
IBM
®

Net.Data
for OS/390 and z/OS

Administration and Programming Guide
Version 7

���

IBM
®

Net.Data
for OS/390 and z/OS

Administration and Programming Guide
Version 7

���

Note
Be sure to read the information in “Notices” on page 139 before using this information and the product it supports.

1st Edition (March 2001)

This edition applies to IBM Net.Data for OS/390, a feature of Version 7 of DB2 Universal Database Server for
OS/390 (DB2 UDB for OS/390), 5675–DB2, and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
About Net.Data v
What’s New in Version 7? v
About This Book. vi

Who Should Read This Book. vi
About Examples in This Book vii

How to send your comments vii

Chapter 1. Introduction 1
What is Net.Data? 1
Why Use Net.Data? 2

Chapter 2. Installing and Configuring
Net.Data. 5
About the Net.Data Initialization File 5
Installing the Net.Data Initialization File 6
Customizing the Net.Data Initialization File 6

Configuration Variable Statements 7
Path Configuration Statements 16
Environment Configuration Statements 19

Setting Up Net.Data Language Environments . . . 21
Setting up the SQL and ODBC Language
Environments. 21
Setting up the COBOL Language Environment 22

Managing Connections to DB2 22
Workload Management Considerations 23
Configuring Net.Data for Use with CGI 23
Configuring Net.Data for FastCGI 24
Configuring Net.Data for Use with GWAPI 25
Configuring Net.Data for Use with Java Servlets . . 26
Enabling the Message Catalog 27
Granting Access Rights to Files and Data Sets
Accessed by Net.Data 27
Managing Cached Web Pages and Large Objects . . 28

Setting up DB2 28
Configuring Net.Data to Automatically Manage
Cached Web Pages and Large Objects 29
Using a Net.Data-provided Macro for More
Advanced Management 30
Web page cache table and Web page dependency
table descriptions 32

Chapter 3. Keeping Your Assets Secure 35
Using Firewalls 35
Encrypting Your Data on the Network 36
Using Authentication 36
Using Authorization 36
Using Net.Data Mechanisms. 37

Net.Data Configuration Variables 37
Macro Development Techniques 38

Chapter 4. Invoking Net.Data 41
Invoking Net.Data using CGI, GWAPI, or FastCGI 41

Invoking Net.Data with a Macro (Macro Request) 42

Invoking Net.Data without a Macro (Direct
Request) 46

Invoking Net.Data with Java Servlets 51
Invoking Net.Data using MacroServlet 52
Invoking Net.Data using FunctionServlet . . . 52

Chapter 5. Developing Net.Data Macros 55
Anatomy of a Net.Data Macro 56

The DEFINE Block 57
The FUNCTION Block. 57
HTML Blocks. 58
XML Blocks 60

Net.Data Macro Variables. 63
Identifier Scope 64
Defining Variables 64
Referencing Variables 66
Variable Types 67

Net.Data Functions 73
Defining Functions 73
Calling Functions 78
Calling Net.Data Built-in Functions 78

Generating Document Markup 82
HTML and XML Blocks 82
Report Blocks. 83

Conditional Logic and Looping in a Macro 87
Conditional Logic: IF Blocks 88
Looping Constructs: WHILE Blocks 90

Chapter 6. Using Language
Environments. 91
Overview of Net.Data-Supplied Language
Environments. 92

Calling a Language Environment 92
Guidelines for Handling Error Conditions . . . 92
Security 93

Relational Database Language Environments . . . 93
ODBC Language Environment 93
SQL Language Environment 94
Managing Transactions in a Net.Data Application 94
Using Large Objects 95
Stored Procedures 98
Relational Database Language Environment
Example 103

Programming Language Environments 105
COBOL Language Environment 105
Perl Language Environment 108
REXX Language Environment 110
System Language Environment 115

Chapter 7. Improving Performance 119
Using GWAPI or FastCGI 119
Net.Data Caching of Macros 120

Caching Considerations 120
Enabling Macro Caching 120

Dynamic Web Page Caching 121

© Copyright IBM Corp. 1997, 2001 iii

Caching Considerations 122
Enabling Dynamic Web page Caching 122

Suppressing DB2 for OS/390 Messages 124
Optimizing the Language Environments 125

REXX Language Environment 125
SQL Language Environment 125
System and Perl Language Environments . . . 126

Chapter 8. Serviceability Features . . 127
Net.Data Trace Log 127

Configuring Net.Data for Tracing. 127
Trace Log Format 128
Access Rights 128
Supplying Your Own Messages 128

Net.Data Error Log 128
Configuring Net.Data for Error Message
Logging 128
Error Log File Format 129

Access Rights 129
Supplying Your Own Messages 130

Appendix A. Bibliography 131
Net.Data Technical Library 131
Related Documentation 131

Appendix B. Configuring Net.Data for
OS/390 to Access DataJoiner 133

Appendix C. Net.Data Sample Macro 135

Notices 139
Trademarks 140

Index 143

iv IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Preface

Thank you for selecting Net.Data®, the IBM™ development tool for creating
dynamic Web pages! With Net.Data, you can rapidly develop Web pages with
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

About Net.Data
With Net.Data, you can create dynamic Web pages using data from both relational
and non-relational database management systems (DBMSs), including DB2, IMS,
and ODBC-enabled databases, and using applications written in programming
languages such as Java, JavaScript, Perl, C, C++, COBOL, and REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content based
on input from the user, the current state of your databases, other data sources,
existing business logic, and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape Navigator or Internet Explorer, to a Web server that forwards the
request to Net.Data for execution. Net.Data locates and executes the macro and
builds a Web page that it customizes based on functions that you write. These
functions can:
v Encapsulate business logic within Perl scripts, C, C++, COBOL, or REXX

programs.
v Access databases such as DB2

Net.Data passes this Web page to the Web server, which in turn forwards the page
over the network for display at the browser. Other members of the Net.Data family
of products provide similar capabilities on machines executing the Windows NT,
AIX, OS/2, AS/400, HP-UX, Sun Solaris, Linux, and Dynix/PTX operating
systems.

Net.Data can be used in server environments that are configured to use interfaces
such as HyperText Transfer Protocol (HTTP) and Common Gateway Interface
(CGI). HTTP is an industry-standard interface for interaction between a browser
and Web server, and CGI is an industry-standard interface for Web server
invocation of gateway applications like Net.Data. Net.Data also supports a variety
of Web server Application Programming Interfaces (Web server APIs) and FastCGI
for improved performance, as well as a Servlet interface for integration into a
Websphere environment.

What’s New in Version 7?
Net.Data Version 7 offers all of the functionality of previous releases of Net.Data
and much more, including the following additional features:
v The ability to execute Net.Data as a FastCGI application.
v The ability to generate XML compliant documents using the new XMLBlock.

© Copyright IBM Corp. 1997, 2001 v

v The ability to call SQL functions from the REPORT and ROW blocks of other
SQL functions.

v Net.Data has a new language environment for running COBOL applications.
v The ability to exploit the DB2 prepare cache through the use of

DTW_USE_DB2_PREPARE_CACHE.
v The ability to upload files to the server.
v New Net.Data built-in functions: DTWF_COPY(), DTWF_EXISTS(),

DTWF_READFILE(), DTWF_WRITEFILE().
v Support for Web page caching as well as the manual management of LOBs and

cached Web pages when Net.Data is configured for CGI.
v The ability to write user-specified messages to the Net.Data error log and the

Net.Data trace log through built-in functions and user-written Language
Environments.

v The ability to call SQL functions from the REPORT and ROW blocks of other
SQL functions.

v Support for the DTW_DEFAULT_MACRO configuration variable.
v Other general performance, scalability, tracing and serviceability enhancements.

About This Book
This book discusses administration and programming concepts for Net.Data, as
well as how to configure Net.Data and its components, plan for security, and
improve performance.

Building on your knowledge of programming languages and database, you learn
how to use the Net.Data macro language to develop macros. You learn how to use
Net.Data-provided language environments that access DB2 databases, IMS
transactions, as well as use Java, REXX, Perl,COBOL, and other programming
languages to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest copy of
this book, is available from the following World Wide Web site:

http://www.ibm.com/software/data/net.data/

Who Should Read This Book
This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should be
familiar with how a Web server works, understand simple SQL statements, and
know HTML tags, including HTML form tags.

SMP/E installation information is provided in Program Directory for Net.Data for
OS/390 Version 7 Release 1.

The Net.Data macro language, variables, and built-in functions, as well as
operating system differences are described in Net.Data Reference.

vi IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

About Examples in This Book
Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You can use
any of the following methods to provide comments:
v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name

of the product, the version number of the product, and the number of the book.
If you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.
v Complete the readers’ comment form at the back of the book and return it by

mail, by fax (800-426-7773 for the United States and Canada), or by giving it to
an IBM representative.

v Mail—Print and use the Readers’ Comments form on the next page. To print the
form, select Print or Copy from the Services pull-down menu. Enter
COMMENTS as the topic to be printed or copied. Mail the completed form to:

IBM Corporation, Department W92/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

If you are sending the form from a country other than the United States, give it
to your local IBM branch office or IBM representative for mailing.

v Fax—Print and use the Readers' Comments form at the end of this book and fax
it to this U.S. number: 800-426-7773 or (408) 463-4393. To print the form, follow
the instructions under "Mail".

Preface vii

viii IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 1. Introduction

Net.Data is a server-side scripting language that extends Web servers by enabling
the dynamic generation of Web pages using data from a variety of data sources.
The data sources can include relational and non-relational database management
systems such as DB2, DRDA-enabled databases, and flat file data. You can build
applications rapidly using Net.Data’s simple yet powerful cripting language.
Net.Data allows reuse of existing business logic by supporting calls to applications
written in a variety of programming languages, including Java, C/C++, COBOL,
REXX and others.

This chapter describes Net.Data and the reasons why you would choose to use it
for your Web applications.
v “What is Net.Data?”
v “Why Use Net.Data?” on page 2

What is Net.Data?
Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro is a
text file containing Net.Data language constructs, which are used to build an
application that can consist of HTML, XML, Javascript, and language environment
statements, such as SQL and Perl. Net.Data processes the macro to produce output
that can be displayed by a Web browser. Macros combine the simplicity of HTML
with the dynamic functionality of Web server programs, making it easy to add live
data to static Web pages. The live data can be extracted from local or remote
databases and from flat files, or be generated by applications and system services.

Figure 1 illustrates the relationship between Net.Data for OS/390, the Web server,
and supported data and programming language environments.

The Web server invokes Net.Data using CGI, FastCGI, Servlets, or a Web server
application programming interface (API) when it receives a URL that requests

Figure 1. The Relationship between Net.Data for OS/390, the Web Server, and Supported
Data and Program Sources

© Copyright IBM Corp. 1997, 2001 1

Net.Data services. The URL includes Net.Data-specific information, including either
the macro that is to be processed or the SQL statement or program that is to be
directly invoked. When Net.Data finishes processing the request, it sends the
resulting Web page to the Web server. The server passes it on to the Web client,
where it is displayed by the browser.

Why Use Net.Data?
Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications and
because Net.Data lets you use languages that you already know, such as HTML,
SQL, Perl, REXX, and JavaScript. In addition, changes to a macro can be seen
instantaneously on a browser.

Net.Data complements the extensive data management capabilities that already
exist on the OS/390 operating sytem by enabling both data and related business
logic for the Web. More specifically, Net.Data:
v Provides a simple, yet powerful macro language that allows for rapid

development of Internet and Intranet applications.
v Permits the separation of data generation logic from presentation logic within

your Web applications. Net.Data does not impose any restrictions on the method
with which the data is presented (such as HTML or Javascript). This separation
allows users to easily change the presentation of data using the latest
presentation techniques.

v Allows you to use existing skills and business logic to generate Web pages by
providing the ability to interface with programs written in C, C++, REXX, Java
or other languages.

v Provides the ability to develop complex Internet applications quickly, using a
simple macro language and existing programming skills.

v Provides high-performance access to data that is managed by local DB2
subsystems and by remote DRDA-enabled data sources.

v Provides easy migration of macros between all operating systems supported by
the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When Net.Data
is invoked to process a macro, Net.Data directly interprets each language
statement in a sequential fashion, starting from the top of the file. Using
this approach, any changes you make to a macro can be immediately seen
when you next specify the URL that executes the macro. No recompilation
is required.

Direct Requests
Simple requests that require the execution of a single SQL statement, DB2
stored procedure, REXX program, C or C++ program, or Perl script do not
require the creation of a macro. These requests can be specified directly
within the URL that flows from the browser to the Web server.

Free Format

The Net.Data macro language has only a few rules about programming
format. This simplicity provides programmers with freedom and flexibility.
A single instruction can span many lines, or multiple instructions can be
entered on a single line. Instructions can begin in any column. Spaces or
entire lines can be skipped. Comments can be used anywhere.

2 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Variables Without Type

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents a
valid number, including those in exponential formats. Macro language
variables are discussed in detail in “Net.Data Macro Variables” on page 63.

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers. Other
built-in functions provide formatting capabilities and arithmetic
calculations.

Error Handling

When Net.Data detects an error, messages with explanations are returned
to the client. You can customize the error messages before they are
returned to a user at a browser. See “Configuration Variable Statements” on
page 7 and the Net.Data Reference for more information.

Chapter 1. Introduction 3

4 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 2. Installing and Configuring Net.Data

Net.Data for OS/390 is installed using SMP/E. The Program Directory for Net.Data
for OS/390 Version 7 Release 1 describes the SMP/E installation process and
accompanies the installation tape for Net.Data.

After using SMP/E to install Net.Data and after running the IVP , modify the Web
server and Net.Data configurations. The configuration tasks include one or more of
the following:
v Installing and customizing the Net.Data initialization (INI) file
v Configuring Net.Data for either CGI, GWAPI,, FastCGI, one of the supported

Web server APIs (optional), or Net.Data Servlets.
v Customizing the Web server configuration and environment variable files
v Setting up the Net.Data language environments
v Specifying access rights
v Enabling the message catalog

This chapter describes how to configure Net.Data and how to modify your
configuration of the Web server for use with Net.Data.
v “Installing the Net.Data Initialization File” on page 6
v “Customizing the Net.Data Initialization File” on page 6
v “Setting Up Net.Data Language Environments” on page 21
v “Managing Connections to DB2” on page 22
v “Workload Management Considerations” on page 23
v “Configuring Net.Data for Use with CGI” on page 23
v “Configuring Net.Data for FastCGI” on page 24
v “Configuring Net.Data for Use with GWAPI” on page 25
v “Configuring Net.Data for Use with Java Servlets” on page 26
v “Enabling the Message Catalog” on page 27
v “Granting Access Rights to Files and Data Sets Accessed by Net.Data” on

page 27

About the Net.Data Initialization File
Net.Data uses its initialization file to establish the settings of various configuration
variables and to configure language environments and search paths. The settings of
configuration variables control various aspects of Net.Data operation, such as the
following:
v The encoding of character data in DB2
v Enabling and disabling tracing and error logging
v The selection of the default subsystem ID and plan name for access to DB2 and

DRDA-enabled data

The language environment statements define the Net.Data language environments
that are available and identify special input and output parameter values that flow
to and from the language environments. The language environments enable
Net.Data to access different data sources, such as DB2 databases and system

© Copyright IBM Corp. 1997, 2001 5

services. The path statements specify the directory paths to HFS files that Net.Data
uses, such as macros, REXX programs, and Perl scripts.

To document the Net.Data initialiation file entries, you can use Net.Data
comments. See the comment block section in the language element chapter of
Net.Data Reference.

Installing the Net.Data Initialization File
The SMP/E install process creates the sample Net.Data initialization file named
db2www.ini in the directory /usr/lpp/netdata/pub. (The SMP/E install process is
described in Program Directory for Net.Data for OS/390 Version 7 Release 1.)

To install the Net.Data initialization file:

1. Copy the sample Net.Data initialization file to the Web server’s document root
directory. (The Web server’s document root directory is specified in the Web
server’s configuration file, /etc/httpd.conf, by the Pass directive with request
template “/*”. The Web server’s default document root directory is
/usr/lpp/internet/server_root/pub, but this might have been changed when
the Web server was installed. If your Web server’s document root directory is
different than internet/server_root/pub, then substitute your choice as
appropriate in these instructions.)
If you installed Net.Data in the directory /usr/lpp/netdata, then you can copy
the initialization file by executing the following shell command under OMVS:
cp /usr/lpp/netdata/pub/db2www.ini /usr/lpp/internet/server_root/pub

2. Ensure that the permissions for the Net.Data initialization file are 644.

Customizing the Net.Data Initialization File
The information contained in the initialization file is specified using three types of
configuration statements, described in the following sections:
v “Configuration Variable Statements” on page 7
v “Path Configuration Statements” on page 16
v “Environment Configuration Statements” on page 19

The sample initialization file shown in Figure 2 on page 7 contains examples of
these statements.

The text of each individual configuration statement must all be on one line. Ensure
that the initialization file contains an ENVIRONMENT statement for each language
environment that you call from your macros.

6 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

The following sections describe how to customize the configuration statements in
the initialization file. If you are migrating from a previous version of Net.Data, be
sure, also, to compare your initialization file with the sample provided in
/usr/lpp/netdata/pub/ for any additional recommended changes.
v “Configuration Variable Statements”
v “Path Configuration Statements” on page 16

The following ENVIRONMENT statement changes are required:
v Remove the RETURN_CODE variable from the parameter list of any

ENVIRONMENT statement in which it appears.
v Remove the DTW_DEFAULT, DTW_FILE, and DTW_APPLET ENVIRONMENT

statement.

The following changes should be considered because some configuration defaults
have changed:
v If your applications require the use of the variable SHOWSQL, then change the

DTW_SHOWSQL configuration variable to YES. See “DTW_SHOWSQL: Enable
or Disable SHOWSQL Configuration Variable” on page 14 for syntax and
examples.

v If your applications require the use of direct request invocation, then change the
DTW_DIRECT_REQUEST configuration variable to YES. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 12 for
syntax and examples.

v If you do not want to store the Net.Data error log or the Net.Data trace in
/usr/lpp/netdata/logs/, then change the DTW_ERROR_LOG_DIR or the
DTW_TRACE_LOG_DIR configuration variables to the appropriate directories.

Configuration Variable Statements
Net.Data configuration variable statements set the values of configuration
variables. Configuration variables are used for various purposes. Some variables
are required by a language environment to work properly or to operate in an
alternate mode. Other variables control the character encoding or content of the
Web page being constructed. Additionally, you can use configuration variable
statements to define application-specific variables.

The configuration variables you use depend on the language environments, the
DB2 subsystems you are using, as well as other factors that are specific to the
application.

1 %(Sample Initialization File %)
2 MACRO_PATH /usr/lpp/netdata/macros;
3 EXEC_PATH /usr/lpp/netdata/testcmd;
4 DB2SSID DBNC
5 DB2PLAN DTWNDPLN
6 DTW_DIRECT_REQUEST NO
7 DTW_SHOWSQL NO
8 ENVIRONMENT (DTW_SQL) dtwsql ()
9 ENVIRONMENT (DTW_ODBC) odbcdll ()
10 ENVIRONMENT (DTW_PERL) perldll ()
11 ENVIRONMENT (DTW_REXX) rexxdll ()
12 ENVIRONMENT (DTW_SYSTEM) sysdll ()
ENVIRONMENT (DTW_COBOL) coboldll (IN DTW_COBOL_PARAMETER_BUFFER_SIZE)

v Line 1 contains a
comment

v Lines 2 - 3 define
paths to HFS files

v Lines 4 - 7 define
configuration
variables

v Lines 8 - 12 define
the environment
statements that are
available.

Figure 2. The Net.Data initialization file

Chapter 2. Installing and Configuring Net.Data 7

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are required
for your application. A configuration variable has the following syntax:
NAME [=] value-string

The equal sign is optional, as denoted by the brackets.

The following sub-sections describe the configuration variables statements that you
can specify in the initialization file:
v “DB2MSGS: DB2 Message Text Variable” on page 9
v “DB2PLAN: DB2 Plan Variable” on page 9
v “DB2SSID: DB2 Subsystem ID Variable” on page 9
v “DefaultDBCp: Default Database Code Page Variable” on page 10
v “DSNAOINI: DB2 CLI Initialization File Variable” on page 10
v “DTW_CACHE_MACRO: Caching of Macros” on page 11
v “DTW_CACHE_MANAGEMENT_INTERVAL: Frequency of Web Page Caching”

on page 11
v “DTW_CACHE_PAGE: Caching of Web Pages” on page 11
v “DTW_COBOL_PARAMETER_BUFFER_SIZE” on page 11
v “DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error Messages” on

page 11
v “DTW_DEFAULT_MACRO: Specify a default macro” on page 12
v “DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 12
v “DTW_DO_NOT_CACHE_MACRO: Caching of Macros” on page 12
v “DTW_ERROR_LOG_DIR: Location of Error Log” on page 12
v “DTW_ERROR_LOG_LEVEL: Level of Error to Log” on page 12
v “DTW_LOB_DIR” on page 13
v “DTW_LOB_LIFETIME: Length of Time LOBs Are Available” on page 13
v “DTW_MBMODE: Native Language Support Variable” on page 13
v “DTW_REMOVE_WS: Variable for Removing Extra White Space” on page 13
v “DTW_OUTPUT_DIR: Directory where Net.Data output files are stored” on

page 13
v “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable” on

page 14
v “DTW_STORE_PAGE: Macros from which to store output” on page 14
v “DTW_TRACE_LOG_DIR: Location of Trace File” on page 15
v “DTW_TRACE_LOG_LEVEL: Level of Trace to Log” on page 15
v “DTW_UPLOAD_DIR” on page 15
v “DTW_USE_DB2_PREPARE_CACHE” on page 15

Configuration variable assumptions: The sample Net.Data initialization file makes
several assumptions about customizing the setting of Net.Data configuration
variables. These assumptions may not be correct for your environment:
v The DB2 subsystem ID specification uses DBNC; replace this value using the

DB2SSID configuration variable for your application.
v The DB2 plan specification uses DTWNDPLN; replace this value using the

DB2PLAN configuration variable for your application.

8 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

v If your applications require the use of the variable SHOWSQL, then change the
DTW_SHOWSQL configuration variable to YES. See “DTW_SHOWSQL: Enable
or Disable SHOWSQL Configuration Variable” on page 14 for syntax and
examples.

v If your applications require the use of direct request invocation, then change the
DTW_DIRECT_REQUEST configuration variable to YES. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 12 for
syntax and examples.

DB2MSGS: DB2 Message Text Variable
Specifies whether Net.Data loads DB2-provided message text for SQLCODES when
using the SQL language environment to access DB2 for OS/390.

This variable does not affect MESSAGE blocks.

Syntax:
DB2MSGS [=] message_level

Where message_level indicates the level of DB2-provided messages that Net.Data
displays. message_level can be set to the following values:

NONE Specifies that Net.Data displays no message text.

ERRORONLY Specifies that Net.Data displays message text only
for negative SQLCODE values

ALL Specifies that Net.Data displays message text for all
SQLCODE values. This is the default. If a value is
provided for DB2MSGS other than one of the valid
values listed above, Net.Data uses the default value
of ALL.

Performance tip: When the display of DB2 message text at the browser is not
required, specifying NONE can improve performance. When the display of DB2
warning message text at the browser is not required, specifying ERRORONLY can
improve performance.

DB2PLAN: DB2 Plan Variable
Specifies the default DB2 plan to be used by the SQL language environment when
accessing DB2 for OS/390.

Syntax:
DB2PLAN [=] plan_name

Example: Sets the default DB2 plan name
DB2PLAN DTWNDPLN

To override the initialization file setting in the macro:

1. Add the DB2PLAN variable as a parameter of the DTW_SQL ENVIRONMENT
statement in initialization file as shown in the following example:
ENVIRONMENT (DTW_SQL) dtwsql (IN DB2PLAN)

2. In the macro, set the variable DB2PLAN to the value required for the
application.

DB2SSID: DB2 Subsystem ID Variable
Specifies the default DB2 subsystem ID used by the SQL language environment
when accessing DB2 for OS/390.

Chapter 2. Installing and Configuring Net.Data 9

Syntax:
DBS2SSID [=] subsystem_id

Example: Sets the default DB2 subsystem ID
DB2SSID DBNC

To override the initialization file setting in the macro:

1. Add the DB2SSID variable as a parameter of the DTW_SQL ENVIRONMENT
statement in initialization file as shown in the following example:
ENVIRONMENT (DTW_SQL) dtwsql (IN DB2SSID)

2. In the macro, set the variable DB2SSID to the value required for the
application.

DefaultDBCp: Default Database Code Page Variable
Specifies the default code page that Net.Data uses when accessing database data.
Net.Data uses the setting of this variable to:
v Convert SQL statement text and the values of input variables for stored

procedure calls from the default file system code page to the default database
code page

v Convert the values of output variables from stored procedure calls and result
tables from the default database code page to the default file system code page

The Web server’s configuration file (/etc/httpd.conf) specifies the default code
page environment through DefaultFsCp and DefaultNetCp directives. The
DefaultFsCp directive specifies the default file system code page on the server. This
code page is the EBCDIC code page in which the Web server expects to receive
text streams from Net.Data. The DefaultNetCp directive specifies the default
network code page. This code page is the ASCII code page used to encode text
streams that are served by the Web server.

Performance tip: Do not configure the code page variable DefaultDBCp unless
your application requires it. When you define this variable, Net.Data assumes a
special conversion is necessary.

If DefaultDBCp is not specified within the initialization file, then Net.Data assumes
that the code page for the data in the database is equivalent to the default file
system code page and no conversions take place.

Syntax:
DefaultDBCp [=] code_page

DSNAOINI: DB2 CLI Initialization File Variable
Specifies the name of the DB2 CLI initialization file. The value of this configuration
variable can be a sequential data set, a member of a partitioned data set, or an HFS
file.

If you want to use the Net.Data ODBC language environment, use this variable to
specify the name of your DB2 CLI initialization file. If you plan to use the ODBC
language environment with FastCGI, GWAPI or Servlets, set the
MVSATTACHTYPE variable in the DB2 CLI initialization file to RRSAF. Also, set
the PLANNAME variable to the same plan name as the one specified by
DB2PLAN.

Syntax:
DSNAOINI [=] CLI_initialization_file_name

10 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Example 1: A sequential dataset CLI initialization file name
DSNAOINI DBNC.DSNAOINI

Example 2: A member of a partitioned data set
DSNAOINI DBNC.CLI(DSNAOINI)

Example 3: An HFS file
DSNAOINI /u/USER1/ODBC/cli.ini

DTW_CACHE_MACRO: Caching of Macros
Specifies macros that are to be cached by Net.Data. This variable works with the
DTW_DO_NOT_CACHE_MACRO configuration variable. See “Net.Data Caching
of Macros” on page 120 for more information on using these configuration
variables.

DTW_CACHE_MANAGEMENT_INTERVAL: Frequency of Web
Page Caching
This configuration variable sets the minimum time interval that automatic web
page caching can occur. See “Configuring Net.Data to Automatically Manage
Cached Web Pages and Large Objects” on page 29 for more information on using
this configuration variable.

Syntax:
DTW_CACHE_MANAGEMENT_INTERVAL [=] seconds

DTW_CACHE_PAGE: Caching of Web Pages
Specifies pages that are to be cached by Net.Data. See “Dynamic Web Page
Caching” on page 121 for more information on using this configuration variable.

Syntax:
DTW_CACHE_PAGE [=] file_name_spec|path_template_spec lifetime usage_scope

DTW_COBOL_PARAMETER_BUFFER_SIZE
Specifies the maximum length of the variable that contains all the parametersis that
are passed between the COBOL language environment and the COBOL module.

Syntax:
DTW_COBOL_PARAMETER_BUFFER_SIZE [=] number_of_bytes

DTW_DEFAULT_ERROR_MESSAGE: Specify Generic Error
Messages
Use the DTW_DEFAULT_ERROR_MESSAGE configuration variable to specify a
generic error message for applications in production. This variable provides a
generic message for error conditions that are not captured in any MESSAGE block.

If you still wish to see the actual error messages generated by Net.Data, use error
message logging to capture the messages. See “Net.Data Error Log” on page 128 to
learn about using the error log.

If the configuration variable is not specified, Net.Data displays its own provided
message for the error condition.

Syntax:
DTW_DEFAULT_ERROR_MESSAGE [=] "message"

Example: Specifies a generic message

Chapter 2. Installing and Configuring Net.Data 11

DTW_DEFAULT_ERROR_MESSAGE "This site is temporarily unavailable."

DTW_DEFAULT_MACRO: Specify a default macro
Use the DTW_DEFAULT_MACRO configuration variable to specify a default
macro to be executed when Net.Data cannot find the macro requested in the URL.

You can use the environment variable PATH_INFO to determine the missing
macro, as well as the HTML block that the URL requested.

If this configuration variable is not specified, Net.Data will print its own error
message indicating that the macro could not be found.

Syntax:
DTW_DEFAULT_MACRO [=] name_of_macro

Example: Specifies the default macro that will execute.
DTW_DEFAULT_MACRO logurl.dtw

DTW_DIRECT_REQUEST: Enable Direct Request Variable
Enables or disables Net.Data direct request invocation. By default, direct request is
disabled.

The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly within a URL.
When direct request is disabled, the user must invoke Net.Data using the macro
request method, allows users to execute only those SQL statements and functions
defined or called in a macro. See “Using Net.Data Mechanisms” on page 37 for
security-related recommendations when using DTW_DIRECT_REQUEST.

Syntax:
DTW_DIRECT_REQUEST [=] YES|NO

Where:

YES Enables Net.Data direct request.

NO Disables Net.Data direct request. NO is the default.

DTW_DO_NOT_CACHE_MACRO: Caching of Macros
Specifies macros that are not to be cached by Net.Data; all other macros are cached.
This variable works with the DTW_CACHE_MACRO configuration variable. See
“Net.Data Caching of Macros” on page 120 for more information on using these
directives.

DTW_ERROR_LOG_DIR: Location of Error Log
Sets the directory where the error log is stored. See “Setting the Error Log File
Directory” on page 129 for more information on using this configuration variable.

Syntax:
DTW_ERROR_LOG_DIR [=] full_directory_path

DTW_ERROR_LOG_LEVEL: Level of Error to Log
Sets the level of error logging. See “Setting the Level of Error Logging” on
page 129 for more information on using this configuration variable.

Syntax:
DTW_ERROR_LOG_LEVEL [=] OFF|INFORMATION|ALL

12 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

DTW_LOB_DIR
Specifies into which directory Net.Data writes large objects (LOBs).

Syntax:
DTW_LOB_DIR [=] path

Example: The following example shows the DTW_LOB_DIR configuration variable
in the initialization file.
DTW_LOB_DIR /db2/lobs

When a query returns a LOB, Net.Data saves it in the directory specified in the
DTW_LOB_DIR configuration variable.

Tip: Consider system limitations when using LOBs because they can quickly
consume resources. See “Using Large Objects” on page 95 for more information.

DTW_LOB_LIFETIME: Length of Time LOBs Are Available
Sets how long LOB files are to be available on the filesystem. See “Configuring
Net.Data to Automatically Manage Cached Web Pages and Large Objects” on
page 29 for more information on using this configuration variable.

Syntax:
DTW_LOB_LIFETIME [=] seconds

DTW_MBMODE: Native Language Support Variable
Activates national language support for word and string functions. When the value
of this variable is YES, all string and word functions correctly process MBCS
characters within strings by treating strings as mixed data (that is, as strings that
potentially contain characters from both single-byte character sets and double byte
character sets). The default value is NO. You can override the value set in the
initialization file by setting the DTW_MBMODE variable in a Net.Data macro.

Syntax:
DTW_MBMODE [=] NO|YES

You can override this variable in the macro by using the DEFINE statement.

DTW_REMOVE_WS: Variable for Removing Extra White Space
When this variable is set to YES, Net.Data removes extraenneous white space from
the HTML output. By compressing white space, this variable reduces the amount
of data sent to the Web browser, thereby improving performance. The default is
NO.

You can override this variable in the macro by using the DEFINE statement.

Syntax:
DTW_REMOVE_WS [=] YES|NO

DTW_OUTPUT_DIR: Directory where Net.Data output files are
stored
Specifies the directory into which Net.Data will store an HTML page or XML
document that is generated from an HTML or XML block of an executed Net.Data
macro. Only one directory can be specified. If a directory is not specified, then no
files will not be saved. To save web pages, both DTW_STORE_PAGE and
DTW_OUTPUT_DIR must be specified.

Chapter 2. Installing and Configuring Net.Data 13

When saving files into the specified directory, Net.Data generates unique file
names for HTML pages and XML documents. The file name will be generated by
using the macro file name (not including the directory path for the fully qualified
file name), the HTML or XML block name, a unique string identifier, and a .html
or .xml file extension.
MacroFileName + "." BlockName + "." + UniqueIdentifier + "." + FileExtension

For example, the output generated by the execution of the XML block
Configuration_Parameter_Values of the macro orders_placed.dtw will be placed in
a file with a name similar to the following:
orders_places.dtw.Configuration_Parameter_Values.20001121131623123-239-023.xml

Syntax:
DTW_OUTPUT_DIR directory_path

Example:
DTW_OUTPUT_DIR /netdata/output

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable
Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL [=] YES|NO

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is set
to YES. NO is the default.

Table 1 describes how the settings in the Net.Data initialization file and the macro
determine whether the SHOWSQL variable is enabled or disabled for a particular
macro.

Table 1. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of
DTW_SHOWSQL

Setting SHOWSQL SQL statement is
displayed

NO NO NO

NO YES NO

YES NO NO

YES YES YES

DTW_STORE_PAGE: Macros from which to store output
Specifies the Net.Data-generated web pages that are to be stored in the directory
specified by DTW_OUTPUT_DIR. To save web pages, both DTW_STORE_PAGE
and DTW_OUTPUT_DIR must be specified. Using DTW_STORE_PAGE, you
categorize which web pages to save by specifying the HTML or XML blocks whose
output you want to capture. You can specify these blocks individually, by macro,
or by path.

Syntax:
DTW_STORE_PAGE [=] file_name_spec|path_template_spec;...

14 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Where:

filename_spec
Specifies one or all of the HTML or XML blocks within a macro. To specify one
HTML or XML block, use the fully qualified name of the macro followed by a
’/’ and the block name. To specify all HTML or XML blocks, use the fully
qualified macro name and the suffix /*. Either a block name or an * must be
specified after the macro name.

path_template_spec
Specifies all of the macros contained within the path specified. A path template
contains a full path followed by the suffix /*.

Example 1: To store web pages from all HTML or XML blocks in the macro
mymacro.dtw
DTW_STORE_PAGE /u/USER/macros/mymacro.dtw/*

Example 2: To store web pages from all HTML or XML blocks in the macro
mymacro.dtw and the web page from the ″report″ HTML block of the macro
report.dtw
DTW_STORE_PAGE /u/USER/macros/mymacro.dtw/*;/u/USER/macros/report.dtw/report

Example 3: To store web pages from all executions of all macros in certain
directories
DTW_STORE_PAGE /u/USER/macros/*;/u/USER2/macros/*

Example 4: To store web pages from every macro request
DTW_STORE_PAGE /*

DTW_TRACE_LOG_DIR: Location of Trace File
Sets the directory where the trace log is stored. See “Setting the Trace Log
Directory” on page 127 for more information on using this configuration variable.

Syntax:
DTW_TRACE_LOG_DIR [=] full_directory_path

DTW_TRACE_LOG_LEVEL: Level of Trace to Log
Sets the level of trace logging. See “Setting the Level of Trace Logging” on page 127
for more information on using this configuration variable.

Syntax:
DTW_TRACE_LOG_LEVEL [=] OFF|APPLICATION|SERVICE

DTW_UPLOAD_DIR
Specifies into which directory Net.Data will store files uploaded by the client.
When this variable is not set, Net.Data will not accept the files for upload.

Syntax:
DTW_UPLOAD_DIR [=] path

Example:
DTW_UPLOAD_DIR /tmp/uploads

DTW_USE_DB2_PREPARE_CACHE
Specifies that Net.Data should take advantage of the DB2 prepare cache. When you
want all of your macros to take advantage of this feature, set the
DTW_USE_DB2_PREPARE_CACHE configuration variable to YES in your Net.Data

Chapter 2. Installing and Configuring Net.Data 15

initialization file. To activate this feature for only the statements in a particular
macro, you can use the DTW_USE_DB2_PREPARE_CACHE macro variable. See
the Net.Data Reference for more information.

Syntax:
DTW_USE_DB2_PREPARE_CACHE [=] YES|NO

Where:

YES Specifies that Net.Data modify all SQL statements to take advantage of the
prepare cache. You can disable this feature for a particular SQL statement
by setting the macro variable to ″NO″ using %DEFINE or
@DTW_ASSIGN().

NO Specifies that Net.Data leave the SQL statement untouched. This is the
default.

Path Configuration Statements
Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:
v “EXEC_PATH” on page 17
v “FFI_PATH” on page 17
v “INCLUDE_PATH” on page 18
v “MACRO_PATH” on page 18

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executable files, HFS files, and include files. The
path statements that you need depend on the Net.Data capabilities that your
macros use.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data search paths. These assumptions might not be
correct for your environment and require that you modify the path configuration
statements:
v If your Net.Data macro directory path is different than

/usr/lpp/netdata/macros, then replace it with your macros directory path in the
MACRO_PATH statement.
The files contained in the Net.Data /usr/lpp/netdata/macros directory are under
SMP/E control and cannot be modified. If you modify any of these files, make
the modifications to copies of the files stored in directories that you create. You
must instruct Net.Data to search for these files in your private directories prior
to searching the SMP/E-created directories. To do this, add your private
directories in front of the SMP/E-created directories in the path statements of
the db2www.ini file. For example, if you customize a macro that is provided
during the SMP/E installation and place the macro in the directory
/u/user1/macros, replace the default MACRO_PATH statement with:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros

v If your Net.Data external program directory path is different than
/usr/lpp/netdata/testcmd, then replace it with your external program directory
path in the EXEC_PATH statement.

v If your Net.Data flat file directory path is different from /usr/lpp/netdata/file-
data, then replace it with your flat file directory path in the FFI_PATH
statement.

16 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Update guidelines:

Some general guidelines apply to the path statements. Exceptions are noted in the
description of each path statement.
v Seperate each specified directory in the path statement with a semicolon (;).
v Each path statement can specify multiple paths. Paths are searched from left to

right in the order specified. This multiple-path capability lets you organize your
files within multiple directories. For example, you can place each of your Web
applications in its own directory.

v It is recommended to use absolute path statements.

The following sections describe the purpose and syntax of each path statement and
provide examples of valid path statements.

EXEC_PATH
This path configuration statement identifies one or more directories that Net.Data
searches for an external program that is invoked by the EXEC statement or an
executable variable. If the program is found, the external program name is
appended to the path specification, resulting in a fully qualified file name that is
passed to the language environment for execution.

Syntax:
EXEC_PATH [=] path1;path2;...;pathn

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an external
program.

Net.Data initialization file:
EXEC_PATH /u/user1/prgms;/usr/lpp/netdata/prgms;

Net.Data macro:
%FUNCTION(DTW_REXX) myFunction() {

%EXEC{ myFunction.cmd %}
%}

If the file myFunction.cmd is found in the /usr/lpp/netdata/prgms directory, the
qualified name of the program is /usr/lpp/netdata/prgms/myFunction.cmd.

FFI_PATH
This path configuration statement identifies one or more directories that Net.Data
searches for an HFS file that is referenced by a flat file interface (FFI) function.

Syntax:
FFI_PATH [=] path1;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the
initialization file.

Net.Data initialization file:
FFI_PATH /u/user1/ffi;/usr/lpp/netdata/ffi;

When the FFI language environment is called, Net.Data looks in the path specified
in the FFI_PATH statement.

Chapter 2. Installing and Configuring Net.Data 17

Because the FFI_PATH statement is used to provide security to those files not in
directories in the path statement, there are special provisions for FFI files that are
not found. See the FFI built-in functions section in Net.Data Reference.

INCLUDE_PATH
This path configuration statement identifies one or more directories that Net.Data
searches to find a file specified on an INCLUDE statement in a Net.Data macro.
When it finds the file, Net.Data appends the include file name to the path
specification to produce the qualified include file name.

Syntax:
INCLUDE_PATH [=] path1;path2;...;pathn

Example 1: The following example shows both the INCLUDE_PATH statement in
the initialization file and the INCLUDE statement that specifies the include file.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "myInclude.txt"

If the file myInclude.txt is found in the /u/user1/includes directory, the
fully-qualified name of the include file is /u/user1/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and an
INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

The include file is searched for in the directories /u/user1/includes/OE and
/usr/lpp/netdata/includes/OE. If the file is found in
/usr/lpp/netdata/includes/OE, the fully qualified name of the include file is
/usr/lpp/netdata/includes/OE/oeheader.inc.

MACRO_PATH
This path configuration statement identifies the directories that Net.Data searches
for Net.Data macros. For example, specifying the following URL requests the
Net.Data macro with the path and file name /macro/sqlm.dtw:
http://server/netdata-cgi/db2www/macro/sqlm.dtw/report

Syntax:
MACRO_PATH [=] path1;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Net.Data appends the path /macro/sqlm.d2w/report to the paths in the
MACRO_PATH configuration statement, from left to right until Net.Data finds the
macro. If the macro is not found, Net.Data will execute the macro defined for the

18 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

DTW_DEFAULT_MACRO configuration variable, or it will print an error. See
“Chapter 4. Invoking Net.Data” on page 41 for information on invoking Net.Data
macros.

Example: The following example shows the MACRO_PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros

HTML link:
Submit another query.

If the file query.dtw is found in the directory /u/user1/macros, then the
fully-qualified path is /u/user1/macros/query.dtw.

Environment Configuration Statements
An ENVIRONMENT statement configures a language environment. A language
environment is a component of Net.Data that Net.Data uses to access a data source
such as a DB2 database or to execute a program written in a language such as
REXX. Net.Data provides a set of language environments, as well as an interface
that allows you to create your own language environments. These language
environments are described in “Chapter 6. Using Language Environments” on
page 91 and the language environment interface is described in Net.Data Language
Environment Interface Reference.

Net.Data requires that an ENVIRONMENT statement for a particular language
environment exist before you can invoke that language environment.

You can associate variables with a language environment by specifying the
variables as parameters in the ENVIRONMENT statement. Net.Data implicitly
passes the parameters that are specified on an ENVIRONMENT statement to the
language environment as macro variables. To change the value of a parameter that
is specified on an ENVIRONMENT statement in the macro, either assign a value to
the variable using the DTW_ASSIGN() function or define the variable in a DEFINE
section.

Important: If a variable is defined in a macro but is not specified on the
ENVIRONMENT statement, the macro variable will not be passed to the language
environment.

For example, a macro can define a LOCATION variable to specify the location
name of the remote DBMS at which an SQL statement within a DTW_SQL function
is to be executed. The value of LOCATION must be passed to the SQL language
environment (DTW_SQL) so that the SQL language environment can connect to the
designated remote DBMS. To pass the variable to the language environment, you
must add the LOCATION variable to the parameter list of the environment
statement for DTW_SQL.

There are also variables that you set as configuration variables in the initialization
file, and that you can override in a macro. For example, if you want a macro to
override the default settings of the DB2PLAN and DB2SSID variables when the
SQL language environment is invoked, include them on the ENVIRONMENT
statement for DTW_SQL.

Chapter 2. Installing and Configuring Net.Data 19

ENVIRONMENT statement changes: If you are migrating from a previous version
of Net.Data, make the following changes in the ENVIRONMENT statement section:
v Remove the RETURN_CODE variable from the parameter list of any

ENVIRONMENT statement in which it appears.
v Remove the DTW_DEFAULT ENVIRONMENT, DTW_FILE, AND

DTW_APPLET statements.
v If you plan to use DB2 UDB Server for OS/390 V6 or later for your applications,

change the name dtwsql to dtwsqlv6 in the ENVIRONMENT statement for
DTW_SQL.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements. These
assumptions may not be correct for your environment. Modify the statements
appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT(type) library_name (parameter_list, ...)

Parameters:

v type

The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the
type of the language environment on a FUNCTION block definition to identify
the language environment that Net.Data should use to execute the function.

v library_name

The name of the DLL containing the language environment interfaces that
Net.Data calls.
The DLL name is specified without the .dll extension.

v parameter_list

The list of parameters that are passed to the language environment on each
function call, in addition to the parameters that are specified in the FUNCTION
block definition.
To set and pass the variables in the parameters list, define the variable in the
macro.
You must define these parameters as configuration variables or as variables in
your macro before executing a function that will be processed by the language
environment. The following example specifies the variables in the
ENVIRONMENT statement:
ENVIRONMENT(DTW_SQL) dtwsql (LOCATION, DB2SSID, DB2PLAN)

If a function modifies any of its output parameters, the parameters keep their
modified value after the function completes.

When Net.Data processes the initialization file, it does not load the language
environment DLLs . Net.Data loads a language environment DLL when it first
executes a function that identifies that language environment. The DLL then
remains loaded for as long as Net.Data is loaded.

Example: ENVIRONMENT statements for Net.Data-provided language
environments

20 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

When customizing the ENVIRONMENT statements for your application, add the
variables to the ENVIRONMENT statements that need to be passed from your
initialization file to a language environment or that Net.Data macro writers need to
set or override in their macros.
ENVIRONMENT (DTW_SQL) dtwsql ()
ENVIRONMENT (DTW_ODBC) odbcdll ()
ENVIRONMENT (DTW_PERL) perldll ()
ENVIRONMENT (DTW_REXX) rexxdll ()
ENVIRONMENT (DTW_COBOL) coboldll ()
ENVIRONMENT (DTW_SYSTEM) sysdll ()

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up Net.Data Language Environments
After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly. The
following sections describe the steps necessary to set up the language
environments:
v “Setting up the SQL and ODBC Language Environments”

Setting up the SQL and ODBC Language Environments
The SQL language environment (DTW_SQL) and the ODBC language environment
(DTW_ODBC) use the DB2 load module library SDSNLOAD. The Net.Data SQL
and ODBC language environments require that this library reside in LINKLIST or
that it be specified in the STEPLIB DD statement of the Web server start-up
procedure. The name and location of the Web server start-up procedure depends
on your system configuration.

Required:

v Create a plan for Net.Data before using the Net.Data SQL and ODBC language
environments to call stored procedures or to execute other types of SQL
statements. The binds required for creating this plan depend on the language
environments that you plan to use and the version of DB2 you are using.

v The SQL and ODBC Language Environments require RRS Attach Facility when
using Net.Data with GWAPI, FastCGI, and Net.Data Servlets. Make sure the RRS
Attach Facility is installed for DB2 and OS/390 RRS is installed and configured
properly.

Use one of the following approaches to bind the Net.Data DBRM into a package.
v Use the sample JCL for binding the Net.Data. The samples bind DBRM into a

package, create a Net.Data plan that supports the use of the SQL language
environment, and grant EXECUTE authority on the plan to PUBLIC. The sample
JCL can be found in one of the following jobs, which can be found in
DTW710.SDTWBASE:

DTWBIND For the use of the SQL language environment with DB2 for
OS/390 V5

DTWBIND6 For the use of the SQL language environment with DB2 UDB
Server for OS/390 V6 or later

DTWOBIND For the use of the ODBC language environment, or both the
ODBC language environment and the SQL language
environment, with DB2 for OS/390 V5

Chapter 2. Installing and Configuring Net.Data 21

DTWOBND6 For the use of the ODBC language environment, or both the
ODBC language environment and the SQL language
environment, with DB2 UDB Server for OS/390 V6 or later

v If you plan to use both the SQL and ODBC language environments, bind the
DBRMs for DB2 CLI into the same plan as the Net.Data DBRM. Sample JCL for
binding the Net.Data DBRM and the DB2 CLI DBRMs into a package, for
creating a Net.Data plan that supports the use of the SQL and ODBC language
environments, and for granting EXECUTE authority on the plan to PUBLIC can
be found in DTW220.SDTWBASE(DTWOBIND).

You might need to make some minor changes to the sample JCL in order to
successfully execute the JCL within your environment. Follow the instructions
provided in the JCL to tailor your configuration, then submit the JCL.

Important: If you do not have Net.Data configured to use web page caching, you
can expect to receive a return code 4 from the bind job. You could be missing one
or more procedures (DTWDEPIN, DTWCCHIN, DTWCLEAN), packages
(DTWV71CL, DTWV71IN, DTWV71MN, DTWV71DP), and table
SYSIBM.DTWCACHEDPAGES.

Setting up the COBOL Language Environment
To setup the COBOL language environment, perform the following steps:
1. Modify the entry in Net.Data initianization file for the

DTW_COBOL_PARAMETER_BUFFER_SIZE variable. This configuration
variable specifies the maximum size of any INPUT value that the COBOL
language environment passes to the load module, as well as the maximum size
of any OUTPUT value that the load module passes to COBOL language
environment.

2. Set up the Web server startup procedure. For the other languages such as
system, Perl, or REXX, the EXEC_PATH identifies the directories that Net.Data
searches for an external program. But for COBOL, you will need to add the
data sets that contain the COBOL modules that you plan to use to the STEPLIB
DD statement of the Web server procedure.
For example, if IBMUSER.COBOL.LOAD is the data set that contains the load
modules, then modify STEPLIB DD statement as follows:
//STEPLIB DD DISP=SHR,DSN=IMBUSER.COBOL.LOAD

Managing Connections to DB2
Application programs like Net.Data must connect to DB2 for OS/390 to access
DB2-managed data or to execute DB2 stored procedures. When using GWAPI,
FastCGI, or Net.Data Servlets, Net.Data accomplishes this objective by using the
Resource Recovery Services Attachment Facility (RRSAF), which is provided as
part of the DB2 product. Because establishing a connection to a DB2 subsystem
involves significant overhead, the reuse of existing connections is an attractive
alternative to recreating a new connection for each user request. When configured
for CGI, Net.Data uses the Call Attachment Facility.

Net.Data supports the reuse of connections that are used by the SQL and ODBC
language environments when Net.Data is configured for use with GWAPI,
FastCGI, or Net.Data servlets. When a Web server thread processes a Net.Data user
request that requires access to DB2, Net.Data connects to DB2 and creates a DB2
thread. The DB2 thread remains as long as the Web server is running. When the
Web server assigns subsequent requests to this Web server thread, and access to

22 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

DB2 is needed, Net.Data reuses the existing DB2 thread. Net.Data modifies the
DB2 plan name and user ID, and switches to a new subsystem ID as needed to
match the requirements of the request. The number of DB2 threads created
increases until the number of DB2 threads matches the number of Web server
threads. At this point, the steady state operation of the server is reached. Net.Data
reuses the existing DB2 threads, and no new DB2 threads are created.

If Net.Data is configured for GWAPI or Servlets, no other applications that use
DB2 can run in the Web server address space running Net.Data. You may choose
to use WLM scalable Web server to isolate Net.Data GWAPI or Servlet transactions
from other transactions that use DB2, or you can reconfigure Net.Data to execute
as a FastCGI application.

No configuration of Net.Data is required for the use of connection management facilities.
However, if you want to use Work Load Manager (WLM) to manage the Web
server address spaces that process Net.Data requests, some additional WLM
configuration is needed.

Tip: When Net.Data is configured for GWAPI or Servlets, the number of Web
server threads should be set to a number less than the maximum number of DB2
threads allowed. If this is not the case, Net.Data may try to acquire a DB2
connection and the request will either fail or never complete.

Workload Management Considerations
Work Load Management (WLM) is a component of the OS/390 operating system
that provides facilities to define, implement, and monitor system performance
against business goals. WLM allocates resources for processing work by using
policies that you define, in order to better ensure that the performance and
scalability of your applications meets your requirements.

When you configure Net.Data for use with GWAPI, the Lotus Domino Go
Webserver lets you use WLM to establish policies to manage your Net.Data
workload. You can establish these policies by specifying application environments
and WLM transaction classes for processing URL requests that match a given
template.

For more information about WLM, refer to OS/390 MVS Planning: Workload
Management, GC28-1761.

For more information about configuring the Web server for use with WLM, refer to
your Web server’s documentation.

Configuring Net.Data for Use with CGI
The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGI lets you use Net.Data with your favorite Web server.
When executed using CGI, Net.Data communicates with DB2 databases using the
DB2 Call Attach Facility.

Configure Net.Data to use only one interface at a time. For example, if you
configure the webserver to execute Net.Data using CGI, do not also configure the
webserver to execute Net.Data using GWAPI or another interface. If you want to
later run Net.Data using another interface, such as FastCGI, then reconfigure the
web server solely for the new interface.

Chapter 2. Installing and Configuring Net.Data 23

The instructions below assume that you installed Net.Data in the directory
/usr/lpp/netdata/. If you did not install Net.Data into this directory, substitute
your installation directory.

To modify the Web server:

1. Add an Exec directive to the Web server’s configuration file, /etc/httpd.conf,
that redirects Net.Data requests to the /usr/lpp/netdata/cgi-bin directory. For
example:
Exec /netdata-cgi/* /usr/lpp/netdata/cgi-bin/*

2. Add your Net.Data cgi-bin directory to the LIBPATH statement of the Web
server’s environment variables file, /etc/httpd.envvars. If your Net.Data
cgi-bin directory is /usr/lpp/netdata/cgi-bin, then your LIBPATH statement
should be similar to the following statement:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/cgi-bin

3. Ensure that the permissions for the Net.Data executable files and DLLs and for
each directory in the path to the executable files and DLLs are 755.

4. Restart the Web server

For more detail on installing the Web server and on Web server configuration file
directives, refer to your Web server documentation.

Configuring Net.Data for FastCGI
The FastCGI interface is an industry-standard interface that allows an application
to execute in a similar manner to CGI applications, with the processes remaining
active from request-to-request. When executed using FastCGI, Net.Data
communicates with DB2 databases using the DB2 RRS Attach Facility.

Configure Net.Data to use only one interface at a time. For example, if you
configure the webserver to execute Net.Data using FastCGI, do not also configure
the webserver to execute Net.Data using GWAPI or another interface. If you want
to later run Net.Data using another interface, such as GWAPI, then reconfigure the
web server solely for the new interface. To modify the Web server:

1. Enable the Web server to execute FastCGI applications. (See your Web server
documentation for instructions on configuring for FastCGI.)

2. Add your Net.Data fcgi-bin directory to the LIBPATH statement of the Web
server’s environment variables file, /etc/httpd.envvars. If your Net.Data
fcgi-bin directory is /usr/lpp/netdata/fcgi-bin, then your LIBPATH statement
should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/fcgi-bin

3. Modify the FastCGI configuration file:
a. Create a new entry in the FastCGI configuration file for Net.Data.
b. Ensure that the Exec directive specifies the Net.Data executable

/usr/lpp/netdata/fcgi-bin/db2www.
c. Ensure that the Role deirective specifies Responder.
d. If you configured your Web server with WLM in scalable mode, use the

BindPath option instead of the Port option.
e. Edit the FastCGI configuration file to have an entry similar to the following:

Local {
Exec /usr/lpp/netdata/fcgi-bin/db2www
Role Responder
URL /fcgi-bin/db2www

24 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

BindPath /tmp/netdata_fcgi
NumProcesses 100
User IBMUSER
}

For more information on the FastCGI configuration file and its options, refer
to your Web server documentation.

4. Ensure that the permissions are at least read and execute for all users (chmod
755) for the Net.Data executable files, its DLLs, and for each directory in the
path to the executable files and DLLs.

5. Restart the Web server.

For more detail on installing the Web server and its configuration file directives,
refer to your Web server documentation.

Configuring Net.Data for Use with GWAPI
GWAPI is a Web server API supported by IBM’s HTTP Server. GWAPI applications
execute as a Web server plugin, as a thread in the Web server’s address space.

Configure Net.Data to use only one interface at a time. For example, if you
configure the webserver to execute Net.Data using GWAPI, do not also configure
the webserver to execute Net.Data using Java Servlets or another interface. If you
want to later run Net.Data using another interface, such as FastCGI, then
reconfigure the web server solely for the new interface.

When executed using FastCGI, Net.Data communicates with DB2 databases using
the DB2 RRS Attach Facility.

The instructions below assume that you installed Net.Data in the directory
/usr/lpp/netdata/. If you did not install Net.Data into this directory, substitute
your installation directory in the following instructions.

To modify the Web server:

1. Add a ServerInit directive to the Web server’s configuration file,
/etc/httpd.conf, that instructs the Web server to perform Net.Data-specific
initialization when the Web server executes its initialization routines. One
possible ServerInit directive is:
ServerInit /usr/lpp/netdata/icapi-lib/db2www:dtw_init

2. Add a Service directive to the Web server’s configuration file, /etc/httpd.conf,
that redirects Net.Data requests to the /usr/lpp/netdata/icapi-lib directory.
One possible Service directive is:
Service /netdata-cgi/db2www* /usr/lpp/netdata/icapi-lib/db2www:dtw_icapi*

3. Add a ServerTerm directive to the Web server configuration file
(/etc/httpd.conf) that instructs the Web server to perform Net.Data-specific
cleanup when the Web server is brought down or restarted. One possible
ServerTerm directive is:
ServerTerm /usr/lpp/netdata/icapi-lib/db2www:dtw_term

4. Add your Net.Data icapi-lib directory to the LIBPATH statement of the Web
server’s environment variables file, /etc/httpd.envvars. If your Net.Data
icapi-lib directory is /usr/lpp/netdata/icapi-lib, then your LIBPATH
statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/icapi-lib

Chapter 2. Installing and Configuring Net.Data 25

5. Ensure that the permissions are read and write for all users (chmod 755) for the
Net.Data executable files and DLLs and for each directory in the path to the
executable files and DLLs.

6. Restart the Web server.

For more detail on installing the Web server and on Web server configuration file
directives, refer to the Web server documentation.

Configuring Net.Data for Use with Java Servlets
Servlets are Java classes that perform a role similar to that of CGI programs or
Web server API plug-ins. Servlets run in a Java servlet-enabled Web server and
extend the server’s capabilities, much like the way Java applets run in a browser
and extend the browser’s capabilities. When executed using Java servlets, Net.Data
communicates with DB2 databases using the DB2 RRS Attach Facility.

Configure Net.Data to use only one interface at a time. For example, if you
configure the webserver to execute Net.Data using Java Servlets, do not also
configure the webserver to execute Net.Data using GWAPI or another interface. If
you want to later run Net.Data using another interface, such as FastCGI, then
reconfigure the web server solely for the new interface.

The instructions below assume that you installed Net.Data in the directory
/usr/lpp/netdata/. If you did not install Net.Data into this directory, substitute
your installation directory in the following instructions.

To modify the Web server:

1. Enable the Web server to run servlets. (See your Web server documentation for
instructions on registering and using servlets.)

2. Add your Net.Data servlet-lib directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your Net.Data
servlet-lib directory is /usr/lpp/netdata/servlet-lib, then your LIBPATH
statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/servlet-lib

3. Add the NetDataServlets.jar file to the CLASSPATH statement of the Web
server’s environment variables file, /etc/httpd.envvars. If the Net.Data
servlet-lib directory is /usr/lpp/netdata/servlet-lib, then your
CLASSPATH statement should be similar to the following statement:
CLASSPATH=/usr/lpp/JDK1.1/lib/classes.zip:/usr/lpp/netdata/servlet-lib/

NetDataServlets.jar

4. Ensure that the permissions are 755 for the Net.Data executable files and DLLs
and for each directory in the path to the executable files and DLLs.

5. After configuring Net.Data, configure the IBM WebSphere Application Server to
register the Net.Data servlets. Use one of the following methods:
v Update the jvm.properties file by adding the full pathname of the file

NetDataServlets.jar to the property named ncf.jvm.classpath.
v You can use the IBM WebSphere Application Server Manager:

a. From your web browser, launch the IBM WebSphere Application Server
Manager login screen.

b. Login to the manager and click Manage.
c. From the Setup menu, select Basic.
d. Add the full pathname of the file NetDataServlet.jar to the Java

classpath shown on the page.

26 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

e. Select No to the question, ″Use system classpath?″

6. Restart the Web server.

For more detail on installing the Web server and on Web server configuration file
directives, refer to the Web server documentation.

Enabling the Message Catalog
Net.Data for OS/390 provides English, Japanese, and Korean message catalogs.
You enable and specify these message catalogs in the Web server environment
variables file.

Unless you modified the directory structure or name when you created the
hierarchical file system (HFS) directory for Net.Data, you have already installed the
Net.Data English, Japanese, and Korean message catalogs in the files
/usr/lpp/netdata/C/dtw.cat, /usr/lpp/netdata/Ja_JP/dtw.cat, and
/usr/lpp/netdata/Ko_KR/dtw.cat, respectively.

If you did modify the directory structure or name, substitute your choice for
/usr/lpp/netdata in the following steps:
1. To enable the use of Net.Data message catalogs, add /usr/lpp/netdata/%L/%N to

the NLSPATH statement in the Web server’s environment variables file. Your
NLSPATH statement should be similar to:
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:/usr/lpp/netdata/%L/%N

2. To select the specific catalog that Net.Data uses, specify the value of the LANG
statement in the Web server’s environment variables file, /etc/httpd.envvars.
The syntax of the statement is
LANG = locale

Use Table 2 to specify the correct value for locale.

Table 2. LANG statement values

English Japanese Korean

LANG = C Ja_JP Ko_KR

Granting Access Rights to Files and Data Sets Accessed by Net.Data
Before using Net.Data, you need to ensure that the user IDs under which Net.Data
executes have the appropriate access rights to files and datasets that are referenced
in a Net.Data macro and to the macro that a URL references. This means that these
files must be in MVS datasets or HFS files and directories to which these user IDs
have explicit access rights.

More specifically, ensure that the user IDs under which Net.Data executes have the
following authorizations:
v To read the Net.Data initialization file, db2www.ini
v To execute the Net.Data executable files and DLLs, and to search the directories

in the paths to the executable files and DLLs
v To read the appropriate Net.Data macros and search the appropriate directories

identified by the MACRO_PATH path configuration statement
v To execute the appropriate files and to search the appropriate directories

identified by the EXEC_PATH path configuration statement

Chapter 2. Installing and Configuring Net.Data 27

v To read the appropriate files and to search the appropriate directories identified
by the INCLUDE_PATH path configuration statement

v To read and write the appropriate files, and to search the appropriate directories
identified by the FFI_PATH path configuration statement

v To read, write, and execute files in the /tmp HFS directory
v Optional: When using the DTW_ODBC language environment, to read the DB2

CLI initialization file specified by the DSNAOINI configuration variable.

Managing Cached Web Pages and Large Objects
If you set up Net.Data to cache Web pages (see “Dynamic Web Page Caching” on
page 121) or if Net.Data accesses many large objects (LOBs) (see “Using Large
Objects” on page 95), some management of the temporary files is necessary.
Net.Data provides features for automatically managing cached Web pages and
LOBs according to the settings of configuration variables. Or, you can use a
Net.Data-provided macro to manage your Web pages and LOBs in more
sophisticated ways based on criteria such as macro names, HTML block names,
and creation times.
v “Setting up DB2”
v “Configuring Net.Data to Automatically Manage Cached Web Pages and Large

Objects” on page 29
v “Using a Net.Data-provided Macro for More Advanced Management” on

page 30

Setting up DB2
Before you can begin to use Net.Data to manage your cached Web pages and large
objects, you need to create the dynamic Web page dependency table and install a
few stored procedures.
1. Create the Web page dependency table.

The dynamic Web page dependency table contains information about the LOB
files stored in HFS and about the relationship that these files may have, if any,
to Web pages stored in the dynamic Web page cache.
Create the Web page dependency table, SYSIBM.DTWCACHEDEPS, using the
SQL found in DTW710.SDTWSPUF(DTWCRCCH). This file also includes
statements to create a database, called DTWCACHE, and a tablespace, called
DTWTBSP1, for the Web dependency table.
The database and tablespace have the same names as those created when you
enable Net.Data for Web page caching.

2. Defining the stored procedure.

The stored procedures are used to insert cached Web pages and dependency
information into the appropriate tables, and to handle automatic and manual
management of the tables.
a. Define the stored procedures, DTWCCHIN and DTWDEPIN, to DB2. These

stored procedures are used to insert Web pages and dependency
information into the cache.
1) Copy the stored procedures from DTW710.SDTWLOAD into your stored

procedure library.
2) Define the stored procedures into DB2 for OS/390 V5 using the SQL

found in DTW710.SDTWSPUF(DTWCCHV5), or define them into DB2
UDB for OS/390 V6 or V7 using the SQL found in
DTW710.SDTWSPUF(DTWCCHV6).

28 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

b. Define the stored procedures, DTWCLEAN and DTWMANCL, to DB2.
These stored procedures are used to automatically and manually manage
the Web page cache and the dependency table.
1) Copy the stored procedures from DTW710.SDTWLOAD into your stored

procedure library.
2) Define the stored procedures into DB2 for OS/390 V5 using the SQL

found in DTW710.SDTWSPUF(DTWCLNV5), or define them into DB2
UDB for OS/390 V6 or V7 using the SQL found in
DTW710.SDTWSPUF(DTWCLNV6).

3. Bind the stored procedures.

Bind the DBRMs that are supplied with Net.Data for the stored procedures into
the default plan that is used when executing Net.Data. The sample job to bind
these DBRMs into the DTWCACHEPKG package can be found in
DTW710.SDTWBASE(DTWBDCV5) for DB2 for OS/390 V5, or in
DTW710.SDTWBASE(DTWBDCV6) for DB2 UDB for OS/390 V6 or V7. The
user ID that runs the bind job must have INSERT, SELECT and DELETE
authority on SYSIBM.DTWCACHEDPAGES and SYSIBM.DTWCACHEDEPS.
The user IDs that executes the manage_cache.dtw macro must have EXECUTE
privilege on the package DTWCACHEPKG.

Configuring Net.Data to Automatically Manage Cached Web
Pages and Large Objects

You can configure Net.Data to automatically manage cached Web pages and LOBs
based on expiration time values. To determine the expiration time values, Net.Data
uses the lifetime values for dynamic Web pages specified on the
DTW_CACHE_PAGE directives and the setting of the DTW_LOB_LIFETIME
configuration variable. The setting of DTW_CACHE_MANAGEMENT_INTERVAL
specifies the minimum time interval that automatic cache management occurs.
DTW_CACHE_MANAGEMENT _INTERVAL is evaluated each time a Net.Data
request is processed. When Net.Data performs automatic cache management, it
removes all objects from the cache having expiration times older than the current
time.

This feature is only available when using GWAPI or Java servlets.

To specify the caching interval:

Use the DTW_CACHE_MANAGEMENT_INTERVAL configuration variable to
specify the minimum number of seconds between successive invocations of the
Net.Data stored procedure that performs automatic cache management.

Syntax:
DTW_CACHE_MANAGEMENT_INTERVAL [=] seconds

To specify the LOB lifetime:

Use the DTW_LOB_LIFETIME configuration variable to specify the minimum
number of seconds that LOB files are available in HFS. For more information on
DB2 LOBs, see “Using Large Objects” on page 95.

Syntax:
DTW_LOB_LIFETIME [=] seconds

Chapter 2. Installing and Configuring Net.Data 29

Where seconds is the minimum number of seconds that LOB files are available. The
effective lifetime of a LOB file is the larger of the DTW_LOB_LIFETIME value and
the lifetime of any Web page that references it.

Using a Net.Data-provided Macro for More Advanced
Management

Net.Data automatically manages cached Web pages and the LOBs they reference
using expiration times. Net.Data also offers more advanced styles of management
through a Net.Data-provided macro, manage_cache.dtw. With this macro, you can:
v Delete expired dynamic Web pages and LOBs that have been cached.
v Delete cached Web pages and related LOB files based on HTML block and

creation time criteria, as well as delete all expired objects that have been cached.
v Delete LOB files from HFS and related Web pages based on creation time

criteria, as well as delete all expired objects that have been cached.

To begin the macro, invoke the BEGIN HTML block of the manage_cache.dtw
located in the directory /usr/lpp/netdata/macros. To learn more about how to
invoke a macro, see “Chapter 4. Invoking Net.Data” on page 41.

To delete expired dynamic Web pages and large objects that have been cached:

1. Invoke the BEGIN HTML block of the manage_cache.dtw macro.
2. Click the Delete dynamic Web pages and large object files that have expired

choice.
3. Click the EXECUTE push button to proceed, or select Back to the beginning to

return to the main page and cancel your request.

To delete cached Web pages and related LOB files:

1. Invoke the BEGIN HTML block of the manage_cache.dtw macro.
2. Click on the Delete selected dynamic Web pages and related large object files

choice.
This choice lets you specify a filter and timestamp values for the cached Web
pages you want to delete. All expired cached Web pages and LOBs as well as
all LOBs referenced by the Web pages are deleted.

3. Optionally type a string in the Enter the ACTUAL_KEY filter field that
matches any part of the ACTUAL_KEY for the Web pages to be deleted. This
string acts as filter for selecting the cached Web pages Net.Data deletes. The
string can contain up to 250 characters.
For example, when the following string is entered:
/netdata/macros/my_macro.dtw/report

Net.Data deletes all cached Web pages that have an ACTUAL_KEY value
containing this string. For a detailed description of ACTUAL_KEY, refer to
Table 3 on page 32.

4. Optionally click on the Starting CREATION_TIME check box and enter a
timestamp value. Net.Data deletes all cached Web pages that have creation
times greater than or equal to this timestamp value, and that have creation
times less than or equal to the Ending CREATION_TIME, if specified. If no
Ending CREATION_TIME value is specified, than Net.Data deletes all cached
Web pages that have creation times greater than or equal to the Starting
CREATION_TIME value.
For example, when the following timestamp is entered:

30 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Starting CREATION_TIME:

Year 1999 Month 03 Day 23 Hour 14 Minute 00 Second 00

Net.Data deletes all cached Web pages that were created on March 23, 1999 at
2:00 PM or later, up to and including the value of Ending CREATION_TIME,
if specified.

5. Optionally click on the Ending CREATION_TIME check box and enter a
timestamp value. Net.Data deletes all cached Web pages that have creation
times less than or equal to this timestamp value, and that have creation times
greater than or equal to the Starting CREATION_TIME, if specified. If no
Starting CREATION_TIME value is specified, than Net.Data deletes all cached
Web pages that have creation times less than or equal to the Ending
CREATION_TIME value.
For example, when the following timestamp is entered:
Ending CREATION_TIME:

Year 1999 Month 03 Day 23 Hour 23 Minute 59 Second 59

Net.Data deletes all cached Web pages that were created on March 23, 1999 at
11:59:59 PM or earlier, starting with the value of Starting CREATION_TIME, if
specified.

If the Enter the ACTUAL_KEY filter field is empty and neither of the check boxes
are checked, Net.Data deletes only expired cached Web pages and LOBs.
6. Click the EXECUTE push button to proceed, or select Back to the beginning to

return to the main page and cancel your request.

To delete large objects in HFS and related Web pages

1. Invoke the BEGIN HTML block of the manage_cache.dtw macro.
2. Click on the Delete selected large object files and related dynamic Web pages

choice.
This choice lets you specify timestamp values for the LOBs you want to delete.
All expired Web pages and LOBs as well as all Web pages referenced by LOBs
are deleted.

3. Optionally click on the Starting CREATION_TIME check box and enter a
timestamp value. Net.Data deletes all LOB files that have creation times greater
than or equal to this timestamp value, and that have creation times less than or
equal to the Ending CREATION_TIME, if specified. If no Ending
CREATION_TIME value is specified, than Net.Data deletes all LOB files that
have creation times greater than or equal to the Starting CREATION_TIME
value.
For example, when the following timestamp is entered:
Starting CREATION_TIME:

Year 1999 Month 03 Day 23 Hour 14 Minute 00 Second 00

Net.Data deletes all LOBs that were created on March 23, 1999 at 2:00 PM or
later, up to and including the value of Ending CREATION_TIME, if specified.

4. Optionally click on the Ending CREATION_TIME check box and enter a
timestamp value. Net.Data deletes all LOB files that have creation times less
than or equal to this timestamp value, and that have creation times greater than
or equal to the Starting CREATION_TIME, if specified. If no Starting

Chapter 2. Installing and Configuring Net.Data 31

CREATION_TIME value is specified, then Net.Data deletes all LOB files that
have creation times less than or equal to the Ending CREATION_TIME value.
For example, when the following timestamp is entered:
Ending CREATION_TIME:

Year 1999 Month 03 Day 23 Hour 23 Minute 59 Second 59

Net.Data deletes all LOB files that were created on March 23, 1999 at 11:59:59
PM or earlier, starting with the value of Starting CREATION_TIME, if
specified.

If the neither of the check boxes are checked, Net.Data deletes only expired LOB
files and cached Web pages.
5. Click the EXECUTE push button to proceed, or select Back to the beginning to

return to the main page and cancel your request.

Web page cache table and Web page dependency table
descriptions

If you want to manage the contents of the dynamic Web page cache and LOB files
using techniques different from those provided by Net.Data, you can access the
SYSIBM.DTWCACHEDPAGES and SYSIBM.DTWCACHEDEPS DB2 tables. The
columns for these two tables are described below along with their data types and
descriptions.

Table 3. SYSIBM.DTWCACHEDPAGES Table. Contains the Web pages that are cached and
information about them.

INDEXED_KEY: CHAR(250) Indexed key for cached page: the first 250 characters of the
actual key

ID: INTEGER Identifier: an identifier derived from the key

ACTUAL_KEY:
VARCHAR(4000)

The actual key of the cached page: the path information,
macro, HTML block name, query string, and form data of
the request that generated the page

CREATOR: CHAR(8) User ID of creator: user ID associated with the request that
created the cached page

CREATION_TIME:
TIMESTAMP

Creation timestamp: date and time of creation of cached
page. It is the same as the CREATION_TIME for any LOBs
that the Web page references

EXPIRATION_TIME:
TIMESTAMP

Expiration timestamp: date and time of the expiration of the
cached page (value of CREATION_TIME + lifetime value
from the DTW_CACHE_PAGE directive)

SIZE: INTEGER Size: size of cached page in bytes

USAGE_SCOPE: SMALLINT Usage scope: a value of 1 means that the page has a
PUBLIC usage scope and a value of 2 means that the page
has a PRIVATE usage scope

ORDINAL_POSITION:
INTEGER

Ordinal position of segment: the ordinal position of the
Web page segment within the complete cached page

PAGE_SEGMENT
VARCHAR(28100) FOR BIT
DATA

Dynamic Web page segment: the ASCII encoded Web page
segment

32 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Table 4. SYSIBM.DTWCACHEDEPS Table. Contains information about the LOBs that are
referenced by Web pages.

INDEXED_KEY: CHAR(250) Indexed key for Web page: first 250 characters of the actual
key

ID: INTEGER Identifier: an identifier derived from the actual key

ACTUAL_KEY:
VARCHAR(4000)

The actual key of the cached page: the path information,
macro, HTML block name, query string, and form data of
the request that generated the page

FILENAME: VARCHAR(1024) Fully qualified HFS filename for the LOB

CREATION_TIME:
TIMESTAMP

Creation timestamp: date and time of the creation of the
LOB. Is the same as the CREATION_TIME for the Web
page that references this LOB

EXPIRATION_TIME:
TIMESTAMP

Expiration timestamp: date and time for expiration of the
LOB (value of CREATION_TIME + DTW_LOB_LIFETIME
configuration value when dynamic web page caching not in
use; value of CREATION_TIME +
max(DTW_LOB_LIFETIME configuration value, lifetime
value from DTW_CACHE_PAGE directive) when dynamic
web page caching in use).

SIZE: INTEGER Size: size of the LOB in bytes

Chapter 2. Installing and Configuring Net.Data 33

34 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 3. Keeping Your Assets Secure

Internet security in an OS/390 environment is provided through a combination of
firewall technology, operating systems features, Web server features, Net.Data
mechanisms, and the access control mechanisms that are part of your data sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and also
provides references to additional resources you can use to plan for the security of
your Web site.

The following sections contain guidelines for protecting your assets. The security
mechanisms described include:
v “Using Firewalls”
v “Encrypting Your Data on the Network” on page 36
v “Using Authentication” on page 36
v “Using Authorization” on page 36
v “Using Net.Data Mechanisms” on page 37

Using Firewalls
Firewalls are collections of hardware, software, and policies that are designed to
limit access to resources in a networked environment.

Firewalls:
v Protect the internal network from infiltration or intrusion
v Protect the internal network from data and programs that are brought in by

internal users
v Limit internal user access to external data
v Limit the damage that can be done if the firewall is breached

Net.Data can be used with OS/390 Firewall Technologies or equivalent firewall
products that execute in the OS/390 environment.

OS/390 Firewall Technologies is a tool kit that you can use to implement various
security architectures and strategies. It includes the following tools:
v IP filters
v Proxy servers
v Socks servers
v Domain name service (DNS)
v Virtual private networks

For more detail on how to install and configure your firewall in a secure manner,
refer to IBM Firewall Toolkit for OS/390 Guide and Reference, SC24-5835.

© Copyright IBM Corp. 1997, 2001 35

Encrypting Your Data on the Network
You can encrypt all data that is sent between a client system and your Web server
when you use a Web server that supports Secured Sockets Layer (SSL). This
security measure supports the encryption of login IDs, passwords, and all data that
is transmitted through HTML forms from the client system to the Web server and
all data that is sent from the Web server to the client system.

Using Authentication
Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is the
process of matching the user ID with a password to validate that the request
comes from a valid user ID. The Web server associates a user ID with each
Net.Data request that it processes. The process or thread that is handling the
request can then access any resource to which that user ID is authorized.

In an OS/390 environment, a user ID can become associated with the thread or
process that is handling a Net.Data request in one of three ways:

Client-based authentication
The user is prompted for a local OS/390 user ID and password at the
client. The Web server then invokes the local security subsystem (such as
the RACF component of the SecureWay Security Server) to authenticate the
user. If successfully authenticated, the supplied user ID is associated with
the request. Use of the special Web server %%CLIENT%% access control
user ID enables this type of authentication.

Server-based authentication
The user ID of the Web server is associated with each request and the user
is not prompted for a user ID or password. This choice is not
recommended because of the level of authority usually associated with the
Web server’s user ID. Use of the special Web server %%SERVER%% access
control user ID enables this type of authentication.

Surrogate authentication
A surrogate user ID that has the authority to access some predefined
collection of resources is associated with the client request. This type of
authentication requires the creation of surrogate user IDs with access
authority that is appropriate for a group of users or class of requests.

The approach that the Web server uses for associating a user ID with a client
request is specified when the Web server is configured. For additional detail on
access control user IDs, on installing the Web server, and on using the Protect,
Protection, DefProt, and UserId directives to configure the Web server, refer to
your Web server documentation.

Using Authorization
Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 and HFS provide their own
authorization mechanisms to protect the information that they manage. These
authorization mechanisms assume that the user ID associated with the Net.Data
request has been properly authenticated, as explained in “Using Authentication”.
The existing access control mechanisms for these data sources then either permit or
deny access based on the authorizations that are held by the authenticated user ID.

36 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Using Net.Data Mechanisms
In addition to the methods described above, you can use Net.Data configuration
variables or macro development techniques to limit the activities of end users, to
conceal corporate assets such as the design of your database, and to validate
user-provided input values within production environments.

Net.Data Configuration Variables
Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used by
Net.Data macros. These path statements identify one or more directories
that Net.Data searches when attempting to locate macros, executable files,
include files, or other HFS files. By selectively including directories on
these path statements, you can explicitly control the files that are accessible
by users at browsers. Refer to “Chapter 2. Installing and Configuring
Net.Data” on page 5 for additional detail about path statements.

You should also use authorization checking as described in “Using
Authorization” on page 36 and verify that file names cannot be changed in
INCLUDE statements as described in “Macro Development Techniques” on
page 38.

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data displays
the SQL statements specified within Net.Data functions at a Web browser.
This variable is used primarily for developing and testing the SQL within
an application and is not intended for use in production systems.

You can disable the display of SQL statements in production environments
using one of the following methods:
v When using versions of Net.Data that support the DTW_SHOWSQL

configuration variable, use this variable in the Net.Data initialization file
to override the effect of setting SHOWSQL within your Net.Data macros.
See “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable” on page 14 for syntax and additional information.

v Use the DTW_ASSIGN() function as described in “Macro Development
Techniques” on page 38.

See SHOWSQL in the variables chapter of Net.Data Reference for syntax and
examples for the SHOWSQL Net.Data variable.

Consider whether it is appropriate to enable direct request for production
environments

The direct request method of invoking Net.Data allows a user to specify
the execution of an SQL statement or Perl, REXX, or C program directly
from a URL. The macro request method allows users to execute only those
SQL statements and functions defined or called in a macro.

You should carefully consider whether to allow the use of direct request
because it might give your users the ability to execute a very broad set of
functions. When enabling this method of invocation, ensure that user ID
under which the Net.Data request is processed has the appropriate level of
authorization.

Chapter 3. Keeping Your Assets Secure 37

You can use the DTW_DIRECT_REQUEST configuration variable to disable
direct request. See “DTW_DIRECT_REQUEST: Enable Direct Request
Variable” on page 12 for syntax and additional information.

Macro Development Techniques
Net.Data provides several mechanisms that allow users to assign values to input
variables. To ensure that macros execute in the manner intended, these input
variables should be validated by the macro. Your database and application should
also be designed to limit a user’s access to the data that the user is authorized to
see.

Use the following development techniques when writing your Net.Data macros.
These techniques will help you ensure that your applications execute as intended
and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides the
effect of DEFINE statements used to initialize variables in a macro. This
might alter the manner in which your macro executes. To safeguard against
this possibility, initialize your Net.Data variables using the DTW_ASSIGN()
function.

Example: Instead of using:
%define START_ROW_NUM = "1"

Use:
@DTW_ASSIGN(START_ROW_NUM, "1")

Assigning the variable this way prevents a query string assignment such as
″START_ROW_NUM=10″ from overriding your macro setting.

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro allows
users to dynamically alter the SQL statement before executing it. It is the
responsibility of the macro writer to validate user-provided input values
and ensure that an SQL statement containing a variable reference is not
being modified in an unexpected manner. Your Net.Data application
should validate user-provided input values from the URL so the Net.Data
application can reject invalid input. Your validation design process should
include for the following steps:
1. Identify the syntax of valid input; for example, a customer ID must

start with a letter and can contain only alphanumeric characters.
2. Determine what potential harm can be caused by allowing incorrect

input, intentionally harmful input, or input entered to gain access to
internal assets of the Net.Data application.

3. Include input verification statements in the macro that meet the needs
of the application. Such verification depends on the syntax of the input
and how it is used. In simpler cases it can be enough to check for
invalid content in the input or to invoke Net.Data to verify the type of
the input. If the syntax of the input is more complex, the macro
developer might have to parse the input partially or completely to
verify whether it is valid.

Example 1: Using the DTW_POS() string function to verify SQL statements

38 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

%FUNCTION(DTW_SQL) query1() {
select * from shopper where shlogid = '$(shlogid)'

%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to rows
that contain information about the shopper identified by the shopper ID.
However, if the string “smith' or shlogid<>'smith” is passed as the value
of the variable shlogid, the query becomes:
select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement returns
the entire shopper table.

The Net.Data string functions can be used to verify that the SQL statement
is not modified by the user in inappropriate ways. For example, the
following logic can be used to ensure that single-quotes are not used to
modify SQL statements:
@DTW_ADDQUOTE(shlogid, shlogid)
@query1()

The query then becomes:
select * from shopper where shlogid = 'smith'' or shlogid<>''smith'

Ensure that a file name in an INCLUDE statement is not modified in ways that
alter the intended behavior of your application

If you specify the value for the file name with an INCLUDE statement
using a Net.Data variable, then the file to be included is not determined
until the INCLUDE file is executed. If your intent is to set the value of this
variable within your macro, but to not allow a user at the browser to
override the macro-provided value, then you should set the value of the
variable using DTW_ASSIGN instead of DEFINE. If you do intend to
permit the user at a browser to provide a value for the file name, then
your macro should validate the value provided.

Example: A query string assignment such as filename="../../x" can result
in the inclusion of a file from a directory not normally specified in the
INCLUDE_PATH configuration statement. Suppose that your Net.Data
initialization file contains the following path configuration statement:
INCLUDE_PATH /usr/lpp/netdata/include

and that your Net.Data macro contains the following INCLUDE statement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the file
/usr/lpp/x , which was not intended by the INCLUDE_PATH
configuration statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the following
logic can be used to ensure that the input value associated with the file
name variable does not contain the string ″..″:
@DTW_POS("..", $(filename), result)
%IF (result > "0")

%{ perform some sort of error processing %}
%ELSE
%{ continue with normal processing %}
%ENDIF

Chapter 3. Keeping Your Assets Secure 39

Design your database and queries so that user requests do not have access to
sensitive data about other users

Some database designs collect sensitive user data in a single table. Unless
SQL SELECT requests are qualified in some fashion, this approach may
make all of the sensitive data available to any user at a web browser.

Example: The following SQL statement returns order information for an
order identified by the variable order_rn:
select setsstatcode, setsfailtype, mestname
from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)

This method permits users at a browser to specify random order numbers
and possibly obtain sensitive information about the orders of other
customers. One way to safeguard against this type of exposure is to make
the following changes:
v Add a column to the order information table that identifies the customer

associated with the order information within a specific row.
v Modify the SQL SELECT statement to ensure that the SELECT is

qualified by an authenticated customer ID provided by the user at the
browser.

For example, if shlogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname

from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)

Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various characteristics of
your Net.Data macro from users that view your HTML source with their
Web browser. For example, you can hide the internal structure of your
database. See “Hidden Variables” on page 69 for more information about
hidden variables.

40 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 4. Invoking Net.Data

This chapter describes how you invoke Net.Data using the various Web server
interfaces. Before you can use one of the methods of invocation, Net.Data must
first be configured for the specified interface. You can configure Net.Data to use
the following Web server interfaces:
v Common Gateway Interface (CGI)
v FastCGI
v Lotus Domino Go Web server (GWAPI)
v Java Servlets

See “Chapter 2. Installing and Configuring Net.Data” on page 5 to learn more
about configuring Net.Data for these interfaces. You determine how Net.Data is
invoked when you configure the Web server.

The following sections describe the types of requests Net.Data accepts and the
methods you can use to invoke Net.Data using the various APIs and Servlets.
v “Invoking Net.Data using CGI, GWAPI, or FastCGI”
v “Invoking Net.Data with Java Servlets” on page 51

Invoking Net.Data using CGI, GWAPI, or FastCGI
Regardless of the method with which you invoke Net.Data, there are two types of
requests that can be specified.

Macro Request
Specifies that Net.Data execute the macro specified.

Direct Request
Specifies that Net.Data execute an SQL statement, stored procedure, or
function.

Web developers who want to write a single SQL query or call a single function
such as a DB2 stored procedure, REXX program, or Perl function can issue a direct
request to the database. A direct request does not have any complex Net.Data
application logic that requires a Net.Data macro, and therefore bypasses the
Net.Data macro processor. Direct request parameters are passed to the appropriate
language environment for processing for improved performance.

Figure 3 on page 42 illustrates the differences between a macro request and a direct
request. A macro request always specifies a macro within the URL for the request
and can also use form data. A direct request never specifies a macro within the
URL, but can still use form data.

© Copyright IBM Corp. 1997, 2001 41

The syntax for invoking Net.Data when it is configured for use with GWAPI is the
same as the syntax for invoking Net.Data when it is configured for use with CGI
or FastCGI. For both macro and direct requests, Net.Data is invoked using a URL.
The URL can be entered directly by the user, or it can be coded into the HTML
page as an HTML link or an HTML form. The Web server invokes Net.Data using
CGI, FastCGI, or GWAPI, FastCGI, or one of the Web server APIs.

For macro requests, specify within the URL the name of the Net.Data macro and
the name of the HTML block that is to be executed within the Net.Data macro. For
direct requests, specify within the URL the name of the Net.Data language
environment, the SQL statement or the name of the function, and any additional
required parameter values. You specify these values using a syntax defined by
Net.Data.

If you are migrating from CGI to either GWAPI or FastCGI, you might need to
take into consideration some REXX language environment issues. See “REXX
Language Environment” on page 110 for more information.

The following sections describe these invocation requests in more detail:
v “Invoking Net.Data with a Macro (Macro Request)”
v “Invoking Net.Data without a Macro (Direct Request)” on page 46

Invoking Net.Data with a Macro (Macro Request)
A client browser invokes Net.Data by sending a request in the form of a URL. This
section shows you how to invoke Net.Data by specifying a macro in the URL
request. The examples in this section assume that Net.Data will be executed using
the invocation path /netdata-cgi/db2www/. If this is not the case, or if Net.Data is
configured for FastCGI, then substitute the appropriate invocation path in place of
/netdata-cgi/db2www/ in the examples.

Web
Server

Language
Environment

Macro Request

Direct Request

Macro

Net.Data

Web
Server

Language
Environment

Net.Data

URL & Form data

Web Page

URL & Form data

Web Page

Figure 3. Macro Request Versus Direct Request

42 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

The request sent to Net.Data has the following form.
http://server/Net.Data_invocation_path/filename/block[?name=val&...]

Parameters:

server Specifies the name and path of the Web server. If the server is the local
server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data load modules. For example,
/netdata-cgi/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the
MACRO_PATH initialization path variable. See “MACRO_PATH” on
page 18 for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

You specify this URL directly in your browser. You can also specify it in an HTML
link or build it using a form as follows:
v HTML link:

any text

v HTML form:
<form method="method" ACTION="URL">any text</form>

Parameters:

method Specifies the HTML method used with the form.

URL Specifies the URL used to run the Net.Data macro, the parameters of which
are described above.

Examples

The following examples demonstrate the different methods of invoking Net.Data.

Example 1: Invoking Net.Data using an HTML link:

.
.
.

Example 2: Invoking Net.Data using a form
<form method="post"
action="http://server/netdata-cgi/db2www/myMacro.dtw/report">
.
.
.
</form>

The following sections describe HTML links and forms and more about how to
invoke Net.Data with them:

Chapter 4. Invoking Net.Data 43

v “HTML Links”
v “HTML Forms”

HTML Links
If you are authoring a Web page, you can create an HTML link that results in the
execution of an HTML block. When a user at a browser clicks on a text or image
that is defined as an HTML link, Net.Data executes the HTML block within the
macro.

To create an HTML link, use the HTML <a> tag. Decide which text or graphic you
want to use as your hyperlink to the Net.Data macro, then surround it by the <a>
and tags. In the HREF attribute of the <a> tag, specify the macro and the
HTML block.

The following example shows a link that results in the execution of an SQL query
when a user selects the text ″List all monitors″ on a Web page.

List all monitors

Clicking on the link calls a macro named listA.dtw, which has an HTML block
named ″report″, as in the following example:
%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table. The
value of hdware in the SQL statement is taken from the URL input. See Net.Data
Reference for a detailed description of the variables that are used in the ROW block.

HTML Forms
You can dynamically customize the execution of your Net.Data macros using
HTML forms. Forms allow users to provide input values that can affect the
execution of the macro and the contents of the Web page that Net.Data builds.

The following example builds on the monitor list example in “HTML Links” by
letting users at a browser use a simple HTML form to select the type of product
for which information will be displayed.
<h1>Hardware Query Form</h1>
<hr>
<form method="post" action="/netdata-cgi/db2www/listA.dtw/report">
<p>What type of hardware do you want to see?</p>

<input type="radio" name="hdware" value="mon" checked /> Monitors
<input type="radio" name="hdware" value="pnt" /> Pointing devices
<input type="radio" name="hdware" value="prt" /> Printers
<input type="radio" name="hdware" value="scn" /> Scanners

44 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

<input type="submit" value="submit" />
</form>

After the user at the browser makes a selection and clicks on the Submit button,
the Web server processes the ACTION parameter of the FORM tag, which invokes
Net.Data. Net.Data then executes the macro listA.dtw, which has an HTML block
named ″report″ as listed above.
%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<h3>Here is the list you requested</h3>
%ROW{
<hr />
$(N1): $(V1), $(N2): $(V2)
<p>$(N3): $(V3)</p>
%}
%}
%}

%HTML (Report){
@myQuery()
%}

In the above example, the value of hdware in the SQL statement is taken from the
HTML form input. See Net.Data Reference for a detailed description of the variables
that are used in the ROW block.

An input type that is given special treatment by Net.Data is the FILE input type.
With this input type, users can upload a file to the server, which can be further
processed by Net.Data or any other application on the server.

Net.Data will convert a file from EBCDIC to ASCII if it is identified as a text file.
Otherwise, the file remains untouched. On a conversion, the EBCDIC and ASCII
codepages are taken from the DefaultFsCp and DefaultNetCp values defined in the
Web server. The uploaded files are stored in the directory specified in
DTW_UPLOAD_DIR and are given a unique name, determined using the
following rules:

Syntax:

MacroFileName + ’.’ + FormVarName + ’.’ + UniqueIdentifier + ’.’ + FormFileName

MacroFileName
The name of the macro handling the request (the one called in the form). Only
the filename is used, not the complete path.

FormVarName
The name of the variable used to identify the file in the form.

UniqueIdentifier
A string used to ensure uniqueness.

Example:

First, set DTW_UPLOAD_DIR in the Net.Data initialization file:
DTW_UPLOAD_DIR /tmp/uploads

Chapter 4. Invoking Net.Data 45

Then, construct a form that invokes a macro and uses at least one input tag of type
file.
<form method="post" enctype="multipart/form-data"

action="/netdatadev/form.dtw/report">
Name: <input type="text" name="name" />

Zip code: <input type="text" name="zipno" />

Resume: <input type="file" name="resume" />

<input type="submit" />
</form>

If a user were to submit the form, specifying the file myresume.txt, the resulting
file would be written on the server with a name similar to:
/tmp/uploads/form.dtw.resume.20010108112341275-6245-021.myresume.txt

Using Relative URLs in Links and Forms
Instead of always hardcoding absolute URLs in your links and forms, you can use
relative addressing in your URLs. Assuming the user has just executed the HTML
block ″input″ in the macro listA.dtw, the following link will take the user to the
HTML block ″report″ in the same macro:
List all monitors

The browser will interpret the URL as the following, automatically:
http://server/netdata-cgi/db2www/listA.dtw/report?hdware=mon

Suppose a Web page contains the following link:
Go Back

The browser will interpret the URL as follows, and the user will be taken to a new
URL:
http://server/netdata-cgi/db2www/main.dtw/input

When using relative URLs to link to non-Net.Data objects, however, use caution.
For example, the following references will yield results you probably don’t want:
<applet codebase="myapplet.class">...</applet>

...

The Web browser would interpret the URLs to be as follows:
http://server/netdata-cgi/db2www/main.dtw/myapplet.class
http://server/netdata-cgi/db2www/main.dtw/myimage.jpg
http://server/netdata-cgi/db2www/main.dtw/staticpage.html

For objects that are not Net.Data macros, it is best to use absolute paths as in:
<applet codebase="/mywebsite/assets/myapplet.class">...</applet>

...

Invoking Net.Data without a Macro (Direct Request)
This section shows you how to invoke Net.Data using direct request. When you use
direct request, you do not specify the name of a macro in the URL. Instead, you
specify the Net.Data language environment, the SQL statement or a program to be
executed, and any additional required parameter values within the URL, using a
syntax defined by Net.Data. See “DTW_DIRECT_REQUEST: Enable Direct Request
Variable” on page 12 to learn how to enable and disable direct request.

The SQL statement or program and any other specified parameters are passed
directly to the designated language environment for processing. Direct request

46 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

improves performance because Net.Data does not need to read and process a
macro. The SQL, ODBC, System, Perl, and REXX Net.Data-supplied language
environments support direct request, and you can call Net.Data using a URL, an
HTML form, or a link.

A direct request invokes Net.Data by passing parameters in the query string of the
URL or the form data. The following example illustrates the context in which you
specify a direct request. It assumes that Net.Data was configured using Net.Data
directories, as previously described in “Configuring Net.Data for Use with CGI” on
page 23 and “Configuring Net.Data for Use with GWAPI” on page 25, and
illustrates the context in which you specify a direct request for the Perl language
environment.
any text

Where direct_request represents the direct request syntax. For example, the
following HTML link contains the direct request:

any text

Direct Request Syntax
The syntax for invoking Net.Data with direct request can contain a call to either a
database or a non-database language environment.

Syntax

YY? Database language environment call
HTML Non-database language environment call

DTW_DOCUMENT= XML &
STYLESHEET= filename &

YZ

Database language environment call:

[

Form data entry &
LANGENV = dblangenv & Y

Y [

Form data entry &
Y

Y SQL= sql_stmt
FUNC= stored_proc_name (Parameter list)

Y

Y [

& Form data entry

Chapter 4. Invoking Net.Data 47

Form data entry:

= VALUE
DB_CASE
DB2PLAN
DB2SSID
DTW_HTML_TABLE
LOCATION
RPT_MAX_ROWS
SHOWSQL
START_ROW_NUM

Parameter list:

[

,

IN parm_type parm_value
″ parm_value ″

OUT parm_type parm_name
parm_name

INOUT parm_type parm_name parm_value
parm_name ″ parm_value ″

Non-database language environment call:

LANGENV= lang_env & FUNC = program_name Y

Y [

,

()
" parm_value "

Parameters

DTW_DOCUMENT
Specifies the type of document that Net.Data should return as output. The
allowable values are XML or HTML. This parameter is optional, and if not
specified then HTML is assumed.

DTW_STYLESHEET
Specifies the stylesheet that Net.Data should use when displaying XML. This
parameter is optional and is only relevant when DTW_DOCUMENT=XML.

stylesheet
Specifies the filename on the server for the stylesheet.

Database language environment call
Specifies a direct request to Net.Data that invokes a database language
environment.

Form data entry
Parameters that allow you to specify the settings of SQL variables or to
request simple HTML formatting. See the variables chapter of Net.Data
Reference to learn more about these variables.

48 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

DB_CASE
Specifies the case (upper or lower) for SQL statements.

DB2PLAN
Specifies the DB2 plan to be used when accessing the local DB2
subsystem.

DB2SSID
Specifies the DB2 subsystem ID to be used when accessing the local
DB2 subsystem.

DTW_HTML_TABLE
Specifies whether Net.Data should return an HTML table or a
pre-formatted text table.

LOCATION
Specifies the name of the remote server to which the local DB2
subsystem should pass the SQL request.

RPT_MAX_ROWS
Specifies the maximum number of rows that a function should return
in its report.

SHOWSQL
Specifies whether Net.Data should hide or display the SQL statement
being executed.

START_ROW_NUM
Specifies the number of the row where a function should start its
report.

VALUE
Specifies the value of the Net.Data variable.

LANGENV
Specifies the target language environment for the SQL statement or stored
procedure call.

dblangenv
The name of the database language environment:
v DTW_SQL
v DTW_ODBC

SQL
Indicates that the direct request specifies the execution of an in-line SQL
statement.

sql_stmt
Specifies a string that contains any valid SQL statement that can be
executed using dynamic SQL.

FUNC
Indicates that the direct request specifies the execution of a stored
procedure.

stored_proc_name
Specifies any valid DB2 stored procedure name.

parm_type
Specifies any valid parameter type for a DB2 stored procedure.

parm_name
Specifies any valid parameter name.

Chapter 4. Invoking Net.Data 49

parm_value
Specifies any valid parameter value for a DB2 stored procedure.

IN Specifies that Net.Data should use the parameter to pass input data to the
stored procedure.

INOUT
Specifies that Net.Data should use the parameter to both pass input data to
the stored procedure and return output data from the language
environment.

OUT
Specifies that the language environment should use the parameter to
return output data from the stored procedure.

Non-database language environment call
Specifies a direct request to Net.Data that invokes a non-database language
environment.

LANGENV
Specifies the target language environment for the execution of the function.

lang_env
Specifies the name of the non-database language environment:
v DTW_PERL
v DTW_REXX
v DTW_SYSTEM

FUNC
Indicates that the direct request specifies the execution of a program.

program_name
Specifies the program containing the function to be executed.

parm_value
Specifies any valid parameter value for the function.

Direct Request Examples
The following examples show the different ways you can invoke Net.Data while
using the direct request method. The examples in this section assume that Net.Data
will be executed through the directive /netdata-cgi/db2www/. If this is not the
case, or if Net.Data is configured for FastCGI, then substitute the appropriate
directive in place of /netdata-cgi/db2www/ in the examples.

HTML Links: The following examples use direct request to invoke Net.Data
through links.

Example 1: A link that invokes the Perl language environment and calls a Perl
script that is in the EXEC path statement of the Net.Data initialization file

any text

Example 2: A link that invokes the Perl language environment, as in the previous
example, but passes a string with URL-encoded values for the double quote and
the space characters
<a href="http://server/netdata-cgi/db2www/?LANGENV=DTW_PERL&FUNC=my_perl

(%22Hello+World%22)">any text

Example 3: A URL that results in the execution of an SQL query using the SQL
language environment

50 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

any text</a

Example 4: A URL that invokes the REXX language environment, calls a REXX
program, and passes parameters to the program
any text

Example 5: A URL that calls a stored procedure and passes parameters to the SQL
language environment
<a href="http://server/netdata-cgi/db2www/?LANGENV=DTW_SQL&FUNC=MY_STORED_PROC

(IN+CHAR(30)+Salaries)&DTW_HTML_TABLE=YES">any text

Tip: You must encode certain characters, such as spaces and double quotes, within
URLs. In this example, the double quotes characters and spaces within the
parameter value must be encoded as %22 or the + character, respectively. If
this link was generated from a macro, you can use the built-in function
DTW_URLESCSEQ to encode any text that must be encoded witin a URL. For
more information on the DTW_URLESCSEQ function, see its description in
Net.Data Reference.

HTML Forms: The following examples use direct request to invoke Net.Data
through forms.

Example: An HTML form that results in the execution of an SQL query using the
SQL language environment
<form method="post"
action="http://server/netdata-cgi/db2www/">
<input type=hidden name="LANGENV" value="dtw_sql" />
<input type=hidden name="SQL"

value="select * from table1 where col1=$(inputname)" />
Enter Customer name:
<input type=text name="inputname" value="john" />
<input type=submit />
</form>

Invoking Net.Data with Java Servlets
Servlets are Java classes that perform a role similar to that of CGI programs or
Web server API plug-ins. Servlets are used by a Java servlet-enabled Web server to
perform CGI-like functions. Servlets do not have their own graphical user
interface, but their classes can be dynamically loaded locally, or from across the
network, and can be called using a URL address (remotely) or by a class name
(locally).

Net.Data provides servlets that you can use to invoke Net.Data macros, single SQL
statements, stored procedures, and functions on OS/390. The servlets can be
executed from both a URL and as a Server-Side-Include (SSI). Net.Data provides
two servlets:

MacroServlet (com.ibm.netdata.servlets.MacroServlet)
Executes a Net.Data macro.

You can run macros through Server-Side-Includes (SSI) to embed multiple
macros in your HTML file.

Function Servlet (com.ibm.netdata.servlets.FunctionServlet)
Invokes Net.Data without a macro by specifying:
v The name of a language environment.

Chapter 4. Invoking Net.Data 51

v An SQL statement or the name of a function, along with any parameter
values that are required for the invocation of the function.

v Form data that is required for invocation of the SQL statement or
function.

The function servlet provides direct request capability, but using a Java
interface. See “Invoking Net.Data without a Macro (Direct Request)” on
page 46 for more information.

Invoking Net.Data using MacroServlet
You can call this servlet from either a URL or an SSI in an HTML file.

Syntax and Examples
v URL:

http://server/servlet/com.ibm.netdata.servlets.MacroServlet?MACRO=macro_value&
BLOCK=block_value&parmn=valuenn

For example:
http://server/servlet/com.ibm.netdata.servlets.MacroServlet?MACRO=companies.dtw&
BLOCK=gatherinfo

v SSI:
<servlet code="com.ibm.netdata.servlets.MacroServlet">

<param name="MACRO" value="my_macro">
<param name="BLOCK" value="my_block">
<param name="parmn" value="valuen">

</servlet>

For example:
<servlet code="com.ibm.netdata.servlets.MacroServlet">

<param name="MACRO" value="companies.dtw">
<param name="field1" value="custno">

</servlet>

Parameters
MACRO

Required. Specifies the path to an existing Net.Data macro.

BLOCK
Specifies the name of the HTML block in the specified Net.Data macro to
execute. The default block is report.

parmn
Specifies any additional parameters that your macro requires.

Invoking Net.Data using FunctionServlet
You can call this servlet from either a URL or an SSI in an HTML file, and with it
you can invoke either a function, SQL statement, or stored procedure.

Syntax and Examples
v URL:

– Invoking a function:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=language&
FUNC=function_name&parmn=valuenn

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=DTW_REXX&FUNC=custinput.

52 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

– Invoking an SQL statement:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=database_lang&
SQL=SQL_statement&parmn=valuenn

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=DTW_SQL&SQL=select+las

– Invoking a stored procedure:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet
?LANGENV=DTW_SQL&FUNC=stored_procedure_name(parameter_list)

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet
?LANGENV=DTW_SQL&FUNC=myStoredProc(IN+CHAR(20)+"inval")

v SSI:
– Invoking a function:

<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="LANGENV" value="language">
<param name="FUNC" value="function_name">
<param name="parmn" value="valuen">

</servlet>

– Invoking an SQL statement:
<servlet code="com.ibm.netdata.servlets.MacroServlet">

<param name="LANGENV" value="language">
<param name="SQL" value="SQL_statement">
<param name="parmn" value="valuen">

</servlet>

– Invoking a stored procedure:
<servlet code="com.ibm.netdata.servlets.MacroServlet">

<param name="LANGENV" value="language">
<param name="FUNC" value="stored_procedure">
<param name="parmn" value="valuen">

</servlet>

For example:
<servlet code="com.ibm.netdata.servlets.FunctionServlet">

<param name="LANGENV" value="DTW_SQL">
<param name="FUNC" value="myStoredProc(IN CHAR(20) invalue)">

</servlet>

Parameters
LANGENV

Specifies the Net.Data language environment that is called to process the
function (for example, DTW_SQL or DTW_REXX).

FUNC
Specifies the name of the program that contains the function to be executed, or
in the case of a stored procedure, the stored procedure name and parameter.
For example, my_rexx, where my_rexx is the name of an executable REXX file.
Use the parmn keyword to specify input parameters to the function.

SQL
Specifies an SQL statement or stored procedure name that accesses a database,
for example, "select * from employee".

parmn
Specifies any additional parameters that the function requires.

Chapter 4. Invoking Net.Data 53

54 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro language
constructs that:
v Specify the layout of Web pages
v Define variables and functions
v Call functions that are built-in to Net.Data or defined in the macro
v Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part and the
presentation part, as shown in Figure 4.

v The declaration part contains the definitions of variables and functions in the
macro.

v The presentation part contains HTML or XML blocks that specify the layout of the
Web page. The HTML or XML blocks are made up of text presentation
statements that are supported by your Web browser, such as HTML, JavaScript,
and well-formed XML.

You can use these parts multiple times and in any order. See Net.Data Reference for
syntax of the macro parts and constructs.

This chapter examines the different blocks that make up a Net.Data macro and
methods you can use for writing the macro.
v “Anatomy of a Net.Data Macro” on page 56
v “Net.Data Macro Variables” on page 63
v “Net.Data Functions” on page 73
v “Generating Document Markup” on page 82
v “Conditional Logic and Looping in a Macro” on page 87

Net.Data Macro File Structure

%{Comment %}

Declaration Part

Presentation Part

%Define…

%Include…

%Function…

%Message…

Output block
.
.
.

Input block
.
.
.

Figure 4. Macro Structure

© Copyright IBM Corp. 1997, 2001 55

Anatomy of a Net.Data Macro
The macro consists of two parts:
v The declaration part, that contains definitions used in the presentation part. The

declaration part uses two major optional blocks:
– DEFINE block
– FUNCTION block

The declaration part can also contain other language constructs and statements,
such as EXEC statements, IF blocks, INCLUDE statements, and MESSAGE
blocks. For more information about the language constructs, see the chapter
about language constructs in Net.Data Reference.

v The presentation part defines the layout of the Web page, references variables,
and calls functions using HTML or XML blocks that are used as entry and exit
points from the macro. When you invoke Net.Data, you specify a block name as
an entry point for processing the macro. The HTML or XML blocks are described
in “HTML Blocks” on page 58 and “XML Blocks” on page 60.

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information to
pass to a REXX program. The macro passes this information to an external REXX
program called ompsamp.cmd, which echoes the data that the user enters. The results
are then displayed on a second Web page.

First, look at the entire macro, and then each block in detail:
%{ ********************** DEFINE block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

%{ ********************** FUNCTION Definition block ************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result)
{

%EXEC{ompsamp.cmd %}
%}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

result = date()
%}

%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Input Form</h1>
Today is @today()

<form method="post" action="output">
Type some data to pass to a REXX program:
<input name="input_data" type="text" size="30" />
<p>
<input type="submit" value="enter" />
</p>
</form>

<hr>
<p>[Home page]
</body></html>

56 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

%}

%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data)
<p><hr>
<p>[Home page |
Previous page]
</body></html>
%}

The sample macro consists of four major blocks: the DEFINE, the FUNCTION, and
the two HTML blocks. You can have multiple DEFINE, FUNCTION, and HTML
blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML, which
make writing Web macros easy. If you are familiar with HTML, building a macro
simply involves adding macro statements to be processed dynamically at the
server and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server accesses
it through Net.Data using CGI, a Web server API, or a Java Servlet. To invoke a
macro, Net.Data requires two parameters: the name of the macro to process, and
the HTML block in that macro to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block
The DEFINE block contains the DEFINE language construct and variable
definitions used later in the HTML blocks. The following example shows a
DEFINE block with one variable definition:
%{ ********************** DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

The first line is a comment. A comment is any text inside %{ and %}. Comments
can be anywhere in the macro. The next statement starts a DEFINE block. You can
define multiple variables in one define block. In this example, only one variable,
page_title, is defined. After it is defined, this variable can be referenced anywhere
in the macro using the syntax, $(page_title). Using variables makes it easy to
make global changes to your macro later. The last line of this block, %}, identifies
the end of the DEFINE block.

The FUNCTION Block
The FUNCTION block contains declarations for functions invoked by the HTML
blocks. Functions are processed by language environments and can execute
programs, SQL queries, or stored procedures.

The following example shows two FUNCTION blocks. One defines a call to an
external REXX program and the other contains inline REXX statements.

Chapter 5. Developing Net.Data Macros 57

%{ ********************** FUNCTION Block **********************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result) { <-- This function accepts

one parameter and returns the
variable 'result', which is
assigned by the external REXX
program

%EXEC{ompsamp.cmd %} <-- The function executes an external REXX program
called "ompsamp.cmd"

%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is

contained inline.
%}

The first function block, rexx1, is a REXX function declaration that in turn, runs an
external REXX program called ompsamp.cmd. One input variable, input, is accepted
by this function and automatically passed to the external REXX command. The
REXX command also returns one variable called result. The contents of the result
variable in the REXX command replaces the invoking @rexx1() function call
contained in the OUTPUT block. The variables input and result are directly
accessible by the REXX program, as shown in the source code for ompsamp.cmd:
/* REXX */
result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can format the
resulting text any way you want by enclosing the requesting @rexx1() function call
in normal mark-up style tags (like or). Rather than using the result
variable, the REXX program could have written HTML tags to standard output
using REXX SAY statements.

The second function block, also refers to a REXX program, today. However, the
entire REXX program in this case is contained in the function declaration itself. An
external program is not needed. Inline programs are allowed for both REXX and
Perl functions because they are interpreted languages that can be parsed and
executed dynamically. Inline programs have the advantage of simplicity by not
requiring a separate program file to manage. The first REXX function could also
have been handled inline.

HTML Blocks
HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An
HTML block is always specified in the Net.Data macro request and every macro
must have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.
%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) { <--- Identifies the name of this HTML block.
<html>
<head>
<title>$(page_title)</title> <--- Note the variable substitution.
</head><body>
<h1>Input Form</h1>
Today is @today() <--- This line contains a call to a function.

<form method="post" action="output"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.<p>

Type some data to pass to a REXX program:
<input name="input_data" <--- "input_data" is defined when the form

58 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

TYPE="text" SIZE="30" /> is submitted and can be referenced elsewhere in
this macro. It is initialized to whatever the
user types into the input field.

</p>
<input type="submit" value="enter" />

<hr>
<p>
[
Home page]</p>
</body><html>
%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, %HTML (INPUT)
{...%}. INPUT identifies the name of this block. The name can contain underscores,
periods, and any alphanumeric character; Net.Data does not distinguish by case.
The HTML <title> tag contains an example of variable substitution. The value of
the variable page_title is substituted into the title of the form.

This block also has a function call. The expression @today() is a call to the function
today. This function is defined in the FUNCTION block that is described above.
Net.Data inserts the result of the today function, the current date, into the HTML
text in the same location that the @today() expression is located.

The ACTION parameter of the FORM statement provides an example of navigation
between HTML blocks or between macros. Referencing the name of another block
in an ACTION parameter accesses that block when the form is submitted. Any
input data from an HTML form is passed to the block as implicit variables. This is
true of the single input field defined on this form. When the form is submitted,
data entered in this form is passed to the HTML(OUTPUT) block in the variable
input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.dtw/main" accesses the HTML block called main in the
macro othermacro.dtw. Again, any data entered into the form is passed to this
macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For example:
Next macro

You can access or manipulate form data in the macro by referencing the variable
name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains the
HTML tagging and Net.Data macro statements that define the output processed
from the HTML(INPUT) request.
%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title> <--- More substitution.

</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data) <--- This line contains a call to function rexx1

passing the argument "input_data".
<p>
<hr>
<p>

Chapter 5. Developing Net.Data Macros 59

[
Home page |
Previous page]
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title
variable is substituted into the title statement. And, as before, this block contains a
function call. In this case, it calls the function rexx1 and passes to it the contents of
the variable input_data, which it received from the form defined in the Input
block. You can pass any number of variables to and from a function. The function
definition specifies the number and the usage of variables that are passed.

XML Blocks
Whether you want to deliver XML to another processing application or to a client
browser, you can use the XML block structure to deliver XML content.

The XML block works in the same manner as the HTML block; it is an entry point
to the macro. Within the block you can enter XML tags directly, reference variables,
and make function calls.

So that you can customize the generated XML document to your needs, the XML
block does not generate the prolog tags. Enter the prolog information particular to
your enterprise and include a stylesheet of your choice. Included with Net.Data are
three XSL stylesheets that you can use. These stylesheets contain transforms for all
of the XML elements generated by Net.Data. The stylesheets are examples,
however, and you are encouraged to expand on these or create your own.

When calling an SQL function that returns a default report, Net.Data generates the
result set using a small set of XML elements, as shown in the following sample
Document Type Description (DTD).
<!-->
<!-- The root element of the document. -->
<!-->
<!ELEMENT XMLBlock (RowSet|ShowSQL|Message)*>
<!ATTLIST XMLBlock name CDATA #IMPLIED>

<!-->
<!-- The default presentation format for tables uses -->
<!-- the RowSet, Row, and Column elements. -->
<!-->
<!ELEMENT RowSet (Row)*>

%DEFINE SHOWSQL = "yes"

%FUNCTION(DTW_SQL) NewManager(){
select * from staff where job = 'Mgr' and years <= 5
%}

%XML(report) {
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>

<XMLBlock>
<h1>List of New Managers</h1>
@NewManager()

</XMLBlock>
%}

Figure 5. A macro containing an XML report block

60 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

<!ATTLIST RowSet name CDATA #IMPLIED>
<!ELEMENT Row (Column)*>
<!ATTLIST Row name CDATA #IMPLIED

number CDATA #IMPLIED>
<!ELEMENT Column (#PCDATA)>

<!-->
<!-- SQL statements resulting from setting the SHOWSQL -->
<!-- variable are presented with the ShowSQL element. -->
<!-->
<!ELEMENT ShowSQL (#PCDATA)>

<!-->
<!-- Messages are presented with the Message element. -->
<!-->
<!ELEMENT Message (#PCDATA)>

The elements are defined as follows:

XMLBlock
The root element for the document. This tag must be entered manually.

RowSet
Contains the rows in a result set. The name attribute of RowSet is
determined as follows:
v For a result set returned from a call to a function that executes an SQL

query, the name of the function is used.
v For a result set returned from a call to a stored procedure, the name of

the result set is used. If the result set is not named, then the function
name is used.

Row Contains the columns of a row and is numbered for identification.

Column
Contains the data value for the particular row and the column by which it
is named.

ShowSQL
Contains the SQL statement for the current query.

Message
Contains any error message produced by Net.Dta or DB2.

Using the elements above, Net.Data would generate the following output from the
macro listed in Figure 5 on page 60.
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="/netdata-xml/ndTable.xsl" ?>
<XMLBlock>

<h1>List of New Managers</h1>
<ShowSQL>select * from staff where job = 'Mgr' and years <= 5</ShowSQL>
<RowSet name="NewManager">

<Row number="1">
<Column name="ID">30</Column>
<Column name="NAME">Marenghi</Column>
<Column name="DEPT">38</Column>
<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">17506.75</Column>
<Column name="COMM"></Column>

</Row>
<Row number="2">

<Column name="ID">240</Column>
<Column name="NAME">Daniels</Column>
<Column name="DEPT">10</Column>

Chapter 5. Developing Net.Data Macros 61

<Column name="JOB">Mgr</Column>
<Column name="YEARS">5</Column>
<Column name="SALARY">19260.25</Column>
<Column name="COMM"></Column>

</Row>
</RowSet>

</XMLBlock>

Figure 6 and Figure 7 on page 63 show how the above data would appear in a
browser using each of the two stylesheets provided with Net.Data: ndTable.xsl and
ndRecord.xsl.

Figure 6. XML displayed using the ndTable.xsl stylesheet

62 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Net.Data Macro Variables
Net.Data lets you define and reference variables in a Net.Data macro. In addition,
you can pass these variables from the macro to the language environments and
back. The variable names, values, and literal strings that are passed are called
tokens. Net.Data puts no limit on the size of the tokens and will pass any token
that the memory of your system can handle. Individual language environments,
however, might provide restrictions on the token size.

Net.Data variables can be defined depending on the type of variable and whether
it has a predefined value. These variables can be categorized into the following
types, based on how they are defined:
v Explicitly defined variables using the DEFINE statement in the DEFINE block
v Predefined variables, which are variables that are made available by Net.Data

and are set to a value. This value usually cannot be changed.
v Implicitly defined variables, which are of four types:

– Variables that are not explicitly defined but are instantiated when first
assigned a value.

– Parameter variables that are part of a FUNCTION block definition and that
can only be referenced within a FUNCTION block.

– Variables that are instantiated by Net.Data and correspond to form data or
query string data.

– Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:
v “Identifier Scope” on page 64
v “Defining Variables” on page 64

Figure 7. XML displayed using the ndRecord.xsl stylesheet

Chapter 5. Developing Net.Data Macros 63

v “Referencing Variables” on page 66
v “Variable Types” on page 67

Identifier Scope
If an identifier has global scope, then it can be referenced anywhere in a macro
during a single request. The region where an identifier is visible is called its scope.
The five types of scope are:
v Global

An identifier has global scope if you can reference it anywhere within a macro.
Identifiers that have global scope are:
– Net.Data built-in functions
– Form data
– Query string data
– Variables instantiated from within an HTML block

v Macro
An identifier has this scope if its declaration appears outside of any block. A
block starts with an opening bracket ({) and ends with a percent sign and
bracket (%}). (DEFINE blocks are excluded from this definition.) Unlike an
identifier with global scope, one with macro scope can only be referred to by
items in the macro that follow the idenfier’s declaration.

v FUNCTION block or MACRO_FUNCTION block
An identifier has function block scope if:
– The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the identifier from the function parameter list
within the function block.

– The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function parameter
list. The value of the identifier within the function block remains unchanged
unless updated by the function.

v REPORT block
An identifier has report block scope if it can be referenced only from within a
REPORT block (for example, table column names N1, N2, ..., Nn). Only those
variables that Net.Data implicitly defines as part of its table processing can have
a report block scope. Any other variables that are instantiated have function
block scope.

v ROW block
An identifier has row block scope if it can only be referenced from within a
ROW block (for example, table value names V1, V2, ..., Vn). Only those variables
that Net.Data implicitly defines as part of its table processing can have a row
block scope. Any other variables that are instantiated have function block scope.

Defining Variables
There are three ways to define variables in a Net.Data macro:
v Define statement or block
v HTML form tags
v Query string data

64 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

A variable value received from form or query string data overrides a variable
value set by a DEFINE statement in a Net.Data macro.
v DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use the
DEFINE statement. The syntax is as follows:
%DEFINE variable_name="variable value"

%DEFINE variable_name={ variable value on multiple
lines of text %}

%DEFINE {
variable_name1="variable value 1"
variable_name2="variable value 2"

%}

The variable_name is the name you give the variable. Variable names must begin
with a letter or underscore and can contain any alphanumeric character, an
underscore, a period, or a hash (#). All variable names are case-sensitive, except
V_columnName, which is a table variable.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use block
braces around the value:
%DEFINE introduction={
Hello,
My name is John.
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE block:
%DEFINE {

variable1="value1"
variable2="value2"
variable3="value3"
variable4="value4"

%}

v HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses standard
HTML form tags to define Net.Data variables:
<input name="variable_name" TYPE=... />

or

Chapter 5. Developing Net.Data Macros 65

<select name="variable_name">
<option>value one
<option>value two

</select>

To assign a variable that spans multiple lines or contains special characters, such
as quotes, the TEXTAREA tag can be used:
<textarea name="variable_name" ROWS="4">
Please type the multi-line value
of your variable here.
</textarea>

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See “HTML Forms”
on page 44 for an example of how this type of variable definition is used in a

Net.Data macro.
v Query string data

You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/netdata-cgi/db2www/stdqry1.dtw/input?field=custno

In the above example, the variable name, field, and the variable value, custno,
specify additional data that Net.Data receives from the query string. Net.Data
receives and processes the data as it would from form data.

Referencing Variables
You can reference a previously defined variable to return its value. To reference a
variable in Net.Data macros, specify the variable name inside $(and). For
example:
$(variableName)
$(homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference with
the value of the variable.

To use variables as part of your text presentation statements, reference them in the
HTML blocks of your macro.

Valid variable names must begin with an alphanumeric character or an underscore,
and they can consist of alphanumeric characters, including a period, underscore,
and hash mark.

Example 1: Variable reference in a link

If you have defined the variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

You can refer to the home page as $(homeURL) and create a link:
Home page

You can dynamically generate a variable reference by including variable references,
strings, and function calls within a variable reference. If you reference a
dynamically-generated variable that does not follow the variable name rules,
Net.Data resolves the reference to an empty string. Dynamic variable references
cannot be used as OUT or INOUT parameters to function calls. See the Net.Data
Reference for more information on variable references.

66 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Example: Dynamically generates a variable reference for a field value of a row
%WHILE (INDEX < NUM_COLS) {
$(V$(INDEX))
@DTW_ADD(INDEX, "1", INDEX)
%}

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the time
it is referenced, Net.Data returns an empty string. A variable reference alone does
not define the variable.

Variable Types
You can use the following types of variables in your macros.
v “Conditional Variables”
v “Environment Variables” on page 68
v “Executable Variables” on page 68
v “Hidden Variables” on page 69
v “List Variables” on page 70
v “Table Variables” on page 70
v “Miscellaneous Variables” on page 71
v “Table Processing Variables” on page 71
v “Report Variables” on page 72
v “Language Environment Variables” on page 73

If you assign strings to variables that are defined a certain way by Net.Data, such
as ENVVAR, LIST, condition list variables, the variable no longer behaves in the
defined way. In other words, the variable becomes a simple variable, containing a
string.

See Net.Data Reference for syntax and examples of each type of variable.

Conditional Variables
Conditional variables let you define a conditional value for a variable by using a
method similar to an IF, THEN construct. When defining the conditional variable,
you can specify two possible variable values. If the first variable you reference
exists, the conditional variable gets the first value; otherwise the conditional
variable gets the second value. The syntax for a conditional variable is:
varA = varB ? "value_1" : "value_2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is equivalent to
using an IF block, as in the following example:
%IF (varB)

varA = "value_1"
%ELSE

varA = "value_2"
%ENDIF

See “List Variables” on page 70 for an example of using conditional variables with
list variables.

Chapter 5. Developing Net.Data Macros 67

Environment Variables
You can reference environment variables that the Web server makes available to
the process or thread that is processing your Net.Data request. When the ENVVAR
variable is referenced, Net.Data returns the current value of the environment
variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

The output looks like this:
The server is www.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.

Executable Variables
You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC language
element, see the language constructs chapter in the Net.Data Reference. In the
following example, the variable runit is defined to execute the executable program
testProg:
%DEFINE runit=%EXEC "testProg"

runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable
reference in a Net.Data macro. For example, the program testProg is executed
when a valid variable reference is made to the variable runit in a Net.Data macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable date is
defined as an executable variable and dateRpt contains a reference to the
executable variable.
%DEFINE date=%EXEC "date"

Wherever $(date) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, displays:
Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:
1. It searches the directories specified by the EXEC_PATH in the Net.Data

initialization file. See “EXEC_PATH” on page 17 for details.

68 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

2. If Net.Data does not locate the program, the system searches the directories
defined by the system PATH environment variable or the library list. If it
locates the executable program, Net.Data runs the program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable date
is NULL. If you use this variable in a DTW_ASSIGN function call to assign its
value to another variable, the value of the new variable after the assignment is
NULL also. The only purpose of an executable variable is to invoke the program it
defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition. In this example, the values of
distance and time are passed to the program calcMPH.
%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

Hidden Variables
You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:
1. Define a variable for each string you want to hide, after the variable’s last

reference in the HTML block. Variables are always defined with the DEFINE
language construct after they are used in the HTML block, as in the following
example. The $$(variable) variables are referenced and then defined.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of $(X).
%HTML(INPUT) {
<form ...>
<p>Select fields to view:
shanghai<select name="field">
<option value="$$(name)"> Name
<option value="$$(addr)"> Address
...
</form>
%}

%DEFINE {
name="customer.name"
addr="customer.address"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

%}

...

When a Web browser displays the HTML form, $$(name) and $$(addr) are
replaced with $(name) and $(addr) respectively, so the actual table and column
names never appear on the HTML form. Application users cannot tell that the
true variable names are hidden. When the user submits the form, the
HTML(REPORT) block is called. When @mySelect() calls the FUNCTION block,
$(Field) is substituted in the SQL statement with customer.name or
customer.addr in the SQL query.

Chapter 5. Developing Net.Data Macros 69

List Variables
Use list variables to build a delimited string of values. They are particularly useful
in helping you construct an SQL query with multiple items like those found in
some WHERE or HAVING clauses. The syntax for a list variable is:
%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after the
value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:
%HTML(INPUT) {
<form method="post" action="/netdata-cgi/db2www/example2.dtw/report">
<h2>Select one or more cities:</h2>
<input type="checkbox" name="conditions" value="$$(cond1)" />Sao Paolo

<input type="checkbox" name="conditions" value="$$(cond2)" />Seattle

<input type="checkbox" name="conditions" value="$$(cond3)" />Shanghai

<input type="submit" value="submit query" />
</form>
%}

%DEFINE{
%LIST " OR " conditions
cond1="cond1='Sao Paolo'"
cond2="cond2='Seattle'"
cond3="cond3='Shanghai'"
whereClause= ? "WHERE $(conditions)"
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$(whereClause)
%}

%HTML(REPORT){
@mySelect()
%}

In the HTML form, if no boxes are checked, conditions is empty, so whereClause is
also empty in the query. Otherwise, whereClause has the selected values separated
by OR. For example, if all three cities are selected, the SQL query is:
SELECT name, city FROM citylist
WHERE cond1='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:
SELECT name, city FROM citylist
WHERE cond1='Seattle'

Table Variables
The table variable defines a collection of related data. It contains a set of rows and
columns including a row of column headers. A table is defined in the Net.Data
macro as in the following statement:
%DEFINE myTable=%TABLE(30)

The number following %TABLE is the limit on the number of rows that this table
variable can contain. To specify a table with no limit on the number of rows, use
the default or specify ALL, as shown in these examples:
%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE(ALL)

70 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

When you define a table, it has zero rows and zero columns. The only way you
can populate a table with values is by passing it as an OUT or INOUT parameter
to a function or by using the built-in table functions provided by Net.Data. The
DTW_SQL language environment automatically puts the results of a SELECT
statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL, the
language environment is also responsible for setting table values. However, the
language environment script or program defines the table values cell-by-cell. See
“Chapter 6. Using Language Environments” on page 91 for more information about
how language environments use table variables.

You can pass a table between functions by referring to the table variable name. The
individual elements of the table can be referred to in a REPORT block of a function
or by using the Net.Data table functions. See “Table Processing Variables” for
accessing individual elements in a table within a REPORT block, and see “Table
Functions” on page 81 for accessing individual elements of a table using a table
function. Table variables are usually populated with values in an SQL function,
and then used as input to a report, either in the SQL function or in another
function after being passed to that function as a parameter. You can pass table
variables as IN, OUT, or INOUT parameters to any non-SQL function. Tables can
be passed to SQL functions only as OUT parameters.

Miscellaneous Variables
These variables are Net.Data-defined variables that you can use to:
v Affect Net.Data processing
v Find out the status of a function call
v Obtain information about the result set of a database query
v Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it is
processing, whereas you can specify whether Net.Data removes extra white space
caused by tabulators and new-line characters.

Predefined variables are used as variable references within the macro and provide
information about the current status of files, dates, or the status of a function call.
For example, to retrieve the name of the current file, you could use:
%REPORT {

<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>.</p>
}

Modifiable variable values are generally set using a DEFINE statement or with the
@DTW_ASSIGN() function and let you affect how Net.Data processes the macro.
For example, to specify whether white space is removed, you could use the
following DEFINE statement:
%DEFINE DTW_REMOVE_WS="YES"

Table Processing Variables
Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function calls.

Table processing variables have a predefined value that Net.Data determines. These
variables allow you to reference values from the result sets of SQL queries or

Chapter 5. Developing Net.Data Macros 71

function calls by the column, row, or field that is being processed. You can also
access information about the number of rows being processed or a list of all the
column names.

For example, as Net.Data processes a result set from an SQL query, it assigns the
value of the variable Nn for each current column name, such that N1 is assigned to
the first column, N2 is assigned to the second column, and so on. You can
reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you could
use:
%REPORT {

<p>Column 1 is <i>$(N1)</i>.</p>
}

Table processing variables also provide information about the results of a query.
You can reference the variable TOTAL_ROWS in the macro to show how many
rows are returned from an SQL query, as in the following example:
Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or built-in
functions. For example, TOTAL_ROWS requires that the DTW_SET_TOTAL_ROWS
SQL language environment variable be activated so that Net.Data assigns the value
of TOTAL_ROWS when processing the results from a SQL query or function call as
in the following example:
%DEFINE DTW_SET_TOTAL_ROWS="YES"
...

Names found: $(TOTAL_ROWS)

Report Variables
Net.Data displays Web page output generated from the macro in a default report
format. In an HTML block, the default report format displays a table using <pre>
</pre> tags tags or using HTML table tags. In an XML block, <RowSet>, <Row>,
and <Column> tags are used. You can override the default report by defining a
REPORT block with instructions for displaying the output or by using one of the
report variables to prevent the default report from being generated.

Report variables help you customize how your Web page output is displayed and
how it is used with default reports and Net.Data tables. You must define these
variables before using them with a DEFINE statement or with the
@DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify
whether table output should be displayed in HTML or fixed-width characters, and
specify other display features. For example, you can set DTW_HTML_TABLE to
″yes″ and Net.Data will generate the default report with HTML table tags instead
of as a plain-text formatted table.
%DEFINE ALIGN="YES"
...
<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to begin
displaying the results of a query. For example, the following variable value
specifies that Net.Data will begin displaying the results of a query at the third row.
%DEFINE START_ROW_NUM = "3"

72 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

You can also determine whether Net.Data uses HTML tags for default formatting.
With DTW_HTML_TABLE set to YES, an HTML table is generated rather than a
text-formatted table.
%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL){
SELECT NAME, ADDRESS FROM $(qTable)
%}

Language Environment Variables
These variables are used with language environments and affect how the language
environment processes a request.

With these variables, you can perform tasks such as establishing connections to
DB2 subsystems, enabling NLS support, and determining whether the execution of
an SQL statement is successful.

For example, you can use the SQL_STATE variable to access or display the SQL
state value returned from the database.
%FUNCTION (DTW_SQL) val1() {
select * from customer
%REPORT {
...
%ROW {
...
%}
SQLSTATE=$(SQL_STATE)
%}

Net.Data Functions
Net.Data provides built-in functions for use in your applications, such as word and
string manipulation functions or functions that retrieve and set table variable
functions. You can also define functions for use with your application, for example
to call an external program or a stored procedure.

User-defined functions
Those functions that you define for use with your application, for example
to call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications, such
as functions for manipulating words and strings and functions that get and
set table variables.

These sections describe the following topics:
v “Defining Functions”
v “Calling Functions” on page 78
v “Calling Net.Data Built-in Functions” on page 78

Defining Functions
To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must contain
language statements or calls to an external program.

Chapter 5. Developing Net.Data Macros 73

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is allowed in
an HTML block or XML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:
%FUNCTION(type) function-name([usage] [datatype] parameter, ...)

[RETURNS(return-var)] {
executable-statements
[report-block]
...

[message-block]
%}

MACRO_ FUNCTION block:
%MACRO_FUNCTION function-name([usage] parameter, ...) [RETURNS(return-var)] {

executable-statements
[report-block]
...
[report-block]

%}

Where:

type Identifies a language environment that is configured in the initialization
file. The language environment invokes a specific language processor
(which processes the executable statements) and provides a standard
interface between Net.Data and the language processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block. A
function call specifies the function-name, preceded by an at (@) sign. See
“Calling Functions” on page 78 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks with
the same name so that they are processed at the same time. Each of the
blocks must all have identical parameter lists. When Net.Data calls the
function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the order
they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output (OUT)
parameter, or both types (INOUT). This designation indicates whether the
parameter is passed into or received back from the FUNCTION block,
MACRO_FUNCTION block, or both. The usage type applies to all of the
subsequent parameters in the parameter list until changed by another
usage type. The default type is IN.

datatype
The data type of the parameter. Some language environments expect data
types for the parameters that are passed. For example, the SQL language
environment expects them when calling stored procedures. See “Chapter 6.
Using Language Environments” on page 91 to learn more about the
supported data types for the language environment you are using.

parameter
The name of a variable with local scope that is replaced with the value of a

74 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

corresponding argument specified on a function call. Parameters are passed
to the language environment and are accessible to the executable
statements using the natural syntax of that language or as environment
variables. Parameter variable references are not valid outside the
FUNCTION or MACRO_FUNCTION blocks.

return-var
Specify this parameter after the RETURNS keyword to identify a special
OUT parameter. The value of the return variable is assigned in the function
block, and its value is returned to the place in the macro from which the
function was called. For example, in the following sentence, <p>My name is
@my_name()., @my_name() gets replaced by the value of the return variable.
If you do not specify the RETURNS clause, the value of the function call is:
v NULL if the return code from the call to the language environment is

zero
v The value of the return code, when the return code is non-zero.

executable-statements
The set of language statements that is passed to the specified language
environment for processing after the variables are substituted and the
functions are processed. executable-statements can contain Net.Data variable
references and Net.Data function calls.

For FUNCTION blocks, Net.Data replaces all variable references with the
variable values, executes all function calls, and replaces the function calls
with their resulting values before the executable statements are passed to
the language environment. Each language environment processes the
statements differently. For more information about specifying executable
statements or calling executable programs, see “Executable Variables” on
page 68.

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this case,
no language environment is involved because Net.Data acts as the
language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the
FUNCTION or MACRO_FUNCTION block. See “Report Blocks” on
page 83.(In the FUNCTION block, multiple report blocks can only be used
in the SQL and ODBC language environments).

message-block
Defines the MESSAGE block, which handles any messages for error
conditions returned by the FUNCTION block. For more information on
how to capture error conditions, see “Message Blocks” on page 76.

Define functions outside of any other block and before they are called in the
Net.Data macro.

Using Special Characters in Functions
When characters that match Net.Data language constructs syntax are used in the
language statements section of a function block as part of syntactically valid
embedded program code (such as REXX or Perl), they can be misinterpreted as
Net.Data language constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter characters,
%{. When the macro is run, the %{ characters are interpreted as the beginning of a
COMMENT block. Net.Data then looks for the end of the COMMENT block,

Chapter 5. Developing Net.Data Macros 75

which it thinks it finds when it reads the end of the function block. Net.Data then
proceeds to look for the end of the function block, and when it can’t be found,
issues an error.

Use one of the following methods to use COMMENT block delimiter characters, or
any other Net.Data special characters as part of your embedded program code,
without having them interpreted by Net.Data as special characters:
v Use the EXEC statement to call the program code, rather than putting the code

inline.
v Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:
%FUNCTION(DTW_PERL) func() {

...
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather than
as a Net.Data COMMENT block delimiter, rewrite the function in either of the
following ways:
v Use the %EXEC statement:

%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}

%}

v Use a variable reference to specify the %{ characters:
%define percent_openbrace = "%{"

%FUNCTION(DTW_PERL) func() {
...
for $num_words (sort by number keys $(percent_openbrace) $Rtitles{$num} } {

&make_links($Rtitles{$num}{$num_words});
}
...

%}

Message Blocks
The MESSAGE block lets you determine how to proceed after a function call,
based on the success or failure of the function call, and lets you display
information to the caller of the function. When processing a message, Net.Data sets
the language environment variable RETURN_CODE for each function call to a
FUNCTION block. RETURN_CODE is not set on a function call to a
MACRO_FUNCTION block.

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax of a
MESSAGE block is shown in the language constructs chapter of the Net.Data
Referencebook.

A MESSAGE block can have a global or a local scope. If it is specified at the
outermost macro layer, the MESSAGE block has global scope and is active for all
function calls executed in the Net.Data macro. If you define more than one global
MESSAGE block, the last one defined is active. However, if the MESSAGE block is

76 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

defined in a FUNCTION block, its scope is local to that FUNCTION block (except
for Net.Data built-in functions, whose errors are handled by global message
blocks).

Net.Data uses these rules to process the value of the RETURN_CODE or
SQL_STATE variables from a function call:
1. Check the local MESSAGE block for an exact match of the value of the

RETURN_CODE or SQL_STATE; exit or continue as specified.
2. If the value is not 0, check local MESSAGE block for +default or -default;

depending on the sign of the value, exit or continue as specified.
3. If the value is not 0, check local MESSAGE block for default; exit or continue

as specified.
4. Check global MESSAGE block for an exact match of the RETURN_CODE or

SQL_STATE; exit or continue as specified.
5. If the value is not 0, check global MESSAGE block for +default or -default;

depending on the sign of the value, exit or continue as specified.
6. If the value is not 0, check global MESSAGE block for default; exit or continue

as specified.
7. If the value is not 0, issue Net.Data internal default message and exit.

The following example shows part of a Net.Data macro with a global MESSAGE
block and a MESSAGE block for a function.
%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {

%EXEC { my_command.cmd %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : exit

%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data processes the
error in this order:
1. Check for an exact match in the local MESSAGE block.
2. Check for +default in the local MESSAGE block.
3. Check for default in the local MESSAGE block.
4. Check for an exact match in the global MESSAGE block.
5. Check for +default in the global MESSAGE block.

When Net.Data finds a match, it sends the message text to the Web browser and
checks the requested action.

Chapter 5. Developing Net.Data Macros 77

When you specify continue, Net.Data continues to process the Net.Data macro
after printing the message text. For example, if a macro calls my_functions() five
times and error 100 is found during processing with the MESSAGE block in the
example, output from a program can look like this:
.
.
.
11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message
22 May 1997 $ 42.67

Total: $994.37

Calling Functions
Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a macro
function name:
@function_name([argument,...])

function_name
This is the name of the function or macro function to invoke. The function
must already be defined in the Net.Data macro, unless this is a built-in
function.

argument
This is the name of a variable, a quoted string, a variable reference, or a
function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while the
function or macro function is being processed. The arguments must be the
same number and type as the corresponding parameters.

Calling Net.Data Built-in Functions
Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not need
to define them. You can call these functions as you would call other functions.

Figure 8 on page 79 shows how the Net.Data built-in functions and the macro
interact.

78 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Built-in functions can return their results in three ways, depending on its prefix:
v DTW_ and DTWF_: The results of the call are returned in an output parameter

or no result is returned. (DTWF_ is the prefix for flat file functions.)
v DTW_r: The results of the function call replace the function call in the macro, in

the same way the value of the RETURNS keyword replaces the function call for
a user-defined function which has specified a RETURNS keyword.

v DTW_m: Multiple results are returned in each of the parameters passed to the
function.

Some built-in functions do not have each type. To determine which type a
particular built-in function has, see the Net.Data built-in functions chapter in
Net.Data Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word, or
table manipulation functions. Some of these functions require variables to be set
prior to their use or must be used in a specific context. See Net.Data Reference for
descriptions of each function with syntax and examples.
v “General Purpose Functions”
v “Math Functions” on page 80
v “String Functions” on page 80
v “Word Functions” on page 80
v “Table Functions” on page 81
v “Flat File Functions” on page 81
v “Java Applet Functions” on page 81

General Purpose Functions
This set of functions helps you develop Web pages by altering data or accessing
system services. You can use them to send mail, process HTTP cookies, generate
HTML escape codes, and get other useful information from the system.

For example, to specify that Net.Data should exit a macro if a specific condition
occurs, without processing the rest of the macro, you use the DTW_EXIT function:
%HTML(sort_page) {

<html>

Figure 8. Net.Data Built-in Functions

Chapter 5. Developing Net.Data Macros 79

<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<!!!>
<! Joe Smith sees a very short page !>
<!!!>
%IF (customer == "Joe Smith")
</body>
</html>

@DTW_EXIT()

%ENDIF

...

</body>
</html>
%}

Another useful function is the DTW_URLESCSEQ function, which replaces
characters that are not allowed in a URL with their escape values. For example, if
the input variable string1 equals "Guys & Dolls", DTW_URLESCSEQ assigns the
output variable to the value "Guys%20%26%20Dolls".

Math Functions
These functions perform mathematical operations, letting you calculate or alter
numeric data. Besides standard mathematical operations, you can also perform
modulus division, specify a result precision, and use scientific notation.

For example, the function DTW_POWER raises the value of its first parameter to
the power of its second parameter and returns the result, as shown in the
following example:
@DTW_POWER("2", "-3", result)

DTW_POWER returns ".125" in the variable result

String Functions
These functions let you manipulate characters within strings. You can change a
string’s case, insert or delete characters, assign a string value to another variable,
plus other useful functions.

For example, you can use DTW_ASSIGN to assign a value or to change the value
of a variable. You can also use this function to assign a value to or to change the
value of a variable. In the following example, the variable RC is assigned to zero.
@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings, and
DTW_INSERT, which inserts strings at a specific position, as well many other
string manipulation functions.

Word Functions
These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example, they
let you count the number of words in a string, remove words, search a string for a
word.

80 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

For example, use DTW_DELW0RD to delete a specified number of words from a
string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the number of
characters in a word, and DTW_WORDPOS, which returns the position of a word
within a string.

Table Functions
You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data tables,
and to manipulate and retrieve values in those tables. Table variables contain a set
of values and their associated column names. They provide a convenient way to
pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the following
example, Net.Data appends ten rows to the table, myTable:
@DTW_TB_APPENDROW(myTable, "10")

Additionally, DTW_TB_DUMPH, returns the contents of a macro table variable,
enclosed in <pre></pre> tags, with each row of the table displayed on a different
line. And DTW_TB_CHECKBOX returns one or more HTML check box input tags
from a macro table variable.

Flat File Functions
Use the flat file interface (FFI) functions to open, read, and manipulate data from
flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the end of
a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot read
or update the file. DTWF_CLOSE releases the file when Net.Data is done with it,
allowing other requests to access the file.

Java Applet Functions
Use the Java Applet functions to easily generate <applet> and <parm> tags to your
web page based on Net.Data variables.

For example, if you have an applet named myApplet, and you want to pass some
parameters to the applet, including a table variable, you could do the following:
%define REMOTE_USER = %ENVVAR
%define myTable = %TABLE(all)
...
%HTML(report) {
...
@DTWA_myApplet(REMOTE_USER, myTable)
...
%}

This would tell Net.Data to generate an <applet> tag, as well as a <parm> tag for
each of the values in the table and for the value of the REMOTE_USER
environment variable.

Chapter 5. Developing Net.Data Macros 81

In addition, you can pass a single column of a table. For example:
@DTWA_myApplet(REMOTE_USER, DTW_COLUMN(mycol)myTable)

This example passes the mycol column of the Net.Data table variable myTable.

Generating Document Markup
Net.Data dynamically generates HTML or XML documents to be used by a client
application such as a Web browser. The following sections describe the various
constructs you can use to format documents with Net.Data macros. See the
language constructs chapter in Net.Data Reference for the specific syntax
information for each.

HTML and XML Blocks
The client application invokes Net.Data by specifying both the macro name and
the name of one of the macro’s entry points. The entry point to the macro can be
either an HTML or XML block. These blocks contain the Net.Data language
statements and text presentation statements that generate the resulting page.

Because the entry point block drives the execution of the macro, at least one entry
point must exist in a macro. There can be multiple HTML or XML blocks, but only
one is executed per client request. And, with each request a single document is
returned to the client. To create an application consisting of many client
documents, you can invoke Net.Data multiple times to process various HTML or
XML blocks in various macros using standard navigation techniques, such as links
and forms.

Any text presentation statements can appear in an HTML or XML block, as long as
the statements are valid for the client. For example, HTML blocks can contain
HTML or JavaScript. The JavaScript is not executed by Net.Data, but is sent along
with the rest of the output to the client for execution and display. In an HTML or
XML block, you can also include function calls, variable references, and INCLUDE
statements. The following example shows a common use of an HTML block in a
Net.Data macro:
%HTML(input){
<h1>Hardware Query Form</h1>
<hr/>
<form method="post" action="report">
<dl>
</dt>What hardware do you want to list?
<dd><input type="radio" name="hdware" value="MON" checked />Monitors</ddl>
<dd><input type="radio" name="hdware" value="PNT" />Pointing devices</ddl>
<dd><input type="radio" name="hdware" value="PRT" />Printers</ddl>
<dd><input type="radio" name="hdware" value="SCN" />Scanners</ddl>
</dl>
<hr />
<input type="submit" value="Submit" />
</form>
%}

%FUNCTION(DTW_SQL) myQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE='$(hardware)'
%REPORT{
Here is the list you requested:

%ROW{
<hr />
$(N1): $(V1) $(N2): $(V2)
</p>
$(V3)

82 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

%}
%}
%}

%HTML(report){
@myQuery()
%}

You can invoke the Net.Data macro from an HTML link.

List of hardware

When the application user clicks on this link, the Web browser invokes Net.Data,
and Net.Data parses the macro. When Net.Data begins processing the HTML block
specified on the invocation, in this case input, it begins to process the text inside
the block. Anything that Net.Data does not recognize as a Net.Data macro
language construct, it sends to the browser for display.

After the user makes a selection and presses the Submit button, the client requests
the action specified in the action attribute of the HTML form. This action specifies
a call to the output HTML block of the macro. Net.Data then processes the output
HTML block, just as it did with the input HTML block.

Net.Data then processes the myQuery() function call, which in turn invokes the SQL
Language Environment FUNCTION block. After replacing the $(hdware) variable
reference in the SQL statement with the value returned from the input form,
Net.Data runs the query. At this point, Net.Data resumes processing the report,
displaying the results of the query according to the text presentation statements
specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the output
HTML block, and finishes processing.

Report Blocks
Use the REPORT block language construct to format and display data output from
a FUNCTION block. This output is typically table data, although any valid
combination of text, macro variable references, and function calls can be specified.
A table name can optionally be specified on the REPORT block. Except for SQL
and ODBC language environments, if you do not specify a table name, Net.Data
uses the table data from the first output table in the FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:
v Header information, which contains text that is displayed once before the table

row data.
v A ROW block, which contains text and table variables that are displayed once

for each row of the result table.
v Footer information, which contains text that is displayed once after the table row

data.

Example:
%REPORT{
<h2>Query Results</h2>
<p>Select a name for details.
<table border=1>

<tr>
<td>Name</td>
<td>Location</td></tr>

Chapter 5. Developing Net.Data Macros 83

%ROW{
<tr>

<td>
$(V1)

</td>
<td>$(V2)</td>

</tr>
%}

</table>
%}

REPORT Block Guidelines
Use the following guidelines when creating REPORT blocks:
v To avoid displaying any table output from the ROW block, leave the ROW block

empty or omit it entirely.
v Use Net.Data-provided variables inside the REPORT block to access the data in

the Net.Data macro results table. These variables are described in “Table
Processing Variables” on page 71. For additional detail, see the Report Variables
section in the Net.Data Reference.

v To provide header and footer information, provide the text before and after the
ROW block. Net.Data processes everything it finds before a ROW block as
header information. Net.Data processes everything it finds after the ROW block
as footer information. As with the HTML block, Net.Data treats everything in
the header, ROW, and footer blocks that is not recognized as macro language
constructs as text presentation statements and sends these statements to the
browser.

v You can call functions and reference variables in a REPORT block.
v To have Net.Data print a default report using pre-formatted text, do not include

the REPORT block in the macro. The following example shows the default report
format when the function is called in an HTML block:

SHIPDATE | RECDATE | SHIPNO |

25/05/1997 | 30/05/1997 | 1495194B |

25/05/1997 | 28/05/1997 | 2942821G |

v To use the HTML tags instead of the pre-formatted text, set
DTW_HTML_TABLE to YES.

v To disable the printing of the a default report, set DTW_DEFAULT_REPORT to
NO or by specifying an empty REPORT block. For example:
%REPORT{%}

Example: Customizing a Report
The following example shows how you can customize report formats using special
variables and HTML tags. It displays the names, phone numbers, and FAX
numbers from the table CustomerTbl:
%DEFINE SET_TOTAL_ROWS="YES"
...

%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{

<i>Phone Query Results:</i>

=====================

%ROW{
Name: $(V1)

84 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Phone: $(V2)

Fax: $(V3)

%}
Total records retrieved: $(TOTAL_ROWS)

%}
%}

The resulting report looks like this in the Web browser:
Phone Query Results:
====================
Name: Doen, David
Phone: 422-245-1293
Fax: 422-245-7383

Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974

Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:
1. Printing Phone Query Results: once at the beginning of the report. This text,

along with the separator line, is the header part of the REPORT block.
2. Replacing the variables V1, V2, and V3 with their values for Name, Phone, and

Fax respectively for each row as it is retrieved.
3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once at

the end of the report. (This text is the footer part of the REPORT block.)

Multiple REPORT Blocks
You can use multiple REPORT blocks with the SQL Language Environment or the
ODBC Language Environment when a function calls a stored procedure that
returns multiple result sets. See “Stored Procedures” on page 98.

To use multiple REPORT blocks, place a result set name on the stored procedure
CALL statement for each result set. If more result sets are returned from the stored
procedure than the number of REPORT blocks you have specified, then default
reports are generated for each result set that is not associated with a REPORT
block. This assumes that you have not disabled default report processing by by
setting the Net.Data variable DTW_DEFAULT_REPORT = ″NO″.

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment
%FUNCTION (dtw_sql) myStoredProc () {

CALL myproc %}

To display multiple reports by specifying REPORT blocks for display processing:

Chapter 5. Developing Net.Data Macros 85

Example 1: Named REPORT blocks
%FUNCTION(dtw_sql) myStoredProc () {

CALL myproc (table1, table2)

%REPORT(table2) {
...
%ROW { %}
...

%}

%REPORT(table1) {
...
%row { %}
...

%}
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. The tables are displayed in the order they
are specified on the REPORT blocks, table2 first, then table1. By specifying a table
name on the REPORT blocks and the CALL statement, you can control the order in
which the reports are displayed.

Example 2: Unnamed REPORT blocks
%FUNCTION(dtw_sql) myStoredProc () {

CALL myproc

%REPORT {
...
%ROW { %}
...

%}
%REPORT {

...
%ROW { %}
...

%}
%}

In this example, REPORT blocks have been specified for two result sets returned
from myproc. Because there are no table names specified on the REPORT blocks,
the REPORT blocks are executed for the first two result sets in the order in which
they are returned from the stored procedure.

To display multiple reports using a combination of default reports and REPORT
blocks:

Example: A combination of default reports and REPORT blocks
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION(dtw_sql) myStoredProc (OUT table1) {

CALL myproc (table1, table2, table3)

%REPORT(table2) {
...
%ROW { %}
...

%}

%}

In this example, only one REPORT block is specified. Because the block specifies
table2, and table2 is the second result set listed on the CALL statement, the

86 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

second result set is used to display the report. Because there are fewer REPORT
blocks specified than the number of result sets returned from the stored procedure,
default reports are then displayed for the remaining result sets: first, a default
report for the first result set, table1; then a default report for the third result set,
table3. One output table is specified, table1, which can be used for processing
later in the macro.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the following
guidelines and restrictions when specifying multiple REPORT blocks in a
FUNCTION block.

Guidelines:

v You can specify one REPORT block per result set.
v Specify REPORT blocks for multiple tables in the order in which you want them

to be processed.
v To specify default processing when there is not a REPORT block specified for a

table, define DTW_DEFAULT_REPORT = ″YES″. When Net.Data builds the Web
page, it displays default reports for tables after it displays the reports for tables
having REPORT blocks.

v To prevent Net.Data from displaying tables that do not have REPORT blocks, set
DTW_DEFAULT_REPORT = ″NO″.

v When using the DTW_SAVE_TABLE_IN variable with a function that returns
more than one result set, the first result set returned from the function is
assigned to the DTW_SAVE_TABLE_IN table.

Restrictions:

v Multiple REPORT blocks can only be used in functions using the SQL or ODBC
Language Environments when the function calls a stored procedure that returns
multiple result sets.

v The values of all report variables in a function, such as START_R_N and
RPT_M_R, apply to all the REPORT blocks in that function. You cannot modify
the value of a report variable for individual REPORT blocks.

v The MESSAGE block must be located either before or after a list of REPORT
blocks, and not between REPORT blocks.

v If the first report block specifies a table name, then all report blocks must specify
table names.

v If the first report block does not specify a table name, then none of the report
blocks can specify table names.

v Multiple REPORT blocks cannot be specified for the same table.

Conditional Logic and Looping in a Macro
Net.Data lets you incorporate conditional logic and looping in your Net.Data
macros using the IF and WHILE blocks.

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome of the
condition test. The condition list contains logical operators, such as = and <=, and
terms, which are made up of quoted strings, variables, variable references, and
function calls. Quoted strings can contain variable references and functions calls, as
well. You can nest the condition list.

The following sections describe conditional logic and looping:

Chapter 5. Developing Net.Data Macros 87

v “Conditional Logic: IF Blocks”
v “Looping Constructs: WHILE Blocks” on page 90

Conditional Logic: IF Blocks
Use the IF block for conditional processing in a Net.Data macro. The IF block is
similar to IF statements in most high-level languages because it provides the ability
to test one or more conditions, and then to perform a block of statements based on
the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

IF Block Rules: The rules for IF block syntax are determined by the block’s
position in the macro. The elements allowed in the executable block of statements
of an IF block depend on the location of the IF block itself.
v Any element that is valid in the block containing the IF block is valid within

that IF block. For example, if you specify an IF block inside an HTML block, any
element that is allowed in the HTML block is allowed in the IF block, such as
INCLUDE statements and WHILE blocks.
%HTML block
...

%IF block
...

%INCLUDE
...

%WHILE
...

%ENDIF
%}

v Similarly, if you specify the IF block outside of any other block in the declaration
part of the Net.Data macro, only those elements allowed outside of any other
block (such as a DEFINE block or FUNCTION block) are allowed in the IF
block.
%IF
...

%DEFINE
...

%FUNCTION
...
%ENDIF

v When an IF block is nested within an IF block that is outside of any other block
in the declaration part, it can use any element that the outside block can use.
When an IF block is nested within another block that is in an IF block, it takes
on the syntax rules for the block it is inside.
For example, a nested IF block must follow the rules used when it is inside an
HTML block.
%IF
...

%HTML {
...

%IF
...

%ENDIF
%}

...
%ENDIF

88 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Exception: Do not specify a ROW block in an IF block.

IF Block String Comparison

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat all
terms as strings, and to perform string comparisons as specified in the conditions.
However, if the comparison is between two strings representing integers, then the
comparison is numeric. Net.Data assumes a string is numeric if it contains only
digits, optionally preceded by a ’+’ or ’-’ character. The string cannot contain any
non-digit characters other than the ’+’ or ’-’. Net.Data does not support numerical
comparison of non-integer numbers.

Examples of valid integer strings:
+1234567890
-47
000812
92000

Examples of invalid integer strings:
- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which can be
different than the time it is originally read by Net.Data. For example, if you specify
an IF block in a REPORT block, Net.Data does not evaluate the condition list
associated with the IF block when it reads the FUNCTION block definition
containing the REPORT block, but rather when it calls the function and executes it.
This is true for both the condition list part of the IF block and the block of
statements to be executed.

IF Block Example: A macro containing IF blocks inside other blocks
%{ This macro is called from another macro, passing the operating system

and version variables in the form data.
%}

%IF (platform == "OS390")
%IF (version == "1.3")

%INCLUDE "os390v1r3_def.hti"
%ELIF (version == "2.0")

%INCLUDE "os390v2r1_def.hti"
%ELIF (version == "2.2")

%INCLUDE "os390v2r2_def.hti"
%ENDIF

%ELSE
%INCLUDE "default_def.hti"

%ENDIF

%MACRO_FUNCTION numericCompare(IN term1, term2, OUT result) {
%IF (term1 < term2)

@dtw_assign(result, "-1")
%ELIF (term1 > term2)

@dtw_assign(result, "1")
%ELSE

@dtw_assign(result, "0")
%ENDIF

%}

%HTML(report){
%WHILE (a < "10") {

outer while loop #$(a)

Chapter 5. Developing Net.Data Macros 89

%IF (@dtw_rdivrem(a,"2") == "0")
this is an even number loop

%ENDIF
@DTW_ADD(a, "1", a)

%}
%}

Looping Constructs: WHILE Blocks
Use the WHILE block to perform looping in a Net.Data macro. Like the IF block,
the WHILE block provides the ability to test one or more conditions, and then to
perform a block of statements based on the outcome of the condition test. Unlike
the IF block, the block of statements can be executed any number of times based
on the outcome of the condition test.

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW blocks,
and IF blocks, and you can nest them. The syntax of a WHILE block is shown in
the language constructs chapter of Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And, like
any conditional looping construct, it is possible for processing to go into an infinite
loop if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE loopCounter = "1"

%HTML(build_table) {
%WHILE (loopCounter <= "100") {

%{ generate table tag and column headings %}
%IF (loopCounter == "1")

<table border>
<tr>
<th>Item #
<th>Description

%ENDIF

%{ generate individual rows %}
<tr>
<td>$(loopCounter)
<td>@getDescription(loopCounter)

%{ generate end table tag %}
%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(loopCounter, "1", loopCounter)

%}
%}

90 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources and
to execute application programs containing business logic. For example, the SQL
language environment lets you pass SQL statements to a DB2 subsystem, and the
REXX language environment lets you invoke REXX programs. You can also use the
SYSTEM language environment to execute an external program that, for example,
uses the External CICS Interface (EXCI) interface to execute a CICS program.

With Net.Data, you can add user-written language environments in a pluggable
fashion. Each user-written language environment must support a standard set of
interfaces that are defined by Net.Data and must be implemented as a dynamic
link library (DLL). For complete details on Net.Data-supplied language
environments and on how to create a user-written language environment, see the
Net.Data Language Environment Interface Reference.

Figure 9 shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

The following sections describe the Net.Data language environments and how to
use them in your macros:
v “Overview of Net.Data-Supplied Language Environments” on page 92
v “Calling a Language Environment” on page 92
v “Relational Database Language Environments” on page 93
v “Programming Language Environments” on page 105

For configuration information about the Net.Data-provided language
environments, see “Setting Up Net.Data Language Environments” on page 21.

For information about improving performance when using the language
environments, see “Chapter 7. Improving Performance” on page 119.

Figure 9. The Net.Data Language Environments

© Copyright IBM Corp. 1997, 2001 91

Overview of Net.Data-Supplied Language Environments
Net.Data provides language environments that let you access data and
programming resources for your application.

Net.Data provides two types of language environments:
v “Relational Database Language Environments” on page 93
v “Programming Language Environments” on page 105

Table 5 provides a brief description of each language environment.

Table 5. Net.Data Language Environments

Language
Environment Environment Name Description

ODBC DTW_ODBC The ODBC language environment executes SQL
statements through an ODBC interface for access to
multiple database management systems. The results
of the ODBC statement can be returned in a table
variable.

Perl DTW_PERL The Perl language environment interprets internal
Perl scripts that are specified in a FUNCTION block
of the Net.Data macro, or it executes external Perl
scripts stored in separate files.

REXX DTW_REXX The REXX language environment interprets internal
REXX programs that are specified in a FUNCTION
block of the Net.Data macro, or it can execute
external REXX programs stored in a separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable. The
results of the ODBC statement can be returned in a
table variable.

System DTW_SYSTEM The System language environment supports
executing commands and calling external programs.

Calling a Language Environment
To call a language environment:
v Use a FUNCTION statement to define a function that calls the language

environment by supplying language statements or an %EXEC statement.
v Use a function call to the language environment.

For example:
%FUNCTION(DTW_SQL) custinfo() {
select CUSTNAME, CUSTNO from ibmuser.customer
%}
...
%HTML(REPORT) {
@custinfo()
%}

Guidelines for Handling Error Conditions
When an error is detected in a language environment function, the language
environment sets the Net.Data RETURN_CODE variable with an error code.

92 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

You can use the following resources to handle error conditions:
v The Net.Data-supplied language environments return error codes that are

documented in Net.Data Messages and Codes Reference.
v The database language environments, such as the SQL language environment set

the RETURN_CODE variable to the SQLCODE returned by the database, and
the SQL_STATE variable to the SQLSTATE returned by the database. See the
messages and codes documentation for your DBMS to learn more about the
SQLCODEs and SQLSTATEs used by your DBMS.

Security
Ensure that the user ID that Net.Data is running under has the proper authority to
access any object that may be referenced by the target of a language environment
statement. For example, SQL language environment executes SQL statements, so
that the user ID under which Net.Data executes must have the authority to access
the database resources, in order to execute successfully.

Relational Database Language Environments
Net.Data provides relational database language environments to help you access
your relational data sources. The SQL statements you provide to access the
relational data are executed as dynamic SQL. For more information on dynamic
SQL, see your DB2 documentation.

The following sections describe the language environments and how to use them:
v “ODBC Language Environment”
v “SQL Language Environment” on page 94
v “Managing Transactions in a Net.Data Application” on page 94
v “Using Large Objects” on page 95
v “Stored Procedures” on page 98
v “Relational Database Language Environment Example” on page 103

ODBC Language Environment
The Open Database Connectivity (ODBC) language environment executes SQL
statements through an ODBC interface. ODBC is based on the X/Open SQL CAE
specification, which lets a single application access many database management
systems.

To use the ODBC language environment:

Verify that the location of your CLI initialization file is specified in the
configuration variable DSNAOINI. To learn how to set the DSNAOINI
configuration variable, see “DSNAOINI: DB2 CLI Initialization File Variable” on
page 10.

Verify that the following configuration statement is in the Net.Data initialization
file, on one line.
ENVIRONMENT (DTW_ODBC) odbcdll ()

Allowed variables on the ENVIRONMENT statement: TRANSACTION_SCOPE,
LOCATION

Restrictions:

Chapter 6. Using Language Environments 93

v SQL statements in the inline statement block can be 32 KB.

SQL Language Environment
The SQL language environment provides access to DB2 databases. Use this
language environment for optimal performance when accessing DB2.

To use the SQL language environment, verify that the following configuration
statement is in the initialization file, on one line.
ENVIRONMENT (DTW_SQL) dtwsql ()

Allowed variables on the ENVIRONMENT statement: TRANSACTION_SCOPE,
LOCATION, DB2SSID, DB2PLAN

See “Setting up the SQL and ODBC Language Environments” on page 21 to learn
how to further set up the SQL language environment.

Restrictions:

v SQL statements in the inline statement block can be up to 32 KB.
v Net.Data treats CHAR, and VARCHAR columns as character data GRAPHIC

and VARGRAPHIC as DBCS character data. The NULL-terminator for character
data is one byte of value ’0’x and two bytes of ’00’x for DBCS character data.
Character data or DBCS character data strings are terminated at the location of a
NULL-terminator.

v Nesting SQL statements is not allowed with the ODBC Language Environment.
v The variable DTW_USE_DB2_PREPARE_CACHE cannot be used in conjunction

with the ODBC Language Environment.
v When nesting SQL statements, the maximum number of result sets that can be

processed at any given time is 32. For example you could nest three levels, each
one returning 10 result sets. Or nest 32 levels, returning one result set each.

Managing Transactions in a Net.Data Application
When you modify the content of a database using insert, delete, or update
statements, the modifications do not become persistent until the database receives
a commit statement from Net.Data. If an error occurs, Net.Data sends a rollback
statement to the database, reversing all modifications since the last commit.

The way in which Net.Data sends the commit and possible rollback statements
depend on the setting of TRANSACTION_SCOPE and whether commit statements
are explicitly specified in the macro. The values for TRANSACTION_SCOPE are
MULTIPLE and SINGLE. The default is MULTIPLE. To set
TRANSACTION_SCOPE to SINGLE, use a %DEFINE statement or a call to
@DTW_ASSIGN(), and pass the variable on the ENVIRONMENT statement for the
proper LE. For more information, see Customizing the Net.Data Initialization File
in Chapter 2 of this book.

SINGLE

Specifies that Net.Data issues a commit statement after each successful SQL
statement. If the SQL statement returns an error, a rollback statement is
issued. SINGLE transaction scope secures a database modification
immediately; however, with this scope, it is not possible to undo a
modification using a rollback statement later.

MULTIPLE

94 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Specifies that Net.Data will execute all SQL statements before a commit
statement is issued. Net.Data sends the commit at the end of the request,
and if each SQL statement is issued successfully, the commit makes all
modifications in the database persistent. If any of the statements returns an
error, Net.Data issues a rollback statement at the point of the error, which
sets the database back to its prior state.

By leaving TRANSACTION_SCOPE set to MULTIPLE and issuing commit
statements at the end of those groups of statements that you feel qualify as a
transaction, you the application developer maintain full control over the commit
and rollback behavior in your application.

To issue an SQL commit statement, you can define a function that you can call in
at any point in your HTML block:
%FUNCTION(DTW_SQL) user_commit() {

commit
%}

...

%HTML {
...
@user_commit()
...

%}

Restrictions:

The setting of TRANSACTION_SCOPE cannot be changed after a connection to the
database is made. Therefore, all SQL transactions in a macro are subject to the
same processing.

If you are using Net.Data as part of Net.Commerce, note that Net.Commerce has
its own transaction handling and disables the transaction handling of Net.Data.

Using Large Objects
You can store large object files (LOBs) in DB2 UDB Server for OS/390 Version 6
tables and incorporate them into your dynamic Web pages by using the Net.Data
SQL language environment.

When the language environment executes an SQL SELECT statement or a stored
procedure that returns a LOB, it does not assign the object to a V(n) table
processing variable or a Net.Data table field. Instead, it stores the LOB in an HFS
file that Net.Data creates and returns only the name of the file in the V(n) table
processing variable or a Net.Data table field. In your Net.Data macro you can use
the name to reference the LOB file; for example, you can create an HTML anchor
element with a hypertext reference or an image element containing a URL for the
file. Net.Data places the file containing the LOB in the directory specified by the
DTW_LOB_DIR configuration variable, located in the Net.Data initialization file
(db2www.ini). Write access to the LOB file is limited to the user ID associated with
the Net.Data request that retrieved the LOB.

The file name for the LOB is dynamically constructed, and has the following form:
name[.extension]

Where:

Chapter 6. Using Language Environments 95

name Is a dynamically generated unique string identifying the large object

extension
Is a string that identifies the type of the object. For CLOBs and DBCLOBs,
the extension is .txt. For BLOBs, the SQL language environment determines
the extension by looking for a signature in the first few bytes of the LOB
file. Table 6 shows the LOB extensions used by the SQL language
environment:

Table 6. LOB extensions used in the SQL language environment
Extension Object Type
.bmp bitmap image
.gif graphical image format
.jpg joint photographic experts group (JPEG) image
.tif tagged image file format
.ps postscript
.mid musical instruments digital interface (midi) audio
.aif AIFF audio
.avi audio visual interleave audio
.au basic audio
.ra real audio
.wav windows audio visual
.pdf portable document format
.rmi midi sequence

If the object type for the BLOB is not recognized, no extension is added to the file
name.

When Net.Data returns the name of the file containing a LOB, it prefixes the file
name with the string /tmplobs/ using the following syntax:
/tmplobs/name.[extension]

This prefix permits you to locate your LOB directory in a directory other than the
Web server’s document root directory.

To ensure that references to LOB files are correctly resolved, add the following Pass
directive to your Web server’s configuration file:
Pass /tmplobs/* <full_path>

<full_path> is the value specified for the DTW_LOB_DIR configuration variable in
the Net.Data initialization file.

Planning tips:

v Consider using the facilities provided by Net.Data to manage LOBs in HFS.
Net.Data stores each LOB that it receives from DB2 in an HFS file in the
directory specified by the DTW_LOB_DIR configuration variable. Because a LOB
can be up to 2 gigabytes in size, these files can quickly consume a considerable
amount of disk storage. Net.Data provides automatic management of LOBs
based on expiration time, and a macro that allows a system administrator to
manage LOBs in a more sophisticated fashion using the creation time of the
LOBs. See “Managing Cached Web Pages and Large Objects” on page 28 for
additional information.

v Consider using the HFS file system structure to more effectively manage your
LOB files.

96 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

– Put the directory specified by the DTW_LOB_DIR configuration variable in its
own HFS data set and manage the size of the data set using MVS allocation
size and extents.

– Share the HFS directory that is specified in the DTW_LOB_DIR configuration
variable with each Web server that invokes Net.Data, if you reference LOBs
within your Net.Data-generated Web pages and are using DB2 Data Sharing.
The DB2 table SYSIBM.DTWCACHEDEPS, used by Net.Data to manage LOBs
referenced within Net.Data-generated Web pages, contains the fully qualified
file names for LOBs in the Net.Data HFS files. For this reason, invocations of
Net.Data that access SYSIBM.DTWCACHEDEPS also require access to the
directory specified in the HTML_PATH statement. Accordingly, when using
DB2 Data Sharing, each configuration of Net.Data must specify th -e same
HFS directory in its HTML_PATH statement and each of the Web servers that
invokes Net.Data must share this HFS directory. Version 2 release 9 is the first
release of OS/390 that supports read and write access to shared HFS
directories.

– Place your HFS data set on a device that has capacity and performance
characteristics that match the needs of your applications.

Restriction: Net.Data does not support UPDATE and INSERT SQL statements for
large objects.

Example: The following application uses an MPEG audio (.mpa) file. Because the
SQL language environment does not recognize this file type, an EXEC variable is
used to append the .mpa extension to the file name. A user of this application
must click on the file name to invoke the MPEG audio file viewer.
%DEFINE{
lobdir="/u/IBMUSER/tmplobs""
myFile=%EXEC "mv $(lobdir)$(filename) $(lobdir)$(filename).mpa"
%}

%FUNCTION(DTW_SQL) queryData() {
SELECT Name, IDPhoto, Voice FROM RepProfile
%REPORT{

<p>Here is the information you selected:</p>
%ROW{

@DTW_ASSIGN(filename, @DTW_rSUBSTR(V3, @DTW_rLASTPOS("/", V3)))
$(myFile)
$(V1)

Voice sample<p>
%}

%}
%}

%HTML (Report){
@queryData()
%}

If the RepProfile table contains information about Kinson Yamamoto and Merilee
Lau, then the execution of the REPORT block will add the following HTML to the
Web page being generated:
<p>Here is the information you selected:</p>
Kinson Yamamoto
Voice sample<p>
Merilee Lau
Voice sample<p>

The REPORT block in the previous example uses the implicit table variables V1,
V2, and V3.

Chapter 6. Using Language Environments 97

v The value of V1 is a person’s name, which is character data.
v The value of V2 is the name of a GIF file containing the photo of the person.

The image is displayed inline within the generated Web page.
v The value of V3 is the name of an MPA file containing a sample of the person’s

voice. Because Net.Data does not recognize the MPA file format, it does not add
an extension to the file name when it creates the file for the LOB in the directory
specified by DTW_LOB_DIR. This example illustrates the use of an EXEC
variable to add the .mpa extension to the file name. The voice sample is played
when the user clicks on text ″Voice sample″, which is a hyperlink text.

Access rights for LOBs:

Ensure that the user ID or user IDs under which Net.Data executes have write
access to the directory specified by DTW_LOB_DIR.

Stored Procedures
A stored procedure is a compiled program stored in DB2 that can execute SQL
statements. In Net.Data, stored procedures are called from Net.Data functions
using a CALL statement. Stored procedure parameters are passed in from the
Net.Data function parameter list. You can use stored procedures to improve
performance and integrity by keeping compiled SQL statements with the database
server. Net.Data supports the use of stored procedures with DB2 through the SQL
and ODBC language environments.

This section describes following topics:
v “Stored Procedure Syntax”
v “Calling a Stored Procedure” on page 99
v “Passing Parameters” on page 100
v “Processing Result Sets” on page 100

Stored Procedure Syntax
The syntax used for stored procedures includes the FUNCTION statement, the
CALL statement, and optionally a REPORT block.
%FUNCTION (DTW_lang_env) function_name ([IN datatype arg1, INOUT datatype arg2,

OUT resultsetname, ...]) {
CALL stored_procedure [(resultsetname, ...)]

[%REPORT [(resultsetname)] { %}]
...
[%REPORT [(resultsetname)] { %}]
[%MESSAGE %}]

%}

Where:

lang_env
Is the name of the language environment being invoked. It can be DTW_SQL
or DTW_ODBC.

function_name
Is the name of the Net.Data function that initiates the call of the stored
procedure

stored_procedure
Is the name of the stored procedure

98 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

datatype
Is one of the database data types supported by Net.Data as shown in Table 7.
The data types specified in the parameter list must match the data types in the
stored procedure. See your database documentation for more information
about these data types.

resultsetname
Is the name that associates a result set returned from a stored procedure with a
REPORT block and a table name on the function parm list, or both. The
resultsetname on a REPORT block must match a result set on the CALL
statement.

Table 7. Supported Stored Procedure Data Types
CHAR FLOAT VARCHAR
DECIMAL INTEGER VARGRAPHIC
DOUBLE GRAPHIC
DOUBLEPRECISION SMALLINT

Calling a Stored Procedure
1. Define a function that initiates a call to the stored procedure.

%FUNCTION (DTW_SQL) function_name()

2. Optionally, specify any IN, INOUT, or OUT parameters for the stored
procedure, including a table variable name for storing a result set in a Net.Data
table (you only need to specify a Net.Data table if you want the result set
stored in a Net.Data table).
%FUNCTION (DTW_SQL) function_name (IN datatype
arg1, INOUT datatype arg2,

OUT resultsetname...)

3. Use the CALL statement to identify the stored procedure name.
CALL stored_procedure

4. If the stored procedure is going to generate one result set, optionally specify a
REPORT block to define how Net.Data displays the result set.
%REPORT [(resultsetname)] {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1) {

CALL myproc
%REPORT (mytable){
...
%ROW { ... %}
...
%}
%}

5. If the stored procedure is going to generate more than one result set:
v Specify the result set names on the CALL statement.

CALL stored_procedure[(resultsetname1[, resultsetname2, ...])]

v Optionally specify one or more REPORT blocks to define how Net.Data
displays the result sets.
%REPORT[(resultsetname1)] {
...
%}

Example:

Chapter 6. Using Language Environments 99

%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1, OUT table1) {
CALL myproc (table1, table2)

%REPORT (table2) {
...
%ROW { ... %}
...

%}
%REPORT (table1) {

...
%ROW { ... %}
...

%}
%}

Passing Parameters
You can pass parameters to a stored procedure and you can have the stored
procedure update the parameter values so that the new value is passed back to the
Net.Data macro. The number and type of the parameters on the function
parameter list must match the number and type defined for the stored procedure.
For example, if a parameter on the parameter list defined for the stored procedure
is INOUT, then the corresponding parameter on the function parameter list must
be INOUT. If a parameter on the list defined for the stored procedure is of type
CHAR(30), then the corresponding parameter on the function parameter list must
also be CHAR(30).

Example 1: Passing a parameter value to the stored procedure
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) valuein) {

CALL myproc
...

Example 2: Returning a value from a stored procedure
%FUNCTION (DTW_SQL) mystoredproc (OUT VARCHAR(9) retvalue) {

CALL myproc
...

Processing Result Sets
You can return one or more result sets from a stored procedure using the SQL or
ODBC language environments. The result sets can be stored in Net.Data tables for
further processing within your macro or processed using a REPORT block. If a
stored procedure generates multiple result sets, you must associate a name with
each result set generated by the stored procedure. This is done by specifying
parameters on the CALL statement. The name you specify for a result set can then
be associated with a REPORT block or a Net.Data table, enabling you to determine
how each result set is processed by Net.Data. You can:
v Have the result processed in Net.Data’s default report style by not defining a

report block for the result set.
v Associate a result set with a REPORT block to apply your own report style. In

the REPORT block, you can use Net.Data variables, text processing statements
like HTML or JavaScript, or other functions to specify how the report data is
displayed in the browser.

v Store the result sets in Net.Data tables when you want Net.Data to use the data
later in the macro. For example, you can pass the Net.Data table to another
function so that it can use the data for calculations and display the results based
on those calculations.

See “Guidelines and Restrictions for Multiple REPORT Blocks” on page 87 for
guidelines and restrictions when using multiple report blocks.

100 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

To return a single result set and use default reporting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc() {

CALL myproc
%}

To return a single result set and specify a REPORT block:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname)]
%REPORT [(resultsetname)] {
...
%}
%}

Example1:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%REPORT {

...
%ROW { ... %}
...

%}
%}

Example 2:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1)
%REPORT (mytable1) {
...
%ROW { ... %}
...
%}
%}

To store a single result set in a Net.Data table for further processing:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename) {

CALL stored_procedure [(resultsetname)]
%}

For example:
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1) {
CALL myproc

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result set.

To return multiple result sets and display them using default report formatting:

Chapter 6. Using Language Environments 101

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname1, resultsetname2, ...)]
%}

Where no report block is specified.

For example:
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%}

To return multiple result sets and have the result sets stored in Net.Data tables for
further processing:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT (resultsetname1, resultsetname2, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%}

For example:
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1, mytable2) {
CALL myproc (mytable1, mytable2)

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result sets.

To return multiple result sets and specify REPORT blocks for display processing:

Each result set is associated with its one REPORT block. Use the following syntax:
%FUNCTION (DTW_SQL) function_name (, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%REPORT (resultsetname1)

...
%ROW { ... %}
...

%}
%REPORT (resultsetname2)

...
%ROW { ... %}
...

%}

...
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1, mytable2)

%REPORT(mytable1) {
...
%ROW { ... %}
...
%}

%REPORT(mytable2) {

102 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

...
%ROW { ... %}
...
%}
%}

To return multiple result sets and specify different display or processing options
for each result set:

You can specify different processing options for each result set using unique
parameter names. Example 1:
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable2) {

CALL myproc (mytable1, mytable2, mytable3)

%REPORT(mytable1) {
...
%ROW { ... %}
...
%}
%}

The result set mytable1 is processed by the corresponding REPORT block and is
displayed as specified by the macro writer. The result set mytable2 is stored in the
Net.Data table mytable2 and can now be used for further processing, such as being
passed to another function. The result set mytable3 is displayed using Net.Data’s
default report format because no REPORT block was specified for it.

Example 2:
%FUNCTION(DTW_SQL) mystoredproc(OUT mytable4, OUT mytable3) {

CALL myproc (mytable1, mytable2, mytable3, mytable4)
%REPORT(mytable2) {
...
%ROW { ... %}
...
%}
%REPORT(mytable1) {
...
%ROW { ... %}
...
%}
%REPORT(mytable4) {
...
%ROW { ... %}
...
%}

%}

The result sets mytable2, mytable1, and mytable4 are processed by their
corresponding REPORT blocks, in that order, and are displayed as specified. The
result sets mytable4 and mytable3 are stored into table variables for further
processing. The result set mytable3 will also be displayed using Net.Data’s default
report format after the three REPORT blocks are done processing.

Relational Database Language Environment Example
The following example shows how you can call the relational database language
environments from your macros:

SQL and ODBC

The following example shows a macro with a DTW_SQL function
definition that calls an SQL stored procedure. For the ODBC language

Chapter 6. Using Language Environments 103

environment, substitute DTW_ODBC for DTW_SQL where it appears. It has three
parameters of different data types. The DTW_SQL language environment
passes each parameter to the stored procedure in accordance with the data
type of the parameter. When the stored procedure completes processing,
output parameters are returned and Net.Data updates the variables
accordingly.
%{***

DEFINE BLOCK
**%}
%DEFINE {
MACRO_NAME = "TEST ALL TYPES"
DTW_HTML_TABLE = "YES"
parm1 = "1" %{SMALLINT %}
parm2 = "11" %{INT %}
parm3 = "1.1" %{DECIMAL (2,1) %}
%}

%FUNCTION(DTW_SQL) myProc
(INOUT SMALLINT parm1,
INOUT INT parm2,
INOUT DECIMAL(2,1) parm3){

CALL TESTTYPE
%}
%HTML(report) {
<head>
<title>Net.Data : SQL Stored Procedure: Example '$(MACRO_NAME)'. </title>
</head>
<body bgcolor="#bbffff" text="#000000" link="#000000">
<p>
Calling the function to create the stored procedure.
<p></p>
@CRTPROC()
<hr/>
<h2>
Values of the INOUT parameters
prior to calling the stored procedure:
</h2>
parm1 (SMALLINT)<p>
$(parm1)

parm2 (INT)
$(parm2)

parm3 (DECIMAL)
$(parm3)
<hr/>
<h2>
Calling the function that executes the stored procedure.
</h2>
<p>
@myProc(parm1,parm2,parm3)
</p><hr/>
<h2>
Values of the INOUT parameters after
calling the stored procedure:<p>
</h2>
<p>parm1 (SMALLINT)

$(parm1)

parm2 (INT)
$(parm2)

parm3 (DECIMAL)
$(parm3)
</p></body>
%}

104 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Programming Language Environments
Net.Data provides the following language environments for you to use when
calling external programs:
v “COBOL Language Environment”
v “Perl Language Environment” on page 108
v “REXX Language Environment” on page 110
v “System Language Environment” on page 115

Access Rights: Ensure that the user ID under which Net.Data executes has access
rights to execute programs, including any objects that the programs might access.
See “Granting Access Rights to Files and Data Sets Accessed by Net.Data” on
page 27 for more information.

COBOL Language Environment
The COBOL language environment allows you to directly take advantage of
COBOL programs in your Net.Data applications.

Restrictions:

v Compile the COBOL modules using the RENT option to ensure that the modules
are reentrant.

v The COBOL language environment can only be used when Net.Data is
configured for CGI or FastCGI.

v Standard output from the COBOL module is lost. Use output parameters to pass
information back to the caller, or use the RETURNS keyword to send data
directly to the Web page.

Configuring the COBOL Language Environment
To use the COBOL Language Environment, verify that the following configuration
statement is in the Net.Data initialization file, on one line:
ENVIRONMENT (DTW_COBOL) coboldll ()

The COBOL Language Environment passes all of its parameters to the COBOL
module in a block of size 512 bytes. If you wish to set a new default, specify the
configuration variable DTW_COBOL_PARAMETER_BUFFER_SIZE to set the
number of bytes to use for passing parameters.

Allowed variable on the ENVIRONMENT statement: DTW_COBOL_MAX_SIZE.
See “Environment Configuration Statements” on page 19 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Executing COBOL Programs
To execute a COBOL program, define a Net.Data function that uses the COBOL
(DTW_COBOL) language environment. Include the name of the COBOL module in
an EXEC statement. Ensure the module exists in in one of the data sets specified in
the STEPLIB of the the Web server startup procedure:
%function(DTW_COBOL) cobolProgram() {
%EXEC{ COBOLPR %}
%}

Passing Parameters to COBOL Programs
Though Net.Data strings can be dynamically sized, COBOL strings have a fixed
length. Keep this in mind when writing macros that modify string values that they
will be processed by the COBOL module. Also, COBOL and Net.Data represent

Chapter 6. Using Language Environments 105

strings differently, therefore Net.Data uses one large package variable to transfer the
values between COBOL and Net.Data. The size of this variable is fixed. The default
size is 512 bytes and can be modified by setting the
DTW_COBOL_PARAMETER_BUFFER_SIZE configuration variable in the Net.Data
initialization file. To override the value for a specific function call, define
DTW_COBOL_MAX_SIZE in the macro and pass the variable on the
ENVIRONMENT statement for DTW_COBOL. See Environment Variable
Statements for more information on adding parameters to the ENVIRONMENT
statement. You can use the RETURNS keyword to send data directly to the web
page. The order of this variable is after all OUT and INOUT parameters.
Futhermore, you can send the RETURN_CODE back to the COBOL Language
Enviroment. The order of the RETURN_CODE value is the last value in the
package, and if it does not exist then the value defaults to 0″

If the macro passes three parameters to the COBOL program, such as ″Apples″,
″Bananas″, and ″Oranges″, the package variable would contain:
Apples\0Bananas\0Oranges\0

where the symbol \0 is used to represent a byte with the value of 0. If any of the
passed parameters are empty strings, the package variable will contain no
information for that between the separators. For example, if the values passed are
″Apples″, ″″, ″Oranges″, then the package variable would contain:
Apples\0\0Oranges\0

Tables are passed to the COBOL module in the package variable like all other
passed values. The table is passed as a series of values separated by a byte with
the value of 0, in the following order: table name, number of columns, number of
rows, name of columns, values in row-column order. For example, a table variable
with the name empTable contains the following format:
FIRSTN LASTN
------------- -------------------
BOB ANDERS
JULIE SIMMS
JAKE PETERSON

This table would be passed in the package variable as:
empTable\02\03\0FIRSTN\0LASTN\0BOB\0ANDERS\0JULIE\0SIMMS\0JAKE\0PETERSON\0

Cobol Language Environment Example
In the following example, the values of the variables var1, var2 and mess are
passed to the COBOL program, which modifies them and passes them back to
Net.Data:
%define var1 = "APPLES"
%define var2 = "BANANAS"
%define mess = "VARIABLES NOT YET CHANGED"

%{ Function update invokes a load COBOL module named COBOLPR %}
%FUNCTION (DTW_COBOL) update (IN parm1, INOUT parm2, OUT message)
{

%EXEC {COBOLPR %}

%} %HTML(report)
{<pre>

Before: Value of var2 = $(var2)
Value of mess = $(mess)

@update (var1,var2,mess)

106 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

After: Value of var2 =$(var2)
Value of mess = $(mess)

</pre>
%}

Net.Data passes the values using a package variable, called ALLVALUE in the
following COBOL program. The program then modifies the values and passes
them back to the Net.Data LE (This example also shows the complete JCL
necessary to compile the program):
//CCCOB JOB MSGLEVEL=(1,1),CLASS=A,TIME=1,USER=IBMUSER
// MSGCLASS=H,REGION=3M
//ESSAI12 EXEC PGM=IGYCRCTL,PARM='OBJECT,RENT',REGION=1024K
//STEPLIB DD DSN=IGYV2R10.SIGYCOMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DSN=IBMUSER.COBOL.OBJ(COBOLPR),DISP=SHR
//SYSIN DD *

ID DIVISION.
PROGRAM-ID. COBOLPR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NVAR1 PIC X(8) .
01 NVAR2 PIC X(8) .
01 MESSAGE PIC X(100).
01 DELIM PIC X VALUE X'00'.
LINKAGE SECTION.
01 ALLVALUE PIC X(512).

PROCEDURE DIVISION USING ALLVALUE.
UNSTRING ALLVALUE

DELIMITED BY X'00'
INTO NVAR1 NVAR2.
INITIALIZE ALLVALUE.
MOVE Z'BEANS' TO NVAR2.
MOVE Z'NEW MESSAGE FROM THE LOAD MODULE' TO MESSAGE.

STRING
NVAR2

DELIMITED BY X'00'
DELIM

DELIMITED BY SIZE
MESSAGE

DELIMITED BY X'00'
DELIM

DELIMITED BY SIZE
INTO ALLVALUE.

GOBACK.

/*
//LKED EXEC PGM=IEWL,REGION=512K,COND=(4,LT),
// PARM='LET,LIST,MAP,XCAL'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CEEV1R80.SCEELKED,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSLIN DD DSN=IBMUSER.COBOL.OBJ(COBOLPR),DISP=SHR

Chapter 6. Using Language Environments 107

// DD DDNAME=SYSIN
//SYSIN DD *
//SYSLMOD DD DSN=IBMUSER.COBOL.LOAD(COBOLPR),DISP=SHR
/*

Perl Language Environment
The Perl language environment can interpret inline Perl scripts that you specify in
a FUNCTION block of the Net.Data macro, or it can process external Perl scripts
that are stored in separate files on the server.

Configuring the Perl Language Environment
Verify that the following configuration statement is in the Net.Data initialization
file, on one line:
ENVIRONMENT (DTW_PERL) perldll ()

See “Environment Configuration Statements” on page 19 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Calling External Perl Scripts
Calls to external Perl scripts are identified in a FUNCTION block by an EXEC
statement, using the following syntax:
%EXEC{ perl_script_name [optional parameters] %}

Required: Ensure that perl_script_name, the Perl script name, is listed in a path
specified for the EXEC_PATH configuration variable in the Net.Data initialization
file.
%FUNCTION(DTW_PERL) perl1() {
%EXEC{ MyPerl.pl %}
%}

Passing Parameters
There are two ways to pass information to a program that is invoked by the Perl
(DTW_PERL) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the Perl script. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_PERL) sys1() {
%EXEC{

MyPerl.pl $(INPARM1) "literal string"
%}
%}

The Net.Data variable INPARM1 is referenced and passed to the Perl
script. The parameters are passed to the Perl script in the same way the
parameters are passed to the Perl script when the Perl script is called from
the command line. The parameters that are passed to the Perl script using
this method are considered input type parameters. The parameters that are
passed to the Perl script using this method are considered input
parameters, and any modification to the values are not reflected back to
Net.Data.

Indirectly

Pass parameters indirectly on the call to the Perl script using one of the
following methods:

108 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

v Have Net.Data pass input parameters to the Perl script as environment
variables. The Perl script can then retrieve the parameters through
environment variables.

v Have the Perl script pass output parameters back to the language
environment by writing data to a file whose name Net.Data has assigned
to the environment variable DTWPIPE. The data that the perl script
passes to Net.Data should have the following syntax:
name="value"

For multiple data items, separate each item with a new-line or blank
character.

If a variable name has the same name as an OUT or INOUT parameter
and uses the above syntax, the new value replaces the current value. If a
variable name does not correspond to an OUT or INOUT parameter,
Net.Data ignores it.

The following example shows how Net.Data passes variables from a
macro.
%FUNCTION(DTW_PERL) today() RETURNS(result) {

$date = ′date′;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

%}
%HTML(INPUT) {

@today()
%}

If the Perl script is in an external file called today.pl, the same function
can be written as in the next example:
%FUNCTION(DTW_PERL) today() RETURNS(result) {

%EXEC { today.pl %}
%}

You can pass Net.Data tables to a Perl script called by the Perl language
environment. The Perl script accesses the values of a Net.Data macro table
parameter by their Net.Data name. The column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_N_j, and the field values are myTable_V_i_j, where i is the row
number and j is the column number. The number of rows and columns for
the table are myTable_ROWS and myTable_COLS.

REPORT and MESSAGE Blocks in FUNCTION Blocks
REPORT and MESSAGE blocks are permitted as in any FUNCTION section. They
are processed by Net.Data, not by the language environment. A Perl script can,
however, write text to the standard output stream to be included as part of the
Web page.

Perl Language Environment Example
The following example shows how Net.Data generates a table by executing the
external Perl script:
%define {
c = %TABLE(20)
rows = "5"
columns = "5"
%}

Chapter 6. Using Language Environments 109

%function(DTW_PERL) genTable(in rows, in columns, out table) {
open(D2W,"> $ENV{DTWPIPE}");
print "genTable begins ... ";

$r = $ENV{ROWS};
$c = $ENV{COLUMNS};
print D2W "table_ROWS=\"$r\" ";
print D2W "table_COLS=\"$c\" ";
print "rows: $r ";

print "columns: $c";
for ($j=1; $j<=$c; $j++)
{
print D2W "table_N_$j=\"COL$j\" ";
}
for ($i=1; $i<=$r; $i++)
{
for ($j=1; $j<=$c; $j++)
{
print D2W "table_V_$i","_","$j=\"" $i $j "\" ";
}
}
close(D2W);
%}

%message{
default: "genTable: Unexpected Error"
%}
%}

%HTML(REPORT) {
@genTable(rows, columns, c)
return code is $(RETURN_CODE)
%}

Results: genTable generates:
rows: 5 columns: 5

COL1 | COL2 | COL3 | COL4 | COL5 |
--
[1 1] | [1 2] | [1 3] | [1 4] | [1 5] |
--
[2 1] | [2 2] | [2 3] | [2 4] | [2 5] |
--
[3 1] | [3 2] | [3 3] | [3 4] | [3 5] |
--
[4 1] | [4 2] | [4 3] | [4 4] | [4 5] |
--
[5 1] | [5 2] | [5 3] | [5 4] | [5 5] |
--
return code is 0

REXX Language Environment
The REXX language environment allows you to run REXX programs written to run
in the DTW_REXX environment. The Net.Data REXX Language Environment
provides controls that allow REXX programs to easily return large amounts of
data.

Net.Data also provides support for the REXX SAY statement that directs the output
to browser regardless of what Web server environment you use for Net.Data. If
you run native REXX using the Web server FastCGI, GWAPI, or Servlet

110 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

configuration, the output from REXX SAY statements are routed to the Web servers
log file instead of the browser. This is not true for REXX programs that are written
to run in the DTW_REXX environment.

Support for Variables: To allow REXX programs to easily return large amounts of
data, Net.Data automatically adds code to the beginning of the REXX program and
appends code to the end of the REXX program. This code is designed to
manipulate variables that were provided on the DTW_REXX function statement.

Support for REXX SAY Statements (FastCGI, GWAPI, and SERVLET
environments): REXX SAY statements are automatically converted to REXX
assignment statements by Net.Data prior to executing the REXX program. Net.Data
automatically appends code to the REXX program that is designed to direct the
output from the original REXX SAY statements to the browser. Use of REXX
subroutines and functions: Since Net.Data adds code to the front of the REXX
program and appends code to the end of the REXX program, the main REXX
routine must end with the last statement of the REXX program. If you use REXX
subroutines or functions you must insure that the last statement of the REXX
program is associated with the main REXX routine.The following is an example of
using a subroutine and function in a REXX program that is written to run in the
DTW_REXX environment:
%function(DTW_REXX) genData(out s1,s2) {

call subrtn1
s2=funrtn1()
signal rexxEnd /* Go to end of Program */

subrtn1: PROCEDURE EXPOSE s1
string1 = "data for s1"
return 0

funrtn1: PROCEDURE
retvar = "data for s2"
return retvar

rexxEnd: /* End of Main Program */
return 0

%}
%HTML (Report) {

@genData(a,c)

Value for s1: $(a)

Value for s2: $(c)
%}

Use of REXX EXIT and RETURN statements: Net.Data automatically appends
code to REXX programs that provide values for output variables and directs
output from SAY statements to the browser. If the REXX program issues a
RETURN from the main routine or issues an EXIT statement anywhere but the last
statement of the REXX program, the code that was appended by Net.Data to the
REXX program will not be executed. This results in the lost of output variables and
output from SAY statements. If you must exit a REXX program before reaching the
last statement, you should branch to the last statement in the REXX program that
normally exits. If you use the RETURN or EXIT statement to end the main REXX
program, it must be the last statement in the REXX program. This includes REXX
comment statements. For example:
%function(DTW_REXX) genData(out s1,s2) {
......
If S2 < 0 Then signal rexxEnd
......
......

Chapter 6. Using Language Environments 111

rexxEnd:
/* This comment must be before the following
RETURN statement */
return 0
%}
%HTML (Report) {
@genData(a,c)
......
%}

Invoking external REXX programs from a DTW_REXX function: You can invoke
a REXX program from a DTW_REXX function using the Net.Data %EXEC
statement or from a REXX program using methods provided by REXX.

When invoking an external REXX program using the Net.Data %EXEC statement,
Net.Data automatically adds code to the beginning of the REXX program and
appends code to the end of the REXX program to handle Output variables and
direct output from REXX SAY statements to the browser.

When you use methods provided by REXX to invoke a REXX program, Net.Data
does not receive control and doesn’t add code to the REXX program. The REXX
program being invoked must pass output back to the calling REXX program using
standard REXX conventions. When running in GWAPI or SERVLET environments,
Output from REXX SAY statements are sent to the Web servers log file.

Configuring the REXX Language Environment
To use the REXX language environment, you need to verify the Net.Data
initialization settings and set up the language environment.

Verify that the following configuration statement is in the initialization file, on one
line:
ENVIRONMENT (DTW_REXX) rexxdll ()

See the Net.Data Administration and Programming Guide to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Executing REXX Programs
With the REXX language environment you can execute both in-line REXX
programs or external REXX programs. An in-line REXX program is a REXX
program that has the source of the REXX program in the macro. An external REXX
program has the source of the REXX program in an external file.

To execute an in-line REXX program:

Define a function that uses the REXX (DTW_REXX) language environment and
contains the REXX code in the language environment-executable section of the
function.

Example: A function that contains a in-line REXX program
%function(DTW_REXX) helloWorld() {

SAY 'Hello World'
%}

To run an external REXX program:

Define a function that uses the REXX (DTW_REXX) language environment and
includes a path to the REXX program that is to be run in an EXEC statement.

112 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Example: A function that contains an EXEC statement pointing to a the external
program
%function(DTW_REXX) externalHelloWorld() {
%EXEC{ helloworld.cmd%}
%}

Required: Ensure that the REXX file name is listed in a path specified for the
EXEC_PATH configuration variable in the Net.Data initialization file. See
“EXEC_PATH” on page 17 to learn how to define the EXEC_PATH configuration
variable.

Passing Parameters to REXX programs
There are two ways to pass information to a REXX program that is invoked by the
REXX (DTW_REXX) language environment, directly and indirectly.

Directly
Pass parameters directly to an external REXX program using the %EXEC
statement. For example:
%FUNCTION(DTW_REXX) rexx1() {

%EXEC{CALL1.CMD $(INPARM) "literal string" %}
%}

The Net.Data variable INPARM1 is referenced and passed to the external
REXX program. The REXX program can reference the variable by using
REXX PARSE ARG instruction. The parameters that are passed to the
REXX program using this method are considered input parameters, and
any modification to the values are not reflected back to Net.Data. (the
parameters passed to the program can be used and manipulated by the
program, but changes to the parameters are not reflected back to Net.Data).

Indirectly

Pass parameters indirectly, by way of the REXX program variable pool.
When a REXX program is started, a space which contains information
about all variables is created and maintained by the REXX interpreter. This
space is called the variable pool.

When a REXX language environment (DTW_REXX) function is called, any
function parameters that are input (IN) or input/output (INOUT) are
stored in the by the REXX language environment prior to executing the
REXX program. When the REXX program is invoked, it can access these
variables directly. Upon the successful completion of the REXX program,
the DTW_REXX language environment determines whether there are any
output (OUT) or INOUT function parameters. If so, the language
environment retrieves the value corresponding to the function parameter
from the variable pool and updates the function parameter value with the
new value. When Net.Data receives control, it updates all OUT or INOUT
parameters with the new values obtained from the REXX language
environment. For example:
%DEFINE a = "3"
%DEFINE b = "0"
%FUNCTION(DTW_REXX) double_func(IN inp1, OUT outp1){

outp1 = 2*inp1
%}

%HTML (Report) {
Value of b is $(b), @double_func(a, b) Value of b is $(b)
%}

Chapter 6. Using Language Environments 113

In the above example, the call @double_func passes two parameters, a and b.
The REXX function double_func doubles the first parameter and stores the
result in the second parameter. When Net.Data invokes the macro, b has a
value of 6.

You can pass Net.Data tables to a REXX program. A REXX program
accesses the values of a Net.Data macro table parameter as REXX stem
variables. To a REXX program, the column headings and field values are
contained in variables identified with the table name and column number.
For example, in the table myTable, the column headings are myTable_V.j,
and the field values are myTable_V.i.j, where i is the row number and j is
the column number. The number of rows in the table is myTable_ROWS and
the number of columns in the table is myTable_COLS.

REXX Language Environment Example
The following example shows a macro that calls a REXX function to generate a
Net.Data table that has two columns and three rows. Following the call to the
REXX function, a built-in function, DTW_TB_TABLE(), is called to generate an
HTML table that is sent back to the browser.
%DEFINE myTable = %TABLE
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION(DTW_REXX) genTable(out out_table) {
out_table_ROWS = 3
out_table_COLS = 2

/* Set Column Headings */
do j=1 to out_table_COLS

out_table_N.j = 'COL'j
end

/* Set the fields in the row */
do i = 1 to out_table_ROWS

do j = 1 to out_table_COLS
out_table_V.i.j = '[' i j ']'

end
end

%}

%HTML (Report) {
@genTable(myTable)
@DTW_TB_TABLE(myTable)
%}

Results:
<table>
<tr>
<th>COL1</th>
<th>COL2</th>
</tr>
<tr>
<td>[1 1]</td>
<td>[1 2],</td>
</tr>
<tr>
<td>[2 1]</td>
<td>[2 2],</td>
</tr>
<tr>
<td>[3 1]</td>
<td>[3 2],</td>

114 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

</tr>
</table>

System Language Environment
The System language environment supports executing commands and calling
external programs.

Configuring the System Language Environment
Add the following configuration statement to the initialization file, on one line:
ENVIRONMENT (DTW_SYSTEM) sysdll ()

See the Net.Data Administration and Programming Guide to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Issuing Commands and Calling Programs
To issue a command, define a function that uses the System (DTW_SYSTEM)
language environment that includes a path to the command to be issued in an
EXEC statement. For example:
%FUNCTION(DTW_SYSTEM) sys1() {

%EXEC { ADDLIBLE.CMD %}
%}

You can shorten the path to executable objects if you use the EXEC_PATH
configuration variable to define paths to directories that contain the objects (such
as, commands and programs). See “EXEC_PATH” on page 17 to learn how to
define the EXEC_PATH configuration variable.

Example 1: Calls a program
%FUNCTION(DTW_SYSTEM) sys3() {

%EXEC {MYPGM.EXE %}
%

Passing Parameters to Programs
There are two ways to pass information to a program that is invoked by the
System (DTW_SYSTEM) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the program. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC{
CALL1.CMD $(INPARM1) "literal string"
%}
%}

The Net.Data variable INPARM1 is referenced and passed to the program.
The parameters are passed to the program in the same way the parameters
are passed to the program when the program is called from the command
line. The parameters that are passed to the program using this method are
considered input parameters, and any modification to the values are not
reflected back to Net.Data (the parameters passed to the program can be
used and manipulated by the program, but changes to the parameters are
not reflected back to Net.Data).

Chapter 6. Using Language Environments 115

Indirectly
The System language environment cannot directly pass or retrieve
Net.Data variables, so they are made available to programs in the
following manner:
v Net.Data passes input parameters to the program as environment

variables. The program can then retrieve the parameters through
environment variables.

v The program passes output parameters back to the language
environment by writing to a named pipe whose name Net.Data passes
in the environment variable, DTWPIPE. Use the following syntax to
write data to the named pipe:
name="value"

For multiple data items, separate each item with a new-line or blank
character.

If a variable name has the same name as an output parameter and uses
the above syntax, the new value replaces the current value. If a variable
name does not correspond to an output parameter, Net.Data ignores it.

The following example shows how Net.Data passes variables from a
macro.
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {

%EXEC {
UPDPGM

%}
%}

You can pass Net.Data tables to a program called by the System language
environment. The program accesses the values of a Net.Data macro table
parameter by their Net.Data name. The column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_N_j, and the field values are myTable_V_i_j, where i is the row
number and j is the column number. The number of rows and columns for
the table are myTable_ROWS and myTable_COLS.

System Language Environment Example
The following example shows a macro that contains a function definition with
three parameters, P1, P2, and P3. P1 is an input (IN) parameter and P2 and P3 are
output (OUT) parameters. The function invokes a program, UPDPGM, which
updates the parameter P2 with the value of P1 and sets P3 to a character string.
Prior to processing the statement in the %EXEC block, the DTW_SYSTEM language
environment stores P1 and the corresponding value in the environment space.
%DEFINE {

MYPARM2 = "ValueOfParm2"
MYPARM3 = "ValueOfParm3"

%}
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {

%EXEC {
UPDPGM

%}
%}

%HTML(upd1) {
<p>
Passing data to a program. The current value
of MYPARM2 is "$(MYPARM2)", and the current value of MYPARM3 is

116 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

"$(MYPARM3)". Now we invoke the Web macro function.
<p>
@sys1("ValueOfParm1", MYPARM2, MYPARM3)

<p>
After the function call, the value of MYPARM2 is "$(MYPARM2)",
and the value of MYPARM3 is "$(MYPARM3)".
<p>
%}

Chapter 6. Using Language Environments 117

118 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 7. Improving Performance

Improving performance is an important part of tuning your system. This chapter
discusses strategies for improving the performance of Net.Data. The following
topics are discussed:
v “Using GWAPI or FastCGI”
v “Net.Data Caching of Macros” on page 120
v “Suppressing DB2 for OS/390 Messages” on page 124
v “Optimizing the Language Environments” on page 125

In addition, ensure that your Web server has been properly tuned. The
performance of your Web server has a direct effect on response time,
independently of how fast Net.Data processes a macro or direct request.

Using GWAPI or FastCGI
You can improve performance by configuring Net.Data for use with GWAPI or
with FastCGI, instead of CGI. When Net.Data is configured for CGI, the Web
server will launch Net.Data in a new address space for each request. This creates
significant overhead on the part of the operating system to repeatedly launch these
processes. Using either GWAPI or FastCGI eliminates this overhead.

When Net.Data is configured for GWAPI, Net.Data executes as a Web server
plugin in the Web server’s address space. Each Net.Data request is processed as a
separate thread inside the Web server, requiring virtually no overhead for the Web
server to start the request. Because these threads are reused, and the address space
remains, Net.Data can process the request more efficiently. To control the number
of concurrent requests, you will set the MaxThreads configuration option in the
Web server’s configuration file.

When Net.Data is configured for FastCGI, Net.Data executes as separate processes,
like CGI, but the processes are launched at Web server startup time, and they do
not go away until the Web server goes away. The number of processes that are
used for Net.Data is controlled by the NumProcesses directive in the FastCGI
configuration file. Similar to GWAPI, because the processes do not go away,
Net.Data can more efficiently process requests.

Which environment should you use? Look at the following considerations to
determine which environment is best suited for your application:
v Considerations for using GWAPI:

– Because all requests are in the same address space, many resources are reused
and shared between requests.

– The sharing of resources can lead to possible contention for resources. For
example, if using GWAPI, no other application that accesses DB2 can execute
in the Web server’s address space. In addition, problems with one request (for
example, database connections, errors in user-written language environments)
can affect others executing at the same time.

v Considerations for using FastCGI:
– The processes remain active for the live of the Web server, so Net.Data can

reuse its resources. The processes are single-threaded and isolated from each

© Copyright IBM Corp. 1997, 2001 119

other so that any problems that may occur don’t affect the other requests. In
addition, because resources are not shared, there is no contention for
resources.

– Because each request is isolated from the others, Net.Data must duplicate
many of its resources. For example, each FastCGI process will have a copy of
the macro cache (if enabled).

Net.Data Caching of Macros
Use macro caching to improve throughput and reduce CPU utilization. When
macro caching is enabled, preprocessed macros are cached in memory when the
macros are first invoked. These preprocessed versions are then available for reuse,
thereby eliminating the costs associated with reading in the macros from HFS and
processing them each time they are requested.
v “Caching Considerations”
v “Enabling Macro Caching”

Caching Considerations
Please note the following items regarding caching of macros:
v Caching is available when using GWAPI or Net.Data Servlets.
v Macro caching is not available when using CGI.
v The cached version of a macro is available to a requestor that has read

permission for the file containing the macro.
v The amount of memory that the preprocessed version of the macro uses is

approximately twice the size of the macro itself.
v You can control the amount of memory that will be used for the caching of

macros by using the caching configuration variables.

Enabling Macro Caching
You enable macro caching by adding caching configuration variables to the
Net.Data initialization file (db2www.ini). If you add the DTW_CACHE_MACRO
variable, the DTW_DO_NOT_CACHE_MACRO variable, or both variables to the
Net.Data initialization file, then caching is enabled. If you do not add either
variable, then no macros will be cached.

If the DTW_CACHE_MACRO and DTW_DO_NOT_CACHE configuration
variables both specify the same macro, then the macro is not cached by Net.Data.

Defining Which Macros to Cache
The DTW_CACHE_MACRO configuration variable specifies macros that are to be
cached.

Set this configuration variable in the Net.Data initialization file.

Syntax:
DTW_CACHE_MACRO [=] filename_or_pathtemplate;...

Where filename_or_pathtemplate is either:
v A fully qualified macro name.
v A path template, which is a directory path followed by /*. If a path template is

used, all macros in the directory and its subdirectories will be cached.

120 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Example 1: If you want all of the macros in /u/user1/macros and its subdirectories
to be cached, set the configuration variable as follows:
DTW_CACHE_MACRO /u/user1/macros/*

Example 2: If you want to cache all macros in the DIR1 and DIR2 directories and
the individual macro sql.dtw, the DTW_CACHE_MACRO path might look like
this:
DTW_CACHE_MACRO /u/user1/macros/DIR1/*;/u/user2/macros/sql.dtw;/u/user2/macros/DIR2/*

Example 3: If you want to cache all macros, specify the following:
DTW_CACHE_MACRO /*

Defining Which Macros to Not Cache
The DTW_DO_NOT_CACHE_MACRO configuration variable specifies which
macros are not to be cached.

Set this configuration variable in the Net.Data initialization file. If the Net.Data
initialization file contains this variable, and does not contain the
DTW_CACHE_MACRO variable, then all macros will be cached except for those
listed in the DTW_DO_NOT_CACHE_MACRO variable.

Syntax:
DTW_DO_NOT_CACHE_MACRO [=] filename_or_pathtemplate;...

Where filename_or_pathtemplate is either:
v A fully qualified macro name.
v A path template, which is a directory path followed by /*. If a path template is

used, then none of the macros in the directory or its subdirectories will be
cached.

Example 1: If you want all of your macros to be cached except the adminset.dtw
macro, you would set the configuration variable as follows:
DTW_DO_NOT_CACHE_MACRO /u/user1/macros/adminset.dtw

Example 2: If both caching configuration variables are set in the initialization file,
the DTW_DO_NOT_CACHE_MACRO takes precedence. For example, suppose the
variable settings appear as follows:
DTW_CACHE_MACRO /u/user1/user_macros/*;/u/user1/admin_macros/*
DTW_DO_NOT_CACHE_MACRO /u/user1/admin_macros/adminset.dtw

The macros in the directories user_macros and admin_macros will be cached
except for the macro adminset.dtw. Even though this macro is in the
admin_macros directory, it will not be cached because the setting for
DTW_DO_NOT_CACHE_MACRO overrides the setting for
DTW_CACHE_MACRO.

Dynamic Web Page Caching
Net.Data can cache dynamic Web pages, thereby improving performance by
eliminating the cost of reconstructing repeatedly requested Web pages.

Net.Data caches Web pages in DB2. Using caching directives, you can specify
which Web pages are cached, how long they remain valid in the cache, and the
degree to which the reuse of the cached pages is restricted. Net.Data provides
automatic management of the cache based on expiration time, and a macro that

Chapter 7. Improving Performance 121

allows a system administrator to manage the cache based on macro and HTML
block or XML block names and on the creation time for the cached page.

A cached page is static. Its content depends on the state of the data stores and
business logic at the time the Web page was created. Subsequent changes to the
data stores and business logic do not affect the content of the cached page.

Caching Considerations
A number of factors determine which Web pages should be cached. The decision
on whether to cache a Web page varies from application to application.

General recommendations:

v Cache pages that are requested repeatedly.
v Cache pages that do not change frequently.
v Do not cache pages for macros that make changes to data sources. If a cached

Web page is used to respond to a Net.Data request, the macro is not executed
and no changes are made to the data sources.

Other considerations:

v For GWAPI and Servlets, the Web pages are stored in ASCII. For CGI and
FastCGI, the Web pages are stored in EBCDIC.

v Automatic management of the Web page cache is not available for CGI and
FastCGI.

Enabling Dynamic Web page Caching
Use the following steps to configure Net.Data for caching:

Step 1: Specify the Web Pages to be Cached:
DTW_CACHE_PAGE
Use one or more DTW_CACHE_PAGE directives to identify the Web pages that are
to be cached. Specify the directives in the Net.Data configuration file.

Syntax:
DTW_CACHE_PAGE file_name_spec|path_template_spec lifetime usage_scope

Where:

file_name_spec
Is the specification of one or all of the HTML blocks or XML blocks within
a macro. To specify one HTML block or XML block, use the fully qualified
name of the macro and the block name. To specify all HTML blocks or
XML blocks, use the fully qualified macro name and the suffix /*. Specify
this value or path_template_spec, but not both.

path_template_spec
Is the specification of HTML blocks or XML blocks within macros, using a
path template for one or more directories containing macros. A path
template must contain the suffix /*. Net.Data caches all Web pages that it
creates by executing an HTML block or XML block of any macro contained
within any of these directories. Specify this value or file_name_spec, but not
both.

lifetime Specifies the number of seconds that a cached Web page is valid

usage_scope
Specifies the degree to which the reuse of the Web page is restricted. Reuse

122 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

is granted or denied based on the user ID associated with the Net.Data
request. Usage_scope can have one of the following values:

PUBLIC
The cached page can be reused for any request associated with a
user ID that is authorized to execute the macro.

PRIVATE
The cached page can be reused for any request associated with the
user ID that was associated with the request that originally cached
the Web page.

You can specify this directive multiple times. Specify one DTW_CACHE_PAGE
directive for each file_name_spec or path_template_spec value. If DTW_CACHE_PAGE
directives conflict with each other, the first directive specified takes precedence.

A cached page is reused for a request if the URL, the form data, and the query
string of the request match the URL, form data, and query string of the request
that originally cached the page.

Examples:

Example 1: Specifies the caching of any Web pages generated when Net.Data
executes the specified HTML block or XML block
DTW_CACHE_PAGE /u/USER1/macros/main.dtw/output 3600 PUBLIC

In this example, Net.Data caches the Web pages generated when it executes the
output HTML block or XML block in the macro main.dtw, located in the
/u/USER1/macros directory. The Web pages have PUBLIC scope, and remain valid
for 1 hour.

Example 2: Specifies the caching of any Web pages generated when Net.Data
executes any HTML block or XML block in the specified macro
DTW_CACHE_PAGE /u/USER1/macros/main.dtw/* 3600 PUBLIC

In this example, Net.Data caches any Web pages Net.Data generates when it
executes any HTML block or XML block in the macro main.dtw, located in the
/u/USER1/macros directory. The Web pages have PUBLIC scope, and remain valid
for 1 hour.

Example 3: Specifies the caching of any Web pages generated when Net.Data
executes HTML blocks or XML blocks in macros located in one or more directories
DTW_CACHE_PAGE /u/USER1/macros/* 3600 PUBLIC

In this example, Net.Data caches any Web pages Net.Data generates when it
executes any HTML block or XML block in any macro located in the
/u/USER1/macros directory or its subdirectories. The Web pages have PUBLIC
scope, and remain valid for 1 hour.

Example 4: Specifies the caching of any Web page generated by all Net.Data
macros
DTW_CACHE_PAGE /* 3600 PUBLIC

In this example, Net.Data caches all Web pages Net.Data generates. The Web pages
have PUBLIC scope, and remain valid for 1 hour.

Chapter 7. Improving Performance 123

Example 5: Specifies multiple Web page caching directives
DTW_CACHE_PAGE /u/USER1/macros/main/* 1800 PUBLIC
DTW_CACHE_PAGE /u/USER1/macros/special/daily_news.dtw/* 43200 PUBLIC
DTW_CACHE_PAGE /u/USER1/macros/special/employee_stats.dtw/* 3600 PRIVATE

In this example, Net.Data caches all Web pages generated from any HTML block or
XML block in any macros located in the /u/USER1/macros/main/ directory. The Web
pages have PUBLIC scope and remain valid for 30 minutes. All Web pages
generated by the daily_news.dtw macro in the directory /u/USER1/macros/special/
have PUBLIC scope and remain valid for 12 hours. All Web pages generated by the
employee_stats.dtw macro in the directory /u/USER1/macros/special/ have
PRIVATE scope and remain valid for 1 hour.

Step 2: Set Up the Web Page Cache
Set up the table used to cache Web pages.
1. Create the Web page cache table, SYSIBM.DTWCACHEDPAGES, using the SQL

found in DTW220.SDTWSPUF(DTWCRCCH). This file also includes SQL
statements to create a database, called DTWCACHE, and a tablespace, called
DTWTBSP1, for the Web page cache.
In a data sharing environment, the CREATE TABLESPACE statement that
creates the tablespace for SYSIBM.DTWCACHEDPAGES and
SYSIBM.DTWCACHEDEPS should specify GBPCACHE CHANGED.

2. Define the stored procedure used to insert the cached pages into
SYSIBM.DTWCACHEDPAGES. The stored procedure is found in
DTW220.SDTWLOAD(DTWCCHIN).
a. Copy the stored procedure into your stored procedure library.
b. Define the stored procedure.

v The SQL to define the stored procedure when using DB2 for OS/390 V5
is found in DTW220.SDTWSPUF(DTWCCHV5).

v The SQL to define the stored procedure when using DB2 UDB Server for
OS/390 V6 is found in DTW220.SDTWSPUF(DTWCCHV6).

3. Bind the stored procedure’s DBRM DTW220.SDTWDBRM (DTWV22IN) into
the package DTWCACHEPKG using a user ID with INSERT, SELECT, and
DELETE privileges on SYSIBM.DTWCACHEDPAGES. The user IDs associated
with the requests that cache pages must have EXECUTE privilege on the
package DTWCACHEPKG.
The JCL for binding into DB2 UDB for OS/390 V5 is located in
DTW710.SDTWBASE(DTWBDCV5). The JCL for binding into DB2 UDB Server
for OS/390 V6 or later is located in DTW710.SDTWBASE(DTWBDCV6).

After you have set up this table and stored procedure, you can begin caching Web
pages.

Suppressing DB2 for OS/390 Messages
You can improve the performance of Net.Data for OS/390 when using the SQL
language environment by suppressing DB2 messages from non-zero SQLCODEs.
Use the DB2MSGS configuration variable to indicate the level of messages that is
necessary for your application. Within production environments, you can bypass
DB2 message lookups by setting DB2MSGS to NONE. When DB2MSGS is set to
NONE or ERRORONLY, you can still catch non-zero SQLCODEs with MESSAGE
blocks within your macro. See Net.Data Reference to learn how to use the
MESSAGE block in your macro.

124 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

To specify the messaging level, use the DB2MSGS configuration variable in the
Net.Data initialization file.

Possible values:
DB2MSGS [=] message_level

Where message_level indicates the level of DB2 messages provided by Net.Data and
can be specified as follows:

NONE Specifies that Net.Data provides no DB2 messages.

ERRORONLY Specifies that Net.Data provides DB2 messages only for negative
SQLCODE values.

ALL Specifies that Net.Data provides DB2 messages for all SQLCODE
values.

Consideration: If DB2MSGS is set to NONE, then the Net.Data variable
DTW_DEFAULT_MESSAGE will not contain a DB2 error message.
Similarly, if DB2MSGS is set to ERRORONLY,
DTW_DEFAULT_MESSAGE will not contain a DB2 error message
for positive SQLCODE values

Optimizing the Language Environments
The following sections describes techniques you can use to improve performance
when using the Net.Data-provided language environments.
v “REXX Language Environment”
v “SQL Language Environment”
v “System and Perl Language Environments” on page 126

REXX Language Environment
Use the following tips to improve the performance of your Net.Data application:
v Combine your REXX programs where possible. Having fewer, larger programs

provides better performance than more smaller programs because the REXX
interpreter is initialized each time a REXX language environment function is
called in the macro.

v For external REXX programs, reference the global variables on the command line
in the %EXEC statement.

v Pass input-only parameters directly to a REXX program by defining global
Net.Data variables and referencing the variables. For inline REXX programs,
reference the global variables directly in your REXX source.

v To avoid the overhead of launching the REXX interpreter, consider using
MACRO_FUNCTION blocks as an alternative to REXX programs.

SQL Language Environment
In this section performance techniques for the SQL language environment are
described. To learn about DB2 performance considerations, visit the web at:
http://review.ibm.com/software/data/db2/performance

SQL Language Environment Techniques
v If a result set contains a large number of rows, you can specify a subset of the

result set that is returned to the browser by using START_ROW_NUM and
RPT_MAX_ROWS. START_ROW_NUM specifies at which row the returned

Chapter 7. Improving Performance 125

subset should start, and RPT_MAX_ROWS specifies the number of rows to be
returned to the page. START_ROW_NUM can then be used in a link to display
the next page of results.
Note that Net.Data reissues the query for every page because the cursor position
is not maintained across requests.

v Consider using a stored procedure to handle complex database tasks. Using
embedded SQL with an understanding of the structure of result sets reduces the
overhead that Net.Data uses to dynamically describe results. For more
information on the performance trade-offs when using stored procedures, see the
DB2 Administration Guide.

v When you have SQL statements where the only information that changes is the
input values in a WHERE clause, consider taking advantage of the
DTW_USE_DB2_PREPARE_CACHE feature of Net.Data. Set this value to ″YES″
in the initialization file, or in individual macros if you do not want it to apply
globally. This setting tells Net.Data to use host variables for the input values,
helping DB2 prepare statements more quickly.

System and Perl Language Environments
Pass input-only parameters directly to the program that the System or Perl
language environment is invoking. Do this by defining global Net.Data variables
and referencing them. For external programs and Perl scripts, reference the
variables on the command line in the %EXEC statement. For inline Perl scripts,
reference the variables directly in the Perl source. Also, to avoid the overhead of
launching the perl interpreter, consider using MACRO_FUNCTION blocks as an
alternative to Perl scripts.

126 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Chapter 8. Serviceability Features

The following sections describe tracing and error reporting features for Net.Data.
v “Net.Data Trace Log”
v “Net.Data Error Log” on page 128

Net.Data Trace Log
Net.Data provides trace data about the execution of your macro that is recorded in
the trace log. You can specify where the trace log is stored and what level of
tracing is recorded. Use the IBM trace information in conjunction with your own
personal trace messages for debugging macros and providing information when
working with your IBM service representative. See Net.Data Messages and Codes
Reference for a list of Net.Data trace messages.

Configuring Net.Data for Tracing
To configure Net.Data for tracing, you need to set configuration variables to
specify where the trace log is stored and what level of trace data Net.Data needs to
capture.
v “Setting the Trace Log Directory”
v “Setting the Level of Trace Logging”

Setting the Trace Log Directory
The name of the trace log is netdata.trace. Use the DTW_TRACE_LOG_DIR
configuration variable to specify the directory in which the trace file is stored.

Syntax:
DTW_TRACE_LOG_DIR [=] full_ directory_ path

Example:
DTW_TRACE_LOG_DIR /usr/lpp/internet/server_root/logs

Setting the Level of Trace Logging
Determine the level of tracing that Net.Data logs by setting the value of the
configuration variable, DTW_TRACE_LOG_LEVEL.

Syntax:
DTW_TRACE_LOG_LEVEL [=] OFF|APPLICATION|SERVICE

Where:

OFF Specifies that no trace data is captured in the trace log. This is the default
value.

APPLICATION
Net.Data writes application-level trace messages to the trace log.

SERVICE
Net.Data writes all trace messages to the trace log. This level of trace
should only be used when asked to do so by IBM. The information in a
SERVICE trace will not be helpful in debugging your own applications and

© Copyright IBM Corp. 1997, 2001 127

will make reading the trace more difficult than necessary. You may be
asked to set the level to SERVICE to help resolve product service
questions.

Example:
DTW_TRACE_LOG_LEVEL SERVICE

Trace Log Format
The format of a trace log entry is:
[DD/MMM/YYYY:HH:MM:SS] [macro][PID#][TID#][UID] trace_message

Where:

DD/MMM/YYYY:HH:MM:SS.CCCCCC
Is a timestamp indicating when the trace entry was created, recorded to the
exact microsecond.

macro Is the name of the macro that generated the trace message.

PID# Is the process ID of the request that generated the trace message.

TID# Is the thread ID number of the request that generated the trace message.

UID Is the user ID associated with the request that generated the trace message.

trace_message
Is the text of the trace message.

Access Rights
To successfully write trace messages to the trace log file, the user IDs under which
Net.Data executes must have:
v Write authority on the log directory specified in the DTW_TRACE_LOG_DIR

configuration variable.
v Execute authority on all directories in the path, including the log directory.

Supplying Your Own Messages
If DTW_TRACE_LOG_LEVEL is set to APPLICATION or SERVICE, you can write
your own trace messages to the Net.Data trace. To do this, simply pass the
message as a parameter to the built-in function DTW_LOG_TRACEMSG(). See the
IBM Net.Data Reference book for more information on how to use the built-in
function DTW_LOG_TRACEMSG().

Net.Data Error Log
Net.Data provides the ability to capture Net.Data, DB2 and your own
application-defined error messages in a log file. You can specify where the error
log file is stored and what type of error messages are logged.

Configuring Net.Data for Error Message Logging
To configure Net.Data for error message logging, you need to set configuration
variables to specify where the log file is stored and what level of error messages
Net.Data needs to capture.
v “Setting the Error Log File Directory” on page 129
v “Setting the Level of Error Logging” on page 129

128 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Setting the Error Log File Directory
The name of the error log file is netdata.error.log. Use the
DTW_ERROR_LOG_DIR configuration variable to specify the directory in which
the trace file is stored.

Syntax:
DTW_ERROR_LOG_DIR [=] full_directory_path

Example:
DTW_ERROR_LOG_DIR /usr/lpp/internet/server_root/logs

Setting the Level of Error Logging
Determine the type of messages that Net.Data logs by setting the value of the
configuration variable, DTW_ERROR_LOG_LEVEL.

Syntax:
DTW_ERROR_LOG_LEVEL [=] OFF|INFORMATION|ALL

Where:

OFF Specifies that no error messages are captured in the error message log. This
is the default value.

INFORMATION
Net.Data logs messages marked ″Information″ (I).

ALL All messages are logged.

Example:
DTW_ERROR_LOG_LEVEL ALL

Error Log File Format
The format of a log file entry is:
[DD/MMM/YYYY:HH:MM:SS] [macro][PID#][TID#][UID] error_message

Where:

DD/MMM/YYYY:HH:MM:SS:CCCCCC
Is a timestamp indicating when the log entry was created.

macro Is the name of the macro that generated the error message.

PID# Is the process ID of the request that generated the error message.

TID# Is the thread ID of the request that generated the error message.

UID Is the user ID associated with the request that generated the error message.

error_message
Is the text of the error message.

Access Rights
To successfully write error messages to the error log, the user IDs under which
Net.Data executes must have:
v Write authority on the log directory specified in the DTW_ERROR_LOG_DIR

configuration variable.
v Execute authority on all directories in the path, including the error log directory.

Chapter 8. Serviceability Features 129

Supplying Your Own Messages
If DTW_ERROR_LOG_LEVEL is set to INFORMATION or ALL, you can write
your own error messages to the Net.Data error log. To do this, simply pass the
message as a parameter to the built-in function DTW_LOG_ERRORMSG(). See the
IBM Net.Data Reference book for more information on how to use the built-in
function DTW_LOG_ERRORMSG().

130 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Appendix A. Bibliography

Net.Data Technical Library
The Net.Data Technical Library is available from the Net.Data Web site at
http://www.ibm.com/software/data/net.data/library.html

Document Description

v Net.Data Administration
and Programming Guide for
OS/390

v Net.Data Administration
and Programming Guide for
OS/2, Windows NT, and
UNIX

v Net.Data Administration
and Programming Guide for
OS/400

Contains conceptual and task information about installing,
configuring, and invoking Net.Data. Also describes how to
write Net.Data macros, use Net.Data performance techniques,
use Net.Data language environments, manage connections,
and use Net.Data logging and traces for trouble shooting and
performance tuning.

Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.

Net.Data Language
Environment Interface
Reference

Describes the Net.Data language environment interface.

Net.Data Messages and Codes
Reference

Lists Net.Data error messages and return codes.

Program Directory for
Net.Data for OS/390 Version 7
Release 1

Describes SMP/E installation and configuration of Net.Data
for OS/390

Related Documentation
The following documents might be useful when using Net.Data and related
products:
v Accessing DB2 for OS/390 Data from the World Wide Web, Maria Sueli Almeida,

Charles E. Lewis, Uwe Sager, Pilar Sandoval
v IBM Internet Connection Secure Server Planning for Installation Version 2 Release 2

for OS/390, GC31-8489
v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2 for

OS/390, GC31-8490
v Lotus Domino Go Webserver Planning for Installation Version 4.6.1 for OS/390,

SC31-8642
v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390, SC31-8643
v OS/390 MVS Planning: Workload Management, GC28-1761

© Copyright IBM Corp. 1997, 2001 131

132 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Appendix B. Configuring Net.Data for OS/390 to Access
DataJoiner

You can use Net.Data for OS/390 with DataJoiner to access remote databases such
as DB2/6000, Oracle, and Sybase. This section describes how to configure your
system for use with DataJoiner for AIX Version 1.2 with PTF U447593 or DataJoiner
for HP-UX Version 1.1.

Configuration steps:
1. Enter the information needed in the communications database (CDB) for

remote communication to DataJoiner. Information on the CDB is in DB2
Installation Guide.

2. Bind the Net.Data DBRM to the remote location where DataJoiner is installed
using the BIND PACKAGE command.

3. Bind the Net.Data DBRM to DB2 using the BIND PLAN command. Use the
PKLIST option to include the package created at the remote location.

4. Modify the Net.Data initialization file, which is in the Web server’s document
root directory, to specify the LOCATION variable as an input variable to SQL
functions. The new DTW_SQL environment statement looks like this:
ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION)

Net.Data macros that access remote data using DataJoiner must specify a value for
LOCATION. This example Net.Data macro queries a remote database through
DataJoiner:
%{ ****************** Define Block ******************************** %}
%DEFINE {

DB2SSID="NDA1"
LOCATION="QMFDJ00"
DTW_DEFAULT_REPORT="YES"

%}

%{ ****************** Function Definition Block ******************* %}
%FUNCTION(DTW_SQL) selectall() {

SELECT * FROM $(tabnam)
%}

%{ ****************** HTML Block: Table_Input ********************* %}
%HTML(Table_Input) {
<title>DJ Test #1</title>
<body>
<h1 align=center>Table Selection</h1>

<form method="post" action="Column_Output">
<p>Enter Table Name: <input type="text" name="tabnam" /></p>
<p><input type="submit" /></p>
</form>
</body>
%}

%{ ****************** HTML Block: Column_Output ******************* %}
%HTML(Column_Output) {
<title>DJ Test #1</title>
<body>
@selectall()
</body>
%}

© Copyright IBM Corp. 1997, 2001 133

134 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Appendix C. Net.Data Sample Macro

This sample macro application displays a list of employees names from which the
application user can obtain additional information about an individual employee
by selecting the employee’s name from the list. The macro uses the SQL language
environment to query the EMPLOYEE table for both the employee names and the
information about a specific employee.

The macro uses an include file, which contains the DEFINE block for the macro.

Figure 10 on page 136 shows the sample macro. Figure 11 on page 138 shows the
include file.

© Copyright IBM Corp. 1997, 2001 135

%{************************ Sample Macro *****************************
* FileName = sqlsamp1.dtw *
* Description: *
* This Net.Data macro queries... *
* - The EMPLOYEE table to create a selection list of *
* employees for display at a browser *
* - The EMPLOYEE table to obtain additional information *
* about an individual employee *
* *
**%}
%{***
* Include for global DEFINEs - *
**%}
%INCLUDE "sqlsamp1.hti"
%}
%{**
* Function: queryDB Language Environment: SQL *
* Description: Queries the table designated by the variable myTable and *
* creates a selection list from the result. The value of the variable *
* myTable is specified in the include file sqlsamp1.hti. *
**%}
%FUNCTION(DTW_SQL) queryDB() {
SELECT FIRSTNME FROM EMPLOYEE
%MESSAGE {

-204: {<p>ERROR -204: Table EMPLOYEE not found. </p>
%} : exit

+default: "WARNING $(RETURN_CODE)" : continue
-default: "Unexpected ERROR $(RETURN_CODE)" : exit

%}

%REPORT {
<select name="emp_name">
%ROW{
<option>$(V1)</option>
%}
</select>
%}
%}

%{**
* Function: fname Language Environment: SQL *
* Description: Queries the table designated by the variable myTable for *
* additional information about the employee identified by the *
* variable emp_name. *
**%}
%FUNCTION(DTW_SQL) fname(){
SELECT FIRSTNME, PHONENO, JOB FROM EMPLOYEE WHERE FIRSTNME='$(emp_name)'
%MESSAGE {

-204: "Error -204: Table not found "
-104: "Error -104: Syntax error"
100: "Warning 100: No records" : continue
+default: "Warning $(RETURN_CODE)" : continue
-default: "Unexpected SQL error" : exit

%}
%}

Figure 10. Sample macro (Part 1 of 3)

136 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

%{***
* HTML block: INPUT Title: Dynamic Query Selection *
* *
* Description: Queries the EMPLOYEE table to create a selection list *
* of the employees for display at the browser *
**%}
%HTML(INPUT) {
<html>
<head>
<title>Generate Employee Selection List</title>
</head>
<body>
<h3>$(exampleTitle)</h3>
<p>This example queries a table and uses the result to create
a selection list using a %REPORT block. </p>
<hr />
<form method="post" action="report">
@queryDB()
<input type="submit" value="Select Employee" />
</form>
<hr />
</body>
</html>
%}

Figure 10. Sample macro (Part 2 of 3)

%{***
* HTML block: REPORT *
* Description: Queries the EMPLOYEE table to obtain additional information *
* about an individual employee *
**%}
%HTML(REPORT) {
<html>
<head>
<title>Obtain Employee Information</title>
</head>
<body>
<h3>You selected employee name = $(emp_name)</h3>
<p>Here is the information for that employee:
<pre>
@fname()
</pre></p>
<hr />Return to previous page
</body>
</html>
%}

%{ End of Net.Data macro 1 %}

Figure 10. Sample macro (Part 3 of 3)

Appendix C. Net.Data Sample Macro 137

===
%{**************************** Include File *********************************
* FileName = sqlsamp1.hti *
* Description: *
* This include file provides global DEFINEs for the sqlsamp1.dtw *
* Net.Data macro. *
**%}
%define {

emp_name =""

exampleTitle = "Sample Macro"
%}

%{ End of include file %}

Figure 11. Include file

138 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1997, 2001 139

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
_U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
AS/400
DB2
DB2 Universal Database
DRDA
DataJoiner
IBM
IMS

Language Environment
MVS/ESA
Net.Data
OS/2
OS/390
OS/400
OpenEdition

The following terms are trademarks of other companies as follows:

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States and/or other countries.

140 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Lotus and Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Notices 141

142 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

Index

A
access rights

for language environments 93
for Net.Data files 27

accessing DB2 94
accessing ODBC databases 93
authentication, security 36
authorization

security 36
specifying access rights to Net.Data

files 27

B
blanks, variable for removing extra 13
BLOBs 95
blocks, macro 57

C
Caching

Macros 11, 12
Web pages 11, 121

calling
COBOL programs 105
functions 78
language environments 92
Perl scripts 108
programs, System 115
REXX programs 110, 112
stored procedures 98, 99

CGI, configuring Net.Data for
OS/390 23

character sets 13
CLOBs 95
COBOL language environment

calling programs 105
overview 105
passing parameters 105
setting up 22

COMMIT 94
Common Gateway Interface. See CGI 23
conditional

logic, IF blocks 88
variables 67

configuration variable statements
configuring in the initialization file 7
DB2MSGS 9
DB2PLAN 9
DB2SSID 9
DefaultDBCp 10
description 7
DSNAOINI 10
DTW_CACHE_MACRO 11, 120
DTW_CACHE_MANAGEMENT_INTERVAL 11
DTW_CACHE_PAGE 11, 122
DTW_COBOL_PARAMETER_BUFFER_SIZE 11
DTW_DEFAULT_ERROR_MESSAGE 11
DTW_DEFAULT_MACRO 12
DTW_DIRECT_REQUEST 12

configuration variable statements
(continued)

DTW_DO_NOT_CACHE_MACRO 12,
120

DTW_ERROR_LOG_DIR 12
DTW_ERROR_LOG_LEVEL 12
DTW_LOB_LIFETIME 13
DTW_MBMODE 13
DTW_OUTPUT_DIR 13
DTW_REMOVE_WS 13
DTW_SHOWSQL 14
DTW_STORE_PAGE 14
DTW_TRACE_LOG_DIR 15
DTW_TRACE_LOG_LEVEL 15

configuring for DataJoiner 133
configuring Net.Data

access rights to Net.Data files and
data sets 27

connection management 22
FastCGI 24
for CGI 23
for use with GWAPI 25
for use with Java Servlets 26
initialization file

configuration variable
statements 7

description 5
ENVIRONMENT statements 19
path statements 16
updating 6

message catalog 27
overview 5
setting up language environments 21
Work Load Manager (WLM) 23

connection management
configuration 22
Work Load Manager

considerations 22

D
data language environments 93
data sets, access rights 27
data types

for stored procedures 99
LOBs 95

DB2MSGS 9, 124
DB2PLAN 9
DB2SSID 9
DBCLOBs 95
declaration part, macro structure 55
default reports

printing 84
specifying for stored procedures 100,

101
DEFINE block

defining variables 65
description 57

defining variables
DEFINE statement or block 65

defining variables (continued)
HTML form SELECT, INPUT, and

TEXTAREA tags 65
query string data 66

direct request
description 41
examples 50
syntax 47

direct request enablement
(DTW_DIRECT_REQUEST) 12

Domino Go Webserver, installing 24
DTW_CACHE_MACRO 11, 120
DTW_CACHE_MANAGEMENT_INTERVAL 11
DTW_CACHE_PAGE 11, 122
DTW_COBOL 105
DTW_COBOL_PARAMETER_BUFFER_SIZE 11
DTW_DEFAULT_ERROR_MESSAGE 11
DTW_DEFAULT_MACRO 12
DTW_DEFAULT_REPORT 85
DTW_DIRECT_REQUEST 12
DTW_DO_NOT_CACHE_MACRO 12,

120
DTW_ERROR_LOG_DIR 12
DTW_ERROR_LOG_LEVEL 12
DTW_LOB_DIR 13
DTW_LOB_LIFETIME 13
DTW_MBMODE 13
DTW_ODBC 93
DTW_OUTPUT_DIR 13
DTW_PERL 108
DTW_REMOVE_WS 13
DTW_REXX 110
DTW_SHOWSQL 14
DTW_SQL 94
DTW_STORE_PAGE 14
DTW_SYSTEM 115
DTW_TRACE_LOG_DIR 15
DTW_TRACE_LOG_LEVEL 15
DTW_UPLOAD_DIR 15, 45
DTWCACHEDEPS table 33
DTWCACHEDPAGES table 32
Dynamic Web page caching 121
dynamically generating variable

names 66

E
encryption, network 35
ENVIRONMENT statements

configuring in the initialization
file 19, 20

description 19
DLL or library name 20
example 20
language environment type 20
parameter list 20
syntax 20

environment variables 68
error conditions, language

environments 92
executable variables 68
executing commands 115

© Copyright IBM Corp. 1997, 2001 143

executing SQL statements 93

F
FastCGI

configuring for Net.Data
installing Domino Go

Webserver 24
configuring Net.Data 24
supported language environments 24

FFI_PATH 17
files

saving output 13, 14
specifying access rights to

Net.Data 27
uploading 15, 45

firewalls 35
flat file functions 81
footer information, REPORT block 84
formatting data output 83
forms

in Web pages to invoke Net.Data 44
invoking Net.Data 43, 51
using the FILE input type 45

FUNCTION block
calling functions 78
description 57
formatting output 83
identifier scope 64

function calls
built-in 78
syntax 78

functions
calling 78
calling stored procedures 98
defining 73
description 73
flat file 81
FUNCTION block syntax 73
general purpose 79
java applet 81
MACRO_FUNCTION block

syntax 74
math 80
string 80
table 81
user-defined 73
word 80

G
general purpose functions 79
global identifier scope 64
GWAPI

and Domino Go Webserver 25
configuring for Net.Data 25

H
header information, REPORT block 84
hidden variables

conceal variable names 69
protecting assets 37

HTML
blocks

description 58
example 82

HTML (continued)
blocks (continued)

invoking Net.Data 82
processing 83

FORM Submit button 83
forms

about 44
invoking Net.Data 43, 51
SELECT, INPUT, and TEXTAREA

tags, defining variables 65
generating in a macro 82
links

about 44
invoking Net.Data 43, 50

tags for tables 84
unrecognized data as 83

I
identifier scope 64
IF blocks 88
improving performance 119
INCLUDE_PATH 18
initialization file

configuration variable statements 7
description 5
ENVIRONMENT statements 19
format 6
path statements 16
updating 6

installing
Net.Data 5

invoking Net.Data
direct request 41
forms 43, 51
HTML blocks 82
links 43, 50
macro request 41
overview 41
syntax 42
URLs 43
using CGI 41
with a macro 42
without a macro 46

J
java applet functions 81
Java Servlets

configuring for Net.Data 26

L
language environments

calling 92
COBOL 105
configuring ENVIRONMENT

statements 19
configuring in the initialization

file 19
examples 19
handling error conditions 92
ODBC 93
Perl 108
REXX 110
security 93

language environments (continued)
setting up 21
SQL 94
supported 92
System 115
variables 73

large objects (LOBs)
description 95
managing 28
supported types 96
valid formats 97

links
in Web pages to invoke Net.Data 44
invoking Net.Data 43, 50

list variables 70
LOBs 95
looping, WHILE blocks 90

M
MACRO_FUNCTION block

calling functions 78
syntax 74

MACRO_PATH 18
macro request

description 41
examples 42
syntax 42

macros
anatomy 56
blocks 57
conditional logic 88
declaration part 55
DEFINE block 57
description 1
developing 55
FUNCTION block 57
functions 73
generating HTML 82
HTML block 58
identifier scope 64
IF blocks 88
looping 90
navigation within and between 59
presentation part 55
sample 56
variables 63
WHILE blocks 90

manage_cache.dtw macro 30
Managing cached pages and LOBs 28
math functions 80
MBCS support for functions 13
MESSAGE block

description 76
example 77
processing 76
scope 76
syntax 76

message catalogs, enabling 27
miscellaneous variables 71
multiple report blocks 85

N
native language support for

functions 13

144 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

navigation, within and between
macros 59

Net.Data
configuring 5
files, access rights 27
installing 5
installing OS/390 133
invoking 41
macros, developing 55
overview 1
security mechanisms 37

Net.Data macros. See macros. 1
Net.Data tables, stored procedures 101,

102
Notices 139

O
ODBC language environment

overview 93
restrictions 93
setting up 21
variables 93

OS/390, Net.Data for 133

P
Page caching, dynamic Web 121
parts of a macro

declaration 55
presentation 55

passing parameters
COBOL programs 105
Perl scripts 108
REXX programs 113
stored procedures 100
System language environment 115

path statements
configuring in the initialization

file 16
DTW_LOB_DIR 13
DTW_UPLOAD_DIR 15
EXEC_PATH 17
FFI_PATH 17
INCLUDE_PATH 18
MACRO_PATH 18
protecting assets 37
update guidelines 17

performance
optimizing language

environments 125
Perl language environment 126
REXX language environment 125
SQL language environment 125
SQLCODE messages 124
System language environment 126
Web server APIs 119

Perl language environment
calling built-in functions 108
overview 108
passing parameters 108
REPORT and MESSAGE blocks 109

printing, disabling for default reports 84
processing result sets, stored

procedures 100
program directory, OS/390 133
protecting assets 35

R
referencing variables 66
relational database language

environment 93
REPORT and MESSAGE blocks

Perl scripts 109
REPORT block

stored procedures 101
REPORT blocks

default reports 85
description 83
examples 85
formatting data output 83
guidelines for multiple 87
header and footer information 84
multiple 85
restrictions 87
scope 64
stored procedures 102

report formats, customizing 84
report variables 72
reports

default 85
generating multiple with one function

call 85
result sets

multiple
default reports 101
guidelines and restrictions 87

processing, stored procedures 100
single 100

RETURN_CODE variable 76, 92
REXX language environment

calling programs 112
overview 110
passing parameters 113

ROW block, identifier scope 64
running SQL statements 94

S
sample macro 135
saving output files 13, 14
scope, identifier

FUNCTION block 64
global 64
macro 64
REPORT block 64
ROW block 64

security
authentication 36
authorization 36
firewall 35
language environments 93
Net.Data mechanisms 37
network encryption 35
overview 35
specifying access rights 27, 93

Servlets
configuring for Net.Data 26

SQL language environment
overview 94
restrictions 94
setting up 21
variables 94

SQLCODE messages, turning off 124
SQLCODEs 92, 93

starting Net.Data 41
stored procedures

calling from macro 98
default reports 100, 101
multiple result sets 101
Net.Data tables 101, 102
passing parameters 100
processing result sets 100
REPORT blocks 101, 102
single result sets 100
steps 99
valid data types 99

string functions 80
SYSIBM.DTWCACHEDEPS table 33
SYSIBM.DTWCACHEDPAGES table 32
System language environment

calling programs 115
issuing commands 115
overview 115
passing parameters 115

T
table functions 81
table processing variables 71
table variables 70
token sizes 63
TRANSACTION_SCOPE 94
types, variable 67

U
Unicode variable

with DTW_MBMODE 13
uploading files 15, 45
URLs

defining variables 66
invoking Net.Data 43

user-defined functions 73

V
variables

conditional 67
configuration, statements

Caching macros
(DTW_DO_NOT_CACHE_MACRO) 12

Caching of macros
(DTW_CACHE_MACRO) 11

Caching Web pages
(DTW_CACHE_PAGE) 11, 122

COBOL parameter buffer size
(DTW_COBOL_PARAMETER_BUFFER_SIZE) 11

database code page variable
(DefaultNetCp) 10

DB2 CLI Initialization File Variable
(DSNAOINI) 10

DB2 messages performance
variable (DB2MSGS) 9

DB2 Plan Variable (DB2PLAN) 9
DB2 Subsystem ID (DB2SSID) 9
default error message enablement

(DTW_DEFAULT_ERROR_MESSAGE) 11
default macro enablement

(DTW_DEFAULT_MACRO) 12
description 7

Index 145

variables (continued)
direct request enablement

(DTW_DIRECT_REQUEST) 12
DTW_CACHE_MANAGEMENT_INTERVAL 11
DTW_ERROR_LOG_DIR 12
DTW_ERROR_LOG_LEVEL 12
DTW_LOB_LIFETIME 13
DTW_TRACE_LOG_DIR 15
DTW_TRACE_LOG_LEVEL 15
initialization file 7
native language support

(DTW_MBMODE) 13
removing extra blanks

(DTW_REMOVE_WS) 13
SHOWSQL enablement

(DTW_SHOWSQL) 14
Storing output

(DTW_STORE_PAGE) 14
Storing output files

(DTW_OUTPUT_DIR) 13
defining 64
description 63
dynamically-generated references 66
environment 68
executable 68
generating names dynamically 66
hidden 69
language environment 73
list 70
miscellaneous 71
referencing 66
report 72
scope 64
table 70
table processing 71
token sizes 63
types 63, 67

W
Web page caching, dynamic 121

Web server

configuring for CGI 23
configuring for FastCGI 24
configuring for GWAPI 25
setting environment variables for

message catalogs 27

Web server APIs

configuring for Net.Data
GWAPI 25

improving performance with 119
performance consideration 119

WHILE blocks 90

white space, variable for removing
extra 13

word functions 80

146 IBM
®

Net.Data for OS/390 and z/OS: Administration and Programming Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Preface
	About Net.Data
	What's New in Version 7?
	About This Book
	Who Should Read This Book
	About Examples in This Book

	How to send your comments

	Chapter 1. Introduction
	What is Net.Data?
	Why Use Net.Data?

	Chapter 2. Installing and Configuring Net.Data
	About the Net.Data Initialization File
	Installing the Net.Data Initialization File
	Customizing the Net.Data Initialization File
	Configuration Variable Statements
	DB2MSGS: DB2 Message Text Variable
	DB2PLAN: DB2 Plan Variable
	DB2SSID: DB2 Subsystem ID Variable
	DefaultDBCp: Default Database Code Page Variable
	DSNAOINI: DB2 CLI Initialization File Variable
	DTW_CACHE_MACRO: Caching of Macros
	DTW_CACHE_MANAGEMENT_INTERVAL: Frequency of WebPage Caching
	DTW_CACHE_PAGE: Caching of Web Pages
	DTW_COBOL_PARAMETER_BUFFER_SIZE
	DTW_DEFAULT_ERROR_MESSAGE: Specify Generic ErrorMessages
	DTW_DEFAULT_MACRO: Specify a default macro
	DTW_DIRECT_REQUEST: Enable Direct Request Variable
	DTW_DO_NOT_CACHE_MACRO: Caching of Macros
	DTW_ERROR_LOG_DIR: Location of Error Log
	DTW_ERROR_LOG_LEVEL: Level of Error to Log
	DTW_LOB_DIR
	DTW_LOB_LIFETIME: Length of Time LOBs Are Available
	DTW_MBMODE: Native Language Support Variable
	DTW_REMOVE_WS: Variable for Removing Extra White Space
	DTW_OUTPUT_DIR: Directory where Net.Data output files arestored
	DTW_SHOWSQL: Enable or Disable SHOWSQL ConfigurationVariable
	DTW_STORE_PAGE: Macros from which to store output
	DTW_TRACE_LOG_DIR: Location of Trace File
	DTW_TRACE_LOG_LEVEL: Level of Trace to Log
	DTW_UPLOAD_DIR
	DTW_USE_DB2_PREPARE_CACHE

	Path Configuration Statements
	EXEC_PATH
	FFI_PATH
	INCLUDE_PATH
	MACRO_PATH

	Environment Configuration Statements

	Setting Up Net.Data Language Environments
	Setting up the SQL and ODBC Language Environments
	Setting up the COBOL Language Environment

	Managing Connections to DB2
	Workload Management Considerations
	Configuring Net.Data for Use with CGI
	Configuring Net.Data for FastCGI
	Configuring Net.Data for Use with GWAPI
	Configuring Net.Data for Use with Java Servlets
	Enabling the Message Catalog
	Granting Access Rights to Files and Data Sets Accessed by Net.Data
	Managing Cached Web Pages and Large Objects
	Setting up DB2
	Configuring Net.Data to Automatically Manage Cached WebPages and Large Objects
	Using a Net.Data-provided Macro for More AdvancedManagement
	Web page cache table and Web page dependency tabledescriptions

	Chapter 3. Keeping Your Assets Secure
	Using Firewalls
	Encrypting Your Data on the Network
	Using Authentication
	Using Authorization
	Using Net.Data Mechanisms
	Net.Data Configuration Variables
	Macro Development Techniques

	Chapter 4. Invoking Net.Data
	Invoking Net.Data using CGI, GWAPI, or FastCGI
	Invoking Net.Data with a Macro (Macro Request)
	HTML Links
	HTML Forms
	Using Relative URLs in Links and Forms

	Invoking Net.Data without a Macro (Direct Request)
	Direct Request Syntax
	Direct Request Examples

	Invoking Net.Data with Java Servlets
	Invoking Net.Data using MacroServlet
	Syntax and Examples
	Parameters

	Invoking Net.Data using FunctionServlet
	Syntax and Examples
	Parameters

	Chapter 5. Developing Net.Data Macros
	Anatomy of a Net.Data Macro
	The DEFINE Block
	The FUNCTION Block
	HTML Blocks
	XML Blocks

	Net.Data Macro Variables
	Identifier Scope
	Defining Variables
	Referencing Variables
	Variable Types
	Conditional Variables
	Environment Variables
	Executable Variables
	Hidden Variables
	List Variables
	Table Variables
	Miscellaneous Variables
	Table Processing Variables
	Report Variables
	Language Environment Variables

	Net.Data Functions
	Defining Functions
	Using Special Characters in Functions
	Message Blocks

	Calling Functions
	Calling Net.Data Built-in Functions
	General Purpose Functions
	Math Functions
	String Functions
	Word Functions
	Table Functions
	Flat File Functions
	Java Applet Functions

	Generating Document Markup
	HTML and XML Blocks
	Report Blocks
	REPORT Block Guidelines
	Example: Customizing a Report
	Multiple REPORT Blocks

	Conditional Logic and Looping in a Macro
	Conditional Logic: IF Blocks
	Looping Constructs: WHILE Blocks

	Chapter 6. Using Language Environments
	Overview of Net.Data-Supplied Language Environments
	Calling a Language Environment
	Guidelines for Handling Error Conditions
	Security

	Relational Database Language Environments
	ODBC Language Environment
	SQL Language Environment
	Managing Transactions in a Net.Data Application
	Using Large Objects
	Stored Procedures
	Stored Procedure Syntax
	Calling a Stored Procedure
	Passing Parameters
	Processing Result Sets

	Relational Database Language Environment Example

	Programming Language Environments
	COBOL Language Environment
	Configuring the COBOL Language Environment
	Executing COBOL Programs
	Passing Parameters to COBOL Programs
	Cobol Language Environment Example

	Perl Language Environment
	Configuring the Perl Language Environment
	Calling External Perl Scripts
	Passing Parameters
	REPORT and MESSAGE Blocks in FUNCTION Blocks
	Perl Language Environment Example

	REXX Language Environment
	Configuring the REXX Language Environment
	Executing REXX Programs
	Passing Parameters to REXX programs
	REXX Language Environment Example

	System Language Environment
	Configuring the System Language Environment
	Issuing Commands and Calling Programs
	Passing Parameters to Programs
	System Language Environment Example

	Chapter 7. Improving Performance
	Using GWAPI or FastCGI
	Net.Data Caching of Macros
	Caching Considerations
	Enabling Macro Caching
	Defining Which Macros to Cache
	Defining Which Macros to Not Cache

	Dynamic Web Page Caching
	Caching Considerations
	Enabling Dynamic Web page Caching
	Step 1: Specify the Web Pages to be Cached:DTW_CACHE_PAGE
	Step 2: Set Up the Web Page Cache

	Suppressing DB2 for OS/390 Messages
	Optimizing the Language Environments
	REXX Language Environment
	SQL Language Environment
	SQL Language Environment Techniques

	System and Perl Language Environments

	Chapter 8. Serviceability Features
	Net.Data Trace Log
	Configuring Net.Data for Tracing
	Setting the Trace Log Directory
	Setting the Level of Trace Logging

	Trace Log Format
	Access Rights
	Supplying Your Own Messages

	Net.Data Error Log
	Configuring Net.Data for Error Message Logging
	Setting the Error Log File Directory
	Setting the Level of Error Logging

	Error Log File Format
	Access Rights
	Supplying Your Own Messages

	Appendix A. Bibliography
	Net.Data Technical Library
	Related Documentation

	Appendix B. Configuring Net.Data for OS/390 to AccessDataJoiner
	Appendix C. Net.Data Sample Macro
	Notices
	Trademarks

	Index

