TOC

Session Abstract

INDEX B15 DB2 UDB Advanced Analytics for Business Intelligence *Peter Haas, Research Staff Member, IBM*

VIEW

DB2 UDB supports a variety of statistical and analytical functions that can be used to extract valuable business information from data using SQL queries. Via a series of examples, we illustrate the power of DB2 for BI analytics. DB2's aggregation and OLAP functions can be used to understand the "shape" of the data by providing summary statistics, histograms, and smoothed time series. The correlation functions can be used to detect dependencies in the data, for example, between customers and over time. The RANK and linear regression functions can be used to develop statistical models of customer behavior for purposes of prediction and outlier detection. Performing BI analytics "in the engine" avoids the need to transfer and reformat large amounts of data, and allows the user to exploit DB2's powerful features, including automatic parallelization of analytic computations.

B15

DB2 UDB Advanced Analytics for Business Intelligence

Peter J. Haas

Anaheim, CA

Sept 9 - 13, 2002

™!IBM Corporation 2001

From Data to Knowledge

• The challenge: extracting useful business information from (massive) data (automatically)

- Data analysis via SQL queries
 - processing occurs close to data
 - automatically exploits parallelism
 - can exploit other DB features: incremental maintenance, etc.

Some Different Types of Analyses

- Understanding the overall "shape" of the data
 - summaries
 - pictures
- Detecting outliers
- Detecting dependencies
 - between customers
 - over time
- Statistical modelling
 - for prediction and decision-making
 - functional relationships
 - inference (answering questions)

Pertinent Features of DB2 UWO

- Classical aggregation functions
 SUM, COUNT, AVERAGE, ...
- Statistical functions
 STDDEV, CORR, REGR *
- OLAP functions
 - ROWNUMBER, RANK, window aggregates, ...
- Other V5-V7 enhancements
 - common table expressions
 - CASE
 - triggers

• Can use SQL to combine tools in new and powerful ways

Classical Summary Statistics

VIEW transvwl(country, year, amount)

```
select country, year,
    count(*) as count, sum(amount) as sum,
    avg(amount) as avg, max(amount) as max,
    stddev(amount) as stddev
from transvw1
group by country, year;
```

COUNTRY	YEAR	COUNT	SUM	AVG	MAX	STDDEV
GERMANY	1998	31	3126.04	100.84	109.75	6.18
GERMANY	1999	24	3549.06	147.87	160.87	7.49
USA	1998	20	4031.20	201.56	249.34	28.91
USA	1999	25	7820.09	312.80	607.98	281.36

Outliers: Credit Card Fraud Detection

• Create a customer card-usage profile table:

```
CREATE VIEW profile(cust_id, avg_amt, sd_amt) AS
   select cust_id, avg(charge_amt), stddev(charge_amt)
   FROM trans
   WHERE date BETWEEN '2002-01-01' and '2002-03-31'
   GROUP BY cust id;
```

• Detect and flag unusually large charges

(Equi-Width) Histograms

equi-width histogram for transaction amounts (20 buckets):

WITH dt as (SELECT t.transid, sum(amount) as trans_amt,

```
case
```

```
when (sum(amount)-0)/((60000-0)/20) < 0 then 0
when (sum(amount)-0)/((60000-0)/20) > 19 then 19
```

```
else int((sum(amount)-0)/((60000-0)/20))
```

end as bucket

FROM trans t, transitem ti WHERE t.transid=ti.transid GROUP BY t.transid) SELECT bucket, count(bucket) as height, (bucket+1) * (60000-0)/20 as max amt FROM dt GROUP BY bucket;

BUCKET	HEIGHT		MAX_AMT
(0	435	3000
	1	645	6000
:	2	830	9000
:	3	669	12000
4	4	533	15000
	5	405	18000
(5	265	21000
	7	192	24000
8	8	123	27000
	9	82	30000
10	0	55	33000
1:	1	35	36000
1:	2	22	39000
1:	3	7	42000
14	4	7	45000
1!	5	1	48000

Quantiles (Equi-Height Histograms)

equi-height histogram for transaction amounts (10 buckets):

```
WITH dt as
  (SELECT t.transid, sum(amount) as trans_amt,
            rownumber() over (order by sum(amount)) * 10 /
            (select count(distinct transid)+1
            from stars.transitem) as bucket
    FROM stars.trans t, stars.transitem ti
    WHERE t.transid=ti.transid GROUP BY t.transid
    )
SELECT bucket, count(bucket) as b_count, max(trans_amt) as
    part_value
```

FROM dt GROUP BY bucket;

		_
0	430	2957.54
1	431	5094.14
2	431	6873.05
3	431	8429.81
4	431	9793.69
5	431	12019.40
6	431	14468.20
7	431	17355.26
8	431	22215.92
9	431	57360.41

BUCKET B COUNT PART VALUE

Smoothed Time Series

Three-day running-mean smoothed average of IBM stock prices:

SELECT date, symbol, close_price, avg(close_price) OVER (order by date rows between 1 preceding and 1 following) AS smooth_cp FROM stocktab WHERE symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE	SYMBOL	CLOSE_PRICE	SMOOTH_CP
	трм	110 125	100 9125
00/02/1999	TDM	100.125	110 5410
08/03/1999	TBW	109.500	110.5416
08/04/1999	IBM	112.000	110.7083
08/05/1999	IBM	110.625	111.7916
08/06/1999	IBM	112.750	111.3333
08/09/1999	IBM	110.625	110.5833
08/10/1999	IBM	108.375	109.4166
08/11/1999	IBM	109.250	109.0000
08/12/1999	IBM	109.375	109.0416
08/13/1999	IBM	108.500	109.3750
08/16/1999	IBM	110.250	109.0416
08/17/1999	IBM	108.375	109.0000
08/18/1999	IBM	108.375	108.7083
08/19/1999	IBM	109.375	109.9166
08/20/1999	IBM	112.000	111.5000
08/23/1999	IBM	113.125	113.3333
08/24/1999	IBM	114.875	114.5000
08/25/1999	IBM	115.500	114.5833
08/26/1999	IBM	113.375	114.8333
08/27/1999	IBM	115.625	114.2083
08/30/1999	IBM	113.625	114.0416
08/31/1999	IBM	112.875	114.0416
09/01/1999	IBM	115.625	114.2500

Three-day running-mean smooth

Smoothed Time Series

Seven-day running-mean smoothed average of IBM stock prices:

```
SELECT date, symbol, close price,
  avg(close price) over (order by date rows between 3
 preceding and 3 following) as smooth cp
FROM stocktab
WHERE symbol = 'IBM' and date between '1999-08-01' and
  '1999-09-01' ;
```

DATE	SYMBOL	CLOSE_PRICE	SMOOTH_CP
08/02/1999	IBM	110.125	109.8125
08/03/1999	IBM	109.500	110.5416
08/04/1999	IBM	112.000	110.7083
08/05/1999	IBM	110.625	111.7916
08/06/1999	IBM	112.750	111.3333
08/09/1999	IBM	110.625	110.5833
08/10/1999	IBM	108.375	109.4166
08/11/1999	IBM	109.250	109.0000
08/12/1999	IBM	109.375	109.0416
08/13/1999	IBM	108.500	109.3750
08/16/1999	IBM	110.250	109.0416
08/17/1999	IBM	108.375	109.0000
08/18/1999	IBM	108.375	108.7083
08/19/1999	IBM	109.375	109.9166
08/20/1999	IBM	112.000	111.5000
08/23/1999	IBM	113.125	113.3333
08/24/1999	IBM	114.875	114.5000
08/25/1999	IBM	115.500	114.5833
08/26/1999	IBM	113.375	114.8333
08/27/1999	IBM	115.625	114.2083
08/30/1999	IBM	113.625	114.0416
08/31/1999	IBM	112.875	114.0416
09/01/1999	IBM	115.625	114.2500

Seven-day running-mean smooth

Detecting Dependencies: Correlation

• Correlation coefficient: measures strength of linear relationship

Correlation in DB2

Sales regions where income and purchases are not aligned:

VIEW transvw2(country, state, annual_purchases, income)

```
SELECT country, state,
    correlation(annual_purchases, income) AS correlation
FROM transvw2
GROUP BY country, state
having abs(correlation(annual_purchases, income)) > 0.10;
```

COUNTRY	STATE	CORRELATION
USA	AK	0.78
USA	AL	0.68
USA	DE	-0.30 <=
USA	GA	0.14
USA	KS	0.69
USA	LA	0.48

Can also display covariance (= "unnormalized" correlation)

Another Use for Correlation

CUSTID1	CUSTID2	CORR
2300	6823	0.99
1071	2300	0.85
1223	4539	0.83
1010	1071	0.78
1010	2300	0.72
1071	6823	0.65

2300 —	—1010
6823 —	—1071

4539 ---- 1223

DB2 and Business Intelligence Technical Conference

Autocorrelation

Correlate yearly sales with sales from previous years

```
VIEW transvw4(pgname, year, total_sales)
WITH dt (pgname, year, sales_0, sales_1, sales_2) AS
(SELECT pgname, year, total_sales,
    max(total_sales) over
    (partition by pgname order by year rows between 1 preceding
    and 1 preceding),
    max(total_sales) over
    (partition by pgname order by year rows between 2 preceding
    and 2 preceding)
    FROM transvw4
  )
SELECT pgname, correlation(sales_0,sales_1)*100 as "correlation1(%)",
    correlation(sales_0,sales_2)*100 as "correlation2(%)",
```

FROM dt GROUP BY pgname;

PGNAME	<pre>correlation1(%)</pre>	correlation2(%)	
antibiotics	-2.83	-29.07	
camcorder	-54.78	20.75	
coats	-25.40	-1.68	
vcr	59.39	33.17	

Least-Squares Fit (Linear Regression)

- Fits a line of the form y = ax + b from (x,y) pairs
- Ex: effect of advertising budget on 1999 sales

num_cities	a b	
126	1.9533 13.381	

DB2 and Business Intelligence Technical Conference

Fitting Other Types of Curves

Quality of Fit

- Want diagnostics!
 - especially in automated environment

From L. Kovar, "Band Structure in Germanium, My #\$%\$" *Ann. Improbable Research*, 7(3), 2001 http://www.improb.com/airchives/paperair/volume7/v7i3/germanium-7-3.html

Quality of Fit - Continued

• R-Squared

- roughly, the square of the correlation of x and y
- proportion of y-variation explained by the model

```
SELECT
  regr_count(sales, ad_budget) AS num_cities,
  regr_slope(sales, ad_budget) AS a,
  regr_icpt(sales, ad_budget) AS b,
  regr_r2(sales, ad_budget) as r-squared
FROM ad camp;
```

num_cities	a	b	r-squared
128	1.9533	13.381	0.95917

DB2 and Business Intelligence Technical Conference

Quality of Fit for Nonlinear Curves

Incorrect: Compute R-Squared for transformed data

select **regr r2**(log(hits), log(days)) as r2 from traffic data;

r2: 0.9912

• **Correct:** Compute R-Squared for original data

```
with coeffs(a,b) as
                                                         20
                                                             40
(select reqr slope(log(hits),log(days)) as a,
                                                         days since inception
           exp(regr icpt(log(hits),log(days))) as b
  from traffic data),
residuals(days,hits,error) as
(select t.days, t.hits, t.hits - c.b * power(t.days,c.a)
  from traffic data t, coeffs c)
select 1e0 - (sum(error*error)/regr syy(hits,days)) as r2
from residuals;
```


2.5 10⁵

2 10⁵

1.5 10⁵

1 10⁵

5 10⁴

nits per day

hit rate = $21.43 * (davs ^ 1.9874)$

60

80

100

Influence of Individual Data Points

• Some data are more important than others

• Measure of influence: HAT diagonal

- $h_i = (m_{x2} 2m_x x_i + x_i^2) / s_{xx}$
 - $m_x = avg(x_1, ..., x_n)$
 - $m_{x^2} = avg(x_1^2, ..., x_n^2)$
 - $s_{xx} = (x_1 m_x)^2 + ... + (x_n m_x)^2$

HAT Diagonal Computation

city	hat
Los Angeles	0.9644
Boonville	0.1222
Grass Valley	0.1195
Yreka	0.1154
Gilroy	0.1099
Lemoore	0.1011
Hilmar	0.1011
Mendocino	0.0923
Turlock	0.0922
Morgan Hill	0.0910
Truckee	0.0910

DB2 and Business Intelligence Technical Conference

Regression through the origin

50 10.082

Outliers II: Effective Ad Campaigns

- Identify unusually effective campaigns, controlling for ad budget
- Use sigma, the standard deviation about the regression line

Fresno	15.26	82.00
San Diego	84.99	223.81

Multiple Linear Regression

- Fit a line of the form $y = b_0 + b_1 x_1 + ... + b_n x_n$
 - ex: $y = a_1 z + a_2 z^2 + b$
- To fit: write in matrix form and solve "normal equations"

$$y = Xb + e$$

$$y_{1} = \begin{vmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{vmatrix} \begin{vmatrix} b_{0} \\ b_{1} \\ \dots \\ b_{k} \end{vmatrix} + \begin{vmatrix} e_{1} \\ e_{2} \\ \dots \\ e_{n} \end{vmatrix}$$
Find b's that minimize Te_i²

Multiple Linear Regression, Continued

- Compute b by solving "normal equations": $[X^TX]b = [X^Ty]$
- Multiple regression in DB2 UWO --- a simple approach
 - compute entries of $[X^T X]$ and $[X^T y]$ using SQL queries
 - •SELECT x1*x1, x1*x2, x2*x2, x1*y, x2*y ...
 - matrices are incrementally maintainable
 - solve for b by feeding entries into a UDF that solves equations (e.g., by Gaussian elimination)
- Research prototype (two x variables) developed at Almaden
 - Good for fixed problems with changing data
- Issues for an industrial-strength solution
 - general equation-solving UDF
 - robustness to "difficult data"
 - diagnostic statistics (R², etc.)

From Description to Modeling

- Scenario 1: business decisions
 - need to make predictions/inferences
 - view data as sample from real world

- Scenario 2: quick analysis of massive data
 - data is small sample from large database
 - need to assess validity of sample-based computations

Significance of Regression Fit

- View data as a sample
 - $y_i = ax_i + b + error_i$
- Real effect of x on y, or luck-of-the draw?
- Look at F statistic (with 1 and n-2 "degrees of freedom")
 - measures (y variability caused by x) / (unexplained y variability)
 - if a = 0, then F should take on "small" values
- A statistical test:
 - let f be observed value of F
 - compute Prob(F >= f) assuming that a = 0
 - suppose that f is so big that Prob(F >= f) is very small
 - unlikely to see this if a = 0
 - therefore, effect of x on y is statistically significant

Significance of Fit, Continued

```
WITH dt(num cities, a, b, sxx, sigma2) AS
(SELECT
  reqr count(sales, ad budget),
  regr slope(sales,ad budget),
  regr icpt(sales,ad budget),
  regr sxx(sales,ad budget),
  (reqr syy(sales, ad budget)
   - (reqr sxy(sales, ad budget) * reqr sxy(sales, ad budget)
      /reqr sxx(sales,ad budget)))
  / (regr count(sales,ad budget) - 2)
 FROM ad camp
                                                250
SELECT num cities, a, b,
 ((a*a*sxx)/sigma2) AS F
                                                200
FROM dt;
                                             sales
                                                150
num cities
                          b
                                      F
                  a
                                                100
128
             1.9533 13.381
                               2959.83
                                                 50
```

Prob(F_{1,126} > 2959.83) << 0.01

Caveat: errors need to be iid normal

Inference: Effectiveness of Ad Campaign

• An experiment

- Campaign run in City B in January (8 stores)
- No campaign in "control" City A (9 stores)
- Monthly sales computed in stores in both cities for February
 - •VIEW feb_sales(city,store_id,sales)
- Did campaign result in increased sales?
- Classical test: 2-sample t test
 - restrictive normality assumption
 - restrictive equal-variance assumption
- Wilcoxon Rank Test
 - a more modern "nonparametric" procedure
 - avoids restrictive assumptions

Wilcoxon Rank Test

• Test statistic: sum of ranks of City B in combined ranking

```
WITH ranked_sales(city, ranks) AS
(SELECT city, rank() over (order by sales)
FROM feb_sales
)
SELECT sum(ranks) as W
FROM ranked_sales WHERE city = 'B'
```

• Test if W is significantly > than expected value (assuming no diff.)

- expected value: [(n_An_B) + n_B(n_B+1)] / 2 (n_X = number of stores in City X)
- example: $n_A = 9$, $n_B = 8$, and W = 94
 - expected value = 72
 - Prob(W > 93) =2% (from tables) if no real difference in sales

Inference: Test for Independence

Is there a relationship between operating system and DB product?
Contingency-table analysis (number of users)

	Sybase	Oracle		
inux	120		80	200
Jnix	45		95	140
Vindows	30		12	42
	195		187	382

• A lesser-known "maximum likelihood" chi² test for independence

- test statistic (r rows and c columns):
 X = 2n log(n)
 - + $[2n_{11} \log(n_{11}) + ... + 2n_{rc} \log(n_{rc})]$
 - $[2n_{1+} \log(n_{1+}) + ... + 2n_{r+} \log(n_{r+})]$
 - $[2n_{+1} + \log(n_{+1}) + ... + 2n_{+c} \log(n_{+c})]$

n_{ij}: # in cell (i,j) n_{i+}: row i sum n_{+j}: column j sum n: total # users

Test for Independence, Continued

```
WITH c_table(os, db, n, g1, g2) AS
(SELECT os, db, count(*), 2e0*( 0.5e0-grouping(os)), 2e0*(0.5e0-grouping(db))
FROM survey
GROUP BY CUBE(os,db))
SELECT sum(g1*g2*2e0*n*log(n)) as X
FROM c_table
```

X	05	db	n	g1	g2	c_table
34.114	Linux	SYB	120	1.0	1.0	
	Linux	-	200	1.0	-1.0	
	-	SYB	195	-1.0	1.0	
	-	-	382	-1.0	-1.0	
	• • •					

- If data is truly independent:
 - X should be close to 0
 - X has chi² distribution with (r-1)(c-1) degrees of freedom
- Computer example: r = 3, c = 2
 - if independent, Prob(X > 34.114) < 0.001%

Combining Regression and Windowing

• Running-line estimator (Hastie & Tibshirani, 1990)

- fits a line $y = a_i x + b_i$ to local neighborhood of each (x_i, y_i) point
- smoothed y value is given by $y_i^{\text{smooth}} = a_i x_i + b_i$
- better behavior at endpoints, better statistical properties

Regression and Windowing: Cont'd

• Would like to execute the following query:

• Doesn't quite work yet

• Work-around by expanding: regr_slope(y,x) = covar(y,x) / var(x) etc.

A Regression and Windowing Query

• Final query (assumes no NULLs):

```
with
dt(day,date,symbol,close price) as
  (select cast(row number() over (order by date) as real),
   date, symbol, close price from stocks
  ),
ddt(day,date,symbol,close price,slope,avgx,avgy) as
  (select day, date, symbol, close price,
    covar(close price,day)
     over (order by day rows between 3 preceding and 3 following) /
    var(day)
     over (order by day rows between 3 preceding and 3 following),
    avq(day)
     over (order by day rows between 3 preceding and 3 following),
    avq(close price)
     over (order by day rows between 3 preceding and 3 following)
   from dt
select date, symbol, close price,
 day * slope + (avqy-slope*avqx) as smooth cp
from ddt;
```


Taming Massive Data: Sampling

- Sampling for
 - auditing or "fuzzy exploration"
 - quick approximate answers to aggregation queries
 - making analytics and datamining scalable
- Technology challenges
 - generating a representative sample efficiently
 - estimating an aggregate
 - assessing precision of estimate
- Sampling in DB2 --- Present and Future
 - Go to session B16

Selected References

• Introductory Statistics

- Larry Gonick, et al : *The Cartoon Guide to Statistics*, HarperCollins, 1994
- Jeffrey Clark and Douglas A. Downing: *Forgotten Statistics : A Self-Teaching Refresher Course*, Barrons, 1996
- Lloyd R. Jaisingh: Statistics for the Utterly Confused, McGraw-Hill, 2000

Advanced Statistics

- T. J. Hastie and R. J. Tibshirani: *Generalized Additive Models*, Chapman & Hall/CRC, 1999
- B. W. Lindgren: Statistical Theory, 3rd Ed., MacMillan, 1976
- R. G. Miller: Beyond ANOVA, Basics of Applied Statistics, Wiley, 1986
- R. H. Myers: *Classical and Modern Regression with Applications*, 2nd Ed., Duxbury, 1990
- C.-E. Sarndal, B. Swenson, and J. Wretman: *Model Assisted Survey Sampling*, Springer-Verlag, 1992
- Also: Database + files are available for queries in this talk
- Also: Forthcoming Redbook

Many Thanks To...

- Kevin Beyer
- Guy Lohman
- Eric Louie
- Bob Lyle
- Hamid Pirahesh
- Ashutosh Singh
- Markos Zaharioudakis

• ...