

WebSphere RFID Information

Center 1.0 – A performance profile

Document version 1.0

Raghu Sakleshpur

Performance Lead - RFIDIC team

WebSphere RFID Information Center 1.0 – A performan ce profile
December 2006

R F I D I N F O R M A T I O N C E N T E R

2

R F I D I N F O R M A T I O N C E N T E R

1

Contents

RFIDIC 1.0 – A performance profile 1

Document version 1.0 1
Introduction 1

Overview of Websphere RFID Information Center 1.0 2
Event capture 2
Query 3
Reporting 4

A Pharma Case Study 5

Events 5
Queries 7
Reporting 8
Product and location data 8

Implementation details 9

Hardware configuration 9
Software configuration 9
Solution specifics 9
Queries 11
Tests performed 11

Findings & results 13

Event capture performance 13
Query performance 14
Findings summary 14
Reporting 15
Findings summary 15
Database sizes 16
The power of interning 16

Database Tuning 19

Informix server configuration 19
Disks and Filesystem 20
Shared memory tunables 21
Parallel data query tunables 21
Guidelines for Implementers 22

R F I D I N F O R M A T I O N C E N T E R

2

Conclusions 24

It is feature rich 24
It is fast 24
It is scalable 25
It is durable 25
Appendix A 26
Appendix B 27
Appendix C 28
Appendix D 30

Glossary 31
References 32

® 33

INTRODUCTION

R F I D I N F O R M A T I O N C E N T E R

1

Introduction

his paper describes our performance evaluation of WebSphere
RFID Information Center version 1.0 (RFIDIC) as used in a
manufacturing and distribution center of a supply chain network. We
provide information on product performance, a description of our

solution implementation and guidance on how to devise and implement an
RFIDIC solution smoothly while avoiding common pitfalls

RFIDIC 1.0 has been developed as per the EPCglobal Electronic Product
Code Information Services (EPCIS) 1.0 specification. A brief overview of
RFIDIC 1.0 is provided in the next section of this chapter. For a
comprehensive description of RFIDIC 1.0 see reference [1].

EPCIS is a fairly new standard and as of yet there is no common industry
specific benchmark. We developed a typical RFID solution based on query
and event volume data for a midsize packaging plant and distribution center
of a large US pharmaceutical distributor using RFIDIC version 1.0. We
used this solution to test, measure, and quantify the performance of the
product.

This chapter provides an overview of the RFIDIC product. The second
chapter describes the use case solution that was used to benchmark the
product. The third chapter provides implementation details for the solution
and describes the tests that were performed for measurement. The fourth
chapter covers results and findings. The fifth chapter provides a discussion
of the Informix database tunings that were used and includes guidelines for
an implementer. Finally, we provide a chapter on our conclusions, a
glossary and a list of Appendices and References.

1

�

T I N T R O D U C T I O N

In addition to testing

performance of the

product we also provide

implementation guidelines

INTRODUCTION

R F I D I N F O R M A T I O N C E N T E R

2

Overview of Websphere RFID

Information Center 1.0

The WebSphere RFID Information Center product provides a scalable and
secure repository for data generated by sensor networks for any supply
chain environment. It is compliant with the EPCglobal EPCIS 1.0
specification.

The RFIDIC 1.0 product can be divided into the following components.

• Event capture

• Query component

• Reporting

• Metadata

• MetaData management (MDM)

• Security

Metadata, MDM and Security components are used indirectly in all solution
implementations. Event Capture, Query component and Reporting are the
primary focus for measuring performance in this paper and are introduced in
the following sections.

Event capture

The primary function of the Event capture component is to read incoming
events (in xml format) and save them into an embedded database. RFIDIC
1.0 uses Informix Dynamic server for the backend database engine. The
events can be read from a static file on the filesystem or from a Java
message queue server. We used WebSphere Message Queue server,
bundled with the product. Figure 1.0 illustrates the event capture process.

I N T R O D U C T I O N

Performance Testing

focuses chiefly on the

following components

� Event Capture

� Query Interface

INTRODUCTION

R F I D I N F O R M A T I O N C E N T E R

3

Query

The query component allows the user to query persisted data from an
Informix database. Queries can be run in two ways.

• Webservices

• Data Browser

The Webservices interface is a programming API for client applications for
querying and browsing the data. The Data Browser is more of an out of box
interactive user interface to query the underlying database using a standard
Web browser.

The Data browser lets users query from any remote system and has the
ability to query both events and MDM data such as products, locations and
hierarchies. It allows the users to create custom queries on event data and
has the ability to save them for future sessions.

We tested querying with both Webservices and the Data browser.

INTRODUCTION

R F I D I N F O R M A T I O N C E N T E R

4

Reporting

RFIDIC 1.0 includes the IBM Alphablox product for reporting. The product
has also been tested to work well with the open source reporting tool called
BIRT (Business Intelligence and Reporting Tool). BIRT is an Eclipse-based
tool that integrates easily with RFIDIC 1.0 and provides reports in browser
or PDF formats.

RFIDIC 1.0 is a Java application that is packaged with the following
products that can be used in an RFIDIC solution:

• Informix Dynamic Server version 10.0

• Tivoli Directory Integrator version 6.1

• WebSphere Application Server (Express edition) version 6.0.2

• WebSphere Message Server 6.0.1

• Alphablox version 8.4

Our implemented solution used all of these products. For reporting, however
we did not use Alphablox. Instead, we tested with SQL queries using the
SQL interface to the Informix Dynamic Server. We do not expect to see any
performance implications with queries being submitted via a reporting tool
versus the Informix SQL interface

A PHARMA CASE STUDY

R F I D I N F O R M A T I O N C E N T E R

5

A Pharma Case Study

n order to accurately benchmark the product we developed an RFIDIC
1.0 solution for a typical supply chain use case, with a pharmaceutical
packaging plant and distribution center.

We used two testing scenarios to test the implemented solution.

• Tests to measure response time

• Tests to load and stress the system.

We also tested typical hardware configurations to determine optimal
requirements for memory, CPU and disk space.

Events

In this use case, we assumed that RFID readers are strategically placed in a
packaging plant and a distribution center at five different locations to capture
events as they occur. These events are typically transmitted via Java
Message Queues to our solution by a middleware application such as
WebSphere Premises Server.

Each location corresponds to a read point at a business location. The
observance of an object at a location by the RFID reader at a given time
would constitute an event. We describe the five different types of events
used in our test case below. We also assumed eight packaging lines in the
packaging plant.

Bottle commissioning event: In the packaging plant, a bottle is the
smallest unit with an RFID tag. At this location a new bottle gets
commissioned with an RFID tag twice every second per packaging line,
resulting in 16 bottles being commissioned every second. We provide the
XML description for a typical bottling event in Appendix A.

2

�

I

A PHARMA CASE STUDY

R F I D I N F O R M A T I O N C E N T E R

6

Case commissioning event: An empty case gets commissioned with an
RFID tag once every 72 seconds on each packaging line. Case
commissioning events look very similar to the bottle commissioning events.
The EPC tag used for each case will be that of the parent tag type in the
XML event description provided in Appendix A.

Unit to case aggregation event: At this location, the RFID tag on each
bottle packed into a case gets associated with the RFID tag of the case. A
typical case contains 144 bottles. This event occurs once every 72 seconds
per packaging line. Only those EPCs that have been commissioned
previously will be present in these events. The XML description for the
aggregation event contains one parent EPC for the case and a child EPC
for each of the 144 bottles in the case. Examples are provided in Appendix
B.

Turntable verification event: By the time packaged objects move across
the RFID reader at this location, the individual cases are already packaged
into a pallet. A pallet contains 50 cases and therefore contains 7250 EPCs
in one single event. This event occurs once every 3600 seconds per
packaging line. A typical Turntable verification event is an Aggregation event
similar to the one in Appendix B with 50 parent (aggregated) EPCs.

Shipping portal event: This is the last read point before the pallet gets
shipped. This event occurs once in 3600 seconds per packaging line as
well. The XML event description at this location is exactly the same as the
event in Turntable verification step, except for the difference in read point
location and business location fields.

The five events are summarized in table 1 below.

Event
Description

Arrival Rate for
1 queue
(Bottling Line)

of EPCs
per event

Total event arrival
rate for 8 queues
(Bottling Lines)

Total EPC arrival
rate

Bottle Encoding 2 every second 1 16 every second 16 every second

Case
Commission

1 every 72
seconds

1 8 every 72 seconds 8 every 72
seconds

Unit to Case
Aggregation

1 every 72
seconds

145 8 every 72 seconds 1160 every 72
seconds

Turntable
Verification

1 every 3600
seconds

7250 8 every 3600
seconds

58000 every 3600
seconds

Shipping Portal 1 every 3600 7250 8 every 3600 58000 every 3600

A PHARMA CASE STUDY

R F I D I N F O R M A T I O N C E N T E R

7

seconds seconds seconds

table 1. Event and arrival Summary

Queries

The solution supports querying the data in parallel as the events are
captured and persisted in the database. The queries are generated by the
Distribution Center (DC). The DC has the following processes:

• DC Receiving

• DC Picking

• DC Shipping

• Product Authentication

Table 2 below summarizes the queries generated by each of the processes
in the DC.

Query Description Arrival
Rate

Source

getBatchNumber Returns the Batch Number for
a given EPC. 2 queries per
case.

30
cases/min

DC Receiving

getChildren Returns all the EPCs for a
given parent EPC. 2 queries
per case

30
cases/min

DC Receiving

getParent Return parent EPC for a given
child EPC

150
units/min

DC Picking

getProduct Return the product GTIN for a
given EPC

150
units/min

DC Picking

getHierarchyNodes Return zero or more product
hierarchy nodes for a given
EPC.

150
units/min

DC Picking

getBatchInfo Returns batch number and
disposition

150
units/min

DC Shipping

getEventInfo Returns object event with
commissioning step else a

150
units/min

Product
Authentication

A PHARMA CASE STUDY

R F I D I N F O R M A T I O N C E N T E R

8

query parameter exception

Table 2. Query Summary

The solution implements these queries to run as a Java client via the
Webservices protocol supported in RFIDIC 1.0.

Reporting

The solution required two types of reports. These reports had to be
executed on a database that already contained captured data. The reports
were run in parallel with event capture and simple query execution.

Report1: Count and group EPCs by location for one hour.

Report2: Count and group EPCs by location for one week.

Product and location data

We assume the Master data in this solution consists of 62 different products.
These products are grouped under two hierarchies. The first hierarchy has
31 products under Hierarchy A and the second hierarchy has 31 products
under Hierarchy B

For locations, we had 10 locations including the 5 locations already
described for the 5 events above. All the locations are grouped under a
single hierarchy.

Although no Master Data figures in event capture measurements, some of
the queries and reports have to access Master Data tables.

R F I D I N F O R M A T I O N C E N T E R

9

Implementation details

his section provides details on the solution implementation, the
hardware and software configurations and the tests that were
actually performed.

Hardware configuration

We used an IBM xSeries 4 CPU (8 core) Xeon processor system with 8 GB
memory (xSeries 366) with a RAID array (DS4300 with EXP710) for disk
storage. The storage array was directly connected to the server under test.
We located the database data files on a Linux filesystem created on a RAID
5 array.

Software configuration

Red Hat Linux AS4 (Update 4) was the operating platform. We, installed,
configured and used the following IBM blue stack software bundled with
RFIDIC 1.0 distribution on the test system:

• Informix Dynamic Server version 10.00 UC5

• WebSphere Application Server - Express version: 6.0.2.0

• IBM (Tivoli) Directory Integrator version 6.1 and version 5.2

• WebSphere Message Queue Server version 6.0.1

Solution specifics

For Meta Data, we made the following modifications to the default EPCIS
MetaData.xml file:

3

�

T

R F I D I N F O R M A T I O N C E N T E R

1 0

• Created a separate parentID table. We took this step primarily to
improve query performance and avoid a join of the childEPC and
event tables in the embedded Informix database. The childEPC,
Event and EPClist were the most populated tables.

• Interned all possible fields. We discuss the benefits of interning in the
next section.

• Added an additional field for batch number in the event table
because our events contained batch numbers which was an
extension field to the standard EPCIS schema.

We created the RFIDIC database schema using the deployMetadata.sh
script. This script is part of the RFIDIC 1.0 distribution.

We loaded the Product and location data, using the import-masterdata.sh
script. This is part of RFIDIC 1.0 product.

We wrote a separate EPC to GTIN Handler to intern EPCs in the EPClist,
parentID and childEPC tables. To intern all other fields (especially those in
the event table) we used the SimpleVocabHandler that is distributed as part
of the samples with the product.

We wrote solution queries in Java to be executed via Webservices interface
from a remote client.

We wrote assembly line scripts in IBM (Tivoli) Directory Integrator (TDI) to
read events from WebSphere MQ and pass the events to the RFIDIC event
capture component. For more information on TDI and writing TDI assembly
scripts see reference [4].

We created event files to simulate realistic data using ToXGene an XML
generator tool. For more information on ToXGene see references [5].

We used an internally developed Java tool to read generated event files and
write to a message queue to throttle the rate at which messages were
written to the queue. We needed to throttle the rate of incoming events to
reflect the realistic scenario of incoming events at the rate described in
Chapter 2 Table 1.

We wrote the TDI assembly lines to wait for incoming events on a message
queue. The events were immediately passed onto the Event Capture
component of RFIDIC 1.0 as soon as they showed up on the queue.

R F I D I N F O R M A T I O N C E N T E R

1 1

Queries

We implemented simple queries using the Webservices solution answer
query mechanism in RFIDIC. We wrote these queries in Java. We
developed a shell wrapper to execute these queries at various intervals. We
also used the NamedAnswerSolutionQueries.wsdl schema distributed with
the product under RFIDIC_HOME/schemas to execute the queries.

For reporting queries, we used SQL to write and execute the queries locally
on the system running the RFIDIC solution. Using RFIDIC 1.0, we do not
expect to see any significant performance implications, running the reporting
queries locally via SQL interface versus running them remotely via a
reporting tool such as Alphablox or BIRT.

Tests performed

We performed two categories of tests. One focused on measuring the
response time. The other focused on volume loading and stress testing the
system.

In each of the test scenarios described in table 3 below, we ran TDI
assembly lines to read from queues and write to the Event Capture
component. These assembly lines waited until the next event showed up on
the queue. We throttled the writing of events to the queue to simulate
realistic event arrival rates. We submitted Webservices queries via the
webservices client. We submitted reporting queries as SQL scripts that
would be submitted via a reporting tool such as BIRT or Alphablox.

In the case of event bursts we did not throttle the incoming event rate. All
events were written to the queue one after the other to get consumed by
event caapture interface right away.

To stress the system for continuous periods of time, we ran the tests for
atleast 72 hours continuously and ensured that the system was up and
accessible.

Scenario Event
arrival

Query
Arrival

Description

Event Capture Refer to
table 1

Refer to table
2

Ran and measured event capture
performance. Wrote events into 4 JMS
Queues and 4 TDI assembly lines.

Event Capture Refer to Refer to table Ran event capture from 4 different queues
using 4 different TDI assembly lines.

R F I D I N F O R M A T I O N C E N T E R

1 2

+ Query Table 1 2 Executed simple queries in Java from a
remote client via Webservices to simulate
query arrival rate

Event Capture
+ Query +
Reports

Refer to
Table 1

Refer to table
2

Ran event capture from 4 different queues
using 4 different TDI assembly lines.
Executed simple queries in Java from a
remote client via webservices to simulate
query arrival rate. Ran two report SQL
queries on the system continuously once
every half hour for 72 hours.

Event burst
Capture

Events
written into
queues
unthrottled

Queries were
submitted in
a continuous
loop

Ran event capture from 4 different queues
using 4 different TDI assembly lines.

Event burst
capture + query
+ Reporting

Events
written into
queue
unthrottled

Queries were
submitted in
a continuous
loop

Ran event capture from 4 different queues
using 4 different TDI assembly lines.
Executed simple queries in Java from a
remote client via Webservices to simulate
query arrival rate. Ran two report SQL
queries on the system continuously once
every half hour. Ran tests for 72 hours.

Table 3. Test Scenarios

R F I D I N F O R M A T I O N C E N T E R

1 3

Findings & results

ecause RFIDIC 1.0 provides a platform to implement solutions, we
had to create a typical solution to quantify its performance. Like any
solution built on a database server, the performance of any
implemented solution is greatly affected by the underlying database

schema and database tuning.

RFIDIC 1.0 allows solution developers to use metadata to cleanly define
solution-specific schema changes to the default EPCIS metadata for a
database schema. In designing the database schema, we had to consider
the nature and contents of the events that were persisted and also factor in
the type and frequencies of queries and reports that would be executed on
the persisted data.

In our solution we decided to separate the parentID field (parent EPC) into a
separate table. This helped reduce the disk space consumed by the event
table because object events contain a parentID field. The parentID field is a
variable character string field of length 100. This space would be empty for
all object events in the event table. Separating the parentID into a parentID
table also improves queries that need to join childEPC table and the
parentID tables because the parentID table would be much smaller in size
compared to the event table.

Event capture performance

The Event Capture component of RFIDIC 1.0 is quite light weight and
typically gets executed as a standalone Java application. It is not CPU
intensive and most time was spent in disk I/O in all the tests that were done.
As the size of the database grows, indexing the database and striping the
DBspaces across multiple disks are crucial to improving performance.

For large event objects typically as in aggregation events, increasing the
JVM stack size benefits performance. This can be easily achieved by

4

�

B

R F I D I N F O R M A T I O N C E N T E R

1 4

modifying the script rfidic-tdiserv.sh to invoke the JVM with larger stack size
using the –Xmx option.

We also observed that event capture scales across multiple queues quite
efficiently. In all our testing with event capture, we tested with multiple
queues (up to 5 of them). We executed each assembly line in a separate
JVM, connecting to a different queue.

Query performance

We looked at two types of non-OLTP type queries: simple queries and
reporting queries. By definition, these queries did not update any data but
only queried the database to return suitable values.

Simple queries were queries were written to obtain specific results given
specific input parameters. We created indexes on all tables on the columns
that were involved in the join operation for a query. We analyzed the query
plan to create suitable indexes depending on the query being performed.

For each field in a table on which a join or a search is performed, we
created an index on that field for the table. This resulted in an index scan of
the table being searched, instead of the time consuming sequential scan.

After creating the required indexes for each query, all queries returned in
well under a second.

Findings summary

Query response time for simple queries was consistently below one second,
even on a database with upwards of 420 million rows. We executed the
queries repeatedly (as per the arrival rate cited in chapter 2) in parallel with
event capture.

We found that the queries executed via webservices from a remote client
were equally fast, and always returned under one second.

When newer queries are added, either existing indexes need to be modified
or newer indexes may need to be created. Data on time consumed is
summarized in table 4.1.

Simple Query

Performance:

For each field in a table
on which a join or a
search is performed,
create an index on that
field for the table.

R F I D I N F O R M A T I O N C E N T E R

1 5

Reporting

Reporting queries are longer queries that involve summarizing data over
periods of time. In addition to Informix tunings and indexing, these queries
also require partitioning or fragmenting indexes by time. This is described in
greater detail in Chapter 5 (Database tuning).

Findings summary

Report queries once cached easily returned in less than one minute.
Fragmenting queries involved creating indexes on the event table by
fragment index. In our experiment data was fragmented by month. We
found that fragmenting by month was sufficient to get acceptable
performance.

We tested the reporting queries in conjunction with event capture as per the
scenarios outlined in chapter 2. Table 4.1 summarizes reporting query
response times.

The maximum response time was observed for both reports when the
reports were run the first time after a reboot of the system. The high
response time was due to the fact that the database shared memory
segment containing the buffer cache was empty and each row access
would result in a disk I/O. Once the buffer cache warmed up the reports
consistently ran under a minute.

QueryType Max Response Avg Response Min Response No tes

Reporting
Query1

6min 05
seconds

56.865 seconds 54.257 seconds Returned 6
rows

Reporting
Query2

6min
20seconds

58.524 seconds 55.013 seconds Returned 6
rows

Simple Query1 0.454 seconds 0.245 seconds 0.105 seconds Returned 1 row

Simple Query2 0.895 seconds 0.496 seconds 0.194 seconds Returned 432
rows

Simple Query3 0.396 seconds 0.260 seconds 0.0886 seconds Returned 3
rows

Simple Query4 0.422 seconds 0.292 seconds 0.0925 seconds Returned 1 row

Simple Query5 0.315 seconds 0.143 seconds 0.0430 seconds Returned 1 row

Simple Query6 0.475 seconds 0.278 seconds 0.0786 seconds Returned 1 row

R F I D I N F O R M A T I O N C E N T E R

1 6

Simple Query7 0.310 seconds 0.201 seconds 0.0445 seconds Returned 1 row

Table 4 Query respone times

Database sizes

We built and tested the data sizes to simulate the existence of 3 months, 6
months and one year of data. We conducted the tests after capturing 100
million events, 300 million events and 425 million events. We tested and
measured query and event capture performance on the data that was
already saved in the database.

The power of interning

In RFIDIC 1.0, we use a technique referred to as “interning” to convert a
string (VarChar) data object to a canonical (numeric) representation.
Typically we write a handler to “intern” and “unintern” fields in the event XML
file. The reasons for the advantages of interning are two fold.

• At the time of event capture, the handler will intelligently avoid a
database access if the interned value of a field had already been
cached in the memory pool. Since most fields in the event table are
known to have values over a fixed small range, interning will greatly
improve the speed of event data persistence.

• The data value stored in the database for the particular object is also
the interned numeric value. This approach greatly reduces the
consumed database space.

Table 5 compares and highlights the benefits of interning. As noted in the
table, not saving the XML as a blob also greatly helps in reducing the size of
the overall database.

For this particular experiment, we used a simple object event that is 918
bytes long. We captured a total of 10,000 events using the RFIDIC 1.0
event capture interface to obtain the numbers. With interning and without
saving the entire XML event description as a blob in the database, we found
that the database consumes less space than the space consumed by the
original raw XML text.

Note that the total database size measured does not include indexes that
need to be created for optimal query performance.

Interning

Internal numeric

representation in
memory of a large
string or object in the
database

R F I D I N F O R M A T I O N C E N T E R

1 7

Table 5. Event capture response and database size

Below we provide two charts to highlight the benefits of interning. In both
charts, each co-ordinate on the X-axis corresponds to a row in table 5.

Chart 1 shows that event capture rate increased with each additional field in
the XML event description that was interned.

Chart 2 shows that database size decreased as we increased the number of
fields that were interned in the XML event description.

Particulars Time taken Database size
No interning
Xml event saved in blob

1m56.000seconds
94.33 events/sec

~22.27 MB

No save of xml
No interning

1m39.008seconds
101.01 events/sec

~21.31 MB

No save of xml
No save of header
No interning

55.976 seconds
178.647 events/sec

~7.927 MB

No save of xml
No save of header
Interning: ReadPoint, bizloc,
epc, action, bizStep,
disposition

55.669 seconds
179.633 events/sec

~6.44 MB

No save of xml
No save of header
Interning ReadPoint,bizloc,
action, bizStep, disposition

53.45seconds
187.09 events/sec

~5.96 MB

No save of xml
No save of header
Interning: Readpoing, bizloc,
action, bizStep, disposition
TDI:2 assembly lines to read

 47.428 seconds
 210.845 events/second

~5.96 MB

R F I D I N F O R M A T I O N C E N T E R

1 8

Event Capture with Interning

0

50

100

150

200

250

1 2 3 4 5 6

Interning different fields (Table 5)

E
ve

nt
s

pe
r
se

co
nd

Char :1 Event capture with various fields interned (Table 5)

Database space consumed

0

5

10

15

20

25

1 2 3 4 5 6

Interning different fields (table 5)

M
eg

ab
yt

es
 (

M
B

)

Chart 2: Database space consumed with various fields interned (Table 5)

R F I D I N F O R M A T I O N C E N T E R

1 9

Database Tuning

This chapter highlights some of the tuning we performed to improve
performance of the test solution.

Although prior working knowledge of database servers is recommended,
one need not be an Informix database administrator to implement these
tunings.

Once we finalized the database schema and captured the data, we tuned
the database and added appropriate indexes for optimal query
performance.

Informix server configuration

Identifying and separating the different database tablespaces was the first
step towards achieving a high performing database configuration. We
created the following dataspaces to span multiple different disks (volumes).
We created more than one dbspace for tablespaces and took care to
distribute them onto different physical disks.

• Physical Log Space

• Virtual Log Space

• Disk space for temp space

• Disk space for tables

• Disk space for indexes

We provide example scripts to create dbspaces, temp space and virtual log
files in Appendix C.

5

�

R F I D I N F O R M A T I O N C E N T E R

2 0

The table below describes onconfig (Informix server configuration file) file
variables pertaining to logging and temp files that can be updated and tuned
for better performance .

Tunable Description Notes

PHYSFILE The PHYSFILE configuration
parameter specifies the size of the
physical log. This parameter indirectly
affects checkpoints because whenever
the physical log becomes 75 percent
full, a checkpoint occurs.

Having a larger value set
of 500000 to 1000000
reduces the frequency of
checkpoint.

PHYSDBS Points to the physical log file name. By
default this would be pointing to rootdbs.

This needs to be updated to
the name of the physical log
space that gets created.

LOGFILES &
LOGSIZE

Specifies the number of logical-log files that
the database server creates during disk
initialization. To change the number of
logical-log files, add or drop logical-log files.
LOGSIZE specifies the size of each virtual
log-file.

Onparams command can
be used to add and drop
logical-log files. This value
gets updated automatically
when onparams is used.
Having a larger number
helps reduce the occurance
of checkpoint for write
intensive activities.

DBSPACETEMP By default the variable is blank, implying
that the tempspace would be configured on
rootdbs.

Set this to point to the value
of temp spaces that are
separated by colon.

Table 6: database tunables

Informix Dynamic Server supports fragmenting indexes by expression. We
provide an example script that creates indexes fragmented by months. See
Appendix D. Queries need to specify the fragment to search in as part of the
query where clause. This is especially important with reporting queries and
will greatly reduce the cost of the query performance.

Disks and Filesystem

In most of our testing we used RAID 5 disks/volumes spanning 3 or more
disks. A Linux ext3 filesystem was created on each RAID 5 volume.
Separate, Informix dbspaces for log space, tempspace, data space and
index space were created. These dbspaces were distributed on different
RAID 5 volumes. Informix refers to this as the cooked mode of writing to disk.
RFIDIC 1.0 only supports writing to disks in cooked mode.

R F I D I N F O R M A T I O N C E N T E R

2 1

In our experiments we observed better event capture throughput when disks
were used without configuring RAID 5 volumes. We also observed that
distributing the various db spaces across multiple RAID5 volumes on
separate sets of 3 or more disks helped the system to perform better
especially during Event Capture.

Shared memory tunables

Shared memory tunables that affect the size of the shareg memory segment
are discussed in the table below. The overall goal should be to allocate and
create the largest possible shared memory segment to avoid disk access for
queries. All variables listed in table below can be tuned in the IDS
configuration (onconfig) file.

Tunable Description Notes

LOCKS Specifies the number of locks in the
internal lock table

Lower values helps in not
allocating memory needlessly.

CLEANERS Specifies the number of page cleaner
threads available for IDS

Having a large number helps
reduce foreground reads as
most page cleaning will
happen in background.

SHMVIRTSIZE Specifies the virtual portion of shared
memory that needs to be allocated at
IDS startup time.

This value must be as large as
possible. The buffer cache
resides in this segment and
the larger the size the better
the performance for reporting
type queries.

Table 7: database shared memory tunables

Parallel data query tunables

Most of the tunables in the next table, except for PSORT_NPROCS and
PDQPRIORITY are all tunable in the IDS server configuration (onconfig) file.

Tunable Description Notes

MAX_PDQPRIORITY The max value that can be set
is 100. Reducing this to a
lower value gives higher
priority(allocates more
resources) to write/update
activities.

Setting to the max value of
improved report query
performance.

R F I D I N F O R M A T I O N C E N T E R

2 2

PDQPRIORITY Tells the IDS server the
percentage of
MAX_PDQPRIORITY to
allocate resources for a
particular query

This tunable needs to be
set using th SQL set clause
as part of the query. Setting
to 100 tells the IDS server
to allocate all DS query
resource for the particular
query.

DS_TOTAL_MEMORY Informs IDS the percentage of
SHMTOTAL to use for
decision queries.

Set to a large value that is
as large as possible. Setting
it to same value as
SHMVIRTSIZE gave better
report query peformance

DS_NONPDQ_QUERY_MEM IDS uses this value to allocate
memory resources for non-
PDQ memory

This value must be low. Set
it to 128 for better report
query performance

PSORT_NPROCS When set as an environment
variable it tells IDS the number
of parallel sort threads the
application can use.

Max value can be 10.
Typically set it to the
number of cores/CPUs on
the system. On a 8 core
box, setting it to 8 yielded
best query performance.

BUFFERS Number of BUFFERS in the
resident portion of memory
that cache database pages.

For DS queries, increasing
BUFFERS too much will
come at the cost of
DS_TOTAL_MEMORY.
Optimal query performance
was observed when set to
values between 50000 to
60000

lru_min_dirty, lru_max_dirty These control how often pages
get flushed to disk between full
checkpoints.

When BUFFERPOOL is
large, full checkpoints can
take up system resources.
Optimal values are to set 50
for lru_min_dirty and 60 for
lru_max_dirty.

Table 8: Parallel Data Query tunables

Guidelines for Implementers

Solution implementers should plan the solution deployment with sufficient
storage capacity. They need to ensure that the embedded database is sized
and created for optimal performance. The following guidelines are provided
to assist in this process.

� Estimate the total number of events that need to be handled over a
period of one year. This information will help to determine the amount
of disk space that will be required for deployment.

R F I D I N F O R M A T I O N C E N T E R

2 3

� Plan the storage (disks) deployment for best performance as well as
for redundancy and integrity. See the section above on Disks and
Filesystems for additional information.

� Tune the metadata for the database schema taking into
consideration the incoming event contents (fields) as well as the type
of queries (information) that will be desired based on the persisted
data.

� Make use of interning to save database space consumed and
improve event capture speed. Typically most fields of an event are
internable including the EPC string!

� Based on our experiments, we found that an xml event could potentially
take as little as ~60% of the actual xml event size in bytes, to persist in
the database. At the other extreme it could take upto ~230% the size of
an xml file to persist without any interning and persisting the headers
and the xml event blob in the database. Refer to Chapter 4 (Power of
interning) for additional information.

� Create indexes to improve query performance. Ensure that the query
uses index path to search tables using in the query plan. Use the
SET EXPLAIN ON directive in SQL to obtain the query plan.

� Layout the database dbspaces across multiple disks to avoid a single
disk becoming an I/O bottleneck.

� Create indexes fragmented by an expression on the event table.
Typically fragmenting the index by month will be sufficient to get
optimal response times for reports. Refer to Appendix D for an
example index creation script. Use the expression in the SQL
queries.

� Tune the shared memory virtual size for best query and reporting
performance. The tunables are discussed in Table 7 and Table 8 above.

R F I D I N F O R M A T I O N C E N T E R

2 4

Conclusions

We base these conclusions about RFIDIC 1.0 as an outcome of our
performance and stress testing.

It is feature rich

We found in our testing that RFIDIC 1.0 is a highly scalable, adaptable
development platform. We found that the product had enough features to
allow a solution developer to build quick solutions out of the box and allow
solution specific customizations. In our solution development, we found the
ability to define and customize database schema accoring to the solution
requirements quite was very useful. The Webservices support to query the
database made it easier to allow existing applications or user interfaces to
connect to the database repository.

It is fast

Both event capture and query access exceeded our expectation for our
initial scenario solution requirements. Event capture was fast enough to
persist hundreds of events/second even when the database server was
tuned to support data querying and the database had more than 430 million
rows in some tables.

Query response times were consistently under one second even when the
database had upwards of hundreds of millions of events (table rows). The
query response time was not affected in the stress testing scenarios where
queries were executed in conjuction with event capture.

Reporting queries required tuning at the database server end, especially
when the underlying database size started to increase beyond 100 million
rows. Once we distributed the dataspaces across multiple disks, indexed
tables with fragments, and tuned the database server for query
performance, we saw vast improvements in query response times and the

6

�

R F I D I N F O R M A T I O N C E N T E R

2 5

reporting queries were able to return under a minute consistently. We
describe the tuning details in Chapter 4.

It is scalable

We found our solution scaled across a 2 CPU desktop server as well as on
a 4 CPU lab server. Query response time was consistent across all the
database sizes that we tested with. The largest database that we tested was
one having upwards of 510 million events. Query response time scaled well
(response time decreased) with increasing memory size for the parallel data
query cache. Event capture response times were consistent both on a low-
end server with smaller sized database (tens of millions of rows) and the
high-end server with hundreds of millions of rows in the table.

It is durable

As part of our testing scenario, we did stress testing that ran both event
capture with event bursts (sending events unthrottled into the queue) and
querying repeatedly both simple and reporting for a total of 72 hours. The
tests ran well beyond 72 hours and we were able to stop and shutdown the
tests and product gracefully.

R F I D I N F O R M A T I O N C E N T E R

2 6

Appendix

Appendix A

Example Bottle Encoding Event:

<?xml version="1.0" encoding="US-ASCII"?>
<!-- generated by ToXgene Version 2.3 on Fri Aug 25 15:54:50 PDT
2006 -->

<epcis:EPCISDocument xmlns:epcis="urn:epcglobal:epc is:xsd:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:schemaLocation="urn:epcglobal:epcis:xsd:1 .\EPC IS.xsd"
schemaVersion="1" creationDate="2005-07-11T11:30:47 .0Z">
 <EPCISBody>
 <EventList>
 <ObjectEvent>
 <eventTime>2005-04-03T01:01:01.82706:00</eve ntTime>
 <recordTime>2005-04-03T01:01:01.827-06:00</r ecordTime>
 <epcList>
 <epc>urn:epc:tag:sgtin96:2:000173.0069101.13 777218</epc>
 </epcList>
 <action>ADD</action>
 <bizStep>BOTTLE ENCODING</bizStep>
 <disposition>ACTIVE</disposition>
 <readPoint>
 <id>urn:epcglobal:fmcg:loc:0000000089101. RP-1527</id>
 </readPoint>
 <bizLocation>
 <id>urn:epcglobal:fmcg:loc:0000000089101.A23 -49</id>
 </bizLocation>
 <extension>
 <batchNumber>40</batchNumber>
 </extension>
 </ObjectEvent>
 </EventList>
 </EPCISBody>
</epcis:EPCISDocument>

7

�

R F I D I N F O R M A T I O N C E N T E R

2 7

Appendix B

Example of Unit to Case Aggregation Event.

<?xml version="1.0" encoding="US-ASCII"?>
<!-- generated by ToXgene Version 2.3 on Wed Sep 06 02:49:35 PDT
2006 -->

<epcis:EPCISDocument xmlns:epcis="urn:epcglobal:epc is:xsd:1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:schemaLocation="urn:epcglobal:epcis:xsd:1
../../../EPCglobal-epcis-1_0.xsd" schemaVersion="1"
creationDate="2005-07-11T11:30:47.0Z">
 <EPCISBody>
 <EventList>
 <AggregationEvent>
 <eventTime>2005-04-03T01:01:01.827-06:00</e ventTime>
 <recordTime>2005-04-03T01:01:01.827-06:00</ recordTime>
 <parentID>urn:epc:tag:sgtin-
96:1:000173.0069101.86777218</parentID>
 <childEPCs>
 <epc>urn:epc:tag:sgtin-96:2:000173.0069101.1 3777218</epc>
 <epc>urn:epc:tag:sgtin-96:2:000173.0069102.1 3777219</epc>
 <epc>urn:epc:tag:sgtin-96:2:000173.0069103.1 3777220</epc>
 …
 …

 <epc>urn:epc:tag:sgtin-96:2:000173.0069119.1 3777360</epc>
 <epc>urn:epc:tag:sgtin-96:2:000173.0069120.1 3777361</epc>
 </childEPCs>
 <action>ADD</action>
 <bizStep>UNIT To CASE AGGREGATION</bizStep>
 <disposition>ACTIVE</disposition>
 <readPoint>
 <id>urn:epcglobal:fmcg:loc:0000000089103.RP- 1527</id>
 </readPoint>
 <bizLocation>
 <id>urn:epcglobal:fmcg:loc:0000000089103.A23 -49</id>
 </bizLocation>
 <extension>
 <batchNumber>10</batchNumber>
 </extension>
 </AggregationEvent>
 </EventList>
 </EPCISBody>
</epcis:EPCISDocument>

R F I D I N F O R M A T I O N C E N T E R

2 8

Appendix C

This Script creates dbspaces for tables, indexes, l og files and
temp files.

#############
#############
Licensed Materials - Property of IBM

Governed under the terms of the International
License Agreement for Non-Warranted Sample Code.

(C) COPYRIGHT International Business Machines Co rp. 2006
All Rights Reserved.

US Government Users Restricted Rights - Use, dup lication or
disclosure restricted by GSA ADP Schedule Contra ct with IBM
Corp.

Title:IFXConfig.sh
Description:

#############
#############
#!/bin/sh
determine where script was called from
script_location=`dirname ${0}`
determine RFIDIC_HOME and source the rfidic-env.s h here
if [-n "$RFIDIC_HOME"]
then
 echo "env had RFIDIC_HOME $RFIDIC_HOME"
elif [-e $script_location"/../etc/RFIDICServer.xml "]
then
 RFIDIC_HOME=$script_location"/.."
else
 RFIDIC_HOME=/opt/ibm/WebSphere/RFIDIC
fi

if [-d $RFIDIC_HOME]
then
 source $RFIDIC_HOME/bin/rfidic-env.sh
else
 echo "RFIDIC_HOME not found $RFIDIC_HOME"
 exit -1
fi

INFORMIXDIR=/opt/IBM/informix
INFORMIXSERVER=epcisperf2
INFORMIXSQLHOSTS=/opt/IBM/informix/etc/sqlhosts.epc isperf2
ONCONFIG=onconfig.epcisperf2
INFORMIXSHMBASE=-1
PATH=$INFORMIXDIR/bin:$PATH

export DB_LOCALE=EN_US.utf8

R F I D I N F O R M A T I O N C E N T E R

2 9

export CLIENT_LOCALE=EN_US.utf8
export DBNLS=1

export INFORMIXDIR INFORMIXSERVER INFORMIXSQLHOSTS ONCONFIG
INFORMIXSHMBASE PATH

Create dbspaces for tables

touch /u04/Perf-DBs/505m_DB/dbspace5
chmod 660 /u04/Perf-DBs/505m_DB/dbspace5
onspaces -c -d dbspace5 -p /u04/Perf-DBs/505m_DB/db space5 -o 0 -
s 50000000K
for i in 0 1 2 3 4 5 7 8
for i in 6 7
do
if [! -f /u04/Perf-DBs/505m_DB/dbspace5.$i]
then
 touch /u04/Perf-DBs/505m_DB/dbspace5.$i
 chmod 660 /u04/Perf-DBs/505m_DB/dbspace5.$i
 onspaces -c -d dbspace5$i -p /u04/Perf-
DBs/505m_DB/dbspace5.$i -o 0 -s 50000000K &
fi
done

Log space for Physical log
touch /u04/Perf-DBs/505m_DB/physlogspace1
chmod 660 /u04/Perf-DBs/505m_DB/physlogspace1
onspaces -c -d physlogspace$i -p /u04/Perf-
DBs/505m_DB/physlogspace$i -o 0 -s 25000000K &

logspaces are for virtual logs
for i in 1 2 3
do
if [! -f /u04/Perf-DBs/505m_DB/virtlogspace$i]
then

 touch /u04/Perf-DBs/505m_DB/virtlogspace$i
 chmod 660 /u04/Perf-DBs/505m_DB/virtlogspace $i
 onspaces -c -d virtlogspace$i -p /u04/Perf-
DBs/505m_DB/virtlogspace$i -o 0 -s 20000000K &
fi
done

commands to create virtual log files

for i in 1 2 3 4 5 6 7 8 9 10
do
 onparams -a -s 200000 -d virtlogspace1
done

for i in 11 12 13 14 15 16 17 18 19 20
do
 onparams -a -s 200000 -d virtlogspace2
done

R F I D I N F O R M A T I O N C E N T E R

3 0

for i in 21 22 23 24 25 26 27 28 29 30
do
 onparams -a -s 200000 -d virtlogspace3
done

Creating temp space

for i in 1 2 3 4 5 6 7 8
do
if [! -f /u04/Perf-DBs/505m_DB/tmpspace$i]
then
 touch /u02/Perf-DBs/505m_DB/tmpspace$i
 chmod 660 /u02/Perf-DBs/505m_DB/tmpspace$i
 onspaces -c -d tmpspace$i -t -p /u02/Perf-
DBs/505m_DB/tmpspace$i -o 0 -s 5000000K &
fi
done

Creating Index spaces

for i in 0 1 2 3 4 5 6 7
do
if [! -f /u04/Perf-DBs/505m_DB/indexspace5.$i]
then
 touch /u04/Perf-DBs/505m_DB/indexspace5.$i
 chmod 660 /u04/Perf-DBs/505m_DB/indexspace5. $i
 onspaces -c -d indexspace5$i -p /u04/Perf-
DBs/505m_DB/indexspace5.$i -o 0 -s 50000000K &
fi
done

Appendix D

Script to create an index fragmented by expression (eventtime field).

SET ISOLATION TO DIRTY READ;
SET PDQPRIORITY 100;

drop index evt_time_idx2;

create INDEX "informix".evt_time_idx2 on
eventschema.event(eventtime, event_id, bizloc) usin g btree
FRAGMENT BY EXPRESSION
 eventtime between '2007-01-01 00:00:00.000' and '2 007-01-
31 23:59:59.999' IN eventindspace1,
 eventtime between '2007-02-01 00:00:00.000' and '2 007-02-
28 23:59:59.999' IN eventindspace2,
 eventtime between '2007-03-01 00:00:00.000' and '2 007-03-
31 23:59:59.999' IN eventindspace3,
 eventtime between '2007-04-01 00:00:00.000' and '2 007-04-
30 23:59:59.999' IN eventindspace4,

R F I D I N F O R M A T I O N C E N T E R

3 1

 eventtime between '2007-05-01 00:00:00.000' and '2 007-05-
31 23:59:59.999' IN eventindspace5,
 eventtime between '2007-06-01 00:00:00.000' and '2 007-06-
30 23:59:59.999' IN eventindspace6,
 eventtime between '2007-07-01 00:00:00.000' and '2 007-07-
31 23:59:59.999' IN eventindspace7,
 eventtime >= '2007-08-01 00:00:00.000' IN eventind space8,
 eventtime between '2006-09-01 00:00:00.000' and '2 006-09-
30 23:59:59.999' IN eventindspace9,
 eventtime between '2006-10-01 00:00:00.000' and '2 006-10-
31 23:59:59.999' IN eventindspace10,
 eventtime between '2006-11-01 00:00:00.000' and '2 006-11-
30 23:59:59.999' IN eventindspace11,
 eventtime between '2005-04-01 00:00:00.000' and '2 006-08-
31 23:59:59.999' IN eventindspace14,
 eventtime between '2006-12-01 00:00:00.000' and '2 006-12-
31 23:59:59.999' IN eventindspace12,
 eventtime <= '2005-03-31 23:59:59.999' IN eventind space13;
--update statistics HIGH FOR TABLE eventschema.even t(eventtime,
event_id);
UPDATE STATISTICS LOW FOR TABLE 'EVENTSCHEMA'.event ;
UPDATE STATISTICS MEDIUM FOR TABLE eventschema.even t(bizloc);
--update statistics HIGH FOR TABLE eventschema.chil depc(epc,
event_id);
commit;

Glossary

RFIDIC Radio Frequency Identifier Information Center
EPC Electronic Product Code

EPCIS Electronic Product Code Information Services
OLTP OnLine Transaction Processing: Write intensive applications
DSS Decision Support Systems: Read only queries like Reporting queries
IDS Informix Dynamic Server
TDI Tivoli Data Integrator

WAS Websphere Application Server
WMQ Websphere Message Queues

REFERENCES

R F I D I N F O R M A T I O N C E N T E R

3 2

References

[1] IBM WebSphere RFID Information Center Overview

[2] Informix Dynamic Server v10.0 Information Center
(http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp)

[3] Informix Dynamic Server Performance Guide (http://www.informix.com.ua/doc/9.40/ct1t9na.pdf)

[4] Tivoli Data Integrator (http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp)

[5] ToxGene (http://www.cs.toronto.edu/tox/toxgene/)

For more

information

®

®

© Copyright IBM Corporation 2002

IBM United States of America

Produced in the United States of America

All Rights Reserved

The e-business logo, the eServer logo, IBM, the IBM logo, OS/390,
zSeries, SecureWay, S/390, Tivoli, DB2, Lotus and WebSphere are
trademarks of International Business Machines Corporation in the
United States, other countries or both.

Lotus, Lotus Discovery Server, Lotus QuickPlace, Lotus Notes,
Domino, and Sametime are trademarks of Lotus Development
Corporation and/or IBM Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be trademarks or
service marks of others.

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PAPER “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Information in this paper as to the availability of products (including
portlets) was believed accurate as of the time of publication. IBM
cannot guarantee that identified products (including portlets) will
continue to be made available by their suppliers.

This information could include technical inaccuracies or typographical
errors. Changes may be made periodically to the information herein;
these changes may be incorporated in subsequent versions of the
paper. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this paper at any time without
notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement
of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your
own risk.

IBM may have patents or pending patent applications covering subject
matter described in this document. The furnishing of this document
does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
4205 South Miami Boulevard
Research Triangle Park, NC 27709 U.S.A.

