

 July 2004

High Availability for partitioned
databases using Tivoli System
Automation

Authors:
Enrico Joedecke, IBM Boeblingen Lab
Steve Raspudic, IBM Toronto Lab
Baris Naciterhan, IBM Toronto Lab

High Availability for partitioned databases using Tivoli System Automation
Page 1

1. OVERVIEW

1.1 Objective

In this paper, we describe the implementation and design of highly
available IBM® DB2® Universal Database™ (DB2 UDB) environments on
the IBM Tivoli® System Automation for Multiplatforms (Tivoli SAM). Also
included is a detailed description of the DB2 UDB agent for Tivoli SAM.
We provide guidance and recommendations for highly available
strategies using DB2 UDB Version 8.x Enterprise Server Edition (ESE)
with the Database Partitioning Feature. Practical considerations
regarding design, implementation, testing, and maintenance work with
the system are also discussed.

1.2 Overview: DB2 UDB

DB2 UDB is the industry’s first multimedia, Web-ready relational
database management system, powerful enough to meet the demands
of large corporations and flexible enough to serve medium-sized and
small e-businesses. DB2 UDB combines integrated power for business
intelligence, content management, and on-demand business with
industry-leading performance and reliability. This combination, DB2 UDB
coupled with Tivoli SAM, forms a highly available computing
environment. For more information, see www.software.ibm.com/data.

1.3 Overview: IBM Tivoli System Automation for Multiplatforms

IBM System Automation for Multiplatforms provides high availability (HA)
by automating the control of IT resources such as processes, file
systems, IP addresses, and other resources in Linux®-based clusters. It
facilitates the automatic switching of users, applications, and data from
one system to another in the cluster after a hardware or software failure.
A complete highly available setup includes many parts, one of which is
the HA software. As well as tangible items such as hardware and
software, a good HA solution includes planning, design, customizing,
and change control.

An HA solution reduces the amount of time that an application is
unavailable by removing single points of failure. For more information,
see www.software.ibm.com/tivoli/products/sys-auto-linux.

1.4 Overview: Minimum software and hardware levels

　 DB2 UDB ESE - Database Partitioning Feature V 8.1.6 or later
　 Tivoli System Automation for Multiplatforms Version 1.2 or later
　 Linux on the IBM eServer™, zSeries®, xSeries®, or pSeries®
platforms, or any 32-bit Intel®-based server.

Contents

Overview 1

DB2 UDB in an HA environment 2

IBM Tivoli SAM 5

IBM Tivoli SAM and DB2 setup 6

Testing Highly Available DB2
instances with Tivoli SAM 19

Capacity on Demand 22

High Availability for partitioned databases using Tivoli System Automation
Page 2

See http://www.ibm.com/software/tivoli/products/sys-auto-
linux/platforms.html for the latest information pertaining to hardware
supported by Tivoli SAM.

See http://www.ibm.com/software/data/db2/linux/validate/ for the latest
information concerning Linux distributions supported by DB2 UDB.

The Linux distribution chosen must meet the requirements for both Tivoli
SAM and DB2 UDB in order to be supported for the purposes of
automating DB2 UDB with Tivoli SAM.

2. DB2 UDB IN AN HA ENVIRONMENT

In a single-partition DB2 UDB setup, a single DB2 UDB instance is
running on a server. This DB2 UDB instance has local access to data (its
own executable image as well as databases owned by the instance). If
this DB2 UDB instance is made accessible to remote clients, an
(unused) IP address must be assigned to this DB2 UDB instance.

The DB2 UDB instance, the local data, and the IP address are
considered resources, which must be automated by Tivoli SAM. Since
these resources are closely related (for example, they collectively run on
the same node at the same time), they are called a resource group.

The entire resource group is collocated on one node in the cluster. In the
case of a failover, the entire resource group is started on another node.

There are the following dependencies among the resources in the group:

　 The DB2 UDB instance must be started after the local disk
　 The DB2 UDB instance must be stopped before the local disk
　 The HA IP address must be collocated with the instance

2.1 Disk Storage

DB2 UDB can utilize these resources for local data storage:

　 Raw disk (for example, /dev/sda1)
　 Logical volume managed by Logical Volume Manager (LVM)
　 File system (for example, ext3, jfs)

DB2 data can be stored either entirely on one or more raw disks, entirely
on logical volumes, entirely on file systems, or on a mixture of all three.
Of course, the executables will need to reside on a file system of some
sort.

High Availability for partitioned databases using Tivoli System Automation
Page 3

2.1.1 Disk Storage: Raw disk

For high availability, the use of raw disk for data storage is the most
straightforward approach. A raw disk is simply a disk partition that does
not host a file system. The identical path to raw disk (for example,
/dev/sda1) must appear across all nodes in the cluster that are physically
connected to the storage. Moreover, this same path is always available
across all nodes that are physically attached to the storage, thus
eliminating the need for any start or stop methods to make the disk
visible to the host. A monitor method is likewise unnecessary.
Note that the true benefit of raw disk is that a possibly time-consuming
fsck is never required, even in scenarios where the machine is halted
abruptly by a power failure, for example.

2.1.2 Disk Storage: Logical Volume Manager

There are currently several logical volume managers (LVMs) available
for Linux. We will discuss the LVM currently available as part of the Linux
kernel. It is important to remember that LVM is not currently cluster
aware. The implication of this is that, as root, it is very easy to cause an
unrecoverable data loss in shared disk environments.

In shared disk environments, (the most common of which is shared SCSI
for small two-node clusters and shared fiber channel for larger clusters),
more than one machine has physical access to a set of disks. Access to
these disks must be serialized, however.

It is critical that LVM be shut down on all nodes other than the node from
which any LVM administration is done. It is also critical that no more than
one node have a file system mounted on a given logical volume (at any
given time).

2.1.3 Disk Storage: File System

File systems hosted by raw disk require a resource to mount, unmount,
and monitor them. This support is written as a resource of the class
IBM.Application, and can be added to the resource group containing the
DB2 resource, and the IP address of DB2 UDB (collocated and with
appropriate dependencies on relationship setup). File systems that are
mounted on top of LVM-managed logical volumes are handled
identically.

2.2 Disk Protection

High Availability for partitioned databases using Tivoli System Automation
Page 4

From the point of view of DB2 UDB, the disk protection is sufficient if the
data on the raw disk, file system, or logical volume is accessible for read
and write operations. The DB2 engine itself ensures that only one
instance accesses a database at any one time. DB2 UDB data is stored
in logical entities called table spaces. A table space is composed of one
or more table space containers. A table space container is either a file,
file system mount point, or a raw disk partition. DB2 UDB does extensive
checking when these containers are created and accessed. In
particular, it is impossible to have another instance or database
concurrently access the same raw disk, file system, or file system mount
point.

Disk protection (in the sense of protecting a file system from being
mounted concurrently from two different physical hosts) is provided, if
used, at the logical volume manager layer, but only for cluster-aware
LVMs. If raw disk storage is chosen, care must be taken that the system
administrator does not inadvertently concurrently mount the raw disk
across multiple hosts. All file system mounting and unmounting tasks (for
shared file systems) must be controlled by Tivoli SAM.

2.3 DB2 UDB requirements for the HA IP address

DB2 UDB has no special requirements for the IP address. That is to
say, it is not necessary to define a highly available IP address in order for
the instance to be considered highly available. However, it is important
to remember that the IP address that is protected (if any) is the client’s
access point to the data, and as such must be well known by all clients.
In practice, this implies that this IP address is the one used by the clients
in their CATALOG TCPIP NODE commands.

Note these requirements (which are not specific for HA IP addresses but
must be remembered by anyone wanting to make a DB2 server
accessible to remote TCP/IP clients):

　 SVCENAME must be defined in /etc/services at all hosts
　 DB2COMM must be set to TCPIP

It is also necessary to define the network interfaces that will be able to
host these HA IP address. This is especially important if a node has
more than one network interface and only a subset of the network
interfaces is allowed to host this IP address.

2.4 DB2 UDB ESE – Database Partitioning Feature in a Tivoli SAM
Environment

High Availability for partitioned databases using Tivoli System Automation
Page 5

With DB2 UDB ESE (with the database partitioning feature), there is an
additional requirement. The instance home directory must be shared
across all nodes participating in the cluster. This will be done via
Network File System (NFS) and the HA-NFS package provided in
conjunction with Tivoli SAM. In this environment, each individual DB2
partition is controlled by its own distinct resource group (similar to the
single partition case described earlier, but extended to many nodes).
This approach has many advantages, chiefly that it allows the
administrator to specify individually the location of each DB2 partition
wherever desired on the cluster.

3. IBM Tivoli SYSTEM AUTOMATION FOR MULTIPLATFORMS

IBM Tivoli System Automation for Multiplatforms (Tivoli SAM) is a
product that provides high availability by automating resources such as
processes, applications, IP addresses, and others in Linux-based
clusters. To automate an IT resource (such as an IP address), the
resource must be defined to Tivoli SAM. Furthermore, these resources
must all be contained in at least one resource group. If these resources
are always required to be hosted on the same machine, they should all
be placed in the same resource group. Further information on Tivoli
SAM can be found in the IBM Tivoli System Automation for
Multiplatforms, Guide and Reference manual.

Every application needs to be defined as a resource in order to be
managed and automated with Tivoli SAM. Application resources are
usually defined in the generic resource class IBM.Application. In this
resource class, there are several attributes that define a resource, but at
least three of them are application-specific:

　 StartCommand
　 StopCommand
　 MonitorCommand

These commands may be scripts or binary executables.

There are some requirements for these commands:

You must ensure that the scripts are well tested, and will produce the
desired effects within a reasonable period. This is necessary since
these commands are the only interface between Tivoli SAM and the
application.

The monitoring script has to be efficient, as it is running at the frequency
(in seconds) set in MonitorCommandPeriod, and therefore can consume

High Availability for partitioned databases using Tivoli System Automation
Page 6

a lot of CPU time if written without efficiency in mind.

The StartCommand and StopCommand must have a return code of 0
(zero) for successful completion; otherwise, an error is assumed and the
resource is set to ‘Failed Offline’.

For the HA IP address there’s another resource class IBM.ServiceIP.
This resource class has special attributes to define an IP address and a
net mask. In addition, there can be a defined equivalency of network
interfaces, which will define the network interfaces that will be able to
host an IP address. The resource class for equivalencies is
IBM.Equivalency.
After the resources for the equivalency and the IP address are defined
correctly, a DependsOn relationship must be created from the IP
address to this equivalency.

3.1 The DB2 for Tivoli SAM Agent

The agent consists of the set of scripts necessary for the control of DB2
instances, the DB2 administration server (DAS), and file system mount
points, as well as utilities that simplify management of the cluster.
Ensure that the agent is included with your version of DB2 UDB; for
example, for DB2 UDB v8, the agent can be found in the install path
/opt/IBM/db2/V8.1/ha/salinux.

4. IBM Tivoli SYSTEM AUTOMATION FOR MULTIPLATFORMS AND
 DB2 UDB SETUP

This section describes the detailed setup of DB2 UDB and Tivoli SAM.
Diagram 1 is an illustration of the sample two-node cluster to which we
reference later:

　 HA FAStT storage shared between nodes
　 Two-node cluster on xSeries hardware, node1, node2
　 DB2 instance running DB2 UDB Version 8.x
　 Sufficient LUNs prepared to host all database data
　 DB2 instance home directory shared via NFS

High Availability for partitioned databases using Tivoli System Automation
Page 7

Diagram 1: two-node cluster with shared disk

4.1 IBM Tivoli SAM: Setup Overview

The setup consists of the following steps:

 1. Set up the hardware
 2. Install DB2 UDB
 3. Install IBM Tivoli System Automation for Multiplatforms
 4. Set up Tivoli SAM to manage the NFS
 5. Create a DB2 instance
 6. Set up Tivoli SAM to manage the DB2 instance

4.2 Hardware resources

If redundancy is required, it is important to ensure that you have
adequate hardware resources to provide redundancy. Consult the IBM
Tivoli System Automation for Multiplatforms, Guide and Reference for
detailed and current platform requirements.

4.3 Install DB2 UDB

DB2 UDB must be installed on all nodes that will potentially host a DB2
instance or the DAS. Generally, follow the Quick Beginnings for DB2
Servers manual. When installation is complete, the DB2 UDB software
is installed (by default) in /opt/IBM/db2/V8.1 (for Version 8). Do not
create instances at this step; that task will be deferred to a subsequent
step.

4.4 Install IBM Tivoli System Automation for Multiplatforms

Cluster Node #1 Cluster Node #2

Storage Subsystem

High Availability for partitioned databases using Tivoli System Automation
Page 8

Tivoli SAM must be installed on both machines locally. To install Tivoli
SAM, follow the installation procedure described in IBM System
Automation for Multiplatforms, Guide and Reference.

4.5 Set up IBM Tivoli System Automation for Multiplatforms to
 manage the DB2 instance and NFS Server

First, all nodes that will comprise the cluster must be prepared. This
includes some security setup, without which the following commands will
not work. This command must be executed on every node. In this
example, the nodes are named db2tsa01 and db2tsa02:

/usr/sbin/rsct/bin/preprpnode db2tsa01 db2tsa02

Create the cluster domain:

/usr/sbin/rsct/bin/mkrpdomain \
 db2tsa12 db2tsa01 db2tsa02

Therefore, the domain created is named db2tsa12, and consists of the
nodes db2tsa01 and db2tsa02. All Tivoli SAM commands and resources
are relative to the active domain; all Tivoli SAM commands can now be
issued at any node of the domain. To start a domain (or to cause it to
become active), issue the following commands:

Start the domain:

/usr/sbin/rsct/bin/startrpdomain db2tsa12

Ensure the domain is online:

/usr/sbin/rsct/bin/lsrpdomain

You should see output similar to this:

Name OpState RSCTActiveVersion MixedVersions TSPort
db2tsa12 Online 2.3.3.1 No 12347

Ensure all nodes in the domain are online:

lsrpnode

You should see output similar to this:

Name OpState RSCTVersion
db2tsa01 Online 2.3.3.1
db2tsa02 Online 2.3.3.1

High Availability for partitioned databases using Tivoli System Automation
Page 9

For any two-node cluster, a tiebreaker disk is required. This tiebreaker is
used exclusively for cluster quorum duties (in other words, a disk that
cannot be used to support any file system or data storage). Note that this
can be a very small Logical Disk of a disk array, but it must be devoted to
the tiebreaker function. To create the tiebreaker disk, some background
knowledge of SCSI device numbering is required.

SCSI devices can be identified with four integers: one each represents
the host, the channel, the SCSI ID, and the LUN. Note that these
numbers may not necessarily be consistent across nodes, even if the
target device to which they refer is the same physical disk.

For example, if a SCSI device is connected to two nodes (for example,
db2tsa01 and db2tsa02) and has the following SCSI identifiers at the
respective nodes:

db2tsa01: ID=2 LUN=0 HOST=1 CHAN=0
db2tsa02: ID=2 LUN=0 HOST=1 CHAN=0

Note that these numbers can be obtained with the dmesg command, or
from the contents of /proc/scsi/scsi. For example, on either node, run
the following command:

cat /proc/scsi/scsi | grep Channel

Host: scsi0 Channel: 00 Id: 00 Lun: 00
Host: scsi0 Channel: 00 Id: 08 Lun: 00
Host: scsi1 Channel: 00 Id: 00 Lun: 00
Host: scsi1 Channel: 00 Id: 01 Lun: 00
Host: scsi1 Channel: 00 Id: 02 Lun: 00
Host: scsi1 Channel: 00 Id: 03 Lun: 00
Host: scsi1 Channel: 00 Id: 04 Lun: 00
Host: scsi1 Channel: 00 Id: 05 Lun: 00
Host: scsi1 Channel: 00 Id: 08 Lun: 00
Host: scsi1 Channel: 00 Id: 09 Lun: 00
Host: scsi1 Channel: 00 Id: 10 Lun: 00
Host: scsi1 Channel: 00 Id: 11 Lun: 00
Host: scsi1 Channel: 00 Id: 13 Lun: 00
Host: scsi1 Channel: 00 Id: 14 Lun: 00
Host: scsi1 Channel: 00 Id: 15 Lun: 00

You may run this command at each node in the cluster to confirm that
the LUNs are visible across all of the cluster nodes. We will choose to
make the following LUN our TieBreaker:

Host: scsi1 Channel: 00 Id: 02 Lun: 00

High Availability for partitioned databases using Tivoli System Automation
Page 10

Then, create the TieBreaker object as follows:

mkrsrc IBM.TieBreaker Name="tb" Type="SCSI" \
 DeviceInfo="HOST=1 CHAN=0 ID=2 LUN=0" \
 HeartbeatPeriod=5

chrsrc -c IBM.PeerNode OpQuorumTieBreaker="tb"

We will now create the NFS server resource to enable hosting of the
instance home directory.

4.6 Create the Highly Available NFS Server

The reader must understand the white paper describing the steps in
configuring highly available NFS from the URL:

ftp://ftp.software.ibm.com/software/tivoli/products/sys-auto-linux/
ITSAMP-NFS-Server-v1.1.pdf

The white paper is entitled “Highly available NFS server with Tivoli
System Automation for Linux”.

Furthermore, the RPMs must be installed, and must include the policy
and script samples for making the NFS server highly available. These
are also available at the same site, via the following URL:

ftp://ftp.software.ibm.com/software/tivoli/products/
sys-auto-linux/sam.policies-1.2.1.0-0.i386.rpm

4.6.1 Configure the HA NFS Server Package

This is a brief overview of all necessary steps to enable HA NFS in our
cluster. For further information, consulting the white paper cited above is
strongly recommended.

First, create a partition of about 10 MB on a shared disk (for example,
/dev/sdb1). Then, format the partition with a file system (for example,
ext3 or jfs). Note that you should avoid using a non-logged file system
(such as ext2) for this or any other mount point that you may require in
the cluster. Create a mount point /varlibnfs at each node of the cluster.
Next, place an entry in /etc/fstab for this mount point (do this at each
node in the cluster), for example:

/dev/sdb1 /varlibnfs ext3 noauto 0 0

Perform the following steps at one node only:

High Availability for partitioned databases using Tivoli System Automation
Page 11

mount /varlibnfs
cp /var/lib/nfs/* /varlibnfs
umount /varlibnfs

Then, at each node:

cd /var/lib
mv nfs nfs.org
ln –s /varlibnfs nfs

Ensure that the sam.policies RPM is installed at each node with:

rpm –q sam.policies

If the sam.policies rpm is not installed, get it from

ftp://ftp.software.ibm.com/software/tivoli/products/
sys-auto-linux/sam.policies-1.2.1.0-0.i386.rpm

and install it.

4.6.2 Edit sa-nfsserver.conf

You must change the following lines in the sa-nfsserver.conf file (located
in /usr/sbin/rsct/sapolicies/nfsserver). The remainder of the file (that is,
those lines that we do not reference herein), can remain unchanged.

The names of the set of nodes that can host the NFS server:

nodes="db2tsa01 db2tsa02"

The IP address and net mask, which will be used by clients to mount the
file system:

ip_1="9.26.166.36,255.255.254.0"

The set of Ethernet adapters that are equivalent for purposes of hosting
the NFS server IP address:

nieq_1="eth0:db2tsa01,eth0:db2tsa02"

The name of the directory that will locally mount the instance home
directory:

data_work="/shared_home"

High Availability for partitioned databases using Tivoli System Automation
Page 12

Ensure that this file is copied to all nodes in the cluster; for example, if
the file was originally edited on db2tsa01, you can use the following
command now (from db2tsa02) to replicate it to db2tsa02:

rcp \
db2tsa01:/usr/sbin/rsct/sapolicies/nfsserver/* .

Then, ensure that there is a line in the /etc/fstab similar to this one:

/dev/sdb2 /shared_home ext3 noauto 0 0

Also, ensure that the following line exists in the /etc/exports file on all
nodes that may host the NFS server:

/shared_home *(rw,no_root_squash,sync)

Now you are ready to create the NFS resources with the following
command:

#/usr/sbin/rsct/sapolicies/nfsserver/cfgnfsserver -p

Bring the NFS resource group up as follows:

chrg -o Online SA-nfsserver-rg

4.6.3 Mount Client NFS mount points

Either you can choose to use automounter or you can manually mount
the client NFS mount points. If you are manually mounting the client
NFS mount points, ensure a line similar to the following one exists in the
/etc/fstab for each node of the cluster. Note that this is one long line that
may be wrapped in this text but should be entered as one line in the
/etc/fstab file:

9.26.166.36:/shared_home /home nfs
rw,bg,vers=2,tcp,timeo=600,retrans=2,hard,nointr,noac,
suid,nolock 0 0

When no automounter is used, it is the responsibility of the system
administrator to mount the client NFS mount point before attempting to
use the machine as a host for a DB2 partition.

4.7 Create a DB2 instance

We will work with an instance named db2tsa in this example.

High Availability for partitioned databases using Tivoli System Automation
Page 13

First, ensure that appropriate user and group IDs are created on each
node of the cluster, and that they are identical across each node.

On each physical node participating in the cluster, three separate groups
and user accounts need to be created for the:

　 DB2 instance owner
　 User ID that will execute fenced user-defined functions (UDFs)
　 DB2 administration server (DAS)

If NIS or NIS+ is in use, groups and users must be created on the NIS
server. If you are using local server authentication, repeat the following
steps on all nodes in the cluster.

For example, use the following commands to create groups on each
node in a local server authentication environment:

groupadd -g 999 db2iadm1
groupadd -g 998 db2fadm1
groupadd -g 997 db2asgrp

You are then ready to create the user IDs as follows:

useradd -g db2iadm1 -u 1004 \
 -d /home/db2tsa -m db2tsa

useradd -g db2fadm1 -u 1003 -d \
 /home/db2fenc1 -m db2fenc1

useradd -g db2asgrp -u 1002 -d \
 /home/db2as -m db2as

At this point, the appropriate user and group IDs exist at all nodes in the
cluster.

Ensure the instance is set up correctly. For example, if you are using
local passwords, issue the following commands:

rsh db2tsa01 "cat /etc/passwd |grep db2tsa"
rsh db2tsa02 "cat /etc/passwd |grep db2tsa"

You should see output at each node similar to the following line:

db2tsa:x:1004:999::/home/db2tsa:/bin/ksh

High Availability for partitioned databases using Tivoli System Automation
Page 14

Ensure that the /etc/services file is set up correctly (and that the relevant
entries are identical) across both nodes. Issue the following commands
to verify this:

rsh db2tsa01 “cat /etc/services | grep db2tsa”
rsh db2tsa02 “cat /etc/services | grep db2tsa”

You should see output similar to the following lines:

DB2_db2tsa 60000/tcp
DB2_db2tsa_1 60001/tcp
DB2_db2tsa_2 60002/tcp
DB2_db2tsa_END 60003/tcp
xdb2tsa 60004/tcp

Ensure that all nodes have identical entries. One important point to
remember is to ensure that sufficient entries are allocated so that each
partition in the instance can be brought up on each host. That means,
for example, that the port range given above (60000 to 60003 inclusive)
is sufficient for a four-partition DB2 UDB ESE - Database Partitioning
Feature instance. The range will have to be made larger if more
partitions are required.

Ensure that the IP address that you want to associate with this instance
is not currently in use. We use the IP address 9.26.166.123 in the
examples that follow. Also, ensure that you have unprompted rsh
access (as root) to the other nodes in this cluster. Unprompted rsh
access to the other nodes in the domain is only required for the duration
of the registration process and can be removed once the registration
script has completed processing.

Notice that for this instance, the instance home directory will be mounted
under /home. Issue the following commands at some node in the
cluster:

rsh db2tsa01 "cat /etc/fstab | grep /home”
rsh db2tsa02 “cat /etc/fstab | grep /home”

For DB2 UDB ESE - Database Partitioning Feature instances, you
should see output similar to the following lines at each node:

9.26.166.36:/shared_home /home nfs
rw,bg,vers=2,tcp,timeo=600,retrans=2,hard,nointr,noac,
suid,nolock 0 0

After checking the fstab file, ensure that the instance home directory is
available by executing the following commands:

High Availability for partitioned databases using Tivoli System Automation
Page 15

rsh db2tsa01 mount | grep /home/
rsh db2tsa02 mount | grep /home/

The output should be similar to the following lines:

9.26.166.36:/shared_home on /home type nfs
(rw,bg,vers=2,tcp,timeo=600,retrans=2,hard,nointr,noac
,nolock,addr=9.26.166.36)

In the next step, we will create a DB2 instance named ‘db2tsa’ and
configure the database partitions. To do this, execute the following
commands:

/opt/IBM/db2/V8.1/instance/db2icrt \
 -w 64 -u db2tsa db2tsa

The output of the command should be similar to the line below:

DBI1070I Program db2icrt completed successfully.

To verify the instance, log on as the instance user and start the db2
service:

su - db2tsa
% db2start

The output should be similar to the following lines:

0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

After verifying the instance, the next step is to configure the database
partitions. To do this, we will modify the content of the db2nodes.cfg file.
However, before configuring the partitions, stop the DB2 service. Issue
the following commands to configure the database partitions:

% db2stop

% vi ~/sqllib/db2nodes.cfg

Add the following line:

1 db2tsa02 0

The final content of the db2nodes.cfg file should be similar to the lines
below:

High Availability for partitioned databases using Tivoli System Automation
Page 16

0 db2tsa01 0
1 db2tsa02 0

To verify the partitions, start the DB2 service:

% db2start

The output should be similar to the following lines:

0 0 SQL1063N DB2START processing was successful.
1 0 SQL1063N DB2START processing was successful.

Now, for our two-partition DB2 instance, we want exactly one local
mount point to store database data (per partition). Create entries in the
/etc/fstab of the following format:

/dev/sdb3 /db/db2tsa/NODE0000 ext3 noauto 0 0
/dev/sdb4 /db/db2tsa/NODE0001 ext3 noauto 0 0

Ensure that this is consistent across each node in the cluster. Here, the
entry for NODE0000 (the first entry of the two) will correspond to data
storage for partition 0 of the instance, and the entry for NODE0001 will
correspond to data storage for partition 1 of the instance.

If these mount points do not already exist, create them with the following
commands on each node:

mkdir –p /db/db2tsa/NODE0000
mkdir –p /db/db2tsa/NODE0001

Ensure that the instance owner ID has read and write permission to this
mount point.

Note that if these mount points do not exist at the time of instance
registration, then no local mount points will be created by the registration
process. Local HA mount points for data storage can be created later
via standard Tivoli SAM administration commands.

You have the option at this point to create an equivalency group between
the public adapters set to host the highly available IP address. In our
cluster, we will consider the adapters eth3 on db2tsa01 and eth3 on
db2tsa02 as equivalent for the purposes of hosting the HA IP address.
To express this in Tivoli SAM terms, issue the following command:

mkequ virpubnic \

High Availability for partitioned databases using Tivoli System Automation
Page 17

IBM.NetworkInterface:eth3:db2tsa01,eth3:db2tsa02

Note that the name of the equivalency must be virpubnic; the other
parameters are optional, depending on the node names and the NIC
names for your particular cluster.

If you choose not to create this equivalency group, a NIC failure alone
will not cause the resource group to fail to another node, which may lead
to an outage window.

After creating the instance and configuring the partitions, we need to
execute the following command to protect each of the DB2 partitions and
the well-known IP address 9.26.166.123.

cd /opt/IBM/db2/V8.1/ha/salinux
./regdb2salin -a db2tsa -i 9.26.166.123

This may take a few moments, but the result will be a highly available
instance. To verify this, issue the following command:

./getstatus

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 SA-nfsserver-rg SA-nfsserver-server
 SA-nfsserver-rg SA-nfsserver-ip-1
 SA-nfsserver-rg SA-nfsserver-data-varlibnfs
 SA-nfsserver-rg SA-nfsserver-data-work
 - -
 db2_db2tsa_0-rg db2_db2tsa_0-rs
 db2_db2tsa_0-rg db2_db2tsa_0-rs_mount
 db2_db2tsa_0-rg db2_db2tsa_0-rs_ip
 - -
 db2_db2tsa_1-rg db2_db2tsa_1-rs
 db2_db2tsa_1-rg db2_db2tsa_1-rs_mount
 - -

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 SA-nfsserver-server db2tsa01 Online
 SA-nfsserver-server db2tsa02 Offline
 - - -
 SA-nfsserver-ip-1 db2tsa01 Online

High Availability for partitioned databases using Tivoli System Automation
Page 18

 SA-nfsserver-ip-1 db2tsa02 Offline
 - - -
 SA-nfsserver-data-varlibnfs db2tsa01 Online
 SA-nfsserver-data-varlibnfs db2tsa02 Offline
 - - -
 SA-nfsserver-data-work db2tsa01 Online
 SA-nfsserver-data-work db2tsa02 Offline
 - - -
 db2_db2tsa_0-rs db2tsa01 Offline
 db2_db2tsa_0-rs db2tsa02 Online
 - - -
 db2_db2tsa_0-rs_mount db2tsa01 Offline
 db2_db2tsa_0-rs_mount db2tsa02 Online
 - - -
 db2_db2tsa_0-rs_ip db2tsa01 Offline
 db2_db2tsa_0-rs_ip db2tsa02 Online
 - - -
 db2_db2tsa_1-rs db2tsa01 Online
 db2_db2tsa_1-rs db2tsa02 Offline
 - - -
 db2_db2tsa_1-rs_mount db2tsa01 Online
 db2_db2tsa_1-rs_mount db2tsa02 Offline

While this is a large amount of output, it can be easily understood by
looking at it one resource group at a time. The first section lists the
resource groups along with the resources that are contained within it; in
this case, we see there are three resource groups, named
SA-nfsserver-rg, db2_db2tsa_0-rg, db2_db2tsa_1-rg.

SA-nfsserver-rg contains all resources necessary to automate failover of
the NFS server, db2_db2tsa_0-rg contains all resources necessary to
automate and control partition 0 of instance db2tsa, and db2_db2tsa_1-
rg contains all resources necessary to automate and control partition 1 of
instance db2tsa. Note that contained within each of the DB2 resource
groups is both the partition control as well as a local mount point that will
be needed to store database data for that instance. In addition, we see
there is an additional resource in the db2_db2tsa_0-rg resource group,
and this is the resource that controls the location of the well-known IP
address (well known by the DB2 client applications). It will always be
collocated with the location of partition 0 for the instance db2tsa.

4.9 Create a DB2 database

We should now create a database under this instance. Log on to the
server as the instance owner and issue the following command:

High Availability for partitioned databases using Tivoli System Automation
Page 19

% db2 create database hadb on /db

Two things to note: first, the partition at which you create the database
will also be the catalog node for the duration of the existence of this
database. Second, the database is created on the local disks that are
associated with the db2tsa database instance; these local disks are
specified in the /etc/fstab. Notice particularly that the path clause on the
CREATE DATABASE references the path '/db'; this is exactly the prefix
to the string $DB2INSTANCE_NAME/NODE000x given in the /etc/fstab
file. This prefix can be replaced by any prefix, as long as they are used
consistently in both the /etc/fstab and the CREATE DATABASE
command.

4.10 Catalog a DB2 Instance

% db2 catalog tcpip node db2tsaha \
remote 9.26.166.123 server 60004

Note that the IP address specified is identical to the IP address supplied as the
argument to the registration script and that the port for the server is defined on
both instance nodes and is the value of SVCENAME at the server.

5. TESTING HA DB2 UDB ESE - DATABASE PARTITIONING
FEATURE INSTANCES WITH Tivoli SAM

Implementing an HA cluster is a four-stage process. The stages are as
follows:

1. Carefully plan the cluster.
2. Implement the cluster.
3. Test the cluster.
4. If the test results are not satisfactory, return to Step 1.

Planning the proper setup of an HA cluster is not within the scope of this
document. See IBM System Automation for Multiplatforms, Guide and
Reference for advice on the setup of the cluster. We will provide some
testing guidelines that are relevant for the use of DB2 UDB in such an
environment.

Ideally, every critical point of failure (in other words, a failure that has the
potential to affect production operation) should be tested. It may not be
practical to shut down a building’s power supply in order to test backup
power supplies, but a single source of electricity is a single point of
failure, and until the system has been physically tested, it will never be
entirely certain that the cluster will behave in practice as it does in theory.

High Availability for partitioned databases using Tivoli System Automation
Page 20

We will concentrate on failures internal to the cluster for the rest of this
discussion. We will also assume a client load is being run on the system
and monitored to ensure successful failover and failover timings.

Controlled Failover Testing

Controlled failover refers to the use of operator-driven commands to
induce a change in the distribution of resources across the cluster. For
this, we will use the Tivoli SAM command rgreq (Tivoli SAM 1.2 required)
and assume the initial distribution given in the output to the getstatus
command described above. That is, we consider the original two-node
domain consisting of nodes db2tsa01 and db2tsa02. The NFS resource
group initially resides on node db2tsa01, the resource group for partition
0 resides initially on node db2tsa01, and the resource group for partition
1 resides initially on node db2tsa02.

Failover partition 1 from db2tsa01 to db2tsa02

rgreq -o Move -n db2tsa01 db2_db2tsa_1-rg

Issue the getstatus command and observe that the new location of the
db2_db2tsa_1-rg resource group is no longer node db2tsa01 but rather
node db2tsa02. Further, observe the behavior of the client program and
verify that it is still active.

Failover partition 1 from db2tsa02 to db2tsa01

rgreq -o Move -n db2tsa02 db2_db2tsa_1-rg

Issue the getstatus command and verify that the distribution of the
partitions for instance db2tsa corresponds to that originally given.

Failover partition 0 from db2tsa01 to db2tsa02

rgreq -o Move -n db2tsa01 db2_db2tsa_0-rg

Issue the getstatus command and observe that both partitions are
hosted on the node db2tsa02.

Failover partition 0 from db2tsa02 to db2tsa01

rgreq -o Move -n db2tsa02 db2_db2tsa_0-rg

Observe that the original distribution of partitions is restored.

Now, fail the NFS server from its original host with the command:

High Availability for partitioned databases using Tivoli System Automation
Page 21

rgreq -o Move -n db2tsa01 SA-nfsserver-rg

Observe that the location of the NFS server has changed to the node
db2tsa02. Fail back the NFS server to its original host with the
command:

rgreq -o Move -n db2tsa02 SA-nfsserver-rg

Testing Instance Failure

Log on to the node db2tsa01 as the instance owner db2tsa and issue the
following command (which will simulate an instance failure):

kill -9 $(ps -ef | grep db2sysc \
 | grep –v grep | awk ‘{print $2}’)

Issue a getstatus command repeatedly and observe that the resource for
the DB2 instance goes offline briefly in response to the command and is
quickly restarted on the same node.

Log on to the other node db2tsa02 and issue the command given
immediately above. You should see similar results at this node.

Testing Machine Failure

Log on to the node db2tsa02 as root and issue the command:

reboot -nf

This should cause all resources hosted on node db2tsa02 to fail to
db2tsa01. Observe that this, in fact, does occur and that the client
notices a brief interruption of service.

Wait until the node db2tsa02 comes back online. At that point, ensure
that the NFS client mount is mounted, and then issue the following
command to bring the partition 1 of instance db2tsa online at the node:

rgreq -o Move -n db2tsa01 db2_db2tsa_1-rg

Now, fail node db2tsa01 with the command:

reboot -nf

High Availability for partitioned databases using Tivoli System Automation
Page 22

This should cause all resources hosted on node db2tsa01 to fail to
db2tsa02. Observe that this, in fact, does occur and that the client
notices a brief interruption of service.

Wait until the node db2tsa01 comes back online. At that point, ensure
that the NFS client mount is available and mounted, and then issue the
following command to bring the partition 1 of instance db2tsa online at
the node:

rgreq -o Move -n db2tsa02 db2_db2tsa_1-rg

6. CAPACITY ON DEMAND

The combination of DB2 UDB ESE - Database Partitioning Feature and Tivoli
SAM can provide a powerful solution to adding and removing computing
resources on demand. During periods of high database use, additional
computing resources can be added to the cluster; and these resources will host
DB2 UDB ESE - Database Partitioning Feature partitions that can provide
increased computing throughput. If at some point these additional resources are
no longer required, they can be removed from the cluster.

Here is an example. It begins with a three-partition DB2 UDB ESE - Database
Partitioning Feature database instance spread over two computing nodes. To
increase throughput, one additional computing node is added to the Tivoli SAM
cluster. DB2 UDB ESE – Database Partitioning Feature partitions are then
started on these nodes to take advantage of their additional CPU, RAM, and disk
resources of the newly added node.

We will begin with an initial state as follows. The Tivoli SAM domain we
create is named halin_domain:

lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort
halin_domain Online 2.3.3.1 No 12347

This domain is composed of the following nodes:

lsrpnode
Name OpState RSCTVersion
halin2 Online 2.3.3.1
halin3 Online 2.3.3.1

The steps to configure an NFS server given in 4.6 have been followed to create
the following initial distribution of resources and resource groups. The state of
the NFS and NFS-related resources are as follows:

getstatus

High Availability for partitioned databases using Tivoli System Automation
Page 23

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 SA-nfsserver-rg SA-nfsserver-server
 SA-nfsserver-rg SA-nfsserver-ip-1
 SA-nfsserver-rg SA-nfsserver-data-varlibnfs
 SA-nfsserver-rg SA-nfsserver-data-work
 - -

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 SA-nfsserver-server halin3 Online
 SA-nfsserver-server halin2 Offline
 - - -
 SA-nfsserver-ip-1 halin3 Online
 SA-nfsserver-ip-1 halin2 Offline
 - - -
 SA-nfsserver-data-varlibnfs halin3 Online
 SA-nfsserver-data-varlibnfs halin2 Offline
 - - -
 SA-nfsserver-data-work halin3 Online
 SA-nfsserver-data-work halin2 Offline
 - - -

The DB2 UDB ESE – Database Partitioning Feature instance we will use is
stevera, and its initial distribution of partitions across our two nodes is given by
its db2nodes.cfg file (from $INSTHOME/sqllib/db2nodes.cfg):

$ cat ~/sqllib/db2nodes.cfg
0 halin2 0 halin2
1 halin2 1 halin2
2 halin3 0 halin3

Therefore, we see that the instance is a three-partition instance, with two
partitions spread across node halin2, and the remaining partition spread across
node halin3. It is important to wisely choose the number of logical partitions;
choose a sufficient number of partitions so that there is at least one logical
partition per the maximum number of physical nodes that you anticipate adding
to the Tivoli SAM domain.

Now, create the highly available DB2 instance via the regdb2salin script, for
example, from halin2:

High Availability for partitioned databases using Tivoli System Automation
Page 24

./regdb2salin -a stevera

The distribution of resources and resource groups across the cluster is now as
follows:

getstatus

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 SA-nfsserver-server halin2 Offline
 SA-nfsserver-server halin3 Online
 - - -
 SA-nfsserver-ip-1 halin2 Offline
 SA-nfsserver-ip-1 halin3 Online
 - - -
 SA-nfsserver-data-varlibnfs halin2 Offline
 SA-nfsserver-data-varlibnfs halin3 Online
 - - -
 SA-nfsserver-data-work halin2 Offline
 SA-nfsserver-data-work halin3 Online
 - - -
 db2_stevera_0-rs halin2 Online
 db2_stevera_0-rs halin3 Offline
 - - -
 db2_stevera_1-rs halin2 Online
 db2_stevera_1-rs halin3 Offline
 - - -
 db2_stevera_2-rs halin2 Offline
 db2_stevera_2-rs halin3 Online
 - - -

Note that for clarity, and to reduce the amount of output from the getstatus
command, no local disk resources or HA IP addresses are being shown in this
example.

Now, let us assume that node halin4 is being added to the Tivoli SAM domain.
Ensure that whatever local disk resource are required for each partition are
accessible on the new node, and that the /etc/fstab on the new nodes is identical
to the existing nodes in order to facilitate the mounting of the local disk
resource. You must also mount the instance home directory via NFS or
automounter (same as for the other nodes in the cluster). Naturally, you must
install the Tivoli SAM RPMs on any new nodes you want to participate in the
domain.

Then, add the new node to the domain with the following command:

High Availability for partitioned databases using Tivoli System Automation
Page 25

addrpnode halin4

Start the new node in the domain with the following command:

startrpnode halin4

Issue the lsrpnode command and wait until all the nodes are online to the
domain, for example, you should see output similar to the following lines:

lsrpnode
Name OpState RSCTVersion
halin2 Online 2.3.3.1
halin3 Online 2.3.3.1
halin4 Online 2.3.3.1

Extend the set of nodes the DB2-based resources can participate in with the
following command:

chrsrc -s 'Name like "db2%" && ResourceType=1 ' \
IBM.Application \
NodeNameList="{'halin2','halin3','halin4'}"

Note that if an HA IP address was added to any of the DB2 resource groups;
issue the following Tivoli SAM command to allow the IP resource to take
advantage of the current set of nodes:

chrsrc -s 'Name like "db2%" && ResourceType=1 ' \
IBM.ServiceIP \
NodeNameList="{'halin2','halin3','halin4'}"

If an equivalency was defined for the network interfaces on nodes halin2 and
halin3, you must extend that to encompass the network interface on node halin4.
For example, if the network interface is named virpubnic and the network
interface on node halin4 is named eth3:

chequ -u a virpubnic \
IBM.NetworkInterface:eth3:halin4

Fail over the desired resource group to the new node via:

rgreq -o Move -n halin2 db2_stevera_2-rg

Issue the getstatus command, you should see the DB2 resource groups migrate to
the new node, with the net result of one DB2 resource group per partition.

-- Resources --

High Availability for partitioned databases using Tivoli System Automation
Page 26

 Resource Name Node Name State
 ------------- --------- -----
 SA-nfsserver-server halin2 Offline
 SA-nfsserver-server halin3 Online
 - - -
 SA-nfsserver-ip-1 halin2 Offline
 SA-nfsserver-ip-1 halin3 Online
 - - -
 SA-nfsserver-data-varlibnfs halin2 Offline
 SA-nfsserver-data-varlibnfs halin3 Online
 - - -
 SA-nfsserver-data-work halin2 Offline
 SA-nfsserver-data-work halin3 Online
 - - -
 db2_stevera_0-rs halin2 Offline
 db2_stevera_0-rs halin3 Online
 db2_stevera_0-rs halin4 Offline
 - - -
 db2_stevera_1-rs halin2 Online
 db2_stevera_1-rs halin3 Offline
 db2_stevera_1-rs halin4 Offline
 - - -
 db2_stevera_2-rs halin2 Offline
 db2_stevera_2-rs halin3 Offline
 db2_stevera_2-rs halin4 Online

 - - -

Now, let us assume that the node halin4 is not required to participate in this
cluster.

Issue the following commands to restrict the resource groups to only their
original nodes (that is, halin2 and halin3):

chrsrc -s 'Name like "db2%" && ResourceType=1 ' \
 IBM.Application NodeNameList="{'halin2','halin3'}"

Note that if an HA IP address was added to any of the DB2 resource groups,
issue the following Tivoli SAM command to allow the IP resource to take
advantage of the current set of nodes:

chrsrc -s 'Name like "db2%" && ResourceType=1 ' \
 IBM.ServiceIP NodeNameList="{'halin2','halin3'}"

Then, remove the node halin4 from the Tivoli SAM domain with the following
command:

High Availability for partitioned databases using Tivoli System Automation
Page 27

stoprpnode halin4
rmrpnode halin4

The original layout of the partitions will have been restored.

© Copyright IBM Corporation, 2004. All Rights Reserved.
IBM Canada Ltd.
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

IBM, DB2, DB2 Universal Database, eServer, Tivoli, pSeries,
xSeries, zSeries, and the e-business logo are trademarks or
registered trademarks of the International Business Machines
Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Intel is a trademark of Intel Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in
which IBM operates.

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law:
INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any performance data contained herein was determined in a
controlled environment. Therefore, the results obtained in other
operating environments may vary significantly. Some
measurements may have been made on development-level
systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or
other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

The information in this white paper is provided AS IS without
warranty. Such information was obtained from publicly available
sources, is current as of 07/30/2004, and is subject to change. Any
performance data included in the paper was obtained in the
specific operating environment and is provided as an illustration.
Performance in other operating environments may vary. More
specific information about the capabilities of products described
should be obtained from the suppliers of those products.

