
1

E43

Christopher Holtz

Las Vegas, NV September 15 – September 18, 2003

XML Storage in IMS: What’s Next

© IBM Corporation 2003

Abstract and Title for this talk is a bit misleading because at the time of writing it
was not for sure that this code was going to make version 9.

2

© IBM Corporation 2003 IMS Technical Conference

Overview

• Introduction
– What is XMS?
– What is XML?
– What are XML Schemas?

• XMS Methodology
– Decomposed Storage
– Intact Storage

• XMS Tooling
– Metadata Generation

• XMS Java Implementation
– SQL UDF Interface
– Future

3

© IBM Corporation 2003 IMS Technical Conference

What is XMS

• A methodology for storing and retrieving XML documents
into and out of standard IMS databases
– Language Independent Design
– XML Schema Metadata (Structural Metadata)
– DL/I Metadata (Physical Metadata)
– Two storage types

• XMS Java is the Java enablement of XMS using an
extended IMS Java JDBC interface

We will talk about the IMS XML Database methodology. This methodology is tied to no
specific language, just as DL/I segments and fields are not tied to any particular language.
The XML Schema metadata is used to map the between the structure of DL/I Segments and
fields and the structure of XML elements and attributes.
The DL/I Metadata (IMS Java Metadata for Java) describes physical characteristics of the
database (Name aliases, DL/I type storage (COMP-1, COMP-2, PIC Strings, etc.), Segment
Sizes, etc.
XMS Java is a Java JDBC implementation building upon IMS Java.

4

© IBM Corporation 2003 IMS Technical Conference

Why use XMS

• A World-wide movement towards XML as the standard data
interchange language.

• Retrieve existing IMS data in standard, easily exchangeable XML
format

• Store, Index, Search and Retrieve valid new XML documents into
new or existing IMS databases

• 35 years of storage and management of Hierarchical data
• 35 years of performance, stability and reliability

Exponential growth of XML data in transactions, purchase orders, invoices, etc. Growing
need to store and manage all this data.
You don’t want to split your data manage two databases: IMS and an XML database.
Especially, when this data is so tightly bound (could be impossible without serious
replication or migration)

5

© IBM Corporation 2003 IMS Technical Conference

What is XML

• A Standardized, Simple, and Self-Describing Markup Language for
documents containing structured or semi-structured information.

<A>
<f1> </f1>
<f2> </f2>
<f3> </f3>

<f4> </f4>
<f5> </f5>

<f4> </f4>
<f5> </f5>

Everyone should have some idea already about XML.
An XML Document is nothing more than a structured document. A means of separating
data from presentation.
It is so successful because a) it is an agreed upon standard b) it handles encoding problems
and byte ordering c) it is easily parsable

6

© IBM Corporation 2003 IMS Technical Conference

Why is XML…

• Standard Internet Data Exchange Format
– Handles encoding

– Handles byte ordering

– Human Legible?
– Easily Parsed
– Standard

<xml? version=“1.1” encoding=“ebcdic-cp-us”?>

<OrderNumber>110203</OrderNumber>

7

© IBM Corporation 2003 IMS Technical Conference

What is XML

• Data-centric
– Highly structured
– Limited size and strongly typed data elements
– Order of elements generally insignificant
– Invoices, purchase orders, etc.

• Document-centric
– Loosely structured
– Unpredictable sizes with mostly character data
– Order of elements significant
– Newspaper articles, manuals, etc.

We are going to hit on this data vs. document centric concept often.
Data-centric: invoices, purchase orders, parts listings,
Document-centric: newspaper articles, manuals, Shakespeare (all his plays have been
converted to XML on the Web – like what HTML did for Lewis Carol)

8

© IBM Corporation 2003 IMS Technical Conference

Well formed vs. Valid XML Document

• Well formed – Obeys the XML Syntax Rules
– must begin with the XML declaration
– must have one unique root element
– all start tags must match end-tags
– XML tags are case sensitive
– all elements must be closed
– all elements must be properly nested
– all attribute values must be quoted
– XML entities must be used for special characters

• Valid – Conforms to a specific XML Schema

Well formed – follows the XML syntax rules (analogy: no more compiler errors – however,
doesn’t mean your program works)
Valid – Data matches the template (XML Schema) including structure, types, etc.

9

© IBM Corporation 2003 IMS Technical Conference

The XML Schema Definition Language

An XML Schema:
– defines elements and attributes that can appear in a document
– defines which elements are child elements
– defines the order and number of child elements
– defines whether an element is empty or can include text
– defines data types for elements and attributes
– defines default and fixed values for elements and attributes

Defines an agreed upon communication contract
for exchanging XML documents

An XML language for defining the legal building
blocks of a valid XML document

It is the XML blueprints defining the full set of XML instance documents.
XML Schema’s are themselves XML documents (therefore, there is an XML Schema that
describes what an XML Schema can look like – and its like 4 pages long).
An XML Schema can be handed to a supplier or consumer saying “This is what I expect, or
this is what you can expect from me”
XML Schema can be as specific or flexible as you could possible want (an XML Schema
that only allows one possible XML document, an XML Schema that allows anything
(“any”) keyword).

10

© IBM Corporation 2003 IMS Technical Conference

XML Schema Example

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.myNamespace.net"
targetNamespace="http://www.myNamespace.net"
elementFormDefault="qualified">

<xsd:element name=“A”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“Ainteger" type="xsd:int"/>
<xsd:element name=“Astring“ type="xsd:string”/>
<xsd:element name=“B” minOccurs=“0” maxOccurs=“unbounded”>

<xsd:element name=“Bfield“ type="xsd:string”/>
…

</xsd:element>
<xsd:element name=“C” minOccurs=“0” maxOccurs=“unbounded”>

<xsd:element name=“D” minOccurs=“0” maxOccurs=“unbounded”>
</xsd:element>

…
</xsd:schema>

A

B C

D

Things to point out:
XML header – required. Shows this is a well-formed XML document.
xmlns:xsd – designates the XML Schema Namespace
xmln – designates default Namespace. So we don’t need to refer to its

elements with a namespace tag.
targetNamespace – designates which Namespace we are defining a structure

for.
elementFormDefault – simply means everything in the instance doc needs to

be qualified.
The A element is made up of a sequence of elements, including an int, a

string (restricted to be 30 char max), and B, and C elements.
The C element has D element.
Particularly notice unbounded 1:n relationships vs. 1:1 relationships

Extra detail has been left off.

11

© IBM Corporation 2003 IMS Technical Conference

XML Storage in IMS

• Natural mapping between hierarchic XML data and
hierarchic IMS database definitions.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ims="http://www.ibm.com/ims"
xmlns="http://www.ibm.com/ims/PSBName/PCBName"
targetNamespace="http://www.ibm.com/ims/PSBName/PCBName"
elementFormDefault="qualified">

<xsd:annotation>
<xsd:appinfo>

<ims:DLI mode="store" PSB="AUTPSB11" PCB="AUTOLPCB"
dsg="DATASETG" meanLength="1000" numDocs="100"/>

</xsd:appinfo>
</xsd:annotation>

<xsd:element name=“A”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“field1" type="xsd:int"/>
<xsd:element name=“field2">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>
</xsd:restriction>

…

PSB

DBD

XML Schema

Natural mapping (kind of – what about fairly generic XML Schemas? Especially document-
centric XML)…but almost a no-brainer for fairly rigid XML Schema’s, like good ole’ data-
centric. Go back and look at the XML Schema talk about how unbounded means another
segment.

12

© IBM Corporation 2003 IMS Technical Conference

IMS to XML mapping metadata

• Physical Metadata
– Segment Hierarchy (field relationships – 1-to-1, 1-to-n)
– DBD Defined Fields

– Application Defined Fields
– Field Type, Type Length, Byte Ordering, Encoding, etc.
– Offer Field/Segment Renaming (lift 8 char restriction)

• Logical Metadata
– XML layout for fields (field relationships must still match)
– Element vs. Attribute (names must match)
– Type Restrictions, Enumerations, etc.

Defined in
DBD

Defined in
Copylibs

(IMS Java)

Defined in
XML Schema

Physical Metadata – is often broken down into two groups (Type Layout, Type
Length, byte ordering etc…would be for hardware metadata),

13

© IBM Corporation 2003 IMS Technical Conference

AA

BBB CC

DD

XML Schema/
Metadata

<A>
<f1> </f1>
<f2> </f2>
<f3> </f3>

Composed XML

<f4> </f4>
<f5> </f5>

<f4> </f4>
<f5> </f5>

<C>

<f6> </f6>
<f7> </f7>
<D>

<f8> </f8>
<f9> </f9>

</D>
</C>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ims="http://www.ibm.com/ims"
xmlns="http://www.ibm.com/ims/PSBName/PCBName"
targetNamespace="http://www.ibm.com/ims/PSBName/PCBName"
elementFormDefault="qualified">

<xsd:annotations go here/>

<xsd:element name=“A”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“field1" type="xsd:int"/>
<xsd:element name=“field2">

<xsd:simpleType>
…
<xsd:element name=“B”>

<xsd:complexType>
…
<xsd:element name = “C”>

<xsd:complexType>
…
<xsd:element name = “D”>

<xsd:complexType>

Decomposed XML Retrieval in IMS

Show how XML documents are created from traditional data.

14

© IBM Corporation 2003 IMS Technical Conference

Decomposed vs. Intact Storage

• Decomposed (data-centric storage)
– XML tags are stripped from XML data
– Identical as current IMS storage
– Strict data-centric XML Schema validated data
– EBCDIC encoding
– Searching on IMS Search Fields

• Intact (document-centric storage)
– Entire XML document is stored (including tags)
– Relaxed un-validated data
– Any desired encoding is possible
– Searching is through XPath specified and generated Secondary Indexed

Side Segments

Two different storage types for two different types of XML Schemas (notice we say two
different types of XML Schemas and not two different types of XML documents – you may
have extremely rigid and narrow data-centric XML documents, but all we have to go off of
is the XML Schema…so if the XML Schema allows a lot of flexibility we have to allow for
it).

15

© IBM Corporation 2003 IMS Technical Conference

Decomposed Storage

• XML document must be parsed and validated.

• Data must be converted to traditional IMS types
– COMP-1, COMP-2, etc.
– EBCDIC CHAR, Picture Strings

• Stored data is searchable by IMS and transparently
accessible by non-XML enabled applications.

Parsing and especially validation is slow – in inverse implies recomposition is also slow.
Encoding and type conversions are slow.
Huge plus – the data is easily searchable and accessible to legacy applications. Both XML
and legacy, non-XML can play together

16

© IBM Corporation 2003 IMS Technical Conference

AA

BBB CC

DD

XML Schema/
Metadata

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ims="http://www.ibm.com/ims"
xmlns="http://www.ibm.com/ims/PSBName/PCBName"
targetNamespace="http://www.ibm.com/ims/PSBName/PCBName"
elementFormDefault="qualified">

<xsd:element name=“A”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“field1" type="xsd:int"/>
<xsd:element name=“field2">

<xsd:simpleType>
…
<xsd:element name=“B”>

<xsd:complexType>
…
<xsd:element name = “C”>

<xsd:complexType>
…
<xsd:element name = “D”>

<xsd:complexType>

Incoming XML
<A>

<f1> </f1>
<f2> </f2>
<f3> </f3>

<f4> </f4>
<f5> </f5>

<f4> </f4>
<f5> </f5>

<C>

<f6> </f6>
<f7> </f7>
<D>

<f8> </f8>
<f9> </f9>

</D>
</C>

Decomposed XML Storage in IMS

17

© IBM Corporation 2003 IMS Technical Conference

Intact Storage

• No (or little) XML Parsing or Schema validation
– Storage and Retrieval Performance

• No (or little) data type conversions
– Unicode storage

• Stored documents are no longer searchable by IMS and
only accessible to XML-enabled applications
– XPath side segments

Both the top two mean better storage and retrieval.
Bottom one is natural consequence

The “(or little)” refer to possible XPath side segments.
We will discuss these secondary indexed side segments later.

18

© IBM Corporation 2003 IMS Technical Conference

<A>
<f1> </f1>
<f2> </f2>
<f3> </f3>

<f4> </f4>
<f5> </f5>

<f4> </f4>
<f5> </f5>

<C>

<f6> </f6>
<f7> </f7>
<D>

<f8> </f8>
<f9> </f9>

</D>
</C>

AA

ooooo

Incoming XML

Intact XML Storage in IMS

Although we don’t need the XML Schema for validation (optionally) we do need it to
indicate the document is stored intact.

19

© IBM Corporation 2003 IMS Technical Conference

A

o s ss

Intact Storage Secondary Indexing

• XPath expression identifying Side Segments
– Side segment is converted to traditional data type and copied into

segment.
• Side Segments are secondary indexed with documents root

as target.

…

XPath=“/Dealer/Model[Year>1995]/Order/LastName”
XPath=“/Dealer/DealerName”

Example:

20

© IBM Corporation 2003 IMS Technical Conference

<A>
<f1> </f1>
<f2> </f2>
<f3> </f3>

<f4> </f4>
<f5> </f5>

<f4> </f4>
<f5> </f5>

<C>

<f6> </f6>
<f7> </f7>
<D>

<f8> </f8>
<f9> </f9>

</D>
</C>

AA

ooooo

Incoming XML

s

XPath=“/A/B/f4”
XPath=“/A/E/f1”

Example:

Intact XML Storage in IMS

oss

Although we don’t need the XML Schema for validation (optionally) we do need it to
indicate the document is stored intact.
When using Side Segments for XML indexing, we need a Schema to at least validate the
XPath expressions used for indexing.

21

© IBM Corporation 2003 IMS Technical Conference

Overview

• Introduction
– What is XMS?
– What is XML?
– What are XML Schemas?

• XMS Methodology
– Decomposed Storage
– Intact Storage

• XMS Tooling
– Metadata Generation

• XMS Java Implementation
– SQL UDF Interface
– Future

22

© IBM Corporation 2003 IMS Technical Conference

XMI 1.2

IMS Java
classes

IMS Java
report

COBOL
copybook
members

Control statements:
1) Choose PSBs/DBDs
2) Choose copybook

members
3) Aliases, data types,

new fields.

DL/I Model
Utility

PSB

DBD

package samples.dealership;

import com.ibm.ims.db.*;

import com.ibm.ims.base.*;

public class AUTPSB11DatabaseView extends DLIDatabaseView {

// The following DLITypeInfo[] array describes Segment: DEALER in PCB: AUTOLPCB

static DLITypeInfo[] AUTOLPCBDEALERArray= {
new DLITypeInfo("DealerNo", DLITypeInfo.CHAR, 1, 4, "DLRNO"),

new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30, "DLRNAME"),

new DLITypeInfo("DealerCity", DLITypeInfo.CHAR, 35, 10, "CITY"),
new DLITypeInfo("DealerZip", DLITypeInfo.CHAR, 45, 10, "ZIP"),

new DLITypeInfo("DealerPhone", DLITypeInfo.CHAR, 55, 7, "PHONE")
};

static DLISegment AUTOLPCBDEALERSegment= new DLISegment

("DealerSegment","DEALER",AUTOLPCBDEALERArray,61);

...

// An array of DLISegmentInfo objects follows to describe the view for PCB: AUTOLPCB

static DLISegmentInfo[] AUTOLPCBarray = {

new DLISegmentInfo(AUTOLPCBDEALERSegment,DLIDatabaseView.ROOT),

new DLISegmentInfo(AUTOLPCBMODELSegment,0),
new DLISegmentInfo(AUTOLPCBORDERSegment,1),

new DLISegmentInfo(AUTOLPCBSALESSegment,1),
new DLISegmentInfo(AUTOLPCBSTOCKSegment,1),

new DLISegmentInfo(AUTOLPCBSTOCSALESegment,4),

new DLISegmentInfo(AUTOLPCBSALESINFSegment,5)
};

...

}

DLIModel IMS Java Report
========================
Class: AUTPSB11DatabaseView in package: samples.dealership generated for PSB: AUTPSB11

==
PCB: Dealer
==
Segment: DealerSegment
Field: DealerNo Type=CHAR Start=1 Length=4 ++ Primary Key Field ++
Field: DealerName Ty pe=CHAR Start=5 Length=30 (Search Field)
Field: DealerCity Type=CHAR Start=35 Length=10 (Search Field)
Field: DealerZip Ty pe=CHAR Start=45 Length=10 (Search Field)
Field: DealerPhone Ty pe=CHAR Start=55 Length=7 (Search Field)
==

Segment: ModelSegment
Field: ModelKey Type=CHAR Start=3 Length=24 ++ Primary Key Field ++
Field: ModelType Ty pe=CHAR Start=1 Length=2 (Search Field)
Field: Make Type=CHAR Start=3 Length=10 (Search Field)
Field: Model Type=CHAR Start=13 Length=10 (Search Field)
Field: Year Ty pe=CHAR Start=23 Length=4 (Search Field)
Field: MSRP Type=CHAR Start=27 Length=5 (Search Field)
Field: Count Type=CHAR Start=32 Length=2 (Search Field)
==

Segment: OrderSegment
Field: OrderNo Ty pe=CHAR Start=1 Length=6 ++ Primary Key Field ++
Field: LastName Type=CHAR Start=7 Length=25 (Search Field)
Field: FirstName Type=CHAR Start=32 Length=25 (Search Field)
Field: Date Type=CHAR Start=57 Length=10 (Search Field)
Field: Time Ty pe=CHAR Start=67 Length=8 (Search Field)
==
Segment: SalesSegment
Field: SaleNo Type=CHAR Start=49 Length=4 ++ Primary Key Field ++
...

If you can read this you do
not need glasses; however
this is just silly writting to

represent the control
statements that are the input

to the utility.

XML Schema(s)

DL/I Model Utility

XMI is the future of the physical DL/I metadata.
The XML Schema is the structural XML / DL/I metadata mapping

23

© IBM Corporation 2003 IMS Technical Conference

DL/I Model Schema Generation

• Additional Control Statements Keywords

OPTIONS PSBds=PSB.SOURCE.PDS DBDds=DBD.SOURCE.PDS
GenJavaSource=YES JavaSourcePath=output/dir
Package=test.db.psb4 ReportPath=output/dir
GenXMLSchema=YES XMLSchemaPath=output/dir
Outpath=output/dir

PSB psbName=AUTPSB4 Javaname=AutoDealershipDatabase
PCB PCBName=PCB1 JavaName=MyXMLView GenXMLSchema=YES

// Physical Segments for DEALERDB
SEGM DBDName=DEALERDB SegmentName=DEALER

FIELD Name=DLRNO JavaType=INTEGER JavaName=DealerNo
FIELD Name=DLRNAME JavaType=CHAR JavaName=DealerName

…
…

24

© IBM Corporation 2003 IMS Technical Conference

Logical Metadata (XML Schema)
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.ibm.com/ims/PSBName/PCBName"
targetNamespace="http://www.ibm.com/ims/PSBName/PCBName"
elementFormDefault="qualified">

<xsd:element name=“A”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“field1" type="xsd:int"/>
<xsd:element name=“field2">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>
</xsd:restriction>

</xsd:simpleType>
<xsd:element name=“B” minOccurs=“0” maxOccurs=“unbounded”>
</xsd:element>
<xsd:element name=“C” minOccurs=“0” maxOccurs=“unbounded”>

<xsd:element name=“D” minOccurs=“0” maxOccurs=“unbounded”>
</xsd:element>

…
</xsd:schema>

A

B C

D

Things to point out:
XML header – required. Shows this is a well-formed XML document.
xmlns:xsd – designates the XML Schema Namespace
xmln – designates default Namespace. So we don’t need to refer to its

elements with a namespace tag.
targetNamespace – Target Namespace is PSB and PCB (is unique per IMS)
elementFormDefault – simply means everything in the instance doc needs to

be qualified.
The A element is made up of a sequence of elements, including an int, a

string (restricted to be 30 char max), and B, and C elements.
The C element has D element.

Extra detail has been left off.

25

© IBM Corporation 2003 IMS Technical Conference

File
System

IMS DB

User
App

JDBC

IMS Java

XMS

Transaction

Control
Region

User
App

JDBC

IMS Java

XMS

JMP JBP

XMS Java Interface

This is the applications point of view that it is now storing and retrieving XML documents
from the Database and File system.

26

© IBM Corporation 2003 IMS Technical Conference

XMS Java Interface

• Adds 2 User Defined Funtions (UDF) to the IMS Java
JDBC SQL interface
– retrieveXML()
– storeXML()

• Runs as an IMS Java Application
– JDR (JMP, JBP)
– DB2 Stored Procedure
– CICS
– WebSphere

27

© IBM Corporation 2003 IMS Technical Conference

35

RetrieveXML() UDF

SELECT retrieveXML(B)
FROM C
WHERE C.fieldA = ’35’

35

*Two Rows of XML CLOBs in the ResultSet

28

© IBM Corporation 2003 IMS Technical Conference

StoreXML() UDF

INSERT INTO B (storeXML())
VALUES (?)
WHERE A.fieldA = ’62000’

*Insert Statement must be a Prepared Statement

62000

29

© IBM Corporation 2003 IMS Technical Conference

public void processMessage(String dealerName) {
obtain connection...

String query =
“SELECT DealerSegment.DealerName, retrieveXML(DealerSegment) AS DealerXMLDoc” +
“ FROM Dealer.DealerSegment” +
“ WHERE DealerSegment.DealerName = ‘” + dealerName + “‘”;

Statement statement = connection.createStatement();
ResultSet results = statement.executeQuery(query);

process results...
close connection...

}

public void processMessage(String dealerName) {
obtain connection...

String query =
“SELECT DealerSegment.DealerName, retrieveXML(DealerSegment) AS DealerXMLDoc” +
“ FROM Dealer.DealerSegment” +
“ WHERE DealerSegment.DealerName = ‘” + dealerName + “‘”;

Statement statement = connection.createStatement();
ResultSet results = statement.executeQuery(query);

process results...
close connection...

}

Execute Query

retrieveXML() call

We handle the front end the same as always per environment
We create a connection the same way (either Managed or Non-managed)
But…we issue a new SQL and process the results differently.

30

© IBM Corporation 2003 IMS Technical Conference

public void processMessage(String dealerName) {
obtain connection...
execute query...

while (results.next()) {

Clob xmlDoc = results.getClob(“DealerXMLDoc”);

saveClobToFile(xmlDoc, results.getString(“DealerName”));
}

close connection...
}

public void processMessage(String dealerName) {
obtain connection...
execute query...

while (results.next()) {

Clob xmlDoc = results.getClob(“DealerXMLDoc”);

saveClobToFile(xmlDoc, results.getString(“DealerName”));
}

close connection...
}

Process Results

getClob() call

31

© IBM Corporation 2003 IMS Technical Conference

public void saveClobToFile(Clob clob, String fileName) throws IOException {

Reader reader = clob.getCharacterStream();
FileWriter writer = new FileWriter(fileName + “.xml”);

char[] line = new char[1024];
int x = reader.read(line,0,1024);
while (x != -1) {

writer.write(line,0,x);
x = reader.read(line,0,1024);

}

reader.close();
writer.close();

}

public void saveClobToFile(Clob clob, String fileName) throws IOException {

Reader reader = clob.getCharacterStream();
FileWriter writer = new FileWriter(fileName + “.xml”);

char[] line = new char[1024];
int x = reader.read(line,0,1024);
while (x != -1) {

writer.write(line,0,x);
x = reader.read(line,0,1024);

}

reader.close();
writer.close();

}

Process Results
getCharacterStream() or
getAsciiStream()

32

© IBM Corporation 2003 IMS Technical Conference

XMS Java Interface Future

• SQL is a really poor XML/IMS interface
– Hierarchical DB
– Hierarchical Data
– Relational Query Language??

• SQL/XML
– Still relational

• XQuery
– Only query right now
– Still under development

Clearly this is bad….but it was fast and makes this available now rather than later.
SQL/XML stems from the inability to map XML queries (initially XQuery) directly onto
relational, so it started its own track. Its fairly well developed and allows you to
dynamically build an XML document out of the underlying data (notice it assumes the
underlying data is not already XML)
XQuery is still under development and not a completed standard, however it is more the
direction of XMS for the future, and we (IMS) are involved in its review (have access to
team room and discussions, since it is mostly being developed here at IBM).

33

© IBM Corporation 2003 IMS Technical Conference

Hypothetical Bank DB

Customer

Account

Transactions

• Every month send
customer statements

• On-line Account access
• etc.

34

© IBM Corporation 2003 IMS Technical Conference

Current tedious design

Application •Application must query all needed DL/I
segments and gather needed data for each
customer
• Application lays out data in desired output
format for statement or web page.

•There is no separation of data and
presentation, so
•Any change to the way the data is to be
presented means a change to the application
(The Build Statement Module).

DL/I

Segments Query DB
and
Build

Statement

Statements

35

© IBM Corporation 2003 IMS Technical Conference

New XML design

Application • Retrieve customer data in XML format
• Does not affect other apps
• XSLT transforms XML based on style
sheet to…text, html, PDF, etc.

•Clear division of data (XML from DB) and
presentation (XSL)
•Any change to the way the data is to be
presented is only change to style sheet (no
recompile)

retrieveXML

XML

Query
XML

XSLT

Statements

Eventually XQuery

XSL

36

© IBM Corporation 2003 IMS Technical Conference

Extended DB with Intact Storage

Customer

Account

Transactions

• Extend Customer with
intact XML for each
customers own
personalized style
sheet

37

© IBM Corporation 2003 IMS Technical Conference

New XML design

Application • Retrieve customer data in XML format
• And retrieve personalized XSL

• Customers can change their own Bank
Statement format

retrieveXML

XML

Query
XML

Statements

Eventually XQuery

XSL

XSLT

38

© IBM Corporation 2003 IMS Technical Conference

Possible further extension

Customer

Account

Transactions

• Generate Schema for
transactions and
distribute to suppliers.

XML
Schema

39

© IBM Corporation 2003 IMS Technical Conference

New XML storage and retrieval

Application • Transactions come in as XML (SOAP)
• Normal Tran processing
• Store Transaction directly into database.
• Other apps do not need to change.

storeXML Transaction
Processing

XML
retrieveXML

Transaction

XML

• Full document easily retrieved or searched

40

© IBM Corporation 2003 IMS Technical Conference

End

