
 Performance Tuning Tips for IBM Informix Dynamic Server

 - 1 -

Performance Tuning Tips
for

IBM Informix Dynamic Server

 Author: Bobby Sukumar
 Email: bobbys@sg.ibm.com

 Date: Dec 18, 2006
Revision: 1.1

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 2 -

Table of Contents

1. General guidelines for tuning new systems.......... 3
2. Understanding and tuning update statistics 7
3. Understanding the SET EXPLAIN output 10
4. Join methods explained 12
5. SELECT statement explained 20
6. Fragmentation considerations.......................... 24
7. Tuning the B-Tree Scanner 28
8. Concurrency and Performance 31
9. Real cases from ATLAS/RETAIN systems 36
10. References.. 41

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 3 -

Target audience for this paper
• Database administrators
• Database SQL developers
• Database users

1. General guidelines for tuning new systems

Because performance tuning is iterative in nature, completing too many changes at one
time can be a challenge. As time goes by, you should re-analyze these values and re-
configure your settings on a regular basis to maintain the best performance.

In addition, tuning the system in a controlled environment1 without interference from
external influences2 that could skew I/O and network performance is the key to knowing
where you stand and where you have succeeded.

1 Ideally you would want to have an environment that simulates a production system as realistically as
possible, where the required queries are executed with the most number of expected concurrent users.

2 Multiple database server instances that run on the same host computer perform poorly when compared with a
single database server instance that manages multiple databases.

Online Transaction Processing (OLTP)
A typical OLTP workload is characterized by a large number of users performing a high
volume of short transactions that INSERT, UPDATE, and DELETE data. When tuning
Informix Dynamic Server in an OLTP environment, it is important to spend time in areas
that will have the greatest impact on performance.

With this in mind, here are some initial ONCONFIG ($INFORMIXDIR/etc/$ONCONFIG)
settings for OLTP.

Configuration
Parameter

Initial Setting

BUFFERS1 Set to between 50 and 75 percent of available free
memory. Set to an even greater percentage if you are
not using the memory in the virtual portion (after testing
to see if the memory is needed). When tuning this
parameter and SHMVIRTSIZE, understand that both need
to be changed if the combined total is 75 percent of the
operating system physical memory.

LOCKS 1000 * number of users

PHYSDBS Separate from root DBSPACE and place on separate high
speed device. Logical log files are to be placed on a
separate high speed device as well.

PHYSBUFF Pages per I/O should be about 75 percent of the physical
log buffer size (database uses buffered logging). Monitor
with onstat –l

LOGBUFF Pages per I/O should be about 75 percent of the logical
log buffer size (database uses buffered logging). Monitor
with onstat -l

LRUS1 Four LRU pairs per CPU VP.
CLEANERS One page cleaner thread per LRU pair.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 4 -

SHMVIRTSIZE 32000 + expected number of users * 800

CKPTINTVL Set to 9999. Let the physical log initiate checkpoints.
This can be contrary to popular belief, but the reasoning
is that when LRU cleaning keeps dirty buffers to a
minimum and even with a long interval, you can
minimize the checkpoint waits.

LRU_MAX_DIRTY1 Set to 10. With many systems, the final settings can be
as low as 1. If high transactional throughput is desired,
chunk writes are preferred over LRU writes. The
percentage of dirty buffer pages in LRU queues at
checkpoint time should not be consistently greater than
the maximum duration of a full checkpoint.
Also with the 9.4 release, you can use fractional
percentages when transactional volume is low and the
efficiency of the I/O interface high (low latency).

LRU_MIN_DIRTY1 Set to 5. With many systems, the final setting can be as
low as 0.
Also with the 9.4 release, you can use fractional
percentages when transaction volume is low and the
efficiency of the I/O interface high (low latency).

RA_PAGES 32
RA_THRESHOLD 30
RESIDENT -1 (Lock all resident and virtual segments on supported

operating environments)
NETTYPE Optimum number of connections per poll thread is 300

users2 (See graph below)
OPTCOMPIND 0
VPCLASS (AIO) Number of chunks that can be accessed during peak

usage

1 With the 10.00 release and above, use the BUFFERPOOL configuration parameter in ONCONFIG. It specifies
values for LRUS, BUFFERS, LRU_MIN_DIRTY and LRU_MAX_DIRTY, thus eliminating the need to set these
individually.

2 The following graph shows 3 to 4 poll threads are optimal for 900 dynamic server users. The test of the select
system call was conducted in a HP-UX 11i operating environment with 8 processors.
It takes one poll thread 1.83s to monitor 900 endpoints and 2 poll threads only 1.55s to do the same workload,
each monitoring 450 endpoints. Beyond 4 poll threads, the division of workload becomes a bottleneck.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 5 -

When tuning the online system for an OLTP environment, focus on the specific areas that
will have the greatest impact on performance. What you want to achieve is:

1. High read and write buffer cache rates
2. Fast checkpoints
3. Maximum I/O throughput

From a disk I/O perspective, it is important to place the chunks on raw devices.
Preferably a RAID environment which offers maximum performance coupled with data
integrity and a battery powered write cache of significant size.

Certain operating system parameters also require to be tuned as they affect CPU
utilization. These are:

Semaphore parameters

Semaphores are kernel objects with a typical size of one byte/semaphore. Dynamic
server requires one set for each group of up to 150 VPs, one set for each additional
VP that is added dynamically, one set for each group of 100 or fewer sessions
connected through a shared memory interface.
In addition to the above, for shared memory connections allocate enough semaphores
for 2 times the expected shared memory connections. SEMMNI specifies the number
of semaphore sets and SEMMSL specifies the maximum number of semaphores per
set. SEMMSL should be set to at least 100. Some environments require a maximum
number of semaphores across all sets, specified by SEMMNS. This can be calculated
using the formula:
SEMMNS = Number of VPs initialized with dynamic server + dynamically added VPs +
2 times the shared memory connections allowed + 6. The last value is the number of
database server utilities such as ONSTAT and ONCHECK that may connect
concurrently.

Parameters that set the number of open file descriptors
Some operating systems specify this parameter as NFILE, NFILES etc. This kernel
object directs affects the growth in chunks and/or connections on the system. This is
calculated using the formula:

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 6 -

NFILES = (CHUNKS * NUMAIOVPS) + NUMCPUVPS + Network Connections as
specified by NETTYPE (or SQLHOSTS file). These include all connections except
IPCSHM connections.

Memory configuration parameters
The configuration of memory in the operating system can affect other resources,
including CPU and I/O. Insufficient physical memory leads to excessive paging and
buffer management activity.

The third area is the most important of all. Usually this is achieved by eliminating I/O
bottlenecks, optimizing the fragmentation strategy (fragmenting indexes pages as well as
data pages), and obtaining an optimal index scan in the query plan.

Important note on the OPTCOMPIND Configuration Parameter
For join plans, the ONCONFIG setting of OPTCOMPIND influences the access plan for a
specific ordered pair of tables. If you set OPTCOMPIND to 0 (zero) ensures the database
server selects a join method as it did in previous versions of the database server,
ensuring backward compatibility.

Setting OPTCOMPIND to 0 (zero) also ensures that the optimizer does not choose a Hash
Join method over a Nested Loop join method for a multi-table query.

Version 10.00 of Informix Dynamic Server allows you to dynamically set OPTCOMPIND
for a session using the following syntax:

SET ENVIRONMENT OPTCOMPIND 0

This setting takes precedence over the ONCONFIG file setting.

Decision Support Systems (DSS)
When tuning for a DSS environment, focus on specific areas that will have the greatest
impact on performance. These are:

1. Optimum memory utilization
2. Parallel data queries (PDQ)
3. Light scans
4. Maximum I/O throughput

In general, DSS queries:

• Examine large volumes of data
• Execute with a high degree of complexity
• Give answers to critical business questions
• Are far more complex than most OLTP transactions
• Include a rich breadth of operators and selectivity constraints
• Generate intense activity on the part of the database server
• Are implemented with constraints derived from staying closely synchronized with

an on-line production database
For optimum memory utilization, the area that will have the greatest impact is shared
memory. Due to the nature of DSS queries, large amounts of shared memory located in
the virtual segment are required to perform a variety of operations, such as light scans,
hash joins, and sorts. It is critical to properly configure and tune the shared memory and
PDQ parameters in the ONCONFIG file.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 7 -

To increase performance of DSS queries, increase the amount of available virtual shared
memory. With this in mind, here are some initial ONCONFIG
($INFORMIXDIR/etc/$ONCONFIG) settings for DSS.

Configuration
Parameters

Initial Setting

BUFFERS 2000 (Minimize)
SHMVIRTSIZE 75 percent of available memory (maximize) or higher if

memory is not needed elsewhere
SHMADD 32000
SHMTOTAL Set to available memory for the Informix engine and not

to the entire memory on the Unix system
RA_PAGES 128
RA_THRESHOLD 120
DS_TOTAL_MEMORY 90 percent of SHMVIRTSIZE

2. Understanding and tuning update statistics

The UPDATE STATISTICS statement primarily collects information for the optimizer.
Additionally, depending on usage, the UPDATE STATISTICS statement can determine the
distribution of column values, force re-optimization of stored procedures and convert
existing indices during a database server upgrade.

What is a distribution?
A distribution is a mapping of the data in a table’s (or synonym’s) column into a set of
column values, ordered by magnitude or by collation. The range of these values is
partitioned into disjunctive (non-overlapping) intervals called bins. Each bin contains an
approximate equal portion of the sample of column values. For example, if one bin holds
2 percent of the data, 50 such intervals hold the entire sample (2 percent resolution).

The following diagram illustrates the histogram generated by the dbschema utility for a
table which contains distributions. Distributions are generated by running the update
statistics statement in medium or high mode but not low mode. The overflow portion of
the output shows the duplicate values that might skew the distribution data.

Low mode does not generate distributions; it only updates systables, sysindexes and syscolumns with relevant
values of number of rows, number of pages, number of distinct values of lead index key, number of b-tree
index levels, index leaf pages, column min/max (second lowest and second highest value in the table) etc.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 8 -

The optimizer can use data distributions to calculate how selective1 a given filter in a
query is. In the absence of distributions, this information is gathered from table indexes.
However selectivity of a filter calculated using data distributions is far more accurate.

1Selectivity of a filter is a value between 0 and 1. Selectivity indicates the proportion of rows within the table
that the filter can pass. A highly selective filter (one that passes the fewest rows) has a selectivity value close
to 0, while a filter with low selectivity (one that passes almost all rows) has a selectivity value close to 1.

Example of how the optimizer approximates a value
Suppose there are 868,317 rows containing a value between -1 (lowest) and 75 (highest)
in the first bin (see diagram above), of which only 70 are distinct (unique). By dividing
868317 by 70 (868317 / 70 = 12404), the optimizer deduces there are 12,404 rows
containing a value between -1 and 75.
Scope
The scope of the UPDATE STATISTICS statement when not explicitly stated for a
particular table or stored procedure covers every single table and SPL routine in the
current database, including in the system catalog tables. If the UPDATE STATISTICS
statement is executed using the FOR TABLE clause without a table name, distributions
are also compiled for all temporary tables in that session. Similarly, if the UPDATE
STATISTICS statement is executed using the FOR PROCEDURE/FOR FUNCTION/FOR
ROUTINE clause without a procedure/function/routine name, then execution plans are re-
optimized for all procedures, functions, and routines in the current database.

Basic algorithm for distributions

• Develop a scan plan based on available resources
• Scan the table

For UPDATE STATISTICS HIGH – All rows in table
For UPDATE STATISTICS MEDIUM – Sampling of rows in table based on
confidence (number of samples) and resolution (percent of data represented in a
bin)

• Sort each column
• Build distributions
• Begin the transaction

- Delete old column values
- Insert new column values

• Commit the transaction

 --- DISTRIBUTION ---
 (-1
1: (868317, 70, 75)
2: (868317, 24, 100)
3: (868317, 12, 116)
4: (868317, 30, 147)
5: (868317, 39, 194)
6: (868317, 28, 222)
 --- OVERFLOW ---
1: (779848, 43)
2: (462364, 45)

Highest value in bin 6

No. of distinct values in bin 3

No. of rows represented in bin 1

Number of duplicate rows containing
the value 43 in bin 1 of –--
OVERFLOW ---

Starting range value of bin 1

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 9 -

Improving the update statistics run performance (version 9.40, 10.00 and above)
• Turn on PDQ (minimum 10) but only when running UPDATE STATISTICS for

tables.
• Enable parallel sorting by enabling the environment variable PSORT_NPROCS.
• When running in HIGH or MEDIUM mode, increase the default sort memory by

setting the environment variable DBUPSPACE. For example, specify
DBUPSPACE=0:35 (35MB memory).

• Change the resolution to 1.5 for MEDIUM mode (increases bins and sample size).
• Run UPDATE STATISTICS for all columns of the table after allocating more

memory.

What update statistics statement to run?
The following table summarizes under what scenarios different UPDATE STATISTICS
statements are typically run:

When to execute Update Statistics Statement
The number of rows has changed
significantly

UPDATE STATISTICS LOW

You migrated from a previous version of
Dynamic Server

UPDATE STATISTICS LOW DROP
DISTRIBUTIONS then UPDATE STATISTICS
MEDIUM/HIGH FOR TABLE

The columns in a table are not represented
by an index or is not the leading column of
an index

UPDATE STATISTICS LOW

The columns are used in a join or as a filter
in the where clause of a query not
represented by an index

UPDATE STATISTICS MEDIUM FOR TABLE

The columns are used in a join or as a filter
in the where clause of a query represented
by a single-column index

UPDATE STATISTICS HIGH FOR TABLE
(index column)

The columns are used in a join or as a filter
in the where clause of a query represented
by a multi-column index

UPDATE STATISTICS HIGH FOR TABLE
(first differing index column)

The columns are used in a join or as a filter
in the where clause of a query represented
by a multi-column index

UPDATE STATISTICS LOW FOR TABLE (all
index columns)

The columns are in a small table (dozen
pages)

UPDATE STATISTICS HIGH FOR TABLE

Stored Procedure Routines UPDATE STATISTICS FOR PROCEDURE1

1 When a stored procedure’s statistics are updated, the database server stores the optimized query execution
plan and the dependency list in the SYSPROCPLAN system catalog table, for use by other processes. A
dependency list keeps track of changes that would cause re-optimization the next time that an SPL routine
executes. In addition to this, running UPDATE STATISTICS for a procedure can be used to display the query
execution plan for an SPL routine using “SET EXPLAIN ON” prior to running the UPDATE STATISTICS statement.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 10 -

3. Understanding the SET EXPLAIN output

The SET EXPLAIN statement is executed to:

• Display the query execution plan (or query plan) generated by the cost based
optimizer.

• Estimate the number of rows returned.
• Estimate the relative cost of the query.

The explain output file name, by default, is “sqexplain.out”. Dynamic server writes this
file to the current directory where the statement was executed.

Since SQL is declarative, you typically have a large number of alternate ways to execute
a given query with widely varying performance. The optimizer evaluates some of the
different, correct possible plans for executing the query and returns what the optimizer
considers as the best alternative.

Query execution plans are very important tools in tuning the performance of a given
query. If you review the query plan, you might be able to see where new indexes might
fit or where indexes should be changed. You can also determine if the database server is
not fully using existing indexes.

A sample SQEXPLAIN.OUT file
QUERY:

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C, ORDERS O
WHERE C.CUSTOMER_NUM = O.CUSTOMER_NUM
AND C.LNAME = 'Watson'

Estimated Cost: 5
Estimated # of Rows Returned: 2

 1) informix.c: SEQUENTIAL SCAN
 Filters: informix.c.lname = 'Watson'

 2) informix.o: INDEX PATH
 (1) Index Keys: customer_num (Serial, fragments: ALL)
 Lower Index Filter: informix.c.customer_num = informix.o.customer_num
NESTED LOOP JOIN

By examining the SET EXPLAIN output file, you can take steps to improve the
performance of the query. The following table shows the information that appears in the
output.

Output Field Description
QUERY Displays the executed query.
DIRECTIVES FOLLOWED Lists the optimizer directives set for this query.
ESTIMATED COST An estimate of the amount of work for the query. The

optimizer uses this value to compare the cost of one path
with another. The value is assigned based on the
selected access method. This number does not directly
translate into time, but it can be used to compare

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 11 -

changes made to the same query. When data
distributions are used, a query with a higher estimate
generally takes longer to run.

ESTIMATED # OF ROWS
RETURNED

This value is derived from information stored in the
system catalog tables. For singleton selects, usually this
value matches the actual rows returned by the query.

TEMPORARY FILES
REQUIRED FOR

If temporary tables are required for an ORDER BY or
GROUP BY clause in the query.

NUMBERED LIST OF
TABLES

The order in which tables are accessed, followed by the
access method used – Index path or Sequential scan.

NUMBERED LIST OF
INDEX KEYS

The columns used as filters or indexes – indicated by
column name.
The notation (Key Only) indicates that all desired
elements are part of the index key, so a read of the table
is unnecessary.
The notation (Key First) indicates usage of keys other
than those listed as Lower/Upper Index Filters.
Lower Index Filter shows the key value where the index
read begins. If the filter condition contains more than
one value, an Upper Index Filter is shown for the key
value where the index read stops.

JOIN PLAN (Algorithm) When the query involves a join between two tables, the
join method the optimizer used (Nested Loop or Dynamic
Hash) is shown at the bottom of the output for that
query.
During a nested loop join, the outer table is listed first for
each join-table pair.
During a dynamic hash join, if the output contains the
words Build Outer, the hash table is built on the first
table listed (build table), otherwise the hash table is built
on the second table listed.
A Semi Join is a variation of the Nested Loop join where
the inner table scan is halted when the first match is
found.

FRAGMENT
NUMBERS/ALL/NONE

The fragment numbers are the same as those recorded in
the “partn” column of sysfragments. When ALL (meaning
scan all fragments) is displayed, no fragment elimination
has occurred. When NONE (meaning none of the
fragments contain the queried information) is displayed,
all fragments were eliminated.

ACCESS PLAN SEQUENTIAL SCAN: Read rows in sequence.
INDEX PATH: Scans one more indexes.
AUTOINDEX PATH: Creates a temporary index.
REMOTE PATH: Accesses another table (distributed join).
A First Row scan is a variation of a table scan. The table
scan is halted when the first match is found.
A Skip Duplicate Index scan is a variation of an index
scan to skip duplicate values.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 12 -

4. Join methods explained

A join combines rows from two or more tables (relations). Mathematically, a join is a
relational composition. The three possible types of joins are:

• Inner
• Outer
• Cross
Outer joins are further classified into:

• Left outer
• Right outer
• Full outer1

The inputs to a join are referred to as the outer and inner join operands, or left and right
join operands respectively.

1Join syntax that uses the key words right outer, full outer and cross join in a SQL statement are only available
in Informix Dynamic Server Versions 9.40 and 10.00 and above.

For performance reasons, you should avoid cross joins because they return the Cartesian
product of the rows from the joined tables (all rows in table 1 x all rows in table 2).
In an example of a Cross Join, there is 1 row in the CUSTOMER table (using the filter
C.LNAME = ‘Watson’) and there are 23 rows in the ORDERS table.

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C, ORDERS O
WHERE C.LNAME = ‘Watson’;

The resulting join is a Cartesian product that returns 23 rows (1 x 23) due to the absence
of a join filter2.

2A join filter is a conditional expression used in the WHERE clause of a query (non-standard syntax) or the ON
clause of a query (standard ANSI-92 syntax).

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 13 -

Now consider the following example of an Inner Join (the database server default):

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C, ORDERS O
WHERE C.CUSTOMER_NUM = O.CUSTOMER_NUM
AND C.LNAME = ‘Watson’;
Or its equivalent in ANSI-92 syntax:
SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C INNER JOIN ORDERS O
ON C.CUSTOMER_NUM = O.CUSTOMER_NUM
AND C.LNAME = ‘Watson’;

If the CUSTOMER is joined with the ORDERS table as in the example above, the single
scan on the ORDERS table results in two rows (after the join filter is applied) for the 1
row from the CUSTOMER table where C.LNAME = ‘Watson’. Thus, a total of two rows
would result from the Inner Join (1 x 2).

A left outer join is very different from an inner join. Instead of limiting results to those in
both tables, it limits results to those in the left table (CUSTOMER table). This means that
if the ON clause matches zero rows in the ORDERS table, a row in the result will still be

CUSTOMER_NUM LNAME FNAME PHONE ORDER_DATE
 106 Watson George 415-389-8789 05/20/1998
 106 Watson George 415-389-8789 05/21/1998
 106 Watson George 415-389-8789 05/22/1998
 106 Watson George 415-389-8789 05/22/1998
 106 Watson George 415-389-8789 05/24/1998
 106 Watson George 415-389-8789 05/30/1998
 106 Watson George 415-389-8789 05/31/1998
 106 Watson George 415-389-8789 06/07/1998
 106 Watson George 415-389-8789 06/14/1998
 106 Watson George 415-389-8789 06/17/1998
 106 Watson George 415-389-8789 06/18/1998
 106 Watson George 415-389-8789 06/18/1998
 106 Watson George 415-389-8789 06/22/1998
 106 Watson George 415-389-8789 06/25/1998
 106 Watson George 415-389-8789 06/27/1998
 106 Watson George 415-389-8789 06/29/1998
 106 Watson George 415-389-8789 07/09/1998
 106 Watson George 415-389-8789 07/10/1998
 106 Watson George 415-389-8789 07/11/1998
 106 Watson George 415-389-8789 07/11/1998
 106 Watson George 415-389-8789 07/23/1998
 106 Watson George 415-389-8789 07/24/1998
 106 Watson George 415-389-8789 07/24/1998

23 row(s) retrieved.

CUSTOMER_NUM LNAME FNAME PHONE ORDER_DATE
 106 Watson George 415-389-8789 05/22/1998
 106 Watson George 415-389-8789 06/25/1998

2 row(s) retrieved.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 14 -

returned, but with NULL values for each column from the ORDERS table. For example in
the SQL statement in ANSI-92 syntax below, CUSTOMER_NUM = 106 matches two rows
in the ORDERS table, but the result set contains all of the customers from the CUSTOMER
table (and the two matched rows) with NULL values for each unmatched column from
ORDERS.

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C LEFT OUTER JOIN ORDERS O
ON C.CUSTOMER_NUM = O.CUSTOMER_NUM
AND C.LNAME = 'Watson';

In the following example, a NOT IN sub-query can be re-written to perform a more
efficient join by testing for unmatched columns (NULLS) in the ORDERS table:
SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE
FROM CUSTOMER C
WHERE C.CUSTOMER_NUM NOT IN (SELECT O.CUSTOMER_NUM FROM ORDERS O);
Can be re-written to use a left outer join and a test for NULL on the ORDERS table

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE
FROM CUSTOMER C LEFT OUTER JOIN ORDERS O ON C.CUSTOMER_NUM =
O.CUSTOMER_NUM WHERE O.CUSTOMER_NUM IS NULL;

CUSTOMER_NUM LNAME FNAME PHONE ORDER_DATE
 101 Pauli Ludwig 408-789-8075 <NULL>
 102 Sadler Carole 415-822-1289 <NULL>
 103 Currie Philip 415-328-4543 <NULL>
 104 Higgins Anthony 415-368-1100 <NULL>
 105 Vector Raymond 415-776-3249 <NULL>
 106 Watson George 415-389-8789 05/22/1998
 106 Watson George 415-389-8789 06/25/1998
 107 Ream Charles 415-356-9876 <NULL>
 108 Quinn Donald 415-544-8729 <NULL>
 109 Miller Jane 408-723-8789 <NULL>
 110 Jaeger Roy 415-743-3611 <NULL>
 111 Keyes Frances 408-277-7245 <NULL>
 112 Lawson Margaret 415-887-7235 <NULL>
 113 Beatty Lana 415-356-9982 <NULL>
 114 Albertson Frank 415-886-6677 <NULL>
 115 Grant Alfred 415-356-1123 <NULL>
 116 Parmelee Jean 415-534-8822 <NULL>
 117 Sipes Arnold 415-245-4578 <NULL>
 118 Baxter Dick 415-655-0011 <NULL>
 119 Shorter Bob 609-663-6079 <NULL>
 120 Jewell Fred 602-265-8754 <NULL>
 121 Wallack Jason 302-366-7511 <NULL>
 122 O'Brian Cathy 609-342-0054 <NULL>
 123 Hanlon Marvin 904-823-4239 <NULL>
 124 Putnum Chris 918-355-2074 <NULL>
 125 Henry James 617-232-4159 <NULL>
 126 Neelie Eileen 303-936-7731 <NULL>
 127 Satifer Kim 312-944-5691 <NULL>
 128 Lessor Frank 602-533-1817 <NULL>

29 row(s) retrieved.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 15 -

A right outer join is similar to a left outer join, but the tables are reversed. Here, the
results are limited to the rows in the right table (ORDERS table). If the ON clause
matches zero (0) records in the CUSTOMER table, a row in the result will still be
returned, but with NULL values for each column from the CUSTOMER table. For example,
in the SQL statement in ANSI-92 syntax below, CUSTOMER_NUM = 106 matches two
rows in the ORDERS table, but the result set contains all of the orders from the ORDERS
table (and the two matched rows) with NULL values for each unmatched column from the
CUSTOMER table.

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C RIGHT OUTER JOIN ORDERS O
ON C.CUSTOMER_NUM = O.CUSTOMER_NUM
AND C.LNAME = 'Watson';

A full outer join combines the results of both left and right outer joins. The results are not
limited to either the left table (CUSTOMER table) or the right table (ORDERS table). This
means that if the ON clause matches zero (0) records in the CUSTOMER table, a row in
the result will still be returned, but with NULL values for each column from the
CUSTOMER table as well as from the ORDERS table. For example, in the SQL statement
in ANSI-92 syntax below, CUSTOMER_NUM = 106 matches two rows in the ORDERS
table, but the result set contains all the orders from the ORDERS table (and the two
matched rows) with NULL values for each unmatched column from the CUSTOMER and
ORDERS tables.

SELECT C.CUSTOMER_NUM, C.LNAME, C.FNAME, C.PHONE, O.ORDER_DATE
FROM CUSTOMER C FULL OUTER JOIN ORDERS O
ON C.CUSTOMER_NUM = O.CUSTOMER_NUM AND C.LNAME = 'Watson';

CUSTOMER_NUM LNAME FNAME PHONE ORDER_DATE
 <NULL> <NULL> <NULL> <NULL> 05/20/1998
 <NULL> <NULL> <NULL> <NULL> 05/21/1998
 <NULL> <NULL> <NULL> <NULL> 05/22/1998
 106 Watson George 415-389-8789 05/22/1998
 <NULL> <NULL> <NULL> <NULL> 05/24/1998
 <NULL> <NULL> <NULL> <NULL> 05/30/1998
 <NULL> <NULL> <NULL> <NULL> 05/31/1998
 <NULL> <NULL> <NULL> <NULL> 06/07/1998
 <NULL> <NULL> <NULL> <NULL> 06/14/1998
 <NULL> <NULL> <NULL> <NULL> 06/17/1998
 <NULL> <NULL> <NULL> <NULL> 06/18/1998
 <NULL> <NULL> <NULL> <NULL> 06/18/1998
 <NULL> <NULL> <NULL> <NULL> 06/22/1998
 106 Watson George 415-389-8789 06/25/1998
 <NULL> <NULL> <NULL> <NULL> 06/27/1998
 <NULL> <NULL> <NULL> <NULL> 06/29/1998
 <NULL> <NULL> <NULL> <NULL> 07/09/1998
 <NULL> <NULL> <NULL> <NULL> 07/10/1998
 <NULL> <NULL> <NULL> <NULL> 07/11/1998
 <NULL> <NULL> <NULL> <NULL> 07/11/1998
 <NULL> <NULL> <NULL> <NULL> 07/23/1998
 <NULL> <NULL> <NULL> <NULL> 07/24/1998
 <NULL> <NULL> <NULL> <NULL> 07/24/1998

23 row(s) retrieved.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 16 -

CUSTOMER_NUM LNAME FNAME PHONE ORDER_DATE
 101 Pauli Ludwig 408-789-8075 <NULL>
 102 Sadler Carole 415-822-1289 <NULL>
 103 Currie Philip 415-328-4543 <NULL>
 104 Higgins Anthony 415-368-1100 <NULL>
 105 Vector Raymond 415-776-3249 <NULL>
 106 Watson George 415-389-8789 05/22/1998
 106 Watson George 415-389-8789 06/25/1998
 107 Ream Charles 415-356-9876 <NULL>
 108 Quinn Donald 415-544-8729 <NULL>
 109 Miller Jane 408-723-8789 <NULL>
 110 Jaeger Roy 415-743-3611 <NULL>
 111 Keyes Frances 408-277-7245 <NULL>
 112 Lawson Margaret 415-887-7235 <NULL>
 113 Beatty Lana 415-356-9982 <NULL>
 114 Albertson Frank 415-886-6677 <NULL>
 115 Grant Alfred 415-356-1123 <NULL>
 116 Parmelee Jean 415-534-8822 <NULL>
 117 Sipes Arnold 415-245-4578 <NULL>
 118 Baxter Dick 415-655-0011 <NULL>
 119 Shorter Bob 609-663-6079 <NULL>
 120 Jewell Fred 602-265-8754 <NULL>
 121 Wallack Jason 302-366-7511 <NULL>
 122 O'Brian Cathy 609-342-0054 <NULL>
 123 Hanlon Marvin 904-823-4239 <NULL>
 124 Putnum Chris 918-355-2074 <NULL>
 125 Henry James 617-232-4159 <NULL>
 126 Neelie Eileen 303-936-7731 <NULL>
 127 Satifer Kim 312-944-5691 <NULL>
 128 Lessor Frank 602-533-1817 <NULL>
 <NULL> <NULL> <NULL> <NULL> 05/20/1998
 <NULL> <NULL> <NULL> <NULL> 05/21/1998
 <NULL> <NULL> <NULL> <NULL> 05/22/1998
 <NULL> <NULL> <NULL> <NULL> 05/24/1998
 <NULL> <NULL> <NULL> <NULL> 05/30/1998
 <NULL> <NULL> <NULL> <NULL> 05/31/1998
 <NULL> <NULL> <NULL> <NULL> 06/07/1998
 <NULL> <NULL> <NULL> <NULL> 06/14/1998
 <NULL> <NULL> <NULL> <NULL> 06/17/1998
 <NULL> <NULL> <NULL> <NULL> 06/18/1998
 <NULL> <NULL> <NULL> <NULL> 06/18/1998
 <NULL> <NULL> <NULL> <NULL> 06/22/1998
 <NULL> <NULL> <NULL> <NULL> 06/27/1998
 <NULL> <NULL> <NULL> <NULL> 06/29/1998
 <NULL> <NULL> <NULL> <NULL> 07/09/1998
 <NULL> <NULL> <NULL> <NULL> 07/10/1998
 <NULL> <NULL> <NULL> <NULL> 07/11/1998
 <NULL> <NULL> <NULL> <NULL> 07/11/1998
 <NULL> <NULL> <NULL> <NULL> 07/23/1998
 <NULL> <NULL> <NULL> <NULL> 07/24/1998
 <NULL> <NULL> <NULL> <NULL> 07/24/1998

50 row(s) retrieved.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 17 -

Because joins are both commutative as well as associative, the order in which the tables
are joined does not change the final result of the query. However join order does have an
enormous impact on the cost of the join operation. So choosing the best join order is
very important.

In mathematical terms a binary operation ƒ: A × A ―› B is said to be commutative when
for any y and any z in A, ƒ (y, z) = ƒ (z, y) where y and z are real numbers. For
example, 2 x 3 = 3 x 2 since both expressions evaluate to 6.

Similarly a binary operation is termed associative if the order of evaluation is immaterial
even if the operation appears more than once. For example, 2 + (3 + 1) = (2 + 3) + 1
since both expressions evaluate to 6. It is represented mathematically as (x * y) * z = x
* (y * z) where x, y, z are real numbers.

Query plans involving joins can be classified as:

• Left Deep – The inner (right) operand of each join in the plan is a base table
(rather than another join).

• Right Deep – The outer (left) operand of each join in the plan is a base table.
• Bushy – neither left-deep nor right-deep; both inputs to a join might be joins

themselves.

These names are derived from the appearance of the query plan drawn as a tree, with
the outer join relation on the left and the inner relation on the right.

The basic problem of a join algorithm is to find, for each distinct value of the join filter or
join key (which is C.CUSTOMER_NUM = O.CUSTOMER_NUM), the set of rows from each
table that contains that value. The way the optimizer chooses to join the two tables is
called a Join Plan. The fundamental algorithm used in the join plan can be a Nested Loop
Join, Hash Join, Semi Join or a Sort-Merge Join.

Nested Loop Join
In a Nested Loop Join (performing the default Inner Join) the database server scans the
left most (outer) table and then joins each of the rows that pass the filter, to the rows
scanned from the right most (inner) table. From the above example, the outer table is
CUSTOMER and the inner table is ORDERS. The steps taken are:

1. The database server scans the outer table (CUSTOMER) using a full table scan or
an index scan and the following additional filter (C.LNAME = ‘Watson’).

2. Then for each row that satisfies the filter (C.CUSTOMER_NUM =
O.CUSTOMER_NUM) on the outer table, the server reads the inner table
(ORDERS) to find a match. This access is usually accomplished using an index
lookup due to the potentially large number of times this action needs to be
executed. If the inner table does not have an index, the database server might
construct an auto-index at the time of query execution (if the cost to construct an
auto-index is cheaper than the cost to scan the inner table for every qualifying
row in the outer table).

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 18 -

Semi Join
If the optimizer changes a sub-query to a Nested Loop Join, the optimizer might use a
variation of the Nested Loop Join called a Semi Join. In this situation, the server stops
the inner table scan when a match is obtained. So for every row in the outer table, the
inner table contributes at most one row.

This can reduce the size of the intermediate results and is therefore a useful optimization
technique in a distributed environment, where tables from multiple remote database
servers are involved.

Hash Join
The optimizer usually employs a Hash Join algorithm (performing the Inner Join) only
when at least one of the two join tables do not have an index on the join column, or
when the database server must read a large number of rows from both tables. During a
Hash Join, no indexing or sorting is required. A Hash Join consists of two activities:

1. Building the hash table (Build Phase)

The hash table, a data structure that associates keys with values enabling efficient
lookup, is built on the smaller of the two tables, by applying a hash function to the
join key of each filtered row. Hash joins require an “equi-join” predicate
(predicates that use the “=” operator). The hash table is conceptually a series of
buckets with each bucket assigned an address or hash value (binary data written
in hexadecimal notation) that is derived from the join key of each row that
satisfies the filter condition.

Index
Scan

Index
Scan

A diagram depicting a left deep
nested loop join involving 3 tables.
The inner (right) operand is always

a base table

[SELECT * FROM EMP, JOB, DEP
WHERE EMP.LOC = ‘Denver’ AND
EMP.JOB_NO = JOB.JOB_NO AND
EMP.DEP_NO = DEP.DEP_NO AND

DEP.LOC = ‘Denver’] Index
Scan

Employee Table Department Table

Job Table
NL

NL

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 19 -

2. Scanning the hash table (Probe Phase)

In the probe phase, the database server reads the other table (the larger of the
two tables) in the join and applies any filters. For each row that satisfies the filter
condition, the server scans (probes) the hash table for the matching rows.

Note: It is possible to employ a hash join, where the two tables being joined have a filter
condition which does not produce relative rows (for example, using the NOT IN operator).
This is achieved by first building a hash table with the NOT IN side of the join. Then scan
the other table only selecting rows in which the filter condition hashes to an empty entry
in the hash table.

Sort-Merge Join
The key idea of the Sort-Merge algorithm is to first sort the tables by the join attribute,
so that interleaved linear scans will encounter these groups (sets) at the same time.
Once sorting is complete, the join can be performed.

Index
Scan

Index
Scan

Index
Scan

HJ

HJ

Employee
Table

Job Table
(BUILD)

Department
Table (BUILD)

Diagram depicting a hash join
with directives enabled.
[SELECT {+ORDERED,
USE_HASH (JOB /BUILD),
USE_HASH (DEP /BUILD)} *
FROM EMP, JOB, DEP
WHERE EMP.LOC = ‘Denver’
AND EMP.JOB_NO =
JOB.JOB_NO AND EMP.DEP_NO
= DEP.DEP_NO AND DEP.LOC =
‘Denver’]

A diagram depicting a hash table

CUSTOMER_NUM (KEY) HASH VALUE KEY-VALUE PAIRS

101

110

120

0x101

0x110

0x115

0x120

0x129

101 | Pauli | Ludwig | 408-789-8075

110 | Jaeger | Roy | 415-743-3611

120 | Jewell | Fred | 602-265-8754

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 20 -

For each row in the outer table, consider the current group of rows from the inner table.
(A group consists of a set of contiguous rows in the inner table with the same value in
the join filter).

For each matching row in the current inner group, add a row to the join result. Once the
inner group has been exhausted, both the inner and outer scans can be advanced to the
next group.

5. SELECT statement explained

A SELECT statement in SQL, which is collectively termed a DML (Data Manipulation
Language) statement, returns a result set of rows from one or more tables. In this
statement, you specify a description of the desired result set, but do not specify what
physical operations must be executed to produce the result set. Translating the query
into optimal query execution plans is left to the query optimizer.

Commonly available keywords that must appear in the following order, related to SELECT
include:

• FROM – Used to identify a table, view or synonym
• WHERE – Used to identify the rows to be retrieved or applied to GROUP BY
• GROUP BY – Used to combine rows with related values into distinct elements of a

smaller set
• HAVING – Used to identify which rows followed by GROUP BY are to be retrieved
• ORDER BY – Used to identify which columns are used to sort the resulting data
• INTO TEMP – Used to temporarily save the results of a multi-table query in a

separate table which can be queried or manipulated without modifications to the
database schema. This table is termed temporary because it is automatically
dropped when the session or the program terminates.

If you have a table called CUSTOMER, the query SELECT * FROM CUSTOMER will show all
the columns of all the table rows.

With the same table, the query SELECT LNAME, FNAME FROM CUSTOMER will show the
elements from the column LNAME and FNAME of all the table rows — in relational
algebraic terms, the query will perform a projection.

With the same table, the query SELECT * FROM CUSTOMER WHERE CUSTOMER_NUM =
101 will result in all the elements of all the rows where the value of column
CUSTOMER_NUM is equal to '101' — in relational algebraic terms, a selection will be
performed, because of the WHERE keyword.

With the same table, the query SELECT * FROM CUSTOMER ORDER BY CUSTOMER_NUM
DESC will show the same rows as the first query; however the results will be in reverse
sort order because the ORDER BY keyword uses CUSTOMER_NUM as a sorting point. This
query does not have a WHERE keyword, so anything and everything will be returned.
Multiple ORDER BY items can be specified separated by comma (for example, ORDER BY
CUSTOMER_NUM ASC, LNAME DESC) to further refine sorting.

Response Time Effects
Sometimes you can improve the performance of a SELECT statement by modifying the
query construction. The following time costs can be reduced by optimizing query

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 21 -

construction and/or adding or removing appropriate indexes or tweaking certain
configuration parameters.

Sort Time

A sort requires in-memory work as well as disk work. The in-memory work depends
on the number of columns that are sorted, the width of the combined sort key and
the number of rows that pass the filter in the where clause. The disk work depends on
the number of disk pages where rows are placed, the number of rows that pass the
filter in the where clause, the number of rows that can be placed on a sorted page,
and the number of merge operations that must be performed. Hence the more
specific the filter, the fewer the rows that are sorted. To reduce the cost of sorts, the
filters must be as selective (restrictive) as possible. Also the list of columns in the
select list (columns that are projected) should be made as relevant as possible, for
example, by discarding unnecessary columns.

If repeated sorts on a large table is required, the optimizer avoids a sort step
whenever it can use an index to produce the output in the proper order. However the
following factors prevent the optimizer from using an index:
a) One or more of the ordered columns is not included in the index key.
b) The columns are named in a different sequence in the ORDER BY / GROUP BY

clause when compared to the index key.
c) The ordered columns are taken from different tables.

In addition, temporary tables can be used to reduce the sorting scope. Building a
temporary, ordered subset of a large table can speed up a SELECT statement.

Multiple sort threads (using the PSORT_NPROCS environment variable) should be
started, so that sorting can proceed in parallel.

Data Mismatches
A SELECT statement can encounter additional costs when the data type of a column
that is used in a condition differs from the definition of the column in the CREATE
TABLE statement. This is most severe when the query compares a character value
with a non-character value and the length of the non-character value is not equal to
that of the character value. For example, a column in a table contains character
values ‘001’, ‘ 1’ and ‘1’. If this is compared against integer 1 [for example, WHERE
col_name = 1], all three rows having values ‘001’, ‘ 1’ and ‘1’ are returned, resulting
in a sequential scan, even if an index is present. Conversely, if the column is defined
as an integer in the CREATE TABLE statement, and the filter condition of the WHERE
clause employs a character value, then the engine needs to rewrite this query to
perform a data conversion from character to integer, even if this type conversion has
no noticeable overhead.

View Costs
Views are normally written to hide the complexities of the underlying query or to limit
the data that a user can access. However a SELECT statement that employs a view
rather than the base table might run more slowly than expected, especially if the
complexity of the query (due to the use of ANSI joins) requires the creation of a
temporary table. This temporary table is referred to as a materialized view.

Index Lookup Costs

Additional costs are incurred when an index is looked up in order to fetch the data
rows. Since the index is stored on disk, the server must read its pages into memory

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 22 -

along with the corresponding data rows. The index traversal starts from the root node
downwards to the leaf node.

The pages that hold the root node are almost always contained in page buffers, but
the odds of finding a leaf node in page buffers depend on the size of the index, the
structure of the query, and the frequency of column value duplication. If many
duplicate values for an associated index key value exist, then multiple random
accesses (hence more disk I/O operations) must be made to fetch the associated data
row. In this scenario, removing the index on such a column might mean a lower time
cost for the query.

Non-Sequential Access Cost

Depending on the relative ordering of the table data with respect to the index,
sometimes pages containing several needed rows can be retrieved. The degree to
which the physical ordering of a table’s data rows on disk correspond to the table’s
index entries is called clustering1. A highly clustered table is one whose physical
ordering on disk corresponds closely to that of its index. Sorting costs can be avoided
when a table is clustered this way.

1Clustering a table involves the creation of a an index and the physical re-ordering of data rows by copying
all the rows to a new table in the order specified by the column(s) on which the cluster index was created.
This new table then replaces the old table. Even after this, any new rows inserted into a clustered table are
not automatically re-ordered, but are stored physically at the end of the table regardless of their contents.
Only upon re-clustering are the rows re-ordered again.

Sequential Access Cost

Disk costs as well as access time2 are lowest when the database engine reads the
rows of a table in physical order. When the first row on a page is requested, the disk
page is read into a buffer page. Once the page is read, the server does not need to
read it again. The server fulfills requests for subsequent rows on that page by reading
from the buffer until all the rows on that page are processed. To make sure that the
next page is ready in memory a read-ahead method can be employed. You can use
the RA_PAGES and RA_THRESHOLD configuration parameters to specify criteria for
this method.

Usually when unbuffered devices or raw devices are used to locate individual dbspaces
and the table is organized properly with very few table extents, the disk pages of
consecutive rows are also placed contiguously on disk. This arrangement ensures that
the access arm does not move very much during a sequential read operation.

2Access time is the time taken for the access arm of a disk drive to reach the desired track, including the
delay in the rotation of the disk (also called latency) to bring the required sector under the read-write
mechanism. The average values for this rotational delay is a few milliseconds.

Network Access Cost

Moving data over a network imposes delays in addition to those encountered with
direct disk access. Network delays can occur if an application (client) executes a select
statement (or another DML statement) across the network to a database server on a
different computer. Data sent over the network consists of command messages and
buffer sized blocks of row data from one or more tables. If the network is busy, the
client must wait its turn to transmit. Such delays are usually in milliseconds. If the
network is congested, transmission delays rise exponentially to tenths of a second and
more in both directions. When more than one client is involved, these delays can
increase from milliseconds to seconds. In addition a delay between multiple SELECT

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 23 -

statements decreases the likelihood of a data page remaining in the page buffer. This
makes network access costs highly variable.

For a distributed query, the optimizer estimates the cost of a SELECT statement to be
higher because the estimate includes the cost of retrieving the row from disk and
transmitting it across the network.

Network access costs in general cannot be lowered, but you can improve query
performance:

• by multiplexing concurrent client connections using Max Connect, or
• in the case of distributed queries by reducing the size and number of data

buffers using the FET_BUF_SIZE environment variable on the client.

The following example shows how the environment variables FET_BUF_SIZE, OPTOFC,
and IFX_AUTOFREE influence the message traffic over a network:

PREPARE mystmt FROM “SELECT * FROM EMPLOYEE WHERE EMP_NUM > ?”
DECLARE mycur CURSOR FOR mystmt
OPEN mycur USING :myvar

FETCH mycur INTO :mylname, :myfname
CLOSE mycur
FREE mycur
FREE mystmt

OPTIONS SIZE OF

OUPUT TUPLE
SIZE OF
TUPLE BUFFER 1

NUMBER OF
NETWORK
MESSAGES

NONE 60 KB 4096 40
FET_BUF_SIZE=16384 60 KB 16384 16
FET_BUF_SIZE=16384
OPTOFC=1

60 KB 16384 12

FET_BUF_SIZE=16384
OPTOFC=1
IFX_AUTOFREE=1

60 KB 16384 10

1 The benefit of having a large tuple buffer diminishes, as size of the tuple buffer exceeds the average result

set size.

Small Table Costs

A table is small if it occupies so few pages that it can be retained entirely in page
buffers. Therefore operations on small tables are smaller than operations on large
tables. For example, suppose a table has only 100 rows and each row is about 15
bytes. A table of this size can fit into a single 2K page, and can therefore be included
into any SELECT statement with very little cost. No matter how this table is used, it
costs no more than a single disk access to initially retrieve this page from disk.

Improving sequential scans
Sequential access to a table other than the first table in a plan involving a join between
two tables of a select statement is ominous because such an access threatens to read
every row in the table once for every row selected from the preceding table.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 24 -

If the table is small, it is harmless to read it repeatedly because the data pages reside
completely in page buffers. A sequential scan of such a table can be faster than searching
the same table via an index especially if maintaining those index pages in memory
pushes other useful pages back to disk. However if the table contains a large number of
rows, repeated sequential access produces poor performance. You can overcome this, for
example, by creating an index on the column that might be used to join two tables.

An index consumes space proportional to the width of the key values and the number of
rows. Also the database engine must update the index whenever rows are inserted or
deleted (or if key values are updated).

6. Fragmentation considerations

The primary consideration for when to fragment a table is not determined when the table
reaches a certain size. While table size is important, the first two considerations should
be:

• Query behavior and characteristics, for example, fixed or ad-hoc
• Knowledge of the data, for example, well known or unknown

These two considerations will determine the fragmentation policy. The key objectives of a
fragmentation policy are parallelism and fragment elimination.

Planning a fragmentation policy
To a large extent, fragmentation policy is driven by the type of applications that access a
table. If an expression based distribution scheme is chosen, a suitable expression must
be constructed. With a round-robin distribution scheme, the database server decides
which fragment it places the data rows.

In general the distribution scheme depends on the following factors:

• Whether or not the queries need to scan the entire table
• Whether the distribution of data is known in advance

Client application sees one logical table

Informix Dynamic Server sees 3 data structures

fragid tblsnum partnum

tablespace = fragment = partition

dbsp1 dbsp2 dbsp3

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 25 -

• Whether or not the application tends to delete many rows
• Whether or not the data is cycled through the table

A round-robin scheme is only useful when the following conditions apply:
• The queries need to scan the entire table
• The distribution of data is not known in advance
• The application does not delete many rows

If these conditions do not apply, you should decide on an expression-based scheme

In order to delete large amounts of data periodically based on a column such as month of
the year, use that column in the distribution scheme. Then perform an ALTER FRAGMENT
DETACH/ATTACH operation to cycle the data through the table. ALTER FRAGMENT
DETACH and ATTACH statements provide the following advantages over bulk deletes and
loads:

• The rest of the table fragments, other than the fragment being detached or
attached are available to users

• The execution of a DETACH or ATTACH only takes a few seconds, making
execution much faster than a bulk load or a mass delete

In an expression, avoid using columns that are subject to frequent updates, because this
causes rows to move across fragments (for example, to be deleted from one fragment,
and inserted in another). This type of activity increases CPU usage and adds I/O
overhead.

Note: Each table fragment has its own partition page in the table space (internally
known as PARTITION-PARTITION) located in the initial chunk of its dbspace. Therefore
each fragment can potentially reach the maximum number of allowable extents or table
size.

A fragment has a partition number (partnum) of zero recorded in systables system
catalog table, with the actual partnum recorded in the sysfragments catalog table. Each
partnum recorded in the sysfragments table is linked to systables by the table identifier
(tabid) column.

Parallelism
Fragments are accessed in parallel, decreasing scan time. Note however, for this to be
efficient, the expression should generate an even distribution of rows across fragments.

Sometimes business rules might dictate that some rows are accessed more frequently
than others, in which case you can create a deliberate uneven distribution across
fragments.

RSAM threads

Table/Index fragments

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 26 -

Fragment Elimination
Unnecessary fragments are skipped, improving concurrency and response time. I/O for
the query is reduced, as is activity in the LRU queues. In a nested loop join, based on the
key value from the outer table, inner table fragments can be eliminated if they fail the
join condition.

It is important to note what kind of operators allow fragment elimination to occur and not
occur. Expressions containing operators such as “IS NULL”, “IS NOT NULL” and “!=” do
not allow fragment elimination to occur. A fragmentation policy that employs a round-
robin distribution scheme also does not allow fragment elimination to occur.

An enhancement in Version 10 of Informix Dynamic Server allows multiple table
fragments belonging to the same table to reside in one or more dbspaces. Prior IDS
versions required that each table fragment be created in a separate dbspace. The SQL
statement uses the PARTITION keyword in its statement syntax to achieve this, as shown
in the following example:

CREATE TABLE ACCOUNT_BALANCE (amount decimal (10, 2))
FRAGMENT BY EXPRESSION (

 PARTITION acc_bal_ptn1 IN (amount < 100000) IN dbsp1,
 PARTITION acc_bal_ptn2 IN (amount >= 100000 AND < 500000) IN dbsp2,
 PARTITION acc_bal_ptn3 IN (amount >= 500000 AND < 1000000) IN dbsp3,
 PARTITION acc_bal_ptn4 IN (amount > 1000000) IN dbsp3);

Guidelines for fragmenting tables and indexes

Below are guidelines for fragmenting tables and indexes:

• Fragment indexes to reduce contention between sessions. A query must only
lookup one “table fragment” to locate the row. If the key value does not reduce
contention (for example, when every user looks at the same set of key values),
consider fragmenting the index on another value used in the WHERE clause. If a
good expression is impossible to find, do not fragment the index; instead, detach
it and place it in a separate dbspace.

• Keep expressions simple. Complex expressions might prevent the database server

from eliminating fragments.

• Create an uneven distribution scheme. If the majority of the queries access only a
portion of the data all the time, frequently accessed data is spread out over more
fragments than the non-frequently accessed data.

Table/Index fragments X X
RSAM threads

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 27 -

• When the database server tests a value against the criteria for a given fragment,
evaluation stops when the test is false. So, if the condition that is most likely to
be false is placed first, the database server needs to evaluate fewer conditions
before moving to the next fragment.

For example, to SELECT a column value of amount = 2500 from the fragmented
table ACCOUNT_BALANCE that was FRAGMENTED using the following expression,
the database server needs to test all six of the inequality conditions:
(amount >= 100 AND amount <= 1000) IN dbsp1,
(amount > 1000 AND amount <= 2000) IN dbsp2,
(amount > 2000 AND amount <= 3000) IN dbsp3;
where as for the following expression, the database server only tests four
inequality conditions:
(amount <= 1000 AND amount >= 100) IN dbsp1
(amount <= 2000 AND amount > 1000) IN dbsp2
(amount <= 3000 AND amount > 2000) IN dbsp3
The four tests are (amount <= 1000), (amount <= 2000), (amount <= 3000)
and (amount > 2000)

• Avoid using an expression that requires a data type conversion. For example, a

DATE data type is implicitly converted to an INTEGER for comparison purposes.

• Balance the number of fragments with the number of physical CPUs on the
system.

• Do not fragment small tables, because it might not be worth the overhead of

starting scan threads to access the fragments.

Guidelines for improving ATTACH/DETACH performance

ALTER FRAGMENT ATTACH/DETACH statements are primarily used to add or remove a
large amount of data rapidly. These statements can slow down when the database server
rebuilds indexes on the surviving table. However, the database server provides in built
functionality to reuse indexes on the surviving table, which in turn can eliminate the need
to perform an index build during the ATTACH or DETACH operation.

Here are some guidelines for improving ALTER TABLE ATTACH performance:

• Use non-overlapping expressions to ensure that no data movement occurs
between the resultant partitions due to fragment expressions.

• Update statistics for all participant tables.
• Make indexes on the attached table unique if the index on the surviving table is

unique.
• Ensure that database logging is enabled.
• Fragment the index the same way using the same fragment expression as the

table to allow reuse of surviving index fragments
• When performing the ATTACH, ensure that the table being attached is non-

fragmented in order to form the resultant fragmented table.
• Enable a dummy check constraint on the table being attached, with the same

fragmentation expression as the resultant fragmented table. This will doubly
ensure that no data movement occurs once the ATTACH statement is processed.

Here are some guidelines for improving ALTER FRAGMENT DETACH performance:

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 28 -

• Fragment the index in the same way as the table.
• Fragment the index with the same distribution scheme as the table.

Monitoring I/O activity across fragments

You can monitor and track the effectiveness of the fragmentation policy using the
“onstat” command line utility. Using this utility enables you to determine if I/O is
balanced across fragments.

The onstat –g ppf command displays the number of read/write requests sent to each
fragment that is currently open. These requests generally do not indicate how many
individual disk I/O operations occur, but they can give you an idea of the collective I/O
activity.

The following statement will help you understand which partnums displayed by the onstat
command, belong to which table in the SYSMASTER database:

SELECT T.TABNAME FROM SYSTABLES T, SYSFRAGMENTS F
WHERE T.TABID = F.TABID
AND PARTN = <PARTNUM column from onstat –g ppf output, converted to decimal>

7. Tuning the B-Tree Scanner

Prior to Version 9.3 of Informix Dynamic Server, the single B-Tree cleaner thread cleaned
index pages of committed deleted items. For each request, it would take the following
actions:

• Start a transaction
• Open the partition
• Verify it can get an IS lock on the partition
• Get the key
• Enter the critical section
• Clean the b-tree page
• Return its resources
• Commit
• Move to the next request

The B-Tree Scanner functionality evolved from the need to have greater performance and
more reliability when cleaning index pages of deleted items.

Here is an overview of the B-Tree Scanner design goals:

• The workload for cleaning indexes is not from fully qualified requests submitted
during a delete. Instead, it occurs by keeping track of how many times items in an
index caused the server to do extra work. The index which caused the server to
do the most work is the next index cleaned by the B-Tree scanner thread.

• The scanner searches the leaf level of an index for deleted items. After finding a

deleted index item, the scanner thread test locks the item and performs a
foreground remove of the item, possibly compressing the page.

• You can dynamically configure the scanner threads to allow for different

workloads.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 29 -

Some new terminology has been introduced by the B-Tree scanner. These are:
• Dirty Count, Hits – The number of times a user or an administrative thread has

encountered an uncommitted deleted item while performing work
• Hot List – The list of indexes which need to be cleaned
• B-Tree Scanner – The new threads which are responsible for cleaning indexes

B-Tree Scanner Commands
The command used to start additional B-Tree cleaner threads is:

onmode –C start {count}
There can be a maximum of 32 threads running at any one time. If count is not specified,
then count is 1.

The command user to stop B-Tree cleaner threads is:

onmode –C stop {count}
This command will not work immediately, but takes place on the assignment of the next
unit of work. If count is not specified, then count is 1.

The command used to set the minimum number of deleted items an index must
encounter before an index will be placed on the hot list is:

onmode –C threshold {size}
The command that determines the size of a table before index range cleaning is enabled
is:
 onmode –C range {size}
By storing the maximum and minimum dirty key values along with the index key
statistics, it is possible to restrict the scan range of an index.

The commands that allows allow the priority of all B-Tree scanner threads to be set equal
to that of normal database user threads, or to a priority lower than that of normal
database user threads respectively, are:
 onmode –C high

onmode –C low

User Interfaces
% onstat –C | onstat –C profile
BT scanner profile Information
==============================
Active Threads 1
Global Commands 0
Number of partition scans 16434
Main Block 0xc0000001acdcc800
BTC Admin 0x0000000000000000

BTS info id Prio Partnum Key Cmd
0xc0000001acf148a0 0 Low 0x0C700009 1 100000 Scan index
 Number of leaves pages scanned 131193826
 Number of leaves with deleted items 5135437
 Time spent cleaning (sec) 546495
 Number of index compresses 922463
 Number of deleted items 80088769
 Number of index range scans 0
 Number of index leaf scans 21418
 Scan Type Leaf

% onstat –C hot

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 30 -

Index Hot List
==============
 Current Item 28 List Created 08:40:39
 List Size 32 List expires in 0 sec
 Hit Threshold 500 Range Scan Threshold -1

Partnum Key Hits
0x02D00005 1 49613 *
0x02D00004 1 37344 *
0x02D00006 1 13853 *
0x02D00003 1 7545 *
0x0C600008 1 1080 *
0x0C700008 1 1042 *
0x0C700007 1 533 *
0x13D00003 1 511 *
0x13C00003 1 509
0x06400003 1 503
0x0C900006 1 502
::::
::::
0x0C80000D 1 500

% onstat –C clean
Index Cleaned Statistics
========================
 Partnum Key Dirty Hits Clean Time Pg Examined Items Del Pages/Sec
0x02600004 1 10 0 0 0 0.00
0x02600005 1 12 0 0 0 0.00
0x02600007 1 12 0 0 0 0.00
0x02700003 1 7 0 0 0 0.00
0x02700004 1 2 0 0 0 0.00
0x02700005 1 2 0 0 0 0.00
0x02700007 1 12 0 0 0 0.00
0x02d00003 1 10521 11493 8644646 11415444 752.17
0x0cc00007 1 C 1 282 77690 81137 275.50
“C” flag indicates cleaning in progress for this index partition

% onstat –C range
Cleaning Range Statistics
=========================
 Partnum Key Low High Size Saving
0x00100002 1 1 1 4 100.0 %
0x01000030 1 7 11 24 83.3 %
0x01000102 1 1 1 40 100.0 %
0x02600003 1 611058 1060383 1187950 62.2 %
0x02600004 1 295045 295045 506245 100.0 %
0x02600005 1 293281 402135 414200 73.7 %
0x02600007 1 33037 82255 119657 58.9 %
0x02700003 1 66360 389302 1187950 72.8 %
0x02700004 1 211763 211763 506245 100.0 %
0x0cc00007 1 108 1996 26130 92.8 %

B-Tree Scanner Tuning Tips
By default B-Tree scanner threads run at a lower priority than user threads, so when the
system becomes busy, index cleaning may not be able to keep up. In this case, you
should set the priority of the cleaner threads to high rather than adding additional

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 31 -

threads. Adding additional threads that are already running on low priority will not
increase the amount of deleted items that are cleaned.

8. Concurrency and Performance

Concurrency is a property of systems, which consist of computations that execute
overlapped in time, and which can permit the sharing of common resources between the
overlapped computations. In other words, concurrency occurs when two or more
execution flows are able to run simultaneously.

There are several issues you need to consider when working in a multi-user environment.
When one user thread is reading from a table, another user thread is reading or
modifying the same table. Concurrency is crucial to performance in a multi-user
environment.

To control concurrent events, the database engine employs locking and isolation levels.

Lock Type Description
Shared A shared lock reserves an object for reading only. This

prevents the object from being changed while the lock
remains in place. Multiple shared locks can be placed on
the same object, allowing the same object to be read
simultaneously by different readers1.

Exclusive An exclusive lock reserves an object for the use of a
single reader or writer. This lock is used when the user
thread modifies the object by changing its contents. Once
an exclusive lock is placed on an object, no other type of
lock can be placed on that object.

Promotable/Updateable A promotable (or updateable) lock establishes the intent
to update. This lock can be placed on an object that has
already been locked with a shared lock. It cannot be
placed on an object that has an exclusive lock or another
promotable lock. However, once this type of lock changes
its state from shared to exclusive, any existing shared
locks should be dropped.

1 A reader or writer is a user thread started by Informix Dynamic Server.

Locking and Isolation Levels
A lock is a software mechanism that prevents others from using a resource. A lock can be
placed on an individual row or index key, a page of data, a table or the database itself.
The maximum number of rows or pages that can be locked in a single transaction (with
database logging enabled) is controlled by the total number of LOCKS configured in the
ONCONFIG file. This configuration controls the initial size of the lock table2 whose space
is allocated in the resident portion of shared memory along with buffers, log files and
locations of DBSPACES, CHUNKS and TABLESPACES. If lock allocations exceed the
configured value, the database server dynamically increases the size of the table.

2 The size of a single lock structure is 44 bytes. The maximum value of the LOCKS parameter is 8 million. The
size of the memory allocated to the lock table is LOCKS * 44 bytes. Every new dynamic lock allocation adds
100,000 locks. The dynamic lock allocation occur a maximum of 15 times. The absolute maximum number of

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 32 -

locks that can be added this way is 8 million + 15 dynamic allocations of 100,000 locks (8,000,000 +
1,500,000). The absolute maximum is therefore 9.5 million locks, after which the engine runs out of locks. Any
lock allocation that exceeds the value of LOCKS in a single transaction, is considered a “lock overflow”. You can
view this by running onstat –p and examining the “ovlock” column or by examining the database server
message log.

The size of the object being locked is referred to as the scope of the lock or the lock
granularity. On general the wider the scope the more concurrency is reduced. Locks are
implicitly released when the transaction ends or when the database is closed. If a
database does not use transactions and the transaction is not committed or rolled back,
the lock can only be released by an explicit SQL statement such as UNLOCK TABLE
<table-name>.

Locking granularity affects performance. When a user thread cannot access a row or a
key value, the user thread can wait for another thread to release this resource. But if an
entire page is locked by a userthread, a higher probability exists that a lot more threads
are waiting to access a row on this page.

Page locking is the default behavior when a table is created without the LOCK MODE
clause. With page locking, the entire page that contains the row is locked. The advantage
of page locking is that when several rows on a data page are updated or selected, only a
single lock is required. Conversely, a page lock on an index (especially during inserts,
updates, or deletes of a row and hence the insert/update/delete of an index key)
decreases concurrency because the index page is more densely packed and could
potentially contain keys that would be available to other user threads.

Row and key locking are not default behaviors. Row locking is enabled with the LOCK
MODE ROW clause using a CREATE/ALTER table DDL statement. Row and key locks
generally provide the best overall performance for a relatively small number of rows due
to the increased concurrency.

When a user deletes a row from within a transaction (database logging mode is enabled),
the row cannot be exclusively locked because it will soon cease to exist. However the
database server must somehow record that a row existed until the end of the
transaction. To delete a row, the database server employs before/after page images,
with the changes recorded in the physical log and the operation recorded in the logical
log. The free map for the page is also updated and the space in the page’s slot table1 is
reserved. Upon transaction roll back, the changes are undone by restoring the before
page images from the physical log. Upon transaction commit, the space is released, and
the specific slot that describes the row is deleted. If the deleted slot happens to be the
last slot on the page, the page is freed for reuse as well.

1 A slot table enables the database server to find data on a page. It is a series of four byte entries (or slots)
which begin at the page ending time stamp and grows towards the beginning of the page. Each slot in the table
describes a single row that is stored on that page. The data structure representing a slot comprises of two
parts; the location of the row’s first byte, and its length. The slot table also has its own “address” called a “row-
id” that comprises of a page number and a slot number. A row-id is used to uniquely identify a row of data.

When a row in a table with a B-Tree index is to be deleted, the database server employs
a technique called key value locking (KVL). Unlike row locking for data, key value locking
is employed for index information. When a row is deleted, any key values in the
corresponding index are not removed immediately. Instead, each key value is marked
with a flag as deleted.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 33 -

One of the important uses of key value locking is to assure that a unique key remains
unique through the end of the transaction that deleted it. When other user threads
encounter the deleted flag, the database server determines the presence of a lock. If a
lock exists then the transaction has not committed or rolled back. This either sends a
lock error or waits for the lock to be released depending on the status of the SET LOCK
MODE value set by the session.

Here is a summary of locking semantics used in key value locking and the meaning of
each semantic term:

• FETCH – Given a key value or a partial key value (its prefix), check if the key
value is in the index and fetch the full key. A starting condition (=, >, or >=) is
also given.

• FETCH NEXT – Having opened a range scan with a Fetch call, fetch the next key
satisfying the key range specification (for example, a stopping key and a
comparison operator (<, =, or <=))

• INSERT – Insert the given key (key value, row-id pair). For a unique index only
the key value is searched. For a non unique index, the whole new key is provided
as the search key.

• DELETE – Delete the given key (key value, row-id pair).

 Next Key Value Current Key Value
FETCH and FETCH NEXT S for commit duration

INSERT Unique Index IX for instant duration IX for commit duration, if next

key value was not previously
locked in S, X or IX mode

X for commit duration, if next
key value is previously locked
in S, X or IX mode

INSERT Non Unique Index IX for instant duration, if insert
key value does not already exist.

No lock if insert key value already
exists.

IX for commit duration, if (1)
next key is not locked during
this call, or (2) next key is
locked now, but next key not
previously locked in S, X or IX
mode

X for commit duration, if next
key is locked now and if it was
previously locked in S, X or IX
mode

DELETE Unique Index X for commit duration

X for instant duration

DELETE Non Unique Index X for commit duration, if delete
key value will no longer exist

No lock if value will definitely
continue to exist

X for instant duration, if delete
key value will not definitely
exist after the delete

X for commit duration, if
delete key value might or will
still exist after the delete

The following table estimates the number of locks for a given SQL statement that does
not include smart, large object (BLOB or CLOB) columns1.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 34 -

1 If BLOB or CLOB data types are present, add one lock for each non-partition (BLOBSPACE) BLOB or CLOB
value processed by the DML statement. If byte-range locking is present, also add one lock for every range. For
TEXT data types, no locks are placed if the DML statement is a SELECT statement.

If the DML statement is an INSERT or DELETE statement, then one lock for every page of TEXT or BYTE data
that is inserted or deleted. If the DML is an UPDATE statement, then one lock for every page of old TEXT or
BYTE data (before image) and one lock for every page of new TEXT or BYTE data (after image).

Isolation Level DML Statement Number of locks
Dirty Read SELECT 0
Committed Read SELECT 1
Cursor Stability SELECT 2
Repeatable Read SELECT (indexed scan) 1 + number of rows that

satisfy the where clause +
number of index key values
that satisfy the where clause

Repeatable Read SELECT (sequential scan) 1
N/A INSERT 2 + number of indexes

present
N/A UPDATE 2 + 2 per changed key value
N/A DELETE 2 + number of indexes

present

The isolation level is the degree to which user threads are isolated from each other’s
concurrent actions. The number and duration of locks placed on data when a SELECT
statement is executed, depends on the isolation level that you set. The type of isolation
level that you set affects performance greatly, because of its effect on concurrency.

The following table shows various isolation levels supported by Dynamic Server:

Isolation Level Value displayed by

“onstat –g sql”
Dirty Read DR
Committed Read CR
Cursor Stability CS
Repeatable Read RR
Dirty Read (with retain update locks) DRU
Committed Read (with retain update locks) CRU
Cursor Stability (with retain update locks) CSU

Monitoring and Administering locks
When the engine reads a page, it checks if the row in the page or the page itself (or the
table, database to which the page/row belongs) is listed in the lock table. Once the
corresponding lock table is established, the lock type is checked.

The following table summarizes the lock types that can be present in the lock table:

Lock Type Description Statement responsible
S Shared Lock SELECT
X Exclusive Lock INSERT/UPDATE/DELETE
U Update Lock SELECT (Update Cursor)

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 35 -

B Byte Lock Any DML statement that
updates VARCHAR columns

I Intent To Lock Any DML statement

You use the onstat command “onstat –k” is used to view the lock table output. In the
following example of onstat –k output, a user thread is inserting one row into a table in a
logging database. The user thread (whose address is denoted by the column “owner” in
the output) holds the following locks (denoted by “type”) in the order shown:

• A shared lock (S) on the database
• An intent exclusive (IX) lock on the table displaying the intent to lock
• An exclusive lock (X) on the index created for this table
• An exclusive lock (X) on the unique index of the primary key constraint
• An exclusive lock (X) on the table row

To determine the session responsible, issue the onstat –u command and match the
“owner” column from the onstat –k output to the “address” column of the onstat –u
output.

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
440a43ec 0 55bf0354 0 HDR+S 100002 205 0
440a4444 0 55bf0354 440a43ec HDR+IX 100083 0 0
440a44f4 0 55bf0354 440a45fc HDR+X 100099 100 1
440a45fc 0 55bf0354 440a4704 HDR+X 100084 100 1
440a4704 0 55bf0354 440a4444 HDR+X 100083 300 0
5 active, 2000 total, 2048 hash buckets, 0 lock table overflows

Indicates table lock User Thread

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
55bec018 ---P--D 1 informix - 0 0 0 30 104
55bec544 ---P--F 0 informix - 0 0 0 0 699
55beca70 ---P--F 0 informix - 0 0 0 0 0
55becf9c ---P--F 0 informix - 0 0 0 0 0
55bed4c8 ---P--F 0 informix - 0 0 0 0 0
55bed9f4 ---P--F 0 informix - 0 0 0 0 0
55bedf20 ---P--F 0 informix - 0 0 0 0 0
55bee44c ---P--F 0 informix - 0 0 0 0 0
55bee978 ---P--F 0 informix - 0 0 0 0 0
55beeea4 ---P--F 0 informix - 0 0 0 0 0
55bef3d0 ---P--F 0 informix - 0 0 0 0 0
55bef8fc ---P--- 5 informix - 0 0 0 0 0
55befe28 ---P--B 6 informix - 0 0 0 0 0
55bf0880 L-—PR-- 17 informix 4 440a4704 -1 1 24 0
55bf0354 Y—BP--- 39 informix 3 569b2a10 0 5 63 0
55bf0880 Y--P--D 12 informix - 4407f574 0 0 0 0
55bf0dac ---P--D 9 informix - 0 0 0 0 0
 17 active, 128 total, 27 maximum concurrent

No. of locksSession “owner” from onstat -k Lock Address

Wait forever

Lock flag

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 36 -

To determine the table to which the lock applies, execute the following SQL statement on
a system catalog table in the current database.
SELECT TABNAME FROM SYSTABLES WHERE PARTNUM = tblsnum (in decimal).

Additionally a query on the SYSMASTER: SYSLOCKS table returns the following columns,
dbsname (database name), tabname (table name), rowidlk (row id on which lock is
placed), keynum (key number of the row), type (type of lock), owner (session id of the
lock owner), waiter (session id of the first waiter on the lock).

If an application session issues a “SET LOCK MODE TO WAIT” statement, the database
engine waits for a lock to be released, instead of returning an error. An unusually long
wait for a lock can give you the impression that the application is hanging. If the
application should return immediately with an error, then it should issue the statement
“SET LOCK MODE TO NOT WAIT” or it should wait for a specific number of seconds by
executing “SET LOCK MODE TO WAIT <interval in seconds>”.

9. Real cases from ATLAS/RETAIN systems

The following problems and their resolutions are real customer problems and resolutions
taken from Informix ATLAS/RETAIN systems.

Operating Environment – HP-UX 11i
PMR Number – 15124,000,000
Informix Database Server – IDS 7.3/9.3/9.4/10.0
Problem
Every Saturday, around 3:00 pm users reported that the Informix instance was hung.
They were unable to connect to the instance via dbaccess or via their application. It was
not possible to shutdown the engine using onmode –ky.

Diagnosis
Various onstat dumps were captured, but nothing pointed to a problem. Running the HP-
UX glance and top utilities showed that system was bottlenecked on CPU. The CPU usage
in user mode was at 100 percent. All the oninit processes were on the top of the list,
showing up as top CPU users. Users said this is the first time they are seeing this
problem since they switched to a Veritas Cluster File system (CFS). HP and Veritas got
involved in the discussion, but could not come up with any answers. Customer wanted to
upgrade to IDS 9.4, but IBM support did not think it would solve the problem, since there
was no real evidence of an Informix problem. Customer upgraded to 9.4 anyway. The
instance hung again the following Saturday, but this time glance and top showed the CPU
usage was 100 percent in system mode. During this time IBM support found that there
was a problem accessing files on /usr/Informix which is created on CFS.

Resolution
When Veritas was told about this, they went back and suggested HP-UX kernel patch -
PHKL 33988 which eventually resolved the problem. Once this patch was installed, CPU
usage never hit 100 percent and engine ran fine without “hanging”.

Operating Environment – HP-UX 11.00
PMR Number – 399148 (Atlas Case ID)
Informix Database Server – IDS 7.3/9.3/9.4/10.0
Problem

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 37 -

About twice a week, customer reported that the Informix instance was hung.

Diagnosis
Onstat outputs collected showed that there were more than 1000 users connected to this
instance. Lots of connections were made using I-STAR (srvinfx threads) from other
instances. Operating system diagnostics were also collected. Total physical memory on
the machine was 2GB. Glance and perfview analysis showed that physical memory was
only a few megabytes when this problem occurred.

Resolution
IBM Support discovered that the memory starvation was induced by a customer
application (written in ESQL/C) which ran as a daemon process. This processes leaked
approximately 1MB of memory every 4-5 minutes. Customer had multiple copies of this
process running, but they also had a cron job to stop/start these processes (as the
memory leak bug was well known). Since they did not have the source code available to
fix this memory leak, Informix support suggested they stop/start these processes at
much shorter intervals than in the past. Once they did this, the Informix instance ran
fine. Eventually they upgraded the hardware to a machine with 4GB of memory.

Operating Environment – HP-UX
PMR Number – 02108,999,778
Informix Database Server – IDS 7.3
Problem
Customer encounters slow performance from their IDS engine.

Diagnosis
Here is the excerpt from the Informix msglog
Informix Dynamic Server Version 7.31.UD7 – On-Line (LONGTX) – Up 21:37:47 – 547592 Kbytes
Blocked:LONGTX

16:12:13 Aborting Long Transaction: tx 0xd6bbbb18 username: normaliz uid: 259
16:12:13 Aborting Long Transaction: tx 0xd8840b78 username: normaliz uid: 259

Here is the excerpt from onstat –x
Transactions
address flags userthread locks log begin isolation retrys coordinator
d6bbbb18 A-B-- d8a5285c 6 28738 DIRTY 0
d8840b78 A-B-- d8a6acf8 6 28738 DIRTY 0
Note: * B in flag means begin work

Resolution
The problem was due to the two transactions (denoted in the onstat –x output)
consuming logical logs that exceeded the long-transaction high water-mark (LTXHWM)
percentage of 50 percent that is set in the onconfig parameters. The current logical log
when the transaction began was 28738 (denoted under “log begin”), and when the long
transaction message appeared in the Informix msglog, the current logical log was 28762.
Thus 24 (28762-28738) logical logs out of a total of 40 or 60 percent of the logical logs
were consumed by user-threads d8a5285c and d8a6acf8. Increasing the number of
logical logs will alleviate the problem. In addition to that, users could set the
corresponding long-transaction exclusive access high water-mark (LTXEHWM) to 100
percent to allow other transactions access to the logical logs, while this long transaction
is rolling back. However if the transactions were consuming all the available logical logs,
then LTXEHWM should be set to approx. 50 percent and not more.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 38 -

Operating Environment – Solaris 10
PMR Number – None (Sun Alert ID: 102576)
Informix Database Server – IDS 7.3/9.3/9.4/10.0
Problem
Dynamic Server hangs. All subsequent connection attempts will also yield ERRNO 13
(permission denied) from the listener thread. Database server restart is inevitable.

Diagnosis
Here is the excerpt from the Informix msglog
17:07:53 listener-thread: err = -27001: oserr = 0: errstr =: Read error occurred during
connection attempt.
17:07:54 listener: poll return with non T_LISTEN/T_DISCONNECT event
17:07:54 listener-thread: err = -25573: oserr = 13: errstr =: Network driver cannot accept a
connection on the port. System error = 13.
17:07:55 listener: poll return with non T_LISTEN/T_DISCONNECT event
17:07:55 listener-thread: err = -25573: oserr = 13: errstr =: Network driver cannot accept a
connection on the port. System error = 13.

Resolution
The following workaround should be used until the fix for the bug can be implemented.
Disable TCP fusion by adding the following line to the "/etc/system" file:
set ip:do_tcp_fusion = 0x0
"TCP fusion" seems to be a Solaris 10 TCP optimization feature applicable to many logical
network interfaces mapped to one physical interface, which can be the case if running
multiple zones on one machine.

Operating Environment – Red Hat Linux 7.3
PMR Number – 382794 (Atlas Case ID)
Informix Database Server – 9.40.UC2
Problem
This is a benchmark at a customer location on a 3 CPU Linux box containing 2GB of
memory. It involves loading 150 million rows from 99 pipe delimited ASCII text files into
a 2 column table using HPL. The Geodetic Data Blade is also involved.
After 50 million rows are loaded at the rate of 2,700 rows/sec and 80 percent CPU
utilization, the load rate dropped 550 rows/sec and 15 percent CPU utilization.

Diagnosis
Memory leak due to bug 164144 (A GLS bug associated with the conversion of ASCII
date-time values to Geo Time Range format). A workaround to this required each HPL
load job handles only 3 data files at a time for a total of 33 load jobs. Onmode –F was
run at the end of each load job.
In addition the load jobs were getting halted by long checkpoint durations. Bug 121346
[Deluxe Mode HPL load jobs cause engine to block at checkpoint requests] seems to be a
suspect. They can’t use express mode since table contains an opaque data type. The
problem was worked around by adding onmode –c after each load job.

The database engine was also bounced after every load since at least 3 load jobs (job
#7, job #8 & job #15) complained of SQL error -271, ISAM error 172.

Once after almost all of the 150 million rows were loaded, a single RTREE index build was
started. [CREATE INDEX <INDX_NAME> ON TABLE <TABNAME> (COL_NAME
OPAQUE_COL_TYPE) USING RTREE (BOTTOM_UP_BUILD=’NO’, FILLFACTOR=95,
SORT_MEMORY=600000, BOUNDING_BOX_INDEX=’NO’)]. The build was proceeding as
normal, gradually filling up temp space (23 GB available). Then it fails with the error

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 39 -

(RTRB5) – RTREE ERROR – Function ‘srtclose’ failed with error: 116. File rtlsort.c, line
182. [ISAM error 116 – Cannot allocate memory].
Resolution
The RTREE index-build error points to insufficient memory for the sort. So an additional
(4th) temporary space of 6 GB in size was added, bringing the total temp space to 23 GB.
Earlier it was 17GB in 3 temp spaces. Now the index was built successfully.

Operating Environment – HP-UX 10.20
PMR Number – 360108 (Atlas Case ID)
Informix Database Server – 7.31
Problem
Dynamic server hung, blocked on checkpoint. At first it resembles a mutex deadlock.

Diagnosis
Everything was waiting on one thread that was holding a dbs_partn mutex. This in turn
was waiting on a pt_# condition, which was waiting for the checkpoint to complete,
which was waiting on the thread holding dbs_partn mutex. Further analysis shows that
kernel asynchronous I/O (KAIO) was enabled, and this seemed to have stopped working
too.

Resolution
Turned off KAIO by setting the environment variable KAIOOFF=1, and re-started dynamic
server.

Operating Environment – Red Hat Linux
PMR Number – 88046,019,866
Informix Database Server – 7.31
Problem
Customer experiences a session hang when connecting to the database server using
dbaccess. The users are connecting to the database server remotely via an x-terminal.
Even after two minutes, the connection could not be established. Then user does a Ctrl-C
to terminate the session.

Diagnosis
Here is the excerpt from the message log:
03:55:14 Checkpoint loguniq 51146, logpos 0x6e7728
03:56:50 listener-thread: err = -956: oserr = 2: errstr = (adani@dynamic-161-144-165-166): Client host or
user (adani@dynamic-161-144-165-166) is not trusted by the server. System error = 2.
04:00:18 Checkpoint Completed: duration was 2 seconds.

However, as per the customer, this was not the user who was facing the connection
problem.

Resolution
The customer set the following environment variables on the client:
INFORMIXCONTIME=600
INFORMIXCONRETRY=10
This will cause dbaccess to retry the connection up to ten times at 60 second intervals.

Operating Environment – AIX 5.3 (72 CPUs; 128 GB memory)
PMR Number – 74714,820,820
Informix Database Server – 9.40.FC7
Problem

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 40 -

SQL statements execute very slowly. There are approximately 400-450 ready threads in
the queue.

Diagnosis
There are 1400-1500 concurrent sessions. Average CPU load is only 20 percent. The disk
sub-system is also not heavily loaded. The storage area network is HP (XP 1200). In 5
minutes only 363,000 pages were read from disk, which equates to an average transfer
rate of 4.7 MB/s (363000 * 4 KB / 300 s / 1024).

From the queue statistics (onstat -g qst), it seems that the most heavily loaded queues
are the pt_* queues:
NAME NWAITS AVG_TIME MAX_TIME AVGQ MAXQ NSERVS AVG_TIME
...
hash PN_ID 3453 12869 75224 26 52 1383932 0
...
ps_6 476944 11925 1142849 3445 -1 17911952 0
ps_1 525149 12025 1318029 3871 -1 17940702 0
ps_5 390221 11816 1144661 2860 5711 17898469 0
ps_5 366101 11765 1202758 2626 -1 17864339 0
ps_1 2 2475 4602 1 1 77858 0
ps_6 466580 11925 1315310 3404 -1 17884618 0
ps_6 569252 11954 1316968 4129 -1 17933199 0
ps_6 483322 11913 1141628 3684 -1 17885366 0
ps_1 10 14584 24568 1 1 143787 0
ps_2 1 11916 11916 1 1 38962 0
ps_7 476593 11898 1217404 3501 -1 17884608 0
ps_5 1537 11548 63397 28 83 1742649 0
...
Customer then upgraded the instance to 9.40.FC8, which contains the fix to Bug 175470
[PERCEIVED MEMORY LEAK IN RSAM POOL AFTER FIX TO 166893]. But this caused a
new problem, relating to the dbs_partn_1 MUTEX, which is waited on by about 600 user
threads.

Resolution
This turned out to be a regression of the fix made to bug 175470. A new patch port,
9.40.FC8X2, was made available to this customer. Customer tested their application with
more than 3000 users, and no performance problems were observed.

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 41 -

10. References

Reference Author Location
TCP-H Benchmark Overview
Performance tuning IDS with Web Sphere
Unlocking the mysteries of Update Statistics
Informix Performance Guide
Fragmentation and Indexing Strategies
ATLAS/RETAIN System
The Art of Computer Programming, Volume 2
Tuning the B-Tree Scanner
ARIES/KVL: A Key Value Locking Method for
Concurrency Control of Multi-Action
Transactions on B-Tree Indexes
Optimizing IDS Applications

Informix/HP
-
John Miller
-
Mark Scranton
-
Donald Knuth
John Miller
C. Mohan

Guy Bowerman

www.tpc.org
www.redbooks.ibm.com
Chat with the labs series
publib.boulder.ibm.com
Chat with the labs series
-
-
nart.beaverton.ibm.com
-

nart.beaverton.ibm.com

 Performance Tuning Tips for IBM Informix Dynamic Server

 - 42 -

© Copyright IBM Corporation 2005
All Rights Reserved.
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
11-05

Neither this documentation nor any part of it may be copied or reproduced in any form or by any means or translated into
another language, without the prior consent of all of the above mentioned copyright owners.

IBM makes no warranties or representations with respect to the content here of and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. IBM assumes no responsibility for any errors that may appear in this
document. The information contained in this document is subject to change without any notice. IBM reserves the right to make
any such changes without obligation to notify any person of such revision or changes. IBM makes no commitment to keep the
information contained herein up to date.

The information in this document concerning non-IBM products was obtained from the supplier(s) of those products. IBM has
not tested such products and cannot confirm the accuracy of the performance, compatibility or any other claims related to non-
IBM products. Questions about the capabilities of non-IBM products should be addressed to the supplier(s) of those products.

IBM, the IBM logo, DB2, and DB2 Universal Database are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. Intel and Xeon are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

References in this publication to IBM products or services do not imply that IBM intends to make them available in all countries
in which IBM operates.

