E35

DL/I Batch to BMP Conversion

Karen Tischer

Anaheim, California

October 23 - 27, 2000

Agenda

- DLI Batch versus BMP
- BMP Implementation
- Checkpoint/Restart
- Performance
- Summary
- Appendix: Sample Checkpoint Program Logic

Topic 1: DLI Batch Address Space

BMP Address Space

DLI Batch Versus BMP

	BATCH	ВМР
Online required for execution	N	Υ
Requires sufficient batch window	Y	N
DLI and DBRC services in same address space as application	Y	N
Authorization/Unauthorization at each step	Y	N
Open/Close at each step	Υ	N
Own database buffering	Y	N
Own log data set	Y	N
Can use HSSR	Y	N
Database resources locked until sync point	N	Y
Batch Backout required after application abend	Υ	N
Access to IMS Message Queue	N	Y

DLI Batch Versus BMP . . .

	BATCH	ВМР
Define in IMSGEN	N	Y
Scheduled by MVS, not IMS	Y	Υ
May experience deadlocks	N	Y
OSAM Sequential Buffering available	Y	Y
Block level data sharing required to concurrently update online databases	Y	N
CFNAMES,CFVSAM=,CFOSAM=,CFIRLM= required in DFSVSAMP for Block level data sharing	Y	N
Should include CHKP / XRST capability	N*	Υ
Access to IMS Full Function Databases	Υ	Y
Access to Fast Path Databases	N	Y
Access to MVS Files	Y	Υ
Access to GSAM	Υ	Υ
Access to DB2	Y	Y

TOPIC 2: BMP IMPLEMENTATION

- Adding an IOPCB
- Including Checkpoint/Restart logic
- Setting up the IMSBATCH procedure
- Using GSAM
- Including the BMP in the online system
- Allocating a JES Initiator
- Operating Considerations for the BMP

The IOPCB

- Required by a BMP
- Acquired as 1st PCB in PSB at scheduling time
 - ► Need PCB Mask
 - ► Need linkage
- Used for 'CHKP'/'XRST' calls
- For testing in DLI Batch
 - ► PSBGEN . . .,COMPAT=YES

Checkpoint/Restart

- BMP concerned with concurrency of access as well as restartability
- All BMPs should have regular commit points
 - ► GU IOPCB
 - ► CHKP call
 - ► SYNC call
 - ► ROLL, ROLB, ROLS calls
- Resources Locked until commit
 - Span of data locked
 - Number of DB records (HDAM locks on RAP)
 - Control records
 - Twin chains
 - ► Lock enqueue space (PI or IRLM)
 - Deadlock possibility

Checkpoint/Restart

- Affect on Operations
 - ► Cannot change DB status (/STO, /STA, /DBR, /DBD ...)
 - ► Cannot shut down online system
- Frequency depends on mode
 - ► MD-BMP ... MODE=SNGL recommended
 - ► 'GC' status code for DEDB with PROCOPT=P | H
 - ▶ User Interval
 - Elapsed time
 - Number of DB records read (not 'read' calls)
 - Number of DB records updated (not 'update' calls)
 - Use "master" for controlling interval
 - One DB or file read or updated once per iteration thru program

Batch to BMP without CHKPs

- Add IOPCB
- Implement IMSBATCH procedure
- Add PSB to online IMS (APPLCTN)
- Use PROCOPT=E
 - Avoids locking overhead, unless data sharing
 - Prevents others in this IMS from scheduling
- Use PROCOPT=GON | GOT
 - Avoids locking overhead
 - Avoids data sharing requirements
 - Allows other online users to be scheduled in this and other IMSs

IMSBATCH Procedure PARM='

- BMP (region type)
- MBR=
 - ▶ application program name
- PSB=
 - psbname if different for program name
- NBA=
 - ► fast path database buffers
- OBA=
 - fast path overflow buffers
- IN=
 - ► input transaction code
 - ► IMS/TM only Message Driven (MD) BMP
 - ► OUT= ignored
 - Replies go to IOPCB
 - May use ALT-PCBs

IMSBATCH Procedure PARM= ...

OUT=

- output transaction code or LTERM name
- ► IMS/TM only non-Message Driven (NMD) BMP
- ► For sending output messages via the IOPCB
- ► Not for reading input messages from the input Qs

CKPTID=

- ► null: no restart
- ► 'LAST': restart from the last checkpoint issued
- ▶ 8 byte checkpoint id created by application
- ▶ 14 byte checkpoint id from DFS0540I or DFS681I messages
 - (IIIIDDDHHMMSST) where IIII is region ID
- ► NOMSG681* to suppress DFS681I messages
- ► NOMSG540* to suppress DFS0540I messages
- ► NOMSG* to suppress both DFS681I and DFS0540I messages

IMSBATCH Procedure PARM= ...

- LOCKMAX=
 - ► value between 1 32767 (in units of 1000)
 - ▶ When exceeded, BMP will 3301 abend
- CPUTIME=
 - value between 1 1440 (minutes)
 - ► When exceeded, BMP will U0240 abend after DLI call completes
 - ► Use instead of MVS TIME= parameter to avoid U113 abend of IMS online
- IMSID=
 - ▶ 1-4 character ID of IMS online system where the BMP will run

IMSBATCH Procedure PARM= ...

- PARDLI=0 | 1
 - ▶ 0: DLI processing under control of BMP TCB
 - Best for performance
 - Use for production
 - Advantages:
 - Page fault isolation to BMP's TCB
 - Multi-CPU exploitation
 - Priority dispatching
 - Disadvantage: Sx22 abend may cause IMS U113 abend
 - ▶ 1: DLI processing under IMS Control Region TCB
 - Use for test
 - Eliminates IMS U113 abend which may occur when Sx22 abend occurs in the BMP region
 - S122 operator cancel with dump
 - S222 operator cancel
 - S322 timeout
 - S522 timeout due to 'wait'
 - S722 output limit exceeded
 - Disadvantage: Bad for performance

Using GSAM

- What is it?
 - OS files under control of DLI
 - ► BSAM or VSAM(ESDS)
 - ▶ F | FB | V | VB | U
- Used to ease restart IMS automatically repositions
- Problems with GSAM
 - Backout does not remove updates
 - Out of space conditions
 - ► JES sysouts
- ACBLIB not used IMSBATCH must contain DD statements for:
 - **▶ DBDLIB**
 - ► PSBLIB

Define BMP to IMS

APPLCTN FPATH=NO,PGMTYPE=BATCH,PSB=xxxxxxxxx, SCHDTYP=SERIAL | PARALLEL

- ▲ FPATH=YES is invalid
- ▲ PGMTYPE=BATCH: BMP [and CICS Transaction]
- **△** SCHDTYP=
 - SERIAL:
 - Single scheduling of PSB only
 - Processing limited to one dependent region/thread
 - PARALLEL:
 - Multiple scheduling of PSB for multiple transact codes
 - Processing limited to MAXREGN parameter

Define Transaction for MD-BMP to IMS/TM

- DCLWA=YES:
 - Write input/output messages to log prior to enqueuing
- MODE=SNGL:
 - ► Commit at each GU IOPCB
 - ► Performance option
 - ► Faster response to end-user
 - ► Forced for WFI
- SERIAL=NO:
 - ► Input does not need to be processed in FIFO sequence
- WFI:
 - ► Wait-for-Input do not terminate BMP if there are no messages for it
- PRTY: Normal and Limit priorities are set to 0
- PROCLIM: ignored
- PARLIM: not supported

Starting the BMP

JES INITIATORS:

- ► Set up JES initiator(s) for BMP job classes
- Use initiators to control when BMPs run
 - Start fewer initiators during peak transaction processing
 - Start more initiators during slow times
- BMP Started By:
 - ► JES job submission
 - ▶ JES START command
 - ► IMS command: /START REGION membername

Stopping the BMP

- /STOP REGION | THREAD nn (normal case)
- STO REG | THREAD nn ABDUMP
 - ► Software cancel BMP issues own abend
 - Application looping or in wait state
- /STO REG | THREAD nn CANCEL
 - ► Only if /STO REG nn ABDUMP fails to work
 - ► Abends active TCB of BMP
 - ► May cause U113 abend of IMS if PARDLI=0
- Cannot use:
 - ► MVS or JES STOP | CANCEL (IMS traps and prevents)
 - ► MVS MODIFY

Restarting the BMP

- If BMP does not issue CHKPs/XRST
 - ► Resubmit entire job
- If BMP issues CHKP/XRST
 - ► Specify CKPTID='LAST' and resubmit
 - Do NOT change jobname, psbname or program name
 - Last CHKP log record (X'18') must be on OLDS
 - ► Last CHKP (X'18') not on OLDS
 - Include //IMSLOGR DD
 - Supply checkpoint id from DFS0540I or DFS681I msgs in JOBLOG
 - ► Checkpoint ID not known
 - Resubmit job U102 abend results with DFS0540I msg
 - Scan console log (or JOBLOG) for most recent DFS681I msg

Topic 3: Checkpoint / Restart

- Checkpoint Call
- Restart Call
- Synchronization Point Call
- ROLL, ROLB, ROLS Calls

Checkpoint Call

- Applies to Batch DLI and BMP
 - ► Commits all changes made
 - ► Establishes a restart point
 - ► Used for recovery purposes
- Basic Checkpoint restart dependent on application logic
 - ► CALL 'xxxTDLI' USING CHKP, IOPCB | AIB, IOAREA
 - ► EXEC DLI CHKP ID('literal') | ID(areaname)
- Symbolic Checkpoint requires use of Restart (XRST)
 - ► CALL 'xxxTDLI' USING CHKP, IOPCB | AIB, IOAREALN, IOAREA,

```
AREA1LN, AREA1, . . . AREA7LN, AREA7
```

■ EXEC DLI SYMCHKP ID('literal') | ID(areaname)

```
AREA1(area1) LENGTH1(expression1) . . .
```

AREA7(area7) LENGTH7(expression7)

Checkpoint Events

- Database updates committed
 - ► Before/After images written to system log
 - ► Modified segments written to database
 - ► Locks on modified segments released
- Checkpoint information written to log (X'18')
 - ► Checkpoint ID
 - ► All IMS database positions, including GSAM
 - ► Up to 7 user data areas
- Checkpoint ID sent to IMS master & MVS console
 - ► (DFS0540I & DFS681I)
- Database position lost except:
 - ►GSAM,
 - ► DEDB PROCOPT=P | H if 'GC'
- [Output messages enqueued for sending after logging]
- [Input messages dequeued next input message returned]

Checkpoint Program Flow

- Database driven program ('GN' processing)
 - Save database position
 - ▶ Issue CHKP call
 - Re-establish database position
 - ► Resume processing
- File driven program ('GU' processing)
 - ► Issue CHKP call
 - ► Read file
 - ► GU to re-establish database position
 - ► Resume processing

Restart Call

- Restart a BMP that
 - ▶ abended
 - was terminated due to operator command
 - -/CHE FREEZE
 - -/STO REG | THREAD xx [ABDUMP | CANCEL]
 - ▶ abended due to an IMS abend
- Restart should be first program call (after GU IOPCB if MD-BMP)
- Restart must precede first checkpoint call
 - ► CALL 'xxxTDLI' USING XRST, IOPCB | AIB, IOAREALN, IOAREA,

AREA1LN, AREA1, . . .

AREA7LN, AREA7

► EXEC DLI XRST MAXLENGTH(expression) ID('literal') | ID(areaname)

AREA1(area1) LENGTH1(expression1) . . .

AREA7(area7) LENGTH7(expression7)

Restart Events

- GSAM repositioned by IMS
 - ▶ do not change blocksize
 - ▶ DISP=MOD positions to end with PROCOPT=L
- IMS Full Function databases repositioned, if possible, by IMS
 - ▶ identical position not guaranteed if
 - segments added or deleted
 - non-unique keys
 - -no keys
 - check status code of each database PCB
 - ▶ if not blanks, reposition if necessary
- Fast Path databases not repositioned, user responsibility if necessary
- User areas restored

Synchronization Point (SYNC) Call

- Usable only by NMD-BMPs
- Application must be SELF RESTARTING if restart required
- Not used in conjunction with CHKP
- No WTO
- No log data
- Releases resources that IMS has locked for the application
- CALL 'xxxTDLI' USING SYNC IOPCB | AIB
- No EXEC DLI equivalent

ROLL, ROLB, ROLS Calls

- ROLL: Backout full function (FF) to last commit
 - ► CALL 'xxxTDLI' USING ROLL
 - ► EXEC DLI ROLL
 - ► Program abends with U778
- ROLB: Backout FF to last commit
 - ► CALL 'xxxTDLI' USING ROLB, IOPCB | AIB [,IOAREA]
 - ► EXEC DLI ROLB
 - ► Returns control to program
 - [returns first message segment into IOAREA]
- ROLS: Backout FF to earlier processing set point (SETS | SETU)
 - ► CALL 'xxxTDLI USING ROLS, IOPCB | AIB | DB-PCB, [IOAREA, TOKEN]
 - ► EXEC DLI ROLS TOKEN(token1) AREA(data-area)
 - ► Returns control to program or
 - ▶ DB-PCB: Can result in U3303 abend if DB2 or DEDB | MSDB in PSB

Topic 4: Performance

- Monitors:
 - ► BMP IMS Monitor: BMP tuning more difficult
 - ► Batch DB Monitor: Batch tuning easier
- DLI & DBB may be swappable in non-data sharing environment
 - ► SWAP=Y | N (default is Y)
- Parallel DLI
 - ► PARDLI=0 : Best for Performance
 - ► PARDLI=1: Best for testing where U113s are a problem
- BMP Initiators
 - ► 4 10 reasonable
- Start when online processing volumes are low

- Page fixing OSAM and VSAM control blocks and buffer pools
- Buffer Isolation separate subpools to
 - ► Minimize buffer steals
 - Minimize buffer contention
- VSAM
 - ► Optimize buffer hit ratio
 - ► Minimize buffer steals
 - ▶ Use Hiperspace for high read:reread ratio
- OSAM
 - Use OSAM Sequential Buffering when applicable
 - ► Minimize read requests
 - ► Minimize buffer steals

- OSAM Sequential Buffering
 - ▶ Optional
 - ► One pool of sequential buffers for each per DB PCB/DSG
 - −4 buffer sets by default
 - 10 buffers per buffer set
 - long-term page fixed
 - no lookaside between dependent regions
 - ▶ Activation
 - SBONLINE control statement in DFSVSMxx requests SB for IMS DB/DC or DBCTL
 - PCB ...,SB=COND requests SB for the BMP
 - //DFSCTL DD with control statement in IMSBATCH JCL
 - SBPARM used to override SB and default number of buffer sets by PCB in PSB
 - SB Initialization User Exit routine optional
 - Request conditional activation
 - Change default number of buffer sets
 - Disallow usage of SB for this execution

- DEDB High Speed Sequential Processing (HSSP)
 - Optional
 - Reduces elapsed time
 - Optionally can concurrently image copy requires DBRC registration
 - Three buffer sets equal to UOW size long-term page-fixed
 - Will be dynamically increased to six buffer sets if necessary
 - 4 buffer sets to 7 buffer sets if ASIC
 - ► Activation
 - PCB ...,PROCOPT=H to activate HSSP for the NMD-BMP only
 - Appl must 'CHKP' at 'GC' (UOW boundary crossed)
 - //DFSCTL DD control statements in IMSBATCH JCL
 - SETO can turn off HSSP request in PCB
 - SETO can request Asynchronous Image Copy (ASIC)
 - SETO can request No Read Ahead (NORDAH)
 - SETR can specify which areas are to be processed and in what order

Topic 5: Summary

- BMP Limitations
- XRF Considerations
- BMP Advantages

BMP Limitations

- Can only backout to LAST checkpoint
 - Batch DLI can backout to any checkpoint if not block level data sharing
- Cannot recover to beginning of BMP and re-run
- HSSR won't work with BMPs
 - OSAM Sequential Buffering is a good alternative
- No IMS commands from BMP regions in DBCTL environment

XRF Considerations

- When ACTIVE IMS fails, BMP fails:
 - dynamically backed out to last CHKP
 - manually restart BMP on alternate (new active)
- Use initiators / job classes to control execution CPU
 - ► Stop initiators on old active
 - Start initiators on new active
 - ▶ Don't use system affinity
 - -JES2: /*JOBPARM SYSAFF= . . .
 - -JES3: //*MAIN SYSTEM=...

BMP Advantages - Better Operational Environment

- Uses IMS Online Logs:
 - Simplified database recovery
 - Simplified operations
 - Central log control
 - Dynamic backout for all failures
- Avoids data sharing within a single MVS image
- Protection from inadvertent operator cancels
- U828 (ISRT duplicate index entry) eliminated
- No 'batch window' constraints

BMP Advantages: Application Architecture

- Access to Fast Path DEDBs (data entry data bases)
 - alternative to user partitioning (240 AREAs) of databases
 - ► alternative to DB Partitioning (only 32 partitions permitted pre-V7)
 - ▶ operations at AREA level
 - utilities executed against AREA
 - ▶ utilities run online while AREA is in use
 - ► High Speed Sequential Processing (HSSP)
 - Asynchronous Image Copy (ASIC) concurrent with HSSP
- IMS/TM: Access to message queues

BMP Advantages: Performance

- Databases already OPEN'd by online
- Databases already AUTHORIZEd by online (less RECON access)
- WFI (wait-for-input) processing: IMS/TM only
- High performance LWA (log write ahead) to WADS

E35

DL/I Batch to BMP Conversion

Thank you for your evaluation

Anaheim, California

October 23 - 27, 2000

Appendix: Sample Checkpoint Program Logic

- Uses program specified UNIQUE checkpoint IDs
 - ► Must be unique, else from where to restart?
 - ► IMS generated not known to application, hard to use in automated process
 - ► Minimize JCL changes just resubmit with necessary logs
 - ► Eliminate recompile for frequency changes
- Components
 - ► Checkpoint database HDAM root only
 - Program name is KEY
 - -JES Job number
 - Counter
 - Good place to store CHKP frequency information
 - To alter frequency, change value in database
 - No need to recompile program
 - Generalized checkpoint code copied into program
 - ► PCB for Checkpoint database

Sample Checkpoint Program Logic . . .

- At program START
 - ► GU CHKP-DB-PCB using KEY = PGMNAME
 - ▶ If input record blanks, then normal execution
 - ▶ If input record contains chkp-id, restart indicated
- Issue XRST call
 - ► If normal execution, use blanks in IOAREA
 - ► If restart, use CHKP-ID from CHKP-DB in IOAREA
 - Saved program areas restored
 - GSAM databases repositioned by IMS
 - IMS databases repositioned if possible by IMS

Sample Checkpoint Program Logic . . .

- If restarting
 - Check status code of all database PCBs for blanks
 - If not blank, reposition database if necessary
 - ► Update CHKP-DB with new JES job number
 - ► Issue initial CHKP call
- Normal processing
 - Obtain checkpoint frequency from CHKP-DB
 - ► Increment and test CHKP counter
 - elapsed time
 - -# DB records updated
 - -# DB records read

Sample Checkpoint Program Logic . . .

- When CHKP to be taken
 - Update user areas to be CHKP'd
 - ► Update CHKP-ID counter
 - ► REPL root in CHKP-DB
 - ► Issue CHKP with new CHKP-ID and up to 7 user areas
 - ▶ Reset CHKP-ID counter
 - Reposition databases if necessary (not needed for GSAM or DEDB with 'GC')
- At normal completion
 - REPL CHKP record with blanks in CHKP-ID field so next execution is normal start
 - ► Terminate program

