

November 2003

High Volume OLTP Database
Cluster for the Financial
Industry with IBM® DB2® for
Linux

Project Report

Boris Bialek
IBM Toronto Lab

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

1. Introduction

Starting Point
A typical project report starts with a simple statement of the target objective and then moves forward
towards the implementation. The project described in this report is different as it not only describes the
aspects of a solution to a business problem, but it touches on a fundamental subject for many people in
the IT industry: How does the Linux operating system and changing paradigms affect the execution of a
project? What are the drivers in a project where the steps are not always well defined and the road to
success has many questions? This paper describes one specific project and the experience in terms of
Linux implementation is easily transferable to other projects.

The Customer
In November 2002, IBM sat down with a major Wall Street customer to discuss the possibility of using
Linux as an operating platform for one of their major back-office applications involving a database. The
customer had broad experience with the Windows®, UNIX® and z/OS® operating systems, but no
experience with Linux. This customer questioned whether Linux could perform in their stringent business
environment.

The usual way to tackle a business proof-of-concept would be to take a smaller database from an open
system platform and migrate it to Linux. The customer decided to focus on one of the “most challenging
and business critical back-office databases” running their “balances & positions” application. This was
their primary accounting application for depots and trades.

The customer’s technology direction required application and solution deployment on “every application
platform at any time, at any location”. This kind of flexibility often adds significant cost to any project.
However, it allows the customer to have the freedom of a global standardized infrastructure that can be
managed locally, but in a unified fashion. For example, Tokyo takes over the operation when Wall Street
is closing for the day and then Tokyo hands operations over to London, and so on. This requirement for
complete seamless flexibility across locations starts the discussion relating to the ease and flexibility of
Linux.

The technical goal of this project was to deliver performance throughput of 1.2 Million Posting “events”
per hour with the same level of reliability as the existing implementation running on a non-Linux platform.

In addition, the following additional criteria were also needed:

• Integration of the database in the existing corporate Linux infrastructure and utilization of the customer
network environment, including remote boot-up and central AFS

• Implementation of security through the corporate Kerberos system
• Integration with the Veritas Volume Manager, Veritas File System and Veritas Cluster Server as preset

corporate standards
• Interfacing with the existing z/OS Enterprise Server infrastructure through Software AG Natural 4GL
• Measuring the true cost of Linux
• Measuring the cost of the migration effort to Linux
• Measuring commodity-based hardware infrastructure

IBM provided the recommended hardware solution, although the architecture of the solution and the final
choice of components were still open and subject to discussion. The customer had a large number of
highly skilled database administrators working with DB2 for z/OS. The decision was made to educate
those DBAs in DB2 for Linux instead of working with open system DBAs coming from a different
database on UNIX. This decision reflected the customer’s desire for utilization of available knowledge in-
house rather than hiring new external resources for later deployment.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

The work was clearly defined and the team began looking at the actual database design and the finer
aspects of the application.

2. Architecture Discussion

Application Environment

The application gateway was predefined through a framework of MQSeries® message queues that
ensured the reliability of the various steps in the processing of a posting event.

The message queues were run on a 4-processor xSeries® server, which fed into a group of 5 application
servers equipped with 4 processors each, and then into the database.

Network

MQ Server

Application
Server

Application
Server

Application
Server

Application
Server

Windows
desktops

Linux
Workstations

Sun
Workstation

s

DB2 for Linux

Database

The application used the database as an intermediate staging area for the message processing as well
as the final data store for the posting application. During execution of the application, high volumes of
inserts and updates were processed. This led to a requirement for a very effective storage infrastructure
with large I/O capability. The team sized the disk storage requirements for the application at 12 terabytes
overall, with 4 terabytes of raw data at any time.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

Staging
table

Op1 Op2 Op3 Op4 POSTING

MQ

Temp
tables

P & B

Journals

Events

App1

META
DATA

Message flow

Database read/insert/update
Cached database read

App2

App3

Temp
tables

MQ

MQ

MQ

The application design required a large number of temporary tables for pre-computation prior to posting
the actual event data into the database.

The Database
The database design was laid out in the usual fashion for parallel OLTP systems. The design used a
rather small number of very large tables to hold the actual event information and the related entries in the
transaction logs called journals (these are record logs in the application context and should not be
confused with database logs used for transaction consistency). In addition to the events and journals, a
larger number of less used tables containing reference data were identified in the design phase. In order
to optimize performance, replication MQTs were implemented on each database server in the Linux
cluster to perform the consistency checks and data enrichment for the application. Examples for this
processing are stock ticker symbols and backup information of each stock traded. This led to a fairly
straightforward layout of the database following the flow of the data into the different segments: event
tables, journal tables, account information, stock information and the system catalog, of course.

One of the requirements was for a commodity-based hardware infrastructure. This meant implementing a
scale-out solution using DB2 for Linux clusters.

We then had to determine how to implement the database design for the layout of the application servers
and message queues over the cluster. Two options were available:

• Feed all traffic over a single partition as the sole coordinator of all transactions. The application did not

require modifications with this approach and could benefit from the parallelism of the database
servers.

• Adopt the application framework to scale out with the number of nodes and distribute the workload to
as many coordinators as possible in a real distributed grid-like fashion.

The first approach fit well into the customer’s experience on other platforms and the existing database
design required minimal modification. The proof-of-concept team implemented both database designs to
evaluate both architectures, which were easy to implement.

The results of this quick test proved several interesting points:

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

The existing design of the database did not need to be changed when the coordinator was distributed
across the database servers. The application required a two-line application code modification to identify
the best-suited node for the query (insert, update, stored procedure, etc.). The only action needed to
implement this feature was to get the optimal partition information from the database cluster. Here is the
raw code written during the project:

EXEC SQL VALUES CURRENT DBPARTITIONNUM INTO :part_num;

EMB_SQL_CHECK("VALUES CURRENT");

sprintf(declare_stmt,"DECLARE GLOBAL TEMPORARY TABLE MYTEMP

(KEY INTEGER NOT NULL, DATA INTEGER NOT NULL) ON COMMIT

PRESERVE ROWS NOT LOGGED WITH REPLACE IN

USERTEMP%0.3ld",part_num);

EXEC SQL EXECUTE IMMEDIATE :declare_stmt;

EMB_SQL_CHECK("DECLARE GLOBAL");

This application code identifies the partition for optimal inserts set as a variable for use by subsequent
application code.

After reviewing the actual change, the customer determined that this change should be the standard for
any future applications that are deployed in a clustered infrastructure where the components interact with
each other, independent of DB2 for the Linux database cluster.

The second difference between a cluster and a non-clustered system layout was the use of replication for
metadata tables. The amount of data was so small (less than 1% of the overall database size) and had
such a low update rate that it would have been a waste of resources to run these from a single node.
When the decision was made to choose the metadata replication, the team still expected a high
networking load through the application. As it turned out, the DB2 performance for identifying the
optimum node to connect to -- delivered a well-balanced behavior, making the precaution unnecessary.
Nonetheless, the replication of metadata is an easy way to reduce network traffic in a cluster and would
have allowed the team to use standard Gigabit Ethernet for the interconnect, versus choosing a high-
speed interconnect.

The rest of the database layout decisions were actually uneventful since the database was designed
already for high volume, and was simply migrated to the Linux platform.

Hardware
With the deployment requirement of “every application, every platform, any place,” the base decision for
the servers was made for IBM eServer™ xSeries x360 servers. The xSeries x360 is a 4-way server with
the latest Intel® Xeon server processors and has the required number of PCI slots to meet the rather
broad customer requirements. The customer requirement for complete redundancy of components was
also considered, which eliminated the use of dual processor 1U “pizza boxes”, such as the x335. Larger
servers with more than 4 processors would also have been an option for the implementation. For
example, the IBM eServer xSeries x440 or x445 were considered, but then the number of physical
servers would have been reduced to 2, and the customer clearly required a larger number of physical
nodes for the project in order to prove the scalability, extensibility and flexibility of the planned approach.
We also wanted to keep the infrastructure costs as low as possible.

The final decision was to deploy with 5 servers with 4 processors each, following the sizing for the
needed raw processing power. Some growth in the application space was accounted for as well. The
system was intentionally not oversized, and the configuration was selected for the exact amount of data.
If the number of servers turned out not to be sufficient (as some of the team members expected), then
additional server units could be made available. This proved the “scale out” paradigm that was
considered critical to the overall business value of the pilot.

Each server had additional components added as follows:

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

• The onboard 1 Gbps Ethernet was duplicated, to have full redundant Ethernet connectivity,
• Remote system management for complete control, from the hardware boot cycle (power on/off), to

complete console control. (In the future, the servers may reside at different locations, so this was
considered critical. No redundancy was needed since the operation could still have been executed
with local operation in the event of an emergency.)

We added InfiniBand interconnect for Inter-Process-Communication (with socket offload). We did not use
redundancy here, since redundant Ethernet adapter was considered the fallback solution for this
component.
Two redundant dual-channel Fibre Channel adapters with 2Gpbs capacity, which ran in full failover mode
with channel-bundling, were added to allow a maximum of 8Gbps I/O per single server.

On the other hand, a solution of two independent InfiniBand adapters would have delivered the same
functionality and even easier deployment. In this case, the two adapters would have delivered twice the
redundancy. This would have also provided for 40Gbps I/O capacity. This solution might be deployed at
a later stage, but the chosen infrastructure also considered the most highly available components at the
time.

The server picture was as follows:

x360

Tower

RAID
10

RAID
10

RAID
10

RAID
10

RAID
10

PIT Positions, 10 GB

PIT Positions Index, 10 GB

PIT Balances, 10 GB

PIT Balances Index, 10 GB

Events, 40 GB

Events Index, 30 GB

Journals, 30 GB

Journal index, 30 GB

Journal Sets, 30 GB

Journal Sets Index, 30 GB

Libra Reference, 5 GB

Libra Reference Index, 5 GB

A2, RDR, Prism, 10 GB

A2, RDR, Prism Index, 10 GB

Spare, 38 GB

R
aw

64
 K

B
 s

tri
pe

Catalog, 2 GB

Temp (sort) 40 GB

Temp 20 GB

Fi
le

 S
ys

te
m

64
 K

B
 s

tri
pe

RAID
5Fi

le
 S

ys
te

m
64

 K
B

 s
tri

pe Work, 324 GB

Tower

RAID
10

RAID
10

RAID
10

RAID
10

RAID
10

PIT Positions, 10 GB

PIT Positions Index, 10 GB

PIT Balances, 10 GB

PIT Balances Index, 10 GB

Events, 40 GB

Events Index, 30 GB

Journals, 30 GB

Journal index, 30 GB

Journal Sets, 30 GB

Journal Sets Index, 30 GB

Libra Reference, 5 GB

Libra Reference Index, 5 GB

A2, RDR, Prism, 10 GB

A2, RDR, Prism Index, 10 GB

Spare, 38 GB

R
aw

64
 K

B
 s

tri
pe

Catalog, 2 GB

Temp (sort) 40 GB

Temp 20 GB

Fi
le

 S
ys

te
m

64
 K

B
 s

tri
pe

RAID
5Fi

le
 S

ys
te

m
64

 K
B

 s
tri

pe Work, 324 GB

Partition 1

Partition 21 Data Server

RAID
10

Logs 72 GB

RAID
10

Logs 72 GB

Software
The customer has a broad deployment of Red Hat Enterprise Linux 2.1 in house, trained personnel and
an existing support contract with Red Hat. Therefore, the specific Linux distribution (or better, the
discussion about “the right one”) did not come up. The professional system layout in the customer

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

infrastructure allowed the remote installation of the servers through the default image from the customer
without any further need for customization. This was the first real proof point for the customer that DB2 is
transparent for the choice of Linux distribution, contrary to other products tested earlier. DB2 for Linux
has a rigorous validation program available to various distribution partners (see
http://www.ibm.com/db2/linux/validate for details).

During the actual testing, a kernel threshold bug was identified and fixed in parallel through Red Hat. A
kernel update solved the issue. This was only visible in very specific ultra-high load situations. Without a
support contract, it could have become a very annoying problem for the customer. The existing support
contract IBM has with Red Hat allowed a smooth interaction with Red Hat. For new deployments in
customer environments, it should be a mandatory item to ensure complete sufficient support at the
expected service level for the Linux operating system.

The next layer of software was the Veritas Volume Manager and the Veritas File System. Both were
broadly deployed as a standard in the customer environment across all operating system and system
architectures. While the local hard drives in the server hosting the operating system and swap space
were using the Linux default file system (ext3), the actual data and log volumes used the Veritas Vxfs. In
the end, the solution used the Veritas Volume Manager for managing the 12 terabytes of storage in the
IBM FAStT Storage Servers. Again, the file system was the ext3 format from Linux. Technically, there
was no notable difference that could be seen and all Veritas components worked as expected.

Here is a short view of the actual deployment plan:

One Node Eight Nodes

piias25
Coordinator

Catalog
piias136piias135piias134piias129

Infiniband (Refence Access and Joins across Nodes)Client
connectivity

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

P

P

P

P

M
Q
T

M
Q
T

M
Q
T

M
Q
T

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

P

P

P

P

M
Q
T

M
Q
T

M
Q
T

M
Q
T

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

P

P

P

P

M
Q
T

M
Q
T

M
Q
T

M
Q
T

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2

POSITIONS
Acct,

Snpshot_dt

BALANCES
acct,

snpshop_dt

JOURNALS
jrnl_id

EVENTS
uuid

RDR

Libra Ref

Prism

A2M
Q
T

M
Q
T

M
Q
T

M
Q
T

P

P

P

P P

P

P

P

M
Q
T

M
Q
T

M
Q
T

M
Q
T

M
Q
T

M
Q
T

M
Q
T

M
Q
T

P

P

P

P

M
Q
T

M
Q
T

M
Q
T

M
Q
T

P

P

P

P

MQT

RDR

Libra Ref

Prism

A2

MQT

MQT

MQT

P = Partition

Declared
Temp Tables

Staging
Table

The customer used Veritas Cluster Server for failover purposes. Although the detailed description about
this option would go beyond this paper, a detailed overview is available in a white paper about Veritas
Cluster Server on the DB2 Web pages.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

Security
Kerberos is a network authentication protocol. It is designed to provide strong authentication for
client/server applications by using secret-key cryptography.

The customer utilizes a corporate wide Kerberos system that allows global access to the IT infrastructure.
Behind the Kerberos system was a vast definition of up to 10,000 UNIX groups and dedicated
permissions for each user.

The DB2 open philosophy allows the binding from the user context to a Kerberos ticket via an open code
segment that expands the default DB2 library with the binding for each individual security product. The
integration in a standard environment as used by this customer took less than 10 minutes and delivered
complete transparency of the customer security concept into the deployed solution.

Here is a short overview of the implementation:

DB2 Registry Variables
Set the DB2_NUM_CKPW_DAEMONS registry variable to disable the password checking daemons and
use the db2ckpw utility for Kerberos authorization.
Command: db2set DB2_NUM_CKPW_DAEMONS=0
Note: Stop and start the database instance to activate this variable.

Permanent Kerberos tickets
To allow production users to execute remote commands and cron jobs, a permanent Kerberos ticket is
needed. Thus the permanent ticket is your “secret” for authentication against the overall infrastructure.

Create executables
There are 2 routines that must be replaced with “kerberized” routines. The db2ckpw routine is utilized to
authenticate database users. The db2dassec routine is used to authenticate IBM DAS tool users. The
DAS tools include all GUI tools. To enable the specific Kerberos environment, utilize the db2ckpw.c and
db2dassec.c from the sample code to replace db2ckkpw and db2dassec in the actual implementation,
respectively.

Environment variable
Set the Kerberos credential cache environment variable: KRB5CCNAME=/var/spool/tickets/udbinst. In
your environment, you would want to set this to the permanent Kerberos ticket.

Userprofile
Modify the PATH environment for DB2. For each instance, the ~instanceowner/sqllib/userfile will contain
the following statement to pre-pend the “non-kerberized” remote commands to the PATH.

 export PATH=/usr/bin:$PATH

Kerberos authentication is associated with a server. In a clustered environment, authentication is only
required on one server in the cluster. For DB2 ESE in a clustered environment, it is not necessary to use
kerberized remote commands. Kerberos tickets are granted per server. For a clustered and trusted
environment, “kerberized” commands would over-complicate the environment as well as add
performance overhead unnecessarily.

Debugging
• If you have problems authenticating, the “kerberized” routines should be verified. After making these

changes, the database security will implement “kerberized” routines. Thus these routines must be
maintained with all other “kerberized” routines.

• New software or fixpacks may overwrite these routines. It is recommended to keep copies of the
“kerberized” routines outside the standard IBM installation directories. Implement these changes at
your own risk.

The table below applies when creating Kerberos IDs for the database. Kerberos changes are noted in
Red.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

Purpose Kerberos

Principal
Primary
GROUP

Secondary
GROUP

LOGIN-
ABLE

Instance
owner

udbinst iadmusr aadmusr No

Fenced
user

udbfenc1 fadmusr N/A No

DAS
owner

udbconn aadmusr iadmusr No

Caveats
The Set-Uid bit is not necessary with kerberized routines. The IBM installation assumes a UNIX
installation and changes the ownership of db2ckpw and db2dassec to root and sets the Set-Uid bit.
When installing the “kerberized” routines, change the ownership and group of the routines to the instance
owner. The permissions should allow everyone to read and execute the executable and remove the Set-
Uid bit.

Do not write a Kerberos ticket in the DB2 security routines. If a ticket is written, the permanent ticket gets
overwritten with the user ticket. See Appendix A for sample db2ckpw.c and db2dassec.c routines.

A slight disadvantage was the complete unification of the environment. DB2 had to scan all 10,000 user
groups to identify the permission set of permissions and denials. During the default logon, this led to a
slight delay in connection time, which was negligible as the message queues and application servers
connect and disconnect only during start and stop. From the usability perspective, a more
compartmentalized approach may deliver better results.

3. Migration

The migration process from the host database was expected to be painless and, in fact, was trivial. A
short overview about the logical order of the actual process is given here for completeness. As this was
done during the early prototyping, it actually happened in parallel with the final implementation of the
hardware platform, and was done independently at that time.

The list below contains the steps necessary to migrate the database objects and data.

1. Create tables
2. Create indexes
3. Create views
4. Create triggers
5. Grant privileges on table and views to public
6. Unload database from MVS™
7. FTP data to Linux
8. Load data to DB2 ESE
9. Set integrity for any tables in check-pending state
10. Runstats
11. Create UDFs
12. Create stored procedures

To simplify the process, scripts were used to modify syntax and functional differences.

Reference Tables
The smaller application and non-application reference tables were exported from the mainframe in IXF
format using DB2 Connect™ and then loaded into the DB2 for Linux tables. IXF format automates the

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

movement of data across the DB2 family by creating the tables/indexes at the target database as well as
moving the associated data. The table spaces were created manually to the appropriate size.

The viability of this approach depends on the size of the table and whether it can be moved via DB2
Connect in an acceptable timeframe. The amount of data loaded for representative data amounts in the
tables “A2. RDR” and “PRISM” was approximately 10 GB. The total amount of time spent in this process
was approximately 2 to 3 hours.

Partitioned Tables
DB2 communication uses the DRDA protocol, which requires the receiver of the data to do the data
conversion. DB2 Connect adheres to this protocol. When DB2 Connect sends out an SQL statement and
its input host variables, DB2 for OS/390® converts them into EBCDIC before processing (DB2 for z/OS
can be configured to store information in an ASCII format). DB2 for z/OS sends back data in EBCDIC,
and DB2 Connect converts the result to ASCII/ISO representation before returning it to the user. DB2
Connect uses the application's code page when returning the result to the application. The application
code page is derived from the active environment when the database connection is made. If the
DB2CODEPAGE registry variable is set, its value is taken as the application code page. It is not
necessary to set the DB2CODEPAGE registry variable because DB2 will determine the appropriate code
page value from the operating system.

The conversion of larger, partitioned tables was less automated:

The actual data was unloaded from DB2 for z/OS in EBCDIC delimited format, and converted to ASCII by
the FTP program that moved the data to the Linux platform. Additional BMC utilities were utilized to get
column-delimited output from ShadowE. This functionality will not be provided by the IBM utilities until
DB2 for z/OS Version 8. The BMC utilities were also needed for column support; both the NULLSTRING
and ENCLOSED BY features were utilized. In several tables within the columns, a quote was used as
valid data and not as a terminator that was passed by using the column delimiter of x’09’.

Some observations on the BMC unload jobs that were set up to dump the application data from Shadow
SYSE in delimited format:

• No sorting is done by the BMC utility, so the sortwkxx datasets are not required
• If jobs are being set up to run concurrently, different utility IDs must be used (in PARM='DPAE,

BMCUIS08, NEW, MSGLEVEL(1)' BMCUIS08 is the utility ID - this must be unique for concurrent
execution).

• REGION=64M instead of REGION=4M should be specified on each unload
• BUFNO=30 should be added to each SYSREC DD statement

A problem was encountered with embedded data in the application tables. In loading data from the
mainframe to DB2 ESE with the Data Partitioning Feature (DPF) platform, there were two tables that had
embedded CRLF delimiters within the column data. The DB2 ESE with DPF data load has the following
priority order for delimiters: record, character then column. As soon as DB2 for Linux detects the CRLF, it
will mark that as the termination of a row. In the case of these two tables, the CRLF occurred in the
middle of a character field. The workaround was to have a Perl program that went through the input
unloaded file and changed the CRLF to another value when the CRLF was detected in the middle of a
column.

Special Considerations
The following considerations are incompatibilities or differences in implementation that had a minor
impact on the conversion effort.

• A performance bottleneck for INSERT processing on tables with Identity columns occurred due to

traffic to the catalog node. This was resolved by increasing Identity Cache Size from 20 to 50000 for
the table containing identity columns (Journal_Set0, Journal_dsc0, and LB_JRNL_STAGING tables).

• Indexes were created on the “Partnum” column that was used for special handling of DB2 for zOS
partitioning. The Partnum column was either removed from the indexes or placed at the end. The

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

primary purpose of this column on the mainframe was to assist with utility work. In DB2 for Linux,
hashing accomplishes the need to spread out the data.

• In DB2 for z/OS, indexes do not automatically get built for primary key definitions. DB2 for z/OS will
allow the creation of the table but render it unusable until a primary index is created. DB2 for Linux will
automatically build indexes on top of primary keys if one is not available. DB2 for Linux was set up to
generate the primary keys. When the supporting create unique index DDL was executed, it received a
message saying the index already exists. These warnings were ignored.

• The application data model had several different partitioning keys that did not facilitate collocation in
the DPF environment. During the tests, the application achieved satisfactory performance in
spite of the lack of collocation.

• The syntax within DB2 for Linux does not support DBNAME and TSNAME. There is a direct correlation
between TSNAME and TBNAME. For the DBNAME the column definition was hard-coded with the
literal of "MYAPPTST".

• In allocating table spaces in DB2 for Linux, the entire file is being formatted during its allocation. This is
different from DB2 for z/OS in that formatting occurs upon usage and the size is 2 or 3 cylinders. For a
50 GB table space in the database, this process took about 90 minutes.

• Two application tables use identity definitions for the “journal_set_id” and “journal_id” columns. When
the data was migrated from the DB2 for z/OS, these values were loaded into DB2 for Linux. DB2 for
Linux had no knowledge of the sequence numbers that were assigned for both tables. SQLCODE 803
(duplicate keys) started to occur once the pipeline started to assign values for these columns, which
were previously given by DB2.

4. Implementation

The implementation phase was scheduled to be an 8-week exercise of basic implementation system
setup, followed up by a performance phase of equal time. The implementation phase was actually much
shorter than planned. The hardware setup was finished within three days, including the basic installation
of the operating system. The database installation took less than 15 minutes across all servers through
the use of DB2 response files. The first DB2 server was installed manually and generated a single
response file that could be applied for a silent installation of the following servers. A different way to
perform the installation would have been to use the Red Hat “kickstart” that permits the copying of full
systems and automatically updates the hostname and TCPIP addresses.

Following the core installation of DB2, the seamless compatibility between clusters and non-clusters for
DB2 was evident. The DDL from the early prototype experiments could be directly applied to the DB2
cluster, with just the addition of the node groups for the cluster and defining the partitions of the cluster.
(The DB2 experienced reader may know that this is accomplished simply by adding an NFS share and
one line in the db2nodes.cfg file).

The largest amount of setup time (next to the physical assembly of the hardware) was the creation of the
needed volumes and actual table space initialization. After that was completed, the database was ready
for its first transactions.

During the prototype phase the following subjects were taken into account: These issues were
addressed next.

General Changes
• Hard-coded DB2 OS/390 SQL codes in application were transformed into sqlstates instead of sql

codes to ensure compatibility between the DB2 platforms.
• DB2 for z/OS applications expect results to be returned in EBCDIC sort order. This code is related to

mapping of account types which are 9 character alphanumeric strings. Assuming that UDB returns
ASCII sort order, the code has to be modified.

• Received errors after "rollback to savepoint" calls, called "release to savepoint" after "rollback to
savepoint"; as suggested in the DB2 documentation.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

• DB2 for Linux does not support certain nuances of creation of temporary tables so the application code
was altered to use declared temporary tables. JAVA code was updated to declare the global
temporary tables and reference them as SESSION.table name. The stored procedures that access the
temporary tables were also updated to refer to them as SESSION.table name. In the SQL proc(s) we
had to include the DECLARE for the temp table in the SQL proc (inside an IF block that would never
be executed) before the proc would build successfully. The C stored procedure did not have the same
issue, so no DECLARE was included.

• DB2 for Linux does not permit a column definition to default its value to the CURRENT SQLID. The
comparable syntax in DB2 UDB is “Current User”.

SQL User Query Changes
• User Query stored procedures on the mainframe have a specific "with ur for fetch only" syntax. This

needs to be coded as "for fetch only with ur" in DB2 for Linux. Additionally, the declare cursor needs
to be within a begin-end block in DB2 for Linux.

• Stored procedures executed from “Software AG Natural” programs contain logic to check if given
range numbers are within a range specified on ACCT_TYPE_MAP columns,
LGCY_FROM_ACCT_NUM and LGCY_TO_ACCT_NUM. The columns contain character data
representing account number ranges. That is, from: 07AAAAAA0 to: 079999999. These ranges need
to be modified to account for differences between DB2 for Linux and DB2 for z/OS, because of ASCII
vs. EDCDIC sequencing. Otherwise, the stored procedures will not find any rows that satisfy the
selection criteria.

C Procedure Changes

• The application UDF utc.timestamp was coded in PL/I on the mainframe and had to be converted to an

SQL UDF.
• A specific decimal SQL data type doesn't exist in DB2 for Linux. The decimal variables in the C stored

procedures were converted to type double per the DB2 for Linux Application Development Guide.
Since no precision can be specified on the double type, DB2 maintained the precision based on the
table column definition.

• UDFs in a DB2 for Linux cluster environment that are written in C (or languages other than SQL
procedure language) cannot contain SQL code. The application UDF was rewritten as an SQL
procedure language UDF.

• In a C stored procedure, variable scope isn't recognized by the DB2 preprocessor, causing errors in
code that used the same local variable name in multiple functions. These variables were renamed to
unique names in the UDB version of the procedure to circumvent this.

• Our C stored procedures run on UDB in fenced mode. For performance reasons, KEEPFENCED=YES
was specified in the DBM Configuration to prevent stored procedure binaries from being reloaded on
every invocation.

• The default path for non-SQL stored procedure binaries applies at the instance level. This means that
stored procedures created with the same name for different DB2 would overlay each other's binaries.
The team got around this issue by creating a separate directory for each DB and specifying the full
path to the binary in the EXTERNAL NAME parameter of CREATE PROCEDURE.

• All references to SQLSTATE were changed to sqlca.sqlstate (DB2 for Linux SQLCA is set up
differently than DB2 OS/390 to reflect the different physical environments).

• IN some cases SQL SET statements were replaced with VALUES statements e.g. the statement
EXEC SQL SET :V_JRNL_SET_ID = IDENTITY_VAL_LOCAL(); became EXEC SQL VALUES
IDENTITY_VAL_LOCAL() into :V_JRNL_SET_ID,

All of these items are rather minor and were addressed quickly. The reader should note that the
application changes were required for standard DB2 compatibility, versus being specific to a clustered
implementation.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

5. Performance

The base environment for testing was prepared through the “workbook” application that controlled the
actual trading application (start/stop of the various complex components in a controlled fashion). Further,
it collected all necessary data for later evaluation and performance analysis, including the number of
events processed through the DB2 cluster.

The picture below shows one executed run with the integrated comments. At the point shown, it was clear
that the input stream of the data was maxed out.

The first test runs were executed with a single coordinator node for the database. This was a simple test
to validate the actual application data flow. As expected, the bottleneck was the connectivity between the
servers and the solution maxed out with about 250,000 “events” posted through the application pipeline.
The limiting factor was clearly the single insert message queue through the system catalog node and
then redistribution of the data flow across all other nodes for the actual processing.

The application changes discussed in the earlier chapter were not included at this point. Identifying the
various steps and their implementation led the team to drive the event rate up to 300,000 events per
hour. At this point, it was clear that a single coordinator node was a limiting factor so the team switched to
a distributed environment with multiple coordinators. The expectation was set at that point that a limit of
about 1.5 million events for the overall cluster should be in the range of a realistic goal.

A single message queue was set up per database partition, and the system throughput approached one
million events per hour. Now the number of queues were extended to a maximum number of 24 message
queues overall and the system hit 1.6 million events per hour, about 25% above the specified target goal.
The increase from 16 to 20 message queues was later identified as a problem.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

12 16 20 24
No Threads

Throughput

CPU

0

10

20

30

40

50

60

70

80

90

12 16 20 24
No Threads

CPU

Interestingly enough, the CPU utilization increased directly proportional to the performance gains of the
system. The number of clients had no impact on the system at all and no thrashing occurred.

Besides the processing of the events coming through the message queues, there was another
application aspect that was critical for the deployment of a DB2 for Linux cluster. Could the cluster deliver
real-time access to the data where DB2 was used simultaneously as a data warehouse, as well as
servicing the OLTP workload? Would the performance be comparable to the DB2 z/OS expectations?
The result was exceptional performance of the DB2 for Linux cluster. The project proved that the high I/O
ratio, in conjunction with the processor performance and amount of memory had a significant impact on
the overall performance, when compared to the existing mainframe. Clearly, DB2 for Linux is ready for
enterprise deployment.

The following picture is a comparison of a number of customer queries run on DB2 for Linux versus the
equivalent queries run on DB2 for z/OS.

High Volume OLTP Database cluster for the financial industry with DB2 for Linux

IBM Toronto Lab

6. Conclusion

The customer’s primary objective for the pilot was to determine whether Linux could deliver the reliability
and scalability required. The complexity of the application framework and the sheer amount of data was a
challenge to any database and application infrastructure, but the IBM DB2 for Linux solution delivered on
all aspects of the project.

The Linux OS part of the project can only be described as uneventful. The operating system worked as
expected under the high load tests, and no major flaws or architectural roadblocks were uncovered.

The complete planning and sizing at the beginning of the project definitely had an impact on the project
overall. The customer considered Linux as a business platform from the start, and not just as an
engineering environment. There was no “tinkering” or experimenting with the kernel of any sort. This was
considered one of the major achievements of this project, since it demonstrated that you do not need to
“custom tune” the operating system as a prerequisite for a successful project.

Another great lesson learned is the fact that amazing scalability can be achieved using commodity Intel
servers in a clustered OLTP DB2 environment. While clustering is standard practice for warehouse and
data mart applications, distributed clusters have not been widely adopted for OLTP applications. In
addition, clustered configurations have always been considered difficult to optimize or manage.

This project demonstrated that, with DB2 ESE Version 8, the complexity of clustering has been reduced
dramatically. There are applications that might be ideally suited for deployment in a clustered
environment (independent of Linux as the operating system), but the specific scenarios where clustering
should not be considered has been reduced. More significantly, the combination of using large-scale data
warehouses with OLTP-like behavior, or continuous inserts and deletes in real time will clearly drive the
size of DB2 for Linux database clusters into larger dimensions.

The scalability exhibited in this project was almost linear and would have allowed even larger amounts of
data if it had been available. Besides the performance DB2 demonstrated in this project, the combination
of the Java™ environment and MQSeries cannot be stressed enough. MQSeries delivered amazing
capabilities for scalability. Using MQSeries, the scalability of the input data streams could be adapted to
the changing database configurations, considering available memory, the number of database partitions
and the available computing power of the processors, without changes to the application.

The final question that the team considered was if Linux was any easier to deploy and manage that any
other UNIX variant. The answer was clearly “yes”. Especially when it comes to clusters of the size used
in this project. Even if standard configuration procedures such as the configuration of the Veritas VLM
volumes is the same on other UNIX systems, the easy and clear structure of the Linux distributions
makes it very easy to replicate large numbers of servers with individual, discreet requirements without
any changes to the operating system kernel settings or parameters. The best proof of this is that DB2 for
Linux was deployed on the customer-specific version of Linux, which had been optimized for Web serving
and other front-tier applications, demonstrating the interoperability of DB2 with the Linux kernel. .

In conclusion, is Linux ready for enterprise computing workloads? Based on the results of this project,
absolutely!

Acknowledgements

I would like to acknowledge the performance from our team with Kerry Bruington as our Project Manager,
Bo Taramina, Gus Branich, Christopher Tsounis and Robert Bergman as the DB2 consultants, Florbela
Vieira and Yvonne Chan from the Linux team in the IBM Toronto Lab, Anil Kappor and Mahmood Hussein
for their great work on system and storage infrastructure (surviving my comments for that amount of time)
and the whole team from our customer. Without all of them, this project would not have been possible.

© Copyright IBM Corporation 2003
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
10-03
All Rights Reserved.

IBM, DB2, DB2 Connect, DB2 Universal Database, eServer, MQSeries,
MVS, OS/390, S/390, Tivoli software, z/OS, and the ebusiness logo are
trademarks or registered trademarks of the International Business
Machines
Corporation in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Windows is a registered trademark of Microsoft Corporation in the United
States, other countries, or both.
Intel is a registered trademark of Intel Corporation in the United States,
other countries, or both.
UNIX is a registered trademark of The Open Group in the United States
and other countries.

Other company, product, and service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which IBM
operates.
The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems.
Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should
verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot
confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

The information in this white paper is provided AS IS without warranty.
Such information was obtained from publicly available sources, is current
as of 01/30/2003, and is subject to change. Any performance data included
in the paper was obtained in the specific operating environment and is
provided as an illustration. Performance in other operating environments
may vary. More specific information about the capabilities of products
described should be obtained from the suppliers of those products.

