

October 2003

Highly Available DB2 Universal
Database using Tivoli System
Automation for Linux

Setup & Policies

Authors:

Enrico Joedecke
Steve Raspudic
Andy Beaton

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 2

1. Overview
1.1 Objectives
In this paper, we describe the implementation and design of highly
available IBM DB2 Universal Database™ (DB2) environments in
conjunction with the IBM Tivoli System Automation for Linux platform
(TSA). Also included is a detailed description of the DB2 agent for TSA.
We provide guidance and recommendations for highly available
strategies using both DB2 Universal Database Enterprise Edition v7.1
and DB2 Universal Database v8.1. Practical considerations regarding
design, implementation, testing, and maintenance work with the system
are also discussed.

1.2 Overview
Chapter 2 lists the DB2 requirements for High Availability (HA) when
used in conjunction with TSA. The requirements of TSA to automate
DB2 are discussed in Chapter 3. The setup of a two node cluster running
one DB2 instance automated by TSA is described in detail in Chapter 4.
There is also a discussion of testing and maintenance issues.

1.3 Overview: DB2
IBM DB2 Universal Database (DB2) is the industry’s first multimedia,
Web-ready relational database management system, powerful enough to
meet the demands of large corporations and flexible enough to serve
medium-sized and small e-businesses. DB2 Universal Database
combines integrated power for business intelligence, content
management, and e-business with industry-leading performance and
reliability. This combination, coupled with IBM Tivoli System Automation
for Linux (TSA), strengthens the solution by providing a highly available
computing environment. For more information about the IBM Data
Management portfolio, please visit www.software.ibm.com/data

Contents

Overview 2

DB2 in an HA environment 4

System Automation for Linux 3

System Automation for Linux

and DB2 setup 9

Automate multiple DB2 instances
with SA for Linux 16

Testing Highly Available DB2
instances with SA for Linux 18

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 3

1.4 Overview: IBM Tivoli System Automation for Linux (TSA)
IBM Tivoli System Automation for Linux is a product that provides high
availability by automating the control of resources such as processes,
file systems, IP addresses and other arbitrary resources in Linux-based
clusters. It facilitates the automatic switching of users, applications, and
data from one system to another in the cluster after a hardware or
software failure. A complete High Availability (HA) setup includes many
parts, one of which is the HA software. As well as tangible items such as
hardware and software, a good HA solution includes planning, design,
customizing, and change control. An HA solution reduces the amount of
time that an application is unavailable by removing single points of
failure. For more information please visit
www.software.ibm.com/tivoli/products/sys-auto-linux.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 4

2. DB2 in an HA environment
In a typical DB2 setup, a single DB2 instance is running on a server. This
DB2 instance has local access to data (its own executable image as well
as databases owned by the instance). If this DB2 instance is made
accessible to remote clients, an (unused) IP address must be assigned
to this DB2 instance.

The DB2 instance, the local data, and the IP address are considered
resources, whose control can be automated by TSA. Since these
resources are closely related (for example, they collectively run on the
same node at the same time), they are referred to as a resource group.

The entire resource group is collocated on one node in the cluster. In the
case of a failover the entire resource group is started on another node.
There are dependencies between the resources in the group:

• The DB2 instance must be started after, and stopped before, the
disk resource.

• If remote clients need access to the database data, the highly
available IP address must be available on the node, although it
is not necessary to strongly enforce the ordering of the resource
availability vis-à-vis either DB2 or the disk resource.

2.1 Disk Storage
DB2 can utilize the following for data storage:

• Raw disk (for example, direct use of /dev/sda with no mounted
file system)

• Logical Volume Manager (LVM) managed logical volume
• File system (hosted by either a raw disk or a logical volume)

DB2 data can be stored either entirely on raw disk(s) (resulting in no file
system dependency whatsoever), entirely on logical volume(s), entirely
on file system(s), or a mixture of all three.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 5

2.1.1 Raw disk
For high availability, the use of raw disk for data storage is the most
straightforward approach. The identical path to raw disk (for example,
/dev/sdb) appears across all nodes in the cluster that are physically
connected to the storage. And, this same path is always available across
all nodes that are physically attached to the storage, thus removing the
need for any start or stop methods to make the disk visible to the host. A
monitor method is likewise unnecessary.

Note that the true benefit of raw disk is that a possibly time-consuming
fsck is never required, even in scenarios where the machine is halted
abruptly.

2.1.2 Logical Volume Manager (LVM)
There are currently several logical volume managers available for Linux.
We will discuss the LVM currently available as part of most Linux 2.4
based distributions. Note that it is important to remember that currently,
LVM is not cluster aware. The implication is that, as root, it is very easy
to cause an unrecoverable data loss in cluster environments.
In shared disk environments (the most common being shared SCSI for
small two node clusters and shared fiber channel for larger clusters)
more than one machine has physical access to a set of disks.
It is critical that LVM be shut down on all nodes other than the node from
which any LVM administration is done. It is also critical that at most only
one node have a file system mounted on a given logical volume (at any
given time).

2.1.3 File system
A file system hosted by raw disk would require a resource to mount it
prior to use, unmount it when it is no longer required, and monitor it to
ensure file system health. This support is written as a resource of the
class IBM.Application, and can be added to the resource group
containing the DB2 resource, and DB2’s IP address (collocated and with
appropriate depends on relationship setup).
A file system on top of LVM managed logical volumes is handled
identically.

2.2 Disk Protection
From the point of view of DB2, the disk protection is sufficient if the data
on the raw disk, file system or logical volume is accessible for read and
write operations. The DB2 engine itself ensures that only one instance
accesses a database at any one time, as follows:

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 6

DB2 data is stored in logical entities called tablespaces. A tablespace is
composed of one or more tablespace containers. A tablespace container
is either a file, file system mount point, or a raw disk partition. DB2 does
extensive checking when these containers are created and accessed. In
particular, it is impossible to have another instance or database
concurrently access the same raw disk, file system or file system mount
point.
Disk protection (in the sense of protecting a file system from being
mounted concurrently from two different physical hosts) is provided, if
used, at the logical volume manager layer, but only for cluster-aware
LVMs. If raw disk storage is chosen, care must be taken that the system
administrator does not inadvertently concurrently mount the raw disk
across multiple hosts. All file system mounting and unmounting tasks (for
shared file systems) must be controlled by TSA.

2.3 DB2 requirements for the HA IP address
DB2 has no special requirements for the IP address. That is to say, it is
not necessary to define a highly available IP address in order for the
instance to be considered highly available. However, it is important to
remember that the IP address that is protected (if any) is the client’s
access point to the data, and as such must be well known by all clients.
In practice, this implies that this IP address is the one used by the clients
in their CATALOG TCPIP NODE commands.
Note the following (which is not specific for HA IP addresses):
the service name specified by the database configuration parameter
SVCENAME must be defined in the /etc/hosts files for all potential hosts
the DB2COMM variable must be set to TCPIP

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 7

3. Tivoli System Automation for Linux

TSA is a product that provides high availability by automating resources
such as processes, applications, IP addresses and others in Linux-based
clusters. To automate an IT resource (for example an IP address), the
resource must be defined to TSA. Furthermore, these resources must all
be contained in at least one resource group. If these resources are
always required to be hosted on the same machine, they should all be
placed in the same resource group. Further information on TSA can be
found in the IBM Tivoli System Automation for Linux Guide and
Reference manual.

Every application needs to be defined as a resource in order to be
managed and automated with System Automation. Application resources
are usually defined in the generic resource class IBM.Application. In this
resource class there are several attributes that define a resource, but at
least three of them are application-specific:

StartCommand
StopCommand
MonitorCommand

These commands may be scripts or binary executables.

There are some requirements for these commands:
You must ensure that the scripts are well tested, and will produce the
desired effects within a reasonable period of time. This is necessary
since these commands are the only interface between TSA and the
application.

The monitoring script has to be efficient, as it is running at the frequency
(in seconds) set in MonitorCommandPeriod and therefore can consume
a lot of system time if written inefficiently.

The StartCommand and StopCommand must have a return code of zero
for successful completion, otherwise an error is assumed and the
resource is set to ‘Failed Offline’.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 8

3.1 The DB2 for TSA Agent
The agent consists of the set of scripts necessary for the control of DB2
instances, DAS instances, and file system mount points, as well as
utilities which simplify management of the cluster. Ensure that the agent
is included with your version of DB2. To do so, ensure that the
/opt/IBM/db2/V8.1/ha/salinux directory exists. If this directory does not
exist (or if you are using an earlier version of DB2), perform the following
procedure to install the TSA agent for DB2 and repeat these steps on
each node in the cluster:

To install the agent:

Obtain the salinux.tar.gz package from ibm.com/db2/linux/papers, and
then:

 cd $INSTALLPATH (eg. cd /opt/IBM/db2/V8.1)
 mkdir -p ha
 cd ha
 tar xvfz salinux.tar.gz

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 9

4. Tivoli System Automation for Linux and DB2
setup

This section describes the detailed setup of DB2 and TSA. The
instructions are based on the following scenario, illustrated below in
Figure 1:

 A two node cluster on nodes node1 and node2
 HA FastT storage connected to each node and containing the

data disks
 One DB2 instance, db2inst1, running DB2 Version 8
 Home directory of the instance is /home_db2/db2inst1
 Instance data and database data are located on a file system on

the disk /dev/sdb (a LUN provided by the FastT storage)

FastT (data disks)

node1
DB2 V8

node2
DB2 V8

Figure 1: Simple two node cluster

4.1 Setup Overview
The setup consists of the following steps:
0. Set up the hardware
1. Install DB2
2. Create a DB2 instance
3. Install TSA
4. Setup TSA to manage the DB2 instance

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 10

4.2 Hardware setup
If redundancy is required, it is important to ensure that you have
adequate hardware resources to provide redundancy. Please consult the
IBM Tivoli System Automation for Linux Guide and Reference for
detailed and current platform requirements.

4.3 Install DB2
DB2 has to be installed on all nodes that may potentially host a DB2 or
DAS instance. Follow the Quick Beginnings for DB2 Servers manual.
For Version 7 instances please follow the instructions given in the Quick
Beginnings for Linux guide.
When installation is complete, your DB2 software will be installed in the
/usr/IBM/db2/V7.1 directory (for Version 7) or /opt/IBM/db2/V8.1 (for
Version 8).
Do not create instances at this step, that task will be deferred to the next
subsequent step.

4.4 Create a DB2 instance
First, ensure that appropriate user and group IDs are created on each
node of the cluster, and ensure that they are identical across each node.
On each physical node participating in the cluster, three separate groups
and user accounts need to be created for the:

 DB2 instance owner
 user who will execute fenced UDFs (user defined functions)
 DB2 administration server

If NIS or NIS+ is in use, groups and users must be created on the NIS
server. If you are using local server authentication, repeat the following
steps on all nodes in the cluster.
For example, use the following commands to create groups on each
node in a local server authentication environment:

groupadd -g 999 db2iadm1
groupadd -g 998 db2fadm1
groupadd -g 997 db2asgrp

Once the appropriate group IDs have been created, you must ensure
there is a line in the /etc/fstab file similar to the following (for each node
in the cluster):

/dev/sdb /home_db2 ext2 noauto 1 1

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 11

Ensure that a /home_db2 mount point exists, so that the instance home
directory can be mounted. To mount the home directory, execute the
following command:

mount /home_db2

You are then ready to create the user IDs as follows:

useradd -g db2iadm1 -u 1004 \

–d /home_db2/db2inst1 -m db2inst1
useradd -g db2fadm1 -u 1003 \

–d /home_db2/db2fenc1 -m db2fenc1
useradd -g db2asgrp -u 1002 \

–d /home_db2/db2as -m db2as

At this point, the appropriate user and group ID’s exist at all nodes in the
cluster. Ensure that the instance home directory is mounted at the
primary node in the cluster and create the required instance. For
example, to create a DB2 instance named db2inst1 for DB2 version 8,
execute the following commands:

mount /home_db2
cd /opt/IBM/db2/V8.1/instance
db2icrt -u db2fenc1 db2inst1

4.4.1 Create a DB2 instance: Restrictions
DB2 ESE multi-partition instances are not currently supported with the
supplied DB2 for TSA package.

4.5 Install Tivoli System Automation for Linux
TSA must be installed on both machines locally. To install TSA follow the
installation procedure described in IBM System Automation for Linux on
xSeries and zSeries, Guide and Reference.

4.6 Set up Tivoli System Automation for Linux to manage the DB2
instance
Before proceeding further, please ensure that the cluster software is
installed correctly, and ensure that the instance you wish to make HA is
created, as described earlier in this white paper.

4.6.1 Step by step instructions
First, all nodes that will comprise the cluster must be prepared. The
following command must be executed on every node. In this example the
nodes are halin1 and halin2:

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 12

preprpnode halin1 halin2

Create the TSA cluster domain:

mkrpdomain halin_12 halin1 halin2

As you can see, the domain we have created is named halin_12, and
consists of the nodes halin1 and halin2.
Start (online) the domain:

startrpdomain halin_12

Ensure the domain is online:

lsrpdomain

You should see output similar to the following:

Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
halin_12 Online 2.3.0.11 No 12347 12348

Ensure all nodes in the domain are online:

lsrpnode

You should see output similar to the following:

 Name OpState RSCTVersion
 halin2 Online 2.3.0.11
 halin1 Online 2.3.0.11

For this two-node cluster, a reservation disk, or tie-breaker disk, is
required (any two-node cluster will require exactly one tie-breaker). The
tie-breaker disk is hosted exclusively by a shared disk (in other words, a
disk that is not used to support any file system or data storage).

SCSI devices can be identified with four integers: each representing the
host, the channel, the SCSI id, and the LUN. Note that these numbers
may not be consistent across nodes, even if the target device to which
they refer are the same physical disk.

For example, if a SCSI device is connected to two nodes (for example,
halin1 and halin2) and has the following SCSI identifiers:

 halin1: ID=0 LUN=4 HOST=2 CHAN=0
 halin2: ID=0 LUN=4 HOST=2 CHAN=0

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 13

The characteristics of a SCSI device can be obtained with the dmesg
command, for example:

dmesg | grep “SCSI disk”

The output of the dmesg command will look similar like this

Attached SCSI disk sda at scsi0, channel 0,id 0, LUN 0
Attached SCSI disk sdb at scsi2, channel 0,id 0, LUN 0
Attached SCSI disk sdc at scsi2, channel 0,id 0, LUN 1
Attached SCSI disk sdd at scsi2, channel 0,id 0, LUN 2
Attached SCSI disk sde at scsi2, channel 0,id 0, LUN 3
Attached SCSI disk sdf at scsi2, channel 0,id 0, LUN 4

If the disk ‘sdf’ is chosen to be the TieBreaker disk, then you can create
the tie-breaker object as follows:

mkrsrc IBM.TieBreaker Name=”scsi2” Type=”SCSI” \
DeviceInfo=”HOST=2 CHAN=0 ID=0 LUN=4” \
HeartbeatPeriod=2
chrsrc -c IBM.PeerNode \ opQuorumTieBreaker=”scsi2”

Now the cluster is ready to host a highly available DB2 instance.
Ensure that you have unprompted rsh access (as root) to the other
nodes in this cluster. Unprompted root rsh access to all nodes in the
cluster is not required once the instance has been made HA.
We will work with an instance named db2inst1 in this example. Ensure
the instance is set up correctly. For example, if you are using local
passwords, issue the following commands:

rsh halin1 “cat /etc/passwd | grep db2inst1”
rsh halin2 “cat /etc/passwd | grep db2inst1”

You should see output at each node similar to the following:

db2inst1:x:3957:3957::/home_db2/db2inst1:/bin/ksh

Ensure that the instance home directory is available. Notice that for this
instance, the instance home directory will be mounted under /home_db2.
Issue the following commands at each node in the cluster:

rsh halin1 “cat /etc/fstab | grep home_db2”
rsh halin2 “cat /etc/fstab | grep home_db2”

You should see output similar to the following at each node:

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 14

/dev/sdb /home_db2 ext2 noauto 1 1

Ensure that the file system is not currently mounted at any node in the
cluster. Issue the following commands:

rsh halin1 “mount | grep home_db2”
rsh halin2 “mount | grep home_db2”

You should see no output from these commands. If you discover that
these file systems are mounted, please issue the appropriate umount
command before proceeding.

Ensure that the /etc/services file is set up correctly (and the relevant
entries are identical) across both nodes. Issue the following commands
to verify this:

rsh halin1 “cat /etc/services | grep db2inst1”
rsh halin2 “cat /etc/services | grep db2inst1”

Ensure that the IP address that you wish to associate with this instance
is not currently used (and consequently, available for use). We use the
IP address 9.26.96.56 in the examples that follow.

In the next step, we create a highly-available DB2 instance named
‘db2inst1’, protect its home directory, /home_db2, and protect its well-
known IP address 9.26.96.56. To do this, issue the following
commands:

cd /opt/IBM/db2/V8.1/ha/salinux
./regdb2salin -a db2inst1 -m /home_db2 –i \ -9.26.96.56

This may take a few moments, and the result will be a highly available
instance. To verify this, issue the following command:

./getstatus

You should see output similar to the following:

-- Resource Groups and Resources --

Group Name Resources
---------- ---------
db2_db2inst1_0-rg db2_db2inst1_0-rs
db2_db2inst1_0-rg db2_db2inst1_0-rs_mount
db2_db2inst1_0-rg db2_db2inst1_0-rs_ip

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 15

- -

-- Resources --

Resource Name Node Name State
------------- --------- -----
db2_db2inst1_0-rs halin1 Online
db2_db2inst1_0-rs halin2 Offline

- - -
db2_db2inst1_0-rs_mount halin1 Online
db2_db2inst1_0-rs_mount halin2 Offline

- - -
db2_db2inst1_0-rs_ip halin1 Online
db2_db2inst1_0-rs_ip halin2 Offline

- -
-

This indicates that the instance and all of its associated resources are
currently online on the cluster node halin1. The instance, its home
directory, and its IP address are protected and ready for use. Any
databases that are created and owned by this instance are also highly
available, provided that all components of the database (all tablespaces,
containers and log directories) are created within the /home_db2 mount
point.

Now, let us assume that the instance is no longer required. Remove this
instance from the cluster. To do this, issue the following sequence of
commands:

cd /opt/IBM/db2/V8.1/ha/salinux
./unregdb2salin -a db2inst1

Verify that there are no resources or resource groups remaining, by
issuing the getstatus command.
Note that in general, for more complex database environments, multiple
mount points will need to be associated with the db2inst1 instance. It is
important to add all mount points being used by all databases controlled
by these instances as resources, to the resource group containing the
highly available instance.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 16

5. Automate multiple DB2 instances with Tivoli
System Automation for Linux

The previous chapter described the setup to manage a single DB2
instance with TSA This chapter discusses more complex scenarios with
multiple DB2 instances. Since all of the following complex scenarios are
built on the simple scenario from the last chapter, it is important to read
and understand the previous chapter before going ahead.

Tivoli System Automation for Linux can manage DB2 in a variety of
setups, for example:

2-node-cluster running 2 DB2 instances
n-node-cluster running m DB2 instances (2<=n<=8; m<=n)

Essentially, the only theoretical limitations to the cluster topology that can
be supported are limitations of disk space or IP address resources. As a
rule of thumb, if a particular node can locally host the required disk(s)
containing the database data and executable code, and can host the IP
address such that the clients have access to that IP address, then that
node can host the DB2 resource group.

Note that at this time Tivoli System Automation for Linux supports up to
eight physical nodes within a cluster.

In practice it is generally desirable to balance the cluster load, such that
each node has a reasonable share of the set of instances hosted.
To automate multiple DB2 instances with Tivoli System Automation for
Linux, one resource group has to be created for each DB2 instance as
described in the previous chapter. TSA allows this resource group is
allowed to run on more than one node. To ensure that only one resource
group is running on a node at a time, a new relationship between the
resource groups must be created. The relationship is AntiAffinity, which
ensures that the resource groups are running on different nodes, if
possible. Again, the goal here would be to attempt to balance the load
across all nodes in the cluster.
On a four-node cluster running four DB2 instances, no more than one
DB2 instance is running on a node at a time during normal operation. But
if a node failure occurs, the DB2 resource group that was running on the
failing node is restarted on one of the three remaining nodes.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 17

Since the relationships in TSA have a direction, an AntiAffinity
relationship must be created for each DB2 resource group, where the
target resources are all other DB2 resource groups. The commands for
two DB2 resource groups db2rg1 and db2rg2 are the following: (it is
assumed that each of the two resource groups has been made HA as
described earlier in this paper):

mkrel -p AntiAffinity -S IBM.ResourceGroup:db2rg1 \
 -G IBM.ResourceGroup:db2rg2 \ db2rg1db2rg2aarel

mkrel -p AntiAffinity -S IBM.ResourceGroup:db2rg2 \
 -G IBM.ResourceGroup:db2rg1 \db2rg2db2rg1aarel

If for any reason only one DB2 resource group is allowed to run on a
node at a time, the relationship to be created is AntiCollocated instead of
AntiAffinity. This relationship ensures that only one resource group is
running on a particular node at a time. In this case there have to be more
nodes in the cluster than the total number of DB2 resource groups
(which is equivalent to the number of DB2 instances); otherwise, a
failover of a DB2 resource group is not possible.

Finally, a resource group db2rgall can be created, which contains all the
DB2 resource groups as members. Now all DB2 resource groups can be
started and stopped by starting or stopping the db2rgall resource group.
Note that the resource group db2rgall must be created with collocation
none, which allows the members of the resource group to run on
different nodes, otherwise the resource group will not start.

Furthermore the DB2 resource groups db2rg1 and db2rg2 must be
added to the db2rgall resource group as non-mandatory members,
otherwise all DB2 resource groups are stopped, if only one is failing. This
is done with the following command sequence (Note that only ‘Offline’
resources can be added to a resource group so the DB2 resource
groups db2rg1 and db2rg2 are stopped immediately, if they are running
at the time when they are added to the db2rgall resource group.):

mkrg -l None db2rgall
addrgmbr -m F -g db2rgall IBM.ResourceGroup:db2rg1
addrgmbr -m F -g db2rgall IBM.ResourceGroup:db2rg2

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 18

6. Testing Highly Available DB2 instances that
are automated with Tivoli System Automation

for Linux

Implementing a High Availability cluster is a four-stage process. The
stages are as follows:
1. Carefully plan the cluster.
2. Implement the cluster.
3. Test the cluster.
4. If the test results are not satisfactory, return to Step 1.

Planning the proper setup of a HA cluster is not within the scope of this
document. Please see IBM System Automation for Linux Guide and
Reference for advice on the setup of the cluster. We are providing some
testing guidelines that are relevant for the use of DB2 in an HA
environment.
Ideally every critical point of failure (in other words, a failure that has the
potential to affect production operation) should be tested. It may not be
practical to shut down a building’s power supply in order to test backup
power supplies, but a single source of electricity is a single point of
failure, and until the system has been actually physically tested, it will
never be entirely certain that the cluster will behave in practice as it does
in theory. We will concentrate on failures internal to the cluster for the
rest of this discussion.
The best testing environment is the High Availability cluster itself.
Enough scheduled downtime should be set aside to thoroughly test the
system before the system is put into production. A short, planned outage
is preferable to a long, unplanned outage that reveals that an untested
point of failure has left an application unavailable.
The testing procedure itself is simple. Connect to the cluster from a client
machine, because this is one of the potential points of failure. Ensure
that the failover takes place properly, and that the application is available
and properly configured after failover.
If possible, also test the cluster with the expected workload; make sure
that the failover setup is capable of handling the expected levels of
activity.
When testing the availability of the application, be sure that accounts and
passwords work as expected, that hostnames and IP addresses work as
expected, that the data is complete and up to date, and that the
changeover is essentially transparent to the user.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 19

Configure a remote machine to be able to connect to the highly available
DB2 database. A script can be easily written that will connect to the
database, select some data from a table, record the results, and
disconnect from the database. If these steps are set inside a loop that
will run until interrupted by the operator, the procedure can be used to
monitor the state of the cluster.
Keep in mind that the script should continue even if the database cannot
be contacted. This way, when the database restarts, it will provide a
benchmark for the length of time failover is expected to take. Here is a
brief sample script that may be useful for testing a High Availability
cluster.

while :
do
db2 connect to database
db2 “select count(*) from syscat.tables”
db2 connect reset
sleep 60
done

A useful tool for checking the status of the SA Linux cluster is getstatus
(found in the path of the DB2 for TSA package, usually
/opt/IBM/db2/V8.1/ha/salinux). It can be used to report on the status of
cluster resource groups and resources. An example output follows:

 -- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
db2_db2inst1_0-rg db2_db2inst1_0-rs
db2_db2inst1_0-rg db2_db2inst1_0-rs_mount
db2_db2inst1_0-rg db2_db2inst1_0-rs_ip
 - -

 -- Resources --

 Resource Name Node Name State
 ------------- --------- -----
db2_db2inst1_0-rs halin1 Online
db2_db2inst1_0-rs halin2 Offline
 - - -
db2_db2inst1_0-rs_mount halin1 Online

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 20

db2_db2inst1_0-rs_mount halin2 Offline
 - - -
db2_db2inst1_0-rs_ip halin1 Online
db2_db2inst1_0-rs_ip halin2 Offline

The second indispensable tool is a short script to provide a check that
DB2 is up and running. Catalog the database on the client system, and
at each point during the testing where the cluster ought to be available,
run the script and make sure that the system responds as expected. A
sample script follows:

db2 -v connect to dbname
db2 -v “select * from syscat.tables”
db2 -v “select count(*) from usertable1”
db2 -v connect reset

This can be modified to test for the cluster’s own special characteristics.
Points of failure that should be considered and tested are:

1. Correct installation of the software
2. Correct hardware configuration
3. Power failures
4. Network failures
5. Hardware failures in the CPU, the disk storage, and any of the
physical infrastructures
6. Careless operator behavior
7. Software failures

Needless to say, this is not an exhaustive list. Cluster administrators are
in the best position to know where points of failure are in their own
clusters. An excellent procedure to follow for all tests is to log on as root
on both nodes and execute on the server consoles the following
command:
tail -f /var/log/messages
This will provide a continuously flowing stream of information about the
status of the HA. Information that scrolls off the top of the screen can be
retrieved by editing /var/log/messages.
It is worth keeping in mind that testing failures should be done in both
directions (i.e. from primary to secondary and then back to primary).
1. Correct installation of the software and system

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 21

Following the procedures given in this white paper are sufficient to
ensure that the system and software are configured correctly. However,
the registration script regdb2salin which creates the appropriate
resources and resource groups, is an important verification of this. Thus,
while it is possible to bypass this step for creating DB2 resources and
groups (and perform the work manually), it is strongly recommended for
both cluster verification and for consistency that this script (and its
inverse unregdb2salin) be the sole interface to creating and removing
DB2 resources from an SA Linux cluster.
2. Correct hardware configuration
There are a number of tests to ensure that the hardware is correctly
configured:
• use the dmesg command to check for any initialization errors
• use the date command on all nodes to ensure that they are
synchronized.
• use ifconfig <device> to check the network adapters.
• use netstat -i to check the network configuration.

3. Power failures
Testing failover behavior in various types of power failure situations is
worthwhile to ensure that the cluster is physically set up to behave in the
manner desired. Testing for power failures in individual components can
be accomplished by simply pulling plugs out of sockets, or hitting power
buttons. Larger power failures can be tested by throwing switches in the
building’s electrical panel (make sure the person doing this knows what
he or she is doing!).
4. Network failures
Testing the network starts by ensuring that the network behaves as it is
expected to upon startup. Be sure that rlogin will connect to all service
addresses from all cluster nodes. Network failures tend to be of two
kinds: hardware and software. Hardware failures can be tested by
physically unplugging network cables. One at a time, unplug every
network cable entering the cluster machines. Plug each back in again
before removing the next plug. This will simulate the physical failure of
individual network controllers, or of problems with the cables themselves.
A properly designed and implemented system will be able to survive the
loss of any one of these components.
A network software failure can be simulated by killing network processes
running on the primary server. The command ps -ef | grep inetd will
provide a list of running processes, including their group and PID.
Selecting the inetd process and issuing a kill -9 <PID> command will
simulate the failure of the network software.
5. Hardware failures
Hardware failures can be simulated by a variety of brute force methods.
CPU failures can be mimicked by hitting power or reset switches, by
killing processes, or by corrupting the memory.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 22

Issuing the following command from the root user account is a good way
to bring down a machine:
echo “hello world” > /dev/kmem
You may also make liberal use of the halt, power off, and reboot
commands for this aspect of testing.
A good way to test for hardware failures in the drive array is to pull out
power cables to the array, or pull out the fiber or SCSI connections to the
host.
6. Careless operator behavior
This is difficult to test, since generally this sort of HA is most useful for
protecting against single points of hardware or software failures.
Protecting against careless operator behavior (for example, an errant
transaction) is outside the scope of this document.
7. Software failures
Software failures can be simulated by killing critical processes, which
also works to simulate many operator errors. You can find the Process
ID for the rscd processes using ps -ef | grep rscd. The processes can
then be killed using a kill -9 <PID> command. Doing the same with the
db2sysc process will ensure that the scripts are properly configured to
catch a failure in the critical application and will restart the application in
the appropriate manner.

Highly Available DB2 Universal Database using Tivoli System Automation for Linux – Setup and Policies
Page 23

© Copyright IBM Corporation 2003
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

All Rights Reserved.

IBM, DB2, DB2 Universal Database, Tivoli software ,OS/390,
z/OS, S/390, and the ebusiness logo are trademarks of the
International Business Machines Corporation in the United
States, other countries or both.

References in this publication to IBM products or services do
not imply that IBM intends to make them available in all
countries in which IBM operates.

The following paragraph does not apply to the United
Kingdom or any other country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in
new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without
notice.

