
Session Abstract
TOC

INDEX

VIEW

B17 Enhanced OLAP integration with Rollup and Cube, as well as latest AST enhancements in DB2 UDB
William O'Connell, Senior Technical Staff member, IBM Toronto Lab

This session will discuss the standardized support in DB2 Universal Database on OLAP and statistical functionality,
and more importantly, its integration with the Rollup and Cube operators, as well as the Materialized Query Tables
(MQT) and Automatic Summary Table (AST) technology. The latest enhancements in MQT and AST technology will
also be discussed. This session will briefly explain the emerging role of the database in business intelligence devel-
opment and how DB2 helps OLAP and mining tools, and ERP applications. In doing so, it will mainly focus on
overviewing and explaining these concepts through SQL examples based on DB2 for UNIX, Windows. Lastly, future
directions will be briefly mentioned.

Anaheim, CA Sept 9 - 13, 2002

!IBM Corporation 2002

Enhanced OLAP integration with Rollup
and Cube, as well as associated latest

AST enhancements in DB2 UDB
William O'Connell, IBM Toronto Lab, boconnel@ca.ibm.com

Session B17

!IBM Corporation 2002 IBM Data Management Technical Conference

We will focus on DB2 UDB for Linux, UNIX, and Windows.
V7 uses the term AST, whileas V8 also uses the term MQT
(Materialized Query Table)

ASTs are still referenced in V8 when explicitly referring to
aggregated materialized views.
This presentation is focusing on OLAP interaction with ASTs.
However, all discussions apply to MQTs too.

Focus and Terminology

!IBM Corporation 2002 IBM Data Management Technical Conference

BI and OLAP Support (overview strategy)
Analytic: basics of statistics
OLAP: basics of scalar aggregate functions
Interactions with Rollup, Cubes, and ASTs
Advanced Cubes and ASTs dealing with High
Dimensionality

Outline

Note:
See sessions U09 and U10 on additional AST discussions
 U09 - The new and improved Automatic Summary Table feature
 U10 - Matching Queries to Automatic Summary Tables
See session B15 on Advanced analytics for business intelligence
See session B16 on Sampling used with analytical processing

E-Business: Moving Up The Food Chain
Rich functionality with High performance

Warehouse

DSS

OLAP

MINING

Sy
st

em
 M

gm
nt

 (V
W

)

ETML

Import
from:

DBMSs
FILES
WEB
ERPs

Highly interactive & Widely
Accessible (Web+Java, XML, CS)
Pervasive Devices

FO
O

D
 C

HA
IN

IBM Intelligent Miner, SAS,
Data Mind, ...

Heavy: IBM/ESSBASE,
Cognos, Microstrategy,
Bus. Obj, Brio, ...
Light: Excel,123

IBM QMF, Access,
IBM/ESRI

B2B (WH, ERPs, ...)
(via XML, EDI, ...)

 OLTP
(e-commerce)

 Analytic
SCM, CRM

B
2C

B2B
Siebel, I2, Ariba, ...

!IBM Corporation 2002 IBM Data Management Technical Conference

110011101010111010
111101101010101010

110001101010101010

Advanced Cost-Based
Optimizer
Query Re-write

Star Join Parallel Query

CPU
CPU

CPU
CPU

CUBEROLLUP

Bit-map technology
dynamic and

vector-encoded

PC
Server

320

Optimized
SQL

Summary Table

On-Line On-Line
Analytical Analytical
ProcessingProcessing

Replicated
Table

Business Intelligence Technology

Summary TablesSummary Tables
Hash JoinHash Join

Product
Month Store

Product

Store

Month

Some basics of advanced statistics Some basics of advanced statistics
and OLAP Queries firstand OLAP Queries first

!IBM Corporation 2002 IBM Data Management Technical Conference

The problem: extracting useful business information from data

Why push computation into database?
processing occurs close to data
automatically exploits parallelism
exploit other DB features: incremental maintenance, OLAP
capabilities, etc.

The DB2 toolkit
statistical functions: aggregates, correlation, regression suite
OLAP functions
synergy: can combine these tools with MQTs, ASTs, and
other capabilities

Statistics: Transform Data to Knowledge

Analytics: advanced statistics
Find sales areas where individual income and sales are not aligned

 select country,state,correlation(sumsales,income_range),
 covariance (sumsales,income_range)
 from ... where ...GROUP BY COUNTRY,STATE

 COUNTRY STATE CORRELATION COVARIANCE
 -------- ----- ----------- ----------
 USA AK -0.13 -145217876
 USA AL 0.29 104791704
 USA DE 0.20 223579152
 USA GA 0.28 239422676
 USA IL 0.16 87015909
 USA KS -0.47 -20807683
 USA LA 0.15 16366277

Analytics: statistics
avg, stddev, max, min, ...
Advanced functions:

Correlation
Covariance
Family of linear regression functions

fitting of an ordinary-least-squares regression
line of the form y = a * x + b
to a set of number pairs
REGR_SLOPE, REGR_INTERCEPT, REGR_ICPT,
REGR_COUNT, REGR_R2, REGR_AVGX,
REGR_AVGX, REGR_AVGY, REGR_AVGY, REGR_SXX,
REGR_SYY, REGR_SXY

!IBM Corporation 2002 IBM Data Management Technical Conference

Analytics: advanced statistics
Get the linear regression slope of sales as a function of income.
Also get the correlation between the two.

 select country,state,
 correlation(sumsales,income_range),
 REGR_SLOPE(income_range, sumsales)

 from .. where ...

 COUNTRY STATE CORRELATION SLOPE
---------- ----- ----------- -----
USA AK -0.13 -0.28
USA AL 0.29 0.62
USA DE 0.20 0.35
USA GA 0.28 0.73
USA IL 0.16 0.49
USA KS -0.47 -5.84
USA LA 0.15 0.86

!IBM Corporation 2002 IBM Data Management Technical Conference

Another Use for Correlation
Customers with similar buying habits:

 VIEW transvw3(custid, prodid, amount)

 SELECT a.custid as custid1, b.custid as custid2,
 corr(a.amount, b.amount)as corr
 FROM transvw3 a, transvw3 b
 WHERE a.prodid = b.prodid and a.custid < b.custid
 GROUP BY a.custid, b.custid
 HAVING corr(a.amount, b.amount) >= 0.5 and count(*) > 100

 ORDER BY corr desc;

CUSTID1 CUSTID2 CORR
-------- -------- -----
2300 6823 0.99
1071 2300 0.85
1223 4539 0.83
1010 1071 0.78
1010 2300 0.72
1071 6823 0.65

Total amount purchased
overall transactions

1223

1071

1010

4539

6823

2300

!IBM Corporation 2002 IBM Data Management Technical Conference

 OLAP Functions

Enriching SQL in the OLAP domain
Rank, Denserank, Rownumber, Moving aggregates, ...
A major extension to SQL, which was adopted by ANSI
These functions are in addition to the Cube
functionality in the SQL standard
(DB2 UDB supports multidimensional hierarchical cubes
 with extensions: cube, multiple rollup's, grouping sets)

!IBM Corporation 2002 IBM Data Management Technical Conference

Ranking
 Rank annual sales and annual count of sales.

 select rank() over (order by sum(ti.amount) desc) as rank_for_sum,
 sum(ti.amount) as sum, year(pdate) as year,
 rank() over (order by count(*) desc) as rank_for_count,
 count(*) as count
 from trans t, transitem ti where t.transid = ti.transid
 group by year(pdate)

 RANK RANK
FOR SUM SUM YEAR FOR COUNT COUNT
------------ ----------------- ------- --------------- -----------
 1 4854484.01 1996 4 940
 2 4822312.32 1989 2 947
 3 4775518.17 1991 3 945
 4 4605738.00 1988 5 918
 5 4565246.21 1987 1 954
 6 4551154.94 1995 6 894
 7 4322151.92 1993 9 837
 8 4269707.26 1992 7 852
 9 4108654.03 1994 8 844
 10 3962436.22 1990 10 814

!IBM Corporation 2002 IBM Data Management Technical Conference

Scalar Aggregate Functions
Scalar Aggregate Functions operate on values from a set of rows,
and return a single result per row.

We'll refer to these generically as OLAP
The set of rows is defined using the window-clause
This set has three primary attributes

An Ordering
A Partitioning
A Window Aggregation Group

This set is defined with the OVER clause

Function(Arg)

window-agg-grp
order-clausepartition-clause

OVER()

!IBM Corporation 2002 IBM Data Management Technical Conference

Ranking Within Partitions
 Rank annual sales by country -- Each country has its own rank

 select loc.country,
 rank() over (partition by loc.country order by sum(ti.amount)
 desc) as rank_for_sum, year(t.pdate) as year, sum(ti.amount) as
 sum, rank() over(order by sum(ti.amount) desc) as global_rank
 from trans t, transitem ti, loc loc
 where t.transid = ti.transid and loc.locid = t.locid
 group by year(pdate), loc.country

COUNTRY RANK_FOR_SUM YEAR SUM GLOBAL RANK
----------- ------------ ---- ---------- -----------
USA 1 1998 1679467.97 1
USA 2 1996 1620410.14 2
USA 3 1997 1408984.07 3
UK 1 1997 609344.48 10
UK 2 1996 535244.11 13
UK 3 1998 426842.79 15
Canada 1 1998 1224256.25 6
Canada 2 1997 1081640.89 8
Canada 3 1996 973548.88 9

!IBM Corporation 2002 IBM Data Management Technical Conference

Rownumber(): Unique sequential numbering
Very useful in select list or insert with subquery
Can reset the numbers per partition

Insert into mytable
select rownumber() over(order by loc.country desc, year(pdate)),
 loc.country, year(t.pdate) as year, sum(ti.amount) as sum
from trans t, transitem ti, loc loc
where t.transid = ti.transid and loc.locid = t.locid
group by year(pdate), loc.country

 ROWNUMBER COUNTRY YEAR SUM
 ---------- ---------- ---- -----------
 1 USA 1995 1930395.45
 2 USA 1996 1620410.14
 3 USA 1997 1408984.07
 4 USA 1998 1679467.97
 5 UK 1995 682856.41
 6 UK 1996 535244.11
 7 UK 1997 609344.48
 8 UK 1998 426842.79
 9 Germany 1995 888913.51

!IBM Corporation 2002 IBM Data Management Technical Conference

Cume Window Aggregate Functions
Show monthly sales, running sum of sales, and running count of sales

SELECT year(t.pdate) as year, sum(ti.amount) as sum,
 sum(sum(ti.amount)) over (order by year(t.pdate)) as cumesum,
 count(*) as count,
 sum(count(*)) over (order by year(t.pdate)) as cumecount
FROM trans t, transitem ti
WHERE t.transid = ti.transid
GROUP BY year(t.pdate)

YEAR SUM CUMESUM COUNT CUMECOUNT
---- ----------- ------------- ----------- ---------
1990 3765738.79 3765738.79 783 783
1991 4372445.01 8138183.80 870 1653
1992 4165324.25 12303508.05 821 2474
1993 4158406.91 16461914.96 861 3335
1994 4130432.59 20592347.55 833 4168
1995 4940724.03 25533071.58 993 5161
1996 4055131.32 29588202.90 817 5978
1997 3958294.95 33546497.85 784 6762
1998 4276335.41 37822833.26 798 7560
1999 4117996.32 41940829.58 840 8400

!IBM Corporation 2002 IBM Data Management Technical Conference

Cume Window Aggregate Functions
Show monthly sales, running sum of sales, running count of sales

 SELECT ti.pgid as pgroup, year(t.pdate) as year,
 sum(ti.amount) as sum_per_prod_year,
 sum(sum(amount)) over(partition by ti.pgid order by
 year(t.pdate) rows unbounded preceding) as cume_prod,
 sum(sum(amount)) over(order by year(t.pdate), ti.pgid)
 as cume_all
 FROM trans t, transitem ti
 WHERE t.transid = ti.transid

 GROUP BY ti.pgid, year(t.pdate)

PGROUP YEAR SUM_PER_PROD_YEAR CUME_PROD CUME_ALL
------ ---- ------------------- ---------- ----------
1 1995 1907763.47 1907763.47 1907763.47
1 1996 1671601.49 3579364.96 3579364.96
1 1997 1590642.59 5170007.55 5170007.55
1 1998 1834192.15 7004199.70 7004199.70
1 1999 1563596.19 8567795.89 8567795.89
NEW PGID <==Look! RESET NO RESETNEW PGID <==Look! RESET NO RESET
4 1995 76630.07 76630.07 8644425.96
4 1996 102487.46 179117.53 8746913.42
4 1997 55114.54 234232.07 8802027.96
4 1998 122088.31 356320.38 8924116.27
4 1999 73078.32 429398.70 8997194.59

!IBM Corporation 2002 IBM Data Management Technical Conference

Curve Smoothing

Three day historical average

108

109

110

111

112

113

114

115

116

smooth_cp
close_price

Find the three day historical average of IBM stock
for each day it traded
 select date,symbol, close_price,

 avg(close_price) over (order by
 date rows 2 preceding)
 as smooth_cp
 from stocktab
 where symbol = 'IBM' and date between
 '1999-08-01' and '1999-09-01';

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 110.1250
08/03/1999 IBM 109.500 109.8125
08/04/1999 IBM 112.000 110.5416
08/05/1999 IBM 110.625 110.7083
08/06/1999 IBM 112.750 111.7916
08/09/1999 IBM 110.625 111.3333
08/10/1999 IBM 108.375 110.5833
08/11/1999 IBM 109.250 109.4166
08/12/1999 IBM 109.375 109.0000
08/13/1999 IBM 108.500 109.0416
08/16/1999 IBM 110.250 109.3750
08/17/1999 IBM 108.375 109.0416
08/18/1999 IBM 108.375 109.0000
08/19/1999 IBM 109.375 108.7083
08/20/1999 IBM 112.000 109.9166
08/23/1999 IBM 113.125 111.5000
08/24/1999 IBM 114.875 113.3333
08/25/1999 IBM 115.500 114.5000
08/26/1999 IBM 113.375 114.5833
08/27/1999 IBM 115.625 114.8333
08/30/1999 IBM 113.625 114.2083
08/31/1999 IBM 112.875 114.0416
09/01/1999 IBM 115.625 114.0416b

f

!IBM Corporation 2002 IBM Data Management Technical Conference

Curve Smoothing

Three day centered average

108

109

110

111

112

113

114

115

116

smooth_cp
close_price

Find the three day centered average of IBM stock
for each day it traded
 select date,symbol, close_price,

 avg(close_price) over(order by date
 rows between 1 preceding and
 1 following)
 as smooth_cp
 from stocktab ...

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 109.8125
08/03/1999 IBM 109.500 110.5416
08/04/1999 IBM 112.000 110.7083
08/05/1999 IBM 110.625 111.7916
08/06/1999 IBM 112.750 111.3333
08/09/1999 IBM 110.625 110.5833
08/10/1999 IBM 108.375 109.4166
08/11/1999 IBM 109.250 109.0000
08/12/1999 IBM 109.375 109.0416
08/13/1999 IBM 108.500 109.3750
08/16/1999 IBM 110.250 109.0416
08/17/1999 IBM 108.375 109.0000
08/18/1999 IBM 108.375 108.7083
08/19/1999 IBM 109.375 109.9166
08/20/1999 IBM 112.000 111.5000
08/23/1999 IBM 113.125 113.3333
08/24/1999 IBM 114.875 114.5000
08/25/1999 IBM 115.500 114.5833
08/26/1999 IBM 113.375 114.8333
08/27/1999 IBM 115.625 114.2083
08/30/1999 IBM 113.625 114.0416
08/31/1999 IBM 112.875 114.0416
09/01/1999 IBM 115.625 114.2500

!IBM Corporation 2002 IBM Data Management Technical Conference

Curve Smoothing

7 day centered average

108

109

110

111

112

113

114

115

116

smooth_cp
close_price

Find the seven day centered average of IBM stock
for each day the stock traded
 select date,symbol, close_price,

 avg(close_price) over (order by
 date
 rows between 3 preceding and
 3 following)
 as smooth_cp
 from stocktab
 where symbol = 'IBM' and date between
 '1999-08-01' and '1999-09-01';

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 110.5625
08/03/1999 IBM 109.500 111.0000
08/04/1999 IBM 112.000 110.9375
08/05/1999 IBM 110.625 110.5714
08/06/1999 IBM 112.750 110.4464
08/09/1999 IBM 110.625 110.4285
08/10/1999 IBM 108.375 109.9285
08/11/1999 IBM 109.250 109.8750
08/12/1999 IBM 109.375 109.2500
08/13/1999 IBM 108.500 108.9285
08/16/1999 IBM 110.250 109.0714
08/17/1999 IBM 108.375 109.4642
08/18/1999 IBM 108.375 110.0000
08/19/1999 IBM 109.375 110.9107
08/20/1999 IBM 112.000 111.6607
08/23/1999 IBM 113.125 112.3750
08/24/1999 IBM 114.875 113.4107
08/25/1999 IBM 115.500 114.0178
08/26/1999 IBM 113.375 114.1428
08/27/1999 IBM 115.625 114.5000
08/30/1999 IBM 113.625 114.4375
08/31/1999 IBM 112.875 114.2250
09/01/1999 IBM 115.625 114.4375

d

!IBM Corporation 2002 IBM Data Management Technical Conference

Histograms - Equi-width

Plot an equi-width histogram with 20 buckets for
the distribution of transaction amounts
with dt as (select t.transid, sum(amount) as trans_amt,

 case
 when (sum(amount)-0)/((60000-0)/20) < 0 then 0
 when (sum(amount)-0)/((60000-0)/20) > 19 then 19
 else int((sum(amount)-0)/((60000-0)/20))
 end as bucket
 from stars.trans t, stars.transitem ti
 where t.transid=ti.transid
 group by t.transid)

select bucket, count(bucket) as height, (bucket+1) * (60000-0)/20
as max_amt
from dt

group by bucket;
BUCKET HEIGHT MAX_AMT
----------- ----------- -----------
 0 435 3000
 1 645 6000
 2 830 9000
 3 669 12000
 4 533 15000
 5 405 18000
 6 265 21000
 7 192 24000
 8 123 27000
 9 82 30000
 10 55 33000
 11 35 36000
 12 22 39000
 13 7 42000
 14 7 45000
 15 1 48000
...

 3
00

0
 6

00
0

 9
00

0
 12

00
0

 15
00

0
 18

00
0

 21
00

0
 24

00
0

 27
00

0
 30

00
0

 33
00

0
 36

00
0

 39
00

0
 42

00
0

 45
00

0
 48

00
0

 51
00

0
 57

00
0

 60
00

0

Trans_Amt

0
100
200
300
400
500
600
700
800
900

Tr
an

sa
ct

io
ns

This i
s a

 sim
ple

sca
lar c

alculatio
n

!IBM Corporation 2002 IBM Data Management Technical Conference

Histograms - Equi-height

Plot an equi-height histogram with 10 buckets for
the distribution of transaction amounts
with dt as
 (select t.transid, sum(amount) as trans_amt,
 rownumber() over (order by sum(amount)) * 10 /
 (select count(distinct transid)+1
 from stars.transitem) as bucket
 from stars.trans t, stars.transitem ti
 where t.transid=ti.transid
 group by t.transid)
select bucket, count(bucket) as b_count,
 max(trans_amt) as part_value
from dt
group by bucket;

BUCKET B_COUNT PART_VALUE
------ ------- ----------
 0 430 2957.54
 1 431 5094.14
 2 431 6873.05
 3 431 8429.81
 4 431 9793.69
 5 431 12019.40
 6 431 14468.20
 7 431 17355.26
 8 431 22215.92
 9 431 57360.41

Tr
an

sa
ct

io
ns

0 5 10 15 20 25 30 35 40 45 50 55 60

Thousands
Trans_amt

!IBM Corporation 2002 IBM Data Management Technical Conference

ROLLUP and CUBE - OLAP SQL
Extensions

Multiple ROLLUPs for multidimensional hierarchies
ROLLUP is aggregation along a dimension hierarchy
Extension to GROUP BY clause
Produces "super aggregate" rows
CUBE equivalent to "cross tabulation", equivalent to
multiple rollups of height one
May use star join for performance

Templates

GROUP BY grouping-expression
super-groups

GROUP-BY Clause

super-groups

ROLLUP (grouping-expression-list)

CUBE (grouping-expression-list)

grouping-expression-list WITH ROLLUP
CUBE

ProductMonth Store

Hierarchical
dimension

country

state

city

store

!IBM Corporation 2002 IBM Data Management Technical Conference

CUBE Example Query

D
rill-D

ow
n

Select pe.month,st.city, sa.product_id, sum(sa.units)
From sales sa, period pe. store st
Where pr.product_id = sa.product_id and
 st.store_id = sa.store_id and
 pe.year between 1995 and 1996
Group by CUBE (pe.month, st.city, sa.product.id)

Month city Product

All

product and
month

Month and
city

city and
product

city and
month and

product

Ag
gr

eg
at

e
up

2 to power N combinations
Tricky for large N

!IBM Corporation 2002 IBM Data Management Technical Conference

Hierarchical Cubes and
Rolling OLAP Functions

Hierarchical Cubes and Rolling OLAP functions: how do they interact?
For example: rank of sales:
 We should not rank annual sales against monthly sales.

 Annual sales tend to be larger than monthly sales, and they win
 over monthly sales.

We must rank at the peer level: rank month versus month, year versus year.
Two kinds of ranking:

 Rank within all peers: Rank all monthly sales together
 Rank within parent: Rank monthly sales within their year

DB2 handles all combinations.

!IBM Corporation 2002 IBM Data Management Technical Conference

ROLLUP - Ranking against Peers
Rollup the 1998 sales by country and state,
and rank the sales among peers
select sum(ti.amount) as sum, loc.country, loc.state,
 grouping(loc.country) + grouping(loc.state) as lochierarchy,

 rank() over (partition by grouping(loc.country)+grouping(loc.state)
 order by sum(ti.amount) desc) as rank_within_peers
from stars.trans t, stars.transitem ti, stars.loc loc
where t.transid = ti.transid
 and loc.locid = t.locid
 and year(pdate) = 1998

group by rollup(loc.country, loc.state)
order by lochierarchy desc,
 rank_within_peers;

SUM COUNTRY STATE LOCHIERARCHY RANK_WITHIN_PEERS
-------------- ---------- ----- ------------ -----------------
 4276335.41 - - 2 1
 1455411.12 USA - 1 1
 1061704.19 Canada - 1 2
 1019150.00 Germany - 1 3
 415764.83 Australia - 1 4
 324305.27 UK - 1 5
 363391.77 Germany AB 0 1
 349848.89 Germany BC 0 2
 312429.28 Canada NB 0 3
 287915.32 USA CO 0 4
 228375.32 Germany EF 0 5
 217056.57 Australia BC 0 6
 183276.29 USA DE 0 7

 9754.92 USA ID 0 33
 4910.12 USA AZ 0 34

State

World

CountryCountry

State StateState

!IBM Corporation 2002 IBM Data Management Technical Conference

Hierarchical Cube
 Ranking Within Parent

Rollup the 1998 sales by country and state,
and rank the sales among peers within parent
select sum(ti.amount) as sum, loc.country, loc.state,
 grouping(loc.country) + grouping(loc.state) as lochierarchy,

 rank() over (partition by grouping(loc.country)+grouping(loc.state),
 case when grouping(loc.state) = 0 then loc.country end
 order by sum(ti.amount) desc) as rank_within_parent
from stars.trans t, stars.transitem ti, stars.loc loc
where t.transid = ti.transid
 and loc.locid = t.locid
 and year(pdate) = 1998

group by rollup(loc.country, loc.state)
order by lochierarchy,
 case when lochierarchy = 0 then loc.country end,
 rank_within_parent;

SUM COUNTRY STATE LOCHIERARCHY RANK_WITHIN_PARENT
------------- ---------- ----- ------------ ------------------
 4276335.41 - - 2 1
 1455411.12 USA - 1 1
 1061704.19 Canada - 1 2
 1019150.00 Germany - 1 3
 415764.83 Australia - 1 4
 324305.27 UK - 1 5
 217056.57 Australia BC 0 1
 112367.50 Australia AB 0 2
 59732.92 Australia CD 0 3
 26607.84 Australia EF 0 4
 312429.28 Canada NB 0 1
 176149.63 Canada AB 0 2
 167361.54 Canada BC 0 3
 136346.53 Canada NF 0 4
 101362.88 Canada NS 0 5
 89847.04 Canada MB 0 6
 63707.96 Canada NWT 0 7
 14499.33 Canada ON 0 8

State

World

CountryCountry

State StateState

If we haven't rolled up the states,
then partition by the country

!IBM Corporation 2002 IBM Data Management Technical Conference

Optimization and parallelization
Complex queries are heavily Optimized and parallelized
automatically
Major Optimization Feature for Business Intelligence
Join and Aggregate Indexes
Most queries do similar aggregations
Usually on few dimension tables
Precomputation is very attractive

!IBM Corporation 2002 IBM Data Management Technical Conference

Automatic Summary Tables (ASTs)
ASTs are a sub-class of MQTs, due to aggregationASTs are a sub-class of MQTs, due to aggregation
Optimizer Optimizer automaticallyautomatically exploits Summary Tables exploits Summary Tables
Save on huge repeat work across queriesSave on huge repeat work across queries

Without ST: Complete computation for each query
With ST: Precompute once and then reuse

Query 2Query 2Query 2Query 2

ST

Table Table Table

Aggregation

Join

Query 10Query 10Query 10Query 10
Query 14Query 14Query 14Query 14

Query 15Query 15Query 15Query 15
Query 20Query 20Query 20Query 20

Aggregation

Join

Query 2Query 2Query 2Query 2
Query 10Query 10Query 10Query 10

Aggregation

Join

Table Table Table

Query 14Query 14Query 14Query 14

Aggregation

Join

!IBM Corporation 2002 IBM Data Management Technical Conference

Aggregate Aware Optimization In
DB2 UDB

No change to User queries required
DBA predefines and pre-aggregates a set of joins/aggregates
in indexes called ASTs (Automatic Summary Tables)
Optimizer automatically/transparently exploits ASTs
Drastic Impact: over-night queries become interactive
Sharing the cost of join/aggregations across many queries
DBA controls what should be precomputed and when
 Independent Partitioning/Indexing:

 ASTs can be partitioned independent of the base data
 ASTs can be indexed as well. This is like index on index
 Enables optimizer to choose from many possible indexes,
 and possible collocated processing alternatives

!IBM Corporation 2002 IBM Data Management Technical Conference

Automatic Summary Table Creation
-- Aggregate Automatic Summary Table (AST)
-- Precompute popular aggregates along different dimensions.

CREATE TABLE dba.PG_SALESSUM_IMJ AS (
 SELECT loc.country, loc.state,
 YEAR(pdate) AS year, MONTH(pdate) AS month,
 l.lineid AS prodline, pg.pgid AS pgroup,
 SUM(ti.amount) AS amount, COUNT(*) AS count
 FROM stars.transitem AS ti, stars.trans AS t,
 stars.loc AS loc, stars.pgroup AS pg, stars.prodline AS l
 WHERE ti.transid = t.transid AND ti.pgid = pg.pgid
 AND pg.lineid = l.lineid AND t.locid = loc.locid

 GROUP BY loc.country, loc.state, <<< region dimension
 year(pdate),month(pdate), <<< time dimension
 l.lineid, pg.pgid <<< product dimension
) DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

-- Later, when you are ready to populate the AST issue:
refresh table dba.pg_salessum; <<< Build

create index pg_salessumxy_pgid on dba.pg_salessum(year,month);
runstats on table dba.pg_salessum and indexes all;

!IBM Corporation 2002 IBM Data Management Technical Conference

Incremental Maintenance of
AST with aggregation over join of tables

Refresh command populates the AST initially
DB2 automatically and efficiently synchronizes the AST with
changes to the base table

collects the inserted/deleted/updated records (delta) for all base
tables involved in AST
delta joins the deltas and base tables, and deltas with deltas,
reduces the resulting delta by aggregating the records on group by
columns
applies the summarized delta to the AST

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE TABLE dba.PG_SALESSUM_IMJ AS (
 SELECT loc.country, loc.state,YEAR(pdate)
 AS year, MONTH(pdate) AS month,
 l.lineid AS prodline, pg.pgid AS pgroup,
 SUM(ti.amount) AS amount, COUNT(*) AS count
 FROM stars.transitem AS ti, stars.trans AS t,
 stars.loc AS loc, stars.pgroup AS pg,
 stars.prodline AS l
 WHERE ti.transid = t.transid AND
 ti.pgid = pg.pgid AND pg.lineid =
 l.lineid AND t.locid = loc.locid
 GROUP BY loc.country, loc.state,
 year(pdate),month(pdate),
 l.lineid, pg.pgid
) DATA INITIALLY DEFERRED
 REFRESH IMMEDIATE;

Incremental Maintenance of Immediate
AST with aggregation over join of table

delta
select/join

 Delta
Aggregate

AST

insert/delete/update Base
tables

Delta Apply

D
el

ta
Pr

op
ag

at
e

!IBM Corporation 2002 IBM Data Management Technical Conference

Incremental Maintenance for Deferred ASTs
I/U/D operations immediately 'propagated' to staging table
When AST is refreshed, they are done so incrementally

Avoids lock contention that may result with Immediate ASTs when
multiple transactions are updating the base table simultaneously

"Hot spot" could exist at aggregation points

Incremental Maintenance of Deferred
ASTs

CREATE TABLE t1 (c1 INT, c2 INT)
CREATE TABLE a1 AS
 (SELECT c1, COUNT(*) as count
 FROM t1 GROUP BY c1)
 DATA INITIALLY DEFERRED REFRESH IMMEDIATE
SET INTEGRITY FOR a1 IMMEDIATE CHECKED

 TRAN 1:
 INSERT INTO t1
 VALUES (1,2)

TRAN n:
 INSERT INTO t1
 VALUES (1,100)

t1
a1

CREATE TABLE t1 ...
CREATE TABLE a1 AS ...
 DATA INITIALLY DEFERRED REFRESH DEFERRED
SET INTEGRITY FOR a1 ...
CREATE TABLE s1 FOR a1 PROPAGATE IMMEDIATE
SET INTEGRITY FOR s1 IMMEDIATE CHECKED
...
REFRESH TABLE a1 // prunes s1

t1

TRAN 1:
 INSERT INTO t1
 VALUES (1,2)

TRAN n:
 INSERT INTO t1
 VALUES (1,100)

a1s1

Discrete
Records

Refresh
Prunes s1

V7 New! V8

!IBM Corporation 2002 IBM Data Management Technical Conference

Incremental Maintenance of Deferred
 AST with aggregation over join of table

delta
select/join

 Delta
Aggregate

Ins/Del/Ups Base
tables

Delta

Staging
Table

D
el

ta
Pr

op
ag

at
e

Staging
Table

Delta Apply

 Net
effect

!IBM Corporation 2002 IBM Data Management Technical Conference

Materialized View Maintenance Materialized View Maintenance
Interaction with Data LoadingInteraction with Data Loading

Data
Warehouse

!IBM Corporation 2002 IBM Data Management Technical Conference

Existing Behavior:
T1, C1, AST1 an AST1 put into "CHECK
PENDING" state

No Access Allowed
"CASCADE IMMEDIATE"

AST1 and AST2 Fully Refreshed
Full Scan of T1 Required

New! V8 Features:
"CASCADE DEFERRED"

Check pending on dependent
tables eliminated or minimized

INCREMENTAL AST REFRESH
Delta of underlying table used to
incrementally refresh ASTs

Online Load and AST Maintenance
 interaction

T1

C1
AST1 AST2

Base
Table

Dependent Tables

Primary Key

Foreign Key

LOAD INSERT INTO T1 ...
 ...
REFRESH TABLE AST1
 ...
REFRESH TABLE AST2

On-line Load new in V8

!IBM Corporation 2002 IBM Data Management Technical Conference

Online Load and AST Maintenance Example

T1

C1
AST1 AST2

LOAD INSERT INTO T1 ...

ALLOW
 READ ACCESS

SET INTEGRITY FOR T1

IMMEDIATE CHECKED
REFRESH TABLE AST1
LOAD INSERT INTO T1 ...

ALLOW
 READ ACCESS

SET INTEGRITY FOR T1

IMMEDIATE CHECKED
REFRESH TABLE AST1
REFRESH TABLE AST2

T1

C1
AST1 AST2

T1

C1
AST1 AST2

T1

C1
AST1 AST2

T1

C1
AST1 AST2

T1

C1
AST1 AST2

T1

C1
AST1 AST2

Full Read/Write Access

Check Pending - Read Only

No Data Movement - I/U/D Allowed if doesn't affect ASTs

No Access

time

!IBM Corporation 2002 IBM Data Management Technical Conference

Online Load and AST Maintenance Example
Operation T1 C1 AST1 AST2

LOAD INSERT INTO T1 ...
ALLOW READ ACCESS ...

"Check-Pending / Read Access"
(Existing portion of table can be read)

Full Access Full Access Full Access

SET INTEGRITY FOR T1
IMMEDIATE CHECKED

Constraints incrementally checked

Enters "No Data Movement" state
(Full Access except those that can move
RIDs (eg REORG; update partition key)

Full Access No Access No Access

REFRESH TABLE AST1 "No Data Movement" Full Access Incrementally
Refreshed

Full Access

No Access

LOAD INSERT INTO T1 ...
ALLOW READ ACCESS ...

"Check-Pending / Read Access"
(Existing and data from first load is visible)

Full Access Full Access
(Existing and data
from first load is
visible)

No Access

SET INTEGRITY FOR T1
IMMEDIATE CHECKED

Constraints incrementally checked
(Only data from 2nd load)
Enters "No Data Movement" state

Full Access No Access No Access

REFRESH TABLE AST1 "No Data Movement" Full Access Incrementally
Refreshed
(W.r.t. 2nd load)
Full Access

No Access

REFRESH TABLE AST2 Full Access Full Access Full Access Incrementally
Refreshed
(W.r.t. both loads)
Full Access

New ! V8

!IBM Corporation 2002 IBM Data Management Technical Conference

Advanced ASTsAdvanced ASTs
AndAnd

High DimensionalityHigh Dimensionality

Solving the problem of AST proliferation

!IBM Corporation 2002 IBM Data Management Technical Conference

Fact table(s)

 Exponential Explosion of ASTs
 Aggregate BY Time X Prod X Store X Cust
 Large number of combinations

Date
Week

Quarter
Year

Product
Prod Group
Prod Line

Store

District
Warehouse

State
Country

Customer

AreaCode
ZipCode

City
State
Country

CustomerStoreProductTime

f

!IBM Corporation 2002 IBM Data Management Technical Conference

Advanced ASTs

Cube ASTs
Swiss cheese cube ASTs
AST Consolidation
Reducing Impact On Batch Windows

!IBM Corporation 2002 IBM Data Management Technical Conference

Cube Asts with Cube Slicing&Dicing
Pushing OLAP Cubes into DB2 UDB

Universal use:
Transparent Exploitation by BI tools (Microstrategy, Cognos, Essbase,Brio, ...)

DBA defines
ONE Hierarchical Cube AST:

sum(sales), count(sales),
sum(profit)
BY: ROLLUP(year,month)
 ROLLUP(country,state)
 ROLLUP(prodline,

 prodgroup)
Equivalent to 27 regular ASTs.

Cube
Index/AST

DB2 UDB

Tools/Apps Query:
 sales by country for (USA, Canada)

DB2 OPT
automatically
slices/dices the
cube AST to
answer the query

!IBM Corporation 2002 IBM Data Management Technical Conference

Cube Asts with Cube Slicing&Dicing
Pushing OLAP Cubes into DB2 UDB

One hierarchical Cube AST can do the work
of 100's of regular ASTs
Huge reduction in time/resources needed
to populate cube ASTs due to computation sharing
Advanced optimization technology allows automatic
slicing&dicing of AST cubes to answer queries
(e.g., sales by country for (USA, Canada))

!IBM Corporation 2002 IBM Data Management Technical Conference

AST Cube interaction with
Multi-Dimensional Clustering (MDC)

In addition to run-time slicing & dicing of cube, this also exploits multiple clustered
index and storage layout on disk too.

Allows for further exploitation of multidimensional clustering due to disk layout

CREATE TABLE cube AS
 (SELECT SUM(amount) as sum, COUNT(*) as cnt,
 country, state, year(pdate) as year, month(pdate) as month,
 day(pdate) as day, prodline, prodgroup
 FROM transitem, trans, loc, pgroup
 WHERE ...
 GROUP BY ROLLUP(year, month, day)
 ROLLUP(country, state),
 ROLLUP(prodline, prodgroup)
 ORGANIZE BY (year, country, prodline)
) DATA INITIALLY DEFERRED REFRESH DEFERRED;

New! V8

!IBM Corporation 2002 IBM Data Management Technical Conference

Prior to MDC
All indexes RECORD-based
Clustering in one dimension only
Clustering NOT guaranteed (degrades once
page free space is exhausted)

With MDC
Tables managed by BLOCK according to defined
clustering dimensions
Clustering guaranteed !

each insert transparently places a row in an
existing block which satisfies all dimensions, or
creates a new block

Dimension indexes are BLOCK-based
results in much smaller indexes
RECORD-based indexes also supported

Queries in clustering dimensions only do I/Os
absolutely necessary for selected data

Year

Prodline

Year

Country

US US Can US Can

99 99 99 00 00

All records in this block are
from country Canada,
product line Z, and the
year 2000

AST Cube interaction with

"Block indexes" are just like normal
indexes, except they have pointers to
blocks instead of individual records.
A block is a group of consecutive
pages with the same key values in all
dimensions.

Multi-Dimensional Clustering (MDC)

Country

Prodline

X Y X Y Z

!IBM Corporation 2002 IBM Data Management Technical Conference

Swiss Cheese Cube Asts
With Slicing/Dicing Optimization

Detailed cubes can get very large
 (even larger than fact table)
Solution: precompute a subset of full cubes
 (precomputed cubes with holes
 ==> Swiss Cheese Cubes)
DB2 UDB supports Swiss Cheese Cube ASTs
To answer queries, DB2 optimizer automatically exploits
Swiss Cheese Cubes
By Slicing and Dicing
Huge reduction in time/resources needed
to populate due to computation sharing

!IBM Corporation 2002 IBM Data Management Technical Conference

 CREATE TABLE dba.swisscubeast AS
(SELECT SUM(amount), COUNT(*)
 country, state, city,
 year(pdate), month(pdate), day(pdate),
 acctid, locid, status,
 FROM transitem, trans, loc, pgroup WHERE ...
 GROUP BY grouping sets(
 -- Exclusive aggregation for time dimension
 (year(pdate), month(pdate), day(pdate)),
 -- Exclusive aggregation for region dimension
 (country, state, city),
 -- Cross dimensional aggregation
 (year(pdate), month(pdate), locid,
 acctid, pgid)
)) DATA INITIALLY DEFERRED REFRESH DEFERRED;

Swiss Cheese Cube Asts
With Slicing/Dicing Optimization

DB2 OPT
automatically
slices/dices the
cube AST to
answer the query

Cube
Index/ASTDB2 UDB

Tools/Apps

Query:
 sales by country for (USA, Canada)

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE TABLE dba.cubeast AS (
 ... cube ast, swiss cheese (sparse) cube ast
) DATA INITIALLY DEFERRED
 REFRESH IMMEDIATE

Incremental Maintenance of
Cube ASTs

and Swiss Cheese (sparse) cube ASTs
(Advance Feature!)

delta
select/join

 Delta
Cube Aggregate

insert/delete/update Base
tables

Delta Cube Apply

D
el

ta
Pr

op
ag

at
e

Cube AST

Note:
Deferred swiss cheese

Cube ASTs also
 Supported!

!IBM Corporation 2002 IBM Data Management Technical Conference

DBA - Index Wizard
Index wizard/SmartGuide

Given a workload of one or more SQL statements and some
constraints (e.g. index space, computation time limit), find a set of
indexes designed to maximize performance

Make it easy for the DBA to find the "right" set of indexes
Reduce complexity of performance analysis and tuning

!IBM Corporation 2002 IBM Data Management Technical Conference

MQT (AST) wizard/SmartGuide
Given a workload of one or more SQL statements and some
constraints (e.g. storage space, computation time limit), find a set of
materialized views designed to maximize performance

Make it easy for the DBA to find the "right" set of materialized views
Reduce complexity of performance analysis and tuning

Not in V8 GA, but coming soon

DBA - MQT (AST) Wizard

!IBM Corporation 2002 IBM Data Management Technical Conference

Summary
Heavily engaged in e-Business, including B2C, B2B
A mainstream e-Business DBMS relied upon by leading e-Business partners
(Ariba, I2, Siebel, SAP, Net.Commerce, Broadvision, ...)
Provides Powerful Query Capabilities and Strong Standard Compliance
Provides advanced BI features with full optimization and parallelism

used by applications or BI tools (a strong BI ISV program)
Advanced cube, OLAP capabilities, strong support for statistical functions

Strong optimization, including support for ASTs, and cube slicing/dicing
Dramatic reduction in resource consumption,
Dramatic increase in number of concurrent users

	Return to Index:

