

A Practical Guide to IMS Connectivity and the Web

IMS Technical Conference - 1997 Session E36

Suzie Wendler IBM Dallas Systems Center

Abstract

For today's client/server and open environments, IMS has provided many ways to access the IMS Transaction Manager. This technical presentation reviews these and the IMS services that are used to provide this access. Among the connections covered are APPC/IMS, TCP/IP including Telnet and IMS Sockets, AS/IMS, OSF/DCE RPC, MQSeries, and the use of OTMA. The presentation also puts these connections into the perspective of Web access and discusses the basic concepts of Web connectivity.

Topics

Overview

Sna Environment

Traditional Connections

The TCP/IP Environment

- Connection Options
- DCE/RPC
- Messaging and Queuing

OTMA

The Web

- What it is and how to connect to IMS
- Available solutions

Network Connections

Application Connections

Web Connectivity...At a Glance

The SNA Environment

Connections Supported by IMS

Connections Supported by IMS...

Common to all connections

- IMS executes communication flows on behalf of the IMS application
 - Based on system definitions

IMS applications use the standard DL/I call interface

Unique Capabilities

MSC (Multiple Systems Coupling)

- Most commonly used protocol for IMS to IMS connections
- Private communication protocol
 - Provides the end-user with a "single system" image
 - Allows growth beyond he capacity of one system
- Allows IMS applications to be distributed
 - Program-to-program switches
 - Conversational transactions
 - No application program changes required
 - Destinations can be LTERMs or transactions

Unique Capabilities ...

ISC (Intersystem Communications)

- Commonly used over the years to connect IMS to CICS or IMS to RYO VTAM
 - Can be used to connect IMS systems
 - Not as transparent to the application program as MSC
- Implementation of the SNA LU 6.1 protocol
 - Connects host subsystems (program-to-program connection)
 - IMS
 - Executes communication flows on behalf of the IMS application
 - Responds to the partner waiting for a reply (e.g., response mode)
 - Initiates the communication process when needed (e.g., non-response mode)
 - IMS applications view the connection as an LTERM

Unique Capabilities ...

APPC (Advanced Program to Program Communications)

Relatively new and tends to be the choice for workstation connections as well as new connections between CICS and IMS

Implementation of the LU 6.2 protocol

- Connects applications in different environments
- Direct program-to-program connection
- Conversational model

IMS provides two choices

- Implicit support
 - IMS handles all communication flows
 - IMS application continues to use the DL/I api
- Explicit support
 - IMS application handles all communication flows
 - CPIC API

Unique Capabilities ...

- Conversational Model
- APPC Supports
 - Asynchronous
 - Synchronous
 - interactive

TCP/IP Application Protocols

TCP/IP -- Why the concern?

- IMS applications are traditionally access via SNA, VTAM
- There is a growing need:
 - For access to IMS applications from TCP/IP networks

TCP/IP -- What is it?

A defined Protocol Suite

- Communications protocol
- Set of Applications

Most common connection requirements

- 3270 emulation
- Printer support
- Program-to-program communications
- The Web

TELNET	FTP	LPR/LPD	SMTP	RouteD	
Sockets					
ТСР				UDP	

Application Protocols

Application layer protocol

- Describes peer-peer communications between two applications communicating
- TCP/IP applications are client/server models
 - A client initiates a request for a service
 - A server receives the client request at a well known port and provides that service

Daemon

Never-ending process that receives a request and creates (forks or clones) another similar process that is more specific to the request based on the options passed

Remote Terminal Protocol (TELNET)

Widely implemented "internet standard" application

Provides login to remote/local host

- Allows a user at one site to establish a TCP connection to a login server (Telnet daemon) at another site
- Passes keystrokes from the user terminal and returns the output

Provides "transparency"

Gives the appearance that the user's terminal is directly attached to the remote machine

TELNET server on MVS

Establishes a session with IMS through VTAM

– LU2

Allows the TCP/IP client to access IMS transaction

TELNET...

IMS

BEGINVTAM ** LOGMODES ** 3278-2 LMD32782 ...

** LU POOL ** TCP00001 TCP00002 TCP00003 TCP00004 ...

ALLOWAPPL TSO

• • •

. . .

RESTRICT APPL IMS **e.g. only 3 users**

USER user1 user2 user3

Printer Support

Line Printer Daemon Protocol (LPR/LPD)

- Protocol to access print servers on a TCP/IP network
 - Spool print to a remote print server
 - Monitor progress of remote printing
 - Cancel print job spooled to the remote print server
- LPD (Line Printer Daemon) provides the server capability
 - Performs local print spooling
- LPR (Line Printer Requestor) provides the client capability
 - Responds to LPR protocol commands

NPF/IP PrintWay...

TCP/IP - Program-to-Program Support

Creating user-written TCP/IP applications

Allows:

- Direct communication between two programs
- Support of the client/server model
- Requires:
 - An interface for programs to request communication services
 - "Sockets"

MVS TCP/IP provides:

- IMS Sockets support:
 - Listener BMP, or
 - OTMA access

IMS Sockets Support - Listener BMP

IMS Sockets Support -- OTMA

OTMA Support

- Support delivered in two parts
- MVS TCP/IP V3.2 PTF (UQ03104)
 - Documentation
 - EZAIMSO0 delivered as a supplied exit for the OTMA host piece
- HWS (Host Web Server) component
 - Downloaded from the IMS Home Page at <u>http://www.software.ibm.com/data/ims</u>
 - Two files that need to be uploaded to MVS
 - Configuration PDS (member can be added to IMS proclib)
 - Load library (member can be linked into IMS reslib or into any authorized library)
 - Startup jcl

OTMA Versus Listener BMP

Use of OTMA

- Supports inbound socket connections
- Requires IMS/ESA V5 or later
- BAU IMS services
- BAU IMS environment
- IMS application use DL/I calls

Use of Listener BMP

- Supports inbound socket connections
- Any supported release of IMS
- Required if MPP server uses explicit socket call to <u>receive</u> inbound requests
 - <u>Co-exists</u> with the use of OTMA for <u>other</u> requests that are inbound implicit

The DCE/RPC Environment

DCE (Distributed Computing Environment)

DCE (Distributed Computing Environment)

- A layer on top of TCP/IP
 - Allows applications to issue Remote Procedure Calls
 - The calling application is shielded from knowing where the called procedure executes

What is it?

- A set of industry standards defined by the Open Software Foundation (OSF)
- Supports distributed applications
- Provides interoperability and portability across heterogenous environments
- Defines a comprehensive and integrated set of tools and services
 - Directory service
 - Security service
 - Distributed time service
 - Remote Procedure Call (RPC)

Remote Procedure Call... In Perspective

Structured application - processing all in one environment

RPC application -- RPC generated stubs

DCE/RPC and IMS

AS/IMS (Application Server/IMS)

- Provides the DCE RPC support on behalf of IMS
 - For inbound requests
 - Where the IMS application is the called procedure
- Shields IMS and the IMS application programs from the DCE RPC environment
- Allows IMS and the IMS application programs to continue to use of DL/I

Outbound explicit application RPC calls

- Can be issued directly from IMS applications
- The requested procedure is outside IMS
- Capability does not require and does not use AS/IMS

DCE/RPC and **IMS**

RPC provides

- IDL (Interface Definition Language)
 - Automatically generates code that transforms procedure calls into network messages
- Runtime service
 - Implements network protocols for communication

The Messaging and Queuing Environment - MQSeries

Messaging and Queuing

MQSeries is a series of IBM products that implement the messaging and queuing interface across products in the same or multiple platforms

- MVS/ESA, AIX, OS/2, OS/400
 - Applications are not involved in communications
 - Common API which is consistent across the platforms
 - Assured message delivery and syncpoint participation
- The concept of messaging and queuing is one well understood by IMS users
 - MQSeries globalizes this model

MQSeries for MVS/ESA

MVS Subsystem

- Supports connections to CICS, IMS, Batch and TSO
 - Provides recovery and restart

Support for IMS

IMS Adapter

- Support includes a Trigger Monitor (BMP) for inbound requests
- Puts a special message on the IMS queue for the MPP that gets scheduled
- Uses the External Subsystem Interfaces (ESS)
- Similar to the DB2 connection
- IMS applications issue MQ calls to retrieve messages from and send messages to the MQ queue

IMS Bridge

- Uses the IMS/ESA V5 OTMA support
- Allows access to legacy applications (GU and ISRT, IOPCB calls)

Connecting to IMS - - IMS Adapter

Connecting to IMS - - IMS Bridge

ΟΤΜΑ

OTMA Support

What is OTMA (Open Transaction Manager Access) ?

- Component of IMS/ESA V5
- Provides standard access into IMS from any MVS client
- Uses MVS Cross-System Coupling Facility (XCF) interface
 - Allows high performance cross-address space communications

IMS Control Region

Answers Multiple Concerns

Product implementations can access IMS differently

- TCP/IP IMS Sockets
 - Listener BMP, Assist Module, Extended Sockets
 - Requires some change in the IMS application
- AS/IMS
 - Interfaces with IMS using either LU 6.1 or LU 6.2 protocols
 - IMS applications can remain unchanged
- MQSeries IMS Adapter
 - Trigger Monitor (BMP)
 - Requires MQ code in the IMS application
- All impose some limitation on processing with IMS
- OTMA support provides a STANDARD interface
 - BAU IMS services
 - Unchanged IMS applications

Comparisons

Comparisons

Comparisons ...

Transactional	<u>Conversational</u>	Remote Procedure C	andQueuing
 Characteristics: Synchronous or asynchronous from the client Asynchronous from the server Protocols bridged by TP subsystem 	 Synchronous Caller waits for reply Interactive Multiple exchanges 	 Synchronous Caller waits for reply More limited than conversational model 	 Asynchronous Sends message and does not wait for reply Reply may be sent later
 Some basic cor Easiest to impleme from the IMS appl 	nparisons: ent • Allows connectivity to client appl that are	 Supports an industry open interface and 	 Supports a standard API across SNA and

- Proven over the years
 - Traditional
 - Familiar

- All communication flows executed by IMS
 - All IMS unique services applicable

- Sockets
- Only way IMS appl can send a msg and wait for - Allows appl to be reply (explicit)
- Only way to support true conversations (explicit)
- Appl pgms include communication code
 - Appl design needs to include recovery

- DCE as defined by OSF
- shielded from communication flow
- Server environment needs to create IDL interface definitions for the server appl
- Supports message routing, delivery and recovery across platforms
 - Requires MQSeries set of products
- Also allows applications to be shielded from communications

The Web Environment

Another Client/Server Application in the TCP/IP stack

Uses HTTP (Hypertext Transfer Protocol)

TELNET	FTP	LPR/LPD	Web APPL (HTTP)	User written	NFS RPC
ТСР			UDP		
IP					

History of the Web

Originated in 1989 at CERN (European Particle Physics Laboratory) in Geneva, Switzerland by Tim Berners-Lee

- Purpose was to create a new kind of information system
 - Allow researchers to collaborate and exchange information during the life of a project or on several projects
 - First browser was a line-mode browser
- In 1993 Mosaic was released based upon work done by Mark Andreessen at the NCSA (National Center for Supercomputing Applications)
 - Mosaic is a WEB browser with an easy-to-use interface that allows the user to click on a link to navigate the Web as well as the ability to display graphics
 - The advent of Mosaic initiated the widespread appeal of the Web
- Since then the Web has extended beyond the scientific and educational community to the commercial and home environments
 - Variety of Web browsers, servers and applications

Terminology

Web Browser

- The client part of the client/server application
 - Takes the user's request
 - Sends it to the server
 - Retrieves the document sent by the server
 - Interprets the contents
 - Presents it to the user

Web Server

- The other half of the client/server model
 - Holds documents
 - Responds to browser requests
- Supports text and multimedia documents
- Executes special programs
 - Can act as a gateway to other applications or information resources

Terminology ...

HTTP (Hypertext Transfer Protocol)

- Method for encapsulating a variety of data types in a common format
- Protocol used by web browser and server applications to communicate
 - Lightweight stateless protocol
 - Each document request is a new connection

HTML (Hypertext Markup Language)

- Special tagging language used in ASCII (plain text) documents
 - Tells Web browsers how to format Web pages
 - Describes the structure of a document but not its exact formatting
 - Exact format (way it looks to the user) depends on the browser
- Provides the ability to imbed hypertext links in documents
 - A hypertext link is identified with a special tag

Hypertext Link

- Capability to allow one document to reference another
- Links can span computers around the world

Terminology ...

URL (Uniform Resource Locator)

A unique address for a specific document on the Web

http://www.company.com/ABC/menu.html

application server name path to the document protocol

CGI (Common Gateway Interface)

- Facility to create applications that can be invoked by the Web server
 - Special HTML form
 - Can contain input fields, lists for the user to select from, buttons for the user to click, etc...

The Web Application

http://www.company.com/menu.html

Listens on Port 80 unless otherwise defined

Client Request:

Server Response

			HTML header:
Method + URL	GET /menu html	Date: Wednesday, 02-26-97	Version, status, reason
		Server: Website/1.1	Date
Types of docs		Last Modified: Tuesday, 02-25	Server software info
the client can	ACCEPT. Image/gil, image/jpeg	Content-type:text/html	Info on doc modif.
accept		Content-length:8151	Type of data returned
Nomehanien of	User-Agent: Mozilla/2.on	 <html><head></head></html>	Size
iname/version of	(Windows)	<title> Menu </title>	Document itself
client software			

Web Components - A Closer Look

Web Flow

End users specify a URL to access a document

http://server-name:port-number/path-name/file-name

Examples:

- http://www.ibm.com
- http://www.software.ibm.com/data/ims
- http://www.s390.ibm.com
- http://postcards.www.media.mit.edu/postcards
- Default file name is usually index.htm or index.html
- Default TCP/IP port number for http is 80

The URL can reference a document (text only) created using HTML

< html > < head >

< title > This is the title line < /title >

< /head >

< body >

< h1 > This is a heading < /h1 >

< h2 > This is another heading < /h2 >

This is an item in an un-ordered list

This is an item in an ordered list

< a href = "http://www.software.ibm.com/data/ims" >

This is a link to IMS home page

< a href = "ftp://www.s390.ibm.com > This is a link to the IBM S/390 server < /a >

< img src = "pic1.gif" > This img tag includes a picture in the page

< a href = "pic2.gif" > This is a link to a picture < /a >

< /body >

< /html >

Web Flow...

The URL can also access a special form that is not just a text document but allows interaction

Web forms were introduced to help support end user input

- Forms programming provides an architected mechanism to allow browsers to pass data to a server
 - A way to support transaction processing

Example

- End user enters a URL at the browser
- The request is passed to the server which sends the form corresponding to the request
 - Form can be generated dynamically by a CGI script
 - Or, it can be a predefined form that is simply retrieved by the server
- The end user enters required data on the form displayed by the browser
- The data is passed back to the server
- The CGI script encoded in the form is invoked by the server to process the input received

A little more about this Web Form ...

- An HTML page can contain a number of forms
- Each form has a tag (FORM ACTION = "url") which can determine the name of the script that processes the form
- Each form has any number of input tags that name input fields and associated values
- The forms programmer:
 - Builds the output page dynamically in order to supply variable output data
 - Places an indication of the next program to be executed in the FORMS ACTION tag
 - Saves context across invocations in the form itself, e.g. in a hidden field (the Web server is stateless)
- In a multi-user environment, the forms programmer:
 - Takes care naming any intermediate files created so they do not coincide across different users
 - Places hidden information in the form that distinguishes the various users from one another

The CGI program can work with the data on the web form as well as execute any programming function including communication calls to a backend server like IMS

- Method GET or POST
- Action Names the program to be executed
- Environment Variables
 - Server dependent, e.g. name and version of server, server name
 - Client dependent, e.g. request method (GET or POST), the client hostname, path information
- Input stdin
- Output stdout, HTML page
- cgiutils
- cgiparse

Accessing IMS

Accessing IMS

Web Browser Understands HTML and HTTP

Web Server Provides HTML docs and CGI programs CGI Programs

 Access IMS using any supported protocol
 Convert transaction input/output to HTML

Accessing IMS...

The CGI program can access IMS in several ways depending on the environment and network

SNA

- LU0 (SLUP), LU1, LU2, LU 6.1(ISC), LU 6.2 (APPC)
- MQ

TCP/IP

- 3270 emulation (e.g., HCON HLLAPI, Telnet,....), Sockets
- MQ

DCE

RPC (Remote Procedure Calls)

The IMS application does not have to be changed

Security Considerations

Firewalls - first line of defense

- Combination of hardware/software used to protect one network from another
- Provide a limited entry point to/from a secure network
- Firewalls can use a combination of several technologies
 - Packet Filters
 - Proxy Servers or Application Gateways
 - Socks (Internet Socket Service)
 - Network Address Translation, IP Tunneling, etc...

Web Specifics - Second line of defense

- Basic Authentication
- SSL (Secure Socket Layer)
- S-HTTP (Secure HTTP)
- Secure Commerce

IMS considerations - the final protection

- IMS security
- IMS application security

IMS and the Web --What's available?

IMS Solutions

• IMS information is available on the Internet

- http://www.software.ibm.com/data/ims
 - Documentation
 - IMS WWW templates (sample CGI applications)
 - Link to OS/ 390 Internet Bonus Pak II (IMS CGI sample)
 - IMS Sample CGI program
 - IMS WEB
 - Web Studio Development toolkit
 - \circ DLLs
 - Host component OTMA
 - Sample Java application

Summary

IMS supports a wide variety of solutions that allow access to IMS from the Internet with

- Flexibility
- High performance

