
© IBM Corporation 2006

DB2 Performance Expert for
Multiplatforms

for
Business Intelligence

Torsten Steinbach

DB2 Performance Expert for Multiplatforms
Development - Technical Lead

torsten@de.ibm.com

IBM Germany

mailto:torsten@de.ibm.com

© IBM Corporation 2006

0. About this document... 2
1. Introduction... 3
2. DB2 PE features for Business Intelligence... 4

2.1 DPF monitoring and skew detection .. 4
2.1.1 Partition-level skews ... 5
2.1.2 System-level skews ... 5

2.2 Engine monitoring.. 6
2.3 Application monitoring and tracing ... 11
2.4 History analysis.. 12
2.5 Performance Warehouse analysis .. 12
2.6 Operating System monitoring .. 12

2.6.1 Filesystem usage ... 13
2.6.2 Disk I/O ... 14
2.6.3 CPU utilization, queues, and paging ... 15

2.7 Visualization .. 16
2.8 Threshold exceptions / predefined threshold set .. 16

3. Business Intelligence Performance Tuning Scenarios with DB2 PE................................... 18
3.1 Check if system is CPU bound .. 18

3.1.1 General approach... 18
3.1.2 Visualization.. 19
3.1.3 Exceptions ... 20
3.1.4 Identify I/O bound partitions... 20

3.2 Sort and hash Join tuning ... 23
3.3 Page I/O tuning .. 27
3.4 Detecting skews ... 32

3.4.1 Visualized skew detection ... 32
3.5 Understanding long-running queries.. 37

3.5.1 Identifying the top 10 statements .. 37
3.5.2 Linking top 10 statements to execution details ... 38
3.5.3 Checking for skews per query execution... 41
3.5.4 Understanding the statement plan ... 42
3.5.5 Check for SORT issues ... 46
3.5.6 Canceling long-running queries .. 48

3.6 SQL tracing.. 49
3.7 Monitoring and tuning load.. 51

3.7.1 Utility heap.. 53
3.7.2 Monitoring tablespaces.. 54
3.7.3 Log space... 55
3.7.4 Concurrent load and analytics ... 56
3.7.5 Detecting concurrency issues .. 57

3.8 Parameter marker check... 58
3.9 Verify MQT effectiveness ... 59
3.10 FCM tuning.. 59
3.11 Dashboard monitoring of key Business Intelligence performance indicators.............. 60

4. Conclusion .. 64
Appendix – Importing Business Intelligence data views ... 64

0. About this document

© IBM Corporation 2006

This document focuses on the typical and most important performance issues that occur
in Business Intelligence environments and how DB2 Performance Expert can be used to
analyze and fix them. This document is not intended to be a complete DB2 BI tuning
guide, nor is it intended to be a complete DB2 PE guide. For comprehensive information
about DB2 PE, refer to the official DB2 PE library. Another helpful source of
information is the IBM Redbook DB2 Performance Expert for Multiplatforms, Version 2
(SG24-6470). The author thanks the BI Center of Competency Team (Surendra
Parlapalli, Rao Chinnam, Randy Holmes, Ron Sherman) for their participation and
contribution in providing content as well as validation of the tool with the
BI/Warehousing showcase projects.

The document contains two main parts. The first part introduces DB2 PE and the features
that are most relevant to Business Intelligence systems. The second part contains a set of
helpful and detailed scenarios that show you how to use DB2 PE to monitor and tune a
Business Intelligence environment.

The document is based on DB2 Performance Expert for Multiplatforms Version 2.2 with
Fix pack 1 and DB2 Version 8 with Fix pack 10. Some of the descriptions and
screenshots that illustrate operating system-level monitoring are specific to AIX and
Linux and are slightly different than those for Solaris.

1. Introduction

DB2 Performance Expert for Multiplatforms (DB2 PE) is a general purpose DB2
performance monitoring and analysis framework. It is flexible enough to be applied in all
types of DB2 environments. In this document the focus is on how to leverage DB2 PE in
DB2 Business Intelligence environments.

DB2 PE is based on a three-tier monitoring architecture. Tier 1 is the monitored DB2
system. Tier 2 is the DB2 PE server that remotely monitors tier 1. It also enables all the
advanced features like performance history capturing, performance warehousing, and
exception processing. Tier 3 is the DB2 PE client that connects to the DB2 PE server and
is used to perform all monitoring tasks.

BI systems usually have typical data models and workloads, as well as typical
performance problems. DB2 PE can help you to sort out these problems and find the best
solutions.

© IBM Corporation 2006

2. DB2 PE features for Business Intelligence

This section describes the monitoring and analysis features of DB2 PE and explains why
these features are valuable for Business Intelligence systems.

The entry point for all DB2 PE features is the DB2 PE System Overview window. You
use this window to select and monitor different DB2 systems from the navigation tree
which is located in the leftmost pane. The center pane contains links to the major
monitoring and analysis features, as well as a number of diagrams that display key
performance indicator data. The rightmost pane displays the performance exceptions that
DB2 PE has detected on the currently selected system.

2.1 DPF monitoring and skew detection

DB2 PE is fully enabled to monitor a multi-partitioned DB2 system. With a single mouse
click your can retrieve monitoring information for all. You can conveniently get an
overview over your entire distributed system.

This capability also is the basis for quick and easy detection of skews. A skew is an
uneven distribution of behavioral or residual distribution of performance indicators over

© IBM Corporation 2006

the distributed system components. Skews are always potential reasons for performance
problems.

2.1.1 Partition-level skews

Most DB2 performance indicators can be retrieved for each partition. DB2 PE allows you
to display an aggregated overview for these performance indicators (called a global view)
or, you can display the current values for a selected partition (called a partition view).
Finally, DB2 PE provides a special view mode called the group view (shown in the
following picture), which provides a matrix view of individual values. This view allows
you to look for skews in the different performance indicators.

2.1.2 System-level skews

Because DB2 PE also provides
operating system-level information it
also offers you a special group view
for that data where the group members
are comprised of machines rather than
partitions. This list is comprised of all
distinct machines that are part of the
distributed DB2 instance.

© IBM Corporation 2006

2.2 Engine monitoring

DB2 PE provides monitoring at the DB2 engine level (that is, performance metrics on the
level of instances, databases, and subsequent entities such as tablespaces, bufferpools,
and tables). You can access this data by double-clicking Statistic Details on the DB2 PE
System Overview window.

The Statistic Details panels are divided into categories in a navigation tree that is located
in the leftmost pane. You can find the metrics that are related to a subsequent level (for
example, a database) by double-clicking one of the entries in the associated category.

Doing so opens another tabbed pane in the same window that contains details about the
selected database.

At the top of the panel is an auto-refresh option.

© IBM Corporation 2006

Some of the data can be seen as key performance indicators that you typically check first
in a Business Intelligence environment. Some of the most important ones are:

BP hit ratio
Bufferpool hit ratio indicates the
effectiveness of the bufferpool. Even
though it is desirable to have the
ratio at a rather high value (> 80%),
this is typically not achievable for
larger Business Intelligence systems.
Increasing the bufferpool size might
have a minimal effect on the hit ratio.
Its number of pages might be so
large, that the statistical chance of a
hit is not improved by increasing the
size.

This metric can be retrieved on three
different levels of the DB2 engine:
database, tablespace, bufferpool.

Asynchronous read ratio
In Business Intelligence systems, a large amount of table data typically needs to be read.
DB2 provides the feature of sequential prefetching, which allows pages to be fetched
asynchronously ahead of access if the optimizer expects the next rows that will be
requested to be on these consecutive pages. With the asynchronous read ratio metric
(synchronous vs. asynchronous reads), you can see to what extent pages are read via this
method. A high number is usually desired for Business Intelligence systems. As with the

© IBM Corporation 2006

bufferpool hit ratio, the asynchronous read ratio metric is available on database,
tablespace and bufferpool level.

Read efficiency
How efficiently queries
are executed (with
regard to how many
rows must be read from
disk compared to how
many rows are actually
returned – that is, how
many rows are part of
the result set) is a
crucial metric. If this
number is relatively
high, DB2 reads much
more data than the user
actually requests.

You can check this
metric on database,
tablespace, bufferpool,
and table level.

© IBM Corporation 2006

FCM buffers
The Fast Communication
Manager (FCM) is a key
component of DB2 data
partitioning feature (DPF).
It is used for
communication between
the partitions. That’s why
DB2 PE provides a
dedicated pane for its
performance metrics.

Section 3.10 describes
FCM tuning in more detail.

Sort
Sorting data is typically
necessary to a large extent
for execution of Business
Intelligence SQL workloads.
Tuning the engine
accordingly is a key task for
Business Intelligence
administrators. For this
reason, DB2 PE displays the
key sort performance
indicators for the DB2 engine
on a dedicated pane in the
Statistic Details window.

Section 3.2, describes how to
address sorting issues.

© IBM Corporation 2006

Locking
When Business
Intelligence systems
require concurrent
incremental load of new
data while the query
workload continues, you
must also check for
locking issues. A
dedicated Locks pane
gives you the best
overview of this.

In addition, DB2 PE
proactively informs you
about deadlocks,
including the relevant
details.

Furthermore, the System
Overview window
provides access to special
dialogs for analyzing
locking conflicts.

For more details about tuning load, see section 3.7.

Dynamic SQL statements
The main purpose of a Business Intelligence system is to return the answers for analytic
queries. Therefore, it is crucial to keep track of the queries that the Business Intelligence
system is running and of how they are performing. The best starting point is the Dynamic
SQL Statements pane in the Statistics Details window. It shows you each statement that
was recently executed along with key properties such as number of executions, compile
time, and execution time.

© IBM Corporation 2006

2.3 Application monitoring and tracing

Applications are a crucial element to monitor in Business Intelligence environments
because they typically execute long running queries. DB2 PE provides a special view for
application specific metrics. Click Application Summary from the DB2 PE System
Overview window.

The window that opens shows a list of all active applications and includes a couple of
important performance metrics. You can see all details about a certain application by
double-clicking it. The Application Details pane opens, which can be used in a manner
that is similar to the Statistic Details pane to navigate to different types of application
metrics. Most of the metrics that are described above for the DB2 engine level are

© IBM Corporation 2006

available on a per-application level here (bufferpool hit ratio, asynchronous read ratio,
read efficiency, and sort metrics).

2.4 History analysis

DB2 PE provides a convenient way to monitor the historical performance of a DB2
system. The panels that are opened from the DB2 PE System Overview window are
opened in online monitoring mode by default. With a single mouse-click you can switch
to history mode to display the exact same metrics. A history slider allows you to
conveniently browse through historical data.

By default, this history data wraps after 50 hours. But you are free to configure any other
number. Just be aware, the more hours that you keep, the larger the performance database
on the DB2 PE server must be able to grow.

2.5 Performance Warehouse analysis

DB2 PE has special long-term storage for performance data called the Performance
Warehouse (PWH). In addition to this data, a set of analyzing features is provided. A
predefined set of HTML reports can be generated, predefined and custom queries can be
executed, and predefined and custom rules of thumb can be evaluated to check for
performance problems that were experienced by the Business Intelligence system over
time.

The query capability is referenced extensively throughout the remainder of this document.

2.6 Operating System monitoring

© IBM Corporation 2006

In addition to a large variety of DB2 metrics, DB2 PE also keeps track and displays OS-
level metrics. There are two links in the DB2 PE System Overview window to that data.
Operating System Information links to the rather static data, such as configured
memory, installed CPUs, and filesystem information. Operating System Status links to
more volatile metrics about paging, processes, CPU consumption, and disk utilization.
All OS-level data is enabled for history monitoring.

2.6.1 Filesystem usage

As your Business Intelligence system grows over time, you typically want to verify that
the storage resources are still sufficient. You might also want to keep an eye on storage
that is needed only temporarily. This is important because Business Intelligence systems
tend to perform large sorts that might require some dedicated disk space. The OS
Information window provides an overview of storage resources.

© IBM Corporation 2006

2.6.2 Disk I/O

Click the Disk Utilization (Delta) category of the OS Status window to display disk I/O
metrics. This pane shows the transferred (that is, read and written) kilobytes and total
number of I/O operations. Note that this data is based on delta intervals. You can either
manually refresh the pane or see this data based on the time between the recent two
refreshes, or you can use the auto-refresh option.

© IBM Corporation 2006

2.6.3 CPU utilization, queues, and paging

The OS Status window also contains information about CPU and paging in the
Performance category.

The Run Queue Length field indicates how many processes are actually ready for
execution, and the Block Queue Length field shows the number of processes that are
waiting for I/O to finish.

Paging is counted in the number of pages being aged in or paged out.
The CPU utilization is divided into user time, system time, I/O wait time, and idle time.

Both CPU utilization and paging data is based on delta values. You can either click the
Refresh button to see the data based on the time between previous and current refresh, or
you can use the auto-refresh feature.

The paging rate and block queue length data can also be visualized in the System Health
pane, and they can be used for threshold definitions for exceptions.

© IBM Corporation 2006

2.7 Visualization

For all performance indicators that have been described so far, DB2 PE also provides a
visual way of displaying them in the System Health window.

In this window you can set up and view a number of dashboards with predefined or
custom defined diagrams (called data views). Like the other dialogs that have been
described so far, the System Health window is fully enabled for history monitoring and
for DPF monitoring (group views).

This allows you to set up dashboards with the Business Intelligence key performance
indicators as described in section 3.11.

2.8 Threshold exceptions / predefined threshold set

A Business Intelligence system typically has certain threshold values for performance
indicators that you should be aware of when they are exceeded. For this purpose, DB2 PE
has the built-in feature of periodic exception processing, which basically means that it
checks defined performance indicators against threshold definitions and raises an
exception (visually, by email, or by executing custom code).

To enable this feature, create a set of threshold definitions and activate them so that they
are considered in periodic exception processing.

© IBM Corporation 2006

When you create such a
new threshold set, you can
use the built-in Business
Intelligence template so
that you do not need to start
from scratch.

© IBM Corporation 2006

3. Business Intelligence Performance Tuning
Scenarios with DB2 PE

This section describes a set of typical Business Intelligence tuning scenarios and how
DB2 PE facilitates them.

3.1 Check if system is CPU bound

The desired state is for the system to be CPU bound, that is, to not spend precious CPU
cycles waiting on any resources, such as I/O.

3.1.1 General approach

A straight-forward method to determine if the monitored system is CPU bound is to open
the OS Status window and to display the Performance pane. Next, switch to auto-refresh
mode so that you permanently are presented with the current state of the system. Then,
check the Block Queue Length field. It should have a low value near 0 because it counts
each process that currently has to wait for a resource such as disk or network.

© IBM Corporation 2006

Next, check the CPU utilization fields. The majority of the time should be consumed by
user and system time. If wait time is a two-digit percentage over a longer time, the system
is I/O-bound rather than CPU-bound and must be revised accordingly.

3.1.2 Visualization

The queue length metrics can also be visualized in the
System Health and System Overview windows. Open
the System Health window, right-click a data group,
and select New…. Name the new data view “Queue
Lengths” and select the category Operating System
Status, Performance before clicking Next. Now
select the counters “Run Queue Length” and “Block
Queue Length” and click Next. Select Dynamic scale
and click Next. Now select the chart type you like,
for example, Line chart, to display a data view like
the one shown here. Now click Finish.

If you want the data view that you just created to be
displayed in System Overview window, right-click it

© IBM Corporation 2006

and select Display in System Overview.

3.1.3 Exceptions

The Block Queue Length can also be automatically checked by DB2 PE against a
threshold. To enable this feature: 1. Click Tools->Exceptions->Exception Processing. 2.
Double-click a threshold set and click Threshold Set->New Threshold. 3. Select the
Operating System Status exception category and the exception field Block Queue
Length. Specify a warning and problem threshold depending on your system. Typically
the block queue length should be below 10, so a warning threshold of 10 and a problem
threshold of 15 might be a good start. 4. Click OK. 5. Activate this threshold set by
clicking Tools->Exceptions->Activation – Multiplatform. In the dialog, select the
threshold set and then press the start button for Periodic Exception Processing.

For other exception processing related features, such as e-mail notification, refer to the
DB2 PE documentation.

3.1.4 Identify I/O bound partitions

Use the following method to identify I/O bound partitions. This method involves
checking for temporary tablespace skew. 1. Open Statistical Details pane for “Table
Spaces” and double-click the system temporary space that you want to check in that
exercise. 2. Display the “Space Management” pane. Make sure that you are in Global
view mode.

If there is repeating data skew on temporary tablespaces in the same partitions, this is an
indication that these partitions are I/O bound or at least significantly more I/O bound than
the other partitions.

© IBM Corporation 2006

Before concluding that a partition is I/O bound based on this method, you must eliminate
other potential reasons for data skew on temporary tablespaces, which could be:

- Data skew on the base tables so that some partitions have to sort more than
others

- Current workloads are using only certain or even a single partition because the
base tables to not span the same partitions as the temporary tablespace does

To eliminate the first of these reasons display the Application Summary window in group
view. Sort the table on the Partition column and check all entries of the partition with
skew detected above. Within this group, look for the entry with the highest sort time. This
partition is a good candidate to check out if it is causing the skew in the temporary
tablespace.

© IBM Corporation 2006

Open the details view by double-clicking the entry of interest and check the rows read
and written counters. Now compare these to the same counters of the details panels of the
other partitions of the same application handle.

If the numbers are approximately the same, then the data skew on the base tables is likely
not the cause of the skew on the temporary tablespace.

© IBM Corporation 2006

3.2 Sort and hash Join tuning

Sorting usually has a large impact in BI systems. For example, ORDER BY, GROUP BY,
DISTICT, HAVING, or UNION clauses require the data to be sorted if there is no
matching index on the according columns. So it is crucial to make sure that sorting is
done in an optimal way.

A good starting point is the Sort/Page Cleaner pane in statistic details for a particular
database. Check for sort overflows and overflowed sorts (%). These occur when a sort
cannot be done in memory anymore.

Another reason for sorting to occur is hash joining. There are special indicators for these
sort types. You should look at the ratio between the number of joins and join overflows.
Check for hash join overflows.

- Statistic Details window: the Join small overflows and Join Overflows fields
- System Overview Data View for Small Join Overflows vs. Join Overflows
- If Join small overflows are more than 10% of Join Overflows, increase the

sort heap.
- If Join overflows are rather high, increase the sort threshold.

© IBM Corporation 2006

If you detect many overflows (of sorts or hash joins) you should determine how to lower
them. Increasing the sort heap (database configuration) should help you if you see many
join overflows in conjunction with many join small overflows. However, if your problem
is a high number of sort overflows, you should check the overall number of post-
threshold sorts, which is available in the Instance Information pane of the Statistic Details
window. If the number of sort overflows significantly exceeds the number of post-
threshold sorts, increasing the sort heap should help you.

Attention: When you compare these numbers take into account that post-threshold sorts
counts for all sorts on all databases, while sort overflows are always counted on a per
database basis.

Before increasing the sort heap, you can use the Instance Information pane to determine
how many pages are currently allocated.

© IBM Corporation 2006

If a significant number of sorts (more than 5%) end as post-threshold sorts or as Hash
join threshold (these are post-threshold hash joins), consider increasing the sort heap
threshold in the database manager configuration.

A more general way to resolve sort problems is to avoid sorting through the use of
materialized query tables (MQTs). (You can create MQTs on typical joins, ORDER BYs,
GROUP BYs, and so on your base tables.) For more information about MQTs, see
section 3.9.

You can also set up data views for sort performance indicators as illustrated in the
following figure to support a more intuitive detection of the aforementioned sort
problems.

© IBM Corporation 2006

If you detect many sort or hash join overflows, you might first want to check how much
data is actually spilling to disk for being sorted. You can do this by looking at the
temporary table space consumption and usage in the Statistics Details window for the
temporary table space in the Containers and Access panes.

© IBM Corporation 2006

3.3 Page I/O tuning

Business Intelligence workloads impose a large amount of I/O on tablespaces. For this
reason, it is essential to have a close look at page I/O metrics. You can do this analysis at
the database, bufferpool, and tablespace level, as well as at the application level. This
scenario focuses on the tablespace level. 1. Open the Statistic Details window and display
the Table Spaces pane. 2. Double-click a tablespace. You should start with your most
critical tablespace (the one where the fact table or tables are located). The Access pane
opens, which contains details about page I/O. 3. Evaluate the following metrics:

© IBM Corporation 2006

Bufferpool hit ratio
Check the bufferpool hit ratio. The higher it is the less page I/O has to be done to the
tablespace containers. In large Business Intelligence systems it is typically not possible to
achieve a high overall bufferpool hit ratio. Therefore, it is a good practice to at least tune
the index page hit ratio. If your index data is located in a separate tablespace than the
table data, examine the hit ratio for that tablespace and tune it by gradually increasing the
bufferpool size, (which can be done dynamically) and by running a test workload against
the system. While you are doing this, watch the bufferpool hit ratio for the index
tablespace in the Access pane. Stop when increasing the bufferpool size does not increase
the hit ratio anymore.

You can determine which bufferpool is caching data for this tablespace by looking at the
Configuration pane in the Bufferpool – Currently being used field, which displays the
ID of the responsible bufferpool.

Prefetching
Prefetching is a technique that is used by DB2 to decouple I/O operations to the
tablespace containers from the page requests by the process that is executing a statement.

© IBM Corporation 2006

DB2 anticipates the pages that will be requested next and then asynchronously prefetches
them to the bufferpool while the actual statement execution continues.

The amount of prefetching can be seen in the Async. Reads and Async. Read
percentage (%) fields and in the Distribution of physical reads in % graph of the
Access pane.

In addition, you can check single statements if they do prefetching if you look at the
access plan of the statements (as described in section 3.5.4, “Understanding statement
plan).

One type of prefetching is sequential prefetching, which is chosen when pages on disk
are expected to be in the physically needed order (also referred to as cluster ratio).
Sequential prefetching is an option for table scans. In the explain output, look for nodes
of type TBSCAN and double-click them. In the Input arguments box, check the
Prefetch argument to see if sequential prefetching is being performed for that table scan.

Another type of prefetching is list prefetching, which is chosen when pages on disk are
not in the required order but the table is accessed through the use of an index. For list
prefetching the RIDs that are retrieved from the index are sorted, and then the list of
pages that they point to is prefetched. In the explain output look for chains of nodes of
type IXSCAN, SORT, RIDSCN, and FETCH. Double-click the FETCH node. In the
Input arguments box check the Prefetch argument to see if list prefetching is being
performed for that table scan.

© IBM Corporation 2006

Sequential prefetching is the preferred way of performing table scans. You can support
DB2 choosing and performing sequential prefetching by ensuring a good cluster ratio on
the columns the table is sorted over right after a table scan. This is achieved by
maintaining an index on the same columns in the same sort order and declaring it as the
CLUSTERING INDEX. If you have created a clustering index on an existing table, you
should run REORG and RUNSTATS on that table after you create the index.

If you determine that DB2 does a lot of prefetching (by evaluating the metrics in the
Access pane), you should determine if your system is I/O bound by looking at the I/O
wait time indicator (as described in section 3.1.1). If this is the case, try to increase the
PREFETCHSIZE parameter for the tablespaces where prefetching is done. But be aware
that prefetching might not have been the cause of the I/O waits.

Increasing the PREFETCHSIZE too much leads to wasted I/O operations, which will be
visible as a lower bufferpool hit ratio. So as you increase PREFETCHSIZE, also pay
attention to the hit ratio. As soon as it goes down you might have increased
PREFETCHSIZE too much. If you are monitoring on a bufferpool level you also have
the counter available for “Unread prefetch pages” that provides direct information about
prefetching effectiveness.

© IBM Corporation 2006

Block-based bufferpools
A further step to tune sequential prefetching is to also allow the pages in the bufferpool to
be in the same order as they are on disk, which allows DB2 to use single I/O operations
to read entire sequences of contiguous pages into the bufferpool. To enable this you must
create the bufferpool with the option to reserve a fraction of the entire pool for block-
based I/O.

You can monitor how effective this option is set up in the bufferpool details in Access
pane of the Statistics Details window. If you have set up a block-based bufferpool and
you see that the Number of block based IO requests field contains a very low number
or almost the same as is in the Number of vectored IO requests field, you should
consider changing the block size parameter of the bufferpool. The block size should be
aligned with the extent size of the tablespaces. If this is not the case you might waste
space in the block area of the bufferpool. If the value of the Total number of pages read
by block IO field divided by the value of the Number of block IO requests field is
much less than the defined block size, your block size might be too high with regard to
the extent size of the tablespaces.

Read efficiency
This important I/O-related performance indicator has already been described to some
extent in section 2.2. If you encounter many read rows but see only a few selected rows

© IBM Corporation 2006

you should revise your queries and determine if you are doing many table scans, which
could be avoided by an appropriate index. Also, you might consider using MQTs for
frequently joined tables. See section 3.5.4 for details about the execution plan.

3.4 Detecting skews

There are two basic approaches to detect skews with DB2 PE:

• You can set up a visualization dashboard in the System Health window for
performance indicators that you want to know the skew on the partitions for.

• You can use the table displays of the group views in the data panels of DB2 PE.

3.4.1 Visualized skew detection

“The following figure is an example of a dashboard that has been set up in System Health
to identify skews on sort behavior. See section 3.11 for details about setting up data
views.

© IBM Corporation 2006

Another interesting way to visually recognize data skew is available in the statistics
details pane as described in 3.4.1.2

3.4.1.1 Bufferpool hit ratio skew
The bufferpool hit ratio can be evaluated on different levels:

- Database
- Tablespace
- Bufferpool
- Application

For all of these levels, DB2 PE also facilities checking for skews in the bufferpool hit
ratio.

Open the Statistic Details window, switch to group view, and select the single panes for
Database, Table Spaces, and Buffer Pools to verify the hit ratio distribution over the
partitions.

© IBM Corporation 2006

If you are interested in hit ratio values divided by index and data, you can find them by
drilling down to the database or tablespace details respectively.
To check for the hit ratio distribution on application level, open the Application Summary
window, switch to group view, and sort over the Application Handle column to see
application details for each partition and grouped together per application. Then check
the Hit ratio (%) column for uneven distribution of the hit ratio.

3.4.1.2 Data skew

DB2 PE provides means to check for data distribution at the database and tablespace
level. Open the Statistics Details window, select the Table Spaces pane, and double-click
the tablespace that you are interested in. Switch to group view and select the Space
Management pane. A table is displayed that contains the allocated and free space of the
selected tablespace on each single partition.

© IBM Corporation 2006

There is also a visual way to check for data skews on tablespace level. Open the
Tablespaces – Space Management pane and switch to global view. A pie chart is
displayed that visualizes the data distribution of the tablespace in terms of used pages.

Note that this pie chart is available only in online monitoring. Due to technical reasons, it
is not available in history mode.

© IBM Corporation 2006

3.4.1.3 Other skews

The group view feature of DB2 PE provides ways to look for skews on many more
performance indicators. As an example, the following figure shows how to check for
skews on DB2 I/O data, such as rows read and rows selected.

© IBM Corporation 2006

In this example figure, two partitions deviate from the average rows read per selected
number. Partition 0 returns almost each row read because it is the coordinator partition in
this particular scenario. Partition 6, however, has a multiple of the average rate and might
need some attention.

You can look for skews on the other important performance indicators by opening the
associated panes and switching to group view.

3.5 Understanding long-running queries

3.5.1 Identifying the top 10 statements
Whether you want to tune you Business Intelligence system or you want to find the
source for poor performance in general, you need a starting point. A good way to start is
to find the top 10 statements with regard to execution time. This can easily be achieved
by opening the Statistics Details window and accessing the Dynamic SQL Statements
pane. Click the Receive statement cache information button at the bottom of the pane,
and DB2 PE will request and display this data. Now sort the Avg. time per execution
column. You might also want to use other columns to find the top 10 statements, such as
the Executions and Elapsed time columns.

© IBM Corporation 2006

You can also find the top 10 statements by examining the performance history. To do so,
switch to history mode and scroll to the point in time that you want to perform this check
for.

3.5.2 Linking top 10 statements to execution details

The dynamic SQL statement information shown in the previous section represents
aggregated data over all executions of these statements. This means that it is not directly
possible to drill down to the applications (as displayed in the application summary) that
executed these statements.

But you can leverage the Query facility in Performance Warehouse to define and execute
a query that shows you all entries when one of the top 10 statements has been captured in
the application summary. To do so: 1. Open the Performance Warehouse – Analysis
window, go to Query groups, and create a private group is one does not already exist. 2.

© IBM Corporation 2006

Right-click the group and select Create. Give the new query a name and description and
paste the following query text in the appropriate entry field on the Definition pane.

WITH
LAST(last_ts) AS
 (SELECT MAX(HT_TIMESTAMP)
 FROM DB2PM.HISTORYTOC
 WHERE HT_DATA='DYNAMICSTATEMENTCACHE'),
TOP10(statement, ms_per_execution, top) AS

(SELECT distinct sql.STMT_TEXT, sql.ATIMEP_EXECUTIONS,
 ROW_NUMBER() over

 (ORDER BY ATIMEP_EXECUTIONS DESC) AS TOP
FROM DB2PM.DYNSQL sql, LAST
WHERE sql.INTERVAL_TO=LAST.last_ts
 AND MEMBER_ID = -2
ORDER BY ATIMEP_EXECUTIONS DESC
FETCH FIRST 10 ROWS ONLY)

SELECT TOP10.top top_stmt_number,
MAX(applstmt.INTERVAL_TO) last_captured_at,
applstmt.AGENT_ID application_handle,
applstmt.STMT_START statement_started_at,
applstmt.STMT_TEXT text
FROM DB2PM.STATEMENT applstmt, TOP10
WHERE applstmt.STMT_TEXT = TOP10.statement
 AND MEMBER_ID = -2
GROUP BY applstmt.STMT_START, applstmt. STMT_TEXT,

 applstmt.AGENT_ID, top10.statement, top10.top
ORDER BY top10.top

3. Click OK to save the query. 4. Right-click the query and select Execute. In the menu
that opens, click Execute again. Depending on how much data you have recorded in the
history, this query might run for several minutes.

© IBM Corporation 2006

When the query finishes running, results such as those that are shown in the following
figure are displayed. These results show one row per point in time when an application
executed one of the top 10 statements.

5. Select one of these entries, note the according point in time, and open the Application
Summary window. Switch to history mode and scroll to the same point in time. Look for
the same application handle as in the selected entry of the query results. Double-click the
entry to display the details about the application and you are done.

© IBM Corporation 2006

3.5.3 Checking for skews per query execution

In the Application Summary window, you can check for different types of skews
regarding query executions. 1. Switch to group view and sort over the Application
handle column. 2. Scroll to the application that you are interested in. You will see one
row per partition involved in the query execution for the current statement. 3. Check the
columns of important performance indicators, such as user CPU time, system CPU time,
sort overflows, and hit ratio for skews over the different partitions.

© IBM Corporation 2006

If you have a higher number of partitions you might want to use the filter
function to limit the table content to just the application handle that you are
interested in. You can then sort more freely over the columns with performance
indicators that you want to check for skews.

3.5.4 Understanding the statement plan

After you have found an entry of interest in the Application Summary window you can
drill-down into details by double-clicking the entry. In addition to other details you will
see information about the SQL statement and package in the associated category on the
leftmost pane. From here you can also explain the statement by clicking Explain.

Clicking Explain opens the Visual Explain tool (as known from DB2 GUI tools), which
you can use to explore the plan details. The numeric values in each box represent the

© IBM Corporation 2006

estimated effort for that operation in an imaginary unit called timerons. You can identify
the hot spots of the plan by looking for the big increases of those numbers that are higher
in the tree. Boxes that are higher in the hierarchy include the aggregated timerons on their
direct children boxes (that is, if the number of a parent box is just slightly more than the
sum of the numbers in all children boxes, the operation that is represented by that parent
box is very cheap).

For general information about interpreting explain output please refer to the DB2
documentation.

Note that the same explain capability of DB2 PE is also available directly from the
Dynamic SQL Statements pane of the Statistics Details window after you have opened
the details pane for a selected statement.

In DPF environments a statement plan is broken down into subsections. Each subsection
is executed in a dedicated agent; potentially the same subsection is executed many times
in parallel by multiple partitions. The results of one subsection are the input data to the
following subsection. The data between subsections is exchanged through the use of table
queues. A table queue can be imagined as a never-materialized temporary table within a

© IBM Corporation 2006

communication buffer between partitions. Visual Explain allows you to detect the
different subsections. To do so, look for table queues. Each part of the plan tree between
table queues is a single subsection. The previous figure shows a statement with four
subsections outlined in blue boxes.

An interesting component of the
plan is the table queue
(TQUEUE), of which there are
different types. To determine the
type, double-click on a table
queue box and look at the Table
queue send type.

You should look for table queues
send types of Directed because
this type might impose a
potential performance issue.
They are usually inevitable if
two larger tables need to be
joined over columns where at
least one of them is not part of a
partition key. As a consequence,
one or even both of the tables
must first be scanned and
dynamically hashed on the join
column. Then the hashed data is
sent via table queues to the according partition where the actual join is performed. This
operation results in a lot of data being transferred over the wire if the tables are large.

Requirement: Even if both tables have the join column in the partition key, a directed
table queue is required if the two tables have different partition maps (that is, if they are
stored in tablespaces of different node groups).

If you detect directed table queues, you might want to reconsider the partition keys or the
distribution of tables to node groups, or you might want to revise the queries. The
optimum goal to strive for is collocated joins between the tables. You can recognize them
by using Visual Explain to look for joins between tables that do not involve a table queue.
A common approach to working with different partition keys of tables that you need to
join is to create and maintain an MQT on one of the tables with a different partition key
than the other joined table. The optimizer will then decide to rewrite queries that these
tables to a join that accesses the MQT instead of the base table, which results in a
collocated join.

If you detect broadcast table queues for small dimension tables, consider creating
replicated MQTs on them (CREATE TABLE … AS … REPLICATED), which means

© IBM Corporation 2006

that they physically exist redundantly on each partition and which allows to optimizer to
choose collocated joins when these tables are joined (for example, with the fact table).

3.5.4.1 Monitoring subsections

In addition to the approach to that is described in section 3.5.3, you can also perform a
detailed analysis of the execution per subsection by using the Subsections pane of the
Application Details window. The table displays one entry per subsection per partition.

In the following example (which represents the same query that is presented in the Visual
Explain example in section 3.5.4) you can see that subsection 3 is executed in parallel by
partitions 1 through 5. Within these five entries you can look for skews in the areas of
CPU, rows read/written, and table queue length. The latter indicates how much data is
read and written from/to a table queue (as shown in the Number of Rows Read from
Tablequeues and Number of Rows Written to Tablequeues columns). If there are
significant deviations for the same subsection (for example, partition 5 of subsection 1 in
the picture below) a partition might be over-utilized. The reason could be data skew.

Generally, high numbers of table queue lengths are an indicator for directed table queues
that might need your attention (as described in section 3.5.4).

The same properties can also be used to understand more about the selectivity of the
subsections. For example, subsection 2 (nested loop join with table
PROTOCOL_NAMES) has a selectivity of 100 % because it reads the same number of
rows from its input table queue as it writes to its output table queue. On the other side,
subsection 1 (hash join with COOKIE_NAMES) has a very low selectivity so far (which
might change because the query is still executing and subsection 1 is still waiting to send
data via the table queue to subsection 0).

© IBM Corporation 2006

By scrolling horizontally you can check for other properties.
The Subsection Status column indicates the current state of query execution. In the
previous figure you can see that subsections 3 and 2 are already done. Subsection 1 is
actually done as well but still needs to send some data to subsection 0, which is the
coordinator subsection and which is currently executing (that is, receiving data).

The Total Number of Tablequeue Buffers Overflowed and Maximum Number of
Tablequeue Buffers Overflows columns indicate if data had to be written to temporary
tablespace. This can occur if there are multiple partitions reading for the same table
queue and some of them are not fast enough to read the data. The sending subsection is
then spilling the data for the slower receivers to disk so that it can continue to send the
data to the other receivers.

3.5.5 Check for SORT issues

A general indicator that large SORTs are happening and might be the cause for a slow
query execution is a high rows written rate. Even though the statement is just a SELECT,
rows are written to disk if a SORT or HASH JOIN cannot be done in memory. The
following figure shows a rather high number of rows being written to disk, which is
indicated in the application details.

Note: You can also check for Rows Written in dynamic SQL table in the Statistics
Details window. Here you can likely sort over this column to see the statements that are
writing to disk the most.

© IBM Corporation 2006

To verify your suspicion of a sort problem you should determine if the application that is
executing this statement has many sort or hash join overflows. You can find this
information in the Sort category of the Application Details window.

© IBM Corporation 2006

If you are interested in sort indicators (for example, if you want to find the top statements
with regard to sort issues), you can also use the Dynamic SQL Statements window pane
of the Statistics Details window and sort over Sort overflows or Rows written columns.
See section 3.5.1 for more information.

3.5.6 Canceling long-running queries

If you identify a long-running query that is having a severe negative impact on the entire
performance of your system, and you do not have access to or influence on the person or
application that has issued this query, you can use DB2 PE to cancel this query. The
associated application will be rolled back and closed immediately.

To do so, open the Application Summary window in global view, right-click the
application that issued the query, and click Force Application. Then either enter the user
ID (and password) that started that application or a user ID with at least SYSMAINT
authority on the monitored instance.

© IBM Corporation 2006

3.6 SQL tracing

Sometimes you need to perform a complete SQL trace of an application or, in some cases,
entire Business Intelligence systems in order to better understand a performance problem.
DB2 PE provides means to run ad-hoc SQL traces for a selected application, as well as to
schedule and perform complete traces for an entire Business Intelligence system. DB2
PE offers a set of features to help you analyze the data that is collected in these SQL
traces. These features include the ability to generate SQL Activity HTML reports and a
set of predefined analyzing queries.

The simplest way to do ad-hoc tracing of a current application is to open the Application
Summary window in partition or group view, right-click the application that you want to
trace, and select SQL Activity Tracing. In the SQL Activity Report Generation dialog
that opens specify how long the trace should run, if it should also capture static SQL (in
case your application uses it), and if the data should be deleted from the PE database after
the report has been created.

Now let the application perform the action that you want to trace and click OK in this
dialog to start the trace.

© IBM Corporation 2006

After the specified tracing time is reached and after some internal processing of the data,
the results are displayed in an HTML report that outlines all of the SQL statements of the
selected application and their execution metrics during the trace time.

If you do not have a specific application that you want to trace but rather you want to
trace the entire SQL workload, you can do this by scheduling a process in the DB2 PE
Performance Warehouse dialog. The DB2 PE Performance Warehouse dialog offers
additional options for the data that you collect. For example, in addition to generating
reports, you can also just collect the SQL activity trace and then run some analytic
queries or rules of thumb against it.

© IBM Corporation 2006

To generate an SQL activity
report in Performance
Warehouse: 1. Double-click
Performance Warehouse -
Expert in the System
Overview window, navigate to
your instance, and expand the
Process Groups folder. 2. If
you have only the predefined
Public group, create a custom
group by selecting Create
from the context menu and
providing a name for the group.
3. Right-click Public-
>Processes-
>DB2PM.Template SQL
Activity Summary Report
and select Copy from the
menu that opens. 4. Select the
previously created new process
group and click OK.

5. Navigate to the previously created process group, right-click Processes->SQL
Activity Summary Report and select Execute… from the menu that opens. In the dialog
that opens, select whether you want to start
the trace immediately (similar to the option
that was described above for a single
application), to run it at a scheduled time, or
to set up a schedule if you want to have the
trace collected periodically.

3.7 Monitoring and tuning load

Not only do Business Intelligence systems need to handle analyzing the workload, they
also need to accommodate the periodical incremental loading of new data into the tables.
The load actually consists of three steps. First there is the actual load, import, or plain
insert of new data to the tables. Then the MQTs need to be refreshed. Finally the statistics
need to be updated. The data might first be loaded to staging tables, followed by an

© IBM Corporation 2006

INSERT…SELECT statement that moves the data from the staging table to the actually
queried table.

DB2 PE provides dedicated means to monitor load processes. To do so: 1. From the
Statistic Details window, select the Utility Information pane and display it in global view.
If the load is currently running, you will see one entry per partition that the load affects,
as shown in the following figure. If there were multiple load processes running at the
same time, you can distinguish them by examining the Utility ID column.

2. Double-click any of the entries to display details about the current status of the selected
load process on each partition. As shown in the following figure, you can track the
progress of the load steps on the single partitions by looking at the Progress percentage
complete column for the different nodes. Use the manual or auto-refresh option to track
the progress over time.

© IBM Corporation 2006

3.7.1 Utility heap

The load process uses the utility heap as memory buffer. When you load data into MDC
tables this buffer is heavily employed to build the MDC blocks. You can monitor the
utility heap in the Memory Pool Usage pane of the Statistic Details window. Look for the
heap type Backup / Restore / Util Heap and double-click it.

The Statistics Details window that opens contains a High Water Mark (bytes) column
that displays the heap on each partition. Unfortunately, due to the way DB2 exposes these
metrics, DB2 PE cannot display the actual node number here (the fragment number is not
the node number). But if you want to see the high water mark for a dedicated partition,
you can switch to partition view for that partition.

© IBM Corporation 2006

Check the high watermark against the values in the Configured size (bytes) column. If it
is near or equal to that size you should consider increasing the utility heap size.

3.7.2 Monitoring tablespaces

Before you start the load or as the load is running you should make sure that the
tablespaces are not nearing their maximum capacity. You can track the size of the
tablespaces in the Statistics Details window. To do so, select the Table Spaces category
and double-click the tablespace. Then select the Containers category. Check the Free
space on file system (MB) column to see how much space is left for the containers to
grow.

© IBM Corporation 2006

3.7.3 Log space

If you are loading to staging tables first, you will do the INSERT...SELECT from the
staging tables to the actually queried tables after the load is complete. This is a
transactional process, which leads to transaction logging. There are two potential issues
to be aware of:

The first is that your available transaction log space might run full. This can happen if
you do the incremental INSERT in one or a few big transactions (for example, you have
one INSERT…SELECT for the entire data of the staging table). You can check your
transaction log space usage for your database in the Logs pane of the Statistics Details
window.

© IBM Corporation 2006

The problem of log space running full can be resolved either by increasing it or by having
more granular transactions (for example, by splitting up the INSERT…SELECT from the
staging table to many statements with according range predicates).

The second potential problem is that that logging can cause a bottleneck due to I/O. You
should watch the logging page activity (in the same pane as the log space usage) and the
disk I/O of your disks where the transaction log files are located. See section 2.6.2 for
more information.

Logging I/O problems can be countered by distributing the filesystem for transaction log
files over more physical disks. You can also try to increase the size of the log buffer
(LOGBUFSZ in the database configuration).

3.7.4 Concurrent load and analytics

Oftentimes, the incremental load must run concurrently with the ongoing analytic
workload. In these cases you must also check for concurrency issues in which the queries
are blocked by a load or vice versa. It is especially true for concurrent load and analytics
that the previously mentioned staging tables are used for loading the data to the actual
tables and then doing INSERT…SELECT operations into the actual tables.

There are different strategies to avoid concurrency issues. For example, you can issue the
queries with isolation level Uncommitted Read (UR). This strategy causes the queries to
read rows that have been inserted but not yet committed, as if the commit already

© IBM Corporation 2006

happened. Another strategy is to set the DB2 registry variable
DB2_SKIPINSERTED=YES, which causes the query to ignore the not-yet-committed
rows. In both strategies, the queries are not blocked by the concurrent process that is
inserting new data into the table.

But before thinking about this you should determine if you have concurrency problems
and, if so, what the cause is.

3.7.5 Detecting concurrency issues

One issue potential issue is
that some applications must
wait for others for a longer
time. You can check this in
the Locks pane of the
Statistics Details window.
Look at the values in the
Waits and the Time waited
(sec) fields and see if the
wait time is high with regards
to a selected delta interval.

Another potential issue is
that you are experiencing
deadlocks (as determined by
looking at the Deadlocks
detected field).

A potential reason for both
problems could be that you
are experiencing lock
escalations too (as shown in
the Escalations field). If you
are, you should tune your
lock list size. Check the List memory in use (bytes) field. If it is near the configured
lock list size, you should increase your lock list size (LOCKLIST). To determine the
current lock list size, look at the Maximum storage for lock list (4 KB) field in the
System Parameters – Database window, which is an be opened from the System
Overview window. If not, you should increase the Max. percent of lock list before
escalation (MAXLOCKS) parameter to a higher value because it limits how much of the
lock list can be consumed by a single application in percent.

Another way to mitigate problems with lock list size is to avoid locking altogether by
using Uncommitted Read (UR) isolation level.

© IBM Corporation 2006

It is not always possible to modify the lock
list to solve concurrency issues. When it is not
possible, you must analyze these issues in
more detail. If you want to find out which
applications are conflicting with each other,
you can use the Applications in Lock
Conflicts pane from the System Overview
window. If you would rather know which
tables that the lock waits are happening on,
you can use the Locking Conflicts pane.

If you want to analyze deadlocks you should
start the event exception processing for
deadlocks in the Activation dialog (From the
System Overview window, click Tools->
Exceptions->Activation – Multiplatform).
As soon as a deadlock is detected, DB2 PE
will raise an exception and display it in the
System Overview window, where you can
double-click it to drill down to the deadlock
details.

3.8 Parameter marker check

BI systems typically execute analysis statements that take longer per definition. For that
purpose the optimization of statements by DB2 is a crucial performance factor. Therefore,
the DB2 optimizer should get as much information as possible for the statement
compilation, including the values of all predicates. It is normally better to not use
parameter markers in the statements but rather to specify the values as literals directly.
This leads to DB2 statement compilation with literally each execution. But the time that
is required by this approach is normally less than the time that would be spent executing
of a less optimal plan that the optimizer has created due the missing knowledge of
parameter marker values.

The following query can be used to check all statements that are executed by the system
for the use of parameter marker values. Refer to section 3.5.2 for information about
creating new queries. The result list shows one entry per such statement along with its
average execution time. Use the PWH query facility to store and execute this statement.

SELECT sql.STMT_TEXT statement_using_par_markers,
 AVG(sql.ATIMEP_EXECUTIONS) avg_exec_time,
 MIN (INTERVAL_TO) first_captured_at,
 MAX(INTERVAL_TO) last_captured_at

FROM DB2PM.DYNSQL sql
 WHERE MEMBER_ID = -2 AND LOCATE(STMT_TEXT, '?') <> 0
 GROUP BY sql.STMT_TEXT

© IBM Corporation 2006

ORDER BY AVG(sql.ATIMEP_EXECUTIONS)

3.9 Verify MQT effectiveness
Materialized query tables (MQTs) are an elementary building block for Business
Intelligence performance. However, it is not desirable to maintain MQTs that provide
zero or even rather low performance benefit to the actual Business Intelligence workload
that is executed. You can use DB2 PE to verify if and to what extend a MQT is used.

Use the explain capability (see section 3.5.4) to determine if certain queries are using
MQTs or not. You can recognize that in the explain output by looking for the base tables
that the query text actually refers to. If there is an eligible MQT for the query, the
optimizer rewrites it to run against the MQT. In the explain output you will see MQT(s)
that are being accessed instead of some or all base tables.

If you want to see to what extent MQTs are used in total, open the Statistics Details
window and navigate to the Tables category. Select the check box at the bottom to make
DB2 PE retrieve and display table access statistics. Then, locate the MQTs and compare
their I/O statistics (in the Rows read column) with those of the base tables to understand
to what extent MQTs are used over base tables.

3.10 FCM tuning

Between partitions on different physical machines, the underlying transport infrastructure
for the table queues (see section 3.5.4) is the fast communication manager (FCM). The

© IBM Corporation 2006

main configuration parameter for it is the number of FCM buffers (num_fcm_buffers) on
the database manager level. You can determine if this parameter is set appropriately by
opening the Statistics Details window, navigating to Instance Information -> Fast
Communication Manager, and switching to global view.

The key property to monitor is the Free buffers low water mark. It should not be too
low (for example, less than 5% of num_fcm_buffers) or even 0 because this means that
the number of FCM buffers are not sufficient to satisfy the actual inter-partition
communication. You should increase the num_fcm_buffers parameter, or alternatively try
to achieve more collocated joins (see section 3.5.4) to avoid some need for shipping data
between partitions.

Alternately, a rather high number for the low water mark (for example, more than 50% of
num_fcm_buffers) is also a cause for concern. There are several reasons for a high
number for the low water mark, including:

- Too many FCM buffers are configured (your workload just doesn’t need that
much).

- All partitions are on the same machine (no FCM communication is needed).
- No workload is running.
- Network capacity is not sufficient to handle FCM communication.

If you see skew on the low water mark on certain partitions, check these partitions for
issues such as I/O bound execution.

3.11 Dashboard monitoring of key Business Intelligence
performance indicators

© IBM Corporation 2006

At several places throughout this document, you have probably noticed the capability of
DB2 PE to visualize performance data in different types of diagrams based on the System
Health window (see section 2.7). This window allows you to set up data visualization in a
very flexible way, including the custom setup of dashboards for different Business
Intelligence monitoring topics.

To set up your Business Intelligence
performance dashboards: 1. Open the
System Health window from the System
Overview window. 2. Create new data
groups (one for each dashboard) by
right-clicking Data Groups and
selecting New…. A suggested set of
dashboards is:

- Sorts
- CPU / Memory / Disk
- Page I/O
- Workload
- FCM
- Incremental Load
- Storage

3. Now you can define the single thresholds
in the data groups. DB2 PE provides a set
of predefined data views, as well as the
possibility to freely define custom ones (by
clicking New…). For the custom data views
you can choose between different data
categories and then select one or multiple
counters of that category. There is a rich set
of options for displaying the diagram. For
details refer to the DB2 PE documentation.

© IBM Corporation 2006

The System Health window supports
exporting data view definitions per group to
an XML file, which allows you to distribute
your own dashboard definitions to other
DB2 PE clients and to import them there.
This document is also accompanied with a
Business Intelligence-specific set of data
view definitions that you can use to set up
your Business Intelligence dashboards with
minimal effort.

The figure on the right shows the data view
definitions that are found in these
supplementary XML files. Refer to
“Appendix – Importing Business
Intelligence data ” for information about
deploying these Business Intelligence data
views to your DB2 PE system.

By using the System Health window, you
have a very powerful means of intuitive
access to your Business Intelligence
performance because it supports online
monitoring via the auto-refresh option as
well as history browsing, as is the case with
any other DB2 PE monitoring panel.

© IBM Corporation 2006

As demonstrated in section 3.4.1, you can also apply the partition group view to the
System Health window, which allows you to see a visualized display of your monitoring
data for each single partition side by side.

The System Health window is also the dialog that you use to set up the most important
data views for being displayed in the System Overview window for your system. Just
check Display in System Overview in the context menu of a data view. The icon
visually indicates that it is now also available in the System Overview window. The
System Overview node holds all of the data views that have been marked in this way.

© IBM Corporation 2006

4. Conclusion

Business Intelligence performance is heavily related to DB2 performance, both of which
require tooling support to understand and resolve performance issues. DB2 Performance
Expert for Multiplatforms provides a very rich set of DB2 performance monitoring
capabilities that you can use to perform many Business Intelligence performance tuning
tasks. An especially convenient feature is DB2 PE’s DPF-monitoring capability, which
makes DB2 PE an extremely useful component of Business Intelligence environments.
DB2 PE’s advanced monitoring techniques, such as history monitoring, exception
processing, performance warehousing, and performance visualization, provide a great
deal of flexibility and value.

Appendix – Importing Business Intelligence data views

DB2 PE provides a set of Business Intelligence data view definitions that you can use to
help you to set up your Business Intelligence dashboard quickly and easily. These
definitions are provided to you as a set of XML files in the installation directory of your
client in samples\SystemHealth directory. To deploy them to your DB2 PE
installation:

1. Open the System Health window, right-click Data Groups, and select Import….
2. Navigate to the directory where you unpacked the zip file, select an XML file, and then
click Open.
3. Depending on the XML file that you selected, additional dialogs might be displayed.
Enter the appropriate information in these dialogs:

For BI_DataViews_CPU_Memory_Disk.xml: Specify the disks that you want to
monitor I/O for.

For BI_DataViews_FCM.xml: Specify the partitions that you want to monitor
FCM buffers for.

For BI_DataViews_Sorts.xml, BI_DataViews_IncrementalLoad.xml,
BI_DataViews_PageIO.xml and BI_DataViews_Workload.xml: If you have
configured multiple databases of your monitored DB2 instance for monitoring in
DB2 PE, select the database that you want to monitor sorting, data loading, page
I/O, and general workload for.

For BI_DataViews_Sorts.xml: Specify the disks where your temporary
tablespaces are placed.

For BI_DataViews_Storage.xml: Specify the file systems for which you want to
monitor the usage.

	0. About this document
	1. Introduction
	2. DB2 PE features for Business Intelligence
	2.1 DPF monitoring and skew detection
	2.1.1 Partition-level skews
	2.1.2 System-level skews

	2.2 Engine monitoring
	2.3 Application monitoring and tracing
	2.4 History analysis
	2.5 Performance Warehouse analysis
	2.6 Operating System monitoring
	2.6.1 Filesystem usage
	2.6.2 Disk I/O
	2.6.3 CPU utilization, queues, and paging

	2.7 Visualization
	2.8 Threshold exceptions / predefined threshold set

	3. Business Intelligence Performance Tuning Scenarios with DB2 PE
	3.1 Check if system is CPU bound
	3.1.1 General approach
	3.1.2 Visualization
	3.1.3 Exceptions
	3.1.4 Identify I/O bound partitions

	3.2 Sort and hash Join tuning
	3.3 Page I/O tuning
	3.4 Detecting skews
	3.4.1 Visualized skew detection
	3.4.1.1 Bufferpool hit ratio skew
	3.4.1.2 Data skew
	3.4.1.3 Other skews

	3.5 Understanding long-running queries
	3.5.1 Identifying the top 10 statements
	3.5.2 Linking top 10 statements to execution details
	3.5.3 Checking for skews per query execution
	3.5.4 Understanding the statement plan
	3.5.4.1 Monitoring subsections

	3.5.5 Check for SORT issues
	3.5.6 Canceling long-running queries

	3.6 SQL tracing
	3.7 Monitoring and tuning load
	3.7.1 Utility heap
	3.7.2 Monitoring tablespaces
	3.7.3 Log space
	3.7.4 Concurrent load and analytics
	3.7.5 Detecting concurrency issues

	3.8 Parameter marker check
	3.9 Verify MQT effectiveness
	3.10 FCM tuning
	3.11 Dashboard monitoring of key Business Intelligence performance indicators

	4. Conclusion
	Appendix – Importing Business Intelligence data views

