formats

_IM PS/2 Audio Video Connection (AVC) x

BMP OS/2 - Microsoft Windows bitmap1 x x

EPS Encapsulated PostScript x

EP2 Encapsulated level 2 PostScript x

GIF Compuserve GIF89a (including animated GIFs2)
and 87

x x

IMG IOCA image x x

IPS Brooktrout FAX card file x x

JPG JPEG3 (JFIF format) x

© Copyright IBM Corp. 1996, 2000 85

Table 5. Formats that can be processed by the DB2 extenders (continued)

Format Description Read Write

PCX PC paint file (grayscale only) x x

PGM Portable gray map (from PBMPLUS) x x

PS PostScript x

PSC Compressed PostScript image x

PS2 PostScript level 2 (color) x

TIF All TIFF 5.0 formats x x

YUV Digital video for YUV x x

Audio formats

AIF or AIFF Audio Interchange File Format x

AIFFC Audio Interchange File Format Compressed x

AU Sun audio file format x

MIDI Musical Instrument Digital Interface x

MPG1 or MPEG1 Moving Pictures Expert Group 1 x

WAV or WAVE Wave x

Video formats

AVI Audio/Video Interleaved x

MPG1 or MPEG1 Motion Picture Coding Expert Group 1 x

MPG2 or MPEG2 Motion Picture Coding Expert Group 2 x

QT Quicktime (AVI) x

Image conversion options

Table 6 on page 87 lists the conversion options (in addition to format
conversion) that you can specify for an image when it is stored, retrieved, or
updated. The Image Extender applies your specifications to the target image;
the source image is not changed.

Each conversion option is specified as a parameter/value pair. The allowed
values for each parameter are listed in the table.

1. Read is supported for OS/2 Version 1, OS/2 Version 2, Windows Version 2, Windows Version 3, and Windows NT
BMP format. Write is supported for OS/2 Version 1 BMP format.

2. The DB2 Image Extender stores attribute information for only the first image in the animated GIF file.

3. Support uses software that is based in part on the work of the Independent JPEG Group.

Formats

86 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Table 6. Image conversion options

Parameter Description Value

-b Number of bits used to represent
each image sample

1 or 8 bits

-s4 Scaling factor Any decimal value greater than zero. The scaling
factor specifies the size ratio of the converted
image to the original. For example, a scaling
factor of 0.5 converts the image to half of its
original size. A scaling factor of 2.0 converts the
image to twice its original size.

-p Photometric (image inversion).
This option changes the
interpretation of an image, based
on the value specified. It does
not change the image itself. This
option applies to black and
white or grayscale images only,
and does not apply to images in
GIF format.

0 = Ones are black
1 = Ones are white

-n Photometric (image inversion).
This option changes an image by
inverting black to white, and
white to black. The option
applies to black and white or
grayscale images only.

None

-r4 Rotation 0 = 0 degrees (no rotation)
1 = 90 degrees (counterclockwise)
2 = 90 degrees (clockwise)
3 = 180 degrees

-x4 Width in pixels Number of pixels

-y4 Height in pixels Number of pixels

-c Compression type 0 = IBM MMR
1 = CCITT Group 3 1-D
2 = CCITT Group 3 2-D (k=2)
3 = CCITT Group 3 2-D (k=4)
4 = CCITT Group 4
6 = TIFF Type 2
10 = Uncompressed
14 = LZW
15 = TIFF Packbits
25 = JBIG

Formats

Chapter 11. Storing, retrieving, and updating objects 87

Storing an image, audio, or video object

Use the DB2Image, DB2Audio, or DB2Video UDF in an SQL INSERT
statement to store an image, audio, or video object in a database.

You can store an object whose source is in a buffer or file in a client machine
or in a server file. For any of these sources, you can store the object in a
database table as a BLOB, or in a file on the database server.

When you request the UDF, you need to specify:
v The name of the currently connected database server; this is contained in

the CURRENT SERVER special register.
v The source of the object content; this is either in a client buffer, client file, or

server file.
v Whether you want to store the content in a database table as a BLOB, or on

a file server.
v The format of the source.
v A comment to be stored with the object (or a null value or empty string if

you do not want to store a comment).

The Image, Audio, and Video Extenders allow you to store an object even if
they do not recognize the object’s format. In cases where the format is not
recognized, you need to specify the attributes of the object. When you store an
image or video with user-supplied attributes, you can also store a thumbnail.
A thumbnail is a miniature image representing the image or video.

For images only, you have the option of having the format of the image
converted when it is stored. If you request format conversion, you need to
specify both the source and target formats of the image. In a format
conversion request, you can also specify further changes to the image, such as
cropping it or rotating it. You indicate these changes by specifying conversion
options.

Commit the store operation: Commit the unit of work after you store an
image, audio, or video object in a database. This frees up locks that the
extenders hold so that you can perform update operations on the stored
object.

DB2Image, DB2Audio, and DB2Video UDF formats
The DB2Image, DB2Audio, and DB2Video UDFs are overloaded, that is, they
have different formats depending on how the UDFs are used. Each UDF has
the following formats (the xxxxx shown in the formats can be Image, Audio,
or Video):

4. If you specify this option for an interlaced GIF image, you should also specify a compression type of LZW.

Storing

88 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Format 1: Store an object from a client buffer or client file:
DB2xxxxx(

CURRENT SERVER, /* database name name in CURRENT SERVER REGISTER */
content, /* object content */
format, /* source format */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 2: Store an object from a server file:
DB2xxxxx(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
source_file, /* source file name */
format, /* source format */
stortype, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server*/
/* MMDB_STORAGE_TYPE_INTERNAL=store */
/* as a BLOB*/

comment /* user comment */
);

Format 3: Store an object with user-supplied attributes from a client buffer or
client file:
DB2xxxxx(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
content, /* object content */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment, /* user comment */
attrs, /* user-supplied attributes */
thumbnail /* thumbnail (image and video only) */

);

Format 4: Store an object with user-supplied attributes from a server file:
DB2xxxxx(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
source_file, /* source file name */
stortype, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server*/
/* MMDB_STORAGE_TYPE_INTERNAL=store */
/* as a BLOB*/

comment, /* user comment */
attrs, /* user-supplied attributes */
thumbnail /* thumbnail (image and video only) */

);

The DB2Image UDF includes the following additional formats:

Format 5: Store an image from a client buffer or client file with format
conversion:

Storing

Chapter 11. Storing, retrieving, and updating objects 89

DB2Image(
CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
content, /* object content */
source_format, /* source format */
target_format, /* target format */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 6: Store an image from a server file with format conversion:
DB2Image(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
source_file, /* server file name */
source_format, /* source format */
target_format, /* target format */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 7: Store an image from a client buffer or client file with format
conversion and additional changes:
DB2Image(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
content, /* object content */
source_format, /* source format */
target_format, /* target format */
conversion_options, /* Conversion options */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 8: Store an image from a server file with format conversion and
additional changes:
DB2Image(

CURRENT SERVER, /* database name in CURRENT SERVER REGISTER */
source_file, /* server file name */
source_format, /* source format */
target_format, /* target format */
conversion_options /* conversion options */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

For example, the following statements in a C application program insert a row
that includes an image into the employee table. The source image is in a
server file that is named ajones.bmp. The image is stored in the employee
table as a BLOB. (This corresponds to format 2 above.)

Storing

90 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;

EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557', /*id*/
'Anita Jones', /*name*/
DB2IMAGE(/*Image Extender UDF*/

CURRENT SERVER, /*database*/
'/employee/images/ajones.bmp', /*source file */
'ASIS', /*keep the image format*/
:hvStorageType /*store image in DB as BLOB*/
'Anita''s picture') /*comment */

);

The following statements in a C application program store the same row into
the employee table as in the previous example. However here the image is
converted from BMP to GIF format as it is stored. (This corresponds to format
6 above.)
EXEC SQL INSERT INTO EMPLOYEE VALUES(

'128557', /*id*/
'Anita Jones', /*name*/
DB2IMAGE(/*Image Extender UDF*

CURRENT SERVER, /*database*/
'/employee/images/ajones.bmp', /*source file */
'ASIS', /*source image format*/
'GIF', /*target image format*/
'Anita''s picture') /*comment*/

);

When you store an image, audio, or video object, the extender computes
attributes such as the number of colors used in the image, audio playing time,
or video compression format. If you store an object with an unrecognized
format, you need to provide these attributes as input to the UDF. The
extender stores the attributes in the database along with other attributes, such
as comments about the object and the identification of the user who stored the
object. These attributes are then available for you to use in queries.

Storing an object that resides on the client
Use a host variable or a file reference variable to transmit the contents of an
image, audio, or video object from a client buffer or client file to the server.

If the object is in a client file, use a file reference variable to transmit its
content for storage in the server. For example, the following statements in a C
application program define a file reference variable named Audio_file and
use it to transmit an audio clip whose content is in a client file. The audio clip
is stored in a database table on the server. Notice that the file_option field of

Storing

Chapter 11. Storing, retrieving, and updating objects 91

the file reference variable is set to SQL_FILE_READ for input. Also notice that
the file reference variable is used as the content argument to the DB2Audio
UDF.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_FILE Audio_file;
EXEC SQL END DECLARE SECTION;

strcpy (Audio_file.name, "/employee/sounds/ajones.wav");
Audio_file.name_length= strlen(Audio_file.name);
Audio_file.file_options= SQL_FILE_READ;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2AUDIO(

CURRENT SERVER,
:Audio_file, /* file reference variable */
'WAVE',
CAST(NULL as LONG VARCHAR),

'Anita''s voice')
);

If the object is in a client buffer, use a host variable, defined as either BLOB or
BLOB_LOCATOR, to transmit its content for storage in the server. In the
following C application program statements, a host variable named Video_loc
is used to transmit the contents of a video clip for storage in the server. The
video clip is stored in a database table as a BLOB. Notice that the host
variable is used as the content argument to the DB2Video UDF.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR Video_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2VIDEO(

CURRENT SERVER,
:Video_loc, /* host variable */
'MPEG1',
'',
'Anita''s video')

);

Make sure that you have enough UDF memory: When you store an object
whose content is in a client buffer, you need to make sure that the
UDF_MEM_SZ parameter in the Database Manager Configuration is set to 4
MB or greater. You can update the UDF_MEM_SZ parameter by using the
DB2 command UPDATE DATABASE MANAGER CONFIGURATION. For
more information on the UPDATE DATABASE MANAGER command, see the
DB2 Command Reference.

Storing

92 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Storing an object that resides on the server
When the image, audio, or video you want to store is in a server file, specify
its path as the content argument to the UDF. For example, the following
statement in a C application program stores a row that includes an image into
the database. The image content is in a file on the server. The stored image
remains in the server file and is pointed to from the database.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp', /*source in server file */
'BMP',
:hvStorageType,
'Anita''s picture')

);

Specify the correct path: When you store an object whose source is in a
server file, you can specify the file’s fully qualified name or a relative name. If
you specify a relative name, you need to ensure that the appropriate
environment variables in the DB2 server include the correct path for the file.
For information about setting these environment variables, see “Appendix A.
Setting environment variables for DB2 extenders” on page 557.

Specifying database or file storage
You can store an image, audio, or video object in a database table as a BLOB,
or in a server file. If you store the object in a server file, the database points to
the file.

If you store the object from a client buffer or client file, you indicate BLOB or
server file storage as a result of what you specify in the target_file parameter.
If you specify a file name, it indicates that you want to store the object in a
server file. If you specify a null value or an empty string, it indicates that you
want to store the object as a BLOB in a database table. The data type of the
target_file parameter is LONG VARCHAR. If you specify a null value,
remember to cast it to a LONG VARCHAR data type.

For example, the following statements in a C application program store a row
that includes an image into a database table. The image source is in a client
buffer. The image is stored in a server file. The database table points to the
server file:

Storing

Chapter 11. Storing, retrieving, and updating objects 93

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB_LOCATOR Img_buf

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
:Img_buf,
'ASIS',
'/employee/images/ajones.bmp', /* store image in server file */
'Anita''s picture')

);

If you store an object from a server file, specify the constant
MMDB_STORAGE_TYPE_INTERNAL to store the object into a database table
as a BLOB. If you want to store the object and have its content remain in the
server file, specify the constant MMDB_STORAGE_TYPE_EXTERNAL.
MMDB_STORAGE_TYPE_INTERNAL has an integer value of 1.
MMDB_STORAGE_TYPE_EXTERNAL has an integer value of 0.

For example, in the following C application program, an audio clip is stored
in a server file. The source audio content is already in a server file. The store
operation places the filename in the database and thus makes the file
accessible through SQL statements.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2AUDIO(

CURRENT SERVER,
'/employee/sounds/ajones.wav',
'WAVE',
:hvStorageType, /* store audio in server file */
'Anita''s voice')

);

Identifying the format for storage
When you store an object, you need to identify its format. The formats that
you can specify are listed in Table 5 on page 85. The extenders will store the
image, audio, or video object in the same format as the source. For image
objects only, you have the option of having the Image Extender convert the
format of the stored image. If you choose to have the image format converted,
you need to specify the format of the source image and the format of the
target image. The target image is the image as stored.

Storing

94 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Identifying the format for storage without conversion
Specify the format of the source image, audio, or video object when you store
the object without format conversion. For example, the following statement in
a C application program stores a bitmap (BMP) image into a database table.
The content of the source is in a server file. The target image will have the
same format as the source.
EXEC SQL INSERT INTO EMPLOYEE VALUES(

'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
'BMP', /*image in BMP format */
'',
'Anita''s picture')

);

You can also specify a null value or empty string as the format, or for the
Image Extender only, the character string ASIS. The extender will then
determine the format by examining the source.

Use NULL or ASIS for recognizable formats: Specify a null value, empty
string, or ASIS only if the format is recognizable to the extender, that is, if it is
one of the formats listed for the extender in Table 5 on page 85. Otherwise, the
extender will not be able to store the object.

Identifying the formats and conversion options for storage with format
conversion
Specify the format of both the source and target images when you store an
image with format conversion. Table 5 on page 85 lists which format
conversions are allowed.

In addition, you can specify conversion options that identify additional
changes, such as rotation or compression, that you want to apply to the stored
image. You specify each conversion option through a parameter and an
associated value. The parameters and allowed values are listed in Table 6 on
page 87. You can request multiple changes to a stored image by specifying
multiple parameter/value pairs.

In the following example, a bitmap (BMP) image, whose content is in a server
file, is converted to GIF format when stored in a database table.
EXEC SQL INSERT INTO EMPLOYEE VALUES(

'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
'BMP', /* source format */

Storing

Chapter 11. Storing, retrieving, and updating objects 95

'GIF', /* target format */
'',
'Anita''s picture')

);

In the following example, the image from the previous example is converted
to GIF format when stored in a database table. In addition, the image is
cropped to a width of 110 pixels and a height of 150 pixels when stored, and
it is compressed using LZW compression.
EXEC SQL INSERT INTO EMPLOYEE VALUES(

'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
'BMP', /* source format */
'GIF', /* target format */
'-x 110 -y 150 -c 14', /* conversion options */
'/employee/images/ajones.gif',
'Anita''s picture')

);

Storing an object with user-supplied attributes
When you store an image, audio, or video object, you are not limited to
formats that the extenders understand. You can specify your own format.
Because the extenders do not understand the format, you must specify the
attributes of the source object. Assign the attribute values in an attribute
structure. The attribute structure must be stored in the data field of the LONG
VARCHAR FOR BIT DATA variable in the UDF.

The UDF code on the server always expects data in “big endian format”. Big
endian format is a format used by most UNIX platforms. If you are storing an
object in “little endian format”, you need to prepare the user-supplied
attribute data so that UDF code on the server can correctly process it. Little
endian format is a format typically used in an Intel® and other microprocessor
platform. (Even if you are not storing the object in little endian format, it is a
good idea to prepare the user-supplied attrubute data.) Use the
DBiPrepareAttrs API to prepare attributes for image objects. Use the
DBaPrepareAttrs API to prepare attributes for audio objects. Use the
DBvPrepareAttrs API to prepare attributes for video objects.

For example, the following statements in a C application program store a row
that includes an image in a database table. The source image, which is in a
server file, has a user-defined format, a height of 640 pixels, and a width of
480 pixels. Notice that the attributes are prepared before the image is stored.
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
struct {

short len;

Storing

96 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

char data[400];
}hvImgattrs;

EXEC SQL END DECLARE SECTION;

DB2IMAGEATTRS *pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr = (DB2IMAGEATTRS *) hvImgattrs.data;
strcpy(pimgattr→format,"FormatI");
pimgattr→width=640;
pimgattr→height=480;
hvImgattrs.len=sizeof(DB2IMAGEATTRS);

DBiPrepareAttrs(pimgattr);

DBEXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
:hvStorageType,
'Anita''s picture',
:hvImgattrs, /* user-specified attributes */
CAST(NULL as LONG VARCHAR)

);

The following statement in a C application program stores a row that includes
an audio clip in a database table. The source audio clip, which is in a server
file, has a user-defined format, a sampling rate of 44.1 kHz, and has two
recorded channels. The audio clip is not MIDI, so empty strings are specified
for tracknames and instruments.
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
struct (

short len;
char data[600];

}hvAudattr;
EXEC SQL END DECLARE SECTION;

MMDBAudioAttrs *paudiattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

paudioattr=(MMDBAudioAttrs *) hvAudattr.data;
strcpy(paudioAttr→cFormat,"FormatA");
paudioAttr→ulSamplingRate=44100;
paudioAttr→usNumChannels=2;
hvAudattrs.len=sizeof(MMDBAudioAttrs);

DBaPrepareAttrs(paudioAttr);

EXEC SQL INSERT INTO EMPLOYEE VALUES(

Storing

Chapter 11. Storing, retrieving, and updating objects 97

'128557',
'Anita Jones',
DB2AUDIO(

CURRENT SERVER,
'/employee/sounds/ajones.aud',
:hvStorageType,
'Anita''s voice',
:hvAudattr) /* user-specified attributes */

);

Storing a thumbnail (image and video only)
When you store an image of your own format, you can also store a
thumbnail, a miniature-sized version of the image. You control the size and
format of the thumbnail. When you store an image in a format that the Image
Extender recognizes, it automatically generates and stores a thumbnail for the
object. The Image Extender creates a thumbnail in GIF format of size 112 x 84
pixels.

When you store a video object of your own format, you can also store a
thumbnail that symbolizes the video object. When you store a video object in
a format that the Video Extender recognizes, it automatically stores a generic
thumbnail for the object. The Video Extender creates a thumbnail in GIF
format of size 108 x 78 pixels.

If you don’t want to store a thumbnail when you store an image or video
object with user-supplied attributes, specify a null value or empty string in
place of the thumbnail.

Generate the thumbnail in your program—the extenders do not provide APIs
to generate thumbnails. Create a structure in your program for the thumbnail
and specify the thumbnail structure in the UDF.

The following statements in a C application program store a row that includes
a video clip in a database table. The source video clip, whose content is in a
server file, has a user-defined format. The video content will remain in the
server and be pointed to from the table. A thumbnail of a representative video
frame is also stored.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
struct {

short len;
char data[4000];
}hvVidattrs;

struct {
short len;
char data[10000];
}hvThumbnail;

EXEC SQL END DECLARE SECTION;

Storing

98 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDBVideoAttrs *pvideoAttr;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

pvideoAttr=(MMDBVideoAttrs *) hvVidattrs.data;
strcpy(pvideoAttr→cFormat,"Formatv");
hvVidattrs.len=sizeof(MMDBVideoAttrs);

/* Generate thumbnail and assign data in video structure */

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2VIDEO(

CURRENT SERVER,
'/employee/videos/ajones.vid',
:hvStorageType,
'Anita''s video',
:hvVidattrs,
:hvThumbnail) /* Thumbnail*/

);

Storing a comment
Store a comment with an image, audio, or video object by specifying the
comment in the UDF request. A comment is free-form text of data type LONG
VARCHAR that can be up to 32,700 bytes long. If you do not want a comment
stored when you store an object, specify a null value or empty string in place
of the comment. If you specify a null value, remember to cast it to a LONG
VARCHAR data type.

For example, the following statements in a C application program store a
comment with a video clip.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2VIDEO(

CURRENT SERVER,
'/employee/videos/ajones.mpg',
'MPEG1',
:hvStorageType,
'Anita''s video') /* comment */

);

The following statements in a C application program store an image without a
comment.

Storing

Chapter 11. Storing, retrieving, and updating objects 99

EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;

EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
'GIF',
:hvStorageType,
Cast(NULL as LONG VARCHAR) /* no comment */

);

Retrieving an image, audio, or video object

Use the Content UDF in an SQL SELECT statement to retrieve an image,
audio, or video object from a database table. You can retrieve the object to a
client buffer, client file, or server file.

Content UDF formats for retrieval
The Content UDF is overloaded, meaning, that it has different formats
depending on how the UDF is used. The formats are as follows:

Format 1: Retrieve an object to a client buffer or client file:
Content(

handle, /* object handle */
);

Format 2: Retrieve a segment of an object to a client buffer or client file:
Content(

handle, /* object handle */
offset, /* offset where retrieval begins */
size /* number of bytes to retrieve */

);

Format 3: Retrieve an object to a server file:
Content(

handle, /* object handle */
target_file, /* server file name */
overwrite /* 0=Do not overwrite target file if it exists */

/* 1=Overwrite target file */

);

In addition, the Content UDF includes the following formats for image objects
only:

Storing

100 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Format 4: Retrieve an image to a client buffer or file with format conversion:
Content(

handle, /* object handle */
target format /* target format */

);

Format 5: Retrieve an object to a server file with format conversion:
Content(

handle, /* object handle */
target_file, /* server file name */
overwrite, /* 0=Do not overwrite target file if it exists */

/* 1=Overwrite target file */
target format /* target format */

);

Format 6: Retrieve an object to a client buffer or file with format conversion
and additional changes:
Content(

handle, /* object handle */
target format, /* target format */
conversion_options /* conversion options */

);

Format 7: Retrieve an object to a server file with format conversion and
additional changes:
Content(

handle, /* object handle */
target_file, /* server file name */
overwrite, /* 0=Do not overwrite target file if it exists */

/* 1=Overwrite target file */
target format, /* target format */
conversion_options /* conversion options */

);

For example, the following statement retrieves an image from the employee
table to a file on the server. (This corresponds to format 3.)
EXEC SQL SELECT CONTENT(/* retrieval UDF */

PICTURE, /* image handle */
'/employee/images/ajones.bmp', /* target file */
1) /* overwrite target file */

FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

The following statements in a C application program retrieve an image from
the employee table to a file on the server. The format of the image is
converted when it is retrieved. (This corresponds to format 5.)
EXEC SQL BEGIN DECLARE SECTION;

char hvImg_fname[255];
EXEC SQL END DECLARE SECTION;

Retrieving

Chapter 11. Storing, retrieving, and updating objects 101

EXEC SQL SELECT CONTENT(/* retrieval UDF */
PICTURE, /* image handle */
'/employee/images/ajones.bmp', /* target file */
1, /* overwrite target file */
'GIF') /* target format */

INTO :hvImg_fname
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

Retrieving an object to the client
You can use the Content UDF to retrieve an image, audio, or video object to a
client buffer or client file without format conversion. In addition, you have the
option of having the Image Extender convert the format of an image when it
is retrieved.

Retrieving an object to a client without format conversion
Use a LOB locator to retrieve an image, audio, or video object to a client
buffer, or retrieve the LOB. Use a file reference variable to retrieve an image,
audio, or video object to a client file.

Retrieving an image, audio, or video object to a client buffer using a host
variable, or to a client file using a file reference variable is appropriate when
the content of the object is stored in a database table as a BLOB. If the content
is in a server file, it might be more efficient to copy the content from the
server file to the client file.

Specify the handle of the object. Optionally, you can also specify the offset,
starting at byte 1, where retrieval is to start, and the number of bytes that you
want to retrieve.

The following statements in a C application program use a LOB locator
named audio_loc to retrieve an audio clip into a client buffer.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR audio_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT(
SOUND) /* audio handle */

INTO :audio_loc
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

Make sure that you have enough UDF memory: When you retrieve an object
to a client buffer, you need to make sure that the UDF_MEM_SZ parameter in
the Database Manager Configuration is set to 4MB or greater. You can update
the UDF_MEM_SZ parameter with the DB2 command UPDATE DATABASE
MANAGER CONFIGURATION. For information on the UPDATE DATABASE
MANAGER command, see the publication DB2 Command Reference.

Retrieving

102 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Retrieving an image to a client with conversion
Use a LOB locator to retrieve a stored image to a client buffer with format
conversion, or retrieve the LOB. Use a file reference variable to retrieve a
stored image to a client file with format conversion.

Retrieving an image to a client buffer using a host variable, or to a client file
using a file reference variable, is appropriate when the content of the image is
stored in a database table as a BLOB. If the content is in a server file, it might
be more efficient to copy the content from the server file to the client file.

When you retrieve an image with format conversion, you need to specify its
target format, that is, the converted format. Table 5 on page 85 identifies the
format conversions that are allowed. You can also specify conversion options
that identify additional changes, such as rotation or scaling, to be applied to
the retrieved image. Table 6 on page 87 lists the conversion options that you
can specify.

For example, the following statements in a C application program retrieve an
image to a client file. The source image is in bitmap format and it is stored in
a database table as a BLOB. The retrieved image is converted to GIF and it is
scaled to 3 times its original size.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_FILE Img_file;
EXEC SQL END DECLARE SECTION;

strcpy (Img_file.name, "/employee/images/ajones.gif");
Img_file.name_length= strlen(Img_file.name);
Img_file.file_options= SQL_FILE_CREATE;

EXEC SQL SELECT CONTENT(
PICTURE, /* image handle */
'GIF', /* target format */
'-s 3.0') /* conversion options */

INTO :Img_file,
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

Retrieving an object to a server file
You can use the Content UDF to retrieve an image, audio, or video object to a
server file without format conversion. In addition, you can use the Content
UDF to retrieve an image to a server file with format conversion.

When you retrieve an image, audio, or video object to a file on the server
without conversion, specify the object’s handle, the target file name, and an
overwrite indicator. The overwrite indicator tells the extender whether to
overwrite the target file with the retrieved data if the target file already exists
on the server. If the target file does not exist, the extender creates the target
file on the server.

Retrieving

Chapter 11. Storing, retrieving, and updating objects 103

If you specify an overwrite indicator value of 1, the extender overwrites the
target file with the retrieved data. If you specify an overwrite indicator value
of 0, the extender does not overwrite the target file, thus the data is not
retrieved.

The overwrite indicator is ignored if the object to be retrieved is stored in a
database table as a BLOB. The target file will be created or overwritten no
matter what is specified for the overwrite indicator.

When you retrieve an object to a server file, it returns the name of the server
file. For example, the following statement in a C application program retrieves
a video to a file on the server. The file name of the server file is stored in the
host variable hvVid_fname.
EXEC SQL BEGIN DECLARE SECTION;
struct{

short len;
char data[250];
}hvVid_fname[;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT(
VIDEO, /* video handle */
'/employee/videos/ajones.mpg', /* server file */
1) /* overwrite target file */

INTO :hvVid_fname;
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

Using the Content UDF to retrieve an object to a server file without
conversion is appropriate when the object is stored in a database table as a
BLOB. If the object is stored in a server file, it might be more efficient to copy
the content of the source file to the target file.

When you retrieve an image to a server file with format conversion, specify
the image handle, the target file name, an overwrite target indicator, and the
target format. Table 5 on page 85 identifies what format conversions are
allowed. You can also choose to specify a null value or empty string for the
target format or the string ASIS. In this case, the retrieved image will have the
same format as the source.

For example, the following statements in a C application program retrieve an
image to a file on the server. The source image is in bitmap format and is
stored in a database table as a BLOB. The retrieved image is converted to GIF
format. The file name of the server file is stored in the host variable
hvImg_fname.
EXEC SQL BEGIN DECLARE SECTION;

struct{
short len;

Retrieving

104 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

char [400];
}hvImg_fname[;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT(
PICTURE, /* image handle */
'/employee/images/ajones.gif', /* target file */
1, /* overwrite target file */
'GIF') /* target format */

INTO :hvImg_fname
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

The server file must be accessible: When you retrieve an object to a server
file, you must specify the target file’s fully qualified name. Alternatively, you
must ensure that the DB2IMAGEEXPORT, DB2AUDIOEXPORT, and
DB2VIDEOEXPORT environment variables are set to properly resolve an
incomplete file name specification.

Retrieving and using attributes
When you store an image, audio, or video object in a database, the extender
also stores the object’s attributes in the database. When you update an object,
the extender updates the object’s attributes that are stored in the database.
These attributes are available for you to use in queries.

The extenders create UDFs for each of the attributes that they manage. As a
result, you can specify UDFs in SQL statements to access and use object
attributes. Table 7 lists the attributes that the extenders manage and their
UDFs. It also indicates the object types for each attribute. Some of the
attributes, such as an object’s format and file name, are common to all the
object types. These attributes are associated with image, audio, and video
objects. Other attributes, such as sampling rate or compression type, are
specific to certain object types, such as audio and video.

Table 7. Attributes managed by the DB2 extenders. You can access each attribute through its UDF.

Attribute UDF Image Audio Video

Name of server file in which the
object is stored

Filename x x x

User ID of person who stored
the object

Importer x x x

Date and time when the object
was stored

ImportTime x x x

Size of the object in bytes Size x x x

User ID of person who last
updated the object

Updater x x x

Retrieving

Chapter 11. Storing, retrieving, and updating objects 105

Table 7. Attributes managed by the DB2 extenders (continued). You can access each attribute through
its UDF.

Attribute UDF Image Audio Video

Date and time when the object
was last updated

UpdateTime x x x

Format of the object (for
example, GIF or MPEG1)

Format x x x

Comments about the object Comment x x x

Height of the object (in pixels) Height x x

Width of the object (in pixels) Width x x

Number of colors in the object NumColors x

Thumbnail-size image of the
object

Thumbnail x x

Number of bytes returned per
sample in an audio, or in an
audio track of a video

AlignValue x x

Number of bits used to
represent each sample

BitsPerSample x x

Number of recorded channels NumChannels x x

Duration (in seconds) Duration x x

Sampling rate (in samples per
second)

SamplingRate x x

Average bytes per second
transfer time

BytesPerSec x

Number of audio track for
instrument

FindInstrument x

Track number of named track FindTrackName x

Name of recorded instruments GetInstruments x

Track numbers and names of
recorded instruments

GetTrackNames x

Clock ticks per second of audio TicksPerSec x

Clock ticks per quarter note of
audio

TicksPerQNote x

Aspect ratio AspectRatio x

Video compression format (such
as MPEG1)

CompressType x

Frames per second of
throughput

FrameRate x

Using attributes

106 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Table 7. Attributes managed by the DB2 extenders (continued). You can access each attribute through
its UDF.

Attribute UDF Image Audio Video

Maximum throughput (in bytes
per second)

MaxBytesPerSec x

Number of audio tracks NumAudioTracks x x

Number of frames NumFrames x

Number of video tracks NumVideoTracks x

You can use an attribute UDF in an SQL statement SELECT clause expression
or WHERE clause search condition. When you request the UDF, you specify
the name of the column in the database table that contains the object’s handle.

For example, the following statement uses the Updater UDF in the SELECT
clause of an SQL SELECT statement to retrieve the user ID of the person who
last updated an image in the employee table:
EXEC SQL BEGIN DECLARE SECTION;
char hvUpdatr[30];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT UPDATER(PICTURE)
INTO :hvUpdatr
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

The following statement uses the Filename UDF in the SELECT clause of a
SELECT statement and the NumAudioTracks UDF in the WHERE clause to
find videos stored in the employee table that have audio tracks:
EXEC SQL BEGIN DECLARE SECTION;
char hvVid_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(VIDEO)
INTO :hvVid_fname
FROM EMPLOYEE
WHERE NUMAUDIOTRACKS(VIDEO)>0;

Retrieving comments
Use the Comment UDF to retrieve comments that are stored with an image,
audio, or video object. When you retrieve a comment for an object, you
specify the column in the database table that contains the object’s handle. For
example, the following statement retrieves a comment that is stored with an
audio clip in the employee table.
EXEC SQL BEGIN DECLARE SECTION;
struct {

short len;

Using attributes

Chapter 11. Storing, retrieving, and updating objects 107

char data[32700];
}hvComment

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT COMMENT(SOUND)
INTO :hvComment
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

You can also use the Comment UDF as a predicate in the WHERE clause of
an SQL query. For example, the following statement retrieves the file name of
all images in the employee table that have been noted as “touched up”.
EXEC SQL BEGIN DECLARE SECTION;
struct {

short len;
char data[250];
}hvImg_fname

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE COMMENT(PICTURE)

LIKE '%touch%up';

Updating an image, audio, or video object

Use the Content UDF in an SQL UPDATE statement to update an image,
audio, or video object in a database table. Use the Replace UDF in an SQL
UPDATE statement to update an image, audio, or video in a database table
and update a comment that is associated with the object. In either case, the
extender updates the attributes that are associated with the object.

You can update an object that is stored in a database table as a BLOB or
stored in a server file (and pointed to from the database). The source of the
update can be in a buffer, client file, or server file.

Table 5 on page 85 lists the formats in which you can update image, audio,
and video objects. However, you can also update an object whose format is
unrecognized by the extender. In this case, the user specified the object’s
attributes when the object was stored. When you update an object with
user-specified attributes, you need to specify the updated attributes of the
object.Use the ContentA UDF in an SQL UPDATE statement to update an
image, audio, or video object with user-supplied attributes in a database. Use
the ReplaceA UDF in an SQL UPDATE statement to update an image, audio,
or video with user-supplied attributes in a database table and update a
comment associated with the object. When you update an object with
user-specified attributes, you need to specify the attributes of the object, its
format, and for video objects only, its compression format.

Retrieving comments

108 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

You can also update the thumbnail for a stored image or video.

Commit the update operation: Commit the unit of work after you update an
image, audio, or video object in a database. This frees up locks that the
extenders hold so that you can perform subsequent update operations on the
stored object.

Content UDF formats for updating
The Content UDF is overloaded, meaning, that it has different formats
depending on how the UDF is used. The formats are as follows:

Format 1: Update an object from a client buffer or client file:
Content(

handle, /* object handle */
content, /* object content */
source_format, /* source format */
target_file /* target file name for storage in file */

/* server or NULL for storage in table as BLOB */
);

Format 2: Update an object from a server file:
Content(

handle, /* object handle */
source_file, /* server file name */
source_format, /* source format */
stortype /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server */
/* MMDB_STORAGE_TYPE_INTERNAL=store as a BLOB*/

);

Format 3: Update an object with user-supplied attributes from a client buffer
or client file:
Content(

handle, /* object handle */
content, /* object content */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
attrs, /* user-supplied attributes */
thumbnail /* thumbnail (image and video only) */

);

Format 4: Update an object with user-supplied attributes from a server file:
Content(

handle, /* object handle */
source_file, /* source file name */
stortype, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server*/
/* MMDB_STORAGE_TYPE_INTERNAL=store */

Updating

Chapter 11. Storing, retrieving, and updating objects 109

/* as a BLOB*/
attrs, /* user-supplied attributes */
thumbnail /* thumbnail (image and video only) */

);

For image objects only, the Content UDF has the following additional formats:

Format 5: Update an image from a client buffer or client file with format
conversion:
Content(

handle, /* object handle */
content, /* object content */
source format, /* source format */
target format, /* target format */
target_file /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
);

Format 6: Update an object from a server file with format conversion:
Content(

handle, /* object handle */
source_file, /* server file name */
source format, /* source format */
target format, /* target format */
target_file /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
);

Format 7: Update an image from a client buffer or client file with format
conversion and additional changes:
Content(

handle, /* object handle */
content, /* object content */
source format, /* source format */
target format, /* target format */
conversion_options, /* conversion options */
target_file /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
);

Format 8: Update an object from a server file with format conversion and
additional changes:
Content(

handle, /* object handle */
source_file, /* server file name */
source format, /* source format */
target format, /* target format */
conversion_options, /* conversion options */
target_file /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
);

Updating

110 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

For example, the following statements in a C application program update an
image in the employee table. The source content for the update is in a server
file that is named ajones.bmp. The updated image is stored in the employee
table as a BLOB. (This corresponds to format 2 above.)
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=CONTENT(
PICTURE, /*image handle*/
'/employee/newimg/ajones.bmp', /*source file */
'ASIS', /*keep the image format*/
''); /*store image in DB as BLOB*/

WHERE NAME='Anita Jones';

The following statements in a C application program update the same image
as in the previous example. However, here the image is converted from BMP
to GIF format on update. (This corresponds to format 6 above.)
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=CONTENT(
PICTURE, /*image handle*/
'/employee/newimg/ajones.bmp', /*source file */
'BMP', /*source format*/
'GIF', /*target format*/
''); /*store image in DB as BLOB*/

WHERE NAME='Anita Jones';

Replace UDF formats for updating
The Replace UDF is overloaded, that is, it has different formats depending on
how the UDF is used. The formats are as follows:

Format 1: Update an object from a client buffer or client file and update its
comment:
Replace(

handle, /* object handle */
content, /* object content */
source_format, /* source format */
target_file, /* target file name for storage in file */
comment /* user comment */

);

Format 2: Update an object from a server file and update its comment:
Replace(

handle, /* object handle */
source_file, /* server file name */
source_format, /* source format */
stortype, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server*/
/* MMDB_STORAGE_TYPE_INTERNAL=store as a BLOB*/

comment /* user comment */
);

Updating

Chapter 11. Storing, retrieving, and updating objects 111

Format 3: Replace an object with user-supplied attributes from a client buffer
or client file and update its comment:
Replace(

handle, /* object handle */
content, /* object content */
target_file, /* target file name for storage in file */

/* or NULL for storage in table as BLOB */
comment, /* user comment */
attrs, /* user-supplied attributes */
thumbnail /* thumbnail */

);

Format 4: Store an object with user-supplied attributes from a server file:
Replace(

handle, /* object handle */
source_file, /* server file name */
stortype, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server*/
/* MMDB_STORAGE_TYPE_INTERNAL=store as a BLOB*/

comment, /* user comment */
attrs, /* user-supplied attributes */
thumbnail /* thumbnail */

);

For image objects only, the Replace UDF has the following additional formats:

Format 5: Update an image from a client buffer or client file with format
conversion and update its comment:
Replace(

handle, /* object handle */
content, /* object content */
source_format, /* source format */
target_format, /* target format */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 6: Update an object from a server file with format conversion and
update its comment:
Replace(

handle, /* object handle */
source_file, /* server file name */
source_format, /* source format */
target_format, /* target format */
target_file, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server */
/* MMDB_STORAGE_TYPE_INTERNAL=store as a BLOB*/

comment /* user comment */
);

Updating

112 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Format 7: Update an image from a client buffer or client file with format
conversion and additional changes and update its comment:
Replace(

handle, /* object handle */
content, /* object content */
source_format, /* source format */
target_format, /* target format */
conversion_options, /* conversion options */
target_file, /* target file name for storage in file server */

/* or NULL for storage in table as BLOB */
comment /* user comment */

);

Format 8: Update an object from a server file with format conversion and
additional changes and update its comment:
Replace(

handle, /* object handle */
source_file, /* server file name */
source_format, /* source format */
target_format, /* target format */
conversion_options, /* conversion options */
target_file, /* MMDB_STORAGE_TYPE_EXTERNAL=store */

/* in file server */
/* MMDB_STORAGE_TYPE_INTERNAL=store as a BLOB*/

comment /* user comment */
);

For example, the following statements in a C application program update an
audio clip in the employee table and update its associated comment. The
source content for the update is in a server file that is named ajones.wav. The
updated audio clip is stored in the employee table as a BLOB without format
conversion (the Audio Extender does not support format conversion). This
corresponds to format 2 above.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET SOUND=REPLACE(

SOUND, /*audio handle*/
'/employee/newaud/ajones.wav', /*source file */
'WAV', /*keep the audio format*/
:hvStorageType, /*store audio in DB as BLOB*/
'Anita''s new greeting') /*user comment*/

WHERE NAME= 'Anita Jones';

In the following example an image and its associated comment are updated.
The source content for the update is in a server file. The updated image is

Updating

Chapter 11. Storing, retrieving, and updating objects 113

stored in the employee table as a BLOB, and is converted from BMP to GIF
format on update. (This corresponds to format 6 above.)
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=REPLACE(
PICTURE, /*image handle*/
'/employee/newimg/ajones.bmp', /*source file */
'BMP', /*source format*/
'GIF', /*target format*/
'' /*store image in DB as BLOB*/
'Anita''s new picture')

WHERE NAME='Anita Jones'; /* user comment */

Updating an object from the client
Use a host variable or a file reference variable to update an image, audio, or
video object from a client buffer or client file.

If the source for the update is in a client file, use a file reference variable to
transmit its content. For example, the following statements in a C application
program define a file reference variable named Audio_file and use it to
update an audio clip stored in a database table as a BLOB. The source for the
update is in a client file. Notice that the file_options field of the file
reference variable is set to SQL_FILE_READ, that is, for input. Also notice that
the file reference variable is used as the content argument to the Content UDF.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_FILE Audio_file;
EXEC SQL END DECLARE SECTION;

strcpy (Audio_file.name, "/employee/newsound/ajones.wav");
Audio_file.name_length= strlen(Audio_file.name);
Audio_file.file_options= SQL_FILE_READ;

EXEC SQL UPDATE EMPLOYEE
SET SOUND=CONTENT(

SOUND,
:Audio_file /*file reference variable*/
'WAVE', /*keep the image format*/
CAST(NULL as LONG VARCHAR))

WHERE NAME='Anita Jones';

If the object is in a client buffer, use a host variable to transmit its content for
update. In the following C application program example, a host variable
named Video_seg is used to transmit the contents of a video clip for update.
The comment associated with the video clip is also updated. The video clip is
stored in a database table as a BLOB. Notice that the host variable is used as
the content argument to the Replace UDF.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB (2M) Video_seg
EXEC SQL END DECLARE SECTION;

Updating

114 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EXEC SQL UPDATE EMPLOYEE
SET VIDEO=REPLACE(

VIDEO,
:Video_seg /*host variable*/
'MPEG1',
CAST(NULL as LONG VARCHAR),

'Anita''s new video')
WHERE NAME='Anita Jones';

Make sure that you have enough UDF memory: When you update an object
whose content is in a client buffer, you need to make sure that the
UDF_MEM_SZ parameter in the Database Manager Configuration is set to
4MB or greater. You can update the UDF_MEM_SZ parameter with the DB2
command UPDATE DATABASE MANAGER CONFIGURATION.

Updating an object from the server
When the source content for an image, audio, or video object update is in a
server file, specify the file path as the content argument to the UDF. For
example, the following statement in a C application program updates an
image in a database. The image content is in a server file. The database points
to the server file. The source for the update is also in a server file.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET PICTURE=CONTENT(

PICTURE, /* image handle */
'/employee/newimg/ajones.bmp', /* source file */
'ASIS',
:hvStorageType)

WHERE NAME='Anita Jones';

Specify the correct path: When you update an object whose source is in a
server file, you can specify the file’s fully qualified name or a relative name. If
you specify a relative name, you need to ensure that the appropriate
environment variables in the DB2 server includes the correct path for the file.
For information about setting these environment variables, see “Appendix A.
Setting environment variables for DB2 extenders” on page 557.

Specifying database or file storage for updates
You can update an image, audio, or video object that is stored in a database
table as a BLOB, or in a server file (and pointed to from the database).

If you update an object from a client buffer or client file, you indicate BLOB
or server file storage as a result of what you specify in the filename
parameter. If you specify a file name, it indicates that you want to update an

Updating

Chapter 11. Storing, retrieving, and updating objects 115

object whose content is in a server file. If you specify a null file name, it
indicates that you want to update an object that is stored as a BLOB in a
database table.

For example, the following statements in a C application program update an
image whose content is in a server file. The update source is in a client buffer.
The image comment is updated, too.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB (2M) Img_buf
EXEC SQL END DECLARE SECTION;

EXEC SQL UPDATE EMPLOYEE
SET PICTURE=REPLACE(

PICTURE,
:Img_buf,
'ASIS',
'/employee/newimg/ajones.bmp', /*update image in*/

/*server file*/
'Anita''s new picture')

WHERE NAME='Anita Jones';

If you update an object from a server file, specify
MMDB_STORAGE_TYPE_INTERNAL to update an object that is stored in a
database table as a BLOB. If you want to update an object whose content is in
the server file, specify MMDB_STORAGE_TYPE_EXTERNAL.

For example, in the following C application program, an audio clip is
updated. The content of the audio clip is in a server file. The source for the
update is also in a server file.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET SOUND=CONTENT(

SOUND,
'/employee/newimg/ajones.wav',
'WAVE',
:hvStorageType) /*update audio in server file*/

WHERE NAME='Anita Jones';

Identifying the format for update
When you update an object, you need to identify its format. The extenders
will store the updating image, audio, or video object in the same format as the
source. For image objects only, you have the option of having the Image
Extender convert the format of the updated image. If you want to have the

Updating

116 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

image format converted, you need to specify the format of the update source
and the format of the target image. The target image is the updated image as
stored.

Identifying the format for update without conversion
Specify the format of the source image, audio, or video object when you
update an object without format conversion. For example, the following
statement in a C application program updates a bitmap (BMP) image whose
content is in a server file. The format of the updated image will not be
converted.
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=CONTENT(
PICTURE,
'/employee/newimg/ajones.bmp',
'BMP', /*image format*/
'')

WHERE NAME='Anita Jones';

You can also specify a null value or empty string as the format, or for the
Image Extender only, the character string ASIS. The extender will then
determine the format by examining the source.

Use NULL or ASIS for recognizable formats: Specify a null value, empty
string, or ASIS only if the format is recognizable to the extender, that is, if it is
one of the formats listed for the extender in Table 5 on page 85. Otherwise, the
extender cannot update the object.

Identifying the formats and conversion options for update with format
conversion
Specify the format of both the source and target images when you update an
image with format conversion. Table 5 on page 85 lists which format
conversions are allowed.

In addition, you can specify conversion options that identify additional
changes, such as rotation or compression, that you want to apply to the
updated image. You specify each conversion option through a parameter and
an associated value. The parameters and allowed values are listed in Table 6
on page 87. You can request multiple changes to the updated image by
specifying multiple parameter/value pairs.

In the following example, an image whose content is in a server file is
updated. The source of the update is in bitmap (BMP) format. The format will
be converted from BMP to GIF on update.
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=CONTENT(
PICTURE,
'/employee/newimg/ajones.bmp',

Updating

Chapter 11. Storing, retrieving, and updating objects 117

'BMP', /*source format*/
'GIF', /*target format*/
'')

WHERE NAME='Anita Jones';

In the following example, the same image is converted to GIF format when
updated. In addition, the image is rotated 90 degrees clockwise when
updated.
EXEC SQL UPDATE EMPLOYEE

SET PICTURE=CONTENT(
PICTURE,
'/employee/newimg/ajones.bmp',
'BMP', /*source format*/
'GIF', /*target format*/
'-r 1', /* conversion options */
'')

WHERE NAME='Anita Jones';

Updating an object with user-supplied attributes
When you update an image, audio, or video object that was stored with
user-supplied attributes, you must specify the attributes of the updating
content. Assign the attribute values in an attribute structure. The attribute
structure must be stored in the data field of the LONG VARCHAR FOR BIT
DATA variable in the UDF.

The UDF code on the server always expects data in “big endian format”. Big
endian format is a format used by most UNIX platforms. If you are storing an
object in “little endian format”, you need to prepare the user-supplied
attribute data so that UDF code on the server can correctly process it. Little
endian format is a format typically used in an Intel and other microprocessor
platform. (Even if you are not storing the object in little endian format, it is a
good idea to prepare the user-supplied attrubute data.) Use the
DBiPrepareAttrs API to prepare attributes for image objects. Use the
DBaPrepareAttrs API to prepare attributes for audio objects. Use the
DBvPrepareAttrs API to prepare attributes for video objects.

For example, the following statements in a C application program update an
image whose content is in a server file. The image has a user-defined format,
a height of 640 pixels, and a width of 480 pixels. Notice that the attributes are
prepared before the image is updated.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
struct {

short len;
char data[400];
}hvImgattrs;

EXEC SQL END DECLARE SECTION;

DB2IMAGEATTRS *pimgattr;

Updating

118 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr = (DB2IMAGEATTRS *) hvImgattrs.data;
strcpy(pimgattr→Format,"FormatI");
pimgattr→width=640;
pimgattr→height=480;
hvImgattrs.len=sizeof(DB2IMAGEATTRS);

DBiPrepareAttrs(pimgattr);

EXEC SQL UPDATE EMPLOYEE
SET PICTURE=REPLACE(

PICTURE,
'/employee/newimg/ajones.bmp',
:hvStorageType,
'Anita''s new picture',
:ImgAttrs, /*user-supplied attributes*/
CAST(NULL as LONG VARCHAR))

WHERE NAME='Anita Jones';

Updating a thumbnail (image and video only)
Use the Thumbnail UDF to update a thumbnail stored for an image or video
object (or add a thumbnail if none is associated with the stored image or
video). When you use the Thumbnail UDF, specify the handle of the object
whose thumbnail is being updated, and specify the content of the updated (or
new) thumbnail.

Generate the thumbnail in your program—the extenders do not provide APIs
to generate thumbnails. You control the size and format of the updating
thumbnail. Create a structure in your program for the thumbnail, and specify
the thumbnail structure in the UDF.

For example, the following statements in a C application program update the
thumbnail associated with a stored video clip.
EXEC SQL BEGIN DECLARE SECTION;

struct {
short len;
char data[10000];

}hvThumbnail;
EXEC SQL END DECLARE SECTION;

/*Create thumbnail and store in hvThumbnail*/

EXEC SQL UPDATE employee
SET picture=Thumbnail(

picture,
:hvThumbnail)

WHERE name='Anita Jones';

Updating

Chapter 11. Storing, retrieving, and updating objects 119

You can also update a thumbnail when you update an image or video object
with user-supplied attributes. In fact, if you update an image or video with
user-supplied attributes, you must specify a thumbnail as input. If you do not
want to update the thumbnail when you update the object, specify a null
value or empty string in place of the thumbnail specification.

The following statements in a C application program update a video clip with
user-supplied attributes, and update a thumbnail associated with the video.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
struct {

short len;
char data[400];

}hvVidattrs;
struct {

short len;
char data[10000];

}hvThumbnail;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

MMDBVideoAttrs *pvideoAttr;
pvideoAttr=(MMDBVideoAttrs *)hvVidattrs.data;
strcpy(pvideoAttr→cformat,"Formatv");
hvVidattrs.len=sizeof(MMDBVideoAttrs);

/* Update video content and thumbnail */

EXEC SQL UPDATE EMPLOYEE
SET VIDEO=REPLACE(

VIDEO,
'/employee/newvid/ajones.mpg',
:hvStorageType,
'Anita''s new video',
:VidAttrs,
:hvThumbnail) /*thumbnail*/

WHERE NAME='Anita Jones';

Updating a comment
You can update a comment by itself, or you can update a comment when you
update its associated object.

Use the Comment UDF to update a comment by itself. Specify the content of
the updated comment as well as the table column that contains the object’s
handle. Use a host variable to transmit the content to the server. For example,
the following statements declare a host variable named hvRemarks, and use it
to update an existing comment for a stored video clip.
EXEC SQL BEGIN DECLARE SECTION;

struct {
short len;

Updating

120 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

char data [40];
}hvRemarks;

EXEC SQL END DECLARE SECTION;

/* Get the old comment */

EXEC SQL SELECT COMMENT(VIDEO)
INTO :hvRemarks
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

/* Append to old comment */

hvRemarks.data[Remarks.len]='\0';
hvRemarks.len=strlen(hvRemarks.data);
strcat (hvRemarks.data, "Updated video");
EXEC SQL UPDATE EMPLOYEE

SET VIDEO=COMMENT(VIDEO, :hvRemarks)
WHERE NAME = 'Anita Jones';

Use the Replace UDF to update a comment when you update its associated
object. For example, the following statements update a video clip that is
stored in a server file, as well as its associated comment.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET VIDEO=REPLACE(

VIDEO,
'/employee/newvid/ajones.mpg',
'MPEG1',
:hvStorageType,
'Anita''s new video') /*updated comment*/

WHERE NAME='Anita Jones';

Updating

Chapter 11. Storing, retrieving, and updating objects 121

Updating

122 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 12. Displaying or playing an image, audio, or
video object

This chapter describes how to use the DB2 Extender application programming
interfaces to display or play an image, audio, or video object that is stored in
a database.

Using the display or play APIs

You can use extender APIs to display an image or video frame stored in a
database. You can display a thumbnail-size version or full-size version of an
image or video frame. You can also use extender APIs to play audio or video
objects stored in a database.

Use the following APIs to display or play objects:

Use this API To

DBiBrowse Display an image or video frame

DBaPlay Play an audio clip

DBvPlay Play a video clip or display a video frame

When you request any of these APIs, you need to specify:
v The name of the display or play program
v Whether the object to be displayed or played is stored in a database table

as a BLOB, or is in a file pointed to from the table
v The name of the source file, or the handle that is stored in the database

table
v Whether you want your application program to wait for the user to close

the display or play program before proceeding

Identifying a display or play program
Specify the name of the image browser, audio player, or video player you
want to use. Follow the name with %s. The extender will replace the %s with
the file that holds the object content. For example, the following statement in
a C application program starts the OS/2 image browser (ib) to display an
image:

© Copyright IBM Corp. 1996, 2000 123

rc = DBiBrowse(
"ib %s", /* image display program */
MMDB_PLAY_FILE,
"/employee/images/ajones.bmp",
MMDB_PLAY_NO_WAIT
);

You can also specify a null value instead of naming a specific display or play
program. In this case, the extender starts the default image browser, audio
player, or video player named in the DB2IMAGEBROWSER,
DB2AUDIOPLAYER, or DB2VIDEOPLAYER environment variables. For more
information about how the DB2 Extenders use environment variables, see
“Appendix A. Setting environment variables for DB2 extenders” on page 557.

For example, the following statement in a C application program starts the
default audio player identified in the DB2AUDIOPLAYER environment
variable:
rc = DBaPlay(

NULL, /* use default audio player */
MMDB_PLAY_FILE,
"/employee/sounds/ajones.wav",
MMDB_PLAY_NO_WAIT
);

The environment variable must name a program: If you request a default
display or play program (by specifying a null value), ensure that the
appropriate environment variable specifies a display or play program. If a
program is not specified, the API will return an error code.

Specifying BLOB or file content
You can display or play an object stored in a database table as a BLOB or
whose content is stored in a file (and pointed to from the database table). If
the object is stored as a BLOB, specify MMDB_PLAY_HANDLE. If the object
content is stored in a file, specify MMDB_PLAY_FILE.
MMDB_PLAY_HANDLE and MMDB_PLAY_FILE are constants that are
defined by the extenders.

For example, the following statement in a C application program plays a
video whose content is in a file:
rc = DBvPlay(

"explore %s",
MMDB_PLAY_FILE, /* content in file */
"/employee/videos/ajones.mpg",
MMDB_PLAY_NO_WAIT
);

Display and play programs typically accept input from a file. If you specify
MMDB_PLAY_FILE, the extender will using the value in environment

Using display/play APIs

124 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

variables to resolve the file’s relative file name and path. The extender then
starts the browse program and passes it the file name. If you specify
MMDB_PLAY_HANDLE, the extender extracts the file name from the handle
(provided that the file name is not null). If the file name in the handle is null,
the object is stored as a BLOB. The extender will create a temporary file in the
client and copy the content of the object from the database table to the client
file. The extender will then start the program and pass it the name of the file
(or temporary file) that holds the content.

For example, the following statements in a C application program get the
handle of an image stored as a BLOB and use the handle to display the
image:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_hdl[251];
EXEC SQL END DECLARE SECTION;

rc = DBiBrowse(
"ib %s",
MMDB_PLAY_HANDLE, /* content is BLOB */
hvImg_hdl,
MMDB_PLAY_NO_WAIT
);

The content must be accessible: Make sure that the display or play program
can access the object content. If the content is in a server file, but the program
requires the content on the client, copy the file to a client file or use the
Content UDF. If the content is stored as a BLOB, the extender will
automatically retrieve it to the client.

Specifying a wait indicator
You can specify whether you want your application program to wait for the
user to end the display or play program before the application continues (that
is, before the DBiBrowse, DBaPlay, or DBvPlay API returns a code). If you
want your application program to wait, specify MMDB_PLAY_WAIT. If you
do not want your application program to wait, specify
MMDB_PLAY_NO_WAIT. MMDB_PLAY_WAIT and MMDB_PLAY_NO_WAIT
are constants that are defined by the extenders.

If you specify MMDB_PLAY_WAIT, the display or play program will run in
the same thread or process as your application program. If you specify
MMDB_PLAY_NO_WAIT, the display or play program will run in its own
thread or process independently of your application program.

For example, as a result of the following statement, the application program
will wait for the user to close the image browser before the application
continues:

Using display/play APIs

Chapter 12. Displaying or playing an image, audio, or video object 125

rc = DBiBrowse(
"explore %s",
MMDB_PLAY_FILE,
"/employee/images/ajones.bmp",
MMDB_PLAY_WAIT /* wait for browser to close */
);

Be careful if you specify DBxPlay and MMDB_PLAY_NO_WAIT: When you
issue DBaPlay or DBvPlay, the extender will create a temporary file if any of
the following are true:
v The object is stored as a BLOB
v The relative filename cannot be resolved using the values in environment

variables
v The file is not accessible on the client machine

The temporary file is created in the directory specified by the TMP
environment variable. If you specify MMDB_PLAY_WAIT, the extender
deletes the temporary file after the object is played. However, if you specify
MMDB_PLAY_NO_WAIT, the temporary file is not deleted. You will have to
delete the temporary file yourself.

Displaying a thumbnail-size image or video frame

A thumbnail is a miniature version of a stored image or video frame. When
you store an image in the database, the Image Extender stores a thumbnail of
the image in an attribute table. When you store a video in the database, the
Video Extender stores in an attribute table a generic thumbnail that
symbolizes the video object.

By default, the size of an image thumbnail automatically created by the Image
Extender is approximately 112 x 84 pixels. The size of the generic video
thumbnail that the Video Extender inserts is 108 x78 pixels. Both the image
thumbnail and the generic video thumbnail are stored in GIF format.
Depending on the density of data in the image or video frame, this
corresponds to approximately 4.5 KB to 5 KB of data. If you store or update
an image or video with user-supplied attributes, you can specify a thumbnail
of a size and format that you choose.

Use the Thumbnail UDF in an SQL SELECT statement to retrieve a thumbnail
from the database. Use a file reference variable to transmit the thumbnail to a
file. When you specify the UDF, you need to specify the name of the column
in the database table that contains the image or video handle. Then use the
DBiBrowse API to display the image or video frame thumbnail.

For example, the following statements retrieve a thumbnail image and then
display it:

Using display/play APIs

126 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

long rc, outCount;
char Thumbnail_filename[254];
FILE *file_handle;

EXEC SQL BEGIN DECLARE SECTION;
struct {

short len
char data[10000];
}Thumbnail_buffer;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT THUMBNAIL(PICTURE)
INTO :Thumbnail_buffer
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

strcpy (Thumbnail_filename,"/tmp/ajones.tmb");
file_handle=fopen(Thumbnail_filename,"wb+");
outCount=fwrite(Thumbnail_buffer.data, 1, Thumbnail_buffer.len, file_handle);
fclose(file_handle);
rc = DBiBrowse (

NULL, /* use the default display program */
MMDB_PLAY_FILE, /* thumbnail image in file */
Thumbnail_filename, /* thumbnail image content */
MMDB_PLAY_WAIT); /* wait for user to finish */

Displaying a full-size image or video frame

Use the DBiBrowse API to display an image that is stored in a database table.
See “Using the display or play APIs” on page 123 for detailed information on
using this API.

Use the DBvGetNextFrame API or DBvSeekFrame API to get a full-size video
frame. The frame is stored in YUV format in a buffer, and can be converted to
RGB format using the DBvFrameDatato24BitRGB API. Append a header to the
converted frame (for example, append a BMP file-type header) and write the
header and frame data to a file. Then use the DBiBrowse API to display the
contents of the file. See “Chapter 14. Detecting video scene changes” on
page 169 for detailed information about using the DBvGetNextFrame,
DBvSeekNextFrame, and DBvFrameDatato24BitRGB APIs, and for further
information about displaying a video frame.

Playing an audio or video

Use the DBaPlay API to play an audio that is stored in a database table. Use
the DBvPlay API to play a video that is stored in a database table. See “Using
the display or play APIs” on page 123 for detailed information on using these
APIs.

Displaying thumbnails

Chapter 12. Displaying or playing an image, audio, or video object 127

Playing audio/video

128 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 13. Querying images by content

Figure 25 shows an application program that allows users to search for images
in a database using a visual example as search criteria, that is, an image that
demonstrates a predominant color or texture pattern. With such an
application, users can supply an image as input to the search. The application
then matches the color or texture of the source image against those of the
stored images, and returns the images whose color or texture most closely
match the input.

This capability to query images by their visual features is called Query by
Image Content (QBIC) 5. This chapter describes how to use APIs and UDFs
that are provided with the Image Extender to build applications like the one
just described. It also describes how to use commands and APIs that are
provided with the Image Extender to perform QBIC administrative tasks.

How to query by image content

To query by image content:
1. Create a QBIC catalog for the images.
2. Catalog the images. This means adding entries for the images to the

catalog and storing values for image features.

5. The Image Extender includes software that is developed by the University of California, Berkeley, and its
contributors.

Figure 25. Query by image content. The color or texture of a visual example is used to search for images stored in a
database table.

© Copyright IBM Corp. 1996, 2000 129

See “QBIC catalogs” on page 19 for a description of QBIC catalogs and
image features.

3. Build a query. The query identifies the features to be used as search
criteria, their values, and their weights (that is, emphasis to be placed on
each feature). You can specify these query attributes in a character string
that is called a query string. Alternatively, you can create a query object
and associate these attributes with the query object. You can then save the
query string and reuse it.

4. Run the query. When you run the query, you specify a query string as
input, or you identify a query object for the query. In either case, you also
identify the images to be searched. In either case, you can submit the
query from the DB2 command line or from within a program.

In response, the Image Extender computes the feature values for the query. It
compares the value to the feature values that are stored in the QBIC catalog
for the target images. The Image Extender then computes a score that
indicates how similar the feature values of each target image are to the source.

You can tell the Image Extender to return the images whose feature values are
most similar to the source. You can also tell the Image Extender to return the
scores of one or more images.

Managing QBIC catalogs

Before images can be queried by content, they must be cataloged in a QBIC
catalog. A QBIC catalog holds data about the visual features of images.

You create a QBIC catalog for each column of images in a user table that you
want to make available for querying by content. There can be no more than
one QBIC catalog for each column of images in a user table, and multiple
columns cannot share the same QBIC catalog.

When you create a QBIC catalog, you identify the features for which you
want the Image Extender to store data. You also indicate whether you want
the Image Extender to automatically catalog an image. Automatic cataloging
means the Image Extender will automatically create entries for an image in
the catalog when the image is stored in a user table. If the image is not
automatically cataloged, you must manually catalog it. This means that you
explicitly tell the Image Extender to create entries in the catalog for the image.

After you create a QBIC catalog, you can:
v Open the catalog for subsequent actions on it
v Change the setting for automatic cataloging to manual cataloging, or from

manual to automatic

How to query by content

130 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

v Add features to the catalog, this identifies the features for which you want
the Image Extender to store data

v Remove features from the catalog
v Retrieve information about the catalog, such as the name of the user table

and column associated with the catalog, or the features for which data is
stored in the catalog

v Manually catalog images in the catalog
v Uncatalog an image (that is, remove the entries for the image from the

catalog)
v Recatalog images
v Redistribute the catalog (that is, when adding or dropping nodes in a

partitioned database system)
v Close the catalog
v Delete the catalog

You can use APIs that are provided by the Image Extender to perform these
tasks, including creating a QBIC catalog. You can also perform many of the
tasks by using the db2ext command-line processor.

Creating a QBIC catalog
Use the QbCreateCatalog API or the CREATE QBIC CATALOG command to
create a QBIC catalog. To create the catalog, you must be the owner of the
user table whose images will be cataloged. In addition, you must have
CREATE TABLE authority for the database that will contain the catalog. The
user table and image column must be enabled for the Image Extender before
you create a QBIC catalog for the images in that column.

When you create a QBIC catalog, you:
v Name the user table and column that contain the images to be cataloged.
v Indicate whether images will be automatically cataloged. Automatic

cataloging means the Image Extender will catalog an image after the image
is stored in a user table. The extender checks periodically to see if an image
is waiting to be cataloged. You specify the period, in seconds, by setting the
value of environment variable DB2CATALOGDELAY. The value can be set
in the range of 1 second to an extremely large value. The default value is 60
seconds.
Manual cataloging means that you explicitly request the Image Extender to
catalog an image. (See “Manually cataloging an image” on page 138 for
information on how to manually catalog an image.)

The user table and column must be enabled: The user table and the column
must be enabled for the Image Extender before you create a QBIC catalog for

Managing QBIC catalogs

Chapter 13. Querying images by content 131

the images in that column. (See “Chapter 6. Preparing data objects for
extender data” on page 53 for information on enabling user tables and
columns for the Image Extender.)

Using the API: When you use the QbCreateCatalog API, you indicate
automatic or manual cataloging by specifying an auto-catalog value. A value
of 1 indicates automatic cataloging; a value of 0 indicates manual cataloging.

For example, the following statements create a QBIC catalog for the images in
the picture column of the employee table. The images will be automatically
cataloged when they are stored in the employee table:
SQLINTEGER autoCatalog=1; /* automatic cataloging */

rc=QbCreateCatalog(
"employee", /* user table */
"picture", /* image column */
autoCatalog); /* auto catalog setting */

Using the command line: When you issue the CREATE QBIC CATALOG
command, you indicate automatic cataloging by specifying ON. You indicate
manual cataloging by specifying OFF. OFF is the default.

For example, the following command creates the same QBIC catalog as in the
API example:
CREATE QBIC CATALOG employee picture on

Back up the QBIC catalog: The Image Extender stores a QBIC catalog in files.
You should periodically back up these files in case you need to recover the
catalog. In an AIX, HP-UX, or Sun Solaris server, the files are located in the
/home/instance_owner/dmb/qbic directory, where, instance_owner is the user ID
of the instance owner. In an OS/2 or Windows server, the files are located in
the \destination\instance\instance_name\qbic directory, where destination is
the directory where the Image Extender is installed, and instance_name is the
name of the extender instance.

Opening a QBIC catalog
You need to open a QBIC catalog to perform subsequent actions that change
the catalog. For example, you need to open a QBIC catalog before you add a
feature to the catalog.

To open a QBIC catalog, use the QbOpenCatalog API call or OPEN QBIC
CATALOG command. When you open a QBIC catalog, you:
v Name the user table and image column for the catalog.
v Specify the mode in which you want the catalog opened (this is implicit

when you use the command OPEN QBIC CATALOG). You can open a
catalog for operations that read from it, such as searching for images by

Managing QBIC catalogs

132 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

content. Or you can open a catalog for operations that update it, such as
adding a feature. You must have SELECT authority for the user table to
open the catalog for read operations. You must have UPDATE authority for
the user table to open the catalog for update operations.

What if a catalog is already open? You cannot open a catalog for update
operations if the catalog is open for update in another session. When you
open a QBIC catalog, the Image Extender closes any QBIC catalog that you
already opened in the current session.

Using the API: When you use the QbOpenCatalog API, you explicitly specify
the mode in which you want the catalog opened. Specify:
v The API parameter qbiRead to open the catalog for operations that read

from it.
v The API parameter qbiUpdate to open the catalog for operations that

update it.

QbiRead and QbiUpdate are constants that are defined in the include (header)
file for QBIC, dmbqbapi.h.

You also need to point to the catalog handle. The catalog handle has a
QBIC-specific data type of QbCatalogHandle. This data type is also defined in
dmbqbapi.h. The Image Extender returns the catalog handle value as output
from the API.

For example, the following API call opens a QBIC catalog for operations that
read from the catalog:
SQLINTEGER mode;
QbCatalogHandle *CatHdl;

mode=qbiRead; /* open catalog for */
/* read operations */

rc=QbOpenCatalog(
"employee", /* user table */
"picture", /* image column */
mode, /* open catalog mode */
&CatHdl); /* catalog handle */

Using the command line: When you issue the OPEN QBIC CATALOG
command, the Image Extender attempts to open the catalog for update
operations. If the catalog is currently open for update in another session, the
Image Extender opens the catalog for read operations.

For example, the following command opens a QBIC catalog; the Image
Extender attempts to open it for update operations:
OPEN QBIC CATALOG employee picture

Managing QBIC catalogs

Chapter 13. Querying images by content 133

Close the catalog when you finish QBIC-related activities: When you open a
QBIC catalog, the Image Extender allocates resources to it such as memory.
Close the catalog when you finish QBIC-related activities. This frees up the
allocated resources.

Changing the auto catalog setting
Use the QbSetAutoCatalog API or the SET QBIC AUTOCATALOG command
to change from automatic cataloging to manual cataloging or from manual to
automatic. The QBIC catalog must be open for update before you change the
catalog setting.

The change is not retroactive: When you change the autocatalog setting, it
applies only to images that are added to the user table column after the
change. Images that are already stored in the user table column are not
affected. For example, if you change the setting from manual cataloging to
automatic cataloging, only images added to the user table column after the
change will be automatically cataloged. If you want to catalog images already
in the table column, you need to manually catalog them. (See “Manually
cataloging an image” on page 138 for information on how to manually catalog
an image.)

Using the API: When you use the QbSetAutoCatalog API, specify the handle
of the QBIC catalog (the handle is returned when you open the catalog with
the QbOpenCatalog API). Also specify an auto catalog value of 1 for
automatic cataloging, or a value of 0 for manual cataloging.

In the following example, manual cataloging is specified for a QBIC catalog
associated with the images in the picture column of the employee table.
Notice that the QBIC catalog is first opened for operations that update it.
SQLINTEGER mode;
SQLINTEGER autoCatalog=0; /* manual cataloging */

QbCatalogHandle *CatHdl;

mode=qbiUpdate; /* open catalog for */
/* update */

/* Open a QBIC catalog */
rc=QbOpenCatalog(

"employee", /* user table */
"picture", /* image column */
mode, /* open catalog mode */
&CatHdl); /* catalog handle */

/* Change the auto catalog setting */
rc=QbSetAutoCatalog(

CatHdl, /* catalog handle */
autoCatalog); /* auto catalog flag */

Managing QBIC catalogs

134 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Using the command line: When you issue the SET QBIC AUTOCATALOG
command, you indicate automatic cataloging by specifying ON. You indicate
manual cataloging by specifying OFF. The command acts on the currently
open catalog.

For example, the following command sets automatic cataloging off for the
currently open QBIC catalog:
SET QBIC AUTOCATALOG off

Adding a feature to a QBIC catalog
Use the QbAddFeature API or the ADD QBIC FEATURE command to add a
feature to a QBIC catalog. You must add at least one feature to a QBIC catalog
before you can catalog an image in it. The QBIC catalog must be open for
update before you add a feature.

When you add a feature to a catalog, specify the name of the feature that you
want to add (the feature names are listed in Table 8).

Table 8. QBIC Feature Names
Feature name Description
QbColorFeatureClass Average color
QbColorHistogramFeatureClass Histogram color
QbDrawFeatureClass Postional color
QbTextureFeatureClass Texture

You might have to recatalog images: If you add a feature to a QBIC catalog,
the Image Extender will not automatically store data about the new feature
for already cataloged images, even if automatic cataloging is set on. To
include data about a new feature for already cataloged images, you need to
recatalog the images (see “Recataloging images” on page 140).

Using the API: When you use the QbAddFeature API, you need to specify the
handle of the QBIC catalog in addition to the feature name. Notice the use of
the constant qbiMaxFeatureName for the length of the feature name. The
constant is defined in the include (header) file for QBIC, dmbqbapi.h, as the
value 50.

In the following example, the QbAddFeature API is used to add the
histogram color feature to a QBIC catalog:
char featureName[qbiMaxFeatureName];

QbCatalogHandle CatHdl;

strcpy(featureName,"QbColorHistogramFeatureClass");

Managing QBIC catalogs

Chapter 13. Querying images by content 135

rc=QbAddFeature(
CatHdl, /* catalog handle */
featureName); /* feature name */

Using the command line: The ADD QBIC FEATURE command acts on the
currently open catalog. In the following example, the command is used to add
the positional color feature to the currently open catalog:
ADD QBIC FEATURE QbDrawFeatureClass

Removing a feature from a QBIC catalog
Use the QbRemoveFeature API or the REMOVE QBIC FEATURE command to
remove a feature from a QBIC catalog. The Image Extender deletes the catalog
table for the feature. As a result, data for that feature is not stored when you
catalog an image. The QBIC catalog must be open for update before you
remove a feature.

When you remove a feature from a catalog, specify the name of the feature
that you want to remove.

Using the API: When you use the QbRemoveFeature API, you need to specify
the handle of the QBIC catalog in addition to the feature name.

In the following example, the QbRemoveFeature API is used to remove the
histogram color feature from a QBIC catalog:
char featureName[qbiMaxFeatureName];

QbCatalogHandle CatHdl;

strcpy(featureName,"QbColorHistogramFeatureClass");

rc=QbRemoveFeature(
CatHdl, /* catalog handle */
featureName); /* feature name */

Using the command line: The REMOVE QBIC FEATURE command acts on
the currently open catalog. In the following example, the command is used to
remove the positional color feature from the currently open QBIC catalog:
REMOVE QBIC FEATURE QbDrawFeatureClass

Retrieving information about a QBIC catalog
You can retrieve the following information about a QBIC catalog:
v The name of the user table and image column associated with the catalog.
v The number of features for which data is stored in the catalog, and their

feature names.
v Whether the Image Extender automatically catalogs images when they are

stored in the user table.

Managing QBIC catalogs

136 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Use the QbGetCatalogInfo API to retrieve the user table and column names,
the number of features, and auto catalog setting. Use the QbListFeatures API
to retrieve the feature names. Or use the GET QBIC CATALOG INFO
command to retrieve all the information.

The QBIC catalog must be open before you can retrieve information.

Using the API: When you use the QbGetCatalogInfo API, you need to specify
the handle of the QBIC catalog. You also need to point to a structure in which
the Image Extender returns the catalog information. The catalog information
structure is defined in the include (header) file for QBIC, dmbqapi.h, as
follows:
typedef struct{

char tableName[qbiMaxTableName+1] /* user table */
char columnName[qbiMaxColumnName+1] /* image column */
SQLINTEGER featureCount; /* number of features */
SQLINTEGER autoCatalog; /* auto catalog flag */

} QbCatalogInfo;

When you issue the QbListFeatures API call, you need to allocate a buffer to
hold the returned feature names. A blank character separates feature names
stored in the buffer. You also need to specify the catalog handle, and the size
of the buffer for the returned feature names. To estimate the needed buffer
size, you can use the feature count that is returned by the QbGetCatalogInfo
API, and multiply the count by the longest feature name. You can use the
constant qbiMaxFeatureName as the size of the longest feature name.

The API calls in the following example retrieve information about a QBIC
catalog. Notice how the feature count that is returned by the
QbGetCatalogInfo API and the qbiMaxFeature name constant is used to
calculate the buffer size for the QbListFeatures API:
long bufSize;
long count;
char *featureNames;

QbCatalogHandle CatHdl;
QbCatalogInfo catInfo;

/* Get user table name, image column name, feature count, */
/* and auto catalog setting */

rc=QbGetCatalogInfo(
CatHdl, /* catalog handle */
&catInfo); /* catalog info. structure */

/* List feature names */

bufSize=catInfo.featureCount*qbiMaxFeatureName;
featureNames=malloc(bufSize);

Managing QBIC catalogs

Chapter 13. Querying images by content 137

rc=QbListFeatures(
CatHdl, /* catalog handle */
bufSize /* size of buffer */
count, /* feature count */
featureNames); /* buffer for feature names */

Using the command line: The GET QBIC CATALOG INFO command acts on
the currently open catalog. In the following example, the command is used to
retrieve information about the currently open QBIC catalog:
GET QBIC CATALOG INFO

Manually cataloging an image
When you create a catalog, you indicate whether you want the Image
Extender to automatically catalog an image when the image is stored in a user
table. If an image is not automatically cataloged, you must manually catalog it
after it is stored in the user table. You can manually catalog a single image or
an entire column of images.

Manually cataloging a single image
Use the QbCatalogImage API to manually catalog a single image. You cannot
catalog an image by command, because there is no way to identify the
individual image on the command line. When you use the API, specify the
catalog handle and the image handle (you can retrieve the image handle from
the user table). The QBIC catalog must be open before you manually catalog
an image.

For example, the following statements retrieve an image handle from a user
table and then catalog the image:
/* Retrieve the image handle */

EXEC SQL BEGIN DECLARE SECTION;
char Img_hdl[251];
EXEC SQL END DECLARE SECTION;

QbCatalogHandle CatHdl;

EXEC SQL SELECT PICTURE INTO :Img_hdl
FROM EMPLOYEE
WHERE NAME='Anita Jones';

/* Catalog the image*/

rc=QbCatalogImage(
CatHdl, /* catalog handle */
Img_hdl); /* image handle */

Manually cataloging a column of images
Use the QbCatalogColumn API or the CATALOG QBIC COLUMN command
to manually catalog a column of images. The Image Extender catalogs only

Managing QBIC catalogs

138 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

images in the column that are newly inserted, updated, or deleted after the
column was last cataloged. The Image Extender catalogs those images for all
features in the catalog. The QBIC catalog must be open for update before you
manually catalog a column of images.

Using the API: When you use the QbCatalogColumn API, specify the catalog
handle. The Image Extender uses the images in the user table column that is
associated with the specified catalog.

For example, the following API call catalogs the uncataloged images in a user
table column that is associated with the specified catalog. The images are
cataloged for all the features in the catalog:
QbCatalogHandle CatHdl;

rc=QbCatalogColumn(
CatHdl); /* catalog handle */

Using the command line: Use the CATALOG QBIC COLUMN command to
manually catalog a column of images. You can also use the command to
recatalog images (see “Recataloging images” on page 140). Specify the
parameters FOR and NEW. (FOR and NEW are default parameters.)

In the following example, the command is used to catalog the uncataloged
images in the table column that is associated with the currently-opened
catalog. The images are cataloged for all the features in the catalog:
CATALOG QBIC COLUMN FOR NEW

Uncataloging an image
Uncataloging an image means removing entries for the image from a QBIC
catalog. Use the QbUncatalogImage API to uncatalog an image. You cannot
uncatalog an image by command, because there is no way to identify the
individual image on the command line. When you use the API, specify the
catalog handle and the image handle (you can retrieve the image handle from
the user table). The QBIC catalog must be open for update before you
uncatalog an image.

For example, the following statements retrieve an image handle from a user
table and then uncatalog the image:
/* Retrieve the image handle */

EXEC SQL BEGIN DECLARE SECTION;
char Img_hdl[251];
EXEC SQL END DECLARE SECTION;

QbCatalogHandle CatHdl;

EXEC SQL SELECT PICTURE INTO :Img_hdl
FROM EMPLOYEE

Managing QBIC catalogs

Chapter 13. Querying images by content 139

WHERE NAME='Anita Jones';

/* Uncatalog the image */

rc=QbUncatalogImage(
CatHdl, /* catalog handle */
Img_hdl); /* image handle */

Recataloging images
When you catalog an image, the Image Extender analyzes the features of the
image that were identified to the QBIC catalog and stores values for those
features in the catalog. When you add a feature to a QBIC catalog, the Image
Extender does not automatically analyze the new feature for already cataloged
images. To add values for the new feature to the catalog, you need to
recatalog all the images.

Use the QbReCatalogColumn API or the CATALOG QBIC COLUMN
command to recatalog the images in a QBIC catalog. The Image Extender
removes all feature data currently in the catalog. It then analyzes the images
for all features, including any new features, and catalogs the images. The
QBIC catalog must be open before you recatalog images.

Using the API: When you use the QbReCatalogColumn API, specify the
catalog handle.

In the following example, the images in a QBIC catalog are reanalyzed:
QbCatalogHandle CatHdl;

rc=QbReCatalogColumn(
CatHdl); /* catalog handle */

Using the command line: Use the CATALOG QBIC COLUMN command to
recatalog images. The command acts on the currently open catalog. You can
also use the command to manually catalog images (see “Manually cataloging
an image” on page 138).

When you issue the command, specify the parameters FOR and ALL. This
tells the Image Extender that you want to recatalog all the images.

In the following example, the cataloged images in the currently-opened QBIC
catalog are recataloged:
CATALOG QBIC COLUMN FOR ALL

Redistributing a QBIC catalog (EEE Only)
Use the DMBRedistribute API or the REDISTRIBUTE NODEGROUP
command to redistribute QBIC feature data when a node is added to or

Managing QBIC catalogs

140 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

removed from a nodegroup. The command places the QBIC feature data on
the same node as the corresponding user data.

If the redistribution process returns an error, you can re-run the command
with or without the CONTINUE parameter according to the instructions
provided by the command response. This option instructs the system to
continue from where it stopped, rather than starting from the beginning. The
CONTINUE parameter should not be used the first time you run the
REDISTRIBUTE NODEGROUP command after running DB2’s REDISTRIBUTE
command.

To maintain data integrity, redistribute one nodegroup at a time. Wait until
one nodegroup has finished redistribution before starting another.

Using the API: The following example shows how to redistribute QBIC
feature data in the nodegroup that is called groupone:

#include <dmbrdst.h>

rc = DMBRedistribute(groupone,"continue");

Using the command line: The following example displays how the
REDISTRIBUTE NODEGROUP command is used to redistribute data for the
node called my_nodegroup using the CONTINUE parameter:
redistribute nodegroup my_nodegroup continue

Closing a QBIC catalog
Use the QbCloseCatalog API or the CLOSE QBIC CATALOG command to
close a QBIC catalog. The catalog must be open before you close it.

Using the API: When you issue the QbCloseCatalog API call, specify the
catalog handle. For example:
QbCatalogHandle CatHdl;

rc=QbCloseCatalog(
CatHdl); /* catalog handle */

Using the command line: The CLOSE QBIC CATALOG command acts on the
currently open catalog. In the following example, the command is used to
close the currently open QBIC catalog:
CLOSE QBIC CATALOG

Deleting a QBIC catalog
Deleting a QBIC catalog deletes all the feature data in the catalog tables. As a
result, the associated images are no longer available for querying by content.
To delete a QBIC catalog, you must have ALTER or CONTROL authority for
the table associated with the catalog. The catalog must be open before you
delete it.

Managing QBIC catalogs

Chapter 13. Querying images by content 141

Use the QbDeleteCatalog API or DELETE QBIC CATALOG command to
delete a QBIC catalog. When you delete a QBIC catalog, name the user table
and column associated with the catalog.

Using the API: In the following example, the QbDeleteCatalog API is used to
delete a QBIC catalog:
rc=QbDeleteCatalog(

"employee", /* user table */
"picture"); /* image column */

Using the command line: The DELETE QBIC CATALOG command acts on
the currently open catalog. In the following example, the command is used to
delete the currently open QBIC catalog:
DELETE QBIC CATALOG employee picture

QBIC catalog sample program
Figure 26 on page 143 shows part of a program coded in C that creates a QBIC
catalog. The program also catalogs into the QBIC catalog a column of images.
You can find the complete program in the QBCATDMO.C file in the
SAMPLES subdirectory. Before running the complete program, you must run
the ENABLE and POPULATE sample programs (also found in the SAMPLES
subdirectory). For more information about the sample programs, see
“Appendix B. Sample programs and media files” on page 565.

Note the following points in the program:
�1�Include the dmbqbapi header file.
�2�Connect to the database.
�3�Create the catalog. The catalog is created with automatic cataloging
turned off.
�4�Open the catalog for update.
�5�Add the average color feature to the catalog.
�6�Catalog a column of images.
�7�Close the catalog.

Managing QBIC catalogs

142 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <sql.h>
#include <sqlcli.h>
#include <sqlcli1.h>
#include <dmbqbqpi.h> �1�
#include <stdio.h>

/**/
/* Define the function prototypes */
/**/

void printError(SQLHSTMT hstmt);
void createCatalog();
void openCatalog();
void closeCatalog();
void addFeature();
void catalogImageColumn();

QbCatalogHandle cHdl = 0;

static SQLHENV henv;
static SQLHDBC hdbc;
static SQLHSTMT hstmt;
static SQLRETURN rc;
char tableName[] = "sobay_catalog";
char columnName[] = "covers";

SQLCHAR uid[18+1];
SQLCHAR pwd[30+1];
SQLCHAR dbnName[SQL_MAX_DSN_LENGTH+1];

void main ()
{
/*---- prompt for database name, userid, and password ----*/

printf("Enter database name:\n");
gets((char *) dbName);
printf("Enter userid:\n");
gets((char *) pwd);

/* set up the SQL CLI environment */
SQlAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc,dbname,SQL_NTS,uid,SQL_NTS,pwd,SQL_NTS); �2�
if (rc != SQL_SUCCESS)
{
printError(SQL_NULL_HSTMT);
exit(1);

}

Figure 26. QBIC catalog sample program (Part 1 of 4)

Managing QBIC catalogs

Chapter 13. Querying images by content 143

createCatalog();
openCatalog();
addFeature();

getCatalogInfo();
listFeatures();
catalogImageColumn();
closeCatalog();

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

}
/**/
void createCatalog()
{
SQLINTEGER autoCatalog = 0;
SQLINTEGER retLen;

SQLINTEGER errCode = 0;
char errMsg[500];

QbCreateCatalog(�3�
(char *) tableName,
(char *) columnName,
autoCatalog,
0
);

DBiGetError(&errCode, errMsg);
if(errCode) printf("Error code is %d Error Message %s", errCode, errMsg);

}
/**/
void openCatalog()
{

SQLINTEGER errCode = 0;
char errMsg[500];

SQLINTEGER mode = qbiUpdate;

QbOpenCatalog(�4�
(char *) tableName,
(char *) columnName,
mode,
&cHdl
);

DBiGetError(&errCode, errMsg);
if(errCode) printf("Error code is %d Error Message %s", errCode, errMsg);

}

Figure 26. QBIC catalog sample program (Part 2 of 4)

Managing QBIC catalogs

144 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

/**/
void addFeature()
{
SQLINTEGER errCode=0;
char errMsg[5
if(cHdl) /* if we have an open catalog, else do nothing */
{

char featureName*lbrk.] = "QbColorFeatureClass"; �5�
QbaddFeature(

cHdl,
featureName
);

DBiGetError(&errCode, errMsg);
if(errCode) printf("Error code is %d Error Message %s", errCode, errMsg);

}
else
{
exit(1);

}
}
/**/
void catalogImageColumn()
{

SQLINTEGER errCode = 0;
char errMsg[500];

if(cHdl) /* if we have an open catalog, else do nothing */
{
SQLRETURN rc;

QbCatalogColumn(�6�
cHdl,
);

DBiGetError(&errCode, errMsg);
if(errCode) printf("Error code is %d Error Message %s", errCode, errMsg);

else
{
exit(1);

}
}

Figure 26. QBIC catalog sample program (Part 3 of 4)

Managing QBIC catalogs

Chapter 13. Querying images by content 145

Building queries

When you query images by content, you identify input for the query and a
target set of cataloged images. The input for the query specifies the name of
the features to be used in the query, feature values, and feature weights (that
is, emphasis to be placed on each feature).

You have two ways to provide this input:
v Specify a query string in your query. The query string is a character string

that specifies the features, feature values, and feature weights for the query.
v Create a query object and refer to it in your query. The query object

specifies features and feature weights. It also identifies a data source for
each feature. The data source provides the value for each feature.

Specifying a query string
You can use a query string to identify the features, feature values, and feature
weights for your query. A query string is a character string that has the form
feature_name value, where feature_name is a QBIC feature name, and value is a
value associated with the feature.

You can specify multiple features in a query. You then specify a feature
name-value pair for each feature, as described in “Feature value” on page 147.
Each pair is separated by the clause AND. When you specify multiple features
in a query, you can also assign a weight to one or more of the features, as
described in “Feature weight” on page 148. The query string then has the form
feature_name value weight, where weight is the weight assigned to the feature.

The Image Extender provides an API (QbQueryStringSearch) and two UDFs
(QbScoreFromStr and QbScoreTBFromStr) that use a query string. When you
issue a query, you use the appropriate API or UDF and specify the query
string as an input parameter. (See “Issuing queries by image content” on
page 157 for details.)

/**/
void closeCatalog()
{
if(cHdl) /* if we have an open catalog, else do nothing */
{

QbCloseCatalog(�7�
cHdl,
);

}
}
/**/

Figure 26. QBIC catalog sample program (Part 4 of 4)

Building queries

146 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Feature value
Specify a feature value in the query string for each feature in the query.

When passing a query inside a DB2 command, certain file-naming
conventions must be followed for the query to function properly. You must
enclose file names that contain spaces or closing angle brackets (>) in double
quotation marks; other file names can optionally be enclosed in double
quotation marks. If you use quotations marks surrounding a file name, each
quotation mark must be preceded by an escape character (\). If the query is
not passed within a DB2 command, then there is no need to include escape
characters with the quotation marks.

In the following example, a query string is passed within a DB2 command:
db2 "select image_id from table
(mmdbsys.QbScoreTBFromStr
('texture file=<server,patterns/ptrn07.gif>',
'fabric',
'swatch_img',
10))
as T1"

Table 9 lists the values that you can specify for each feature. Directly below
each feature name is a short version that can be used instead.

Table 9. Feature values that can be specified in query string

Feature name Value

averageColor, average, or
QbColorFeatureClass

color=<Rvalue, Gvalue, Bvalue>

Each color value is an integer from 0 to 255 that
identifies the red value (Rvalue), green value (Gvalue),
and blue value (Bvalue) of the image.

file=<file_location, filename>

The file_location is server for a server file. The filename
is the complete file path specified in the format
appropriate for the system in which the file resides, or
a relative file name. DB2 extenders resolves the relative
file name using environment variables (see “How
environment variables are used to resolve file names”
on page 557).

Building queries

Chapter 13. Querying images by content 147

|
|
|
|

|

|
|

|

Table 9. Feature values that can be specified in query string (continued)

Feature name Value

histogram, histogramcolor, or
QbColorHistogramFeatureClass

histogram=<(hist_value, Rvalue, Gvalue, Bvalue>), ...

Each histogram color value is specified in a clause that
identifies the percent (1 to 100) of that color in the
histogram (hist_value), and the red value (Rvalue), green
value (Gvalue), and blue value (Bvalue) of that color.

file=<file_location, filename>

The file_location is server for a server file. The filename
is the complete file path specified in the format
appropriate for the system in which the file resides, or
a relative file name. DB2 extenders resolves the relative
file name using environment variables.

draw, positional, or
QbDrawFeatureClass

file=<file_location, filename>

handle=<image_handle>

The file_location is server for a server file. The filename
is the complete file path specified in the format
appropriate for the system in which the file resides, or
a relative file name. DB2 extenders resolves the relative
file name using environment variables.

texture or
QbTextureFeatureClass

file=<file_location, filename>

handle=<image_handle>

The file_location is server for a server file. The filename
is the complete file path specified in the format
appropriate for the system in which the file resides, or
a relative file name. DB2 extenders resolves the relative
file name using environment variables.

Feature weight
If you specify multiple features in a query string, you can also specify a
weight for one or more of the features. The weight of a feature indicates the
emphasis that the Image Extender places on the feature when it computes
similarity scores and returns results for a query by image content. The higher
the weight you specify for a feature, the greater the emphasis on that feature
in the query. The weight is a real number greater than 0.0, for example, 2.5 or
10.0. If you do not assign a weight in a query string, the Image Extender will
use the default weight for the feature. Assigning a weight has no meaning if
that feature is the only feature that is specified in a query string. (That feature
will always have full weight in the query.)

Building queries

148 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

|

|
|

|

|
|

|

The weight for a feature is relative to other features that are specified in the
query. For example, suppose you specify the average color and texture
features in a query string, and also specify a weight value of 2.0 for average
color. This tells the Image Extender to give the average color value twice the
emphasis as the texture value.

Examples
The following query string specifies an average color of red:
averageColor color=<255, 0, 0>

The following query string specifies a histogram comprised of 10% red, 50%
green, and 40% blue:
histogram histogram=<(10, 255, 0, 0), (50, 0, 255, 0),

(40, 0, 0, 255)>

The following query string specifies an average color value and a texture
value. The texture value is provided by an image in a server file. The weight
of the texture is twice that of the average color:
averageColor color=<30, 200, 25> and

texture file=<server, "\patterns\pattern7.gif"> weight=2.0

Using a query object
You can use a query object to identify the features, feature values, and feature
weights for your query. You create the query object and add features to it.
Then you specify a data source for each feature. The data source provides a
value for the feature. For example, a data source might be an image in a file.
If average color is the pertinent feature, the average color of the image is
associated with the query object. If you add multiple features to a query
object, you can assign a weight to one or more of the features.

The Image Extender provides three APIs (QbQuerySearch,
QbQueryStringSearch, and QbQueryNameSearch) and two UDFs
(QbScoreFromName and QbScoreTBFromName) that use a query object. When
you issue a query, you use the appropriate API or UDF and specify the query
object as an input parameter. (See “Issuing queries by image content” on
page 157 for details.)

Creating a query object
Use the QbQueryCreate API to create a query object. In response, the Image
Extender returns a handle for the query object. The handle has a
QBIC-specific data type of QbQueryHandle that is defined in the include
(header) file for QBIC, dmbqbapi.h.

When you use the API, you need to point to the query object handle. You also
need to specify the handle in APIs that perform other operations on the query
object, such as adding a feature.

Building queries

Chapter 13. Querying images by content 149

|

|
|

|
|

For example, the following API call creates a query object:
QbQueryHandle qHandle;

rc=QbQueryCreate(
&qHandle); /* query object handle */

Adding a feature to a query object
You identify the image features that you want the Image Extender to query by
adding the features to a query object.

Use the QbQueryAddFeature API to add a feature to a query object. When
you use the API, specify the query object handle. You also name the feature.
You can specify only one feature in the API. You must issue a separate API
call for each feature that you want to add to a query object.

In the following example, the QbQueryAddFeature API is used to add the
average color feature to a query object:
char featureName[qbiMaxFeatureName];
QbQueryHandle qHandle;

rc=QbQueryAddFeature(
qHandle, /* query object handle */
"QbColorFeatureClass"); /* feature name */

Specifying the data source for a feature in a query object
Use the QbQuerySetFeatureData API to specify the data source for a feature in
a query object. The data source can be:
v A cataloged or uncataloged image in a column of a user table
v An image file on a client workstation
v An image in a buffer on a client workstation

In addition, you can explicitly specify data for the average color or histogram
color feature. For example, you can specify the red, green, and blue values of
an average color.

When you use the API:
v Specify the query object handle.
v Name the feature.
v Point to the QbImageSource structure (see page 151 for details).

Using data source structures: Various structures are used to provide data
source information for a query object. The structures are:
v QbImageSource
v QbColor
v QbHistogramColor

Building queries

150 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbImageSource: The QbImageSource structure identifies the type of source
for a feature in a query object. The structure is defined in the include (header)
file for QBIC, dmbqbapi.h, as follows:
typedef struct{

SQLINTEGER type;
union {

char imageHandle[MMDB_BASE_HANDLE_LEN+1];
QbImageFile clientFile;
QbImageBuffer buffer;
QbSampleSource reserved;
QbColor averageColor;
QbHistogramColor histogramColor[qbiHistogramCount];

};
} QbImageSource;

The type field in the QbImageSource structure indicates the type of source.
You can set the value in the field as follows:

Value Meaning
qbiSource_ImageHandle Source is in a user table column
qbiSource_ClientFile Source is in client workstation file
qbiSource_Buffer Source is in client workstation buffer
qbiSource_ServerFile Source is in server file
qbiSource_AverageColor Source is an average color specification
qbiSource_HistogramColor Source is a histogram color specification

These settings are valid only for the appropriate feature. For example,
qbiSource_AverageColor is valid only for the average color feature.

If you set the type field to qbiSource_ServerFile, use clientFile for the name
and type of the file on the server.

Depending on the type of source, the Image Extender also examines other
information that you specify. This is shown in Table 10.

Table 10. What the Image Extender examines in QbImageSource

Source
What the Image Extender
examines Where specified

a user table image handle image handle field of
QbImageSource

file name of file
format of file

clientFile field of QbImageSource

buffer name of file QbImageBuffer (see page 152 for
details about using this structure)

Building queries

Chapter 13. Querying images by content 151

|

|
|

Table 10. What the Image Extender examines in QbImageSource (continued)

Source
What the Image Extender
examines Where specified

average color
specification

red, green, and blue color
values

QbColor structure (see page 152
for details about using this
structure)

histogram color
specification

color values and
percentages

QbHistogramColor structure (see
page 152 for details about using
this structure)

QbImageBuffer: Use the QbImageBuffer structure to specify the format,
length, and content of an image when the data source is in a buffer. The
structure is defined in the include (header) file for QBIC, dmbqbapi.h, as
follows:
typedef struct{

char format[qbiImageFormatLength+1];
SQLINTEGER length;
char* image;

} QbImageBuffer;

QbColor: Use the QbColor structure to specify the red, green, and blue values
of an average color when the data source is an average color specification.
The structure is defined in the include (header) file for QBIC, dmbqbapi.h, as
follows:
typedef struct{

SQLUSMALLINT red; /*0 off - 65535 (fully on) */
SQLUSMALLINT green; /*0 off - 65535 (fully on) */
SQLUSMALLINT blue; /*0 off - 65535 (fully on) */

} QbColor;

Set the values in QbColor to indicate the amount of red, green, and blue
pixels to be factored in the average value calculation. The values can range
from 0 to 65535. A value of 0 means ignore the entry.

QbHistogramColor: Use the QbHistogramColor structure to specify each color
component of a histogram color specification. The full specification for a
histogram color is contained in an array of QbHistogramColor structures.
Each structure contains a color value and a percentage. The color value is
comprised of red, green, and blue pixel values. The percentage specifies the
percentage of that color that is required in the target image.

The structure is defined in the include (header) file for QBIC, dmbqbapi.h, as
follows:

Building queries

152 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

typedef struct{
QbColor color;
SQLUSMALLINT percentage; /*0 - 100 */

} QbHistogramColor;

Set the values in QbColor to indicate the amount of red, green, and blue
pixels for the color. The values can range from 0 to 65535. Set the percentage
to indicate the percentage of the specified color that is required in the target
image. The value can range from 1 to 100. The sum of the percentages for the
color components in a histogram color must be 100 or less.

Examples: The API in the following example specifies the data source for the
histogram color feature in a query object. The data source is a file in the client
workstation.
char featureName[qbiMaxFeatureName];
QbQueryHandle qHandle;
QbImageSource imgSource;

imgSource.type=qbiSource_ClientFile;
strcpy(imgSource.clientFile.fileName,"/tmp/image.gif");
strcpy(imgSource.clientFile.format,"GIF");

rc=QbQuerySetFeatureData(
qHandle, /* query object handle */
"QbColorHistogramFeatureClass", /* feature name */
&imgSource); /* feature data source */

In the following example, the data source is an average color specification of
red:
char featureName[qbiMaxFeatureName];
QbColor avgColor;
QbImageSource imgSource;

imgSource.type=qbSource_AverageColor;
avgColor.red=255;
avgColor.green=0;
avgColor.blue=0;
strcpy(featureName,"QbColorFeatureClass");

rc=QbQuerySetFeatureData(
qHandle, /* query object handle */
featureName, /* feature name */
&imgSource); /* feature data source */

Setting the weight of a feature in a query object
If you have added more than one feature to a query object, you can specify
the weight that one or more features are to be given in a query. Use the
QbQuerySetFeatureWeight API to specify the weight of a feature. The weight
of a feature indicates the emphasis that the Image Extender places on the
feature when it computes similarity scores and returns results for a query by

Building queries

Chapter 13. Querying images by content 153

image content. The higher the weight you specify for a feature, the greater the
emphasis on that feature in the query object.

You can specify a weight for one or more features in a query object, although
you can specify a weight for only one feature each time you issue the
QbQuerySetFeatureWeight API. If you do not assign a weight to a feature in a
query object, the Image Extender will use the default weight for the feature.
Assigning a weight to a feature has no meaning if that feature is the only
feature in a query object. (That feature will always have full weight in the
query object.)

When you use the API:
v Specify the query object handle.
v Specify the feature name.
v Point to the feature weight. You can set the weight to a real number greater

than 0, for example, 2.5 or 10.0. The higher the value you specify, the
greater the emphasis on that feature. The setting changes any weight that is
previously set for the feature in the query object.

In the following example, a query object contains the average color feature
and at least one other feature. The QbQuerySetFeatureWeight API is used to
specify a weight for the average color feature in the query object:
char featureName[qbiMaxFeatureName];
double weight;
QbQueryObjectHandle qoHandle;

strcpy(featureName,"QbColorFeatureClass");
weight=5.00;

rc=QbQuerySetFeatureWeight(
qoHandle, /* query object handle */
featureName, /* feature name */
&weight); /* feature weight */

Saving and reusing a query string
Query objects are transient unless you save them. They exist only during a
single database connection. You can save the query string from a query to use
again in the program, or even after the current database connection is
dropped and across program invocations.

The Image Extender provides the QbQueryGetString API that returns the
query string from a query object. You can then use that query string as input
to the QbQueryStringSearch API or to the QbScoreFromStr and
QbScoreTBFromStr UDFs in other queries by image content (see “Issuing
queries by image content” on page 157).

The query string is built when you build the query using:

Building queries

154 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|
|
|
|

|
|
|
|
|

|

v QbQueryCreate
v QbQueryAddFeature
v QbQuerySetFeatureData
v QbQuerySetFeatureWeight
v QbQueryRemoveFeature

After you build the query, you can call QbQueryGetString to get the string.
You can use this query string in calls within that program or save it to a file
for use in subsequent invocations of your application and in other database
connections. After you are finished using the query string returned by
QbQueryGetString, you must explicitly free the space.

In the following example, the QbQueryGetString is used to retrieve the query
string from a query object:
SQLRETURN rc;
char* qryString;
QbQueryHandle qHandle;

..... /* Here you create and use the query */

rc = QbQueryGetString(qHandle, &qryString);
if (rc == 0) {

... /* Use the query string as input here */
free((void *)qryString);
qryString=(char *)0;

}

Restriction:: When you use a client file to specify the data source for a
feature, the query string does not reflect the feature data.

Retrieving information about a query object
You can determine what features (if any) have been added to a query object.
You can also determine the current weight of a feature.

Use this API To retrieve
QbQueryGetFeatureCount The number of features in a query object
QbQueryListFeatures The names of the features in a query object

When you issue the QbQueryGetFeatureCount API, specify the query object
handle. You also need to point to a counter. The Image Extender returns the
feature count in the counter.

In the following example, the QbQueryGetFeatureCount API is used to
determine the number of features in a query object:
SQLINTEGER count;
QbQueryHandle qHandle;

Building queries

Chapter 13. Querying images by content 155

|

|

|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

rc=QbQueryGetFeatureCount(
qHandle, /* query object handle */
&count); /* feature count */

When you issue the QbQueryListFeatures API call, you need to allocate a
buffer to hold the returned feature name. You also need to specify the catalog
handle, and the size of the buffer for the returned feature name.

In the following example, the QbQueryListFeatures API is used to retrieve the
name of each feature in a query object:
SQLINTEGER retCount,bufSize;
char* featureName;
QbQueryHandle qHandle;

bufSize=qbiMaxFeatureName;
featureName=(char*)malloc(bufSize);

rc=QbQueryListFeatures(
qHandle, /* query object handle */
bufSize /* size of buffer */
&retCount, /* feature count */
featureName); /* buffer for feature names */

Removing a feature from a query object
Remove a feature from a query object with the QbQueryRemoveFeature API.
When you use the API, specify the query object handle and name the feature.

In the following example, the QbQueryRemoveFeature API is used to remove
the histogram color feature from a query object:
char featureName[qbiMaxFeatureName];
QbQueryHandle qHandle;

strcpy(featureName,"QbColorHistogramFeatureClass");

rc=QbQueryRemoveFeature(
qHandle, /* query object handle */
featureName); /* feature name */

Deleting a query object
Delete an unnamed query object with the QbQueryDelete API. The Image
Extender deletes the query from the currently connected database.

When you use the QbQueryDelete API, specify the query object handle.

In the following example, the QbQueryDelete API is used to delete a query
object:
QbQueryHandle qHandle;

rc=QbQueryDelete(
qHandle); /* query object handle */

Building queries

156 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

|
|

If you have used a named query, delete the query object with the
QbQueryNameDelete API.

Issuing queries by image content

After you catalog images, you can query one or more of the images by
content. When you query an image by content, you identify input for the
query and a target set of cataloged images. You can specify the input in a
query string (see “Specifying a query string” on page 146) or in a query object
(see “Using a query object” on page 149).

If you use a query string, you can submit the query from the DB2 command
line or from within a program. If you use a query object, you submit the
query from within a program, by referencing its handle.

The Image Extender compares the feature values that are specified in the
query to those of the target images, and computes a score for each image. The
score indicates how similar the feature values of the target image are to
feature value that is specified in the query.

You can retrieve images whose feature values are most similar to the query.
You can also query a single cataloged image and get its score, or get scores for
all the cataloged images in a table column.

Querying images
The Image Extender provides three APIs to query the cataloged images in a
table column. The APIs differ only in whether they require a query string or
query object as input:

API Input
QbQueryStringSearch Query string
QbQuerySearch Query object handle
QbQueryNameSearch Query object name

In all three APIs, you also:
v Name the table and column that contains the images to be searched. The

images must be cataloged in a QBIC catalog.
v Specify the maximum number of results to be returned.
v Point to a structure that specifies the scope of the query. Set the pointer to

0, a NULL value, or an empty string. This specifies that all cataloged
images in the table column are searched.

v Specify the constant qbiArray to indicate that the results are stored in an
array. The qbiArray constant is defined in the include (header) file for
QBIC, dmbqbapi.h.

Building queries

Chapter 13. Querying images by content 157

|
|
|

You also point to an array of output structures to contain the results of the
search. In response, the Image Extender returns in these structures the handles
of the target images whose feature values are most similar to the feature value
of the query. It also returns a score for each image that indicates how similar
the feature value of the image is to the query. The structure is defined in the
include (header) file for QBIC, dmbqbapi.h, as follows:
typedef struct{

char imageHandle[MMDB_BASE_HANDLE_LEN+1];
SQLDOUBLE SCORE

} QbResult;

You must allocate an array large enough to hold the maximum number of
results you specify, and point to the array in the API. You must also point to a
counter; the Image Extender sets the value of the counter to the number of
results it returns.

In the following example, the QbQueryStringSearch API is used to query by
content the cataloged images in a table column. Notice that the pointer to the
query scope is set to a zero value.
QbResult returns[MaxQueryReturns];
SQLINTEGER maxResults=qbiMaxQueryReturns;
SQLINTEGER count;
QbQueryHandle qHandle;
QbResult results[qbiMaxQueryReturns];

rc=QbQueryStringSearch(
"QbColorFeatureClass color=<255, 0, 0>" /*query string */
"employee", /* user table */
"picture", /* image column */
maxResults, /* maximum number of results */
0, /* query scope pointer * /
qbiArray, /* store results in an array */
&count, /* count of returned images */
results); /* array of returned results */

Here is a request that uses the QbQuerySearch API. Notice that the query
object handle is specified as input.
QbResult returns[MaxQueryReturns];
SQLINTEGER maxResults=qbiMaxQueryReturns;
SQLINTEGER count;
QbQueryHandle qHandle;
QbResult results[qbiMaxQueryReturns];

rc=QbQuerySearch(
qHandle, / query object handle */
"employee", /* user table */
"picture", /* image column */
maxResults, /* maximum number of results */
0, /* query scope pointer * /

Issuing QBIC queries

158 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

qbiArray, /* store results in an array */
&count, /* count of returned images */
results); /* array of returned results */

Retrieving an image score
The Image Extender provides four UDFs that you can use in an SQL
statement to retrieve the score of a cataloged image in a table column. The
score is a double-precision, floating point value from 0.0 to a very large
number approaching infinity. The lower the score, the closer the feature values
of the image matches the feature values specified in the query. A score of 0.0
means that the image is an exact match.

The UDFs are:
v QbScorefromStr
v QbScoreTBfromStr
v QbScoreFromName
v QbScoreTBFromName

Recommendation: Use the QbScoreFromStr UDF to get the score of a single
cataloged image. Use the QbScoreTBFromStr UDF to get the score of multiple
cataloged images in a table column.

Retrieving the score of a single image
Use the QbScoreFromStr UDF to get the score of a single cataloged image in a
table column. Specify a query string as input to the QbScoreFromStr UDF. If
you use the QbScoreFromName UDF, specify the name of a query object as
input to the QbScoreFromName UDF. With either UDF, you also specify the
name of the table column that contains the target image.

In the following query, the QbScoreFromStr UDF is used to find the cataloged
images in a table column whose average color score is very close to red.
SELECT name, description
decimal (QbScoreFromStr(swatch_img,

'QbColorFeatureClass color=<255, 0, 0>'), /* query string *
10, 5) AS score

FROM fabric /* table column */
ORDER BY score

Retrieving the score of multiple images
Use the QbScoreTBFromStr UDF to get the score of multiple cataloged images
in a table column. You can use the QbScoreTBFromName UDF, if you have a
named query. Both UDFs return a two-column table of image handles and
scores; the rows in the table are in ascending order of score. The name of the
handle column in the result table is IMAGE_ID; the name of the score column
is SCORE.

Issuing QBIC queries

Chapter 13. Querying images by content 159

|
|
|

|
|

|
|
|
|
|
|
|

|
|

Specify a query string as input to the QBScoreTBFromStr UDF. Specify the
name of a query object as input to the QbScoreTBFromName UDF. With either
UDF, you also specify the name of the table and column that contains the
target images. You can also specify the maximum number of rows to return in
the result table. If you do not specify a maximum number of results, the UDF
will return a row for each cataloged image in the target table column.

In the following query, the QbScoreTBFromStr UDF is used to find the ten
cataloged images in a table column whose texture is closest to that of an
image in a server file.
SELECT name, description
FROM fabric
WHERE CAST (swatch_img as varchar(250))IN
SELECT CAST (image_id as varchar(25)) FROM TABLE
(QbScoreTBFromStr
(QbTextureFeatureClass file=<server,"patterns/ptrn07.gif">' /*query string */

'fabric', /* table */
'swatch_img', /* table column */
10)) /* maximum number of results */

AS T1));

QBIC query sample program
Figure 27 on page 162 shows part of a program coded in C that builds and
runs a QBIC query. The code in the figure queries images by average color. It
prompts the user to enter the name of a color or image file. The user can also
use an image that is returned by a query as an example image for a
subsequent query. The program then uses the named color or the color of the
image as the average color to query a column of images.

You can find the complete program in the QBICDEMO.C file in the SAMPLES
subdirectory. The complete program can be used to query images by
histogram color or positional color as well as by average color. To run the
complete program, you must run the ENABLE, POPULATE, and QBCATDMO
sample programs (also in the SAMPLES subdirectory). For more information
about the sample programs, see “Appendix B. Sample programs and media
files” on page 565.

Note the following points in Figure 27 on page 162:
�1�Include the dmbqbapi header file.
�2�Prompt the user for database information.
�3�Connect to the database.
�4�Create a query object.
�5�Add a feature to the query object.

Issuing QBIC queries

160 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

�6�Prompt the user for the type of input (color name, image file, or
previously retrieved image).
�7�Specify the data source for the feature. The data source is an explicit
specification for average color.
�8�Issue the query. The Image Extender searches the entire column of
images. It also specifies 10 as the maximum number of images to be
returned.
�9�Display the next image in the set of returned images. For further
information on displaying images, see “Displaying a full-size image or
video frame” on page 127.
�10�Delete the query object.

The SAMPLES subdirectory includes another program that demonstrates how
to build and use a QBIC query. The program, QbicQry.java, shows you how
to graphically specify the search criteria for a QBIC query. For example, the
program presents a color selector to choose average color. The program
converts the selection to a query string.

Issuing QBIC queries

Chapter 13. Querying images by content 161

|
|
|
|
|

#include <sql.h>
#include <sqlcli.h>
#include <sqlcli1.h>
#include <dmbqbqpi.h> �1�
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <color.h>
#include <ctype.h>

#define MaxQueryReturns 10

#define MaxDatabaseNameLength SQL_SH_IDENT
#define MaxUserIdLength SQL_SH_IDENT
#define MaxPasswordLength SQL_SH_IDENT
#define MaxTableNameLength SQL_LG_IDENT
#define MaxColumnNameLength SQL_LG_IDENT

static char databaseName[MaxDatabaseNameLength+1];
static char userid[MaxUserIdLength+1];
static char password[MaxPasswordLength+1];

static char tableName[MaxTableNameLength+1];
static char columnName[MaxColumnNameLength+1];

static char line[4000];

static QbResult results[MaxQueryReturns];
static long currentImage = -1;
static long imageCount = 0;

static char* tableAndColumn;

static QbQueryHandle averageHandle = 0;
static QbQueryHandle histogramHandle = 0;
static QbQueryHandle drawHandle = 0;
static QbQueryHandle lastHandle = 0;

static SQLHENV henv;
static SQLHDBC hdbc;
static SQLHSTMT hstmt;
static SQLRETURN rc;

static char* listQueries =
"SELECT NAME,DESCRIPTION FROM MMDBSYS.QBICQUERIES ORDER BY NAME";

static char* menu[] = {

Figure 27. QBIC query sample program (Part 1 of 6)

Issuing QBIC queries

162 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

/*
12345678901234567890123456789012345678901234567890123456789012345678901234567890 */

"",
"+---+",
"| AVERAGE COLOR colorname |",
"| AVERAGE FILE filename format |",
"| AVERAGE LAST |",
"| Press Enter to display the next image in the series |",
"+---+",
"",
0
};

static char* help[] = {
"",
"AVERAGE Execute an average color query",
" COLOR Specifies the color to query for",
" FILE Specifies the file to compute the average color from",
" LAST Specifies the last displayed image be used to compute the color",
" NEXT Displays the next image from the current query or nothing if",
" all of the image have been displayed."
"",
">>pause<<",
0
};
/**/
/* doNext() */
/**/
static void doNext(void)
{

int ret;
if (currentImage < imageCount)

currentImage++;
if (currentImage < imageCount)

ret = DBiBrowse("/usr/local/bin/xv %s", MMDB_PLAY_HANDLE,
results[currentImage].imageHandle, MMDB_PLAY_NO_WAIT); �9�

}

Figure 27. QBIC query sample program (Part 2 of 6)

Issuing QBIC queries

Chapter 13. Querying images by content 163

/**/
/* doAverage() */
/**/
static void doAverage(void)
{

QbQueryHandle qohandle = 0; QbImageSource is; char* type;
char* arg1; char* arg2;

type = nextWord(0);
if (abbrev(type, "color", 1)) {

is.type = qbiSource_AverageColor;
arg1 = nextWord(0);
if (arg1 == 0) {

printf("AVERAGE COLOR command requires a colorname argument.\n");
return;

}
if (getColor(arg1, &is.averageColor) == 0) {

printf("The colorname entered was not recognized.\n");
return;

}
}
else if (abbrev(type, "file", 1)) {

is.type = qbiSource_ClientFile;
arg1 = nextWord(0);
if (arg1 == 0) {

printf("AVERAGE FILE command requires a filename argument.\n");
return;

}
arg2 = nextWord(0);
if (arg2 == 0) {

printf("AVERAGE FILE command requires a file format argument.\n");
return;

}
strcpy(is.clientFile.fileName, arg1);
strcpy(is.clientFile.format, arg2);

}
else if (abbrev(type, "last", 1)) {

is.type = qbiSource_ImageHandle;
if (0 <= currentImage &&; currentImage < imageCount)

strcpy(is.imageHandle, results[currentImage]imageHandle);
else {

printf("No last image for AVERAGE LAST command\n");
return;

}
}

Figure 27. QBIC query sample program (Part 3 of 6)

Issuing QBIC queries

164 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

else {
printf("AVERAGE command only supports COLOR, FILE, and LAST types.\n");
return;

}

_QbQuerySetFeatureData(averageHandle, "QbColorFeatureClass", &is); �7�
_QbQuerySearch(averageHandle, tableAndColumn, "IMAGE",

MaxQueryReturns, 0, 0, &imageCount, results); �8�
lastHandle = averageHandle;

currentImage = -1;
}
/**/
/* commandLoop() */
/**/
void commandLoop(void)
{

int done = 0;

while (!done) { �6�
displayText(menu);
printf("%d", currentImage + 1);
if (0 <= currentImage &&; currentImage < imageCount)

printf(" %8.6f", results[currentImage].score);
printf("> ");
gets(line);
done = processCommand(line);

}
}

Figure 27. QBIC query sample program (Part 4 of 6)

Issuing QBIC queries

Chapter 13. Querying images by content 165

/**/
/* main() */
/**/
void main(void)
{

char* inst;
int i;

printf("\n\n");
printf("Please enter: database_name [user_id] [password] "\n"); �2�
gets(line);
if (copyWord(line, databaseName, sizeof(databaseName)) == 0)

exit(0);
copyWord(0, userid, sizeof(userid));
copyWord(0, password, sizeof(password));
printf("\n");

if (SQLAllocEnv(&henv) != SQL_SUCCESS)
sqlError(SQL_NULL_HSTMT);

if (SQLAllocConnect(henv, &hdbc) != SQL_SUCCESS)
sqlError(SQL_NULL_HSTMT);

if (SQLConnect(hdbc, �3�
(SQLCHAR*)databaseName,
SQL_NTS,
(SQLCHAR*)userid,
SQL_NTS,
(SQLCHAR*)password,
SQL_NTS) != SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

printf("Initializing . . .\n");

Figure 27. QBIC query sample program (Part 5 of 6)

Issuing QBIC queries

166 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

inst = getenv("DB2INSTANCE");
if (inst != 0 &&; strcmp(inst, "keeseyt") == 0)

tableAndColumn = "KEESEY.TEST";
else

tableAndColumn = "QBICDEMO.TEST";

_QbQueryCreate(&averageHandle); �4�
_QbQueryAddFeature(averageHandle, "QbColorFeatureClass");
_QbQueryCreate(&histogramHandle);
_QbQueryAddFeature(histogramHandle, "QbColorHistogramFeatureClass");
_QbQueryCreate(&drawHandle);
_QbQueryAddFeature(drawHandle, "QbDrawFeatureClass"); �5�

commandLoop();

_QbQueryDelete(drawHandle);
_QbQueryDelete(histogramHandle); �10�
_QbQueryDelete(averageHandle);

if (SQLDisconnect(hdbc) != SQL_SUCCESS)
sqlError(SQL_NULL_HSTMT);

if (SQLFreeConnect(hdbc) != SQL_SUCCESS)
sqlError(SQL_NULL_HSTMT);

if (SQLFreeEnv(henv) != SQL_SUCCESS)
sqlError(SQL_NULL_HSTMT);

}

Figure 27. QBIC query sample program (Part 6 of 6)

Issuing QBIC queries

Chapter 13. Querying images by content 167

Issuing QBIC queries

168 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 14. Detecting video scene changes

This chapter describes how to detect scene changes in a video clip with the
DB2 Video Extender APIs. These APIs are available in all DB2 Video Extender
platforms except Windows 3.1. Video scene change detection is supported for
video clips in MPEG-1 format only.

What is a video scene change?

Imagine a television studio that records programs on video tape for
subsequent telecast. Recently the studio has started using the Video Extender
to store clips of its video tapes in a DB2 database. This gives studio personnel
the opportunity to query traditional types of information about their
programs as well as view clips of the programs.

The studio would like the option of previewing a video clip. They want the
ability to view a visual summary, called a storyboard. An example of a
storyboard is shown in Figure 28 on page 170. Viewing storyboards can help
studio employees get the gist of a video without having to view the entire
video. It can also help employees decide if a video is the right video for their
needs (for example, whether it merits downloading and viewing). This
requirement is very important to the studio. Viewing a storyboard instead of
an entire video can reduce download and viewing time dramatically. For more
information on using video scene change detection capabilities in this way, see
“Storing information about all the shots in a video” on page 186.

© Copyright IBM Corp. 1996, 2000 169

The studio is planning to use the video scene change detection capabilities of
the Video Extender to capture representative frames for their storyboards.

A video scene change is a point in a video clip where there is a significant
difference between two successive frames. This happens, for example, when
the camera recording a video changes its point of view. The frames between
two scene changes constitute a shot.

When the Video Extender detects a scene change6, it records data for the
associated shot. The data includes the number of the frame that begins the
shot, the number of the frame that ends the shot, and the number of a
representative frame within the shot. The shot data also includes the pixel
content of the representative frame.

Finding and using scene changes

The Video Extender provides a set of application programming interfaces that
you can use to find shots or frames in a video clip. After you find the shot or
frame, you can access data about it, such as the starting and ending frame
numbers of the shot, or the pixel content of a frame. You can then pass this
information to a program for further processing. For example, you can pass
the content of a frame to a program capable of displaying it.

6. The video scene change detection code includes the University of California at Berkeley MPEG decoder, with
modifications from the Boston University Multimedia Communication Laboratory.

Figure 28. A video storyboard. Representative frames summarize the content and flow of a video.

Scene Change

170 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

The Video Extender also provides APIs to store shot data in a shot catalog.
The shot catalog can be in a database or a file. You can access the shot catalog
in a file, or you can access a read-only view of the shot catalog in a database.

A shot catalog file contains fields for the following data:
v Shot catalog name
v Values that control how the Video Extender detects a shot, for example, the

minimum number of frames in a shot
v Values that control how many frames, and which frames, will be stored as

representative frames for a shot
v Shot number
v Starting frame number
v Ending frame number
v Representative frame number
v Name of a file that contains the contents of the representative frame

The view of the shot catalog in a database contains columns for the following
data:
v Shot handle
v Video table name
v Video column name
v Video handle
v Video file name
v Starting frame number
v Ending frame number
v Representative frame number
v Representative frame data
v Comment

You can access the data in a shot catalog file or query the data when the shot
catalog is in a database. The representative frame information is particularly
useful in displaying storyboards. In addition, if the shot catalog is in a
database, you can join the shot data with related data in other tables. For
example, personnel in the video studio can create a shot catalog in a database.
They can then join the catalog data with a table that contains the video clips
as well as information about the clips. In this way they will be able to use a
single query to retrieve a clip and business information about the clip, as well
as identify shots within the clip.

Shot detection data structures
Data related to shot detection is stored in structures that are included in the
shot detection header file, dmbshot.h. Many of the shot-detection APIs require

Using Scene Changes

Chapter 14. Detecting video scene changes 171

that you point to one or more of these structures. Some of these structures are
used to contain data that the Video Extender uses as input. For example, the
shot control structure contains information that controls shot detection. Most
of the structures are used by the Video Extender to store data it retrieves from
a video. For example, the video frame data structure contains the pixel
content of a frame.

The structures used for shot detection are DBvIOType, DBvShotControl,
DBvShotType, DBvFrameData, and DBvStoryboardCtrl.

DBvIOType
The DBvIOType data structure contains data about a video, such as its format,
dimensions, and number of frames. The data structure is defined as follows:
typedef struct {

FILE *hFile; /* file handle for the video */
char vhandle[255]; /* video handle (if from database)
char vtable[255]; /* video table name (if from database) */
char vcolumn[255]; /* video column name (if from database) */
char vFile[255]; /* name of video file */
char idxFile[255]; /* name of index file */
char isIdx; /* 1 if the index exists, 0 otherwise */
char isInDb; /* 1 if from DB, 0 if from file */
int format; /* Format of the video */
unsigned long dx, dy; /* Dimensions of the video */
unsigned long totalFrames; /* TotalFrames in the video */
unsigned long markFrame; /* used by shot detection */
unsigned long currentFrame; /* The current video frame */
DBvFrameData fd; /* Frame data for current frame */
DBvDCFrameData fdDc; /* Frame data for DC images */
unsigned char BGRValid; /* reserved */
unsigned short usDeviceID; /* reserved */
unsigned long hwnd; /* reserved */
int videoReset; /* Flag if video is opened or seeked */
int firstshot; /* Used internally to indicate the first call */
void *reserved /* reserved */

} DBvIOType;

DBvShotControl
The DBvShotControl data structure contains information that is used to
control shot detection, such as detection method. The data structure is defined
as follows:
typedef struct {

unsigned long reserved;
unsigned long method; /* detection method */

#define DETECT_CORRELATION 0x00000001
#define DETECT_HISTOGRAM 0x00000002
#define DETECT_CORRHIST 0x00000003

Using Scene Changes

172 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#define DETECT_CORRHISTDISS 0x00000004

int normalCorrValue; /* Correlation threshold */
int sceneCutSkipXY; /* reserved */
int CorrHistThresh; /* Histogram threshold */
int DissThresh; /* Dissolve threshold */
int DissCacheSize; /* Dissolve cache size */
int DissNumCaches; /* Dissolve cache number */
int minShotSize; /* Minimum frames in a shot */

} DBvShotControl;

Table 11 describes each field in DBvShotControl and its allowed and default
settings. To initialize these fields to default values, use the DBvInitShotControl
API as described in “Initializing values in shot detection data structures” on
page 176.

DBvShotControl settings depend on the type of video: Scene changes in
digitized video vary greatly depending on the content and format of the
video. Also, the accuracy of the scene change algorithms varies depending on
the video. Clearly defined scene changes with obvious differences in overall
frame appearance are detected more accurately than more subtle types of
changes, or changes where the overall color content remains the same.
Although the default DBvShotControl field settings work well for most
applications, you might need to adjust these settings to reduce instances of
false or missed detection.

Table 11. DBvShotControl fields

Field Meaning

method Identifies the method that the Video Extender uses to detect a scene change.
You can choose one of the following methods:

DETECT_CORRELATION. Compare pixels in two successive frames. If the
difference exceeds the correlation threshold, detect a scene change.

DETECT_HISTOGRAM. Compare the histogram values of two successive
frames. The histogram value measures the distribution of colors in the
frame. If the difference exceeds the histogram threshold, detect a scene
change.

DETECT_CORRHIST. Use the correlation method to identify possible scene
changes, then use the histogram method for the frames marked as possible
scene changes. If the histogram threshold is exceeded, detect a scene change.

DETECT_CORRHISTDISS. Same as for DETECT_CORRHIST, but examine
additional frames for dissolves.

The default method is DETECT_CORRHIST.

Using Scene Changes

Chapter 14. Detecting video scene changes 173

Table 11. DBvShotControl fields (continued)

Field Meaning

normalCorrValue An integer value of 0 to 100 that specifies the correlation threshold. This
gives the minimum value of the correlation coefficient between pixels in two
frames. A value of 0 means always detect a scene change for the next frame.
A value of 100 means detect a scene change only if all the pixels change
from one frame to the next frame. The default value is 60.

sceneCutSkipXY Reserved.

CorrHistThresh An integer value of 0 to 100 that specifies the histogram threshold. This
measures the difference between the histogram values of successive frames.
A value of 0 means detect a scene change only if the histogram values are
fully different from one frame to the next. A value of 100 means always
detect a scene change for the next frame. The default value is 10.

DissThresh An integer value of 0 to 100 that specifies the dissolve test threshold. This
measures the percentage of pixels in a frame that must pass a dissolve test
for a dissolve to be detected. A value of 0 means always detect a dissolve
for the frame. A value of 100 means detect a dissolve only if all pixels in the
frame pass the dissolve test. The default value is 15.

DissCacheSize An integer value that specifies the number of frames used in the slope
portion of the dissolve test. The default value is 4.

DissNumCaches An integer value that specifies the number of frames used in the consistency
portion of the dissolve test. The default value is 7.

minShotSize An integer value that specifies the minimum number of frames for a shot.
For a shot to be detected, it must have at least as many frames as the
minimum. The default value is 5.

DBvShotType
The DBvShotType data structure contains information about a shot, such as its
starting frame number, ending frame number, and representative frame
number; and a pointer to the pixel content of the representative frame. The
data structure is defined as follows:
typedef struct {

unsigned long startFrame; /* starting frame number */
unsigned long endFrame; /* ending frame number */
unsigned long repFrame; /* representative frame number */
DBvFrameData fd; /* data for representative shot */
unsigned long dx; /* frame data width in pixels */
unsigned long dy; /* frame data height in pixels */
char *comment; /* shot remark */

} DBvShotType;

Using Scene Changes

174 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvFrameData
The DBvFrameData data structure contains the pixel content of a frame. The
data structure is defined as follows:
typedef struct /* video frame data */
{

/* MPEG 1 pixels */
unsigned char *luminance; /* Luminance pixel plane (black and white) */
unsigned char *Cr; /* Cr pixel plane */
unsigned char *Cb; /* Cb pixel plane */
unsigned char *reserved;

} DBvFrameData;

DBvStoryboardCtrl
The DBvStoryboardCtrl data structure contains values that control which, and
how many, representative frames for a shot are stored in a video catalog. See
“Building a storyboard” on page 187 for a description of how these values are
used. The data structure is defined as follows:
typedef struct {

int thresh1; /* threshold for small to medium scenes */
int thresh2; /* threshold for medium to large scenes */
int delta; /* offset used for representative frames */

} DBvStoryboardCtrl;

Table 12 describes each field in DBvStoryboardCtrl and its default settings. To
initialize these fields to default values, use the DBvInitStoryboardCtrl API as
described in “Initializing values in shot detection data structures” on page 176.

DBvStoryboardCtrl settings depend on the type of video: Which, and how
many, representative frames are optimal for a storyboard might differ for
different types of videos. Although the default DBvStoryboardCtrl field
settings work well for many types of videos, you might want to use these
settings on a test subset of videos. You can then tune the settings as
appropriate before building storyboards for a wider set of videos.

Table 12. DBvStoryboardCtrl fields

Field Meaning

thresh1 Identifies the threshold for short shots. Shots having fewer
frames than the value of thresh1, are short shots. If cataloged,
the information for a short will include one representative
frame (the middle frame).

The default value is 90. If the value of thresh1 is set to -1, a shot
will be considered a short shot (regardless of its actual length).

Using Scene Changes

Chapter 14. Detecting video scene changes 175

Table 12. DBvStoryboardCtrl fields (continued)

Field Meaning

thresh2 Identifies the threshold for medium to large shots. Shots having
as many as or fewer frames than the value of thresh2, but as
least as many frames as the value of thresh1, are considered
medium shots. If cataloged, the information for a medium shot
will include two representative frames. The position of the
representative frames is controlled by the value of the delta
field. Shots having more frames than the value of thresh2, are
considered long shots. If cataloged, the information for a long
shot will include three representative frames. The position of
the first and last representative frames is controlled by the value
of the delta field. The second frame is the middle frame.

The default value is 150. If the value of thresh2 is set to -1, a
shot will be considered a short shot (regardless of its actual
length).

delta Identifies the offset used for representative frames. For medium
and long shots, the first representative frame is offset from the
beginning of the shot by the number of frames in delta. The last
representative frame is offset from the end of the shot by the
number of frames in delta.

The default value is 5.

Initializing values in shot detection data structures
The values in the DBvShotControl data structure control shot detection. The
values in the DBvStoryboardCtrl data structure control the building of a
storyboard. You can explicitly specify values for the fields in these data
structures. In addition, you can initialize the values in these structures to
default values. See Table 11 on page 173 for the default values in the
DBvShotControl data structure. See Table 12 on page 175 for the default values
in the DBvStoryboardCtrl data structure.

Use the DBvInitShotControl API to initialize the values in the DBvShotControl
data structure. When you use the API, you need to specify the shot control
structure. For example, the following statement initializes the fields in the
DBvShotControl structure to default values:
DBvShotControl shotCtrl;

rc=DBvInitShotControl(
shotCtrl); /* pointer to shot control structure */

Use the DBvInitStoryboardCtrl API to initialize the values in the
DBvStoryboardCtrl data structure. When you use the API, you need to specify

Using Scene Changes

176 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

the storyboard control structure. For example, the following statement
initializes the fields in the DBvStoryboardCtrl structure to default values:
DBvStoryboardCtrl sbCtrl;

rc=DBvInitStoryboardCtrl(
sbCtrl); /* pointer to storyboard control structure */

Getting a shot or frame
You can use the Video Extender to get a shot or frame from a video. Before
you can get a shot or frame, you must open the video for shot detection. The
Video Extender uses an index to access frames and shots. Before you get a
shot or frame, you must create an index for the video.

After a video is opened and an index is created, you can get the next shot or
frame in a video or get a specific frame by frame number. The Video Extender
can process video clips in MPEG-1 format. If you plan to use a retrieved
frame with a program that requires RGB format, you can convert the frame to
that format by using a Video Extender API.

Opening a video for shot detection
Use the DBvOpenFile API to open a video that is stored in a file. The file
must be accessible from the client. Use the DBvOpenHandle API to open a
video that is stored in a database table. The application must first connect to
the database. If the video is stored in a database table, the Video Extender
copies the video to a temporary file. The temporary file is located in a
directory specified in the client environment variable DB2VIDEOTEMP.
Opening a video initializes it for shot detection. The Video Extender sets a
pointer to the beginning of the video, that is, frame 0.

When you use either API, you need to point to an area that is used to contain
the pointer to the video data structure (DBvIOType). The Video Extender
allocates this structure in response to the API call, and uses the structure to
store information about the video. The structure also points to the frame data
structure (DBvFrameData) that contains the pixel content of the current frame.
For a description of these structures see “Shot detection data structures” on
page 171. For the DBvOpenFile API, you also need to specify the name of the
video file. For the DBvOpenHandle API, you also need to specify the video
handle.

For example, the following statement opens a video for shot detection that is
stored in a file:
DBvIOType *videoptr;

rc=DBvOpenFile (
&videoptr, /* pointer to video structure pointer */
"/employee/video/rsmith.mpg"); /* video file */

Using Scene Changes

Chapter 14. Detecting video scene changes 177

The following statement opens a video for shot detection that is stored in a
database table:
EXEC SQL BEGIN DECLARE SECTION;
char Vid_hdl[251];
EXEC SQL END DECLARE SECTION;

DBvIOType *videoptr;

EXEC SQL SELECT VIDEO INTO :Vid_hdl
FROM EMPLOYEE
WHERE NAME="Anita Jones";

rc=DBvOpenHandle(
&videoptr, /* pointer to video structure pointer */
vid_hdl); /* video handle*/

Indexing a video
The Video Extender uses an index to access frames and shots in a video. You
need to create an index for a video before you can get a shot or frame from
the video (the MPEG format does not provide an index for frames and shots).
The index maps frame numbers to the bit streams that comprise an MPEG-1
video.

You can create an index for a video by using the DBvCreateIndexFromVideo
API or the DBvCreateIndex API. However, if you have opened the video for
shot detection using the DBvOpenFile API or the DBvOpenHandle API, you
do not have to explicitly create an index; the Video Extender will
automatically have created an index for you. (See “Opening a video for shot
detection” on page 177 for information about how to open the video)..

When an index is created (either explicitly or automatically), the DB2 Video
Extender attempts to store the index in the same path as the video file. It first
attempts to store the index file as fname.ext.idx, where fname is the name of
the video file, and ext is the extension of the video file. If that attempt fails,
the Video Extender attempts to store the file as fname.idx in the same
directory as the video file. If that fails, it attempts to store the index file in the
local directory, first as fname.ext.idx, and second as fname.idx.

When the file is opened, the Video Extender looks for the index file in the
following order:
1. A writeable version of the index file, over a read-only version.
2. An index file in the same path as the video file, over one in the current

directory.
3. An index with the name fname.ext.idx, over one with the name fname.idx,

where fname is the name of the video file and ext is the extension of the
video file.

Using Scene Changes

178 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

For example, if an index is created for a video file named myvideo.mpg, the
Video Extender will look first for a writeable index named myvideo.mpg.idx
in the same path as the video file.

When you use the DBvCreateIndexFromVideo API, specify the DBvIOType
data structure. The Video Extender stores the name of the index file in the
structure. For a description of this structure, see “Shot detection data
structures” on page 171. For example, the following statement creates an index
for a video that has previously been opened for shot detection:
DBvIOType *video;

rc=DBvCreateIndexFromVideo(
video); /* pointer to video structure */

When you use the DBvCreateIndex API, specify the name of the video file.
The Video Extender stores the index in a file (in the same directory in which
the video resides). For example, the following statement creates an index for a
video file (the file was not previously opened for shot detection):
rc=DBvCreateIndex(

"/employee/video/rsmith.mpg"); /* video file */

You can also determine whether an index exists for a video. Use the
DBvIsIndex API to check for an index. The API sets a status variable to 0 if no
index exists for the video, or 1 if an index exists for the video. For example,
the following statement checks for the existence of an index for a video file:
short *status

rc=DBvIsIndex(
"/employee/video/rsmith.mpg", /* video file */
&status); /* status indicator */

Back up the video index: Back up the video index file in case you need to
recover it. The file is located in the directory where the Video Extender is
installed.

Getting a frame
You can get the current frame in a video. You an also set the current frame to
be a particular frame number. Use the DBvGetFrame API to get the current
frame in a video. Use the DBvSetFrameNumber API to set the current frame
to a particular frame number.

When you use the DBvGetFrame API, specify the video structure. For
example, the following statement gets the current frame in a video:

Using Scene Changes

Chapter 14. Detecting video scene changes 179

DBvIOType *video;

rc=DBvGetFrame(
video); /* pointer to video structure */

When you use the DBvSetFrameNumber API, specify the video structure and
the number of the frame you want set as the current frame. For example, the
following statements set the current frame to frame number 85 and then get
the frame:
DBvIOType *video;

rc=DBvSetFrameNumber(
video, /* pointer to video structure */
85); /* frame number */

rc=DBvGetFrame(
video); /* pointer to video structure */

On output, the DBvSetFrameNumber API resets the currentFrame field in the
DBvIOType structure. The DBvGetFrame API puts the pixel content of the
frame in the DBvFrameData structure. For a description of these structures,
see “Shot detection data structures” on page 171.

Getting a shot
Use the DBvDetectShot API to get the next shot in a video. When you use the
DBvDetectShot API, you need to point to the following data structures:
v Video (DBvIOType)
v Shot control (DBvShotControl)
v Shot type (DBvShotType)

You also need to point to a starting frame for the search. The Video Extender
will begin its search for the next shot from that point in the video.

As a results of the API, the Video Extender sets a shotDetected flag and points
to the starting frame of the next shot and its frame data. If the shotDetected
flag is set to 1, a shot has been detected. In this case, the Video Extender:
v Sets the currentFrame field in DBvIOType to the starting frame of the next

shot
v Puts the data for the starting frame of the next shot in the fd field in

DBvIOType
v Sets DBvShotType to contain the starting frame number, ending frame

number, representative frame number, representative frame data, and
comment for the next shot

Using Scene Changes

180 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

If the shotDetected flag is set to 0, a shot has not been detected. In this case,
the Video Extender returns a code that indicates that the end of the video was
reached.

For a description of these structures, see “Shot detection data structures” on
page 171.

The following statements, for example, request the next shot in a video:
DBvIOType *video;
long start_frame = 1;
char shotDetected = 0;
DBvShotControl shotCtrl;
DBvShotType shot;

shotCtrl→method=DETECT_CORRHIST
shotCtrl→normalCorrValue=60;
shotCtrl→sceneCutSkipXY=1;
shotCtrl→CorrHistThresh=10;
shotCtrl→DissThresh=10;
shotCtrl→DissCacheSize=4;
shotCtrl→DissNumCaches=7;
shotCtrl→minShotSize=0;

rc=DBvDetectShot(
video, /* pointer to video structure */
start_frame, /* starting frame for search */
&shotDetected, /* shot detected flag */

/* 1=detected, 0=not detected */
shotCtrl, /* pointer to shot control structure */
&shot); /* pointer to shot type structure */

Converting the format of a retrieved frame
The content of an MPEG-1 frame is in YUV format, a format that includes
information about the luminance pixel plane, Cr pixel plane, and Cb pixel
plane of a frame. If you want to edit the video frame, you may find it
convenient to convert the frame from YUV to RGB format. The Video
Extender provides the DBvFrameDatato24BitRGB API to convert a retrieved
MPEG-1 frame from YUV format to 24-bit RGB format. To use the API, you
must first allocate a target buffer.

When you issue the API, you need to point to the target buffer and the frame
data that you want to convert. You also need to specify the height and width
of the frame. (You can get the data, height, and width of the frame from the
DBvIOType structure for the frame.) For example, the following statements
convert an MPEG-1 frame to 24-bit RGB format:
char RGB[18000];
DBvIOType *video;
DBvFrameData fd;

rc=DBvGetNextFrame(

Using Scene Changes

Chapter 14. Detecting video scene changes 181

video); /* pointer to video structure */

fd=video.fd
dx=video.dx
dy=video.dy

rc=DBvFrameDataTo24BitRGB (
RGB, /* pointer to target buffer */
&fd, /* pointer to frame data */
dx, /* frame width */
dy); /* frame height */

Closing a video file
Use the DBvClose API to close a video file that has been opened for shot
detection. When you use the API, you specify a pointer to the video structure
for the file.

For example, the following statement closes a video file that has been open
for shot detection:
DBvIOType *video;

rc=DBvClose (video);

Displaying a retrieved frame
The content of a retrieved MPEG-1 frame is in YUV format; this is not a
format that is displayable by most image display programs. To display a
retrieved video frame, you need to put it in a format that an image display
program can understand, such as BMP format. For example, to display an
MPEG-1 frame:
1. Use the DBvFrameDatato24BitRGB API to convert the format of a

retrieved MPEG-1 frame from YUV format to 24-bit RGB format. See
“Converting the format of a retrieved frame” on page 181 for information
on using the DBvFrameDatato24BitRGB API.

2. Append an appropriate header to the converted frame. For example, BMP
format requires a header that includes information such as the width and
height of the image.

3. Copy the frame contents (with its header) to a file.
4. Use the DBiBrowse API to display the file. For information on using the

DBiBrowse API, see “Using the display or play APIs” on page 123.

Cataloging shots
You can store information about a shot in a shot catalog. The Video Extender
provides APIs to:
v Create and manage a shot catalog in a database. You can use the APIs to:

– Create a shot catalog in a database
– Store in a shot catalog information about a single shot

Using Scene Changes

182 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

– Store in a shot catalog information about all the shots in a video
– Change the information that is stored for a shot in a shot catalog
– Merge shot information in a shot catalog
– Delete shot information from a shot catalog
– Delete a shot catalog from a database

v Create a shot catalog file and store in it information about all the shots in a
video. An API is provided that creates the catalog file and fills it with shot
data. You can access and manipulate the data in the shot catalog file, but no
APIs are provided to do that.

Cataloged shots provide input for storyboards: After you store shot
information in a shot catalog (whether the catalog is in a database or a file),
you can use that information in a shot-related application. For example, you
can create an application that gets the representative frames for all the shots
in a video and displays them in a storyboard.

You only need to create a shot catalog for a database: You need to create a
shot catalog only if you want the catalog to reside in a database. The Video
Extender automatically creates a shot catalog file when you store data for the
shots in a video and indicate that you want the output in a file.

Before you create a catalog (database only)
Before you create and use a catalog in a database, you must:
v Issue an SQLConnect call. A shot catalog in a DB2 database that consists of

a collection of tables. Before you create a shot catalog in a database or
perform operations on it, you must connect to the database with an
SQLConnect call. (SQLConnect is a DB2 Call Level Interface call.) The call
returns a connection handle that you need to specify in the APIs that
manage the shot catalog.

v Enable the database for image data. You must enable a database for the
DB2Image data type before you create a shot catalog in the database. In
addition to other information it stores in the shot catalog, the Video
Extender stores representative frame data for each cataloged shot. The data
type of the representative frame data is DB2Image.

Creating a shot catalog (database only)
Use the DBvCreateShotCatalog API to create a shot catalog in a database. (The
Video Extender automatically creates a shot catalog file when you store data
for the shots and indicate that you want the output in a file.). The catalog
consists of tables that store shot-related information. You can query a view of
the tables by using SQL. Table 13 on page 184 shows the columns in the view.

Using Scene Changes

Chapter 14. Detecting video scene changes 183

Table 13. Columns in the shot catalog view

Column name Data type Description

SHOTHANDLE CHAR(36) Shot handle

VIDEOHANDLE VARCHAR(254) Video handle. This column
contains a value only if the
video is opened with the
DBvOpenHandle API.

VIDEOTABLE VARCHAR(254) Table that contains the
video. This column contains
a value only if the video is
opened with the
DBvOpenHandle API.

VIDEOCOLUMN VARCHAR(254) Table column that contains
the video. This column
contains a value only if the
video is opened with the
DBvOpenHandle API.

VIDEOFILE VARCHAR(254) Video file name. This
column contains a value
only if the video is opened
with the DBvOpenFile API.

STARTFRAME INTEGER Starting frame number

ENDFRAME INTEGER Ending frame number

REPFRAME INTEGER Representative frame
number

REPFRAMEDATA DB2IMAGE Representative frame data

COMMENTS LONG VARCHAR Comment

You have flexibility in how many shot catalogs you create in a database and
for which shots you store information in each shot catalog. You can create one
catalog to store shot information for many videos, have shot information for
each video stored in a separate catalog, or store information for multiple shots
within a video in multiple catalogs.

When you use the API, you need to specify a name for the catalog. Names
larger than 16 characters are truncated. You also need to specify the database
connection handle that is returned by the SQLConnect call to the database.
For example, the following statements create a shot catalog that is named
hotshots:
SQLHDBC hdbc;

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

Using Scene Changes

184 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

rc=DBvCreateShotCatalog(
"hotshots", /* shot catalog name */
hdbc); /* database connection handle */

Shot catalog views are named MMDBSYS.SVcatname, where catname is the
name of the shot catalog. For example, a view of the catalog that is named
hotshots is named MMDBSYS.SVHOTSHOTS.

Storing information about a single shot (database only)
Use the DBvInsertShot API to store information about a single shot in a shot
catalog. You can store information for a single shot in a video only if the shot
catalog is in a database. The information stored in the catalog includes:
v Shot handle
v Video table name (for video clips that are stored in a table)
v Video column name (for video clips that are stored in a table)
v Video handle (for video clips stored in a table)
v Video file name (for video clips that are stored in a file)
v Starting frame number
v Ending frame number
v Representative frame number
v Representative frame data

A comment, however, is not stored for the shot. See “Specifying a comment
for a shot (database only)” on page 189 for a description of how you can add
a comment to the information that is stored for a shot.

When you use the DBvInsertShot API, you need to specify the shot catalog
name and a pointer to the shot. One way to set the pointer to the shot is to
get the next shot as described in “Getting a shot” on page 180. You also need
to specify the database connection handle that is returned by the SQLConnect
call to the database. For example, the following statements get the next shot
after frame 1 and then store information about the shot in a shot catalog that
is named hotshots:
SQLHDBC hdbc;
SQLHENV henv;
DBvIOType *video;
long start_frame = 1;
char shotDetected = 0;
DBvShotControl shotCtrl;
DBvShotType shot;

shotCtrl→method=DETECT_CORRHIST
shotCtrl→normalCorrValue=60;
shotCtrl→sceneCutSkipXY=1;
shotCtrl→CorrHistThresh=10;
shotCtrl→DissThresh=10;

Using Scene Changes

Chapter 14. Detecting video scene changes 185

shotCtrl→DissCacheSize=4;
shotCtrl→DissNumCaches=7;
shotCtrl→minShotSize=0;

SQLAllocConnect(henv,&hdbc)

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

rc=DBvDetectShot(
video,
start_frame,
&shotDetected,
&shotCtrl,
&shot)

rc=DBvInsertShot (
"hotshots", /*shot catalog name*/
shot, /*pointer to shot*/
hdbc); /*database connection handle*/

Storing information about all the shots in a video
Use the DBvBuildStoryboardTable API or the DBvBuildStoryboardFile API to
store in a shot catalog information for all the shots in a video. The
DBvBuildStoryboardTable API stores the information in a shot catalog that
resides in a database. The DBvBuildStoryboardFile API creates a shot catalog
file and stores the shot information in the file.

For either API, the source video can be in a database table or in a file.

When you use either API, you need to:
v Specify the shot catalog name.
v Point to the video structure.
v Point to the DBvShotControl data structure.
v Point to the DBvStoryboardCtrl data structure. Values in this data structure

control which, and how many, video frames will be stored as representative
frames in the shot catalog. See “Building a storyboard” on page 187 for
more information about setting these values.

For the DBvBuildStoryboardTable API only, you also need to specify the
database connection handle that is returned by the SQLConnect call to the
database.

For example, the following statements store in a shot catalog information for
all the shots in a video. The shot catalog is in a database.
SQLHDBC hdbc;
SQLHENV henv;
DBvIOType *video;
DBvShotControl shotCtrl;
DBvStoryBoardCtrl sbCtrl;

Using Scene Changes

186 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

sbCtrl→thresh1=50
sbCtrl→thresh2=500;
sbCtrl→delta=20;

SQLAllocConnect(henv,&hdbc)

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

rc=DBvBuildStoryboardTable (
"hotshots", /*shot catalog name*/
video, /*pointer to video structure*/
shotCtrl, /*pointer to shot control structure*/
sbctrl, /*pointer to storyboard control structure*/
hdbc); /*database connection handle*/

The following statements create a shot catalog file and store in the file
information for all the shots in a video.
DBvIOType *video;
DBvShotControl shotCtrl;
DBvStoryBoardCtrl sbCtrl;

sbCtrl→thresh1=50
sbCtrl→thresh2=500;
sbCtrl→delta=20;

rc=DBvBuildStoryboardFile (
"hotshots", /*shot catalog file name*/
video, /*pointer to video structure*/
shotCtrl, /*pointer to shot control structure*/
sbctrl); /*pointer to storyboard control structure*/

Building a storyboard
As their name implies, the DBvBuildStoryboardTable API and
DBvBuildStoryboardFile API are particularly useful for storing information to
be used in a storyboard. A storyboard is a visual summary of a video. You
can create a storyboard by displaying the representative frames that are stored
for a video in a shot catalog.

The DBvBuildStoryboardTable API and DBvBuildStoryboardFile API store one
or more representative frames for a shot. Values that you specify in the
DBvStoryboardCtrl structure control the number of representative frames that
are stored for a shot and which frames will be used. See “Shot detection data
structures” on page 171 for the definition of the DBvStoryboardCtrl structure.
Figure 29 on page 188 illustrates how the values in the DBvStoryboardCtrl
fields are used.

Using Scene Changes

Chapter 14. Detecting video scene changes 187

As Figure 29 illustrates:
v Only one representative frame is stored for a short shot. The number of

frames in a short shot is less than the thresh1 value in the
DBvStoryboardCtrl data structure. The representative frame is the middle
frame of the shot.

v Two representative frames are stored for a medium shot. The number of
frames in a medium shot is greater than or equal to the thresh1 value and
less than or equal to the thresh2 value in the DBvStoryboardCtrl data
structure. The delta value in the DBvStoryboardCtrl data structure
determines the number of frames from the start of the video to the first
representative frame. The delta value also determines the number of frames
from the second representative frame to the end of the video.

v Three representative frames are stored for a long shot. The number of
frames in a long shot is greater than the thresh2 value in the
DBvStoryboardCtrl data structure. The delta value in the
DBvStoryBoardCtrl data structure determines the number of frames from
the start of the video to the first representative frame. The second
representative frame is the middle frame of the video. The distance of the
third representative frame from the end of the video is determined by the
delta value.

Any shot can be processed as a short shot if the thresh1 or thresh2 value is set
to -1. In this case, only one representative frame, the middle frame, will be
stored for the shot in the shot catalog.

In addition to the values in the DBvStoryboardCtrl data structure, a number
of fields in the DBvShotControl data structure impact which representative
frames are stored for subsequent display in a storyboard. For example, the
CorrHistThresh, normalcorrValue, and minShotSize fields in the
DBvShotControl data structure specify thresholds for shot detection, and thus

Figure 29. How values in the DBvStoryboardCtrl structure are used

Using Scene Changes

188 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

affect what frames will be displayed in a storyboard of a video. When you use
the DBvBuildStoryBoardTable API and DBvBuildStoryBoardFile API to store
shot information for use in a storyboard, you might first do a trial run using
initial settings for the DBvStoryBoardCtrl and DBvShotControl data structures.
You can then tune your results by changing the values in various fields of
these data structures.

Displaying a storyboard
You can create a program to display a storyboard. You do this by accessing
the representative frames that are stored in a shot catalog for a video. If the
DBvBuildStoryboardFile API was used to store the shots for the video, the
shot catalog file points to GIF files for the representative frames. You can
display these GIF files using a browser or display program as appropriate.

If the DBvBuildStorybBoardTable API was used to store the shots for the
video, the shot catalog (stored in a database) contains data for the
representative frames. You can access the representative frame data in the shot
catalog view (see Table 13 on page 184 for a description of the view). The
representative frame data is in YUV format; this is not a format that is
displayable by most image display programs. To display the representative
frames, you can convert the frame data using the DBvFrameDatato24BitRGB
API as described in “Displaying a retrieved frame” on page 182. You can then
display the representative frames using a browser or display program as
appropriate.

Storyboard sample programs
The SAMPLES subdirectory contains two sample programs that demonstrate
building and displaying a storyboard for a video. One sample program, in file
makesf.exe, uses the DBvBuildStoryBoardFile API to create a shot catalog file
and store shot data in the file. The other sample program,makehtml.exe,
accesses the shot catalog file and creates HTML pages for display by a Web
browser.

Specifying a comment for a shot (database only)
You can specify a comment to be stored with the other information for a shot
in a shot catalog. Use the DBvSetShotComment API to specify the comment.

When you use the API, you need to specify the name of the shot catalog to
store the comment, the handle of the shot for which the comment is being
added, and the comment. You also need to specify the database connection
handle that is returned by the SQLConnect call to the database. For example,
the following statements add a comment for a shot (which starts at frame
number 85) in a shot catalog that is named hotshots:
SQLHDBC hdbc;
SQLHENV henv;
char shothandle[37];

Using Scene Changes

Chapter 14. Detecting video scene changes 189

SQLAllocConnect(henv,&hdbc)

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

EXEC SQL SELECT SHOTHANDLE INTO :shothandle
FROM MMDBSYS.SVHOTSHOTS
WHERE STARTFRAME=85;

rc=DBvSetShotComment (
"hotshots", /*shot catalog name*/
shothandle, /*shot handle*/
"shot of beach at sunset", /*comment*/
hdbc); /*database connection handle*/

Changing the information that is stored for a shot (database only)
You can change the information that is stored for a shot in a shot catalog. To
do that, use the DBvUpdateShot API. Put the replacing information in a
DBvShotType structure. You also need to specify information for the
remaining fields, even if they are unchanged. When you use the
DBvUpdateShot API, specify the name of the catalog and a pointer to the
DBvShotType structure. You also need to specify the database connection
handle that is returned by the SQLConnect call to the database.

When you change the information for the shot, you have the option of
changing the comment (if any) stored with the information. If you want to
change the comment, specify it in the DBvShotType structure. If you want to
keep the old comment, specify a null value in the DBvShotType structure.

For example, the following statements change the information that is stored
for a shot in a catalog that is named hotshots; the shot begins at frame
number 85:
SQLHDBC hdbc;
SQLHENV henv;
char shothandle[37];
DBvShotType shot;
DBvFrameData fd110;

/* get shot handle */

EXEC SQL SELECT SHOTHANDLE INTO :shothandle
FROM MMDBSYS.SVHOTSHOTS
WHERE STARTFRAME=85;

/* change shot attribute */

shot.startFrame=110;
shot.endFrame=200;
shot.repframe=110;
shot.fd=fd110;
shot.comment=NULL;

Using Scene Changes

190 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

/* update shot information */

SQLAllocConnect(henv,&hdbc)

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

rc=DBvUpdateShot (
"hotshots", /*shot catalog name*/
shot, /*shot information*/
hdbc); /*database connection handle*/

Merging shot information in a shot catalog (database only)
You can merge the information that is stored for two shots in a shot catalog.
When you merge shot information, you indicate an order for the merge by
identifying a first shot and a second shot. The starting frame number of the
first shot is stored as the starting frame number of the merged shot. The
number of the largest frame between the first and second shots is stored as
the ending frame number of the merged shot. A merge replaces the
information stored for the first shot with the information for the merged shot;
the information stored for the second shot is deleted from the shot catalog.

Use the DBvMergeShots API to merge the information for two shots in a shot
catalog. When you use the API, specify the shot catalog name followed by the
handle of the first and second shots to be merged. You also need to specify
the database connection handle that is returned by the SQLConnect call to the
database. For example, the following statements merge information stored for
two shots in a catalog named hotshots; the first shot begins at frame 85, the
second shot begins at frame 210:
SQLHDBC hdbc;
SQLHENV henv;
char shothandle1[37];
char shothandle2[37];

EXEC SQL SELECT SHOTHANDLE INTO :shothandle1
FROM MMDBSYS.SVHOTSHOTS1
WHERE STARTFRAME=85;

EXEC SQL SELECT SHOTHANDLE INTO :shothandle2
FROM MMDBSYS.SVHOTSHOTS2
WHERE STARTFRAME=210;

SQLAllocConnect(henv,&hdbc)

rc = SQLConnect(hdbc,"hotshots",SQL_NTS,id,SQL_NTS,password,SQL_NTS);

rc=DBvMergeShots (
"hotshots", /*shot catalog name*/
shothandle1, /*shot handle for first shot*/
shothandle2, /*shot handle for second shot*/
hdbc); /*database connection handle*/

Using Scene Changes

Chapter 14. Detecting video scene changes 191

Deleting shot information from a shot catalog (database only)
Use the DBvDeleteShot API to delete information about a shot from a shot
catalog. When you use the API, specify the shot catalog name followed by the
shot handle. You also need to specify the database connection handle that is
returned by the SQLConnect call to the database. For example, the following
statements delete information about a shot (which begins at frame number 85)
in a shot catalog that is named hotshots:
SQLHDBC hdbc;
SQLHENV henv;
char shothandle[37];

EXEC SQL SELECT shothandle INTO :shothandle
FROM mmdbsys.svhotshots
WHERE startframe=85;

rc=DBvDeleteShot (
"hotshots", /*shot catalog name*/
shothandle, /*shot handle*/
hdbc); /*database connection handle*/

Deleting a shot catalog (database only)
Use the DBvDeleteShotCatalog API to delete a shot catalog. When you use the
API, specify the name of the shot catalog to be deleted and the database
connection handle that is returned by the SQLConnect call to the database.
For example, the following statement deletes a shot catalog that is named
hotshots:
SQLHDBC hdbc;
SQLHENV henv;

rc=DBvDeleteShotCatalog (
"hotshots", /*shot catalog name*/
hdbc); /*database connection handle*/

Using Scene Changes

192 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Part 4. Reference

Chapter 15. User-defined types and
user-defined functions 197
Schema 197
User-defined types 197
User-defined functions 197

AlignValue 202
AspectRatio 204
BitsPerSample 205
BytesPerSec 206
Comment 207
CompressType 209
Content 210
DB2Audio 216
DB2Image 220
DB2Video 225
Duration 229
Filename 230
FindInstrument 231
FindTrackName 232
Format 233
FrameRate 234
GetInstruments 235
GetTrackNames 236
Height 237
Importer 238
ImportTime 239
MaxBytesPerSec 240
NumAudioTracks 241
NumChannels 242
NumColors 243
NumFrames 244
NumVideoTracks 245
QbScoreFromName 246
QbScoreFromStr 248
QbScoreTBFromName 249
QbScoreTBFromStr 251
Replace 253
SamplingRate 257
Size 258
Thumbnail 259
TicksPerQNote 261
TicksPerSec 262
Updater 263
UpdateTime. 264
Width. 265

Chapter 16. Application programming
interfaces 267
DBaAdminGetInaccessibleFiles 268
DBaAdminGetReferencedFiles 270
DBaAdminIsFileReferenced 272
DBaAdminReorgMetadata 274
DBaDisableColumn 276
DBaDisableDatabase 278
DBaDisableTable 280
DBaEnableColumn 282
DBaEnableDatabase 284
DBaEnableTable 286
DBaGetError 288
DBaGetInaccessibleFiles 289
DBaGetReferencedFiles 291
DBaIsColumnEnabled 293
DBaIsDatabaseEnabled 295
DBaIsFileReferenced 297
DBaIsTableEnabled 299
DBaPlay 301
DBaPrepareAttrs 304
DBaReorgMetadata 305
DBiAdminGetInaccessibleFiles 307
DBiAdminGetReferencedFiles 309
DBiAdminIsFileReferenced 311
DBiAdminReorgMetadata 313
DBiBrowse 315
DBiDisableColumn 318
DBiDisableDatabase 320
DBiDisableTable 321
DBiEnableColumn 323
DBiEnableDatabase 325
DBiEnableTable 327
DBiGetError 329
DBiGetInaccessibleFiles 330
DBiGetReferencedFiles 332
DBiIsColumnEnabled 334
DBiIsDatabaseEnabled 336
DBiIsFileReferenced 338
DBiIsTableEnabled 340
DBiPrepareAttrs 342
DBiReorgMetadata 343
DBvAdminGetInaccessibleFiles 345
DBvAdminGetReferencedFiles 347
DBvAdminIsFileReferenced 349

© Copyright IBM Corp. 1996, 2000 193

DBvAdminReorgMetadata 351
DBvBuildStoryboardFile 353
DBvBuildStoryboardTable 355
DBvClose 357
DBvCreateIndex 358
DBvCreateIndexFromVideo 359
DBvCreateShotCatalog 360
DBvDeleteShot 362
DBvDeleteShotCatalog 364
DBvDetectShot 366
DBvDisableColumn 368
DBvDisableDatabase 370
DBvDisableTable 371
DBvEnableColumn 373
DBvEnableDatabase 375
DBvEnableTable 377
DBvFrameDataTo24BitRGB 379
DBvGetError 381
DBvGetFrame 382
DBvGetInaccessibleFiles. 383
DBvGetReferencedFiles 385
DBvInitShotControl 387
DBvInitStoryboardCtrl 388
DBvInsertShot 389
DBvIsColumnEnabled 391
DBvIsDatabaseEnabled 393
DBvIsFileReferenced 395
DBvIsIndex 397
DBvIsTableEnabled 398
DBvMergeShots 400
DBvOpenFile 402
DBvOpenHandle 404
DBvPlay 406
DBvPrepareAttrs 409
DBvReorgMetadata 410
DBvSetFrameNumber 412
DBvSetShotComment 414
DBvUpdateShot 416
DMBRedistribute (EEE Only) 418
QbAddFeature 419
QbCatalogColumn 421
QbCatalogImage 423
QbCloseCatalog 425
QbCreateCatalog 426
QbDeleteCatalog 428
QbGetCatalogInfo. 430
QbListFeatures 431
QbOpenCatalog 433
QbQueryAddFeature. 435
QbQueryCreate 437

QbQueryDelete 438
QbQueryGetFeatureCount 439
QbQueryGetString 441
QbQueryListFeatures 443
QbQueryNameCreate 445
QbQueryNameDelete 447
QbQueryNameSearch 448
QbQueryRemoveFeature 450
QbQuerySearch 452
QbQuerySetFeatureData 454
QbQuerySetFeatureWeight 456
QbQueryStringSearch 457
QbReCatalogColumn. 459
QbRemoveFeature 461
QbSetAutoCatalog 463
QbUncatalogImage 465

Chapter 17. Administration commands for
the client 467
Entering DB2 extender administration
commands 467
Getting online help for DB2 extender
commands 468
ADD QBIC FEATURE 469
CATALOG QBIC COLUMN 470
CLOSE QBIC CATALOG 471
CONNECT 472
CREATE QBIC CATALOG 473
DELETE QBIC CATALOG 475
DISABLE COLUMN 476
DISABLE DATABASE 477
DISABLE TABLE 478
DISCONNECT SERVER AT NODENUM
(EEE Only) 479
DISCONNECT SERVER FOR DATABASE
(EEE Only) 480
DISCONNECT SERVER FOR DATABASE AT
NODENUM (EEE Only) 481
ENABLE COLUMN 482
ENABLE DATABASE 483
ENABLE TABLE 484
GET EXTENDER STATUS 486
GET INACCESSIBLE FILES 487
GET QBIC CATALOG INFO 489
GET REFERENCED FILES 490
GET SERVER STATUS 492
OPEN QBIC CATALOG. 493
QUIT 494
RECONNECT SERVER AT NODENUM
(EEE Only) 495

194 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

||

RECONNECT SERVER FOR DATABASE
(EEE Only) 496
RECONNECT SERVER FOR DATABASE AT
NODENUM (EEE Only) 497
REDISTRIBUTE NODEGROUP (EEE Only) 498
REMOVE QBIC FEATURE 500
REORG 501
SET QBIC AUTOCATALOG 503
START SERVER (Non-EEE Only). 504
STOP SERVER (Non-EEE Only) 505
TERMINATE 506

Chapter 18. Administration commands for
the server 507
DMBICRT 508
DMBIDROP. 511
DMBILIST 512
DMBIMIGR 513
DMBSTART. 514
DMBSTAT 516
DMBSTOP 517

Chapter 19. Diagnostic information . . . 519
Handling UDF return codes 519
Handling API return codes. 520
SQLSTATE codes 521
Messages 525
Diagnostic tracing. 553

Start tracing. 554
Stop tracing. 554
Reformat trace information 554
Show trace status 554

Part 4. Reference 195

||
||
||
||

196 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 15. User-defined types and user-defined functions

This chapter gives reference information for the UDTs and UDFs created by
the DB2 extenders.

Schema

The extenders use the MMDBSYS schema for all of their object-relational
objects, including UDTs and UDFs.

User-defined types

Table 14 lists and describes the user-defined types created by the DB2
extenders. It also lists the DB2 source data type for each UDT.

Table 14. User-defined types created by the DB2 extenders

UDT Source data type Description

DB2IMAGE VARCHAR(250) Image handle. A variable-length string
that contains information needed to
access an image object. Image handles are
stored in a user table column enabled for
the Image Extender.

DB2AUDIO VARCHAR(250) Audio handle. A variable-length string
that contains information needed to
access an audio object. Audio handles are
stored in a user table column enabled for
the Audio Extender.

DB2VIDEO VARCHAR(250) Video handle. A variable-length string
that contains information needed to
access a video object. Video handles are
stored in a user table column enabled for
the Video Extender.

User-defined functions

This section gives reference information for the DB2 extenders. The UDFs are
listed in alphabetical order.

The following information is given for each UDF:
v The extenders that provide the UDF
v A brief description

© Copyright IBM Corp. 1996, 2000 197

v The include (header) file for the UDF
v The SQL syntax of the UDF
v A description, including the data type, of the UDF parameters
v The value that is returned by the UDF, including its data type
v Examples of use

Table 15 lists the UDFs and identifies the extenders that provide each UDF.
The table also points to where you can find more information about each
UDF. The UDFs in this table can be coded in embedded SQL statements or in
DB2 CLI calls.

Table 15. DB2 Extender UDFs

UDF Description Image Audio Video See page

AlignValue Returns the number of bytes per
sample in a WAVE audio, or in
an audio track of a video.

x x 202

AspectRatio Returns the aspect ratio of the
first track of an MPEG1 and
MPEG2 video.

x 204

BitsPerSample Returns the number of bits of
data used to represent each
sample of WAVE or AIFF audio
in an audio, or in an audio track
of a video.

x x 205

BytesPerSec Returns the data transfer rate, in
average bytes per second, for a
WAVE audio.

x 206

Comment Returns or updates a comment
stored with an image, audio, or
video.

x x x 207

CompressType Returns the compression format,
such as MPEG-1, of a video.

x 209

Content Retrieves or updates the content
of an image, audio, or video from
a database.

x x x 210

DB2Audio Stores the content of an audio in
a database table.

x 216

DB2Image Stores the content of an image in
a database table.

x 220

DB2Video Stores the content of a video in a
database table.

x 225

User-defined functions

198 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Table 15. DB2 Extender UDFs (continued)

UDF Description Image Audio Video See page

Duration Returns the duration (that is,
playing time in seconds) of a
WAVE or AIFF audio, or video.

x x 229

Filename Returns the name of the server
file that contains the contents of
an image, audio, or video.

x x x 230

FindInstrument Returns the track number of the
first occurrence of a specified
instrument in a MIDI audio.

x 231

FindTrackName Returns the number of a specified
named track in a MIDI audio.

x 232

Format Returns the format of an image,
audio, or video.

x x x 233

FrameRate Returns the throughput of a
video in frames per second.

x 234

GetInstruments Returns the instrument name of
all instruments in a MIDI audio.

x 235

GetTrackNames Returns the name of all tracks in
a MIDI audio.

x 236

Height Returns the height, in pixels, of
an image or video frame.

x x 237

Importer Returns the user ID of the person
who stored an image, audio, or
video in a database table.

x x x 238

ImportTime Returns a timestamp that
indicates when an image, audio,
or video was stored in a database
table.

x x x 239

MaxBytesPerSec Returns the maximum
throughput of a video in bytes
per second.

x 240

NumAudioTracks Returns the number of audio
tracks in a video or MIDI audio.

x x 241

NumChannels Returns the number of recorded
audio channels in a WAVE or
AIFF audio, or video.

x x 242

NumColors Returns the number of colors in
an image.

x 243

NumFrames Returns the number of frames in
a video.

x 244

User-defined functions

Chapter 15. User-defined types and user-defined functions 199

Table 15. DB2 Extender UDFs (continued)

UDF Description Image Audio Video See page

NumVideoTracks Returns the number of video
tracks in a video.

x 245

QbScoreFromName Returns the score of an image
(uses a named query object).
(Replaces QbScore.)

x 246

QbScoreFromStr Returns the score of an image
(uses a query string).

x 248

QbScoreTBFromName Returns a table of scores from an
image column (uses a named
query object).

x 249

QbScoreTBFromStr Returns a table of scores from an
image column (uses a query
string).

x 251

Replace Updates the content of an image,
audio, or video stored in a
database, and updates its
comment.

x x x 253

SamplingRate Returns the sampling rate of a
WAVE or AIFF audio, or of an
audio track in a video, in number
of samples per second.

x x 257

Size Returns the size of an image,
audio, or video, in bytes.

x x x 258

Thumbnail Returns or updates a
thumbnail-size version of an
image or video frame stored in a
database.

x x 259

TicksPerQNote Returns the clock speed of a
recorded MIDI audio, in ticks per
quarter note.

x 261

TicksPerSec Returns the clock speed of a
recorded MIDI audio, in ticks per
second.

x 262

Updater Returns the user ID of the person
who last updated an image,
audio, or video in a database
table.

x x x 263

UpdateTime Returns a timestamp that
indicates when an image, audio,
or video in a database table was
last updated.

x x x 264

User-defined functions

200 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Table 15. DB2 Extender UDFs (continued)

UDF Description Image Audio Video See page

Width Returns the width in pixels of an
image or video frame.

x x 265

User-defined functions

Chapter 15. User-defined types and user-defined functions 201

AlignValue

Image Audio Video

X X

Returns the number of bytes per sample in a WAVE audio, or in an audio
track of a video. A WAVE audio can store its data using one byte per sample
(8-bit mono, referred to as “byte aligned”), two bytes per sample (8-bit stereo
or 16-bit mono, referred to as “word aligned”), or four bytes per sample
(16-bit stereo, referred to as “double-word aligned”).

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� AlignValue (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Bytes per sample value of WAVE audio, or audio track in a video
(SMALLINT). Values can be:

1 byte aligned

2 word aligned

4 double-word aligned

Null value audio in other formats

Examples
Get the file name of all audios that are stored in the sound column of the
employee table that are word aligned:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE ALIGNVALUE(SOUND) = 2;

AlignValue

202 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Find the bytes per sample value of an audio track in a video; the video is
stored in the video column of the employee table for Anita Jones:
EXEC SQL BEGIN DECLARE SECTION;

short hvAlign_val;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT ALIGNVALUE(VIDEO)
INTO :hvAlign_val
FROM EMPLOYEE
WHERE NAME='Anita Jones';

AlignValue

Chapter 15. User-defined types and user-defined functions 203

AspectRatio

Image Audio Video

X

Returns the aspect ratio of the first track of an MPEG video.

Include file
dmbvideo.h

Syntax

�� AspectRatio (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable that contains the handle of the video.

Return values (data type)
Aspect ratio of first track of MPEG video, or a null value for video in other
formats (SMALLINT)

Examples
Get the aspect ratio of the video that is stored for Robert Smith in the video
column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;

short hvAsp_ratio;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT ASPECTRATIO(VIDEO)
INTO :hvAsp_ratio
FROM EMPLOYEE
WHERE NAME='Robert Smith';

AspectRatio

204 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

BitsPerSample

Image Audio Video

X X

Returns the number of bits of data used to represent each sample of WAVE or
AIFF audio in an audio, or in an audio track of a video.

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� BitsPerSample (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio
or video.

Return values (data type)
Number of bits of data used to represent each sample of video or WAVE or
AIFF audio (SMALLINT). Returns a null value for audio in other formats

Examples
Get the file name of all WAVE audios stored in the sound column of the
employee table whose bits per sample is equal to 8:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE FORMAT(SOUND)='WAVE'
AND BITSPERSAMPLE(SOUND) = 8;

BitsPerSample

Chapter 15. User-defined types and user-defined functions 205

BytesPerSec

Image Audio Video

X

Returns the data transfer rate, in average bytes per second, for a WAVE audio.

Include file
dmbaudio.h

Syntax

�� BytesPerSec (handle) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Data transfer rate (INTEGER). Returns a null value for audio in other formats.

Examples
Get the file name of all audios stored in the sound column of the employee
table whose transfer rate, in average bytes per second, is less than 44100:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE BYTESPERSEC(SOUND) < 44100;

BytesPerSec

206 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Comment

Image Audio Video

X X X

Returns or updates a comment that is stored with an image, audio, or video.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax
Retrieve comment

�� Comment (handle) ��

Syntax
Update comment

�� Comment (handle , new_comment) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

new_comment (LONG VARCHAR)
New comment for update. A null value or empty string deletes the
existing comment.

Return values (data type)
For update, the handle of the image, audio, or video (DB2IMAGE,
DB2AUDIO, or DB2VIDEO). For retrieval, the comment (LONG VARCHAR).

Examples
Get the file name of all images from the picture column of the employee table
that have the word “confidential” in associated comments:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[255;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)

Comment

Chapter 15. User-defined types and user-defined functions 207

INTO :hvImg_fname
FROM EMPLOYEE
WHERE COMMENT(PICTURE)

LIKE '%confidential%';

Update the comment that is associated with the Anita Jones’s video clip in the
video column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;
struct{

short len;
char data[4000];
}hvRemarks;

EXEC SQL END DECLARE SECTION;

/* Get the old comment */

EXEC SQL SELECT COMMENT(VIDEO)
INTO :hvRemarks
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

/* Update the comment */

hvRemarks.data[hvRemarks.len]='\0';
strcat (hvRemarks.data, "Updated video");
hvRemarks.len=strlen(hvRemarks.data);

EXEC SQL UPDATE EMPLOYEE
SET VIDEO=COMMENT(VIDEO, :hvRemarks)
WHERE NAME = 'Anita Jones';

Comment

208 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

CompressType

Image Audio Video

X

Returns the compression format, such as MPEG-1, of a video.

Include file
dmbvideo.h

Syntax

�� CompressType (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable which contains the handle of the video

Return values (data type)
Compression format of the video (VARCHAR(8))

Examples
Get the names of all videos that are stored in the video column of the
employee table whose compression format is MPEG-1:
EXEC SQL BEGIN DECLARE SECTION;
char hvVid_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(VIDEO)
INTO :hvVid_fname
FROM EMPLOYEE
WHERE COMPRESSTYPE(VIDEO) = 'MPEG1';

CompressType

Chapter 15. User-defined types and user-defined functions 209

Content

Image Audio Video

X X X

Retrieves or updates the content of an image, audio, or video from a database.
The content can be retrieved to a client buffer, client file, or server file.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax
Retrieve content to buffer or client file

�� Content (handle) ��

Syntax
Retrieve a segment of content to buffer or client file

�� Content (handle , offset , size) ��

Syntax
Retrieve content to server file

�� Content (handle , target_file , overwrite) ��

Syntax
Retrieve content to buffer or client file with format conversion—image only

�� Content (handle , target_format) ��

Syntax
Retrieve content to server file with format conversion—image only

�� Content (handle , target_file , overwrite , target_format) ��

Content

210 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Syntax
Retrieve content to buffer or client file with format conversion and
additional changes—image only

�� Content (handle , target_format , conversion_options) ��

Syntax
Retrieve content to server file with format conversion and additional
changes—image only

�� Content (handle , target_file , overwrite , �

� target_format , conversion_options) ��

Syntax
Update content from buffer or client file

�� Content (handle , content , source_format , target_file) ��

Syntax
Update content from server file

�� Content (handle , source_file , source_format , stortype) ��

Syntax
Update content with user-supplied attributes from buffer or client file

�� Content (handle , content , target_file , attrs , thumbnail) ��

Syntax
Update content with user-supplied attributes from server file

�� Content (handle , source_file , stortype , attrs , thumbnail) ��

Syntax
Update content from buffer or client file with format conversion—image
only

Content

Chapter 15. User-defined types and user-defined functions 211

�� Content (handle , content , source_format , �

� target_format , target_file) ��

Syntax
Update content from server file with format conversion—image only

�� Content (handle , source_file , source_format , �

� target_format , target_file) ��

Syntax
Update content from buffer or client file with format conversion and
additional changes—image only

�� Content (handle , content , source_format , �

� target_format , conversion_options , target_file) ��

Syntax
Update content from server file with format conversion and additional
changes—image only

�� Content (handle , source_file , source_format , �

� target_format , conversion_options , target_file) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

offset (INTEGER)
Starting offset (origin 1) of an image, audio, or video to be retrieved.

size (INTEGER)
Number of bytes of an image, audio, or video to be retrieved.

Content

212 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

|
|

source_file (LONG VARCHAR)
The name of the file that contains the content for update of the image,
audio, or video.

target_file (LONG VARCHAR)
For retrieval, the name of the file into which the image, audio, or
video is to be retrieved. For update, the name of the file that contains
the image, audio, or video to be updated.

stortype (INTEGER)
A value that indicates where the updated image, audio, or video will
be stored. The constant MMDB_STORAGE_TYPE_INTERNAL
(value=1) indicates that the updated object will be stored in the
database as a BLOB. The constant
MMDB_STORAGE_TYPE_EXTERNAL (value=0) indicates that the
updated object will be stored in a server file.

overwrite (INTEGER)
A value that indicates whether to overwrite the target file if it already
exists. The value can be 0 or 1. A value of 0 means the target file will
not be overwritten (in effect, the retrieval will not take place). A value
of 1 means the target file will be overwritten if the target file already
exists.

target_format (VARCHAR(8))
The format of the image after retrieval or update. The format of the
source image will be converted as appropriate. For retrieval of an
image to a server file, if the target_file is the same as the source_file,
the target format must be the same as the source format. For MPG1
format, you can specify MPG1, mpg1, MPEG1, or mpeg1. For MPG2
format, you can specify MPG2, mpg2, MPEG2, or mpeg2.

conversion_options (VARCHAR(100))
Specifies changes, such as rotation and compression, to be applied to
the image when it is retrieved or updated. See Table 6 on page 87 for
the supported conversion options.

content (BLOB(2G) AS LOCATOR)
The host variable that contains the content for update of the image,
audio, or video. The host variable can be of type BLOB, BLOB_FILE,
or BLOB_LOCATOR. DB2 promotes the data type of the content to
BLOB_LOCATOR and passes the LOB locator to the Content UDF.

source_format (VARCHAR(8))
The format of the source for update of the image, audio, or video. A
null value or empty string can be specified, or for image only, the
character string ASIS; in these three cases, the extender will attempt to

Content

Chapter 15. User-defined types and user-defined functions 213

determine the format automatically. For MPG1 format, you can specify
MPG1, mpg1, MPEG1, or mpeg1. For MPG2 format, you can specify
MPG2, mpg2, MPEG2, or mpeg2.

attrs (LONG VARCHAR FOR BIT)
The attributes of the image, audio, or video

thumbnail (LONG VARCHAR FOR BIT DATA)
A thumbnail of the image or video frame (image and video only)

Return values (data type)
The content of the retrieved image, audio, or video if retrieved to a buffer,
(BLOB(2G) AS LOCATOR). If retrieved to a file, VARCHAR(254).

For update, the handle of the image, audio, or video to be updated
(DB2IMAGE, DB2AUDIO, or DB2VIDEO).

Examples
Retrieve into a server file the image that is stored for Anita Jones in the
picture column of the employee table:
struct{

short len;
char data[250];
}hvImg_fname;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT (PICTURE,
'/employee/images/ajones.bmp',1)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE NAME='Anita Jones';

Retrieve into a client buffer the 1-MB audio clip stored for Robert Smith in the
sound column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR audio_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT CONTENT (SOUND, 1, 1000000)
INTO :audio_loc
FROM EMPLOYEE
WHERE NAME='Robert Smith';

Update Anita Jones’s image in the picture column of the employee table;
convert the format of the image from BMP to GIF and reduce the image to
50% of its original size:
EXEC SQL UPDATE EMPLOYEE

SET picture = CONTENT(PICTURE,
'/employee/newimg/ajones.bmp',
'BMP',

Content

214 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

'GIF',
'-s 0.5',
'');

WHERE NAME='Anita Jones';

Content

Chapter 15. User-defined types and user-defined functions 215

DB2Audio

Image Audio Video

X

Stores the content of an audio in a database table. The audio source can be in
a client buffer, client file, or server file. The audio can be stored in the
database table as a BLOB, or in a server file (referred to by the database
table). The audio source can be in a supported format, in which case, the
DB2Audio Extender identifies its attributes for storage, or in an unsupported
format, in which case the attributes must be specified in the UDF.

Include file
dmbaudio.h

Syntax
Store content from buffer or client file

�� DB2Audio (dbname , content , format , target_file , comment) ��

Syntax
Store content from server file

�� DB2Audio (dbname , source_file , format , stortype , comment) ��

Syntax
Store content with user-supplied attributes from buffer or client file

�� DB2Audio (dbname , content , target_file , comment , attrs) ��

Syntax
Store content with user-supplied attributes from server file

�� DB2Audio (dbname , source_file , stortype , comment , attrs) ��

Parameters (data type)

dbname (VARCHAR(18))
The name of the currently connected database, as indicated by the
CURRENT SERVER special register.

content (BLOB(2G) AS LOCATOR)
The host variable that contains the content of the audio. The host

DB2Audio

216 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

variable can be of type BLOB, BLOB_FILE, or BLOB_LOCATOR. DB2
promotes the data type of the content to BLOB-LOCATOR and passes
the LOB locator to the DB2Audio UDF.

format (VARCHAR(8))
The format of the source audio. A null value or empty string can be
specified, in which case the Audio Extender will attempt to determine
the source format automatically. The audio will be stored in the same
format as its source. See Table 5 on page 85 for supported audio
formats.

target_file (LONG VARCHAR)
The name of the target server file (for storage to a server file), or a
null value or empty string (for storage into a database table as a
BLOB). The target file can be a fully qualified name. If the name is
unqualified, the DB2AUDIOSTORE and DB2MMSTORE environment
variables on the server are used to locate the file.

source_file (LONG VARCHAR)
The name of the source server file. The source file name can be a fully
qualified name or an unqualified name; it cannot be a null value or
empty string. If the name is unqualified, the DB2AUDIOPATH and
DB2MMPATH environment variables on the server will be used to
locate the file.

stortype (INTEGER)
A value that indicates where the audio will be stored. The constant
MMDB_STORAGE_TYPE_INTERNAL (value=1) indicates that the
audio will be stored in the database as a BLOB; the constant
MMDB_STORAGE_TYPE_EXTERNAL (value=0) indicates that the
audio content will be stored in a server file (pointed to from the
database).

comment (LONG VARCHAR)

A comment to be stored with the audio.

attrs (LONG VARCHAR FOR BIT DATA)
The attributes of the audio.

Return values (data type)
Handle of the audio (DB2AUDIO)

Examples
Insert a record that includes an audio clip for Anita Jones into the employee
table. The audio source is in a client buffer. Store the audio clip in the table as
a BLOB:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB (5M) aud_seg;
EXEC SQL END DECLARE SECTION;

DB2Audio

Chapter 15. User-defined types and user-defined functions 217

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2AUDIO(

CURRENT SERVER,
:aud_seg,
'WAVE',
CAST(NULL as LONG VARCHAR),

'Anita''s voice'));

Insert a record that includes an audio clip for Robert Smith into the employee
table. The audio source is in a server file. The employee table record will
point to the file.
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType = MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'384779',
'Robert Smith',
DB2AUDIO(

CURRENT SERVER,
'/employee/sounds/rsmith.wav',
'WAV',
:hvStorageType,
'Robert''s voice'));

Insert a record that includes an audio clip for Anita Jones into the employee
table. Store the audio clip as a BLOB. The source audio clip, which is in a
server file, has a user-defined format, a sampling rate of 44.1 KHz, and has
two recorded channels.
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
struct {

short len;
char data[600];

}hvAudattr;
EXEC SQL END DECLARE SECTION;

MMDBAudioAttrs *paudiattr;

hvStorageType = MMDB_STORAGE_TYPE_INTERNAL;

paudioattr=(MMDBAudioAttrs *) hvAudattr.data;
strcpy(paudioAttr→cFormat,"cFormatA");
paudioAttr→ulSamplingRate=44100;
paudioAttr→usNumChannels=2;
hvAudattrs.len=sizeof(MMDBAudioAttrs);

DB2Audio

218 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',

DB2AUDIO(
CURRENT SERVER,
'/employee/sounds/ajones.aud',
:hvStorageType,
'Anita"s voice',
:hvAudattr)

);

DB2Audio

Chapter 15. User-defined types and user-defined functions 219

DB2Image

Image Audio Video

X

Stores the content of an image in a database table. The image source can be in
a client buffer, client file, or server file. The image can be stored in the
database table as a BLOB, or in a server file (referred to by the database
table). The image source can be in a supported format, in which case the DB2
Image Extender identifies its attributes for storage, or in an unsupported
format, in which case the attributes must be specified in the UDF.

Include file
dmbimage.h

Syntax
Store content from buffer or client file

�� DB2Image (dbname , content , source_format , �

� target_file , comment) ��

Syntax
Store content from server file

�� DB2Image (dbname , source_file , source_format , �

� stortype , comment) ��

Syntax
Store content with user-supplied attributes from buffer or client file

�� DB2Image (dbname , content , target_file , �

� comment , attrs , thumbnail) ��

Syntax
Store content with user-supplied attributes from server file

�� DB2Image (dbname , source_file , stortype , comment , �

DB2Image

220 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

� attrs , thumbnail) ��

Syntax
Store content from buffer or client file with format conversion

�� DB2Image (dbname , content , source_format , �

� target_format , target_file , comment) ��

Syntax
Store content from server file with format conversion

�� DB2Image (dbname , source_file , source_format , �

� target_format , target_file , comment) ��

Syntax
Store content from buffer or client file with format conversion and
additional changes

�� DB2Image (dbname , content , source_format , �

� target_format , conversion_options , target_file , comment) ��

Syntax
Store content from server file with format conversion and additional
changes

�� DB2Image (dbname , source_file , source_format , �

� target_format , conversion_options , target_file , comment) ��

Parameters (data type)

dbname (VARCHAR(18))
The name of the currently connected database, as indicated by the
CURRENT SERVER special register.

DB2Image

Chapter 15. User-defined types and user-defined functions 221

content (BLOB(2G) AS LOCATOR)
The host variable that contains the content of the image. The host
variable can be of type BLOB, BLOB_FILE, or BLOB_LOCATOR. DB2
promotes the data type of the content to BLOB_LOCATOR and passes
the LOB locator to the DB2Image UDF.

source_format (VARCHAR(8))
The format of the source image. A null value, empty string, or the
character string ASIS can be specified; in any of these three cases, the
Image Extender will attempt to determine the source format
automatically. The image will be stored in the same format as its
source. See Table 5 on page 85 for supported image formats.

target_format (VARCHAR(8))
The format of the image after storage. The format of the source image
will be converted as appropriate.

target_file (LONG VARCHAR)
The name of the target server file (for storage to a server file), or a
null value or empty string (for storage into a database table as a
BLOB). The target file name can be a fully qualified name. If the name
is unqualified, the DB2IMAGESTORE and DB2MMSTORE
environment variables on the server are used to locate the file. If the
image is stored with format conversion, the path to the target file
needs to be specified in the DB2IMAGEPATH and DB2MMPATH
environment variables.

source_file (LONG VARCHAR)
The name of the source server file. The source file name can be a fully
qualified name or an unqualified name; it cannot be a null value or
empty string. If the name is unqualified, the DB2IMAGEPATH and
DB2MMPATH environment variables on the server will be used to
locate the file.

stortype (INTEGER)
A value that indicates where the image will be stored. The constant
MMDB_STORAGE_TYPE_INTERNAL (value=1) indicates that the
image will be stored in the database as a BLOB; the constant
MMDB_STORAGE_TYPE_EXTERNAL (value=0) indicates that the
image content will be stored in a server file (pointed to from the
database).

comment (LONG VARCHAR)
A comment to be stored with the image.

attrs (LONG VARCHAR FOR BIT DATA)
The attributes of the image.

thumbnail (LONG VARCHAR FOR BIT DATA)
A thumbnail of the image.

DB2Image

222 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

conversion_options (VARCHAR(100))
Specifies changes, such as rotation and compression, to be applied to
the image when it is stored. See Table 6 on page 87 for the supported
conversion options.

Return values (data type)
Handle of the image (DB2IMAGE)

Examples
Insert a record that includes an image for Anita Jones into the employee table.
The image source is in a client buffer. Store the image in the table as a BLOB:
EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS BLOB (2M) hvImg
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
:hvImg,
'ASIS',
CAST(NULL as LONG VARCHAR),

'Anita''s picture'));

Insert a record that includes an image for Robert Smith into the employee
table. The image source is in a server file. The employee table record will
point to the file. Convert the format of the image from BMP to GIF when
stored. Also crop the image to a width of 110 pixels and a height of 150 pixels
and compress the image by using LZW type compression:
EXEC SQL INSERT INTO EMPLOYEE VALUES(

'384779',
'Robert Smith',
DB2IMAGE(

CURRENT SERVER,
'/employee/pictures/rsmith.bmp',
'BMP',
'GIF',
'-x 110 -y 150 -c 14',
'',
'Robert"s picture'));

Insert a record that includes an image for Robert Smith into the employee
table. The source image, which is in a server file, has a user-defined format, a
height of 640 pixels, and a width of 480 pixels. Store the image as a BLOB:
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
struct {

short len;

DB2Image

Chapter 15. User-defined types and user-defined functions 223

char data[400];
}hvImgattrs;
EXEC SQL END DECLARE SECTION;

DB2IMAGEATTRS *pimgattr;

hvStorageType = MMDB_STORAGE_TYPE_INTERNAL;

pimgattr = (DB2IMAGEATTRS *) hvImgattrs.data;
strcpy(pimgattrt→cFormat,"FormatI");
pimgattr→width=640;
pimgattr→height=480;
hvImgattrs.len=sizeof(DB2IMAGEATTRS);

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2IMAGE(

CURRENT SERVER,
'/employee/images/ajones.bmp',
:hvStorageType,
'Anita''s picture',
:hvImgattrs,
CAST(NULL as LONG VARCHAR))

);

DB2Image

224 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DB2Video

Image Audio Video

X

Stores the content of a video in a database table. The video source can be in a
client buffer, client file, or server file. The video can be stored in the database
table as a BLOB, or in a server file (referred to by the database table). The
video source can be in a supported format, in which case the DB2 Video
Extender identifies its attributes for storage, or in an unsupported format, in
which case the attributes must be specified in the UDF.

Include file
dmbvideo.h

Syntax
Store content from buffer or client file

�� DB2Video (dbname , content , format , target_file , comment) ��

Syntax
Store content from server file

�� DB2Video (dbname , source_file , format , stortype , comment) ��

Syntax
Store content with user-supplied attributes from buffer or client file

�� DB2Video (dbname , content , target_file , �

� comment , attrs , thumbnail) ��

Syntax
Store content with user-supplied attributes from server file

�� DB2Video (dbname , source_file , stortype , comment , �

� attrs , thumbnail) ��

DB2Video

Chapter 15. User-defined types and user-defined functions 225

|

|

Parameters (data type)

dbname (VARCHAR(18))
The name of the currently connected database, as indicated by the
CURRENT SERVER special register.

content (BLOB(2G) AS LOCATOR)
The host variable that contains the content of the video. The host
variable can be of data type BLOB, BLOB_FILE, or BLOB_LOCATOR.
DB2 promotes the content to BLOB_LOCATOR and passes the LOB
locator to the DB2Video UDF. If the content is in a client buffer, the
buffer must contain at least the first 640 KB of the content to ensure
that the complete video header is read.

format (VARCHAR(8))
The format of the source video. If a null value or empty string is
specified, the Video Extender will attempt to determine the source
format automatically. The video will be stored in the same format as
its source. See Table 5 on page 85 for supported video formats. For
MPG1 format, you can specify MPG1, mpg1, MPEG1, or mpeg1. For
MPG2 format, you can specify MPG2, mpg2, MPEG2, or mpeg2.

target_file (LONG VARCHAR)
The name of the target server file (for storage to a server file), or a
null value or empty string (for storage into a database table as a
BLOB). The server file can must be a fully qualified name. If the file
name is unqualified, the DB2VIDEOSTORE and DB2MMSTORE
environment variables on the server are used to locate the file.

source_file (LONG VARCHAR)
The name of the source server file. The name can be a fully qualified
name or an unqualified name; it cannot be a null value or empty
string. If the name is unqualified, the DB2VIDEOPATH and
DB2MMPATH environment variables on the server will be used to
locate the file.

stortype (INTEGER)
A value that indicates where the video will be stored. The constant
MMDB_STORAGE_TYPE_INTERNAL (value=1) indicates that the
video will be stored in the database as a BLOB; the constant
MMDB_STORAGE_TYPE_EXTERNAL (value=0) indicates that the
video content will be stored in a server file (pointed to from the
database).

comment (LONG VARCHAR)
A comment to be stored with the video.

attrs (LONG VARCHAR FOR BIT DATA)
The attributes of the video.

DB2Video

226 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

thumbnail (LONG VARCHAR FOR BIT DATA)
A thumbnail image that represents the video.

Return values (data type)
Handle of the video (DB2VIDEO)

Examples
Insert a record that includes a video clip for Anita Jones into the employee
table. The video source is in a client buffer. Store the video clip in the table as
a BLOB:
EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS BLOB (8M) vid;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2VIDEO(

CURRENT SERVER,
:vid,
'MPEG1',
CAST(NULL as LONG VARCHAR),
'Anita''s video'));

Insert a record that includes a video clip for Robert Smith into the employee
table. The video source is in a server file. The employee table record will point
to the file:
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType = MMDB_STORAGE_TYPE_EXTERNAL;

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'384779',
'Robert Smith',
DB2VIDEO(

CURRENT SERVER,
'/employee/videos/rsmith.mpg',
'MPEG1',
:hvStorageType,
'Robert''s video'));

Insert a record that includes a video clip in a database table. The source video
clip, which is in a server file, has a user-defined format. Keep the video
content in the server file (the database table record will point to the file). Also
store a thumbnail that represents the video:
EXEC SQL BEGIN DECLARE SECTION;
long hvStorageType;
struct {

short len;

DB2Video

Chapter 15. User-defined types and user-defined functions 227

char data[400];
}hvVidattrs;
struct {

short len;
char data[10000];

}hvThumbnail;
EXEC SQL END DECLARE SECTION;

MMDBVideoAttrs *pvideoAttr;

hvStorageType = MMDB_STORAGE_TYPE_EXTERNAL;

pvideoAttr=(MMDBVideoAttrs *)hvVidattrs.data;
strcpy(pvideoAttr→cFormat,"Formatv");
pvideoAttr.len=sizeof(MMDBVideoAttrs);...

/* Generate thumbnail and assign data */
/* in video structure */...

EXEC SQL INSERT INTO EMPLOYEE VALUES(
'128557',
'Anita Jones',
DB2VIDEO(

CURRENT SERVER,
'/employee/videos/ajones.vid',
:hvStorageType,
'Anita''s video',
:hvVidattrs,
:hvThumbnail)

);

DB2Video

228 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Duration

Image Audio Video

X X

Returns the duration (that is, the playing time in seconds) of a WAVE or AIFF
audio, or video.

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Duration (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio
or video.

Return values (data type)
Duration, in seconds, of a video, or the duration, in seconds, of a WAVE, AIFF
or user-defined format audio (INTEGER). Returns a null value for audio in
other formats.

Examples
Display the duration of all videos that are stored in the video column of the
employee table:
EXEC SQL BEGIN DECLARE SECTION;
long hvDur_vid;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT DURATION(VIDEO)
INTO :hvDur_vid
FROM EMPLOYEE;

Duration

Chapter 15. User-defined types and user-defined functions 229

Filename

Image Audio Video

X X X

Returns the name of the server file that contains the contents of an image,
audio, or video if the object content is stored in a file (pointed to from a
database table). If the image, audio, or video is stored in a database table as a
BLOB, a null value is returned.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Filename (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
File name of the server file if object content is in a server file
(VARCHAR(250)); null value if object is stored as a BLOB.

Examples
Display the file name of the video for the Robert Smith entry in the employee
table:
EXEC SQL BEGIN DECLARE SECTION;
char hvVid_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(VIDEO)
INTO :hvVid_fname
FROM EMPLOYEE
WHERE NAME='Robert Smith';

Filename

230 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

FindInstrument

Image Audio Video

X

Returns the track number of the first occurrence of a specified instrument in a
MIDI audio.

Include file
dmbaudio.h

Syntax

�� FindInstrument (handle , instrument) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

instrument (VARCHAR(255))
Name of the instrument to be searched for. The Audio Extender will
look for an instrument whose name exactly matches the supplied
name.

Return values (data type)
Track number that contains the first occurrence of the specified instrument
name (SMALLINT); a value of -1 is returned if an instrument of the specified
name is not found. NULL is returned for audio in other formats.

Examples
Find the first occurrence of PIANO in Robert Smith’s MIDI audio recording
stored in the sound column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;

short hvInstr;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FINDINSTRUMENT(SOUND, 'PIANO')
INTO :hvInstr
FROM EMPLOYEE
WHERE NAME = 'Robert Smith';

FindInstrument

Chapter 15. User-defined types and user-defined functions 231

FindTrackName

Image Audio Video

X

Returns the number of a specified named track in a MIDI audio.

Include file
dmbaudio.h

Syntax

�� FindTrackName (handle , trackname) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

trackname (VARCHAR(255))
Name of the track to be searched for. The Audio Extender will look
for a track whose name exactly matches the supplied name.

Return values (data type)
Number of the named track; of the specified instrument name (SMALLINT).
A value of -1 is returned if a track of the specified name is not found. A null
value is returned for audio in other formats.

Examples
Determine if there is a track named WELCOME in Robert Smith’s MIDI audio
recording. The audio recording is stored in the sound column of the employee
table:
EXEC SQL BEGIN DECLARE SECTION;

short hvTrack;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FINDTRACKNAME(SOUND,
'WELCOME')

INTO :hvTrack
FROM EMPLOYEE
WHERE NAME = 'Robert Smith';

FindTrackName

232 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Format

Image Audio Video

X X X

Returns the format of an image, audio, or video.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Format (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
Format of the image, audio, or video (VARCHAR(8). See Table 5 on page 85
for the supported image, audio, and video formats.

Examples
Get the names of all employees whose images stored in the picture column of
the employee table are in GIF format:
EXEC SQL BEGIN DECLARE SECTION;
char hvName[30];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT NAME
INTO :hvName
FROM EMPLOYEE
WHERE FORMAT(PICTURE)='GIF';

Format

Chapter 15. User-defined types and user-defined functions 233

FrameRate

Image Audio Video

X

Returns the throughput of a video in frames per second.

Include file
dmbvideo.h

Syntax

�� FrameRate (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable that contains the handle of the video.

Return values (data type)
Frame rate of video (SMALLINT). Returns a null value if the throughput rate
is variable.

Examples
Get the frame rate of the video that is stored in the video column of the
employee table for Anita Jones:
EXEC SQL BEGIN DECLARE SECTION;
short hvFm_rate;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FRAMERATE (VIDEO)
FROM EMPLOYEE
INTO :hvFm_rate
WHERE NAME='Anita Jones';

FrameRate

234 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

GetInstruments

Image Audio Video

X

Returns instrument name of all instruments in a MIDI audio.

Include file
dmbaudio.h

Syntax

�� GetInstruments (handle) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Instrument name of all instruments in the MIDI audio (VARCHAR(1536)). The
values are returned in track number order (for example, PIANO; TRUMPET;
BASS). The result is divided into n fields, where n is the number of tracks in
the MIDI audio. If a track does not have an associated intrument, its field is
blank. A null value is returned for audio formats other than MIDI.

Examples
Find all the instruments (that is, track numbers and instrument names) in
Robert Smith’s MIDI audio recording. The audio recording is stored in the
sound column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_Instr[1536];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT GETINSTRUMENTS(SOUND)
INTO :hvAud_Instr
FROM EMPLOYEE
WHERE NAME = 'Robert Smith';

GetInstruments

Chapter 15. User-defined types and user-defined functions 235

GetTrackNames

Image Audio Video

X

Returns the name of all tracks in a MIDI audio.

Include file
dmbaudio.h

Syntax

�� GetTrackNames (handle) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Name of all tracks in the MIDI audio (VARCHAR(1536)). The values are
returned in track number order (for example, PIANO TUNE; TRUMPET
FANFARE). The result is divided into n fields, where n is the number of
tracks in the MIDI audio. If a track does not have a name, its field is blank. A
null value is returned for audio formats other than MIDI.

Examples
Get all the track numbers and track names in Robert Smith’s MIDI audio
recording stored in the sound column of the employee table:
EXEC SQL BEGIN DECLARE SECTION;
char hvTracks[1536];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT GETTRACKNAMES(SOUND)
INTO :hvTracks
FROM EMPLOYEE
WHERE NAME = 'Robert Smith';

GetTrackNames

236 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Height

Image Audio Video

X X

Returns the height, in pixels, of an image or video frame.

Include file

image dmbimage.h

video dmbvideo.h

Syntax

�� Height (handle) ��

Parameters (data type)

handle (DB2IMAGE or DB2VIDEO)
Column name or host variable that contains the handle of the image
or video.

Return values (data type)
Height in pixels (INTEGER)

Examples
Get the file name of all images in the picture column of the employee table
that are shorter than 500 pixels:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE HEIGHT(PICTURE)<500;

Height

Chapter 15. User-defined types and user-defined functions 237

Importer

Image Audio Video

X X X

Returns the user ID of the person who stored an image, audio, or video in a
database table.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Importer (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
User ID of importer (CHAR(8))

Examples
Get the name of all files for audios stored in the sound column of the
employee table by user ID rsmith:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE IMPORTER(SOUND)='rsmith';

Importer

238 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

ImportTime

Image Audio Video

X X X

Returns a timestamp that indicates when an image, audio, or video was
stored in a database table.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� ImportTime (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
Timestamp when image, audio, or video was stored (TIMESTAMP)

Examples
Get the names of all files for images that were stored in the picture column of
the employee table more than a year ago:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE(CURRENT TIMESTAMP -

IMPORTTIME(PICTURE))>365;

ImportTime

Chapter 15. User-defined types and user-defined functions 239

MaxBytesPerSec

Image Audio Video

X

Returns the maximum throughput of a video in bytes per second.

Include file
dmbvideo.h

Syntax

�� MaxBytesPerSec (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable that contains the handle of the video.

Return values (data type)
Throughput of video (INTEGER). Returns a null value if the throughput rate
is variable.

Examples
Get the maximum throughput of the video that is stored in the video column
of the employee table for Anita Jones:
EXEC SQL BEGIN DECLARE SECTION;
long hvMax_BytesPS;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT MAXBYTESPERSEC(VIDEO)
INTO :hvMax_BytesPS
FROM EMPLOYEE
WHERE NAME='Anita Jones';

MaxBytesPerSec

240 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

NumAudioTracks

Image Audio Video

X X

Returns the number of audio tracks in a video or MIDI audio.

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� NumAudioTracks (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio
or video.

Return values (data type)
Number of audio tracks in the video or MIDI audio (SMALLINT). Returns a
null value for audio in other formats.

Examples
Get the names of any video files from the video column of the employee table
that do not contain any audio tracks:
EXEC SQL BEGIN DECLARE SECTION;
char hvVid_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(VIDEO)
INTO :hvVid_fname
FROM EMPLOYEE
WHERE NUMAUDIOTRACKS(VIDEO) = 0;

NumAudioTracks

Chapter 15. User-defined types and user-defined functions 241

NumChannels

Image Audio Video

X X

Returns the number of recorded audio channels in a WAVE or AIFF audio, or
video.

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� NumChannels (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio
or video.

Return values (data type)
Number of recorded audio channels in the video or WAVE or AIFF audio
(SMALLINT). Returns a null value for audio in other formats.

Examples
Get the names of all audio files from the sound column of the employee table
that were recorded in stereo (that is, 2 channels):
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE NUMCHANNELS(SOUND) = 2;

NumChannels

242 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

NumColors

Image Audio Video

X

Returns the number of colors in an image.

Include file
dmbimage.h

Syntax

�� NumColors (handle) ��

Parameters (data type)

handle (DB2IMAGE)
Column name or host variable that contains the handle of the image.

Return values (data type)
Number of colors in image (INTEGER)

Examples
Get the names of image files from the picture column of the employee table
for images that have less than 16 colors:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE NUMCOLORS(PICTURE) < 16;

NumColors

Chapter 15. User-defined types and user-defined functions 243

NumFrames

Image Audio Video

X

Returns the number of frames in a video.

Include file
dmbvideo.h

Syntax

�� NumFrames (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable that contains the handle of the video.

Return values (data type)
Number of frames in video (INTEGER). Returns a null value if the
throughput rate is variable.

Examples
Get the number of frames in the video that is stored in the video column of
the employee table for Robert Smith:
EXEC SQL BEGIN DECLARE SECTION;
long hvNum_Frames;
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT NUMFRAMES (VIDEO)
INTO :hvNum_Frames
FROM EMPLOYEE
WHERE NAME='Robert Smith';

NumFrames

244 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

NumVideoTracks

Image Audio Video

X

Returns the number of video tracks in a video.

Include file
dmbvideo.h

Syntax

�� NumVideoTracks (handle) ��

Parameters (data type)

handle (DB2VIDEO)
Column name or host variable that contains the handle of the video.

Return values (data type)
Number of video tracks (SMALLINT)

Examples
Get the file name of all videos from the video column of the employee table
that have more than one video track:
EXEC SQL BEGIN DECLARE SECTION;
char hvVid_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME (VIDEO)
INTO :hvVid_fname
FROM EMPLOYEE
WHERE NUMVIDEOTRACKS(VIDEO) > 1;

NumVideoTracks

Chapter 15. User-defined types and user-defined functions 245

QbScoreFromName

Image Audio Video

X

Returns the score of an image, which is a number that expresses how closely
the features of the image match those of a query object. The QBIC catalog
associated with the column to which the image handle belongs is used to
calculate the score of the image. The lower the score, the more closely the
features of the image match those of the specified query object.
(QbScoreFromName replaces QbScore, but QbScore is still accepted.)

Notes:

1. EEE Only: QbScoreFromName is not supported in a partitioned database
environment. Use the the QbScoreFromStr UDF instead, after using the
QbQueryGetString API to get the query string.

2. QbScoreFromName will be deprecated in future releases for
non-partitioned database environments. To reuse a query, you should use
the QbQueryGetString API to get the query string and save that string for
later use in your application.

Include file
none

Syntax

�� QbScoreFromName (imgHandle , queryName) ��

Syntax
Depricated version

�� QbScoreFromName (queryName , imgHandle) ��

Parameters (data type)

imgHandle (DB2Image)
The handle of the image.

queryName (varchar(18))
The name of the query object.

Return values (data type)
The score of the image (DOUBLE). The score can range from 0.0 to a very
large number approaching infinity. The lower the score, the closer the feature
values of the target image match the feature values specified in the query. A

QbScoreFromName

246 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|

|
|
|

|
|
|
|

|

|||||||||||||||||

|

|
|

|||||||||||||||||

|

|

score of 0.0 means an exact match. A score of a null value means that the
image has not been cataloged; the depricated version of this UDF returns
score of -1 when the image has not been cataloged.

Examples
Find the cataloged images in a table column whose average color is very close
to red:
EXEC SQL BEGIN DECLARE SECTION;
char Img_fnd[100];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT NAME
INTO :Img_fnd
FROM FABRIC
WHERE (QBSCOREFROMNAME(SWATCH_IMG,

'fshavgcol'))<0.1;

QbScoreFromName

Chapter 15. User-defined types and user-defined functions 247

|
|
|

|
|
|
|
|
|
|
|
|

QbScoreFromStr

Image Audio Video

X

Returns the score of an image, which is a number that expresses how closely
the features of the image match those of a query string. The QBIC catalog that
is associated with the column to which the image handle belongs is used to
calculate the score of the image. The lower the score, the more closely the
features of the image match those of the query string.

Include file
none

Syntax

�� QbScoreFromStr (imgHandle , query) ��

Syntax
Depricated version

�� QbScoreFromStr (query , imgHandle) ��

Parameters (data type)

imgHandle (DB2Image)
The handle of the image.

query (VARCHAR(1024))
The query string.

Return values (data type)
The score of the image (DOUBLE). The score can range from 0.0 to a very
large number approaching infinity. The lower the score, the more closely the
feature values of the target image match the feature values specified in the
query. A score of 0.0 means an exact match. A score of a null value means that
the image has not been cataloged; the depricated version of this UDF returns
score of -1 when the image has not been cataloged.

Examples
Find the cataloged images in a table column whose average color is very close
to red.:
SELECT name
FROM fabric
WHERE (QbScoreFromStr(Swatch_Img,

'QbColorFeatureClass color=<255, 0, 0>'))<0.1

QbScoreFromStr

248 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|||||||||||||||||

|

|
|

|||||||||||||||||

|

|

|
|
|

|
|
|
|

QbScoreTBFromName

Image Audio Video

X

Returns a table of scores for an image column. Each score is a number that
expresses how closely the features of the image match those of the query
object. The QBIC catalog that is associated with the specified table and
column to which the image handle belongs is used to calculate the score of
each image. The lower the score for any image, the more closely the features
of that image match those of the query object.

Notes:

1. EEE Only: QbScoreTBFromName is not supported in a partitioned
database environment. Use the the QbScoreFromStr UDF instead, after
using the QbQueryGetString API to get the query string.

2. QbScoreTBFromName will be deprecated in the future for non-partitioned
database environments. To reuse a query, you should use the
QbQueryGetString API to get the query string and save that string for
later use in your application.

Include file
none

Syntax
Return scores for all cataloged images in a column

�� QbScoreTBFromName (queryName , table , column) ��

Syntax
Return scores for a specific number of cataloged images in a column

�� QbScoreTBFromName (queryName , table , column , maxReturns) ��

Parameters (data type)

queryName (VARCHAR(18))
The name of the query object.

table (CHAR(18))
The qualified name of the table that contains the image column. You
can use an unqualified table name if the table schema is the same as
the user ID used to start DB2 extenders services.

QbScoreTBFromName

Chapter 15. User-defined types and user-defined functions 249

|

|

|
|
|

|
|
|
|

|

|

column (CHAR(18))
The name of the image column.

maxReturns (INTEGER)
The maximum number of handles that the table of results is to return.
If a value is not specified, the maximum number of handles that are
returned is 100.

Return values (data type)
Table of image handles and scores for the images in the column. The result
table has two columns: IMAGE_ID (DB2Image) which contains the image
handles, and SCORE (DOUBLE) which contains the scores. The result table is
arranged in ascending order by score. The score can range from 0.0 to a very
large number approaching infinity. The lower the score, the closer the feature
values of the target image match the feature values specified in the query. A
score of 0.0 means an exact match. A score of -1 means that the image has not
been cataloged.

Examples
Compare the texture of the images in a table column to the texture that is
specified in a query object; return the image handles and their scores:
SELECT name, description
INTO :hvName, :hvDesc
FROM fabric
WHERE CAST (swatch_img as varchar(250)) IN
(SELECT CAST (image_id as varchar(250)) FROM TABLE
(QbScoreTBFromName

'fstxtr',
'clothes.fabric',
'swatch_img'))

AS T1));

QbScoreTBFromName

250 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

QbScoreTBFromStr

Image Audio Video

X

Returns a table of scores from an image column. Each score is a number that
expresses how closely the features of the image are to those specified in a
query string. The QBIC catalog that is associated with the table and column to
which the image handle belongs is used to calculate the score of each image.
The lower the score for an image, the more closely the features of that image
match those of the query string.

Include file
none

Syntax
Return scores for all cataloged images in a column

�� QbScoreTBFromStr (query , table , column) ��

Syntax
Return scores for a specific number of cataloged images in a column

�� QbScoreTBFromStr (query , table , column , maxReturns) ��

Parameters (data type)

query (VARCHAR(1024))
The query string.

table (CHAR (18))
The qualified name of the table that contains the image column. You
can use an unqualified table name if the table schema is the same as
the user ID used to start DB2 extenders services.

column (CHAR(18))
The image column to query.

maxReturns (INTEGER)
The maximum number of handles that the table of results is to return.
If a value is not specified, the maximum number of image handles
returned is 100.

Return values (data type)
Table of image handles and scores for the images in the column. The result
table has two columns: IMAGE_ID (DB2Image) which contains the image

QbScoreTBFromStr

Chapter 15. User-defined types and user-defined functions 251

|

|

handles, and SCORE (DOUBLE) which contains the scores. The result table is
arranged in ascending order by score. The score can range from 0.0 to a very
large number approaching infinity. The lower the score, the closer the feature
values of the target image match the feature values specified in the query. A
score of 0.0 means an exact match. A score of -1 means that the image has not
been cataloged.

Examples
Find the ten cataloged images in a table column whose texture is closest to
that of an image in a server file:
SELECT name, description
FROM fabric
WHERE CAST (swatch_img as varchar(250)) IN
(SELECT CAST (image_id as varchar(250)) FROM TABLE
(QbScoreTBFromStr
(QbTextureFeatureClass file=<server,"patterns/ptrn07.gif">'

'clothes.fabric',
'swatch_img',
10))

AS T1));

QbScoreTBFromStr

252 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

Replace

Image Audio Video

X X X

Updates the content of an image, audio, or video that is stored in a database,
and updates its comment.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax
Update content from buffer or client file and update comment

�� Replace (handle , content , source_format , target_file , comment) ��

Syntax
Update content from server file and update comment

�� Replace (handle , source_file , source_format , stortype , �

� comment) ��

Include file
Update content with user-supplied attributes from buffer or client file and
update comment

�� Replace (handle , content , target_file , �

� comment , attrs , thumbnail) ��

Include file
Update content with user-supplied attributes from server file and update
comment

�� Replace (handle , source_file , stortype , comment , �

Replace

Chapter 15. User-defined types and user-defined functions 253

|

� attrs , thumbnail) ��

Syntax
Update content from buffer or client file with format conversion and update
comment—image only

�� Replace (handle , content , source_format , �

� target_format , target_file , comment) ��

Syntax
Update content from server file with format conversion and update
comment—image only

�� Replace (handle , source_file , source_format , �

� target_format , target_file , comment) ��

Syntax
Update content from buffer or client file with format conversion and
additional changes and update comment—image only

�� Replace (handle , content , source_format , �

� target_format , target_file , conversion_options , comment) ��

Syntax
Update content from server file with format conversion and additional
changes and update comment—image only

�� Replace (handle , source_file , source_format , �

� target_format , conversion_options , target_file , comment) ��

Replace

254 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

source_file (LONG VARCHAR)
The name of the file that contains the content for the update of the
image, audio, or video.

target_file (LONG VARCHAR)
The name of the file that contains the content of the image, audio, or
video to be updated.

create_target (INTEGER)
A value that indicates whether a target file is to be created if the
source content is in a server file. The value can be 0 or 1. A value of 0
means the target file will not be created (in effect, the retrieval will
not take place). A value of 1 means that the target file will be created
(if the target file already exists, the effect of this value is to overwrite
the file). If the source content is a BLOB, the target file is always
created (if the file already exists, it is overwritten).

target_format (VARCHAR(8))
The format of the image after retrieval. The format of the source
image will be converted as appropriate. If the content is updated with
format conversion, the path to the target file needs to be specified in
the DB2IMAGEPATH and DB2MMPATH environment variables. For
MPG1 format, you can specify MPG1, mpg1, MPEG1, or mpeg1. For
MPG2 format, you can specify MPG2, mpg2, MPEG2, or mpeg2.

content (BLOB(2G) AS LOCATOR)
The host variable that contains the content for update of the image,
audio, or video. The host variable can be of type BLOB, BLOB_FILE,
or BLOB_LOCATOR. DB2 promotes the data type to
BLOB_LOCATOR and passes the LOB locator to the Replace UDF.

source_format (VARCHAR(8))
The format of the source for update of the image, audio, or video. A
null value or empty string can be specified, or for image only, the
character string ASIS; in these three cases, the extender attempts to
determine the format automatically. For MPG1 format, you can specify
MPG1, mpg1, MPEG1, or mpeg1. For MPG2 format, you can specify
MPG2, mpg2, MPEG2, or mpeg2.

comment (LONG VARCHAR)
A comment.

attrs (LONG VARCHAR FOR BIT DATA)
The attributes of the image, audio, or video

Replace

Chapter 15. User-defined types and user-defined functions 255

thumbnail (LONG VARCHAR FOR BIT DATA)
A thumbnail of the image or video frame (image and video only)

conversion_options (VARCHAR(100))
Specifies changes, such as rotation and compression, to be applied to
the image when it is updated. See Table 6 on page 87 for the
supported conversion options.

Return values (data type)
The handle of the image, audio, or video to be updated (DB2IMAGE,
DB2AUDIO, or DB2VIDEO).

Examples
Update Anita Jones’s image in the picture column of the employee table,
convert the format of the image from BMP to GIF, and update the comment:
EXEC SQL BEGIN DECLARE SECTION;

long hvStorageType;
EXEC SQL END DECLARE SECTION;

hvStorageType = MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL UPDATE EMPLOYEE
SET PICTURE = REPLACE(PICTURE,

'/employee/newimg/ajones.bmp',
'BMP',
'GIF',
:hvStorageType,
'Anita''s new picture')

WHERE NAME='Anita Jones';

Replace

256 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

SamplingRate

Image Audio Video

X X

Returns the sampling rate of a WAVE or AIFF audio, or of an audio track in a
video, in number of samples per second.

Include file

audio dmbaudio.h

video dmbvideo.h

Syntax

�� SamplingRate (handle) ��

Parameters (data type)

handle (DB2AUDIO or DB2VIDEO)
Column name or host variable that contains the handle of the audio
or video.

Return values (data type)
Sampling rate of video or WAVE or AIFF audio (INTEGER). Returns a null
value for audio in other formats.

Examples
Get the file name of all audios from the sound column of the employee table
whose sampling rate is 44.1 KHz:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME (SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE SAMPLINGRATE(SOUND) = 44100;

SamplingRate

Chapter 15. User-defined types and user-defined functions 257

Size

Image Audio Video

X X X

Returns the size of an image, audio, or video, in bytes.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Size (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
Size, in bytes, of image, audio, or video (INTEGER).

Examples
Get the file name of all images in the picture column of the employee table
whose size is greater than 310 KB:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE SIZE(PICTURE) > 310000;

Size

258 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Thumbnail

Image Audio Video

X X

Returns or updates a thumbnail-size version of an image or video frame that
is stored in a database.

Include file

image dmbimage.h

video dmbvideo.h

Syntax
Retrieve a thumbnail

�� Thumbnail (handle) ��

Syntax
Update a thumbnail

�� Thumbnail (handle , new_thumbnail) ��

Parameters (data type)

handle (DB2IMAGE or DB2VIDEO)
Column name or host variable that contains the handle of the image
or video.

new_thumbnail (LONG VARCHAR FOR BIT DATA)
Source content for update of thumbnail

Return values (data type)
For retrieval, the content of the retrieved thumbnail (LONG VARCHAR FOR
BIT DATA) for update, the handle of the image or video (DB2IMAGE or
DB2VIDEO).

Examples
Get the thumbnail of Anita Jones’s image stored in the employee table:
EXEC SQL BEGIN DECLARE SECTION;
struct{

short len;
char data [32000];

}hvThumbnail;
EXEC SQL END DECLARE SECTION;

Thumbnail

Chapter 15. User-defined types and user-defined functions 259

EXEC SQL SELECT THUMBNAIL(PICTURE)
INTO :hvThumbnail
FROM EMPLOYEE
WHERE NAME = 'Anita Jones';

Update the thumbnail that is associated with Anita Jones’s video in the
employee table:
EXEC SQL BEGIN DECLARE SECTION;

struct {
short len;
char data[10000];

}hvThumbnail;
EXEC SQL END DECLARE SECTION;

/* Create thumbnail and */
/* store in hvThumbnail */

EXEC SQL UPDATE EMPLOYEE
SET VIDEO=THUMBNAIL(

VIDEO,
:hvThumbnail)

WHERE NAME='Anita Jones';

Thumbnail

260 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

TicksPerQNote

Image Audio Video

X

Returns the clock speed of a recorded MIDI audio, in ticks per quarter note.

Include file
dmbaudio.h

Syntax

�� TicksPerQNote (handle) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Number of clock ticks per quarter note of MIDI audio (SMALLINT). Returns a
null value for audio in other formats.

Examples
Get the file names of all MIDI audios in the sound column of the employee
table that were recorded at speeds higher than 200 clock ticks per quarter
note:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE FORMAT(SOUND)='MIDI'
AND TICKSPERQNOTE(SOUND)>200;

TicksPerQNotes

Chapter 15. User-defined types and user-defined functions 261

TicksPerSec

Image Audio Video

X

Returns the clock speed of a recorded MIDI audio, in ticks per second.

Include file
dmbaudio.h

Syntax

�� TicksPerSec (handle) ��

Parameters (data type)

handle (DB2AUDIO)
Column name or host variable that contains the handle of the audio.

Return values (data type)
Number of clock ticks per second of MIDI audio (SMALLINT). Returns a null
value for audio in other formats.

Examples
Get the file names of all MIDI audios in the sound column of the employee
table that were recorded at speeds less than 50 clock ticks per second:
EXEC SQL BEGIN DECLARE SECTION;
char hvAud_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(SOUND)
INTO :hvAud_fname
FROM EMPLOYEE
WHERE FORMAT(SOUND)='MIDI'
AND TICKSPERSEC(SOUND)<50;

TicksPerSec

262 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Updater

Image Audio Video

X X X

Returns the user ID of the person who last updated an image, audio, or video
in a database table.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� Updater (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
User ID of person who last updated the image, audio, or video (CHAR(8))

Examples
Get the user ID of the person who last updated the video that is stored in the
video column of the employee table for Robert Smith:
EXEC SQL BEGIN DECLARE SECTION;
char hvUpdater[30];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT UPDATER(VIDEO)
INTO :hvUpdater
FROM EMPLOYEE
WHERE NAME='rsmith';

Updater

Chapter 15. User-defined types and user-defined functions 263

UpdateTime

Image Audio Video

X X X

Returns a timestamp that indicates when an image, audio, or video in a
database table was last updated.

Include file

image dmbimage.h

audio dmbaudio.h

video dmbvideo.h

Syntax

�� UpdateTime (handle) ��

Parameters (data type)

handle (DB2IMAGE, DB2AUDIO, or DB2VIDEO)
Column name or host variable that contains the handle of the image,
audio, or video.

Return values (data type)
Timestamp when image, audio, or video was last updated (TIMESTAMP)

Examples
Get the names of files for images in the picture column of the employee table
that were updated in the last 2 days:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE(CURRENT TIMESTAMP -

UPDATETIME(PICTURE))< 2;

UpdateTime

264 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Width

Image Audio Video

X X

Returns the width in pixels of an image or video frame.

Include file

image dmbimage.h

video dmbvideo.h

Syntax

�� Width (handle) ��

Parameters (data type)

handle (DB2IMAGE or DB2VIDEO)
Column name or host variable that contains the handle of the image
or video.

Return values (data type)
Width, in pixels (INTEGER)

Examples
Get the file name of all images in the picture column of the employee table
that are narrower than 300 pixels:
EXEC SQL BEGIN DECLARE SECTION;
char hvImg_fname[251];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT FILENAME(PICTURE)
INTO :hvImg_fname
FROM EMPLOYEE
WHERE WIDTH(PICTURE)<300;

Width

Chapter 15. User-defined types and user-defined functions 265

Width

266 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 16. Application programming interfaces

This chapter gives reference information for the DB2 Extender administrative
APIs. The APIs are listed in alphabetical order.

The following information is presented for each API:
v The extender that provides the API
v A brief description
v The authorization needed to use this API
v The library file for the API
v The include (header) file for the API
v The C syntax of the API call
v A description of the API parameters
v Values returned by the API
v Examples of use

© Copyright IBM Corp. 1996, 2000 267

DBaAdminGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referred to in audio columns of
user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaAdminGetInaccessibleFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referred to in the table.

DBaAdminGetInaccessibleFiles

268 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

SQL_ERROR or other SQL return codes
Error returned from DB2.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
List all inaccessible files that are referred to in audio columns of tables that
are owned by user ID rsmith:
#include <dmbaudio.h>
long idx;

rc = DBaAdminGetInaccessibleFiles("rsmith",
&count, &filelist);

DBaAdminGetInaccessibleFiles

Chapter 16. Application programming interfaces 269

DBaAdminGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referred to in audio columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaAdminGetReferencedFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of files that are referred to in the table.

DBaAdminGetReferencedFiles

270 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
List all files that are referred to in audio columns in tables that are owned by
ajones:
#include <dmbaudio.h>
long idx;

rc = DBaAdminGetReferencedFiles("ajones",
&count, &fileList);

DBaAdminGetReferencedFiles

Chapter 16. Application programming interfaces 271

DBaAdminIsFileReferenced

Image Audio Video

X

Returns a list of audio column entries in user tables that refer to a specified
file. The application must be connected to a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaAdminIsFileReferenced(

char *qualifier,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

fileName (in)
the name of the referred to file.

count (out)
The number of entries in the output list.

tableList (out)
A list of table entries that refer to the specified file.

DBaAdminIsFileReferenced

272 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
List the entries in audio columns in all tables in the current database that refer
to file /audios/asmith.wav:
#include <dmbaudio.h>
long idx;

rc = DBaAdminIsFileReferenced(NULL,
"/audios/asmith.wav",
&count, &tableList);

DBaAdminIsFileReferenced

Chapter 16. Application programming interfaces 273

DBaAdminReorgMetadata

Image Audio Video

X

“Cleans up” audio-related metadata tables, for example:
v Reclaims space that is no longer used in audio metadata tables
v Deletes references in audio metadata tables to audio files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaAdminReorgMetadata(

char *qualifier
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are cleaned up. If a null value is specified, all
tables in the current database are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBaAdminReorgMetadata

274 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
Clean up the metadata tables for audio columns in tables that are owned by
user ID rsmith:
#include <dmbaudio.h>

rc = DBaAdminReorgMetadata("rsmith");

DBaAdminReorgMetadata

Chapter 16. Application programming interfaces 275

DBaDisableColumn

Image Audio Video

X

Disables a column for audio (DB2Audio data) so that it cannot hold audio
data. The contents of the column entries are set to NULL, and the metadata
associated with this column is dropped. All the triggers defined by the audio
extender for this column are also dropped. New rows can be inserted into the
table that contains the disabled column, and the new rows can include data
defined with type DB2Audio, but there is no metadata (in the administrative
support tables) associated with the new rows. The application must be
connected to a database before calling this API. It is recommended that after
calling this API you issue an SQL COMMIT statement.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaDisableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the audio column.

colName (in)
The name of the audio column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBaDisableColumn

276 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the sound column in the employee table for audio (DB2Audio data):
#include <dmbaudio.h>

rc = DBaDisableColumn("employee", "sound");

DBaDisableColumn

Chapter 16. Application programming interfaces 277

DBaDisableDatabase

Image Audio Video

X

Disables a database for audio (DB2Audio data) so that it cannot hold audio
data. All tables in the database that is defined for DB2Audio are also disabled.
The metadata and UDFs defined by the Audio Extender for the database are
dropped. New rows can be inserted into tables in the database that are
defined with type DB2Audio, but there is no metadata (in the administrative
support tables) associated with the new rows. It is recommended that after
calling this API you issue an SQL COMMIT statement.

Authorization
DBADM, SYSADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaDisableDatabase(

);

Parameters
DBaDisableDatabase has no parameters.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the current database for audio (DB2Audio data):

DBaDisableDatabase

278 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <dmbaudio.h>

rc = DBaDisableDatabase();

DBaDisableDatabase

Chapter 16. Application programming interfaces 279

DBaDisableTable

Image Audio Video

X

Disables a table for audio (DB2Audio data) so that it cannot hold audio data.
All columns in the table that is defined for DB2Audio are also disabled. Some
of the metadata that is defined by the Audio Extender for the table is
dropped. New rows can be inserted into tables that are defined with type
DB2Audio, but there is no metadata (in the administrative support tables)
associated with the new rows. The application must be connected to a
database before calling this API. It is recommended that after calling this API
you issue an SQL COMMIT statement.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaDisableTable(

char *tableName
);

Parameters

tableName (in)
The name of the table that contains an audio column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBaDisableTable

280 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Examples
Disable the employee table for audio (DB2Audio data):
#include <dmbaudio.h>

rc = DBaDisableTable("employee");

DBaDisableTable

Chapter 16. Application programming interfaces 281

DBaEnableColumn

Image Audio Video

X

Enables a column for audio (DB2Audio data). The API defines and manages
relationships between this column and the metadata tables. Before calling this
API, the application must be connected to a database. It is recommended that
after calling this API you issue an SQL COMMIT statement.

Authorization
Control, Alter, SYSADM, DBADM

Use privilege is also required on table spaces and buffer pools that are
specified in the API parameters.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaEnableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the audio column.

colName (in)
The name of the audio column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBaEnableColumn

282 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_WARN_ALREADY_ENABLED
Column is already enabled.

MMDB_RC_WRONG_SIGNATURE
Data type for the specified column is incorrect. User-defined data type
MMDBSYS.DB2AUDIO is expected.

MMDB_RC_COLUMN_DOESNOT_EXIST
Column is not defined in the specified table.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NOT_ENABLED
Database or table is not enabled.

Examples
Enable the sound column in the employee table for audio (DB2Audio data):
#include <dmbaudio.h>

rc = DBaEnableColumn("employee", "sound");

DBaEnableColumn

Chapter 16. Application programming interfaces 283

DBaEnableDatabase

Image Audio Video

X

Enables a database for audio (DB2Audio data). This API is called once per
database. It defines a DB2 user-defined type, DB2Audio, to the database
manager. It also creates all UDFs that manipulate DB2Audio data. It is
recommended that after calling this API you issue an SQL COMMIT
statement.

Authorization
DBADM, SYSADM, SYSCTRL

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaEnableDatabase(

char *tableSpace
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

EEE Only: The tablespaces specified when enabling a database for an
extender should be defined on a nodegroup that includes all the
nodes in the partitioned database system.

DBaEnableDatabase

284 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
The database is already enabled.

MMDB_RC_API_NOT_SUPPORTED_FOR_SERVER
The server connected to does not support this command.

MMDB_WARN_NOT_ALL_NODES
Tablespace specified does not include all nodes for the extender. (EEE
Only)

MMDB_RC_NOT_SAME_NODEGROUP
Tablespaces specified are not in the same nodegroup. (EEE Only)

Examples
Enable the current database for audio (DB2Audio data) in the table space
MYTS. Use defaults for the index and long table spaces:
#include <dmbaudio.h>

rc = DBaEnableDatabase("myts,,");

Enable the current database for audio (DB2Audio data); use default table
spaces:
#include <dmbaudio.h>

rc = DBaEnableDatabase(NULL);

DBaEnableDatabase

Chapter 16. Application programming interfaces 285

DBaEnableTable

Image Audio Video

X

Enables a table for audio (DB2Audio data). This API is called once per table.
It creates metadata tables to store and manage attributes for audio columns in
a table. To avoid the possibility of locking, the application should commit
transactions before calling this API. Before calling this API, the application
must be connected to a database. It is recommended that after calling this API
you issue an SQL COMMIT statement.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaEnableTable(

char *tableSpace,
char *tableName
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

If you provide a null value for any part of the table space
specification, the default table space for that part is used.

DBaEnableTable

286 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EEE Only: The tablespace specified should be in the same nodegroup
as the user table.

tableName (in)
The name of the table that will contain an audio column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
Table is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_TABLE_DOESNOT_EXIST
Table does not exist.

MMDB_RC_TABLESPACE_NOT_SAME_NODEGROUP
Tablespace specified is not in the same nodegroup as the user table.
(EEE Only)

Examples
Enable the employee table for audio (DB2Audio data) in the table space
MYTS. Use defaults for the index and long table spaces:
#include <dmbaudio.h>

rc = DBaEnableTable("myts,,",
"employee");

Enable the employee table for audio (DB2Audio data). Use default table
spaces:
#include <dmbaudio.h>

rc = DBaEnableTable(NULL,
"employee");

DBaEnableTable

Chapter 16. Application programming interfaces 287

DBaGetError

Image Audio Video

X

Returns a description of the last error. Call this API after any other API
returns an error code.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaGetError(

SQLINTEGER *sqlcode,
char *errorMsgText
);

Parameters

sqlcode (out)
The generic SQL error code.

errorMsgText (out)
The SQL error message text.

Error codes

MMDB_SUCCESS
API call processed successfully.

Examples
Get the last error, storing the SQL error code in errCode and the message text
in errMsg:
#include <dmbaudio.h>

rc = DBaGetError(&errCode, &errMsg);

DBaGetError

288 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referred to in audio columns of
user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled audio columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaGetInaccessibleFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, that table is searched for references to inaccessible files. If a
null value is specified, all tables with the specified qualifier are
searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referred to in the table.

DBaGetInaccessibleFiles

Chapter 16. Application programming interfaces 289

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all inaccessible files that are referred to in audio columns in the employee
table:
long idx;
#include <dmbaudio.h>

rc = DBaGetInaccessibleFiles("employee",
&count, &filelist);

DBaGetInaccessibleFiles

290 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referred to in audio columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure.

Authorization
SELECT privilege on enabled audio columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaGetReferencedFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified , or null table name. If a table name is
specified, that table is searched for references to files. If a null value is
specified, all tables owned by the current user ID database are
searched.

count (out)
The number of entries in the output list.

DBaGetReferencedFiles

Chapter 16. Application programming interfaces 291

fileList (out)
A list of files that are referred to in the table.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all files that are referred to in audio columns in the employee table:
#include <dmbaudio.h>
long idx;

rc = DBaGetReferencedFiles("employee",
&count, &filelist);

DBaGetReferencedFiles

292 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaIsColumnEnabled

Image Audio Video

X

Determines whether a column has been enabled for audio (DB2Audio data).
The application must be connected to a database before calling this API.

Authorization
SYSADM, DBADM, table owner, or SELECT privilege on the user table

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaIsColumnEnabled(

char *tableName,
char *colName,
short *status
);

Parameters

tableName (in)
A qualified or unqualified table name.

colName (in)
The name of a column.

status (out)
Indicates whether the column is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

-1 MMDB_INVALID_DATATYPE

DBaIsColumnEnabled

Chapter 16. Application programming interfaces 293

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the sound column in the employee table is enabled for audio:
#include <dmbaudio.h>

rc = DBaIsColumnEnabled("employee",
"sound", &status);

DBaIsColumnEnabled

294 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaIsDatabaseEnabled

Image Audio Video

X

Determines whether a database has been enabled for audio (DB2Audio data).
The application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaIsDatabaseEnabled(

short *status
);

Parameters

status (out)
Indicates whether the database is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the personnl database is enabled for audio:

DBaIsDatabaseEnabled

Chapter 16. Application programming interfaces 295

#include <dmbaudio.h>

rc = DBaIsDatabaseEnabled(&status);

DBaIsDatabaseEnabled

296 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaIsFileReferenced

Image Audio Video

X

Returns a list of table entries that refer to a specified file. The application
must be connected to a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled audio columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaIsFileReferenced(

char *tableName,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

tableName (in)
A qualified, unqualified , or null table name. If a table name is
specified, that table is searched for references to the specified file. If a
null value is specified, all tables owned by the current user ID are
searched.

fileName (in)
The name of the referred to file.

count (out)
The number of entries in the output list.

DBaIsFileReferenced

Chapter 16. Application programming interfaces 297

tableList (out)
A list of table entries that refer to the specified file.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List the entries in audio columns of the employee table that refer to file
/audios/ajones.wav:
#include <dmbaudio.h>
long idx;

rc = DBaIsFileReferenced(NULL,
"/audios/ajones.wav",
&count, &tableList);

DBaIsFileReferenced

298 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaIsTableEnabled

Image Audio Video

X

Determines whether a table has been enabled for audio (DB2Audio data). The
application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaIsTableEnabled(

char *tableName,
short *status
);

Parameters

tableName (in)
A table name.

status (out)
Indicates whether the table is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

-1 MMDB_INVALID_DATATYPE

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBaIsTableEnabled

Chapter 16. Application programming interfaces 299

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the employee table is enabled for audio (DB2Audio data):
#include <dmbaudio.h>

rc = DBaIsTableEnabled("employee", &status);

DBaIsTableEnabled

300 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaPlay

Image Audio Video

X

Opens the audio player on the client and plays an audio clip. The clip can be
stored in an audio column or an external file:
v If the audio clip is stored in an external file, you can pass either the name

of the file or the audio handle to this API. The API uses the client
environment variable DB2AUDIOPATH to resolve the file location. The file
must be accessible from the client workstation.

v If the audio clip is stored in a column, you must pass the audio handle to
the API. The application must be connected to the database and have read
access to the table in which the audio clip is stored.

If the audio is stored in a column, the extender creates a temporary file and
copies the content of the object from the column to the file. The extender
might also create a temporary file if the audio is stored in an external file and
its relative filename cannot be resolved using the values in environment
variables, or if the file is not accessible on the client machine. The temporary
file is created in the directory that is specified in the DB2AUDIOTEMP
environment variable. The extender then plays the audio from the temporary
file.

Authorization
Select authority on the user table, if playing an audio clip from a column.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
Play an audio stored in a column
long DBaPlay(

char *playerName,
MMDB_PLAY_HANDLE,
DB2Audio *audioHandle,
waitFlag
);

DBaPlay

Chapter 16. Application programming interfaces 301

Syntax
Play an audio stored as a file
long DBaPlay(

char *playerName,
MMDB_PLAY_FILE,
char *fileName,
waitFlag
);

Parameters

playerName (in)
The name of the audio player. If set to NULL, the default audio
player specified by the DB2AUDIOPLAYER environment variable is
used.

MMDB_PLAY_HANDLE (in)
A constant that indicates the audio is stored as a BLOB.

MMDB_PLAY_FILE (in)
A constant that indicates the audio is stored as a file that is accessible
from the client.

audioHandle (in)
The handle of the audio. This parameter must be passed when you
play an audio clip in a column. If the audio handle represents an
external file, the client environment variable DB2VIDEOPATH is used
to resolve the file location.

fileName (in)
The name of the file that contains the audio.

waitFlag (in)
A constant that indicates whether your program waits for the user to
close the player before continuing. MMDB_PLAY_WAIT runs the
player in the same thread as your application.
MMDB_PLAY_NO_WAIT runs the player in a separate thread.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Play the audio that is identified by the audioHandle. Run the default player
in the same thread as the application:

DBaPlay

302 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <dmbaudio.h>

rc = DBaPlay(NULL, MMDB_PLAY_HANDLE,
audioHandle, MMDB_PLAY_WAIT);

DBaPlay

Chapter 16. Application programming interfaces 303

DBaPrepareAttrs

Image Audio Video

X

Prepares user-supplied audio attributes. This API is used when an audio
object with user-supplied attributes is stored or updated. The UDF code that
runs on the server always expects data in “big endian”format, a format that is
used by most UNIX platforms. If an audio object is stored or updated in
“little endian” format, that is, from a non-UNIX client, the DBaPrepare API
must be used before the store or update request is made.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudio.lib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
void DBaPrepareAttrs(

MMDBAudioAttrs *audAttr
);

Parameters

audAttr (in)
The user-supplied attributes of the audio.

Examples
Prepare user-supplied audio attributes:
#include <dmbaudio.h>

DBaPrepareAttrs(&imgattr);

DBaPrepareAttrs

304 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBaReorgMetadata

Image Audio Video

X

“Cleans up” audio-related metadata tables, for example:
v Reclaims space that is no longer used in audio metadata tables
v Deletes references in audio metadata tables to audio files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
Alter, Control, SYSADM, SYSCTRL, SYSMAINT, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbaudiolib libdmbaudio.a (AIX)
libdmbaudio.sl (HP-UX)
libdmbaudio.so (Solaris)

Include file
dmbaudio.h

Syntax
long DBaReorgMetadata(

char *tableName
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, cleanup is performed for audio metadata tables that are
associated with the specified user table. If a null value is specified,
metadata tables for audio columns in all tables that are owned by the
current user ID are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBaReorgMetadata

Chapter 16. Application programming interfaces 305

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Clean up the metadata tables for audio columns in the employee table:
#include <dmbaudio.h>

rc = DBaReorgMetadata("employee");

DBaReorgMetadata

306 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiAdminGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referred to in image columns
of user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiAdminGetInaccessibleFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referred to in the table.

DBiAdminGetInaccessibleFiles

Chapter 16. Application programming interfaces 307

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all inaccessible files that are referred to in image columns of tables that
are owned by user ID rjones:
#include <dmbimage.h>
long idx;

rc = DBiAdminGetInaccessibleFiles
("rjones", &count, &filelist);

DBiAdminGetInaccessibleFiles

308 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiAdminGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referred to in image columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiAdminGetReferencedFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of files that are referred to in the table.

DBiAdminGetReferencedFiles

Chapter 16. Application programming interfaces 309

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all files that are referred to in image columns in tables that are owned by
ajones:
#include <dmbimage.h>
long idx;

rc = DBiAdminGetReferencedFiles("ajones",
&count, &filelist);

DBiAdminGetReferencedFiles

310 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiAdminIsFileReferenced

Image Audio Video

X

Returns a list of image column entries in user tables that refer to a specified
file. The application must be connected to a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiAdminIsFileReferenced(

char *qualifier,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

fileName (in)
The name of the referred to file.

count (out)
The number of entries in the output list.

tableList (out)
A list of table entries that refer to the specified file.

DBiAdminIsFileReferenced

Chapter 16. Application programming interfaces 311

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List the entries in image columns in all tables in the current database that
refer to file /images/asmith.bmp:
#include <dmbimage.h>
long idx;

rc = DBiAdminIsFileReferenced(NULL,
"/images/asmith.bmp",
&count, &tableList);

DBiAdminIsFileReferenced

312 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiAdminReorgMetadata

Image Audio Video

X

“Cleans up” image-related metadata tables:
v Reclaims space that is no longer used in image metadata tables
v Deletes references in image metadata tables to image files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiAdminReorgMetadata(

char *qualifier
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are cleaned up. If a null value is specified, all
tables in the current database are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBiAdminReorgMetadata

Chapter 16. Application programming interfaces 313

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
Clean up the metadata tables for image columns in tables that are owned by
user ID rsmith:
#include <dmbimage.h>

rc = DBiAdminReorgMetadata("rsmith");

DBiAdminReorgMetadata

314 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiBrowse

Image Audio Video

X

Opens the image browser on the client and displays an image. The image can
be stored in an image column or an external file:
v If the image is stored in an external file, you can pass either the name of

the file or the image handle to this API. The API uses the client
environment variable DB2IMAGEPATH to resolve the file location. The file
must be accessible from the client workstation.

v If the image is stored in a column, you must pass the image handle to the
API. The application must be connected to the database and have read
access to the table in which the image is stored.

If the browser can not directly access the image, the extender creates a
temporary file in the directory that is specified in the DB2IMAGETEMP
environment variable. The extender then displays the image from the
temporary file.

Authorization
Select authority on the user table, if browsing an image from a column.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
Browse an image stored in a column
long DBiBrowse(

char *browserName,
MMDB_PLAY_HANDLE,
DB2Image *imageHandle,
waitFlag
);

Syntax
Browse an image stored as a file

DBiBrowse

Chapter 16. Application programming interfaces 315

long DBiBrowse(
char *browserName,
MMDB_PLAY_FILE,
char *fileName,
waitFlag
);

Parameters

browserName (in)
The name of the image browser. If set to NULL, the default image
browser specified by the DB2IMAGEBROWSER environment variable
is used.

MMDB_PLAY_HANDLE (in)
A constant that indicates the image is stored as a BLOB.

MMDB_PLAY_FILE (in)
A constant that indicates the image is stored as a file that is accessible
from the client.

imageHandle (in)
The handle of the image. This parameter must be passed when you
browse an image in a column. If the image handle represents an
external file, the client environment variable DB2IMAGEPATH is used
to resolve the file location.

fileName (in)
The name of the file that contains the image.

waitFlag (in)
A constant that indicates whether your program waits for the user to
close the browser before continuing. MMDB_PLAY_WAIT runs the
browser in the same thread as your application.
MMDB_PLAY_NO_WAIT runs the browser in a separate thread.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Display the image that is identified by the imageHandle. Run the default
browser in the same thread as the application:

DBiBrowse

316 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <dmbimage.h>

rc = DBiBrowse(NULL, MMDB_PLAY_HANDLE,
imageHandle, MMDB_PLAY_WAIT);

DBiBrowse

Chapter 16. Application programming interfaces 317

DBiDisableColumn

Image Audio Video

X

Disables a column for images (DB2Image data) so that it cannot hold image
data. The contents of the column entries are set to NULL, and the metadata
associated with this column is dropped. The QBIC catalog that is associated
with this column is also deleted. All the triggers defined by the image
extender for this column are also dropped. New rows can be inserted into the
table that contains the disabled column, and the new rows can include data
defined with type DB2Image, but there is no metadata (in the administrative
support tables) associated with the new rows. The application must be
connected to a database before calling this API.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiDisableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the image column.

colName (in)
The name of the image column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBiDisableColumn

318 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the picture column in the employee table for images (DB2Image data):
#include <dmbimage.h>

rc = DBiDisableColumn("employee",
"picture");

DBiDisableColumn

Chapter 16. Application programming interfaces 319

DBiDisableDatabase

Image Audio Video

X

Disables a database for images (DB2Image data) so that it cannot hold image
data. All tables in the database that is defined for DB2Image are also disabled.
The metadata and UDFs that are defined by the Image Extender for the
database are dropped. New rows can be inserted into tables in the database
that are defined with type DB2Image, but there is no metadata (in the
administrative support tables) associated with the new rows.

Authorization
DBADM, SYSADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiDisableDatabase(

);

Parameters
DBiDisableDatabase has no parameters.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the current database for images (DB2Image data):
#include <dmbimage.h>

rc = DBiDisableDatabase();

DBiDisableDatabase

320 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiDisableTable

Image Audio Video

X

Disables a table for images (DB2Image data) so that it cannot hold image data.
All columns in the table that is defined for DB2Image are also disabled. Some
of the metadata that is defined by the Image Extender for the table is
dropped. All QBIC catalogs that are associated with the image columns in the
table are also deleted. New rows can be inserted into tables that are defined
with type DB2Image, but there is no metadata (in the administrative support
tables) associated with the new rows. The application must be connected to a
database before calling this API.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiDisableTable(

char *tableName
);

Parameters

tableName (in)
The name of the table that contains an image column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBiDisableTable

Chapter 16. Application programming interfaces 321

Examples
Disable the employee table for images (DB2Image data):
#include <dmbimage.h>

rc = DBiDisableTable("employee");

DBiDisableTable

322 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiEnableColumn

Image Audio Video

X

Enables a column for images (DB2Image data). The API defines and manages
relationships between this column and the metadata tables. Before calling this
API, the application must be connected to a database and the user table must
be committed.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiEnableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the image column.

colName (in)
The name of the image column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
Column is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBiEnableColumn

Chapter 16. Application programming interfaces 323

MMDB_RC_WRONG_SIGNATURE
Datatype for the specified column is incorrect. User-defined type
MMDBSYS.DB2IMAGE is expected.

MMDB_RC_COLUMN_DOESNOT_EXIST
Column is not defined in the specified table.

MMDB_RC_NOT_ENABLED
Database or table is not enabled.

Examples
Enable the picture column in the employee table for images:
#include <dmbimage.h>

rc = DBiEnableColumn("employee",
"picture");

DBiEnableColumn

324 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiEnableDatabase

Image Audio Video

X

Enables a database for images (DB2Image data). This API is called once per
database. It defines a DB2 user-defined type, DB2Image, to the database
manager. It also creates all UDFs that manipulate DB2Image data.

Authorization
DBADM, SYSADM, SYSCTRL

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiEnableDatabase(

char *tableSpace
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

EEE Only: The tablespaces specified when enabling a database for an
extender should be defined on a nodegroup that includes all the
nodes in the partitioned database system.

Error codes

MMDB_SUCCESS
API call processed successfully.

DBiEnableDatabase

Chapter 16. Application programming interfaces 325

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
The database is already enabled.

MMDB_RC_API_NOT_SUPPORTED_FOR_SERVER
The server connected to does not support this command.

MMDB_WARN_NOT_ALL_NODES
Tablespace specified does not include all nodes for the extender. (EEE
Only)

MMDB_RC_NOT_SAME_NODEGROUP
Tablespaces specified are not in the same nodegroup. (EEE Only)

Examples
Enable the current database for images (DB2Image data) in the table space
that is named MYTS. Use defaults for the index and long table spaces:
#include <dmbimage.h>

rc = DBiEnableDatabase("myts,,");

Enable the current database for images (DB2Image data). Use default table
spaces:
#include <dmbimage.h>

rc = DBiEnableDatabase(NULL);

DBiEnableDatabase

326 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiEnableTable

Image Audio Video

X

Enables a table for images (DB2Image data). This API is called once per table.
It creates metadata tables to store and manage attributes for image columns in
a table. To avoid the possibility of locking, the application should commit
transactions before calling this API. Before calling this API, the application
must be connected to a database.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiEnableTable(

char *tableSpace,
char *tableName
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

If you provide a null value for any part of the table space
specification, the default table space for that part is used.

EEE Only: The tablespace specified should be in the same nodegroup
as the user table.

DBiEnableTable

Chapter 16. Application programming interfaces 327

tableName (in)
The name of the table that will contain an image column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
Table is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_TABLE_DOESNOT_EXIST
Table does not exist.

MMDB_RC_TABLESPACE_NOT_SAME_NODEGROUP
Tablespace specified is not in the same nodegroup as the user table.
(EEE Only)

Examples
Enable the employee table for images (DB2Image data) in the table space
MYTS. Use defaults for the index and long table spaces:
#include <dmbimage.h>

rc = DBiEnableTable("myts,,",
"employee");

Enable the employee table for images (DB2Image data). Use default table
spaces:
#include <dmbimage.h>

rc = DBiEnableTable(NULL,
"employee");

DBiEnableTable

328 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiGetError

Image Audio Video

X

Returns a description of the last error. Call this API after any other API
returns an error code.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiGetError(

SQLINTEGER *sqlcode,
char *errorMsgText
);

Parameters

sqlcode (out)
The generic SQL error code.

errorMsgText (out)
The SQL error message text.

Error codes

MMDB_SUCCESS
API call processed successfully.

Examples
Get the last error, storing the SQL error code in errCode and the message text
in errMsg:
#include <dmbimage.h>

rc = DBiGetError(&errCode, &errMsg);

DBiGetError

Chapter 16. Application programming interfaces 329

DBiGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referred to in image columns
of user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled image columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiGetInaccessibleFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, that table is searched for references to inaccessible files. If a
null value is specified, all tables with the specified qualifier are
searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referred to in the table.

DBiGetInaccessibleFiles

330 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all inaccessible files that are referred to in image columns in the employee
table:
#include <dmbimage.h>
long idx;

rc = DBiGetInaccessibleFiles("employee",
&count, &filelist);

DBiGetInaccessibleFiles

Chapter 16. Application programming interfaces 331

DBiGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referred to in image columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure.

Authorization
SELECT privilege on enabled image columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiGetReferencedFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified , or null table name. If a table name is
specified, that table is searched for references to files. If a null value is
specified, all tables owned by the current user ID are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of files that are referred to in the table.

DBiGetReferencedFiles

332 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all files that are referred to in image columns in the employee table:
#include <dmbimage.h>
long idx;

rc = DBiGetReferencedFiles("employee",
&count, &filelist);

DBiGetReferencedFiles

Chapter 16. Application programming interfaces 333

DBiIsColumnEnabled

Image Audio Video

X

Determines whether a column has been enabled for images (DB2Image data).
The application must be connected to a database before calling this API.

Authorization
SYSADM, DBADM, table owner, or SELECT privilege on the user table

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiIsColumnEnabled(

char *tableName,
char *colName,
short *status
);

Parameters

tableName (in)
A qualified or unqualified table name.

colName (in)
The name of a column.

status (out)
Indicates whether the column is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

-1 MMDB_INVALID_DATATYPE

DBiIsColumnEnabled

334 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
Column is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the picture column in the employee table is enabled for images:
#include <dmbimage.h>

rc = DBiIsColumnEnabled("employee",
"picture", &status);

DBiIsColumnEnabled

Chapter 16. Application programming interfaces 335

DBiIsDatabaseEnabled

Image Audio Video

X

Determines whether a database has been enabled for images (DB2Image data).
The application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiIsDatabaseEnabled(

short *status
);

Parameters

status (out)
Indicates whether the database is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the personnl database is enabled for images:

DBiIsDatabaseEnabled

336 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <dmbimage.h>

rc = DBiIsDatabaseEnabled(&status);

DBiIsDatabaseEnabled

Chapter 16. Application programming interfaces 337

DBiIsFileReferenced

Image Audio Video

X

Returns a list of table entries in image columns that refer to a specified file.
The application must be connected to a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled image columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiIsFileReferenced(

char *tableName,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

tableName (in)
A qualified, unqualified , or null table name. If a table name is
specified, that table is searched for references to the specified file. If a
null value is specified, all tables owned by the current user ID are
searched.

fileName (in)
The name of the referred to file.

count (out)
The number of entries in the output list

DBiIsFileReferenced

338 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

tableList (out)
A list of table entries that refer to the specified file

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List the entries in image columns of the employee table that refer to file
/images/ajones.bmp:
#include <dmbimage.h>
long idx;

rc = DBiIsFileReferenced(NULL,
"/images/ajones.bmp",
&count, &tableList);

DBiIsFileReferenced

Chapter 16. Application programming interfaces 339

DBiIsTableEnabled

Image Audio Video

X

Determines whether a table has been enabled for images (DB2Image data).
The application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiIsTableEnabled(

char *tableName,
short *status
);

Parameters

tableName (in)
A table name.

status (out)
Indicates whether the table is enabled. This parameter returns a
numeric value. The extender also returns a constant that indicates the
status. The values and constants are:

1 MMDB_IS_ENABLED

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBiIsTableEnabled

340 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Examples
Determine if the employee table is enabled for images:
#include <dmbimage.h>

rc = DBiIsTableEnabled("employee",
&status);

DBiIsTableEnabled

Chapter 16. Application programming interfaces 341

DBiPrepareAttrs

Image Audio Video

X

Prepares user-supplied image attributes. This API is used when an image
object with user-supplied attributes is stored or updated. The UDF code that
runs on the server always expects data in “big endian”format, a format that is
used by most UNIX platforms. If an image object is stored or updated in
“little endian” format, that is, from a non-UNIX client, the DBiPrepare API
must be used before the store or update request is made.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
void DBiPrepareAttrs(

MMDBImageAttrs *imgAttr
);

Parameters

imgAttr (in)
The user-supplied attributes of the image.

Examples
Prepare user-supplied image attributes:
#include <dmbimage.h>

DBiPrepareAttrs(&imgattr);

DBiPrepareAttrs

342 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBiReorgMetadata

Image Audio Video

X

“Cleans up” image-related metadata tables, for example:
v Reclaims space that is no longer used in image metadata tables
v Deletes references in image metadata tables to image files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
Alter, Control, SYSADM, SYSCTRL, SYSMAINT, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbimage.lib libdmbimage.a (AIX)
libdmbimage.sl (HP-UX)
libdmbimage.so (Solaris)

Include file
dmbimage.h

Syntax
long DBiReorgMetadata(

char *tableName
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, clean up is performed for image metadata tables associated
with the specified user table. If a null value is specified, metadata
tables for image columns in all tables that are owned by the current
user ID are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBiReorgMetadata

Chapter 16. Application programming interfaces 343

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Clean up the metadata tables for image columns in the employee table:
#include <dmbimage.h>

rc = DBiReorgMetadata("employee");

DBiReorgMetadata

344 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvAdminGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referred to in video columns of
user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvAdminGetInaccessibleFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. (in) If a user ID is specified, all tables
with the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referred to in the table.

DBvAdminGetInaccessibleFiles

Chapter 16. Application programming interfaces 345

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all inaccessible files that are referred to in video columns of tables that are
owned by user ID rsmith:
#include <dmbvideo.h>
long idx;

rc = DBvAdminGetInaccessibleFiles
("rsmith", &count,
&filelist);

DBvAdminGetInaccessibleFiles

346 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvAdminGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referred to in video columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvAdminGetReferencedFiles(

char *qualifier,
long *count,
FILEREF *(*fileList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of files that are referred to in the table.

DBvAdminGetReferencedFiles

Chapter 16. Application programming interfaces 347

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all files that are referred to in video columns in tables that are owned by
ajones:
#include <dmbvideo.h>
long idx;

rc = DBvAdminGetReferencedFiles
("ajones", &count,
&filelist);

DBvAdminGetReferencedFiles

348 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvAdminIsFileReferenced

Image Audio Video

X

Returns a list of video column entries in user tables that refer to a specified
file. The application must be connected to a database before calling this API.

It is important that you free up the resources that are allocated by this API
after calling it. Specifically, you must free up the filelist data structure as well
as the filename field in each entry in the filelist.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvAdminIsFileReferenced(

char *qualifier,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are searched. If a null value is specified, all
tables in the current database are searched.

fileName (in)
The name of the referred to file.

count (out)
The number of entries in the output list.

tableList (out)
A list of table entries that refer to the specified file.

DBvAdminIsFileReferenced

Chapter 16. Application programming interfaces 349

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List the entries in video columns in all tables in the current database that refer
to file /videos/asmith.mpg:
#include <dmbvideo.h>
long idx;

rc = DBvAdminIsFileReferenced(NULL,
"/videos/asmith.mpg",
&count, &tableList);

DBvAdminIsFileReferenced

350 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvAdminReorgMetadata

Image Audio Video

X

“Cleans up” video-related metadata tables, for example:
v Reclaims space that is no longer used in video metadata tables
v Deletes references in video metadata tables to video files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
SYSADM, SYSCTRL, SYSMAINT

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvAdminReorgMetadata(

char *qualifier
);

Parameters

qualifier (in)
A valid user ID or a null value. If a user ID is specified, all tables with
the specified qualifier are cleaned up. If a null value is specified, all
tables in the current database are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBvAdminReorgMetadata

Chapter 16. Application programming interfaces 351

MMDB_RC_NO_AUTH
User does not have proper authority to call this API.

Examples
Clean up the metadata tables for video columns in tables that are owned by
user ID rsmith:
#include <dmbvideo.h>

rc = DBvAdminReorgMetadata("rsmith");

DBvAdminReorgMetadata

352 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvBuildStoryboardFile

Image Audio Video

X

Creates a shot catalog file and builds entries in the file for all the shots in a
video. The source video can be in a database or in a file. For each shot, the
API stores the shot number, starting frame number, ending frame number,
and information for at least one representative frame. Values in the
DBvStoryboardCtrl data structure determine how many representative frames
are identified for a shot. For shots whose length is below a threshold value in
DBvStoryboardCtrl, the API identifies one representative frame. For shots
whose length is between a lower and upper threshold value in
DBvStoryboardCtrl, the API identifies two representative frames. For shots
whose length is above the upper threshold value in DBvStoryboardCtrl, the
API identifies three representative frames. The representative frame
information includes its frame number and the name of the file that contains
the frame content. This information can be used to display a storyboard, that
is, a visual summary of a video.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvBuildStoryboardFile(

char *fileName,
DBvIOType *video,
DBvShotControl *shotCtrl,
DBvStoryBoardCtrl *sbCtrl

);

Parameters

catalogName (in)
The pointer to the name of the shot catalog file.

DBvBuildStoryboardFile

Chapter 16. Application programming interfaces 353

video (in)
The pointer to the video structure.

shotCtrl (in)
The pointer to the shot control structure

sbCtrl (in)
The pointer to the storyboard control structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Create a shot catalog file that is named hotshots and fill it with data for all
the shots in a video:
#include <dmbshot.h>

rc = DBvBuildStoryboardFile("hotshots",
video, &shotCtrl, &sbCtrl);

DBvBuildStoryboardFile

354 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvBuildStoryboardTable

Image Audio Video

X

Builds entries in a shot catalog for all the shots in a video. The source video
can be in a database or in a file. The shot catalog is in a database. For each
shot, the API stores the handle or file information for the source video. It also
stores the shot number, starting frame number, ending frame number, and
information for at least one representative frame. Values in the
DBvStoryboardCtrl data structure determine how many representative frames
are identified for a shot. For shots whose length is below a threshold value in
DBvStoryboardCtrl, the API identifies one representative frame. For shots
whose length is between a lower and upper threshold value in
DBvStoryboardCtrl, the API identifies two representative frames. For shots
whose length is above the upper threshold value in DBvStoryboardCtrl, the
API identifies three representative frames. The representative frame
information includes its frame number and frame data. The representative
frame information stored in the shot catalog can be used to display a
storyboard, that is, a visual summary of a video.

The application must be connected to a database before calling this API.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvBuildStoryboardTable(

char *catalogName,
DBvIOType *video,
DBvShotControl *shotCtrl,
DBvStoryBoardCtrl *sbCtrl,
SQLHDBC hdbc
);

DBvBuildStoryboardTable

Chapter 16. Application programming interfaces 355

Parameters

catalogName (in)
The pointer to the name of the shot catalog.

video (in)
The pointer to the video structure.

shotCtrl (in)
The pointer to the shot control structure

sbCtrl (in)
The pointer to the storyboard control structure.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Create entries in a shot catalog named hotshots for a video:
#include <dmbshot.h>

rc = DBvBuildStoryboardTable("hotshots",
video, &shotCtrl, &sbCtrl, hdbc);

DBvBuildStoryboardTable

356 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvClose

Image Audio Video

X

Closes a video file that has been opened for scene change detection.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvClose(

DB2vIOType *video
);

Parameters

video (in)
The pointer to the video structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_CANNOT_CLOSE
The video file could not be closed

Examples
Close a video file that was previously opened for video scene change
detection:
#include <dmbshot.h>

rc = DBvClose(video);

DBvClose

Chapter 16. Application programming interfaces 357

DBvCreateIndex

Image Audio Video

X

Creates an index for a video that is stored in a file. The index is used by the
Video Extender to access shots and frames in a video. The index is stored in a
flat file in the same directory as the source video file.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvCreateIndex(

char *fileName
);

Parameters

fileName (in)
The pointer to a video file name.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_OPEN_VIDEO
The video file could not be opened for processing.

MMDB_RC_INDEX_FAIL
The index could not be built.

Examples
Create an index for the video in file \videos\ajones.mpg:
#include <dmbshot.h>

rc = DBvCreateIndex("\videos\ajones.mpg");

DBvCreateIndex

358 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvCreateIndexFromVideo

Image Audio Video

X

Creates an index for a video. The video must first be opened for shot
detection. The index is used by the Video Extender to access shots and frames
in a video. The index is stored in a flat file. The file name is stored in the
DBvIOType data structure.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvCreateIndexFromVideo(

DBvIOType *video
);

Parameters

video (update)
The pointer to a video structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_OPEN_VIDEO
The video file could not be opened for processing.

MMDB_RC_INDEX_FAIL
The index could not be built.

Examples
Create an index for a video:
#include <dmbshot.h>

rc = DBvCreateIndexFromVideo(video);

DBvCreateIndexFromVideo

Chapter 16. Application programming interfaces 359

DBvCreateShotCatalog

Image Audio Video

X

Creates a shot catalog, which is a set of tables that contains information about
shots, such as frame numbers.

The application must be connected to a database that is enabled for both
db2video and db2image.

Authorization
Create, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvCreateShotCatalog(

char *catalogName,
SQLHDBC hdbc
);

Parameters

catalogName (in)
Name of the shot catalog to be created.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBvCreateShotCatalog

360 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Examples
Create a shot catalog named hotshots:
#include <dmbshot.h>

rc = DBvCreateShotCatalog("hotshots", hdbc);

DBvCreateShotCatalog

Chapter 16. Application programming interfaces 361

DBvDeleteShot

Image Audio Video

X

Deletes a shot from a catalog.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvDeleteShot(

char *catalogName ,
char *shotHandle,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the catalog.

shotHandle (in)
The shot handle.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_ACCESS
Caller does not have proper access authority.

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

DBvDeleteShot

362 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Delete a shot from the hotshots catalog, using the shot’s handle:
#include <dmbshot.h>

rc = DBvDeleteShot("hotshots", shot,
hdbc);

DBvDeleteShot

Chapter 16. Application programming interfaces 363

DBvDeleteShotCatalog

Image Audio Video

X

Deletes a shot catalog.

Authorization
Control, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvDeleteShotCatalog(

char *catalogName,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the shot catalog to be deleted.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_ACCESS
Caller does not have proper access authority.

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Delete the shot catalog hotshots:

DBvDeleteShotCatalog

364 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Examples
#include <dmbshot.h>

rc = DBvDeleteShotCatalog("hotshots",
hdbc);

DBvDeleteShotCatalog

Chapter 16. Application programming interfaces 365

DBvDetectShot

Image Audio Video

X

Searches for the next shot in a video file. If a shot is detected, records the
frame number and frame data of the first frame in the detected shot. You
must examine the shotDetected flag to determine if a shot has been detected.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvDetectShot(

DBvIOType *video,
unsigned long *start_frame,
char *shotDetected,
DBvShotControl *shotCtrl,
DBvShotType *shot,

);

Parameters

video (update)
The pointer to the video structure.

start_frame (in/out)
The frame number used as the starting point for the search. On
return, the parameter is updated with the position to start looking for
the next shot.

shotDetected (out)
Shot detected flag: 1= frame detected, 0= no frame detected.

shotCtrl (in)
The pointer to the shot control data.

shot (out)
The pointer to the detected shot and shot data.

DBvDetectShot

366 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_EOF
End of file reached.

MMDB_NO_INDEX
The video index does not exist.

Examples
Search for the next shot in a video file starting from frame 1:
#include <dmbshot.h>

long start_frame=1;

rc = DBvDetectShot(video, start_frame&Detected,
&shotCtrl, &shot);

DBvDetectShot

Chapter 16. Application programming interfaces 367

DBvDisableColumn

Image Audio Video

X

Disables a column for video (DB2Video data) so that it cannot hold video
data. The contents of the column entries are set to NULL, and the metadata
associated with this column is dropped. All the triggers defined by the video
extender for this column are also dropped. New rows can be inserted into the
table that contains the disabled column, and the new rows can include data
defined with type DB2Video, but there is no metadata (in the administrative
support tables) associated with the new rows. The application must be
connected to a database before calling this API.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvDisableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the video column.

colName (in)
The name of the video column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBvDisableColumn

368 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the tv_ads column in the employee table for video (DB2Video data):
#include <dmbvideo.h>

rc = DBvDisableColumn("employee",
"tv_ads");

DBvDisableColumn

Chapter 16. Application programming interfaces 369

DBvDisableDatabase

Image Audio Video

X

Disables a database for video (DB2Video data) so that it cannot hold video
data. All tables in the database defined for DB2Video are also disabled. The
metadata and UDFs defined by the Video Extender for the database are
dropped. New rows can be inserted into tables in the database that are
defined with type DB2Video, but there is no metadata (in the administrative
support tables) associated with the new rows.

Authorization
DBADM, SYSADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvDisableDatabase(

);

Parameters
DBvDisableDatabase has no parameters.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the current database for video (DB2Video data):
#include <dmbvideo.h>

rc = DBvDisableDatabase();

DBvDisableDatabase

370 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvDisableTable

Image Audio Video

X

Disables a table for video (DB2Video data) so that it cannot hold video data.
All columns in the table defined for DB2Video are also disabled. Some of the
metadata defined by the Video Extender for the table is dropped. New rows
can be inserted into tables that are defined with type DB2Video, but there is
no metadata (in the administrative support tables) associated with the new
rows. The application must be connected to a database before calling this API.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvDisableTable(

char *tableName
);

Parameters

tableName (in)
The name of the table that contains a video column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Disable the employee table for video (DB2Video data):

DBvDisableTable

Chapter 16. Application programming interfaces 371

#include <dmbvideo.h>

rc = DBvDisableTable("employee");

DBvDisableTable

372 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvEnableColumn

Image Audio Video

X

Enables a column for video (DB2Video data). The API defines and manages
relationships between this column and the metadata tables. Before calling this
API, the application must be connected to a database and the user table must
be committed.

Authorization
Control, Alter, SYSADM, DBADM

Use privilege is also required on table spaces and buffer pools specified in the
API parameters.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvEnableColumn(

char *tableName,
char *colName,
);

Parameters

tableName (in)
The name of the table that contains the video column.

colName (in)
The name of the video column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBvEnableColumn

Chapter 16. Application programming interfaces 373

MMDB_WARN_ALREADY_ENABLED
Column is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_WRONG_SIGNATURE
Data type for the specified column is incorrect. User-defined data type
MMDBSYS.DB2VIDEO is expected.

MMDB_RC_COLUMN_DOESNOT_EXIST
Column is not defined in the specified table.

MMDB_RC_NOT_ENABLED
Database or table is not enabled.

Examples
Enable the video column in the employee table for video:
#include <dmbvideo.h>

rc = DBvEnableColumn("employee",
"video");

DBvEnableColumn

374 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvEnableDatabase

Image Audio Video

X

Enables a database for video (DB2Video data). This API is called once per
database. It defines a DB2 user-defined type, DB2Video, to the database
manager. It also creates all UDFs that manipulate DB2Video data.

Authorization
DBADM, SYSADM, SYSCTRL

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvEnableDatabase(

char *tableSpace
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

EEE Only: The tablespaces specified when enabling a database for an
extender should be defined on a nodegroup that includes all the
nodes in the partitioned database system.

Error codes

MMDB_SUCCESS
API call processed successfully.

DBvEnableDatabase

Chapter 16. Application programming interfaces 375

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
The database is already enabled.

MMDB_RC_API_NOT_SUPPORTED_FOR_SERVER
The server connected to does not support this command.

MMDB_WARN_NOT_ALL_NODES
Tablespace specified does not include all nodes for the extender. (EEE
Only)

MMDB_RC_NOT_SAME_NODEGROUP
Tablespaces specified are not in the same nodegroup. (EEE Only)

Examples
Enable the current database for video (DB2Video data) in the table space
named MYTS. Use defaults for the index and long table spaces:
#include <dmbvideo.h>

rc = DBvEnableDatabase("myts,,");

Enable the current database for video (DB2Video data). Use default table
spaces:
#include <dmbvideo.h>

rc = DBvEnableDatabase(NULL);

DBvEnableDatabase

376 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvEnableTable

Image Audio Video

X

Enables a table for video (DB2Video data). This API is called once per table. It
creates metadata tables to store and manage attributes for video columns in a
table. To avoid the possibility of locking, the application should commit
transactions before calling this API. Before calling this API, the application
must be connected to a database.

Authorization
Control, Alter, SYSADM, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvEnableTable(

char *tableSpace,
char *tableName
);

Parameters

tableSpace (in)
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

If you provide a null value for any part of the table space
specification, the default table space for that part is used.

EEE Only: The tablespace specified should be in the same nodegroup
as the user table.

DBvEnableTable

Chapter 16. Application programming interfaces 377

tableName (in)
The name of the table that will contain a video column.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_WARN_ALREADY_ENABLED
Table is already enabled.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_TABLE_DOESNOT_EXIST
Table does not exist.

MMDB_RC_TABLESPACE_NOT_SAME_NODEGROUP
Tablespace specified is not in the same nodegroup as the user table.
(EEE Only)

Examples
Enable the employee table for video (DB2Video data) in the table space MYTS.
Use defaults for the index and long table spaces:
#include <dmbvideo.h>

rc = DBvEnableTable("myts,,",
"employee");

Enable the employee table for video (DB2Video data). Use default table
spaces:
#include <dmbvideo.h>

rc = DBvEnableTable(NULL,
"employee");

DBvEnableTable

378 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvFrameDataTo24BitRGB

Image Audio Video

X

Converts a video frame from a YUV color-value format, such as MPEG, to a
24-bit RGB format. The user must allocate a target buffer before issuing the
API call.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvFrameDataTo24BitRGB(

unsigned char *RGB,
DBvFrameData *fd,
unsigned long dx,
unsigned long dy
);

Parameters

RGB (out)
The pointer to the target RGB buffer.

fd (in) The pointer to the frame data to be converted.

dx (in)
Frame width

dy (in)
Frame height

Error codes

MMDB_SUCCESS
API call processed successfully.

Examples
Convert a video frame from MPEG to 24-bit RGB:

DBvFrameDataTo24BitRGB

Chapter 16. Application programming interfaces 379

#include <dmbshot.h>

rc = DBvFrameDataTo24BitRGB(RGB, &video->fd,
video->dx, video->dy);

DBvFrameDataTo24BitRGB

380 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvGetError

Image Audio Video

X

Returns a description of the last error. Call this API after any other API
returns an error code.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvGetError(

SQLINTEGER *sqlcode,
char *errorMsgText
);

Parameters

sqlcode (out)
The generic SQL error code.

errorMsgText (out)
The SQL error message text.

Error codes

MMDB_SUCCESS
API call processed successfully.

Examples
Get the last error, storing the SQL error code in errCode and the message text
in errMsg:
#include <dmbvideo.h>

rc = DBvGetError(&errCode, &errMsg);

DBvGetError

Chapter 16. Application programming interfaces 381

DBvGetFrame

Image Audio Video

X

Gets the current frame in a video file. The frame data is returned in the
DBvFrameData video structure.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvGetFrame(

DBvIOType *video
);

Parameters

video (update)
The pointer to the video structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_EOF
End of file reached.

Examples
Get the current frame in a video file:
#include <dmbshot.h>

rc = DBvGetFrame(video);

DBvGetFrame

382 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvGetInaccessibleFiles

Image Audio Video

X

Returns the names of inaccessible files that are referenced in video columns of
user tables. The application must be connected to a database before calling
this API.

It is important that you free up the resources allocated by this API after
calling it. Specifically, you must free up the filelist data structure as well as
the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled video columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvGetInaccessibleFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, that table is searched for references to inaccessible files. If a
null value is specified, all tables with the specified qualifier are
searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of inaccessible files that are referenced in the table.

DBvGetInaccessibleFiles

Chapter 16. Application programming interfaces 383

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all inaccessible files referenced in video columns in the employee table:
#include <dmbvideo.h>
long idx;

rc = DBvGetInaccessibleFiles("employee",
&count, &filelist);

DBvGetInaccessibleFiles

384 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvGetReferencedFiles

Image Audio Video

X

Returns the names of files that are referenced in video columns of user tables.
If a file is inaccessible (for example, its file name cannot be resolved using
environment variable specifications), the file name is preceded with an
asterisk. This API does not use the FILENAME field of the FILEREF data
structure, and therefore sets it to NULL. The application must be connected to
a database before calling this API.

It is important that you free up the resources allocated by this API after
calling it. Specifically, you must free up the filelist data structure.

Authorization
SELECT privilege on enabled video columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvGetReferencedFiles(

char *tableName,
long *count,
FILEREF *(*fileList)
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, that table is searched for references to files. If a null value is
specified, all tables owned by the current user ID are searched.

count (out)
The number of entries in the output list.

fileList (out)
A list of files that are referenced in the table.

DBvGetReferencedFiles

Chapter 16. Application programming interfaces 385

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List all files that are referenced in video columns in the employee table:
#include <dmbvideo.h>
long idx;

rc = DBvGetReferencedFiles("employee",
&count, &filelist);

DBvGetReferencedFiles

386 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvInitShotControl

Image Audio Video

X

Initializes the values in the shot control data structure.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvInitShotControl(

DBvShotControl *shotCtrl,
);

Parameters

shotCtrl (in)
The pointer to the shot control data structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_ACCESS
Caller does not have proper access authority.

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

Examples
Initialize the values in the shot control data structure:
#include <dmbshot.h>

rc = DBvInitShotControl(shotCtrl);

DBvInitShotControl

Chapter 16. Application programming interfaces 387

DBvInitStoryboardCtrl

Image Audio Video

X

Initializes the values in the storyboard control data structure.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvInitStoryboardCtrl(

DBvStoryboardCtrl *sbCtrl,
);

Parameters

shotCtrl (in)
The pointer to the shot control data structure.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_ACCESS
Caller does not have proper access authority.

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

Examples
Initialize the values in the storyboard control data structure:
#include <dmbshot.h>

rc = DBvInitStoryboardCtrl(shotCtrl);

DBvInitStoryboardCtrl

388 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvInsertShot

Image Audio Video

X

Inserts a shot into a shot catalog.

Authorization
Insert, Control

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvInsertShot(

char *catalogName,
DBvShotType *shot,
DBvIOType *video,
char *shotHandle,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the catalog.

shot (in)
The pointer to the extended shot to insert into the catalog.

shotHandle (in)
The shot handle.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_ACCESS
Caller does not have proper access authority.

DBvInsertShot

Chapter 16. Application programming interfaces 389

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Insert a shot into a shot catalog called hotshots:

rc = DBvInsertShot(
"hotshots", /* shot catalog name */
shot, /* pointer to shot structure */
video, /* pointer to video structure */
shotHandle, /* pointer to shot handle */
hdbc); /* database connection handle */

DBvInsertShot

390 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvIsColumnEnabled

Image Audio Video

X

Determines whether a column has been enabled for video (DB2Video data).
The application must be connected to a database before calling this API.

Authorization
SYSADM, DBADM, table owner, or SELECT privilege on the user table

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvIsColumnEnabled(

char *tableName,
char *colName,
short *status
);

Parameters

tableName (in)
A qualified or unqualified table name.

colName (in)
The name of a column.

status (out)
Indicates whether the column is enabled. This parameter returns a
numerical value. The extender also returns a constant that indicates
the status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

-1 MMDB_INVALID_DATATYPE

DBvIsColumnEnabled

Chapter 16. Application programming interfaces 391

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the video column in the employee table is enabled for video:
#include <dmbvideo.h>

rc = DBvIsColumnEnabled("employee",
"video", &status);

DBvIsColumnEnabled

392 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvIsDatabaseEnabled

Image Audio Video

X

Determines whether a database has been enabled for video (DB2Video data).
The application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvIsDatabaseEnabled(

short *status
);

Parameters

status (out)
Indicates whether the database is enabled. This parameter returns a
numerical value. The extender also returns a constant that indicates
the status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the personnl database is enabled for video:

DBvIsDatabaseEnabled

Chapter 16. Application programming interfaces 393

#include <dmbvideo.h>

rc = DBvIsDatabaseEnabled(&status);

DBvIsDatabaseEnabled

394 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvIsFileReferenced

Image Audio Video

X

Returns a list of table entries in video columns that reference a specified file.
The application must be connected to a database before calling this API.

It is important that you free up the resources allocated by this API after
calling it. Specifically, you must free up the filelist data structure as well as
the filename field in each entry in the filelist.

Authorization
SELECT privilege on enabled video columns in all searched user tables and
associated administrative support tables

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvIsFileReferenced(

char *tableName,
char *fileName,
long *count,
FILEREF *(*tableList)
);

Parameters

tableName (in)
A qualified, unqualified , or null table name. If a table name is
specified, that table is searched for references to the specified file. If a
null value is specified, all tables owned by the current user ID are
searched.

fileName (in)
The name of the referenced file.

count (out)
The number of entries in the output list.

DBvIsFileReferenced

Chapter 16. Application programming interfaces 395

tableList (out)
A list of table entries that reference the specified file.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_MALLOC
System cannot allocate memory to return the results.

Examples
List the entries in video columns of the employee table that reference file
/videos/ajones.mpg:
#include <dmbvideo.h>
long idx;

rc = DBvIsFileReferenced(NULL,
"/videos/ajones.mpg",
&count, &tableList);

DBvIsFileReferenced

396 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvIsIndex

Image Audio Video

X

Checks for the existence of the video index. The application must be
connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvIsIndex(

char *fileName,
short *status
);

Parameters

fileName (in)
the name of the referenced file.

status (out)
Indicates whether the index exists. A value of 1 means the index
exists; a value of 0 means the index does not exist.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_ERROR
The status is not valid.

Examples
Check the existence of an index for the video file \videos\ajones.mpg:
#include <dmbshot.h>

rc = DBvIsIndex("\videos\ajones.mpg", &status);

DBvIsIndex

Chapter 16. Application programming interfaces 397

DBvIsTableEnabled

Image Audio Video

X

Determines whether a table has been enabled for video (DB2Video data). The
application must be connected to a database before calling this API.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvIsTableEnabled(

char *tableName,
short *status
);

Parameters

tableName (in)
A table name.

status (out)
Indicates whether the table is enabled. This parameter returns a
numerical value. The extender also returns a constant that indicates
the status. The values and constants are:

1 MMDB_IS_ENABLED

0 MMDB_IS_NOT_ENABLED

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBvIsTableEnabled

398 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Determine if the employee table is enabled for video:
#include <dmbvideo.h>

rc = DBvIsTableEnabled("employee",
&status);

DBvIsTableEnabled

Chapter 16. Application programming interfaces 399

DBvMergeShots

Image Audio Video

X

Merges two shots into one shot. The resulting shot uses the shot handle and
the starting frame of the first shot. The larger end frame of the two shots is
used in the resulting shot. The row that the second shot handle points at is
deleted.

Authorization
Control, Select, Delete, Update

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvMergeShots(

char *catalogName,
char *shotHandle1,
char *shotHandle2,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the shot catalog.

shotHandle1 (in)
The handle of the first shot.

shotHandle2 (in)
The handle of the second shot.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

DBvMergeShots

400 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

MMDB_RC_CANNOT_MERGE
Cannot merge shots.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Merge the shots with handles shotHandle1 and shotHandle2 in the hotshots
catalog:
#include <dmbshot.h>

rc = DBvMergeShots("hotshots", shotHandle1,
shotHandle2, hdbc);

DBvMergeShots

Chapter 16. Application programming interfaces 401

DBvOpenFile

Image Audio Video

X

Allocates space for a DBvIOType structure and opens the video file for pixel
access. When the video is successfully opened, it points at the first frame
number (frame 0).

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvOpenFile(

DBvIOType **video,
char *fileName,
);

Parameters

video (out)
The pointer to the video structure pointer.

fileName (in)
The name of the video file to open.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_CANNOT_OPEN
Cannot open video file.

MMDB_RC_NO_MEMORY
Not enough memory.

MMDB_RC_NO_INDEX
No video random access index.

DBvOpenFile

402 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Examples
Open the video file \videos\ajones.mpg:
#include <dmbshot.h>

rc = DBvOpenFile(&videoa,
"\videos\ajones.mpg");

DBvOpenFile

Chapter 16. Application programming interfaces 403

DBvOpenHandle

Image Audio Video

X

Allocates space for a DBvIOType structure and opens the video handle for
pixel access. The structure points to the first frame number (frame 0). The
video can be a BLOB. The video is copied to the temporary file in a directory
specified by the DB2VIDEOTEMP environment variable. The isIdx flag is set
based on the existence of the random access index.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvOpenHandle(

DBvIOType **video,
DB2Video *videoHandle
SQLHDBC hdbc
);

Parameters

video (out)
The pointer to the video structure.

videoHandle (in)
The video handle.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_CANNOT_OPEN
Cannot open video file.

DBvOpenHandle

404 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NO_MEMORY
Not enough memory.

MMDB_RC_NO_INDEX
No video random access index.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

MMDB_RC_INVALID_HANDLE
The video handle is not valid.

Examples
Open the videoHandle using the videoa pointer:
#include <dmbshot.h>

rc = DBvOpenHandle(&oa, videoHandle, hdbc);

DBvOpenHandle

Chapter 16. Application programming interfaces 405

DBvPlay

Image Audio Video

X

Opens the video player on the client and plays a video. The video can be
stored in a video column or an external file:
v If the video is stored in an external file, you can pass either the name of the

file or the video handle to this API. The API uses the client environment
variable DB2VIDEOPATH to resolve the file location. The file must be
accessible from the client workstation.

v If the video is stored in a column, you must pass the video handle to the
API. The application must be connected to the database and have read
access to the table in which the video is stored.

If the video is stored in a column, the extender creates a temporary file and
copies the content of the object from the column to the file. The extender
might also create a temporary file if the video is stored in an external file and
its relative filename cannot be resolved using the values in environment
variables, or if the file is not accessible on the client machine. The temporary
file is created in the directory specified in the DB2VIDEOTEMP environment
variable. The extender then plays the video from the temporary file.

Authorization
Select authority on the user table, if playing a video from a column.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
Play a video stored in a column
long DBvPlay(

char *playerName,
MMDB_PLAY_HANDLE,
DB2Video *videoHandle,
waitFlag
);

DBvPlay

406 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Syntax
Play a video stored as a file
long DBvPlay(

char *playerName,
MMDB_PLAY_FILE,
char *fileName,
waitFlag
);

Parameters

playerName (in)
The name of the video player. If set to NULL, the default video player
specified by the DB2VIDEOPLAYER environment variable is used.

MMDB_PLAY_HANDLE (in)
A constant that indicates the video is stored in a column.

MMDB_PLAY_FILE (in)
A constant that indicates the video is stored as a file that is accessible
from the client.

videoHandle (in)
The handle of the video. This parameter must be passed when you
play a video in a column. If the video handle represents an external
file, the client environment variable DB2VIDEOPATH is used to
resolve the file location.

fileName (in)
The name of the file that contains the video. The API uses the client
environment variable DB2VIDEOPATH to resolve the file location. The
file must be accessible from the client workstation.

waitFlag (in)
A constant that indicates whether your program waits for the user to
close the player before continuing. MMDB_PLAY_WAIT runs the
player in the same thread as your application.
MMDB_PLAY_NO_WAIT runs the player in a separate thread.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

DBvPlay

Chapter 16. Application programming interfaces 407

Examples
Play the video identified by the videoHandle. Run the default player in the
same thread as the application:
#include <dmbvideo.h>

rc = DBvPlay(NULL, MMDB_PLAY_HANDLE, videoHandle,
MMDB_PLAY_WAIT);

DBvPlay

408 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DBvPrepareAttrs

Image Audio Video

X

Prepares user-supplied video attributes. This API is used when a video object
with user-supplied attributes is stored or updated. The UDF code that runs on
the server always expects data in “big endian”format, a format used by most
UNIX platforms. If a video object is stored or updated in “little endian”
format, that is, from a non-UNIX client, the DBvPrepare API must be used
before the store or update request is made.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
void DBvPrepareAttrs(

MMDBVideoAttrs *vidAttr
);

Parameters

vidAttr (in)
The user-supplied attributes of the video.

Examples
Prepare user-supplied video attributes:
#include <dmbvideo.h>

DBvPrepareAttrs(&vidattr);

DBvPrepareAttrs

Chapter 16. Application programming interfaces 409

DBvReorgMetadata

Image Audio Video

X

“Cleans up” video-related metadata tables, for example:
v Reclaims space that is no longer used in video metadata tables
v Deletes references in video metadata tables to video files that no longer

exist

The application must be connected to a database before calling this API.

Authorization
Alter, Control, SYSADM, SYSCTRL, SYSMAINT, DBADM

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbvideo.lib libdmbvideo.a (AIX)
libdmbvideo.sl (HP-UX)
libdmbvideo.so (Solaris)

Include file
dmbvideo.h

Syntax
long DBvReorgMetadata(

char *tableName,
);

Parameters

tableName (in)
A qualified, unqualified, or null table name. If a table name is
specified, clean up is performed for video metadata tables associated
with the specified user table. If a null value is specified, metadata
tables for video columns in all tables owned by the current user ID
are cleaned up.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NO_AUTH
Caller does not have the proper access authority.

DBvReorgMetadata

410 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
Application does not have valid connection to a database.

Examples
Clean up the metadata tables for video columns in the employee table:
#include <dmbvideo.h>

rc = DBvReorgMetadata("employee");

DBvReorgMetadata

Chapter 16. Application programming interfaces 411

DBvSetFrameNumber

Image Audio Video

X

Sets the current frame to a specified frame number.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbmpeg.lib libdmbmpeg.a (AIX)
libdmbmpeg.sl (HP-UX)
libdmbmpeg.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvSetFrameNumber(

DBvIOType *video
unsigned long frameNumber
);

Parameters

video (in)
The pointer to the video structure.

frameNumber (in)
Number of the requested frame.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_FRAME_NOT_FOUND
The requested frame could not be found.

MMDB_NO_INDEX
The video index does not exist.

Examples
Set the current frame to frame number 85 in a video file:

DBvSetFrameNumber

412 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

#include <dmbshot.h>

rc = DBvSetFrameNumber(video, 85);

DBvSetFrameNumber

Chapter 16. Application programming interfaces 413

DBvSetShotComment

Image Audio Video

X

Updates the read-only comment within the shot.

Authorization
Control, Update

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvSetShotComment(

char *catalogName,
char *shotHandle,
char *comment,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the catalog.

shotHandle (in)
The handle of the shot to be updated.

comment (in)
The new comment for the shot.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

DBvSetShotComment

414 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_CANNOT_UPDATE
The API cannot update the shot.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Change the remark describing the shot with the shotHandle in the catalog
hotshots:
#include <dmbshot.h>

rc = DBvSetShotComment("hotshot", shotHandle,
"This is a hot shot.", hdbc);

DBvSetShotComment

Chapter 16. Application programming interfaces 415

DBvUpdateShot

Image Audio Video

X

Replaces the attributes of a video shot in the catalog. All the attributes, except
for the comment, are replaced by the attributes in the DBvShotType structure.
If the remark pointer is NULL, the existing remark remains unchanged.

Authorization
Control, Update

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbshot.lib libdmbshot.a (AIX)
libdmbshot.sl (HP-UX)
libdmbshot.so (Solaris)

Include file
dmbshot.h

Syntax
long DBvUpdateShot(

char *catalogName,
DBvShotType *shot,
char *shotHandle,
SQLHDBC hdbc
);

Parameters

catalogName (in)
The name of the catalog.

shot (in)
The pointer to shot information structure containing attributes of the
shot.

shotHandle (in)
The shot handle.

hdbc (in)
The database handle from SQLConnect.

Error codes

MMDB_SUCCESS
API call processed successfully.

DBvUpdateShot

416 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

MMDB_RC_NOT_CONNECTED
The application does not have valid connection to a database.

MMDB_RC_CANNOT_UPDATE
The API cannot update the shot.

MMDB_RC_NO_SHOT
The shot does not exist.

MMDB_RC_INVALID_CATALOG
The catalog is not valid or does not exist.

Examples
Update the attributes of a shot in the hotshots catalog:
#include <dmbshot.h>

rc = DBvUpdateShot("hotshots", shot,
shothandle, hdbc);

DBvUpdateShot

Chapter 16. Application programming interfaces 417

DMBRedistribute (EEE Only)

Image Audio Video

X

Redistributes QBIC feature data when a node is added to or removed from a
nodegroup, or when a new partition map is established for a nodegroup.

Authorization
The API must be run from the instance-owning id.

Library file

Windows AIX and Solaris

dmbrd.lib libdmbrd.a (AIX)

libdmbrd.so (Solaris)

Include file
dmbrdst.h

Syntax
long DMBRedistribute (

char *pNodeGroupName,
char DataRedistOption /* ""continue"" use CONTINUE parameter */
);

/* blank:start redistribution */

Parameters

pNodeGroupName (in)
The name of the nodegroup to redistribute.

Error codes

MMDB_SUCCESS
API call processed successfully.

MMDB_RD_NO_CONTINUE
Resubmit without CONTINUE parameter.

MMDB_RD_CONTINUE
Resubmit with CONTINUE parameter.

Examples
Redistribute QBIC extender data in the groupone nodegroup:

#include <dmbrdst.h>

rc = DMBRedistribute(groupone,"continue");

DMBRedistribute

418 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbAddFeature

Image Audio Video

X

Adds a feature to the currently opened catalog. QbAddFeature creates the
feature table for the specified feature in the database. After adding images to
the image column in your user table, use the QbReCatalogColumn API, which
adds an entry for each image to the feature table and analyzes the images.

Authorization
Alter

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbAddFeature(

QbCatalogHandle cHdl,
char *featureName
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

featureName (in)
The name of the feature. The following features are supplied with the
Image extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

QbAddFeature

Chapter 16. Application programming interfaces 419

|
|

qbicECCatalogReadOnly
The catalog is open for read only.

qbicECDupFeature
The feature is already in the catalog.

qbiECinvalidFeatureClass
The feature you specified is not a valid name format.

Examples
Add the QbColorFeatureClass feature to the catalog identified by the handle
CatHdl:
#include <dmbqbapi.h>

rc = QbAddFeature(CatHdl,
QbColorFeatureClass);

QbAddFeature

420 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbCatalogColumn

Image Audio Video

X

Catalogs the images in the image column of your user table that have not
been cataloged. The API adds an entry for each image to the feature table,
and then analyzes the images. When the API analyzes the image, it creates
image data and stores it in the image’s entry in the feature table. The default
parameters for the features are used. The catalog must be open.

Authorization
Insert

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbCatalogColumn(

QbCatalogHandle cHdl
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECInvalidCatalog
The specified handle or table column is not valid for the catalog.

qbicECCatalog Errors
Errors occurred while cataloging individual images, these error were
logged. Rollback not incurred.

qbicECImageNotFound
The image cannot be found or accessed.

QbCatalogColumn

Chapter 16. Application programming interfaces 421

|
|

qbicECCatalogRO
The catalog is read-only.

qbicECSQLError
An SQL error occurred.

Examples
#include <dmbqbapi.h>

rc = QbCatalogColumn(CatHdl);

QbCatalogColumn

422 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbCatalogImage

Image Audio Video

X

Catalogs an entire image. The API adds an entry for the image to the feature
table, and then analyzes the image. When the API analyzes the image, it
creates image data and stores it in the image’s entry in the feature table. The
image handle must be from the image column associated with the current
QBIC catalog. The image is cataloged according to the currently defined
features classes. The default parameters for the features in the catalog are
used.

Authorization
Insert

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbCatalogImage(

QbCatalogHandle cHdl,
char *imgHandle
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

imgHandle (in)
The handle of the image.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECImageNotFound
The image cannot be found or accessed.

QbCatalogImage

Chapter 16. Application programming interfaces 423

|
|

qbicECCatalogRO
The catalog is read-only.

Examples
Catalog an image identified by the handle Img_hdl:
#include <dmbqbapi.h>

rc = QbCatalogColumn(CatHdl, Img_hdl);

QbCatalogImage

424 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbCloseCatalog

Image Audio Video

X

Closes the catalog. The API frees the opened catalog handle and the allocated
resources.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbCloseCatalog(

QbCatalogHandle cHdl
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

Examples
Close the catalog identified by the handle CatHdl:
#include <dmbqbapi.h>

rc = QbCloseCatalog(CatHdl);

QbCloseCatalog

Chapter 16. Application programming interfaces 425

|
|

QbCreateCatalog

Image Audio Video

X

Creates a catalog in the currently connected database for the specified image
column. The column must be enabled for image data. The API creates a name
for the catalog, which is used as the qualifier.

Authorization
Alter

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbCreateCatalog(

char *tableName,
char *columnName,
SQLINTEGER autoCatalog,
char *reserved
);

Parameters

tableName (in)
The name of the table that contains an image column.

columnName (in)
The name of the image column for which you are creating a catalog.

autoCatalog (in)
Indicates whether images added to the image column will be
automatically cataloged, that is, added to the feature tables and
analyzed. Specify 1 to set auto-cataloging on or 0 to set it off. If you
don’t set auto-cataloging on, use the QbCatalogColumn or
QbCatalogImage APIs to catalog images that you add to the image
column.

reserved (in)
Not currently used.

QbCreateCatalog

426 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

Error codes

qbicECSqlError
An SQL error occurred.

qbicECNotEnabled
The database, table, or column is not enabled for the DB2Image data
type.

qbicECDupCatalog
The catalog already exists.

qbicECunsupportedOption
An unsupported option was specified.

qbicECerrorParameterTooLong
A parameter was too long for processing.

qbicECqerr
A QBIC error occurred, a message was produced.

qbicECqerrUnknown
An internal QBIC error occurred, a generic error message was
produced.

Examples
Create a catalog for the images in the picture column of the employee table.
Set auto-cataloging on:
#include <dmbqbapi.h>

rc = QbCreateCatalog("employee",
"picture", 1);

QbCreateCatalog

Chapter 16. Application programming interfaces 427

QbDeleteCatalog

Image Audio Video

X

Deletes the specified catalog from the current database.

Authorization
Alter

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbDeleteCatalog(

char *tableName,
char *columnName
);

Parameters

tableName (in)
The name of the table that contains the image column.

columnName (in)
The name of the image column associated with the catalog.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECCatalogInUse
The catalog was being used by someone else.

qbicECCatalogRO
The catalog is read-only.

qbicECSystem
A system error occurred.

qbicECSqlError
An SQL error occurred.

QbDeleteCatalog

428 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

Examples
Delete the QBIC catalog associated with the picture column in the employee
table:
#include <dmbqbapi.h>

rc=QbDeleteCatalog("employee", "picture");

QbDeleteCatalog

Chapter 16. Application programming interfaces 429

QbGetCatalogInfo

Image Audio Video

X

Returns a QbCatalogInfo structure that contains the following information:
v The name of the user table and the image column the catalog belongs to.
v The number of features included in the catalog.
v Whether auto-cataloging is set on.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbGetCatalogInfo(

QbCatalogHandle cHdl,
QbCatalogInfo *catInfo
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

catInfo (out)
The catalog information structure.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

Examples
Get information about the catalog identified by the handle CatHdl and return
it in a structure called catInfo:
#include <dmbqbapi.h>

rc = QbGetCatalogInfo(CatHdl, &catInfo);

QbGetCatalogInfo

430 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

QbListFeatures

Image Audio Video

X

Returns a list of the active features currently included in a catalog. The list is
returned to a buffer you allocate.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbListFeatures(

QbCatalogHandle cHdl,
SQLINTEGER bufSize,
SQLINTEGER *count,
char *featureNames
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

bufSize (in)
The size of your buffer. To estimate the needed buffer size, you can
use the feature count returned by the QbGetCatalogInfo API, and
multiply the count by the length of the longest feature name. Feature
names stored in the buffer are separated by a blank character.

count (out)
The number of returned feature names.

featureNames (out)
An array of feature names in your buffer.

QbListFeatures

Chapter 16. Application programming interfaces 431

|
|

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECTruncateData
The returned data was truncated because the return buffer was too
small.

Examples
Get a list of the active features in the catalog identified by the handle CatHdl.
Store the information in the featureNames array.

First, calculate bufSize, which is the buffer size you need for the list. Use the
QbGetCatalogInfo API to return the number of features in the catInfo
structure. Then multiply that number by the constant qbiMaxFeatureName,
which is the size of the longest feature name:
#include <dmbqbapi.h>

rc = QbGetCatalogInfo(CatHdl, &catInfo);

bufSize =
catInfo.featureCount*qbiMaxFeatureName;

rc = QbListFeatures(CatHdl, bufSize,
count, featureNames);

QbListFeatures

432 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbOpenCatalog

Image Audio Video

X

Opens the QBIC catalog for a specific image column. You can open the catalog
in read mode or update mode. The API returns a handle for the opened
catalog. You then use the handle in other APIs to manage and populate the
catalog.

Make sure you close the catalog after you are finished with it.

Authorization
None

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbOpenCatalog(

char *tableName,
char *columnName,
SQLINTEGER mode,
QbCatalogHandle *cHdl
);

Parameters

tableName (in)
The table name containing the image column.

columnName (in)
The name of the image column.

mode (in)
The mode in which you are opening the catalog. Valid values are
qbiRead and qbiUpdate.

cHdl (out)
A pointer to the handle of the catalog.

QbOpenCatalog

Chapter 16. Application programming interfaces 433

|

Error codes

qbicECCatalogNotFound
The catalog was not found.

qbicECCatalogInUse
The catalog was being used by someone else.

qbicECOpenFailed
The catalog could not be opened.

qbicECNotEnabled
The catalog is not enabled.

qbicECNoCatalogFound
No catalog was found.

qbicECSqlError
An SQL error occurred.

qbicECSystem
A system error occurred.

Examples
Open the catalog for the picture column in the employee table in read mode:
#include <dmbqbapi.h>

rc=QbOpenCatalog("employee", "picture",
qbiread, &CatHdl);

QbOpenCatalog

434 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbQueryAddFeature

Image Audio Video

X

Adds the specified feature to a QBIC Catalog.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryAddFeature(

QbQueryHandle qObj,
char *featureName
);

Parameters

qObj (in)
The handle of the query object.

featureName (in)
The name of the query feature to be added. The following features are
supplied with the image extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Error codes

qbiECinvalidQueryHandle
The query object handle you specified does not reference a valid
query object.

qbiECunknownFeatureClass
The feature you specified is not a recognized feature class name.

QbQueryAddFeature

Chapter 16. Application programming interfaces 435

|

qbiECinvalidFeatureClass
The feature you specified is not a valid name format.

qbiECfeaturePresent
The feature you specified is already a member of the query object.

qbiECallocation
The system cannot allocate enough memory.

Examples
Add the QbColorFeatureClass feature to the query object identified by the
qoHandle handle:
#include <dmbqbapi.h>

rc = QbQueryAddFeature(qoHandle,
"QbColorFeatureClass");

QbQueryAddFeature

436 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbQueryCreate

Image Audio Video

X

Creates a query object and returns a handle. You can use the handle with
other APIs to manipulate the query object.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryCreate(

QbQueryHandle *qObj
);

Parameters

qObj (out)
A pointer to the query handle. If unsuccessful, this handle is set to 0.

Error codes

qbiECallocation
The system cannot allocate enough memory.

Examples
Create a query object and return the handle in qoHandle:
#include <dmbqbapi.h>

rc = QbQueryCreate(&qoHandle);

QbQueryCreate

Chapter 16. Application programming interfaces 437

|
|

QbQueryDelete

Image Audio Video

X

Deletes an unnamed query object. The API releases all the memory used by
the query object and any added features.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryDelete(

QbQueryHandle qObj
);

Parameters

qObj (in)
The handle of the query object.

Error codes

qbiECinvalidQueryHandle
The queryobject handle you specified does not reference a valid query.

Examples
Delete the query object identified by the handle qoHandle:
#include <dmbqbapi.h>
rc = QbQueryDelete(qoHandle);

QbQueryDelete

438 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

QbQueryGetFeatureCount

Image Audio Video

X

Returns the number of features added to the query object. The following
features are supplied with the Image Extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryGetFeatureCount(

QbQueryHandle qObj,
SQLINTEGER* count
);

Parameters

qObj (in)
The handle of the query object.

count (out)
The pointer to the variable to set to the number of features present.

Error codes

qbiECinvalidQueryHandle
The query object handle you specified does not reference a valid
query object.

QbQueryGetFeatureCount

Chapter 16. Application programming interfaces 439

|

Examples
Return the number of features for the query objectidentified by the handle
qoHandle:
#include <dmbqbapi.h>

rc = QbQueryGetFeatureCount(qoHandle,
&count);

QbQueryGetFeatureCount

440 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbQueryGetString

Image Audio Video

X

Returns the query string from a query. You can use the query string for input
to UDFs in your application, for example in the UDF QbScoreFromStr or the
API QbQueryStringSearch.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryGetString(

QbQueryHandle qObj,
(char*)* queryString
);

Parameters

qObj (in)
The handle of the query object.

queryString (out)
The pointer to the query string for the query object.

Error codes

qbiECinvalidQueryHandle
The query handle that you specified does not reference a valid query.

Examples
Return the query string for the query object identified by the handle
qrHandle.
#include <dmbqbapi.h>

SQLRETURN rc;
char *queryString;
QbQueryHandle qrHandle

QbQueryGetString

Chapter 16. Application programming interfaces 441

|
|

||||

|||
|
|
|
|

|

|

|

|||

||
||
||
|

|

|

|

|
|
|
|

|

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

rc = QbQueryGetString(qrHandle, &queryString);
if (rc == 0) {

... /* use the returned queryString for input to UDFs */
free((void*)queryString); /* you must free queryString */
queryString=(char*)0;

}

QbQueryGetString

442 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|
|
|
|
|
|

|

QbQueryListFeatures

Image Audio Video

X

Returns a current list of features in the query object. The API returns the list
to a buffer that you allocate. The following features are supplied with the
Image Extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryListFeatures(

QbQueryHandle qObj,
SQLINTEGER bufSize,
SQLINTEGER* count,
char *featureNames
);

Parameters

qObj (in)
The handle of the query object.

bufSize (in)
The size of the featureNames buffer. Use the qbiMaxFeatureName
constant as the buffer size. Query object features are identified by a
character string name.

count (out)
The number of the returned feature names.

QbQueryListFeatures

Chapter 16. Application programming interfaces 443

|

featureNames (out)
The pointer to the array of feature names for the query object. The
array is stored in the buffer that you allocate.

Error codes

qbiECinvalidQueryHandle
The query handle that you specified does not reference a valid query.

Examples
Return the number of features in the query object identified by the handle
qoHandle. Use the qbiMaxFeatureName constant to determine the size of the
buffer you need. Return the feature name to the feats buffer and the number
of features to the retCount variable:
#include <dmbqbapi.h>

bufSize = qbiMaxFeatureName;

rc = QbQueryListFeatures(qoHandle, bufSize,
&retCount, feats);

QbQueryListFeatures

444 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbQueryNameCreate

Image Audio Video

X

Stores and names a query object so that you can use it in a UDF. You provide
the name and can provide the description of the query object.

Notes:

1. EEE Only: QbQueryNameCreate is not supported in a partitioned
database environment.

2. QbQueryNameCreate will be deprecated in future releases for
non-partitioned database environments. To save a query, you should use
QbQueryGetString to get the query string and save that string for later use
in your application.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryNameCreate(

QbQueryHandle qObj,
char *name,
char *description
);

Parameters

qObj (in)
The handle of the query object.

name (in)
The name of the query object. The name can be up to 18 characters.

description (in)
A brief description of the query object, up to 250 characters.

QbQueryNameCreate

Chapter 16. Application programming interfaces 445

|

|

|
|

|
|
|
|

|

Error codes

qbiECinvalidQueryHandle
The query object handle that you specified does not reference a valid
query .

Examples
Give a name and description to the query object created with the
QbQueryCreate API:
#include <dmbqbapi.h>

rc = QbQueryNameCreate(qHandle,
"fshavgcol",
"average color query, 10/15/96");

QbQueryNameCreate

446 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbQueryNameDelete

Image Audio Video

X

Deletes a query object. The query object must have been named and stored
using the QbQueryNameCreate API.

Notes:

1. EEE Only: QbQueryNameDelete is not supported in a partitioned
database environment.

2. QbQueryNameDelete will be deprecated in future releases for
non-partitioned database environments.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryNameDelete(

char *name
);

Parameters

name (in)
The name of the query object you are deleting.

Error codes

qbiECinvalidQueryHandle
The queryobject handle that you specified does not reference a valid
query object.

Examples
Delete the query object named fshavgcol:
#include <dmbqbapi.h>

rc = QbQueryNameDelete("fshavgcol",);

QbQueryNameDelete

Chapter 16. Application programming interfaces 447

|

|

|
|

|
|

|

QbQueryNameSearch

Image Audio Video

X

Searches the QBIC catalog for images that match the search criteria contained
in a query object. The query object is identified by its name. The results,
which include the image handles and QBIC search scores, are stored in a
result array in the client memory. The results are sorted according to their
scores.

Notes:

1. EEE Only: QbQueryNameSearch is not supported in a partitioned
database environment.

2. QbQueryNameSearch will be deprecated in future releases for
non-partitioned database environments. To save a query, you should use
QbQueryGetString to get the query string and save that string for later use
in your application.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryNameSearch(

char *qName,
char *tableName,
char *columnName,
SQLINTEGER maxReturns,
QbQueryScope* scope,
SQLINTEGER resultType,
SQLINTEGER* count,
QbResult* returns
);

Parameters

qName (in)
The name of the query object.

QbQueryNameSearch

448 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

|

|
|

|
|
|
|

|

tableName (in)
The name of the table containing the column of images you want to
search.

columnName (in)
The name of the image column. The column must be enabled for
image data.

maxReturns (in)
The maximum number of images you want returned.

scope (in) (Reserved)
Must be set to 0 (NULL)

resultType (in) (Reserved)
Must be set to qbiArray.

count (out)
The pointer to the number of images returned. If zero is returned,
make sure the image column is cataloged for all the features in the
query object.

returns (out)
The pointer to the array of QbResult structures that hold the returned
results. Make sure you allocate the buffer large enough to hold all the
results you expect.

Error codes

qbiECinvalidQueryHandle
The query objecthandle you specified does not reference a valid query
obje.

Examples
Run the query FSHAVGCOL against the cataloged images in the picture
column of the employee table. Make sure that no more than six images are
returned:
#include <dmbqbapi.h>

rc = QbQueryNameSearch("fshavgcol",
"employee", "picture",
6, 0, qbiArray, &count, &returns);

QbQueryNameSearch

Chapter 16. Application programming interfaces 449

QbQueryRemoveFeature

Image Audio Video

X

Removes a query feature from the query object and deallocates any associated
memory. The following features are supplied with the Image Extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryRemoveFeature(

QbQueryHandle qObj,
char *featureName
);

Parameters

qObj (in)
The handle of the query object.

featureName (in)
The name of the feature to be removed.

Error codes

qbiECinvalidQueryHandle
The query object handle you specified does not reference a valid
query object.

qbiECinvalidFeatureClass
The feature you specified is not a valid name format.

QbQueryRemoveFeature

450 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

qbiECfeatureNotPresent
The feature you specified is not a member of the query object.

Examples
Remove the QbColorFeatureClass feature from the query object identified by
the handle qoHandle:
#include <dmbqbapi.h>

rc = QbQueryRemoveFeature(qoHandle,
"QbColorFeatureClass");

QbQueryRemoveFeature

Chapter 16. Application programming interfaces 451

QbQuerySearch

Image Audio Video

X

Searches the QBIC catalog for images that match the search criteria contained
in a query object. The query object is identified by a query object handle. The
results, which include the image handles and their QBIC search scores, are
stored in a result array in the client memory. They are sorted according to
their scores.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQuerySearch(

QbQueryHandle qObj,
char *tableName,
char *columnName,
SQLINTEGER maxReturns,
QbQueryScope* scope,
SQLINTEGER resultType,
SQLINTEGER* count,
QbResult* returns
);

Parameters

qObj (in)
The handle of the query object.

tableName (in)
The name of the table containing the column of images you want to
search.

columnName (in)
The name of the image column. The column must be enabled for
image data.

QbQuerySearch

452 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

maxReturns (in)
The maximum number of images you want returned.

scope (in) (Reserved)
Must be set to 0 (NULL).

resultType (in) (Reserved)
Must be set to qbiArray.

count (out)
The pointer to the number of images returned. If zero is returned,
make sure the image column is cataloged for all the features in the
query object.

returns (out)
The pointer to the array of QbResult structures that hold the returned
results. Make sure that you allocate the buffer large enough to hold all
the results that you expect.

Error codes

qbiECinvalidQueryHandle
The query object handle you specified does not reference a valid
query object.

Examples
Query the cataloged images in the picture column of the employee table.
Make sure that no more than six images are returned:
#include <dmbqbapi.h>

rc = QbQuerySearch(qHandle, "employee",
"picture", 6, 0, qbiArray,
&count, &returns);

QbQuerySearch

Chapter 16. Application programming interfaces 453

QbQuerySetFeatureData

Image Audio Video

X

Sets the source of the image data for a feature in a query object. You can set
the data source only after adding a feature to a query object. The data source
can be an image in a user table, file, or workstation buffer. You can use a
client file or workstation buffer as a data source only in a non-partitioned
database environment. In addition, you can explicitly specify data for the
average color or histogram color feature.

Use the QbQueryStringSearch following setting the source for image data in a
server file using QbQuerySetFeatureData. QbQuerySearch does not use the
source for image data from a server file set with QbQuerySetFeatureData.

The following features are supplied with the Image extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQuerySetFeatureData(

QbQueryHandle qObj,
char *featureName,
QbImageSource* imgSource
);

Parameters

qObj (in)
The handle of the query object.

QbQuerySetFeatureData

454 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|
|

|
|
|

|

featureName (in)
The name of the feature to be set.

imgSource (in)
The pointer to the image source structure. If you specify 0 (NULL) for
imgSource, it means that the information should not be changed in
the feature. See “Using data source structures” on page 150 for more
information.

Error codes

qbiECinvalidQueryHandle
The query object handle you specified does not reference a valid
query object.

qbiECunknownFeatureClass
The feature you specified is not a recognized feature class name.

qbiECinvalidFeatureClass
The feature you specified is not a valid name format.

qbiECfeatureNotPresent
The feature you specified is not a member of the query object.

qbiECfileUnreadable
The image source file cannot be found or read.

Examples
Set the data source for the histogram color feature in a query object. The data
source for the feature is a file on the client workstation:
#include <dmbqbapi.h>

QbQueryHandle qoHandle;
QbImageSource imgSource;

imgSource.sourceType = qbiSource_ClientFile;
strcpy(featureName, "QbColorHistogramFeatureClass");
strcpy(imgSource.clientFile, "/tmp/image.gif");

rc = QbQuerySetFeatureData(qoHandle, featureName, &imgSource);

QbQuerySetFeatureData

Chapter 16. Application programming interfaces 455

QbQuerySetFeatureWeight

Image Audio Video

X

Sets the weight of the specified feature in a query object.

Authorization
None.

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQuerySetFeatureWeight(

QbQueryHandle qObj,
sqldouble* weight
);

Parameters

qObj (in)
The handle of the query object.

weight (out)
The pointer to the variable to set to the feature weight.

Error codes

qbiECinvalidQueryHandle
The query object handle that you specified does not reference a valid
query object.

Examples
Set the weight for the average color feature in a query object identified by the
handle qoHandle:
#include <dmbqbapi.h>

weight=2.0
rc = QbQuerySetFeatureWeight(qoHandle, "QbColorFeatureClass", &weight);

QbQuerySetFeatureWeight

456 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

QbQueryStringSearch

Image Audio Video

X

Searches the QBIC catalog for images that match the search criteria contained
in a query string. The results, which include the image handles and their
QBIC search scores, are stored in a result array in the client memory. They are
sorted according to their scores.

Authorization
Select

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqqry.lib libdmbqqry.a (AIX)
libdmbqqry.sl (HP-UX)
libdmbqqry.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbQueryStringSearch(

char *queryString,
char *tableName,
char *columnName,
SQLINTEGER maxReturns,
QbQueryScope* scope,
SQLINTEGER resultType,
SQLINTEGER* count,
QbResult* returns
);

Parameters

queryString (in)
The query string.

tableName (in)
The name of the table containing the column of images you want to
search.

columnName (in)
The name of the image column. The column must be enabled for
image data.

QbQueryStringSearch

Chapter 16. Application programming interfaces 457

|

maxReturns (in)
The maximum number of images you want returned.

scope (in) (Reserved)
Must be set to 0 (NULL).

resultType (in) (Reserved)
Must be set to qbiArray.

count (out)
The pointer to the number of images returned. If zero is returned,
make sure the image column is cataloged for all the features in the
query string.

returns (out)
The pointer to the array of QbResult structures that hold the returned
results. Make sure you allocate the buffer large enough to hold all the
results you expect.

Error codes

qbiECinvalidQueryString
The query string you specified is invalid.

Examples
Query the cataloged images in the picture column of the employee table.
Make sure that no more than six images are returned:
#include <dmbqbapi.h>

rc = QbQueryStringSearch("QbColorFeatureClass color=<255, 0, 0>"
"employee",
"picture", 6, 0, qbiArray,
&count, &returns);

QbQueryStringSearch

458 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbReCatalogColumn

Image Audio Video

X

Reanalyze all existing images in the opened QBIC catalog for a new feature.
The default parameters of the features are used. Use this API when you add a
new feature to a catalog that already has images.

Authorization
Update, Insert

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbReCatalogColumn (

QbCatalogHandle cHdl
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECInvalidCatalog
The specified handle or table column is not valid for the catalog.

qbicECCatalog Errors
Errors occurred while cataloging individual images, these error were
logged. Rollback not incurred.

qbicECImageNotFound
The image cannot be found or accessed.

qbicECCatalogRO
The catalog is read-only.

QbReCatalogColumn

Chapter 16. Application programming interfaces 459

|
|

qbicECSQLError
An SQL error occurred.

Examples
Reanalyze all existing images in the opened QBIC catalog for a new feature:
#include <dmbqbapi.h>

rc = QbReCatalogColumn(CatHdl);

QbReCatalogColumn

460 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbRemoveFeature

Image Audio Video

X

Deletes the specified feature from the opened catalog.

Authorization
Alter

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbRemoveFeature(

QbCatalogHandle cHdl,
char *featureName
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

featureName (in)
The name of the feature.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECCatalogReadOnly
The catalog is open for read only.

qbicECFeatureNotFound
The feature is not in the catalog.

qbiECinvalidFeatureClass
The feature you specified is not a valid name format.

QbRemoveFeature

Chapter 16. Application programming interfaces 461

|
|

Examples
Remove the QbColorHistogramFeatureClass feature from the catalog
identified by the handle CatHdl:
#include <dmbqbapi.h>

rc=QbRemoveFeature(CatHdl,
"QbColorHistogramFeatureClass");

QbRemoveFeature

462 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbSetAutoCatalog

Image Audio Video

X

Automatically catalogs images that are imported into an image column. The
API adds an entry for each image to the feature table, and then analyzes the
images. When the API analyzes the image, it creates image data and stores it
in the image’s entry in the feature table.

If you don’t set auto-cataloging on, use the QbCatalogColumn or
QbCatalogImage API to catalog images after you add them to the image
column.

Authorization
Alter

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbSetAutoCatalog(

QbCatalogHandle cHdl
SQLINTEGER autoCatalog
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

autoCatalog (in)
Indicates whether images added to the image column will be
automatically added to the feature tables and analyzed. Specify 1 to
set auto-cataloging on or 0 to set it off.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

QbSetAutoCatalog

Chapter 16. Application programming interfaces 463

|
|

Examples
Set auto-cataloging on for the catalog identified by the handle CatHdl:
#include <dmbqbapi.h>

rc=QbSetAutoCatalog(CatHdl, 1);

QbSetAutoCatalog

464 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbUncatalogImage

Image Audio Video

X

Removes an image from a catalog. The image handle must be from the image
column that is associated with the opened QBIC catalog. The image will be
removed from the opened catalog. The corresponding row in the image
attribute table indicates the image is not cataloged.

Authorization
Delete

Library file

OS/2 and Windows AIX, HP-UX, and Solaris

dmbqbapi.lib libdmbqbapi.a (AIX)
libdmbqbapi.sl (HP-UX)
libdmbqbapi.so (Solaris)

Include file
dmbqbapi.h

Syntax
SQLRETURN QbUncatalogImage(

QbCatalogHandle cHdl,
char *imgHandle
);

Parameters

cHdl (in)
A pointer to the handle of the catalog.

imgHandle (in)
The handle of the image. You can retrieve this handle from the user
table.

Error codes

qbicECIvalidHandle
The catalog handle is not valid.

qbicECImageNotFound
The image cannot be found or accessed.

qbicECCatalogRO
The catalog is read-only.

QbUncatalogImage

Chapter 16. Application programming interfaces 465

|
|

Examples
Remove the image identified by the handle Img_hdl from the catalog
identified by the handle CatHdl:
#include <dmbqbapi.h>

rc=QbUncatalogImage(CatHdl, Img_hdl);

QbUncatalogImage

466 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 17. Administration commands for the client

This chapter describes how to enter DB2 extender administration commands
for the client. It also gives reference information about each DB2 extender
administration command for the client.

Entering DB2 extender administration commands

You can submit DB2 extender administration commands to the db2ext
command-line processor in interactive mode or in command mode. Interactive
mode is characterized by the db2ext prompt. In this mode, you can enter only
DB2 extender administration commands. In command mode, you enter
commands from the operating system command prompt; you can enter DB2
extender commands as well as DB2 commands and operating system
commands.

Do not enter DB2 extender commands from the DB2 command prompt.

To start the db2ext command-line processor in interactive mode, do the
following:

Client Action

OS/2 Double-click on the DB2EXT Command Line
Processor icon in the DB2 Extenders folder, or
enter the DB2EXT command from the OS/2
command prompt.

AIX, HP-UX, Solaris Enter the DB2EXT command from the operating
system command prompt.

Windows Double-click on the DB2EXT Command Line
Processor icon in the DB2 Extenders folder, or
enter the DB2EXT command from the DB2
command window.

To end interactive mode, enter the quit or terminate command. The quit
command ends interactive mode but maintains the current connection to DB2.
The terminate command ends interactive mode and drops the current
connection to DB2.

To submit DB2 extender commands in command mode, enter them from the
operating system command line. You must precede each DB2 extender
command with db2ext, for example:
db2ext enable database for db2image using mydataspace, myindxspace, mylongspace

© Copyright IBM Corp. 1996, 2000 467

Getting online help for DB2 extender commands

To get online help for all the DB2 extender commands, enter:
db2ext ?

468 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

ADD QBIC FEATURE

Image Audio Video

X

Creates a feature table for the specified feature in the current catalog. Existing
images in the catalog are not automatically reanalyzed by the Image Extender.

Authorization
Alter, Control, SYSADM, DBADM

Command syntax

�� ADD QBIC FEATURE feature_name ��

Command parameters

feature_name
The name of the feature you are adding to the QBIC catalog. The
following features are supplied with the Image extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Examples
Add the QbColorFeatureClass feature to the currently opened catalog:
add qbic feature qbcolorfeatureclass

Usage notes
Connect to the database before using this command.

The catalog must be open.

ADD QBIC FEATURE

Chapter 17. Administration commands for the client 469

CATALOG QBIC COLUMN

Image Audio Video

X

Catalogs the images in the image column and updates the currently open
QBIC catalog with feature data. You can update the catalog for all the images
in the image column or for only the new images added to the image column
since the last time the catalog was analyzed.

Authorization
Insert, Control, SYSADM, DBADM

Command syntax

�� CATALOG QBIC COLUMN
FOR NEW

ALL

��

Command parameters
None.

Examples
Catalog the new images in to the current catalog, that is, the images that have
not been cataloged:
catalog qbic column for new

Usage notes
When NEW is specified, the Image Extender updates the catalog only with
the images that have not been cataloged. When ALL is specified, the Image
Extender analyzes every image in the image column for the current catalog.
NEW is the default.

Connect to the database before using this command.

The catalog must be open.

CATALOG QBIC COLUMN

470 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

CLOSE QBIC CATALOG

Image Audio Video

X

Closes a QBIC catalog.

Authorization
None.

Command syntax

�� CLOSE QBIC CATALOG ��

Command parameters
None.

Examples
Close the current catalog:
close qbic catalog

Usage notes
The QBIC catalog must be open.

CLOSE QBIC CATALOG

Chapter 17. Administration commands for the client 471

CONNECT

Image Audio Video

X X X

Connects to a database. The extenders require an independent connection to
the database, separate from the DB2 connection.

Authorization
Connect

Command syntax

�� CONNECT TO db_name
USER user_ID USING password

��

�� CONNECT RESET ��

Command parameters

db_name
The name of the database.

user_ID
The user ID authorized to connect to the database.

password
The password for the user ID.

RESET
Disconnects the database after committing any pending changes.

Examples
Connect to the PERSONNL database. The user ID is anita and the password is
anitapas:
connect to personnl user anita

using anitapas

Usage notes
The database is connected in SHARE mode.

Run this command before running any other extender commands.

CONNECT

472 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

CREATE QBIC CATALOG

Image Audio Video

X

Creates a QBIC catalog in the current database for the specified DB2IMAGE
column. The extender automatically generates the catalog name.

Authorization
Alter, Control, SYSADM, DBADM

Command syntax

�� CREATE QBIC CATALOG table_name column_name OFF
ON

��

Command parameters

table_name
The name of the DB2IMAGE enabled table.

column_name
The name of the DB2IMAGE enabled column.

OFF Images are manually cataloged.

ON Images are automatically cataloged.

tablespace_name
The table space specification and index options for the QBIC Catalog.
The specification has four parts:
v The name of the table space for the catalog tables that contain

feature data. The table space must be specified. The table space
should be a segmented table space.

v For the index created on the catalog tables, any combination of the
using-block, free block, gbpcache-block, or index options for type 2
non-partitioned indexes. This specification is optional. You get
defaults if you do not specify this part.

v The name of the table space for the catalog log table. The table
space can be a simple table space or a segmented table space. This
specification is optional. If you do not specify a table space for the
log table, the table space specified for the feature data tables is
used.

v For the index created on the log data table, any combination of the
using-block, free block, gbpcache-block, or index options for type 2
non-partitioned indexes. This specification is optional. You get
defaults if you do not specify this part.

CREATE QBIC CATALOG

Chapter 17. Administration commands for the client 473

Examples
Create a QBIC catalog for the picture column in the employee table, with
auto-cataloging set ON:
create qbic catalog employee picture on

Usage notes
If you specify ON, the images imported into the column are automatically
cataloged into the associated QBIC catalog. The default is OFF.

Connect to the database before using this command.

CREATE QBIC CATALOG

474 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DELETE QBIC CATALOG

Image Audio Video

X

Deletes a QBIC catalog, including all of the QBIC-search support data.

Authorization
Alter, Control, SYSADM, DBADM

Command syntax

�� DELETE QBIC CATALOG table_name column_name ��

Command parameters

table_name
The name of the DB2IMAGE enabled table.

column_name
The name of the DB2IMAGE enabled column.

Examples
Delete the catalog associated with the picture column in the employee table:
delete qbic catalog employee picture

Usage notes
Connect to the database before using this command.

DELETE QBIC CATALOG

Chapter 17. Administration commands for the client 475

DISABLE COLUMN

Image Audio Video

X X X

Disables the specified column from storing the specified media data.

Authorization
SYSADM, DBADM, Control, Alter

Command syntax

�� DISABLE COLUMN table_name col_name FOR extender_name ��

Command parameters

table_name
The name of the table in the current database.

col_name
The name of the column you want to disable.

extender_name
The name of the extender for which you want to disable the column.
Valid extender names are db2image, db2audio, and db2video.

Examples
Disable the column photo in table employee so that it cannot hold image data:
disable column employee photo for db2image

Usage notes
Connect to the database before using this command.

When you disable a column:
v The column can not store data for the specified extender. This does not

affect whether other columns in the table are enabled or disabled for
multimedia data types.

v The contents of the column entries are set to NULL and the corresponding
rows in the administrative tables are deleted.

v The triggers associated with the column are dropped.

DISABLE COLUMN

476 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DISABLE DATABASE

Image Audio Video

X X X

Disables the current database from storing media data.

Authorization
SYSADM, DBADM

Command syntax

�� DISABLE DATABASE FOR "

,

extender_name ��

Command parameters

extender_name
The name of the extender for which you want to disable the current
database. Valid extender names are db2image, db2audio, and
db2video.

Examples
Disable the current database from holding image data:
disable database for db2image

Usage notes
Connect to the database before using this command.

When you disable a database, the system:
v Disables all the tables that are enabled for the specified extender only.
v Drops the UDFs administrative support tables for the specified extender.

DISABLE DATABASE

Chapter 17. Administration commands for the client 477

DISABLE TABLE

Image Audio Video

X X X

Disables the specified table from storing media data.

Authorization
SYSADM, DBADM, Control, Alter

Command syntax

�� DISABLE TABLE table_name FOR "

,

extender_name ��

Command parameters

table_name
The name of the table you want to disable in the current database.

extender_name
The name of the extender for which you want to disable the table.
Valid extender names are db2image, db2audio, and db2video.

Examples
Disable the table employee from holding image data:
disable table employee for db2image

Usage notes
Connect to the database before using this command.

When you disable a table, the system:
v Disables all the columns in the table that are enabled for the specified

extender.
v Drops the administrative support tables associated with the table.

DISABLE TABLE

478 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DISCONNECT SERVER AT NODENUM (EEE Only)

Image Audio Video

X X X

Disconnects the server from the specified node on all databases.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� DISCONNECT SERVER AT NODENUM node_number ��

Command parameters

node_number
The node you want to disconnect from the server.

Examples
Disconnect the server from all databases at node number 2:
disconnect server at nodenum 2

Usage notes
To disconnect the server from all databases on all nodes, use the DMBSTOP
command.

DISCONNECT SERVER AT NODENUM

Chapter 17. Administration commands for the client 479

DISCONNECT SERVER FOR DATABASE (EEE Only)

Image Audio Video

X X X

Disconnects the server from all nodes of the specified database.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� DISCONNECT SERVER FOR DATABASE database_name ��

Command parameters

database_name
The database you want to disconnect from the server.

Examples
Disconnect the server from the database called MY_DATABASE:
disconnect server for database my_database

Usage notes
To disconnect the server from all databases on all nodes, use the DMBSTOP
command.

DISCONNECT SERVER FOR DATABASE

480 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DISCONNECT SERVER FOR DATABASE AT NODENUM (EEE Only)

Image Audio Video

X X X

Disconnects the server from the specified database at the specified node.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� DISCONNECT SERVER FOR DATABASE database_name AT NODENUM node_number ��

Command parameters

database_name
The database you want to disconnect from the server.

node_number
The node you want to disconnect from the server.

Examples
Disconnect the server from the database called MY_DATABASE at node
number 2:
disconnect server for database my_database at nodenum 2

Usage notes
To disconnect the server from all databases on all nodes, use the DMBSTOP
command.

DISCONNECT SERVER FOR DATABASE AT NODENUM

Chapter 17. Administration commands for the client 481

ENABLE COLUMN

Image Audio Video

X X X

Enables the specified column to store media data.

Authorization
SYSADM, DBADM, Control, Alter

Command syntax

�� ENABLE COLUMN table_name col_name FOR extender_name ��

Command parameters

table_name
The name of the table in the current database.

col_name
The name of the column you want to enable.

extender_name
The name of the extender for which you want to enable the table.
Valid extender names are db2image, db2audio, and db2video.

Examples
Enable the column photo in table employee to hold image data:
enable column employee photo for db2image

Usage notes
Connect to the database before using this command.

ENABLE COLUMN

482 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

ENABLE DATABASE

Image Audio Video

X X X

Enables the current database to store media data using the specified table
space.

Authorization
SYSADM, SYSCTRL, DBADM

Command syntax

�� ENABLE DATABASE FOR "

,

extender_name
USING tablespace_name

��

Command parameters

extender_name
The name of the extender for which you want to enable the current
database. Valid extender names are db2image, db2audio, and
db2video.

tablespace_name
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space name has three
parts as follows: datats, indexts, longts, where datats is the name of the
table space in which metadata tables are created; indexts is the name
of the table space in which indexes on the metadata tables are created;
and longts is the name of the table space in which values of long
columns in the metadata tables (such as those that contain LONG
VARCHAR and LOB data types) are stored. If you provide a null
value for any part of the table space name, the name of the default
table space for that part is used. The table space specified should be
defined on a nodegroup that includes all the nodes in the partitioned
database system.

Examples
Enable the current database to hold image data:
enable database for db2image using mydataspace, myindxspace, mylongspace

Usage notes
Connect to the database before using this command.

If the table space is not specified, the system uses the USERSPACE1 table
space for the administrative tables.

ENABLE DATABASE

Chapter 17. Administration commands for the client 483

ENABLE TABLE

Image Audio Video

X X X

Enables the specified table to store media data using the specified table space.

Authorization
SYSADM, DBADM, Control, Alter

Command syntax

�� ENABLE TABLE table_name FOR extender_name "

,

USING tablespace_name
��

Command parameters

table_name
The name of the table in the current database you want to enable.

extender_name
The name of the extender for which you want to enable the table.
Valid extender names are db2image, db2audio, and db2video.

tablespace_name
The name of the table space, which is a collection of containers into
which administrative tables are stored. The table space specification
has three parts as follows: datats, indexts, longts, where datats is the
table space in which metadata tables are created; indexts is the table
space in which indexes on the metadata tables are created; and longts
is the table space in which values of long columns in the metadata
tables (such as those that contain LONG VARCHAR and LOB data
types) are stored. If you provide a null value for any part of the table
space specification, the default table space for that part is used.

If you provide a null value for any part of the table space
specification, the default table space for that part is used.

EEE Only: The tablespace specified should be in the same nodegroup
as the user table.

Examples
Enable the table employee to hold image data:
enable table employee for db2image

using mydataspace, myindxspace, mylongspace

ENABLE TABLE

484 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Enable the table employee to hold image data. Use default table spaces:
enable table employee for db2image

Usage notes
Connect to the database before using this command.

If the table space is not specified, the system uses the table space defined
when the current database was enabled.

ENABLE TABLE

Chapter 17. Administration commands for the client 485

GET EXTENDER STATUS

Image Audio Video

X X X

Displays the names of the extenders, if any, for which a column, table, or the
current database is enabled.

Authorization
None

Command syntax

�� GET EXTENDER STATUS
IN table_name
COLUMN table_name col_name

��

Command parameters

table_name
The name of the table in the current database.

col_name
The name of the column.

Examples
Display the names of the enabled extenders in the database:
get extender status

Display the status of the table employee:
get extender status in employee

Display the status of the column ADDRESS in the table employee:
get extender status column employee address

Usage notes
Connect to the database before using this command.

GET EXTENDER STATUS

486 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

GET INACCESSIBLE FILES

Image Audio Video

X X X

List all media files that are inaccessible and referenced by a table, tables with
a specific qualifier, or all the tables in the current database.

Authorization
For all tables in the current database, that is, if you do not specify USER or
IN: SYSADM, SYSCTRL, SYSMAINT, DBADM

For a particular table (if you specify IN) or tables that belong to a qualifier (if
you specify USER): Select

Command syntax

�� GET INACCESSIBLE FILES
USER user_ID
IN table_name

FOR "

,

extender_name ��

Command parameters

user_ID
The qualifier of the tables in the current database whose inaccessible
files you want to list.

table_name
The name of the table in the current database whose inaccessible files
you want to list.

extender_name
The name of the extender. Valid extender names are db2image,
db2audio, and db2video.

Examples
List all the image files referenced by tables in the database, but are
inaccessible:
get inaccessible files

for db2image

List all the image files referenced in tables with the qualifier anita, but are
inaccessible:
get inaccessible files

user anita for db2image

GET INACCESSIBLE FILES

Chapter 17. Administration commands for the client 487

List all the image files referenced by entries in the employee table, but are
inaccessible:
get inaccessible files

in employee FOR db2image

Usage notes
Connect to the database before using this command.

If you specify a table the command lists inaccessible files for that table. If you
specify a qualifier, the command lists inaccessible files for only those tables
with that qualifier. If you specify neither, the command lists inaccessible files
for all the tables in the current database.

GET INACCESSIBLE FILES

488 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

GET QBIC CATALOG INFO

Image Audio Video

X

Returns the following information about the currently opened catalog:
v The name of the user table and the image column with which the catalog is

associated.
v The names of the features in the catalog.
v The number of features in the catalog.
v Whether auto-analyzing is on.

Authorization
Select, Control, SYSADM, DBADM

Command syntax

�� GET QBIC CATALOG INFO ��

Command parameters
None.

Examples
Get information about the currently opened QBIC catalog:
get qbic catalog info

Usage notes
Connect to the database before using this command.

The catalog must be open.

GET QBIC CATALOG INFO

Chapter 17. Administration commands for the client 489

GET REFERENCED FILES

Image Audio Video

X X X

List all media files and the column names that reference them in a table,
tables with a specific qualifier, or all the tables in the current database.

Authorization
For all tables in the current database, that is, if you do not specify USER or
IN: SYSADM, SYSCTRL, SYSMAINT, DBADM

For a particular table (if you specify IN) or tables that belong to a qualifier (if
you specify USER): Select

Command syntax

�� GET REFERENCED FILES
USER user_ID
IN table_name

FOR "

,

extender_name ��

Command parameters

user_ID
The qualifier of the tables in the database whose referenced files you
want to list. The command searches only tables with that qualifier.

table_name
The name of the table in the current database whose referenced files
you want to list. The command searches that table only.

extender_name
The name of the extender. Valid extender names are db2image,
db2audio, and db2video.

Examples
List all the image files referenced by table entries in all the tables in the
database:
get referenced files

for db2image

List all the image files referenced by entries in tables with the qualifier anita:
get referenced files

user anita for db2image

List all the image files referenced by entries in the employee table:

GET REFERENCED FILES

490 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

get referenced files
in employee for db2image

Usage notes
Connect to the database before using this command.

If you do not specify any parameters, the command searches all the tables in
the database.

GET REFERENCED FILES

Chapter 17. Administration commands for the client 491

GET SERVER STATUS

Image Audio Video

X X X

Displays the extender server status for the current database or for all
databases.

EEE Only If a node is specified, the command displays the extender server
status—for the current database or for all databases—at that node only.

Authorization
None

Command syntax

�� GET SERVER STATUS ALL NODENUM node_number ��

Command parameters

ALL Displays the status of all databases.

node_number
the number of the node. The command displays the status of this
node. (EEE Only)

Examples
Display the status of the extender server for the current database:
get server status

Display the status of the extender server for all databases:
get server status all

Display the status of the extender server for node number 2 for all databases:
get server status all nodenum 2

Usage notes
Connect to the database before using this command.

If you do not specify any parameters, the command displays the status of all
nodes for the current database that are listed in the db2nodes.cfg file.

GET SERVER STATUS

492 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

OPEN QBIC CATALOG

Image Audio Video

X

Opens the catalog for the specified DB2IMAGE column. The database will
always try to open the catalog with update mode. If the catalog is already in
update mode, the catalog will be opened in read mode.

Authorization
Connect

Command syntax

�� OPEN QBIC CATALOG table_name column_name ��

Command parameters

table_name
The name of the DB2IMAGE enabled table.

column_name
The name of the DB2IMAGE enabled column.

Examples
Open the QBIC catalog for the picture column in the employee table:
open qbic catalog employee picture

Usage notes
Connect to the database before using this command.

This command will cause any open catalog to close.

OPEN QBIC CATALOG

Chapter 17. Administration commands for the client 493

QUIT

Image Audio Video

X X X

Shuts down the db2ext command-line processor for command entry in
interactive mode. The connection to DB2 is maintained, so you can still
submit commands to the db2ext command-line processor in command mode.

Authorization
None

Command syntax

�� QUIT ��

Command parameters
None.

Examples
Shut down the command-line interface for interactive mode:
quit

Usage notes
QUIT maintains the connection to the database.

QUIT

494 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

RECONNECT SERVER AT NODENUM (EEE Only)

Image Audio Video

X X X

Reconnects the server to the specified node on all databases.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� RECONNECT SERVER AT NODENUM node_number ��

Command parameters

node_number
The node you want to reconnect to the server.

Examples
Reconnect the server to all databases at node number 2:
reconnect server at nodenum 2

Usage notes
To reconnect the server from all databases on all nodes, use the DMBSTART
command.

RECONNECT SERVER AT NODENUM

Chapter 17. Administration commands for the client 495

RECONNECT SERVER FOR DATABASE (EEE Only)

Image Audio Video

X X X

Reconnects the server to all nodes of the specified database.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� RECONNECT SERVER FOR DATABASE database_name ��

Command parameters

database_name
The database you want to reconnect to the server.

Examples
Reconnect the server to the database called MY_DATABASE:
disconnect server for database my_database

Usage notes
To reconnect the server to all databases on all nodes, use the DMBSTART
command.

RECONNECT SERVER FOR DATABASE

496 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

RECONNECT SERVER FOR DATABASE AT NODENUM (EEE Only)

Image Audio Video

X X X

Reconnects the server to the specified database at the specified node.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� RECONNECT SERVER FOR DATABASE database_name AT NODENUM node_number ��

Command parameters

database_name
The database you want to reconnect to the server.

node_number
The node you want to reconnect to the server.

Examples
Reconnect the server to the database called MY_DATABASE at node number
2:
reconnect server for database my_database at nodenum 2

Usage notes
To reconnect the server to all databases on all nodes, use the DMBSTART
command.

RECONNECT SERVER FOR DATABASE AT NODENUM

Chapter 17. Administration commands for the client 497

REDISTRIBUTE NODEGROUP (EEE Only)

Image Audio Video

X

Redistributes extender data when a node is added to or removed from a
nodegroup, or when a new partition map is established for a nodegroup.

Authorization
SYSADM, DBADM

Command syntax

�� REDISTRIBUTE NODEGROUP nodegroup
CONTINUE

��

Command parameters

nodegroup
The name of the nodegroup you want to redistribute.

CONTINUE
If the redistribution process returns an error, you can re-run the
command with or without the CONTINUE parameter according to the
instructions provided by the command response. This option instructs
the system to continue from where it stopped, rather than starting
from the beginning.

Examples
Redistribute the nodegroup called my_nodegroup:
redistribute nodegroup my_nodegroup

Usage notes
Connect to the database before using this command.

The CONTINUE parameter should not be used the first time you run the
REDISTRIBUTE NODEGROUP command following DB2’s REDISTRIBUTE
command. If it is used the first time, then an error is logged and
redistribution starts from the beginning.

To maintain data integrity, you must redistribute one nodegroup at a time.
Wait until one nodegroup has finished redistribution before starting another.

If REDISTRIBUTE NODEGROUP fails, you can refer to the file ″redist.log″ for
a detailed explanation in one of the following directories:
v Unix: /<home-instance>/dmb/redist

REDISTRIBUTE NODEGROUP

498 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

v Windows:
\\<instance_owning_machine>\DB2<instance_name>\<instance_name>\dmb\redist

REDISTRIBUTE NODEGROUP

Chapter 17. Administration commands for the client 499

REMOVE QBIC FEATURE

Image Audio Video

X

Deletes the feature table of the specified feature from the opened catalog.

Authorization
Alter, Control, SYSADM, DBADM

Command syntax

�� REMOVE QBIC FEATURE feature_name ��

Command parameters
feature_name

The name of the feature you are removing from the QBIC catalog. The
following features are supplied with the Image extender:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Examples
Remove the QbColorFeatureClass feature from the currently opened catalog:
remove qbic feature qbcolorfeatureclass

Usage notes
Connect to the database before using this command.

The catalog must be open.

REMOVE QBIC FEATURE

500 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

REORG

Image Audio Video

X X X

Clean up the administrative tables (administrative table and the attribute
table) associated with a specific table, tables with a specific qualifier, or all
tables in the current database.

Authorization
For a specific table (if you run REORG TABLE), or tables with a specific
qualifier (if you run REORG DATABASE): SYSADM, SYSCTRL, SYSMAINT,
DBADM, Control

For all tables in the database (if you run REORG DATABASE): SYSADM,
SYSCTRL, SYSMAINT, DBADM

Command syntax

�� REORG DATABASE
USER user_ID

TABLE table_name

FOR "

,

extender_name ��

Command parameters

user_ID
The qualifier of the tables.

table_name
The name of the table in the current database whose administrative
tables you want to clean up.

extender_name
The name of the extender. Valid extender names are db2image,
db2audio, and db2video.

Examples
Reorganize and clean up the image administrative tables for the current
database:
reorg database for db2image

Reorganize and clean up the image administrative tables in all tables with the
qualifier anita:
reorg database user anita for db2image

Reorganize and clean up the image administrative tables for the employee
table:

REORG

Chapter 17. Administration commands for the client 501

reorg table employee for db2image

Usage notes
Connect to the database before using this command.

REORG

502 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

SET QBIC AUTOCATALOG

Image Audio Video

X

Automatically catalogs images when they are imported into a column. The
images are added to the QBIC catalog associated with the column.

Authorization
Alter, Control, SYSADM, DBADM

Command syntax

�� SET QBIC AUTOCATALOG ON
OFF

��

Command parameters
None.

Examples
Set auto-cataloging on:
set qbic autocatalog on

Usage notes
The QBIC catalog must be open.

SET QBIC AUTOCATALOG

Chapter 17. Administration commands for the client 503

START SERVER (Non-EEE Only)

Image Audio Video

X X X

Starts the extender server for the current database.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� START SERVER ��

Command parameters
None.

Examples
Start the extender server for the current database:
start server

Usage notes
Connect to the database before using this command.

START SERVER

504 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

STOP SERVER (Non-EEE Only)

Image Audio Video

X X X

Stops the extender server for the current database.

Authorization
SYSADM, SYSCTRL, SYSMAINT, DBADM

Command syntax

�� STOP SERVER ��

Command parameters
None.

Examples
Stop the extender server for the current database:
stop server

Usage notes
Connect to the database before using this command.

STOP SERVER

Chapter 17. Administration commands for the client 505

TERMINATE

Image Audio Video

X X X

Shuts down the db2ext command-line processor and drops the connection to
DB2.

Authorization
None

Command syntax

�� TERMINATE ��

Command parameters
None.

Examples
Shut down the db2ext command-line processor:
quit

Usage notes
TERMINATE drops the connection to the database.

TERMINATE

506 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 18. Administration commands for the server

The commands in this chapter are run on the command line of the server’s
operating system. Do not run them from the DB2 command line or the db2ext
command line. Run the DMBSTART command whenever you shut down and
restart your server system.

EEE Only: You can also issue the DMBSTART and DMBSTOP server
commands in a multipartition database environment. When you issue a server
command in a multipartition database environment, the command applies to
all nodes, unless you include a node number, in which case the command
applies only to the specified node.

EEE Only: The DMBSTAT command cannot be run in a multipartition
environment. Server status can be checked in a multipartition environment by
running the client command GET SERVER STATUS ALL.

© Copyright IBM Corp. 1996, 2000 507

|

DMBICRT

Image Audio Video

X X X

Creates a DB2 extenders instance. You should create multiple instances of DB2
extenders server if you have multiple instances of DB2. On UNIX, you create
a client instance when you install the DB2 extenders client; creating the client
instance sets up your environment for using the DB2 extenders.

Authorization
SYSADM

On UNIX, you must have root authority.

Command syntax
In a non-partitioned database environment:

�� DMBICRT instanceName
–s client

��

In a partitioned database environment in UNIX:

�� DMBICRT instanceName
–s client

–q: dataPath ��

In a partitioned database environment in Windows:

�� DMBICRT instanceName –q: dataPath –r: start_port , end_port ��

Command parameters

instanceName Name of an existing DB2 instance. If a DB2 instance does not
exist with this name, you are prompted whether to create it.

–s client Specify to create a client only instance. When you use this
parameter, instanceName is the user ID of the client. Creating a
client instance sets up the environment for the client.(UNIX
Only)

dataPath The name of a shared directory or file system; the directory
must exist on all nodes. This is set in the DB2MMDATAPATH
environment variable in UNIX and in the registry in
Windows. (EEE Only)

DMBICRT

508 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

||||

|||
|
|
|
|
|

|

|

|

|

|

||||||||||||||||

|

|

||||||||||||||||||||

|

|

|||||||||||||||||||||

|

|

||
|

||
|
|
|

||
|
|
|

start_port, end_port
Range for the TCP/IP ports to use. The port range must be
equal to or greater than the number of nodes you are working
with. The port numbers are written to the Windows registry.
(Windows EEE Only)

Examples
Create an instance of DB2 extenders server for the DB2 instance DEVINST in
a non-partitioned database environment:
dmbicrt devinst

Usage notes
The DMBICRT command creates a DB2 extender instance directory for the
files used by the instance. This directory is named:
v install_directory\INSTANCE\instance_name, where install_directory is the

directory where you installed DB2 extenders (Windows, OS/2)

v INSTHOME/dmb , where INSTHOME is the home directory of the instance
owner (UNIX)

If a DB2 instance with the name specified does not exist when you use the
DMBICRT command, you are prompted to create it.

EEE Only:

Although you can run DMBICRT from the root user ID of any
participating node, it is recommended that you create all DB2 extenders
server instances using the same node. The node should be the same one
used to create the DB2 instance and where the DB2 instance directory
resides. If you use a different node to create the DB2 extenders server
instance, the list of instances stored on any node may not be complete.
The shared directory or file system specified as dataPath is saved as the
value of the DB2MMDATAPATH environment variable in
$INSTHOME/dmb/dmbprofile in UNIX and in Windows in the registry key:

\\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2 Extenders\PROFILES
\instance_name\DB2MMDATAPATH

On UNIX, you must have the port range added to the /etc/services file
before creating the instance. Add two entries to the file using the following
syntax:
– DMB_instance_name start_port

– DMB_instance_name_END end_port

The range must be large enough for all the nodes in the partitioned
database environment.
You must create the DB2 instance before creating an instance of DB2

extenders server.

DMBICRT

Chapter 18. Administration commands for the server 509

|
|
|
|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

To create a Text Extender instance in a partitioned database environment,
use the TXTICRT command, as described in DB2 Universal Database Text
Extender Administration and Programming.

DMBICRT

510 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|
|

|

DMBIDROP

Image Audio Video

X X X

Drops a DB2 extenders instance.

Authorization
SYSADM

On UNIX, you must have root authority.

Command syntax

�� DMBIDROP instanceName ��

Command parameters

instanceName The name of the DB2 extenders instance you want to drop.

Examples
Drop a DB2 extenders server instance named DEVINST:
dmbidrop devinst

Usage notes
Before running this command:
v Stop all applications using the instance and all db2ext command-line

processors.
v Stop extender services.

The DMBIDROP command removes the DB2 extenders instance directory,
removes the instance entry from the list of instances, and removes other
information about the instance.

The DMBIDROP command only removes the DB2 extenders instance; it does
not remove the DB2 instance associated with it. You must explicitly drop the
DB2 instance.

If you drop the DB2 instance associated with a DB2 extenders server instance,
the DB2 extenders server instance is not dropped. However, you cannot use it.

(EEE Only) If you drop a DB2 extenders instance, the start and end port
entries for the instance must be removed from the /etc/services file in
UNIX, and from the \WINNT\system32\drivers\etc\Services file in Windows.
These entries are DMB_instanceNamempp and DMB_instanceNamempp_END.

DMBIDROP

Chapter 18. Administration commands for the server 511

|
|

||||

|||
|
|

|

|

|

|

|||||||||

|

|

||

|

|

|

|

|

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

DMBILIST

Image Audio Video

X X X

Lists all the instances of DB2 extenders.

Authorization
None.

Command syntax

�� DMBILIST ��

Command parameters
None.

Examples
List the DB2 extenders instances:
dmbilist

DMBILIST

512 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

||||

|||
|
|

|

|

|

|||||||

|

|

|

|

|

|

|

DMBIMIGR

Image Audio Video

X X X

(UNIX Only) Migrates a DB2 extenders instance from an earlier release to the
current release.

Authorization
You must have root authority.

Command syntax

�� DMBIMIGR instanceName ��

Command parameters

instanceName The name of the DB2 extenders instance you want to migrate.

Examples
Migrate a DB2 extenders instance named OLDINST:
dmbimigr oldinst

Usage notes
Before running this command:
v You must have installed the current release of DB2 extenders.
v You must migrate the associated DB2 instance.

Run DMBIMIGR once for each DB2 extenders instance. Use DMBILIST to list
the instances.

DMBIMIGR

Chapter 18. Administration commands for the server 513

|
|

||||

|||
|
|
|

|

|

|

|||||||||

|

|

||

|

|

|

|

|

|

|

|
|

DMBSTART

Image Audio Video

X X X

Starts all the extender services for the extender instance.

EEE Only: If a node is specified, the command starts extender services at that
node only. DMBSTART also initiates the Node Create/Drop function at each
node. The Node Create/Drop function checks to make sure that the nodes
defined for DB2 match the nodes defined for the Extenders. If they do not
match, the Node Create/Drop function adds or removes nodes as needed.

Authorization
SYSADM

Command syntax

�� DMBSTART node_number
NODENUM

��

Command parameters

node_number
The node at which you want to start extender services. (EEE Only)

Examples
Start extender services:
dmbstart

Start extender services at node number 2:
dmbstart nodenum 2

Usage notes
Run this command:
v While logged on as instance owner (on AIX, HP-UX, or Solaris).
v From a window where the DB2INSTANCE environment variable is the

same as the instance you want to start (on OS/2 or Windows).
v Whenever you shut down and restart your server system.

In a single-partition environment, DMBSTART also starts the DB2 instance if it
is not running.

DMBSTART

514 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

EEE Only:

In a multipartition environment, DMBSTART does not start the DB2
instance. You must start DB2 before running DMBSTART in a partitioned
environment.
If DMBSTART fails, make the following checks:
– Make sure the value of the DBD2MMDATAPATH variable is correct.
– Make sure that the shared directory or file system in the variable exists

and is accessible on every node.

DMBSTART

Chapter 18. Administration commands for the server 515

|

|

|
|

DMBSTAT

Image Audio Video

X X X

Displays which databases are enabled and if the extender services for those
databases are up and running.

Authorization
None

Command syntax

�� DMBSTAT ��

Command parameters
None.

Examples
Display the status of extender services:
dmbstat

DMBSTAT

516 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMBSTOP

Image Audio Video

X X X

Stops the extender services for the extender instance.

EEE Only: If a node is specified, DMBSTOP stops extender services only at
that node.

Authorization
SYSADM

Command syntax

�� DMBSTOP node_number
NODENUM

��

Command parameters

node_number
The node at which you want to stop the extender services. (EEE Only)

Examples
Stop the extender services:
dmbstop

Stop the extender services at node number 2:
dmbstop nodenum 2

Usage notes
Run this command:
v While logged on as instance owner (on AIX, HP-UX, or Solaris).
v From a window where the DB2INSTANCE environment variable is the

same as the instance you want to stop (on OS/2 or Windows).

DMBSTOP does not stop the DB2 instance.

EEE Only: Do not run DMBSTOP at a specific node except while operating in
maintenance mode. In addition, you need to make sure that no extender
activities will be triggered on this node while it is turned off. Otherwise, you
may encounter unexpected behavior.

DMBSTOP

Chapter 18. Administration commands for the server 517

DMBSTOP

518 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Chapter 19. Diagnostic information

All embedded SQL statements in your program and DB2 CLI calls in your
program, including those that invoke DB2 extender UDFs, generate codes that
indicate whether the embedded SQL statement or DB2 CLI call executed
successfully. Other DB2 extender APIs, such as administrative APIs, also
return codes that indicate success or lack of success. Your program should
check and respond to these return codes.

Your program can also retrieve information that supplements these codes.
This includes SQLSTATE information and error messages. You can use this
diagnostic information to isolate and fix problems in your program.

Occasionally the source of a problem cannot be easily diagnosed. In these
cases, you might need to provide information to service personnel to isolate
and fix the problem. The DB2 extenders include a trace facility that records
extender activity. The trace information can be valuable input to service
personnel. You should use the trace facility only under instruction from IBM
service personnel.

This chapter describes how to access this diagnostic information. It describes:
v How to handle DB2 extender UDF return codes and API return codes.
v How to control tracing

It also lists and describes the SQLSTATEs and error messages that can be
returned by the extenders.

Handling UDF return codes

Embedded SQL statements return codes in the SQLCODE, SQLWARN, and
SQLSTATE fields of the SQLCA structure. This structure is defined in an
SQLCA include file. (For more information about the SQLCA structure and
SQLCA include file, see DB2 Application Development Guide.)

DB2 CLI calls return SQLCODE and SQLSTATE values that you can retrieve
using the SQLError function. (For more information about retrieving error
information with the SQLError function, see CLI Guide and Reference.)

An SQLCODE value of 0 means that the statement ran successfully (with
possible warning conditions). A positive SQLCODE value means that the
statement was successfully run but with a warning. (Embedded SQL

© Copyright IBM Corp. 1996, 2000 519

statements return the warning associated with 0 or positive SQLCODE values
in the SQLWARN field.) A negative SQLCODE value means that an error
condition occurred.

DB2 associates a message with each SQLCODE value. If a DB2 extender UDF
encounters a warning or error condition, it passes associated information to
DB2 for inclusion in the SQLCODE message.

SQLSTATE values contains codes that supplement the SQLCODE messages.
See “SQLSTATE codes” on page 521 for a description of each SQLSTATE code
returned by the DB2 extenders.

Embedded SQL statements and DB2 CLI calls that invoke DB2 extender UDFs
might return SQLCODE messages and SQLSTATE values that are unique to
these UDFs, but DB2 returns these values in the same way as it does for other
embedded SQL statements or other DB2 CLI calls. Thus, the way you access
these values is the same as for embedded SQL statements or DB2 CLI calls
that do not start DB2 extender UDFs.

See “SQLSTATE codes” on page 521 for the SQLSTATE values and the
message number of associated messages that can be returned by the
extenders. See “Messages” on page 525 for information about each message.

Handling API return codes

Each DB2 extender API call returns a code. A return code of 0 indicates that
the API call was processed successfully. A return code other than 0, indicates
that the API call was processed successfully but encountered a warning
condition, or could not be processed successfully because of an error
condition.

“Chapter 16. Application programming interfaces” on page 267 lists the
symbolic value for and describes each code that can be returned by the DB2
extender APIs.

You can retrieve additional information about errors encountered by an API.
Use the DBxGetError API to retrieve this additional information, where x is a
for the Audio Extender, i for the Image Extender, and v for the Video
Extender. The DBxGetError API returns the SQL error code and associated
message for the last DB2 extender API that encountered an error. See DB2
Messages Reference for information about SQL error codes. See “Messages” on
page 525 for information about each message that can be returned by the
DBxGetError API.

For example, the following statements in a C application program enable a
table for the Audio Extender and then check for errors.

Handling UDF codes

520 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

rc=DBaEnableTable((char *)NULL, "employee");

rc=DBaGetError(&errCode, &errMsg);

SQLSTATE codes

Table 16 lists and describes the SQLSTATE values that can be returned by the
DB2 extenders. The description of each SQLSTATE value includes its symbolic
representation. The table also lists the message number associated with each
SQLSTATE value. See “Messages” on page 525 for information about each
message.

Table 16. SQLSTATE codes and associated message numbers

SQLSTATE Message No. Description

00000 MMDB_SQLSTATE_OK
Successful

01H01 DMB0211W MMDB_SQLSTATE_WARN_NO_OVERWRITE
The file overwrite does not take place

38A00 DMB0101E MMDB_SQLSTATE_AUDIO_NULL_PARM
Input parameter to the UDF cannot be null

38A02 DMB0209E MMDB_SQLSTATE_AUDIO_OPEN_HDR_ERROR
Error occurred while opening audio file header

38A03 DMB0209E MMDB_SQLSTATE_AUDIO_BAD_WAVE_HDR
Invalid wave file supplied

38V00 DMB0101E MMDB_SQLSTATE_VIDEO_NULL_PARM
Input parameter to the UDF cannot be null

38V02 DMB0051E MMDB_SQLSTATE_VIDEO_OPEN_HDR_ERROR
Error occurred while opening video file header

38V03 DMB0105E MMDB_SQLSTATE_VIDEO_BAD_MPEG1_HDR
Invalid mpeg1 file supplied

38V04 DMB0104E MMDB_SQLSTATE_VIDEO_BLOB_TOO_SHORT
Video buffer supplied is too small

38V05 DMB0106E MMDB_SQLSTATE_VIDEO_BAD_AVI_HDR
Invalid AVI file supplied

38V07 DMB0106E MMDB_SQLSTATE_VIDEO_BAD_QT_HDR
Invalid Quicktime file supplied

38600 DMB0075E
DMB0101E
DMB0102E
DMB0103E
DMB0210E

MMDB_SQLSTATE_INVALID_INPUT
Input parameter to the UDF is not valid

38601 DMB0009E MMDB_SQLSTATE_MALLOC_FAIL
Memory allocation failed

Handling API Codes

Chapter 19. Diagnostic information 521

Table 16. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38602 DMB0386E MMDB_SQLSTATE_CANNOT_COLLOCATE
Cannot collocate with user data

38603 DMB0077E MMDB_SQLSTATE_READ_FILE_FAIL
Cannot read from file

38604 DMB0080E MMDB_SQLSTATE_WRITE_FILE_FAIL
Cannot write to file

38610 DMB0070E MMDB_SQLSTATE_INVALID_HANDLE
Media column contains invalid data

38611 DMB0073E MMDB_SQLSTATE_INVALID_SESSION_HANDLE
Invalid UDF session handle

38612 DMB0074E MMDB_SQLSTATE_INVALID_STATEMENT_HANDLE
Invalid UDF statement handle

38613 DMB0083E MMDB_SQLSTATE_INVALID_IMPORT_REQUEST
The request for import is not valid

38615 DMB0071E MMDB_SQLSTATE_CONNECT_FAIL
Error occurred while connecting to database

38617 DMB0071E MMDB_SQLSTATE_ALLOC_STMT_FAIL
Error occurred while allocating a new statement handle

38618 DMB0208E
DMB0138E

MMDB_SQLSTATE_FREE_STMT_FAIL
Error occurred while freeing statement

38619 DMB0208E
DMB0132E

MMDB_SQLSTATE_BIND_FAIL
Error occurred while binding

38620 DMB0208E MMDB_SQLSTATE_BIND_COLUMN_FAIL
Error occurred while binding a column

38621 DMB0208E MMDB_SQLSTATE_BIND_FILE_FAIL
Error occurred while binding file

38622 DMB0208E
DMB0132E

MMDB_SQLSTATE_SET_PARAM_FAIL
Error occurred while setting parameter

38623 DMB0208E
DMB0131E

MMDB_SQLSTATE_PREPARE_FAIL
Error occurred while preparing an SQL statement

38624 DMB0208E
DMB0133E
DMB0172E

MMDB_SQLSTATE_EXECUTE_FAIL
Error occurred while executing a statement

38625 DMB0208E
DMB0133E

MMDB_SQLSTATE_EXEC_DIRECT_FAIL
Error occurred while directly executing
SQL statement in UDF

38626 DMB0208E
DMB0133E

MMDB_SQLSTATE_FETCH_FAIL
Error occurred while retrieving next row of data

SQLSTATEs

522 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Table 16. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38627 DMB0208E MMDB_SQLSTATE_COMMIT_FAIL
Error occurred while committing the transaction

38628 DMB0208E MMDB_SQLSTATE_GET_LENGTH_FAIL
Error occurred while retrieving the length of a
string value

38629 DMB0208E MMDB_SQLSTATE_GET_SUBSTRING_FAIL
Error occurred while retrieving a portion of a
string value

38650 DMB0077E
DMB0079E

MMDB_SQLSTATE_COPY_BLOB_2_FILE_FAIL
Error occurred while copying BLOB to a file

38651 DMB0086E MMDB_SQLSTATE_BLOB_BUFFER_TOO_SMALL
The buffer supplied is too small

38652 DMB0082E MMDB_SQLSTATE_BUILD_HANDLE
Error occurred while constructing media column data

38653 DMB0083E MMDB_SQLSTATE_INVALID_INSERT_VIA_SELECT
The request for insert via select is not valid

38654 DMB0081E MMDB_SQLSTATE_INVALID_OFFSET_SIZE
The offset size is not valid

38655 DMB0068E MMDB_SQLSTATE_METATABLE_DOESNOT_EXIST
The required metadata table does not exist

38670 DMB0134E
DMB0103E

MMDB_SQLSTATE_UNKNOWN_FORMAT
The stored media has unknown format

38671 DMB0135E MMDB_SQLSTATE_CREATE_THUMBNAIL_FAIL
Error occurred while creating the thumbnail

38672 DMB0114E MMDB_SQLSTATE_FORMAT_CONVERSION_FAIL
Error occurred while converting the file format

38673 DMB0363E MMDB_SQLSTATE_INVALID_UPDATE
Error occurred when an update UDF was invoked
without referencing a table

38674 DMB0361E MMDB_SQLSTATE_NOT_ENABLED
Error occured when an import UDF was applied
to a column which was not enabled for the
extender

38675 DMB0129E MMDB_SQLSTATE_VIDEO_INTERNAL
Internal error in Video Extender UDFs

38676 DMB0129E MMDB_SQLSTATE_AUDIO_INTERNAL
Internal error in Audio Extender UDFs

38677 DMB0129E MMDB_SQLSTATE_IMAGE_INTERNAL

SQLSTATEs

Chapter 19. Diagnostic information 523

Table 16. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38678 DMB0089E
DMB0208E

MMDB_SQLSTATE_BASE_INTERNAL_ERROR
Internal error in common layer

38681 DMB0108E MMDB_SQLSTATE_IMPORT_ENV_NOT_SETUP
Environment variable for import is not set up correctly

38682 DMB0111E MMDB_SQLSTATE_STORE_ENV_NOT_SETUP
Environment variable for store operation is not
set up correctly

38683 DMB0107E MMDB_SQLSTATE_EXPORT_ENV_NOT_SETUP
Environment variable for export operation is not
set up correctly

38684 DMB0117E MMDB_SQLSTATE_TEMP_ENV_NOT_SETUP
Environment variable for creating temporary files is not
set up correctly

38686 DMB0109E MMDB_SQLSTATE_CANT_RESOLVE_IMPORT_FILE
Error occurred while resolving import file name

38687 DMB0112E MMDB_SQLSTATE_CANT_RESOLVE_STORE_FILE
Error occurred while resolving store file name

38688 DMB0110E MMDB_SQLSTATE_CANT_RESOLVE_EXPORT_FILE
Error occurred while resolving export file name

38689 DMB0116E MMDB_SQLSTATE_CANT_CREATE_TMP_FILE
Error occurred while creating temporary file

38690 DMB0076E MMDB_SQLSTATE_OPEN_IMPORT_FILE_FAIL
Cannot open import file

38691 DMB0115E MMDB_SQLSTATE_OPEN_STORE_FILE_FAIL
Cannot open import file

38692 DMB0114E MMDB_SQLSTATE_OPEN_EXPORT_FILE_FAIL
Cannot open export file

38693 DMB0118E MMDB_SQLSTATE_OPEN_TEMP_FILE_FAIL
Cannot open temporary file

38694 DMB0117E MMDB_SQLSTATE_OPEN_CONTENT_FILE_FAIL
Cannot open content file

38695 DMB0135E MMDB_SQLSTATE_OPEN_THUMBNAIL_FILE_FAIL
Cannot open thumbnail file

38696 DMB0135E MMDB_SQLSTATE_READ_THUMBNAIL_FILE_FAIL
Cannot read thumbnail file

38697 DMB0207E MMDB_SQLSTATE_OVERWRITE_NOT_ALLOWED
The overwrite operation could not be performed

38699 DMB0171E MMDB_SQLSTATE_QUERY_NAME_NOT_FOUND
A query with that name was not found

SQLSTATEs

524 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|

Table 16. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38700 MMDB_SQLSTATE_NO_MANAGEBLOB

38701 MMDB_SQLSTATE_UDFLOCATOR_FAIL

38702 MMDB_SQLSTATE_SQL_FAIL

38703 MMDB_SQLSTATE_INVALID_UPDATE

38704 MMDB_SQLSTATE_NOT_ENABLED

38705 DMB0366E
DMB0382E

MMDB_SQLSTATE_QBIC_QUERY_FAIL_TO_BUILD
A failure occurred in building the query

38706 DMB0205E MMDB_SQLSTATE_QBIC_TABLE_COLUMN_PAIR_NOT_VALID
A failure occurred when trying to access a QBIC catalog.
Either an image handle wasn’t found in the catalog, or
the combination of the table name and column name
does not have a catalog.

38707 DMB0383E MMDB_SQLSTATE_QBIC_QUERY_EXECUTE_FAILED
A failure occurred in running the query

38708 MMDB_SQLSTATE_QBIC_UKNOWN_ERROR
An unkown failure occurred in QBIC

38709 DMB0208E MMDB_COPY_FILE_TO_LOCATOR_FAILURE
A failure occurred in copying a file to a LOB locator

38710 DMB0534E MMDB_SQLSTATE_QBIC_UNSUPPORTED_UDF
The UDF is not supported.

Messages

DMB0001E The DB2 Extenders server was not
connected. Reason: ″<code>″.

Cause: The attempted operation attempted
requires the DB2 extenders services to be
running.

Action: On the server, run the DMBSTART
command on the command line for the operating
system.

DMB0003W The DB2 extenders trace facility is
running for this session.

Cause: The trace facility uses up system
resources.

Action: If the performance of your system is

affected, you might want to turn off tracing.

DMB0004I This program can be run only by
the instance owner: ″<name>″.

Cause: The DB2 extender servers must be
started from the user ID under which the
instance was created.

Action: Run the DMBSTART command from the
user ID under which the instance was created.

DMB0005E The current database is not
enabled for the
″<extender-name>″ extender.

Cause: An operation was attempted that
requires the database to be enabled for a specific

SQLSTATEs

Chapter 19. Diagnostic information 525

|

|

|

|

|

|

|

|

|

|

DB2 extender. For example, if you want to enable
a table for DB2IMAGE data, you must first
enable the database in which the table is stored
for DB2IMAGE data.

Action: Enable the database for the extender
data type you want and try again.

DMB0006E User ″<name>″ is not authorized
to call this API.

Cause: The call to an application programming
interface was attempted from a user ID that does
not have the level of authority required for that
API.

Action: Either run the application from another
user ID, or get the database administrator to
change the level of authority for the initial user
ID.

DMB0007E User table ″<table-name>″ is not
enabled for extender
″<extender-name>″.

Cause: The table on which the operation was
attempted is not enabled for that DB2 extender.
For example, a table must be enabled to hold
audio data before a column in the table can be
enabled for audio.

Action: Make sure that the table is enabled for
the extender first. Then enable the column.

DMB0008E An error occurred while running
the stored procedure ″<name>″.

Cause: Either there is an error in the stored
procedure that is identified in the message, or
there is a problem with the environment.

Action: Verify your application and try again.

DMB0009E Memory allocation error.

Cause: The system was unable to allocate
memory that is required to support the
attempted operation.

Action: Verify that your system has enough
memory to complete the operation.

DMB0010E The ″<extender-name>″ extender
has been previously defined for
the UDT ″<name>″.

Cause: The name of the user-defined type
(UDT) has already been used for a UDT that was
defined for another DB2 extender.

Action: Choose another name for your UDT.

DMB0011E User column ″<column-name>″
cannot be enabled for the
″<extender-name>″ extender. The
definition of the user column is
not compatible with the distinct
type ″MMDBSYS.<name>″
associated with the extender.

Cause: The indicated column is not defined for
the data type that is shown in the message, so it
cannot be enabled for that extender.

Action: Make sure that the column you want to
enable has been defined using the data type that
corresponds to the extender.

DMB0012E The specified user table
″<table-name>″ does not exist.

Cause: No table exists with the specified name.

Action: Check the name of the table and
whether the table exists.

DMB0013E Column ″<column-name>″ is not
defined for table ″<table-name>″.

Cause: The attempted operation referred to a
column name that does not exist in the identified
table.

Action: Check the names of the table and the
column.

DMB0014W Column ″<column-name>″ in user
table ″<table-name>″ is already
enabled for the
″<extender-name>″ extender.

Cause: An attempt was made to enable the
column for an extender for which the column is
already enabled.

Messages

526 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Action: No action is required.

DMB0015W The database is already enabled
for extender ″<extender-name>″.

Cause: An attempt was made to enable the
database for an extender for which the database
is already enabled.

Action: No action is required.

DMB0016W User table ″<table-name>″ is
already enabled for the
″<extender-name>″ extender.

Cause: An attempt was made to enable a table
for an extender for which the table is already
enabled.

Action: No action is required.

DMB0017E User table ″<table-name>″ is
already enabled for the
″<extender-name>″ extender. But
at least one of the associated
metadata tables ″<table-name>″ or
″<table-name>″ doesn’t exist.

Cause: One or more of the administrative
support (metadata) tables that are associated
with the table has been damaged or destroyed.
Without these metadata tables, the user table
cannot be used for data of that extender’s type.

Action: Disable the user table and re-enable it
for the extender.

DMB0018E The system cannot create a unique
trigger name for column
″<column-name>″ in table
″<table-name>″.

Cause: When the system tried to enable the
column in the user table, an error occurred
during the creation of triggers that are used by
the DB2 extenders.

Action: Repeat the operation. If the error occurs
again, contact your database administrator, then
contact IBM service.

DMB0019I ″<Count>″ files are referered to in
table ″<table-name>″ for extender
″<extender-name>″.

Cause: The message displays the number of
external media files that are referred to by a user
table for a specific extender.

Action: No action is required.

DMB0020I ″<Count>″ files are referenced in
tables with table schema
″<name>″ for the
″<extender-name>″ extender.

Cause: The message displays the number of
external media files that are referred to by user
tables with a specific schema name.

Action: No action is required.

DMB0021I There are ″<count>″ inaccessible
files refererenced in table
″<table-name>″ for the
″<extender-name>″ extender.

Cause: The message displays the number of
external media files that are referred to by a user
table for a specific extender, but are inaccessible.
The files might have been erased.

Action: No action is required.

DMB0022I There are ″<count>″ inaccessible
files referenced by the
″<extender-name>″ extender.

Cause: The message displays the number of
external media files that are:

v referred to by user tables in the current
database.

v of a specific extender media type (such as
video).

v inaccessible; for example, the files might have
been erased.

Action: No action is required.

Messages

Chapter 19. Diagnostic information 527

DMB0023I There are ″<count>″ inaccessible
files referenced in tables with
table schema ″<name>″ for
extender ″<extender-name>″.

Cause: The message displays the number of
external media files that are referred to by user
tables with a specific schema name, but are
inaccessible. The files might have been erased.
The messages also indicates the number of
extenders the tables are enabled for.

Action: No action is required.

DMB0024I The current database is enabled
for ″<count>″ extenders.

Cause: The message lists the number of DB2
extenders the current database is enabled for.

Action: No action is required.

DMB0025I Table ″<table-name>″ is enabled
for ″<count>″ extenders.

Cause: The message lists the number of DB2
extenders the indicated table is enabled for.

Action: No action is required.

DMB0026I Column ″<column-name>″ in
table ″<table-name>″ is enabled
for ″<count>″ extenders.

Cause: The message lists the number of DB2
extenders the indicated column is enabled for.

Action: No action is required.

DMB0027I The current database is enabled
for extender ″<extender-name>″.

Cause: The message indicates the DB2 extender
for which the current database is enabled.

Action: No action is required.

DMB0028I Table ″<table-name>″ is enabled
for extender ″<extender-name>″.

Cause: The message indicates the media data
type the user table is enabled to hold.

Action: No action is required.

DMB0029I Column ″<column-name>″ in
table ″<table-name>″ is enabled
for extender ″<extender-name>″.

Cause: The message indicates the media data
type the user column is enabled to hold.

Action: No action is required.

DMB0030E The current database cannot be
enabled for the
″<extender-name>″ extender. RC =
″<code>.″

Cause: Either the database does not exist, or
you are not authorized to enable the database.

Action: Make sure the database exists and that
you are authorized to enable the database.

DMB0031E The table cannot be enabled for
the ″<extender-name>″ extender.
RC = ″<code>.″

Cause: The database does not exist, or the table
is not enabled, or you are not authorized to
enable the table.

Action: Make sure the database exists and that
both the database and table are enabled for the
extender. Make sure that you are authorized to
enable the table.

DMB0032E The column cannot be enabled for
the ″<extender-name>″ extender.
RC = ″<code>.″

Cause: The column is was not defined using the
data type for this extender, or the column does
not exist, or the table is not enabled, or you are
not authorized to enable the column.

Action: Make sure the column was defined
using the right data type. Make sure that the
table is enabled and you are authorized to enable
the column.

Messages

528 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0033E You are not authorized to run this
command.

Cause: Your user ID does not have the level of
authority required to run the command.

Action: Either run the command from another
user ID, or get the database administrator to
change the level of authority for your current
user ID.

DMB0034I The DB2 Extenders Server for
database ″<database-name>″ was
started successfully.

Cause: The server started successfully for the
current database.

Action: No action is required.

DMB0035I The DB2 Extenders Server for
database ″<database-name>″ was
stopped.

Cause: The server stopped successfully for the
current database.

Action: No action is required.

DMB0036E The DB2 Extenders server cannot
be started or stopped. The DB2
Extenders server daemon is
probably not running. Contact
your database administrator.

Cause: An error occurred while starting or
stopping the DB2 extenders server. The DB2
extenders server daemon is probably not
running.

Action: Please contact your database
administrator.

DMB0037E The USE session handle is not
valid.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0038E The USE statement handle is not
valid.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0039E USE error: ″<error>.″

Cause: An internal error has occurred.

Action: Follow the instructions that are
contained in the associated error message and
repeat the operation. If the error occurs again,
contact IBM service.

DMB0040E SQL error: ″<error>″

Cause: An internal error has occurred.

Action: Follow the instructions that are
contained in the associated error message and
repeat the operation. If the error occurs again,
contact IBM service.

DMB0041W The current database is re-enabled
for the ″<extender-name>″
extender using the newly
specified table space.

Cause: When the current database was
previously enabled, it used a different table
space. The database is now enabled with a new
table space for the administrative support tables.

Action: No action is required.

DMB0042E Column ″<column-name>″ in
table ″<table-name>″ is not
enabled for the
″<extender-name>″ extender.

Cause: The indicated column is not enabled for
the extender for which the operation was
attempted. For example, you might have tried to
disable a column that was not currently enabled
for the indicated extender.

Action: Make sure that the column is enabled
for the extender that is indicated in the message.

Messages

Chapter 19. Diagnostic information 529

DMB0043I The current database is disabled
for the ″<extender-name>″
extender.

Cause: The disable operation was successful.

Action: No action is required.

DMB0044I Table ″<table-name>″ is disabled
for the ″<extender-name>″
extender.

Cause: The disable operation was successful.

Action: No action is required.

DMB0045I Column ″<column-name>″ in
table ″<table-name>″ is disabled
for the ″<extender-name>″
extender.

Cause: The disable operation was successful.

Action: No action is required.

DMB0046E The current database cannot be
disabled for the
″<extender-name>″ extender. RC =
″<code>.″

Cause: The database does not exist or is not
enabled for the extender, or you are not
authorized to disable the database.

Action: Make sure that the database exists and
is enabled for the extender. Make sure that you
are authorized to disable the database.

DMB0047E The table cannot be disabled for
the ″<extender-name>″ extender.
RC = ″<code>.″

Cause: The table does not exist or is not
enabled for the extender, or you are not
authorized to disable the table.

Action: Make sure that the table exists and is
enabled for the extender. Make sure that you are
authorized to disable the table.

DMB0048E The column cannot be disabled
for the ″<extender-name>″
extender. RC = ″<code>″

Cause: The column is not enabled for the
extender that is indicated in the message, so it
cannot be disabled for that extender.

Action: Verify the name of the extender and
whether the user column is the one you want to
disable.

DMB0049E You are not authorized to run this
command.

Cause: Your user ID does not have the level of
authority required to run the command.

Action: Either run the application from another
user ID, or get the database administrator to
change the level of authority for your current
user ID.

DMB0050E You do not have
″<authority-level>″ authority on
table ″<table-name>″.

Cause: The operation requires a level of
authority higher than the one of the user ID that
made the attempt.

Action: Either perform the operation from the
user ID with the right authorization, or get the
database administrator to change the level of
authority for your current user ID.

DMB0051E Bad media file header.

Cause: The system cannot read or open the
header of the media file. Either the file is
damaged, or it is not a media file.

Action: Verify that the file is a media file and is
not damaged.

DMB0052I The DB2 Extenders server for
database ″<database-name>″ was
started successfully.

Cause: The server started successfully.

Action: No action is required.

Messages

530 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0053I The DB2 Extenders server for
database ″<database-name>″ was
stopped successfully.

Cause: The server stopped successfully.

Action: No action is required.

DMB0054E The DB2 Extender server cannot
connect to the database or allocate
a DB2 statement handle. The DB2
Extender server for database
″<database-name>″ is probably
not running.

Cause: The DB2 extenders server cannot
connect to the database or allocate a DB2
statement handle. The DB2 extenders server for
the database is probably not running.

Action: Make sure that the DB2 extender server
for the database is running. If it is not, either
start the specific extender server for the database,
or ask your system administrator to restart the
extender services.

DMB0055I The ″command-name″ command
completed successfully.

Cause: The command completed successfully.

Action: No action is required.

DMB0056E An unexpected token ″<token>″
was found following
″<keyword>″. Expected tokens can
include: <extendername>.

Cause: The command expected the name of a
DB2 extender instead of the token that is
indicated in the message.

Action: Follow the syntax of the command and
try again.

DMB0057E The table space
″<table-space-name>″ is not valid.

Cause: The table space in the message does not
exist.

Action: Verify the name of the table space and
whether it exists.

DMB0058I ″<Count>″ files are referenced by
the ″<extender-name>″ extender.

Cause: The message displays the number of
external media files that are referred to by a
specific extender.

Action: No action is required.

DMB0059E ″<Name>″ is not a valid name for
an DB2 extender. Valid extender
names include ″<extender-name,>″
DB2VIDEO, DB2AUDIO, and
DB2IMAGE.

Cause: The extender name is misspelled.

Action: Verify the extender name.

DMB0060E The correct syntax for
″<function>″ is: ″<syntax>.″

Cause: The syntax of the command you entered
is wrong.

Action: Follow the syntax as described in the
message.

DMB0061E The table name ″<name>″ that
follows ″<keyword>″ is not valid.

Cause: The command expected the name of a
table.

Action: Follow the syntax of the command and
try again.

DMB0062E The column name ″<name>″ that
follows ″<keyword>″ is not valid.

Cause: The command expected the name of a
column.

Action: Follow the syntax of the command and
try again.

Messages

Chapter 19. Diagnostic information 531

DMB0064E The system does not recognize the
token ″<token>″ that follows
″<keyword>″.

Cause: The command expected something other
than the token that is indicated in the message.

Action: Follow the syntax of the command and
try again.

DMB0065E The user ID ″<identifier>″ that
follows ″<keyword>″ is not valid.

Cause: The command expected a valid user ID.

Action: Verify the user ID you want and try
again.

DMB0066E The password ″<password>″ that
follows ″<keyword>″ is not valid.

Cause: The command expected a valid user ID
instead of the token that is indicated in the
message.

Action: Verify the password and try again.

DMB0067E The command you entered is not
valid.

Cause: The name of the command was
misspelled, or the syntax was wrong.

Action: Follow the syntax of the command and
try again.

DMB0068E Metadata table does not exist.

Cause: The function tried to use an
administrative support (metadata) table that
should exist for the data object. The metadata
table might have been damaged or erased.

Action: Check the name and verify the
existence of the metadata table. If the metadata
tables were accidentally erased or damaged,
disable and then reenable the data object.

DMB0069E DBname ″<name>″ invalid.

Cause: A database with that name does not
exist.

Action: Check the name and verify the
existence of the database.

DMB0070E Handle not valid.

Cause: The handle value you passed in your
application might be damaged.

Action: Verify your application to make sure
that the extender handle values are not changed.

DMB0071E Can’t connect to
″<database-name>″.

Cause: The DB2 extender server for the
database might not be started.

Action: Check the status of the server. If the
server is not running, restart it using the START
SERVER command on the DMB command line.

DMB0072E UDF SQL server can’t disconnect
from DB.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0073E USE session handle not valid.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0074E USE statement handle not valid.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0075E Specify a file name.

Cause: The operation requires a media file
name.

Action: Enter the name of a media file.

Messages

532 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0076E Can’t open import file.

Cause: The import file is either missing or
damaged.

Action: Verify the name and existence of the
import file.

DMB0077E Can’t open/read content file.

Cause: The extender handle points to a file that
does not exist or is corrupted. The file has
become inaccessible to the extender.

Action: Use the FILENAME UDF to find the
name of the file, or verify the existence of the
content file.

DMB0078E Can’t create export file.

Cause: The export file is either missing or
corrupted.

Action: Verify the name and existence of the
export file.

DMB0079E Can’t copy BLOB to file.

Cause: The file cannot accept the BLOB. There
might not be enough storage space to
accommodate the BLOB.

Action: Compare the size of the BLOB to the
available storage, and increase storage if
necessary.

DMB0080E Can’t write to file.

Cause: The file is damaged or does not exist, or
the name is misspelled.

Action: Verify the name and existence of the
file.

DMB0081E Offset or size invalid.

Cause: The operation did not find the expected
data in the data structure. Either the size of the
field or the offset is incorrect.

Action: Verify the offset and the size of the
field.

DMB0082E Can’t build handle.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0083E ″<extender-name>″ and
″<extender-name>″ incompatible.

Cause: The two extenders specified in the
message are not compatible in this usage. The
insert operation, by either full or subselect, is not
valid.

Action: Make sure that your target object is
enabled for the same extender for which the
source object is enabled.

DMB0084E Import request invalid: filename,
content, storage type.

Cause: The import operation failed. Either the
file name, the content, or the storage type was
not valid.

Action: Check the data and try again.

DMB0085E The update request is not valid:
filename, content, storage type.

Cause: The update operation failed. Either the
file name, the content, or the storage type was
not valid.

Action: Check the data and try again.

DMB0086E Requested size too large.

Cause: The size you requested is larger than the
maximum blob size for the UDF.

Action: Request a smaller size.

DMB0087E File name invalid.

Cause: There is no file with that name.

Action: Verify the name and existence of the
file.

Messages

Chapter 19. Diagnostic information 533

DMB0088E Handle value is NULL.

Cause: The UDF was expecting a non-null
handle.

Action: Make sure that the application gets a
valid handle and passes it to the UDF.

DMB0089E Handle value doesn’t exist.

Cause: The handle passed to the UDF is not
valid.

Action: Make sure the application passes a
valid handle.

DMB0090E Data truncated.

Cause: The file or buffer was too small to accept
the data.

Action: Increase the size of the file or buffer.

DMB0091W Content already in file.

Cause: The file already has content. The content
will be overwritten.

Action: No action is required.

DMB0092E The insert operation attempted for
column ″<column-name>″ is not
valid. The column is enabled for
the ″<extender-name>″ extender.

Cause: The data type of the data that is being
inserted is different from the extender for which
the column is enabled.

Action: Make sure your target object is enabled
for the same extender for which the source object
is enabled.

DMB0093E The update operation attempted
for column ″<column-name>″ is
not valid. The column is enabled
for the ″<extender-name>″
extender.

Cause: The data type of the data that is being
updated is different from the extender for which
the column is enabled.

Action: Make sure that your target object is
enabled for the same extender for which the
source object is enabled.

DMB0094I Table ″<table-name>″ does not
exist.

Cause: The system cannot find a table with that
name. It might exist in another database.

Action: No action is required.

DMB0095W The table ″<table-name>″ is not
enabled for the
″<extender-name>″ extender.

Cause: The table is not enabled for the extender.

Action: No action is required.

DMB0096W Column ″<column-name>″ in
table ″<table-name>″ was not
enabled for the
″<extender-name>″ extender.

Cause: The system expected the column to be
enabled.

Action: No action is required.

DMB0097W The current database is not
enabled for the
″<extender-name>″ extender.

Cause: The system expected the database to be
enabled.

Action: Enable the database for the extender
that is indicated in the message.

DMB0098E The user does not have
″<authority-level>″ authority on
table ″<table-name>″.

Cause: The operation requires a level of
authority higher than the one of the user ID that
made the attempt.

Action: Either perform the operation from the
user ID that owns the table, or ask the database
administrator to change the level of authority for
your current user ID.

Messages

534 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0099E Can’t commit transaction.

Cause: The extender server for the current
database might be stopped.

Action: Check the status of the server. If the
server is not running, restart it using the START
SERVER command on the db2ext command line.

DMB0100E ″<name>″ is not a valid table
name.

Cause: No table with that name exists.

Action: Verify the name and existence of the
table and try again.

DMB0101E Invalid NULL parameter.

Cause: The command was expecting a non-null
parameter.

Action: Check the syntax and try again.

DMB0102E Invalid storage type.

Cause: For the DB2 extenders, the storage type
indicates where the media data is stored.

Action: Specify 0 to indicate external (in a file)
and 1 to indicate external (in the database).

DMB0103E Unsupported format.

Cause: DB2 extenders do not support the
format of this object.

Action: Convert the object to a supported
format.

DMB0104E Video content buffer too small.

Cause: The video clip is too big for the buffer
that is allocated for it.

Action: Allocate a bigger buffer.

DMB0105E MPEG1 header invalid.

Cause: The header of the MPEG1 file is missing
or corrupt.

Action: Verify that the file is a MPEG1 file.

DMB0106E AVI header invalid.

Cause: The header of the AVI file is missing or
corrupt.

Action: Verify that the file is an AVI file.

DMB0107E Export environment not set up.

Cause: In the DB2 extenders, the environment
variables for the export environment are not set
properly.

Action: Make sure that the environment
variables are set properly, as described in
“Appendix A. Setting environment variables for
DB2 extenders” on page 557.

DMB0108E Import environment not set up.

Cause: In the DB2 extenders, the environment
variables for the import environment are not set
properly.

Action: Make sure that the environment
variables are set properly, as described in
“Appendix A. Setting environment variables for
DB2 extenders” on page 557.

DMB0109E Can’t resolve import file.

Cause: There is no import file with that name.

Action: Verify the name and existence of the file
and make sure that the environment variables
are set properly, as described in “Appendix A.
Setting environment variables for DB2 extenders”
on page 557.

DMB0110E Can’t resolve export file.

Cause: There is no export file with that name.

Action: Verify the name and existence of the file
and make sure that the environment variables
are set properly, as described in “Appendix A.
Setting environment variables for DB2 extenders”
on page 557.

Messages

Chapter 19. Diagnostic information 535

DMB0111E Store environment not set up.

Cause: The environment variables for the store
environment are not set properly,

Action: Make sure the environment variables
are set properly, as described in “Appendix A.
Setting environment variables for DB2 extenders”
on page 557.

DMB0112E Can’t resolve store file.

Cause: There is no store file with that name.

Action: Verify the name and existence of the file
and make sure that the environment variables
are set properly, as described in “Appendix A.
Setting environment variables for DB2 extenders”
on page 557.

DMB0113E Can’t open import file.

Cause: The file might be locked by someone
else, or the file is missing or corrupt.

Action: Verify the name, existence, and status of
the file, and your authorization level.

DMB0114E Can’t open export file.

Cause: The file might be locked by someone
else, or the file is missing or corrupt.

Action: Verify the name, existence, and status of
the file, and your authorization level.

DMB0115E Can’t open store file.

Cause: The system is trying to write a file, but
the file already exists. The server does not have
the authority to overwrite the file.

Action: Verify the name, existence, and status of
the file, and your authorization level.

DMB0116E Can’t create temporary file.

Cause: There might not be enough storage
space to create the temporary file.

Action: Make sure that the temporary
environment variables for the extender are set

properly. Increase the storage if necessary.

DMB0117E Temporary environment not set
up.

Cause: The environment variables for the
temporary environment are not set properly,

Action: Make sure that the environment
variables are set properly, as described in
“Appendix A. Setting environment variables for
DB2 extenders” on page 557.

DMB0118E Can’t open temporary file.

Cause: The temporary file might have been
overwritten or damaged.

Action: Make sure that the environment
variables are set properly, as described in
“Appendix A. Setting environment variables for
DB2 extenders” on page 557.

DMB0119I The dmbsrv server is starting for
″<name>″ with ″<count>″
connections.

Cause: The message indicates how many
connections are made when the server starts.

Action: No action is required.

DMB0120E The dmbsrv server failed to start
for ″<name>″ with ″<count>″
connections.

Cause: DB2 might not be started yet, or the
database might not exist, or your system might
have run out of licensed connections.

Action: Make sure that DB2 is started and the
database exists. If the problem persists, contact
IBM to get more licences.

DMB0121I The dmbsrv server is started for
″<name>″ with ″<count>″
connections.

Cause: The message indicates how many
connections are made when the server starts.

Action: No action is required.

Messages

536 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0122I The dmbssd server is ready.

Cause: The server is ready to run your
application.

Action: No action is required.

DMB0129E Invalid operation:
″<operation-name>″.

Cause: No command or API exists with that
name.

Action: Verify the command or API and try
again.

DMB0130E Column ″<column-name>″ failed
to be bound to the SQL statement.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0131E SQL prepare statement failed.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0132E SQL set parameter failed.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0133E SQL execute statement failed.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0134E File format conversion failed.

Cause: The format of the stored multimedia
data is not support for format conversion.

Action: You cannot convert the format of this
file.

DMB0135E Can’t open/read thumbnail.

Cause: The thumbnail file might be missing or
damaged.

Action: Verify the name, existence, and integrity
of the thumbnail file.

DMB0136E Can’t find bind file.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0137E Can’t connect to DB
″<database-name>″

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0138E Can’t free an SQL statement.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0139E The feature name ″<name>″ that
follows ″<keyword>″ is not valid.

Cause: The Image Extender expected a valid
feature name in this command.

Action: Try the command again with a valid
feature name. Valid feature names include:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

DMB0141E The qualifier ″<identifier>″ that
follows ″<keyword>″ is not valid.

Cause: The system cannot identify the qualifier
in the command.

Action: Check the qualifier and try again.

Messages

Chapter 19. Diagnostic information 537

DMB0142E No catalog was opened.

Cause: In the DB2 extenders, the current
command needs a QBIC catalog to be opened.

Action: Open the QBIC catalog with the OPEN
QBIC CATALOG command.

DMB0143I In the QBIC catalog for column
″<column-name>″ in table
″<table-name>″, auto-cataloging
has been set to ″<status>″. There
are ″<count>″ features:

Cause: The message indicates the number of
features defined in the QBIC catalog for a
specific image column, and whether
auto-cataloging is turned on.

Action: No action is required.

DMB0145E The query handle is not valid.

Cause: The query handle you used in the API
call is not valid.

Action: Check your application to see if you are
obtaining the correct query handle.

DMB0146E The feature class name
″<feature-class>″ is not valid.

Cause: There is no feature class with that name.
Valid feature names include:
v QbColorFeatureClass
v QbColorHistogramFeatureClass
v QbDrawFeatureClass
v QbTextureFeatureClass

Action: Correct the name of the feature and try
again.

DMB0147E The feature class name
″<feature-class>″ is either missing
or not valid.

Cause: Valid feature names include:

v QbColorFeatureClass

v QbColorHistogramFeatureClass

v QbDrawFeatureClass

v QbTextureFeatureClass

Action: Correct the name of the feature and try
again.

DMB0148E Feature ″<feature-name>″ is
already a member of the query.

Cause: The query already supports the feature
indicated in the message.

Action: No action is required.

DMB0149E Feature ″<feature-name>″ is not a
member of the query.

Cause: The query does not include the specified
feature name.

Action: To add the feature to the query before
calling other APIs that access the feature, use the
QbQueryAddFeature API.

DMB0150E The system cannot allocate
memory.

Cause: The system was unable to allocate
memory required to support the attempted
operation.

Action: Verify that your system has enough
memory to complete the operation.

DMB0151E The pointer to the return value is
NULL.

Cause: The API call did not complete
successfully because the pointer to a return value
must not be NULL.

Action: Make sure that valid parameters are
supplied to the API call and the syntax is
followed correctly.

DMB0152E The pointer to the list return
value is NULL.

Cause: The API call did not complete
successfully because the pointer to a return value
must not be NULL.

Action: Make sure that valid parameters are
supplied to the API call and the syntax is
followed correctly.

Messages

538 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0153E The scope parameter is reserved
and must be 0.

Cause: The parameter is reserved for future use.

Action: Set the scope to 0.

DMB0154E The pointer to the feature class
name is not valid.

Cause: The API call expected a valid pointer to
the input feature class name.

Action: Make sure that valid parameters are
supplied to the API call and the syntax is
followed correctly.

DMB0155I A buffer size of zero was passed
to the ″<function-name>″
function.

Cause: The API call needs the buffer to return
information.

Action: No action is required.

DMB0156E The QbImageSource pointer is
NULL.

Cause: A NULL value indicates that the
structure should not be changed.

Action: No action is required.

DMB0157E The QbImageSource type
″<type>″ is not valid.

Cause: The data structure referred to by this
DB2 extender API is of the wrong data type.

Action: The data type of the structure should be
QbImageSource.

DMB0159E The pointer to the
QbImageSource image buffer is
NULL.

Cause: The API call expected a pointer to be
returned.

Action: Check your application to see if the API
call and the buffer is specified correctly.

DMB0160I The length of the image buffer or
file is zero.

Cause: The length is zero.

Action: No action is required.

DMB0161E The pointer to the table and/or
column name is NULL.

Cause: The API call expected a pointer to be
supplied.

Action: Check your application to see if the
input to the API call is specified correctly.

DMB0162I You set requestedHits to zero.

Cause: With requestedHits set to zero, you get
nothing back.

Action: No action is required.

DMB0163I That function is not yet
supported.

Cause: That function is not yet supported.

Action: No action is required.

DMB0164E The system cannot process the
query (<query-name>).

Cause: An error occurred when the query was
created.

Action: Check the input to the command or API
and try again.

DMB0165E The system cannot run the query
(<query-name>).

Cause: An error occurred when the query was
created.

Action: Check the input to the command or API
and try again.

Messages

Chapter 19. Diagnostic information 539

DMB0166E A statement error was found in
″<name>″ while executing
″<name>″: ″<error>″

Cause: An internal IBM error occurred.

Action: Please contact your database
administrator.

DMB0167E An error occurred while reading
QbGenericImageDataClass
(<error>).

Cause: An internal IBM error occurred.

Action: Please contact your database
administrator.

DMB0168E A query’s feature
″<feature-name>″ was not set
prior to search.

Cause: The query did not run because it had no
feature assigned to it.

Action: Add a feature to the query using either
the QbAddFeature API or the ADD QBIC
FEATURE command.

DMB0169E The following error occurred in
the Call-Level Interface: ″<error>″.

Cause: CLI error.

Action: Follow the directions in the message
text.

DMB0170E Query name ″<query-name>″ is
already in use.

Cause: Another query exists with that name.

Action: Select another name.

DMB0171E Query name ″<query-name>″ has
not been stored.

Cause: After creating the query, the system
could not store it.

Action: Make sure that you have write
authority and enough storage to store the query.

DMB0172E SQL Error: ″<error>″.

Cause: An internal error has occurred.

Action: Follow the instructions that are
contained in the associated error message and
repeat the operation. If the error occurs again,
contact IBM service.

DMB0173E The catalog is open, but for
read-only: ″<catalog-name>″.

Cause: You cannot update the catalog because
someone else already opened the catalog in write
mode, or you do not have write authority for it.

Action: Wait until the other user is finished, run
the application from another user ID, or get the
database administrator to change the level of
authority for your current user ID.

DMB0174E A system error occurred:
″<error>″.

Cause: An internal IBM error occurred.

Action: Follow the instructions that are
contained in the associated error message and
repeat the operation. If the error occurs again,
contact IBM service.

DMB0175I Images were not found:
″<information>″.

Cause: No images were found that matched the
query. The database might be empty.

Action: No action is required.

DMB0176I The column already has a QBIC
catalog: ″<table-name
column-name>″.

Cause: Another catalog exists with that name.

Action: No action is required.

Messages

540 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0177E The system cannot open the
catalog; the error message is:
″<error>″.

Cause: The catalog was damaged.

Action: Follow the instructions in the message
text.

DMB0178E The system cannot delete the
catalog; the error message is:
″<error>″.

Cause: Either the catalog does not exist, or it
was damaged.

Action: Verify the name and existence of the
catalog and try again.

DMB0179E The catalog handle is not valid:
″<error>″.

Cause: The catalog handle you used in the API
call is not valid.

Action: Check your application to see if you are
obtaining the correct catalog handle.

DMB0180I Access to catalog is denied:
″<error>″.

Cause: Access is denied.

Action: No action is required.

DMB0181I Catalog is in use ″<error>″.

Cause: Another operation is using this catalog.

Action: No action is required.

DMB0184I Tracing has already been started:

Cause: Tracing has already been started.

Action: No action is required.

DMB0185I Tracing has not been started yet.

Cause: Tracing has not been started yet.

Action: No action is required.

DMB0186I Tracing was turned on at ″<time>″
from directory
″<directory-name>″. The trace file
is ″<file-name>″. ″<Count> bytes
of trace data have been written.

Cause: Tracing is on.

Action: No action is required.

DMB0187E Communication cannot be
established because the system
cannot open file ″<file-name>″ for
writing.

Cause: Either you are not the owner of the
current instance that is described by environment
variable DB2INSTANCE, or the environment
variables such as DB2MMTOP are not set
correctly.

Action: Log with the user ID that owns the
instance. Verify that the environment variables
are set correctly.

DMB0188I An error occurred when creating
the trace daemon: ″<error>″

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0189I Tracing has already been
successfully started:

Cause: Tracing has already been started.

Action: No action is required.

DMB0190E Tracing cannot be started.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

Messages

Chapter 19. Diagnostic information 541

DMB0191E Environment variable ″<name>″
needs to be set.

Cause: The system configuration is not correct.

Action: Set the variable and try again.

DMB0192I Tracing has been successfully
turned off.

Cause: Tracing is off.

Action: No action is required.

DMB0193E The system cannot write to file
″<file-name>″.

Cause: You do you have write authority for the
directory of the specified file.

Action: Please contact your database
administrator to get authority.

DMB0194E The system cannot read from file
″<file-name>″.

Cause: Either the file does not exist or you do
not have read authority for the file.

Action: Make sure the file exists and that you
have read authority for the file.

DMB0198E The trace code ″<code>″ in the
input file is unknown. The input
file might be damaged.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0199E You do not have
″<authority-level>″ authority for
any of the referenced tables.

Cause: Your user ID does not have the level of
authority required for the operation.

Action: Either perform the operation from
another user ID, or get the database
administrator to change the level of authority for
your current user ID.

DMB0200W You do not have
″<authority-level>″ authority for
at least one of the referenced
tables.

Cause: Your user ID does not have the level of
authority required for some tables.

If you are listing referrred to files, the files that
are listed are referred to by tables for which you
have Select authority. If there are tables on your
system for which you do not have Select
authority, the files referred to by them are not
listed.

If you are reorganizing metadata, the system
only reorganized metadata for tables for which
you have Control authority.

Action: To get all the files, either perform the
operation from another user ID, or get the
database administrator to change the level of
authority for your current user ID.

DMB0201I A feature with that name already
exists: ″<feature-name>″.

Cause: A feature with that name is already
included in the QBIC catalog.

Action: No action is required.

DMB0202E The feature name is not valid:
″<feature-name>″.

Cause: There is no feature class with that name.
Valid feature names include:

v QbColorFeatureClass

v QbColorHistogramFeatureClass

v QbDrawFeatureClass

v QbTextureFeatureClass

Action: Correct the name of the feature and try
again.

DMB0203E The feature was not found:
″<feature-name>″.

Cause: There is no feature class with that name,
or the feature class is not included in the QBIC
catalog. Valid feature names include:

Messages

542 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

v QbColorFeatureClass

v QbColorHistogramFeatureClass

v QbDrawFeatureClass

v QbTextureFeatureClass

Action: Correct the name of the feature and try
again.

DMB0204E The column is not enabled for
DB2IMAGE: ″<column-name>″.

Cause: The column is not enabled for the Image
Extender.

Action: Make sure that the column is enabled
for the DB2 Image Extender.

DMB0205E No catalog found for
″<table-name column-name>″.

Cause: There is no QBIC catalog associated with
the specified column.

Action: Create a QBIC catalog for the column
before performing any other QBIC operations.

DMB0206W The specified column is not
enabled for any extender.

Cause: The column might not exist or its data
type might not be compatible with the extenders.

Action: Verify that the column has been defined
using the correct data type.

DMB0207E Can not overwrite the file.

Cause: The file already exists, but the EXPORT
UDF cannot overwrite it.

Action: Export the file to a different file name
or allow the EXPORT UDF to overwrite the file.

DMB0208E sqlcode=<code> clistate=<code>.

Cause: An internal error has occurred.

Action: Repeat the operation. If the error occurs
again, contact IBM service.

DMB0209E Invalid audio header.

Cause: The header of the audio file is missing
or corrupt.

Action: Verify that the format of the audio file
is supported by DB2 extenders.

DMB0211W File exists w/o overwrite.

Cause: The specified target file already exists
and is not overwritten.

Action: No action is required.

DMB0212E The resultType parameter is
reserved and must be 0.

Cause: The parameter is reserved for future use.

Action: Set the resultType to 0.

DMB0214E The pointer to the query name is
not valid.

Cause: The API call expected a valid pointer to
the input query name.

Action: Make sure that valid parameters are
supplied to the API call and the syntax is
followed correctly.

DMB0352E Command line environment not
initialized.

Cause: The command line environment is not
initialized to run the db2ext command-line
processor. (This message applies only to
Windows NT and Windows 95 environments.)

Action: Issue the db2cmd command to open a
DB2CLP window, then issue the db2ext
command to run the db2 command-line
processor in that window.

DMB0353E Cannot communicate with db2ext
command-line processor’s
background process.

Cause: The background process for the db2ext
command-line processor is running, but the

Messages

Chapter 19. Diagnostic information 543

db2ext command-line processor cannot
communicate with it.

Action: Try issuing the db2ext command in a
different window.

DMB0354E Cannot start db2ext command-line
processor’s background process.

Cause: The background process for the db2ext
command-line processor is running, but the
db2ext command-line processor cannot
communicate with it.

Action: Check that the executable module for
the background process (db2extb or db2extb.exe)
exists, and its directory is in the PATH
environment variable.

DMB0355E db2ext command-line processor’s
background process timed out.

Cause: The background process for the db2ext
command-line processor started successfully, but
the db2ext command-line processor cannot
communicate with it within the allowed time
limit.

Action: Try issuing the db2ext command in a
different window.

DMB0356E Cannot communicate with the
db2ext command-line processor’s
background process.

Cause: The db2ext command-line processor sent
a request to its background process, but the
request was not received.

Action: Make sure that the background process
for the db2ext command-line processor is still
running.

DMB0357E db2ext command-line processor’s
background process is not
responding.

Cause: The db2ext command-line processor sent
a request to its background process, but the
background process did not respond within the
allowed time limit.

Action: Make sure that the background process
for the db2ext command-line processor is still
running.

DMB0359E The db2ext command-line-
processor background process
request queue or input queue was
not created within the timeout
period.

Cause: The background process for the db2ext
command-line processor did not create message
queues within the allowed time limit. (This
message applies only to UNIX environments.)

Action: Make sure that the disk on which the
DB2 instance home directory resides is not full
(the background process needs this home
directory to create a file for message queues). If
the disk is not full, check whether you have
started too many db2extb processes. This is
possible if you are running the db2ext
command-line processor in many windows. A
background process is started in a window the
first time you issue a db2ext command-line
processor request in command mode. Make sure
that you issue the command db2ext terminate to
end the db2ext command-line processor when
you no longer need it. Message queues for the
backend process are deleted only if you issue the
terminate command.

DMB0361E Column or table not enabled.

Cause: An import UDF was specified, but the
specified table column is not enabled for the
extender.

Action: Enable the table column and retry.

DMB0363E Missing table and column name.

Cause: An update UDF was invoked, but a
table was not specified.

Action: Specify a table and retry.

Messages

544 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0364E Extender "<extender-name>" has
been previously defined for the
table space "<tablespace-name>".

Cause: The specified database, table, or column
has already been enabled for the extender using
a different tablespace than the one specified.

Action: Check that the table space specification
is correct.

DMB0365E You don’t have CONTROL
privilege on "<metadata-table-
name>" and "<metadata-table-
name >" which are the metadata
tables for "<schema-
name>"."<table-name>".

Cause: Your request was denied because you do
not have the required CONTROL privilege on
the metadata tables for the specified user table.

Action: Have your database administrator grant
you CONTROL privilege on the metadata tables.

DMB0366E Expected feature name.

Cause: A feature name is expected in the query
string.

Action: Correct the query string and try again.

DMB0367E Expected color|color
histogram|file.

Cause: Either “color”, “histogram”, or “file” is
expected in the query string.

Action: Correct the query string and try again.

DMB0368E Expected ','.

Cause: A ',' is expected in the query string.

Action: Correct the query string and try again.

DMB0369E File is not valid.

Cause: The file specified in the query string is
not valid.

Action: Correct the query string and try again.

DMB0370E Expected filename.

Cause: A filename is expected in the query
string.

Action: Correct the query string and try again.

DMB0371E Expected server|client.

Cause: Either “server” or “client” is expected in
the query string.

Action: Correct the query string and try again.

DMB0372E Expected '('.

Cause: A '(' is expected in the query string.

Action: Correct the query string and try again.

DMB0373E Expected ')'.

Cause: A ')' is expected in the query string.

Action: Correct the query string and try again.

DMB0374E Expected percentage.

Cause: The percent value is expected in the
query string.

Action: Correct the query string and try again.

DMB0375E Expected color.

Cause: The red, green, and blue values are
expected in the query string.

Action: Correct the query string and try again.

DMB0376E Expected '='.

Cause: An '=' is expected in the query string.

Action: Correct the query string and try again.

DMB0377E Expected '<'.

Cause: An '<' is expected in the query string.

Action: Correct the query string and try again.

Messages

Chapter 19. Diagnostic information 545

DMB0378E Expected '>'.

Cause: An '>' is expected in the query string.

Action: Correct the query string and try again.

DMB0379E Expected 'and'.

Cause: An 'and' is expected in the query string.

Action: Correct the query string and try again.

DMB0380E Expected weight.

Cause: A weight is expected in the query string.

Action: Correct the query string and try again.

DMB0381E Feature not set.

Cause: The feature has not been added to the
QBIC catalog.

Action: Add the feature to the QBIC catalog,
and recatalog the images.

DMB0382E Could not build query.

Cause: The extender server for the current
database might be stopped.

Action: Check the status of the server. If the
server is not running, restart it using the START
SERVER command on the db2ext command line.

DMB0383E Could not execute query.

Cause: The extender server for the current
database might be stopped.

Action: Check the status of the server. If the
server is not running, restart it using the START
SERVER command on the db2ext command line.

DMB0384E Could not get next item.

Cause: End of the list has been reached.

Action: Make sure that your application is not
attempting to retrieve an item beyond the end of
the list.

DMB0386E Can’t collocate with user data

Cause: The SQL API sqluihsh() has returned a
non-zero return code.

Action: Retry. If the problem persists, call IBM
support.

DMB0387E The nodegroup for the specified
tablespaces is different from the
nodegroup of the user table.

Cause: One or more of the tablespaces (that is,
for the metadata table, index, or BLOB) passed as
input for enabling a table is defined on a
nodegroup that is different from the one the user
table is defined on.

Action: Use tablespaces that are defined on the
same nodegroup as the user table to be enabled.

DMB0388E The regular, long or index
tablespaces are not defined on the
same nodegroup.

Cause: One or more of the tablespaces (that is,
for the metadata table, index, or BLOB) passed as
input for enabling a database is not defined on
the same nodegroup as the other tablespaces.

Action: Use tablespaces that are defined on the
same nodegroup.

DMB0389W The nodegroup for the specified
tablespaces does not include all of
the partition servers.

Cause: The tablespaces passed as input are
defined on a nodegroup that does not include all
partition servers.

Action: No action is required. However, the
import and update UDFs will perform more
efficiently if the tablespaces are defined on a
nodegroup that covers all the partition servers.
This is especially true if the extender applications
store media content in BLOB format.

Messages

546 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0391I This command can be run only
when a DB2 UDB client is
accessing a DB2 UDB server.

Cause: Either the db2ext command-line
processor is not connected to a DB2 UDB server,
or the db2ext command-line processor has not
been started by a DB2 UDB client. For example,
the command START SERVER is valid only if the
db2ext command-line processor is connected to a
DB2 non-Extended Enterprise Edition server.

Action: Do not issue this command in the
current client/server configuration.

DMB0392I The command can be run only
when a DB2 UDB client is
accessing a DB2 UDB Extended
Enterprise Edition server. For
example, the command
DISCONNECT SERVER is valid
only if the db2ext command-line
processor is connected to a DB2
Extended Enterprise Edition
server.

Cause: Either the db2ext command-line
processor is not connected to a DB2 UDB
Extended Enterprise Edition server, or the db2ext
command-line processor has not been started
from a DB2 UDB client.

Action: Do not issue this command in the
current client/server configuration.

DMB0402E Option ″<option-name>″ for
command ″<command-name>″ is
valid only if the application is
connected to a DB2
″<server-type>″ server.

Cause: The specified parameter is not valid
because the db2ext command-line processor is
not connected to the type of server that supports
that option. For example, the command GET
SERVER STATUS can be specified with the
parameter NODENUM <nodenum> only if the
db2ext command-line processor is connected to a
DB2 Extended Enterprise Edition server.

Action: Do not issue this command-parameter

combination in the current client/server
configuration.

DMB0411E Invalid base port

Cause: An invalid TCP/IP port number was
entered as the base port during instance creation.

Action: The correct syntax is dmbicrt
-r:base_port,end_port -t:base_port,end_port.
Correct the parameter and retry the command.

DMB0412E Invalid end port

Cause: An incorrect TCP/IP port number was
entered as the end port during instance creation.

Action: The correct syntax is dmbicrt
-r:base_port,end_port -t:base_port,end_port.
Correct the parameter and retry the command.

DMB0413E Unable to resolve the DB2
Extenders installation path.

Cause: The instance creation program could not
find a value for the environment variable
″DMBPATH.″

Action: Set the variable ″DMBPATH″ and retry
the application.

DMB0414E Unable to resolve the computer
hostname.

Cause: An internal error was encountered while
trying to resolve the computer’s name.

Action: Contact IBM support.

DMB0415E Unable to resolve the node
number for this machine.

Cause: The machine on which the instance
creation is being run is not listed in the file
″db2nodes.cfg.″

Action: Add the machine to the ″db2nodes.cfg″
and retry the application.

Messages

Chapter 19. Diagnostic information 547

DMB0416E This program must be started by
the root. Unable to continue.

Cause: The user ID under which the program is
being run does not have root authority.

Action: Logon as the root and retry the
application.

DMB0417E This program must be executed
by a user with administrator
authority. Unable to continue.

Cause: The user ID under which the program is
being run does not have administrator authority.

Action: Logon with a user ID that has
administration authority, and retry the
application.

DMB0418E Unable to get information about
user: ″<userid>″.

Cause: An internal error occured when trying to
get user information that is associated with the
instance being created.

Action: Ensure that there is a valid user ID with
the same name as the instance being created, and
retry the application.

DMB0419E Unable to create AIV Extenders
directory ″<directory_name>.
Return Code = <code>

Cause: An error occured while trying to create
the specified directory. The return code
represents the error returned from the operating
system.

Action: Ensure that the file system/drive
specified in the directory name exists and that
permissions allow a directory to be created.

DMB0420E Unable to create link for AIV
Extenders directory
″<directory_name>″. Return Code
= <code>

Cause: An error occured while trying to create
the specified symbolic link. The return code

represents the error that is returned from the
operating system.

Action: Ensure that the file system/drive
specified in the directory name exists and that
permissions allow a link to be created.

DMB0421E Unable to open file:
″<file_name>″. Return Code =
<code>

Cause: An error occured while trying to open
the specified file. The return code represents the
error that is returned from the operating system.

Action: Ensure that the file exists and that
permissions allow the file to be opened.

DMB0422E Unable to write to file:
″<file_name>″. Return Code =
<code>

Cause: An error occurred while trying to write
to the specified file. The return code represents
the error that is returned from the operating
system.

Action: Ensure that the file exists and that
permissions allow the file to be written to.

DMB0424E Unable to find ″db2nodes.cfg″
file.

Cause: The DB2 file ″db2nodes.cfg″ could not
be located.

Action: Ensure that the correct version of DB2
UDB Extended Enterprise Edition has been
installed and retry the application.

DMB0426E Error: ″<error_code>″ opening key
″<registry_key>″.

Cause: An error occurred while trying to open
the specified registry key.

Action: Record the return code and contact IBM
support.

Messages

548 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DMB0427E The variable ″<variable>″ was not
set in the profile registry.

Cause: The specified value was not found in the
Windows NT registry.

Action: Ensure that the name of a valid DB2
Extender variable was specified.

DMB0430E Unable to find DB2 registry
values

Cause: The registry values used by DB2 could
not be found.

Action: Ensure that the correct version of DB2
UDB Extended Enterprise Edition is installed and
retry the application.

DMB0431E Unable to create Extender Registry
Key: ″<registry_key>″.

Cause: An internal error occured while trying to
create an extender registry key.

Action: Contact IBM support.

DMB0432E Unable to set value for extender
registry key: ″<registry_key>″.

Cause: An internal error occurred while trying
to set an extender registry key value.

Action: Contact IBM support.

DMB0435E Unable to access control file
″<control_file>″.

Cause: The specified control file could not be
found.

Action: Contact IBM support.

DMB0443E Unable to open directory
″<directory_name>″. Return =
<code>

Cause: An error occurred while trying to open
the specified directory. The return code
represents the error that is returned from the
operating system.

Action: Ensure that the file system/drive
specified in the directory name exists and that
permissions allow a directory to be opened.

DMB0449W -q:datapath is required for DB2
extender instance creation.

Cause: The -q parameter was not specified
when trying to create an DB2 extender instance.

Action: Specify the parameter and retry the
application.

DMB0450W One or more of the specified
″<port>″ ports are already in use.

Cause: A port was specified for use by DB2
Extenders that is already listed in the services file
as being in use.

Action: Specify a port or ports that are not in
use and retry the application.

DMB0452E Node number ″<node_num>″ was
not found in the ″db2nodes.cfg″
file.

Cause: The node number of this machine was
not found in the db2nodes.cfg file.

Action: Add the node number to the
db2nodes.cfg file and retry the application.

DMB0460W Unable to determine if TCP/IP
ports are available.

Cause: An error occurred while trying to verify
if the specified TCP/IP ports are already in use.

Action: Ensure that the ports specified are not
listed in the services file as being in use by
another application.

DMB0462E Unable to initialize this node.
Return code = <code>

Cause: Extender startup encountered an error
while trying to initialize the current node.

Action: Contact IBM support.

Messages

Chapter 19. Diagnostic information 549

DMB0495E This version of AIV Extenders
doesn’t support long names.

Cause: You have specified a long identifier
when calling an extenders administration API or
when issuing a db2ext command-line command.
The maximum length of identifiers supported in
this version of the AIV Extenders is:

v Local authorization ID (AUTHID) — 8
characters

v Table schema (TABSCHEMA) — 8 characters

v Table names (TABNAME) — 18 characters

v Column names — 18 characters

Check the API call or the command to be sure to
use short identifiers.

DMB0496E Invalid table name or column
name is specified.

Cause: You have specified an invalid identifier
when calling an extenders administration API or
when issuing a db2ext command-line command.
The likely cause is that the identifier name was
too long. Check the Quick Beginnings book for
information on the lenght of names in UDB Db2.

Check the API call or the command to be sure to
use short identifiers.

DMB497E Access denied on
DB2MMDATAPATH.

Cause: (EEE only) You have specified a
directory or shared name that is not accessible on
all nodes. The directory or shared name specified
when creating an instance of DB2 extenders must
exist and be accessible on all nodes. Check that
the directory or shared name you specified when
you created the instance exists on all nodes and
is accessible.

DMB498E At lease one part of
DB2MMDATAPATH path is not a
directory.

Cause: (EEE only) You have specified a
directory or shared name that is not a directory
on a node. The directory or shared name
specified when creating an instance of DB2

extenders must exist and be accessible on all
nodes. Check that the directory or shared name
you specified when you created the instance
exists on all nodes and is accessible.

DMB499E The DB2MMDATAPATH string is
too long.

Cause: (EEE only) You have specified a
directory or shared name that has caused the
variable DB2MMDATAPATH to be too long. The
directory or shared name specified when creating
an instance of DB2 extenders must exist and be
accessible on all nodes. Check that the directory
or shared name you specified when you created
the instance is correct and that it exists and is
accessible on all nodes.

DMB500E The DB2MMDATAPATH
directory does not exist.

Cause: (EEE only) You have specified a
directory or shared name that does not exist on a
node. The directory or shared name specified
when creating an instance of DB2 extenders must
exist and be accessible on all nodes. Check that
the directory or shared name you specified when
you created the instance exists on all nodes and
is accessible.

DMB501E Unknown stat() error on
DB2MMDATAPATH.

Cause: (EEE only) A problem was encountered
when trying to access a directory or shared name
that in this environment variable. The directory
or shared name specified when creating an
instance of DB2 extenders must exist and be
accessible on all nodes. Check that the directory
or shared name you specified when you created
the instance exists on all nodes and is accessible.

DMB502E DB2MMDATAPATH exists but is
not a directory.

Cause: (EEE only) You have specified the name
for a directory or shared name but the name is
not that of a directory or shared name on all
nodes. The directory or shared name specified
when creating an instance of DB2 extenders must

Messages

550 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

||
|

|
|
|
|
|

|
|

|

|

|

|
|

||
|

|
|
|
|
|
|

|
|

||
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

||
|

|
|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|

exist and be accessible on all nodes. Check that
the directory or shared name you specified when
you created the instance exists on all nodes and
is accessible.

DMB503E DB2MMDATAPATH exists but is
not readable.

Cause: (EEE only) You have specified a
directory or shared name that can not be read
from on all nodes. The directory or shared name
specified when creating an instance of DB2
extenders must exist and be accessible on all
nodes. Check that the directory or shared name
you specified when you created the instance
exists on all nodes and is accessible.

DMB504E DB2MMDATAPATH exists but is
not writable.

Cause: (EEE only) You have specified a
directory or shared name that can not be written
to on all nodes. The directory or shared name
specified when creating an instance of DB2
extenders must exist and be accessible and
read/write on all nodes. Check that the directory
or shared name you specified when you created
the instance exists on all nodes and is accessible.

DMB504E DB2MMDATAPATH is not set.

Cause: (EEE only) The environment variable
DB2MMDATAPATH was not set when you
created a DB2 extenders instance. If this is a new
DB2 extenders instance, drop the instance using
DMBIDROP; then recreate it specifying the -q
option correctly.

If this is not a new DB2 extender instance, then:

v In the UNIX environment:

1. Check that the directory is correct, exists
and is accessible on all nodes

2. Modify $INSTHOME/dmb/dmbprofile to
export DB2MMDATAPATH as a directory.

v In the Windows environment:

1. Check that the shared name for the
directory is correct and that the directory
exists and is accessible on all nodes

2. Add a registry entry DB2MMDATAPATH
with that shared name as a value in the
IAV Extenders instance registry. The key is
\\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2
Extenders\PROFILE\instance_name\DB2MMDATAPATH.

DMB506E Instance name is not set.

Cause: The DB2INSTANCE environment
variable was not set when you ran DMBSTART.
Make sure that DB2START works properly before
starting DB2 extenders services with DMBSTART.

DMB507E dmbssd name node arguments

Cause: Internal error. Contact your IBM
representative.

DMB508E Node number must be greater
than or equal to 0.

Cause: Internal error. Contact your IBM
representative.

DMB509E This program should not be
started manually.

Cause: Internal error. Contact your IBM
representative.

DMB512E Usage: arguments dmbInstName.

Cause: Internal error. Contact your IBM
representative.

DMB513E Name is not a valid instance name.

Cause: The name you specified when trying to
drop a DB2 extender instance was not recognized
as the name of an instance. Check that you
specified the a correct instance name and that the
directory $INSTHOME/dmb with that name exists

DMB514I Neither server nor client has been
installed on this instance.

Cause: You have tried to drop a DB2 extenders
instance, but the extenders haven’t been
installed. Check to make sure your installation is

Messages

Chapter 19. Diagnostic information 551

|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||

|
|
|
|
|
|

|

|

|
|

|
|

|

|
|
|

|
|
|
|
|

||

|
|
|
|

||

|
|

||
|

|
|

||
|

|
|

||

|
|

||

|
|
|
|
|

||
|

|
|
|

correct and that the installation directories have
not been renamed.

DMB515I The DB2 instance was NOT
dropped. The DB2 instance can be
dropped by invoking DB2IDROP.

Cause: When you drop a DB2 extenders
instance, the associated instance of DB2 is not
dropped. Use DB2IDROP to drop the DB2
instance.

DMB518E Unexpected error. Function =
function name, Return Code =
return_code.

Cause: An unexpected error was encountered
when you tried to create or drop a DB2
extenders instance. Check that your installation
and set up are correct.

DMB520E You cannot execute this program
as root.

Cause: Check that you have the correct
authority to perform this action.

DMB521E An attempt to change permissions
for name failed.

Cause: Make sure you have the correct
authority to change permissions.

DMB522E An attempt to change ownership
for name failed.

Cause: Make sure you have the correct
authority to change ownership.

DMB523E An attempt to change group
ownership for name failed.

Cause: Make sure you have the correct
authority to change group ownership.

DMB524E The file or directory name already
exists.

Cause: A file or a directory with the name you
specified already exists. Choose a different name
and rerun the command.

DMB525E An attempt to create name failed.

Cause: Check that you have the correct
authority to preform this action.

DMB526E The file or directory name is
missing.

Cause: The file or the directory indicated could
not be found. Check that you specified a valid
file or directory name.

DMB527E An attempt to copy the file or
directory name to name failed.

Cause: Check that you have the correct
authority to copy the file or directory; check that
there is enough space for the copy.

DMB528E The user ID user_ID is invalid.

Cause: You specified an invalid user ID. Check
the user ID, and rerun the command.

DMB529E The primary group group of the
user ID user_ID is invalid.

Cause: You specified an invalid primary group
for the user ID. Check for the correct primary
group, and rerun the command.

DMB530E The instance name name is
invalid.

Cause: You specified an invalid name when
trying to create or work with an instance. Check
for a valid instance name, and rerun the
command.

Messages

552 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|

||
|
|

|
|
|
|

||
|
|

|
|
|
|

||
|

|
|

||
|

|
|

||
|

|
|

||
|

|
|

||
|

|
|
|

||

|
|

||
|

|
|
|

||
|

|
|
|

||

|
|

||
|

|
|
|

||
|

|
|
|
|

DMB531E Unsupported Operating System
name, version version_number.

Cause: You have tried to run this command on
an unsupported version of the operating system.
Check the requirements for performing this
operation.

DMB535E The specified file cannot be
accessed.

Cause: Check that you have access to the file
before running this command.

DMB0533E The API <API name> is not
supported for a partitioned
database server environment.

Cause: You cannot use the API specified in a
partitioned database environment.

Action: Refer to the section on the API specified
for information on how to handle this function in
your application.

DMB0534E UDF not supported.

Cause: You cannot use the user-defined function
in a partitioned database environment.

Action: Check the message SQL0443N to
determine which UDF encountered a problem.
Refer to the section on that UDF for information
on how to handle this function in your
application.

Diagnostic tracing

The DB2 extenders include a trace facility that records extender server activity.
You should use the trace facility only under instruction of IBM service
personnel.

The trace facility records information in a server file about a variety of events,
such as entry to or exit from a DB2 extender component or the return of an
error code by a DB2 extender component. Because it records information for
many events, the trace facility should be used only when necessary, for
example, when you are investigating error conditions. In addition, you should
limit the number of active applications when using the trace facility. Limiting
the number of active applications can make it easier to isolate the cause of a
problem.

Use the DMBTRC command to control tracing. You can issue the command
from a command line on an OS/2 server, AIX server, or Windows NT or later
server. You must have SYSADM, SYSCTRL, or SYSMINT authority to issue
the command.

Use the DMBTRC command to:
v Start tracing
v Stop tracing
v Reformat trace information to make it more readable
v Show trace status

Messages

Chapter 19. Diagnostic information 553

||
|

|
|
|
|

||
|

|
|

||
|
|

|
|

|
|
|

||

|
|

|
|
|
|
|

|

Start tracing
You can start tracing by entering the command:

dmbtrc on path

where path is the path of a server file that will contain the trace information.

For example, the following command starts tracing:
dmbtrc on /tmp/trace.txt

Stop tracing
You can stop tracing by entering the command:

dmbtrc off

Reformat trace information
Trace information is recorded in binary format. You can reformat the
information and make it more readable by entering the following command:

dmbtrc format input_file output_file

where input_file is the file that contains the trace information in binary format,
and output_file is the file that will contain the reformatted information. The
output_file parameter is optional; if you do not specify it, the reformatted
information is displayed on the screen.

For example, the following command reformats trace information:
dmbtrc format /tmp/trace.txt /tmp/fmttrace.txt

Show trace status
Use the command:

dmbtrc info

to show the following trace status information:
v Trace facility on or off
v Path of the file that contains the trace information

Tracing

554 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Part 5. Appendixes

© Copyright IBM Corp. 1996, 2000 555

556 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Appendix A. Setting environment variables for DB2
extenders

The DB2 extenders give you flexibility in how you specify file names when
you store, retrieve, or update image, audio, or video objects. You also have
flexibility in how you specify programs to display or play image, audio, and
video objects that are retrieved from a database table.

How environment variables are used to resolve file names

Although you can specify a fully qualified file name, (that is, a complete path
followed by the file name) for store, retrieve, and update operations, it’s
preferable to specify a relative file name. In AIX, HP-UX, or Solaris, a relative
file name is any file name that does not begin with a slash; in OS/2 and
Windows, a relative file name is any file name that does not begin with a
drive letter followed by a colon and backslash.

If you specify a relative file name, the extenders will use the directory
specifications in various client and server environment variables to resolve the
file name. This allows files to be moved in a client/server environment
without changing the file name. A fully qualified file name would have to be
changed every time a file is moved.

Table 17 lists and describes environment variables that you can set for use by
the Image, Audio, and Video Extenders in resolving file names.

Table 17. Environment variables for DB2 extenders

Image Extender Audio Extender Video Extender Description

Server environment variables

DB2IMAGEPATH DB2AUDIOPATH DB2VIDEOPATH Used to resolve source file name for
store, retrieve, and update operations
from a server file.

DB2IMAGESTORE DB2AUDIOSTORE DB2VIDEOSTORE Used to resolve target file name for
store and update operations to a server
file.

DB2IMAGEEXPORT DB2AUDIOEXPORT DB2VIDEOEXPORT Used to resolve target file name for
retrieve operations to a server file.

© Copyright IBM Corp. 1996, 2000 557

Table 17. Environment variables for DB2 extenders (continued)

Image Extender Audio Extender Video Extender Description

DB2IMAGETEMP Used to resolve target file name for
operations that create temporary server
files. However, if the TMP environment
variable is specified, the directory TMP
is used to resolve file names.

Client environment variables

DB2IMAGEPATH DB2AUDIOPATH DB2VIDEOPATH Used to resolve source file name for
display and play operations on a client
file.

DB2IMAGETEMP DB2AUDIOTEMP DB2VIDEOTEMP Used to resolve target file name for
operations that create temporary client
files. However, if the TMP environment
variable is specified, the directory TMP
is used to resolve file names.

If you don’t set the appropriate environment variable for the specific extender,
the extender will use the following environment variables to resolve file
names:

Environment variable Description

DB2MMPATH Used to resolve source file name for store,
retrieve, and update operations.

DB2MMSTORE Used to resolve target file name for store and
update operations.

DB2MMEXPORT Used to resolve target file name for retrieve
operations.

DB2MMTEMP Used to resolve file name for operations that
create temporary files.

How environment variables are used to identify display or play programs

In addition to resolving file names, environment variables are also used to
identify programs to display image objects retrieved by the Image Extender
and play audio or video objects retrieved by the Audio and Video Extender.
You use the DBiBrowse, DBaPlay, and DBvPlay APIs, respectively to display
or play these objects. When you use each API, you can specify a display or
play program or you can indicate that you want a default program to display
or play the object.

The DB2 Extenders use the following environment variables in the client to
identify the default display or play programs:

Environment variables

558 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Environment variable Description

DB2IMAGEBROWSER Used to identify the default image display
program.

DB2AUDIOPLAYER Used to identify the default audio player
program.

DB2VIDEOPLAYER Used to identify the default video player
program.

How the DB2MMDATAPATH environment variable is used (EEE only)

The DB2 extenders use the DB2MMDATAPATH environment variable to
resolve locations for various operations in a partitioned database environment.
For example, the DB2 Image Extender uses the value of DB2MMDATAPATH
to store QBIC data in a partitioned database environment.

You set DB2MMDATAPATH when you create a DB2 extenders instance, as
described in “DMBICRT” on page 508 and in the following installation
“readme” files:
v install.txt in the aixeee directory (Installing DB2 Extenders for use with DB2

Extended Enterprise Edition in AIX)
v install.txt in the soleee directory (Installing DB2 Extenders for use with DB2

Extended Enterprise Edition in Solaris Operating Environment)

One example of how DB2MMDATAPATH is used is in storing QBIC feature
and index data. In UNIX, the DB2 Image Extender stores this QBIC data in
the following directory:
db2mmdatapath /NODEnode_num/QBIC/database_name

where db2mmdatapath is the value of the DB2MMDATAPATH environment
variable, node_num is the node number, and database_name is the database
name.

Consider the following AIX example. Suppose DB2MMDATAPATH is set to
/localfs/dmbdata. Suppose too that a database named sample is partitioned
in nodes 0, 2, and 5. QBIC data will be stored for the sample database in the
following directories:

Node 0: /localfs/dmbdata/NODE0000/QBIC/sample
Node 2: /localfs/dmbdata/NODE0002/QBIC/sample
Node 5: /localfs/dmbdata/NODE0005/QBIC/sample

Environment variables

Appendix A. Setting environment variables for DB2 extenders 559

|

Setting environment variables

You can set environment variables in AIX, HP-UX, Solaris, OS/2, and
Windows.

Setting environment variables in AIX, HP-UX, Solaris servers and clients
In AIX, HP-UX, and Solaris , the environment variables are specified in C
shell, Korn shell, and Bourne shell scripts. When the DB2 extenders are
installed, the environment variables for the server are set as follows:

C shell
setenv DB2MMPATH /usr/lpp/db2ext/samples:/tmp
setenv DB2MMTEMP /tmp
setenv DB2MMSTORE /tmp
setenv DB2MMEXPORT /tmp

Korn and Bourne shell
DB2MMPATH=/usr/lpp/db2ext/samples:/tmp
export DB2MMPATH

DB2MMSTORE=/tmp
export DB2MMSTORE

DB2MMEXPORT=/tmp
export DB2MMEXPORT

DB2MMTEMP=/tmp
export DB2MMTEMP

The environment variables for the server are initially set to values that allow
you to access the media files that are used in the sample programs that are
distributed with the DB2 Extenders. (See “Appendix B. Sample programs and
media files” on page 565 for information about the sample programs and
media files.)

The client environment variables are set as follows when you install the DB2
Extenders in an AIX, HP-UX, or Solaris client:

C shell
setenv DB2MMPATH /tmp
setenv DB2MMTEMP /tmp

Korn and Bourne shell
DB2MMPATH=/tmp
export DB2MMPATH

DB2MMTEMP=/tmp
export DB2MMTEMP

Environment variables

560 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Set the server and client environment variables that are used to resolve file
names. Specify values that are appropriate for your environment. You can
specify multiple directories, separated by a delimiter, for the environment
variables that end in PATH. The environment variables that end in STORE,
EXPORT, and TEMP are set with one directory only.

Specify the names of the appropriate image display, audio play, and video
play programs in the DB2IMAGEBROWSER, DB2AUDIOPLAYER, and
DB2VIDEOPLAYER client environment variables, respectively.

You can change the initial settings of the environment variables as follows:

C shell

Use the SETENV command to set environment variables:
setenv env-var directory

For example:
setenv DB2MMPATH /usr/lpp/db2ext/samples:/media
setenv DB2IMAGEPATH /employee/pictures:/images
setenv DB2AUDIOSTORE /employee/sounds
setenv DB2IMAGEBROWSER 'xv %s'

Bourne shell

Use the EXPORT command to set environment variables:
env-var=directory
export env-var

For example:
DB2MMPATH=/usr/lpp/db2ext/samples:/media
export DB2MMPATH

DB2IMAGEPATH=/employee/pictures:/images
export DB2IMAGEPATH

DB2AUDIOSTORE=/employee/sounds
export DB2AUDIOSTORE

Korn shell

Use the EXPORT command to set environment variables:
export env-var=directory

For example:

Environment variables

Appendix A. Setting environment variables for DB2 extenders 561

export DB2MMPATH=/usr/lpp/db2ext/samples:/media
export DB2IMAGEPATH=/employee/pictures:/images
export DB2AUDIOSTORE=/employee/sounds

Setting environment variables in OS/2 servers and clients
In OS/2, the environment variables are added to your CONFIG.SYS file and
automatically set during installation.

If you install the DB2 Extenders in an OS/2 server, the server environment
variables are set as follows:
SET DB2MMPATH=install-dir\SAMPLES;temp-file-dir
SET DB2MMSTORE=temp-file-dir
SET DB2MMEXPORT=temp-file-dir
SET DB2MMTEMP=temp-file-dir

where install-dir is the installation directory and temp-file-dir is the temporary
file directory. The default installation directory is C:\DMB, and the default
temporary file directory is C:\DMB\TMP. You can change the location of either
directory during installation. It is important that you correctly specify the
location of the temporary file directory.

The environment variables for the server are initially set to values that allow
you to access the media files that are used in the sample programs that are
distributed with the DB2 Extenders. (See “Appendix B. Sample programs and
media files” on page 565 for information about the sample programs and
media files.)

If you install the DB Extenders in an OS/2 client, the client environment
variables are set as follows:
SET DB2MMPATH=temp-file-dir
SET DB2MMTEMP=temp-file-dir

Use the SET command to reset the environment variables. You can specify
multiple directories, separated by a delimiter, for the environment variables
that end in PATH. The environment variables that end in STORE, EXPORT,
and TEMP are set with one directory only.

Use the SET command to specify the appropriate image display, audio player,
and video player programs in the DB2IMAGEBROWSER,
DB2AUDIOPLAYER, and DB2VIDEOPLAYER client environment variables,
respectively.

Specify the SET command as follows:
SET env-var=directory

for example,

Environment variables

562 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

SET DB2MMPATH=C:\DMB\SAMPLES;\D:\MEDIA
SET DB2IMAGEPATH=C:\EMPLOYEE\PICTURES;D:\IMAGES
SET DB2AUDIOSTORE=C:\EMPLOYEE\SOUNDS
SET DB2IMAGEBROWSER=ib.exe %s

Setting environment variables in Windows servers and clients
In Windows, how you set environment variables depends on whether you are
using DB2 Extenders in a non-partitioned environment or in a partitioned
database environment (that is, with DB2 Extended Enterprise Edition for
Windows).

Setting environment variables in Windows non-partitioned database
environments (Non-EEE Only)
In Windows, environment variables are stored in the system registry. Variables
can be set by opening the Windows control panel and selecting the system
icon. From the System Properties dialog, select the Environment tab. There are
two windows containing environment variables and their values. The top
window displays variables which are in effect for all users. The bottom
window displays variables which are in effect for only the current user.

Setting environment variables in Windows partitioned database
environments (EEE Only)
In a Windows partitioned environment, all variables used by DB2 extenders
are stored in a private area of the system registry. A program called DMBSET
is provided to inspect and change extender variables.

The syntax of the program is:

�� dmbset
variable
variable = value
-g
-i instance

-all
-null

-l
-lr
-?
-h

��

To query the value of a variable, type dmbset variable_name. For example:
dmbset DB2MMPATH

To set the value of a variable, type: dmbset variable_name=value. For example:
dmbset DB2MMPATH=C:\DMB\SAMPLES

Environment variables

Appendix A. Setting environment variables for DB2 extenders 563

To display the value of all variables for a defined instance, type dmbset -i
instance_name. For example:
dmbset -i dmbinst1

To set a value to null, type dmbset variable_name -null. For example:
dmbset DB2MMPATH -null

To display the value of the variables that are used by all instances, type:
dmbset -g

To list the names of all variables that are used by DB2 extenders, type:
dmbset -lr

To list the names of all instance profiles that are defined in the registry, type:
dmbset -l

You have a lot of flexibility in setting environment variables for DB2 extenders
in a partitioned database environment. For example, you can specify values
for any environment variable, except DB2MMDATAPATH, in any of the
following formats:
v Universal Naming Convention name: \\machine_name\share_name. For

example:
\\harmony\JimsShr

v Drive:path. For example:
f:\media

v Anything else: share_name\directory_name. For example:
JimsShr\images

Environment variables

564 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Appendix B. Sample programs and media files

Included with the DB2 extenders are various sample programs. The sample
programs use image, audio, and video files that are also supplied with the
extenders. Most of the sample programs are written in C. All of the C sample
programs are in Call Level Interface (CLI) format. Several Java sample
programs and a Net.Data sample macro file are also provided.

The sample programs are installed in the SAMPLES subdirectory of the target
directory when you install the DB2 extenders. The image, audio, and video
files are also installed in the SAMPLES subdirectory of the target directory
when you install the DB2 extenders. During installation, the extenders
environment variables are set to point to the samples subdirectory of the
target directory.

Sample programs

A number of files comprise the sample programs for the DB2 extenders. The
files are:

File Description

enable.c Enables a database for the Audio, Image, and Video
Extenders, creates a table, and enables the table and its
columns.

populate.c Imports data into the table (the program is in C format)

Populate.java Imports data into the table (the program is in Java format)

query.c Queries the data in the table (the program is in C format)

Query.java Queries the data in the table (the program is in Java format)

api.c Uses extender APIs to query the database

handle.c Demonstrates the use of handles in UDFs and how to make
where clause comparisons in SELECT statements

qbcatdmo.c Creates a QBIC catalog and catalogs a column of images into
the catalog

qbicdemo.c Queries a QBIC catalog

color.c Makes color table declarations for qbicdemo.c

QbicQry.java Presents average color and histogram color selectors for a
QBIC query

© Copyright IBM Corp. 1996, 2000 565

|

||
|

makesf.c Creates a shot catalog file for use with makehtml.exe.

makehtml.c Accesses a shot catalog and creates HTML pages for display
by a Web browser

storybrd.java Applet to display the shots, called by the HTML pages
generated by makehtml.c

utility.c Utility routines

utility.h Header file for utility routines

makefile.aix Makefile to build the programs in AIX

makefile.os2 Makefile to build the programs in OS/2

makefile.iva Makefile to build the programs in Windows NT (or later),
using IBM VisualAge C++

makefile.mvc Makefile to build the programs in Windows, using Microsoft
Visual C++

makefile.sun Makefile to build the programs in Solaris

makefile.hp Makefile to build the programs in HP-UX

Executable files are provided for the following sample programs. The sample
programs are intended to be run in the order that is shown.
1. Enable
2. Populate
3. Query
4. API
5. Handle
6. Qbcatdmo
7. Qbicdemo
8. QbicQry
9. Makesf

10. Makehtml

Executable class files (Populate.class, Query.class, QbicQry.class, and
storybrd.class) are provided with the sample Java programs.

Prior to running the sample programs, you must create a database on your
server. The extender services must have also been started on the server. To
run a sample program, type the program name (this starts the program’s
executable file). You will be prompted for the database name, user ID, and
password. Use the user ID and password of the user that created the
database.

Sample programs

566 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

||
|

|
|

|

|
|

You can also build your own executable files for the sample programs. To do
that, you need to:
1. Copy the sample program files to a writable directory.
2. Edit the makefile to specify the locations on your system where DB2, the

extenders, and the compiler are installed.
3. Use make or nmake to compile the files into executable programs.

For further information about installing and using the sample programs, see
the README.CNT file in the sample programs directory.

Sample image, audio, and video files

The sample image, audio, and video files that are provided with the DB2
extenders are:
v Image Files

– lizzi.bmp

– sws_stri.bmp

– nitecry.bmp

– ranger_r.bmp

– fuzzblue.bmp

v Audio Files
– lizzi.wav

– sws_stri.wav

– nitecry.wav

– ranger_r.wav

– fuzzblue.wav

v Video Files
– nitecry.avi

– sample.mpg

Sample Net.Data macro file

Included with the DB2 extenders is a Net.Data macro file named
extender.d2w. When run by a Web server, the macro file executes SQL
statements that call DB2 extender UDFs. The macro file returns results that are
displayed by a Web browser. As Figure 30 on page 568 shows, each result page
also displays the SQL statement that is run to produce the result. Figure 31 on
page 569 shows the contents of the sample Net.Data macro file.

To run the sample Net.Data macro file, enter the following URL from a Web
browser: http://your server/cgi-bin/db2www/extender.d2w/startHere

Sample programs

Appendix B. Sample programs and media files 567

where your server is the name of your Web server.

Figure 30. Web application that runs the Sample Net.Data macro file. Each result page displays the SQL statement
that is run to produce the result.

Sample media files

568 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

%{ -- %}
%{ Copyright International Business Machines Corporation, 1998. %}
%{ All rights reserved. %}
%{ %}
%{ Sample Net.Data macro which shows how to call image, audio, and video %}
%{ extender UDFs. %}
%{ %}
%{ To run, put this macro in your MACRO_PATH root, make sure the tmplobs %}
%{ directory exists under your web server's document root, and create %}
%{ the database to be used when running the extender sample programs %}
%{ 'enable' and 'populate'. Run 'enable' and 'populate'. If you name your %}
%{ database something other than 'testdb2', you'll need to change the %}
%{ definition of DATABASE below. The extender environment variable %}
%{ DB2MMEXPORT needs to be set for the instance used by Net.Data to point %}
%{ to the webserver's <document root>/tmplobs directory. Then restart DB2 %}
%{ and the extenders to have the variable take effect. %}
%{ If you are not running Net.Data's Connection Manager, you'll need to %}
%{ provide the LOGIN and PASSWORD to the database. If these instructions %}
%{ seem unfamiliar to you, you should read the Net.Data documentation at %}
%{ http://www.software.ibm.com/data/netdata/docs (or the extender documen- %}
%{ tation on the extender sample programs). %}
%{ %}
%{ To disable the showing of SQL statements, change the value of SHOWSQL %}
%{ below to "no". %}
%{ -- %}

%{ -- %}
%{ Definitions section %}
%{ -- %}
%define{

DATABASE="testdb2"
SHOWSQL="yes"

%}

Figure 31. Net.Data sample macro file (Part 1 of 5)

Sample media files

Appendix B. Sample programs and media files 569

%{ -- %}
%{ SQL functions %}
%{ -- %}
%function (DTW_SQL) startHereSQL(){

select artist, title, stock_no, price from sobay_catalog

%REPORT{
<table border="2" bgcolor="#b1b1b1">

<tr><th>Artist <th> Title <th> Stock<th> Number <th> Price </tr>
%ROW{ <tr><td> $(V_artist) <td> $(V_title) <td> $(V_stock_no) <td> $(V_price) <tr>
%}
</table>

%}
%}

%function (DTW_SQL) addThumbsSQL(){
select cast(mmdbsys.thumbnail(covers) as blob(10000)),

cast(mmdbsys.thumbnail(video) as blob(3000)),
mmdbsys.comment(music), artist, title, price, stock_no

from sobay_catalog

%REPORT{
<table border="2" bgcolor="#b1b1b1">

<tr><th>Cover <th>Video <th>Audio <th>Artist <th>Title <th>Price </tr>
%ROW{ <tr><td>< a href="showCover?stock_no=$(V_stock_no)">

<td>< a href="getVideo?stock_no=$(V_stock_no)">
<td>< a href="getAudio?stock_no=$(V_stock_no)&filename=$V3")>[Listen]
<td> $(V_artist) <td> $(V_title) <td> $(V_price) </tr>

%}
</table>

%}
%}

%function (DTW_SQL) showCoverSQL(){
select cast(mmdbsys.content(covers, 'GIF') as blob(150000)), mmdbsys.format(covers)

from sobay_catalog
where stock_no = '$(stock_no)'

%REPORT{
%ROW{

Original image format: $(V2)%}

%}
%}

Figure 31. Net.Data sample macro file (Part 2 of 5)

Sample media files

570 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

%{ The following Content call depends on DB2MMEXPORT being set properly to
point to the tmplobs directory under the web server's document root. %}

%function (DTW_SQL) showVideoSQL(){
select mmdbsys.comment(video), mmdbsys.content(video, mmdbsys.comment(video), 1),

mmdbsys.format(video)
from sobay_catalog

where stock_no = '$(stock_no)'

%REPORT{
%ROW{ <i> Play Video Clip></i>

Format: $(V3)
(Note: NT/Win95 may not come with
a decompressor
for this video format. OS/2 Warp does.)</br>

%}
%}

%}

%{ The following Content call depends on DB2MMEXPORT being set properly to
point to the tmplobs directory under the web server's document root. %}

%function (DTW_SQL) showAudioSQL(){
select mmdbsys.comment(music), mmdbsys.content(music, mmdbsys.comment(music), 1),

mmdbsys.format(music)
from sobay_catalog

where stock_no = '$(stock_no)'

%REPORT{
%ROW{ < a href="/tmplobs/$(V1) "<i>Play Audio Clip</i>

Format: $(V3)
%}

%}
%}

Figure 31. Net.Data sample macro file (Part 3 of 5)

Sample media files

Appendix B. Sample programs and media files 571

%{ -- %}
%{ HTML sections %}
%{ E.g., http://<your server>/cgi-bin/db2www/extender.d2w/startHere %}
%{ ---%}
%{ E.g., http://
%{ E.g., http://
%HTML(startHere){
<html>

<head><title>UDB Extenders Macro Sample: Simple Row Listing</title></head>
<body bgcolor="#ffffff">
If no data appears below, you might need
to run the UDB Extender sample programs <i>enable</i> and <i>populate</i>.
This first HTML section of the extender.d2w macro simply retrieves all the
traditional data for all the rows in the UDB Extenders' sample database.
%if ("$(SHOWSQL)" == "yes" || "$(SHOWSQL)" == "YES")

 By default, every page generated by this macro shows the SQL used

to generate that page. Here is the SQL statement for this page:
%else

%endif

@startHereSQL()

Click < a href="addThumbs"><i>here</i> to display thumbnails
and links to image/audio/video data.

</body>
</html>
%}

%HTML(addThumbs){
<html>

<head><title>UDB Extenders Macro Sample: Add Thumbnails</title></head>
<body bgcolor="#ffffff">

This page adds album cover thumbnails
and links to display the multimedia content of the database. To access
the multimedia content:

 Click on a thumbnail of a CD cover to view a full-size image
 Click on a "video thumbnail" to view a video
 Click on a "[Listen]" link to listen to an audio clip

 @addThumbsSQL()

Click < a href="startHere"><i>here</i> to go back to the first page.

</body>
</html>
%}

Figure 31. Net.Data sample macro file (Part 4 of 5)

Sample media files

572 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

%HTML(showCover){
<html>

<head><title>UDB Extenders Macro Sample: Cover for item $(stock_no)</title></head>
<body bgcolor="#ffffff">

For this page, the macro gets a full-size cover
image, converting the image format to GIF so that a browser can show it:

<table width="400" border="2" bgcolor="#b1b1b1" cellpadding="5">

<tr><td align=center> @showCoverSQL()
<tr><td align=center> Stock Number: $(stock_no)

</table>

Go <i>back</i>.

</body>
</html>
%}

%HTML(getVideo){
<html>

<head><title>UDB Extenders Macro Sample: Video clip for item $(stock_no)</title></head>
<body bgcolor="#ffffff">

From this page, you can view a video clip:

<table width="400" border="2" bgcolor="#b1b1b1" cellpadding="5">

<tr><td align=center> @showVideoSQL()
<tr><td align=center> Stock Number: $(stock_no)

</table>

Go <i>back</i>.

</body>
</html>
%}

%HTML(getAudio){
<html>

<head><title>UDB Extenders Macro Sample: Audio clip for item $(stock_no)</title></head>
<body bgcolor="#ffffff">

From this page, you can listen to an audio clip:

<table width="400" border="2" bgcolor="#b1b1b1" cellpadding="5">

<tr><td align=center> @showAudioSQL()
<tr><td align=center> Stock Number: $(stock_no)

</table>

Go <i>back</i>.

<body>
</html>
%}

Figure 31. Net.Data sample macro file (Part 5 of 5)

Sample media files

Appendix B. Sample programs and media files 573

Sample media files

574 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Appendix C. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1996, 2000 575

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

576 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

This publication is intended to help you administer DB2 extenders and
develop programs for use with DB2 extenders. This publication documents
General-use Programming Interface and Associated Guidance Information
provided by DB2 extenders .

General-use programming interfaces allow you to write programs that obtain
the services of DB2 extenders. You may copy the DB2 extenders run-time
feature needed for the application you develop onto client or server machines.
To install the run-time feature, see the installation instructions provided in the
README.TXT file for your operating system on the DB2 extenders CD-ROM.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

AIX DB2 Universal Database PS/2
DB2 IBM QBIC
DB2 extenders OS/2 VisualAge

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company limited.

Intel is a registered trademark of Intel.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix C. Notices 577

578 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Glossary

administrative support table. One of the tables
that are used by a DB2 extender to process user
requests on image, audio, and video objects.
Some administrative support tables identify user
tables and columns that are enabled for an
extender. Other administrative support tables
contain attribute information about objects in
enabled columns. Also called a metadata table.

analyze. To calculate numeric values for the
features of an image and add the values to a
QBIC catalog.

API. See application programming interface.

application programming interface (API).

(1) A functional interface supplied by the
operating system or by a separately orderable
licensed program. An API allows an
application program that is written in a
high-level language to use specific data or
functions of the operating system or the
licensed programs.

(2) In DB2, a function within the interface, for
example, the get error message API.

(3) The DB2 extenders provide APIs for
requesting user-defined functions,
administrative operations, display operations,
and video scene change detection.

audio. Pertaining to the portion of recorded
information that can be heard.

average color. A measurement of color that is
computed as an average of the color values that
are contained in the pixels of an image.

audio clip. A section of recorded audio
material.

binary large object (BLOB). A binary string
whose length can be up to 2 GB. Image, audio,
and video objects are stored in a DB2 database as
BLOBs.

character large object (CLOB). A character
string of single-byte characters, where the string
can be up to 2 GB. CLOBs have an associated
code page. Text objects that contain single-byte
characters are stored in a DB2 database as
CLOBs.

coarseness. An attribute of texture that measures
the scale of the texture (pebbles versus boulders).

contrast. An attribute of texture that refers to the
vividness of the pattern, and is a function of the
variance of a grey-level histogram.

database partition. A part of the database that
consists of its own user data, indexes,
configuration files, and transaction logs.
Sometimes called a node or database node.

database partition server. Manages a database
partition. A database partition server is composed
of a database manager and the collection of data
and system resources that it manages. Typically,
one database partition server is assigned to each
machine.

DB2 extender. One of a group of programs that
you use store and retrieve data types beyond the
traditional numeric and character data, such as
image, audio, and video data, and complex
documents.

directionality. An attribute of texture that
describes whether the image has a favored
direction (like grass) or is like a smooth object
(like glass).

dissolve. To decrease the strength of a signal for
a video frame as the strength of the signal for the
next video frame increases.

distinct type. See user-defined type.

double-byte character large object (DBCLOB).
A character string of double-byte characters, or a
combination of single-byte and double-byte
characters, where the string can be up to 2 GB.

© Copyright IBM Corp. 1996, 2000 579

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

DBCLOBs have an associated code page. Text
objects that include double-byte characters are
stored in a DB2 database as DBCLOBs.

environment variable. A variable used to
describe the operating environment for the DB2
extenders and to provide defaults for values for
the environment.

extender. See DB2 extender.

feature. A visual attribute of an image, such as
average color.

file reference variable. A programming variable
that is useful for moving a LOB to and from a
file on a client workstation.

gigabyte (GB). One billion (10⁹) bytes. When
referring to memory capacity, 1 073 741 824 bytes.

handle. A character string that is created by an
extender that is used to represent an image,
audio, or video object in a table. A handle is
stored for an object in a user table and in
administrative support tables. In this way, an
extender can link the handle that is stored in a
user table with information about the object that
is stored in the administrative support tables.

histogram color. A measurement of the distinct
colors in an image. Data for each color is stored
separately in a QBIC catalog.

host variable. A variable in an application
program that can be referred to in embedded
SQL statements. Host variables are the primary
mechanism for transmitting data between a
database and application program work areas.

image. An electronic representation of a picture.

index file. A file that contains indexing
information used by the Video Extender to find a
shot or an individual frame in a video clip.

instance. A logical DB2 extender server
environment. You can have several instances of
DB2 extenders server on the same workstation,
but only one instance for each DB2 instance. You
can use these instances to:

Separate the development environment from
the production environment

Restrict sensitive information to a particular
group of people.

kilobyte (KB). One thousand (10³) bytes. When
referring to memory capacity, 1024 bytes.

large object (LOB). A sequence of bytes, where
the length can be up to 2 GB. A LOB can be of
three types: binary large object (BLOB), character
large object (CLOB), or double-byte character large
object (DBCLOB).

LOB locator. A small (4-byte) value stored in a
host variable that can be used in a program to
refer to a much larger LOB in a DB2 database.
Using a LOB locator, a user can manipulate the
LOB as if it was stored in a regular host variable,
and without the need to transport the LOB
between the application on the client machine
and the database server.

megabyte (MB). One million (10⁶) bytes. When
referring to memory capacity, 1 048 576 bytes.

metadata table. See administrative support table.

multipartition nodegroup. A nodegroup that
contains more than one database partition server.

node. In database partitioning, synonymous
with database partition.

nodegroup. A named group of one or more
database partitions.

object. In object-oriented programming, an
abstraction consisting of data and the operations
associated with that data.

object orientation. A programming approach in
which anything, real or abstract, can be
represented in an application as an object that
comprises a set of operations and data values.
For example, a document can be represented by
a document object that comprises document data
and operations that can be performed on the
document, such as filing, sending, and printing.
A video clip can be represented by a video object

580 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

|
|
|
|

|
|
|
|
|

|
|

|
|

that comprises video data and operations such as
playing the video clip or finding a specific video
frame.

partitioned database. A database with two or
more database partitions. Data in user tables can
be located in one or more database partitions.
When a table is on multiple partitions, some of
its rows are stored in one partition and others
are stored in other partitions.

pixel. The smallest element of an image that a
screen can display.

positional color. The average color value of the
pixels in a specified area of an image.

Query by Image Content (QBIC). A capability
that is provided by the Image Extender that
allows users to search images by their visual
characteristics such as average color and texture.

QBIC catalog. A repository that holds data
about the visual features of images.

query object. An object that specifies the
features, feature, values, and feature weights for
a QBIC query. The object can be named and
saved for subsequent use in a QBIC query.
Contrast with query string

query string. A character string that specifies
the features, feature, values, and feature weights
for a QBIC query. The query string can be
entered in a query from the DB2 command line.
Contrast with query object

scaling. Adding nodes to a database to increase
storage space and performance.

scene change. A point in a video clip where
there is a significant difference between two
successive frames. This happens, for example,
when a camera changes its point of view while
recording a video.

score. A calculated value that reflects how
similar the feature values are to those that are
specified in a query by image content. The
higher the number, the closer the match. The
score is used to sort the results of a query by
image content.

shot. The frames between two scene changes.

shot catalog. A database table or file that is
used to store data about shots, such as the
starting and ending frame number for a shot, in
a video clip. A user can access a view of the table
through an SQL query, or access the data in the
file.

storyboard. A visual summary of a video. The
Video Extender includes features that can be
used to identify and store video frames that are
representative of the shots in a video. These
representative frames can be used in building a
storyboard.

terabyte. A trillion (1012) bytes. Ten to the
twelfth power bytes. When referring to memory
capacity, 1 099 511 627 776 bytes.

texture. One of the features that can be used in
a query by image content. It refers to the
coarseness, contrast, or directionality of an
image.

thumbnail. A miniature image.

trigger. The definition of a set of actions to be
taken when a table is changed. Triggers can be
used to perform actions such as validating input
data, automatically generating a value for a
newly inserted row, reading from other tables for
cross-referencing purposes, or writing to other
tables for auditing purposes. Triggers are often
used for integrity checking or to enforce business
rules.

UDF. See user-defined function.

UDT. See user-defined type.

user-defined function (UDF). A function that is
defined by a user to DB2. Once defined, the
function can be used in SQL queries. and video
objects. For example, UDFs can be created to get
the compression format of a video or return the
sampling rate of an audio. This provides a way
of defining the behavior of objects of a particular
type.

user-defined type (UDT). A data type that is
defined by a user to DB2. UDTs are used to

Glossary 581

differentiate one LOB from another. For example,
one UDT can be created for image objects and
another for audio objects. Though stored as
BLOBs, the image and audio objects are treated
as types distinct from BLOBs and distinct from
each other.

video. Pertaining to the portion of recorded
information that can be seen.

video clip. A section of filmed or videotaped
material.

video index. A file that the Video Extender uses
to find a specific shot or frame in a video clip.

582 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Index

A
access privileges 24, 25
ADD QBIC FEATURE

command 135, 469
administration commands on

client 467
ADD QBIC FEATURE 469
CATALOG QBIC COLUMN 470
CLOSE QBIC CATALOG 471
CONNECT 472
CREATE QBIC CATALOG 473
DELETE QBIC CATALOG 475
DISABLE COLUMN 476
DISABLE DATABASE 477
DISABLE TABLE 478
DISCONNECT SERVER AT

NODENUM 479
DISCONNECT SERVER FOR

DATABASE 480
DISCONNECT SERVER FOR

DATABASE AT
NODENUM 481

ENABLE COLUMN 482
ENABLE DATABASE 483
ENABLE TABLE 484
GET EXTENDER STATUS 486
GET INACCESSIBLE FILES 487
GET QBIC CATALOG INFO 489
GET REFERENCED FILES 490
GET SERVER STATUS 492
OPEN QBIC CATALOG 493
QUIT 494
RECONNECT SERVER AT

NODENUM 495
RECONNECT SERVER FOR

DATABASE 496
RECONNECT SERVER FOR

DATABASE AT
NODENUM 497

REDISTRIBUTE
NODEGROUP 498

REMOVE QBIC FEATURE 500
REORG 501
SET QBIC AUTOCATALOG 503
START SERVER 504
STOP SERVER 505
TERMINATE 506

administration commands on
server 507

administration commands on server
(continued)

DMBICRT 508
DMBIDROP 511
DMBILIST 512
DMBIMIGR 513
DMBSTART 514
DMBSTAT 516
DMBSTOP 517

administration task overview 41
administrative support tables 17

cleaning up 69
description 17
security 25

alignment value of audio or
video 202

AlignValue UDF 202
application programming interfaces

(APIs) 267
DBaAdminGetInaccessibleFiles 268
DBaAdminGetReferencedFiles 270
DBaAdminIsFileReferenced 272
DBaAdminReorgMetadata 274
DBaDisableColumn 276
DBaDisableDatabase 278
DBaDisableTable 280
DBaEnableColumn 282
DBaEnableDatabase 284
DBaEnableTable 286
DBaGetError 288
DBaGetInaccessibleFiles 289
DBaGetReferencedFiles 291
DBaIsColumnEnabled 293
DBaIsDatabaseEnabled 295
DBaIsFileReferenced 297
DBaIsTableEnabled 299
DBaPlay 301
DBaPrepareAttrs 304
DBaReorgMetadata 305
DBiAdminGetInaccessibleFiles 307
DBiAdminGetReferencedFiles 309
DBiAdminIsFileReferenced 311
DBiAdminReorgMetadata 313
DBiBrowse 315
DBiDisableColumn 318
DBiDisableDatabase 320
DBiDisableTable 321
DBiEnableColumn 323
DBiEnableDatabase 325

application programming interfaces
(APIs) (continued)

DBiEnableTable 327
DBiGetError 329
DBiGetInaccessibleFiles 330
DBiGetReferencedFiles 332
DBiIsColumnEnabled 334
DBiIsDatabaseEnabled 336
DBiIsFileReferenced 338
DBiIsTableEnabled 340
DBiPrepareAttrs 342
DBiReorgMetadata 343
DBvAdminGetInaccessibleFiles 345
DBvAdminGetReferencedFiles 347
DBvAdminIsFileReferenced 349
DBvAdminReorgMetadata 351
DBvBuildStoryboardFile 353
DBvBuildStoryboardTable 355
DBvClose 357
DBvCreateIndex 358
DBvCreateIndexFromVideo 359
DBvCreateShotCatalog 360
DBvDeleteShot 362
DBvDeleteShotCatalog 364
DBvDetectShot 366
DBvDisableColumn 368
DBvDisableDatabase 370
DBvDisableTable 371
DBvEnableColumn 373
DBvEnableDatabase 375
DBvEnableTable 377
DBvFrameDataTo24BitRGB 379
DBvGetError 381
DBvGetFrame 382
DBvGetInaccessibleFiles 383
DBvGetReferencedFiles 385
DBvInitShotControl 387
DBvInitStoryboardCtrl 388
DBvInsertShot 389
DBvIsColumnEnabled 391
DBvIsDatabaseEnabled 393
DBvIsFileReferenced 395
DBvIsIndex 397
DBvIsTableEnabled 398
DBvMergeShots 400
DBvOpenFile 402
DBvOpenHandle 404
DBvPlay 406
DBvPrepareAttrs 409

© Copyright IBM Corp. 1996, 2000 583

application programming interfaces
(APIs) (continued)

DBvReorgMetadata 410
DBvSetFrameNumber 412
DBvSetShotComment 414
DBvUpdateShot 416
QbAddFeature 419
QbCatalogColumn 421
QbCatalogImage 423
QbCloseCatalog 425
QbCreateCatalog 426
QbDeleteCatalog 428
QbGetCatalogInfo 430
QbListFeatures 431
QbOpenCatalog 433
QbQueryAddFeature 435
QbQueryCreate 437
QbQueryDelete 438
QbQueryGetFeatureCount 439
QbQueryGetString 441
QbQueryListFeatures 443
QbQueryNameCreate 445
QbQueryNameDelete 447
QbQueryNameSearch 448
QbQueryRemoveFeature 450
QbQuerySearch 452
QbQuerySetFeatureData 454
QbQuerySetFeatureWeight 456
QbQueryStringSearch 457
QbReCatalogColumn 459
QbRemoveFeature 461
QbSetAutoCatalog 463
QbUncatalogImage 465

aspect ratio of video 204
AspectRatio UDF 204
attributes, object 105

alignment value 202
aspect ratio 204
audio channels (number of) 242
bits per sample of audio 205
clock speed per quarter

note 261
clock speed per second 262
colors in image (number of) 243
comment 207
compression format of

video 209
data transfer rate of audio 206
data transfer rate of video 240
description 105
duration of audio or video 229
file name 230
format 233
frame rate of video 234
frames in video (number of) 244

attributes, object (continued)
height 237
import time 239
importer 238
number of audio channels 242
number of audio tracks 241
number of colors in image 243
number of frames in video 244
number of video tracks 245
playing time of audio or

video 229
sampling rate of audio 257
size 258
throughput of audio 206
throughput of video 234, 240
time stored 239
time updated 264
track name, MIDI 232
track names, MIDI 236
track number of all MIDI

instruments 235
track number of MIDI

instrument 231
update time 264
updater 263
user ID of person who

stored 238
user ID of person who

updated 263
video tracks (number of) 245
width 265

audio 3
alignment of 202
bits per sample 205
channels (number of) 242
clock speed, MIDI 261, 262
comment attribute 207
data transfer rate 206
duration 229
file name 230
format attribute 233
formats 85
identifying format for

storage 94
identifying format for

update 116
import time 239
importer 238
number of channels 242
number of tracks 241
playing 123
playing time 229
retrieving 100
sampling rate 257
size 258

audio (continued)
storing 88
throughput 206
time stored 239
time updated 264
track name, MIDI 232
track names, MIDI 236
track number of all MIDI

instruments 235
track number of MIDI

instrument 231
tracks in (number of) 241
update time 264
updater 263
updating 108
user ID of person who

stored 238
user ID of person who

updated 263
Audio Extender 4

DBaAdminGetInaccessibleFiles
API 268

DBaAdminGetReferencedFiles
API 270

DBaAdminIsFileReferenced
API 272

DBaAdminReorgMetadata
API 274

DBaDisableColumn API 276
DBaDisableDatabase API 278
DBaDisableTable API 280
DBaEnableColumn API 282
DBaEnableDatabase API 284
DBaEnableTable API 286
DBaGetError API 288
DBaGetInaccessibleFiles API 289
DBaGetReferencedFiles API 291
DBaIsColumnEnabled API 293
DBaIsDatabaseEnabled API 295
DBaIsFileReferenced API 297
DBaIsTableEnabled API 299
DBaPlay API 301
DBaReorgMetadata API 305
overview 4
UDFs 197
UDTs 197

authorization 25
autocatalog setting (QBIC) 134
average color 20

description 20
feature name 135

B
binary large object (BLOB) 14

description 14

584 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

binary large object (BLOB)
(continued)

recovery 24
security 24
storing an object as 93
updating 115

BitsPerSample UDF 205
buffer, client 80

retrieving to with
conversion 103

retrieving to without format
conversion 102

storing from 91
transmitting an object to or

from 80
updating from 114

BytesPerSec UDF 206

C
catalog (QBIC) 19

adding a feature to 135
automatic setting 134
cataloging an image in 138
closing 141
creating 131
deleting 141
description 19
managing 130
opening 132
recataloging an image in 140
removing a feature from 136
retrieving information about 136
uncataloging an image from 139

CATALOG QBIC COLUMN
command 138, 470

cataloging a column 138
recataloging an image 140

Cb pixel plane 181
channels, number of audio 242
character large object (CLOB) 14
client buffer 80

retrieving to with
conversion 103

retrieving to without format
conversion 102

storing from 91
transmitting an object to or

from 80
updating from 114

client file 81
retrieving to 103
storing from 91
transmitting an object to or

from 81
updating from 114

client/server platforms for DB2
extenders 11

CLOB (character large object) 14
CLOSE QBIC CATALOG

command 141, 471
coarseness 20
codes, return 519
colors, number of (in image) 243
columns 59

disabling 60
enabling 59

commands 467
ADD QBIC FEATURE 469
CATALOG QBIC COLUMN 470
CLOSE QBIC CATALOG 471
CONNECT 472
CREATE QBIC CATALOG 473
DELETE QBIC CATALOG 475
DISABLE COLUMN 476
DISABLE DATABASE 477
DISABLE TABLE 478
DISCONNECT SERVER AT

NODENUM 479
DISCONNECT SERVER FOR

DATABASE 480
DISCONNECT SERVER FOR

DATABASE AT
NODENUM 481

DMBICRT 508
DMBIDROP 511
DMBILIST 512
DMBIMIGR 513
DMBSTART 514
DMBSTAT 516
DMBSTOP 517
ENABLE COLUMN 482
ENABLE DATABASE 483
ENABLE TABLE 484
GET EXTENDER STATUS 486
GET INACCESSIBLE FILES 487
GET QBIC CATALOG INFO 489
GET REFERENCED FILES 490
GET SERVER STATUS 492
OPEN QBIC CATALOG 493
QUIT 494
RECONNECT SERVER AT

NODENUM 495
RECONNECT SERVER FOR

DATABASE 496
RECONNECT SERVER FOR

DATABASE AT
NODENUM 497

REDISTRIBUTE
NODEGROUP 498

REMOVE QBIC FEATURE 500

commands (continued)
REORG 501
SET QBIC AUTOCATALOG 503
START SERVER 504
STOP SERVER 505
TERMINATE 506

comment 99
retrieving 107
storing 99
updating 120

Comment UDF 207
compression format of video 209
compression type 86
CompressType UDF 209
concepts 13
CONNECT command 472
connection handle for shot

catalog 183
consistency test (video scene

change) 174
Content UDF 210
contrast 20
conversion options, image 86
correlation method (video scene

change) 173
correlation method threshold 174
Cr pixel plane 181
CREATE QBIC CATALOG

command 131, 473
CURRENT SERVER special

register 88

D
data structures 17

administrative support table 17
handle 19
QBIC catalog 19
shot catalog 21
shot detection 171
video index 21

data transfer rate of audio 206
data transfer rate of video 240
databases 54

checking if enabled 63
cleaning up metadata 69
connecting to 47
enabling 54

DB2 command-line processor 5
DB2 extender 3

codes 519, 521
concepts 13
data structures 17
family of 4
operating environments 11
overview 3

Index 585

DB2 extender (continued)
programming overview 73
recovery 24
retrieving objects using 85
return codes 519
run-time environment 5
sample media files 565
sample programs 565
scenario 27
security 24
Software Developers Kit

(SDK) 5
SQLSTATE codes 521
storing objects using 85
tasks that can be performed

with 74
trace facility 553
UDFs 197
UDTs 197
updating objects using 85

DB2AUDIO data type 197
DB2Audio UDF 216
DB2AUDIOEXPORT environment

variable 557
DB2AUDIOPATH environment

variable 557
DB2AUDIOPLAYER environment

variable 124
DB2AUDIOSTORE environment

variable 557
DB2AUDIOTEMP environment

variable 557
DB2CATALOGDELAY environment

variable 131
db2ext command-line processor 5
DB2IMAGE data type 197
DB2Image UDF 220
DB2IMAGEBROWSER environment

variable 124
DB2IMAGEEXPORT environment

variable 557
DB2IMAGEPATH environment

variable 557
DB2IMAGESTORE environment

variable 557
DB2IMAGETEMP environment

variable 557
DB2MMDATAPATH 509, 559
DB2VIDEO data type 197
DB2Video UDF 225
DB2VIDEOEXPORT environment

variable 557
DB2VIDEOPATH environment

variable 557

DB2VIDEOPLAYER environment
variable 124

DB2VIDEOSTORE environment
variable 557

DB2VIDEOTEMP environment
variable 557

DBaAdminGetInaccessibleFiles
API 268

DBaAdminGetReferencedFiles
API 270

DBaAdminIsFileReferenced
API 272

DBaAdminReorgMetadata API 274
DBaDisableColumn API 276
DBaDisableDatabase API 278
DBaDisableTable API 280
DBaEnableColumn API 282
DBaEnableDatabase API 284
DBaEnableTable API 286
DBaGetError API 288
DBaGetInaccessibleFiles API 289
DBaGetReferencedFiles API 291
DBaIsColumnEnabled API 293
DBaIsDatabaseEnabled API 295
DBaIsFileReferenced API 297
DBaIsTableEnabled API 299
DBaPlay API 301
DBaPrepareAttrs API 304
DBaReorgMetadata API 305
DBCLOB (double-byte character

large object) 14
DBiAdminGetInaccessibleFiles

API 307
DBiAdminGetReferencedFiles

API 309
DBiAdminIsFileReferenced API 311
DBiAdminReorgMetadata API 313
DBiBrowse API 315
DBiDisableColumn API 318
DBiDisableDatabase API 320
DBiDisableTable API 321
DBiEnableColumn API 323
DBiEnableDatabase API 325
DBiEnableTable API 327
DBiGetError API 329
DBiGetInaccessibleFiles API 330
DBiGetReferencedFiles API 332
DBiIsColumnEnabled API 334
DBiIsDatabaseEnabled API 336
DBiIsFileReferenced API 338
DBiIsTableEnabled API 340
DBiPrepareAttrs API 342
DBiReorgMetadata API 343
DBvAdminGetInaccessibleFiles

API 345

DBvAdminGetReferencedFiles
API 347

DBvAdminIsFileReferenced
API 349

DBvAdminReorgMetadata API 351
DBvBuildStoryboardFile API 353
DBvBuildStoryboardTable API 355
DBvClose API 357
DBvCreateIndex API 358
DBvCreateIndexFromVideo API 359
DBvCreateShotCatalog API 360
DBvDeleteShot API 362
DBvDeleteShotCatalog API 364
DBvDetectShot API 366
DBvDisableColumn API 368
DBvDisableDatabase API 370
DBvDisableTable API 371
DBvEnableColumn API 373
DBvEnableDatabase API 375
DBvEnableTable API 377
DBvFrameData data structure 175
DBvFrameDataTo24BitRGB API 379
DBvGetError API 381
DBvGetFrame API 382
DBvGetInaccessibleFiles API 383
DBvGetReferencedFiles API 385
DBvInitShotControl API 387, 388
DBvInsertShot API 389
DBvIOType data structure 172
DBvIsColumnEnabled API 391
DBvIsDatabaseEnabled API 393
DBvIsFileReferenced API 395
DBvIsIndex API 397
DBvIsTableEnabled API 398
DBvMergeShots API 400
DBvOpenFile API 402
DBvOpenHandle API 404
DBvPlay API 406
DBvPrepareAttrs API 409
DBvReorgMetadata API 410
DBvSetFrameNumber API 412
DBvSetShotComment API 414
DBvShotControl data structure 172
DBvShotType data structure 174
DBvStoryboardCtrl data

structure 175
DBvUpdateShot API 416
DELETE QBIC CATALOG

command 142, 475
deleting data from a table 37
diagnostic information 519
directionality 20
DISABLE COLUMN command 476
DISABLE DATABASE

command 477

586 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

DISABLE TABLE command 478
DISCONNECT SERVER AT

NODENUM command 479
DISCONNECT SERVER FOR

DATABASE AT NODENUM
command 481

DISCONNECT SERVER FOR
DATABASE command 480

display a video frame 123
displaying a thumbnail 126
displaying an image 123
dissolve test threshold 174
distinct type 14
dmbaudio.h include file 79
DMBICRT command 508
DMBIDROP command 511
DMBILIST command 512
dmbimage.h include file 78
DMBIMIGR command 513
dmbqbapi.h include file 78
dmbshot.h include file 79
DMBSTART command 514
DMBSTAT command 516
DMBSTOP command 517
DMBTRC command 553
dmbvideo.h include file 79
Duration UDF 229

E
ENABLE COLUMN command 482
ENABLE DATABASE 483
ENABLE TABLE command 484
enabling databases 54
environment variables 124

DB2AUDIOEXPORT 557
DB2AUDIOPATH 557
DB2AUDIOPLAYER 124
DB2AUDIOSTORE 557
DB2AUDIOTEMP 557
DB2CATALOGDELAY 131
DB2IMAGEBROWSER 124
DB2IMAGEEXPORT 557
DB2IMAGEPATH 557
DB2IMAGESTORE 557
DB2IMAGETEMP 557
DB2MMDATAPATH 509, 559
DB2VIDEOEXPORT 557
DB2VIDEOPATH 557
DB2VIDEOPLAYER 124
DB2VIDEOSTORE 557
DB2VIDEOTEMP 557

F
features, QBIC query 146
file 79

file (continued)
finding files referenced by

tables 65
name (that contains object) 230
names, relative 82
names, specifying 82
storing from client 91
transmitting an object between a

table and 79
transmitting an object to or from

client 81
updating from client 114

file reference variable 81
Filename UDF 230
FindInstrument UDF 231
FindTrackName UDF 232
Format UDF 233
formats of objects 85

converting video frame 181
handled by DB2 extenders 85
identifying for storage 94
identifying for update 116
retrieving video 209
using your own for storage 96
using your own for update 118

frame, video 177
rate 234
retrieving 177
throughput 234

FrameRate UDF 234
function path 16

G
GET EXTENDER STATUS

command 486
GET INACCESSIBLE FILES

command 487
GET QBIC CATALOG INFO

command 137, 489
GET REFERENCED FILES

command 490
GET SERVER STATUS

command 492
GetInstruments UDF 235
GetTrackNames UDF 236

H
handle 19
header files 78
Height UDF 237
hierarchical file system (HFS) 14
histogram color 20

description 20
feature name 135

histogram method (video scene
change) 173

histogram method threshold 174

I
image 3

average color 20
colors in (number of) 243
comment attribute 207
compression type 86
conversion options 86
displaying 123
file name 230
format attribute 233
formats 85
height 237
height conversion 86
histogram color 20
identifying format for

storage 94
identifying format for

update 116
import time 239
importer 238
number of colors in 243
pixel 20
positional color 20
query by content 129
retrieving 100
rotation 86
score (QBIC) 159
size 258
storing 88
texture 20
time stored 239
time updated 264
update time 264
updater 263
updating 108
user ID of person who

stored 238
user ID of person who

updated 263
width 265
width conversion 86

Image Extender 4
DBaPrepareAttrs API 304
DBiAdminGetInaccessibleFiles

API 307
DBiAdminGetReferencedFiles

API 309
DBiAdminIsFileReferenced

API 311
DBiAdminReorgMetadata

API 313

Index 587

Image Extender (continued)
DBiBrowse API 315
DBiDisableColumn API 318
DBiDisableDatabase API 320
DBiDisableTable API 321
DBiEnableColumn API 323
DBiEnableDatabase API 325
DBiEnableTable API 327
DBiGetError API 329
DBiGetInaccessibleFiles API 330
DBiGetReferencedFiles API 332
DBiIsColumnEnabled API 334
DBiIsDatabaseEnabled API 336
DBiIsFileReferenced API 338
DBiIsTableEnabled API 340
DBiPrepareAttrs API 342
DBiReorgMetadata API 343
DBvPrepareAttrs API 409
overview 4
UDFs 197
UDTs 197

Importer UDF 238
ImportTime UDF 239
include files 78

description 78
dmbaudio.h 79
dmbimage.h 78
dmbqbapi.h 78
dmbshot.h 79
dmbvideo.h 79

index file 21
instances 50

creating 50
listing 51
migrating 52
removing 52
running 51
setting 52

L
large object (LOB) 14

description 14
displaying 123
playing 123
transmitting 79

LOB (large object) 14
description 14
displaying 123
locator 80
playing 123
transmitting 79

locator 80

M
MaxBytesPerSec UDF 240
media files 565
metadata tables 17

description 17
security 25

MIDI instrument 235
MMDB_STORAGE_TYPE_EXTERNAL 94

when storing 94
when updating 116

MMDB_STORAGE_TYPE_INTERNAL 94
when storing 94
when updating 116

MPEG-1 video format 181

N
Net.Data sample 568
Notices 575
NumAudioTracks UDF 241
number of bits to represent

image 86
NumChannels UDF 242
NumColors UDF 243
NumFrames UDF 244
NumVideoTracks UDF 245

O
object 13

alignment of 202
aspect ratio of 204
attributes, retrieving 105
audio channels (number of) 242
audio tracks (number of) 241
bits per sample of audio 205
colors in image (number of) 243
comment 207
compression format of

video 209
data transfer rate of audio 206
data transfer rate of video 240
description 13
displaying 123
duration of audio or video 229
file name 230
format 233
formats 85
frame rate of video 234
frames in video (number of) 244
height 237
import time 239
importer 238
number of audio channels 242
number of audio tracks 241
number of colors in image 243
number of frames in video 244

object (continued)
number of video tracks 245
playing 123
playing time of audio or

video 229
recovery 24
retrieving 100
sampling rate of audio 257
security 24
size 258
storing 88
throughput of audio 206
throughput of video 234, 240
thumbnail 259
time stored 239
time updated 264
transmitting 79
update time 264
updater 263
updating 108
user ID of person who

stored 238
user ID of person who

updated 263
video tracks (number of) 245
width 265

object orientation 13
OPEN QBIC CATALOG

command 132, 493
operating environments for DB2

extenders 11
overloaded function names 16
overview of DB2 extenders 3
overwrite indicator 103

P
parallel processing 24

description 24
partitioned database 22

description 22
photometric (image inversion) 86
pixel 20
platforms for DB2 extenders 11
playing a video 123
playing an audio 123
playing time of audio or video 229
positional color 20

description 20
feature name 135

Q
QbAddFeature API 135, 419
QbCatalogColumn API 138, 421
QbCatalogImage API 138, 423
QbCloseCatalog API 141, 425

588 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

QbColor 152
QbColorFeatureClass 135
QbColorHistogramFeatureClass 135
QbCreateCatalog API 131, 426
QbDeleteCatalog API 142, 428
QbDrawFeatureClass 135
QbGetCatalogInfo API 137, 430
QbHistogramColor 152
QBIC catalog 19
QBIC query 146

adding a feature to 150
creating 149
data source 150
deleting 156
description 146
issuing 157
object 149
removing a feature from 156
retrieving information about 155
saving 154
string 146

QbImageBuffer 152
QbImageSource 151
QbListFeatures 137
QbListFeatures API 431
QbOpenCatalog API 132, 433
QbQueryAddFeature API 150, 435
QbQueryCreate API 149, 437
QbQueryDelete API 156, 438
QbQueryGetFeatureCount API 155,

439
QbQueryGetString API 154, 441
QbQueryListFeatures API 155, 443
QbQueryNameCreate API 445
QbQueryNameDelete API 156, 447
QbQueryNameSearch API 157, 448
QbQueryRemoveFeature API 156,

450
QbQuerySearch API 157, 452
QbQuerySetFeatureData API 150,

454
QbQuerySetFeatureWeight API 456
QbQueryStringSearch API 157, 457
QbReCatalogColumn API 140, 459
QbRemoveFeature API 136, 461
QbScoreFromName UDF 159, 246
QbScoreFromStr UDF 159, 248
QbScoreTBFromName UDF 159,

249
QbScoreTBFromStr UDF 159, 251
QbSetAutoCatalog API 134, 463
QbTextureFeatureClass 135
QbUncatalogImage API 139, 465
query, QBIC 146

building 146

query, QBIC (continued)
issuing 157

Query by Image Content (QBIC) 19
catalog 19
QbAddFeature API 419
QbCatalogColumn API 421
QbCatalogImage API 423
QbCloseCatalog API 425
QbCreateCatalog API 426
QbDeleteCatalog API 428
QbGetCatalogInfo API 430
QbListFeatures API 431
QbOpenCatalog API 433
QbQueryAddFeature API 435
QbQueryCreate API 437
QbQueryDelete API 438
QbQueryGetFeatureCount

API 439
QbQueryGetString API 441
QbQueryListFeatures API 443
QbQueryNameCreate API 445
QbQueryNameDelete API 447
QbQueryNameSearch API 448
QbQueryRemoveFeature

API 450
QbQuerySearch API 452
QbQuerySetFeatureData

API 454
QbQuerySetFeatureWeight

API 456
QbQueryStringSearch API 457
QbReCatalogColumn API 459
QbRemoveFeature API 461
QbSetAutoCatalog API 463
QbUncatalogImage API 465
steps 129

query string, QBIC 146
reusing 154

QUIT command 494

R
RECONNECT SERVER AT

NODENUM command 495
RECONNECT SERVER FOR

DATABASE AT NODENUM
command 497

RECONNECT SERVER FOR
DATABASE command 496

recovery 24
Redistribute data 61
REDISTRIBUTE NODEGROUP

command 498
reference variable, file 81
relative file names 82

REMOVE QBIC FEATURE
command 136, 500

REORG command 501
Replace UDF 253
retrieving an object 100
return codes 519
return codes (SQLSTATE) 521
RGB video format 181
rotation of image 86
run-time environment 5

S
sample media files 565
sample programs 565
sampling rate of audio 257
SamplingRate UDF 257
scalability 24
scaling 24

description 24
scaling factor 86
scene change, video 169

description 170
detecting 169

schema name 16
score, image (QBIC) 159
security 24
segment 81
server file 79

retrieving to 103
storing from 93
transmitting an object between a

table and 79
transmitting an object to 80
updating from 115

server instances 50
creating 50
listing 51
migrating 52
removing 52
running 51
setting 52

servers 47
connecting to databases 47
getting status 50
getting status for a database 50
multiple instances 50
starting 47
starting for a database 49
stopping for a database 49

SET CURRENT FUNCTION PATH
statement 16

SET QBIC AUTOCATALOG
command 134, 503

shot 170
description 170

Index 589

shot (continued)
retrieving 177
storing 185

shot catalog 21
connection handle 183
creating 183
description 21

signature, function 16
size of object 258
Size UDF 258
slope (video scene change) 174
Software Developers Kit (SDK) 5
SQLConnect call for shot

catalog 183
SQLSTATE codes 521
START SERVER command 504
STOP SERVER command 505
storing an object 88
storing shots 185
storyboard 187
string, QBIC query 146

T
tables 56

disabling 60
enabling 56

TERMINATE command 506
Text Extender 4
texture 20

description 20
feature name 135

throughput of audio 206
throughput of video 240
thumbnail 98

displaying 126
storing 98
updating 119

Thumbnail UDF 259
TicksPerQNote UDF 261
TicksPerSec UDF 262
trace facility 553
track names, MIDI 236
track number, MIDI 232
track number of MIDI

instrument 231
tracks 241

number of audio 241
number of video 245

transmitting large objects 79
trigger 16

U
UDF (user-defined function) 15

AlignValue 202
AspectRatio 204

UDF (user-defined function)
(continued)

BitsPerSample 205
BytesPerSec 206
Comment 207
CompressType 209
Content 210
DB2Audio 216
DB2Image 220
DB2Video 225
description 15
Duration 229
Filename 230
FindInstrument 231
FindTrackName 232
Format 233
FrameRate 234
function path 16
GetInstruments 235
GetTrackNames 236
Height 237
Importer 238
ImportTime 239
MaxBytesPerSec 240
names 16
NumAudioTracks 241
NumChannels 242
NumColors 243
NumFrames 244
NumVideoTracks 245
overloaded 16
QbScoreFromName 246
QbScoreFromStr 248
QbScoreTBFromName 249
QbScoreTBFromStr 251
reference 197
Replace 253
SamplingRate 257
signature 16
Size 258
Thumbnail 259
TicksPerQNote 261
TicksPerSec 262
Updater 263
UpdateTime 264
Width 265

UDF_MEM_SZ parameter 92
when retrieving 102
when storing 92
when updating 115

UDT (user-defined type) 14
description 14
names 16

Unicode support 83

UPDATE DATABASE MANAGER
CONFIGURATION command 92

when retrieving 102
when storing 92
when updating 115

Updater UDF 263
UpdateTime UDF 264
updating an object 108
user-defined function 15

AlignValue 202
AspectRatio 204
BitsPerSample 205
BytesPerSec 206
Comment 207
CompressType 209
Content 210
DB2Audio 216
DB2Image 220
DB2Video 225
description 15
Duration 229
Filename 230
FindInstrument 231
FindTrackName 232
Format 233
FrameRate 234
function path 16
GetInstruments 235
GetTrackNames 236
Height 237
Importer 238
ImportTime 239
MaxBytesPerSec 240
names 16
NumAudioTracks 241
NumChannels 242
NumColors 243
NumFrames 244
NumVideoTracks 245
overloaded 16
QbScoreFromName 246
QbScoreFromStr 248
QbScoreTBFromName 249
QbScoreTBFromStr 251
reference 197
Replace 253
SamplingRate 257
signature 16
Size 258
Thumbnail 259
TicksPerQNote 261
TicksPerSec 262
Updater 263
UpdateTime 264
Width 265

590 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

user-defined type (UDT) 14
description 14
names 16

V
video 3

alignment of 202
aspect ratio of 204
audio channels in (number

of) 242
audio tracks in (number of) 241
comment attribute 207
compression format 209
data transfer rate 240
duration 229
file name 230
format attribute 233
formats 85
frame rate 234
frames in (number of) 244
height 237
identifying format for

storage 94
identifying format for

update 116
import time 239
importer 238
number of audio channels

in 242
number of audio tracks in 241
number of frames in 244
number of video tracks in 245
opening for shot detection 177
playing 123
playing time 229
retrieving 100
size 258
storing 88
throughput (bytes per

second) 240
throughput (frame rate) 234
thumbnail 259
time stored 239
time updated 264
update time 264
updater 263
updating 108
user ID of person who

stored 238
user ID of person who

updated 263
video tracks in (number of) 245
width 265

Video Extender 4

Video Extender (continued)
DBvAdminGetInaccessibleFiles

API 345
DBvAdminGetReferencedFiles

API 347
DBvAdminIsFileReferenced

API 349
DBvAdminReorgMetadata

API 351
DBvBuildStoryboardFile

API 353
DBvBuildStoryboardTable

API 355
DBvClose API 357
DBvCreateIndex API 358
DBvCreateIndexFromVideo

API 359
DBvCreateShotCatalog API 360
DBvDeleteShot API 362
DBvDeleteShotCatalog API 364
DBvDetectShot API 366
DBvDisableColumn API 368
DBvDisableDatabase API 370
DBvDisableTable API 371
DBvEnableColumn API 373
DBvEnableDatabase API 375
DBvEnableTable API 377
DBvFrameDataTo24BitRGB

API 379
DBvGetError API 381
DBvGetFrame API 382
DBvGetInaccessibleFiles API 383
DBvGetReferencedFiles API 385
DBvInitShotControl API 387
DBvInitStoryboardCtrl API 388
DBvInsertShot API 389
DBvIsColumnEnabled API 391
DBvIsDatabaseEnabled API 393
DBvIsFileReferenced API 395
DBvIsIndex API 397
DBvIsTableEnabled API 398
DBvMergeShots API 400
DBvOpenFile API 402
DBvOpenHandle API 404
DBvPlay API 406
DBvReorgMetadata API 410
DBvSetFrameNumber API 412
DBvSetShotComment API 414
DBvUpdateShot API 416
overview 4
UDFs 197
UDTs 197

video index 21
video scene change 169

data structures 171

video scene change (continued)
description 170
detecting 169

W
wait indicator 125
width of object 265
Width UDF 265

Index 591

592 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1996, 2000 593

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

594 IBM
®

DB2
®

Universal Database: Image, Audio, and Video Extenders

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9929-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2®

U
ni

ve
rs

al
D

at
ab

as
e

Im
ag

e,
Au

di
o,

an
d

V
id

eo
E

xt
en

de
rs

Ve
rs

io
n

7

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	How to use this book
	Platform-specific information
	Highlighting conventions
	How to read the syntax diagrams
	Related information
	How to send your comments

	Part 1. Introduction
	Chapter 1. Overview
	Exploiting DB2
	Powerful new ways to search for information
	The DB2 extenders
	The SDK and run-time environments
	Using the extenders
	Examples
	Example 1: Retrieving a video by its characteristics
	Example 2: Searching for images by content

	Operating environments

	Chapter 2. DB2 extender concepts
	Object-oriented concepts
	Large objects
	User-defined types
	User-defined functions
	UDF and UDT names
	Function path
	Overloaded function names

	Triggers

	Extender data structures
	Administrative support tables
	Handles
	QBIC catalogs
	Video indexes
	Shot catalogs

	Partitioned database concepts (EEE only)
	Parallel processing
	Scalability
	Using DB2 extenders in a partitioned database environment

	Security and recovery

	Chapter 3. How the extenders work
	An extender scenario
	Starting extender services
	Preparing a database
	Preparing a table
	Altering a table
	Inserting data into a table
	Selecting data from a table
	Displaying and playing objects
	Updating data in a table
	Deleting data from a table

	Part 2. Administering image, audio, and video data
	Chapter 4. Administration overview
	Administration tasks you can perform with the DB2 extenders

	Chapter 5. Managing extender servers
	Establishing the extender environments
	Adding and dropping database partitions (EEE only)
	Stopping and starting extender servers
	Displaying server status
	Creating and managing multiple server instances
	Creating multiple DB2 extenders server instances
	Listing instances
	Running multiple instances concurrently
	Setting the current instance
	Removing instances
	Migrating instances

	Chapter 6. Preparing data objects for extender data
	Enabling databases
	Examples

	Enabling tables
	Enabling columns
	Disabling data objects

	Chapter 7. Redistributing extender data in a partitioned database system (EEE only)
	Redistributing DB2 data
	Redistributing extender data

	Chapter 8. Tracking data objects and media files
	Checking the status of data objects
	Finding table entries that reference files
	Finding files referenced by table entries
	Checking if media files exist

	Chapter 9. Cleaning up administrative support tables
	Part 3. Programming for image, audio, and video data
	Chapter 10. Programming overview
	Using extender UDFs and APIs
	Tasks you can perform with extender UDFs and APIs
	Sample table for extender examples
	Before you begin programming for DB2 extenders
	Including extender definitions
	Specifying UDF and UDT names
	Transmitting large objects
	If the object is transmitted between a table and a server file
	If the object is transmitted to or from a client buffer
	Using LOB locators
	If the object is transmitted to or from a client file
	Specifying file names when you transmit objects

	Handling return codes

	Unicode support

	Chapter 11. Storing, retrieving, and updating objects
	Image, audio, and video formats
	Image conversion options
	Storing an image, audio, or video object
	DB2Image, DB2Audio, and DB2Video UDF formats
	Storing an object that resides on the client
	Storing an object that resides on the server
	Specifying database or file storage
	Identifying the format for storage
	Identifying the format for storage without conversion
	Identifying the formats and conversion options for storage with format conversion

	Storing an object with user-supplied attributes
	Storing a thumbnail (image and video only)
	Storing a comment

	Retrieving an image, audio, or video object
	Content UDF formats for retrieval
	Retrieving an object to the client
	Retrieving an object to a client without format conversion
	Retrieving an image to a client with conversion

	Retrieving an object to a server file
	Retrieving and using attributes
	Retrieving comments

	Updating an image, audio, or video object
	Content UDF formats for updating
	Replace UDF formats for updating
	Updating an object from the client
	Updating an object from the server
	Specifying database or file storage for updates
	Identifying the format for update
	Identifying the format for update without conversion
	Identifying the formats and conversion options for update with format conversion

	Updating an object with user-supplied attributes
	Updating a thumbnail (image and video only)
	Updating a comment

	Chapter 12. Displaying or playing an image, audio, or video object
	Using the display or play APIs
	Identifying a display or play program
	Specifying BLOB or file content
	Specifying a wait indicator

	Displaying a thumbnail-size image or video frame
	Displaying a full-size image or video frame
	Playing an audio or video

	Chapter 13. Querying images by content
	How to query by image content
	Managing QBIC catalogs
	Creating a QBIC catalog
	Opening a QBIC catalog
	Changing the auto catalog setting
	Adding a feature to a QBIC catalog
	Removing a feature from a QBIC catalog
	Retrieving information about a QBIC catalog
	Manually cataloging an image
	Manually cataloging a single image
	Manually cataloging a column of images

	Uncataloging an image
	Recataloging images
	Redistributing a QBIC catalog (EEE Only)
	Closing a QBIC catalog
	Deleting a QBIC catalog
	QBIC catalog sample program

	Building queries
	Specifying a query string
	Feature value
	Feature weight
	Examples

	Using a query object
	Creating a query object
	Adding a feature to a query object
	Specifying the data source for a feature in a query object
	Setting the weight of a feature in a query object
	Saving and reusing a query string
	Retrieving information about a query object
	Removing a feature from a query object
	Deleting a query object

	Issuing queries by image content
	Querying images
	Retrieving an image score
	Retrieving the score of a single image
	Retrieving the score of multiple images

	QBIC query sample program

	Chapter 14. Detecting video scene changes
	What is a video scene change?
	Finding and using scene changes
	Shot detection data structures
	DBvIOType
	DBvShotControl
	DBvShotType
	DBvFrameData
	DBvStoryboardCtrl
	Initializing values in shot detection data structures

	Getting a shot or frame
	Opening a video for shot detection
	Indexing a video
	Getting a frame
	Getting a shot
	Converting the format of a retrieved frame
	Closing a video file
	Displaying a retrieved frame

	Cataloging shots
	Before you create a catalog (database only)
	Creating a shot catalog (database only)
	Storing information about a single shot (database only)
	Storing information about all the shots in a video
	Building a storyboard
	Displaying a storyboard
	Storyboard sample programs
	Specifying a comment for a shot (database only)
	Changing the information that is stored for a shot (database only)
	Merging shot information in a shot catalog (database only)
	Deleting shot information from a shot catalog (database only)
	Deleting a shot catalog (database only)

	Part 4. Reference
	Chapter 15. User-defined types and user-defined functions
	Schema
	User-defined types
	User-defined functions
	AlignValue
	AspectRatio
	BitsPerSample
	BytesPerSec
	Comment
	CompressType
	Content
	DB2Audio
	DB2Image
	DB2Video
	Duration
	Filename
	FindInstrument
	FindTrackName
	Format
	FrameRate
	GetInstruments
	GetTrackNames
	Height
	Importer
	ImportTime
	MaxBytesPerSec
	NumAudioTracks
	NumChannels
	NumColors
	NumFrames
	NumVideoTracks
	QbScoreFromName
	QbScoreFromStr
	QbScoreTBFromName
	QbScoreTBFromStr
	Replace
	SamplingRate
	Size
	Thumbnail
	TicksPerQNote
	TicksPerSec
	Updater
	UpdateTime
	Width

	Chapter 16. Application programming interfaces
	DBaAdminGetInaccessibleFiles
	DBaAdminGetReferencedFiles
	DBaAdminIsFileReferenced
	DBaAdminReorgMetadata
	DBaDisableColumn
	DBaDisableDatabase
	DBaDisableTable
	DBaEnableColumn
	DBaEnableDatabase
	DBaEnableTable
	DBaGetError
	DBaGetInaccessibleFiles
	DBaGetReferencedFiles
	DBaIsColumnEnabled
	DBaIsDatabaseEnabled
	DBaIsFileReferenced
	DBaIsTableEnabled
	DBaPlay
	DBaPrepareAttrs
	DBaReorgMetadata
	DBiAdminGetInaccessibleFiles
	DBiAdminGetReferencedFiles
	DBiAdminIsFileReferenced
	DBiAdminReorgMetadata
	DBiBrowse
	DBiDisableColumn
	DBiDisableDatabase
	DBiDisableTable
	DBiEnableColumn
	DBiEnableDatabase
	DBiEnableTable
	DBiGetError
	DBiGetInaccessibleFiles
	DBiGetReferencedFiles
	DBiIsColumnEnabled
	DBiIsDatabaseEnabled
	DBiIsFileReferenced
	DBiIsTableEnabled
	DBiPrepareAttrs
	DBiReorgMetadata
	DBvAdminGetInaccessibleFiles
	DBvAdminGetReferencedFiles
	DBvAdminIsFileReferenced
	DBvAdminReorgMetadata
	DBvBuildStoryboardFile
	DBvBuildStoryboardTable
	DBvClose
	DBvCreateIndex
	DBvCreateIndexFromVideo
	DBvCreateShotCatalog
	DBvDeleteShot
	DBvDeleteShotCatalog
	DBvDetectShot
	DBvDisableColumn
	DBvDisableDatabase
	DBvDisableTable
	DBvEnableColumn
	DBvEnableDatabase
	DBvEnableTable
	DBvFrameDataTo24BitRGB
	DBvGetError
	DBvGetFrame
	DBvGetInaccessibleFiles
	DBvGetReferencedFiles
	DBvInitShotControl
	DBvInitStoryboardCtrl
	DBvInsertShot
	DBvIsColumnEnabled
	DBvIsDatabaseEnabled
	DBvIsFileReferenced
	DBvIsIndex
	DBvIsTableEnabled
	DBvMergeShots
	DBvOpenFile
	DBvOpenHandle
	DBvPlay
	DBvPrepareAttrs
	DBvReorgMetadata
	DBvSetFrameNumber
	DBvSetShotComment
	DBvUpdateShot
	DMBRedistribute (EEE Only)
	QbAddFeature
	QbCatalogColumn
	QbCatalogImage
	QbCloseCatalog
	QbCreateCatalog
	QbDeleteCatalog
	QbGetCatalogInfo
	QbListFeatures
	QbOpenCatalog
	QbQueryAddFeature
	QbQueryCreate
	QbQueryDelete
	QbQueryGetFeatureCount
	QbQueryGetString
	QbQueryListFeatures
	QbQueryNameCreate
	QbQueryNameDelete
	QbQueryNameSearch
	QbQueryRemoveFeature
	QbQuerySearch
	QbQuerySetFeatureData
	QbQuerySetFeatureWeight
	QbQueryStringSearch
	QbReCatalogColumn
	QbRemoveFeature
	QbSetAutoCatalog
	QbUncatalogImage

	Chapter 17. Administration commands for the client
	Entering DB2 extender administration commands
	Getting online help for DB2 extender commands
	ADD QBIC FEATURE
	CATALOG QBIC COLUMN
	CLOSE QBIC CATALOG
	CONNECT
	CREATE QBIC CATALOG
	DELETE QBIC CATALOG
	DISABLE COLUMN
	DISABLE DATABASE
	DISABLE TABLE
	DISCONNECT SERVER AT NODENUM (EEE Only)
	DISCONNECT SERVER FOR DATABASE (EEE Only)
	DISCONNECT SERVER FOR DATABASE AT NODENUM (EEE Only)
	ENABLE COLUMN
	ENABLE DATABASE
	ENABLE TABLE
	GET EXTENDER STATUS
	GET INACCESSIBLE FILES
	GET QBIC CATALOG INFO
	GET REFERENCED FILES
	GET SERVER STATUS
	OPEN QBIC CATALOG
	QUIT
	RECONNECT SERVER AT NODENUM (EEE Only)
	RECONNECT SERVER FOR DATABASE (EEE Only)
	RECONNECT SERVER FOR DATABASE AT NODENUM (EEE Only)
	REDISTRIBUTE NODEGROUP (EEE Only)
	REMOVE QBIC FEATURE
	REORG
	SET QBIC AUTOCATALOG
	START SERVER (Non-EEE Only)
	STOP SERVER (Non-EEE Only)
	TERMINATE

	Chapter 18. Administration commands for the server
	DMBICRT
	DMBIDROP
	DMBILIST
	DMBIMIGR
	DMBSTART
	DMBSTAT
	DMBSTOP

	Chapter 19. Diagnostic information
	Handling UDF return codes
	Handling API return codes
	SQLSTATE codes
	Messages
	Diagnostic tracing
	Start tracing
	Stop tracing
	Reformat trace information
	Show trace status

	Part 5. Appendixes
	Appendix A. Setting environment variables for DB2 extenders
	How environment variables are used to resolve file names
	How environment variables are used to identify display or play programs
	How the DB2MMDATAPATH environment variable is used (EEE only)
	Setting environment variables
	Setting environment variables in AIX, HP-UX, Solaris servers and clients
	Setting environment variables in OS/2 servers and clients
	Setting environment variables in Windows servers and clients
	Setting environment variables in Windows non-partitioned database environments (Non-EEE Only)
	Setting environment variables in Windows partitioned database environments (EEE Only)

	Appendix B. Sample programs and media files
	Sample programs
	Sample image, audio, and video files
	Sample Net.Data macro file

	Appendix C. Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Contacting IBM
	Product Information

