IMS Technical Conference October 23 - 27, 2000

An IMS View of DBCTL

David Compton

Terminology and Trademarks

▲ Terminology

- ► RRS Resource Recovery Services
- ► ODBA Open DataBase Access
- ► DRA Database Resource Adapter
- ► AAS Application Address Space
- ► AIB Application Interface Block
- ► CCTL Coordinator Controller

▲ Trademarks

- ► MVS/ESA
- ► IMS/ESA*
- ► DB2*
- ► S/390*
- ► ESA/390
- ►IBM*
- ► IBM COBOL for MVS
- ► System/390*
- **CICS**
- ► CICS/ESA

^{*} Trademarks followed by an asterisk (*) are registered.

Agenda

- **△ What is DBCTL?**
- **△ DBCTL Overview**
- **△ CICS** as a CCTL
- **△ DBCTL Subsystem structure**
- **△ DRA Startup table**
- **▲** Syncpoint
- **▲ DBCTL UORs**
- **△ DBCTL Indoubts**
- **▲/DBR & /STO REGION commands**
- **▲ DBCTL Education**
- **▲** Summary

What is DBCTL?

- ▲ Hierarchical database subsystem
- ▲ Provides independent database services to a CCTL
 - Most commonly CICS
- **▲** Coordinated recovery with CCTL
 - CCTL is the controller in syncpoint process
 - Single or two phase commit protocol is used

DBCTL Overview

▲ Database Control Subsystem

- Full Function Database support and access
- FastPath DEDB support and access

▲ IMS DBCTL service provided by

- IMS Database Manager (IMS DB)
- IMS DB/DC

▲ Multiple CCTL connections to one DBCTL Subsystem

CCTLs must reside on same MVS image as DBCTL

DBCTL Overview continued

▲ BMP support

Non-message driven in a DB only environment

▲ Maximum of 999 concurrent applications

- BMPs, CCTL threads, ODBA threads
- & MPRs (DB/DC only)

CICS as a CCTL

- **▲ CICS** predominant exploiter of DBCTL services
- ▲ CICS must use DBCTL function for IMS DB access
 - IMS V5 Local DL/I support dropped
- **▲ DBCTL and CICS release independent**
 - No CICS "sysgen" required for DBCTL
- ▲ Multiple CICS subsystems can connect to a single DBCTL
 - CICS can connect to only one DBCTL at a time

DBCTL Subsystem Structure

DB/DC Subsystem Structure

DRA Startup Table - DFSPZPxx

▲ DFSPRP macro defines DRA Startup parms

△ Assemble DFSPZPxx

- xx = Any alphanumeric characters
- Default is 00
- DFSPZP00 source is supplied

▲ Where can you find the Parm Descriptions

- DFSPRP DSECT=YES
- Browse DFSPZP00
- IMS/FSA Install Volume 2

DFSPRP parms (trip-up ones anyway)

▲ CNBA

- Total number of FastPath buffers
- FPBUF x MAXTHRD <= CNBA</p>
- Needed for FP DEDB access

MINTHRD & MAXTHRD

- 1 <= MINTHRD => 999
- 1 <= MAXTHRD => 999
- If MAXTHRD < MINTHRD then MAXTHRD = MINTHRD</p>

The Rest of the DFSPRP parms

A FUNCLY

Function level - Always 1 (one)

A DDNAME

► DRA Reslib DDNAME (CCTLDD)

DSNAME

► DRA Reslib (IMS.RESLIB)

▲ DBCTLID

► IMS/DBCTL IMSID (SYS1)

SOD

► Snap Output Dataset (A)

▲ USERID

▶ User Identifier

ATIMER

► IDENTIFY Timer value (60)

AGN

Application Group Name

A TIMEOUT

► DRA Termination Timeout Value (60)

▲ IDRETRY

► ODBA connection parm

Syncpoint

▲ Two Phase Commit

- Prepare
- Commit or Abort
- Indoubts may result

△ Single Cycle Commit (SCC)

- IMS/ESA V6 Enhancement
- When only ONE Resource Manager's resources have been updated
- Significant reduction of INDOUBT window
- Improved Syncpoint processing time

Two Phase Commit Overview

△ Coordinator (CCTL/CICS)

- Coordinates and makes decisions about commit processing (commit or abort)
- Responsible for integrity of its own resources

▲ Participant (IMS DBCTL)

- Takes direction from coordinator (commit or abort)
- Responsible for integrity of its own resources

Two Phase Commit

Single Cycle Commit Overview

△ Coordinator (CICS)

- Coordinates and makes decisions about commit processing (commit or abort)
- Responsible for integrity of its own resources
- Used when only ONE Resource Manager's resources have been updated.

▲ Participant (IMS DBCTL)

- Takes direction from coordinator (commit or abort)
- Responsible for integrity of its own resources

Single Cycle Commit

Single Cycle Commit

- ▲ Indoubt window only while writing '3730 Start of Phase 2 Commit'
- **▲ IMS Syncpoint still performs Two Phase Commit**
- ▲ No response to CCTL until both Phases have completed or a failure is detected
- ▲ PAPLRETC is set with return code of the request

Commit Processing and Database updates

▲ Full Function Updates

- Full function Database updates written during Phase 1
- In case of abort, backout is performed

▲ DEDB Updates

- Updates performed asynchronously, completed before end of Phase 2
- In case of abort, updates are tossed away, backout is not needed

DBCTL UOR

- **▲** UOR = Unit Of Recovery
- ▲ UOR is represented by unique recovery token
- ▲ Recovery token is created by CICS after LUW begins
- ▲ Recovery token is maintained by DBCTL until completion of commit process

Recovery Token Format

- ▲ DBCTL will not allow identical recovery tokens to be in use at the same time or across consecutive commit cycles
- ▲ Recovery token is entered in some CICS and DBCTL commands and displayed in some messages
- ▲ Recovery token format (from CICS):
 - 8 bytes CICS APPLID
 - 8 bytes Unique UOR ID Store Clock Value

Status of DBCTL UOR

△ In-flight

- DBCTL or CICS failed before end of Phase 1
- DBCTL backs out updates dynamically

▲ Indoubt

- CICS or DBCTL failed after end of IMS Phase 1 and before start of IMS Phase 2
- If failed before instant of commit, CICS will tell DBCTL to backout at reconnect
- If failed after instant of commit, CICS will tell DBCTL to commit at reconnect

▲ In-commit

- DBCTL failed after start of IMS Phase 2
- Changes will be committed during restart

▲ In-abort

- DBCTL failed after UOR started backout
- Backout is completed during restart

Recoverable Indoubt Structure (RIS)

- ▲ RIS built for each Indoubt UOR when the CCTL or a CCTL thread fails
- ARIS built at DBCTL restart if DBCTL fails
- ▲ RIS used by DBCTL during reconnection to CCTL if Indoubt UORs existed at CCTL/DBCTL failure.
- ▲ RIS logged at DBCTL system checkpoint

▲ RIS Contents

- RRE Recovery token
- IEEQE -Changed data records
- BEEQE Indicates inaccessible data due to unresolved indoubts
- EQEL Links RIS elements

Indoubt Resolution

A Resolution is automatic under most circumstances

Done at CCTL reconnection to DBCTL

▲ DBCTL command to display indoubts

- /DIS CCTL cctlname INDOUBT
- Displays Pseudo-Recovery token, Recovery token and PSB name

▲ DBCTL command to change the status of unresolved indoubts

- /CHA CCTL cctlname { prtkn | ALL} { Commit | Abort}
- prtkn from /DIS CCTL Pseudo-Recovery token
- Use only if reconnect has not resolved. Verify CCTL's taken action

Automatic Resolution of INDOUBTS

/DISPLAY CCTL INDOUBT

/DIS CCTL CICS1 INDOUBT

CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME

STATUS

CICS₁

000100C0 00010040 9FFA956B7AE24E00 9FFA9568FF594301 PSBAAA PSBBBB ATTACHED INDOUBT INDOUBT

- ▲ Recovery-Token = Unique token from CICS/CCTL
- ▲ Pseudo-Rtkn = DBCTL's token to be used on the /CHANGE command

/CHANGE CCTL

/DIS CCTL CICS1 INDOUBT

CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME

STATUS

CICS1 ATTACHED

> 000100C0 00010040

9FFA956B7AE24E00

9FFA9568FF594301

PSBAAA PSBBBB INDOUBT INDOUBT

/CHA CCTL 000100C0 ABORT

ABORT updates by PSBAAA

/CHA CCTL 00010040 COMMIT

COMMIT updates by PSBBBB

/DBR, /STOP command Deadlocks

▲/DBR command basics

- Command rejected for 'long running applications'
 - BMPs are long running
- Command will wait for 'short running applications'
 - MPP & CICS/DRA threads are short running

△ Deadlock potential Prior to V5

- DBR and /STO region commands under same IMS task
- DBR targets resources held by CICS/DRA thread
- /STO targets holder of resources
- /STO will not be processed until /DBR completes
- DBR will not complete until thread is stopped

▲ Difficult to determine what thread to stop

/STOP REGION enhancements V5.1 and up

▲/STOP command processing moves to the SDAB IMS task

- Eliminates deadlocks with /DBR /DBD commands
- Allows resource contention resolution for /DBR /DBD and threads

▲/STOP ABDUMP sends 'Cancel Lock Request' to IRLM

- If the lock request is not in/for Backout
- This is not applicable with PI locking

▲ IMS APARs required

- V5 APARS
 - PQ00893 & PQ17087
- V6 APARS
 - PQ06544 & PQ17435

▲ IRLM 1.5 apar PQ05602

IMS / IRLM Long lock Detection Report

▲ IRLM Longlock Report

- Requires IRLM 2.1in a SYSPLEX data sharing environment
- RMF Monitor II report ILOCK
 - ▶ 79.15 records
 - Supported in OS/390 Release 2 and up
 - Introduced with apar OW28410

▲ The report provides information required to allow easy determination of transactions/threads causing the hang

▲ Report contains IMS region | thread number and CICS task id

- IMS V5 apar PN84685
- IMS V6 base code
- CICS 4.1 apar PN84787
- IRLM 2.1 apar PN79682

IMS Long Lock Detection

▲ IRLM / IMS considerations

- IRLM APAR PQ15432 for automatic detection of wait for lock.
- IMS determines detection cycle at connection to IRLM
 - Currently set at about 5 minutes
 - Simple 1 line usermod to change

▲ RMF requirements

- Must explicitly specify SMF record 79(15) at RMF startup
 - PARM='MEMBER(00),SMFBUF(SPACE(32M),RECTYPE(70:78,79(15)))'

▲ Execution

- Message DXR162I issued when long wait detected
- IRLM drives IMS exit
- IMS writes SMF record

IMS Long Lock Detection

△ Use RMF to view data

- Get to RMF (usually =RMF or RMF from TSO option 6)
- Select option 2 monitor II
- Select option 3 resource
- Select option 9 ILOCK
- Enter ILOCK ALL to view all blockers and waiters

Sample #1 Long Lock Report

000019BC B DBCTL IMSA <u>0017</u> PROGAS1A 00000126DC800101D700000000000000 IRLMLOCK1 <u>CICSDAA2ACE7A51B55B16080</u>

CICS Task ID

Lock_Count DB/Area Name

00000086

0000000

Sample #2 Long Lock Report

RMF - ILOCK IRLM Long Lock Detection

State Type Lock_Name CICS ID							PSB_Name	e Elap_Tim	ıe
IMS_ID Recovery_Token DB/Area						PST#	TRX/Job	Wait_Tim	ıe
CF Structu 000000A8	re			at 07/22/	1999 1	15:48:21	Dead	dlock Cycle	
TOP BLOCKER	BMP IM1A	0B00000 IM1A		01C60002 01000000		000000	FPSBPA DDLOCK1	00:00:50	
WAITER	BMP IM1A	0B00000 IM1A		201C6000 02000000			FPSBPA DDLOCK2	00:00:29	

IMS DBCTL Education

- **△ CE63 CICS and DBCTL**
- **△ CM100 IMS System Programming: DBCTL**

Summary

- **▲ CICS and IMS release independence**
- ▲ Recovery and failure isolation
- **▲** Syncpoint
 - Normal Two Phase
 - Single Cycle Commit support with IMS V6
- **△/DBR** and /STO THREAD improvements