
Session Abstract
TOC

INDEX

VIEW

F16 Migrating Stored Procedures to DB2 Universal Database from Sybase, Oracle, and Informix
William O'Connell, Senior Technical Staff member, IBM Toronto Lab

DB2 family supports standardized SQL Control Statements with a subset of the Persistent Stored Modules specifica-
tion of SQL 99 ANSI/ISO standard. Extending across the whole DB2 family, it is functionally comparable to Sybase,
Microsoft's TSQL and Oracle's PL/SQL. Migrating stored procedures from these platforms is now easier than ever
before. This session provides an overview of the SQL language extensions and demonstrates features that signifi-
cantly facilitate migration from Sybase, Microsoft SQL Server, Informix and Oracle; for example, temporary tables,
application savepoints, identities, sequences, results sets and nested procedure calls. Finally, the latest enhance-
ments to DB2 SQL Procedures will be discussed. The session will focus on SQL, and not the tools that exist to auto-
mate the SQL conversion.

Anaheim, CA Sept 9 - 13, 2002

!IBM Corporation 2002

William O'Connell, IBM Toronto Lab, boconnel@ca.ibm.com

Session F16

!IBM Corporation 2002 IBM Data Management Technical Conference

SQL PL Overview
Different ways to create and run SQL PL stored procedures

Stored Procedure Builder (SPB)
Command Line Processor (CLP)

Related features
Temporary tables
Application savepoints
Identity Columns / Sequences
Nested procedure calls (A calls B calls C ...)

Enhancements on V8 - Both performance and functionality
Architecture / System Requirements /

Pointer to migration tool website
Summary

!IBM Corporation 2002 IBM Data Management Technical Conference

What are they ?
For Those Coming from DB2: SP in which procedural logic is
contained in CREATE PROCEDURE statement
For Those Adopting DB2: Similar to TSQL, PL/SQL, SPL

Simple, high-level language (SQL PL = SQL + Control)
Powerful condition-handling model
Can contain Static and Dynamic SQL
Parameter passing: IN, OUT, INOUT
Subset of SQL/PSM (SQL99 ANSI/ISO standard)
Extensions to standard: GOTO, RETURN, Result Sets, /*...*/
Text and binary stored in the catalogs (backup, restore)
Supported across DB2 UDB family (UNIX, NT, AS400, OS390)

!IBM Corporation 2002 IBM Data Management Technical Conference

Language Features

Translated to C, compiled and installed transparently
Text and binary stored in the catalogs (backup, rollback)
Nested Stored Procedures
Temporary Tables
Identities (also Sequences)
Application Savepoints
Result Sets
Static and dynamic SQL
Powerful condition handling model
Extensions to facilitate Sybase migration (RETURN, GOTO,
C-style comments)

Migration from rowid, use one or more of generated columns, identities,
sequences, generate_unique, or rownumber

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE PROCEDURE <name> (<parameters>)
LANGUAGE SQL
<statement> Any statement

Example: multiply by 2

CREATE PROCEDURE times2(IN i INT, OUT o INT)
LANGUAGE SQL /* multiply by 2 */
SET o = i * 2

!IBM Corporation 2002 IBM Data Management Technical Conference

Assigment (SET a = b)
Compound statement (BEGIN ... END)
Control flow (IF, WHILE, CASE, FOR, GOTO, RETURN, etc.)
Condition Handling (CONTINUE, EXIT, UNDO, SIGNAL)
SQL DML (SELECT, DELETE, INSERT, UPDATE)
SQL DDL ([CREATE | DROP] [TABLE | INDEX | VIEW])

Dynamic SQL (PREPARE, EXECUTE)
Cursor Manipulation (OPEN, FETCH, CLOSE, R. SETS)
Transactions (COMMIT, ROLLBACK, SAVEPOINT)

NOTE: see SQL Ref for complete list

!IBM Corporation 2002 IBM Data Management Technical Conference

BEGIN [ATOMIC]
 [<declare variables>]
 [<declare conditions>]
 [<declare statements>]
 [<declare cursors/r. sets>]
 [<declare handlers>]

 <statement list >

END

Optional
Declarations

Logic can contain
other compound
statements

Compound
Statement

Optionally atomic

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE PROCEDURE P1 () LANGUAGE SQL
lab1: BEGIN
 DECLARE a INT DEFAULT 100;
 BEGIN
 DECLARE a INT DEFAULT NULL;

 SET a = a + lab1.a;
 UPDATE T1 SET b = b * 1.1
 WHERE b = a; -- WARNING (who is 'a' ?)
 END;
 END lab1;

NOTE: scoping also applies to cursors, conditions, dyn. stmts.

!IBM Corporation 2002 IBM Data Management Technical Conference

Increase the salary of all managers by a given percentage.
Return the salary of the highest paid employee.
Return a result set with all the employees that make at least 50K
Create and call the procedure from the SP Builder or CLP

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE PROCEDURE P1 (IN raise INT, OUT top DECIMAL(9,2))
LANGUAGE SQL
BEGIN
 DECLARE cur1 CURSOR WITH RETURN TO CLIENT FOR
 SELECT * FROM employee
 WHERE salary >= 50000;

 UPDATE employee SET salary = salary * (1+ raise/100.0)
 WHERE job = 'MANAGER';

 SET top = (SELECT max(salary) FROM employee);
 OPEN cur1;

END

!IBM Corporation 2002 IBM Data Management Technical Conference

Conditions Express the Degree of Success in the Execution of
SQL Statements
Possible Conditions:

Success: SQLSTATE '00000'
Not Found: SQLSTATE '02XXX'
Warning: SQLSTATE '01XXX'
Exception: Any other SQLSTATE value

Handlers Called Implicitly When Condition in not Success
Not Found and Warning are Tolerated

If not handled, execution continues to next statement
But Exceptions Must be Handled !!!

If not, Control Returns to the Caller

!IBM Corporation 2002 IBM Data Management Technical Conference

3 Parts: Resumption point, Handled Condition(s), Action(s)

BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

 INSERT INTO LogTable VALUES ('Exception', SQLSTATE);

DECLARE EXIT HANDLER FOR SQLSTATE '17424' BEGIN
 DELETE FROM MyTable WHERE col1 = ID;
 SET Out1 = 'failed';
END;

<Handlers will be implicitly called if exception occurs here>
END;

!IBM Corporation 2002 IBM Data Management Technical Conference

Handlers Separate Error Handling from Business Logic
Conditions can be raised explicitly: SIGNAL SQLSTATE '13344'

Can Simulate "Traditional" Error Handling:

 BEGIN
 DECLARE CONTINUE HANDLER for SQLEXCEPTION

 SET Saved_SQLSTATE = SQLSTATE;
 . . .
 IF(Saved_SQLSTATE <> '0000')THEN
 <code to handle the condition>
 END IF;

 END;

!IBM Corporation 2002 IBM Data Management Technical Conference

"Lightweight" tables. Fast due to:
No Catalog Overhead
No Locks
No logging (though logging support is available on V8)

Life span: since creation to connection close
Can Inherit Column Definitions from table or queries
N connections => N instances (like progr. variables)
Schema is always SESSION (e.g.: SESSION.tab1)
Creator is granted all privileges
Unlike perm. tables, can reference them in same session
Similar to Sybase's # temp tables

!IBM Corporation 2002 IBM Data Management Technical Conference

Example:
DECLARE GLOBAL TEMPORARY TABLE T1(c1 INT)
 -- LIKE REAL_T1
 ON COMMIT PRESERVE ROWS -- Default is to delete them
 NOT LOGGED
 IN USR_TEMP_TS;

INSERT INTO SESSION.T1
 (SELECT * FROM REAL_T1 WHERE C1 = 100);

!IBM Corporation 2002 IBM Data Management Technical Conference

Call P1 (first example) from another procedure
Create a temporary table as a "log file"
Process the result set returned by P1
Return another result set consisting of the contents of
the temp table we used as "log file"

DECLARE GLOBAL TEMPORARY
 TABLE tt (msg CHAR(30)) NOT LOGGED; -- default delete rows

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE PROCEDURE P2 (IN raise INT, OUT top DECIMAL(9,2), OUT total DECIMAL(9,2))
LANGUAGE SQL
BEGIN
 DECLARE SQLCODE int;
 DECLARE empno CHAR(5);
 DECLARE salary, total DECIMAL(9, 2) DEFAULT 0;
 DECLARE cur1 CURSOR WITH RETURN TO CALLER FOR SELECT * FROM

SESSION.tt;

 INSERT INTO SESSION.tt VALUES('Before Call');
 CALL P1(raise, top);
 ASSOCIATE RESULT SET loc WITH PROCEDURE P1;
 ALLOCATE cur2 CURSOR FOR RESULT SET loc;
 WHILE (SQLCODE = 0) DO
 SET total = total + salary;
 INSERT INTO SESSION.tt VALUES('Before Fetch');
 FETCH cur2 INTO empno, salary;
 END WHILE;
 INSERT INTO SESSION.tt VALUES('Before Open');
 SET P2.total = total;
 OPEN cur1;
END

!IBM Corporation 2002 IBM Data Management Technical Conference

CREATE PROCEDURE P1 (IN raise INT, OUT top DECIMAL(9,2))
LANGUAGE SQL
BEGIN
 DECLARE cur1 CURSOR WITH RETURN TO CALLER FOR
 SELECT empno, salary FROM employee
 WHERE salary > 50000;
 INSERT INTO SESSION.tt VALUES('Before Update');
 UPDATE employee SET salary = salary * (1+ 1/raise)
 WHERE job = 'MANAGER';
 INSERT INTO SESSION.tt VALUES('Before Set');
 SET top = (SELECT max(salary) FROM employee);
 INSERT INTO SESSION.tt VALUES('Before Open');
 OPEN cur1;

END

!IBM Corporation 2002 IBM Data Management Technical Conference

Fast, automatic generation of primary key
Avoids contention due to application-generated identity
Uncommited transaction that updated counter does not block
other transactions (=> "gaps" can appear among values)

User can specify type, increment, initial value
Function identity_val_local() allows access to last identity value
generated

Identities are used for Sybase/SQL Server migration;
Sequences are used for Oracle migration

!IBM Corporation 2002 IBM Data Management Technical Conference

DECLARE id INT;
. . .
CREATE TABLE MyTable (
 COL1 INT NOT NULL GENERATED ALWAYS AS IDENTITY
 (START WITH 100, INCREMENT BY 5),
 COL2 DOUBLE,
 COL3 INT
);

INSERT INTO MyTable (COL2, COL3) VALUES (5.6, 3)

SET id = identity_val_local();

!IBM Corporation 2002 IBM Data Management Technical Conference

Control atomicity of a sequence of db operations
If error, can rollback to point where savepoint was
taken
Savepoint-handling Statements:

SAVEPOINT sp
 [UNIQUE]
 ON ROLLBACK RETAIN CURSORS
 [ON ROLLBACK RETAIN LOCKS]

RELEASE SAVEPOINT sp

ROLLBACK TO SAVEPOINT sp

!IBM Corporation 2002 IBM Data Management Technical Conference

SAVEPOINT S1 ON ROLLBACK RETAIN CURSORS;
INSERT INTO MYTAB (C1, C2) VALUES (2,3);
INSERT INTO MYTAB (C1, C2) VALUES (2,1);
INSERT INTO MYTAB (C1, C2) VALUES (245,5);
ROLLBACK TO SAVEPOINT S1;

SAVEPOINT S1 ON ROLLBACK RETAIN CURSORS;
INSERT INTO MYTAB (C1, C2) VALUES (2,300);
INSERT INTO MYTAB (C1, C2) VALUES (200,3);
COMMIT;

C1 C2
------- -------
 2 300
 200 3

Contents of
MYTAB:

!IBM Corporation 2002 IBM Data Management Technical Conference

Sybase Migration (Result Sets)

CREATE PROCEDURE PROC1
AS
BEGIN
 SELECT empno, empname
 FROM emp
 WHERE empno BETWEEN 100 and 200

 SELECT name, address
 FROM staff
END

CREATE PROCEDURE PROC1()
LANGUAGE SQL
BEGIN
 DECLARE c1 CURSOR WITH RETURN FOR
 SELECT empno, empname
 FROM emp
 WHERE empno BETWEEN 100 and 200;
 DECLARE c2 CURSOR WITH RETURN FOR
 SELECT name, address
 FROM staff;

 OPEN c1;
 OPEN c2;
END

Sybase: a SELECT statement without INTO clause is a result set
DB2 UDB: a CURSOR WITH RETURN is a result set

!IBM Corporation 2002 IBM Data Management Technical Conference

Sybase Migration (Temp. Tables)

Sybase
local temp table name has # sign as first char
global temp table name has ## as first char
TSQL programmers generally use local temps

Example:
 SELECT * INTO #temptab FROM tab1 WHERE ...

DB2 UDB
The semantics of our temp tables is very close to
#temptable

 Example:
DECLARE GLOBAL TEMPORARY TABLE temptab ...
INSERT INTO SESSION.temptab
 SELECT * FROM tab1 WHERE ...

!IBM Corporation 2002 IBM Data Management Technical Conference

Sybase Migration (FROM in UPDATE)

Sybase
Can Join tables in UPDATE statement

Example: UPDATE Big
 SET Big.C1 = Small.C1
 FROM Big, Small

 WHERE Big.Key = Small.Key

DB2 UDB
Must use correlated subqueries

 Example: UPDATE Big
 SET Big.C1 = (SELECT Small.C1
 FROM Small
 WHERE Big.Key = Small.Key)
 WHERE EXISTS (SELECT 1
 FROM Small
 WHERE Big.Key = Small.Key)

!IBM Corporation 2002 IBM Data Management Technical Conference

Sybase Migration (Error Handling)

CREATE PROCEDURE PROC1
AS
BEGIN
 DELETE FROM emp
 WHERE empno
 BETWEEN 100 and 200
 IF (@@error = 45)
 INSERT ...

 UPDATE staff
 SET salary = salary * 1.25
 IF (@@error <> 0)
 RETURN -1
END

CREATE PROCEDURE PROC1()
LANGUAGE SQL
BEGIN
 DECLARE SQLCODE, MyCode INT;
 DECLARE CONTINUE HANDLER FOR
 SQLEXCEPTION,
 SET MyCode = SQLCODE;

 DELETE FROM emp
 WHERE empno BETWEEN 100 and 200;
 IF (MyCode = -147) THEN
 INSERT . . .

 UPDATE staff SET salary = salary * 1.25;
 IF (MyCode = -147) THEN RETURN -1; END IF;
END

Sybase: execution continues after error
DB2 UDB: handler is implicitly executed (No handler => return)

!IBM Corporation 2002 IBM Data Management Technical Conference

Oracle Migration (Defaults for parms)

CREATE PROCEDURE PROC1
(acc_in IN NUMBER DEFAULT 0,
total OUT NUMBER DEFAULT -1)
AS
BEGIN
 . . .
END

To call:

PROC1(total => 100);

CREATE PROCEDURE PROC1
(IN acc_in DECIMAL(19, 2),
OUT total DECIMAL(19, 2))
LANGUAGE SQL
BEGIN
 IF (acc_in IS NULL) THEN
 SET acc_in = 0;
 END IF;
 . . .

 IF (total IS NULL) THEN
 SET total = -1;
 END IF;
END

To call:

CALL PROC1(NULL, 100);

!IBM Corporation 2002 IBM Data Management Technical Conference

Native Debugger
Breakpoints, Variable Watch, Call Stack

Step-in, Step-out, run to line

Distribution of compiled SQL Procs
Compile on one machine, deploy to many
No C compiler needed in target machines

Must be same platform

!IBM Corporation 2002 IBM Data Management Technical Conference

General performance infrastructure
CALL statement is a compilable statement

Dynamically preparable
Section reuse

More efficient catalog lookups
Reduced catalog locking

Process model change
 Reduced memory footprint
 More efficient invocation and library caching
SQL PL stored procedures run in trusted mode

Trusted Result sets and recursion

Internal results show V8 approx 25% faster than V7

!IBM Corporation 2002 IBM Data Management Technical Conference

Threaded Architecture for Stored Procedures & UDFs

Page Cleaners
and Prefetchers

Bufferpool(s)

Tablespaces

Subagents

Agents

Clients
(Each with 1
or more SP or
UDFs active)

Small Pool of
Multi-threaded
Address Spaces for
SP/UDF Execution

Reduces Server Memory
Consumption

Especially significant for Java
routines (limits number of JVMs)

CREATE PROCEDURE foo ...
[NOT]THREADSAFE

CREATE FUNCTION foo ...
[NOT]THREADSAFE

Routines must be
THREADSAFE to exploit

Existing non-Java routines migrated
as non-threadsafe
Existing Java routines migrated as
threadsafe

SQL PL Stored Procs
now run in Agent
Address Space

Inherent memory protection
Major performance boost!

!IBM Corporation 2002 IBM Data Management Technical Conference

Minimal undo logging
NOT LOGGED clause manditory in V7, and now optional in V8
Supports the rollback of data changes to DGTT

Index support
Any standard index can be created on a temporary table

RUNSTATS supported against the table

!IBM Corporation 2002 IBM Data Management Technical Conference

Call statement can take complex expressions as parameters
Parameter limit increased to 32K; V7 has 90 parameter limit
Parameters and SQL PL variables can be based on DISTINCT
types
No restriction on nested stored procedure calls

For example, Java can call SQL PL, and vice versa
CALL statement is dynamically prepareable
Full ISO compliance on signal handlers

Nested signal handler support
Subset of SQL PL can be defined in UDFs and Triggers

!IBM Corporation 2002 IBM Data Management Technical Conference

Execute

DB2 UDB Server
+

App. Devel. Client
+

C Compiler

(1) Stored Procedure
Builder

(2) Command Line
Processor

(3) CLI, JDBC,
Dymanic SQL

Press
Build

Execute

Windows, AIX, SUN

Interactive

From
Application

!IBM Corporation 2002 IBM Data Management Technical Conference

SQL Parsing
& SQC generationInput

SQC
Precompilation

CREATE PROCEDURE
psmuno()
 LANGUAGE SQL
label: BEGIN
 DECLARE cur1
CURSOR WITH
RETURN FOR
 SELECT *
 FROM employee
END label

.SQC file (C
with

embedded
SQL)

C source

Package

(1)

(2)
C Compile and

Link

Dynamic Link
Library

Architecture (DB2 for UWO)

FILE
SYSTEM

DB2
CATALOGS

(Syscat.
Procedures)

!IBM Corporation 2002 IBM Data Management Technical Conference

C Compiler and Application Development Client installed on
the SERVER
All platforms supported, except Win95/98
Same compilers as for the SDK (aka ADC)
One compiler set by default for each platform
E.g.: MSVC is the default for NT
Other compilers (e.g. gcc) might work too. (But risky if not
supported)
See documentation for setup details by platform

UNIX usually works "out of the box"
NT requires C compiler configuration

!IBM Corporation 2002 IBM Data Management Technical Conference

Websites:
 http://www-4.ibm.com/software/data/db2/migration/
 http://www.ibm.com/solutions/softwaremigration

!IBM Corporation 2002 IBM Data Management Technical Conference

DB2 SQL Reference, App. Development Guide and App.
Building Guide
Jim Melton's "Understanding SQL/PSM", Morgan
Kaufmann, 1998
DB2 Migration Home Page:
http://www-4.ibm.com/software/data/db2/migration/

White Papers for migration from Oracle, Sybase,
Informix, SQL Server
Red Books (SG24-5485-00)
Etc...

!IBM Corporation 2002 IBM Data Management Technical Conference

Overviewed SQL PL Stored Procedure Language
Two ways to create and run

Stored Procedure Builder (SPB)
Command Line Processor (CLP)

Discussed related features
Temporary tables
Application savepoints
Identity Columns
Nested procedure calls (A calls B calls C ...)
Native Debugger
Distribution of compiled SQL Procs

Overviewed V8 enhancements
Architecture / System Requirements
Migration issues

	Return to Index:

