

ibm.com/redbooks

Draft Document for Review October 2, 2007 10:12 am SG24-7524-00

DB2 Workload Manager
for Linux, UNIX, and
Windows

Whei-Jen Chen
Bill Comeau
H T Morgan

Larry Pay
Marcia Miskimen

S Sadish Kumar
Tapio Väättänen

Tomoko Ichikawa

Achieve business objectives effectively
with DB2 Workload Manager

Use Performance Expert and
Design Studio with DB2 WLM

Manage DB2 workloads
proactively

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 Workload Manager for Linux, UNIX, and
Windows

November 2007

International Technical Support Organization

Draft Document for Review October 2, 2007 10:12 am 7524edno.fm

SG24-7524-00

7524edno.fm Draft Document for Review October 2, 2007 10:12 am

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2007)

This edition applies to DB2 9.5 for Linux, UNIX, and Windows.

This document created or updated on October 2, 2007.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Draft Document for Review October 2, 2007 10:12 am 7524TOC.fm
Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this book . xi
Acknowledgements . xiii
Become a published author . xiv
Comments welcome. xiv

Chapter 1. Introduction . 1
1.1 Workload management . 2
1.2 DB2 Workload Manager . 3

Chapter 2. WLM architecture and features . 7
2.1 DB2 Workload Manager concepts. 8

2.1.1 DB2 service classes . 9
2.1.2 DB2 workloads . 11
2.1.3 DB2 thresholds . 14
2.1.4 Work class sets and work action sets . 17

2.2 Architecture . 20
2.3 DB2 WLM monitor and control capabilities . 24

2.3.1 Real-time monitoring . 24
2.3.2 Statistics table functions . 25
2.3.3 Event monitors for DB2 WLM . 26
2.3.4 WLM stored procedures . 29

2.4 New database configuration parameter and catalog tables 29
2.5 Working with WLM SQL and objects. 30

2.5.1 DB2 Service classes . 31
2.5.2 DB2 Workloads . 32
2.5.3 DB2 Thresholds . 34
2.5.4 DB2 work classes . 36
2.5.5 DB2 work action set . 37

Chapter 3. Getting started . 41
3.1 System requirements . 42

3.1.1 Hardware. 42
3.1.2 Software . 42
3.1.3 Platforms supported . 43
© Copyright IBM Corp. 2007. All rights reserved. iii

7524TOC.fm Draft Document for Review October 2, 2007 10:12 am
3.2 Planning DB2 environment . 44
3.3 Lab environment . 45

3.3.1 Lab systems . 45
3.3.2 AIX server configuration . 46
3.3.3 TPC-H . 48

3.4 Installing DB2 . 49
3.5 First steps . 53

3.5.1 The default DB2 WLM configuration . 53
3.5.2 Monitoring the default WLM environment . 55

Chapter 4. Customizing the WLM execution environments 61
4.1 Stages of workload management . 62
4.2 Identify the work . 63

4.2.1 Workload identify worksheet . 65
4.3 Manage the work. 66

4.3.1 Creating the service classes . 67
4.3.2 Creating the workloads . 68
4.3.3 Allowing use of the WLM setup. 70
4.3.4 Creating the event monitor . 70
4.3.5 Using SYSDEFAULTADMWORKLOAD . 71

4.4 Monitor the work . 73
4.5 Summary . 79

Chapter 5. Monitoring . 83
5.1 Real-time monitoring . 84

5.1.1 Workload management table functions. 84
5.1.2 Workload management stored procedures . 95
5.1.3 db2pd command for workload management. 97

5.2 Historical monitoring . 99
5.2.1 Activities event monitor . 100
5.2.2 Threshold violations event monitor . 109
5.2.3 Statistics event monitor . 113

5.3 Workload profiling and capturing. 126
5.3.1 Monitoring overall database system behavior. 127
5.3.2 Monitoring the queued job. 142
5.3.3 Identifying query with long runtime . 147

Chapter 6. WLM Sample Scenario - OLTP . 151
6.1 Business objectives. 152
6.2 Identification . 152
6.3 Consistent response time . 153

6.3.1 Define DB2 workloads and service classes 154
6.3.2 Monitoring . 156
6.3.3 Summary. 163
iv DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524TOC.fm
6.4 Mitigate long-run queries. 163
6.4.1 Define DB2 workloads and service classes 164
6.4.2 Define controls . 164
6.4.3 Monitoring . 165
6.4.4 Summary. 166

6.5 Prevent concurrent queries hogging the system 167
6.5.1 Identification . 167
6.5.2 Define work classes for control . 167
6.5.3 Monitoring . 168
6.5.4 Summary. 170

6.6 Stop user connections idle for more than 30 minutes 170
6.6.1 Identification . 170
6.6.2 Define controls . 170
6.6.3 Monitoring . 171
6.6.4 Summary. 172

Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment173
7.1 Business objectives. 174
7.2 Identify the work . 174
7.3 Manage the work. 176

7.3.1 Enabling the instance user ID to alter AIX priorities 176
7.3.2 Creating the service classes definitions . 177
7.3.3 Creating the workload definitions . 179
7.3.4 Finalizing the setup . 179

7.4 Monitoring the work . 180
7.4.1 Checking the agent priorities and prefetchers. 180
7.4.2 Monitoring and analyzing the service classes. 185

7.5 Summary . 191

Chapter 8. AIX Workload Manager considerations 193
8.1 AIX WLM overview . 194

8.1.1 Service classes . 194
8.1.2 Monitoring . 197
8.1.3 Configuring AIX WLM . 198

8.2 Using DB2 WLM and AIX WLM. 202
8.2.1 General guidelines . 202
8.2.2 Mapping schemes . 203
8.2.3 Integrating DB2 service classes with AIX service classes 205
8.2.4 Monitoring . 214

Chapter 9. WLM sample scenarios - other usage 221
9.1 Capacity planning . 222

9.1.1 The workload environment . 223
9.1.2 Collecting the trending data . 223
 Contents v

7524TOC.fm Draft Document for Review October 2, 2007 10:12 am
9.1.3 Monitoring and analysis . 224
9.1.4 Summary. 228

9.2 Chargeback accounting. 229
9.2.1 Business objectives. 230
9.2.2 Defining workload profile. 230
9.2.3 Monitoring . 230
9.2.4 Summary. 232

Chapter 10. DB2 WLM and DWE Design Studio . 235
10.1 DB2 Warehouse Design Studio overview . 236

10.1.1 Workload management support . 237
10.1.2 Installing DB2 DWE Design Studio . 238

10.2 Getting start. 238
10.2.1 Workload Management Scheme. 242

10.3 Managing database workloads using Design Studio. 245
10.3.1 Create workload scheme by objective . 247
10.3.2 Create workload scheme by yourself . 288
10.3.3 Create workload scheme by reverse engineering. 292

10.4 Execute a workload management scheme . 296
10.5 AIX WLM management . 303

10.5.1 Creating operating system service classes and limits. 303
10.5.2 Configure AIX WLM using Design Studio 311

Chapter 11. DB2 Workload Manager and DB2 Performance Expert 319
11.1 DB2 Performance Expert overview . 320
11.2 Monitoring your DB2 environment. 321

11.2.1 Monitoring instance and database statistics 326
11.3 Monitoring DB2 Workload Manager . 329

11.3.1 Workload Management Key Performance Indicators 329
11.3.2 Viewing workload management definitions 331
11.3.3 Viewing Workload Management statistics. 334

11.4 DB2 Performance Expert technical information 350

Chapter 12. Administration . 359
12.1 WLM logs and maintenance . 360
12.2 WLM problem diagnosis . 363
12.3 WLM backup and recovery . 367
12.4 WLM authorization . 368

Chapter 13. Query Patroller and DB2 Governor . 371
13.1 Query Patroller and DB2 Governor background 372

13.1.1 Query Patroller . 372
13.1.2 DB2 Governor . 373
13.1.3 Differences between QP, Governor, and WLM. 374
vi DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524TOC.fm
13.2 Co-existing . 375
13.3 Transitioning from Query Patroller and Governor 376

13.3.1 Is there a migration tool?. 376
13.3.2 Re-examining goals . 377
13.3.3 Considerations when migrating from a QP environment. 377
13.3.4 Considerations when migrating from a DB2 Governor environment . .

383
13.3.5 Historical information in QP control tables 384

Related publications . 389
IBM Redbooks . 389
Other publications . 389
Online resources . 390
How to get Redbooks . 391
Help from IBM . 391

Index . 393
 Contents vii

7524TOC.fm Draft Document for Review October 2, 2007 10:12 am
viii DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

7524spec.fm Draft Document for Review October 2, 2007 10:12 am
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
eServer™
pSeries®
xSeries®
AIX®

DB2®
IBM®
OpenPower™
POWER™
Redbooks®

System i™
System p™
System p5™
WebSphere®

The following terms are trademarks of other companies:

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

AMD, AMD Athlon, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro
Devices, Inc.

Java, JDBC, Solaris, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Windows Vista, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Intel, Itanium, Pentium, Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524pref.fm
Preface

DB2® Workload Manager (WLM) introduces a significant evolution in the
capabilities available to database administrators for controlling and monitoring
executing work within DB2. This new WLM technology is directly incorporated
into the DB2 engine infrastructure to allow handling the higher volumes with
minimal overhead. It is also enabled for tighter integration with external workload
management products such as provided by AIX® WLM.

This book discusses the features and functions of DB2 Workload Manager for
Linux, UNIX®, and Windows®. We describe DB2 WLM architecture,
components, and the WLM specific SQL statements. We also discuss
installation, WLM methodology for customizing the DB2 WLM environment, new
workload monitoring table functions, event monitors, and stored procedures. We
provide examples and scenarios of using DB2 WLM to manage database
activities in an OLTP, DSS, and mixed database systems. Through the use of
examples, you will learn about these advanced workload management
capabilities and see how they can be used to explicitly allocate CPU priority,
detect and prevent “run away” queries, and to closely monitor database activity in
a number of different ways.

We also discuss using Data Warehouse Edition Design Studio and DB2
Performance Expert with DB2 WLM. Finally, we give the primary differences
between Workload Manager and Query Patroller as well as how they interact in
DB2 9.5.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM® Certified Solutions Expert in Database Administration and
Application Development as well as an IBM Certified IT Specialist.

Bill Comeau is the technical manager for the WLM development team based in
Toronto. He has been working for IBM for the last 17 years, the last seven on
© Copyright IBM Corp. 2007. All rights reserved. xi

7524pref.fm Draft Document for Review October 2, 2007 10:12 am
workload management solutions for DB2 LUW. In addition, Bill holds an honours
degree in computing science from Dalhousie University in Halifax, Nova Scotia.

H T Morgan is a Senior Software Engineer working as a Premier Support
Analyst in the Information Management Software Group. As a Premier Support
Analyst, he provides dedicated DB2 support for several large data warehouse
customers. He has 40 years experience in the Information Technology field, with
past 20 years dedicated to various aspects of DB2 development and support.
Since joining IBM in 1998, he has worked in Global Services and DB2 Lab
Services as a Consulting I/T Specialist; and a DB2 Premier Support Analyst.
Prior to joining IBM, H.T.'s expertise in DB2 includes; application development
and design, relational technology research, project management, software
development management, and technical support management.

Larry Pay is a ????title??? in ???country???. He/she has ?? years of
experience in ???? field. He/she holds a degree in ???? from ????. His/her
areas of expertise include ?????? He/she has written extensively on ???????.

Marcia Miskimen is a Software Engineer in the USA at IBM Software Group's
Silicon Valley Lab, where she is currently a specialist supporting Information
Management Tools on LUW platforms. She has worked in the IT industry for over
25 years, both inside and outside of IBM. She has worked in application
development, systems management, operations support, services and
consulting, including 10 years as an IT Specialist in IBM Global Services. Her
areas of expertise and interest include the application development life cycle,
software testing, technical writing, and tools of all sorts. Marcia has co-authored
several IBM Redbooks on DB2 Performance Expert and DB2 Recovery Expert.

S Sadish Kumar is a ????title??? in ???country???. He/she has ?? years of
experience in ???? field. He/she holds a degree in ???? from ????. His/her
areas of expertise include ?????? He/she has written extensively on ???????.

Tapio Väättänen is a ????title??? in ???country???. He/she has ?? years of
experience in ???? field. He/she holds a degree in ???? from ????. His/her
areas of expertise include ?????? He/she has written extensively on ???????.

Tomoko Ichikawa is an IT Specialist with IBM Systems Engineering Co., Ltd. in
Japan. She has been working in DB2 technical support for four years. She has
planned, developed and delivered transition workshops of DB2 UDB V8.2,
V8.2.2, and V9.1 for IBMers in Japan. Her areas of expertise include application
development, database performance and monitoring, and problem determination
in 3-tier environment (DB2 for LUW and WebSphere® Application Server).
xii DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524pref.fm
Figure 0-1 Left to right: Tapio, H T, Tomoko, and Sadish

Acknowledgements
The authors express their deep gratitude for the advice and support they
received from Paul Bird from the IBM Toronto Laboratory.

We also thank the following people for their support and contributions to this
project:

Karen Mcculloch
Louise McNicoll
Mokhtar Kandil
Francis Wong
IBM Toronto Laboratory

Keven Beck
Dinkar Rao
IBM Silicon Valley Laboratory

Tetsuya Shirai
IBM Systems Engineering, Japan
 Preface xiii

7524pref.fm Draft Document for Review October 2, 2007 10:12 am
Many thanks to our support staff for their help in the preparation of this book:
Emma Jacobs, Sangam Racherla, and Deanna Polm
International Technical Support Organization, San Jose Center

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks® in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv DB2 Workload Manager for Linux, UNIX, and Windows

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Draft Document for Review October 2, 2007 10:12 am 7524ch01.fm
Chapter 1. Introduction

In today's world, data is being collected faster than any other period in history. At
the same time many businesses are trying to maximize an efficient cost model by
using their hardware and software resources as heavily as possible. Data servers
are being consolidated, report generation is easily accessible and users are
permitted ad-hoc access to valuable data. This leads to a high potential for
periodic chaos on any data server environment. Hence, we have the need for
methods to return stability, predictability, and control (in the form of resource and
request management and monitoring) back to data server customers in the form
of workload management.

DB2 Workload Manger, integrated into the DB2 9.5 for Linux®, UNIX, and
Windows, is a comprehensive workload management feature that gives you
deeper insight into how your system is running, and finer control over resources
and performance.

By reading this book, you will become familiar with the enhanced workload
management capabilities that are included in the DB2 9.5 release.

In this chapter, we discuss the following topics:

� The background of workload management
� Concepts of workload management
� DB2 Workload Manager

1

© Copyright IBM Corp. 2007. All rights reserved. 1

7524ch01.fm Draft Document for Review October 2, 2007 10:12 am
1.1 Workload management

In a typical database environment, there are a wide range of database activities
that can flood the data server. There are short transactional updates to a
warehouse, (potentially) long reports, batch loading of data, applications calling
stored procedures, and so on. These activities can come from many different
sources as well, such as different users, business units, applications, multi-tier
servers, and even DB2 itself.

At times (maybe most of the time), it is not uncommon to find the data server
performing unexpectedly because of all the database activities. In order to keep
control of the data server work, a comprehensive approach to workload
management is critical.

An effective workload management environment can be broken down into four
basic stages. First, and foremost, is a good understanding of the business goals
you are looking to meet for this system. For example, perhaps there are updates
to the database from cash registers around the country and it is critical to have a
fast response time in order to keep customers from waiting. Or maybe you have a
set of daily reports that have to be completed by 9 AM every morning for a review
meeting.

Once the goals are established, the next stage of WLM is the identification of
activities that you will be trying to manage. The wider the range of options for
identification, the more likely you will be able to isolate the work you will be
managing. Examples of methods of identification include by source (for example,
an application or user ID that submitted a query) or by type (for example, load
commands or queries that are read-only).

The third stage of WLM is the management of activities in order to meet the
business goals. This would include any mechanism that can affect how an
activity is executed. For example, CPU or I/O resources could be made available
to a set of queries, thresholds could be introduced to limit the time spent on an
activity or the number that can run concurrently, or activities could be simply
stopped.

The final stage of WLM is the ability to monitor the state of activities on the data
server. If you have take the time to establish business goals for the environment,
then it is important to have the mechanisms in place to determine if you are
meeting those goals (for example, if you have response time goals, then you
need to be able to determine what the average response time is) as well as
monitoring options to identify and resolve problem areas or even just getting a
clear picture of what activities are running.
2 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch01.fm
Monitoring information is also very useful in determining if there are modifications
required to the identification or management stages. It is also a good idea to use
some monitoring information before the initial configuration to validate the
approach used in identification. For example, the activity information available
from the monitoring should contain enough details about its source or type to
help with the identification process.

Figure 1-1 illustrates these workload management stages.

Figure 1-1 Stages of workload management

1.2 DB2 Workload Manager

The approach taken to provide a robust workload management was to first focus
on establishing an execution environment. An execution environment is simply a
contained area where the database activities are allowed to run, sort of a
sandbox for the requests to play in.

With the execution environment concept in place, the above mentioned stages of
workload management fall into place:
 Chapter 1. Introduction 3

7524ch01.fm Draft Document for Review October 2, 2007 10:12 am
� Identification

In the identification stage, you focus on the assigning of database activities to
an execution environment where the activities map to those established in the
business goals.

� Management

In this stage, you focus on tactical controls to track and modify the execution
flow of database activities in order to meet the business goals

� Monitoring

This stage provides access to the state of activities in the execution
environment as well as an indication as to whether the business goals are
being met.

There are a number of common database related business problems that can be
addressed through an effective workload management implementation. They
include:

� Protecting the system from rogue (or runaway) queries

Large resource intensive activities, like queries, can be a huge hindrance on
the performance of the data server workload. Sometimes the activities are
perfectly valid but, more often than not, they are simply poorly written queries
or a case where too many of these expensive activities are running at the
same time.

� Maintaining consistent response times for activities

It is critical to keep short transactional queries in a warehouse environment
executing at a consistent and predictable pace. Often, these activities can be
isolated and can easily have response times impacted by unexpected
workloads.

� Protecting the data server from a system slowdown during peak periods of
database activity

Normally there are periods during every day (or week, or month) where an
unusually large number of database activities seem to all be executing at the
same time. Not surprisingly, this often results in resource contention and
slowdowns on the system.

� Explicit resource control

Resource allocation and resource contention can be a real problem on the
data server machine. Customers need ways to fairly allocate resources
across execution environments and limit excess resource consumption.

� Enforce Service Level Agreement (SLA) objective

Service level agreements often introduce explicit response time goals for
database activities with little or no methods in place to control the workloads
4 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch01.fm
and use monitor information to cheaply determine how the data server is
tracking to those goals.

� Granular monitoring of database activities (ability to monitor the whole
life-cycle of activities as well as the aggregate distribution)

Often a “big picture” view of data server activity is sufficient information to
determine the overall health of the activity distribution. Sometimes detailed
information is required for problem determination and historical analysis.

In the following chapters you will learn, in detail, how DB2 workload management
can be used to address these business problems. You will also gain insight into
the DB2 WLM concepts and architecture, how to get started using WLM with
samples and best practices, tool integration as well as problem determination
suggestions.
 Chapter 1. Introduction 5

7524ch01.fm Draft Document for Review October 2, 2007 10:12 am
6 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
Chapter 2. WLM architecture and
features

In this chapter we describe the DB2 9.5 Workload Manager (WLM) architecture,
its components, and how they interrelate with each other. The role of each major
WLM component is discussed from a business point of view and what part it
plays in the WLM architecture. Prior to DB2 V9.5, workload management meant
the use of DB2 Query Patroller in conjunction with the DB2 Governor, while in
DB2 9.5, workload management means the use of DB2 Workload Manager by
itself, or in conjunction with DB2 Query Patroller and DB2 Governor.

We discuss the following topics in this chapter:

� DB2 Workload Manager concepts
� Architecture
� DB2 WLM monitor and control capabilities
� New database configuration parameter and catalog tables
� Working with WLM SQL and objects

2

© Copyright IBM Corp. 2007. All rights reserved. 7

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
2.1 DB2 Workload Manager concepts

In today’s competitive business environment, the quest to increase business
productivity creates an increasing need to do more with less resources, in an
accelerated time frame and with less cost. A typical scenario for a data
warehouse using DB2 would see multiple Extract, Transform, Load (ETL) jobs,
multiple queries and reporting loads from multiple third-party Business
Intelligence (BI) tools running throughout the day, and batch jobs and DBA utility
jobs running all night. This would not take into account sudden shifts in priorities
due to business needs, and perhaps the need to run multiple reports at the same
time, creating sustained workloads during peak periods throughout the day.
Sometimes, a “rogue” or runaway query may be submitted during peak hours,
causing all workload in the system to slow down.

Some companies would acquire more hardware resources to address the
problem, while others would terminate the resource hogs outright. Some would
choose to tune the system performance to recover production capacity and
others would create a very rigid approach to submitting workloads in the
production system.

The use of Query Patroller and DB2 Governor has helped considerably in the
management of these DB2 workloads. To extend and expand work management
capabilities beyond those offered by these tools, a completely new design and
architecture was created in the form of DB2 Workload Manager.

DB2 WLM is a powerful solution to address these multiple issues because there
is a recognition that not all workloads can be tuned for optimum CPU and I/O
usage in a very short span of time, and business users need a quick, flexible, and
robust methodology to identify, manage, and control their workloads so as to
maximize database server throughput and resource utilization.

The DB2 WLM architecture is primarily composed of the following components:

� Service classes
� Workloads
� Thresholds
� Work action sets
� Work classes

The DB2 WLM architecture revolves around addressing the problem of database
resource assignment, namely CPU and I/O resources, to a DB2 workload. How
can resource sharing be done effectively, and how is this resource sharing used
to ensure stability to cope with changes in priority and fluctuating loads on the
system?
8 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
2.1.1 DB2 service classes

A DB2 service class determines how you want to organize and group the work
coming into the database. The DB2 service class acts as a unique execution
environment for any grouping of work that you can assign resources to, control,
and monitor. You can assign CPU or prefetch I/O priority resource to each of the
DB2 service classes. All work in a database executes within a DB2 service class.

You can use the service class to organize activities in the database in a way that
makes sense according to your business requirements. For example, if the
database is used and shared by different business functions such as Sales,
Marketing, and Customer Service, then you can create service superclasses for
each of these functions. If within each function there are several departments
that submit reports and load data, then service subclasses can be created for
each of these departments. You can then monitor and control how each business
unit can use the database resources.

Another example of categorizing work is to determine if the work coming in is
Online Transaction Processing (OLTP), Online Analytical Processing (OLAP) or
batch. Since the operating characteristics of an OLTP system are very different
from that of an OLAP or batch system, the way in which these categories are
controlled and monitored would also be different. In this case, you can designate
one service class for OLTP, another service class for OLAP, and a third service
class for batch. Different user groups can access a DB2 data warehouse using
their own Business Intelligence (BI) reporting tools and Extract, Transform and
Load (ETL) tools. In such a case, one way of setting up service classes is to
designate one service class for each BI reporting tool and each ETL tool.

A DB2 service class can either be a superclass or a subclass within a superclass.
This two-tier DB2 service class hierarchy provides a conceptual framework that
closely resembles real-life situations and allows for orderly division of work
among the DB2 service classes.

In DB2 9.5, when a database is created, DB2 creates three predefined default
service superclasses:

� SYSDEFAULTUSERCLASS
� SYSDEFAULTSYSTEMCLASS
� SYSDEFAULTMAINTENANCECLASS

Each of the above superclasses has a default subclass
SYSDEFAULTSUBCLASS.

Figure 2-1 shows a DB2 system with three user defined superclasses Sales,
Finance and Marketing. The Sales superclass contains two service subclasses,
 Chapter 2. WLM architecture and features 9

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
DirectSales and ChannelSales. The Finance and Marketing service
superclasses have one subclass each, Accounting and Promotions respectively.

Figure 2-1 WLM service classes

Since the service class is the primary point for resource assignment to all
incoming database requests and is used for monitoring database activities, we
recommend that you identify service classes based on your critical business
requirements. For example, you can set up service classes based on any of the
following criteria:

� Service level agreements

� Need for very high-priority work to bypass normal work queue

� Conflict in sharing the same CPU and I/O resources

� Clearly defined logical work grouping

� Users or departments consistently exceeding resource constraints to the
detriment of other users or departments

� Need to identify and analyze work contributing to resource peak usage

� Need to validate and plan for data server capacity

A DB2 service subclass can belong to only one DB2 service superclass but a
DB2 service superclass can have one or more DB2 service subclasses. The
maximum number of service superclasses that can be created for a database is
64. The maximum number of service subclasses that can be created under a
superclass is 61.
10 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
You can create a DB2 service superclass using the CREATE SERVICE CLASS
statement. Example 2-1 shows the SQL statements to create service
superclasses and service subclasses as shown in Figure 2-1 on page 10.

Example 2-1 Create service superclasses

-- Create service superclasses

CREATE SERVICE CLASS sales;
CREATE SERVICE CLASS finance;
CREATE SERVICE CLASS marketing;

-- Create service sub classes

CREATE SERVICE CLASS directsales UNDER sales;
CREATE SERVICE CLASS channelsales UNDER sales;
CREATE SERVICE CLASS accounting UNDER finance;
CREATE SERVICE CLASS promotions UNDER marketing;

In DB2 9.5 on AIX, DB2 workload management is integrated with the AIX
Workload Manager such that the AIX Workload Manager can be used to control
CPU shares for database work through the use of AIX service classes. This
integration is discussed in more detail in Chapter 8, “AIX Workload Manager
considerations” on page 193.

2.1.2 DB2 workloads

A DB2 workload is used to identify submitted database work or user connections
so that it can be managed. A workload determines the source based on the
database connection attributes under which the work is submitted. Each
connection can be assigned to one and only one workload at any one time, but
there can be multiple connections assigned to the same workload at the same
time.

From a business perspective, identification is key because of the number of
different ways that a user or system requests can come into the system. Many
large IT installations now employ 3-tier or N-tier application servers, such as
Websphere Application Server, where a user can access any of the application
servers connected to the database at the same time. In other instances, there
are data warehouse applications which allow access to the database server only
through their own application server, and use only one generic user ID to access
the database. DB2 WLM offers the means to be able to identify a user in a
complex environment.
 Chapter 2. WLM architecture and features 11

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
The ability to define multiple connection attributes for a single database
connection allows for a robust environment where both simple and complex
mapping to service classes can be easily handled.

The connection attributes tracked by a DB2 workload are:

� Application Name - Specified as APPLNAME in the workload definition
statement.

� System authorization ID - Specified as SYSTEM_USER in the workload
definition statement.

� Session authorization ID - Specified as SESSION_USER in the workload
definition statement.

� Group of session authorization ID - Specified as SESSION_USER_GROUP
in the workload definition statement.

� Role of session authorization ID - Specified as SESSION_USER_ROLE in
the workload definition statement.

� Client user ID - Specified as CURRENT CLIENT_USERID in the workload
definition statement.

� Client application name - Specified as CURRENT CLIENT_APPLNAME in
the workload definition statement.

� Client workstation name - Specified as
CURRENT CLIENT_WORKSTNNAME in the workload definition statement.

� Client accounting string - Specified as CURRENT CLIENT_ACCTNG in the
workload definition statement.

These connection attributes determine how a user request is directed to a
particular service class. Figure 2-2 shows two user defined workloads
CAMPAIGN and NEWCAMPAIGN and the connection attributes used.
12 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
Figure 2-2 DB2 workload

Example 2-3 shows the SQL code to define the CAMPAIGN and
NEWCAMPAIGN workloads.

Example 2-2 Create workloads

CREATE WORKLOAD campaign APPLNAME('Report') SESSION_USER GROUP ('SALES')
SERVICE CLASS directsales UNDER sales;
--
CREATE WORKLOAD newcampaign SESSION_USER ROLE ('SALESPERSON')
SERVICE CLASS sales POSITION BEFORE campaign;

A workload occurrence is started when the connection is attached to a workload
definition. Any change in relevant connection attributes, workload definition, or
USAGE privilege for a workload will cause the workload assignment to be
reevaluated at the start of the next unit of work. If a new workload definition is
assigned, the old workload occurrence is ended, and a new workload occurrence
is started for the newly assigned workload definition.

If no match in connection properties is found, the user is assigned to the default
workload, SYSDEFAULTUSERWORKLOAD. These users are directed to the
SYSDEFAULTUSERCLASS service class. DB2 internal system requests such as
DB2 prefetcher engine dispatchable units (EDUs), log reader EDUs, and log
writer EDUs are directed to the SYSDEFAULTSYSTEMCLASS service class.
DB2 internal maintenance requests such as DB2 asynchronous background
 Chapter 2. WLM architecture and features 13

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
processing agents and DB2 Heath monitor initiated utilities are directed to the
SYSDEFAULTMAINTENANCECLASS service class.

The default system administration workload SYSDEFAULTADMWORKLOAD is a
special DB2 workload that is not subject to any DB2 thresholds. This workload is
primarily used by database administrators to perform their work or take corrective
action.

For the workloads defined in the Example 2-2 on page 13, if user Bob runs the
application with APPLNAME “Report” with a session authorization ID belonging
to the group SALES, DB2 checks workload NEWCAMPAIGN first for a match
before checking the workload CAMPAIGN, and then identifies Bob’s job as
belonging to the workload CAMPAIGN. DB2 then directs Bob’s job to the
DIRECTSALES service subclass.

2.1.3 DB2 thresholds

A DB2 WLM threshold is an object that sets a predefined limit over the
consumption of a resource. In defining the threshold, a specified action can be
triggered if the threshold is exceeded. The way a threshold works is similar to a
trigger in that certain actions are initiated when a condition is reached. For
example, thresholds can be used to limit the number of connections, the elapsed
time, the amount of tempspace used, and the estimated SQL cost of an activity.

There are two types of DB2 WLM thresholds:

� Activity thresholds: This threshold applies to an individual activity. When the
resource usage of an individual activity violates the activity threshold, it
triggers the threshold, which is applied only once.

� Aggregate threshold: This threshold sets a limit on a measurement across a
set of multiple activities and operates as a running total, to which any work
tracked by the threshold contributes.

The supported actions for a threshold are:

� STOP EXECUTION
Stop processing the activity that caused the threshold to be exceeded. For a
threshold with a built-in queue, it means reject any newly arriving work from
joining the queue.

� CONTINUE
Do not stop processing an activity if the threshold is exceeded. For a
threshold with a built-in queue, it means add any newly arriving work to the
queue.
14 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
� COLLECT ACTIVITY DATA
You can collect information about the activity that exceeded the threshold with
different degrees of detail.

Figure 2-3 illustrates a threshold created to control database activities. In this
example, when a new product is launched, the enthusiasm of entire Sales
department spills over, and everyone on the Sales department wants to access
the database. The Sales department wants to restrict the number of connections
to 20 so that database performance is not affected by the surge in interest. This
can be done by defining a threshold for service class SALES, setting the
maximum number of concurrent database connections on a coordinator partition
to 20, and the maximum number of queued connections to five. If these limits are
exceeded, the application will be stopped.

Figure 2-3 WLM threshold

Example 2-2 shows the threshold definition.

Example 2-3 Creating a threshold to limit partition connections

CREATE THRESHOLD limit_part_con
FOR SERVICE CLASS sales
ACTIVITIES ENFORCEMENT DATABASE PARTITION
WHEN TOTALSCPARTITIONCONNECTIONS > 20
AND QUEUEDCONNECTIONS > 5
COLLECT ACTIVITY DATA ON ALL WITH DETAILS
STOP EXECUTION;

Thresholds can be enforced on activities that are part of a threshold domain,
which can range from the entire database to a single workload definition. For
example, if the threshold domain is a database, an enforcement scope of the
threshold may be just one database partition or all of the database partitions in
 Chapter 2. WLM architecture and features 15

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
the database. Each threshold applies to a domain, which can range from the
entire database to a single workload definition. The domain of a threshold
defines the database object that the threshold is both attached to and operates
on. Only engine work taking place within the domain of a threshold may be
affected by it. The threshold domains are:

� Database
� Service superclass
� Service subclass
� Work action
� Workload

In each of these threshold domains, the threshold can be enforced over a single
workload occurrence, a database partition, or across all the partitions of the
database. This is known as the enforcement scope of the threshold. The
enforcement scope can therefore be a workload occurrence, a database
partition, or the entire database (also known as a global enforcement scope).

Figure 2-4 shows a summary of the DB2 WLM thresholds and the scope and
domain that each threshold applies to.

Figure 2-4 DB2 WLM threshold summary

When multiple activity thresholds apply to one activity, you must decide which
threshold to enforce and in what order. To resolve the scope of activity threshold
resolution, WLM observes a hierarchy of domains so that a value defined in a
16 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
local domain overrides a value from a wider or more global domain. We follow the
hierarchy of domains for these activity thresholds, numbered in the order in which
threshold enforcement occurs:

1. Workload
2. Service subclass
3. Service superclass
4. Work Action
5. Database

Some thresholds, known as queueing thresholds, have a built-in queue and are
defined with two boundaries: a threshold boundary and a queueing boundary.
When a threshold boundary is reached, additional requests are added to the
queue until the queueing boundary is reached. A queueing boundary defines an
upper limit for the queue, beyond which a specified action, that is, STOP
EXECUTION, is applied to any newly arriving work.

A threshold can be predictive or reactive. A predictive threshold means the
threshold boundaries are checked before the tracked work is started. On the
other hand, a reactive threshold means the boundaries are checked while the
tracked work is executing.

2.1.4 Work class sets and work action sets

DB2 WLM provides you the capability to treat activities differently based on their
activity type or some individual characteristic. For example, you want to treat
stored procedures differently from all other read and write activity against the
database. In one instance, you want to put a restriction on the number of
concurrent Loads executing at any one time. You may also want DDL (Data
Definition Language) put into a service class by itself. All the tasks listed above
can be accomplished by using a work action set.

Work action sets allow us to apply DB2 thresholds with discrimination, and it can
be used at the level of a DB2 service superclass to map to subclasses with
discrimination.

Work action sets work hand in hand with work class sets. A work class set
defines the characteristics of the work of interest, while the work action set
dictates what is to happen when the work of interest is detected.

A work class has an associated work type. The supported work types are

� READ- for read related activities such as SELECT.
� WRITE - for update related activities such as DELETE, INSERT, UPDATE.
� CALL - for CALL statement.
� DML - for data manipulating activities such as SELECT, UPDATE, MERGE.
 Chapter 2. WLM architecture and features 17

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
� DDL - for data definition activities such as CREATE, ALTER, COMMIT.
� LOAD - for LOAD utility.
� ALL - for all database activities.

Work actions are grouped into work action sets. A single work action can apply to
either activities in the database or to activities in a service superclass, but not
both.

To create a work action set and a work action, use the CREATE WORK ACTION
SET statement. You must do the following:

� Associate the work action set with an existing work class.
� Associate the work action with either the database or an existing user-defined

service superclass.

A work action set may be applied to an incoming database request, but more
than one work action may be applied by the work action set. In such a case, the
first matching work action in an ordered list will be applied. The position of the
work action in the ordered list can be changed depending on which work action
needs to be given priority.

The following actions can be performed within a DB2 work action set:

� Count activity
� Prevent execution of an activity
� Collect activity data
� Apply a DB2 threshold to a database
� Map work to a different service sub class within the same superclass
� Collect aggregate activity data for a service superclass

Figure 2-5 illustrates using work class set and work action set to manage
workloads. Work class set CLASSIFY_WORK is associated with Sales work
class and will classify the queries being identified by workload NEWCAMPAIGN
and CAMPAIGN into four categories: expensive queries, moderately expensive,
inexpensive queries, and expensive stored procedures. The work action set
ACT_PLAN with three work actions is defined to dictate what happens when the
work of interest is encountered. For expensive queries, stop the execution; for
moderately expensive queries, collect data; for expensive stored procedures,
send them to the Information Technology (IT) department for review.
18 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
Figure 2-5 Work class set and work action set

Example 2-4 shows the definitions of work class set and work action set.

Example 2-4 Defining a work class set

-- Create work class set

CREATE WORK CLASS SET classify_work
 (WORK CLASS exp_qry
 WORK TYPE READ FOR TIMERONCOST FROM 1000001 To UNBOUNDED,
 WORK CLASS mod_exp_qry
 WORK TYPE READ FOR TIMERON COST FROM 10000 TO 1000000,
 WORK CLASS inexp_qry
 WORK TYPE READ FOR TIMERON COST FROM 0 TO 10000
 WORK CLASS exp_proc
 WORK TYPE CALL ROUTINES IN SCHEMA "ACCOUNTING");

-- Create work action set

CREATE WORK ACTION SET act_plan FOR SERVICE CLASS sales
 USING WORK CLASS SET classify_work
 (WORK ACTION stop_exp_qry ON WORK CLASS exp_qry
 PREVENT EXECUTION COLLECT ACTIVITY DATA WITH DETAILS AND VALUES,
 WORK ACTION cnt_mod_exp_qry COUNT ACTIVITY,
 WORK ACTION remap_acct_proc ON WORK CLASS exp_proc
 MAP ACTIVITY WITH NESTED TO it_review);
 Chapter 2. WLM architecture and features 19

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
2.2 Architecture

The architecture of the DB2 Workload Manager integrates all the workload
management objects into a coherent whole in order to allow the ease of
identifying, managing, and monitoring all the workload in the DB2 database. The
workload on the system can be analyzed to determine how the system can be
designed to cope with the current and anticipated workload. Performance
monitoring using DB2 WLM can track the behavior of the system either on a
granular level or over a wide-ranging period. The principal benefit, however, is the
ability to understand the characteristics of the incoming workload, and that
knowledge will enable you to manage and maintain the system desired response
times and throughput. In addition, some of the most vexing problems in a
database environment, such as runaway or rogue queries and agent contention
can be handled better with the new WLM capabilities.

The process of using DB2 WLM effectively starts with analyzing the workload by
identifying the types and frequency of workloads and then creating service
classes in order to classify the workload into manageable groups.

The diagram in Figure 2-6 illustrates the interrelationships of the main
components of the DB2 WLM architecture.
20 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
Figure 2-6 DB2 WLM architecture and AIX WLM

A user makes a database connection and is assigned to a workload. All activities
running under the workload occurrence are mapped to service classes.

In Figure 2-6, users assigned to workload A are mapped to SUPERCLASS1 by
specifying the UNDER keyword for the SERVICE CLASS keyword. The
connection belongs to service superclass 1, but all activities issued out of the
connection are automatically mapped to service subclass 1A.

Users assigned to workloads B and C are mapped to service superclass 2. Any
work submitted for workload occurrences belonging to workloads B and C can be
mapped to service subclasses 2A and 2B. All activities that are mapped to
SUPERCLASS 2 and match a work class in work class set X to which a MAP
ACTIVITY work action is associated are mapped to service subclass 2A or 2B as
specified by the work action.

A work action set can be defined for either a database or a service superclass. In
the diagram, work actions 1A and 1B belong to work action set 1, and it is
defined for a database. Work actions 1A and 1 B can be any one of the following
actions:
 Chapter 2. WLM architecture and features 21

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
� A threshold
� PREVENT EXECUTION
� COLLECT ACTIVITY DATA
� COUNT ACTIVITY

Work actions 2A and 2B belong to work action set 2, and they are defined for
service superclass 2. The work actions 2A and 2B can be any of the following
actions:

� A mapping action mapping an activity to any service subclass in service
superclass 2 except for the default service subclass.

� PREVENT EXECUTION

� COLLECT ACTIVITY DATA

� COLLECT AGGREGATE ACTIVITY DATA

� COUNT ACTIVITY

Users assigned to workload D are mapped to a service superclass 3, which does
not have a user-defined service subclass. In this case, the connections are
mapped to the default subclass SYSDEFAULTSUBCLASS of service superclass
3.

Connections that do not map to a user-defined workload are mapped to the
default workload SYSDEFAULTUSERWORKLOAD, and this in turn is mapped to
the default service superclass for user requests, SYSDEFAULTUSERCLASS.
Internal DB2 system connections are mapped to the default service superclass
for internal DB2 connections, SYSDEFAULTSYSTEMCLASS, while internal DB2
maintenance connections are mapped to the default service superclass for
maintenance requests, SYSDEFAULTMAINTENANCECLASS.

As illustrated in Figure 2-6, DB2 WLM thresholds (indicated by) can be
defined on any or all of the following:

� Database
� Work action set
� Service superclass
� Service subclass
� Workload

If the DB2 environment is on AIX, and the AIX WLM is being used, it is possible
to associate the DB2 service classes with their corresponding AIX service
classes as illustrated in Figure 2-7. The DB2 service classes are associated with
their corresponding AIX service classes by using the OUTBOUND
CORRELATOR keyword in the CREATE SERVICE CLASS statement to
associate threads from the DB2 service class to an AIX service class.
22 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
In Figure 2-7, the DB2 service superclasses 1 and 2 are associated with AIX
WLM service classes _DB2_SUPERCLASS 1 and _DB2_SUPERCLASS 2,
respectively. The DB2 service subclasses 1A, 2A and 2B are associated with AIX
WLM subclasses _DB2_SUBCLASS 1A, _DB2_SUBCLASS 2A and
_DB2_SUBCLASS_2B, respectively. The DB2 service class
SYSDEFAULTUSERCLASS is associated with AIX WLM service class
_DB2_DEF_USER, and the DB2 SERVICE classes
SYSDEFAULTSYSTEMCLASS and SYSDEFAULTMAINTENANCECLASS are
associated with AIX WLM service class _DB2_DEF_SYS.

We discuss the relationship between AIX WLM and DB2 WLM in more detail in
Chapter 8, “AIX Workload Manager considerations” on page 193.

Figure 2-7 DB2 WLM integrated with AIX WLM

The following lists shows all the WLM-exclusive SQL that can be used to set up
and manage WLM:

� CREATE WORKLOAD, ALTER WORKLOAD, DROP WORKLOAD

� GRANT (Workload Privileges), REVOKE (Workload Privileges)

� CREATE SERVICE CLASS, ALTER SERVICE CLASS, DROP SERVICE
CLASS

� CREATE WORK CLASS SET, ALTER WORK CLASS SET, DROP WORK
CLASS SET
 Chapter 2. WLM architecture and features 23

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
� CREATE WORK ACTION SET, ALTER WORK ACTION SET, DROP WORK
ACTION SET

� CREATE THRESHOLD, ALTER THRESHOLD, DROP THRESHOLD

� CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE,
DROP HISTOGRAM TEMPLATE

We discuss the SQL statements in more detail in 2.5, “Working with WLM SQL
and objects” on page 30.

In creating the WLM objects and the SQL to generate it, use the DWE Design to
help generate SQL and rules validation for WLM. A section on how to use this
tool is discussed in Chapter 10, “DB2 WLM and DWE Design Studio” on
page 235.

2.3 DB2 WLM monitor and control capabilities

This section describes the DB2 WLM monitoring and control capabilities for
real-time and historical aggregate data. DB2 9.5 provides new table functions for
direct ad-hoc querying of WLM objects or obtaining summarized statistics over
time. The event monitor has been enhanced to support workload management.
In addition, DB2 9.5 offers new stored procedures to cancel activities, capture
information about individual activities, and collect and reset statistics for workload
management objects.

2.3.1 Real-time monitoring

In DB2 WLM, real-time monitoring and statistical monitoring capabilities are built
into DB2 using the SYSPROC schema and can be accessed with little impact on
currently executing workloads. Real-time monitoring is accomplished by using
DB2 table functions to obtain operational information. The following DB2 9.5 new
table functions are for real-time monitoring:

� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

This table function returns a list of workload occurrences across database
partitions assigned to a service class, information about the current state, the
connection attributes used to assign the workload to the service class, and
activity statistics indicating activity volume and success rates.

� WLM_GET_SERVICE_CLASS_AGENTS

This table function returns a list of database agents associated with a service
class or application handle, the current state of the agent, the action the agent
is performing and the status of that action.
24 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
� WML_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

This table function returns a list of current activities associated with a
workload occurrence, information about the activity, the type of activity and
the time the activity started.

� WLM_GET_ACTIVITY_DETAILS

This table function returns detail about an individual activity, the activity type,
and additional information pertinent to that activity type.

2.3.2 Statistics table functions

The WLM table functions can also be used to obtain statistics about DB2
workload manager objects. Statistics are maintained for service classes, work
classes, workloads, and threshold queues. These statistics are resident in
memory and can either be viewed in real-time using WLM statistics table
functions, or the statistics can be collected and sent to a statistics event monitor
where they can be viewed for historical analysis.

The following are the WLM statistics table functions:

� WLM_GET_SERVICE_SUPERCLASS_STATS

This table function returns information about the concurrent connection high
watermark that was calculated since the last statistics reset.

� WLM_GET_SERVICE_SUBCLASS_STATS

This table function returns summarized statistics such as number of activities
and average execution time calculated since the last time reset.

� WLM_GET_WORKLOAD_STATS

This table function returns summarized statistics for one or all workloads and
database partitions.

� WLM_GET_WORK_ACTION_SET_STATS

This table function returns summarized statistics for one or work action sets
across one or more database partitions.

� WLM_GET_QUEUE_STATS

This table function returns information about threshold queues.

The workload management table functions can also be used in conjunction with
the snapshot monitor table functions to aid in problem solving or performance
tuning.
 Chapter 2. WLM architecture and features 25

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
2.3.3 Event monitors for DB2 WLM

The enhanced DB2 event monitor provides the capability to monitor
WLM-specific events. A total of seventy one monitor elements are available to
provide information about a workload management implementation. WLM event
monitors capture a set of events for debugging or collect historical information for
subsequent analysis. On the other hand, table functions look at and gather
point-in-time information.

Unlike the non-WLM event monitors, the WLM event monitors don’t have event
conditions which can be triggered by the WHERE clause of the CREATE EVENT
MONITOR statement. The WLM event monitors are dependent on how the
attributes of service classes, workloads, work classes, and thresholds are set to
send activity or aggregate information to the WLM monitors.

There are three types of WLM event monitors:

� Activities
This type of event monitor is used to collect information about an activity.

� Threshold violations
This type of event monitor captures information whenever a threshold
violation occurs.

� Statistics
This type of event monitor captures statistics over a set time frame. This event
monitor gathers aggregated activity information and is directed to a single
service class or work class.

A sample script wlmevmon.ddl in the ~/sqllib/misc directory shows how to create
and enable three event monitors DB2ACTIVITIES, DB2STATISTICS and
DB2THRESHOLDVIOLATIONS.

You can collect various detail levels of the full set of statistics, including average
execution times, average queueing times, and histograms. The statistics level to
be gathered are specified as an option in the service subclass or work class:

� COLLECT AGGREGATE ACTIVITY DATA BASE
� COLLECT AGGREGATE ACTIVITY DATA EXTENDED
� COLLECT AGGREGATE REQUEST DATA BASE

There are statistics that is maintained on the given WLM objects on each
database partition regardless of whether COLLECT AGGREGATE ACTIVITY
DATA or COLLECT AGGREGATE REQUEST DATA was specified or not. These
statistics are listed as follows:

� Threshold queues:

– Total queue assignments
26 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
– Top queue size top.
– Total queue time.

� Service subclasses:

– High watermark concurrent activity
– Total coordinator activities completed
– Total coordinator activities aborted
– Total coordinator activities rejected total
– Number of active requests

� Service superclasses:

– Concurrent connection top

� Workloads:

– Total workload occurrences completed
– High water mark of concurrent workload occurrences
– High water mark of Concurrent activity
– Total coordinator activities completed total
– Total coordinator activities aborted total
– Total Coordinator activities rejected total
– Total workload occurrences completed

� Work class through a work action

– Total activities

The following statistics are collected when a service subclass or a work class is
created or altered with the option COLLECT AGGREGATE ACTIVITY DATA
BASE:

� Coordinator activity lifetime average
� Average coordinator activities execution time average
� Coordinator activity queue time average
� High watermark of cost estimate
� High watermark of Actual rows returned
� High watermark of temporary table space
� Activity lifetime histogram
� Activity execution time histogram
� Activity queue time histogram

The following statistics are collected for each database partition for the
corresponding service class or work class when a service subclass or a work
class is created or altered with the option COLLECT AGGREGATE ACTIVITY
DATA EXTENDED:

� Non-nested coordinator activity inter-arrival time
� Coordinator activity estimated cost average
� Activity inter-arrival histogram
 Chapter 2. WLM architecture and features 27

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
� Activity estimated cost histogram

The following statistics are collected for each database partition for the
corresponding service subclass when a service subclass or a work class is
created or altered with the option COLLECT AGGREGATE REQUEST DATA
BASE:

� Request execution time average
� Request execution time histogram

Histogram
A histogram is defined as a graphical display of tabulated frequencies. In DB2
WLM, the histogram is represented by a collection of bins or rectangles where
the width is represented by a range of values, and the height is represented by
the count or frequency of these values. DB2 WLM histograms have a fixed
number of 41 bins. Figure 2-8 shows a histogram example.

Figure 2-8 Histogram plotted to a bar chart

Histograms can be used to discover workload situations that would not be
obvious when looking at the data alone. The distribution of values and the
outlying values can be determined at a glance. When histograms are applied to a
partitioned database environment, the histogram bins can be used to analyze the
28 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
distribution of values per partition, or they can be combined into one histogram to
get a global view of the data.

Histograms are available for service subclasses and work classes and are
collected when any of the following clauses are specified when creating or
altering the object:

� COLLECT AGGREGATE ACTIVITY BASE
� COLLECT AGGREGATE ACTIVITY BASE EXTENDED

A histogram template can also be created to describe the high bin values for
each of the histograms that are collected for an object. These histogram
templates are objects with no predefined measurement units that specify what a
histogram should look like.

2.3.4 WLM stored procedures

DB2 WLM stored procedures are provided to cancel an activity, capture
information about an individual activity, and collect and reset statistics for
workload management objects.

The following is a list of these stored procedures:

� WLM_CANCEL_ACTIVITY - cancels a given activity.

� WLM_CAPTURE_ACTIVITY_IN_PROGRESS - gathers information on a
given activity including all its child activities and writes it to the active activities
event monitor

� WLM_COLLECT_STATS - gathers and resets statistics on service classes,
work classes and threshold queues and writes it to the statistics event
monitor.

� WLM_SET_CLIENT_INFO - allows you to set the values of any of the client
information fields at the DB2 server using a CALL statement.

2.4 New database configuration parameter and catalog
tables

A new database configuration parameter and several catalog tables are
introduced to support WLM.

WLM_COLLECT_INT
This new database configuration parameter WLM Collection Interval is used to
specify a collection and reset interval, in minutes, for workload management
 Chapter 2. WLM architecture and features 29

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
statistics. This parameter is only specified on the catalog partition and will
determine how often workload management statistics are collected and sent to
any statistics event monitor.

All WLM statistics table functions will return the accumulated statistics for the
specified interval until the next reset. The WLM_COLLECT_STATS procedure
will perform the same collect and reset operations that would occur automatically
on the interval defined by the WLM_COLLECT_INT database configuration
parameter.

New catalog tables
The new WLM-specific system catalog views are:

� SYSCAT.HISTOGRAMTEMPLATEBINS - Each row represents a histogram
template bin.

� SYSCAT.HISTOGRAMTEMPLATES - Each row represents a histogram
template.

� SYSCAT.HISTOGRAMTEMPLATEUSE - Each row represents a relationship
between a workload management object that can use histogram templates
and a histogram template.

� SYSCAT.SERVICECLASSES - Each row represents a service class.

� SYSCAT.THRESHOLDS - Each row represents a threshold.

� SYSCAT.WORKACTIONS - Each row represents a work action.

� SYSCAT.WORKACTIONSETS - Each row represents a work action set

� SYSCAT.WORKCLASSES - Each row represents a work class.

� SYSCAT.WORKCLASSSETS - Each row represents a work class set.

� SYSCAT.WORKLOADAUTH - Each row represents a user, group or role that
has been granted USAGE privilege on a workload.

� SYSCAT.WORKLOADCONNATTR - Each row represents a connection
attribute in the definition of a workload

� SYSCAT.WORKLOADS - Each row represents a workload.

2.5 Working with WLM SQL and objects

In this section, we introduce the new SQL statement for DB2 WLM objects
service classes, workload, threshold, and work classes. For the details of the
SQL statements, refer to DB2 documents:

� DB2 Information Center:
30 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� DB2 manuals:

SQL Reference, Volume 1, SC10-4249
SQL Reference, Volume 2, SC10-4250

2.5.1 DB2 Service classes

Use the CREATE SERVICE CLASS statement to define the service superclass
and service subclass.

When you use the CREATE SERVICE CLASS statement, you need to specify the
name of the service class. Optionally, you can specify the following properties:

� AGENT PRIORITY clause

Use this clause to control agent priority (CPU).

� PREFETCH PRIORITY clause

Use this clause to control prefetcher priority (Prefetcher I/O).

� COLLECT AGGREGATE ACTIVITY DATA/COLLECT AGGREGATE
REQUEST DATA clause

Use this clause to collect statistics information for service subclass only.

� COLLECT ACTIVITY DATA clause

Use this clause to collect activity information for service subclass only.

� OUTBOUND CORRELATOR clause

Use this clause to associate the DB2 service class to an AIX service class.

� ENABLE or DISABLE clause

Use this clause to specify whether or not connections and activities can be
mapped to the service class.

When you create a service superclass, DB2 automatically creates a default
service subclass SYSDEFAULTSUBCLASS under it. When you create the
service subclass, you need to specify the name of the parent service superclass.

Example 2-5 shows the CREATE SERVICE CLASS statement to create a
service superclass.

Author Comment: Update link (wjc)
 Chapter 2. WLM architecture and features 31

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
Example 2-5 Creating a service superclass

CREATE SERVICE CLASS sales AGENT PRIORITY -20

Example 2-6 shows the CREATE SERVICE CLASS statements creating two
service subclasses.

Example 2-6 Creating a service subclass

CREATE SERVICE CLASS sales_read UNDER sales PREFETCH PRIORITY HIGH
CREATE SERVICE CLASS sales_write UNDER sales PREFETCH PRIORITY LOW

DB2 automatically creates a default subclass under each service superclass. We
recommended issuing a COMMIT after a WLM-exclusive statement to write the
changes to the system catalog.

2.5.2 DB2 Workloads

Use the CREATE WORKLOAD statement to define the workload. When you use
the CREATE WORKLOAD statement, you need to specify the name of the
workload and the attribute of the connection.

The following are clauses to specify the attribute of the connection.

� APPLNAME

You need to know your application name as known to the database server.
Your application name is shown in the “Application name” field in system
monitor output and in the output from the LIST APPLICATIONS command.

� SYSTEM_USER

You can use the user that connects to the database.

� SESSION_USER

If you use the SET SESSION AUTHORIZATION statement to change the
current session user, you can use this attribute. If you do not use the SET
SESSION AUTHORIZATION statement, the current session user is the same
as the system user.

� SESSION_USER GROUP

You can use the group name which the current session user belongs to.

� SESSION_USER ROLE

If you use the roles to simplify privilege management, you can use this
attribute.

� CURRENT CLIENT_USERID
32 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
You can use the client user ID from the client information specified for the
connection.

� CURRENT CLIENT_APPLNAME

You can use the application name from the client information specified for the
connection.

� CURRENT CLIENT_WRKSTNNAME

You can use the workstation name from the client information specified for the
connection.

� CURRENT CLIENT_ACCTNG

You can use the accounting string from the client information specified for the
connection. The accounting string basically is a custom tag that can be used
to identify a set of activities based on user-defined attributes such as a
custom report.

Users can connect directly or through an application server with different
connection properties to DB2. DB2 WLM uses these properties to direct them to
the appropriate service class. In an N-tier client-server environment, an
application server can use the sqlseti API, where client information is set on the
client side, to pass specific client information to the DB2 data server. Another
way to set client information is to use the WLM_SET_CLIENT stored procedure
to set client information for the connection at the DB2 server.

Optionally, you can specify the following attributes or properties:

� Workload attributes

– SERVICE CLASS

Use this clause to assign work to a service class.

– ALLOW DB ACCESS or DISALLOW DB ACCESS

Use this clause to specify wether a request is allowed access to the
database or not.

– ENABLE or DISABLE

Use this clause to specify whether or not this workload will be considered
when a workload is chosen.

� COLLECT ACTIVITY DATA clause

Use this clause to collect activity information for workload.

� POSITION clause

Use this clause to specify the workload order DB2 searched.
 Chapter 2. WLM architecture and features 33

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
Example 2-7 shows the CREATE WORKLOAD statement to create a workload
assigned to a service superclass.

Example 2-7 Creating a workload

CREATE WORKLOAD sales_wl applname('sales.exe') SERVICE CLASS sales

The SALES_WL workload is associated with requests executed from the
application name sales.exe. These requests are run in the SALES service
superclass. If you do not specify the SERVICE CLASS clause, these requests
are run in the default service class SYSDEFAULTUSERCLASS.

Workloads has evaluation order specified by the POSITION keyword. If the
POSITION keyword is not specified, the new workload is positioned after all the
other defined workloads, but before the last workload,
SYSDEFAULTUSERWORKLOAD.

2.5.3 DB2 Thresholds

Use the CREATE THRESHOLD statement to define the threshold.

When you use the CREATE THRESHOLD statement, you need to specify the
following properties:

� Name of the threshold

� Threshold domain

– DATABASE / SERVICE CLASS / WORKLOAD

� Enforcement scope

– DATABASE / DATABASE PARTITION / WORKLOAD OCCURRENCE

� Threshold

– Elapsed time (ACTIVITYTOTALTIME)

The maximum amount of time that the data server should spend
processing an activity.

– Idle time (CONNECTIONIDLETIME)

The maximum amount of time that a connection can be idle.

– Estimated cost (ESTIMATEDSQLCOST)

The maximum estimated cost permitted for DML

– Rows returned (SQLROWSRETURNED)

The maximum number of rows that can be returned for DML.

– Temporary space (SQLTEMPSPACE)
34 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
The maximum amount of temporary table space that can be used by a
DML activity at any database partition.

– Concurrent workload occurrences
(CONCURRENTWORKLOADOCCURRENCES)

The maximum number of workload occurrences that can run concurrently
on the coordinator partition.

– Concurrent workload activities (CONCURRENTWORKLOADACTIVITIES)

The maximum number of coordinator and nested activities that can run
concurrently in a workload occurrence.

– Concurrent database activities (CONCURRENTDBCOORDACTIVITIES)

The maximum number of concurrent coordinator activities across all
database partitions.

– Total database partition connections
(TOTALDBPARTITIONCONNECTIONS)

The maximum number of concurrent database connections on a
coordinator partition for a database.

– Total service class partition connections
(TOTALSCPARTITIONCONNECTIONS)

The maximum number of concurrent database connections on a
coordinator partition for a service superclass.

� Action

– STOP EXECUTION / CONTINUE

Optionally, you can specify the following properties:

� Action

– COLLECT ACTIVITY DATA clause

� ENABLE or DISABLE

Use this clause to specify whether or not the threshold is enabled for use by
the database manager.

Example 2-8 shows the CREATE THRESHOLD statement to create a threshold
assigned to a service subclass.

Example 2-8 Creating a threshold

CREATE THRESHOLD limit_cost for SERVICE CLASS sales ACTIVITIES ENFORCEMENT
database WHEN estimatedsqlcost > 10000 STOP EXECUTION
 Chapter 2. WLM architecture and features 35

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
The threshold (when estimatedsqlcost > 10000) is enforced for activity which
runs in the department superclass across all database partitions.

2.5.4 DB2 work classes

Use the CREATE WORK CLASS SET to create a work class set.

There are two ways of creating a work class:

� Use the CREATE WORK CLASS SET statement to create a new work class
set to contain the new work class.

� Add a new work class to an existing work class set using the ALTER WORK
CLASS SET statement.

When you use the CREATE WORK CLASS SET statement, you need to specify
the following properties:

� Name of the work class set

� Work class definition

Table 2-1 shows the type keywords available for work classes and the SQL
statement corresponding to the different keywords. Except for the LOAD
command, all the statements in Table 2-1 are intercepted immediately before
execution.

Table 2-1 Work type keywords and associated SQL statements

Work type
keyword

Applicable SQL statements

READ � All SELECT statements (select into, values into, full select)
� SELECT statements containing a DELETE, INSERT, or UPDATE

are not included
� All XQuery statements

WRITE � All UPDATE statements (searched, positioned)
� All DELETE statements (searched, positioned)
� All INSERT statements (values, subselect)
� All MERGE statements
� All SELECT statements containing a DELETE, INSERT, or UPDATE

statement

CALL � CALL statement
� The CALL statement is only classified under the CALL and ALL

work class types.

DML All statements that are classified under the READ and WRITE work class
types
36 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
Example 2-9 shows the CREATE WORK CLASS SET statement to create a work
class READ_WORK and a work class WRITE_WORK.

Example 2-9 Creating a work class

CREATE WORK CLASS SET sales_work
 (WORK CLASS read_work WORK TYPE read,
 WORK CLASS write_work WORK TYPE write)

2.5.5 DB2 work action set

Use the CREATE WORK ACTION SET to define a work action set. You must
associate the work action set with an existing work class set. In addition, you
must also associate the work action set with the database or an existing service
superclass.

There are two ways of creating a work action:

� Use the CREATE WORK ACTION SET statement to create a new work
action.

� Add a new work action to an existing work action set using the ALTER WORK
ACTION SET statement.

DDL � All ALTER statements
� All CREATE statements
� COMMENT statement
� DECLARE GLOBAL TEMPORARY TABLE statement
� DROP statement
� FLUSH PACKAGE CACHE statement
� All GRANT statements
� REFRESH TABLE
� All RENAME statements
� All REVOKE statements
� SET INTEGRITY statement

LOAD � Load utility.
� The load utility is only classified under the LOAD and ALL work

class types.

ALL � All database activity.
� If the action is a threshold, the database activity that the threshold is

applied to depends on the type of threshold. For example, if the
threshold type is ESTIMATEDSQLCOST, only DML activity with an
estimated cost (in timerons) is affected by the threshold.

Work type
keyword

Applicable SQL statements
 Chapter 2. WLM architecture and features 37

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
When you use the CREATE WORK ACTION SET statement, you need to specify
the following properties:

� Name of the work action set

� FOR DATABASE / SERVICE CLASS

This clause specifies the database manager object to which the actions in this
work action set will apply.

� USING WORK CLASS SET work-class-set-name

This clause specifies the work class set containing the work classes that will
classify database activities on which to perform actions.

� WORK ACTION work-action-name on WORK CLASS work-class-name

This clause specifies the work action definitions including the following:

– MAP ACTIVITY WITH NESTED/WITHOUT NESTED TO
service-subclass-name

– WHEN

• CONCURRENTDBCOORDACTIVITIES / AND QUEUEDACTIVITIES
• SQLTEMPSPACE
• SQLROWSRETURNED
• ESTIMATEDSQLCOST
• ACTIVITYTOTALTIME

– COLLECT ACTIVITY DATA NONE/ COLLECT ACTIVITY DATA WITH
DETAILS AND VALUES

– STOP EXECUTION / CONTINUE

� ENABLE or DISABLE

This clause activates or deactivates the work action.

� ACTIVITY LIFETIME / QUEUETIME / EXECUTETIME / ESTIMATEDCOST /
INTERARRIVAL HISTOGRAM TEMPLATE template-name

These are properties of histogram templates to be used when collecting
aggregate activity data for activities associated with the work class to which
this work action is assigned.

Example 2-10 shows the CREATE WORK ACTION SET statement to create a
work action set SALES_ACTION that is associated with the service superclass
SALES.

Example 2-10 Creating a work action set.

CREATE WORK ACTION SET sales_action FOR SERVICE CLASS sales
 USING WORK CLASS SET sales_work
38 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch02.fm
 (WORK ACTION read_action ON WORK CLASS read_work MAP ACTIVITY TO
sales_read,
 WORK ACTION write_action ON WORK CLASS write_work MAP ACTIVITY TO
sales_write)
 Chapter 2. WLM architecture and features 39

7524ch02.fm Draft Document for Review October 2, 2007 10:12 am
40 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
Chapter 3. Getting started

DB2 Workload Management (WLM) provides you the capability to simplify the
overall complexity of database workload management and monitoring.
Implementing and setting up WLM is fairly easy once you are familiar with the
concepts of WLM. To fully utilize the capability of WLM, some special
considerations are recommended in designing and setting up your database
environment. If you are new to DB2 WLM, you can start from the default settings
DB2 provides and gradually explore the full function of DB2 WLM to take full
control over your database environment and applications.

In this chapter we discuss the following topics:

� System requirements
� Planning DB2 environment
� Lab environment
� Installing DB2
� First steps

3

© Copyright IBM Corp. 2007. All rights reserved. 41

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
3.1 System requirements

In this section we discuss the hardware and software requirements for DB2 9.5
and WLM. In general, the system requirements to use DB2 WLM are the same
as the system requirements for DB2 9.5 with a few exceptions. When there are
special considerations for WLM, we note them along our discussion.

Depending on your environment, you might want to reevaluate your CPU and
memory requirements once you have the WLM in place. With WLM, you’ll be
able to manage your DB2 workloads in more granular level and thus can fully
utilize your hardware. You might discover that you can use less powerful
hardware than you originally planned.

3.1.1 Hardware

There are no special hardware requirements for WLM. Plan your hardware based
on your database requirements. The minimum hardware requirements common
for all operating systems running DB2 9.5 for Linux, UNIX, and Windows are:

� DB2 without any graphical tools needs minimum 256 MB memory. For
graphical tools and improved performance, 1.0 GB RAM is recommended.
These requirements do not include any additional applications nor operating
system memory requirements.

� For CPU speed, minimum CPU 1.0 GHz is required. For better performance
2.0 GHz is recommended.

� Disk space depends on the type of installation you are going to choose.
Default installation requires approximately 1.0 GB for DB2 software. Add
additional 256 MB disk space per instance. Sufficient disk space for your
databases is needed as well.

� If you are going to collect data through WLM event monitors for historical
analysis, you might want to allocate additional disk space for a separated file
system for the event monitor data.

3.1.2 Software

DB2 WLM for Linux, UNIX, and Windows is available on all of the platforms that
support DB2 9.5.

If you want to utilize operating system workload management capability, AIX
WLM is supported on DB2 9.5.
42 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
3.1.3 Platforms supported

The section lists the supported version of Linux, UNIX, and Windows operating
systems. We recommend you always check the latest required patch levels and
software upgrades from:

http://www-306.ibm.com/software/data/db2/9r2/sysreqs.html

Linux and UNIX
The following Linux and UNIX platforms support WLM:

� AIX

– AIX 5.3 (eServer™ pSeries®, IBM System p™, and IBM System p5™)

� HP-UX

– HP-UX 11iv2 on Itanium® based HP Integrity Series Systems

– HP-UX 11iv3 on Itanium based HP Integrity Series Systems

� Linux x86

– Red Hat Enterprise Linux 4 or 5

– SUSE Linux Enterprise Server 9 or 10 on x86 Intel®(R) Pentium®(R), Intel
Xeon®(R), and AMD™ Athlon™

� Linux x64

– Red Hat Enterprise Linux 4 Update 4 or Red Hat Enterprise Linux 5 on
x86-64 (Intel(R) EM64T and AMD64

– SUSE Linux Enterprise Server 9 or 10 on x86-64 (Intel(R) EM64T and
AMD64

� Linux POWER™

– Red Hat Enterprise Linux 5 on IBM eServer OpenPower™, System i™ or
pSeries systems that support Linux

– SUSE Linux Enterprise Server 10 on IBM eServer OpenPower, System i
or pSeries systems that support Linux

� Solaris™

– Solaris 9 and Solaris 10 64-bit kernel (UltraSPARC)

Windows
The Windows versions that support WLM are:

Author Comment: The URL needs to be fixed to whatever it will be
 Chapter 3. Getting started 43

http://www-306.ibm.com/software/data/db2/9r2/sysreqs.html

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
� Windows 2003 (x86 and x64)
� Windows XP Professional (x86 and x64)
� Windows Vista® (x86 and x64)

All systems based on Intel or AMD processors that are capable of running the
supported Windows operating systems (x86, x64, and Itanium-based systems)
are supported.

3.2 Planning DB2 environment

Plan your DB2 environment so that it is efficient, easily recoverable, and easy to
maintain. The final solution depends mostly on your business needs. Planning an
efficient and recoverable database environment is not an easy task and most of
the planning topics are outside of the scope of this book. Here we give a few
general guidelines.

Database environment
There’s no special considerations for the database using WLM function. We
provide a few good guidelines for setting up your database environment:

� Disk and file system setup:

– Keep your data, active logs, archived logs, and instance home directories
on separated file systems. These file systems need to relay on different
sets of disks or LUNs when you use Storage Area Networks (SANs) to
ensure that you are able to recover from disk failures.

– Separate the operating system (OS) data on different sets of disks from
database data disks to avoid OS and DB2 competing on the same I/O for
disk resources.

– Use external SAN disks whenever it is possible for easy maintenance and
efficiency.

– You need to have enough I/O to access your data. This means that you
must have sufficient disk adapters, enough disks on your disk sets, and
make sure data is evenly spread on the disks.

� Memory:

– You must have enough memory for both the OS and the applications that
run on the system. Size your database buffer pools to leave sufficient
memory for the OS and possible disk caching. Oversizing buffer pools can
cause OS swapping and slow down the OS and DB2.

– If buffer pools over 1.7 GB on Linux and UNIX or 2 GB on Windows are
required, you must have enough memory and 64-bit OS and DB2.
44 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
� CPU:

– Consider symmetric multiprocessor (SMP) systems with two or more CPU
for your database system. You are be able to run queries parallel on
different CPUs to improve performance.

Application environment
To fully utilize DB2 WLM enhancements, plan how your applications use your
databases so that you are able to differentiate different types of applications and
work sets:

� Use different user accounts for different types of workloads when applicable.
� Do not use only one account to access all of your data.
� Do not use administrative accounts for applications.

A well-designed setup using different accounts for different applications allows
you to grant the database privileges to each application based on the business
requirement. This not only makes your database environment more secure, but
also will make the WLM implementation much easier. You can better separate
different types of workloads and manage them accordingly.

3.3 Lab environment

In this section we describe the lab environment built for writing this book.

3.3.1 Lab systems

We use following hardware to run our servers. AIX systems are the primary
system used for the lab exercise.

� AIX servers

– Clyde

• pServer 690
• 8 x 1.9GHz CPU
• 8GB RAM
• 2 x 72GB RAID 1 internal disks
• 8 x 142GB RAID 0 +1 external disks
• DB2 9.5 ESE

– Bonnie

• 4 x 1.9GHz CPU
• 8GB RAM
• 2 x 72GB RAID 1 internal disks
 Chapter 3. Getting started 45

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
• 8 x 142GB RAID 0 + 1 external
• DB2 9.5 ESE

� Linux server

– Puget

• xSeries® 360
• 2 x Intel(R) XEON(TM) MP CPU 2.00GHz
• 2GB RAM
• 2 x 72GB RAID 1 internal disks
• DB2 9.5 ESE

� Windows server

– Cetus

• ThinkCenter
• Intel(R) Core(TM)2 CPU 6700 @ 2.66GHz
• 4GB RAM
• 2 x 72GB internal hard drives
• DB2 9.5 ESE
• Performance Expert 3.1

� Storage

– IBM DS4800

• 2 x IBM EXP700
• 16x IBM 143 GB

3.3.2 AIX server configuration

Figure 3-1 illustrates disk configuration for the partitioned database in the AIX
servers. Operating system has its own volume group rootvg which is on internal
disks. All database related file systems reside on the external SAN disks.
46 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
Figure 3-1 Disk setup

The instance home directory /db2home is on an external SAN disk attached to
Clyde. This home directory on Clyde is configured as an exportable Network File
System (NFS) file system for mounting the DB2 home directory over it. The table
spaces, active logs, and archived logs for both Clyde and Bonnie have their own
file systems on the external SAN disks:

� /db2data for table spaces and table space containers
� /db2logs for active transaction logs
� db2alogs for archived transaction logs

Figure 3-2 illustrates the partition configuration of WLMDB database we created
on the AIX systems. WLMDB spreads over two physical nodes and consists of
five database partitions. Partition 0 on Clyde acts as coordinating partition.
WLMDB has six database partition groups:

� IBMCATGROUP for system catalogs on partition0, the coordinating partition.

Note: This is a simple Lab environment that has only one LUN configured for
all the database related file systems on SAN. On production environments you
should have the file systems on their own LUNs.

CPU CPU CPU CPU

RAM

OS DISK

CPU CPU CPU CPU

RAM

OS DISK

External SAN

/db2alogs

/db2home

/db2logs

/db2data

/db2alogs/db2logs

NFS mount

BonnieClyde

/db2data
 Chapter 3. Getting started 47

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
� IBMDEFAULTGROUP which spans over all five partitions. This has only one
table space, USERSPACE1 which is the default table space for new tables.
Our intention is not to use this table space for our tests.

� IBMTEMPGROUP which spans over all partitions. This has only one table
space which is for temporary tables.

� NG1 is in partition 0 only. NG1 contains one table space for small referencing
tables.

� NG2 spreads over database partition 1 to partition 4. This partition group has
table spaces for our data for tests and benchmarking.

� NGALL spans over all database partitions. It has only one table space MAINT
for event monitor data to be used for historical analyses.

Figure 3-2 WLMDB partition configuration

3.3.3 TPC-H

We deploy TPC-H data for our test database. You can find more information
about TPC-H at

http://www.tpc.org/tpch/

Clyde Bonnie

Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

SYSCATSPACE1

IBMCATGROUP

IBMDEFAULTGROUP

LINEI

ORDERSI

OTHERS

ORDERSD

LINED

TWORK

MAINT

SYSTOOLSPSACE

SYSTOOLSTMPSPACE

USERSPACE1

SMALL

NG1

NG2

NGALL

IBMTEMPGROUP

DB2TMP16K
48 DB2 Work Load Manager for Linux, UNIX, and Windows

http://www.tpc.org/tpch/

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
3.4 Installing DB2

The base function of DB2 9.5 Workload Manager is available in the core DB2
engine and the more advanced custom features are licensed under the
Performance Optimization feature.

In this section, we guide you through the installation using the partitioned
database design for our lab. The installation process is also applicable for the
non-partitioned environment except the special steps we noted for a partitioned
environment.

Installation on Linux and UNIX
In this section we go through DB2 9.5 ESE installation steps for AIX and Linux.
You must have at last three user accounts and user groups for DB2:

� Instance owner: In our examples, we use db2inst1, which belongs to the
group db2adm, as our instance owner.

� Fenced user: We use the user account db2fenc1, which belongs to the group
fencgrp, for fenced processes.

� DB2 Administration Server account: We use dasusr1, which belongs to the
group dasgrp.

If you install DB2 using db2setup command on the product CD, the installation
program creates user accounts as well as the DB2 instance you specified during
the installation.

If you use db2_install script on the product CD, you must set up user groups
and DB2 accounts on your own. This is the approach we used to set up our DB2
environment.

In DB2 9.5, you can install DB2 as non-root user on Linux and UNIX platforms. In
our lab, we continue use root to perform DB2 installation. The following lists the
high-level steps we used to install DB2 on AIX and Linux environment:

1. Log in as root, or gain root access by issuing the following command:

su -

2. Create user accounts and groups as described above using operating system
tools.

3. Mount the product CD:

On AIX: mount -V cdrfs -o ro /dev/cd0 /mnt
On Linux mount /dev/cdrom /mnt

4. Change the working directory to /mnt/ese:
 Chapter 3. Getting started 49

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
cd /mnt/ese

5. Start product installation:

./db2_install

6. Install DB2 at default location by answering no to the installing location
question.

7. We select ESE as the product to be installed.

8. Once the product is installed, change the working directory to DB2 9.5 ESE
instance directory:

On AIX: cd /opt/IBM/db2/V9.5/instance
On Linux: cd /opt/ibm/db2/V9.5/instance

9. Create an instance:

./db2icrt -u db2fenc1 db2inst1

This time we do not create DB2 Administration Server, which is usually one of the
installation steps. It can be created later.

Post installation
Once DB2 is installed, you may need to modify some of the system files:

� Update Services file

Instance creation process automatically creates service entries in
/etc/services file as shown in Example 3-1.

Example 3-1 Services file

DB2_db2inst1 60000/tcp
DB2_db2inst1 60000/tcp
DB2_db2inst1_1 60001/tcp
DB2_db2inst1_2 60002/tcp
DB2_db2inst1_END 60003/tcp

We modify the Services file to run our DB2 instance on listening port 50001
for the incoming connections. We also reserve ports 60000 - 60004 to be
used in the partitioned environment. If you are not going to set up partitioned
database, no change is required. You can then use DB2_db2inst1 as your
SVCENAME.

Example 3-2 shows the modified services file.

Example 3-2 Modified services file

db2inst1c 50001/tcp
DB2_db2inst1 60000/tcp
DB2_db2inst1_1 60001/tcp
50 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
DB2_db2inst1_2 60002/tcp
DB2_db2inst1_3 60003/tcp
DB2_db2inst1_4 60004/tcp
DB2_db2inst1_END 60005/tcp

� Setup communication

After creating DB2 instance, we configure DB2 communication:

a. Log on as db2inst1 user or gain access by running su command:

su - db2inst1

b. Update DB2 registry value DB2COMM:

db2set DB2COMM=TCPIP

c. Update database manager configuration parameter TCP/IP service name:

db2 update dbm cfg using SVCENAME db2inst1c

� Update db2nodes.cfg

To setup the partitioned database as described in 3.3.2, “AIX server
configuration” on page 46, DB2 is installed on both Clyde and Bonnie. Next,
we modify db2nodes.cfg file under $DB2HOME/sqllib/ directory to have five
database partitions, three on Clyde and two on Bonnie. If you are not going
run your database on partitioned environment, you can skip next step.
Example 3-3 shows our db2nodes.cfg file.

Example 3-3 db2nodes.cfg

0 Clyde.itsosj.sanjose.ibm.com 0
1 Clyde.itsosj.sanjose.ibm.com 1
2 Clyde.itsosj.sanjose.ibm.com 2
3 Bonnie.itsosj.sanjose.ibm.com 0
4 Bonnie.itsosj.sanjose.ibm.com 1

� Set up ssh

There are two additional optional steps left for partitioned environment. We
want our instance owner to be able to access from Clyde to Bonnie without
prompted passwords and other way around. You can implement this either by
using rsh or by using ssh. We used the later one. Our AIX servers already
has ssh clients and servers installed. Since our instance owner db2inst1 has
same home directory on both Bonnie and Clyde, we only have to create
public and private ssh keys on one server. Example 3-4 shows how to create
ssh keys:

Example 3-4 How to create ssh keys

>ssh-keygen -t rsa
 Chapter 3. Getting started 51

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
Generating public/private rsa key pair.
Enter file in which to save the key (/db2home/db2inst1/.ssh/id_rsa):
Created directory '/db2home/db2inst1/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /db2home/db2inst1/.ssh/id_rsa.
Your public key has been saved in /db2home/db2inst1/.ssh/id_rsa.pub

After the keys are create, we log in once from Bonnie to Clyde and once from
Clyde to Bonnie using ssh to ensure the setup is working. On the first time
logging in with ssh from one server to another server, you will be prompted to
accept servers public key to your known_hosts file. You must answer “yes” to
this question. This step sets the required responses for the ssh prompting
questions in automated connection. Without it, the automated connection
from one host to another will fail. By doing the test, we also update the
know_hosts file on both servers for later use.

Now we are ready to start our DB2 9.5 ESE by issuing the following command as
user db2inst1:

db2start

Installation on Windows
You must install DB2 9.5 using an account that belongs to a local administrators
or a domain administrators if you plan to use domain accounts for DB2 accounts.
Launch setup.exe from your product CD. The installation setup guides you
through the installation.

You can check Windows installation instructions from:

https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2
.luw.qb.server.doc/doc/t0052773.html

Verify your installation
You can check if the DB2 installed indeed has WLM feature by creating a
database and verify if one of the new WLM catalog tables is in place.
Example 3-5 shows that we created a database WLMDB and select WLM
catalog table SYSCAT.WORKLOADS. Two default workloads
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD were created.

Example 3-5 Verifying your database is WLM capable

db2 create db WLMDB
DB20000I The CREATE DATABASE command completed successfully.

db2 connect to WLMDB
52 DB2 Work Load Manager for Linux, UNIX, and Windows

https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.qb.server.doc/doc/t0052773.html

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
connect to WLMDB

 Database Connection Information

 Database server = DB2/AIX64 9.5.0
 SQL authorization ID = DB2INST1
 Local database alias = WLMDB

db2 "SELECT WORKLOADID, SUBSTR(WORKLOADNAME,1,24) as WORKLOADNAME FROM
SYSCAT.WORKLOADS"

WORKLOADID WORKLOADNAME
----------- ------------------------
 1 SYSDEFAULTUSERWORKLOAD
 2 SYSDEFAULTADMWORKLOAD

 2 record(s) selected.

3.5 First steps

In this section we describe the default WLM configuration and what you can do
with it.

3.5.1 The default DB2 WLM configuration

In DB2 9.5, every DB2 work is executed within a service class. Each user
connection to database is mapped to a workload. DB2 creates two default
workloads and three default service classes on the database you create. The
default service classes are:

� SYSDEFAULTUSERCLASS
� SYSDEFAULTMAINTENANCECLASS
� SYSDEFAULTSYSTEMCLASS

Each default service superclass has one default service subclass
SYSDEFAULTSUBCLASS.

The default workloads are:

� SYSDEFAULTUSERWORKLOAD
� SYSDEFAULTADMWORKLOAD

In Figure 3-3 illustrates the relationships between default workload and service
classes.
 Chapter 3. Getting started 53

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
Figure 3-3 Default workloads and service classes

Without any customization, all the user requests are assigned to the default user
workload SYSDEFAULTUSERWORKLOAD and executed under the default
superclass SYSDEFAULTUSERCLASS. You are not able to disable, drop, define
thresholds or create your own subclasses under SYSDEFAULTUSERCLASS.
The only alter you can do on SYSDEFAULTUSERCLASS is to define
OUTBOUND CORRELATOR, which is required if you want to integrate DB2
WLM with operating system workload manager. This special case is discussed in
detail inChapter 8, “AIX Workload Manager considerations” on page 193.

The default administration workload, SYSDEFAULTADMWORKLOAD, is a
special DB2-supplied workload definition that is always mapped to
SYSDEFAULTUSERCLASS. This workload is intended for the database
administrator to perform their work or to take corrective actions when needed. As
this workload is not affected by thresholds, it has limited workload management
control and is not recommended for use in submitting regular day-to-day work.

All internal DB2 maintenance and administrative activities are executed on the
default system maintenance class SYSDEFAULTMAINTENANCECLASS.
Examples of internal maintenance and administrative tasks are:

User Requests

Maintenance Requests

Default Maintenance Class

Default
User

workload Default User Class

Default Sub Class

Default Sub Class

Default
Admin

workloadAdmin Requests

System Requests

Default System Class

Default Sub Class
54 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
� DB2 asynchronous background processing (ABP) connections
� Health monitor initiated backup
� Health monitor initiated RUNSTATS
� Health monitor initiated REORG

All the system requests are executed under the default system service class
SYSDEFAULTSYSTEMCLASS on its default subclass.The default system
service superclass is the execution environment for all internal connections and
threads that perform system-level tasks. Examples of these tasks are:

� ABP daemon
� Connections issued by the Query Controller component of Query Patroller
� Self Tuning Memory Manager (STMM)
� Prefetcher engine dispatchable units (EDUs) (db2pfchr)
� Page cleaner EDUs (db2pclnr)
� Log reader EDUs (db2loggr)
� Log writer EDUs (db2loggw)
� Log file reader EDUs (db2lfr)
� Deadlock detector EDUs (db2dlock)
� Event monitors (db2evm)
� Connections performing system level tasks

Both SYSDEFAULTMAINTENANCECLASS and SYSDEFAULTSYSTEMCLASS
are special service superclasses for DB2 internal use only. You cannot create
subclasses under these service classes. You also cannot associate any
workloads or work actions with them. Furthermore, you cannot implement
thresholds on these special service classes.

On a default configuration, SYSCAT.SERVICECLASSES and
SYSCAT.WORKLOADS are the only two tables that have content.

3.5.2 Monitoring the default WLM environment

The default WLM environment is a good starting point to understand the activities
take place at the database. Even with the basic WLM environment, there are a lot
of information available. You can use the new WLM table functions to collect
statistical information for analysis or monitor your database activities real time.

In this section, we show you a few examples of using WLM table functions to see
the default WLM settings and the activities in the DB2. The detail description of
the WLM table functions is provided in Chapter 5, “Monitoring” on page 83.

Collecting statistical information
Using the statistical WLM table functions, you can collect the statistical
information about the system for problem solving and analysis.
 Chapter 3. Getting started 55

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
If you want see high watermark for concurrent connection since last statistics
reset you can use table function WLM_GET_SERVICE_SUPERCLASS_STATS as shown
in Example 3-6.

Example 3-6 High watermark of concurrent connections

SELECT SUBSTR(Service_superclass_namE, 1, 26) AS service_superclass_name,
 LAST_RESET,
 CONCURRENT_CONNECTION_TOP CONCURRENT_CONN_TOP
FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('', -2)) AS scstats;

SERVICE_SUPERCLASS_NAME LAST_RESET CONN_TOP
-------------------------- -------------------------- -----------
SYSDEFAULTSYSTEMCLASS 2007-08-28-10.12.30.192053 4
SYSDEFAULTMAINTENANCECLASS 2007-08-28-10.12.30.192076 1
SYSDEFAULTUSERCLASS 2007-08-28-10.12.30.192093 2

 3 record(s) selected.

Example above shows high watermark connections for default service classes.
Value of column “LAST_RESET”points to the time when the statistics were reset.
How to reset statistics will be discussed in chapter 5.

If you are having performance problems with your applications connecting to your
database, and you do not know wether problems are related to database or
applications, you probably want to take closer look to your database first. You can
use WLM table functions to further investigate the problem. In Example 3-7 we
use table function WLM_GET_SERVICE_SUBCLASS_STATS to collect the following
statistics data:

� The number of actions that are completed after last reset.
� The high watermark for concurrent connections.
� The average action lifetime.

Example 3-7 Using table functions to investigate performance

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS superclass_name,
 SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS actscompleted,
 SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS actshw,
 CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0
 ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)
 / SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))
 AS actavglifetime
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('SYSDEFAULTUSERCLASS', '', -2)) AS
scstats
GROUP BY SERVICE_SUPERCLASS_NAME
ORDER BY SUPERCLASS_NAME;
56 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
SUPERCLASS_NAME ACTSCOMPLETED ACTSHW ACTAVGLIFETIME
------------------- ------------- ------ --------------
SYSDEFAULTUSERCLASS 2088 31 1.348

 1 record(s) selected.

These information can help us understand if the database is performed to our
expectation, if database configuration change is required, or if it is necessary to
take closer look at applications and queries.

If you want to look at the statistics from workload point of view, you can use table
function WLM_GET_WORKLOAD_STATS to see what is the high watermark for
concurrent workloads.

Example 3-8 shows how to get data for default workloads using table function
WLM_GET_WORKLOAD_STATS. We see that the highest number of concurrent
occurrences is two in SYSDEFAULTUSERWORKLOAD. Highest number of
concurrent activities is one in SYSDEFAULTUSERWORKLOAD. No activities
have been mapped to SYSDEFAULTADMWORKLOAD at this time.

Example 3-8 Workload table function

SELECT SUBSTR(WORKLOAD_NAME,1,22) AS wl_def_name,
 CONCURRENT_WLO_TOP AS wlo_top,
 CONCURRENT_WLO_ACT_TOP AS wlo_act_top
 FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))
 AS wlstats
 ORDER BY wl_def_name;

WL_DEF_NAME WLO_TOP WLO_ACT_TOP
---------------------- ----------- -----------
SYSDEFAULTADMWORKLOAD 0 0
SYSDEFAULTUSERWORKLOAD 2 1

 2 record(s) selected.

WLM real-time monitoring table functions
In the previous section, we show you how to use statistical table functions to
check the database performance. If you want to see what is happening in your
database just now, you also can WLM table functions to view runtime
information.

You can use GET_SERVICECLASS_WORKLOAD_OCCURENCES table
function to see which workload occurrences are currently running on the system
as shown in Example 3-9.
 Chapter 3. Getting started 57

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
Example 3-9 Workload occurrences table function

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS superclass_name,
 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS subclass_name,
 SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS apphndl,
 SUBSTR(WORKLOAD_NAME,1,18) AS workload_name,
 SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS wlo_id
FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES
 (CAST(NULL AS VARCHAR(128)), CAST(NULL AS VARCHAR(128)), -2));

SUPERCLASS_NAME SUBCLASS_NAME APPHNDL WORKLOAD_NAME
------------------- ------------------ ------- ------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 174 SYSDEFAULTUSERWORK
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 207 SYSDEFAULTUSERWORK

 2 record(s) selected.

In Example 3-10 we show how to list agents executing on a service class using
table function WLM_GET_SERVICE_CLASS_AGENTS.

Example 3-10 How to find out how many agents are running

SELECT SUBSTR(AGENTS.SERVICE_SUPERCLASS_NAME,1,19) AS superclass_name,
 SUBSTR(AGENTS.SERVICE_SUBCLASS_NAME,1,19) AS subclass_name,
 COUNT(*) AS AGENT_COUNT
FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', CAST(NULL AS BIGINT), -2)) AS
agents
WHERE agent_state = 'ACTIVE'
GROUP BY service_superclass_name, service_subclass_name
ORDER BY service_superclass_name, service_subclass_name;

SUPERCLASS_NAME SUBCLASS_NAME AGENT_COUNT
------------------- ------------------- -----------
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 4
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1

 2 record(s) selected.

If you wish to find out all the activities for a specific application, you can use table
function WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES. This table
function accepts two input parameters: application handle and partition number.
First, you need to find out the application handle for the application using db2
list applications command. We used -1 for partition number, which points to
current partition. Example 3-11 shows all activities for application with application
handle 384.
58 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch03.fm
Example 3-11 Finding workload occurrence activities

SELECT SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
 SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
 SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
 SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,
 ACTIVITY_TYPE AS ACTTYPE,
 SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING
FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(384, -1)) AS WLOACTS
 ORDER BY UOWID, ACTID;

UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ----- -------- -------- -------------------------------- -------
3 1 - - READ_DML 0

 1 record(s) selected.

If you wish to find detailed information about certain application, you can use
table function WLM_GET_ACTIVITY_DETAILS. This table function returns
detailed information about the specified activity. See Example 3-12.

Example 3-12 Collecting activity information with table function

SELECT SUBSTR(NAME, 1, 20) AS name,
 SUBSTR(VALUE, 1, 30) AS value
 FROM TABLE(WLM_GET_ACTIVITY_DETAILS(386,1,1,-1)) AS actdetail
 WHERE NAME IN ('APPLICATION_HANDLE',
 'LOCAL_START_TIME',
 'UOW_ID',
 'ACTIVITY_ID',
 'PARENT_UOW_ID',
 'PARENT_ACTIVITY_ID',
 'ACTIVITY_TYPE',
 'NESTING_LEVEL',
 'INVOCATION_ID',
 'ROUTINE_ID');

NAME VALUE
-------------------- ------------------------------
APPLICATION_HANDLE 386
UOW_ID 1
ACTIVITY_ID 1
PARENT_UOW_ID
PARENT_ACTIVITY_ID
ACTIVITY_TYPE READ_DML
NESTING_LEVEL 0
INVOCATION_ID 0
ROUTINE_ID 0
 Chapter 3. Getting started 59

7524ch03.fm Draft Document for Review October 2, 2007 10:12 am
LOCAL_START_TIME 2007-08-28-20.11.30.343467
60 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Chapter 4. Customizing the WLM
execution environments

Now that we have worked through the default WLM setup, it is now time begin
building a WLM plan and implementing the plan. From this plan we can evolve
our WLM implementation. In this chapter we describe the steps for customizing
the DB2 WLM for achieving business objectives. We discuss the methodology for
building and evolving a WLM implementation.

4

© Copyright IBM Corp. 2007. All rights reserved. 61

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
4.1 Stages of workload management

Typically a DB2 database system has several different kinds of workloads, each
with their own resource and availability requirements. They often undergo similar
changes throughout their life cycle. For example, Sales reporting may require
large reports on a monthly or quarterly basis. Where as, Inventory may require
extensive re-casting of inventory quarterly or annually. These requirements may
change over time as new business are acquired or applications are merged into
the database system or the data in the database system simply grows. The keys
to managing these workloads and protecting their needed resources are:

� Identify the work

The management goals are either given or can be derive from business
objectives, service delivery, or performance objective. To achieve a goal, you
first must be able to identify details about the work. There are many different
sources that you can use to identify database activities, for example, user ID,
user group, application name, session name and so on. Activities can be of
varying types: system activities, administration activities, utilities, and
applications. You can group the activities based on business area, activity
type, or service requirements for DB2 WLM to mange.

� Manage the work

During this stage, you determine how you want to manage the work and
current resources to meet your goals. The generic way to do this is to assign
resources based on the characteristics of work, create and impose controls.

Database work can be managed based on request or resource:

– Request management

In the request management, work is managed based on its priority that are
critical to business. Similar type of work are grouped together and set
threshold and actions when request exceed predefined conditions

– Resource management

In resource management, similar type of work are grouped based on same
business priority and control is placed to limit excessive and unexpected
resource consumption.

� Monitor the work

Monitoring is for determining whether you are achieving a goal and identifying
the problems that might be preventing you from achieving your goal. You can
capture the activity information, store them, and analyze the data.

This is a continuous cycle that can be expressed as a cyclical process as shown
in Figure 4-1.
62 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Figure 4-1 WLM methodology cycle

4.2 Identify the work

The process of identifying workloads can be very complex. It is best to start by
using what you already know. Many key facts about the workload is often stated
from the very beginning and based on business requirements:

� What are the business requirements?
� Are there any Service Level Agreements (SLA) that must be met?
� Are there any management or user requirements?

Develop a comprehensive view of works in the database that need to meet these
business requirements. Next, identify the characteristics and changes to the
workload by using workload profiling.

Checklist
In the process of identifying the workload, trying to gather as much as
information about the workload. In the management stage, these information will
be used to customize the WLM to manage your workload to meet the business
goal. The following lists what should be identified:
 Chapter 4. Customizing the WLM execution environments 63

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
� Tasks:

What processes do you want to identify or what you have discovered from
previous monitoring? For example utilities run by DBA, all the report jobs and
so on.

� Business requirements:

What is the purpose or function of the task? What requirements are attached
to this task. These requirements should be expressed in terms of desired
outcome, such as an SLA or business restrictions.

For the workload we identified, we

� Task identity:

How is the process identified in the system? This is for WLM to identify what
workload comes to the database system. WLM can identify a process or
workload using the following:

– Application name (APPLNAME)
– Authorization ID (SYSTEM_USER)
– SESSION_USER
– SESSION_USER GROUP
– SESSION_USER ROLE
– CLIENT_USERID
– CLIENT_APPLNAME
– CLIENT_WRKSTANNAME
– CLIENT_ACCTNG

For each task, you must identify at least one of these for WLM.

� Action:

What action is needed for this process? In other words, what do you want to
happen to control or measure this task. WLM provides the following actions:

– Database level data collection:

• High level data collection:

The aggregate activity data will be captured for the service class and
sent to the applicable event monitor. The information is collected
periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The SQL statement clauses are

COLLECT AGGREATE REQUEST DATA
COLLECT AGGREGATE ACTIVITY DATA [BASE | EXTENDED]

• Detailed data collection (at all levels: database, service class,
workload:
64 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
The information about each activity that executes in the service class
will be sent to the applicable event monitor when the activity completes.
The SQL statement clause is

COLLECT ACTIVITY DATA

– Controls on processes:

Specify what to control and the control scope use WORK ACTION or
THRESHOLD.

4.2.1 Workload identify worksheet

Use a worksheet to list the tasks, business requirements, process identify, and
action identified.

The workload example we are using is a typical starting point for many data
warehouse customers. We broke down our workload as follows:

� Administrative tasks:
We categorized the work such as security, monitoring, data maintenance
(backup, recovery, REORG, RUNSTATS) as administrative tasks. The task
identification is the group ID DB2ADM.

� Batch work
The batch work we identified includes loading data from various external
sources and Extract Transform Load applications (ETL). The workload
identification is etl.exe or client user ID BATCH.

� Production Ad hoc queries
These may come from a vendor tool or from end users. The users in this
category are all assigned to the group DSSGROUP.

� Production reports
These are generated reports built using a vendor tool such as Brio, Cognos,
Microstrategy, etc. They are identified by their executable name. In our
example, they run dss.exe.

For these workload we identified, we want to start by knowing what resources do
they consume, how often do they run, when do they run. These information can
help us decide if we need to take any action to protect this workload and what
actions do we need to take to limit the workloads impact on other workloads.

Table 4-1 shows our starting point. Remember, workload management is a
continuous cycle of identification, management, and monitoring. This is merely a
starting point of identification. Once we have gained more information and
knowledge about our workloads, we can develop a more comprehensive plan.
 Chapter 4. Customizing the WLM execution environments 65

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
Table 4-1 Workload identify worksheet

4.3 Manage the work

The WLM management stage is to build steady progress to meet the business
goal and actions that you can take when there are indications that the goal is not
being met. Use the worksheet prepared to build the DB2 WLM objects:

� Service class

To collect historical analysis reports for each task, we create service
subclasses for each task.

� Workload

To assign the task activities for each service classes, we create workloads
using Identification.

� Event monitor

To collect and store aggregate information in tables, we create a write-to-table
statistics event monitor.

In our basic setup, we want to historical analysis reports.

Task Business requirements Identification Action

Admin Manages the database
environment

groupid = DB2ADM Report the times, duration,
and frequency of tasks

Batch ETL must be complete prior
to primetime shift

Loads and other ETL
process using etl.exe
or client userid =
‘BATCH’ and utility
LOAD

report the times, duration,
and frequency of tasks

Production Prime time 8:00 AM to 6:00
PM

Ad Hoc queries and
reports run under
dss.exe

Identify ad hoc separately
from reports

_Ad hoc queries Must complete 90% < 5
minutes

groupid = dssgroup Report the times, duration,
and frequency of tasks

_Analysis Reports Must complete all reports
daily

exec = dss.exe Report the times, duration,
and frequency of tasks
66 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
4.3.1 Creating the service classes

The service classes give us a hierarchy for assigning work. They are the basic
building blocks for all workloads. Use the CREATE SERVICE CLASS statement
to define the service class. If you want to collect statistics data, specify the
COLLECT AGGREGATE ACTIVITY clause.

Figure 4-2 illustrate the service classes we defined. The service classes address
the WLM worksheet column Action. We could have altered the default service
classes and workloads but we want to establish a foundation to evolve our WLM
setup. Our superclass is HIGHLVL under which all of our subclasses are
assigned. Our subclasses are used to describe what action we want to take for
all workloads assigned to the particular subclass. Subclasses allow us to be very
specific about what action is performed on specific workloads.

Figure 4-2 WLMDB service classes

Example 4-1 shows service classes DML. We have chosen to use aggregate
levels of collection, COLLECT AGGREGATE ACTIVITY DATA BASE. This level of data
collection has the least impact on the system and presents a high level of
information in our monitoring. Additionally, we want both aggregate activity and
aggregate request data.

Example 4-1 Creating service classes for basic setup

CREATE SERVICE CLASS highlvl DISABLE;
CREATE SERVICE CLASS admins UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA BASE
DISABLE;
 Chapter 4. Customizing the WLM execution environments 67

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
CREATE SERVICE CLASS batch UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE
DISABLE;
CREATE SERVICE CLASS prod_rpt UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;
CREATE SERVICE CLASS prod_qry UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;

4.3.2 Creating the workloads

Use CREATE WORKLOAD statement to define the workloads and specify which
subclass is responsible for handling the workload. The workloads addresses the
WLM worksheet column Identification. Each workload is tied to a subclass.

Figure 4-3illustrates the sample workloads we defined in our database WLMDB.

Figure 4-3 WLMDB workloads

Example 4-2 shows the workloads we set up, again, allowing the WLM setup to
evolve.

Example 4-2 Creating workloads

CREATE WORKLOAD wl_batch CURRENT CLIENT_USERID ('BATCH')

Note: Disable all service classes and workloads until you are ready to use
them. This keeps work from being assigned a service class or workload prior
to completing the WLM setup. In a script the timing window may be small but
when using the Command Line, the exposure is much longer
68 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
 DISABLE SERVICE CLASS BATCH UNDER highlvl POSITION AT 1;

CREATE WORKLOAD wl_prod_rpt APPLNAME ('dss.exe')
 DISABLE SERVICE CLASS prod_rpt UNDER highlvl POSITION AT 2;

CREATE WORKLOAD wl_prod_qry SESSION_USER GROUP ('DSSGROUP')
 DISABLE SERVICE CLASS prod_qry UNDER highlvl POSITION AT 3;

CREATE WORKLOAD wl_admin SESSION_USER GROUP ('DB2ADM')
 DISABLE SERVICE CLASS admins UNDER highlvl POSITION AT 4;

Set client information
The workload identification attributes are based either on the server identification
or the client identification, as in three tier applications. The server identifications
are:

� APPLNAME
� SYSTEM_USER
� SESSION_USER
� SESSION_USER GROUP
� SESSION_USER ROLE

The client identifications are:

� CLIENT_USERID
� CLIENT_APPLNAME
� CLIENT_WRKSTANNAME
� CLIENT_ACCTNG

Prior to DB2 9.5, these were set either using the client db2cli.ini or the set client
information API (sqleseti). Starting in DB2 9.5, the client identification can also be
set at the server. This adds flexibility to workload identification for work initiated
on the server or in a three tier environment. In our example we want all batch
jobs identified by the client_userid BATCH. Example 4-3 shows a batch job using
the wlm_set_client_info stored procedure.

Example 4-3 Batch job using the wlm_set_client_info

db2 connect to wlmdb
db2 "call sysproc.wlm_set_client_info('BATCH',NULL,'MQT105',NULL,NULL)"
db2 -tvf /batchjobs/mqt/refresh_mqt_current_yr_sls.clp

Note: The workloads should be sequenced to specify the order of workload
assignment. Don’t assume they are being assigned based on the order of
creation. The default position when adding a workload is LAST. As the WLM
setup evolves, it becomes increasingly difficult to keep them in order.
 Chapter 4. Customizing the WLM execution environments 69

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
db2 reset

4.3.3 Allowing use of the WLM setup

Before the workloads can be used, permission must be granted. You can grant
the USAGE privilege to specific users, groups, roles, or PUBLIC. In our example
we granted all workloads to PUBLIC since there are no security or audit
concerns in the Lab environment. See Example 4-4.

Example 4-4 Grant workload usage

GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;

Next the service classes and workloads are enabled. As stated earlier, we
recommend to create all service classes and workloads using DISABLED to
prevent premature usage until the entire WLM setup has been completed.

4.3.4 Creating the event monitor

The final step in our basic setup is to create the event monitor. Since we have
chosen to collect aggregate statistics for historical analysis, an event monitor is
needed. In Example 4-5 we decided to write the event monitor data to tables
instead of files. Since the amount of data is expected to be small, we wanted the
flexibility of tailoring our reports using SQL.

Example 4-5 Creating event monitor using tables

CREATE EVENT MONITOR basic_mon FOR STATISTICS WRITE TO TABLE
 SCSTATS (TABLE scstats_basic_mon IN maint),
 WCSTATS (TABLE wcstats_basic_mon IN maint),
 QSTATS (TABLE qstats_basic_mon IN MAINT),
 WLSTATS (TABLE wlstats_basic_mon IN maint),
 HISTOGRAMBIN (TABLE histogrambin_basic_mon IN maint),
 CONTROL (TABLE control_basic_mon IN maint)
 AUTOSTART;
SET EVENT MONITOR basic_mon STATE 1;

Note: Using the call sysproc.wlm_set_client_info stored procedure on the
server side, extends the flexibility of identifying work.
70 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Example 4-6 shows the event monitor tables created. We appended the event
monitor name to the table names to make them unique and to correlate them to
the event monitor. We created all the tables even though we are only doing
aggregate collection, which uses the tables:

� SCSTATS
� WLSTATS
� HISTOGRANBIN

The other table are created in case we need them later. All the event monitor
table are created in a specific table space as a good administration practice.

Example 4-6 Event monitor tables

->db2 list tables for user

Table/View Schema Type Creation time
----------------------- -------- ----- --------------------------
CONTROL_BASIC_MON ADMINHM T 2007-08-28-12.54.53.340071
HISTOGRAMBIN_BASIC_MON ADMINHM T 2007-08-28-12.54.55.518744
QSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.55.111208
SCSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.53.931222
WCSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.54.326150
WLSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.54.733324

4.3.5 Using SYSDEFAULTADMWORKLOAD

The default administration workload SYSDEFAULTADMWORKLOAD is a special
DB2-supplied workload definition that is not subject to any DB2 thresholds. This
workload is intended to allow the database administrator to perform their work or
to take corrective actions, as required. As this workload is not affected by
thresholds, it has limited workload management control and is not recommended
for use in submitting regular day-to-day work.

You can use the SET WORKLOAD command to assign a connection to the
SYSDEFAULTADMWORKLOAD as follows:

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

If this is the first occurrence of creating a workload or if you are not redoing the
entire WLM setup, this statement is not needed. However, If you have a script
which is constructed to delete the prior WLM configuration, an SQL4714 error
may occur when all WLM service classes are disabled. The reason being, if all
service classes have been disabled, nothing else in the script can execute until
the work is routed to an enabled workload. This is were SYSDEFAULTADMWORKLOAD
comes to the rescue.
 Chapter 4. Customizing the WLM execution environments 71

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
Example 4-7 shows a full script used in the test environment.

Example 4-7 Script to delete and rebuild WLM setup

-- set all existing work to default workload

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

-- create WLM environment

CREATE SERVICE CLASS HIGHLVL DISABLE;
CREATE SERVICE CLASS ADMINS UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA BASE
DISABLE;
CREATE SERVICE CLASS BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE
DISABLE;
CREATE SERVICE CLASS PROD_RPT UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;
CREATE SERVICE CLASS PROD_QRY UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;

-- identify workloads and assign to service classes

CREATE WORKLOAD WL_BATCH CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS
BATCH UNDER HIGHLVL POSITION AT 1;
CREATE WORKLOAD WL_PROD_RPT APPLNAME ('dss.exe') DISABLE SERVICE CLASS
PROD_RPT UNDER HIGHLVL POSITION AT 2;
CREATE WORKLOAD WL_PROD_QRY SESSION_USER GROUP ('DSSGROUP') DISABLE SERVICE
CLASS PROD_RPT UNDER HIGHLVL POSITION AT 3;
CREATE WORKLOAD WL_ADMIN SESSION_USER GROUP ('DB2ADM') DISABLE SERVICE CLASS
ADMINS UNDER HIGHLVL POSITION AT 4;

-- grant usage of workloads

GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;

-- Enable the service classes

ALTER SERVICE CLASS HIGHLVL ENABLE;
ALTER SERVICE CLASS ADMINS UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS BATCH UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS PROD_RPT UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS PROD_QRY UNDER HIGHLVL ENABLE;

ALTER WORKLOAD WL_ADMIN ENABLE;
72 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
ALTER WORKLOAD WL_BATCH ENABLE;
ALTER WORKLOAD WL_PROD_RPT ENABLE;
ALTER WORKLOAD WL_PROD_QRY ENABLE;
COMMIT;

-- start using the new WLM setup

SET WORKLOAD TO AUTOMATIC;

-- setup and turn on the event monitor

CREATE EVENT MONITOR BASIC_MON FOR STATISTICS WRITE TO TABLE
 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT),
 WCSTATS (TABLE WCSTATS_BASIC_MON IN MAINT),
 QSTATS (TABLE QSTATS_BASIC_MON IN MAINT),
 WLSTATS (TABLE WLSTATS_BASIC_MON IN MAINT),
 HISTOGRAMBIN (TABLE HISTOGRAMBIN_BASIC_MON IN MAINT),
 CONTROL (TABLE CONTROL_BASIC_MON IN MAINT)
 AUTOSTART;
SET EVENT MONITOR BASIC_MON STATE 1;

Without the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD command, once all the
service classes are disabled, the script can not continue because we disabled
every service class we are using. An SQL471N appears when the command
shown is attempted

CREATE SERVICE CLASS HIGHLVL DISABLE;

4.4 Monitor the work

The last stage in a workload management cycle is monitoring the activities,
analyzing the collected data, and verifying if the customized WLM environment
can manage and control the workload as planned. Using monitoring, we can
address the WLM worksheet column Business requirements.

In our example, we collect aggregate data over time and monitor it periodically.
From the reports, we hope to learn about our workloads, determine if addition
action is needed. The details of monitoring are covered in Chapter 5,
“Monitoring” on page 83. Here we discuss only the reports used in our basic
WLM setup.

Since we setup to collect aggregate statistics (both request and activity), we have
data in the following tables:

� SCSTATS_BASIC_MON
� WLSTATS_BASIC_MON
 Chapter 4. Customizing the WLM execution environments 73

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
� HISTOGRANBIN_BASIC_MON

Each table gives us a different perspective of the WLM setup.

Looking at the SCSTATS_BASIC_MON, we can export and analyze our workload
at the subclass level. Example 4-8 shows the export SQL statements.

Example 4-8 Exporting event monitor data

EXPORT TO /tmp/exports/scstats_all.csv OF DEL
SELECT
 DATE(statistics_timestamp) AS stat_date,
 TIME(statistics_timestamp) AS stat_time,
 SUBSTR(service_subclass_name,1,10) AS subclass_name,
 CASE WHEN 0 > INT(SUM(concurrent_act_top))
 THEN 0
 ELSE INT(SUM(concurrent_act_top))
 END AS con_act_top,
 CASE WHEN 0 > INT(SUM(concurrent_connection_top))
 THEN 0
 ELSE INT(SUM(concurrent_connection_top))
 END AS CON_CONN_TOP,
 CASE WHEN 0 > INT(SUM(coord_act_completed_total))
 THEN 0
 ELSE INT(SUM(coord_act_completed_total))
 END AS coord_act_comp,
 CASE WHEN 0 > INT(SUM(coord_act_exec_time_avg))
 THEN 0
 ELSE INT(SUM(coord_act_exec_time_avg)/1000)
 END AS avg_c_exe_tm,
 CASE WHEN 0 > INT(SUM(request_exec_time_avg))
 THEN 0
 ELSE INT(SUM(request_exec_time_avg)/1000)
 END AS avg_r_exe_tm
FROM scstats_basic_mon
WHERE CHAR(DATE(statistics_timestamp)) = CURRENT DATE
GROUP BY DATE(statistics_timestamp), TIME(statistics_timestamp),
 SUBSTR(service_subclass_name,1,10)
ORDER BY 1,2,3

From the SCSTATS_Basic_MON table, for each time period, we can analyze:

� Top concurrent activity
� Top concurrent connections
� Top coordinator activity
� Coordinator activity completed
� Coordinator execution time (microseconds)
� Request execution time (microseconds)
74 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Figure 4-4 shows the requests execution time by subclass of a typical day.

Figure 4-4 Request execution time by subclass

From this graph we see several interesting observations in a quick and easy to
identify format:

� Our BATCH processing is from 5:00 AM to 11:00 AM with additional batch
process running between 12:00 PM and 1:00 PM.

� Production reports begin at 6:30 AM and continue all during the prime shift
and concludes at 8:00 PM because we have users in several time zones
running reports. A heavy CPU demand is placed on our data warehouse
during 8:00 AM and 9;00 AM.

� Production ad-hoc queries begin at 8:00 AM and run steady until 8:00 PM.
Again we have users in several timezones. We also see heavy CPU loads at
9:00 AM and again around 4:00 PM.

� The Admins appear to be running heavy loads twice a day from noon to 1:00
PM and again from 6:00 PM until 8:30 PM. From our inquiry, we discover that
the online table space backups are run during these times daily.
 Chapter 4. Customizing the WLM execution environments 75

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
� We also see and unaccounted for workload in the SYSDEFAULTSUBCLASS.
Some one is placing a very heavy load on the system around 11:30 AM. More
investigation is needed to determine what is causing the additional load.

Using the same information but now formatted as a stacked bar graph, We see
the accumulated affect of our workloads on the system as shown in Figure 4-5.
This graph gives us the total perspective of how the workloads impact our system
CPU consumption. Using this information, workloads can be rescheduled,
prioritized, or limited using queues if they consume too much CPU at the same
time.

Figure 4-5 Bar chart - Requests execution time by subclass

Turning our attention to the active connections, we get a sense of how many
workloads are running during the day as shown in Figure 4-6 on page 77. We
see from this graph that our production ad-hoc queries usually peak twice a day.
Our batch jobs appear to taper off around 11AM. We also see activity in the
SYSTEMDEFAULTSUBCLASS during the prime shift between 11:00 AM and
1:30 PM. As shown in Figure 4-4 on page 75, this has sever impact on our CPU
availability. More investigation is needed.
76 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Figure 4-6 Active connections

Checking concurrent connections
We now turn our attention to concurrent connections to get a sense of the
throughput of our work. This is shown in Figure 4-7 on page 78. Here we see the
production reports and production queries are high during the mornings. The
number of production reports and the CPU resources they consume may need to
be controlled in order to protect the production query SLA. Again the
SYSTEMDEFAULTSUBCLASS has connections most of the day.
 Chapter 4. Customizing the WLM execution environments 77

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
Figure 4-7 Concurrent connections

Using the following graph, we get an overall view of the number of connections
hitting our system as shown in Figure 4-8 on page 79. We can see the high water
mark for connections and that it occurs twice a day during prime shift.
78 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
Figure 4-8 Connection high water mark

4.5 Summary

Now that we completed our cycle for the first time, what did we learn? The
analysis of the data will be the input for the next cycle using our WLM
methodology:

Identify
There are several areas we now want to identify for analysis.

� What is running in the SYSTEMDEFAULTSUBCLASS. We have already
identified all existing categories. So this work in probably being performed by
our report development group as it is the only remaining group allowed
access to you example database.

� Limit the resources for the rouge queries based on execution time
 Chapter 4. Customizing the WLM execution environments 79

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
� The BATCH group runs two types of workloads, LOAD and our ETL tool,
etl.exe which we want to identify how much resources is being used for each
of these categories.

Manage
In order to accomplish our new goals that we have identified we can alter our
setup to the following Example 4-9.

Example 4-9 Altered basic setup

ALTER WORKLOAD wl_batch DISABLE;

ALTER SERVICE CLASS BATCH UNDER highlvl DISABLE;

DROP WORKLOAD wl_batch ;

DROP SERVICE CLASS batch UNDER highlvl;

CREATE SERVICE CLASS batch_load UNDER highlvl COLLECT AGGREGATE REQUEST DATA
BASE DISABLE;
CREATE SERVICE CLASS batch_etl UNDER highlvl COLLECT AGGREGATE REQUEST DATA
BASE DISABLE;
CREATE SERVICE CLASS dev_rpt UNDER highlvl COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;

CREATE WORKLOAD wl_batch_etl APPLNAME ('etl.exe') DISABLE SERVICE CLASS
batch_etl UNDER highlvl POSITION AT 2;
CREATE WORKLOAD wl_batch_load CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE
CLASS batch_load UNDER highlvl POSIION AT 3;
ALTER WORKLOAD wl_prod POSITION AT 4;
ALTER WORKLOAD wl_admin POSITION AT 5;
CREATE WORKLOAD wl_dev_rpt SESSION_USER GROUP ('DEVGRP') DISABLE SERVICE CLASS
HIGHLVL POSITION AT 6;

GRANT USAGE ON WORKLOAD wl_batch_etl TO PUBLIC;
GRANT USAGE ON WORKLOAD wl_batch_load TO PUBLIC;
GRANT USAGE ON WORKLOAD wl_dev_rpt TO PUBLIC;

ALTER SERVICE CLASS batch_etl UNDER highlvl ENABLE;
ALTER SERVICE CLASS batch_load UNDER highlvl ENABLE;

ALTER WORKLOAD wl_batch_etl ENABLE;
ALTER WORKLOAD wl_batch_load ENABLE;
ALTER WORKLOAD wl_dev_rpt ENABLE;

COMMIT;
--
-- SETUP THRESHOLD AND MONITORING
80 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch04.fm
--

CREATE THRESHOLD rouge_dev
 FOR SERVICE CLASS dev_rpt UNDER highlvl ACTIVITIES
 ENFORCEMENT DATABASE
 WHEN ACTIVITYTOTALTIME > 17 MINUTES
 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
 STOP EXECUTION ;
--
-- Create Event Monitor
--
CREATE EVENT MONITOR VIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE
 CONTROL (TABLE CNTL_VIOLATION IN MAINT),
 THRESHOLDVIOLATIONS (TABLE THRESHOLD_VIOLATIONS IN MAINT) AUTOSTART;

SET EVENT MONITOR VIOLATIONS STATE 1;

Monitor
We will continue using the same high level reporting and repeating our analysis
and the WLM methodology cycle.
 Chapter 4. Customizing the WLM execution environments 81

7524ch04.fm Draft Document for Review October 2, 2007 10:12 am
82 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Chapter 5. Monitoring

This chapter describes the methodology for monitoring the DB2 Workload
Management (WLM) information. We discuss the monitoring tools in two
categories: real-time monitoring and historical monitoring. Additionally, using a
simple WLM configuration and those monitoring tools, we provide the monitoring
examples and results for workload profiling and capturing.

In this chapter, the following topics are discussed:

� Real-time monitoring

– Workload management table functions
– Workload management stored procedures
– db2pd command for workload management

� Historical monitoring

– Activities event monitor
– Threshold violations event monitor
– Statistics event monitor

� Workload profiling and capturing

5

© Copyright IBM Corp. 2007. All rights reserved. 83

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
5.1 Real-time monitoring

Real-time monitoring is useful for you to see what happens on your system. This
section describes how to use workload management table functions, stored
procedures, and the db2pd command with examples. These monitoring tools
enable you to access information for the new Workload Manager (WLM) objects.

5.1.1 Workload management table functions

DB2 9.5 provides new table functions for WLM to collect and report point-in-time
workload information. These table functions do not use the existing system
monitor or snapshot mechanisms, they access directly in-memory information,
therefore, performance impact is minimum.

These table functions return monitor information, such as table data, by issuing
an SQL query. Depending on what you want to monitor, you can customize the
SQL easily.

All table functions can return information for either a single database partition or
for all database partitions in a partitioned database environment. Those table
functions have the dbpartitionnum input parameter. The parameter indicates -1
for the current database partition, or -2 for all database partitions.

DB2 9.5 provides two types of table functions for WLM: one for obtaining
operational information and the other for obtaining statistics.

Table functions to obtain operational information
This set of table functions return the current workload condition and can be used
to obtain the operational information:

� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

Table function parameters:

– service_superclass_name
– service_subclass_name
– dbpartitionnum

You can use this table function to get a list of workload occurrences, across
partitions, assigned to a service class. For each occurrence, there is
information about the current state, the connection attributes used to assign
the workload to the service class, activity statistics indicating the activity
volume, and the success rates. Example 5-1 shows how to use this table
function to find out who is on the system.
84 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Example 5-1 Who is on the system

>db2 "SELECT SUBSTR(service_superclass_name,1,19) AS superclass_name,
SUBSTR(service_subclass_name,1,19) AS subclass_name,
SUBSTR(workload_name,1,22) AS workload_name, application_handle,
workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('','',-1))"

SUPERCLASS_NAME SUBCLASS_NAME WORKLOAD_NAME
APPLICATION_HANDLE WORKLOAD_OCCURRENCE_STATE
------------------- ------------------- ----------------------
-------------------- --------------------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
466 UOWEXEC
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
513 UOWWAIT
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
517 UOWEXEC

3 record(s) selected.

The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table
function does not report the applications which have the APPL_STATUS value
CONNECTED. Because the applications haven’t been assigned to a workload
yet. You can use the SNAPAPPL_INFO administrative view to see all
applications connected to DB2. See Example 5-2.

Example 5-2 SNAPAPPL_INFO administrative view

>db2 "SELECT agent_id,appl_status,substr(appl_name,1,10)
 AS appl_name FROM sysibmadm.snapappl_info"

AGENT_ID APPL_STATUS APPL_NAME
-------------------- ---------------------- ----------
 13 CONNECTED db2evml_TO
 12 CONNECTED db2evml_TO
 11 CONNECTED db2evmg_DB

 466 UOWEXEC db2bp.exe
 10 CONNECTED db2wlmd
 513 UOWWAIT db2bp.exe
 9 CONNECTED db2taskd
 8 CONNECTED db2stmm
 14 CONNECTED db2evml_TO
 27 CONNECTED db2bp.exe
 517 UOWEXEC db2bp.exe
11 record(s) selected.

� WLM_GET_SERVICE_CLASS_AGENTS

Table function parameters:
 Chapter 5. Monitoring 85

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
– service_superclass_name
– service_subclass_name
– application_handle
– dbpartitionnum

You can use this table function to obtain a list of agents working in the
database. You can list all the agents running in a specific service class or all
the agents working on the behalf of a particular application. You can also use
this table function to determine the state of the coordinator agent and
subagents for applications and determine which requests each agent in the
system is working on.

The WLM_GET_SERVICE_CLASS_AGENTS table function reports the
applications which have the APPL_STATUS value UOWEXEC.

Example 5-3 shows the event object (EVENT_OBJECT) and event state
(EVENT_STATE) for the applications.

Example 5-3 Using WLM_GET_SERVICE_CLASS_AGENTS

>db2 "SELECT application_handle, uow_id, activity_id, event_object,
event_state FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('','',cast(null as
bigint), -1)) WHERE service_superclass_name <> 'sysdefaultsystemclass'"

APPLICATION_HANDLE UOW_ID ACTIVITY_ID EVENT_OBJECT EVENT_STATE
-------------------- ----------- ----------- --------------- --------------
 466 68 1 ROUTINE EXECUTING
 517 3 1 REQUEST EXECUTING

 2 record(s) selected.

� WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

Table function parameters:

– application_handle
– dbpartitionnum

You can use this table function to obtain a list of current activities that are
associated with a workload occurrence. For each activity, the available
information includes the current state of the activity (for example, executing or
queued), the type of activity (for example, LOAD, READ, DDL), and the time
at which the activity started. You can also identify who is running a
long-running activity.

Example 5-4 shows two applications are reading DML.
86 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Example 5-4 What is the application doing

>db2 "SELECT application_handle, local_start_time, activity_state,
activity_type FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(cast(null
as bigint), -1))"

APPLICATION_HANDLE LOCAL_START_TIME ACTIVITY_STATE ACTIVITY_TYPE
-------------------- -------------------------- --------------- ----------------
 466 2007-08-17-10.18.27.893233 EXECUTING READ_DML
 517 2007-08-17-10.17.08.991668 EXECUTING READ_DML

 2 record(s) selected.

� WLM_GET_ACTIVITY_DETAILS

Table function parameters:

– application_handle
– uow_id
– activity_id
– dbpartitionnum

You can use this table function to obtain the details about an individual
activity of an application. For example, for SQL activities, the available
information includes the statement text, package data, cost estimates, lock
timeout value, and isolation level. Note that you need to turn on the statement
monitor switch or the timestamp switch to collect some elements (for
example, CPU times and rows returned or modified). The value -1 means that
either the statement monitor switch or the timestamp switch is not activated.

Example 5-5 shows the SQL activities (isolation level, lock timeout, cost
estimates) of the application handle 18.

Example 5-5 Capturing the individual activity

>db2 "SELECT SUBSTR(NAME, 1, 25) AS NAME, SUBSTR(VALUE, 1, 20) AS VALUE
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(18,16,1,-2))
WHERE NAME IN ('COORD_PARTITION_NUM', 'APPLICATION_HANDLE',
'EFFECTIVE_ISOLATION', 'EFFECTIVE_LOCK_TIMEOUT', 'QUERY_COST_ESTIMATE')"

NAME VALUE
------------------------- --------------------
APPLICATION_HANDLE 18
COORD_PARTITION_NUM 0
EFFECTIVE_ISOLATION 3
EFFECTIVE_LOCK_TIMEOUT 120
QUERY_COST_ESTIMATE 8

 5 record(s) selected.
 Chapter 5. Monitoring 87

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Identify lock wait
If you want to get the SQL statement using snapshot monitor, you need to turn
on the statement monitor switch. WLM table functions provides you a way to
obtain the running SQL statement without turning the monitoring switch on since
it does not depend on the monitor switches.

Here we demonstrate how to use the table functions to identify the lock-wait
query:

1. Identify the application handle using the SNAPAPPL_INFO administrative
view as shown in Example 5-6. The application handle 43 is lock-waited.

Example 5-6 Identifying which application is lock-waited

>db2 "select agent_id,appl_status,substr(appl_name,1,10) AS appl_name from
sysibmadm.snapappl_info"

AGENT_ID APPL_STATUS APPL_NAME
-------------------- ---------------------- ----------
 39 CONNECTED db2stmm
 38 UOWWAIT db2bp.exe
 43 LOCKWAIT java.exe
 42 CONNECTED db2evmg_DB
 41 CONNECTED db2wlmd
 47 UOWEXEC db2bp.exe
 40 CONNECTED db2taskd

 7 record(s) selected.

2. Identify the service superclass name and the service subclass name of the
locked application using
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table
function.

Example 5-7 shows the application handle 43 is associated with the
SYSDEFAULTSUBCLASS under the SYSDEFAULTUSERCLASS and is in UOWWAIT
state.

Example 5-7 identifying the service superclass name and the service subclass name

>db2 "SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,19) as subclass_name
, application_handle, workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('','',-1))"

SUPERCLASS_NAME SUBCLASS_NAME APPLICATION_HANDLE
WORKLOAD_OCCURRENCE_STATE
------------------- ------------------- --------------------

88 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 38
UOWWAIT
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 43
UOWWAIT
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 47
UOWEXEC

 3 record(s) selected.

3. Identify the UOW ID and the activity ID using the
WLM_GET_SERVICE_CLASS_AGENTS table function. Example 5-8 shows
UOW ID and activity ID for application 43 respectively.

Example 5-8 Identifying the uow id and activity id

>db2 "SELECT application_handle, uow_id, activity_id, event_object,
event_state FROM
TABLE(WLM_GET_SERVICE_CLASS_AGENTS('SYSDEFAULTUSERCLASS','SYSDEFAULTSUBCLAS
S',43, -1)) as agents"

APPLICATION_HANDLE UOW_ID ACTIVITY_ID EVENT_OBJECT EVENT_STATE
-------------------- ----------- ----------- ------------ ------------
 43 3 1 LOCK IDLE

 1 record(s) selected.

4. Identify the SQL statement using the WLM_GET_ACTIVITY_DETAILS table
function. Example 5-9 shows the query in lock-waited in STMT_TEXT. The
STMT_TEXT field only contains the first 1024 characters of the statement text.

Example 5-9 Identifying the SQL statement

>db2 "SELECT substr(name, 1, 20) as name, substr(value, 1, 50) as value
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(43,3,1,-1)) as actdetail WHERE NAME IN
('coord_partition_num', 'application_handle', 'local_start_time',
'application_handle', 'activity_id', 'uow_id', 'activity_state',
'activity_type', 'entry_time', 'local_start_time', 'stmt_text',
'rows_fetched', 'query_cost_estimate')"

NAME VALUE
--
APPLICATION_HANDLE 43
COORD_PARTITION_NUM 0
UOW_ID 3
ACTIVITY_ID 1
ACTIVITY_STATE EXECUTING
ACTIVITY_TYPE READ_DML
ENTRY_TIME 2007-08-16-12.04.04.744903
LOCAL_START_TIME 2007-08-16-12.04.04.744927
 Chapter 5. Monitoring 89

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
STMT_TEXT SELECT NAME FROM STAFF WHERE ID = ?
QUERY_COST_ESTIMATE 8
ROWS_FETCHED -1

 11 record(s) selected.

Table functions to obtain statistics
This set of table functions return the detailed workload information since the last
time that the statistics were reset. These table functions report only a subset of
the statistics. To view the full set of statistics, you must collect the statistics
information.

Table functions for obtaining statistics are:

� WLM_GET_SERVICE_SUPERCLASS_STATS

Table function parameters:

– service_superclass_name
– dbpartitionnum

You can use this table function to show summary statistics across partitions
at the service superclass level. For example, high water marks for concurrent
connections which is useful when determining peak workload activity.

Example 5-10 shows the concurrent connections for each service superclass.

Example 5-10 Using WLM_GET_SERVICE_SUPERCLASS_STATS

>db2 "SELECT * FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('', -1))"

SERVICE_SUPERCLASS_NAME DBPARTITIONNUM LAST_RESET
CONCURRENT_CONNECTION_TOP
------------------------- -------------- --------------------------

SYSDEFAULTSYSTEMCLASS 0 2007-08-17-08.25.53.703291
 7
SYSDEFAULTMAINTENANCECLASS 0 2007-08-17-08.25.53.703367
 2
SYSDEFAULTUSERCLASS 0 2007-08-17-08.25.53.703419
 15

3 record(s) selected.

� WLM_GET_SERVICE_SUBCLASS_STATS

Table function parameters:

– service_superclass_name
90 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
– service_subclass_name
– dbpartitionnum

You can use this table function to show summary statistics across partitions
at the service subclass level (all activities run in service subclasses).
Statistics includes numbers of activities and average execution times. The
average execution times is useful when looking at general system health and
the distribution of activities across service classes and partitions.

Lifetime information such as average execution times is only returned for
those service classes that are defined with COLLECT AGGREGATE
ACTIVITY DATA. While the SYSDEFAULTSUBCLASS under the
SYSDEFAULTUSERCLASS is not defined with COLLECT AGGREGATE
ACTIVITY DATA by default, the value of REQUEST_EXEC_TIME_AVG is NULL.

Example 5-11 shows the number of requests (NUM_REQUESTS_ACTIVE) that are
executing in the service subclass.

Example 5-11 Using WLM_GET_SERVICE_SUBCLASS_STATS

>db2 "SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,18) as subclass_name, num_requests_active,
request_exec_time_avg FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('','', -1))
ORDER BY superclass_name, subclass_name"

SUPERCLASS_NAME SUBCLASS_NAME NUM_REQUESTS_ACTIVE
REQUEST_EXEC_TIME_AVG
------------------- ------------------ --------------------

SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0
 -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 5
 -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 15
 -

 3 record(s) selected.

� WLM_GET_WORK_ACTION_SET_STATS

Table function parameters:

– work_action_set_name
– dbpartitionnum

You can use this table function to show summary statistics across partitions
at the work action set level, namely, the number of activities assigned to a
work action set and the related work class name. This is useful for
understanding the effectiveness of a work action set and understanding the
types of activities executing on the system.
 Chapter 5. Monitoring 91

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
In Example 5-11, the value 3 means that three activities have been assigned
to the work class given by WORK_CLASS_NAME since the last reset.

Example 5-12 Using WLM_GET_WORK_ACTION_SET_STATS

> db2 "SELECT substr(work_action_set_name,1,18) as work_action_set_name,
substr(work_class_name,1,15) as work_class_name,
substr(char(act_total),1,14) as act_total, last_reset FROM
TABLE(WLM_GET_WORK_ACTION_SET_STATS (cast(null as varchar(128)), -1)) as
wasstats order by work_action_set_name, work_class_name"

WORK_ACTION_SET_NAME WORK_CLASS_NAME ACT_TOTAL LAST_RESET
-------------------- --------------- ----------- --------------------------
SPECIFIC_ACTIONSET * 0 2007-08-24-18.22.02.038311
SPECIFIC_ACTIONSET SPECIFIC_QUERY 3 2007-08-24-18.22.02.038311

2 record(s) selected.

� WLM_GET_WORKLOAD_STATS

Table function parameters:

– workload_name
– dbpartitionnum

You can use this table function to show summary statistics across partitions
at the workload level. This includes high water marks for concurrent workload
occurrences and numbers of completed activities. This is useful when
monitoring general system health or drilling down to identify problem areas.

Example 5-13 shows the highest number of concurrent occurrences and the
highest number of concurrent activities for each workload. The
CONCURRENT_WLO_ACT_TOP field is updated by each workload
occurrence at the end of its unit of work.

Example 5-13 Using WLM_GET_WORKLOAD_STATS

>db2 "SELECT substr(workload_name,1,22) as workload_name,
concurrent_wlo_top, concurrent_wlo_act_top FROM
TABLE(WLM_GET_WORKLOAD_STATS(CAST(null as varchar(128)), -1)) ORDER BY
workload_name"

WORKLOAD_NAME CONCURRENT_WLO_TOP CONCURRENT_WLO_ACT_TOP
---------------------- ------------------ ----------------------
SYSDEFAULTADMWORKLOAD 0 0
SYSDEFAULTUSERWORKLOAD 16 2

 2 record(s) selected.

� WLM_GET_QUEUE_STATS
92 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Table function parameters:

– threshold_predicate
– threshold_domain
– threshold_name
– threshold_id

You can use this table function to show summary statistics across partitions
for the WLM queues used for their corresponding thresholds. Statistics
includes the number of queued activities (current and total) and total time
spent in a queue. This is useful when querying current queued activity or
validating if a threshold is correctly defined. Excessive queuing might indicate
that a threshold is too restrictive, and very little queuing might indicate that a
threshold is not restrictive enough or is not needed.

Example 5-14 shows that the threshold QUEUE_THRESH is a concurrent
database coordinator activities (CONCDBC) threshold. It defines an a upper
bound of the number of concurrent coordinator activities. The domain of the
threshold is SB (service subclass). Total 17 activities were assigned to this
queue since the last reset. 806299 milliseconds spent in the queue for 17
activities.

Example 5-14 Using WLM_GET_QUEUE_STATS

>db2 "SELECT substr(threshold_name, 1, 15) threshname, threshold_predicate,
threshold_domain, dbpartitionnum part, queue_size_top, queue_size_current,
queue_time_total, queue_assignments_total queue_assign FROM
table(WLM_GET_QUEUE_STATS('', '', '', -1))"

THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN PART
QUEUE_SIZE_TOP QUEUE_SIZE_CURRENT QUEUE_TIME_TOTAL QUEUE_ASSIGN
--------------- --------------------------- ------------------ ------
-------------- ------------------ -------------------- --------------------
QUEUE_THRESH CONCDBC SB 0
10 10 806299 17
 1 record(s) selected.

Workload management and snapshot monitor integration
Snapshot™ monitor is also useful for you to capture the condition of database
system. You can use both snapshot monitor table fanctions and SQL
administrative views with workload management table functions at the same
time. There are fields you can use when joining table functions between
workload management and snapshot monitor.

Table 5-1 lists the fields shared between the workload management table
functions and the snapshot monitor table functions.
 Chapter 5. Monitoring 93

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Table 5-1 WLM and snapshot monitor table functions field mapping

Example 5-15 shows how to identify applications CPU consumption by joining
the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table
function and the SNAPAPPL administrative view. In this case, the AGENT_ID 282
consumes the most CPU resources.

Example 5-15 Identifying applications consuming CPU resource

db2 "SELECT substr(wlm.service_superclass_name,1,25) as superclass_name,
substr(wlm.service_subclass_name,1,25) as subclass_name,
substr(wlm.workload_name,1,25) as workload_name, snap.agent_id,
sum(snap.agent_usr_cpu_time_s + snap.agent_sys_cpu_time_s) as cpu_time FROM
sysibmadm.snapappl snap,
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('','',-1)) wlm WHERE
snap.agent_id=wlm.application_handle GROUP BY snap.agent_id,
wlm.service_superclass_name, wlm.service_subclass_name, wlm.workload_name ORDER
BY cpu_time DESC FETCH FIRST 5 ROWS ONLY"

SUPERCLASS_NAME SUBCLASS_NAME WORKLOAD_NAME
AGENT_ID CPU_TIME
------------------------- ------------------------- -------------------------
------------- ---------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
282 26
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
7 13

WLM table function field Snapshot monitor table function field

agent_tid agent_pid

application_handle agent_id
agent_id_holding_lock

session_auth_id session_auth_id

dbpartitionnum node_number

utility_id utility_id

workload_id workload_id

Note: Snapshot monitor table functions may be modified in the future DB2
release. While the set of snapshot administrative views will remain the same
with new columns added to the view. It is good for application maintenance to
use snapshot monitor SQL administrative views.
94 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
17 2
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
16 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD
212 0

 5 record(s) selected.

5.1.2 Workload management stored procedures

DB2 9.5 provides new stored procedures for WLM to manage activities. Each
stored procedure offers a specific functionality.

WLM stored procedures are:

� WLM_CANCEL_ACTIVITY

Syntax:

WLM_CANCEL_ACTIVITY (application_handle, uow_id, activity_id)

You can use this stored procedure to cancel a running or queued activity. You
identify the activity by its application handle, unit of work identifier, and activity
identifier. You can cancel any type of activity but not force the connection.
The application with the canceled activity receives the error SQL4725N.

In Example 5-16, from window A, we first tried to cancel application 637 with
UOW ID 3. This is not an exiting activity and DB2 returns SQL4702N with
SQLSTATE 5U035. We then successfully cancelled application 637, UOW ID
1. In WindowB, we see the application is canceled but the connection stays.

Example 5-16 Canceling an activity

WindowA:
>db2 CALL WLM_CANCEL_ACTIVITY(637,3,1)
SQL4702N The activity identified by application handle "637 [0-637]", unit
of work ID "3", and activity ID "1" does not exist. SQLSTATE=5U035

>db2 CALL WLM_CANCEL_ACTIVITY(637,1,1)

 Return Status = 0

WindowB:
>db2 "SELECT * FROM employee FOR UPDATE"

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE JOB
 EDLEVEL SEX BIRTHDATE SALARY BONUS COMM
 Chapter 5. Monitoring 95

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
------ ------------ ------- --------------- -------- ------- ----------

 ------- --- ---------- ----------- ----------- -----------
SQL4725N The activity has been cancelled. SQLSTATE=57014

>db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = SAMPLE
 Database name = SAMPLE
 Hostname =
 Service name =

� WLM_CAPTURE _ACTIVITY_IN_PROGRESS

Syntax:

WLM_CAPTURE_ACTIVITY_IN_PROGRESS(application_handle, uow_id, activity_id)

You can use this stored procedure to send information about an individual
activity that is currently executing to the active activities event monitor. This
stored procedure sends the information immediately, rather than waiting until
the activity completes. Before you call this stored procedure, you need to
activate an activity event monitor. If there is no active activities event monitor,
an SQL1633W with SQLSTATE 01H53 is returned.

Example 5-17 shows that SQL1633 is returned on the first stored procedure
call due to the event monitor is not activated. Once the event monitor is on,
the stored procedure run successfully.

Example 5-17 Capturing an activity

>db2 CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(660,2,1)

 Return Status = 0

SQL1633W The activity identified by application handle "660 [0-660]", unit
of work ID "2", and activity ID "1" could not be captured because there is
no active activity event monitor. SQLSTATE=01H53

>db2 set event monitor act state 1
DB20000I The SQL command completed successfully.

>db2 CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(660,2,1)

 Return Status = 0
96 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
� WLM_COLLECT_STATS

Syntax:

WLM_COLLECT_STATS()

You can use this stored procedure to collect and reset statistics for workload
management objects. All statistics tracked for service classes, workloads,
threshold queues, and work action sets are sent to the active statistics event
monitor (if one exists) and then reset. If there is no active statistics event
monitor, the statistics are only reset, but not collected.

Example 5-18 shows that the data of last_reset field is changed after calling
the WLM_COLLECT_STATS stored procedure.

Example 5-18 calling the WLM_COLLECT_STATS stored procedure

>db2 "SELECT last_reset FROM
TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('SYSDEFAULTUSERCLASS',-1))"

LAST_RESET

2007-08-15-14.56.08.129076

 1 record(s) selected.

>db2 "CALL WLM_COLLECT_STATS()"

 Return Status = 0

>db2 “SELECT last_reset FROM
TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('SYSDEFAULTUSERCLASS',-1))”

LAST_RESET

2007-08-15-14.57.31.639612

 1 record(s) selected.

5.1.3 db2pd command for workload management

In DB2 9.5, db2pd commend is enhanced for workload management to return
operational information from the DB2 database system memory sets. Compared
to table functions, db2pd command is easier to use since you don’t need to
prepare the SQL statements with table functions.

Db2pd command with various options for workload management are:
 Chapter 5. Monitoring 97

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
� db2pd -workloads [none/workloadID]

Returns a list of workload definitions in memory at the time the command is
run.

� db2pd -serviceclasses [none/serviceclassID]

Returns information about the service classes for a database. serviceclassID
is an optional parameter to retrieve information for one specific service class.
If serviceclassID is not specified, information for all service classes is
retrieved.

� db2pd -workactionsets [none/workactionsetID]

Returns information about all enabled work action sets, as well as all the
enabled work actions in the enabled work action sets.

� db2pd -workclasssets [none/workclasssetID]

Returns information about all work class sets that have been referenced by
an enabled work action set, as well as all work classes in those work class
sets.

� db2pd -threshold [none/thresholdID]

Returns information about thresholds. thresholdID is optional. Specifying a
threshold ID returns information about a specific threshold. If thresholdID is
not specified, information for all thresholds is retrieved.

Example 5-19 shows using db2pd to retrieve information for service class ID 3 in
SAPMPLE database. You can see the application handle list associated with the
service class.

Example 5-19 using db2pd command

>db2pd -db sample -serviceclasses 3

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 02:30:04

Service Classes:

Service Class Name = SYSDEFAULTUSERCLASS
Service Class ID = 3
Service Class Type = Service Superclass
Default Subclass ID = 13
Service Class State = Enabled
Agent Priority = Default
Prefetch Priority = Default
Outbound Correlator = None
Work Action Set ID = N/A
Collect Activity Opt = None
98 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Num Connections = 3
Last Statistics Reset Time = 2007-08-17 08:25:53.000000
Num Coordinator Connections = 3
Coordinator Connections HWM = 4

Associated Workload Occurrences (WLO):
AppHandl [nod-index] WL ID WLO ID UOW ID WLO State
466 [000-00466] 1 1 116 UOWWAIT
513 [000-00513] 1 147 11 UOWWAIT
660 [000-00660] 1 295 3 UOWEXEC

5.2 Historical monitoring

Historical monitoring is useful for seeing what have happened on your system.
DB2 provides three event monitor types (ACTIVITIES, THRESHOLD
VIOLATIONS and STATISTICS) for WLM to store activity information or
aggregate information. This section describes how to collect and analyze those
information.

Typically, event monitors write data to either tables or files. Compared to
real-time monitoring, event monitors consume disk space to store information in
tables or files space. You need to prune these tables or files periodically because
they are not automatically pruned. The event monitor file output requires
formatting using db2evmon in order to be readable. While the event monitor table
can be queried and manipulated with SQL, the event monitor table is easier for
historical analysis.

You can use the wlmevmon.ddl script in the sqllib/misc directory to create and
enable three event monitors DB2ACTIVITIES, DB2STATISTICS, and
DB2THRESHOLDVIOLATIONS. These event monitors write data to tables. If
you execute the script without modification, tables are stored in the
USERSPACE1. If necessary, modify the script to change the table space or
other parameters.

Note: You also can get objectID from system catalog views. Here are the
examples:

SELECT workloadid,workloadname FROM syscat.workloads
SELECT serviceclassid,serviceclassname FROM syscat.serviceclasses
SELECT actionsetid,actionsetname FROM syscat.workactionsets
SELECT workclassid,workclassname FROM syscat.workclasses
SELECT thresholdid,thresholdname FROM syscat.thresholds
 Chapter 5. Monitoring 99

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Table 5-2 shows the event monitor type for WLM and event group. If you create a
activity event monitor write data to tables, the database creates 4 target tables to
store records for each of the event groups.

Table 5-2 Type of event monitor and event monitor group value

5.2.1 Activities event monitor

This section introduces how to use the activites event monitor. The activities
event monitor has the following features:

� Which WLM objects can I collect activity information for?

You can collect information about individual activities for service subclasses,
workloads, work classes (through work actions), and threshold violations.

� When is the information useful?

– As input to tools such as Design advisor(db2advis) or explain utility (to
obtain access plans)

– Debug individual activities.

� When is the information collected?

The information is collected when the activity completes, regardless of
whether the activity completes successfully. When an activity completes,

Type of Event Monitor evm-group Value

Activities CONTROL
ACTIVITY
ACTIVITYSTMT
ACTIVITYVALS

Threshold Violations CONTROL
THRESHOLDVIOLATIONS

Statistics CONTROL
SCSTATS
WCSTATS
WLSTATS
HISTOGRAMBIN
QSTATS

Note: Only one of the event monitor ACTIVITIES, STATISTICS, or
THRESHOLD VIOLATIONS can be activate at any one time. If an event
monitor of the same type is already active, SQL1631N with SQLSTATE
5U024 is returned.
100 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
information about the activity is sent to the active ACTIVITIES event monitor,
if one exists.

� How do I collect the information?

You can collect information about an activity by specifying COLLECT
ACTIVITY DATA for the service subclass, workload, or work action to which
such an activity belongs or a threshold that might be violated by such an
activity.

Collecting WLM object activity information
The following are steps to enable collection of activities for a given workload
management object:

1. Create an event monitor:

Use the CREATE EVENT MONITOR statement to create an ACTIVITIES type
event monitor.
Example 5-20 shows how to create an activities event monitor that writes data
to a file.

Example 5-20 Creating an activities event monitor to a file

$ db2 "create event monitor wlm_act for activities write to file
'/evmon/wlm/activities' autostart"
DB20000I The SQL command completed successfully.
$ db2 commit
DB20000I The SQL command completed successfully.

Example 5-21 shows to how to create an activities event monitor that writes
data to tables. Four tables are created.

Example 5-21 Creating an activities event monitor tables

$ db2 "create event monitor wlm_act for activities write to table activity
(table activity_db2activities in userspace1), activitystmt (table
activitystmt_db2activities in userspace1), activityvals (table
activityvals_db2activities in userspace1), control (table
control_db2activities in userspace1) autostart"
DB20000I The SQL command completed successfully.
$ db2 commit
DB20000I The SQL command completed successfully.

If you want to know the column name or the type name for those event
monitor tables, you can use the DESCRIBE TABLE command, for example:

db2 describe table activity_db2activities

2. Activate the event monitor:
 Chapter 5. Monitoring 101

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Use the SET EVENT MONITOR STATE statement to activate the event
monitor.

Example 5-22 shows how to set the event monitor to active and check its
status.

Example 5-22 Setting the event monitor to active

$ db2 "SELECT substr(evmonname,1,20) as evmonname, CASE WHEN
event_mon_state(evmonname) = 0 THEN 'Inactive' WHEN
event_mon_state(evmonname) = 1 THEN 'Active' END FROM syscat.eventmonitors"

EVMONNAME 2
-------------------- --------
DB2DETAILDEADLOCK Active
WLM_ACT Inactive

 2 record(s) selected.

$ db2 set event monitor wlm_act state 1
DB20000I The SQL command completed successfully.

$ db2 commit
DB20000I The SQL command completed successfully.

$ db2 "SELECT substr(evmonname,1,20) as evmonname, CASE WHEN
event_mon_state(evmonname) = 0 THEN 'Inactive' WHEN
event_mon_state(evmonname) = 1 THEN 'Active' END FROM syscat.eventmonitors"

EVMONNAME 2
-------------------- --------
DB2DETAILDEADLOCK Active
WLM_ACT Active

 2 record(s) selected.

3. Identity the target objects:

Identify the objects for which you want to collect activities by using the ALTER
SERVICE CLASS, ALTER WORK ACTION SET, ALTER THRESHOLD, or
ALTER WORKLOAD statement and specify the COLLECT ACTIVITY DATA
keywords.

Example 5-23 shows how to alter the default service class to specify the
COLLECT ACTIVITY DATA keyword. The COLLECT ACTIVITY DATA clause
is only valid for a service subclass. The value W means activity data without
details should be collected by the applicable event monitor.
102 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Example 5-23 Using the ALTER SERVICE CLASS

$ db2 "SELECT substr(serviceclassname,1,26) as
serviceclassname,substr(parentserviceclassname,1,28) as
superclassname,collectactdata FROM syscat.serviceclasses"

SERVICECLASSNAME SUPERCLASSNAME COLLECTACTDATA
-------------------------- ---------------------------- --------------
SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS N
SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS N
SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS N
SYSDEFAULTSYSTEMCLASS - N
SYSDEFAULTMAINTENANCECLASS - N
SYSDEFAULTUSERCLASS - N

 6 record(s) selected.

$ db2 "alter service class SYSDEFAULTSUBCLASS under SYSDEFAULTUSERCLASS
collect activity data on all without details"
DB20000I The SQL command completed successfully.

$ db2 commit
DB20000I The SQL command completed successfully.

$ db2 "SELECT substr(serviceclassname,1,26) as
serviceclassname,substr(parentserviceclassname,1,28) as
superclassname,collectactdata FROM syscat.serviceclasses"

SERVICECLASSNAME SUPERCLASSNAME COLLECTACTDATA
-------------------------- ---------------------------- --------------
SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS N
SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS N
SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS W
SYSDEFAULTSYSTEMCLASS - N
SYSDEFAULTMAINTENANCECLASS - N
SYSDEFAULTUSERCLASS - N

 6 record(s) selected.

Three levels of workload capture
You can set the level of activities event monitor by specifying COLLECT
ACTIVITY DATA keywords. For each WLM object, you can also activate at
different levels and with different settings.

There are three levels for capturing workload activities:

� Default (COLLECT ACTIVITY DATA WITHOUT DETAILES option)
 Chapter 5. Monitoring 103

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
This level collects default information including WLM identification and basic
time statistics.

� Detailed (COLLECT ACTIVITY DATA WITH DETAILES option)

This level collects detailed information includes statement text (static and
dynamic SQL) and compilation environment.

� Detailed with input data values (COLLECT ACTIVITY DATA WITH
DETAILES AND VALUES option)

This level collects default information, detailed information, as well as data
values.

We show you the difference between these three levels by examples.

In Example 5-24, we create service class, subclasses, and workload to collect
Java™ application activity information. Three creating workload statement are
shown for collecting different level of details. Each time, only one of the statement
is run. We also create an activity event monitor that writes data to a file.

Example 5-24 Commands to use COLLECT ACTIVITY DATA keywords

$ db2 "create service class actservice"
DB20000I The SQL command completed successfully.

$ db2 "create service class subactservice under actservice"
DB20000I The SQL command completed successfully.

$ db2 "create workload actworkload applname('java.exe') service class
subactservice under actservice collect activity data without details"
or
$ db2 "create workload actworkload applname('java.exe') service class
subactservice under actservice collect activity data with details"
or
$ db2 "create workload actworkload applname('java.exe') service class
subactservice under actservice collect activity data with details and values"
DB20000I The SQL command completed successfully.

$ db2 "create event monitor wlm_act for activities write to file
'/evmon/wlm/activities' autostart"

--------------------A java application is run.-------------------------

$ db2evmon -path /evmon/wlm/activities > db2evmon.out

Example 5-25 shows the output of activities event monitor for workload APPLNAME
with COLLECT ACTIVITY DATA WITHOUT DETAILES option.
104 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Example 5-25 COLLECT ACTIVITY DATA WITHOUT DETAILES option output

6) Activity ...
 Activity ID : 1
 Activity Secondary ID : 0
 Appl Handle : 113
 UOW ID : 1
 Service Superclass Name : ACTSERVICE
 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML
 Parent Activity ID : 0
 Parent UOW ID : 0
 Coordinating Partition : 0
 Workload ID : 3
 Workload Occurrence ID : 2
 Database Work Action Set ID : 0
 Database Work Class ID : 0
 Service Class Work Action Set ID : 0
 Service Class Work Class ID : 0
 Time Created : 2007-08-20 18:20:31.262589
 Time Started : 2007-08-20 18:20:31.262602
 Time Completed : 2007-08-20 18:20:31.262887
 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821000549
 Application Name : java.exe
 Session Auth ID : db2inst1
 Client Userid :
 Client Workstation Name : DB2_COMP
 Client Applname :
 Client Accounting String :
 SQLCA:
 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a
query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8
 Query Card Estimate : 1
 Execution time : 0.000284 seconds
 Rows Returned : 1

Example 5-26 shows the output of activities event monitor or workload APPLNAME
with COLLECT ACTIVITY DATA WITH DETAILES option. The activity statement
section is added. From Statement text, we can identify which query is being run
by Appl Handle 352.

Example 5-26 COLLECT ACTIVITY DATA WITH DETAILES option output

5) Activity ...
 Chapter 5. Monitoring 105

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 Activity ID : 1
 Activity Secondary ID : 0
 Appl Handle : 352
 UOW ID : 2
 Service Superclass Name : ACTSERVICE
 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML
 Parent Activity ID : 0
 Parent UOW ID : 0
 Coordinating Partition : 0
 Workload ID : 3
 Workload Occurrence ID : 1
 Database Work Action Set ID : 0
 Database Work Class ID : 0
 Service Class Work Action Set ID : 0
 Service Class Work Class ID : 0
 Time Created : 2007-08-20 17:58:44.740640
 Time Started : 2007-08-20 17:58:44.740667
 Time Completed : 2007-08-20 17:58:44.741260
 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821044851
 Application Name : java.exe
 Session Auth ID : db2inst1
 Client Userid :
 Client Workstation Name : DB2_COMP
 Client Applname :
 Client Accounting String :
 SQLCA:
 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a
query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8
 Query Card Estimate : 1
 Execution time : 0.000592 seconds
 Rows Returned : 1

6) Activity Statement ...
 Activity ID : 1
 Activity Secondary ID : 0
 Application ID : *LOCAL.DB2_01.070821044851
 UOW ID : 2

 Lock timeout value : -1
 Query ID : 0
 Package cache ID : 103079215105
 Package creator : NULLID
 Package name : SYSSH200
106 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 Package version :
 Section No : 1
 Type : Dynamic
 Nesting level of stmt : 0
 Source ID : 0
 Isolation level : Cursor Stability
 Statement text : SELECT NAME FROM STAFF WHERE ID = ?

 Stmt first use time : 2007-08-20 17:58:44.740640
 Stmt last use time : 2007-08-20 17:58:44.740640

Example 5-27 shows the output of activities event monitor or workload APPLNAME
with COLLECT ACTIVITY DATA WITHE DETAILES AND VALUES option. The
activity data section is added. We can identify the value of parameter marker.
Before DB2 9.5, even if you use the statement event monitor, you can not collect
the value of parameter marker.

Example 5-27 COLLECT ACTIVITY DATA WITH DETAILES AND VALUES option
output

5) Activity ...
 Activity ID : 1
 Activity Secondary ID : 0
 Appl Handle : 360
 UOW ID : 2
 Service Superclass Name : ACTSERVICE
 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML
 Parent Activity ID : 0
 Parent UOW ID : 0
 Coordinating Partition : 0
 Workload ID : 3
 Workload Occurrence ID : 1
 Database Work Action Set ID : 0
 Database Work Class ID : 0
 Service Class Work Action Set ID : 0
 Service Class Work Class ID : 0
 Time Created : 2007-08-20 18:13:28.207238
 Time Started : 2007-08-20 18:13:28.207265
 Time Completed : 2007-08-20 18:13:28.207860
 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821045412
 Application Name : java.exe
 Session Auth ID : db2inst1
 Client Userid :
 Chapter 5. Monitoring 107

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 Client Workstation Name : DB2_COMP
 Client Applname :
 Client Accounting String :
 SQLCA:
 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a
query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8
 Query Card Estimate : 1
 Execution time : 0.000595 seconds
 Rows Returned : 1

6) Activity Statement ...
 Activity ID : 1
 Activity Secondary ID : 0
 Application ID : *LOCAL.DB2_01.070821045412
 UOW ID : 2

 Lock timeout value : -1
 Query ID : 0
 Package cache ID : 103079215105
 Package creator : NULLID
 Package name : SYSSH200
 Package version :
 Section No : 1
 Type : Dynamic
 Nesting level of stmt : 0
 Source ID : 0
 Isolation level : Cursor Stability
 Statement text : SELECT NAME FROM STAFF WHERE ID = ?

 Stmt first use time : 2007-08-20 18:13:28.207238
 Stmt last use time : 2007-08-20 18:13:28.207238

7) Activity data values...
 Activity ID : 1
 Activity Secondary ID : 0
 Application ID : *LOCAL.DB2_01.070821045412
 UOW ID : 2

 Value position : 1
 Value type : SMALLINT
 Value set by reopt : FALSE
 Value is NULL : FALSE
 Value data : 10
108 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Importing activity information into the Design Advisor
The design advisor is a useful tool for tuning SQL statement performance. It
recommends indexes for the SQL statements that user provides. In DB2 9.5, You
can provide SQL statements by importing activity information from a workload or
a service class into the Design Advisor.

Before importing activity information into the Design Advisor, the following
prerequisites must be satisfied:

� An activity event monitor table is existed and activity information stored. You
can not import information from activity event monitor files.

� Activities must have been collected using the COLLECT ACTIVITY DATA
WITH DETAILS or COLLECT ACTIVITY DATA WITH DETAILES AND
VALUES options.

� Explain tables exist

You can use the EXPLAIN.DDL script in the sqllib/misc directory to create the
explain tables.

You can import activity information into the Design Advisor using db2advis
command, for example:

db2advis -d sample -wlm db2activities workloadname actworkload

This example shows to import information about ACTWORKLOAD activities
collected by DB2ACTIVITIES event monitor in the SAMPLE database. You can
specify the workload or service class name and the start time and end time.

5.2.2 Threshold violations event monitor

This section introduces how to use the threshold violations event monitor. The
following are the features of threshold violations event monitor:

� Which WLM objects can I collect threshold violation information for?

You can collect information for individual activities for threshold violations.

� When is the information useful?

The information is useful for identifying

– The activity that violated the threshold, including the application handle
and application ID.

– Which threshold was violated

– The time that the threshold was violated

– The action that was taken (stop or continue)

� How do I collect the information?
 Chapter 5. Monitoring 109

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
– Threshold violations event monitor

If an threshold violations event monitor is created and activated, by
default, information (for example, threshold id, time of violation threshold
action and so on) about the activities that violate the threshold is collected.
You don’t need to specify COLLECT ACTIVITY DATA keywords for the
threshold violations event monitor.

– Activity event monitor

You can optionally have activity information (for example, SQLCODE,
SQLSTATE, execution time, and so on) written to an active activity event
monitor if the threshold violation is caused by an activity. You need to
specify COLLECT ACTIVITY DATA keywords for the activity event
monitor.

� When is the information collected?

– Threshold violations event monitor

When a workload management threshold is violated, a threshold violation
record is written to the active THRESHOLD VIOLATIONS event monitor, if
one exists.

– Activity event monitor

The activity information is written when the activity completes, not when
the threshold is violated.

Collecting threshold violations
Use the following steps to collect threshold violations:

1. Create an event monitor:

Use the CREATE EVENT MONITOR statement to create an THRESHOLD
VIOLATIONS event monitor.

Example 5-28 shows how to create a threshold violations event monitor that
writes data to a file.

Example 5-28 Creating a threshold violations event monitor file

$ db2 “create event monitor wlm_thresh for threshold violations write to
file '/evmon/wlm/thresh'”
DB20000I The SQL command completed successfully.
$ db2 "create event monitor wlm_act for activities write to file
'/evmon/wlm/activities' autostart"
DB20000I The SQL command completed successfully.

$ db2 commit
DB20000I The SQL command completed successfully.
110 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
2. Activate the event monitor:

Use the SET EVENT MONITOR STATE statement to activate the event
monitor.

Example 5-29 shows how to set the event monitor active.

Example 5-29 Setting the event monitor active

$ db2 set event monitor wlm_thresh state 1
DB20000I The SQL command completed successfully.

$ db2 set event monitor wlm_act state 1
DB20000I The SQL command completed successfully.

$ db2 commit
DB20000I The SQL command completed successfully.

3. Create a threshold object:

Example 5-30 shows how to create a threshold and specify the COLLECT
ACTIVITY DATA keyword.

Example 5-30 Using the CREATE THRESHOLD command

$ db2 “create threshold rowsreturnthresh for database activities
enforcement database when SQLROWSRETURNED > 10000 collect activity data
without details stop execution”
DB20000I The SQL command completed successfully.

4. Run your query.

We run an SQL statement that should return over 10000 rows. Due to the
threshold restriction, our query was stopped after received 10000 rows. The
SQL code SQL4712N with SQLSTATE 5U026 was also returned.

5. Format the threshold violations event monitor file and see the output:
Example 5-31 shows the command and output of formatting the threshold
violations event monitor.

Example 5-31 Output of formatting the threshold violations event monitor

$ db2evmon -path /evmon/wlm/thresh > db2evmon1.out
$ more db2evmon1.out
<<extract from db2evmon1.out>>
5) Threshold Violation ...
 Threshold ID : 1
 Activity ID : 1
 Appl Handle : 337
 Application ID : *LOCAL.DB2_01.070821181355
 UOW ID : 1
 Coordinating Partition : 0
 Chapter 5. Monitoring 111

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 Time of Violation : 2007-08-21 11:14:21.000000
 Threshold Max Value : 10000
 Threshold Queue Size : 0
 Activity Collected? : Yes
 Threshold Predicate : SQLRowsReturned
 Threshold Action : Stop

6. Format the activity event monitor file and see the output:

Example 5-32 shows the command and output of formatting the activity event
monitor. In our example, we only collect default activity information that
includes SQLCODE, SQLSTATE and reason code. If you want to see which
query was violated by the threshold, you need to set COLLECT ACTIVITY
DATA WITH DETAILS or COLLECT ACTIVITY DATA WITH DETAILS AND
VALUES for the threshold.

Example 5-32 Output of formatting the activity event monitor

$ db2evmon -path /evmon/wlm/act > db2evmon2.out
$ more db2evmon2.out
<<extract from db2evmon2.out>>
31) Activity ...
 Activity ID : 1
 Activity Secondary ID : 0
 Appl Handle : 337
 UOW ID : 1
 Service Superclass Name : SYSDEFAULTUSERCLASS
 Service Subclass Name : SYSDEFAULTSUBCLASS

 Activity Type : READ_DML
 Parent Activity ID : 0
 Parent UOW ID : 0
 Coordinating Partition : 0
 Workload ID : 1
 Workload Occurrence ID : 2
 Database Work Action Set ID : 0
 Database Work Class ID : 0
 Service Class Work Action Set ID : 0
 Service Class Work Class ID : 0
 Time Created : 2007-08-21 11:15:01.750519
 Time Started : 2007-08-21 11:15:01.750557
 Time Completed : 2007-08-21 11:16:53.405745
 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821181355
 Application Name : db2bp.exe
 Session Auth ID : db2inst1
 Client Userid :
112 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 Client Workstation Name :
 Client Applname :
 Client Accounting String :
 SQLCA:
 SQL4712N The threshold "ROWSRETURNTHRESH" has been exceeded. Reason
code = "8". SQLSTATE=5U026

 Query Cost Estimate : 6399
 Query Card Estimate : 3869893
 Execution time : 0.037908 seconds
 Rows Returned : 10000

5.2.3 Statistics event monitor

This section introduces how to use the statistics event monitor and histogram.
Compared to the statistics table function, the statistics event monitor can collect
information in different level of details based on which COLLECT AGGRETGATE
keywords is specified. Compared to statement or activities event monitors, the
statistics event monitor is an inexpensive method of capturing historical
information because the statistics event monitor deals with total activity
information instead of individual activities.

The following are the features of statistics event monitor:

� Which WLM objects can I collect statistics information for?

You can collect information for service classes, work classes, workloads and
threshold queues.

� When is the information useful?

The information is useful for historical analysis.

� How do I collect the information?

Some statistics are always collected for each object. If you want to collect
other statistics, you need to specify the COLLECT AGGREGATE option for
the service subclass or for a work action applied to the work class.

� When is the information collected?

The information is collected when

– Regular interval that sets the WLM_COLLECT_INT database
configuration parameter comes.

– The WLM_COLLECT_STATS stored procedure is called.

The following monitor elements for statistics are collected for each workload
management object:
 Chapter 5. Monitoring 113

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
� Statistics collected by default

– Service subclass:

• coord_act_completed_total
• coord_act_rejected_total
• coord_act_aborted_total
• concurrent_act_top

– Service superclass:

• concurrent_connection_top

– Workload:

• concurrent_wlo_top
• concurrent_act_top
• coord_act_completed_total
• coord_act_rejected_total
• coord_act_aborted_total
• wlo_completed_total

– Work class (through a work action):

• act_total

� Statistics collected when you specify COLLECT AGGREGATE ACTIVITY
DATA BASE

– Service subclass:

• cost_estimate_top
• rows_returned_top
• temp_tablespace_top
• coord_act_lifetime_top
• coord_act_lifetime_avg
• coord_act_exec_time_avg
• coord_act_queue_time_avg
• activity lifetime histogram
• activity execution time histogram
• activity queue time histogram

– Work class (through a work action):

• cost_estimate_top
• rows_returned_top
• temp_tablespace_top
• coord_act_lifetime_top
• coord_act_lifetime_avg
• coord_act_exec_time_avg
• coord_act_queue_time_avg
• activity lifetime histogram
114 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
• activity execution time histogram
• activity queue time histogram

� Statistics collected when you specify COLLECT AGGREGATE ACTIVITY
DATA EXTENDED

– Service subclass:

• coord_act_est_cost_avg
• coord_act_interarrival_time_avg
• activity inter-arrival time histogram
• activity estimated cost histogram

– Work class (through a work action):

• coord_act_est_cost_avg
• coord_act_interarrival_time_avg
• activity inter-arrival time histogram
• activity estimated cost histogram

� Statistics collected when you specify COLLECT AGGREGATE REQUEST
DATA BASE

– Service subclass:

• request_exec_time_avg
• request execution time histogram

For aggregate activity statistics, if COLLECT AGGREGATE ACTIVITY DATA
EXTENDED is specified, all the BASE aggregate activity statistics are also
collected. If COLLECT AGGREGATE REQUEST DATA BASE is specified, the
BASE and EXTENDED aggregate activity statistics are not collected.

If you want to specify both COLLECT AGGREGATE ACTIVITY keyword and
COLLECT AGGREGATE REQUEST DATA keyword, you can alter a service
subclass to add option. Example 5-33 shows how to specify both keywords. In
the first statement result, we know that the PROD_QRY service class already
specify the COLLECT AGGREGATE ACTIVITY DATA EXTENTED keyword.
After altering to add the COLLECT AGGREGATE REQUEST DATA BASE
keyword, the COLLECTAGGREQDATA value is changed to B.

Example 5-33 Commands to alter the service subclass

>db2 "SELECT substr(serviceclassname,1,19) as serviceclass_name,
collectaggactdata, collectaggreqdata FROM syscat.serviceclasses WHERE
serviceclassname='PROD_QRY'"

SERVICECLASS_NAME COLLECTAGGACTDATA COLLECTAGGREQDATA
------------------- ----------------- -----------------
PROD_QRY E N
 Chapter 5. Monitoring 115

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 1 record(s) selected.

>db2 "alter service class "PROD_QRY" under "HIGHLVL" collect aggregate request
data base"
DB20000I The SQL command completed successfully.

>db2 "SELECT substr(serviceclassname,1,19) as superclass_name,
collectaggactdata, collectaggreqdata FROM syscat.serviceclasses WHERE
serviceclassname='PROD_QRY'"

SUPERCLASS_NAME COLLECTAGGACTDATA COLLECTAGGREQDATA
------------------- ----------------- -----------------
PROD_QRY E B

 1 record(s) selected.

Resetting statistics on workload management objects
There are four events that can reset statistics:

� The WLM_COLLECT_STATS stored procedure is called.

The stored procedure collects the current values of the in-memory statistics
and reset the statistics. If one user calls the stored procedure, a reset of the
workload manager statistics applies to all users.

� The periodic workload management statistics collection and reset process
controlled by the WLM_COLLECT_INT database configuration parameter
causes a collection and reset.

WLM_COLLECT_INT enables event monitor to capture statistics
automatically at regular intervals.

� The database is reactivated.

Every time the database is activated on a database partition, the statistics for
all workload management objects on that database partition are reset.

� The object for which the statistics are maintained is modified and the change
is committed.

For example if a service subclass is altered, when the ALTER is committed,
the in-memory statistics for that service subclass are reset.

Resetting statistics also applied to the statistics table functions. When you use
the statistics table functions or the statistics event monitor, you check timestamp
the statistics were reset.
116 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Automatic collecting statistics in a specific time frame
Use the following steps to automatically collect statistics for a given workload
management object in a given time frame:

1. Create and activate a statistics event monitor:

Use the CREATE EVENT MONITOR statement to create a STATISTICS
event monitor as shown in Example 5-34. This event monitor writes data to
file.

Example 5-34 Creating a statistics event monitor file

$ db2 "create event monitor wlm_stats for statistics write to file
'/evmon/wlm/stats'"
DB20000I The SQL command completed successfully.

Use the SET EVENT MONITOR STATE statement to activate the event
monitor as shown in Example 5-35.

Example 5-35 Setting the event monitor active

$ db2 set event monitor wlm_stats state 1
DB20000I The SQL command completed successfully.

2. Enable the collection of additional statistics:

By default, only a minimal set of statistics is collected for each workload
management object.

Example 5-36 shows how to alter the default service class to specify the
COLLECT AGGREGATE ACTIVITY DATA BASE keyword.

Example 5-36 Using the ALTER SERVICE CLASS

$ db2 "alter service class SYSDEFAULTSUBCLASS under SYSDEFAULTUSERCLASS
COLLECT AGGREGATE ACTIVITY DATA BASE"
DB20000I The SQL command completed successfully.

3. Specify a collection interval:

Update the database configuration parameter WLM_COLLECT_INT.
Example 5-37 shows how to update the database configuration parameter. In
this case, statistics information is sent to the statistics event monitor every 5
minutes. After you perform the preceding steps, workload management
statistics are written to the statistics event monitor every wlm_collect_int
minutes.

Example 5-37 Updating the wlm_collect_int database configuration parameter

>db2 get db cfg for wlmdb | grep 'WLM_COLLECT_INT'
 WLM Collection Interval (minutes) (WLM_COLLECT_INT) = 0
 Chapter 5. Monitoring 117

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
>db2 update db cfg for sample using wlm_collect_int 5 immediate
update db cfg for wlmdb using wlm_collect_int 5 immediate
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

>db2 get db cfg for sample | grep 'WLM_COLLECT_INT'
 WLM Collection Interval (minutes) (WLM_COLLECT_INT) = 5

4. Run your activities.

5. Formats the statistics event monitor file:

Example 5-38 shows the formatted output of the statistics event monitor. The
statistics collecting interval is 5 minutes, from TIME OF LAST
RESET(2007-08-22 09:21:36.238396) to STATISTICS TIMESTAMP(2007-08-22
09:16:36.231024).

To see the value of Coordinator Activity Estimated Cost Average,
Coordinator Activity Interarrival Time Average, you need to specify
COLLECT AGGREGATE ACTIVITY DATA EXTENDED option for the service
subclass. To see the value of Request Execution Time Average, you need to
specify COLLECT AGGREGATE REQUEST DATA BASE option for the
service subclass.

Example 5-38 Output of formatting the statistics event monitor

647) Service Class Statistics ...
 Service Superclass Name : SYSDEFAULTUSERCLASS
 Service Subclass Name : SYSDEFAULTSUBCLASS
 Service Class ID : 13
 Temp Tablespace high water mark : 0
 Rows Returned high water mark : 262
 Cost Estimate high water mark : 1001074
 Coordinator Completed Activity Count : 78
 Coordinator Aborted Activity Count : 0
 Coordinator Rejected Activity Count : 0
 Coordinator Activity Lifetime high water mark : 79
 Coordinator Activity Lifetime Average : 12
 Coordinator Activity Queue Time Average : 0
 Coordinator Activity Execution Time Average : 1
 Coordinator Activity Estimated Cost Average : -1
 Coordinator Activity Interarrival Time Average: -1
 Request Execution Time Average : -1
 Number Concurrent Activities high water mark : 1
 Number Concurrent Connections high water mark : 4
 Statistics Timestamp : 2007-08-22 09:21:36.238396
 Time of Last Reset : 2007-08-22 09:16:36.231024
118 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Histograms in workload management
DB2 workload management histograms are useful for analyzing overall activity
behaviors in a DB2 system. The histograms information can be collected and
sent to a statistics event monitor when you specify COLLECT AGGREGATE
keywords for service subclasses or work classes (through work actions).

Every DB2 WLM histogram has 41 bins for the data collected. Each bin has the
range from top to bottom. You can see the number (frequency) of the activities or
requests within the range. Example 5-39 shows the histogram section of a
statistics event monitor output. Three activities (Number in bin) had an execution
time in the range zero (Bottom) milliseconds to one (Top) milliseconds.

Example 5-39 Extract histogram output from statistics event monitor file

49) Histogram Bin ...
 Top : 1
 Bottom : 0
 Number in bin : 3
 Bin ID : 1
 Service Class ID : 13
 Work Action Set ID : 0
 Work Class ID : 0
 Statistics Timestamp : 2007-08-22 14:09:05.488364
 Histogram Type : CoordActExecTime

There are six types of WLM histogram:

� Coordinator activity queue time (CoordActQueueTime)

This is a histogram of the queue times (the amount of time that an activity
spends in threshold queues before it starts executing).

You can obtain this type of histogram by specifying AGGREGATE ACTIVITY
DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for the service
subclass or for a work action applied to the work class.

� Coordinator activity execution time (CoordActExecTime)

This is a histogram of the time a non-nested activity spends executing at the
coordinator partition that does not include time spent queued by DB2 or idle
time.

You can obtain this type of histogram by specifying AGGREGATE ACTIVITY
DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a service
subclass or for a work action applied to the work class.

� Coordinator activity life time (CoordActLifetime)

This is a histogram of the elapsed lifetime of activities, measured from the
time when an activity enters the system until the activity completes execution.
 Chapter 5. Monitoring 119

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
You can obtain this type of histogram by specifying AGGREGATE ACTIVITY
DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a service
subclass or for a work action applied to the work class.

� Coordinator activity inter-arrival time (CoordActInterArrivalTime)

This is a histogram of the time interval between the arrival of one activity and
the arrival of the next activity.

You can obtain this type of histogram by specifying AGGREGATE ACTIVITY
DATA EXTENDED for a service subclass or for a work action applied to the
work class.

� Coordinator activity estimated cost (CoordActEstCost)

This is a histogram of the estimated cost of non-nested DML activities.

You can obtain this type of histogram by specifying specify AGGREGATE
ACTIVITY DATA EXTENDED for a service subclass or for a work action
applied to the work class.

� Request execution time (ReqExecTime)

This is a histogram of the time a request spends executing. The execution
time for requests is collected in a histogram for each database partition and
for all requests.

You can obtain this type of histogram by specifying AGGREGATE REQUEST
DATA BASE for a service subclass.

The difference in histogram between AGGREGATE ACTIVITY DATA BASE and
DATA EXTENDED is that DATA EXTENDED can collect more histogram types
than DATA BASE:

� COLLECT AGGREGATE ACTIVITY DATA BASE

– CoordActQueueTime
– CoordActExecTime
– CoordActLifeTime

� COLLECT AGGREGATE ACTIVITY DATA EXTENDED

– CoordActQueueTime
– CoordActExecTime
– CoordActLifeTime
– CoordActInterArrivalTime
– CoordActEstCost

Histogram template defines the range. The default template is
SYSDEFAULTHISTOGRAM. Example 5-40 shows the range of each bins for the
SYSDEFAULTHISTOGRAM. The output shows that the high bin value is
21600000 milliseconds. If you want to increase or decrease the high bin value of
the histogram, you can use ALTER HISTOGRAM TEMPLATE statement or
120 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
CREATE HISTOGRAM TEMPLATE statement to create your histogram
template.

Example 5-40 The range of SYSDEFAULTHISTOGRAM

>db2 "SELECT binid,binuppervalue FROM syscat.histogramtemplatebins WHERE
templatename='SYSDEFAULTHISTOGRAM' ORDER BY binuppervalue"

BINID BINUPPERVALUE
----------- --------------------
 1 1
 2 2
 3 3
 4 5
 5 8
 6 12
 7 19
 8 29
 9 44
 10 68
 11 103
 12 158
 13 241
 14 369
 15 562
 16 858
 17 1309
 18 1997
 19 3046
 20 4647
 21 7089
 22 10813
 23 16493
 24 25157
 25 38373
 26 58532
 27 89280
 28 136181
 29 207720
 30 316840
 31 483283
 32 737162
 33 1124409
 34 1715085
 35 2616055
 36 3990325
 37 6086529
 38 9283913
 39 14160950
 40 21600000

 40 record(s) selected.

You can follow these steps to use histograms for a service class:

1. Create and activate an event monitor:

Use the CREATE EVENT MONITOR statement to create a statistics event
monitor. Example 5-41 shows how to create a statistics event monitor that
writes data to a table.
 Chapter 5. Monitoring 121

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Example 5-41 Creating a statistics event monitor table

>db2 "create event monitor db2statistics for statistics write to table
scstats (table scstats_db2statistics in userspace1), wcstats (table
wcstats_db2statistics in userspace1), wlstats (table wlstats_db2statistics
in userspace1 pctdeactivate 100), qstats (table qstats_db2statistics in
userspace1), histogrambin (table histogrambin_db2statistics in userspace1),
control (table control_db2statistics in userspace1)"
DB20000I The SQL command completed successfully.

Use the SET EVENT MONITOR STATE statement to activate the event
monitor. Example 5-42 shows how to set the event monitor active.

Example 5-42 Setting the event monitor to active

>db2 "set event monitor db2statistics state 1"
DB20000I The SQL command completed successfully.

2. Enable the collection of histograms for the service subclass:

Example 5-43 shows how to alter the default service class to specify the
COLLECT AGGREGATE ACTIVITY keyword. The COLLECT AGGREGTE
ACTIVITY DATA BASE option on the service class produces the histogram
types coordinator activity life time, coordinator activity execution time, and
coordinator activity queue time.

Example 5-43 Using the ALTER SERVICE CLASS

>db2 "alter service class sysdefaultsubclass under sysdefaultuserclass
COLLECT AGGREGATE ACTIVITY DATA BASE"
DB20000I The SQL command completed successfully.

3. Create a view to make querying the HISTOGRAMBIN_DB2STATISTICS
table easier.

Example 5-44 shows how to create the view for histograms. This view returns
histogram data across multiple intervals to produce a single histogram of a
given service class.

Example 5-44 Creating the view of histograms

>db2 "create view histograms (histogram_type, service_superclass,
service_subclass, bin_top, number_in_bin) as select distinct
substr(histogram_type,1,24) as histogram_type,
substr(parentserviceclassname,1,24) as service_superclass, sub
str(serviceclassname,1,24) as service_subclass, top as bin_top,
sum(number_in_bin) as number_in_bin from histogrambin_db2statistics h,
syscat.serviceclasses s where h.service_class_id = s.serviceclassid group
by histogram_type, parentserviceclassname, serviceclassname, top"
DB20000I The SQL command completed successfully.
122 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
4. Run your activities.

After the activities have finished, the WLM_COLLECT_STATS stored
procedure is called. In this case, WLM_COLLECT_INT database
configuration parameter sets 0. Some activities are run twice and the stored
procedure is called twice.

5. Look the statistics:

Example 5-45 shows how many rows are stored in the
HISTOGRAMBIN_DB2STATISTICS table. In this case, we collected 246 rows
in the HISTOGRAMBIN_DB2STATISTICS table:

246 rows = 3(types of histogram) x 2(times information is collected) x
41(bins)

Example 5-45 Counting the HISTOGRAMBIN_DB2STATISTICS table

>db2 "SELECT count(*) as count FROM histogrambin_db2statistics"

COUNT

 246

 1 record(s) selected.

Example 5-46 shows the CoordActExecTime histogram for
SYSDEFAULTUSERCLASS. The BIN_TOP value -1 means infinity. If any
activity runs over 21600000 milliseconds, the NUMBER_IN_BIN will not be 0. Six
activities had the execution time between 0 and 1 milliseconds.

Example 5-46 Analyses of the CoordActExecTime for SYSDEFAULTUSERCLASS

>db2 "SELECT bin_top, number_in_bin FROM histograms WHERE
histogram_type='CoordActExecTime' and
service_superclass='SYSDEFAULTUSERCLASS' ORDER BY bin_top"

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------
 -1 0
 1 6
 2 2
 3 0
 5 0
 8 0
 12 0
 19 0
 29 0
 44 0
 68 0
 103 1
 158 0
 241 0
 369 1
 562 0
 858 0
 Chapter 5. Monitoring 123

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 1309 0
 1997 0
 3046 0
 4647 1
 7089 0
 10813 0
 16493 0
 25157 0
 38373 0
 58532 0
 89280 0
 136181 0
 207720 0
 316840 0
 483283 0
 737162 0
 1124409 0
 1715085 0
 2616055 0
 3990325 0
 6086529 0
 9283913 0
 14160950 0
 21600000 0

 41 record(s) selected.

Example 5-47 shows the CoordActLifetime histogram for
SYSDEFAULTUSERCLASS. Five activities are counted in the lowest bin. One
activity has the largest life time between 3046 and 4647 milliseconds.

Example 5-47 Analysis of the CoordActLifetime for SYSDEFAULTUSERCLASS

>db2 "SELECT bin_top, number_in_bin FROM histograms WHERE
histogram_type='CoordActLifetime' and
service_superclass='SYSDEFAULTUSERCLASS' ORDER BY bin_top"

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------
 -1 0
 1 5
 2 1
 3 0
 5 0
 8 0
 12 0
 19 0
 29 0
 44 0
 68 0
 103 3
 158 0
 241 0
 369 1
 562 0
 858 0
124 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 1309 0
 1997 0
 3046 0
 4647 1
 7089 0
 10813 0
 16493 0
 25157 0
 38373 0
 58532 0
 89280 0
 136181 0
 207720 0
 316840 0
 483283 0
 737162 0
 1124409 0
 1715085 0
 2616055 0
 3990325 0
 6086529 0
 9283913 0
 14160950 0
 21600000 0

 41 record(s) selected.

Example 5-48 shows the CoordActQueueTime histogram for
SYSDEFAULTUSERCLASS. All 11 activities are counted in the lowest bin
because nothing is queued in this example.

Example 5-48 Analysis for the CoordActQueueTime for SYSDEFAULTUSERCLASS

>db2 "SELECT bin_top, number_in_bin FROM histograms WHERE
histogram_type='CoordActQueueTime' and service_superclass='SYSD
EFAULTUSERCLASS' ORDER BY bin_top"

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------
 -1 0
 1 11
 2 0
 3 0
 5 0
 8 0
 12 0
 19 0
 29 0
 44 0
 68 0
 103 0
 158 0
 241 0
 369 0
 Chapter 5. Monitoring 125

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 562 0
 858 0
 1309 0
 1997 0
 3046 0
 4647 0
 7089 0
 10813 0
 16493 0
 25157 0
 38373 0
 58532 0
 89280 0
 136181 0
 207720 0
 316840 0
 483283 0
 737162 0
 1124409 0
 1715085 0
 2616055 0
 3990325 0
 6086529 0
 9283913 0
 14160950 0
 21600000 0

 41 record(s) selected.

5.3 Workload profiling and capturing

DB2 WLM provides you the capability to capture detailed workload profiles and
performance information in the database system for refining the workload and
service class definitions to achieve the business objectives. In this section, we
use the simple WLM configuration customized in Chapter 4, “Customizing the
WLM execution environments” on page 61 to demonstrate what data you can
capture and how to capture them. We provide the monitoring examples and
results.

Table 5-3 shows the simple WLM configuration from Chapter 4, “Customizing the
WLM execution environments” on page 61.

Table 5-3 WLMDB WLM configuration

Service
superclass

Service
subclass

Subclass action
(collect information)

Workload Workload
Identification

HIGHLVL ADMINS AGGREGATE REQUEST WL_ADMIN SESSION_USER
GROUP: DB2ADM

HIGHLVL BATCH AGGREGATE REQUEST WL_BATCH CLIENT_USERID:
BATCH

HIGHLVL PROD_RPT AGGREGATE ACTIVITY EXTENDED
AGGREGATE REQUEST

WL_PROD_RPT APPLNAME: dss.exe
126 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
We have the monitor environment on our system as follows:

� Database configuration parameter WLM_COLLECT_INT is set to 5
� Statistics event monitor BASIC_MON is created and activated

Limited by the available monitoring time of 90 minutes, we reduce the interval to
capture shorter term behavior. The statistics information is captured and sent to
the statistics event monitor at 5 minutes interval automatically.

5.3.1 Monitoring overall database system behavior

WLM table functions are useful in capturing the activities taking place in a
database system. In this section, we demonstrate how to use the WLM table
functions to observe work being performed in the system. We provides SQL
statements to list workload occurrences, agents, activities associated within a
workload, and summary statistics.

List workload occurrences at the service subclass level
You can use table function
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES to list workload
occurrences at the service subclass level.

Example 5-49 shows SQL statement and the output. We observed that all
workload occurrences are collected at the coordinator partition 0. This means
that all applications connect to the coordinator partition 0.

Example 5-49 List of workload occurrences at the service subclass level

>db2 "SELECT substr(service_superclass_name,1,8) as superclass_name,
substr(service_subclass_name,1,10) as subclass_name,
substr(char(dbpartitionnum),1,6) as part, substr(workload_name,1,12) as
workload_name, substr(char(application_handle),1,4) as applhandle,
workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('HIGHLVL','ADMINS',-2)) order
by superclass_name, subclass_name, dbpartitionnum, workload_name"

SUPERCLASS_NAME SUBCLASS_NAME PART WORKLOAD_NAME APPLHANDLE WORKLOAD_OCCURRENCE_STATE
--------------- ------------- ------ ------------- ---------- --------------------------------
HIGHLVL ADMINS 0 WL_ADMIN 4908 UOWWAIT
HIGHLVL ADMINS 0 WL_ADMIN 4925 UOWWAIT
HIGHLVL ADMINS 0 WL_ADMIN 4961 UOWWAIT

HIGHLVL PROD_QRY AGGREGATE ACTIVITY EXTENDED
AGGREGATE REQUEST

WL_PROD_QRY SESSION_USER
GROUP:
DSSGROUP

Service
superclass

Service
subclass

Subclass action
(collect information)

Workload Workload
Identification
 Chapter 5. Monitoring 127

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
HIGHLVL ADMINS 0 WL_ADMIN 4989 UOWEXEC

 4 record(s) selected.

>db2 "SELECT substr(service_superclass_name,1,8) as superclass_name,
substr(service_subclass_name,1,10) as subclass_name,
substr(char(dbpartitionnum),1,6) as part, substr(workload_name,1,12) as
workload_name, substr(char(application_handle),1,4) as applhandle,
workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('HIGHLVL','BATCH',-2)) order
by superclass_name, subclass_name, dbpartitionnum, workload_name"

SUPERCLASS_NAME SUBCLASS_NAME PART WORKLOAD_NAME APPLHANDLE WORKLOAD_OCCURRENCE_STATE
--------------- ------------- ------ ------------- ---------- --------------------------------
HIGHLVL BATCH 0 WL_BATCH 4929 UOWEXEC
HIGHLVL BATCH 0 WL_BATCH 4931 UOWEXEC
HIGHLVL BATCH 0 WL_BATCH 4982 UOWWAIT

 3 record(s) selected.

>db2 "SELECT substr(service_superclass_name,1,8) as superclass_name,
substr(service_subclass_name,1,10) as subclass_name,
substr(char(dbpartitionnum),1,6) as part, substr(workload_name,1,12) as
workload_name, substr(char(application_handle),1,4) as applhandle,
workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('HIGHLVL','PROD_RPT',-2))
order by superclass_name, subclass_name, dbpartitionnum, workload_name"

SUPERCLASS_NAME SUBCLASS_NAME PART WORKLOAD_NAME APPLHANDLE WORKLOAD_OCCURRENCE_STATE
--------------- ------------- ------ ------------- ---------- --------------------------------
HIGHLVL PROD_RPT 0 WL_PROD_RPT 4946 UOWEXEC
HIGHLVL PROD_RPT 0 WL_PROD_RPT 4947 UOWEXEC
HIGHLVL PROD_RPT 0 WL_PROD_RPT 4951 UOWEXEC

 3 record(s) selected.

>db2 "SELECT substr(service_superclass_name,1,8) as superclass_name,
substr(service_subclass_name,1,10) as subclass_name,
substr(char(dbpartitionnum),1,6) as part, substr(workload_name,1,12) as
workload_name, substr(char(application_handle),1,4) as applhandle,
workload_occurrence_state FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('HIGHLVL','PROD_QRY',-2))
order by superclass_name, subclass_name, dbpartitionnum, workload_name"

SUPERCLASS_NAME SUBCLASS_NAME PART WORKLOAD_NAME APPLHANDLE WORKLOAD_OCCURRENCE_STATE
--------------- ------------- ------ ------------- ---------- --------------------------------
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4937 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4938 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4969 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4971 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4972 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4970 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4973 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4974 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4975 UOWEXEC
HIGHLVL PROD_QRY 0 WL_PROD_QRY 4976 UOWEXEC
128 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 10 record(s) selected.

List the agents working in the database
You can use table function WLM_GET_SERVICE_CLASS_AGENTS to list the
agents working in the database.

Example 5-50 shows the SQL statements and the output. In the first output, we
can see the number of agents for each service subclasses. For example, 72
agents are assigned to PROD_QRY service subclass.

Using the second query, you can see the details of the agents. For example, the
coordinator agent distributes database requests to subagents across partitions.
The agents which have SUBSECTION value in REQTYPE are subagents. There are
total 17 agents performed in the application handle 4931.

Example 5-50 Output of WLM_GET_SERVICE_CLASS_AGENTS table function

>db2 "SELECT substr(agents.service_superclass_name,1,19) as superclass_name,
substr(agents.service_subclass_name,1,19) as subclass_name, count(*) as
agent_count FROM
TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', CAST(NULL AS BIGINT), -2)) as agents
WHERE agent_state = 'ACTIVE' GROUP BY service_superclass_name,
service_subclass_name ORDER BY service_superclass_name, service_subclass_name"

SUPERCLASS_NAME SUBCLASS_NAME AGENT_COUNT
------------------- ------------------- -----------
HIGHLVL ADMINS 5
HIGHLVL BATCH 25
HIGHLVL PROD_QRY 72
HIGHLVL PROD_RPT 42
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 7
- - 3

 6 record(s) selected.

>db2 "SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,19) as　subclass_name,
substr(workload_name,1,11) as workload_name,
substr(char(application_handle),1,7) as applhandle,
substr(char(dbpartitionnum),1,4) as part, substr(agent_state,1,10) as
agentstate, substr(event_state,1,10) as eventstate, substr(request_type,1,7) as
reqtype, substr(char(uow_id),1,6) as uow_id, substr(char(activity_id),1,6) as
act_id FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', CAST(NULL AS BIGINT),
-2)) WHERE agent_type <> 'OTHER' and request_type <> 'INTERNAL0' ORDER BY
applhandle, part, agent_tid"

<<extract of output>>
SUPERCLASS_NAME SUBCLASS_NAME WORKLOAD_NAME APPLHANDLE PART AGENTSTATE EVENTSTATE REQTYPE
UOW_ID ACT_ID
------------------- ------------------- ------------- ---------- ---- ---------- ---------- -------
------ ------
 Chapter 5. Monitoring 129

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
- - WL_BATCH 4931 0 ASSOCIATED IDLE INTERNA
17 1
HIGHLVL BATCH WL_BATCH 4931 0 ACTIVE IDLE OPEN
17 1
HIGHLVL BATCH - 4931 1 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 1 ACTIVE IDLE SUBSECT
17 1
HIGHLVL BATCH - 4931 1 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 1 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 2 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 2 ACTIVE IDLE SUBSECT
17 1
HIGHLVL BATCH - 4931 2 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 3 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 3 ACTIVE IDLE SUBSECT
17 1
HIGHLVL BATCH - 4931 3 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 3 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 4 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 4 ACTIVE IDLE SUBSECT
17 1
HIGHLVL BATCH - 4931 4 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL BATCH - 4931 4 ACTIVE EXECUTING SUBSECT
17 1
HIGHLVL PROD_RPT WL_PROD_RPT 4951 0 ACTIVE IDLE OPEN
19 1
HIGHLVL PROD_RPT - 4951 1 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 1 ACTIVE IDLE SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 1 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 1 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 2 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 2 ACTIVE IDLE SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 2 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 3 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 3 ACTIVE IDLE SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 3 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 3 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 4 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 4 ACTIVE IDLE SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 4 ACTIVE EXECUTING SUBSECT
19 1
HIGHLVL PROD_RPT - 4951 4 ACTIVE EXECUTING SUBSECT
19 1
130 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
HIGHLVL PROD_QRY WL_PROD_QRY 4970 0 ACTIVE IDLE OPEN 1
3
HIGHLVL PROD_QRY - 4970 1 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 1 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 2 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 2 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 3 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 3 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 4 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4970 4 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY WL_PROD_QRY 4973 0 ACTIVE IDLE OPEN 1
3
HIGHLVL PROD_QRY - 4973 1 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 1 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 2 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 2 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 3 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 3 ACTIVE EXECUTING SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 4 ACTIVE IDLE SUBSECT 1
3
HIGHLVL PROD_QRY - 4973 4 ACTIVE EXECUTING SUBSECT 1
3

List current activities associated with a workload occurrence
You can use table function
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES to list current activities
associated with a workload occurrence.

Example 5-51 shows the SQL statements and the output. The first SQL
statement provides the number of activities for each workloads. For example, 44
activities are assigned to WL_PROD_QRY workload.

In the second output, we can see the type of activity (activity_type) for each
activity. Subagents have OTHER in the activity type.

Example 5-51 List the current activities associated with a workload occurrence

>db2 "SELECT substr(workload_name,1,22) as workload_name, count(*) as
total_exe_act FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('', '',
-2)) as apps,
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(APPS.APPLICATION_HANDLE, -2)) as
appacts WHERE apps.dbpartitionnum = apps.coord_partition_num and activity_state
 Chapter 5. Monitoring 131

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
= 'executing' and nesting_level = 0 GROUP BY workload_name ORDER BY
workload_name"

WORKLOAD_NAME TOTAL_EXE_ACT
---------------------- -------------
WL_ADMIN 1
WL_BATCH 10
WL_PROD_QRY 44
WL_PROD_RPT 12

 4 record(s) selected.

>db2 "SELECT substr(char(application_handle),1,4) as applhandle,
substr(char(dbpartitionnum),1,4) as part, substr(char(uow_id),1,5) as uowid,
substr(char(activity_id),1,5) as actid, substr(activity_state,1,9) as actstate,
substr(activity_type,1,9) as acttype FROM
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(cast(null as bigint), -2)) ORDER
BY applhandle, part, uowid, actid"

<<extract of output>>
APPLHANDLE PART UOWID ACTID ACTSTATE ACTTYPE
---------- ---- ----- ----- --------- ---------
4931 0 17 1 EXECUTING READ_DML
4951 0 19 1 EXECUTING READ_DML
4970 0 1 3 EXECUTING READ_DML
4973 0 1 3 EXECUTING READ_DML
4931 1 17 1 EXECUTING OTHER
4951 1 19 1 EXECUTING OTHER
4970 1 1 3 EXECUTING OTHER
4973 1 1 3 EXECUTING OTHER
4931 2 17 1 EXECUTING OTHER
4951 2 19 1 EXECUTING OTHER
4970 2 1 3 EXECUTING OTHER
4973 2 1 3 EXECUTING OTHER
4931 3 17 1 EXECUTING OTHER
4951 3 19 1 EXECUTING OTHER
4970 3 1 3 EXECUTING OTHER
4973 3 1 3 EXECUTING OTHER
4931 4 17 1 EXECUTING OTHER
4951 4 19 1 EXECUTING OTHER
4970 4 1 3 EXECUTING OTHER
4973 4 1 3 EXECUTING OTHER

Obtain summary statistics across partitions at the service
superclass level
You can use table function WLM_GET_SERVICE_SUPERCLASS_STATS to
obtain summary statistics across partitions at the service superclass level.

Example 5-52 shows the SQL statements and the output. In this case, 21 is the
highest number of concurrent coordinator connections that has been reached in
HIGHLVL service superclass since the last reset.

Example 5-52 Output of WLM_GET_SERVICE_SUPERCLASS_STATS table function

>db2 “SELECT substr(service_superclass_name, 1, 26) as superclass_name,
substr(char(dbpartitionnum),1,4) as part, last_reset, concurrent_connection_top
132 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('', -2)) ORDER BY
service_superclass_name, dbpartitionnum”

SUPERCLASS_NAME PART LAST_RESET CONCURRENT_CONNECTION_TOP
-------------------------- ---- -------------------------- -------------------------
HIGHLVL 0 2007-08-30-22.37.08.502709 21
HIGHLVL 1 2007-08-30-22.37.08.502709 0
HIGHLVL 2 2007-08-30-22.37.08.502709 0
HIGHLVL 3 2007-08-30-22.37.08.502709 0
HIGHLVL 4 2007-08-30-22.37.08.502709 0
SYSDEFAULTMAINTENANCECLASS 0 2007-08-30-22.37.08.502709 0
SYSDEFAULTMAINTENANCECLASS 1 2007-08-30-22.37.08.502709 0
SYSDEFAULTMAINTENANCECLASS 2 2007-08-30-22.37.08.502709 0
SYSDEFAULTMAINTENANCECLASS 3 2007-08-30-22.37.08.502709 0
SYSDEFAULTMAINTENANCECLASS 4 2007-08-30-22.37.08.502709 0
SYSDEFAULTSYSTEMCLASS 0 2007-08-30-22.37.08.502709 6
SYSDEFAULTSYSTEMCLASS 1 2007-08-30-22.37.08.502709 1
SYSDEFAULTSYSTEMCLASS 2 2007-08-30-22.37.08.502709 0
SYSDEFAULTSYSTEMCLASS 3 2007-08-30-22.37.08.502709 0
SYSDEFAULTSYSTEMCLASS 4 2007-08-30-22.37.08.502709 0
SYSDEFAULTUSERCLASS 0 2007-08-30-22.37.08.502709 0
SYSDEFAULTUSERCLASS 1 2007-08-30-22.37.08.502709 0
SYSDEFAULTUSERCLASS 2 2007-08-30-22.37.08.502709 0
SYSDEFAULTUSERCLASS 3 2007-08-30-22.37.08.502709 0
SYSDEFAULTUSERCLASS 4 2007-08-30-22.37.08.502709 0

 20 record(s) selected.

Obtain summary statistics across partitions at the service
subclass level

You can use table function WLM_GET_SERVICE_SUBCLASS_STATS to obtain
summary statistics across partitions at the service subclass level.

Example 5-53 shows the SQL statements and the output.

Using the first SQL statements, the summary statistics obtained includes

� The number of active requests (num_requests_active)

� Request execution time average (request_exec_time_avg)

� The number of requests to start executing in this service subclass since the
last reset (num_requests_total)

� Sum of the execution times for requests associated with this service subclass
since the last reset (request_exec_time_total) for each service subclasses
and partitions

The request_exec_time_avg and the request_exec_time_total divide by 1000 in
the statement and get the time on the second time scale.

For example, 25 requests which are associated with PROD_QRY service subclass
at partition 2 is the most highest number in the service subclass at all partitions.
 Chapter 5. Monitoring 133

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Compared to other service subclasses, these requests take much execution
time.

In the second output, we can see the high watermark for the concurrency
coordinator activities (concurrent_act_top) that run in the service class on each
database partition. 10 activities which are associated with PROD_QRY service
subclass is the highest number of concurrent activities in the database.

Example 5-53 Summary statistics across partitions at the service subclass level

>db2 “SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,18) as subclass_name,
substr(char(dbpartitionnum),1,4) as part, last_reset, num_requests_active,
cast(request_exec_time_avg / 1000 as decimal(9,3)) as avgreqtime,
num_requests_total, cast(request_exec_time_total / 1000 as decimal(9,3)) as
totalreqtime FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('','', -2)) ORDER BY
superclass_name, subclass_name, part”

SUPERCLASS_NAME SUBCLASS_NAME PART LAST_RESET NUM_REQUESTS_ACTIVE
AVGREQTIME NUM_REQUESTS_TOTAL TOTALREQTIME
------------------- ------------------ ---- -------------------------- --------------------
----------- -------------------- ------------
HIGHLVL ADMINS 0 2007-08-30-22.37.08.502709 1
0.001 118 0.000
HIGHLVL ADMINS 1 2007-08-30-22.37.08.502709 1
0.000 96 0.000
HIGHLVL ADMINS 2 2007-08-30-22.37.08.502709 1
0.000 96 0.000
HIGHLVL ADMINS 3 2007-08-30-22.37.08.502709 1
0.000 96 0.000
HIGHLVL ADMINS 4 2007-08-30-22.37.08.502709 1
0.000 96 0.000
HIGHLVL BATCH 0 2007-08-30-22.37.08.502709 3
4.176 25 122.000
HIGHLVL BATCH 1 2007-08-30-22.37.08.502709 5
33.043 15 526.000
HIGHLVL BATCH 2 2007-08-30-22.37.08.502709 5
34.004 15 522.000
HIGHLVL BATCH 3 2007-08-30-22.37.08.502709 6
29.966 14 416.000
HIGHLVL BATCH 4 2007-08-30-22.37.08.502709 6
29.333 14 377.000
HIGHLVL PROD_QRY 0 2007-08-30-22.37.08.502709 10
64.478 45 2912.000
HIGHLVL PROD_QRY 1 2007-08-30-22.37.08.502709 15
11.943 15 175.000
HIGHLVL PROD_QRY 2 2007-08-30-22.37.08.502709 15
116.650 25 2928.000
HIGHLVL PROD_QRY 3 2007-08-30-22.37.08.502709 17
1.935 13 27.000
HIGHLVL PROD_QRY 4 2007-08-30-22.37.08.502709 15
12.120 15 175.000
HIGHLVL PROD_RPT 0 2007-08-30-22.37.08.502709 3
12.903 59 727.000
HIGHLVL PROD_RPT 1 2007-08-30-22.37.08.502709 10
20.605 40 907.000
HIGHLVL PROD_RPT 2 2007-08-30-22.37.08.502709 9
30.617 42 1278.000
HIGHLVL PROD_RPT 3 2007-08-30-22.37.08.502709 10
23.004 39 956.000
134 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
HIGHLVL PROD_RPT 4 2007-08-30-22.37.08.502709 10
22.739 39 954.000
HIGHLVL SYSDEFAULTSUBCLASS 0 2007-08-30-22.37.08.502709 0
- - -
HIGHLVL SYSDEFAULTSUBCLASS 1 2007-08-30-22.37.08.502709 0
- - -
HIGHLVL SYSDEFAULTSUBCLASS 2 2007-08-30-22.37.08.502709 0
- - -
HIGHLVL SYSDEFAULTSUBCLASS 3 2007-08-30-22.37.08.502709 0
- - -
HIGHLVL SYSDEFAULTSUBCLASS 4 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 1 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 2 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 3 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 4 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 2007-08-30-22.37.08.502709 6
- - -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 1 2007-08-30-22.37.08.502709 1
- - -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 2 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 3 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 4 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 2007-08-30-22.37.08.502709 0
- - -
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 4 2007-08-30-22.37.08.502709 0
- - -

 40 record(s) selected.

>db2 “SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,18) as subclass_name,
substr(char(dbpartitionnum),1,4) as part, concurrent_act_top as
acthighwatermark FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('', '', -2)) ORDER
BY superclass_name, subclass_name, part”

SUPERCLASS_NAME SUBCLASS_NAME PART ACTHIGHWATERMARK
------------------- ------------------ ---- ----------------
HIGHLVL ADMINS 0 1
HIGHLVL ADMINS 1 0
HIGHLVL ADMINS 2 0
HIGHLVL ADMINS 3 0
HIGHLVL ADMINS 4 0
HIGHLVL BATCH 0 3
HIGHLVL BATCH 1 0
HIGHLVL BATCH 2 0
HIGHLVL BATCH 3 0
HIGHLVL BATCH 4 0
HIGHLVL PROD_QRY 0 10
HIGHLVL PROD_QRY 1 0
 Chapter 5. Monitoring 135

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
HIGHLVL PROD_QRY 2 0
HIGHLVL PROD_QRY 3 0
HIGHLVL PROD_QRY 4 0
HIGHLVL PROD_RPT 0 4
HIGHLVL PROD_RPT 1 0
HIGHLVL PROD_RPT 2 0
HIGHLVL PROD_RPT 3 0
HIGHLVL PROD_RPT 4 0
HIGHLVL SYSDEFAULTSUBCLASS 0 0
HIGHLVL SYSDEFAULTSUBCLASS 1 0
HIGHLVL SYSDEFAULTSUBCLASS 2 0
HIGHLVL SYSDEFAULTSUBCLASS 3 0
HIGHLVL SYSDEFAULTSUBCLASS 4 0
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 0
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 1 0
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 2 0
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 3 0
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 4 0
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 0
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 1 0
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 2 0
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 3 0
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 4 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 4 0

 40 record(s) selected.

Summarizing the execution time and the total activities
We want to know the execution time for each service subclass level. While we
have already specified COLLECT AGGREGATE REQUEST DATA BASE option
for all service subclasses and created the BASIC_MON statistics event monitor,
we can collect the average of request execution time (request_exec_time_avg
monitor element).

Example 5-54 shows the view for the statistics event monitor table
SCSTATS_BASIC_MON. The view makes it easier to make a graph of the output
querying the SCSTATS_BASIC_MON table. We investigate the total coordinator
activities completed (coord_act_comp_total) and the average of request
execution time (request_exec_time_avg) for each service subclasses during the
monitoring term.

The SCSTATSVIEW view shows sum of the COORD_ACT_COMP_TOTAL and
REQUEST_EXEC_TIME_AVG from all partitions for each service subclasses at
the monitor interval.

Example 5-54 View for the statistics event monitor table

CREATE VIEW scstatsview1 (
 statistics_timestamp,
 subclass_name,
 coord_act_comp_total,
136 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 sum_req_exec_time_avg)
AS
SELECT DISTINCT
 a.statistics_timestamp,
 substr(a.service_subclass_name,1,20),
 CASE WHEN 0 > a.coord_act_completed_total THEN 0
 ELSE a.coord_act_completed_total
 END,
 CASE WHEN 0 > request_exec_time_avg then 0
 ELSE request_exec_time_avg
 END
FROM scstats_basic_mon A;
--
--
CREATE VIEW scstatsview (
 statistics_timestamp,
 subclass_name,
 coord_act_comp_total,
 sum_req_exec_time_avg)
AS
SELECT
 statistics_timestamp,
 subclass_name,
 sum(coord_act_comp_total),
 sum(sum_req_exec_time_avg)
FROM SCSTATSVIEW1
GROUP BY statistics_timestamp, subclass_name
;

Example 5-55 shows sample data from the view SCSTATSVIEW.

Example 5-55 Data of SCSTATSVIEW view

>db2 "SELECT * FROM scstatsview ORDER BY statistics_timestamp, subclass_name"

<<extract of output>>
STATISTICS_TIMESTAMP SUBCLASS_NAME COORD_ACT_COMP_TOTAL SUM_REQ_EXEC_TIME_AVG
2007-08-30-22.03.00.868892 ADMINS 28 15
2007-08-30-22.03.00.868892 BATCH 0 0
2007-08-30-22.03.00.868892 PROD_QRY 0 0
2007-08-30-22.03.00.868892 PROD_RPT 6 274570
2007-08-30-22.03.00.868892 SYSDEFAULTSUBCLASS 0 0
2007-08-30-22.08.00.257679 ADMINS 21 110
2007-08-30-22.08.00.257679 BATCH 0 0
2007-08-30-22.08.00.257679 PROD_QRY 0 0
2007-08-30-22.08.00.257679 PROD_RPT 48 506010
2007-08-30-22.08.00.257679 SYSDEFAULTSUBCLASS 0 0

Figure 5-1 shows the total coordinator activity completed for each service
subclass during the monitored time frame.
 Chapter 5. Monitoring 137

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Figure 5-1 Total coordinator activity completed

Figure 5-2 shows the average of request execution time for each service
subclass during the monitored time frame.

Figure 5-2 Request execution time average

From the graphs, we can easily see that at 2007-08-30-22.57, there was a big
jump of total coordinator activity completed in ADMINS subclass. The request
execution time average of BATCH, PROD_QRY and PROD_RPT also jumped
138 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
up at the same time. This means the ADMINS activities influenced the
performance of BATCH, PROD_QRY and PROD_RPT. If you want to know what
kind of activities ran at that time, you need to collect activity information by
specifying COLLECT ACTIVITY DATA for the ADMINS service subclass. The
data can help you decide whether to control the prefetch or CPU priority of
ADMIN service subclass or not.

We also observed that at 2007-08-30-23.12, the average of request execution
time of BATCH subclass jumped up. We found that was due to a BATCH user
executed LOAD utility. The activity ran over 15 minutes. At that time the total
coordinator activity completed for PROD_QRY subclass jumped up, but the
request execution time average of PROD_QRY subclass declined slightly. This
means the LOAD activity did not influenced the performance of PROD_QRY.

Analyzing the histogram
We want to know the tendency of the request execution time average on our
system. This can be done by analyzing the ReqExecTime histogram.

Example 5-56 shows the view for the statistics event monitor table
HISTOGRAMBIN_BASIC_MON. The view makes it easier to make a graph
compared with service subclasses.

Example 5-56 View for the statistics event monitor table HISTOGRAMBIN_BASIC_MON

CREATE VIEW histograms_ret (histogram_type,
 service_superclass,
 service_subclass,
 bin_top,
 number_in_bin) AS
SELECT
 DISTINCT SUBSTR(histogram_type,1,24) AS histogram_type,
 SUBSTR(parentserviceclassname,1,24) AS service_superclass,
 SUBSTR(serviceclassname,1,24) AS service_subclass,
 top as bin_top,
 SUM(number_in_bin) AS number_in_bin
FROM
 histogrambin_basic_mon H,
 syscat.serviceclasses S
WHERE h.service_class_id=s.serviceclassid
AND histogram_type='ReqExecTime'
GROUP BY histogram_type, parentserviceclassname, serviceclassname, top;
--
--
CREATE VIEW hist_reqexectime (
 bin_top,
 admin_exec_time,
 batch_exec_time,
 Chapter 5. Monitoring 139

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
 prodrpt_exec_time,
 prodqry_exec_time) as
SELECT
DISTINCT x.bin_top,
 (SELECT number_in_bin FROM histograms_ret a
 WHERE a.histogram_type='ReqExecTime' AND
 a.service_subclass='ADMINS' AND
 a.bin_top = x.bin_top) AS admin_exec_time,
 (SELECT number_in_bin FROM histograms_ret b
 WHERE b.histogram_type='ReqExecTime' AND
 b.service_subclass='BATCH' AND
 b.bin_top = x.bin_top) AS batch_exec_time,
 (SELECT number_in_bin FROM histograms_ret r
 WHERE r.histogram_type='ReqExecTime' AND
 r.service_subclass='PROD_RPT' AND
 r.bin_top = x.bin_top) AS prodrpt_exec_time,
 (SELECT number_in_bin FROM histograms_ret q
 WHERE q.histogram_type='ReqExecTime' AND
 q.service_subclass='PROD_QRY' AND
 q.bin_top = x.bin_top) AS prodqry_exec_time
FROM histograms_ret x
;

Example 5-57 shows the ReqExecTime histogram for service subclasses.

Example 5-57 HIST_REQEXECTIME view sample data

> db2 “SELECT * FROM hist_reqexectime ORDER BY 1”

BIN_TOP ADMIN_EXEC_TIME BATCH_EXEC_TIME PRODRPT_EXEC_TIME PRODQRY_EXEC_TIME
--------------- -------------------- -------------------- -------------------- --------------------
 -1 0 0 0 0
 1 7769 1006 3246 1961
 2 461 89 206 532
 3 85 39 100 228
 5 53 19 47 227
 8 77 29 39 130
 12 27 21 29 53
 19 33 23 26 50
 29 24 11 14 49
 44 108 10 20 62
 68 148 15 27 138
 103 40 17 24 147
 158 16 7 25 94
 241 17 16 19 86
 369 45 11 33 186
 562 33 19 28 43
 858 23 24 125 70
 1309 0 50 127 78
 1997 1 16 155 90
 3046 3 38 133 101
 4647 0 37 74 140
 7089 0 38 175 64
 10813 0 34 128 73
 16493 0 40 117 101
 25157 0 43 165 42
140 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 38373 0 74 257 57
 58532 0 90 426 90
 89280 0 107 362 86
 136181 0 24 164 58
 207720 0 37 87 86
 316840 0 31 70 98
 483283 0 38 40 47
 737162 0 18 68 10
 1124409 0 5 47 14
 1715085 0 10 49 10
 2616055 0 0 0 0
 3990325 0 0 0 0
 6086529 0 0 0 0
 9283913 0 0 0 0
 14160950 0 0 0 0
 21600000 0 0 0 0

 41 record(s) selected.

Figure 5-3 shows that the graph of the ReqExecTime histogram during the
monitoring term. Most activities had a execution time between 0 and 1
milliseconds. Total 179 (98 + 47 + 10 + 14 + 10) activities in the PROD_QRY service
subclass had a execution time between 316840 and 1715085 milliseconds (almost
5 to 28 minutes). As a result, we need to tune those queries to satisfy the
business objectives.

Figure 5-3 ReqExecTime histogram
 Chapter 5. Monitoring 141

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
5.3.2 Monitoring the queued job

In this section, we show you how to use table functions and event monitor to
monitor the queued job. In this scenario, we allow the maximum of 50 database
coordinator activities in the PROD_RPT service subclass. When the maximum
number of database coordinator activities is exceeded, database coordinator
activities are queued. Table 5-4 shows the modified PROD_RPT subclass
configuration.

Table 5-4 Modified PROD_RPT service subclass configuration

A threshold is added to the service subclass PROD_RPT to limit the number of
concurrent coordinator activities to 50. See Example 5-58.

Example 5-58 limiting the number of activities

>db2 "CREATE THRESHOLD QUEUE_THRESH FOR SERVICE CLASS "PROD_RPT" UNDER
"HIGHLVL" ACTIVITIES ENFORCEMENT DATABASE WHEN CONCURRENTDBCOORDACTIVITIES > 50
CONTINUE";
DB20000I The SQL command completed successfully.

Queued workload occurrences
Example 5-59 shows the SQL statement for finding which workload occurrences
are queued. We can see the application handle 4743, 4748, and 4750 are queued
because those activities have QUEUED value in workload_occurrence_state.

Example 5-59 Which workload occurrences are queued

>db2 "SELECT substr(service_superclass_name,1,19) as superclass_name,
substr(service_subclass_name,1,19) as subclass_name, substr(workload_name,1,22)
as workload_name, substr(char(dbpartitionnum),1,4) as part, APPLICATION_HANDLE,
substr(application_name,1,10) as appl_name, WORKLOAD_OCCURRENCE_STATE FROM
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('','',-2))"

SUPERCLASS_NAME SUBCLASS_NAME WORKLOAD_NAME PART APPLICATION_HANDLE
APPL_NAME WORKLOAD_OCCURRENCE_STATE
----------------- ---------------- ----------------- ---- --------------------
---------- --------------------------
HIGHLVL ADMINS WL_ADMIN 0 4698
db2bp UOWEXEC

Service
subclass

Threshold Threshold Action

PROD_RPT QUEUE_THRESH:
CONCURRENTDBCOORDA
CTIVITIES > 50

Queuing
CONTINUE
142 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
HIGHLVL PROD_RPT WL_PROD_RPT 0 4722
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4723
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4728
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4743
dss.exe QUEUED
HIGHLVL PROD_RPT WL_PROD_RPT 0 4744
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4745
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4746
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4747
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4748
dss.exe QUEUED
HIGHLVL PROD_RPT WL_PROD_RPT 0 4749
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4750
dss.exe QUEUED
HIGHLVL PROD_RPT WL_PROD_RPT 0 4751
dss.exe UOWEXEC
HIGHLVL PROD_RPT WL_PROD_RPT 0 4752
dss.exe UOWEXEC

 14 record(s) selected.

Example 5-60 shows the SQL statement for listing the queued agents. In our
example, three agents are queued.

Example 5-60 Agent queued

>db2 "SELECT application_handle, uow_id, activity_id,
substr(char(dbpartitionnum),1,4) as part, event_object, event_state FROM
TABLE(WLM_GET_SERVICE_CLASS_AGENTS('','',CAST(NULL AS BIGINT), -2)) WHERE
service_superclass_name <> 'SYSDEFAULTSYSTEMCLASS' event_object=’WLM_QUEUE’
ORDER BY application_handle, uow_id, activity_id"

APPLICATION_HANDLE UOW_ID ACTIVITY_ID PART EVENT_OBJECT EVENT_STATE
-------------------- ----------- ----------- ---- ------------------ --------------
 4743 10 1 0 WLM_QUEUE IDLE
 4748 9 1 0 WLM_QUEUE IDLE
 4750 7 1 0 WLM_QUEUE IDLE

 3 record(s) selected.
 Chapter 5. Monitoring 143

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
Example 5-61 shows how to find the activities that are queued but have not
started executing yet. When an activity has entered the system but is in a queue,
LOCAL_START_TIME field can be null.

Example 5-61 Activity in a queue but has not started executing

>db2 "SELECT application_handle, substr(char(dbpartitionnum),1,4) as part,
local_start_time, activity_state, activity_type FROM
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -1))"

APPLICATION_HANDLE PART LOCAL_START_TIME ACTIVITY_STATE ACTIVITY_TYPE
------------------ ---- -------------------------- -------------- --------------
 4698 0 2007-08-30-21.13.11.933493 EXECUTING READ_DML
 4722 0 2007-08-30-21.10.40.257254 EXECUTING READ_DML
 4723 0 2007-08-30-21.09.08.795625 EXECUTING READ_DML
 4728 0 2007-08-30-21.10.35.907819 EXECUTING READ_DML
 4743 0 - QUEUED READ_DML
 4744 0 2007-08-30-21.09.32.696410 EXECUTING READ_DML
 4745 0 2007-08-30-21.09.50.081916 EXECUTING READ_DML
 4746 0 2007-08-30-21.11.05.751756 EXECUTING READ_DML
 4747 0 2007-08-30-21.10.04.240474 EXECUTING READ_DML
 4748 0 - QUEUED READ_DML
 4749 0 2007-08-30-21.10.52.481785 EXECUTING READ_DML
 4750 0 - QUEUED READ_DML
 4751 0 2007-08-30-21.10.40.257259 EXECUTING READ_DML
 4752 0 2007-08-30-21.09.54.513369 EXECUTING READ_DML

14 record(s) selected.

Example 5-62 shows the number of queued activities (current and total) and total
time spent in the queue for the QUEUE_THRESH threshold. Five activities are in the
queue and 14 activities were assigned to this queue since the last reset. 159091
milliseconds spent in the queue for 14 activities.

Example 5-62 Number of queued activities

>db2 "SELECT substr(threshold_name, 1, 15) threshname, threshold_predicate,
threshold_domain, dbpartitionnum part, queue_size_top, queue_size_current,
queue_time_total, queue_assignments_total queue_assign FROM
TABLE(WLM_GET_QUEUE_STATS('', '', '', -1))"

THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN PART
QUEUE_SIZE_TOP QUEUE_SIZE_CURRENT QUEUE_TIME_TOTAL QUEUE_ASSIGN
--------------- --------------------------- ------------------ ------
-------------- ------------------ -------------------- --------------------
QUEUE_THRESH CONCDBC SB 0
5 5 159091 14

 1 record(s) selected.
144 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Threshold violations
Using the event monitor, you can see the activities that violate the threshold limit.
Example 5-63 shows the SQL statement to query the event monitor table
THRESHOLDVIOLATIONS_THRESH_MON and partial output. 49 activities are
violated by the QUEUE_THRESH threshold.

Example 5-63 Querying event monitor table

>db2 "SELECT substr(char(agent_id),1,8) as agent_id,
substr(char(coord_partition_num),1,4) as part, threshold_action,
threshold_maxvalue, substr(threshold_predicate,1,28)
as threshold_predicate, time_of_violation FROM THRESHOLDVIOLATIONS_THRESH_MON"

AGENT_ID PART THRESHOLD_ACTION THRESHOLD_MAXVALUE THRESHOLD_PREDICATE
TIME_OF_VIOLATION
-------- ---- ---------------- -------------------- ----------------------------

4215 0 Continue 5 ConcurrentDBCoordActivities
2007-08-30-16.10.11.000000
4216 0 Continue 5 ConcurrentDBCoordActivities
2007-08-30-16.10.11.000000
4209 0 Continue 5 ConcurrentDBCoordActivities
2007-08-30-16.10.12.000000
4212 0 Continue 5 ConcurrentDBCoordActivities

...

4743 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.10.40.000000
4748 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.10.40.000000
4746 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.10.52.000000
4750 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.10.52.000000
4743 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.10.59.000000
4748 0 Continue 10 ConcurrentDBCoordActivities
2007-08-30-21.11.05.000000

 49 record(s) selected.

Activity queue time
Histogram is helpful in finding the activity queue time in a time frame.
Example 5-64 shows the CoordActQueueTime histogram for the PROD_RPT
service subclass. In the output, we can see that 342 activities spent for between 0
and 1 milliseconds in threshold queues before it starts executing. Although 3
activities spent for over 3 minutes in threshold queues, we concluded that it was
a permissible range.

Example 5-64 CoordActQueueTime histogram

>db2 "create view histograms (histogram_type, service_superclass,
service_subclass, bin_top, number_in_bin) as select distinct
 Chapter 5. Monitoring 145

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
substr(histogram_type,1,24) as histogram_type,
substr(parentserviceclassname,1,24) as service_superclass,
substr(serviceclassname,1,24) as service_subclass, top as bin_top,
sum(number_in_bin) as number_in_bin from histogrambin_db2statistics h,
syscat.serviceclasses s where h.service_class_id = s.serviceclassid group by
histogram_type, parentserviceclassname, serviceclassname, top"
DB20000I The SQL command completed successfully.

>db2 "SELECT bin_top, number_in_bin FROM histograms WHERE
histogram_type='CoordActQueueTime' and service_subclass='PROD_RPT' ORDER BY
bin_top"

BIN_TOP NUMBER_IN_BIN
-------------------- --------------------
 -1 0
 1 342
 2 0
 3 0
 5 0
 8 0
 12 0
 19 0
 29 0
 44 0
 68 0
 103 0
 158 0
 241 0
 369 0
 562 1
 858 1
 1309 0
 1997 2
 3046 3
 4647 0
 7089 2
 10813 2
 16493 3
 25157 7
 38373 2
 58532 9
 89280 1
 136181 0
 207720 3
 316840 0
 483283 0
 737162 0
 1124409 0
 1715085 0
146 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
 2616055 0
 3990325 0
 6086529 0
 9283913 0
 14160950 0
 21600000 0

 41 record(s) selected.

5.3.3 Identifying query with long runtime

A common business requirement for ad hoc queries is that the database system
must complete a percentage of queries for under a time frame, for example,
complete 90% of queries for under 5 minutes. To meet this business objective,
first task is to identify those queries with long runtime. You can then use Design
Advisor to tune these queries.

In this scenario, we identify the long run queries under the PROD_QRY service
subclass. We define a threshold for PROD_QRY to identify queries run over 5
minutes. The threshold action is CONTINUE and the COLLECT ACTIVITY DATA
WITH DETAILES option is specified so that an activity that violates the threshold
is sent to the activities event monitor on completion.

Table 5-5 shows the updated workload management configuration.

Table 5-5 Updated PROD_QRY service subclass configuration

We use following steps to identify queries with long runtime:

1. Create and activate a threshold violations event monitor and an activity event
monitor.

Example 5-65 shows how to create and activate event monitor tables.

Example 5-65 Creating and activating event monitor tables

CREATE EVENT MONITOR act_mon FOR ACTIVITIES WRITE TO TABLE AUTOSTART
DB20000I The SQL command completed successfully.

CREATE EVENT MONITOR thresh_mon FOR THRESHOLD VIOLATIONS WRITE TO TABLE
AUTOSTART
DB20000I The SQL command completed successfully.

Service
subclass

Threshold Threshold Action

PROD_QRY LONGRUN: ACTIVITYTOTALTIME > 5
minutes

COLLECT ACTIVITY DATA WITH DETAILS
CONTINUE
 Chapter 5. Monitoring 147

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
SET EVENT MONITOR act_mon STATE 1
DB20000I The SQL command completed successfully.

SET EVENT MONITOR thresh_mon STATE 1
DB20000I The SQL command completed successfully.

To import activity information into the Design Advisor, the activity event
monitor table is needed, not file. You can see how many activities were
violated in the threshold violations event monitor. You can investigate what
query were violated in the activities event monitor.

We create six event monitor tables:

– For activity event monitor ACT_MON

• ACTIVITYSTMT_ACT_MON
• ACTIVITYVALS_ACT_MON
• ACTIVITY_ACT_MON
• CONTROL_ACT_MON

– For threshold violations event monitor THRESH_MON

• CONTROL_THRESH_MON
• THRESHOLDVIOLATIONS_THRESH_MON

2. Use the CREATE THRESHOLD statement to collect activity information.
Example 5-66 shows how to create a threshold to collect activity information.

Example 5-66 Creating threshold

>db2 "create threshold LONGRUN for service class PROD_QRY under HIGHLVL
activities enforcement database when activitytotaltime > 5 minutes collect
activity data with details continue"
DB20000I The SQL command completed successfully.

>db2 "SELECT substr(thresholdname,1,12) as thresh_name, thresholdid FROM
syscat.thresholds"

THRESH_NAME THRESHOLDID
------------ -----------
LONGRUN 3
QUEUE_THRESH 2

 2 record(s) selected.

3. Identify the statement text and the total threshold violations.

You can see the statement text by selecting the activities event monitor table.
Example 5-67 shows the queries run over 5 minutes.
148 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch05.fm
Example 5-67 Identifying queries run over 5 minutes

>db2 "SELECT substr(stmt_text,1,200) as stmt_text FROM
activitystmt_act_mon"

<<extract of output>>
STMT_TEXT

SELECT COL1, COL2, COLBB FROM T1, T2 WHERE COL1 = COLAA
SELECT COL1, COL2, COLBB FROM T1, T2 WHERE COL1 = COLAA
SELECT COL1, COL2, COLBB FROM T1, T2 WHERE COL1 = COLAA

You can see the total threshold violation count by selecting threshold
violations event monitor table. Example 5-68 shows the number of threshold
violation occured.

Example 5-68 Number of threshold violations occurred

db2 "SELECT count(*) as thresh_violation_cnt FROM
thresholdviolations_thresh_mon WHERE thresholdid=3"

THRESH_VIOLATION_CNT

 8

 1 record(s) selected.

4. Use the db2advis command to import activity information into the Design
Advisor.

>db2advis -d WLMDB -wlm ACT_MON serviceclass HIGHLVL,PROD_QRY

We specify the service superclass and subclass name in this example.
 Chapter 5. Monitoring 149

7524ch05.fm Draft Document for Review October 2, 2007 10:12 am
150 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
Chapter 6. WLM Sample Scenario -
OLTP

OLTP systems are highly process oriented and contains present data. Most of
the OLTP systems requires 24x7 availability and has the primary business
objective as maintaining a quick response time.

In this chapter, we demonstrate chapter how to how to use DB2 WLM to achieve
the primary business objective for an OLTP system. We cover briefly how to
convert the management requirements to workloads and implement in DB2
WLM. We show how to monitor and analyze the data to verify if the business
requirements are achieved.

6

© Copyright IBM Corp. 2007. All rights reserved. 151

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
6.1 Business objectives

Maintaining a consistent transaction response time is typically the primary and
often is the only objective of an OLTP system. In the real-time environment,
achieving this goal can be a challenging task as many applications from different
business units simultaneously run on the system and using the same database.

In this example OLTP system, three business units, Sales, Accounting, and
Inventory are sharing the resources and have the following characteristics:

� The database is shared by multiple business groups. All the business units
have equal share of resources.

� ETL runs off hours and doesn’t interfere with business user workload.

� Administrative tasks and scheduled maintenance tasks runs off hours or
under scheduled maintenance period and don’t interfere with business user
workload.

The business objectives are stated as follows:

� Maintain sub-second response times for all queries from Sales team.
� Prevent excessive concurrency of large queries hog the system.
� Mitigate long running queries from all departments.
� Prevent long idle connections.

We demonstrate how to use the WLM to manage and control the workload to
achieve the response time requirement.

6.2 Identification

From the business objectives, we describe the management requirements as
follows:

� Sales applications require a consistent sub-second response times for all
queries.

� The majority queries from Inventory and Accounting departments have no
response time requirements.

� Mitigate runaway queries with long execution times.

� To prevent large number of concurrent queries affecting the overall
performance of the system, limited the concurrent activities to 10.

� The maximum allowed time for a database connection to be idle is 30
minutes.
152 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
We broadly categorize database activities that we used to identify the workload
to address the management requirements as follows:

� Based on time duration:
Database activities that are time based. For example, each OLTP request has
to be completed in less than a second.

� Based on limits:
Activities that can be categorized based on limits. For example, limits on
resource or cardinality.

� Based on action:
What we need to take action if the goal were not met. For example, to
continue or stop.

We also gather additional details needed to formulate WLM solutions. For
example, what are the sources of work? where do they comes from, user,
application, or tools? There are many different criteria that could be used to
identify database activities. The following are the additional sources of work
information available and categorized:

Table 6-1 lists the user IDs, groups, and applications on our sample system.

Table 6-1 User categories and applications

6.3 Consistent response time

To achieve the management requirements of having a consistent sub-second
response times for all queries from Sales applications, we want to give the Sales
applications higher priority and operatively report the users, applications, and
queries that do not meet the performance requirements so we can address the
problem.

Table 6-2 shows the worksheet that summarize the workload for this example.

User Group Tools Application name

salesusr salesgrp sales.exe

invusr invgrp inv.exe

accusr accgrp acct.exe

salesmgr salesgrp cognos sales.exe, salesrpt.exe

invmgr invgrp inv.exe, salesrpt.exe

accmgr accgrp acct.exe, salesrpt.exe
 Chapter 6. WLM Sample Scenario - OLTP 153

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
Table 6-2 Worksheet - consistent response time

6.3.1 Define DB2 workloads and service classes

We use the worksheet to define workloads and service classes. In this example,
we represent each business unit as a single workload but focus on achieving the
business objective for Sales department. Sales workload can be identified with
user IDs of the Sales business group or application names.

As for the service classes, since all the business units share the same system,
we define one super service class HIGHLVL and a subclass for each business
unit under that superclass. If a workload is created without specifying any service
class, by default, it will be associated with SYSDEFAULTUSERCLASS. We have
all our unclassified work run under the default service class.

Table 6-3 shows the association between workload and service classes.

Table 6-3 Workloads and service classes

Define controls
To maintain the sales applications in sub-section response time, we have two
actions in place:

� Giving higher priority

Prefetchers retrieve data from disk, and storing this data in buffer pools so
that it can be quickly accessed by agents. DB2 WLM provides you the
capability to set prefetch priority or agent priority for application. Since the

Task Business requirements Identification Action

Sales Maintain sub-second
response time

Client user ID =
SALESUSR

Client application
name = sales.exe or
oltp.exe

� Give higher priority to
Sales applicaitons.

� Report activity details
such as the user ID,
appliation name, query
that do not meet the
business requirement

Work category DB2 workload DB2 service classes

Sales WL_SALES SC_SALES under HIGHLVL

Accounting WL_ACCT SC_ACC under HIGHLVL

Inventory WL_INVENT SC_INV under HIGHLVL

All other work Default workload Default service class
154 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
Sales application uses prefetching, we use the service class prefetch priority
to give the sales related work higher priority. You can specify the prefetch
priority of a service class with the PREFETCH PRIORITY option on either the
CREATE or ALTER SERVICE CLASS statement.

� Report activity details

To report the information about activity we need to specify COLLECT
ACTIVITY DATA, COLLECT AGGREGATE ACTIVITY, and REQUEST DATA
so that the information about each activity that is executed in this service
class is to be sent to the applicable event monitor when the activity
completes.

WLM object definitions
Example 6-1 shows the WLM object definitions.

Example 6-1 Service class, workload definition for Goal1

CONNECT TO WLMDB;
-- for OLTP workloads
SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;
--
Create service classes
--
CREATE SERVICE CLASS highlvl DISABLE;
CREATE SERVICE CLASS sc_sales UNDER highlvl AGENT PRIORITY -10 PREFETCH
PRIORITY high COLLECT ACTIVITY DATA ON ALL WITH DETAILS COLLECT AGGREGATE
ACTIVITY DATA EXTENDED COLLECT AGGREGATE REQUEST DATA DISABLE;

CREATE SERVICE CLASS sc_inv UNDER highlvl COLLECT ACTIVITY DATA ON ALL WITH
DETAILS COLLECT AGGREGATE ACTIVITY DATA EXTENDED COLLECT AGGREGATE REQUEST DATA
DISABLE;

CREATE SERVICE CLASS sc_acc UNDER highlvl COLLECT ACTIVITY DATA ON ALL WITH
DETAILS COLLECT AGGREGATE ACTIVITY DATA EXTENDED COLLECT AGGREGATE REQUEST DATA
DISABLE;
--
-- Create workloads that map the connections to the service classes
--
CREATE WORKLOAD wl_sales CURRENT CLIENT_USERID ('SALESUSR') CURRENT
CLIENT_APPLNAME ('sales.exe','oltp.exe') DISABLE SERVICE CLASS sc_sales UNDER
highlvl POSITION AT 1 COLLECT ACTIVITY DATA WITH DETAILS;

CREATE WORKLOAD wl_invent CURRENT CLIENT_USERID ('INVUSR') CURRENT
CLIENT_APPLNAME ('inv.exe') DISABLE SERVICE CLASS SC_INV UNDER highlvl POSITION
AT 2;
 Chapter 6. WLM Sample Scenario - OLTP 155

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
CREATE WORKLOAD wl_acct CURRENT CLIENT_USERID ('ACCUSR') CURRENT
CLIENT_APPLNAME ('acct.exe') DISABLE SERVICE CLASS SC_ACC UNDER highlvl
POSITION AT 3;
--
-- Grant usage on the workloads to PUBLIC
--
GRANT USAGE ON WORKLOAD wl_sales TO PUBLIC;
GRANT USAGE ON WORKLOAD wl_invent TO PUBLIC;
GRANT USAGE ON WORKLOAD wl_acct TO PUBLIC;
--
-- Enable Service classes and Workloads
--
ALTER SERVICE CLASS highlvl ENABLE;
ALTER SERVICE CLASS sc_sales UNDER highlvl ENABLE;
ALTER SERVICE CLASS sc_inv UNDER highlvl ENABLE;
ALTER SERVICE CLASS sc_acc UNDER highlvl ENABLE;
ALTER WORKLOAD wl_sales ENABLE;
ALTER WORKLOAD wl_invent ENABLE;
ALTER WORKLOAD wl_acct ENABLE;

If DEFAULT is specified for a service superclass, this equates to a prefetch
priority of “medium” for the service superclass. You can specify a different
prefetch priority for any service subclass in the service superclass, but if you use
the default prefetch priority for the service subclass, the service subclass inherits
its prefetch priority setting from the service superclass.

For our example we set the prefetch priority to HIGH at subclass level, so that
sales subclass get the high prefetch priority over others.

If you have AIX WLM running, you can map each DB2 service class to a
corresponding AIX WLM service class to provide broader control of the
workloads.

6.3.2 Monitoring

Once the service classes and workloads defined, we monitor the system to see if
our business objective is met and the controls we placed work as expected:

� Check workloads, service class, and other WLM components.

Note: If you are using the DB2_HI_PRI_PREFETCH_AUTHID or
DB2_LO_PRI_PREFETCH_AUTHID environment variables to route prefetch
requests to a specific prefetch queue based on an authorization ID, you
should use service class prefetch priorities to ensure that your workload
continues to be processed as expected.
156 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
� Collect information required for analysis

– Collect the response time for all requests coming from Sales
representative and Sales application.

Make sure that WLM_COLLECT_INT parameter is set to a value more than zero.
For our monitoring, we set this value to 5.

The monitoring tasks we performed include the following:

� Check the Service classes, workloads, and their evaluation order.

Example 6-2 shows the SQL statements and output. Since all the subclasses
are under one superclass, we want to make sure that the SC_SALES will be
evaluated first.

Example 6-2 Checking service classes and workloads definition and evaluation order

db2 “select SUBSTR(SERVICECLASSNAME,1,27) as SC,
SUBSTR(PARENTSERVICECLASSNAME,1,27) as PARENTCLASS, ENABLED from
syscat.serviceclasses”

SC PARENTCLASS ENABLED
--------------------------- --------------------------- -------
SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS Y
SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS Y
SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS Y
SYSDEFAULTSUBCLASS HIGHLVL Y
SC_SALES HIGHLVL Y
SC_ACC HIGHLVL Y
SC_INV HIGHLVL Y
SYSDEFAULTSYSTEMCLASS - Y
SYSDEFAULTMAINTENANCECLASS - Y
SYSDEFAULTUSERCLASS - Y
HIGHLVL - Y

 11 record(s) selected.

->db2 "select WORKLOADID as ID, EVALUATIONORDER as EORDER,
substr(WORKLOADNAME,1,25) as WORKLOAD, ENABLED,
substr(SERVICECLASSNAME,1,25) as SCNAME from syscat.workloads order by 2”

ID EORDER WORKLOAD ENABLED SCNAME
----------- ------ ------------------------- ------- -------------------------
 5 1 WL_SALES Y SC_SALES
 3 2 WL_INVENT Y SC_INV
 4 3 WL_ACCT Y SC_ACC
 1 4 SYSDEFAULTUSERWORKLOAD Y SYSDEFAULTSUBCLASS
 2 5 SYSDEFAULTADMWORKLOAD Y SYSDEFAULTSUBCLASS

 5 record(s) selected.

� Determine to which workload the applications are assigned.

We use WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURANCES table
function to find to which workload the Sales applications are assigned,. Refer
to Chapter 5, “Monitoring” on page 83 for workload manager table functions.
 Chapter 6. WLM Sample Scenario - OLTP 157

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
Example 6-3 shows that one of the Sales application oltp.exe is assigned to
SC_SALES service class and WL_SALES workload.

Example 6-3 Workloads and service class

->db2 "select substr(application_name,1,15) as application_name ,
substr(CLIENT_USER,1,10) as client_id , substr(CLIENT_APPLNAME,1,15) as
client_applname , substr(service_subclass_name,1,15) as sub_class ,
substr(workload_name,1,20) as workload_name ,
substr(workload_occurrence_state,1,10) as wlm_state from
table(wlm_get_service_class_workload_occurrences('','',-1))”

APPLICATION_NAME CLIENT_ID CLIENT_APPLNAME SUB_CLASS WORKLOAD_NAME WLM_STATE
---------------- ---------- --------------- --------------- -------------------- ----------
db2bp - - ADMINS WL_ADMIN UOWWAIT
db2bp - ADMINS WL_ADMIN UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
oltp.exe - - SC_SALES WL_SALES UOWEXEC
...

� Check agent priority and prefetch priority

We can check the agent and prefetch priority for sales.exe or oltp.exe using
SNAP_GET_APPL_V95 table function or db2pd utility. db2pd is used here to
display both the agent and prefetch priority for SC_SALES service class:

db2pd -db wlmdb -serviceclasses

Example 6-4 shows agent and prefetch priority values.

Example 6-4 Agent and Prefetch priority in Service classes

->db2pd -db wlmdb -serviceclasses
...
Service Class Name = SC_SALES
Service Class ID = 21
Service Class Type = Service Subclass
Parent Superclass ID = 14
Service Class State = Enabled
Agent Priority = -10
Prefetch Priority = High
Outbound Correlator = None
Collect Activity Opt = On all partitions with details
Collect Aggr Activity Opt = Extended
Collect Aggr Request Opt = Base
Act Lifetime Histogram Template ID = 1
Act Queue Time Histogram Template ID = 1
Act Execute Time Histogram Template ID = 1
Act Estimated Cost Histogram Template ID = 1
Act Interarrival Time Histogram Template ID = 1
Request Execute Time Histogram Template ID = 1
158 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
Access Count = 7
Last Stats Reset Time = 09/19/2007 14:58:40.000000
Activities HWM = 8
Activities Completed = 41
Activities Rejected = 0
Activities Aborted = 0

Associated Agents:
EDU ID AppHandl [nod-index] WL ID WLO ID UOW ID Activity ID
50135153246212 28717 [000-28717] 11 76 6 1
43516608643076 28718 [000-28718] 11 77 5 1
42412802048004 28719 [000-28719] 11 78 6 1
71133248356356 28720 [000-28720] 11 79 5 1
41308995452932 28722 [000-28722] 11 81 5 1
46823733460996 28724 [000-28724] 11 82 5 1
49031346651140 28723 [000-28723] 11 83 5 1
....

� Response time for Sales application

To get the response time, we used the histogram template and collected
request execution time (ReqExecTime) for Sales service class. We created
an histogram view to collect required information as shown in Example 6-5.

Example 6-5 Create Histogram view

CREATE VIEW HISTOGRAMS (histogram_type,
 service_superclass,
 service_subclass,
 bin_top,
 number_in_bin) AS
SELECT
 DISTINCT SUBSTR(histogram_type,1,24) AS histogram_type,
 SUBSTR(parentserviceclassname,1,24) AS service_superclass,
 SUBSTR(serviceclassname,1,24) AS service_subclass,
 TOP AS bin_top,
 SUM(number_in_bin) AS number_in_bin
FROM
 histogrambin_basic_mon H,
 syscat.serviceclasses S
WHERE h.service_class_id=s.serviceclassid
GROUP BY histogram_type, parentserviceclassname, serviceclassname, top;

Once the histogram view is created, select the output from the view to see the
request execution time output for Sales service class. See Example 6-6.

Example 6-6 Histogram output for SALES service class

->db2 "select BIN_TOP, substr(SERVICE_SUBCLASS,1,15) as SC_CLASS,
NUMBER_IN_BIN FROM histograms where HISTOGRAM_TYPE = 'ReqExecTime' and
SERVICE_SUBCLASS = 'SC_SALES' order by 1,2"

BIN_TOP SC_CLASS NUMBER_IN_BIN
-------------------- --------------- --------------------
 -1 SC_SALES 0
 Chapter 6. WLM Sample Scenario - OLTP 159

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
 1 SC_SALES 1503
 2 SC_SALES 12
 3 SC_SALES 0
 5 SC_SALES 0
 8 SC_SALES 0
 12 SC_SALES 0
 19 SC_SALES 0
 29 SC_SALES 0
 44 SC_SALES 0
 68 SC_SALES 0
 103 SC_SALES 0
 158 SC_SALES 0
 241 SC_SALES 0
 369 SC_SALES 18
 562 SC_SALES 8
 858 SC_SALES 0
 1309 SC_SALES 0
 1997 SC_SALES 0
 3046 SC_SALES 20
 4647 SC_SALES 0
 7089 SC_SALES 0
 10813 SC_SALES 0
 16493 SC_SALES 0
 25157 SC_SALES 0
 38373 SC_SALES 0
 58532 SC_SALES 0
 89280 SC_SALES 0
 136181 SC_SALES 0
 207720 SC_SALES 0
 316840 SC_SALES 0
 483283 SC_SALES 0
 737162 SC_SALES 0
 1124409 SC_SALES 0
 1715085 SC_SALES 0
 2616055 SC_SALES 0
 3990325 SC_SALES 0
 6086529 SC_SALES 0
 9283913 SC_SALES 0
 14160950 SC_SALES 0
 21600000 SC_SALES 0

 41 record(s) selected.

Figure 6-1 shows the Sales application response time chart.
160 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
Figure 6-1 Histogram showing Sales queries response times

Analysis
After collecting the information those are required to check and validate our goal,
now we can do some analysis on the information we collected. This will be used
to validate our WLM definitions and to see whether we are near our goals.

From the Histogram view, we can see the response time for request execution
time in milliseconds. We can see most of the responses fall under 1 sec. In our
output taken for a short period of one hour, 58 out of 1561 requests response
time falls outside our Goal, that is around 3.7%. Our objective is to have all the
100% requests from sales have <1 sec. response time. Objective is partially met.
Further analysis on those 58 requests has to be performed and validate the SQL
statements.

Collecting long running queries
To collect additional information about the queries running more than a second,
we need to collect the information from activity monitor data. The creation of
activity monitors are shown in Example 6-7

Example 6-7 Create event monitor s

CREATE EVENT MONITOR basic_mon FOR STATISTICS WRITE TO TABLE
 control (TABLE control_basic_mon, IN maint),
 histogrambin (TABLE histogrambin_basic_mon, IN maint),
 qstats (TABLE qstats_basic_mon, IN maint),
 scstats (TABLE scstats_basic_mon, IN maint),
 wcstats (TABLE wcstats_basic_mon, IN maint),
 Chapter 6. WLM Sample Scenario - OLTP 161

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
 wlstats (TABLE wlstats_basic_mon, IN maint) AUTOSTART;

CREATE EVENT MONITOR act_mon FOR ACTIVITIES WRITE TO TABLE
 activity (TABLE activity_act_mon, IN maint),
 activitystmt (TABLE activitystmt_act_mon, IN maint),
 activityvals (TABLE activityvals_act_mon, IN maint),
 control (TABLE control_act_mon, IN maint) AUTOSTART;

Next, create a view from activity monitor table, to collect the query information
which is running morethan a second. Using TIME_COMPLETED and
TIME_STARTED from activity table, we calculated the time taken for activity to
complete.

Example 6-8 shows the create view statement to collect the activites for sales
service subclass and from applications ‘oltp.exe’ and ‘sales.exe’

Example 6-8 Create view

CREATE VIEW SALES_RESP (APPLID, AGENTID, APPL_NAME, SUBCLASS, SUPERCLASS,
WORKLOADID,TOTALTIME) AS SELECT A.APPL_ID,A.AGENT_ID,A.APPL_NAME,
A.SERVICE_SUBCLASS_NAME,A.SERVICE_SUPERCLASS_NAME, WORKLOAD_ID,(time_completed
- time_started) from ACTIVITY_ACT_MON A, ACTIVITYSTMT_ACT_MON B WHERE
(B.APPL_ID =A.APPL_ID) and (A.APPL_NAME ='oltp.exe' OR
A.APPL_NAME='sales.exe') and (A.SERVICE_SUBCLASS_NAME ='SC_SALES') and
((A.TIME_COMPLETED - A.TIME_STARTED) >1))

Using the SALES_RESP view, we can see the application id, application name
for queries running morethan one second. Example 6-9. shows the output

Example 6-9 Output from Sales_resp view

-->db2 "select substr(applid,1,30) as applid, substr(appl_name,1,30)as
appln_name,totaltime from sales_resp"

APPLID APPLN_NAME TOTALTIME
------------------------------ ------------------------------ ----------------------
*N3.db2inst1.070913022101 oltp.exe 2.202352
*N3.db2inst1.070913022101 oltp.exe 1.718462
*N3.db2inst1.070913022101 oltp.exe 1.601447
*N3.db2inst1.070913022101 oltp.exe 2.385395
*N3.db2inst1.070913022009 oltp.exe 1.301762
*N3.db2inst1.070913022009 oltp.exe 1.105287
*N3.db2inst1.070913022009 oltp.exe 1.357266
*N3.db2inst1.070913022009 oltp.exe 1.098919
*N3.db2inst1.070913022007 oltp.exe 1.248636
*N3.db2inst1.070913022007 oltp.exe 1.421740
*N3.db2inst1.070913022012 oltp.exe 1.350745
*N3.db2inst1.070913022012 oltp.exe 1.357736
162 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
Example 6-10 shows how to use the application ID (APPLID) from the
SALES_RESP view to find out the application and SQL statement details through
activity statement event monitor table

Example 6-10 Find the SQL statements

->db2 "SELECT substr(appl_id,1,30) as appl_id, SUBSTR(stmt_text,1,400) AS
stmt_text FROM activitystmt_act_mon WHERE appl_id =
'*N3.db2inst1.070913022007'”

APPL_ID STMT_TEXT

*N3.db2inst1.070913022007 SET CURRENT EXPLAIN MODE = NO
*N3.db2inst1.070913022007 SET CURRENT EXPLAIN SNAPSHOT = NO
*N3.db2inst1.070913022007 select o_orderpriority, sum(o_totalprice) from tpcd.orders where
o_totalprice< 35000 group by o_orderpriority

 3 record(s) selected.

6.3.3 Summary

From the monitoring data, we understand that user SALESUSR running oltp.exe
application runs for more than a second and contains more than one SQL
statements in its unit of work (UOW). The unit of work contains more than one
SQL statements that can be separated to smaller sections where only one SQL
statement. With only one SQL statement in one unit of work, the sub-second
response time for each UOW can be accomplished.

6.4 Mitigate long-run queries

Long-run queries are those run for hours, may be, due to table scans instead of
index scans, performing large sorts, or large number of joins and so on. To
prevent long-run queries impacting the response time for an OLTP system, you
can use WLM to operatively manage the long-run queries by either allow them to
continue and collect information for later analysis, or stop execution.

In this section, we demonstrate how to define the WLM object to manage
long-run queries. The workload management requirement is to check and collect
information for activities that have more than 30 minutes total activity time.
 Chapter 6. WLM Sample Scenario - OLTP 163

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
6.4.1 Define DB2 workloads and service classes

Additional workload and service class definitions are not required. The workload
and service class definitions defined in 6.3, “Consistent response time” on
page 153 are sufficient.

6.4.2 Define controls

You can create an activity threshold of type ACTIVITYTOTALTIME and perform
this database wide. In this example, we create a threshold and specify that when
the limit is reached, continue query execution and collect data for later analysis.
Table 6-4 shows the activity name and its description.

Table 6-4 Threshold definition

COLLECT ACTIVITY DATA clause of the CREATE THRESHOLD statement
specifies that for each activity that exceeded the threshold, send the data the
active event monitor when the activity completes.

Example 6-11 shows a new threshold TH_DB_TATIME is created to check total
activity time of any database activity.

Example 6-11 Create threshold to check total activity time with database scope

CREATE THRESHOLD th_db_tatime FOR DATABASE ACTIVITIES ENFORCEMENT DATABASE
DISABLE WHEN ACTIVITYTOTALTIME > 30 MINUTES COLLECT ACTIVITY DATA WITH DETAILS
CONTINUE;
ALTER THRESHOLD th_db_tatime ENABLE;

Ensure that required event monitors are active to monitor the events.
Example 6-7 on page 161 shows the creation of event monitors. Example 6-12
shows the current active event monitors.

Example 6-12 Active event monitors

->db2 "SELECT SUBSTR(EVMONNAME,1,20)AS EVMONNAME, CASE WHEN
EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive' WHEN EVENT_MON_STATE(EVMONNAME)
= 1 THEN 'Active' END AS EVSTATE FROM SYSCAT.EVENTMONITORS ORDER BY 2"

EVMONNAME EVSTATE
-------------------- --------
ACT_MON Active

Threshold Description

TH_DB_TATIME Threshold for database wide to check for total activity time for
more than 30 minutes.
Action: Continue and collect activity data with details.
164 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
BASIC_MON Active
DB2DETAILDEADLOCK Active
THRESH_MON Active
BASIC_MON2 Inactive
DB2STATISTICS Inactive
WLM_THRESH Inactive

 7 record(s) selected.

Example 6-13 show the threshold we created till now and display its domain and
enforcements.

Example 6-13 List thresholds

->db2 "SELECT SUBSTR(THRESHOLDNAME,1,15) AS thresname,origin, enabled,
thresholdid, enforcement, queuesize, collectactdata FROM SYSCAT.THRESHOLDS"

THRESNAME ORIGIN ENABLED THRESHOLDID ENFORCEMENT QUEUESIZE COLLECTACTDATA
--------------- ------ ------- ----------- ----------- ----------- --------------
TH_DB_TATIME U Y 1 D 0 D

1 record(s) selected.

6.4.3 Monitoring

Example 6-14 shows the activities that violated threshold by the activity total time
of more than 30 minutes. The queries are logged and allowed to continue.

Example 6-14 Threshold violation showing activity total time exceeded

->db2 "SELECT appl_id, threshold_action, threshold_maxvalue,
SUBSTR(threshold_predicate,1,28) AS threshold_predicate, time_of_violation from
thresholdviolations_thresh_mon ORDER BY 4"

APPL_ID THRESHOLD_ACTION THRESHOLD_MAXVALUE THRESHOLD_PREDICATE
TIME_OF_VIOLATION
--------------------------- ---------------- -------------------- ---------------------

*N0.db2inst1.070913062239 Continue 1800 ActivityTotalTime
2007-09-13-02.03.14.000000
*N0.db2inst1.070913062840 Continue 1800 ActivityTotalTime
2007-09-13-02.03.14.000000
*N0.db2inst1.070913062839 Continue 1800 ActivityTotalTime
2007-09-13-02.03.14.000000
*N0.db2inst1.070913062305 Continue 1800 ActivityTotalTime
2007-09-13-02.03.14.000000
*N0.db2inst1.070913062309 Continue 1800 ActivityTotalTime
2007-09-13-02.03.15.000000
*N0.db2inst1.070913062238 Continue 1800 ActivityTotalTime
2007-09-13-02.03.15.000000
*N0.db2inst1.070913062306 Continue 1800 ActivityTotalTime
2007-09-13-02.03.59.000000
...
 Chapter 6. WLM Sample Scenario - OLTP 165

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
With the application ID, we can collect the SQL statement text and find out who
or which application the long running query is coming from.

Example 6-15 shows the SQL statement text obtained from activity statement
monitor ACTIVITYSTMT_ACT_MON.

Example 6-15 Get Threshold violation statement text

->db2 "select appl_id, substr(STMT_TEXT,1,400) as STMT_TEXT from
ACTIVITYSTMT_ACT_MON where appl_id = '*N0.db2inst1.070913062239'"

APPL_ID

STMT_TEXT

*N0.db2inst1.070913062239
select o_orderpriority, count(*) as order_count from tpcd.orders where o_orderdate >= date
('1996-04-01') and o_orderdate < date ('1996-04-01') + 3 month and exists (select * from
tpcd.lineitem where l_orderkey = o_orderkey and l_commitdate < l_receiptdate) group by
o_orderpriority order by o_orderpriority

 1 record(s) selected.

In Example 6-16, we find that the problem query is from INVMGR user running
inv.exe application. This information is collected from ACTIVITY_ACT_MON
table.

Example 6-16 Identifying the application information

->db2 "SELECT SUBSTR(appl_name,1,20) AS applname,
SUBSTR(service_subclass_name,1,20) AS subclassname,
SUBSTR(service_superclass_name,1,20) AS superclass, session_auth_id FROM
activity_act_mon WHERe appl_id = '*N0.db2inst1.070913062239'"

APPLNAME SUBCLASSNAME SUPERCLASS SESSION_AUTH_ID
---------- -------------- ------------- ------------------
inv.exe SC_INV HIGHLVL INVMGR

 1 record(s) selected.

6.4.4 Summary

From the analysis of monitoring data, we know that our objective has been met
partially. We also found that the long running applications are from Inventory
department. We now need to develop a management strategy to limit the number
of expensive queries. We can create a separate service class and assign a lower
priority for the inventory reports.
166 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
6.5 Prevent concurrent queries hogging the system

In this section, we address how to prevent too many large queries running
concurrently that is hogging the system and impacts the performance of other
applications.

Additional information can be collected for future use such as capacity planning.

In this example, the management requirement is to queue the READ queries with
high costs (TIMERONCOST > 100000.0) if the concurrent queries of this type is
more than 10 running against the database. This is for demonstrating purpose.
Usually, it will be more for an OLTP system.

6.5.1 Identification

We use the workload and service classes defined in Appendix 6.3, “Consistent
response time” on page 153 for this management requirement. For this example,
we use WLM objects work class and work type.

6.5.2 Define work classes for control

A work action effectively provides an action that can be applied to a set of work
classes. A work action set can contain one or more work actions that can be
applied to a specific superclass or to the database as a whole.

If the work action set is defined for a service superclass, then typically the work
action set would simply map the activity to a service subclass and have
thresholds defined on the subclass aiding the management of the activity. The
work action set also can be defined for the database if one of the supported work
actions in it is to apply a threshold that applies to the entire database.

To support the management requirement, we use a WLM work action set that
targets the whole database to categorize all the big reads for future analysis as
shown in Table 6-5.
 Chapter 6. WLM Sample Scenario - OLTP 167

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
Table 6-5 Define work class and work class set

Example 6-17 shows the CREATE WORK CLASS SET statement.

Example 6-17 Create work class set

CREATE WORK CLASS SET toomanyreads (WORK CLASS big_reads WORK TYPE READ FOR
TIMERONCOST FROM 100000.0 POSITION AT 1)

In Example 6-18, we create a work action set and specify the type of action DB2
WLM has to take when concurrent condition happens. In this case, we want to
queue the high cost activity when the number of concurrent activities reaches
more than 10.

Example 6-18 Create work action set to collect information and queue the work

CREATE WORK ACTION SET wlmdb FOR DATABASE USING WORK CLASS SET toomanyreads (
WORK ACTION action_iftoomany ON WORK CLASS big_reads WHEN
CONCURRENTDBCOORDACTIVITIES > 10 AND QUEUEDACTIVITIES > 10 COLLECT ACTIVITY
DATA WITH DETAILS CONTINUE) DISABLE;
ALTER WORK ACTION SET wlmdb ENABLE;

6.5.3 Monitoring

We begin our monitoring from checking if the work classes, work action sets, and
thresholds are set as we expected. Example 6-19 shows the work class created.

Example 6-19 Work class, work action definition and association

->db2 "SELECT WORKCLASSID,SUBSTR(workclassname,1,20)AS workclass,worktype FROM
SYSCAT.WORKCLASSES"

WORKCLASSID WORKCLASS WORKTYPE
----------- -------------------- --------
 1 BIG_READS 2

 1 record(s) selected.

Work class
set

Scope Work class Work class
Type

Action

Large Work Database BIG_READS READ Queue READ query if
� TIMERONCOST >

100000.0
� More than 10

concurrent DB
coordinate
activities
168 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
->db2 "SELECT SUBSTR(actionname,1,20) AS actionname, actionid,
SUBSTR(actionsetname,1,20) AS actionsetname, SUBSTR(workclassname,1,20) AS
workclassname, enabled FROM syscat.workactions"

ACTIONNAME ACTIONID ACTIONSETNAME WORKCLASSNAME ENABLED
-------------------- ----------- -------------------- -------------------- -------
ACTION_IFTOOMANY 1 WLMDB BIG_READS Y

 1 record(s) selected.

->db2 "SELECT SUBSTR(actionsetname,1,15) AS waset,SUBSTR(workclasssetname,1,15)
wcset, SUBSTR(objectname,1,15) AS objectname, enabled FROM
syscat.workactionsets"

WASET WCSET OBJECTNAME ENABLED
--------------- --------------- --------------- -------
WLMDB TOOMANYREADS - Y

 1 record(s) selected.

We then check whether the thresholds were created, active, and the enforcement
area. Example 6-20 lists the thresholds we created and they are all active. “U”
under ORIGIN field means the threshold is created by a user, and “W” means the
threshold is created through a work action.

Example 6-20 Check the threshold definitions and scope

-->db2 "SELECT SUBSTR(thresholdname,1,15) AS thresname,origin, enabled,
thresholdid, enforcement, queuesize, collectactdata FROM syscat.thresholds”
THRESNAME ORIGIN ENABLED THRESHOLDID ENFORCEMENT QUEUESIZE COLLECTACTDATA
--------------- ------ ------- ----------- ----------- ----------- --------------
TH_DB_TATIME U Y 1 D 0 D
SQL070913112834 W Y 4 D 10 D

2 record(s) selected.

To monitor the activity, we check the number of concurrent queries running and
queued activities as shown in Example 6-21. We collected the queue information
using WLM table function WLM_GET_QUEUE_STATS. The output shows that none of
connections or activities have been queued since the last reset.

Example 6-21 Collect the queue information

->db2 "SELECT SUBSTR(threshold_name, 1, 15) threshname, threshold_predicate,
threshold_domain, dbpartitionnum part, queue_size_top, queue_size_current,
queue_time_total, queue_assignments_total queue_assign FROM
TABLE(WLM_GET_QUEUE_STATS('', '', '', -1))"

THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN PART QUEUE_SIZE_TOP
QUEUE_SIZE_CURRENT QUEUE_TIME_TOTAL QUEUE_ASSIGN
--------------- --------------------------- ------------------ ------ --------------
------------------ -------------------- --------------------
 Chapter 6. WLM Sample Scenario - OLTP 169

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
SQL070913112834 CONCDBC WA 0 0
0 0 0

 1 record(s) selected.

6.5.4 Summary

For the monitoring data, we found that there’s no activity was queued. The
possible explanations include:

� There is no high cost query running on the system.
� There are high cost query but the number of concurrent jobs is under 10.

What can be done next are

� Re-evaluate whether the TIMERONCOST > 100000.0 defined is too high. If
not, no action has to be taken at this time.

� Reduce the number of concurrent queries from 10 to a lower accepted value

6.6 Stop user connections idle for more than 30 minutes

Connection idle time is the amount of time a connection is not working on the
user request. When an application or a user connect to a system but is idle for a
long time, it may create problem for the subsequent connections coming up to
the system where the number of concurrent user limit has been in place. You can
use DB2 WLM to stop applications or users that have connections idle for a
certain amount of time. Care should be taken when implement this management
control to not conflict with other management goals.

In this example, we demonstrate how to use DB2 WLM to stop the connections
that have been idle for more than 30 minutes.

6.6.1 Identification

We use the workload and service classes defined in Appendix 6.3, “Consistent
response time” on page 153 for this management requirement. No work class is
required for this example.

6.6.2 Define controls

We create thresholds to check connection idle time (CONNECTIONIDLETIME)
and terminate the connection if the limit is exceeded. This threshold has a
170 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch06.fm
granularity of five minutes, so all values that you specify for the threshold are
rounded to the nearest nonzero multiple of five minutes.

Example 6-22 shows the threshold definition.

Example 6-22 Create threshold

CREATE THRESHOLD th_act_time FOR DATABASE ACTIVITIES ENFORCEMENT DATABASE
ENABLE WHEN CONNECTIONIDLETIME > 30 MINUTES STOP EXECUTION;

Example 6-23 shows the thresholds created.

Example 6-23 List Active thresholds

->db2 "SELECT SUBSTR(thresholdname,1,15) AS thresname,origin, enabled,
thresholdid, enforcement, queuesize, collectactdata FROM syscat.thresholds”

THRESNAME ORIGIN ENABLED THRESHOLDID ENFORCEMENT QUEUESIZE COLLECTACTDATA
--------------- ------ ------- ----------- ----------- ----------- --------------
TH_DB_TATIME U Y 1 D 0 D
TH_ACT_TIME U Y 3 D 0 N
SQL070913112834 W Y 4 D 10 D

3 record(s) selected.

6.6.3 Monitoring

To evaluate if this management requirements has been met, we collected
information from event monitor THRESHOLDVIOLATIONS_THRESH_MON to
check the stopped connections. Example 6-24 shows a sample output from
threshold violations.

Example 6-24 Threshold violations

->db2 "SELECT SUBSTR(appl_id,1,40) AS appl_id,
SUBSTR(CHAR(coord_partition_num),1,4) AS part, threshold_action,
threshold_maxvalue,substr(threshold_predicate,1,28) AS threshold_predicate,
time_of_violation FROM thresholdviolations_thresh_mon ORDER BY 3 desc"

APPL_ID PART THRESHOLD_ACTION THRESHOLD_MAXVALUE
THRESHOLD_PREDICATE TIME_OF_VIOLATION
-- ---- ---------------- --------------------
---------------------------- --------------------------
*N0.db2inst1.070913141132 0 Stop 1800
ConnectionIdleTime 2007-09-13-09.41.56.000000
*N0.db2inst1.070913145911 0 Stop 1800
ConnectionIdleTime 2007-09-13-10.31.29.000000
*N0.db2inst1.070913152356 0 Stop 1800
ConnectionIdleTime 2007-09-13-10.56.07.000000
9.50.23.43.2015.070913152901 0 Stop 1800
ConnectionIdleTime 2007-09-13-10.59.25.000000
 Chapter 6. WLM Sample Scenario - OLTP 171

7524ch06.fm Draft Document for Review October 2, 2007 10:12 am
*N0.db2inst1.070913151533 0 Stop 1800
ConnectionIdleTime 2007-09-13-11.07.21.000000
9.50.23.43.2016.070913153940 0 Stop 1800
ConnectionIdleTime 2007-09-13-11.10.09.000000
...

When you find your threshold definition is not behaving as expected, it is worth to
check the DB2CHECKCLIENTINTERVAL registry variable settings and make
necessary changes. This variable specifies the frequency of TCP/IP client
connection verifications. It permits early detection of client termination, instead of
waiting until after the completion of the query. The default value for
DB2CHECKCLIENTINTERVAL is 50.

6.6.4 Summary

From the monitoring data, we found the management requirement has been met.
172 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Chapter 7. WLM sample scenarios -
Mixed OLTP and DSS
environment

In many customer environments, the need to combine both Online Transaction
Processing (OLTP) and Decision Support Systems (DSS) into a single
environment is needed for more timely information and maintain a competitive
advantage. One of the biggest challenges in a mixed OLTP and DSS
environment is developing a proactive setup to allow them to coexist but not
sacrificing throughput on either of them.

The setup environment used in this chapter shows how to identify, manage, and
monitor such a mixed environment, using WLM. Again we have chosen to use
the TCP-H benchmark data to build our environment. Simple queries were added
to simulate the OLTP workloads.

7

© Copyright IBM Corp. 2007. All rights reserved. 173

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
7.1 Business objectives

The prime objectives typically seen in a mixed OLTP and DSS environment are:

� Separately identify the OLTP workloads from the DSS workloads.

� Insulate the OLTP workload performance from the DSS workloads.

� If needed, target a portion of the non-critical DSS workloads to be deferred
until a later time, when the critical resources are no longer constrained.

� Maintain a consistent OLTP transaction response time.

The management of the availability of critical OLTP resources needs to be
proactive in order to achieve a consistent OLTP transaction response time.

In this chapter we demonstrate how to use WLM to achieve these objectives.

Our business objectives for this exercise are stated as:

� Make sure our OLTP workload meets our expected throughput and is not
unduly interrupted by the DSS workload.

� The DSS workload must also complete in a timely manner.

� The OLTP workload is an order entry system and requires an average
response time of under 1 second.

� Our DSS workload consists of both ad-hoc queries and analysis reports.

� The ad-hoc queries have a higher priority than the analysis reports.

� All other workloads, such as administrative tasks, are only expected to be
about 50 - 100 tasks a day.

� Database backups are part of the administrative workload. Several long
running tasks are performed such as table space backups. These are not
supposed to run during prime time shift (8:00 AM - 8:00 PM) and not interfere
with the OLTP or DSS workloads.

7.2 Identify the work

Using our business objectives, we can identify our workloads and describe the
management requirements.

� Administrative tasks:

– Identified as all users in the group ID DB2ADM

– Report when backups are run to make sure they don’t run into the prime
shift.
174 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
� OLTP:

– Prime time shift is 8:00 AM to 8:00PM.

– Runs as executable oltp.exe and runs as highest priority.

– Report the average response times to make sure the are under one
second on average.

� DSS (queries and reports)

– Prime time shift is 8:00 AM to 8:00 PM.
– Report workloads statistics for queries and reports separately.

� DSS queries

– Identified as all users in group ID DSSGROUP.

– Report the average response times to make sure that 90% are under five
minutes.

� DSS reports

– Runs as executable dss.exe.
– Runs as lowest priority.
– If necessary queue reports to limit their impact on OLTP and DSS queries.

Table 7-1 shows the worksheet identifying our workloads.

Table 7-1 Workload worksheet

Task Business requirements Identification Action

Admin Manages the database
environment

groupid = DB2ADM Report the times, duration,
and frequency of tasks,
such as backups

Batch ETL must be complete prior
to primetime shift

Loads and other ETL
process using etl.exe
or client userid =
‘BATCH’ and utility
LOAD

Report the times, duration,
and frequency of tasks

OLTP Prime time shift is 8:00 AM
- 8:00 PM. Queries need to
complete in < 1 second

executable = oltp.exe Assign highest priority,
report average response
times

DSS Prime time 8:00 AM to 8:00
PM

Ad Hoc queries and
reports run under
dss.exe

Identify ad hoc separately
from reports

_ DSS queries Must complete 90% < 5
minutes

groupid =
DSSGROUP

limit impact on OLTP.
report average response
times
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 175

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
7.3 Manage the work

Given the worksheet details, we are now ready to build our configuration. Our
build process is done in two steps. First we want to verify that our configuration is
doing the tasks we want. Then we can adjust the configuration to queue or stop
execution on the workloads that are impacting our business objectives.

Using the basic monitoring setup in Chapter 4, “Customizing the WLM execution
environments” on page 61, we can add the additional requirements to our
configuration.

7.3.1 Enabling the instance user ID to alter AIX priorities

The normal user rights given when creating an AIX user ID by default doesn’t
give the needed authority to allow the instance owner to adjust agent priorities.
This capability must be added before any of agent priorities can be changed by
DB2. Two additional capabilities are needed. The following command adds the
needed AIX system privileges:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE db2inst1

Where

� CAP_NUMA_ATTACH gives a process the ability to bind to specific
resources.

� CAP_PROPAGATE permits all capabilities be inherited by child processes

After the command has been successfully issued, the capabilities are displayed
as shown in Example 7-1.

Example 7-1 AIX user capabilities

lsuser db2inst1

_ DSS Analysis
Reports

Must complete all reports
daily

exec = dss.exe limit impact on OLTP and
Ad hoc queries

Task Business requirements Identification Action

Note: Root authority is needed to issue the chuser command. The capabilities
are effective at the next user login. Therefore, the instance needs to be
restarted from a new login session after the chuser command has been
successfully run.
176 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
db2inst1 id=1200 pgrp=db2adm groups=db2adm,staff,dasgrp home=/db2home/db2inst1
shell=/usr/bin/ksh login=true su=true rlogin=true daemon=true admin=false
sugroups=ALL admgroups= tpath=nosak ttys=ALL expires=0 auth1=SYSTEM
auth2=NONE umask=22 registry=files SYSTEM=compat logintimes= loginretries=0
pwdwarntime=0 account_locked=false minage=0 maxage=0 maxexpired=-1
minalpha=0 minother=0 mindiff=0 maxrepeats=8 minlen=8 histexpire=0
histsize=0 pwdchecks= dictionlist=
capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE fsize=-1 cpu=-1
data=-1 stack=-1 core=2097151 rss=65536 nofiles=-1 time_last_login=1189273673
time_last_unsuccessful_login=1188334437 tty_last_login=/dev/pts/0
tty_last_unsuccessful_login= host_last_login=9.26.92.65
host_last_unsuccessful_login=Clyde.itsosj.sanjose.ibm.com
unsuccessful_login_count=0 roles=

7.3.2 Creating the service classes definitions

Our first service class is our superclass, HIGHLVL. Under which we can create
all our subclasses and indicate what level of information we want to capture.

� ADMINS

Since we don’t plan on imposing any management rules, we collect only the
minimal amount of data.

� BATCH

Here we are mainly interested in knowing the request execution times. This is
collected using the COLLECT AGGREGATE REQUEST DATA BASE setting.
This information is viewable in both SCSTATS and HISTOGRAMBIN tables.

� PROD_RPT

The reports that can be generated by this subclass can be quit resource
intensive. Therefore, we want more information to assist in their management.
The level of information we need is both at the aggregate request and activity
levels. The second collection is added using the ALTER SERVICE CLASS.
These two levels gives both the request execution times and averages about
the activities in this service class to allow us to quickly analyze our workload.
The COLLECT AGGREGATE ACTIVITY DATA EXTENDED was specified to
add the average cost and arrival time information. We can use this additional
data to understand how the PROD_RPT service class impacts our system.

� PROD_QRY

The ad-hoc queries needs to be slotted between our production reports and
the OLTP transactions. In defining this subclass, we specify the same data
collection as for our production reports. Additionally, we indicate that we want
these queries to execute ahead of our production reports by setting AGENT
PRIORITY -5. This is to satisfy our business requirement.
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 177

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
� OLTP

This transactions are very short lived and need to run at the highest priority in
order to insure the business requirements of running in under one second can
be maintained. The same data collection levels are used as for PROD_RPT
and PROD_QRY.

Example 7-2 shows the service class definitions of our scenario.

Example 7-2 Service class definitions

--
-- Create superclass HIGHLVL
--
CREATE SERVICE CLASS highlvl DISABLE;
--
-- Create subclasses
--

CREATE SERVICE CLASS admins UNDER highlvl COLLECT AGGREGATE ACTIVITY DATA BASE
DISABLE;

CREATE SERVICE CLASS batch UNDER highlvl COLLECT AGGREGATE REQUEST DATA BASE
DISABLE;

ALTER SERVICE CLASS batch UNDER highlvl COLLECT AGGREGATE REQUEST DATA;

CREATE SERVICE CLASS prod_rpt UNDER highlvl COLLECT AGGREGATE ACTIVITY DATA
EXTENDED DISABLE;

ALTER SERVICE CLASS prod_rpt UNDER highlvl COLLECT AGGREGATE REQUEST DATA;

CREATE SERVICE CLASS prod_qry UNDER HIGHLVL agent PRIORITY -5 COLLECT AGGREGATE
ACTIVITY DATA EXTENDED DISABLE;

ALTER SERVICE CLASS prod_qry UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA;

CREATE SERVICE CLASS oltp UNDER highlvl AGENT PRIORITY -10 PREFETCH PRIORITY
HIGH COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

ALTER SERVICE CLASS oltp UNDER highlvl COLLECT AGGREGATE REQUEST DATA;

Note: The aggregate collection data collection level has the least impact on
our system. This enables us to collect useful information without unduly
impacting our workloads. The anticipated impact to be between 5-10% for the
service class.
178 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
7.3.3 Creating the workload definitions

Our setup is similar to Chapter 4, so we only highlight the additional information.
We need to identify our OLTP workloads so they are separated from the DSS
workloads and can be properly monitored and managed.

� WL_OLTP Identifies our OLTP transactions as being run using the
APPLNAME = oltp.exe

� The priorities have been changed to put WL_OLTP at the top so that it can be
identified first and reduce the search time to identify our OLTP transactions.

Example 7-3 shows our workload definitions including the new additions and
updates.

Example 7-3 Workload definitions

--
-- Create workloads
--
CREATE WORKLOAD wl_oltp APPLNAME ('oltp.exe') DISABLE SERVICE CLASS OLTP UNDER
highlvl POSITION AT 1;

CREATE WORKLOAD wl_batch CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS
BATCH UNDER highlvl POSITION AT 2;

CREATE WORKLOAD wl_prod_rpt APPLNAME ('dss.exe') DISABLE SERVICE CLASS
prod_rpt UNDER highlvl POSITION AT 3;

CREATE WORKLOAD wl_prod_qry SESSION_USER GROUP ('DSSGROUP') DISABLE SERVICE
CLASS prod_qry UNDER highlvl POSITION AT 4;

CREATE WORKLOAD wl_admin SESSION_USER GROUP ('DB2ADM') DISABLE SERVICE CLASS
admins UNDER highlvl POSITION AT 5;

7.3.4 Finalizing the setup

Lastly, we grant the use to our workloads and enable the service classes and
workloads as shown in Example 7-4.

Example 7-4 Granting permissions and enabling the service classes and workloads

--

Note: The workload definitions are searched in the order of their priority. To
minimize search times, put the most critical workloads at the lowest priority
number.
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 179

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
-- Grant workload usage
--
GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;
GRANT USAGE ON WORKLOAD WL_OLTP TO PUBLIC;
--
-- Enable service classes
--
ALTER SERVICE CLASS HIGHLVL ENABLE;
ALTER SERVICE CLASS ADMINS UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS BATCH UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS PROD_RPT UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS PROD_QRY UNDER HIGHLVL ENABLE;
ALTER SERVICE CLASS OLTP UNDER HIGHLVL ENABLE;
--
-- Enable workloads
--
ALTER WORKLOAD WL_ADMIN ENABLE;
ALTER WORKLOAD WL_BATCH ENABLE;
ALTER WORKLOAD WL_PROD_RPT ENABLE;
ALTER WORKLOAD WL_PROD_QRY ENABLE;
ALTER WORKLOAD WL_OLTP ENABLE;

COMMIT;

7.4 Monitoring the work

Having implemented our workload management strategy, we collect and monitor
the data. We use data from the SCSTATS_BASIC_MON and
HISTOGRAMBIN_BASIC_MON tables to demonstrate what monitoring data is
used to measure the effectiveness of our WLM strategy. These two tables give us
a good picture of how our workloads are behaving in the system. Additionally, we
want to make sure our priorities are in effect and are being used.

7.4.1 Checking the agent priorities and prefetchers

With DB2 v9.5 being a threaded model, new functionality has been incorporated
to allow us to look at the details of the threads. Use the following command to
obtain service class details:

db2pd -db wlmdb -serviceclasses
180 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Example 7-5 show the service class definitions and that the OLTP already is
being used (see the highlighted lines)

Example 7-5 Using db2pd -service classes

...
Service Class Name = PROD_QRY
Service Class ID = 19
Service Class Type = Service Subclass
Parent Superclass ID = 14
Service Class State = Enabled
Agent Priority = -5
Prefetch Priority = Default
Outbound Correlator = _HighLevel.Prod_QRY
Collect Activity Opt = None
Collect Aggr Activity Opt = Extended
Collect Aggr Request Opt = Base
Act Lifetime Histogram Template ID = 1
Act Queue Time Histogram Template ID = 1
Act Execute Time Histogram Template ID = 1
Act Estimated Cost Histogram Template ID = 1
Act Interarrival Time Histogram Template ID = 1
Request Execute Time Histogram Template ID = 1

Access Count = 0
Last Stats Reset Time = 09/12/2007 12:51:02.000000
Activities HWM = 0
Activities Completed = 0
Activities Rejected = 0
Activities Aborted = 0

Associated Agents:
EDU ID AppHandl [nod-index] WL ID WLO ID UOW ID
Activity ID

Associated Non-agent threads:
PID TID Thread Name

Service Class Name = OLTP
Service Class ID = 20
Service Class Type = Service Subclass
Parent Superclass ID = 14
Service Class State = Enabled
Agent Priority = -10
Prefetch Priority = High
Outbound Correlator = None
Collect Activity Opt = None
Collect Aggr Activity Opt = Extended
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 181

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
Collect Aggr Request Opt = Base
Act Lifetime Histogram Template ID = 1
Act Queue Time Histogram Template ID = 1
Act Execute Time Histogram Template ID = 1
Act Estimated Cost Histogram Template ID = 1
Act Interarrival Time Histogram Template ID = 1
Request Execute Time Histogram Template ID = 1

Access Count = 5
Last Stats Reset Time = 09/12/2007 12:51:02.000000
Activities HWM = 10
Activities Completed = 57
Activities Rejected = 0
Activities Aborted = 0

Associated Agents:
EDU ID AppHandl [nod-index] WL ID WLO ID UOW ID
Activity ID
37671158153220 16372 [000-16372] 3 92 7
1
90838558310404 16373 [000-16373] 3 93 5
1
35407710388228 16374 [000-16374] 3 94 6
1
339061898215428 16378 [000-16378] 3 98 7
1
292723496058884 16379 [000-16379] 3 99 0
0

To check what priorities agents are using, run the command

db2pd -db wlmdb -age

Example 7-6 shows that we are running eight OLTP transactions and they are all
running at a priority of -10.

Example 7-6 db2pd agent priorities

->db2pd -age -dbp 1 | grep -v Pooled

Database Partition 1 -- Active -- Up 0 days 19:09:56

Agents:
Current agents: 10
Idle agents: 0
Active coord agents: 1
Active agents total: 10
182 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Address AppHandl [nod-index] AgentEDUID Priority Type State
ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt DBName
0x078000000023ACC0 67157 [001-01621] 9879 0 Coord
Inst-Active 2728214 dssuser db2stmm 0 0 NotSet WLMDB
0x078000000023EAE0 14189 [000-14189] 5032 0 SubAgent
Inst-Active 2928 PESRVUSR db2evmt_ 0 16592 3
WLMDB
0x0780000000942A00 17010 [000-17010] 10533 -10 SubAgent
Inst-Active 2199916 dssuser oltp.exe 2653 0 NotSet WLMDB
0x0780000000944180 17011 [000-17011] 10790 -10 SubAgent
Inst-Active 1679658 dssuser oltp.exe 2653 0 NotSet WLMDB
0x0780000000940080 17008 [000-17008] 10019 -10 SubAgent
Inst-Active 2666978 dssuser oltp.exe 2653 0 NotSet WLMDB
0x0780000000941540 17009 [000-17009] 3113 -10 SubAgent
Inst-Active 606550 dssuser oltp.exe 2653 0 NotSet WLMDB
0x0780000000945B40 17013 [000-17013] 11051 -10 SubAgent
Inst-Active 1626264 dssuser oltp.exe 2653 0 NotSet WLMDB
0x0780000000947280 17015 [000-17015] 11309 -10 SubAgent
Inst-Active 237574 dssuser oltp.exe 2653 0 NotSet WLMDB
0x07800000009489C0 17016 [000-17016] 11566 -10 SubAgent
Inst-Active 2113846 dssuser oltp.exe 2653 0 NotSet WLMDB
0x078000000023D620 17014 [000-17014] 10289 -10 SubAgent
Inst-Active 2146474 dssuser oltp.exe 2653 0 NotSet WLMDB
....

Use the following steps to check the prefetchers:

1. Switch to a data partition

export DB2NODE=1
db2 terminate

2. Obtain the process ID of db2sysc of the partiton using the following
command:

ps -ef | grep db2sysc

The process ID for db2sysc 1 is 987302.

3. Show the threads for the db2sysc process 987302

ps -m -o THREAD -p 987302

Note: The agent threads are set to a priority equal to the default priority, plus
the value set when the next activity begins.

In UNIX and Linux systems, the valid values are -20 to +20 (a negative value
indicates a higher relative priority). In Windows-based platforms, the valid
values are -6 to +6 (a negative value indicates a lower relative priority)
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 183

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
Example 7-7 shows the output from these two commands while a prefetcher was
actively running.

Example 7-7 Output from ps -m command for prefetchers

->ps -ef | grep db2sysc | grep -v grep
db2inst1 987302 1261848 0 18:25:39 - 63:06 db2sysc 1
db2inst1 1130766 1233344 0 18:25:40 - 61:16 db2sysc 2
db2inst1 1270196 614908 0 18:25:39 - 45:18 db2sysc 0
...
->ps -m -o THREAD -p 987302
 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
db2inst1 987302 1261848 - A 0 60 41 * 40401 - - db2sysc 1
 - - - 1433801 S 0 60 1 - 400400 - - -
 - - - 1880209 S 0 60 1 - 400400 - - -
 - - - 2044119 S 0 60 1 f1000004e0108c00 410400 - - -
 - - - 2068605 S 0 60 1 - 400400 - - -
 - - - 2170933 S 0 60 1 f100011022c23230 410400 - - -
 - - - 2265111 S 0 60 1 f100000500108400 410400 - - -
 - - - 2543691 S 0 60 1 - 418400 - - -
 - - - 3125337 Z 0 60 1 - c00001 - - -
 - - - 3194901 S 0 60 1 f1000004f010bc00 410400 - - -
 - - - 3444955 S 0 60 1 f1000004d010ee00 410400 - - -
 - - - 3690681 S 0 60 1 f10000050010f200 410400 - - -
 - - - 3936299 S 0 60 1 - 400400 - - -
 - - - 4046931 S 0 60 1 - 418400 - - -
 - - - 4132945 S 0 60 1 - 418400 - - -
 - - - 4448321 S 0 60 1 f10000050010f600 410400 - - -

4. List the EDU’s for the prefetchers

db2pd -db wlmdb -edu -dbp 1

Example 7-8 shows the db2pfchr data.

Example 7-8 Output from db2pd -edu for prefetchers

->db2pd -db wlmdb -edu -dbp1 | egrep "EDU Name|db2pfchr"

EDU ID TID Kernel TID EDU Name USR SYS
9658 2941051 5906937 db2pfchr (WLMDB) 1 0.001285
0.000531
9401 9401 2265111 db2pfchr (WLMDB) 1 0.001099 0.000597
9144 9144 4682099 db2pfchr (WLMDB) 1 0.001664 0.001061
8887 8887 4853817 db2pfchr (WLMDB) 1 0.002559 0.001224
8630 8630 4166005 db2pfchr (WLMDB) 1 0.001728 0.001077
8373 8373 3194901 db2pfchr (WLMDB) 1 0.001910 0.001030
8116 8116 2793797 db2pfchr (WLMDB) 1 0.002762 0.001750
7859 7859 5435469 db2pfchr (WLMDB) 1 0.017083 0.012175
7602 7602 5853695 db2pfchr (WLMDB) 1 0.048361 0.039011
7345 7345 3690681 db2pfchr (WLMDB) 1 0.058649 0.041682
7088 7088 5816601 db2pfchr (WLMDB) 1 0.057663 0.044016
6831 6831 4448321 db2pfchr (WLMDB) 1 0.065778 0.039444
6574 6574 3068261 db2pfchr (WLMDB) 1 0.066206 0.045546
6317 6317 3444955 db2pfchr (WLMDB) 1 0.077666 0.054751
6060 6060 6455555 db2pfchr (WLMDB) 1 0.075359 0.048456
184 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
5803 5803 2044119 db2pfchr (WLMDB) 1 0.094211 0.057868

7.4.2 Monitoring and analyzing the service classes

To begin with, let us get a high level view of our workloads by looking at the
HISTOGRAMBIN_BASIC_MON table. Using a query as shown in Example 7-9,
we can see histogram data and plot graphs that give us an overview of how our
system is performing.

Example 7-9 Query histogram_basic_mon table

WITH hist_reg (bin, subclass, nbr_in_bin) AS
 (SELECT bin_top,
 SUBSTR(service_subclass,1,15),
 NUMBER_IN_BIN
 FROM histograms
 WHERE HISTOGRAM_TYPE = 'ReqExecTime'
 ORDER BY 1,2
),
 hist_colife (bin, subclass, nbr_in_bin) AS
 (SELECT BIN_TOP,
 SUBSTR(Service_subclass,1,15),
 number_in_bin,
 FROM histograms
 WHERE histogram_type = 'CoordActLifetime'
 ORDER BY 1,2
),
 hist_coexec (bin, subclass, nbr_in_bin) as
 (SELECT bin_top,
 SUBSTR(SERVICE_SUBCLASS,1,15),
 number_in_bin
 FROM histograms
 WHERE histogram_type = 'CoordActExecTime'
 ORDER BY 1,2
),
 hist_coarrive (bin, subclass, nbr_in_bin) AS
 (SELECT bin_top,
 SUBSTR(service_subclass,1,15),
 number_in_bin
 FROM histograms
 WHERE histogram_type = 'CoordActInterArrivalTime'
 ORDER BY 1,2
),
 hist_cec (bin, subclass, nbr_in_bin) AS
 (SELECT BIN_TOP,
 SUBSTR(service_subclass,1,15),
 number_in_bin
 FROM histograms
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 185

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
 WHERE histogram_type = 'CoordActEstCost'
 ORDER BY 1,2
)
SELECT r.bin, r.subclass,
 r.nbr_in_bin as ReqExecTime,
 l.nbr_in_bin as CoordActLifetime,
 e.nbr_in_bin as CoordActExecTime,
 a.nbr_in_bin as CoordActInterArrivalTime,
 c.nbr_in_bin as CoordActEstCost
FROM hist_reg r, hist_cec c, hist_colife l, hist_coexec e,
 hist_coarrive a
WHERE r.bin=c.bin
AND r.bin=l.bin
AND r.bin=e.bin
AND r.bin=a.bin
AND r.subclass = c.subclass
AND r.subclass = l.subclass
AND r.subclass = e.subclass
AND r.subclass = a.subclass

ORDER BY 2,1 ;S

Request execution time
The first chart (Figure 7-1)we want to examine is the request execution times.
This gives us a picture of “how are we doing against our execution time
objectives”.
186 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Figure 7-1 Request execution time

Here we see where our execution times fall in relationship to our objectives. Our
OLTP is running between .008 and 3.046 seconds. Our objective is to run all of
our OLTP transactions under 1 second but we can see that some transactions
are outside of our objective. This objective will need further analysis.

The production queries, our second highest priority are running between .029
and 1717.085 seconds (28.6 minutes). Our objective is to complete 95% in under
5 minutes. We completed a total of 21,286 transactions and 21,057 completed in
under 5 minutes. Our objective was 95%, we achieved 98.92%. Objective met!

As for our production reports, we ran 27, 572 reports during the period. All were
completed but did they interfere with any of our objectives? For this we need
more information.

Workload arrival rate
Next we turn our attention to the arrival rates of our workloads as illustrated in
Figure 7-2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-1 1 2 3 5 8 12 19 29 44 68 10
3

15
8

24
1

36
9

56
2

85
8

13
09

19
97

30
46

46
47

70
89

10
81

3
16

49
3

25
15

7
38

37
3

58
53

2
89

28
0

13
61

81
20

77
20

31
68

40
48

32
83

73
71

62
11

24
40

9
17

15
08

5
26

16
05

5
39

90
32

5
60

86
52

9
92

83
91

3
14

16
09

50
21

60
00

00

Time request spends executing (MS)

N
um

be
r

of
 O

cc
ur

re
nc

es

OLTP PROD_QRY PROD_RPT
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 187

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
Figure 7-2 Workload arrival rate

Here we see how “fast” workloads are arriving in our system. Are we overloading
our system at critical times? That is the question we want to answer. Our focus is
on the Production reports (PROD_RPT). From Figure 7-2, we can see the
PROD_RPTS peak at nearly 200 arrivals over a 25 second interval. Is this the
expected arrival rate? Does the high arrival rate of PROD_RPTS interfere with
our OLTP transactions? We need to examine when the transactions arrive by
looking at the aggregate service class statistics (SCSTATS_BASIC_MON) table.

Request execution time in a time frame
From Figure 7-3, we can focus on the execution times for specific time periods.
Here we can see when the Request execution times for OLTP miss the targeted
business objectives. During the time frame of 14:00 to 17:30, the OLTP request
times were consistently out of our targeted business objectives of less than one
second execution time.

0

100

200

300

400

500

600

700

-1 1 2 3 5 8 12 19 29 44 68 10
3

15
8

24
1

36
9

56
2

85
8

13
09

19
97

30
46

46
47

70
89

10
81

3
16

49
3

25
15

7
38

37
3

58
53

2
89

28
0

13
61

81
20

77
20

31
68

40
48

32
83

73
71

62
11

24
40

9
17

15
08

5
26

16
05

5
39

90
32

5
60

86
52

9
92

83
91

3
14

16
09

50
21

60
00

00

Time Interval between Arrivals (MS)

N
um

be
r

of
 O

cc
ur

re
nc

e

OLTP PROD_QRY PROD_RPT
188 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Figure 7-3 Request execution time in a specific time frame

Next we need to look for the cause of the excessive OLTP execution times. From
the chart in Figure 7-3, we have a clue. The PROD_RPT executions times are
also quite long. What else can we analyze to give us a clearer picture?

In Figure 7-4 on page 190, we look at the arrival times for workloads during the
same time frame. Here we see a lot of workloads arriving at the same time.
Notice the larger number of PROD_RPT workloads.

0

50

100

150

200

250

300

350

400

14:00:50 14:15:50 14:30:50 14:45:50 15:00:50 15:15:50 15:30:50 15:45:50 16:00:50 16:15:50 16:20:50 16:45:50 17:00:50 17:15:50 17:30:50

R
eq

ue
st

 E
xe

c
Ti

m
e

(M
S)

ADMINS OLTP PROD_QRY PROD_RPT
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 189

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
Figure 7-4 Workload arrival time in a specific time frame

Workload cost
Now we want to learn more about the PROD_RPTS for this time frame. In
Figure 7-5, we focus on the costs of these reports.

0

100

200

300

400

500

600

700

14:00:50 14:15:50 14:30:50 14:45:5015:00:50 15:15:50 15:30:50 15:45:5016:00:50 16:15:50 16:20:5016:45:50 17:00:50 17:15:50 17:30:50

Nu
m

be
r o

f C
on

cu
rr

en
t C

on
ne

ct
io

ns

ADMINS OLTP PROD_QRY PROD_RPT
190 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch07.fm
Figure 7-5 Estimate cost of workloads

7.5 Summary

Looking back at our earlier histogram chart, we see the PROD_RPTS are
running near the top of the costs reported in the histograms. To summarize our
analysis so far, we see a lot of PROD_RPTS running at the same time and these
reports are the most expensive reports. At the same time, we see our OLTP
transactions begin to run longer and miss our targeted objectives. The cause
appears to be the long running and expensive reports.

We now need to develop a management strategy to limit the number of
expensive reports from running when the number of concurrent coordinators is
also high. This will give us a proactive WLM strategy that only is enforced during
peak transaction periods. The approach we want to take is a global approach
since the PROD_RPTS costs are much higher than any other “known” workload.

0

2000000

4000000

6000000

8000000

10000000

12000000

14
:0

0:
50

14
:1

5:
50

14
:3

0:
50

14
:4

5:
50

15
:0

0:
50

15
:1

5:
50

15
:3

0:
50

15
:4

5:
50

16
:0

0:
50

16
:1

5:
50

16
:2

0:
50

16
:4

5:
50

17
:0

0:
50

17
:1

5:
50

17
:3

0:
50

Es
tim

at
e

Co
st

ADMINS OLTP PROD_QRY PROD_RPT
 Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment 191

7524ch07.fm Draft Document for Review October 2, 2007 10:12 am
To identify this new WLM requirement, we develop a management strategy
shown in Example 7-10. We implement a global threshold to limit the concurrent
coordinators based on query costs and concurrent workloads.

This additional WLM strategy states that when the number of concurrent
database coordinators is greater than 400, we want to queue any workloads that
have a timeron cost equal or greater than 2,000,000. No upper bound or
maximum number of queued workloads is set at this time. With more data and
analysis, we might want to limit the size of the queue.

Example 7-10 Global Threshold to limit based on query costs and concurrent workloads

CREATE WORK CLASS SET large_work
 (WORK CLASS big_costs WORK TYPE READ
 FOR TIMERONCOST FROM 2000000 TO UNBOUNDED) ;

CREATE WORK ACTION SET longrun FOR DATABASE
 USING WORK CLASS SET large_work
 (WORK ACTION TOO_MANY ON WORK CLASS BIG_COSTS

WHEN CONCURRENTDBCOORDACTIVITIES > 400
 COLLECT ACTIVITY DATA CONTINUE)
 DISABLE ;
192 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Chapter 8. AIX Workload Manager
considerations

There are two different kinds of workload management solutions available,
Operating system (OS) workload management solutions and application level
workload management solutions. DB2 Workload Manager (DB2 WLM) is an
example of later, AIX Workload manager (AIX WLM) is an example of OS level
workload management system.

DB2 9.5 Workload Manager supports AIX WLM. Integrating DB2 WLM with AIX
WLM provides you even more capability in managing and controlling the
workloads and resource on you database system.

In this chapter we discuss the following topics:

� AIX WLM overview
� Using DB2 WLM and AIX WLM

8

© Copyright IBM Corp. 2007. All rights reserved. 193

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
8.1 AIX WLM overview

AIX WLM provides the capability of isolating applications, including DB2, with
very different system behaviors. Based on the business objectives, AIX WLM can
allocate CPU, physical memory, and I/O bandwidth to the classified applications.

The database system is usually considered as the most important application
running on the server. AIX WLM is an ideal solution for protecting the database
applications from being interfered by the other applications running on the same
server.

8.1.1 Service classes

Conceptually, AIX WLM is similar to DB2 WLM. AIX WLM has workloads and two
level hierarchical service classes. In addition to the five predefined service
classes, AIX WLM can have as much as 27 user defined superclasses. Each
superclass can have 10 user defined subclasses and two predefined sub
classes. No process can belong to superclass only but not to subclass. Every
process in the system is mapped to the predefined Default subclass unless it is
explicitly defined to other subclass by the administrator.

Superclasses
The predefined AIX WLM superclasses are as follows:

� Default superclass
All user processes belong to this superclass unless explicitly defined to map
to other superclass.

� System superclass
This is default superclass for all privileged processes owned by root.

� Shared superclass
This superclass receives all memory pages that are shared by processes
which belong to more than one superclass.

� Unclassified superclass
When AIX WLM starts, all processes and memory pages are assigned to
certain superclass. The memory pages which cannot be tied to any specific
process will be mapped to this superclass.

� Unmanaged superclass
This class is reserved for memory pages which are unmanaged by AIX WLM.
This superclass does not have any shares or limits for any resources. This
superclass does not have any sub classes. No processes will be assigned to
this superclass.
194 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Figure 8-1 illustrates how resources are assigned with default AIX WLM
configuration.

Figure 8-1 AIX WLM default service classes

Subclasses
Subclass can have only one superclass. There exists two predefined sub
classes:

� Default subclass
All processes which are not defined to any other subclass will be assigned to
Default subclass.

� Shared subclass
Like Shared superclass, Shared subclass contains all the memory pages
which contain processes belonging to more than one subclass under same
superclass.

Tiers
Tier defines the importance of class. There are 10 levels of tiers starting from 0 to
9. Tier 0 is the most important level and has highest priority. If the classes in tier
level 0 takes up all resources, tier level 1 does not get any resources. If your tier
level 0 and tier level 1 classes are taking all system resources, there will be
nothing left for tier 2 and so on. If no tier value is defined, the default value 0 will
be used. Tier is defined both to superclasses and subclasses.

System

Default

Unmanaged

Classes for general
resources

Special class for
memory pages not

managed by AIX WLM

Shared

Unclassified Special classes for
memory usage
 Chapter 8. AIX Workload Manager considerations 195

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
General class attributes
A class can have the following attributes:

� Class name: Up to 16 characters long.

� Tier: Values from 0 to 9. Tier: Values from 0 to 9. Tier value enables you to
prioritize groups of classes. The default and highest priority value is 0.

� Inheritance: Defines wether child process or thread inherits its parents
classes assignment.

� Authuser and authgroup: This is used give user or group right to manually
assign process to certain class. These attributes can be used only for
superclasses.

� Adminuser and admingroup: These are used to delegate administration rights
to certain user ID or group. These attributes can be used only for
superclasses.

� Recourse set: This limits recourses which the class is entitled to.

� Localsmh: Specifies whether memory segments that are accessed by
processes in different classes remain local to the class they were initially
assigned to, or if they go to the Shared class.

Class limits and shares for CPU, memory, or disk I/O resource
Shares defines the proportion of a resource the process in a service class can
get. With shares, you can allocate a certain amount of CPU, memory, or I/O
resources to each service class. The resources will be allocated to services class
relatively depending on the amount of total shares and the amount of shares the
service class is having itself. For instance, if we have total 1000 CPU shares for
all superclasses and individual superclass db2Def has 400 CPU shares, db2Def
will get 40% of all CPU resources. If we increase the amount of total CPU shares
for all superclasses to 2000, with the 400 CPU shares db2Def has, it would have
anymore 20% of all CPU resources.

The resource share principle applies to memory and disk I/O resources as well.

You can also define resource limits by percentage for different service classes.
The available limits are:

� min
Specifies the minimum percentage of a resource that will always be granted
to a service class. Default is 0.

� sofmax
Specifies maximum percentage of the resource that can be assigned to a
service class when there is contention. If there is no contention, service class
can get more resources than what is specified by this attribute. If there is
196 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
contention, it is not guaranteed that the service class will get the percentage
of the resource specified by this attribute. The default is 100.

� hardmax
Specifies maximum percentage of the resource assigned for a service class
when there is no contention. The default is 100.

Class assignment
There are two ways to classify processes to different service classes: manual
and automatic. When you want to assign processes manually to certain service
classes, you can do it with command wlmassign <PID>.

Automatic classification is done by following certain rules that are defined after
service class is defined. These rules can be defined in class assignment rules
which can contain following attributes:

� Order of the rule: This is any number which defines the order of rules.

� Class name: This defines to which class processes or thread will be mapped.

� User and Group: These define by which user ID or group ID a process is
owned.

� Application: This define full path name of the application and can contain wild
cards.

� Tag: This is a label for identifying processes and threads, that will be assigned
by AIX WLM API call. DB2 uses tags to map DB2 WLM service classes to
certain AIX WLM service classes.

You can access class assignment rules eiher trough smitty, or by editing special
rules file. /etc/wlm/current/rules is the rules file for all super clases. For
subclasses rules files are located under corresponding superclass directory. All
superclass directories for running WLM configuration can be found under
directory /etc/wlm/current/<superclass name>.

8.1.2 Monitoring

There are many AIX WLM aware OS monitoring tools to monitor AIX WLM that
includes:

� wlmstat is similar to the use of vmstat or iostat.

� nmon has AIX WLM enhancements.

� topas is AIX WLM aware

� ps is AIX WLM aware: ps -m -o THREAD,class -p <process id>
 Chapter 8. AIX Workload Manager considerations 197

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
8.1.3 Configuring AIX WLM

All AIX WLM related configuration files are located in /etc/wlm directory. The
subdirectories contain different configuration sets as show in Example 8-1.

Example 8-1 Contents of /etc/wlm

ls -la /etc/wlm
total 24
drwxr-xr-x 7 root system 256 Aug 28 18:11 .
drwxr-xr-x 19 root system 8192 Aug 27 16:35 ..
---------- 1 root system 0 Aug 21 12:35 .lock
dr-xr-sr-x 3 root system 256 Aug 28 18:11 .running
lrwxrwxrwx 1 root system 18 Aug 28 18:11 current ->
/etc/wlm/standard
drwxr-xr-x 3 root system 256 Aug 23 15:13 inventory
drwxr-xr-x 2 root system 4096 Aug 23 11:33 standard
drwxr-xr-x 2 root system 256 Dec 05 2004 template

In this section, we describe how to configure AIX WLM by setting up a simple
WLM configuration.

You can use /etc/wlm/template as a template for setting up your own AIX WLM
configuration. The steps are:

1. Copy the template to your desired directory

cp -r /etc/wlm/template /etc/wlm/testenv

2. Set new configuration set as current configuration

wlmcntrl -d testenv

3. Create superclass and subclasses

AIX WLM can be configured using smitty or by commands and editing WLM
specific configuration files. Example 8-2 shows commands to create super
and subclasses. In this example, we created superclass HighLevel and gave it
100 CPU shares. Under superclass HighLevel we created two subclasses:
Prod with 60 CPU shares and Utils with 40 CPU shares.

Example 8-2 Creating AIX WLM service classes

mkclass -a inheritance=no -c shares=100 HighLevel
mkclass -a inheritance=no -c shares=60 HighLevel.Prod
mkclass -a inheritance=no -c shares=40 HighLevel.Utils

4. Map application to superclass
198 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
You can map application to superclass either by using smitty or by editing
spesific rules file. If you prefer to use smitty, use command smitty wlm to start
it and navigate to “Class assignment rules”.

In this example, we have two applications:

– app1_app:
The binaries are in /opt/App1/bin. Application app1_app has a high
service level agreement (SLA) which we want to achieve.

– app1_batch:
The binaries are in /opt/App1/batch/bin. app1_batch collects the
performance statistics of app1_app. Even though app1_batch is
important, we do not want it to have any performance impact on
app1_app.

We define our control rules by editing /etc/wlm/testenv/rules as shown in
Example 8-3. We mapped both applications in directories /opt/App1/bin and
/opt/App1/batch/bin to superclass HighLevel.

Example 8-3 Superclass mapping

* IBM_PROLOG_BEGIN_TAG
* This is an automatically generated prolog.
*
* bos530 src/bos/etc/wlm/rules 1.2
*
* Licensed Materials - Property of IBM
*
* (C) COPYRIGHT International Business Machines Corp. 1999,2002
* All Rights Reserved
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* IBM_PROLOG_END_TAG
* class resvd user group application type tag
System - root - - - -
HighLevel - - - /opt/App1/bin/* - -
HighLevel - - - /opt/App1/batch/bin/* - -
Default - - - - - -

5. Map application to subclass

The rules file for subclasses running under superclass HighLevel is
/etc/wlm/testnev/HighLevel/rules. This file is allways created when you
create the superclass. We edit this file as show in Example 8-4.

Example 8-4 Subclass mapping

* class resvd user group application type tag
 Chapter 8. AIX Workload Manager considerations 199

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Prod - - - /opt/App1/bin/* - -
Utils - - - /opt/App1/batch/bin/* - -

6. Update configuration settings

Once the service classes and mapping rules are defined, use the following
command to update the AIX WLM running configuration:

wlmcntrl -u

Our intention was to ensure that the production application app1_app always
gets priority over the utility app1_batch. We had set subclass HighLevl.Prod for
app1_app and subclass HighLevel.Util for app1_batch. We gave the priority
simply by assigning 60 CPU shares for app1_app and 40 CPU shares for
app1_batch of 100 shares total.

Figure 8-2 shows that our system reflects this setting. In the picture we see that
by setting shares 60/40, subclass HighLevel.Prod gets prioritized over subclass
HighLevel.Util. When using shares, the average CPU time inside the superclass
Highlevel will be 60% for HighLevel.Prod and 40% for HighLevel.Util.

Figure 8-2 CPU by service class

Because we did not define any min, max, or hardmax values for our service
classes, there was no specific CPU usage percentage limits to be forced upon
both service classes. When we look average data at same time period, we find
that the average CPU for HighLevel. Prod was 60% and for HighLevel.Utils 40%
as illustrated in Figure 8-3.
200 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Figure 8-3 Average CPU time by service classes

We ran same test without defining AIX WLM CPU shares. As you can see from
Figure 8-4, the result looks a lot different than it was when CPU shares were
defined.

Figure 8-4 CPU by service class withoutCPU shares

There is major difference between avarage values as well. See Figure 8-5 on
page 202. As you can see, on avarage there was no difference on consumed
CPU time between the applications. In fact there was no guarantee that
app1_app could get resources it needed. This could have led to poor service
quality and violation of the business objective.
 Chapter 8. AIX Workload Manager considerations 201

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Figure 8-5 Average CPU time by service classes without CPU shares

8.2 Using DB2 WLM and AIX WLM

In this section we discuss how to integrate DB2 WLM with AIX WLM. We
introduce the general guidelines in planning and designing an integrated
environment. We provide useful examples and discuss monitoring tools.

8.2.1 General guidelines

For DB2 9.5, the AIX WLM support for DB2 WLM is CPU resource allocation
only. If you want to prioritize I/O resource usage, you can set prefetch priority on
DB2 WLM service class. You can set prefetch priority in DB2 WLM and define
CPU priorization through AIX WLM simultaneoulsy. When you integrate DB2
WLM with AIX WLM, you can not set AGENT PRIORITY for DB2 service classes
to be anything else but “Default”, since it will prevent setting outbound correlator
to be used with operating system WLM.

AIX WLM is capable of using application tags to map processes and threads to
desired service classes. You define application tag through DB2 WLM
configuration by setting outbound correlator for your service classes. After
integrated your WLM environments, AIX can manage the CPU utilization for DB2
service classes.
202 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
8.2.2 Mapping schemes

Before you begin using DB2 WLM and AIX WLM, you need to think how to map
different DB2 service classes with AIX WLM service classes. From the
conceptual management point of view, the database system has two hierarchy:

� Instance
� Database

When adding the two DB2 WLM hierarchy, superclasses and subclasses, there
are total four levels of hierarchy. If AIX WLM, which has two level hierachy, is
going to be used to manage the database system from the instance level, you
have to design carefully the mapping between DB2 instance, database, service
classes, and AIX services classes.

You can choose from two different mapping schemes, flat mapping scheme and
1:1 mapping scheme.

Figure 8-6 illustrates flat mapping scheme. Flat mapping scheme is useful on
servers that are used not only as the DB2 database server but also have other
applications running. In this mixed environment, you would want to separate the
application and the database activities from each other to have their own AIX
WLM superclasses. All DB2 service classes would be mapped to their own
subclasses under AIX WLM DB2 superclass.
 Chapter 8. AIX Workload Manager considerations 203

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Figure 8-6 Flat mapping scheme

When you are running dedicated database server, we recommend you use 1:1
mapping scheme as illustrated in Figure 8-7.

DB2 Instance

Database

AIX WLM

Default User Super Class

Default Subclass

HighLevel Super Class

Prod Subclass

Utils Subclass

DB2Def Super Class

DB2Def.System

DB2Def.User

DB2Def.HighLevelProd

DB2Def.HighLevelUtils

Default System Super Class

Default Subclass

Subclasses

Web applications Web Super Class
Subclasses

WebApp1

WebApp2 Web.App2

Web.App1
204 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Figure 8-7 1:1 mapping

The main difference between flat and 1:1 mapping is that on 1:1 mapping, you
can have identical super and classes on both DB2 WLM and AIX WLM. This
makes implementing and maintenance much easier. We use 1:1 mapping
scheme for our example in this chapter.

8.2.3 Integrating DB2 service classes with AIX service classes

When integrating DB2 WLM to AIX WLM, plan carefully and design properly are
the keys to success. You should be able to maintain and monitor your
environment easily. If you already have implemented DB2 WLM, you should
examine if your DB2 WLM configuration can be integrated with AIX WLM. You
also have to decide the mapping type: 1:1 mapping or flat mapping scheme.

Designing DB2 WLM and AIX WLM integration
Since we are running dedicated database server, we use 1:1 mapping as the
mapping scheme. Figure 8-8 illustrates our lab DB2 WLM configuration. The
database WLMDB has one user defined superclass HIGHLVL which has four sub
classes. Four user workloads map those four subclasses.

DB2 HighLevel Super Class

DB2 Default User Super Class

DB2 Default System Super Class

DB2 Instance

Database

AIX WLM

Default User Super Class

Default Subclass

HighLevel Super Class

Prod Subclass

Utils Subclass

Default Subclass

Default Subclass

HighLevel.Prod

HighLevel.Utils

Default System Super Class

Default Subclass

Superclasses
 Chapter 8. AIX Workload Manager considerations 205

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Figure 8-8 User workloads and service classes

Besides the user defined workloads and service classes, we have two default
DB2 WLM system workloads and three default system service classes. All the
system default service classes has one default subclass. So we have altogether
four super service classes. We create equivalent service classes on AIX. The
following lists DB2 service classes with equivalent AIX service classes:

� SYSDEFAULTSYSTEMCLASS → db2DefSys

� SYSDEFAULTUSERCLASS → db2DefUsr

� SYSDEFAULTMAINTENANCECLASS → dbDefMnt

� HIGHLVL → db2HighLevel

– ADMINS → db2HighLevel.Admins
– PROD_QRY → db2HighLevel.Prod_QRY
– PROD_RPT → db2HighLevel.Prod_RPT
– BATCH → db2HighLevel.Batch

On AIX WLM, resources will be allocated to service class depending on how
much shares the service class has relatively to the total amount of shares. We
have to decide how much CPU shares we are going to give for our service
classes. Figure 8-9 shows the CPU shares allocation for our AIX WLM service
classes. It also illustrates how the outbound correlators for each service class are
defined. To be easily recognized, all our outbound correlators in this example
start with _ (under score).

User Requests HIGHLVL

BATCH

WL_ADMIN
ADMIN

WL_PROD_RPT

WL_PROD_QRY

WL_BATCH

PROD_RPT

PROD_QRY

Workloads

Service Super Class
206 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Figure 8-9 1:1 mapping from existing DB2 WLM configuration

Implementing DB2 WLM and AIX WLM integration
Now that we have designed our mapping scheme, we are ready to implement the
mapping. We start from creating new configuration set, production, for AIX WLM.
See Example 8-5.

Example 8-5 Creating new AIX WLM configuration set

cd /etc/wlm
cp -r template production
wlmcntrl -ud production

Note that wlmcntr -ud command requires that AIX WLM is already running. If
AIX WLM is not running, use command wlmcntrl -d product instead.

Creating classes
After creating the configuration set, we can start configuring it. The first step is to
create four superclasses and four subclasses under superclass db2HighLevel as
shown in Example 8-6.

db2HighLevel Super ClassHighLevel

ADMINS

PROD_QRY

db2HighLevel.Admins

db2HighLevel.Prod_QRY

PROD_RPT

BATCH

db2HighLevel.Prod_RPT

db2HighLevel.Batch

Default System
Default Subclass

Default User
Default Subclass

Default Maint
Default Subclass

db2DefSys Super Class

Shared

Default

db2DefUsr Super Class

Shared

Default

db2DefMnt Super Class

Shared

Default

DB2 AIX

30 CPU
shares

100 CPU
shares

20 CPU
shares

200 CPU
shares

60 CPU
shares

60 CPU
shares

50 CPU
shares

30 CPU
shares

_DefSystem

_DefUser

_DefMaint

_HighLevel

_HighLevel.Admins

_HighLevel.Prod_QRY

_HighLevel.Batch

_HighLevel.Prod_RPT
 Chapter 8. AIX Workload Manager considerations 207

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Example 8-6 Creating AIX WLM superclasses

mkclass -a inheritance=no -c shares=100 db2DefSystem
mkclass -a inheritance=no -c shares=20 db2DefMaint
mkclass -a inheritance=no -c shares=30 db2DefUser
mkclass -a inheritance=no -c shares=200 db2HighLevel
mkclass -a inheritance=no -c shares=30 db2HighLevel.Batch
mkclass -a inheritance=no -c shares=60 db2HighLevel.Prod_QRY
mkclass -a inheritance=no -c shares=50 db2HighLevel.Prod_RPT
mkclass -a inheritance=no -c shares=60 db2HighLevel.Admins

Creating mapping rules
Since the new AIX WLM configuration set production has been activated and
running, we can create superclass mapping rules by editing the rules file in the
directory /etc/wlm/current. Example 8-7 shows the contents of
/etc/wlm/current/rules. Beware that entries in the rules file also imply the
evaluation order.

Example 8-7 AIX WLM rules file

* IBM_PROLOG_BEGIN_TAG
* This is an automatically generated prolog.
*
* bos530 src/bos/etc/wlm/rules 1.2
*
* Licensed Materials - Property of IBM
*
* (C) COPYRIGHT International Business Machines Corp. 1999,2002
* All Rights Reserved
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* IBM_PROLOG_END_TAG
* class resvd user group application type tag
System - root - - - -
db2DefSystem - - - - - _DefSystem
db2DefMaint - - - - - _DefMaint
db2DefUser - - - - - _DefUser
db2HighLevel - - - - - _HighLevel
db2HighLevel - - - - - _HighLevel.Batch
db2HighLevel - - - - - _HighLevel.Prod_QRY
db2HighLevel - - - - - _HighLevel.Prod_RPT
db2HighLevel - - - - - _HighLevel.Admins
Default - - - - - -
208 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Next is to define the mapping rules for subclasses under db2HighLevel. The
corresponding rules file for db2HighLevel is
/etc/wlm/current/db2HighLevel/rules. We edit this file as shown in
Example 8-8.

Example 8-8 Rules for subclasses under superclass db2HighLevel

* class resvd user group application type tag
Batch - - - - - _HighLevel.Batch
Prod_QRY - - - - - _HighLevel.Prod_QRY
Prod_RPT - - - - - _HighLevel.Prod_RPT
Admins - - - - - _HighLevel.Admins

Testing the classes and rules
Use wlmcntrl-u commend to refresh the running AIX WLM configuration so that
all the changes made will take effect. We check that all our newly defined service
classes are in the system using lsclass -fr command as show in Example 8-9.

Example 8-9 List of service classes

lsclass -fr
System:
 memorymin = 1

Default:

Shared:

db2DefSystem:
 inheritance = "no"
 CPUshares = 100

db2DefMaint:
 inheritance = "no"
 CPUshares = 20

db2DefUser:
 inheritance = "no"
 CPUshares = 30

db2HighLevel:
 inheritance = "no"

Note: You should always leave the System class above the user defined
classes, so system processes will go to their default service classes. You
should also leave the Default user class below you user defined classes.
 Chapter 8. AIX Workload Manager considerations 209

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
 CPUshares = 200

db2HighLevel.Default:

db2HighLevel.Shared:

db2HighLevel.Batch:
 inheritance = "no"
 CPUshares = 30

db2HighLevel.Prod_QRY:
 inheritance = "no"
 CPUshares = 60

db2HighLevel.Prod_RPT:
 inheritance = "no"
 CPUshares = 50

db2HighLevel.Admins:
 inheritance = "no"
 CPUshares = 60

We can test our configuration by checking to which AIX WLM service class the
processes and threads with AIX WLM tag _HighLevel.Batch are assigned, You
can use wlmcheck command as shown in Example 8-10.

Example 8-10 Test mapping rules

wlmcheck -a "- - - - - _HighLevel.Batch"
System
db2HighLevel.Batch

As we can see from Example 8-10, all processes or threads which are tagged
with AIX WLM tag “_HighLevel.Batch” will be mapped to service subclass
db2HighLevel.Batch, unless the process or thread is owned by root. If process or
thread is owned by roo, it will be mapped to system default service class. In our
case, all DB2 processes and threads are owned by instance owner db2inst1,
which ensures that our mappings will work as expected.

If your database is partitioned, you must set up AIX WLM on all nodes. To setup
another node, you only need to copy, by ftp or scp, the AIX WLM configuration
directory to that node and activate it. Example 8-11 shows how we set up AIX
WLM on the second physical database node Bonnie in our Lab environment.

Example 8-11 Copying AIX WLM configuration from node to another

> scp -r clyde:/etc/wlm/production /etc/wlm/
210 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
...
> wlmcntrl -d production

Note that wlmcntrl command is executed without -u flag since the AIX WLM was
not running while the command is executed.

Setting up tags for DB2 service classes
Once the AIX WLM environment is ready and running, the last step is to “link”
DB2 service classes with AIX WLM service classes. This is accomplished by
alter the DB2 service classes outbound correlator to associate the AIX WLM tags
with them.

For the default DB2 service classes, the only modification allowed is to set the
outbound correlator. This is for mapping the DB2 default service classes to AIX
WLM service classes.

Similar to DB2 WLM, every AIX WLM superclass has at least one subclass for
processes. On AIX WLM, there are two default subclasses:

� Default: for all processes which are not mapped to any other subclass.

� Shared: All memory pages which contain processes belonging to more than
one sub class under same superclass will be assigned to this subclass.

When the outbound correlator for the default DB2 WLM superclasses is set, the
default subclass inherits the setting and is mapped to the correct superclass on
AIX WLM. The workload management works will be done under default AIX
WLM subclass, which inherits all its attributes from parent superclass. This is
why we do not need to define rules for default AIX WLM subclasses, nor we do
not have to create additional subclasses for default AIX WLM superclasses.

Example 8-12 and Example 8-13 show how to set up outbound correlator for
default and user defined DB2 WLM service classes.

Example 8-12 Set outbound correlators for default service classes

ALTER SERVICE CLASS sysdefaultsystemclass OUTBOUND CORRELATOR _DefSystem;
ALTER SERVICE CLASS sysdefaultmaintenanceclass OUTBOUND CORRELATOR _DefMaint;
ALTER SERVICE CLASS sysdefaultuserclass OUTBOUND CORRELATOR _DefUser;

In Example 8-13, we set outbound correlator for our HIGHLVL service superclass
and subclasses running under it.

Example 8-13 Set outbound correlators for user superclass and subclasses

ALTER SERVICE CLASS highlvl OUTBOUND CORRELATOR _HighLevel;
ALTER SERVICE CLASS prod_qry UNDER HIGHLVL OUTBOUND CORRELATOR
_HighLevel.Admins;
 Chapter 8. AIX Workload Manager considerations 211

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
ALTER SERVICE CLASS batch UNDER highlvl OUTBOUND CORRELATOR _HighLevel.Batch;
ALTER SERVICE CLASS prod_qry UNDER highlvl OUTBOUND CORRELATOR
_HighLevel.Prod_QRY;
ALTER SERVICE CLASS prod_rpt UNDER highlvl OUTBOUND CORRELATOR
_HighLevel.Prod_RPT;

You can check that the service class outbound correlators are set up properly by
looking the system catalog table SYSCAT.SERVICECLASSES as show in
Example 8-14.

Example 8-14 Check service class outbound correlator setting

db2 "select substr(char(SERVICECLASSID),1,2) as ID,
substr(SERVICECLASSNAME,1,19) as SERVICECLASSNAME,
substr(PARENTSERVICECLASSNAME,1,26) as PARENTSERVICECLASSNAME,
substr(OUTBOUNDCORRELATOR,1,19) as TAG from syscat.serviceclasses"

ID SERVICECLASSNAME PARENTSERVICECLASSNAME TAG
-- --------------------- -------------------------- ------------------

1 SYSDEFAULTSYSTEMCLASS - _DefSystem
2 SYSDEFAULTMAINTENAN - _DefMaint
3 SYSDEFAULTUSERCLASS - _DefUser
11 SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS -
12 SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS -
13 SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS -
14 HIGHLVL - _HighLevel
15 SYSDEFAULTSUBCLASS HIGHLVL -
16 ADMINS HIGHLVL _HighLevel.Admins
17 BATCH HIGHLVL _HighLevel.Batch
18 PROD_RPT HIGHLVL _HighLevel.Prod_RPT
19 PROD_QRY HIGHLVL _HighLevel.Prod_QRY

 12 record(s) selected.

Verifying OS level mapping
In addition to verify that the application tags are set properly. We want to be sure
that the actual OS level mapping really happens. We can check if the default DB2
system service class is getting mapped to correct AIX WLM service class using
ps command as show in Example 8-15.

Example 8-15 Check mapping is working for default system service class

>ps -ef | egrep "db2sysc|PID"
 UID PID PPID C STIME TTY TIME CMD
db2inst1 942242 1437962 0 15:48:10 - 1:24 db2sysc 1
db2inst1 1347754 1839122 0 15:48:11 - 0:09 db2sysc 2
db2inst1 2912646 1528048 2 15:48:10 - 1:07 db2sysc 0
212 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
>ps -m -o THREAD,class -p 2912646 | egrep "db2DefSystem|PID"
... TID ST CP PRI SC ... F ... CLASS

... 1249349 S 0 60 1 ... 400400 ... db2DefSystem

... 3297525 S 0 60 1 ... 400400 ... db2DefSystem

... 3600475 S 0 60 1 ... 400400 ... db2DefSystem

... 3727573 S 0 60 1 ... 400400 ... db2DefSystem

... 700755 S 0 60 1 ... 400400 ... db2DefSystem

... 794987 S 0 60 1 ... 400400 ... db2DefSystem

... 1405319 S 0 60 1 ... 400400 ... db2DefSystem

... 1782027 S 0 60 1 ... 400400 ... db2DefSystem

... 4051391 S 0 60 1 ... 400400 ... db2DefSystem

The first ps command is to obtain the process ID for db2sysc process on
partition0. Then we used this process ID to find out if the DB2 agents are
mapped to AIX WLM service classes. This is a easy way to verify if the mapping
is working correctly. You can use the same approach to check if the default
maintenance service class is mapped as defined. Before checking if the user
defined DB2 workloads are mapped to correct AIX service classes, check first if
the workloads are mapped to correct DB2 service classes.

Now we have set up four user super service classes for AIX WLM. Three of them
are mapped to default DB2 WLM superclasses and one for DB2 WLM user
superclass. Figure 8-10 illustrates how CPU resources are shared by AIX WLM
service superclasses.

Figure 8-10 CPU by classes

The chart shows that our dedicated database server is currently running quite
light load. There seems to be almost no CPU activity for db2DefSystem and
db2Defmaint. These classes are 1:1 mapped with DB2 service classes
SYSDEFAULTSYSTEMCLASS and SYSDEFAULTMAINTENANCECLASS.
 Chapter 8. AIX Workload Manager considerations 213

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
There is no activity for db2DefUser at all since currently no workloads are
mapped to DB2 WLM service class SYSDEFAULTUSERCLASS. db2HighLevel
has some activity as all DB2 user workloads are running under this service
superclass. From the chart you can also see that there is a gap between 18:32
and 18:33. Since the chart only shows CPU activity, we should also examine
memory and disk usage to find out what has caused the gap.

8.2.4 Monitoring

AIX offers excellent monitoring tools and some of them are AIX WLM aware.
These tools provides us a fast way to monitor how the workloads are running on
their service classes. This gives us the capability to monitor the databases with
standard operating system monitoring tools much more effectively than it have
never been before.

Basic AIX WLM monitoring tools
In this section, we concentrate on the following AIX WLM aware monitoring tools:

� topas
� ps
� wlmstat
� nmon

topas, ps, and wlmstat comes with standard AIX operating system. nmon is freely
downloadable from

http://www.ibm.com/collaboration/wiki/display/WikiPtype/nmon

topas
Topas is a usefull and user friendly tool for monitoring your system real time.
Topas provides a good view of overall system performance and you can include
AIX WLM data to it. You can specify how many top AIX WLM service classes you
want to include in topas output by specifying the number of WLM classes with -w
flag.

Figure 8-11 illustrates the output of topas -w 10.
214 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
Figure 8-11 Using topas for overall system monitoring

To view only real time CPU usage between service classes, use topas -W.
Example 8-16 shows how the output may look like.

Example 8-16 Using topas for WLM monitoring

Topas Monitor for host: clyde Interval: 2 Tue Sep 11 22:37:29
2007
WLM-Class (Active) CPU% Mem% Disk-I/O%
System 0 5 0
db2DefSystem 1 2 0
db2DefMaint 0 0 0
db2DefUser 0 0 0
db2HighLevel 9 12 0
Unmanaged 8 4 0
Default 1 5 0
Shared 0 2 0
Unclassified 0 4 0
 Chapter 8. AIX Workload Manager considerations 215

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
ps
ps command is very useful to get information about processes and threads. In
Example 8-14 on page 212, we show how to find the mappings between DB2
service classes and AIX WLM service classes from DB2 side using ps command.
For more details about ps command, refer to AIX manual pages.

wlmstat
If you are familiar with iostat and vmstat, you have no difficulties using wlmstat
command. It displays all the super and service classes with current CPU,
memory, and disk I/O usage. See Example 8-17. wlmstat accepts two numeric
input parameters. The first one is interval and the second one is number of
cycles. For more detailed usage information for wlmstat see wlmstat manual
pages.

Example 8-17 Using wlmstat for WLM monitoring

>wlmstat
 CLASS CPU MEM DKIO
 Unclassified 0 0 0
 Unmanaged 0 16 0
 Default 0 18 0
 Shared 0 11 0
 System 0 5 0
 db2DefSystem 0 0 0
 db2DefMaint 0 0 0
 db2DefUser 0 0 0
 db2HighLevel 0 0 0
 db2HighLevel.Default - - -
 db2HighLevel.Shared - - -
 db2HighLevel.Batch - - -
db2HighLevel.Prod_QRY - - -
db2HighLevel.Prod_RPT - - -
 db2HighLevel.Admins - - -
 TOTAL 0 34 0

nmon
nmon is a free tool for analyzing AIX performance. It is not part of standard AIX
operating environment and is not officially supported by IBM. nmon has user
friendly environment, which suites very well for real time monitoring. Using nmon,
you can see your CPU, disk I/O, and memory usage real time one screen. The
rich monitoring capability has made nmon a very popular tool for monitoring AIX
and its resources. Because it has WLM enhancements, we are able to use nmon
to monitoring AIX WLM.

Now that we have integrated the DB2 WLM with AIX WLM, we can see how the
DB2 workloads are behaving and compare the results with the overall operating
216 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
system performance. CPU utilization, workload manager activities, and memory
usage all can be seen realtime in one screen, which is very useful in finding
bottlenecks and solving performance problems on the database system.

Figure 8-12 on page 218 presents a simple realtime monitoring for WLM super
and subclasses. With a single glance, we see that currently our four CPUs are
utilized with 42.4% for user processes, 1.4% for system processes, and 53.9%
for I/O wait. We are using 6345.8MB physical memory and have 1846.2MB free
physical memory. At the time of observation, all our workloads were executed on
DB2 service subclass PROD_RPT under HIGHLVL, which is mapped to AIX
WLM service subclass db2HighLevel.Prod_RPT. We might be interested to
examine this data further, since we probably want to know why and what our
CPUs are waiting.

You can also take a look at AIX WLM configuration from nmon real time data. We
are able to find CPU shares and tiers for different DB2 service classes. By having
all this information on one central place, we are able to see how our overall
system is performing at a glance.
 Chapter 8. AIX Workload Manager considerations 217

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Figure 8-12 Real-time monitoring service classes with nmon

nmon is also capable of saving monitored data to file in comma separated values
(CSV) format. It is an ideal tool to collect data for analysis using charts. Many of
our AIX WLM related charts in this chapter were created using nmon.

In Figure 8-10 on page 213, we presented CPU usage chart by service classes.
We noticed that there was a gap on CPU usage between 6:32 PM and 6:33 PM.
The data was collected with nmon and saved as a CSV format file. The data are
then imported to a spreadsheet for plotting charts. When data is collected using
218 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch08.fm
operating system tools, not only the DB2 related data, but the entire operating
system related data is collected.

Monitoring system using AIX WLM and DB2 WLM monitoring
In Figure 8-8 on page 206, we present a CPU usage by service classes chart
using data from nmon. We notice that there was a gap on CPU usage between
6:32 PM and 6:33 PM and would like to know the cause of it. Since the data was
collected with an operating system tool, the chart reflects the activities on the
entire system including DB2 and non-DB2. To investigate the root cause, we first
examine the average DB2 query execution time during that time frame. We
collect the statistics using event monitor to table SCSTATS_BASIC_MON and
plot the query average execution time between 6:22 PM and 6:42 PM as shown
in Figure 8-13.

Figure 8-13 Average execution time

The CPU gap could have happened if there were no queries at the time, but this
was not the case. We see that there was a peak for average execution time on
both PROD_RPT and PROD_QRY service classes at 6:32 PM. This peak can
imply lack of the operating system resources.

We then examine the operating system disk I/O activities at the time of this
incidence using the same data file collected by nmon. Figure 8-14 show the disk
reads between 6:26 PM and 6:40 PM.
 Chapter 8. AIX Workload Manager considerations 219

7524ch08.fm Draft Document for Review October 2, 2007 10:12 am
Figure 8-14 Operating system disk reads

The disk reads in the chart are average for all the disks which belongs to datavg
volume group. This volume group holds all our database related data. There was
a high disk reads between 6:32 PM and 6:33 PM due to the operating system
administrator mistakenly started the backup procedure for the volume group and
corrected this action quickly. DB2 queries was in I/O wait and did not consume
CPU time.

We were able to find the root cause for the relatively short service break down by
combining the usage of DB2 WLM and AIX WLM monitoring tools. By using AIX
WLM you are also able to prioritize your database related tasks over other tasks
to provide the optimal database performance.
220 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
Chapter 9. WLM sample scenarios -
other usage

In this chapter, we demonstrate how to use DB2 WLM beyond just managing
DB2 work. Using the same data captured in the previous scenarios, WLM shows
its usefulness in solving other tasks in running a data center. We explore two
sample scenarios:

� Capacity planning- How to use WLM to trend and project resource
consumption and needs.

� Chargeback accounting- How to use WLM to establish a method of capturing
resource utilization for the purposes of charging for resource usage.

9

© Copyright IBM Corp. 2007. All rights reserved. 221

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
9.1 Capacity planning

Capacity planning has two main objectives:

� Trending - Establish resource usage and workload trends over an extended
period of time.

� Projecting - Once trends have been establish, project future resource
requirements based on historical data capture and analysis.

Effective capacity planning can be very complex in large complex environments
and involve trending and projecting many resources. For simplicity, our example
covers a single resource, CPU. However, the principles can be applied to other
resources such as memory.

We want to know, how much CPU resources are we using today so we can
project if we have adequate resources tomorrow when the workloads change.
Such projections are needed when business grows and more data is added to
our database; new applications are added and the number of workloads will
increase; or more users are expected to use the database and the number of
queries will increase. These and other questions can be answered by capturing
WLM monitoring data.

To perform capacity planning data trending in our sample scenario, the DB2
WLM monitoring data needed for specific time periods is:

� Number of concurrent active connections
� Total request execution time
� Average request execution time

This information is contained in our event monitor table SCSTATS_BASIC_MON.
Using these columns along with AIX CPU usage data provided by either nmon or
vmstat, we can correlate the two monitoring elements to provide a simple
trending chart. In our example, we collect the CPU data from each server using
nmon which outputs the needed data using the following command:

nmon -f -s1800 -c48 -rwlm

This creates an output file that can be input to the nmon analyser.xls. Both nmon
and the nmon analyser.xls are available for download from the following IBM
Wiki Web site:

http://www.ibm.com/collaboration/wiki/display/WikiPtype/nmon
222 DB2 Work Load Manager for Linux, UNIX, and Windows

http://www.ibm.com/collaboration/wiki/display/WikiPtype/nmon

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
9.1.1 The workload environment

We start our capacity planning scenario by using the environment we established
in Chapter 4. Here we are interested in trending and projecting our production
workloads for production queries WL_PROD_QRY and production reports
WL_PROD_RPT as shown in Figure 9-1. The other workloads are of no
immediate concern and are ignored in this discussion.

The followings are the monitoring requirements for capacity planning:

� The retention period of the monitoring data is 12 months.
� The monitoring Intervals is 20 minutes.

Figure 9-1 Workload environment

9.1.2 Collecting the trending data

During running sample workloads, the statistics information is captured and sent
to the statistics event monitor at 30 minutes interval automatically. We use the
SCSTATS_BASIC_MON table to monitor the base information for capacity
planning.
 Chapter 9. WLM sample scenarios - other usage 223

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
9.1.3 Monitoring and analysis

We used the query shown in Example 9-1 to collect the data for this scenario.

Example 9-1 Query to capture capacity planning data

SELECT
 statistics_date,
 statistics_hour,
 subclass_name,
 con_act_top,
 avg_r_exe_tm,
 DECIMAL(avg_r_exe_tm / con_act_top,9,3) AS avg_r_exe_tm_per_act
FROM (SELECT
 DATE(statistics_timestamp) AS statistics_date,
 HOUR(statistics_timestamp) AS statistics_hour,
 SUBSTR(service_subclass_name,1,15) AS subclass_name,
 CASE WHEN 1 > INT(SUM(concurrent_act_top))
 THEN 1
 ELSE INT(SUM(concurrent_act_top))
 END AS con_act_top,
 CASE WHEN 1 > INT(SUM(request_exec_time_avg))
 THEN 1
 ELSE
 ECIMAL(SUM(request_exec_time_avg) / 1000,9,3)
 END AS avg_r_exe_tm
 FROM scstats_basic_mon
 WHERE service_subclass_name in ('PROD_RPT', 'PROD_QRY')
 GROUP BY DATE(statistics_timestamp),
 HOUR(statistics_timestamp),
 service_subclass_name
 ORDER BY DATE(statistics_timestamp),
 HOUR(statistics_timestamp),
 service_subclass_name);

Now that we have collected the data, we can create various charts for analysis.
For this example, we have collected three weeks of data, covering the primetime
hours. Our first chart shown in Figure 9-2 is the total request execution times
across all data partitions for both PROD_QRY and PROD_RPT service classes.
For ease of viewing, only the primetime hours are shown as this is our main area
of focus. From this chart we can see which hours has the highest request
execution times and if a trend appears to be established. Here we clearly see
that the 11 o’clock hour has the highest total request execution times.
Additionally, we appear to have established an upward trend in request execution
224 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
times. Notice that the request execution times drops off dramatically after 5:00
PM and continues to remain low for the rest of the primetime shift.

Figure 9-2 Total Request Execution times in seconds, across all partitions

Next we compare the CPU utilization across the same time periods to give us a
perspective of how our total request executions times related to CPU
consumption. In Figure 9-3 on page 226, we see the total CPU percentage for all
our partitions. This can easily be captured using vmstat or nmon.

Now we can put into perspective this chart. We see that our peak CPU
consumption is at 11AM. We top out at 90% when the total request execution
time is 32,635 seconds. So we can make a basic assumption that we maximum
out at 100% when we hit total request execution time of 36,261 (32,635 /.90).
Other factors play into CPU consumption but for simple planning purpose, this
gives us a simple model.
 Chapter 9. WLM sample scenarios - other usage 225

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
Figure 9-3 Total CPU percentages across all partitions

Next we need to analyze if any correlation exists between request execution
times and the number of active workloads. In Figure 9-4 on page 227, we have a
chart showing the number of active workloads activities for the same time
periods.
226 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
Figure 9-4 Active workload activities

Here we see a slightly different picture. we have two periods of high workloads,
11AM and 2PM. The difference must be in the average request execution times
for each workload activity. In Figure 9-5 on page 228, we have a chart showing
the average request execution time for average active workloads.
 Chapter 9. WLM sample scenarios - other usage 227

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
Figure 9-5 Average request execution times per active connection

What a surprise, our most “expensive” requests are submitted during lunch time
(12PM). We can also confirm that the workloads at 2PM are slightly more CPU
intensive then those submitted at 11AM.

All of our charts confirm that a linear co-relationship exists between request
execution times and percentage of CPU. As the total request execution time goes
up so does the total percentage of CPU.

9.1.4 Summary

From our simple capacity planning example, we can see that WLM provides a
effective means for dong capacity planning. We must note that several
assumptions were made in doing the analysis:

� The linear correlation between the WLM request execution times and CPU
utilization exists. When the WLM request executions times go up so does the
CPU utilization. If this relationship is not linear, more complex mathematical
analysis must be use to establish the proper relationship.

� A linear correlation exists between the WLM number of concurrent active
connections and the WLM request execution times. Otherwise, the averages
will be misleading.
228 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
These two important relationships should be monitored and validated
periodically.

Our example scenario shows us several important facts:

� Our workload activity is not evenly distributed across our primtime shift.

� 11AM is our highest CPU demand period due to the high number of requests.

� 12PM is a time when our most CPU intensive workloads are submitted. The
workloads in this time period may need to be investigated to see if the CPU
consumption of these workloads can be reduced or moved to a later time
period.

� 2 PM is another time period that appears to be growing consistently and may
need closer monitoring.

� Our trending line shows these time periods appear to be growing in total CPU
consumption.

� If we can redistribute work from the middle of our primetime shift to later in the
shift, we can possibly forestall needing to expand our capacity.

9.2 Chargeback accounting

In many customer environments, a single DB2 server may be shared and running
several instances of DB2. Occasionally, a single instance may have multiple
databases. In order to adequately charge end users for their resource
consumption, chargeback accounting is needed. Several techniques are
explored in this section to accomplish chargeback accounting. The example used
in this sections shows two instances of DB2 with each instance containing a
database. We want each instance/database charged to their respective
departments.

Chargeback information by WLM
Depending on the technique used, the following data is needed for chargeback
accounting

� DB2 WLM - Total request execution time, from Aggregate Request Data
� AIX WLM - percentage of CPU utilization for each instance

This scenario covers how to use DB2 WLM only. We covered the AIX WLM in
Chapter 10, “DB2 WLM and DWE Design Studio” on page 235.
 Chapter 9. WLM sample scenarios - other usage 229

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
9.2.1 Business objectives

In our environment, we have two departments (Sales and Accounting) sharing
the same server but running in separate instances.

9.2.2 Defining workload profile

Example 9-2 shows the workload management configuration for chargeback
accounting. Each instance is configured using the same blueprint. For
chargeback accounting information, only Request Execution times are needed.

Example 9-2 WLM configuration for chargeback accounting

--
-- instance db2inst01
--
CREATE SERVICE CLASS sales COLLECT AGGREGATE REQUEST DATA BASE DISABLE;
ALTER SERVICE CLASS sales ENABLE;

CREATE EVENT MONITOR basic_mon FOR STATISTICS WRITE TO TABLE
 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT) AUTOSTART;
SET EVENT MONITOR basic_mon STATE 1;
--
-- instance db2inst02
--
CREATE SERVICE CLASS sales COLLECT AGGREGATE REQUEST DATA BASE DISABLE;
ALTER SERVICE CLASS sales ENABLE;

CREATE EVENT MONITOR basic_mon FOR STATISTICS WRITE TO TABLE
 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT) AUTOSTART;
SET EVENT MONITOR BASIC_MON STATE 1;

9.2.3 Monitoring

After we have run our WLM setup for a week, we can analyze our data. Using the
query in Example 9-3, we can capture the chargeback data from each instance.
Since the event monitor names are the same but the superclass names are
unique, we simply run the query in both instances.

Example 9-3 Query to collect chargeback accounting data

SELECT
 statistics_date,
 superclass_name,
230 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
 DECIMAL(avg_r_exe_tm / con_act_top,9,3) AS avg_r_exe_tm_per_act
FROM (SELECT
 DATE(statistics_timestamp) AS statistics_date,
 SUBSTR(service_superclass_name,1,15) AS superclass_name,
 CASE WHEN 1 > DECIMAL(SUM(request_exec_time_avg),9,3)
 THEN 0
 ELSE DECIMAL(SUM(request_exec_time_avg) / 1000,9,3)
 END AS avg_r_exe_tm
 FROM scstats_basic_mon

GROUP BY DATE(statistics_timestamp),
 service_superclass_name)
 ORDER BY DATE(statistics_timestamp),
 service_superclass_name);

From this data we can create a spreadsheet as shown in Figure 9-6. Several
points needs to be mentioned here. Note that the total times vary from day to day
but the percentage calculations are based on the total for the particular day. This
way each department is charged for there percentage of use that day and the
sum of the percentages is always 100%. If for example SALES was the only
instance running that day, they would be charged 100%. This eliminates having a
shortfall or gap in accounting for the machine usage.

Figure 9-6 Chargebase accounting spreadsheet

Since we are only using DB2 WLM Request Execution times, we have to assume
that the other DB2 processes that are not accounted for in WLM. The following
list is a partial list of entities that do not work within a database and are not
tracked by service classes:

� DB2 system controllers (db2sysc)
� IPC listeners (db2ipccm)
� TCP listeners (db2tcpcm)
� FCM daemons (db2fcms, db2fcmr)
� DB2 resynchronization agents (db2resync)
� Idle agents (agents with no database association)
� Instance attachment agents
 Chapter 9. WLM sample scenarios - other usage 231

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
� Gateway agents
� All other instance-level EDUs

Additionally, we did not account for any three predefined default service super
classes: the default user class, the default maintenance class, and the default
system class. These could be added, if you determine there is a significant
difference in the overall accounting to warrant including these default super
classes.

Graphically, we can represent the spreadsheet as shown in Figure 9-7 to give us
a picture of how each department compares to each other.

Figure 9-7 Chargeback accounting graphic representation

9.2.4 Summary

We have demonstrated that chargeback accounting can easily be done using
DB2 WLM. Basic assumptions need to be made and validated to insure that
processes not included in the chargeback don’t adversely change the
percentages. If it is determined that the non-accounted for processes are out of
proportion, the default superclasses can be included in the chargeback
accounting.
232 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch09.fm
 Chapter 9. WLM sample scenarios - other usage 233

7524ch09.fm Draft Document for Review October 2, 2007 10:12 am
234 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Chapter 10. DB2 WLM and DWE Design
Studio

IBM DB2 Warehouse Edition (DWE) provides everything you need to effectively
implement a flexible and scalable data warehouse for dynamic warehousing.
DWE is the premier solution for data warehousing, online transaction processing
(OLTP) and mixed workloads. DB2 DWE features include enhanced warehouse
management, analytic application development, OLAP, data mining, advanced
compression and workload management.

In this chapter we provide a detail description of how to create DB2 WLM
components using DWE Design Studio.

10
© Copyright IBM Corp. 2007. All rights reserved. 235

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
10.1 DB2 Warehouse Design Studio overview

DB2 DWE Design Studio in Data Warehouse version 9.5 introduces a new
function to create, modify, validate and execute DB2 WLM objects. Its graphical
interface let you see the hierarchy of the WLM objects and manage them.

The DB2 DWE Design Studio is based upon the open source Eclipse platform.
The Eclipse platform is for building integrated development environments (IDEs).
Eclipse is an open source community of companies that focuses on building
development platform, runtimes, and frameworks providing a universal
framework for tools integration.

The DB2 DWE Design Studio provides the core components to graphically
organize organizational data (data structure) and create relationship between
data elements (data mining), move and transform data within the data
warehouse, analysis of data to reveal business trends and statistics, identify
relationships and patterns, and create database WLM objects.

When creating new tools, developers have to only code on their expertise subject
area and only need to build the features that comprise their specialty, other
components like runtime environment, user interface and help systems were part
of Eclipse. The additional capabilities that the tools vendors provide are delivered
as a plug-in to Eclipse. The plug-in is installed into an existing Eclipse
environment. Each of the capabilities that Design Studio provides are packaged
together and are installed on the top of the basic Eclipse platform. The basic
Eclipse architecture shown in Figure 10-1.

Figure 10-1 Eclipse basic platform
236 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
10.1.1 Workload management support

Prior to DB2 9.5, workload management solution was based on Query Patroller
product and DB2 Governor. Query Patroller is a predictive tool, and provides a
way to monitor, manage, control the work and provides reports. DB2 Governor is
a reactive tool which uses system monitor to watch the work running on the
system and based on the rules defined, it will take reactive steps to correct the
situation.

On DB2 9.5, comprehensive workload management feature is integrated inside
DB2 engine to closely interact, access and mange the workloads, so that you can
see how your system is running and you can gain control over resources and
performance.

DB2 DWE Design Studio 9.5 supports the ongoing development, refinement,
validation, and monitoring of a workload management solution:

� Reverse engineering on existing database

You can use the Design Studio to reverse engineer an existing DB2 WLM
object definitions, settings, and other informations to create a new WLM
scheme. This scheme can be changed to suite your needs and validated.
Reverse engineering allows you to port the current database settings to
Design Studio for further editing, port to another system, or as the base for a
new workload.

� Create new WLM solutions using templates

Design Studio provides standard templates which can used to achieve your
WLM objectives:

– Resource sharing

On a shared system environment, sources has to be shared. Using WLM
solution you can control and share the system resources based on the
needs, priority, or other defined agreements. Explicitly establish limits for
the consumption of system resources, prevent the misuse of resources,
and track resource usage patterns. For example, you can setup CPU
sharing on AIX systems and for others you can set thread priorities of the
agents, and control the priority with which agents submit prefetch
requests.

– Enforcing database activity limits

Limits can be enforced in the database by specifying whether the activities
that exceed the boundaries are queued, stopped, or allowed to execute.

– Enforcing limits for concurrent activities
 Chapter 10. DB2 WLM and DWE Design Studio 237

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
You can enforce limits on number of coordinator activities that run
simultaneously. Limits can be enforced in the database, in superclass,
specific type of work, or specific type of work from a specific source.

� Manipulate WLM entities

On the Design studio, superclass, workloads, work actions, thresholds can be
viewed and changed using graphical interface.

� Validate of WLM entities

After creating a workload management scheme, you can validate it to ensure
that you have entered values for the required properties and defined all of the
property values correctly.

If the validation fails, the Design Studio displays error and warning messages
output to alert you of the problems in the scheme that need to be corrected.

On successful validation, you can generate the SQL code, review it, and
revise the scheme to change the code. This can be repeated till you are
satisfied that the scheme is ready to be deployed to the database.

� Deployment

After a successful validation, you can deploy the workload management
scheme directly from Design Studio by connecting to the database.

10.1.2 Installing DB2 DWE Design Studio

Provide how to get DB2 DWE Design Studio information and brief description of
installation process or point out where to get the installation information.

10.2 Getting start

To start the Design Studio, (provide how to start info).

Author Comment: Waiting for document. Still not clear with Install intructions from the
DataWarehouse.

Note: Eclipse platform is installed as part of Design Studio installation
process, separate Eclipse download and install is not required.
238 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Once the Design Studio is started, you are prompted to enter the workspace path
as shown in Figure 10-2. A workspace is place where you can store all your
Design Studio work and data files. It acts as a central repository for your data
files. A workspace may hold multiple projects. You can have more than one
workspace but only one will be active per running instance of DB2 DWE Design
Studio.

Figure 10-2 Workspace location

To switch between workspace, select File → Switch Workspace.

After you specify the workspace, the Design Studio displays the Welcome view,
which includes links to the DB2 Warehouse documentation, tutorials, and sample
files.

Design studio work are stored as projects, files, and folders. A project is a
container used to organize resources pertaining to a specific subject area, for
example data warehouse project. The workspace resources are displayed in a
tree structure with projects containing folders and files. Projects may not contain
other projects.

Figure 10-3 shows the DWE Design Studio workbench.

Note: We recommend that you select the workspace path which will be
frequently backed up.
 Chapter 10. DB2 WLM and DWE Design Studio 239

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-3 DWE Design Studio workbench

Each panel in the Design Studio contains one or more perspectives that contain
views and editors. The perspectives control what the Design Studio displays
certain menus and tool bars.

Perspectives
When you open the Design Studio, it takes you to the default BI perspective. This
view contains various resources that can be used to accomplish a particular task
or work with a particular resource. Certain menu options are enabled or disabled
based on your current perspective. Additional perspectives can be opened based
on needs. Perspectives provide the functionality required to accomplish a
particular task with a particular resource.

To open additional perspectives click Window → Open Perspective → Other
and select desired perspective.

To reset a perspective to its original layout, click Window → Reset Perspective
240 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Views
A view is a visual component of the Design Studio to display properties, tree
structure and access to editors. Views can be used to navigate Data Project
Explorer and Database Explorer information trees, open the related editors, or
display and review properties. When you modify the information in a view, the
Design Studio saves it immediately. To open a closed or hidden view, click
Window → Show View and select the view.

data project explorer view
This view is open by default in the upper, left area of the Design Studio. This
hierarchical tree displays projects and objects that you can navigate through or
create new objects. This is one of the most frequently used view where you
select and modify the contents of different projects and objects. This view is not
live and does not provide direct access to underlying databases.

Database explorer view
This view is open by default in the lower, left area of the Design Studio. It is a
hierarchical tree of the live databases that you can explore, connect to, create
models from, and ultimately modify. You must have a DB2 user account that
includes the appropriate authority and privileges to modify a database. The DB2
databases (and aliases) are listed automatically in this view which is picked up
from your local catalog. You can set up connections to other databases as
needed.

Properties view
This view open by default in the lower, right area of the Design Studio. You can
use the properties view to define and modify many of the objects that you create.
In addition to this, you can see other views such as Data Output, Problems,
Execution Status and Job Status. To make any of these views active, click on title
tab, which brings the properties view to the foreground. You can use the
Properties view to define and modify many of the objects that you create. To
open the Properties view when it is closed or hidden, click Window → Show
View → Properties.

Editors view
The editor opens by default in the upper, right area of the Design Studio canvas.
It also opens up a palette for graphic editors, on the right side of the canvas
based on the object type you are working with.

Note: If you cannot find an option or control that you expected to work with,
ensure that you have opened the correct view.
 Chapter 10. DB2 WLM and DWE Design Studio 241

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
An editor is a visual component of the Design Studio that you typically use to
browse or modify a resource, such has an object in a project. The available
options are Text Editor, System Editor (operating system), In-line Editor based on
the project scheme or objects.

Projects
A project is a set of objects that you create in the Design Studio as part of the
data transformation or warehouse building processes. You must create a project
in Design Studio before starting creating WLM objects. Each project that you
build is represented by an icon in the Data Project Explorer, where you can
expand it, explore its contents, and access editors to work with it. You create
different types of objects according to the type of project you are building.

You can integrate the project file worrkspace directory with concurrent versions
system (CVS). In a coordinated development environment this will be useful to
share the project with other developers.

10.2.1 Workload Management Scheme

Workload Management Scheme supports the ongoing development, refinement,
validation, and monitoring of a workload management solution. It contains
projects and templates and provides a sequence of screens to guide you through
for building DB2 workload management objects. You also can integrate DB2
workloads with operating system workloads. Currently, the supported operating
system is AIX workloads.

There are some terminology differences between the Workload Management
Scheme on Design Studio and DB2 Workload Management. Table 10-1 lists the
mapping of terminologies.

Table 10-1 Design Studio Workload entity and DB2 Workload Manager objects

Note: There is no automatic save option for these editors, you must explicitly
save the changes.

Workload Management entity in Design
Studio

DB2 Workload Manager object created
in DB2

Superclass Service superclass

Subclass Service subclass

Work identity Workload

Work type set Work class set
242 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
On Design Studio, when you create a new scheme, it can be viewed in more than
one way. You can see the DB2 WLM entities by

� Tree view
� Grid view

Figure 10-4 on page 243 shows a Design Studio tree view with WLM entities.

Figure 10-4 Design Studio WLM entities - tree view

Figure 10-5 shows the Design Studio WLM entities in grid view.

Work type Work class

Control rule for the database Threshold for the database domain

Control rule for a superclass Threshold for the superclass domain

Control rule for a subclass Threshold for the subclass domain

Control rule for a work identity Threshold for the workload domain

Workload Management entity in Design
Studio

DB2 Workload Manager object created
in DB2
 Chapter 10. DB2 WLM and DWE Design Studio 243

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-5 Design Studio WLM entities - grid View

When you create a new scheme, Design studio automatically creates containers
for entities that make up a scheme. The containers created by Design Studio are:

� Database service classes

Based on the definition, all of the work for a database is executed in the
database service classes.

� Operating system service classes

If you run the database on AIX, use operating system service classes to
allocate CPU shares for database work. Operating system service classes
are created with a new scheme only when reverse engineering

� Work identities

Work identities define the work to be controlled based on connection
attributes like user or application name.

� Work type sets and work types

Classify the database work into sets of work types, such as DML, DDL, Read,
Write, LOAD, CALL and so forth. Work types are then mapped to the
database subclasses that execute the work.

� Histogram templates

Histogram templates are used to determine the high bin values for a
histogram. You can create custom templates for the histograms that display
your monitoring data, or use the default templates.

Note: Work type sets and work types are never created for you as part of
creating a new scheme, this has to be created seperately.
244 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
10.3 Managing database workloads using Design
Studio

You can use the Design Studio to perform the DB2 Workload Management
methodology to achieve your goal:

� Plan and design the workload management system
� Review and finalize your management goals
� Create and implement baseline monitoring
� Create execution environment and implement the controls
� Monitor and repeat the process till you achieve the desired goal

You can use a data warehouse project for designing and building the DB2
workload management objects. Before starting to do any work, create a project
from File → New → Data Warehouse Project. See Figure 10-6.

In this example, we create a new project WLMDB.

Figure 10-6 Create a new Data Warehouse project
 Chapter 10. DB2 WLM and DWE Design Studio 245

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
After creating a data warehouse project, create a new workload management
(WLM) scheme. The WLM scheme contains a set of entities that define a
workload management solution for a database. When you create and save a
WLM scheme for the first time, Design Studio create a file with .wlms file
extension for the scheme using the scheme name you specified under the
workspace directory. The Design Studio displays the complete path in Overview
tab.

To create WLM Scheme, expand the project tree view (WLMDB in our example),
right click Workload management scheme → New → Workload Management
Scheme. See Figure 10-7 on page 246.

Figure 10-7 Creating workload management scheme

When you select New Workload Management Scheme, it takes you to New File
for Workload Management Scheme panel (Figure 10-8 on page 247) where you
can give a scheme name and select one of the three methods to create the
scheme:

� Create a scheme by objective
� Create a scheme yourself
� Create a scheme by reverse engineering.
246 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
We discuss each scheme creating methods in detail in the following sections.

Figure 10-8 Select creating workload management scheme method

10.3.1 Create workload scheme by objective

When you create a WLM scheme by objective, Design Studio guides you through
the configuration process. This method helps to simplify the task of creating a
WLM scheme. By using this method, you can create a scheme that resolves
three common WLM objectives:

� Controlling and sharing system resources

This is for creating a WLM scheme to manage the system resources for
database activities based on your resource allocation objectives. If the
database runs on the AIX operating system, you can integrate operating
system service classes to manage the system resources for the execution
environments. For non-AIX systems, you can set the Agent Priority.

� Creating limits for database activities

This is for creating a WLM scheme to define and enforce execution limits on
the database activities. You can specify whether to stop the activities that
reach the limits or allow them to continue. You can create limits based on
work type, activity, source, or combination of these.

� Creating limits for database activities that run concurrently
 Chapter 10. DB2 WLM and DWE Design Studio 247

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
This is for creating a WLM scheme to create and enforce concurrency limits
on database activities. You can specify whether to stop activities that exceed
the concurrency limits or allows them to continue.

Controlling and sharing system resource
In this section, we demonstrate how to use Control and share system resources to
create a workload scheme. The example business problem used here is a
database system which has small, medium, and long running queries coming
from different business units and compete for resources. We need to define a
method so that works are grouped by business units and share system
resources among each other in a controlled way.

One of the solution for this business case is

� Categorize work and create appropriate work identities.

� Based on business units create superclasses.

� Define relationships and assign different types of work identities to
appropriate superclasses.

� AIX WLM provides sophisticated management of CPU. If AIX WLM is
available and in place, then associate DB2 superclasses with AIX
superclasses. For non-AIX, use Agent priority

The above proposed solution can be achived using Design Studio Controlling
and Sharing system resource option.

To create a WLM scheme using the Design Studio guided steps, we specify
WLMDEMO_BY_OBJ as the scheme name and select Create a scheme by
objective in New File Workload Management Scheme panel. See Figure 10-9
on page 249.
248 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-9 Create scheme by objective

In Create a Workload Management Scheme by Objective panel (Figure 10-10 on
page 250) select Control and share system resources and click Finish.
 Chapter 10. DB2 WLM and DWE Design Studio 249

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-10 Control and share system resources

The Control and Share System Resources panel (Figure 10-11 on page 251) is
presented with four tabs, General, Work Identities, Superclasses, and Create
Relationships. Each tab allows you to create specific DB2 workload objects.

Note: Clicking Finish at any tab takes you back to Business Intelligence view,
not to next tab. Design Studio will create only the default objects for those
unvisited tabs. To continue working on the scheme using the guided
configuration, select the WLM scheme → Workload Management, select the
guided configuration you want.
250 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-11 Control and share resources - Tab view

1. General: This is an informational tab. Select Work Identities tab to continue.

2. Work Identities:

You can use this tab to add a new DB2 WLM workload, delete or modify an
existing workload.

Since there are no existing user-defined workloads, the default workloads,
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD, are
listed. To add a workloads, click ADD and the Work Identity property view is
presented. See Figure 10-12 on page 252. You can identify the connection
attributes to be used in your workload.

To see the description of a field, left clicking the field name.

The capitalized fields in the Work Identity panel match the attributes in the
DB2 CREATE WORKLOAD statement. The three authorization fields are for
granting the workload execution authority.

We create a workload WI_PROD to manage application dss.exe. The
workload can be used by everyone (public). Select Superclasses tab to
proceed.
 Chapter 10. DB2 WLM and DWE Design Studio 251

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-12 Work Identity

3. Superclasses:

Figure 10-13 on page 253 shows the Superclasses tab with three default
superclasses have been created SYSDEFAULTUSERCLASS,

Note:

� If you do not specify a value for a connection property, DB2 matches for all
of the values of the property, as if you had specified a wildcard.

� When you specify values for multiple connection properties, such as
application name and system user, the values are interpreted as the
application name AND the system user. For example, if you enter ‘dss.exe’
in APPLNAME and ‘Bob’ in SYSTEM_USER, the values are interpreted as
‘dss.exe’ + ‘Bob’ as connection property.

� If you type multiple values for the same connection property in a
comma-separated list, each value in the comma-separated list is
connected to the next by or. For example, if you enter Mary, Bob, John in
the SESSION_USER field, the values are interpreted as Mary or Bob or
John.
252 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
SYSDEFAULTSYSTEMCLASS, and SYSDEFAULTMAINTENANCELASS.
Use this tab to add new superclasses, delete or modify existing superclasses.

Figure 10-13 Control and share system resources - Superclass view

To create a new superclass, click Add and the Superclass property view
presented (Figure 10-14 on page 254).

Here you enter the name of the superclass to be created, the agent and
prefetch priority, and work action set name if already know. These fields
matches the AGENT PRIORITY, PREFETCH PRIORITY in DB2 CREATE
SERVICE CLASS statement.
 Chapter 10. DB2 WLM and DWE Design Studio 253

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-14 Superclass properties

If your operating system is AIX and you are using AIX WLM, you can
associate the superclass with the Operating system class by selecting the
browse button . This will take you to Select Operating system Service
Class panel (Figure 10-15).

Figure 10-15 Select Operating system service class

Note: If you associate the superclass with an operating system service
class, do not set the Agent Priority property. When this parameter is set to
a value, the agents are set to a priority that is equal to the normal priority
plus agent priority when the next activity begins. For example, if the normal
priority is 20 and AGENT PRIORITY is set to -10, the priority of agents in
the service class is set to 20 - 10 =10.
254 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
To create a new operating system service class, expand the WLM scheme,
select Superclass, and click Create For this example, we create an
operating system class DB2SC for DB2 resources. see Figure 10-16. Clicking
OK takes you back to the Select Operating System Service Class to allow you
to create more operating system service classes.

Figure 10-16 New Operating system service class

Once you have completed creating OS service classes, select any one of the
OS service class to make OK button active and click OK. Design Studio takes
you back to Superclass property view showing the new OS service class
associated with DB2 Superclass, see Figure 10-17.

Figure 10-17 DB2 Superclass with AIX Operating system Service class
 Chapter 10. DB2 WLM and DWE Design Studio 255

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Clicking OK in Superclass property view takes you back to the Superclasses
tab view for creating or editing another superclass. Figure 10-18 shows DB2
superclass associate with AIX superclass. Clicking OK in this view ends the
workload creating process. To continue, click Create Relationships tab.

Figure 10-18 DB2 superclass and aix superclass

4. Create relationships

By default, workloads are associated with the default superclass. you can use
this tab to customize the relationships between the work identities,
superclasses, and operating system service classes. Figure 10-19 on
page 257 shows all the defined workloads are listed under Work Identity
column.
256 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-19 Create Relationship view

To change the superclass associated to a workload, click the superclass
name, a browse button shown next to the superclass name. Click browse
button to get a list of superclass you can choose from. See Figure 10-20 on
page 258.
 Chapter 10. DB2 WLM and DWE Design Studio 257

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-20 Create Relationships - Associate with superclass

If you have a DB2 superclass which is associated with an operating system
service class, associating a work identity to the DB2 superclass will
automatically maps the work identity to the operating system service class. In
our example, the DB superclass HIGHLVL was associated with the operating
system service class DB2SC. Once we associate the WI_PROD to HIGHLVL,
the operating system service class DB2SC is automatically associated. See
Figure 10-21 on page 259.
258 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-21 Control and share system resources - Create relationship view

When you click OK, Design Studio creates a WLM scheme and take you back
to the default Business Intelligence (BI) perspective.

In the BI perspective, Design studio focus you on the Editors panel and give the
overview of the current project created. The project created for this example is
WLMDEMO_BY_OBJ as shown in Figure 10-22 on page 260.

Note: On this guided Control and Share System Resources, Design Studio
will not guide you through the creation of Histograms. When the project is
created, a default SYSDEFAULTHISTOGRAM is created for you.

Note: Design Studio does not save the scheme automatically. To save your
scheme, use File → Save or the icon.
 Chapter 10. DB2 WLM and DWE Design Studio 259

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-22 WLM Scheme created using create scheme by objective

If you select the Scheme tab in the BI perspective, you can see the tree structure
of the WLM scheme you created. See Figure 10-23 on page 261. From the tree
view, you can further modify the work scheme you created.
260 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-23 WLMDEMO_BY_OBJ Scheme view

Evaluation order of work Identities
There is an evaluation order for DB2 workloads. When a database request
comes, DB2 searches the workload list in sequence to find the first one that
matches the required connection properties. The search order is specified when
the workload is created. In DB2, the default workload position is last. When you
create work identities using Design Studio, it generates the code with POSITION
AT position based on the order the work identities are created. We recommend
that you verify the workload sequence before creating the workloads.

To adjust the evaluation order, open the Work Identities tab by right-clicking Work
Definitions in the Scheme view. Select the work identity and use the up and
down arrows to reposition it in the list.

Validating
Once the workload scheme is created, you can use the Design Studio Validate
option to validate the workload, service classes, and the relationship you just

Note: In Design Studio, if you do not specify an evaluation order, the order of
the Work Identities tab implies the evaluation order.
 Chapter 10. DB2 WLM and DWE Design Studio 261

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
created. Design Studio validate all the resources on the selected project using
validation settings.

To validate the WLM scheme, select Workload Management → Validate.
When the validation of a WLM scheme succeeds, the Design Studio displays a
confirmation message as shown in Figure 10-24 on page 262.

Figure 10-24 Validation successful

Generating code
After successful validation you can generate code using Workload
Management → Generate Code. For each code file generated, Design Studio
presents it as a tab in the BI perspective editor view. In our example, two files,
WLMDEMO_BY_OBJ.wlmsql and WLMDEMO_BY_OBJ.osclasses, are
generated. When you save, by default, the code files will be stored in the
<workspace>/<schemename>/wlm-models/generated-code folder.

Figure 10-25 on page 263 shows the generated WLMDEMO_BY_OBJ.wlmsql creating
DB2 Workloads.

Though the editor view allows you to add, modify, or remove the DB2 WLM
statements, we donot recommend you modify the code directly since the
modification will not be captured in the Design Studio. To capture them in the
Design Studio, you’ll need to do reverse engineer after the workload were
created in DB2.

Note: To change the validation settings, use Window → Preferences →
Validation
262 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-25 Generated Code for DB2

Figure 10-26 on page 264 shows the AIX WLM class generated under
WLMDEMO_BY_OBJ.osclasses.

Note: Any OS WLM entities you set up using Design Studio will not be
automatically created on the target AIX machine. Users have to manually copy
generated OS code to AIX machine and run with root authority. Only DB2
WLM entities will be automatically created when you perform Execute or Delta
Execute from Design Studio.
 Chapter 10. DB2 WLM and DWE Design Studio 263

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-26 Code generation for OS WLM

Create limits for database activities
In this section, we demonstrate how to use Create limits for database activities
to create the WLM scheme that can manage poor database activities which
degrade overall performance. For example, a database system that has reports
run by Sales department which usually run in five to ten minutes. On one
occasion, a weekly sales report ran for six hours. Your reporting application has a
built-in timeout limit. The application waits up to ten minutes for a query to return
data, and then displays an error message. You want to stop the query from
executing when the application displays this error message. You also want to
collect detailed data about the problems that cause the application error.

One of the solution is :

� Catagorize work and create appropriate work identities
� Catagorize the bad queries by defining control rules on work identity.
� Specify actions for the Control Rules. The actions can be

– STOP EXECUTION
– Collect ACTIVITY DATA and CONTINUE

After creating project, create WLM scheme by Workload Management
Schemes → New → Workload Management Scheme. In the New File - Create
264 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
a Workload Management Scheme by Objective panel, select Create a scheme
by objective and click Finish. In Create a Workload Management Scheme by
Objective panel, select Creating limits for database activities (See
Figure 10-27) and click Finish.

Figure 10-27 Create limits for database activities selection screen

The Create limits for database activities is presented with five tabs. See
Figure 10-28 on page 266.

Note: Design studio provide you an alternate way to go to Create limits for
database activities screen. First, select the Database management scheme
you like to work on and then do Workload Management → Create Limits for
Activities
 Chapter 10. DB2 WLM and DWE Design Studio 265

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-28 Create limits for database activities - General tab

1. General:

This is an informational tab. Select Superclasses tab to continue.

2. Superclasses:

Figure 10-29 shows the Superclasses tab with three default superclasses
SYSDEFAULTUSERCLASS, SYSDEFAULTSYSTEMCLASS, and
SYSDEFAULTMAINTENANCELASS. Use this tab to add new superclasses,
delete or modify existing superclasses.

To add a superclass, click ADD and the superclass property view is presented
(refer to Figure 10-14 on page 254). Here you enter the name of the
superclass to be created, the agent and prefetch priority, and work action set
name if already know. These fields matches the AGENT PRIORITY,
PREFETCH PRIORITY in DB2 CREATE SERVICE CLASS statement.
266 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-29 Creating superclass in Create limits for database activities

3. Work Identities:

You can use this tab to add a new DB2 WLM work identity, delete or modify an
existing work identity. If there are no previous user-defined work identities
created, only the default workloads, SYSDEFAULTUSERWORKLOAD and
SYSDEFAULTADMWORKLOAD, are listed. To add a work identity, click ADD
and the Work Identity property view is presented. See Figure 10-12 on
page 252. You can identify the connection attributes to be used in your
workload. To see the description of a field, left clicking the field name.

The capitalized fields in the Work Identity panel match the attributes in the
DB2 CREATE WORKLOAD statement. The three authorization fields are for
granting the workload execution authority.

We create a workload WI_PROD to manage application dss.exe. See
Figure 10-30. The workload can be used by everyone (public). Select Work
Types tab to proceed.
 Chapter 10. DB2 WLM and DWE Design Studio 267

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-30 Creating work identities in create limits for database activities

4. Work Types:

You can create a work type to categorize database activities by activity
characteristics type such as Read, Write, DML, DDL, Call, Load and All. Then
you can manage each work type as a unit. By creating a mapping rule for a
database superclass, you can map a work type to the subclass where the
database activities execute.

Figure 10-31 shows the Create Work Type panel. You create a work type set
to contain and manage a group of work types. If no suitable work type set is
available, you can create one using Create New Work Type Set ...
268 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-31 Create work type main screen

Figure 10-32 shows the Create New Work Type Set property view. In our
example, we create a Work type set WTS_ALL.

Figure 10-32 Create new work type set

To define and associate a work type with a work type set, select the work type
set, enter the work type name (WT_ALL in our example), select a work type,
and click OK. See Figure 10-33 on page 270.
 Chapter 10. DB2 WLM and DWE Design Studio 269

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-33 Work type set and work type association

You need to define the measurement properties for the work type. Work type
optionally can include estimates. In our example, we want to apply WT_ALL
regardless of the measurement, we choose NONE as shown in Figure 10-34.

Figure 10-34 Work Type measurement properties

The capitalized field options in the Work Type Set panel and Work Type panel
match the attributes in the DB2 CREATE WORK CLASS SET statement.

Figure 10-35 on page 271 shows one work type set is created. You can create
more type set using the same process. After completion, select Create Limits
tab to continue.
270 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-35 Work Type Tab after creating work type set

5. Create limit

In the Create Limits tab, click Add, and select the type of limit that you want to
create. See Figure 10-36.

Note: Work types in a work type set are ordered objects when work types
are evaluated. To specify the evaluation order of a work type in the work
type set, open the Work Types tab by selecting the work type set in the
Scheme view. Then select the work type and use the up and down arrows
to reposition the work type in the list. If you do not specify an evaluation
order, the order of the Work Types tab implies the evaluation order.
 Chapter 10. DB2 WLM and DWE Design Studio 271

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-36 Create limits for activities

There are four options:

– Limit all activities in the database

You can use this option when limit has to be applied for database domain,
and a specific action has to be performed if the limit is exceeded.

– Limit work from one source

You can use this option if the work identity is associated with a database
superclass.

– Limit work of one type

You can use this option when limit has to be associated with only one work
type.

– Limit work of one source and type

You can use this option, It allows you to limit work from a specific
workload, of specific types (e.g. READ, WRITE, etc.).

For each option selected, Design Studio add one entry with the required fields
“opened” (not greyed out). In our example, we select Limit work of one type
272 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
to control bad queries on database. Figure 10-37 shows for domain Work
Type, the required fields are Work Type and Condition.

Figure 10-37 Create limits using ‘Limit work of one type’

To specify the work type that you want to limit, click <select a work type> and
a browse button shows in the field. Click the browse button to select the list of
work type sets you can choose from. See Figure 10-38.
 Chapter 10. DB2 WLM and DWE Design Studio 273

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-38 Limit work of one type - specify work type

Click <Create a condition> to specify the Condition for a work type that you
want to limit. A the browse shows on the field. See Figure 10-39.
274 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-39 Create Limits associated with new condition

Click browse button to create a Condition to define the limitation condition on
the work type domain and the action to take when the limit is exceeded. See
Figure 10-40 on page 275.

Figure 10-40 Limit work of one type - specify condition

Figure 10-41 shows that one limit is created.
 Chapter 10. DB2 WLM and DWE Design Studio 275

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-41 One limit created

You can continue adding limits. When you complete, click OK and the
Database panel shown for you to associate the limits to a work action set.
Click the browse button to specify the work action set. See Figure 10-42 on
page 276.

Figure 10-42 Work type set property of the database
276 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
After associating the work action, Click OK. Design Studio creates a WLM
Scheme and take you back to the default Business Intelligence (BI)
perspective.

In the BI perspective, Design Studio focuses you on the Editors panel and give
the overview of the current project created. Figure 10-43 shows the project we
created, WLMDEMO_BY_OBJ, and its control rules.

Figure 10-43 Control Rule - WLM Scheme view

Validating WLM scheme and generating code
Once the workload scheme is created, you can use the Design Studio Validate
option to validate the workload, service classes, and the relationship you just
created. After successful validation you can generate code using Generate Code
feature. For the details, refer to “Validating” on page 261 and “Generating code”
on page 262.

Figure 10-44 on page 278 shows the generated WLMDEMO_BY_OBJ.wlmsql for
creating limits for database activities.
 Chapter 10. DB2 WLM and DWE Design Studio 277

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-44 Create limits for database activities - generated code

Design Studio guided configuration Create limits on database activities supports
the following solution templates, which maps to the DB2 CREATE THRESHOLD
statement.

� Create control rule on database
� Create control rule on superclass
� Create control rule for a work type (WHEN)
� Work type on a superclass that maps to a subclass with a control rule

Design Studio provide the facility to add control rules using the templates.

Adding control rules
You can add, delete, or edit control rules for an existing work identity from
Scheme tab in the BI perspective. Control rules can be add or modify for work
type set under Work Definition or for database. In this section, we demonstrate
how to add a new database control rules.

To create a New Control Rule, expand WLM scheme and Database, right click on
Control rules. See Figure 10-45.
278 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-45 Control Rule Creation using tree view

You can complete the fields in the Properties view for the new control rule. See
Figure 10-46.

Figure 10-46 Control Rule for Database

When you create the control rule for database using Design Studio, it generates
the code which is equivalent to DB2 CREATE THRESHOLD ...FOR DATABASE
ACTIVITIES ...
 Chapter 10. DB2 WLM and DWE Design Studio 279

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Control rules can also be used for other tasks such as

� Force off idle connections after a specified time period.

� Apply control rule based on activity type

– Stop activity that consume excessive temporary space

– Allow one activity to take higher share of resources than other activities.
For example, allow LOAD to use more temporary space than others.

– Collect activity data only on higher cost queries.

Create limits for concurrent database activities
You can use the Create limits for concurrent activities objective to create and
enforce concurrency limits on database activities. You also specify whether to
stop activities that cause the concurrency limits to be exceeded or allow them to
continue to execute.

An example is that the database adminstrator noticed that there were many
simultaneous activities happening on a specific work identity and would like to do
the following:

� Create a control rule to limit the maximum number of coordinator and nested
activities that can execute concurrently in a workload occurrence.

� Specify the maximum number of concurrent coordinator and nested activities
on a database partition for a workload occurrence.

� Define the rule conditions and the actions to take when activities exceed the
rule boundaries.

To select Create limits for concurrent activities from WLM Scheme by Objectives
screen, expand the project tree view (WLMDB in our example), right click
Workload Management Schemes → New → Workload Management
Scheme. In the New file for Workload Management Scheme panel, give a
scheme name and select Create a scheme by objective.

In the Workload Management Scheme by Objective panel (Figure 10-47) select
Create limits for concurrent database activities and click Finish.
280 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-47 Create limits for concurrent database activities

The Create limits for the concurrent database activities main screen shown
containing five tabs: General, Superclasses, Work Identities, Work Types and
Create Limits. See Figure 10-48.
 Chapter 10. DB2 WLM and DWE Design Studio 281

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-48 Create limits for concurrent database activities - Main screen

� General:
This is an informational tab. Select Superclasses tab to continue.

� Superclasses, Work Identities, and Work Type sets:

Using the same process described in “Controlling and sharing system
resource” on page 248, to create superclasses, work identities, and work type
sets.

� Create Limits

Use this tab (Figure 10-49 on page 283) to create limits for concurrent
activities.
282 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-49 Create limits for concurrent database activities - Create limits tab

Click Add and choose the type of limit you want to set as shown in
Figure 10-50 on page 284.
 Chapter 10. DB2 WLM and DWE Design Studio 283

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-50 Create limits for concurrent database activities - Create limit Options

You are provided with five set options to choose from:

– Limit concurrent coordinator activities for database

In this option you can,

• Define the condition for a limit on the database domain.
• Specify type of action to be taken when the concurrency limit is

exceeded.

– Limit concurrent coordinator activities from one source for superclass

In this option, you can

• Specify the work identity that is the source of the work.
• Define the condition for a limit on the superclass domain.
• Specify type of action to be taken when the concurrency limit is

exceeded.

– Limit concurrent occurrences or activities from one source

In this option, you can perform the following
284 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
• Specify the work identity that is the source of the occurrence or activity.
• Define the condition for a limit on the work identity domain.
• Specify the action to take when the concurrency limit is exceeded.

– Limit concurrent coordinator activities of a work type

In this option, you can perform the following

• Specify the work type that you want to limit.
• Define the condition for a limit on the work type domain.
• Specify with the action to take when the concurrency limit is exceeded.

– Limit concurrent coordinator activities of a work type from one source

In this option, you can perform

• Define the condition for a limit on the subclass domain.
• Specify the action to take when the concurrency limit is exceeded.
• Specify the work identity and work type combination that you want to

limit.

For our example, we select Limit concurrent coordinator activities for
database to restrict concurrent instance of an activity. An entry is added to
with required fields “opened” (not greyed out). Design Studio presents a
browse button next to the field when you click on the “opened” field. See
Figure 10-51.

Figure 10-51 Create limits - Create a condition

Note: The help information can be turned on or off using the twist icon
on the top left corner on the Create Limits tab.
 Chapter 10. DB2 WLM and DWE Design Studio 285

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
In our example, the Create Condition panel presents where you can specify
concurrency control configuration. See Figure 10-52. To see the description
of a field, left click on the field name.

Figure 10-52 Concurrency Control - Create new control

After completing the Create Condition screen, click OK. This creates the
control rule for concurrency control for database activities as shown in
Figure 10-53.

Note: Setting the value for the maximum number of connections allowed in
a queue to unbounded is not recommended. There might be problems if
you have limited the number of connections allowed for the database. In
this case, unbounded queues let the queued activities to use all of the
allowed connections so that unrelated but legitimate work might be locked
out unexpectedly.
286 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-53 Create limits for Concurrent database activities showing Control Rule

Additional control rules can be added using Add button. After all the control
rules are defined, click OK. Design Studio creates a WLM Scheme and take
you back to the default Business Intelligence (BI) perspective. The BI
Perspective is expand to show the final output, see Figure 10-54.
 Chapter 10. DB2 WLM and DWE Design Studio 287

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-54 Control Rule to limit concurrent coordinator activities for database - Tree
view

Validating WLM scheme and generating code
Once the workload scheme is created, you can use the Design Studio Validate
option to validate the workload, service classes, and the relationship you just
created. After successful validation you can generate code using Generate Code
feature. For the details, refer to “Validating” on page 261 and “Generating code”
on page 262.

10.3.2 Create workload scheme by yourself

You can use this workload creating options to create a WLM scheme and work
with entities in the scheme from scratch. This method does not guide you to
create work identities, superclass, subclass, work type and work type sets. You
need to create everything by yourself using the scheme tree view. You can create
a new project for the new WLM scheme or create the new scheme under an
existing project.
288 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
To create a new WLM scheme using this method, select Create a scheme
yourself and enter WLM scheme name as shown in Figure 10-55. In this
example, we create a WLM scheme WLMDEMO_BY_YRSLF.

Figure 10-55 Create scheme yourself

Click Next and the Workload Management Scheme Options panel shown for you
to define a work action set name. By default, it takes the WLM scheme name you
provided as the work action set name. We leave the default work action set name
and click Finish. The file name created is the scheme name with .wlms under the
default workspace defined.

In addition to the default work identities, DesignStudio also shows you these
defaults:

� Default super classes (SYSDEFAULTSYSTEMCLASS,
SYSDEFAULTUSERCLASS)

� Default sub class under every super class (SYSDEFAULTSUBCLASS)

� Default histogram (SYSDEFAULTHISTOGRAM)
 Chapter 10. DB2 WLM and DWE Design Studio 289

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Design Studio creates the WLM scheme with only the default work identities as
shown in Figure 10-56 on page 290. So, you have to create all other user-defined
entities such as superclass, subclass, work identities, work type, work type sets,
control rules and mapping rules using the tree view.

Figure 10-56 WLM Scheme created using create yourself option

To create a new entity, right click on the object and select the option. We show
here the steps to create a new superclass. For example, right-click
Superclasses and select New Superclass as shown in Figure 10-57.
290 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-57 Create Scheme by Yourself - Create New Superclass

You are required to enter an unique name in the New Superclass window and
provide additional info in the Properties view (Figure 10-58).

Figure 10-58 Create by Yourself - New Service Class properties view
 Chapter 10. DB2 WLM and DWE Design Studio 291

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
After creation of all the superclasses, subclasses, work identities, work type sets
and work types, control rules and mapping rules, validate the scheme by
Workload Management → Validate. Use the Generate Code menu option to
generate DB2 statements for deployment.

10.3.3 Create workload scheme by reverse engineering

This option allows you to extract the information about an existing WLM scheme
from DB2 database to Design Studio as. You can then modify and add to the new
scheme to make it unique.

When reverse engineering, Design Studio extracts the settings and entities that
make up a workload scheme from database and create a new WLM scheme.
Table 10-2 shows the DB2 objects that map to the Design Studio WLM entities.

Table 10-2 Mapping between DB2 objects and Design Studio entities

DB2 WLM threshold rules and enforcement criteria such as work action sets and
corresponding to Design Studio control and mapping rules are shown in
Table 10-3.

Table 10-3 Control rules mapping

DB2 WLM objects Design Studio WLM entities

Service superclass Superclass

Service subclass Subclass

Workload Work identity

Work class set Work type set

Work class Work type

DB2 WLM control criteria Design Studio WLM rule

Threshold for the database domain Control rule for the database

Threshold for the superclass domain Control rule for a superclass

Threshold for the subclass domain Control rule for a subclass

Threshold for the workload domain Control rule for work entity

WHEN ACTION in a WORK ACTION SET
for the database

Control rule for a work type (WHEN)

MAPPING ACTION in a WORK ACTION
SET for service superclass

Mapping rule for a superclass (MAP
ACTIVITY)
292 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Reverse engineering steps
The Design Studio workload management reverse engineer steps are:

1. In the Business Intelligence perspective, select File → New → Workload
Management Scheme.

2. In the Workload Management Scheme panel (Figure 10-59), type a unique
name in the Workload management scheme field, select Create a scheme
by reverse engineering, and click Next.

Figure 10-59 Workload Management Scheme - Reverse Engineering a Scheme

3. In the Select Connection panel (Figure 10-60 on page 294), connect to the
database where the collection of information about the scheme exists using
the existing connection or create a new connection. We select Create a new
connection.
 Chapter 10. DB2 WLM and DWE Design Studio 293

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-60 Create a new database connection

4. Complete the Connections Parameters (Figure 10-61 on page 295) panel,
and click Finish.
294 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-61 New Database Connection parameters

5. Design Studio retrieves the information about the scheme from the database,
creates the new scheme, and creates a file for the scheme. The file named is
<WLM scheme name>.wlms. The output is shown in Figure 10-62 on page 296.

Now, you can modify the scheme according to your specifications.
 Chapter 10. DB2 WLM and DWE Design Studio 295

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-62 WLM Schema created from Reverse Engineering process

10.4 Execute a workload management scheme

You can execute a workload management scheme directly from Design Studio to
the target database. You can do clean or delta execution without first using the
Generate Code function.

To generate SQL code, perform the following steps:

1. In the Data Project Explorer, expand the data warehouse project that contains
the scheme that you want to work with, and then expand the Workload
Management Schemes folder.

2. Select the scheme that you want to work with, select Workload Management
→ Validate

3. Select Workload Management → Generate Code

If you get errors or warnings, open the Problems view to learn more about the
problems description, and use Help topics to learn how to correct the scheme.
296 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
If you incur error and warning messages, correct the definitions as required and
then repeat code generation procedure.

After the code generation process succeeds, you are ready to deploy the
scheme.

Design Studio provides two approaches to run the WLM scheme, Execute and
Delta Execute.

Execution
This approach is a clean execution. When you execute workload management
scheme, it begins with wiping off all the exiting WLM configuration on the target
and create the entire scheme fresh in the target. If the execution fails, the
settings for the WLM configuration that exist in the database are lost.

We recommend use this option only when you like to create have a fresh start.

To execute a workload management scheme:

1. With the workload management scheme open, select Workload
Management → Execute.

2. In the Generated Code window, review the code that will be executed in the
database.

3. Select Execute in database and click Next.

4. In the Execution Options window, specify any options and click Next.

5. In the Select Connection window, connect to the target database.

– You can select Create a new connection, click Next, complete the
Connections Parameters window, and click Finish.

– You can select Use an existing connection, select that connection, and
click Finish.

6. In the Execution Result panel, review the execution log information. You can
also save the execution log information.

Figure 10-63 shows the execution results panel using Execute.

Note: During Workload Management → Generate Code , if the database
does not contain any WLM Scheme, Design Studio will show information
screen stating “No code was generated because the scheme is empty”.
 Chapter 10. DB2 WLM and DWE Design Studio 297

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-63 Workload Management Execute - Execution Result screen

Delta Execution
Delta Execution performs ALTER whenever possible and perform CREATE or
DROP of WLM entities only when necessary. It performs reverse engineer on the
target database and determine the changes.

You can use the Delta Execute to alter the database or another workload
management scheme to make it identical to the current workload management
scheme.

Using Delta Execute you can apply scheme settings to the database. Some of
the advantages of using Delta Execute are

� Each WLM statements has been committed

Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the
current WLM-exclusive SQL statement commits or rolls back. If any error
happens during Delta Execution, Design Studio will not make any changes in
the database. Your database will be in the state before the Delta Execution.

� Many dependencies between WLM entities
298 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
On a complex system with many WLM entities, proper order of execution
plays a critical role. Delta Execution figures out a proper order for you.

� Cannot drop WLM entities that are in use

Delta Execution avoids DROP/CREATE of WLM entities where possible.
When executing WLM scheme on database, Design Studio does ALTER to
match the settings in the workload management scheme, and only does
DROP/CREATE if necessary.

We recommend Delta Execution for executing WLM entities since the result is the
same as the result of using the Execute menu option. However when you use the
Delta Execute option, the Design Studio makes only the minimal number of
changes that are required to update the settings of either the database or the
other workload management scheme to be identical to the current workload
management scheme.

Delta Execute against database
Use the following steps to perform delta execution on a database:

1. In the workload management scheme open, select Workload
Management → Delta Execute.

2. In the Comparison Options window (Figure 10-64), select Database, click
Next.

Figure 10-64 Delta Execution - Compare options

3. In the Select Connection window, select Create a new connection or Use an
existing connection.

4. Delta execution compare the current WLM scheme with WLM entities in the
database and generates a set of SQL statements. See Figure 10-65.
 Chapter 10. DB2 WLM and DWE Design Studio 299

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-65 Delta execution - Generated Code

5. In Generated Code window, select Execute in database and click Next.

6. In the Execution Options window (Figure 10-66 on page 301), specify any
options and click Next.
300 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-66 Delta Execution - Execute options screen

� In the Execution Result window(Figure 10-67), verify the result and click
Finish.

Figure 10-67 Delta Execution - Results screen
 Chapter 10. DB2 WLM and DWE Design Studio 301

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Delta Execute against WLM schemes
Using Delta Execution to compare two WLM scheme. This can be useful to fine
out the WLM changes made on the database if different WLM scheme versions
are available.

The steps To use the Delta Execute option,

1. In the workload management scheme open, select Workload
Management → Delta Execute.

2. In the Comparison Options window, select Another workload management
scheme, click Next. See Figure 10-68.

Figure 10-68 Delta Execution - Another workload management scheme

3. Choose the .wlm files of the WLM scheme to be compared with. See
Figure 10-69.

Figure 10-69 Delta Execute - Select WLM Scheme for comparison

4. The delta SQL statement is shown in the Generated Code window
(Figure 10-70).
302 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-70 Delta Execute - Compare WLM Schemes results

10.5 AIX WLM management

DB2 WLM is integrated with AIX Workload Manager. You can use the Design
Studio graphical user interface to set up and maintain both AIX WML and DB2
WLM service classes. In DB2 9.5, you can utilize the AIX WLM to manage only
the CPU utilization.

10.5.1 Creating operating system service classes and limits

Using Design Studio, you can create operating system service classes when a
new WLM schemes is created or by modifying the existing WLM scheme using
the tree view.

Creating OS service classes on an existing DB2 WLM scheme
Before you begin using Design Studio to create AIX WLM service classes, it is
assume that you have the following created:

� A WLM scheme
� DB2 work identities, superclasses, and subclasses

Plan mapping between DB2 and AIX WLM mapping scheme, for example, 1:1 or
flat mapping. We recommend to start with 1:1 mapping and then expand.

Create operating system superclass
The steps to create the AIX WLM superclasses are
 Chapter 10. DB2 WLM and DWE Design Studio 303

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
1. In the Data Project Explorer, expand the data warehouse project that contains
the scheme that you want to work with

2. Expand the Workload Management Schemes folder.

3. Double-click the scheme for which you are creating an operating system
service class and expand the scheme.

4. Right-click Operating System, select New Operating System Superclass.

5. In the New Operating System Service Class window (Figure 10-71), type a
unique name and click OK.

Figure 10-71 Create new operating system superclass

� Define the properties of the operating system superclass by completing the
General tab of the Properties view as shown in Figure 10-72.
304 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-72 Operating system superclass properties

Create operating system subclass
If necessary, define the operating system subclasses under the superclass. For
subclass, you can define any of the following:

� Process assignment rules.
� Resource usage limits.
� Resource shares.

The steps to create an operating system subclass are

Note: DB2 service classes cannot work with the AIX Workload Manager
inheritance feature. In Design Studio, inheritance attribute was not enabled by
default. If inheritance is enabled, the DB2 workload manager cannot change
the AIX workload management class of a thread using tagging. This restriction
makes any integration of DB2 Workload Manager and AIX Workload Manager
unusable. The DB2 data server cannot detect whether AIX Workload Manager
inheritance is enabled and does not issue an error message if inheritance is
enabled.
 Chapter 10. DB2 WLM and DWE Design Studio 305

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
1. In the Data Project Explorer, expand the data warehouse project that contains
the scheme that you want to work with, and then expand the Workload
Management Schemes folder.

2. Double-click the scheme for which you are creating an operating system
subclass and Expand the scheme in the Scheme view.

3. Expand the Operating system and then the superclasses folder.

4. Right-click the appropriate superclass and select New Operating System
Subclass. See Figure 10-73.

Figure 10-73 Create new operating system subclass

5. In the New Operating System Subclass window, type a unique name and click
OK.

6. Define the properties of the operating system subclass by completing the
General tab of the Properties view. See Figure 10-74.
306 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-74 Operating system subclass - Properties view

Limiting system resources for OS service classes:
The steps to create a limit for a system resource are

1. In the Data Project Explorer, expand the data warehouse project that contains
the scheme that you want to work with, and then expand the Workload
Management Schemes folder.

2. Double-click the scheme for which you are creating an assignment rule.

3. In the Scheme view, expand the scheme, Operating System, Superclasses,
and the appropriate superclass. right-click Operating System Limits at the
superclass level and select the system resource. See Figure 10-75 on
page 308.
 Chapter 10. DB2 WLM and DWE Design Studio 307

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-75 Operating system limits - superclass

You also can create the operating system limits on subclass level by selecting
the resource on the subclass level as shown in Figure 10-76.

Figure 10-76 Create operating system limits - subclass

4. In the prompted window, enter a unique name for the limit and click OK.

5. Define the properties of the limit by completing the General tab of the
Properties view, see Figure 10-77 on page 309.
308 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-77 Create Operating system limits - Properties view

Allocating resource shares to OS service classes
The steps to create a share of a system resource are:

1. In the Data Project Explorer, expand the data warehouse project that contains
the scheme that you want to work with, and then expand the Workload
Management Schemes folder.

2. Double-click the scheme for which you are creating an assignment rule.

3. In the Scheme view, expand the scheme, Operating System, Superclasses,
and the appropriate superclass. right-click Operating System Shares at the
superclass level and select the system resource. See Figure 10-78 on
page 310.

You also can create operating system share on the subclass level by selecting
Operating System Shares at subclass level.
 Chapter 10. DB2 WLM and DWE Design Studio 309

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-78 Create operating system share - Superclass

4. In the window, type a unique name for the share and click OK.

5. Define the properties of the system resource share by completing the General
tab of the Properties view. See Figure 10-79 on page 311.
310 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-79 Create operating system share - Superclass Properties view

10.5.2 Configure AIX WLM using Design Studio

After the operating system superclasses, subclasses, rules, limits, and shares
are created, you can associate the DB2 service classes with the operating
system service classes.

In DB2 9.5, only CPU allocation control is supported when integrating the AIX
Workload Manager with DB2 workload management. The other parameters such
as memory and I/O settings are not supported. DB2 database-level memory is
shared among all agents from different DB2 service classes, therefore, you
cannot divide memory allocation between different service classes. To control
I/O, you can use the prefetcher priority attribute of a DB2 service class to
differentiate I/O priorities between different DB2 service classes.

Associate DB2 superclass with AIX superclass
The steps to associate DB2 superclass with AIX superclass are

1. In the Scheme view, expand the scheme, Database, Superclasses and select
the superclass you like to associate with the operating system superclass.

� In the General tab of the Properties view for DB2 superclass, associate with
AIX service class, by selecting the button for Operating system service
class. Figure 10-80 on page 312 shows an example of associating AIX
superclass with DB2 superclass.
 Chapter 10. DB2 WLM and DWE Design Studio 311

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-80 AIX superclass and DB2 superclass association

Adding control rules to AIX service classes
Once the service classes association is completed, you can define the control
rules on AIX service classes to manage the resource.

The steps to adding the rules are

1. In the Scheme view, expand the scheme and Operating System, right click
Rules at the superclass level and select New Operating System Superclass
Rule. See Figure 10-81 on page 313.

To add rules for subclass, expand the view to subclass level and right click
Rules at the subclass level.
312 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-81 Creating new operating system superclass rule

2. In New Operating System Superclass Rule, type a unique name for the rule
and click OK.

3. Define the properties of the rule by completing the General tab of the
Properties view.

4. To associate Operating system superclass, select the button for
Operating system service class and select the superclass you want.

5. Figure 10-82 shows that we created aixHighLvl_rule and associate it with
Operating system superclass AIXHighLevel.
 Chapter 10. DB2 WLM and DWE Design Studio 313

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
Figure 10-82 Operating system rule for superclass

Validate and Generate Code
After creating DB2 service classes and AIX service classes, associating them,
and creating rules, you can validate what you have created using Validate and
Generate Code function.

Figure 10-83 shows the confirmation screen from Generate code execution.

Note: In Design Studio, Application Tag is a read-only field. Design Studio
generate a string value for OUTBOUND CORRELATOR property that DB2
uses.
314 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-83 Generate code information screen

The Generated Code Information window lists the files that are created and their
usage. Click OK and Design studio automatically opens the files generated in the
Editors view. Any of three possible files that can be generated are:

� DB2 command code file

This file is generated and listed in the message when DB2 workload
management entities exist in the scheme. The file is created with Scheme
name and .wlmsql extension. For example, WLMDB_REV.wlmsql.

Figure 10-84 shows the DB2 SQL generated by Design Studio.

Figure 10-84 Generated SQL code from Design Studio
 Chapter 10. DB2 WLM and DWE Design Studio 315

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
� Classes file

This file is generated and listed when operating system service classes exist
in the scheme. The file is created with scheme name and .osclasses
extension, for example, WLMDB_REV.osclasses.

Figure 10-85 shows the sample output of operating system class file.

Figure 10-85 Generated code for Operating system service classes

� Rules file

This file is generated and listed when process assignment rules for operating
system service classes exist in the scheme. The file is created with scheme
name and .osrules extension. Example WLMDB_REV.osrules

Figure 10-86 on page 317 shows a sample output of Operating systems rules
file.
316 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch10.fm
Figure 10-86 Generated code sample for Operating system rules file

The generated code can be executed from the Design Studio with appropriate
connection and authority or it can be shipped to the target source where you like
to execute the WLM scheme.

Note: DB2 WLM artefact code generated by Design Studio is executed by
Design Studio against the target database. AIX WLM artefact code generated
by Design Studio (the classes script and the rules file) will NOT be processed
by Design Studio. Users need to carry the information in these files over to
their target AIX machine manually. To implement the code generated for AIX
Services classes and rules, you require root authority.
 Chapter 10. DB2 WLM and DWE Design Studio 317

7524ch10.fm Draft Document for Review October 2, 2007 10:12 am
318 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Chapter 11. DB2 Workload Manager and
DB2 Performance Expert

This chapter provides an introduction to how you can use DB2 Performance
Expert in coordination with DB2 Workload Manager functions.

As we described in earlier chapters of this book, DB2 9.5 provides various ways
to get information about your workload management (WLM) definitions, and
statistics about applications running within the WLM scope. You can write your
own reporting scripts to call the table functions, stored procedures, and event
monitors. DB2 Performance Expert, on the other hand, performs many of these
tasks for you, freeing you to spend your time analyzing the results — not writing
and maintaining scripts. In this chapter you can learn where DB2 Performance
Expert is the same, similar, or differs from the manual approach.
© Copyright IBM Corp. 2007. All rights reserved. 319

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
11.1 DB2 Performance Expert overview

When we think about monitoring a DB2 system, we can consider several areas:

� Applications
� Instance and database statistics
� Configuration
� Workload management

You can monitor your DB2 system’s real time and historical performance
behavior using DB2 Performance Expert. DB2 Performance Expert (PE) uses the
DB2 snapshot and event monitor capabilities to capture the performance data,
and stores the data in DB2 tables on the PE server. You use the DB2
Performance Expert Client to view and work with the data.

Chapter focus
This chapter discusses only the use of DB2 Performance Expert to monitor DB2
Workload Manager capabilities. If you want to learn more about general usage of
DB2 Performance Expert, you should consult the following sources:

� DB2 Performance Expert product information page at ibm.com:

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.ht
ml

� DB2 Performance Expert Library page

http://www-306.ibm.com/software/data/db2imstools/db2tools-library.html#expe
rt

� DB2 Performance Expert InfoCenter:

http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2too
ls.db2pemp.doc/db2pemphome.htm

� IBM Redbooks publication DB2 Performance Expert for Multiplatforms V2.2,
SG24-6470

How to get DB2 Performance Expert
DB2 Performance Expert is a part of the DB2 V9 Performance Optimization
Feature. In DB2 9.1, this included DB2 PE and Query Patroller. In DB2 9.5, the
feature includes DB2 PE and the Workload Management Advanced Features

<VERIFY THAT for naming and accuracy. wjc>

Author Comment: will these links change for PE V3 ???
320 DB2 Work Load Manager for Linux, UNIX, and Windows

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.html
http://www-306.ibm.com/software/data/db2imstools/db2tools-library.html#expert
http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.db2pemp.doc/db2pemphome.htm

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
DB2 Performance Expert is also available to purchase as a standalone product,
and has editions for DB2 Content Manager and DB2 Workgroup Edition. Consult
your IBM sales representative for more information, or check out the DB2
Performance Expert home page at

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.html

Installing and configuring DB2 Performance Expert
We provide the basic steps for setting up DB2 PE in this book. For detail
installation and configuration information, refer to DB2 Performance Expert for
Mulitplatforms Installation and Configuration Guide, SC19-1174.

The basic steps are:

1. Install PE Server.
2. Install PE Server FixPack, if applicable.
3. Configure PE Server.
4. Install PE Client.
5. Configure PE Client.

There are no special DB2 Performance Expert setup steps for monitoring DB2 in
a multi-partition (DPF) environment, or for monitoring WLM. There are some
configuration settings you can modify for frequency of data collection, which is
described in “Viewing workload statistics and histograms” on page 343.

For more technical information, hints and tips for WLM monitoring with PE, see
“DB2 Performance Expert technical information” on page 350.

11.2 Monitoring your DB2 environment

In this section, we look at a few of the basic monitoring capabilities of DB2
Performance Expert - whether you use WLM or not.

Monitoring applications
When you use DB2 Performance Expert to monitor the applications, or
connections, running on your system, you use the Application Summary and
Application Details views in the PE Client.

Application Summary
As seen in Figure 11-1, you can view various pieces of information about the
running applications in your system. This is called the Application Summary view.
The third column shows the Workload ID number. At a glance, then, you are able
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 321

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.html

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
to see what activities are running within which workloads. You can also filter, sort,
modify, and rearrange which columns appear in the Application Summary page.

Figure 11-1 Application Summary

Application Details
To view details about any one application, double-click the application row in the
Application Summary view, and a new window, Application Details, opens, see
Figure 11-2. You can look at the currently executing statement, and even launch
the DB2 Visual Explain. Some performance counters especially relevant to the
workload management functions are the timerons and cardinality estimates.
322 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-2 Application Details - SQL Statement and Package page

The Identification page of Application Details, shown in Figure 11-3, also shows
some information that can be useful in troubleshooting your workloads and
service classes. The workload ID value is in the top section under the Application
Information group heading. The fields named under the heading TP Monitor
client are the strings that can be set with the WLM_SET_CLIENT_INFO stored
procedure, or on the JDBC™ connection itself. An example of this is described in
4.3.2, “Creating the workloads” on page 68. In this figure, they were not set, so
they appear as “N/P” (not present).
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 323

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-3 Application Details - Identification page

DPF considerations
DB2 Performance Expert provides different views of the work running on your
DPF system. If PE detects a multi-partition instance, you will have a dropdown
list at the top of the window, where you can select the different views. The views
are:

� Individual partition - shows data for a single partition only.

� GROUP view - show data from each partition.
Note: This is not related to the DB2 database partition group definitions.

� GLOBAL view - shows aggregated data from all partitions (uses GLOBAL
snapshot).

In Figure 11-4, we see an example of the GROUP view of all applications, sorted
by the Total Sorts column, showing the most sorts at the top. The Group view is
useful for comparing performance counters between partitions at a glance. You
324 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
can display and sort different performance columns quickly see if there are
skews.

Figure 11-4 Application Summary - DPF - Group view

When you drill down to the Application Details in a DPF application, you can use
the Subsections page to view how a query is progressing. Figure 11-5 shows an
example.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 325

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-5 Application Details - DPF - Subsections

11.2.1 Monitoring instance and database statistics

You can use DB2 Performance Expert to monitor the overall instance and system
performance by looking at database objects such as buffer pools, table spaces,
tables, and so on. We do not show all the features here. We only show some
typical or important examples that could be relevant to a WLM environment.

Heavy-hitter tables
You can use the Statistics Details - Tables view to see which tables are being
accessed the most. In Figure 11-6, we see the data for only Partition 1, sorted by
Rows Read, and we can see the LINEITEM table is by far the most-read table.
326 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-6 Statistics Details - Heavy-hitter tables for Partition 1

Most costly statements
In the Statistics Details - Dynamic SQL view, you can see the statements in the
statement cache. By sorting on different columns, you can quickly see which
statements are the most costly in CPU time, the most executed, the
longest-running and so on. In Figure 11-7, we see the Dynamic SQL page for
Partition 1, sorted by the Average time per execution, which shows us the
longest-running statements at the top.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 327

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-7 Dynamic SQL - sorted by Average time per execution - Partition 1

Buffer pool hit ratio
In Figure 11-8, we see the buffer pool hit ratios for all the defined buffer pools,
across all the partitions. Using the Group view in this case is a quick way to see
the partitions at a glance.
328 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-8 Statistics Details - Buffer pool hit ratio - Group view

11.3 Monitoring DB2 Workload Manager

DB2 Performance Expert introduces new monitoring capabilities to coincide with
the DB2 9.5 workload management features. We describe those capabilities in
this section.

PE V3.1 uses only the Statistics, not the Activities, event monitor to capture WLM
performance data. The Statistics event monitor captures statistics that are
measured over a set period of time. Compared to Statement or Activities event
monitors, the Statistics event monitor is an inexpensive method of capturing
historical information because this type of event monitor deals with aggregated
activity information instead of individual activities and you can target it to a single
service class or work class. Within PE, the Statistics event monitor data is written
to tables in the monitored database, and PE retrieves the data into PE
performance database, and removes it from the monitored database. You do not
have to keep track of the event monitor table growth because PE keeps it cleared
out.

11.3.1 Workload Management Key Performance Indicators

The DB2 Performance Expert System Overview shows Key Performance
Indicators (KPIs) for many common performance counters. Counters are
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 329

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
grouped and shown in “perflets” on the System Overview. One of the perflets is
for Workload Management. In Figure 11-9, we see the most recent statistics
captured for WLM statistics for partition 0. The counters are sorted by the “worst”
at the top, which may vary by the type of counter.

Figure 11-9 System Overview - Workload Manager perflet

Most PE performance counters are collected from DB2 snapshots. The WLM
statistics, however, are collected only via the statistics event monitor and are
collected at a different interval than the snapshot counters. This is why you see
the time interval shown on the top of the WLM perflet - to let you know the
interval over which the statistics data were collected and that it may not match
the time stamp shown at the top-right of the window which is controlled by a
different refresh rate.

In Figure 11-9, we can see the System Overview refresh rate has been set to 1
minute, and this is what controls the time stamp at the top-right of the window.
330 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
The WLM collection interval is, however, specified elsewhere and we can tell it
was set to 5 minutes (10:17:27 AM - 10:22:21 AM).

We discuss how to configure the WLM collection interval in “Monitoring
non-default workloads” on page 341.

By watching the Workload KPIs, you can always have a current view of which
workloads are active and busy. If you need to investigate more about the
workloads, you can look at the Workload Management screens in PE.

11.3.2 Viewing workload management definitions

To view Workload Management detail data in PE, you must click on the Workload
Management icon on the Toolbar on the System Overview page, as shown in
Figure 11-10.

Figure 11-10 DB2 Performance Expert Toolbar

The first screen that appears lists each monitored database, with counts of the
various WLM objects defined in the database. An example is shown in
Figure 11-11. In our lab setup, we are only monitoring one database in the
instance. To drill down to more details for the WLMDB, we double-click on the
WLMDB.

Figure 11-11 Workload Management Details
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 331

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Let’s look at the same WLM definitions as described for the mixed workload in
7.3, “Manage the work” on page 176. Here we have one top-level service class
with several subclasses and workloads underneath.

The definitions for the mixed workload are shown in Figure 11-12. When you
select the Service Classes in the upper part of the screen, its associated
subclasses are highlighted in the lower part. In our mixed workload, we have
several subclasses all belonging to the HIGHLVL service class.

The columns displayed in the definition view can be rearranged or sorted. In our
case we have arranged the subclasses to show the common attributes such as
the values that were specified on the COLLECT AGGREGATE clause. It is an
easy way to see all our definitions at a glance.

Figure 11-12 WLM Service class definitions - mixed workload
332 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Next we want to view the definitions for the workloads, so we select Workloads
from the navigation tree on the left side of the window. In Figure 11-13, we can
see all the workloads for the WLMDB database, sorted by the evaluation order. In
Chapter 7, “WLM sample scenarios - Mixed OLTP and DSS environment” on
page 173, the OLTP workload was added and placed ahead of the other
workloads in the evaluation order, and indeed that is what we see here.

Figure 11-13 WLM Workload definitions - mixed workload

To view detail about any WLM definition, just double-click it. Figure 11-14 shows
an example detail page for the WL_PROD_QRY workload.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 333

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-14 Workload definition details

We can use Performance Expert history mode to see what the definitions were in
the past.

11.3.3 Viewing Workload Management statistics

In Chapter 4, Chapter 5, and Chapter 7, we saw examples of how to capture
statistical data for workloads. In this section, we look at how PE can do this.

Using PE to monitor the default WLM environment
If you do not configure WLM service classes, workloads, and so on, but you do
use DB2 Performance Expert, you will still be able to view the base statistics
counts that are available. The manual method is described in 3.5.2, “Monitoring
the default WLM environment” on page 55, where you can write a query to get
334 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
information. In PE, you can open the WLM Statistics page. In Figure 11-15, we
see that PE can display the same information you got from the query in
Example 3-6 on page 56, to view the high watermark, or peak, connections
within the default service classes.

The same screen also displays the service subclasses. When you select the
superclass, the associated subclass(es) will be highlighted.

Figure 11-15 WLM default Service Class statistics

To see more detail about the subclass statistics, double-click its entry on the
table in the lower portion of the screen. This launches a new tab, as shown in
Figure 11-16. Here we see the same information as on the previous screen but
for the single subclass. Since we have not enabled any of the collection
parameters on the service classes, many fields are reported as -1, meaning the
data is not present.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 335

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Notice also that we also have a section named Histograms. In this case there is
no histogram data because no collection has been activated yet. We see more
about histograms in “Viewing workload statistics and histograms” on page 343.

Figure 11-16 WLM default Subclass statistics details

You can view default workload statistics by selecting Workload from the
navigation tree on the Workload Management Details page, as shown in
Figure 11-17.
336 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-17 WLM default Workload statistics

DPF Mode
When you are using a DPF system, you have some other options for viewing the
statistics. We look at a default DPF system where, as in the previous examples,
we have not configured any WLM settings. In Figure 11-18, we see the same
type of information as we saw in Figure 11-15 on page 335, but instead this is
showing counts only for the designated partition - PART0.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 337

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-18 WLM default Service Class statistics - DPF- Partition 0

You can choose other views from the dropdown list. Let’s look at the GLOBAL
view next, in Figure 11-19. We selected GLOBAL from the list and in this case
the counts did not change.
338 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-19 WLM default Service Class statistics - DPF- GLOBAL view

In Figure 11-20, we see the results of choosing the GROUP option from the
dropdown list box. In this view, we can see the key counts for each partition. You
can’t see all the counts for all partitions on this page, so the most critical ones are
shown here.

Note: This view may not be available on systems with a very large number of
partitions.

Note to Reviewer: Question for PE dev: is that stmt correct about not being able to view
wiht many partitions? I think I saw this in other parts of PE at some customer site. What
is the max?
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 339

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-20 WLM default Service Class statistics - DPF- GROUP view

Double-click a Service Class to view the counts for all partitions for that one
service class, as shown in Figure 11-21.
340 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-21 WLM default Service Class statistics - DPF- GROUP details view

Monitoring non-default workloads
In earlier chapters of this book, we saw how to write queries against the statistics
event monitor tables to get information about the workload performance. Let’s
see how we can do that with DB2 Performance Expert.

When you monitor the statistics with DB2 PE, you do not need to create and
maintain the statistics event monitor yourself - PE does this. You also do not need
to write all your own queries to get at the information.

Let us assume we have the similar workload that has run against our WLMDB
database in 7.4.2, “Monitoring and analyzing the service classes” on page 185,
or in Chapter 5, “Monitoring” on page 83. We are using DB2 Performance Expert
to set up and collect the data from the statistics event monitor. The
WLM_COLLECT_INT database configuration value has been set to 0, which
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 341

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
allows PE to control its own data collection. We did not create the BASIC_MON
event monitor as described in the earlier chapters.

In the PE monitored instance properties, we define the collection interval to be 5
minutes for both workload definitions and workload statistics, as shown in
Figure 11-22.

Figure 11-22 Setting the WLM statistics collection interval in DB2 Performance Expert

That is all the setup that is required. PE will create a statistics event monitor in
the monitored database and it will handle the data retrieval. You can read more
about the technical details in “DB2 Performance Expert technical information” on
page 350.

Following are some examples of screens where you can quickly see the WLM
statistics without writing the queries as described in earlier chapters of this book.

Observe running applications by workload ID
In Figure 11-23, we see the Application Summary showing all the database
connections, sorted by the Workload ID. We can see most of them are in either
workload 3 or 5. We know from looking at the WLM definitions earlier
342 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-13 on page 333, that workload 3 is WL_OLTP, and workload 5 is the
WL_PROD_RPT workload.

Figure 11-23 Application Summary - sorted by Workload ID

Viewing workload statistics and histograms
In Figure 11-24, we can see a summary view of all the most recently captured
WLM statistics data.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 343

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-24 WLM Service Class statistics - summary view

The PROD_RPT service class is the only one with statistics at the moment, so
we would like to drill down to see more information about that one. We
double-click on the HIGHLVL.PROD_RPT subclass on the lower part of the
window. This opens up another tab, as we see in Figure 11-25. This is more or
less the same information as on the summary page, but you can view it for just
one subclass. The lower area of the window references some Histogram
statistics that are available.
344 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-25 WLM Subclass statistics - HIGHLVL.PROD_RPT

We double-click the Request execution time (ms) statistic, to open up another tab
where we can view the histogram chart, which is shown in Figure 11-26.

The analysis and conclusions about the performance data are the same as were
described in earlier sections of this book. The benefit of using DB2 Performance
Expert is that you can get at the data more quickly.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 345

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-26 WLM Histogram view for PROD_RPT Request execution time

Viewing long-term WLM statistics through PE GUI
The DB2 Performance Expert server captures DB2 performance statistics using
the snapshot facility, and WLM performance statistics using the event monitor.
The performance data is stored in DB2 tables in the PE performance database.

The detailed short-term history data is what you see on the screens in the PE
GUI when you are in history mode, and is the primary way in which you access
the short-term data.

The short-term data is automatically aggregated and stored in different tables in
the PE performance database. These tables are what comprise the Performance
Warehouse (PWH). Traditionally, the PWH data is only accessible through the
reports and queries provided by PE in the PWH screens. With more recent
346 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
versions of PE, however, you can view many of the DB2 and OS counters from
the GUI screen, in the form of a trend analysis graph.

To access the PWH trend analysis, you must right-click on the performance
counter you are interested in, to bring up the context menu. Not all performance
counters can be viewed this way, so if the context menu item is disabled (grayed
out) the counter is not available. If it is not grayed out, select the item, as shown
in Figure 11-27. In this case we are looking at a WLM statistic - the peak value for
cost estimate (timerons) for the HIGHLVL.ADMINS service class.

Figure 11-27 Launching the PWH trend analysis

When you launch the PWH trend analysis, a new tab open and a graph is
displayed. The graph shows the actual values (in blue), but also calculates a
historical trend (dark gray) based on those values, and a future projection (light
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 347

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
gray) of the values. In Figure 11-28, we see the trend for the cost estimate WLM
counter. You can adjust the view to show longer or shorter time ranges up to one
year.

These trend charts can be helpful to quickly spot when something may be either
trending out of good performance or maybe a temporary spike has occurred that
you can investigate further. Along with the WLM counters we see here, the trend
charts are available for OS and DB2 statistics counters such as paging space
usage, or buffer pool hit ratios, table pages used, rows read and so on.

Figure 11-28 PWH Trend Analysis chart - timerons

Viewing WLM statistics with PE Performance Warehouse
When you want to find more detail about long-term performance data, you can
use the predefined queries and reports that are in the Performance Warehouse
348 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
(PWH). You can also create your own queries or modify the ones that come with
PE.

In Figure 11-29, we see a list of the predefined queries that come with PE. We
are interested in the WLM-related queries. In this example we execute the query
for WLM Workload Definitions.

Figure 11-29 PE Performance Warehouse - Predefined Queries

To execute a query as-is, you can just right-click the query and select EXECUTE
from the context menu. In many cases you might like to modify the query a bit to
suit your own needs, but we do not explore that in this section.

Note: To see more examples about how to use the DB2 Performance Expert
Performance Warehouse queries and reports, see IBM Redbooks publication,
DB2 Performance Expert for Multiplatforms V2.2, SG24-6470.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 349

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
After executing the query, the results are displayed in the PE window as shown in
Figure 11-30. You can save the results to a text file, or view them in a browser,
where you could also save the HTML output.

Figure 11-30 Performance Warehouse query results - Workload Definition

11.4 DB2 Performance Expert technical information

In this section, we discuss a few of the key technical and architectural points that
can help you better understand how PE and WLM work together, and how WLM
data collection is different from the DB2 snapshot performance data.

Database Configuration parameter WLM_COLLECT_INT
If you want to use PE to capture the WLM statistics information, you must set the
database configuration parameter WLM_COLLECT_INT to 0. If you set
WLM_COLLECT_INT to some other value, and you enable WLM monitoring for
PE, then PE will reset it back to 0, because PE manages its own collection.
350 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
In a DPF environment, be sure to set this parameter on all partitions.

Event monitor naming convention
DB2 Performance Expert uses the STATISTICS event monitor to capture WLM
performance data. PE will create the event monitor in the monitored database.
The event monitor name will be derived from the name of the PE server host and
instance names. You will be able to see the name of the event monitor easily in
the DB2 PE Application Summary window, because of how DB2 9.5 exposes the
name in the snapshot, as shown in Figure 11-31. In this case the PE Server
hostname is CETUS and the PE instance name is PEINST, so the event monitor
name is CETUS__PEINST (though the full name is truncated in the snapshot
output).

Figure 11-31 PE Application Summary showing active event monitor

Notice that there is another event monitor active on this instance - called
VIOLATIONS. This is also a WLM-related event monitor but it is not for Statistics,
it is for the workload threshold violations so it is of the Activity type. The PE event
monitor can coexist with activity event monitors you may create manually.

Event monitor tables
The PE Statistics event monitor captures the event data into tables in the
monitored database. The tables are created under the schema of the user ID the
PE server uses to connect to the monitored database. The user ID is specified
during the PE server configuration. The table names themselves will carry the
event monitor name along with the table-type as a prefix, for example see
Figure 11-32.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 351

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-32 Statistics Details - Tables view of PE event monitor tables

Event monitor activation and management
The PE server will retrieve the event monitor data that has accumulated during
the collection interval you specify. When PE retrieves this data, it stores it in its
own performance database on the PE server, and deletes it from the event
monitor tables on the monitored database. The benefit of this approach is to keep
the event monitor table size to a minimum on the monitored database, thus
preserving your disk space.

If you create and enable event monitors outside of PE, you are responsible for
ensuring the event monitor tables do not grow without bound. You can check this
quite easily in PE, by looking at the Tables information in Statistics Details, as
shown in Figure 11-33. In this example we look at the table
BASIC_MON_HISTOGRAMS, which was used for some examples in earlier
sections of this book when not discussing PE.
352 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-33 PE Table detail for non-PE histogram event monitor table

In the Redbook lab, we intentionally did not clear out this tables because we were
conducting tests, but if you look at Figure 11-34, which is a PWH trend chart of
the Data Object Pages counter, you can see how the table has grown over time
and would continue to do so unless you took action.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 353

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-34 Trend chart of manual event monitor table size

Compare this to the PE event monitor table size, as shown in Figure 11-35,
where you can see the table is much less volatile size.
354 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Figure 11-35 Trend chart of PE event monitor table size

PE will create and activate the event monitor when you enable history collection
for WLM. This is enabled by default, so by default the event monitor and the
associated tables are created when you start the PE server.

WLM collection interval
We mentioned above that PE does not use the WLM_COLLECT_INT parameter
to control its WLM statistics collection. Instead, you should set the interval in the
PE properties for the monitored instance as shown in Figure 11-36. You can set
the collection time for the WLM definitions and the WLM statistics. To make
reporting easier, it is most convenient to make the intervals the same. PE will
check the definitions from the DB2 catalog, and flush the event monitor data at
the interval you specify.
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 355

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
Figure 11-36 PE collection interval properties

The rest of the DB2 performance data is collected using snapshots, which are
controlled by the other interval values on the properties page. These are
independent from the WLM collection times.

DIfference between WLM and DB2 statistics refresh
On all PE screens except WLM, when you refresh the screen you are asking the
PE server to take a snapshot from the monitored database and show you the
results. On the WLM screens, however, since it does not use snapshot, when you
are using the GUI screens you are only ever looking at the most recent event
monitor data collected by the PE server. Depending on the collection interval you
specified, this could be fairly recent or could be older data. You can always know
the date/time of the data on the screen by looking at the upper-right portion of the
screen. This is true for all PE screens, not just WLM data.

If you are already familiar with PE’s other features, this WLM behavior will seem
quite strange. If you consider, however, the underlying architecture of how PE
captures, stores, and presents the information to you in the GUI, you will get
more comfortable with PE.
356 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch11.fm
Coexisting event monitors
As we saw in the earlier chapters of this book, you can create your own event
monitors for capturing WLM data. There are two types of event monitors -
statistics and activities. PE currently only uses the statistics event monitor, so
there are no coexistence issues with creating your own activity event monitor.

If you create and activate your own statistics event monitor - which also assumes
you will modify the WLM_COLLECT_INT parameter - PE will not collect the WLM
data. Your manual event monitor will supersede the PE event monitor. It is best to
avoid this situation altogether and just let PE do the work for collecting WLM
statistics data. If you do have another statistics event monitor, PE will indicate
this on the WLM information page, as shown in Figure 11-37, and tell you to drop
it. It does not really hurt anything to keep both defined, but your results may be
unpredictable if you try to activate both of them.

Figure 11-37 PE warning for duplicate event monitor
 Chapter 11. DB2 Workload Manager and DB2 Performance Expert 357

7524ch11.fm Draft Document for Review October 2, 2007 10:12 am
358 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
Chapter 12. Administration

This chapter discusses the key points to check in administering a DB2 workload
management environment. As you gain familiarity with how DB2 WLM works,
you will be creating a number of workload management objects, and collecting
baseline data and statistics for analysis. After enabling the WLM controls and
fine-tuning the WLM monitoring, you will have a working WLM environment that
meets your needs. Once migrating all of your WLM settings to full production, you
need to periodically purge old data, backup the WLM settings, and take note of
the tools needed in problem diagnosis.

We discuss how to administer a WLM environment through the following topics:

� WLM logs and maintenance
� WLM problem diagnosis
� WLM backup and recovery
� WLM authorization

12
© Copyright IBM Corp. 2007. All rights reserved. 359

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
12.1 WLM logs and maintenance

All WLM object definitions, functions, and data are stored in the WLM-specific
DB2 catalog tables and the DB2 event monitor tables. To determine the
WLM-specific messages being written out, you should check the DB2 diagnostic
log, db2diag.log, and the administration notification log, named
<DB2 instance name>.nfy.

PD_GET_DIAG_HIST table function
In DB2 9.5, a new SQL administrative table function for logging facilities called
PD_GET_DIAG_HIST is available. This table function can return event
notification and diagnostic log records from many facilities such as DB2 workload
management, optimizer statistics, and the administration notification logs.

The information returned by the PD_GET_DIAG_HIST table function is listed as
follows:

� FACILITY - A logical grouping which records relate to

� RECTYPE - The type of record

� TIMESTAMP - The time that message was created

� TIMEZONE - The time difference in minutes from Universal Coordinated Time
(UTC)

� INSTANCENAME - The name of the instance where the message was
created

� DBPARTITIONNUM - The partition number where the message was created

� LEVEL - The severity level of the record

� IMPACT - The impact of the message from a user’s perspective

� DBNAME - The name of the database being accessed while this message
was created

� EDU_ID - The engine dispatched unit identifier that created this message

� EDUNAME - The engine dispatched unit that created this message

� PID - The operating system process identifier that created this message

� PROCESS_NAME - The operating system process name that created this
message

� TID - The thread numerical identifier that created this message

� APPLNAME - The name of the client application that initiated the connection,
if it is available
360 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
� APPLHANDLE - A system-wide unique identifier for the application that
initiated the application when available

� AUTH_ID - The system authorization identifier for the process

� PRODUCT - The name of the product that created the message

� COMPONENT - The name of the component that created the message

� FUNCTION - The name of the function that generated the message

� PROBE - The probe point number used to identify where the message was
generated in the function

� CALLEDPRODUCT - The name of the product at the source of the error

� CALLEDCOMPONENT - The name of the component at the source of the
error

� CALLEDFUNCTION - The name of the function at the source of the error

� OSERR - The operating system error number

� RETCODE - The product specific return code

� MSGNUM - The numeric message number for the associated message, if it is
available

� MSGTYPE - The type related to the message identifier

� MSG - A short description text for this record

� OBJTYPE - This is the type of object the event applies to, if it is available. The
values that are WLM-specific are:

– HISTOGRAM TEMPLATE
– SERVICE CLASS
– THRESHOLD
– WORK ACTION SET
– WORK CLASS SET
– WORKLOAD

� OBJNAME - The name of the object the event relates to, if it is available

� OBJNAME_QUALIFIER - This is additional information about the object.

� EVENTTYPE - The action or verb associated with this event

� EVENTDESC - A short representation of the key fields for this event

� FIRST_EVENTQUALIFIERTYPE - The type of the first event qualifier

� FIRST_EVENTQUALIFIER - The first qualifier for the event

� SECOND_EVENTQUALIFIERTYPE - The type of the second event qualifier

� SECOND_EVENTQUALIFIER - The second qualifier for the event

� THIRD_EVENTQUALIFIER_TYPE - The type of the third event qualifier
 Chapter 12. Administration 361

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
� THIRD_EVENTQUALIFIER - The third qualifier for the event

� EVENTSTATE - The state of the object or action as a result of the event

� EVENTATTRIBUTE - The event attributes

� EVENTSTACK - The logical event stack at the point the record was logged
when applicable

� CALLSTACK - The operating system stack dump for the thread that
generated this record when applicable

� DUMPFILE - The name of the secondary dump file associated with the log
record when applicable

� FULLREC - The formatted text version of the entire record

WLM-specific records can be retrieved using this table function if the
COMPONENT column is set to “WLM”. The table function PD_GET_DIAG_HIST
is invoked by passing the following parameters:

PD_GET_DIAG_HIST (facility, rectype, impact, start_time, end_time)

Example 12-1 invokes the PD_GET_DIAG_HIST table function with a RECTYPE
EX and all WLM-specific records.

Example 12-1 Querying the PD_GET_DIAG_HIST table function

SELECT facility, rectype, timestamp, impact,
 SUBSTR(objtype,1,18) AS objtype,
 SUBSTR(msg,1,50) AS msg,
 fullrec
FROM TABLE (PD_GET_DIAG_HIST('MAIN','EX','',
 CAST(NULL AS TIMESTAMP),
 CAST(NULL AS TIMESTAMP))) AS T
WHERE component = 'WLM';

Example 12-2 shows part of the output results from the query.

Example 12-2 Sample output results from PD_GET_DIAG_HIST table function

MAIN EX 2007-09-07-18.05.46.629491 Critical
SERVICE CLASS -
2007-09-07-18.05.46.629491-300 E10548172A501 LEVEL: Event
PID : 721158 TID : 14774 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : WLMDB
APPHDL : 0-248 APPID: *N0.db2inst1.070907230531
AUTHID : DB2INST1
EDUID : 14774 EDUNAME: db2agent (WLMDB) 0
FUNCTION: DB2 UDB, WLM, sqlrwCommitWLMDDL, probe:500
ALTER : SERVICE CLASS : SYSDEFAULTSYSTEMCLASS : success
362 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
IMPACT : Critical
DATA #1 : signed integer, 4 bytes
1
MAIN EX 2007-09-07-18.05.59.031956 Critical
SERVICE CLASS -
2007-09-07-18.05.59.031956-300 E10548674A506 LEVEL: Event
PID : 721158 TID : 14774 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : WLMDB
APPHDL : 0-248 APPID: *N0.db2inst1.070907230531
AUTHID : DB2INST1
EDUID : 14774 EDUNAME: db2agent (WLMDB) 0
FUNCTION: DB2 UDB, WLM, sqlrwCommitWLMDDL, probe:500
ALTER : SERVICE CLASS : SYSDEFAULTMAINTENANCECLASS : success
IMPACT : Critical
DATA #1 : signed integer, 4 bytes
2

WLM maintenance
If you are using automatic collection of workload management statistics, the
event monitor files and tables can be filled up over time. You need to prune your
event monitor files or tables periodically to ensure that workload management
statistics collection does not stop unexpectedly.

The workload management statistics table functions report the current values of
the in-memory statistics. If you have automatic workload management statistics
collection enabled, these values are reset periodically on the interval defined by
the WLM_COLLECT_INT database configuration parameter. When looking at
the statistics reported by the table functions, you should always consider the
LAST_RESET column. This column indicates the last time the in-memory
statistics were reset. If the time interval between the last reset time to the current
time is not sufficiently large, there may not be enough data collected to allow you
to draw any meaningful conclusions.

A reset of workload manager statistics applies to all users.

12.2 WLM problem diagnosis

When a problem is encountered in WLM, the symptoms of the problem must first
be examined. The following questions can be asked to try to narrow down the
source of the problem:

� Does the problem have anything to do with how a WLM object was defined?

WLM problems can usually result if the WLM object definitions are incorrectly
created or altered. Review the WLM object definitions to ensure that the WLM
 Chapter 12. Administration 363

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
objects are valid. Using Design Studio is one way to help validate WLM object
definitions before they are created or altered. If you have DB2 Performance
Expert installed, you also can view the DB2 WLM definitions from PE.

� Does the problem in WLM occur by itself, or does it occur when other DB2
problems occur?

Review the diagnostic logs, db2diag.log, and the administration notification
log, < DB2 instance name>.nfy to determine if the WLM problem is related to
a DB2 problem and isolate the source.

� Is the problem related to a WLM workload or workload occurrence?

You need to gather the following information about workloads:

– Get the list of workload occurrences using the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURENCES table
function.

– Get the identifier for the workload and workload occurrence using the
WLM_GET_WORKLOAD_OCCURENCE_ACTIVITIES table function.

– Get the list of all activities and requests running under a workload
occurrence using the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function.

– Get workload information in memory using db2pd -db <database name>
-workloads command.

– Get information from the PD_GET_DIAG_HIST table function and the
DB2 diagnostic logs.

� Is the problem related to a WLM service class using more than a fair share of
agents?

One possible cause is a data server resource, such as an agent, is
overutilized by a group of users or an application. A service class may be
using more than its fair share of agents. Determine the service class that is
overutilizing resources and take action to limit the resources being used by
the service class.

Example 12-3 illustrates the use of the
WLM_GET_SERVICE_CLASS_AGENTS table function to determine how
many agents are working for each service class.

Example 12-3 Determine how many agents are working for each service class

SELECT SUBSTR(agents.service_superclass_name,1,19) AS
superclass_name,
 SUBSTR(agents.service_subclass_name,1,19) AS subclass_name,
 COUNT(*) AS agent_count
364 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', CAST(NULL AS
BIGINT), -2)) AS agents
WHERE agent_state = 'ACTIVE'
GROUP BY service_superclass_name, service_subclass_name
ORDER BY service_superclass_name, service_subclass_name

� Is the problem, that is, a system slowdown, related to the configuration of
service classes?

Use the following principles to address this problem:

– Resolve DB2 locking conflicts on the application and environment if they
exist.

– Increase the thresholds if a service class is running too close to its
threshold levels.

– In an AIX environment, if the resources allotted to a DB2 service class are
being exhausted, determine if the mapped AIX service classes are not
getting sufficient CPU, I/O bandwidth, or other resources.

– An increased amount of activity in a service class could lead to abnormal
resource consumption. Check the number of completed activities in the
service class to determine if the amount of work being done in the service
class is reasonable.

– More activities in a service class can lead to increased queue times for
activities. Check to see if the average activity lifetime for a particular
service class has increased. If the increase in average lifetime is
unacceptable, allocate more resources to the service class and reduce the
concurrency threshold. The query in Example 12-4 can be used to get a
high-level overview of what is occurring on a service class. A sharp
increase in ACTAVGLIFETIME over time could be an indication that the
resources for a service class are being exhausted.

Example 12-4 Query to get a high-level overview of activity in a service class

SELECT SUBSTR(service_superclass_name,1,19) AS superclass_name,
 SUBSTR(service_subclass_name,1,18) AS subclass_name,
 SUBSTR(CHAR(SUM(coord_act_completed_total)),1,13) AS
 actscompleted,
 SUBSTR(CHAR(SUM(coord_act_aborted_total)),1,11) AS actsaborted,
 SUBSTR(CHAR(MAX(concurrent_act_top)),1,6) AS actshw,
 CAST(CASE WHEN SUM(coord_act_completed_total) = 0 THEN 0
 ELSE SUM(coord_act_completed_total *
 coord_act_lifetime_avg) /
 SUM(coord_act_completed_total)
 END / 1000 AS DECIMAL(9,3)) AS actavglifetime
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS ('', '', -2)) AS scstats
GROUP BY service_superclass_name, service_subclass_name
 Chapter 12. Administration 365

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
ORDER BY service_superclass_name, service_subclass_name

� Is the problem related to not seeing the expected behavior when using AIX
WLM with DB2 WLM?

If you are not seeing the desired behavior, you may need to adjust the AIX
WLM configuration. The AIX WLM configuration can be reviewed with the
help of AIX WLM tools such as wlmstat, wlmmon. and wlmperf.

In summary, WLM problem diagnosis requires the use of DB2 diagnostic logs,
the WLM table functions such as PD_GET_DIAG_HIST,
WLM_GET_SERVICE_CLASS_AGENTS, WLM
_GET_SERVICE_CLASS_STATS and the db2pd utility to get the needed
information on what is happening in the system.

The db2pd utility

The db2pd utility is used to retrieve information from DB2 database system
memory sets to help in problem diagnosis. In DB2 9.5, this utility has additional
options to help get basic information about workloads, work action sets, and work
class sets. The db2pd utility can be used to return the following information:

� A list of workload definitions in memory
� All enabled work action sets
� All enabled work actions in the enabled work action sets
� All work class sets referenced by an enabled work action set
� All work classes in those work class sets

Example 12-5 shows how to invoke the db2pd options for WLM.

Example 12-5 Using the db2pd utility to get WLM information

db2pd -db WLMDB -workloads -workactionsets -workclasssets

Example 12-6 is a sample portion of the output of the db2pd.

Example 12-6 Sample output from the db2pd command

Database Partition 0 -- Database WLMDB -- Active -- Up 0 days 05:23:56

Workload Definition:
Address WorkloadID WorkloadName DBAccess
ConcWLOThresID MaxConcWLOs WLOActsThresID MaxWLOActs
ServiceClassID
0x07700000AB7B0080 3 WL_OLTP ALLOW 0
9223372036854775806 0 9223372036854775806 20
0x07700000AB7B0168 4 WL_BATCH ALLOW 0
9223372036854775806 0 9223372036854775806 17
366 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
0x07700000AB7B0250 5 WL_PROD_RPT ALLOW 0
9223372036854775806 0 9223372036854775806 18
0x07700000AB7B0340 6 WL_PROD_QRY ALLOW 0
9223372036854775806 0 9223372036854775806 19
0x07700000AB7B0430 7 WL_ADMIN ALLOW 0
9223372036854775806 0 9223372036854775806 16
0x07700000AB7B0518 1 SYSDEFAULTUSERWORKLOAD ALLOW 0
9223372036854775806 0 9223372036854775806 13
0x07700000AB7B05E8 2 SYSDEFAULTADMWORKLOAD ALLOW 0
9223372036854775806 0 9223372036854775806 13

...

Only the DB2 instance owner can run the db2pd utility. If you are not the DB2
instance owner, you will get the following error message:

Unable to attach to database manager on partition 0.
Please ensure the following are true:
 - db2start has been run for the partition.
 - db2pd is being run on the same physical machine as the
partition.
 - DB2NODE environment variable setting is correct for the
partition
 or db2pd -dbp setting is correct for the partition.

12.3 WLM backup and recovery

WLM information such as service class, workload, work action set, work class set
and threshold objects are kept in the DB2 system catalog. Therefore, all WLM
settings and vital WLM information are backed up automatically once the DB2
catalog table space is backed up.

However, to save the WLM object definitions, we recommend you run the
db2look utility to backup the WLM definitions. The following command saves the
WLM object definitions in a file:

db2look -d WLMDB -wlm -o wlm.definitions.out

This saves all the CREATE and ALTER statements for WLM objects, including
all WLM CREATE event monitor statements.
 Chapter 12. Administration 367

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
12.4 WLM authorization

DB2 workload management objects do not have owners like regular DB2
database objects. For example, if a resource setting such as prefetch priority for
a service class is changed, it affects not only the service class being changed.
but other service classes of the same tier. The WLM administrator should have
SYSADM or DBADM authority in order to manage WLM objects. If there are
many WLM administrators within the organization, these administrators must
frequently communicate with each other, otherwise they can inadvertently cancel
or override WLM settings set by other administrators.

A session user must have the USAGE privilege on a workload before a workload
can be associated with its DB2 connection. If the session user, or the group, or
the role it belongs to does not have the USAGE privilege on a workload, then the
data server will look at other matching workloads where that session user, or the
group, or the role it belongs to, to see if it has the USAGE privilege. You can
query the SYSCAT.WORKLOADAUTH catalog view to determine if a user,
group, or role has been granted USAGE privilege on a workload.

The USAGE privilege on the SYSDEFAULTUSERWORKLOAD workload is
granted to PUBLIC at database creation time, if the database was created
without a RESTRICT option. If the database was created with the RESTRICT
option, you must explicitly grant the USAGE privilege on the
SYSDEFAULTUSERWORKLOAD workload to all non-SYSADM and
non-DBADM users.

You have implicit USAGE privilege on all workloads if you have SYSADM or
DBADM authority. The USAGE privilege on the SYSDEFAULTADMWORKLOAD
workload cannot be granted, since it can only be used by SYSADM and DBADM
users.

Example 12-7 shows the GRANT USAGE statement on the workload
CAMPAIGN to user BILL, group SALES, and a ROLE called SALESPERSON.
The USAGE privilege on the workload can also be granted to PUBLIC.

The GRANT USAGE statement takes effect when it is committed.

Example 12-7 Examples of the GRANT USAGE command

GRANT USAGE ON WORKLOAD campaign TO USER bill;
GRANT USAGE ON WORKLOAD campaign TO GROUP sales;
GRANT USAGE ON WORKLOAD campaign TO ROLE salesperson;
GRANT USAGE ON WORKLOAD campaign TO PUBLIC;
368 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch12.fm
You can use the REVOKE USAGE command to revoke USAGE from a user,
group, or role from a workload. However, the REVOKE USAGE command does
not work on the SYSDEFAULTADMWORKLOAD.

Example 12-8 shows how the USAGE privileges granted in Example 12-7 can be
revoked.

Example 12-8 Example of the REVOKE USAGE command

REVOKE USAGE ON WORKLOAD campaign FROM USER bill;
REVOKE USAGE ON WORKLOAD campaign FROM GROUP sales;
REVOKE USAGE ON WORKLOAD CAMPAIGN FROM ROLE salesperson;
REVOKE USAGE ON WORKLOAD campaign FROM PUBLIC;
 Chapter 12. Administration 369

7524ch12.fm Draft Document for Review October 2, 2007 10:12 am
370 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
Chapter 13. Query Patroller and DB2
Governor

Prior to DB2 9.5, DB2 workload management consisted of Query Patroller (QP)
and the DB2 Governor. Now that we have this new offering of the DB2 Workload
Manager, it is quite natural to wonder why there was a need to build a separate
offering. With the introduction of DB2 WLM, what happens to all the Query
Patroller and Governor installations? How do I migrate a QP or Governor
configuration to take advantage of WLM. We address these questions and more
in this chapter.

We discuss the following topics:

� A brief background of the QP and Governor features.

� The differences between the workload management solutions of QP and
Governor compared to what is available in DB2 9.5.

� An explanation of how DB2 WLM, QP, and the Governor can co-exist on the
same data server.

� Some suggestions on how to approach the task of migrating from QP and the
Governor to the new WLM features.

13
© Copyright IBM Corp. 2007. All rights reserved. 371

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
13.1 Query Patroller and DB2 Governor background

In this section, we give some background about Query Patroller and DB2
Governor. We also provide the difference between DB2 WLM, Query Patroller,
and DB2 Governor.

13.1.1 Query Patroller

Query Patroller was designed as a predictive governing tool to manage query
workloads based on who submitted the query and a cost-estimate (from the DB2
optimizer) representing a relative measure of resources required to execute the
query. The primary management technique is to control the maximum
concurrency of queries in these classifications. For example, to prevent a single
user from monopolizing the data server resources, you could limit that user to
running only 10 queries at a time and any queries over that threshold would be
queued until one of the running queries completed. Even more useful is the
concurrency control for queries classified by size. It is the very long queries that
cause disruption to the shorter running queries, so it can be quite effective to limit
the number of long running queries running at any given time.

Figure 13-1 on page 372 illustrates the Query Patroller environment

Figure 13-1 Query Patroller environment
372 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
In a QP environment, the life-cycle of a query looks something like the following:

� Queries requests are submitted to run on the server

� The query is intercepted on the server and QP determines if it is a query to be
managed or bypassed. Managing queries requires some overhead, so it is
often a good idea to minimize the overhead by selecting a set of queries, the
really short queries or from a given application, to bypass QP altogether.

� Information about each managed query is written to a QP control table. The
query attributes (submitter, estimated cost) are evaluated and a decision is
made on whether to run the query now, queue the query until other work
completes, or to put the query in a hold state (which is basically an error
condition saying the query looks like it is just too large to run at all and it
needs to be looked at).

� Once QP decides a query can be run, it is released to the data server to
execute along with everything else on the system.

� QP is not aware of the query until the execution phase is complete and QP
updates that query's control table entry with statistics about the execution
results (for example, execution time, time queued, error code, and so on).

13.1.2 DB2 Governor

Query Patroller query management is fundamentally based on estimates and no
matter how accurate those estimates may be, they are still estimates which
means they could be wrong. Perhaps RUNSTATS has not been run for a while
(the optimizer uses statistics to choose an optimal access plan, so they should
be kept up to date), for example.

This is where the DB2 Governor nicely complements Query Patroller with its
reactive approach to workload management. Once QP lets the query loose to
execute, the DB2 Governor then watches for certain thresholds during the
execution which can result in a couple of events to be triggered.

The thresholds include:

� Maximum execution time
� Maximum number of locks obtained and held
� Maximum number of rows returned to the application
� Maximum number of rows read while building a result set
� Maximum elapsed time since a unit of work became active
� Maximum connection idle time

The events that can be triggered include:

� Modify the agent priority at the operating system
� Force the application to terminate the connection and the database activity
 Chapter 13. Query Patroller and DB2 Governor 373

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
13.1.3 Differences between QP, Governor, and WLM

While Query Patroller and the DB2 Governor are used successfully by many DB2
customers, as time goes on those customers are looking for more and more
features that the existing products were not designed to address. DB2 WLM was
built to address those needs in a flexible and scalable manner.

Table 13-1 highlights some of the main differences between workload
management in DB2 9 (with QP and the Governor) and DB2 9.5 (with DB2
WLM).There are many other features in the products (such as concurrency
control, or thresholds for elapsed time) that are found in both workload
management offerings that are not listed in this table, but that is simply because
the function is close to equivalent.

Table 13-1 Differences in Workload Management in DB2 9 and DB2 9.5

Query Patroller/ DB2 Governor DB2 Workload Manager

Treats the whole database as its execution
environment.

Allows multiple execution environments to
be created using workloads and service
classes.

Does not have any mechanism to explicitly
control resources.

Provides mechanisms to explicitly control
and influence resources during execution.

QP only manages DML activities and
typically only the subsets of queries that
have the biggest resource impact on the
system (that is. shorter transactional
queries are usually bypassed due to
increased overhead).

All database activities are mapped to a
service class. Many more database
activities can be explicitly managed (e.g.
DML, DDL, Load, and so on) The level of
workload management is customized for
each service class.

Once QP releases an activity for
execution, it has no further influence (or
information) on the activity until
completion.

Keeps track of, and can continue to
manage, activities throughout the life cycle
of the work. Many monitoring functions are
available to quickly determine the state of
the workload.

Intercepts and keeps track of activities
from the coordinator partition perspective.

Integrated into the engine, which allows
for awareness and tracking of activities
across partitions.

QP relies primarily on concurrency control
based on query cost estimates for
workload management

Explicit resource control for a specified
execution environment based on
estimated and real resource consumption.

Each managed query has detailed
information recorded in a table.

Configurable as to the level of information
to be captured for managed activities.
374 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
13.2 Co-existing

Switching from a workload management solution using QP and the Governor to
one using the WLM features has many benefits, but it is not feasible to assume
that this can happen without some thought and a little bit of work. We discuss
what the environment looks like in DB2 V9.5 and then discuss how to approach
the task of moving to a WLM solution.

To dispel any misconceptions: QP and the Governor may not be the future
strategic direction for workload management in DB2, but they are still fully
supported in DB2 9.5 and are functionally equivalent to previous versions.

When you first install DB2 9.5, there is a default workload created to identify all
the user database activities and map them to a default user service class. The
default user service class is the execution environment where all database user
activities will run. There are other database activities, like prefetching or some
health monitoring activities, that would be mapped to either a system or
maintenance service class. This discussion do not include those activities.

QP and the Governor only intercept and manage queries assigned and executing
in the default user service class. In a vanilla install or migration, this includes all
database activities so the life cycle of a query essentially stays the same except
that before QP gets to take a look at the query, it is first assigned to the default
service class and the Governor will only act on that same set of activities.

Figure 13-2 illustrates the Query Patroller in a default WLM environment.

QP handles predictive governing, based
on estimates. The Governor handles
reactive governing based on actual
consumption.

Offers both predictive and reactive
governing options.

When the Governor is set to stop an
activity when a threshold is exceeded, the
entire application connection is forced.

Threshold actions can be applied to a
specific activity. As well as being able to
cancel an activities, a less harsh option is
available to simply capture details on the
activity for future analysis.

Query Patroller/ DB2 Governor DB2 Workload Manager
 Chapter 13. Query Patroller and DB2 Governor 375

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
Figure 13-2 Query Patroller in a default WLM environment

If there are workloads defined to route user activities to service classes other
than the default use class, Query Patroller and the Governor will not be able to
manage the activities as they will bypass those tools completely.

13.3 Transitioning from Query Patroller and Governor

We just learned how QP and the Governor can, and will continue to, function
properly on a data server at the version 9.5 level. In this section, we show you
how to approach the transition of managing workloads with Query Patroller and
the Governor to managing workloads with DB2 Workload Manager.

13.3.1 Is there a migration tool?

Many Query Patroller customers have achieved success with managing
workloads using query classes and other submitter thresholds. A lot of time may
have been spent build the configuration and they are comfortable with what they
have built. It is only natural that these customers would hope for a migration tool
that would simply map a QP configuration to a WLM configuration.
376 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
However, even though it is certainly possible to map a QP configuration to a
WLM one, a migration tool is not provided. The reason is because the
fundamental architecture of the two products is quite different. QP relies primarily
on concurrency thresholds and query classes to control the maximum number of
queries running at any given time, often based on query access plan cost
estimates. DB2 WLM, on the other hand, has more concrete control options on
actual resources in addition to concurrency controls.

A migration tool would have resulted in a fairly complex DB2 WLM configuration
when it is quite likely that a more straight forward one would have done the same
(and probably better) job.

13.3.2 Re-examining goals

The critical factor for establishing a successful workload management
environment is to fully understand the goals of the system. Now is a good time to
take a step back and re-examine why it was that you purchased QP and why you
configured it the way you did.

Here are some common goals of our QP customers:

� Service level agreement objectives to maintain a certain average response
times.

� Service level agreement objectives for blocks of activities (batch loading of
data, for example) to complete by a certain time of day.

� Prevent rogue queries from monopolizing system resources and slowing
down other database activities

� Capture database activity information for charge back accounting.

� Simply maximize the throughput of data requests on the system.

13.3.3 Considerations when migrating from a QP environment

If you remember the discussion at the beginning of this book, an effective
workload management is based on the following four phases to be well
understood and efficiently tuned:

� Understanding of business goals.

� Ability to identify the work that maps to those goals.

� Robust management options to execute the workload in order to meet the
goal metrics.

� Ample monitoring options to ensure that you are, indeed, meeting the
business goals.
 Chapter 13. Query Patroller and DB2 Governor 377

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
Let us assume that the business goals for the workload are understood. The
following sections run through some of the Query Patroller and Governor
configuration options and some points to ponder when considering how they may
map to WLM configuration.

Identification
Query Patroller identifies and classifies database activities in two ways. The first
is based on a range of estimated query cost (for example, group work by small,
medium, or large sized queries) and the second is based on the user ID or group
ID that submitted the query. There is also an implicit classification of work with
QP simply because QP can only intercept DML (that is, all DDL, utilities, and so
on will never appear on the QP radar).

DB2 WLM identifies and classifies work in many more ways. They can be
grouped by the following connection attributes:

� Application name
� System user
� Session user
� A group of session users
� A role of session users
� Client user ID
� Client application name
� Client workstation name
� Client accounting string

These activities can be further classified based on the type of activities such as:

� DML
� DDL
� LOAD utility
� READ statements
� WRITE statements
� CALL (for stored procedures)

Rather than simply creating a workload based on the SESSION_USER ID or
group of SESSION_USER IDs, consider widening the scope of how you may
want to manage the work.

Management
In the section, we discuss the major QP management functions and their
equivalents in DB2 WLM and provide migration tips.

Migration action: Take advantage of the additional identification options at
your disposal in DB2 WLM.
378 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
Concurrency threshold
Query Patroller workload management relies primarily on concurrency
thresholds to limit the number of queries that can run at a given time for a given
classification. The premise is that queuing some of the activities on a data server
that is running over capacity will prevent resource contention that can result in
costly paging and thrashing. Indeed, there have been some rather dramatic
improvements in workload throughput for some customers.

The actual concurrency threshold, however, can be quite difficult to come up
with. How do you really know when you start to hit resource contention? Is it
when Joe submits more than five queries? Does it depend on the time of day? Or
volume of work?

The process of determining the threshold value often ends up being subjective
and the result is a generalization of the management of the workload across
users and has to be lenient enough so as not to impose on productivity
throughout the day when there are varying volumes of database activity. Even so,
there is still a fair amount of trial and error to come up with that configuration.

Concurrency thresholds can be useful, though, and they are available through
DB2 WLM. But instead of jumping to concurrency thresholds immediately,
consider using the resource controls available for a service class. Using these,
you can give database activities relative priorities for CPU and prefetching (I/O).
Using AIX WLM, you can even configure a more granular level of CPU resource
control to make available a certain percentage of the processing power for the
service class.

Query classes
Query classes are another form of concurrency control, and one of the most
powerful management options inside of QP. The concept behind query classes is
to allow the query requests to be grouped by estimated cost of the query. There
is often three groups: very short transaction queries, the very large report
generation queries, and then some general maintenance or ad-hoc queries that
fall somewhere in the middle. Each group, or query class, can be configured to
limit the maximum number of queries that can run inside that group at a time.

QP is most effective when you set a low maximum concurrency level for the class
of large queries. This prevents those big, resource intensive queries from
consuming a disproportionate amount of the resources that would result in
slower, unpredictable response times for the transaction query class.

Migration action: Don't use concurrency thresholds as the first option for
workload management. Instead, look at controlling the CPU and prefetch
priority options on service classes.
 Chapter 13. Query Patroller and DB2 Governor 379

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
The same issues of actually trying to determine a proper configuration for query
classes as mentioned above except now, not only do you have to determine a
suitable maximum concurrency, you also have to figure out what defines a small,
medium and large query. Remember, QP relies heavily on cost estimates from
the optimizer to define the range of cost for each query class. That estimate is
very sensitive to statistics on the server and has a reputation of occasionally
being inaccurate (which could result in a query being assigned to the wrong
query class and hearing complaints about a normally short running query taking
much longer because it was assigned to the wrong class).

It is possible to configure DB2 WLM to have the equivalent to query classes. You
would use work classes and work action sets to identify the DML work and then
set up thresholds on the work action set based on the range of query cost.

But this is the prime example of stepping back and re-examining the business
goals. Typically, we find that query classes are used to maximize throughput by
limiting the longer running queries. When you think about it though, these
different types of queries rarely come from the same application. Short queries
could be mass transactions, OLTP, even ETL activity. The long running queries
might be heavy report generation applications. Why not create a workload for the
short transactions and another for the heavy reports and map the work to
separate service classes. Then it is possible to control the resources for each
service class where you can keep the large queries throttled back by limiting
CPU and/or I/O. Concurrency thresholds are still available on a service class, so
you could still say you want to limit the number of activities for an application to 5.

Cost threshold
Cost thresholds are set in Query Patroller to identify queries that are either
estimated to be quite small or very large.

There is a minimum cost to manage setting in QP to exclude the set of short
queries from being managed. This is required because of the potentially huge
volume of short queries all communicating with the query controller plus the fact
that all those queries get written to a QP control table. DB2 WLM does not have
these issues; the WLM logic is built into the engine (there is no communication)
and the queries are not required to be written to a table in order to be managed.

The QP maximum cost threshold, however, is used to identify those queries that
are estimated to be so big that you don't want to even start executing the SQL. A

Migration action: Initially, don't try to implement a query class-like
environment in DB2 WLM. Look to pull database activities out into service
classes based on the source attributes and control resource consumption
(and possibly concurrency) for the service class.
380 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
typical example would be when a user mistakenly issues a query containing a
Cartesian join. QP will put these queries in a held state, does not start executing
the query, and returns an error to the submitting application.

It is great to be able to catch those types of queries in a WLM environment as
well. A work class set could be created to identify these queries:

CREATE WORK CLASS SET "queries"
(WORK CLASS "very big query"

WORK TYPE DML
FOR TIMERONCOST FROM 10000000 TO UNBOUNDED)

There are a few actions that could be taken against these very big queries. The
QP approach was to simply stop the query from running. But, like query classes,
the estimated timeron cost is an estimate and has the potential to be wrong or,
perhaps sometimes it really is necessary to run those big queries. In these
cases, stopping the query may be too harsh an action. Collecting activity details
in the event monitor might be a better solution so you analyze the potential
problem later. To do this, you would create the corresponding work action set:

CREATE WORK ACTION SET "query handler"
FOR SERVICE CLASS "North American region"
USING WORK CLASS SET "queries"

(WORK ACTION "collect details"
ON WORK CLASS "very big query"
COLLECT ACTIVITY DATA WITH DETAILS AND VALUES)

If you really do want to stop those very big queries from ever running, you could
create a work action set something like:

CREATE WORK ACTION SET "query handler"
FOR SERVICE CLASS "North American region"
USING WORK CLASS SET "queries"

(WORK ACTION "do not run"
ON WORK CLASS "very big query"
PREVENT EXECUTION)

Bypass options
A number of bypass options were introduced into Query Patroller in order to
minimize the overhead of the Query Patroller tool itself. Because each managed
query requires communication with the Query Patroller server and an update to

Migration action: Don't be concerned about trying to implement a minimum
cost to manage setting in WLM. Identifying large queries is still very useful, but
consider the option of simply collecting detailed information about the very
large queries before taking a harsher action.
 Chapter 13. Query Patroller and DB2 Governor 381

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
the QP control tables, it is best to set up QP to concentrate on the subset of
queries that have the most dramatic affect on the performance of the data server
as a whole.

Typically, queries lower that a set minimum estimated cost bypass QP along with
some applications that have a fixed and known workload (e.g. batch ETL scripts).

Queries and application can bypass QP by either setting the minimum cost to
manage in the submitter profile, the 'Applications to bypass' settings in the QP
system properties, or by setting the <MIN_COST> or <APP_LIST> registry
variables on the data server itself.

DB2 WLM is integrated into the DB2 engine and has no separate server
application (like the QP server) and does not (by default) write individual records
of activity details to a table so WLM does not have the overhead issues that QP
has and, therefore, no option to bypass WLM is provided (not to mention that it is
a fundamental architecture point to have all database activities run in a service
class).

Managing with connection pooling
Connection pooling is a very common practice found in many vendor products
the access data from DB2. Basically, the tool maintains a small number of open
connections to a data server, typically in a middle tier in a 3-tier environment.
Users access the middle tier application and the vendor tool with a client user ID
that is authenticated at the middle tier. The vendor application then knows it is
OK to go get data with one of its open connections to the data server.

The problem is that QP (and DB2, for that matter) is only aware of the session
user ID that connected to the database, which is not the client user ID. This
makes it impossible to explicitly manage query workloads based on the client
submitter.

For example, user JOE is using a vendor application to build a report. JOE
connects to reportapp.exe with a user ID 'JOE' and the vendor application
determines JOE is ok to run the report but it uses a DB2 connection from its
connection pool that connected with the user ID 'VENDORID' to avoid having to
establish and maintain a new connection for the 'JOE' user ID. QP considers the
submitter of the report query to be 'VENDORID' because the user 'JOE' is never
flowed to the data server. Therefore, there is no way to control Joe's query
activity - not without control every other user using the connection from the
connection pool, that is.

Migration action: None. There is no need and, therefore, no mechanism to
allow database activities to bypass WLM.
382 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
DB2 WLM, on the other hand has the client attributes available for proper
identification and management of queries. The application at the middle tier
could make an sqleseti call to set one of the client attributes before it issues the
SQL.

In the example above, even though the connection is established using the
'VENDORID' session ID, the vendor application can call the sqleseti before the
query is run to provide data for the report and set the CURRENT
CLIENT_USERID to 'JOE' on the connection. JOE's database activity could then
be controlled by limiting his resource consumption or setting thresholds on the
requests.

Once a client attribute is set on the connection, it can then be used to identify
database activities that are coming from the middle tier based on the actual client
attributes.

13.3.4 Considerations when migrating from a DB2 Governor
environment

The DB2 Governor has its configuration stored in a control file. There are a few
parameters in particular that would be of interest when you start migrating to DB2
WLM.

The AUTHID and APPLNAME parameters are set to identify the session
authorization ID and application name that the Governor should be watching.
These parameters could be a good indication that there are database activities
from these sources that need some attention. To create a workload based on
these sources, AUTHID would map directly to the SESSION_USER workload
parameter and APPLNAME maps to APPLNAME workload parameter.

There are a couple of resource events to look at as well.

The rowssel event is used to indicate that once a certain number of data rows are
returned to the application some action should be taken. There is a DB2 WLM
threshold for maximum rows returned as well.

The idle event is used to indicate a connection has remained idle for too long a
period of time. There is a DB2 WLM threshold for maximum connection idle time
as well.

Migration action: Use the sqleseti API to set client attributes to handle
connection pooling in a 3-tier application environment.
 Chapter 13. Query Patroller and DB2 Governor 383

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
If you create thresholds for the service classes created to map to the same
workload the Governor was watching, consider all the threshold actions you have
at your disposal. Typically the Governor forces the application when a resource
threshold is exceeded. In DB2 WLM you can take a much gentler action by
stopping execution of a particular activity, but you also have the option of letting
the threshold continue to execute and used the information logged in the
threshold violation event monitor to further investigate the problem.

13.3.5 Historical information in QP control tables

One advantage existing Query Patroller customers will have over customers new
to WLM is the fact that they already have a (potentially very large) set of query
activity. This is a great start towards understanding the existing workload on the
data server.

The TRACK_QUERY_INFO control table in QP stores a large volume of
information about all the queries that have been managed by Query Patroller.
There are a number of columns in this table that map directly to connection
attributes used to define a workload.

Table 13-2 displays these columns along with some suggestions of what to
consider when identifying database activities through workloads.

Table 13-2 TRACK_QUERY_INFO columns that map to workload connection attributes

Migration action: In the Governor control file, use the AUTHID and
APPLNAME parameters to identify work that could map to a DB2 WLM
workload and mapped to a service class. Look at the rowssel and idle
resource events to possibly create corresponding WLM thresholds. However,
consider the option of logging threshold violations rather than stopping
execution.

TRACK_QUERY_INFO Column WLM Migration guidance

USER_ID This column would map directly to the
SESSION_USER connection attribute on
the CREATE WORKLOAD statement.
Look for logical patterns.
384 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
APPLICATION This column would map directly to the
APPLNAME connection attribute on the
CREATE WORKLOAD statement. It is
quite likely to find that some applications
are associated with a certain type of
query. For example, ETL applications will
usually have very short execution times
(EXECUTION_TIME_SECONDS and
EXECUTION_TIME_MILLISECONDS
columns in the TRACK_QUERY_INFO
table).

CLIENT_USER_ID This column would map directly to the
CURRENT CLIENT_USERID connection
attribute on the CREATE WORKLOAD
statement. This column will only contain
information if the submitting application
invoked the sqleseti API to set this
attribute. If this is the case, then this is
very useful information to assign client
database activities to the proper service
class, especially in a multi-tier application
using connection pooling.

CLIENT_ACCOUNT_ID This column would map directly to the
CURRENT CLIENT_ACCTNG connection
attribute on the CREATE WORKLOAD
statement. This column will only contain
information if the submitting application
invoked the sqleseti API to set this
attribute. If this is the case, this could be
useful to assign database activities to a
service class based on account
information (or some other custom criteria
depending on how this attribute is being
used in the environment).

TRACK_QUERY_INFO Column WLM Migration guidance
 Chapter 13. Query Patroller and DB2 Governor 385

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
Ideally, you would be able to create new workloads to isolate the database
activities based on the analysis of the connection attribute information. Note that
once those workload occurrences are assigned to a service class, Query
Patroller will no longer be aware of those queries.

Figure 13-3 shows what the workload management environment would start to
be shaped once you start isolating activities based on the QP history.

CLIENT_APPLICATION This column would map directly to the
CURRENT CLIENT_APPLNAME
connection attribute on the CREATE
WORKLOAD statement. This column will
only contain information if the submitting
application invoked the sqleseti API to set
this attribute. If this is the case, this could
be useful to assign database activities to a
service class based on a custom client
application name (sometimes a client
process can have multiple invocations with
different purposes).

CLIENT_WORKSTATION This column would map directly to the
CURRENT CLIENT_WRKSTNNAME
connection attribute on the CREATE
WORKLOAD statement. This column will
only contain information if the submitting
application invoked the sqleseti API to set
this attribute. If this is the case, this could
be useful to assign database activities to a
service class based on the actual
workstations they are submitted from (say,
when a shared terminal is used to access
data).

TRACK_QUERY_INFO Column WLM Migration guidance
386 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524ch13.fm
Figure 13-3 Establishing user defined service classes with QP data

There are a few other columns in the TRCK_QUERY_INFO control table that are
of interest as well. These columns provide information on the type and
distribution of the database requests. See Table 13-3.

Table 13-3 TRACK_QUERY_INFO columns that map to other WLM function

TRACK_QUERY_INFO Column WLM Migration guidance

TYPE QP intercepts all types of DML. This
column will indicate if the query was a
read (SELECT) or a write (INSERT,
UPDATE, or DELETE). If there are
patterns (for example, reads are typically
very short, the rest may be long) then you
could consider creating a work class or
work action set to map a particular type
(read or write) to a service subclass so
they can be managed separately.
 Chapter 13. Query Patroller and DB2 Governor 387

7524ch13.fm Draft Document for Review October 2, 2007 10:12 am
EXECUTION_TIME_SECONDS,
EXECUTION_TIME_MILLISECONDS

These columns will provide the actual time
a query spent inside the DB2 engine. This
can be useful to try and determine the
overall distribution of the query workload.
Analysis can be performed on that
distribution to isolate those extremely long
running queries that could be disruptive to
the system. This could be an indication
that a threshold should be defined in order
to take some action (e.g. capture details,
stop execution).

ESTIMATED_COST This column provides the estimated cost
for each managed query. Like the
execution time, this data can be used to
analyze the distribution of expected
response time of queries. An additional
use for this column is to identify queries
that may appear to be of a very high cost
and you could consider defining a work
action set to isolate those requests further
and possibly even prevent them from
executing. You can even look at the SQL
text in these cases to look for patterns -
perhaps they all include Cartesian joins
and should not be allowed to run.

TRACK_QUERY_INFO Column WLM Migration guidance
388 DB2 Work Load Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 391. Note that some of the documents referenced here may be available in
softcopy only.

� Leveraging DB2 Data Warehouse Edition for Business Intelligence,
SG24-7274

� AIX 5L Workload Manager (WLM), SG24-5977

Other publications

These publications are also relevant as further information sources:

IBM - DB2 9
� What's New, SC10-4253

� Administration Guide: Implementation, SC10-4221

� Administration Guide: Planning, SC10-4223

� Administrative API Reference, SC10-4231

� Administrative SQL Routines and Views, SC10-4293

� Administration Guide for Federated Systems, SC19-1020

� Call Level Interface Guide and Reference, Volume 1, SC10-4224

� Call Level Interface Guide and Reference, Volume 2, SC10-4225

� Command Reference, SC10-4226

� Data Movement Utilities Guide and Reference, SC10-4227

� Data Recovery and High Availability Guide and Reference, SC10-4228

� Developing ADO.NET and OLE DB Applications, SC10-4230

� Developing Embedded SQL Applications, SC10-4232
© Copyright IBM Corp. 2007. All rights reserved. 389

7524bibl.fm Draft Document for Review October 2, 2007 10:12 am
� Developing Java Applications, SC10-4233

� Developing Perl and PHP Applications, SC10-4234

� Developing SQL and External Routines, SC10-4373

� Getting Started with Database Application Development, SC10-4252

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247

� Message Reference Volume 1, SC10-4238

� Message Reference Volume 2, SC10-4239

� Migration Guide, GC10-4237

� Performance Guide, SC10-4222

� Query Patroller Administration and User's Guide, GC10-4241

� Quick Beginnings for DB2 Clients, GC10-4242

� Quick Beginnings for DB2 Servers, GC10-4246

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC18-9749

� SQL Guide, SC10-4248

� SQL Reference, Volume 1, SC10-4249

� SQL Reference, Volume 2, SC10-4250

� System Monitor Guide and Reference, SC10-4251

� Troubleshooting Guide, GC10-4240

� Visual Explain Tutorial, SC10-4319

� XML Extender Administration and Programming, SC18-9750

� XML Guide, SC10-4254

� XQuery Reference, SC18-9796

� DB2 Connect User's Guide, SC10-4229

� DB2 9 PureXML Guide, SG24-7315

� Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

� Quick Beginnings for DB2 Connect Servers, GC10-4243

Online resources

These Web sites are also relevant as further information sources:
390 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524bibl.fm
� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� Database and Information Management home page

http://www.ibm.com/software/data/

� DB2 Universal Database home page

http://www.ibm.com/software/data/db2/udb/

� DB2 Technical Support

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/
index.d2w/report

� DB2 online library

http://www.ibm.com/db2/library

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 391

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www-3.ibm.com/software/data/
http://www-3.ibm.com/software/data/db2/udb/
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/db2/library

7524bibl.fm Draft Document for Review October 2, 2007 10:12 am
392 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524IX.fm
Index

A
ABP daemon 55
act_total 114
active logs 44
activity 17
activity estimated cost histogram 115
activity event monitor group values

ACTIVITY 100
ACTIVITYSTMT 100
ACTIVITYVALS 100
CONTROL 100

activity execution time histogram 114–115
activity inter-arrival time histogram 115
activity lifetime histogram 114
activity monitor 161
activity queue time histogram 115
activity statement monitor 166
activity threshold 164
activity thresholds 14
ACTIVITYSTMT_ACT_MON 166
ad-hoc queries 174
administration notification 360
administration notification logs 360
administration server 49
administrative table function 360
administrative view 88
agent priority 154, 247
aggregate thresholdan 14
aggregated data 324
analytic application development 235
application name 252
application row 322
APPLID 163
archived logs 44
asynchronous background processing 55
attribute 251
authority 241
authorization 359
automatic classification 197
automatic save 242
availability 151
average execution times 91
© Copyright IBM Corp. 2007. All rights reserved.
B
backup 174, 367
bandwidth 194, 365
BI 8
BI perspective 240
browse button 257
buffer pools 44, 326
business groups 152
business intelligence 8
business objective 152

C
CAP_NUMA_ATTACH 176
CAP_PROPAGATE 176
capability 41
capacity planning 222
cardinality 322
catalog table 52
catalog table space 367
chuser 176
class name 197
clean execution 297
collect activity data 18
collection interval 117
collection parameters 335
comma separated values 218
concurrency 286
concurrency control 372
concurrent versions system 242
concurrent_act_top 114
concurrent_connection_top 114
concurrent_wlo_top 114
configuration 366
configuration process 247
connection attributes 13
connection idle time 170
container for entity 244
control rule 277
control table 373
coord_act_aborted_total 114
coord_act_comp_total 136
coord_act_completed_total 114
coord_act_est_cost_avg 115
 393

7524IX.fm Draft Document for Review October 2, 2007 10:12 am
coord_act_exec_time_avg 114
coord_act_interarrival_time_avg 115
coord_act_lifetime_avg 114
coord_act_lifetime_top 114
coord_act_queue_time_avg 114
coord_act_rejected_total 114
CoordActEstCost 120
CoordActExecTime 120
CoordActInterArrivalTime 120
CoordActLifeTime 120
CoordActQueueTime 120
coordinating partition 47
coordinator agent 129
coordinator partition 127
cost thresholds 380
cost_estimate_top 114
count activity 18
create a scheme by objective 246
create a scheme yourself 246
create limits 271
CSV 218

D
data element 236
data mining 235–236
data retrieval 342
data structure 236
database configuration 57
database partition 16
database partitions 48
database performance 57, 220
database statistics 320
database wide 164
db2_install 49
db2advis 100
DB2CHECKCLIENTINTERVAL 172
db2diag.log 360
db2evmon 99
db2look 367
db2pd 84, 364, 366
db2setup 49
db2sysc 213
deadlock detector 55
default service class

SYSDEFAULTMAINTENANCECLASS 53
SYSDEFAULTSYSTEMCLASS 53
SYSDEFAULTUSERCLASS 53

default service classes

SYSDEFAULTMAINTENANCECLASS 9
SYSDEFAULTSYSTEMCLASS 9
SYSDEFAULTUSERCLASS 9

default subclass 195
default superclass 194, 266
default workload 52, 251

SYSDEFAULTADMWORKLOAD 52
SYSDEFAULTUSERWORKLOAD 52

delta execution 296
deploy 297
DESCRIBE TABLE 101
diagnostic log 360
disk adapter 44
DPF 321
drill down 344
dropdown 324
DSS 174
dynamic warehousing 235

E
Eclipse platform 236
editor 241
enforcement scope 16
engine dispatchable unit 55
environment variable 156
evaluation order 157, 261
event monitor 55, 99, 320
event monitor types

activities 26
statistics 26
threshold 26

executing statement 322
execution environment 3
execution limit 247
explain.ddl 109

F
fenced user 49
file systems 44
flat mapping 203
formatted output 118
framework 236
function parameter 84
function parameters 91

G
generate code 262
394 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524IX.fm
global domain 17
global enforcement scope 16
graphical tools 42
grid view 243

H
hardmax 197
health monitor 55
heath monitor 14
hierarchy 236
high watermark 56, 335
histogram 28
histogram chart 345
historical monitoring 99
historical performance 320
history mode 346

I
I/O 8
identify the work 62
incoming connections 50
inheritance 196
in-memory statistics 363
installation and ocnfiguriation 321
instance home directory 44
Instance owner 49
integrated development environments 236
iostat 216

K
known_hosts file 52

L
listening port 50
lock-wait 88
log file reader 55
log reader 55
log writer 55
logging facilities 360
logical work grouping 10
longest-running statements 327
long-term performance data 348

M
manage the work 62
management requirement 152
maximum percentage 196

memory 42
memory page 194
memory set 366
methodology 245
millisecond 145
monitor element 136
monitor switch 88
monitor the work 62
most-read table 326
multi-partition 321

N
navigation tree 336
nmon 197, 216
notification log 364

O
object definitions 367
OLAP 9
OLTP 9, 174
Online Analytical Processing 9
Online Transaction Processing 9
open source 236
open source community 236
operating system 44, 193
optimizer 372
optimizer statistics 360
outbound correlator 211

P
page cleaner 55
paging space 348
partitions 328
PD_GET_DIAG_HIST 360
PD_GET_DIAG_HIST return values

APPLHANDLE 361
APPLNAME 360
AUTH_ID 361
CALLEDCOMPONENT 361
CALLEDFUNCTION 361
CALLEDPRODUCT 361
COMPONENT 361
DBNAME 360
DBPARTITIONNUM 360
DUMPFILE 362
EDU_ID 360
EDUNAME 360
 Index 395

7524IX.fm Draft Document for Review October 2, 2007 10:12 am
EVENTDESC 361
EVENTSTACK 362
EVENTSTATE 362
EVENTTYPE 361
FACILITY 360
FIRST_EVENTQUALIFIER 361
FIRST_EVENTQUALIFIERTYPE 361
FULLREC 362
FUNCTION 361
IMPACT 360
INSTANCENAME 360
LEVEL 360
MSG 361
MSGNUM 361
MSGTYPE 361
OBJNAME 361
OBJNAME_QUALIFIER 361
OBJTYPE 361
OSERR 361
PID 360
PROCESS_NAME 360
PRODUCT 361
RECTYPE 360
RETCODE 361
SECOND_EVENTQUALIFIERTYPE 361
TID 360
TIMESTAMP 360
TIMEZONE 360

PE performance database 346
perflets 330
performance 62
performance counter 347
performance counters 322, 329–330
performance data 320
plug-in 236
predefined limit 14
predictive 17
predictive governing tool 372
predictive threshold 17
prefetch priority 154, 368
prefetcher 184
priority 153
privilege 13, 241
problem diagnosis 359, 366
Properties view 241
prune 363
ps 197

Q
query attributes 373
queueing boundary 17
queueing threshold 17

R
reactive threshold 17
real-time monitoring 99
Recourse set 196
Redbooks Web site 391

Contact us xiv
refresh rate 330
registry value 51
relationship 256
repository 239
ReqExecTime 159
request execution time histogram 115
request management 62
request_exec_time_avg 115, 136
resource allocation 4
resource consumption 365
resource contention 4
resource intensive activities 4
resource management 62
response time 153, 161
RESTRICT option 368
reverse engineering 246
rows_returned_top 114
rsh 51
runtime environment 236
runtimes 236

S
SAN 44
SAN disk 44
scalable data warehouse 235
scope 15
service class 8–9, 56
service classes 323
service level agreement 10
SET EVENT MONITOR STATE 102
shared subclass 195
shared superclass 194
SNAP_GET_APPL_V95 158
snapshot 93, 320, 346
snapshot counters 330
sofmax 196
software requirement 42
396 DB2 Workload Manager for Linux, UNIX, and Windows

Draft Document for Review October 2, 2007 10:12 am 7524IX.fm
SQL 13
sqleseti 383
ssh 51
stage of WLM 2
statement 262
statement cache 327
statistical table function 57
statistics collection 363
statistics event monitor group values

CONTROL 100
HISTOGRAMBIN 100
QSTATS 100
SCSTATS 100
WCSTATS 100
WLSTATS 100

storage area network 44
stored procedures 17
subagents 129
subclass 344
summary statistics 91, 132
superclass 238
system administration 14
system requirement 42
system resources 247
system superclass 194
system user 252

T
table function 360
table spaces 326
tag 197
target database 317
target object 102
temp_tablespace_top 114
threshold 14–15
threshold boundary 17
threshold domain 15
threshold queue 26
threshold violation 100, 109
threshold violations 351
Thresholds 8
THRESHOLDVIOLATIONS_THRESH_MON 171
tier level 195
time stamp 330
timerons 322
topas 197
transaction log 47
transactional queries 374

tree structure 239
tree view 243
trehshold vioation event monitor group values

CONTROL 100
THRESHOLDVIOLATIONS 100

trend analysis 347
trending 222
troubleshooting 323

U
unclassified superclass 194
unit of work 163
universal coordinated time 360
unmanaged superclass 194
UOW 163
USAGE privilege 368
UTC 360
utility 8

V
validate 261
validation setting 262
Visual Explain 322
vmstat 216
volume group 220

W
warehouse management 235
watermark 27
WLM catalog tables

SYSCAT.HISTOGRAMTEMPLATEBINS 30
SYSCAT.HISTOGRAMTEMPLATES 30
SYSCAT.HISTOGRAMTEMPLATEUSE 30
SYSCAT.SERVICECLASSES 30
SYSCAT.THRESHOLDS 30
SYSCAT.WORKACTIONS 30
SYSCAT.WORKACTIONSETS 30
SYSCAT.WORKCLASSSETS 30
SYSCAT.WORKLOADAUTH 30
SYSCAT.WORKLOADS 30

WLM object 236
WLM scheme 292
WLM SQL statements

CREATE SERVICE CLASS 31
CREATE THRESHOLD 34
CREATE WORK ACTION SET 18
CREATE WORK CLASS SET 36
 Index 397

7524IX.fm Draft Document for Review October 2, 2007 10:12 am
CREATE WORKLOAD 32
REATE WORK ACTION SET 37

WLM stored procedures
WLM_CANCEL_ACTIVITY 29, 95
WLM_CAPTURE _ACTIVITY_IN_PROGRESS
96
WLM_COLLECT_STATS 29, 97
WLM_SET_CLIENT_INFO 29

WLM table functions
GET_SERVICECLASS_WORKLOAD_OCCUR
ENCES 57
WLM_GET_ACTIVITY_DETAILS 25, 59, 87
WLM_GET_QUEUE_STATS 25, 92
WLM_GET_SERVICE_CLASS_AGENTS 24,
58, 85
WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES 24, 84
WLM_GET_SERVICE_SUBCLASS_STATS
25, 56, 90
WLM_GET_SERVICE_SUPERCLASS_STATS
25, 56, 90
WLM_GET_WORK_ACTION_SET_STATS 25
WLM_GET_WORKLOAD_OCCURRENCE_AC
TIVITIES 86
WLM_GET_WORKLOAD_OCCURRENCE_AC
TIVIWLM 58
WLM_GET_WORKLOAD_STATS 25, 57, 92
WML_GET_WORKLOAD_OCCURRENCE_AC
TIVITIES 25

WLM_COLLECT_INT 29, 363
wlmassign 197
wlmevmon.ddl 26, 99
wlmmon 366
wlmperf 366
wlmstat 197, 366
wlo_completed_total 114
work action 100
Work action set 8
work action set 17
work class 8, 17
work class set 17
work identities 244
work type 17, 244
work type set 244
work types

ALL 18
CALL 17
DDL 18
DML 17

LOAD 18
READ 17
WRITE 17

Workload 8
workload 11, 42
workload assignment 13
workload capture level

default 103
detailed 104
detailed with input data values 104

workload definition 13, 15
workload management 41
workload management scheme 238, 242
workload occurrence 13, 16, 84
workload privilege 23
workloads 323
workspace 239
398 DB2 Workload Manager for Linux, UNIX, and Windows

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 O

ctober 2, 2007 10:12 am
7524sp

in
e.fm

399

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

DB2 W
orkload M

anager for Linux, UNIX, and W
indow

s

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 O

ctober 2, 2007 10:12 am
7524sp

in
e.fm

400

®

SG24-7524-00 ISBN

Draft Document for Review October 2, 2007 10:12 am

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

DB2 Workload Manager
for Linux, UNIX, and
Windows

Achieve business
objectives effectively
with DB2 Workload
Manager

Use Performance
Expert and Design
Studio with DB2
WLM

Manage DB2
workloads
proactively

DB2 Workload Manager (WLM) introduces a significant
evolution in the capabilities available to database
administrators for controlling and monitoring executing work
within DB2. This new WLM technology is directly
incorporated into the DB2 engine infrastructure to allow
handling the higher volumes with minimal overhead. It is also
enabled for tighter integration with external workload
management products such as provided by AIX WLM.

This book describes DB2 WLM architecture, components,
and the WLM specific SQL statements. We discuss
installation, WLM methodology for customizing the DB2 WLM
environment, new workload monitoring table functions, event
monitors, and stored procedures. We provide examples and
scenarios of using DB2 WLM to manage database activities
in an OLTP, DSS, and mixed database systems. Through the
use of examples, you will learn about these advanced
workload management capabilities and see how they can be
used to explicitly allocate CPU priority, detect and prevent
“run away” queries, and to closely monitor database activity
in a number of different ways.

We also discuss using Data Warehouse Edition Design Studio
and DB2 Performance Expert with DB2 WLM. Finally, we give
the primary differences between Workload Manager and
Query Patroller as well as how they interact in DB2 9.5.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Acknowledgements
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Workload management
	1.2 DB2 Workload Manager

	Chapter 2. WLM architecture and features
	2.1 DB2 Workload Manager concepts
	2.1.1 DB2 service classes
	2.1.2 DB2 workloads
	2.1.3 DB2 thresholds
	2.1.4 Work class sets and work action sets

	2.2 Architecture
	2.3 DB2 WLM monitor and control capabilities
	2.3.1 Real-time monitoring
	2.3.2 Statistics table functions
	2.3.3 Event monitors for DB2 WLM
	2.3.4 WLM stored procedures

	2.4 New database configuration parameter and catalog tables
	2.5 Working with WLM SQL and objects
	2.5.1 DB2 Service classes
	2.5.2 DB2 Workloads
	2.5.3 DB2 Thresholds
	2.5.4 DB2 work classes
	2.5.5 DB2 work action set

	Chapter 3. Getting started
	3.1 System requirements
	3.1.1 Hardware
	3.1.2 Software
	3.1.3 Platforms supported

	3.2 Planning DB2 environment
	3.3 Lab environment
	3.3.1 Lab systems
	3.3.2 AIX server configuration
	3.3.3 TPC-H

	3.4 Installing DB2
	3.5 First steps
	3.5.1 The default DB2 WLM configuration
	3.5.2 Monitoring the default WLM environment

	Chapter 4. Customizing the WLM execution environments
	4.1 Stages of workload management
	4.2 Identify the work
	4.2.1 Workload identify worksheet

	4.3 Manage the work
	4.3.1 Creating the service classes
	4.3.2 Creating the workloads
	4.3.3 Allowing use of the WLM setup
	4.3.4 Creating the event monitor
	4.3.5 Using SYSDEFAULTADMWORKLOAD

	4.4 Monitor the work
	4.5 Summary

	Chapter 5. Monitoring
	5.1 Real-time monitoring
	5.1.1 Workload management table functions
	5.1.2 Workload management stored procedures
	5.1.3 db2pd command for workload management

	5.2 Historical monitoring
	5.2.1 Activities event monitor
	5.2.2 Threshold violations event monitor
	5.2.3 Statistics event monitor

	5.3 Workload profiling and capturing
	5.3.1 Monitoring overall database system behavior
	5.3.2 Monitoring the queued job
	5.3.3 Identifying query with long runtime

	Chapter 6. WLM Sample Scenario - OLTP
	6.1 Business objectives
	6.2 Identification
	6.3 Consistent response time
	6.3.1 Define DB2 workloads and service classes
	6.3.2 Monitoring
	6.3.3 Summary

	6.4 Mitigate long-run queries
	6.4.1 Define DB2 workloads and service classes
	6.4.2 Define controls
	6.4.3 Monitoring
	6.4.4 Summary

	6.5 Prevent concurrent queries hogging the system
	6.5.1 Identification
	6.5.2 Define work classes for control
	6.5.3 Monitoring
	6.5.4 Summary

	6.6 Stop user connections idle for more than 30 minutes
	6.6.1 Identification
	6.6.2 Define controls
	6.6.3 Monitoring
	6.6.4 Summary

	Chapter 7. WLM sample scenarios - Mixed OLTP and DSS environment
	7.1 Business objectives
	7.2 Identify the work
	7.3 Manage the work
	7.3.1 Enabling the instance user ID to alter AIX priorities
	7.3.2 Creating the service classes definitions
	7.3.3 Creating the workload definitions
	7.3.4 Finalizing the setup

	7.4 Monitoring the work
	7.4.1 Checking the agent priorities and prefetchers
	7.4.2 Monitoring and analyzing the service classes

	7.5 Summary

	Chapter 8. AIX Workload Manager considerations
	8.1 AIX WLM overview
	8.1.1 Service classes
	8.1.2 Monitoring
	8.1.3 Configuring AIX WLM

	8.2 Using DB2 WLM and AIX WLM
	8.2.1 General guidelines
	8.2.2 Mapping schemes
	8.2.3 Integrating DB2 service classes with AIX service classes
	8.2.4 Monitoring

	Chapter 9. WLM sample scenarios - other usage
	9.1 Capacity planning
	9.1.1 The workload environment
	9.1.2 Collecting the trending data
	9.1.3 Monitoring and analysis
	9.1.4 Summary

	9.2 Chargeback accounting
	9.2.1 Business objectives
	9.2.2 Defining workload profile
	9.2.3 Monitoring
	9.2.4 Summary

	Chapter 10. DB2 WLM and DWE Design Studio
	10.1 DB2 Warehouse Design Studio overview
	10.1.1 Workload management support
	10.1.2 Installing DB2 DWE Design Studio

	10.2 Getting start
	10.2.1 Workload Management Scheme

	10.3 Managing database workloads using Design Studio
	10.3.1 Create workload scheme by objective
	10.3.2 Create workload scheme by yourself
	10.3.3 Create workload scheme by reverse engineering

	10.4 Execute a workload management scheme
	10.5 AIX WLM management
	10.5.1 Creating operating system service classes and limits
	10.5.2 Configure AIX WLM using Design Studio

	Chapter 11. DB2 Workload Manager and DB2 Performance Expert
	11.1 DB2 Performance Expert overview
	11.2 Monitoring your DB2 environment
	11.2.1 Monitoring instance and database statistics

	11.3 Monitoring DB2 Workload Manager
	11.3.1 Workload Management Key Performance Indicators
	11.3.2 Viewing workload management definitions
	11.3.3 Viewing Workload Management statistics

	11.4 DB2 Performance Expert technical information

	Chapter 12. Administration
	12.1 WLM logs and maintenance
	12.2 WLM problem diagnosis
	12.3 WLM backup and recovery
	12.4 WLM authorization

	Chapter 13. Query Patroller and DB2 Governor
	13.1 Query Patroller and DB2 Governor background
	13.1.1 Query Patroller
	13.1.2 DB2 Governor
	13.1.3 Differences between QP, Governor, and WLM

	13.2 Co-existing
	13.3 Transitioning from Query Patroller and Governor
	13.3.1 Is there a migration tool?
	13.3.2 Re-examining goals
	13.3.3 Considerations when migrating from a QP environment
	13.3.4 Considerations when migrating from a DB2 Governor environment
	13.3.5 Historical information in QP control tables

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

