
Create a J2C application for IMS Phonebook
transaction using IMS TM Resource Adapter
Level: Intermediate

Evgueni Liakhovitch (evgueni@us.ibm.com)
Software Developer, IBM®

Yee-Rong Lai (ylai@us.ibm.com)
Information Developer, IBM

Shahin Mohammadi-Rashedi (shahin@us.ibm.com)
IMS™ SOA Demonstration Team Lead, IBM

15 March 2009

Abstract
This tutorial takes you through the steps of using the J2EE Connector (J2C) component of the IBM
Rational® Developer for System z® Version 7.5, and IBM IMS TM Resource Adapter Version 10 to
access IMS transactions through a J2C Java™ bean. After the J2C bean is created, it can be easily
consumed by a Web application (JavaServer Pages component, or JSP), Web service, or Enterprise Java
Beans (EJB) component.

About this tutorial
This tutorial will take you through the steps of using the J2EE Connector (J2C) components of the IBM
Rational Developer for System z, version 7.5 and IBM IMS TM Resource Adapter Version 10.

Many customers have invested heavily in IMS to perform critical transactions for their businesses. The
J2C tools available in Rational Developer for System z can expose the interaction specification properties
of the IMS TM Resource Adapter and generate a Java class that accesses IMS transactions. Once the J2C
bean is created, it can easily be consumed by a Web application (JavaServer Pages component, or JSP),
Web service, or Enterprise Java Beans (EJB) component.

This tutorial will help to familiarize you with the Java Platform, Enterprise Edition (Java EE, previously
known as J2EE) development environment and the J2C. In this tutorial, you will be working with the
sample Phonebook IMS transaction (IVTNO), which is one of the IMS installation verification programs
shipped with IMS. As an optional exercise you will also experiment with creating a Web service from the
generated J2C bean class, and testing that Web service with the Web Services Explorer provided with
Rational Developer for System z.

Rational Developer for System z Version 7.5 has two packages. The Rational Developer for System z
with Java is the package that is a superset of IBM Rational Application Developer, Therefore, the J2EE
perspective, J2C wizard, and Web tools that are offered in Rational Application Developer are also
available in Rational Developer for System z and other IDEs that also include Rational Application
Developer, such as IBM Rational Software Architect and IBM WebSphere® Integration Developer. The
tutorial instructions also apply to these IDEs, with perhaps minor naming and interface differences.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

1 of 54

mailto:shahin@us.ibm.com?subject=Create a J2C application for an Information Management System (IMS) phonebook transaction using IMS TM Resource Adapter&cc=clarkega@us.ibm.com
http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsresource/authors.html
mailto:ylai@us.ibm.com?subject=Create a J2C application for an Information Management System (IMS) phonebook transaction using IMS TM Resource Adapter
http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsresource/authors.html
mailto:evgueni@us.ibm.com?subject=Create a J2C application for an Information Management System (IMS) phonebook transaction using IMS TM Resource Adapter&cc=shahin@us.ibm.com
http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsresource/authors.html

Objectives
To understand and gain hands on experience extending IMS applications to Web as a part of Web pages
or Web services. Software tools that are part of Rational Developer for System z and IMS TM Resource
Adapter make the transformation processes easy, as the tutorial will demonstrate. The total cost of
ownership for customers, therefore, is reduced.

Upon completion of this study, you will be able to perform these tasks:

 Use Rational Developer for System z and its built-in J2C tools.

 Configure IMS TM Resource Adapter connection factory
 Enable IMS applications as JSP components and Web services

System requirements for the tutorial:

 Software installed on Windows®

o Rational Developer for System z Version 7.5

 System software installed on IBM z/OS®

o IMS Version 9 or Version 10

o IMS Connect Version 9 or Version 10 with XML Adapter configured

o OTMA

o TCP/IP

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

2 of 54

Checklist for the first time implementation
You may find it helpful to have the following checklist available before proceeding with your own
implementation for the first time.
A tutorial checklist is provided for this exercise.

Table 1. Implementation checklist
Your environment This tutorial:

COBOL copybook This can be obtained from
IMS application
programmers.

C:\IMS PhoneBook\IMSPHBK.cpy

IMS Connect host name (or IP
address) and port number.

This can be obtained from
IMS system
programmers.

Host name:
ZSERVEROS.DFW.IBM.COM
Port number: 9999

IMS Data store. This can be obtained from
IMS system
programmers.

IMSC

Workspace directory and project
name will be used by Rational
Developer for System z when
generating artifacts.

A naming standard is
recommended.

Workspace directory: C:
\Workspaces7.5\SANDBOX
Project name: J2CPhoneBook

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

3 of 54

Overview of development tasks
To complete this tutorial you will perform the following tasks:

1. Install and configure the IMS TM Resource Adapter. Import the IMS TM Resource Adapter from
the file system.

2. Use the J2C Java Bean wizard to create a bean that executes a transaction in IMS. Use the J2C
Java Bean wizard to set up the J2EE project, Java interface, and implementations. Create sample
JSP client for testing.

3. Deploy and test the sample application. Deploy and test the sample application within the IBM
WebSphere Application Server.

4. (Optional) Generate Web Service implementation. Use Rational Developer for System z to
generate a Web service implementation from the sample application and test it by using the Web
services explorer.

Figure 1 shows how these tools interact to help you accomplish the tutorial tasks.

Figure 1. Using Rational Developer for System z to accomplish lab objectives

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

4 of 54

Rational
Developer for

System z

WebSphere Application Server

IMS TM Resource
Adapter

IMS Connect
IMS

J2C Java Bean

JSP Web
Service

Web
Browser

Task 1. Install the IMS TM Resource Adapter
In this section, you will validate that the WebSphere Application Server runtime environment is available, and then
import the IMS TM Resource Adapter.

Using Rational Developer for System z and the J2EE Projects
perspective
Start Rational Developer for System z if it is not already started.

1. Select Start > Programs > IBM Software Development Platform > IBM Rational Developer for
System z > IBM Rational Developer for System z

Switch to the J2EE perspective
Switch from the default z/OS Projects perspective to the J2EE perspective. Within Eclipse, there are several ways to
change perspectives.

1. From the Window pull down, select Open Perspective > Other, as shown in the following Figure.

Figure 2. Opening a perspective in Rational Developer for System z

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

5 of 54

2. Scroll down and select J2EE from the Open Perspective dialog box, as shown in the following Figure:

Figure 3. Choosing the J2EE perspective

What is Java EE?
The Java Platform, Enterprise Edition (previously known as Java Platform, Enterprise Edition, or JEE) provides
a standard for developing component-based, multi-tier, enterprise applications.
A Java EE application system typically includes the following tiers:

 Client tier: In the client tier, Web components (such as servlets, JSP components, or standalone
Java applications) provide a dynamic interface to the middle tier.

 Middle tier: In the server tier, or middle tier, enterprise beans and Web services encapsulate
reusable, distributable business logic for the application. These server-tier components are contained
on a Java EE Application Server, which provides the platform for these components to perform
actions and store data.

 Enterprise data tier: In the data tier, the enterprise's data is stored and persisted, typically in a
relational database.

Java EE applications are comprised of components, containers, and services. Web components, such as
servlets and JSPs, provide dynamic responses to requests from a Web page. EJB components contain server-
side business logic for enterprise applications. Web and EJB component containers host services that support
Web and EJB modules.

3. Press OK to switch to the J2EE Perspective.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

6 of 54

What is a perspective?
A perspective defines the initial set and layout of views in the Workbench window. Within the window, each
perspective shares the same set of editors. Each perspective provides a set of functionality aimed at
accomplishing a specific type of task, or that works with specific types of resources. For example, the Java
perspective combines views that you would commonly use while editing Java source files, while the Debug
perspective contains the views that you would use while debugging Java programs.

Import the IMS TM Resource Adapter

1. Click File > Import to open the Import dialog box.

2. Enter RAR, select RAR file, and then click Next to continue, as shown in the following Figure.

Figure 4. Importing a Connector RAR file

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

7 of 54

3. From the Import dialog, click Browse to locate and import the IMS TM Resource Adapter file.

Figure 5. Importing the IMS TM Resource Adapter RAR file

What is a resource adapter?

Resource adapters allow your application to communicate with the enterprise information system (EIS). A
resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.
The resource adapters reside on the application server and provide connectivity between the EIS, the
application server, and the enterprise application. Applications deployed on the application server
communicate with the resource adapter using the Common Client Interface (CCI). The RAR contains all the
information necessary for installing, configuring, and running a resource adapter. Resource adapters comply
with the J2EE Connector Architecture specification. In this lab, you are using IMS TM Resource Adapter to
connect to IMS.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

8 of 54

4. Navigate to the file C:\Program Files\IBM\SDP70\ResourceAdapters\ims15\imsico1021.rar and click Open, as
shown in the following Figure. .

Figure 6. Importing the IMS TM Resource Adapter RAR file

5. For Target runtime, choose WebSphere Application Server 7.0, as shown in the following Figure.

6. Click Finish.

The IMS TM Resource Adapter module should now be visible in your J2EE perspective, as shown in the following
Figure.

Figure 7. IMS TM Resource Adapter Version 10.2.1 module in J2EE project explorer

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

9 of 54

Task 2. Create a bean that communicates with IMS
In this section, you will create a bean that communicates with IMS using J2C. You will define whether the bean is a
managed or non-managed resource, along with defining the TCP/IP address, port, and IMS datastore name.

Using the J2C Java Bean wizard
1. Start the J2C Java Bean wizard by clicking File > New > Other to open the Select a Wizard dialog, as shown

in the following Figure.

Figure 8. Starting the J2C Java Bean wizard

2. Enter j2c, select J2C Java Bean, as shown in the following Figure, and click Next:

Figure 9. Selecting the J2C Java Bean wizard

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

10 of 54

3. Select the appropriate resource adapter for the J2C Java Bean. Expand 1.5, expand IMS TM Resource
Adapter (IBM: 10.2.1), and select imsico1021, as shown in the following Figure.

Figure 10. Selecting IMS TM Resource Adapter Version 10.2.1

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

11 of 54

4. Click Next to continue. The Scenario Selection page opens.

Rational Developer for System z supports J2EE Connector Architecture Version 1.0 and Version 1.5. IMS TM Resource
Adapter Version 10 is based on the newer JCA 1.5 standards, and is therefore located under the 1.5 section.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

12 of 54

5. In the Scenario Selection page, select IMS COBOL, PL/I or C-based applications and click Next.

Figure 11. Selecting the type of IMS applications that the new J2C Java bean will access

Managed and non-managed connections
A managed connection runs inside a Web application server. With a managed connection, the application
server provides transaction management and connection pool management, and it can send security
information. In addition, managed connections allow connection information to be maintained by the system
administrator. As connection information changes (the type of communications, the port, and so on), the
system administrator can adjust the connection characteristics, and no Java objects need to be regenerated.
A non-managed connection is designed to run where connections management supplied by an application
server is not available. The characteristics of the connection must be specified, and are hard-coded into the
generated object. You can change the connection characteristics from your program, but you will need to
generate your J2C code appropriately. Because non-managed connections are not always convenient to
change, and they do not take advantage of the connection pooling, transaction management, and security
management that are provided by an application server, it is easy to see why managed connections are
recommended.

The example in this tutorial uses a managed connection to IMS.

After you have selected the scenario, you must provide the connection properties information. These properties will be
stored in a connection factory.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

13 of 54

This application will interact with the IMS TM Resource Adapter through an object called the connection factory. IMS
connection factories are used to create pre-configured connections to the IMS transaction manager (IMS TM).
When an application uses the IMS TM Resource Adapter, it interacts with IMS using connections between the IMS TM
Resource Adapter and IMS Connect that are created by the IMS TM Resource Adapter. These connections can be
managed or non-managed.

6. Select Managed Connection from the Connection Properties page and click New, as shown in the following
Figure.

Figure 12. New J2C Java Bean dialog

7. Make sure that WebSphere Application Server v7.0 is selected and click Next, as shown in the following
Figure.

Figure 13. Selecting the server on which to deploy the IMS TM Resource Adapter

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

14 of 54

8. The New J2C Connection Factory dialog displays. Enter a new JNDI Name (for example, PhoneBookJNDIName).

What is JNDI?

The Java Naming and Directory Interface (JNDI) is an API for directory service that allows clients to discover
and look up data and objects via a name. In this tutorial you will assign a unique JNDI name to your
managed connection. Our J2C bean will then use this JNDI name to look up the connection on the
WebSphere Application Server.

9. Make sure that TCP/IP is selected (the default) and enter the required connection information (indicated by
the asterisk [*]), as shown in the following Figure:

a. Host name: ZSERVEROS.DFW.IBM.COM

b. Port: 9999

c. Data store name: IMSC

Figure 14. Specifying connection information

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

15 of 54

10. Click Finish.

11. On the Connection Properties screen, click Next to continue.

12. On the J2C Java Bean Output Properties page, enter J2CPhoneBook as the Project Name and click New to
define the project properties, as shown in the following Figure.

Figure 15. Specifying J2C Java bean output properties

13 On the New Source Project Creation page, select Web project and click Next to continue, as shown in the
following Figure.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

16 of 54

Figure 16. Selecting Web project as the project type

Why Web project?
The J2C wizard gives you a choice between creating a Java, Web, or EJB project. Choose Web project
because you will be creating a Web interface for your J2C bean in the form of a simple JSP component and as
a Web Service (see optional Task 4).

Web projects hold all of the Web resources that you create and use to develop your Web applications.

14. On the New Dynamic Web Project page shown in the following Figure.

a. In Project contents, leave Use default checked.

b. For the Target Runtime, make sure WebSphere Application Server v7.0 is selected as the
server.

c. Leave the Dynamic Web Module version and Configurations settings as is.

d. Select the Add Project to an EAR check box. Allow the wizard to add "EAR" to your EAR project
name. Web projects and EAR projects must have different names.

e. Click Finish to create the Dynamic Web Project.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

17 of 54

Figure 17. Specifying the target runtime and EAR membership for the Web project

Rational Developer for System z will now complete the creation of the J2EE components that support the J2C bean.
Notice that both a dynamic Web project and an EJB project have been added to your work space.
Also, now that the supporting projects are created, the J2C Java Bean wizard returns to define the J2C bean Output
Properties.

15. On the J2C Java Bean Output Properties page, leave the project name as J2CPhoneBook . Enter the
following required fields (respect the upper/lower case) as shown in the following Figure.

a. Package Name: sample.ims

b. Interface Name: PhoneBook
Notice that PhoneBookImpl in the Implementation Name field will be created for you once the
Interface Name is supplied.

Figure 18. Specifying the package name and interface name

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

18 of 54

16. Click Next to continue.

17. From the Java Methods page, click the Add button to add a Java method to the sample.ims package defined
in the previous page.

18. From the Add Java Methods page, enter runPhoneBook as the Java Method Name:

Figure 19. Adding a Java method

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

19 of 54

What’s Next
You have just started creating a Java method that will provide translation between COBOL data that IMS can
understand and Java data types suitable for Java EE applications. Next, you will import a COBOL copybook for the
IVTNO transaction. The wizard will parse the copybook and identify input and output fields. It will then generate
translation code that will provide the mapping between COBOL and Java. As elsewhere in this tutorial, all the work is
done by the Rational Developer for System z tooling, and no manual coding is required.
Now you will create the input and output data mappings between COBOL and Java. In this step you will import the
data definitions from the Ex01.cbl (COBOL) copybook.

20. Click New next to the Input type to create the input mappings for the runPhoneBook Java method as shown in
the following Figure.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

20 of 54

Figure 20. Creating a new input type

21. From the Data Import page, accept the default COBOL to Java mapping.

22 Click the Browse button and find the file C:\IMS PhoneBook\IMSPHBK.cpy as shown in the following
Figure. Click Open to accept it:

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

21 of 54

Figure 21. Selecting the COBOL to Java mapping and the COBOL file

23. Click Next to continue.

24. The Importer page opens, allowing you to define the appropriate COBOL Import Parameter settings. Default
settings are for the Win32 platform.

a. From the Platform list, select z/OS. The code page and other parameter settings will correctly
change for the z/OS platform.

b. You can press the Advanced>> button to observe the other parameter settings for COBOL.
However, do not change any of these advanced settings for this tutorial.

c. Click Query to select the appropriate input data from the IMSPHBK.cpy COBOL file as shown in the
following Figure.

Figure 22. Specifying the COBOL import parameter settings

The COBOL program IMSPHBK.cpy contains the following Data structures in the Linkage Section: INPUT-MSG and
OUTPUT-MSG. Notice that Rational Developer for System z inspected the IMSPHBK.cpy COBOL program and provided
the data areas to map to the input record.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

22 of 54

d. Select the INPUT-MSG data structure to map this data area to the input record, as shown in the
following Figure, and then click Next to continue:

Figure 23. Selecting the input data structure

25. The Import page displays. Notice that you can change the generation style and data bindings. Accept the
default generation style and data bindings.

26. Click Finish to generate the INPUTMSG Java class for the input mapping:

Figure 24. Specifying the data binding information for input messages

The Add Java Method page redisplays. Notice that the Input type has been defined with the INPUTMSG Java class.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

23 of 54

27 Click New to define the output type, as shown in the following Figure.

Figure 25. Creating an output type

You must now create the Output type, repeating similar actions that you already performed for the Input type.

28. From the Data Import page, accept the default COBOL to Java mapping.

29. Click Browse and select the C:\IMS PhoneBook\IMSPHBK.cpy file again, as shown in the following Figure.

30. Click Open to accept it.

Figure 26. Selecting the COBOL to Java mapping and the COBOL file

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

24 of 54

31. Click Next to continue.

32. The Importer page opens, in which you define the appropriate COBOL Import Parameter settings, as shown in
the following Figure. . Default settings are for the Win32 platform.

a. Select z/OS as the platform. The code page and other parameter settings will correctly change for
the z/OS platform.

b. Click Query to select the appropriate input data from the IMSPHBK.cpy COBOL file:

Figure 27. Specifying the COBOL import parameter settings

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

25 of 54

33. Select the OUTPUT-MSG as the data structure for the output type, as shown in the following Figure, and then
click Next to continue:

Figure 28. Selecting the output data structure

34. Accept the default generation style and data bindings. Click Finish to generate the OUTPUTMSG Java class,
as shown in the following Figure.

Figure 29. Specifying the data binding information for output messages

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

26 of 54

35. The Add Java Method page should now be defined with an Input type: INPUTMSG and
an Output type: OUTPUTMSG, as shown in the following Figure.

Figure 30. Specifying the output data structure

 36. Click Finish to continue to the Java methods summary page.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

27 of 54

 37. The Java method summary page should look like that shown in the following Figure.

Figure 31. Summary for the Java method

38. Click Next to complete the Java method creation.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

28 of 54

39. The Deployment Information page displays, as shown in the following Figure. From here you could complete
the J2C Java bean generation. However, Rational Developer for System z provides additional generation
capabilities (Web page, Web service, or EJB) to consume this J2C Java bean.

a. Select the Create a Web Page, Web Service, or EJB from the J2C bean check box. More options
will become available, as shown in the following Figure.

b. Select Simple JSP.

c. Click Next to continue:

Figure 32. Specifying the J2EE resource type for deployment

The JavaServer Pages (JSP) technology enables you to generate dynamic web content (such as HTML, DHTML,
XHTML, and XML files) to include in a Web application. JSP files are one way that the product implements server-side

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

29 of 54

dynamic page content. JSP files allow a Web server, such as WebSphere Application Server, to add content
dynamically to your HTML pages before they are sent to a requesting browser.

EJB (Enterprise JavaBeans™) and Web Services are other powerful architectures that can interface with your J2C
bean. Web services are covered in the optional Task 4 of this tutorial.

40. From the Simple JSP Creation dialog, enter myJSPs for the JSP folder name and click Finish to complete the
simple JSP, as shown in the following Figure.

Figure 33. Creating a JSP folder

Notice that after clicking Finish, the Rational Developer for System z workspace opens up the PhoneBookImpl.java
file. This is the implementation of the mapping between COBOL and Java. It contains the runPhoneBook() method, as
well as other generated methods. It also contains the reference to the JNDI name PhoneBookJNDIName, which is used to
look up the Managed Connection factory that we created. The connection information (along with the input data) is
passed to the IMS TM Resource Adapter, which in turn calls IMS.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

30 of 54

41. Expand Java Resources: src > sample.ims under the J2CPhoneBook project, as shown in the following
Figure. Take a moment and look at the generated components in the Project Explorer. The myJSPs folder
contains the newly generated JSPs that will be used to test our J2C bean implementation.

Figure 34. J2CPhoneBook project in the Project Explorer and the PhoneBookImp.java file

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

31 of 54

Task 3: Deploy and test your application
In this section, you will start the WebSphere Application Server, add your project to the application server runtime
environment, and test your application using the simple JSP client that was created as part of the J2C Java Bean
wizard.

Deploying your application
1. Select the Servers view within the J2EE perspective.

2. Using the Servers view, select the WebSphere Application Server v7.0 and click the green arrow icon to
start the server, as shown in the following Figure. It will take a few moments for the application server to
start:

Figure 35. Starting the WebSphere Application Server

3. After the Console displays the "Server server1 open for e-business" message, click the Servers view and
check the Status indicator.

4. When the WebSphere Application Server is started, the Servers view will display Started in the Status field,
and Synchronized in the State field, as shown in the following Figure.

Figure 36. Status and State of the WebSphere Application Server

5. You now must add your project to the started application server. Using the Servers view, right-click
WebSphere Application Server v7.0 and select Add and Remove Projects, as shown in the following
Figure.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

32 of 54

Figure 37. Adding your project to the started application server

6. From the Add and Remove Projects page, select J2CPhoneBookEAR and click Add > to add your project to
the Configured Projects, as shown in the following Figure.

Figure 38. Adding your project to configured projects

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

33 of 54

7. Click Finish to add your project to application server. The WebSphere Application Server will publish the
application, as shown in the following Figure.

Figure 39. Publishing the application

8. WebSphere Application Server then returns to a Synchronized state, as shown in the following Figure.

Figure 40. Returning to synchronized state after publishing the application

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

34 of 54

9. If not switched automatically, switch to the Console view and verify that the application has started
successfully, as shown in the following Figure.

Figure 41. Console view

Testing your application
In this section you will test the simple JSP client that was created as part of the J2C Java Bean wizard.

1. Select the generated TestClient.JSP file that is located in the myJSPs folder. Recall that this is the folder you
created to store the simple JSP test client. If the TestClient.JSP file is not visible, navigate to the
J2CPhoneBook > WebContent > myJSPs folder in the Project Explorer.

2. With the TestClient.jsp selected, Right-click and select Run As > Run On Server, as shown in the following
Figure.

Figure 42. Running the TestClient.jsp

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

35 of 54

3. Choose the started WebSphere Application Server v7.0 and click Finish to run the TestClient.jsp, as shown in
the following Figure.

Figure 43. Choosing the server to run the JSP

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

36 of 54

4. The Web Services Test Client will launch the TestClient.jsp. Notice that there are three separate panes (Java
Methods, Input parameters, and Results) within the TestClient.jsp, as shown in the following Figure.

Figure 44. The Web Services Test Client view

5. Double-click the Web Services Test Client title to maximize the window within the workbench, and then
click the runPhoneBook method to test.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

37 of 54

6. Enter the following values to test the J2C bean, as shown in the following Figure.

a. in__ll: 59

b. in__trcd: IVTNO

c. in__zz: 0

d. in__cmd: DISPLAY

e. in__name1: LAST1

7. Make sure not to enter any spaces before or after any of the input fields.

8. Click Invoke to run the application.

Figure 45. Testing TestClient.jsp in the Web Services Test Client

9. Resize the result area to check your results, as shown in the following Figure.

Figure 46. Resizing the result area

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

38 of 54

You should see something similar to the results shown in the following Figure.

Figure 47. Results from the testing

10. Select Windows > Reset perspective and OK.

11. Using the Servers tab, click the red square icon to stop the WebSphere Application Server, as shown in the
following Figure.

Figure 48. Stopping the WebSphere Application Server

12. Close all open editor windows (pressing Ctrl+Shift+F4 should accomplish this).

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

39 of 54

Congratulations! You have completed the IMS J2C tutorial!

If you have extra time, you can do a bit more. How about taking the generated J2C bean and wrapping that as a Web
service? This feature extends the usage of your J2C bean past simple Web clients and offers the transaction as a Web
service.

Task 4 (Optional): Create a Web service to invoke the J2C bean
In the previous sections, you installed a J2C Resource Adapter, created a J2C bean that executed against
the IMS sample transaction: IVTNO. You also created a simple JSP Test Client that tested your J2C bean.
In this optional section, you will wrap the J2C bean as a Web service, and then test it by using the
generated WSDL file. You will then generate a Web service client and test it as well.

Creating a Web service

1. Click File > New > Other to open the Select a Wizard dialog, as shown in the following Figure.

Figure 49. Starting the J2C Java Bean wizard

What is a Web service?

Web services are self-contained, self-describing modular applications that can be published, located, and invoked
across the Web. Businesses can dynamically mix and match Web services to perform complex transactions with
minimal programming. Web services allow buyers and sellers all over the world to discover each other, connect
dynamically, and execute transactions in real time with minimal human interaction.

The following standards play key roles in Web services: Web Services Description Language (WSDL) and Simple
Object Access protocol (SOAP).

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

40 of 54

4. In the New wizard screen, select Web Page, Web Service, or EJB from J2C Java Bean and
click Next, as shown in the following Figure.

Figure 50. Selecting the wizard to wrap the J2C Java bean into a Web service

5. Press Browse to look up the J2C bean Implementation class, as shown in the following Figure.

Figure 51. Clicking Browse to select the J2C bean

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

41 of 54

6. Type P, select the PhoneBookImpl class in package sample.ims and click OK, as shown in the
following Figure.

Figure 52. Selecting the PhoneBookImpl class

7. This returns the fully-qualified implementation class in the dialog, as shown in the following
Figure.

8. Press Next to continue.

Figure 53. The PhoneBookImpl class selected

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

42 of 54

9. Select Web Service as the J2EE Resource Type, as shown in the following Figure.

10. Click Next, and then Finish. The J2EE Resource from a J2C Java Bean wizard will now create the
necessary J2EE resources for the Web service implementation. This might take a few moments.

Figure 54. Selecting Web Service as the resource type

11. Examine the generated J2EE resources for Web services. Expand J2CPhoneBook > WebContent
> WEB-INF > wsdl. Note the generated PhoneBookImpl.wsdl file and associated xml mapping
files, as shown in the following Figure.

Figure 55. Generated J2EE resources for Web services based on the PhoneBookImpl J2C bean

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

43 of 54

13. Double-click the PhoneBookImpl.wsdl file to open up the WSDL editor. Observe the visual
representation of the wsdl file in the Design view, as shown in the following Figure. There is also
a source view, if you prefer.

Note that the Web service operation is runPhoneBook and that the operation has one input and one
output, and that these map to the INPUTMSG and OUTPUTMSG defined previously.

Figure 56. PhoneBookImpl.wsdl in the Design view

What is WSDL?

Web Services Description Language (WSDL) is an XML-based open specification that describes the interfaces to
and instances of Web services on the network. Businesses can make the WSDL documents for their Web services
available though UDDI, WSIL, or by broadcasting the URLs to their WSDL via email or Web sites.

Note that the http://localhost:portnumber/... is generated. This tutorial uses port 9081.
Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter

© Copyright IBM Corporation 1994, 2009. All rights reserved.
44 of 54

If the port number is not 9081, in the Design view, click the http that is displayed in http://
localhost:portnumber/J2C....

Click the Properties tab and change the port number to 9081, as shown in the following Figure.

Save the changes (Ctrl+S).

Figure 57. Port number to use for this tutorial

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

45 of 54

Testing the Web service using Web Service Explorer
In this part of the tutorial, you will use the Web Services Explorer to test your Web service.

1. Make sure that WebSphere Application Server is running. You will test your Web service using
the WebSphere Application Server test environment. Using the Servers view, note the Status. If
the WebSphere Application Server is not running, press the green arrow on the Servers tab to
start it, as shown in the following Figure.. This will take a few moments.

Figure 58. Starting the WebSphere Application Server

2. From the Project Explorer view, right-click the PhoneBookImpl.wsdl file and select Web
Services > Test with Web Services Explorer, as shown in the following Figure.

Figure 59. Testing with Web Services Explorer

3. The Web Services Explorer window will launch. It contains two views: a Navigator view and an
Actions view. To make more space, maximize the window by double-clicking the title, as shown
in the following Figure.

Figure 60. Double-clicking the Web Services Explorer tab to maximize the window

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

46 of 54

4. The Actions view specifies both the operations and endpoints for the Web service. The Endpoint is
defined as http://localhost:9081/J2CPhoneBook/services/PhoneBookImpl. Note that this is the
location of the Web service and that it points to the WebSphere Application Server running on the
workstation and listening on port 9081, as shown in the following Figure.

Figure 61. The location of the Web service

5. Click the runPhoneBook operation, as shown in the following Figure.

Figure 62. The runPhoneBook operation for the Web service in Web Services Explorer

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

47 of 54

http://localhost:9084/LAB5_E_JCA_TO_IMS/services/PhoneBookImpl

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

48 of 54

6. This will invoke the WSDL operation, as shown in the following Figure.

Figure 63. The WSDL operation

7. Enter the necessary information to run the IVTNO transaction, as shown in the following Figure.
67. These will be the same parameters used for TestClient.jsp:

a. in__ll: 59

b. in__zz: 0

c. in__trcd: IVTNO

d. in__cmd: DISPLAY

e. in__name1: LAST1

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

49 of 54

8. Click Go to run the Web service:

Figure 64. Specifying the values for the parameters and clicking Go to run the service

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

50 of 54

9. The Web service executes, and the results are displayed in the runPhoneBookResponse object, as
shown in the following Figure. Scroll through the Status window or resize the window, as
necessary, to see the results:

Figure 65. Resizing to maximize the Status window

10. Click the Source link to display the Web service results in the Form view, as shown in the
following Figure.

Figure 66. Clicking the Source link in the Status window

11. This will display the actual SOAP response and SOAP request envelope. Scroll down to see the
data being transmitted to and from IMS, as shown in the following Figure.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

51 of 54

Figure 67. SOAP request and response envelopes

What is SOAP?

Simple Object Access Protocol (SOAP) is an XML-based standard for messaging over HTTP and other Internet
protocols. It is a lightweight protocol for the exchange of information in a decentralized, distributed environment. It is
based on XML, and consists of three parts:

 An envelope that defines a framework for describing what is in a message and how to process it.

 A set of encoding rules for expressing instances of application-defined data types.

A convention for representing remote procedure calls and responses.

11. When you are done testing, in the Server view, click the red square icon to stop the WebSphere
Application Server, as shown in the following Figure.

Figure 68. Stopping the WebSphere Application Server

13. Close all open editor windows (pressing Ctrl+Shift+F4 to accomplish this).

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

52 of 54

You have completed the optional Web service generation part of the J2C bean
tutorial!

Resources
Learn

 Visit the Rational Developer for System z zone on developerWorks ® for technical resources and
best practices for using this product.

 Visit the IMS TM Resource Adapter Web site.

 Visit the IMS zone on developerWorks for technical resources on Information Management
System.

 Visit the Information Management System (IMS) page for product and purchasing information.

 Subscribe to the IBM developerWorks newsletter, a weekly update on the best of developerWorks
tutorials, articles, downloads, community activities, Webcasts and events.

 Subscribe to the Rational Edge newsletter for articles on the concepts behind effective software
development.

 Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

 Download a trial version of Rational Developer for System z.

 Download IMS TM Resource Adapter.

 Download IBM product evaluation versions and get your hands on application development tools
and middleware products from all IBM brands including DB2®, Lotus®, Tivoli®, and
WebSphere.

About the authors
 Evgueni Liakhovitch is a Software Developer at IBM.
 Yee-Rong in an Information Developer at IBM.
 Shahin Mohammadi-Rashedi is an IMS SOA Demonstration Team Lead at IBM.

Trademark notice
IBM, the IBM logo and ibm.com are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

53 of 54

http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX15&S_CMP=ART
http://www.ibm.com/software/data/ims/ims/components/tm-resource-adapter.html#downloads
http://www.ibm.com/developerworks/downloads/r/rdz/learn.html?S_TACT=105AGX15&S_CMP=ART
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/rational/rationaledge/
https://www.ibm.com/developerworks/newsletter/
http://www-306.ibm.com/software/data/ims/
http://www.ibm.com/developerworks/db2/products/ims/index.html
http://www.ibm.com/software/data/ims/ims/components/tm-resource-adapter.html
http://www.ibm.com/developerworks/rational/products/rdz

information" at www.ibm.com/legal/copytrade.shtml.

Create a J2C application for IMS Phonebook transaction using IMS TM Resource Adapter
© Copyright IBM Corporation 1994, 2009. All rights reserved.

54 of 54

	Switch to the J2EE perspective
	Import the IMS TM Resource Adapter

