E53

Vern L Watts

IMS V7 High Availability/Large Database Support

Anaheim, California

October 23 - 27, 2000

vlwatts@us.ibm.com

HALDB (High Availability Large Database)

- Large Database
 - -Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups
- High Availability Database
 - -Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
 - -Self healing pointers
 - Reorganization of partition does not require changes to secondary indexes or logically related databases

HALDB (High Availability Large Database)

Benefits

- -Greater database capacity
 - Without application changes
- -Increased database availability
 - Partitions, not databases, are removed from system
 - Shortened reorganization process
 - Batch window is shortened with concurrent processing
- Improved manageability
 - Data sets may be smaller
- -Enhanced usability
 - ISPF utility for partition definitions

Highlights

- Hierarchic structure is maintained
 - -A database record resides in one partition

- Minimal (or no) application changes required
 - -Cannot initially load logical child segments
 - New status code for load programs
 - -'Data unavailable' conditions apply to partitions
 - Database may be available, but partition unavailable
- New database types
 - -PHDAM partitioned HDAM
 - -PHIDAM partitioned HIDAM
 - Index is partitioned
 - -PSINDEX partitioned secondary index

Highlights

- OSAM and VSAM (ESDS and KSDS) are supported
- Partition selection is done by key or user exit routine
- Logical relationships and secondary indexes are supported
 - -Secondary indexes may be partitioned
- DBRC is required
 - -Databases must be registered
- Dynamic allocation uses DBRC information
 - -DFSMDA is not used

Definition Process

DBDGEN

- -Used to define database
 - Hierarchic structure, data set group boundaries, pointer options, logical relationships, secondary indexes,...

HALDB Partition Definition Utility

- -ISPF based
- -Used to define partitions in database
 - Partition selection, space characteristics, randomizers,...

Indirect Pointers

- HALDB uses both direct and indirect pointers
 - -Direct pointers point to segments
 - Indirect pointers "point" to Indirect List Entries (ILEs) in Indirect List Data Set (ILDS)
 - -ILEs have token for key
 - ILEs contain direct pointer to segment
 - -ILDS is KSDS associated with a Partition

HALDB Database Structure

- Each partition in a database has a unique partition ID (PID)
- A reorganization number is maintained in each partition
 - Incremented by each reorganization reload
- Each segment in PHDAM or PHIDAM database is assigned a unique token when created
 - -Indirect List Entry Key (ILK)
 - -8 bytes stored in segment prefix

Extended Pointer Set

- Extended Pointer Set (EPS) is used for logical relationships and secondary indexes
 - -EPS is <u>not updated</u> by reorganizations!
 - EPS contains direct pointer, reorganization number, target partition ID, and ILK
 - If reorg number is current, direct pointer is used
 - If reorg number is not current, ILK is used to find ILE in ILDS
 - ILE contains pointer to segment
 - Direct pointer and reorg number in EPS are updated when ILE is used
- •Self healing pointers!

Using an Extended Pointer Set (EPS)

After reorganization of Partition

Using the EPS after the reorganization

"Healing" the EPS

Extended Pointer Set (EPS) Adjustments

- When out of date pointer is found it is corrected if:
 - -Access intent is update or exclusive
 - -PROCOPT is update
- Locking considerations
 - Read programs with update PROCOPTs may hold many locks
 - If block level data sharing is used, block locks are held until sync point

ILDS Data Sets

- Indirect List Entries (ILEs)
 - -Created or updated by reorg reload
 - Reorgs do not update pointers in segments
 - Not created or updated by non-reload processing
 - This processing updates pointers in segments
 - -Initial load does not create ILEs

ILDS Data Sets

- ILE keys (9 bytes)
 - -ILK (8 bytes)
 - RBA of segment at its creation time (4 bytes)
 - Partition id at creation time (2 bytes)
 - Reorg number at creation time (2 bytes)
 - -Segment code (1 byte)

ILDS Data Sets

- ILE data (50 bytes)
 - -Key (ILK and segment code)
 - -Flags
 - -Old and new copies of:
 - Partition ID
 - Reorg number
 - Pointer to logical parent or sec. index target
 - Database record lock ID for segment
 - Pointer to paired logical child for physical pairing

Database Structures

- PHIDAM prime indexes are not separately defined
 - -Defined as part of the PHIDAM database
 - Applies to DBDGEN and system definition
- Parent pointers
 - -All segments have physical parent pointers
- Symbolic pointers are not used
 - -All pointers are direct

Database Structures

- Logical relationships
 - -Virtual pairing is not allowed
 - Limited to unidirectional or physically paired
 - -Logical child segments cannot be initially loaded
 - Must be added by update
- Secondary indexes must have unique keys
 - -/SX or /CK may be used to create uniqueness
 - /SX is increased from 4 to 8 bytes (ILK)

HALDB Database Data Sets

HALDB Database Data Sets

- Each HALDB database has up to 1001 partitions
- PHIDAM has index, ILDS, and up to 10 data set groups per partition
 - -3 to 12 data sets per partition
 - -3 to 12,012 data sets per database
- PHDAM has ILDS and up to 10 data set groups per partition
 - -2 to 11 data sets per partition
 - -2 to 11,011 data sets per database
- PSINDEX has no ILDS or data set groups
 - -1 data set per partition
 - -1 to 1001 data sets per secondary index

- Data set size limitations
 - -Maximum data set size is 4GB
 - Applies to OSAM and VSAM
- OSAM block sizes must be even

The data sets in a partition have generated data set names and DDNAMEs. Letters are used to distinguish them.

X - PHIDAM index

L - ILDS

A through J - Data data sets

A - PSINDEX

Data set names

- -Begin with data set name prefix for the partition
 - Up to 37 characters
 - Assigned in HALDB Partition Definition Utility
- -Letter and Partition ID are used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data
- -Example:
 - Partition data set name prefix IMP0.DB.INV23.FR
 - Partition ID: 00004
 - Data set name PHIDAM Index: IMP0.DB.INV23.FR.X00004

DDNAMEs

- Partition name is basis for DDNAME
 - Up to 7 characters
 - Assigned in HALDB Partition Definition Utility
- -Letter is used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data
- -Example:
 - Partition name: FRANCE
 - DDNAME for PHIDAM Index: FRANCEX

Partition DDNAMEs and Data Set Names

Partition_name assigned by user in HALDB Partition Definition Utility

DSN_prefix assigned by user in HALDB Partition Definition Utility

PartitionID assigned by IMS in HALDB Partition Definition Utility

Data set	DDNAME	Data Set Name
Data set group 1	Partition_nameA	DSN_prefix.ApartitionID
Data set group 2	Partition_nameB	DSN_prefix.BpartitionID
Data set group 3	Partition_nameC	DSN_prefix.CpartitionID
Data set group 10	Partition_nameJ	DSN_prefix.JpartitionID
ILDS	Partition_nameL	DSN_prefix.LpartitionID
PHIDAM Index	Partition_nameX	DSN_prefix.XpartitionID
Secondary Index	Partition_nameA	DSN_prefix.ApartitionID

Partition Selection

- Partition selection is based on either:
 - Key range

or

-Partition Selection Exit routine

- Partition selection determines:
 - -Where root segments are placed
 - -Order in which partitions are processed

Partition Independence

Commands

Allowed on both databases and partitions

Availability

-Partitions are allocated and authorized independently

Scheduling

- -Based on database availability
 - PCBs and INQY calls report database availability
 - Partition may be unavailable with available database

Database Utilities

- -Allowed on individual partitions
- -Concurrent processing of multiple partitions allowed

HALDB Overview

Migration

- Uses Prereorg, HD Unload, and HD Reload utilities with new control statements
- Databases logically related to each other must be migrated together
- Secondary indexes must be migrated with the databases to which they point
- -Migration Aid Utility
 - Provides statistical information about space requirements, key ranges, suggested partition boundaries,...

HALDB Overview

Fallback

- -Fallback from HALDB to HIDAM, HDAM, and secondary indexes is supported
- Uses Prereorg, HD Unload, HD Reload, Prefix Resolution, and Prefix Update utilities with new control statements

HALDB Support

• HALDB is supported with:

- Data sharing
- -Remote Site Recovery (RSR)
- Extended Recovery Facility (XRF)
- -Online Change
- -OSAM Sequential Buffering
- -IMS Monitor and IMS Performance Analyzer

Definition Tasks

DBDGEN

-Defines the master database

HALDB Partition Definition Utility

- Defines the partitions
- -Registers the database and partitions in RECONs

System Definition

-Specifies the database to the online system

DFSVSMxx and DFSVSAMP DD

-Assigns data sets to buffer pools

DL/I Calls with HALDB

- Database availability information
 - -INIT DBQUERY call and priming of database PCB
 - Report database availability
 - Do not report partition availability
 - -Database calls to unavailable partitions
 - 'BA' status code or U3303
 - GN after 'BA' will move to next partition

DL/I Calls with HALDB

- Cannot initially load logical child segments
 - -LF status code returned if attempted
 - -Log. child segments may be inserted by update programs
 - Log. child segments may be reloaded
- PHIDAM with Partition Selection Exit routine
 - Root segments are not necessarily in key sequence when crossing partition boundaries
 - Segments are in sequence within a partition

Logging

- No logging of "after images" for PHIDAM indexes
 - -Rebuilt with DFSPREC0 utility
 - -"Before images" are not archived
- EPS adjustments are not backed out
- Database change log records include partition name instead of master database name
- No logging for ILDS
 - Only updated by HD Reload utility

OSAM Sequential Buffering

- HALDB supports OSAM Sequential Buffering (SB)
 - -Same support as for non-HALDB databases
 - -Recommended for batch sequential processing
- SB monitors by data set
 - -Sequential buffering is turned on/off due to access patterns
 - Sequential buffering may be invoked for some, but not all partitions
 - Well-organized vs. badly-organized partitions

Data Set Groups

- HALDB supports data set groups (DSGs)
- DSGs are not needed to address database size limitations
 - With non-HALDB databases, DSGs were often used to deal with data set size limitations
- DSGs remain useful
 - May improve performance by moving rarely accessed data to another data set
- Reevaluate need for DSGs when migrating databases to HALDB

Segment Edit/Compression Exit Routines

- Segment Edit/Compression Exit Routines
 - Defined for entire database
 - Defined on DBDGEN SEGM statement
 - -All partitions in database use the same exit routines

Restrictions on Number of Data Sets

- IMS allows up to 10,000 <u>allocated</u> data sets per address space
 - -Limit includes system data sets
 - -Could limit number of HALDB data sets
- With DFSMS 1.3 and 1.4, IMS allows up to 8,183
 open full function database data sets
 - -Could limit number of HALDB data sets
 - -Restriction is removed in DFSMS 1.5

Data Set Allocation

- Dynamic allocation uses DBRC information
 - DFSMDA is not used
- DD statement allocation may be used
 - If DD statement is not present, dynamic allocation is used
- Dynamic allocation is always available for batch
 - Specification of 'NODYNALLOC' in DFSVSAMP is ignored for HALDB

Data Sharing

- Data sharing is supported
 - -SHARELVL specified on master database level
 - Authorization is by partition
 - Lock resource names
 - Master database global DMB number used for all partitions
 - Partition IDs added at end of lock resource name

RSR

- Remote Site Recovery is supported
 - -GSG is specified by database, not partition
 - -Tracking level is specified by database, not partition
 - -ILDS and prime index data sets are not tracked
 - There are no log records for them
 - They are rebuilt with DFSPREC0 at tracking site

HALDB Database Candidates

- Very large databases
 - -Approaching 4GB (VSAM) or 8GB (OSAM) limitations
 - To allow for growth
 - To make databases more manageable
 - -Previously partitioned databases
 - Using IMS/ESA Partition Support Product (PDB)
 - User partitioning

HALDB Database Candidates

- Medium and large databases
 - -Parallel processing to meet time deadlines
 - Application programs
 - Utilities

HALDB Database Candidates

- Any size database
 - -Faster reorganizations
 - May be done more frequently
 - -Partition independence
 - Making only parts of the data unavailable for database maintenance
 - -HIDAM to PHIDAM conversion
 - Log reduction for prime index
 - No image copies of prime index

HALDB Summary

Large Database

- -Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups

High Availability Database

- -Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
- -Self healing pointers
 - Reorganization of partition does not require changes to secondary indexes or logically related databases

MMM = MMM

HALDB Summary

Benefits

- -Greater database capacity
 - Without application changes
- Increased database availability
 - Partitions, not databases, are removed from system
 - Shortened reorganization process
 - Batch window is shortened with concurrent processing
- -Improved manageability
 - Data sets may be smaller
- Enhanced usability
 - ISPF utility for partition definitions

