

IBM Software Group

Automatic Database Configuration and Memory Tuning

Adam Storm Software Developer, IBM Toronto Lab

DB2. Information Management Software

Agenda

- The configuration challenge
- Automatic configuration of new databases
 - The Configuration Advisor
- Adaptive memory configuration
 - The Self Tuning Memory Manager (STMM)
 - How STMM works
 - Basic tuning
 - Tuning DATABASE_MEMORY
 - STMM in DPF
 - Experimental results
 - STMM configuration changes FOR REFERENCE ONLY
- Summary

The Configuration Challenge

The Configuration Challenge

- Modern database engines are complex
 - Complexity is the cost of providing a feature rich, flexible product
 - With complexity comes configuration challenges
 - Not just a DB2 issue
- The Configuration Challenge
 - How can DB2, a highly tunable database engine, be configured easily for optimal performance?
 - Must be able to work well for all users regardless of skill level
 - Must not require detailed input from the user
 - Must be adaptive
 - Workload changes should modify configuration

The Configuration Advisor

The Configuration Advisor

- Sets the 36 most important configuration parameters automatically
 - Also sets the sizes of all buffer pools
- Runs in seconds and can generate a configuration that can be very close to optimal
- Accessible through command line, control center and an API
- Existed in version 8 but algorithms were modified for version 9 to improve robustness
 - Advisor is multi-database and DPF aware
- NEW IN VERSION 9 the advisor automatically configures databases when they are created
 - No longer a need to manually run the advisor

The Configuration Advisor

- Senses the underlying system to provide fitting configuration
 - Number of CPUs, memory available, physical disks, OS Type
- Administrator is also able to provide input to the advisor to influence configuration
 - Percentage of system memory to use
 - Type of workload (decision support, OLTP or mixed)
 - Number of statements per transaction
 - Expected transactions per minute
 - Administrative priority
 - Is database populated with data?
 - Number of expected local and remote applications
 - Isolation level
- If no input is specified, advisor configures system based on sensed information and typical input

Configuration Advisor Output

> db2 autoconfigure apply db and dbm

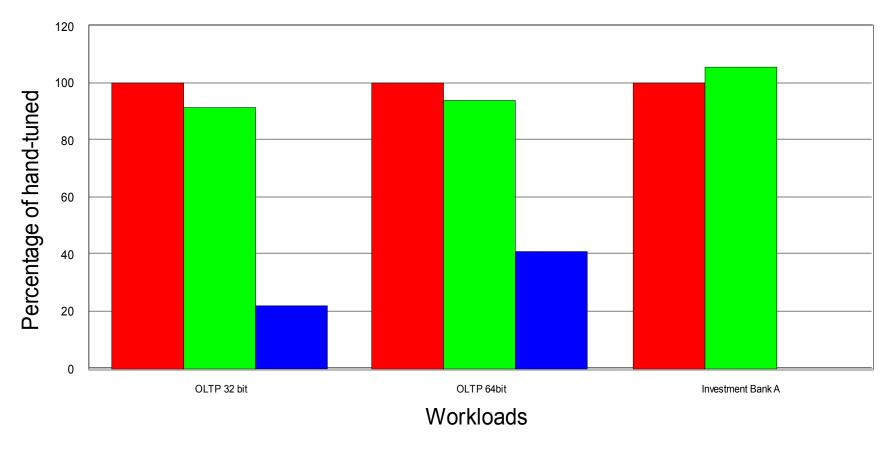
Former and Applied Values for Database Manager Configuration

Description	Parameter	Former Value	Applied Value
Application support layer heap size (4KB) (ASLHEAPSZ) =	= 15	15
No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) =	= 512	512
Number of FCM request blocks	(FCM_NUM_RQB) =	= 256	256
Enable intra-partition parallelism	(INTRA_PARALLEL) =	= YES	YES
Maximum query degree of parallelism	(MAX_QUERYDEGREE) =	= 4	4
Max number of existing agents	(MAXAGENTS) =	= 200	200
Agent pool size	(NUM_POOLAGENTS) =	= 40	40
Initial number of agents in pool	(NUM_INITAGENTS) =	= 0	0
Max requester I/O block size (bytes)	(RQRIOBLK) =	= 32767	32767
Sort heap threshold (4KB)	(SHEAPTHRES) =	= 140201	140201

Configuration Advisor Output (cont.)

Former and Applied Values for Database Configuration

Description			Former Value	
Max appl. control heap size (4KB)	(APP_CTL_HEAP_SZ)	=	128	160
Max size of appl. group mem set (4KB)	(APPGROUP_MEM_SZ)	=	20000	19200
Default application heap (4KB)	(APPLHEAPSZ)	=	256	256
Catalog cache size (4KB)	(CATALOGCACHE_SZ)	=	(MAXAPPLS*4)	270
Changed pages threshold	(CHNGPGS_THRESH)	=	60	60
Database heap (4KB)			1200	4047
Degree of parallelism	(DFT_DEGREE)	=	1	1
Default tablespace extentsize (pages)	(DFT_EXTENT_SZ)	=	32	32
Default prefetch size (pages)	(DFT_PREFETCH_SZ)	=	32	32
Default query optimization class				5
Max storage for lock list (4KB)	(LOCKLIST)	=	100	3775
Log buffer size (4KB)	(LOGBUFSZ)	=	8	101
Log file size (4KB)	(LOGFILSIZ)			1024
Number of primary log files		=	3	3
Number of secondary log files				0
Max number of active applications	(MAXAPPLS)	=	40	40
Percent. of lock lists per applicatio	n (MAXLOCKS)	=	10	60
Group commit count	(MINCOMMIT)	=	1	1
Number of asynchronous page cleaners	—			1
	(NUM_IOSERVERS)			4
Package cache size (4KB)	(PCKCACHESZ)	=	(MAXAPPLS*8)	859
Percent log file reclaimed before sof	t chckpt (SOFTMAX)	=	100	120
Sort list heap (4KB)	• •		256	7010
SQL statement heap (4KB)	(STMTHEAP)	=	4096	4096
Statistics heap size (4KB)	· ·			
Utilities heap size (4KB)	(UTIL_HEAP_SZ)	=	5000	524288


Former and Applied Values for Bufferpool(s)

Description	Parameter	Former Value	Applied Value	
• IBMDEFAULTBP	Automatic Database Configuration and Memory T	unir@oo	2340594	© 2006 IBM Corporation

Experimental results

DBA versus Configuration Advisor

📕 Hand tuned 📮 Advisor as percentage of tuned 🗖 Default configuration

Memory Configuration

Special considerations with memory tuning

- Memory configuration can have a dramatic effect on DBMS performance
 - Tuning memory through educated trial and error can be difficult and time consuming
- Optimal configuration may not be static
 - To achieve optimal performance, it may be necessary to adapt the memory configuration as workload shifts
- Configuration advisor only provides static configuration
 - When run on the same system with the same input
- System performance would benefit if memory could be adaptively tuned based on workload requirements

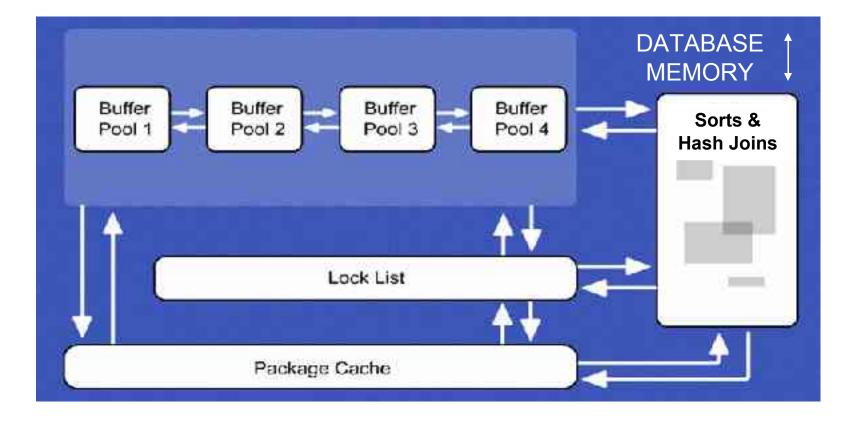
The Self Tuning Memory Manager – Simplified, Automated Memory Tuning

Memory tuning in the past: Analyzing monitor output

Memory tuning in the past: Change configuration and wait

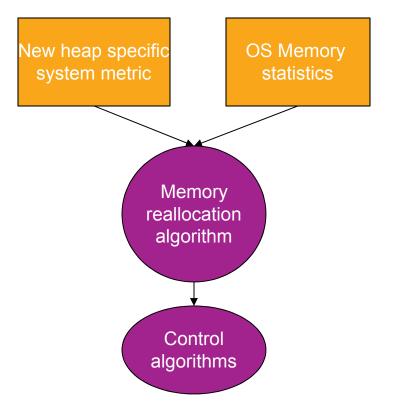
Memory Tuning in Version 9 - STMM

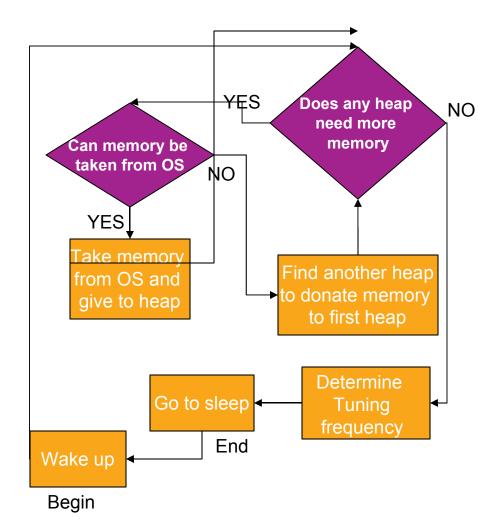
- DB2 Version 9 introduces a revolutionary memory tuning system called the Self Tuning Memory Manager (STMM)
 - Works on main database memory parameters
 - Sort, locklist, package cache, buffer pools, and total database memory
 - Automated online memory tuning
 - Requires no DBA intervention
 - Senses the underlying workload and tunes the memory based on need
 - Can adapt quickly to workload shifts that require memory redistribution
 - Adapts tuning frequency based on workload



STMM Modes of operation

- Works in two different modes
 - Tuning total database memory consumption
 - Takes from, and returns memory to, the OS as necessary
 - Total amount of memory used by DB2 can grow over time
 - Requires only one heap for tuning
 - Fixed total database memory consumption
 - Memory tuning still occurs but total memory used by database is constant
 - For one heap to grow another heap must shrink
 - Requires two heaps to be able to tune
- Is able to tune multiple databases and instances on the same box at the same time
- Works in non-partitioned and in partitioned (DPF) environments


Autonomic Self Tuning Memory


How does STMM work?

- Uses totally new system metrics
- Constantly monitors system to make use of any free OS memory (only if system is set to tune total database memory consumption)
- Works iteratively to determine an optimal memory configuration for all heaps
 - Iterative approach prevents instability
- Control algorithms help determine interval length and prevent oscillations

STMM - In each tuning interval

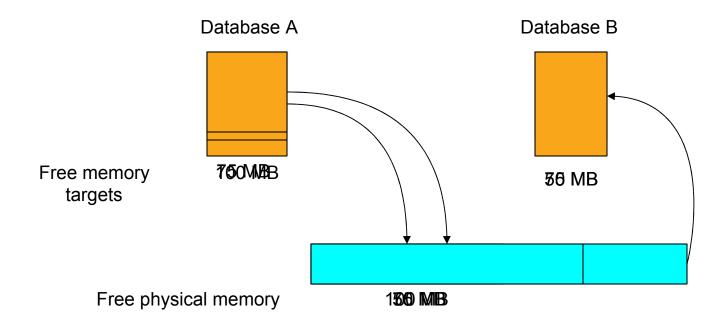
- Tuner wakes up from sleep
- Determine if memory configuration is suboptimal
 - Some heaps will be needy, others will have more than enough memory
- If total database memory is being tuned
 - Determine whether OS has free memory that can be used
 - Use this memory to satisfy needy heaps
- If total database memory is not being tuned or if taking memory from the OS couldn't satisfy all heaps
 - Take memory from heaps with more than enough and give to those that are needy
- Continue until no more memory can be moved
 - In each interval each heap can only grow by 50% or decrease by 20%
- Determine tuning frequency based on workload

STMM and the buffer pools

- Trades memory between buffer pools based on relative need
 - New metrics determine where memory is most needed such that total system time is reduced
- Zero, one or more buffer pools can be set to AUTOMATIC
 - In newly created version 9 databases, all buffer pools default to AUTOMATIC
- Works with buffer pools of any page size
 - Transfers from a buffer pool with 8 k pages to one with 4 k are 1:2
- Decreasing the buffer pools can take a lot of time
 - Must write out all dirty pages in memory being freed
 - If pages are in use the resize may wait on locks
 - A large percentage of tuning time could be spent on alter buffer pools
 - Not necessarily a concern, just something to keep in mind

STMM and total database memory consumption

- STMM tunes total database memory consumption if DATABASE_MEMORY is set to AUTOMATIC or a numeric value
 - If set to AUTOMATIC, memory is taken from, and returned to, the OS if required by the database
 - DBA need not know how much memory to allocate to DB2
 - This is the default for newly created version 9 databases
 - If set to a numeric value, memory is given to AUTOMATIC heaps up to the numeric value
 - Allows DBA to set total memory consumption for the database
 - DB2 will then distribute the memory to optimize performance
 - If set to COMPUTED, no DATABASE_MEMORY tuning will occur
 - When database starts, memory requirements are computed based on the heap configuration
 - Once the database starts, the database shared memory set is allocated based on the computation
 - Version 8 AUTOMATIC behavior


Setting DATABASE_MEMORY to AUTOMATIC

- Memory tuner tries to maintain some amount free physical memory on the box at all times
- As long as more free physical memory is available databases are allowed to use more memory
 - Memory is only consumed if database finds that there is a good use for the memory
- If less than enough free physical memory is available databases are asked to free up some memory
 - Memory may not be freed if database needs the memory
 - This should only occur in small amount of cases where database is desperately in need of more memory

Tuning DATABASE_MEMORY – Multiple databases sharing the memory on the box

- Each database sets its own free memory target based on its need for memory relative to other databases
 - New inter-database (inter-instance) communication

Tuning with DPF

- Some assumptions are made on the underlying system
 - All data nodes are similarly distributed and require similar memory
 - All physical nodes contain the same number of logical nodes
 - Or all logical nodes require the same amount of memory
 - Logical nodes/memory ratio must be consistent
- Why the assumptions?
 - One memory tuner for all nodes
 - Tuner tries to maintain a consistent configuration on all nodes
 - In each interval, new configuration is sent out to all nodes
- Tuning node is chosen automatically at first database activation
 - Tuning node selection algorithm tries to find a node that is representative of an average data node
 - Tuning node can be changed through the Admin Stored Procedure

Tuning with DPF

- In each interval
 - Collect memory statistics on tuning node
 - Since statistics are only collected from the tuning node, workload must be similar on all nodes
 - Determine new configuration on tuning node
 - Apply new configuration to all nodes
 - If configuration change fails on any node
 - Rollback change on all nodes
 - Determine sleep time based on tuning node
- Tuning only occurs if database is explicitly activated
 - Must have all nodes active or else configuration will be different

Tailoring STMM with DPF

- If main STMM parameter (SELF_TUNING_MEM) is off at a particular node, no tuning will occur
 - Tuning should be turned off for atypical nodes
 - Catalog nodes with no data
 - Coordinator nodes that don't directly process queries
- Tuning can be turned off for one or more parameters on any given node
 - If STMM configuration update arrives at a node and that parameter isn't set to AUTOMATIC at that node, nothing changes
 - Only parameters set to AUTOMATIC on the tuning node will generate configuration updates

STMM Usage Scenarios

Scenarios where STMM shines – Buffer pool tuning

- Difficult to tune memory when there are multiple buffer pools
- As number of buffer pools increases, possible configurations increases exponentially
- STMM works with multiple buffer pools regardless of page size
- Trades memory between buffer pools
 - Ensures that total memory doesn't change
 - 1 8k page becomes 2 4k pages in transfer
- Works so well that STMM is being used to tune benchmark systems in house
 - Used in several small scale TPC-C benchmarks

Scenarios where STMM shines – Memory varied workloads

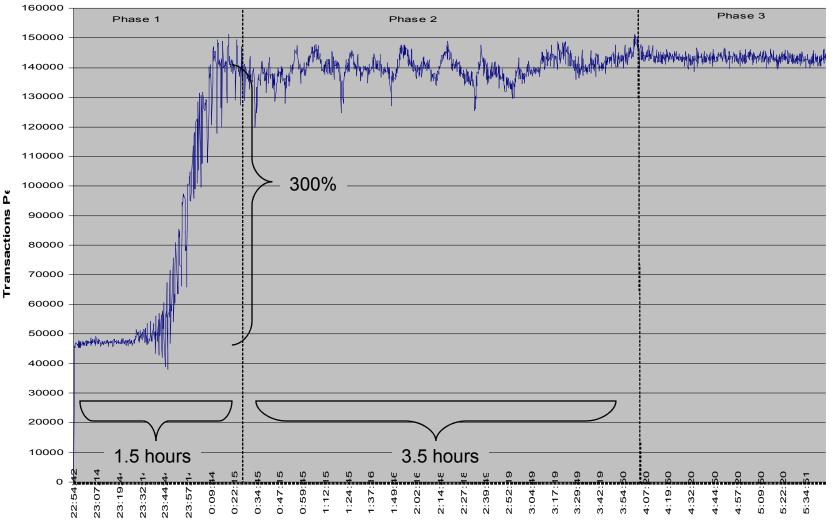
- Some workloads have dramatically varied memory demands
 - Periods with high transaction throughput
 - Periods with long running transactions or online utilities
- STMM constantly re-evaluates the memory requirements
 - Can update the memory up to 60 times an hour
- Will optimize the memory usage based on the currently running workload
- Very difficult to perform similar tuning manually

Scenarios where STMM shines – Unknown memory requirements

- New workload with unknown memory requirements
 - Alternatively, new DB2 administrator unfamiliar with memory model
- STMM works deep down in DB2 and is able to sense workload memory requirements
- Tunes quickly enough to bring production systems from out of the box configuration to optimal in an hour or less
- Requires absolutely no DBA interaction once turned on
- Performs several weeks of manual (trial and error) tuning every hour
- Will stop tuning automatically when it reaches optimal configuration

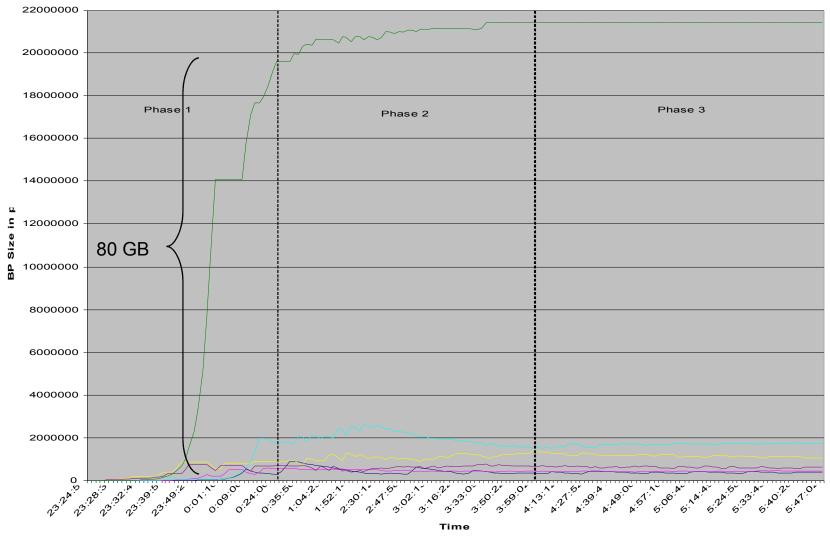
Scenarios where STMM shines – New DPF configurations

- New system setup with entirely uniform nodes
 - Both data distribution and hardware should be uniform
- Allows DBA to optimize the configuration for all nodes at the same time
- Maintains all nodes at the same configuration for easy future administration
- Chooses tuning node automatically
 - Can be over-ridden if necessary



STMM Experimental Results

STMM in action – Tuning an OLTP workload

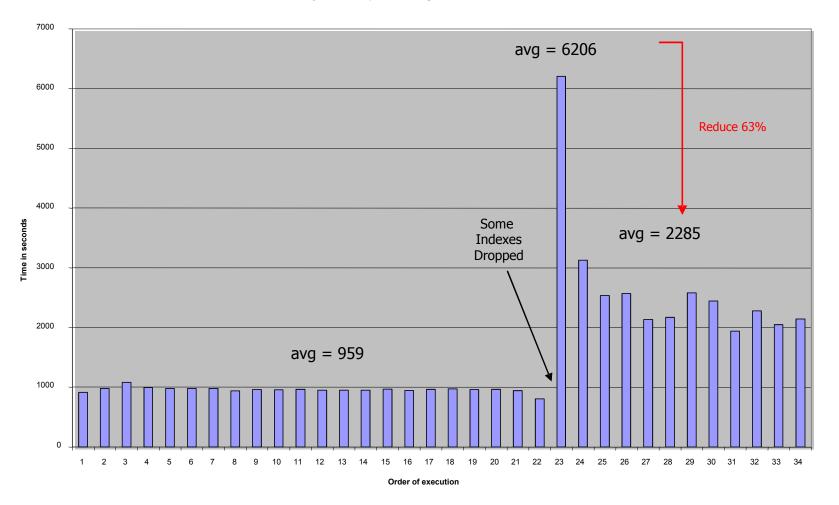

- 370 clients running transaction processing workload
- Running on a machine with:
 - 128 GB of RAM
 - 2 TB database
 - 494 * 36 GB disks
- Workload is very sensitive to buffer pool sizing
- Each of the 13 buffer pools are started with 1000 pages
 - 1000 pages is the default size for a newly created buffer pool
- Workload is started and STMM begins tuning
- STMM should dramatically improve performance...

STMM in action – Tuning an OLTP workload

STMM in action – BP sizes during tuning

— BP 1 — BP2 — BP3 — BP4 — BP 5 — BP 6

Automatic Database Configuration and Memory Tuning

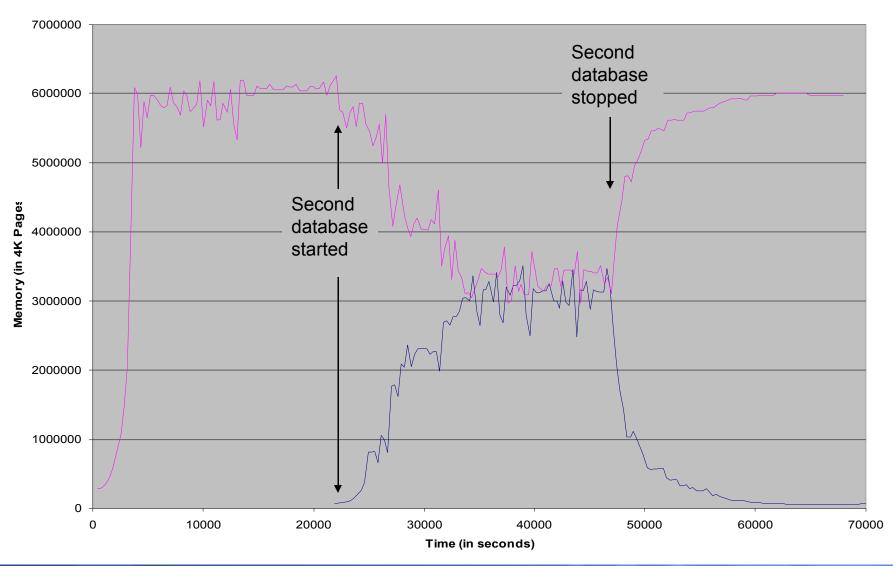


STMM in action – Oops, dropped my indexes

- 10 agents executing queries with "order by" clause
- At first, queries use indexes to avoid sorting
- After several iterations some of the indexes are accidentally dropped
 - Simulates DBA error in dropping vital indexes
- Lack of indexes forces sorts to be performed
- Dramatically increases the demand on the sort memory
- With only manual tuning, workload will likely get much slower
- STMM should be able to alleviate some of the burden...

STMM in action – Oops, dropped my indexes

TPCH Query 21 - After drop index - Average times for the 10 streams



STMM in action – Two database on the same box

- Two databases running the same workload on the same box
 - 4 clients looping through the 21 queries used in TPC-H
 - 15 GB databases
- Running on a machine with 32 GB of RAM
- Demand for memory for each database is equal
- One database is started first and allowed to use up all the memory
- Then, six hours later, the second database is started
 - After both database run together, second database is stopped
- STMM should allow for proper sharing of memory...

STMM in action – Two database on the same box

STMM – When it is most useful

- DBA is inexperienced or is unfamiliar with DB2's memory model
- DBA has workload with unknown memory characteristics
- Multiple database/instances running on the same machine
- System has a lot of free memory
- System has multiple buffer pools of differing page sizes
- Workload is well known but has dramatically differing memory needs from one hour to the next

STMM – When it is less useful

- DBA is very experienced at memory tuning
- Workload's memory requirements are very well understood
- Workload has static memory requirements
 - Run STMM for some time and then freeze the configuration
- DB2 has fixed amount of memory to work with
 - Set DATABASE_MEMORY to the total amount of memory to use
- Only one database running on the machine
- DPF with drastically different memory requirements on each node

Configuration Changes – REFERENCE ONLY

Configuration changes - Activating self tuning memory

- Is on by default for newly created version 9 databases
- New configuration parameter SELF_TUNING_MEM must be set to ON
 - update db cfg for database <db_name> using self_tuning_mem on
- Set each parameter that you wish to tune to AUTOMATIC
 - update db cfg for database <db_name> using locklist automatic
- In the buffer pool case an alter bufferpool command is necessary
 - alter bufferpool ibmdefaultbp size automatic
 - Or for new bufferpools
 - create bufferpool <bp_name> size automatic
- Feature can be turned on dynamically

Configuration changes - Activating self tuning memory

- Self tuning memory trades memory between the different consumers
 - Two or more consumers must be tunable for tuning to start
 - A parameter is tunable if it is set to AUTOMATIC
 - The database_memory parameter is also tunable when set to a value
- To query whether or not the system is tuning
 - Connect to the database
 - Get db cfg show detail
 - Check the value for SELF_TUNING_MEM
 - If set to ON (ACTIVE) then system is being tuned
 - If set to OFF, or ON (INACTIVE) then system is not being tuned

Configuration changes - Deactivating Self Tuning Memory

- Two ways to turn STMM off
 - Set SELF_TUNING_MEM parameter to OFF
 - update db cfg for database <db_name> using self_tuning_mem off
 - Allows for turning STMM OFF and then ON while maintaining the same set of self tuned parameters
 - Turning an individual parameters to manual (or a value) will stop tuning for that parameter
 - update db cfg for database <db_name> using locklist manual
 - update db cfg for database <db_name> using locklist 1000
 - alter bufferpool <bp_name> size manual
 - alter bufferpool <bp_name> size 1000
- All updates can be done dynamically
 - Update may be deferred (sqlcode 1363) in some cases
 - Setting to value causes increase or decrease

Configuration changes – Other changes...

- Added the option to put all sorts in database shared memory
 - To have all sorts run in shared memory
 - Set DBM parameter sheapthres to 0
 - Set DB parameter sheapthres_shr to the desired value
 - This is the default for newly created version 9 instances/databases
 - All sorts must be in shared memory for self tuning of sort memory to work
- All STMM affected memory parameters are now fully dynamic
 - Locklist
 - Was only dynamically increasable in version 8
 - In version 9 can be increased or decreased dynamically
 - Sheapthres_shr
 - Was not dynamic in version 8
 - In version 9 can be increased or decreased dynamically

Summary

- Configuration advisor automatically configures databases as they are created
- STMM goes one step further
 - Advanced automated memory tuning for DB2 version 9
- STMM provides:
 - Online database tuning without any DBA intervention
 - Tuning of total database memory usage
 - Tuning of the four largest consumers of database memory
 - Is activated through database configuration (and alter bufferpool command)
 - A near optimal solution in only an hour
 - A DPF memory tuning solution when nodes are similar

IBM

Links

- http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0605shastry/index.html
 - More information on the configuration advisor
- http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/t
 - Configuration advisor command information
- http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0606ahuja/
 - Overview of Self Tuning Memory
- http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/d
 - Self Tuning Memory product documentation

Adam Storm

IBM Canada ajstorm@ca.ibm.com