

Workload Management with
MicroStrategy Software and IBM

DB2 9.5

Author:

Scott Cappiello, Senior Director, Program

Management, MicroStrategy
Paul Bird, Senior Technical Staff Member, DB2
Development, IBM

A. Introduction and Overview

This paper describes the best practices for configuring MicroStrategy®

software to use the workload management (WLM) features of IBM® DB2®

9.5 for Linux®, Unix®, and Windows®.

A critical element of managing an enterprise business intelligence (BI) system

is effective workload management (WLM) – applying the right RDBMS

resources to the right user requests. DB2 9.5 provides the DB2 Workload

Manager, which introduces a new workload management paradigm that

makes it easier to monitor and control active work in the system.

MicroStrategy software integrates easily with these new WLM features so that

insight and control are extended to the BI system.

This document is organized as follows. The first part reviews important

concepts of how MicroStrategy software submits work to DB2 9.5 and how

DB2 9.5 manages workloads. The second part of the document then

describes a detailed example of how MicroStrategy and DB2 9.5 can be

configured to achieve workload management objectives typical of a

MicroStrategy application.

Target audience for this paper

• DB2 Database Administrators

B. MicroStrategy SQL and Job Execution

There are three categories of SQL requests that MicroStrategy submits to the

RDBMS: metadata requests, element requests, and report requests. A

metadata request is a request to the MicroStrategy object repository, which is

stored in an RDBMS. Examples of a metadata request are loading the

definition of a report or saving changes to a metric. These requests tend to

be “transactional” in nature, generally reading from or writing to one or a

small number of rows in a small number of tables.

An element request (or element browse) is a request to the RDBMS in order

to populate a pick list displayed to the user. Usually an element request

accesses a single dimension table and retrieves a reasonable number of rows

to display: the application designer usually designs prompts so that a

manageable number of elements are displayed for the user to choose from.

Element requests, such as the one below, are “simple” in that they consist of

a single SELECT statement containing no aggregation, few if any joins, and

few if any WHERE conditions.

select distinct YEAR_ID YEAR_ID

from DIM_TIME a11

A report request is the most interesting kind of request and contains the SQL

representing the “question” the user is asking when they execute a report

object. Report requests are “analytical” in nature, featuring aggregation

functions and GROUP BY’s, and also have the potential to be quite complex,

including multiple joins, WHERE/HAVING clauses, subqueries, UNIONs, and

many other SQL constructs.

Note that a single report request can consist of multiple SQL statements, as in

the example below. In many cases, MicroStrategy can generate such “multi-

pass” requests from a single SQL SELECT statement, using common table

expressions, for instance. However, there are some reports that must be

executed using temporary tables, for example when calculations performed

by MicroStrategy’s analytical engine are inserted back into the RDBMS for

further processing. Also, customers have the ability on a report-by-report

basis to choose whether to use common table expressions or intermediate

tables (see the discussion of the VLDB setting the intermediate table type in

the MicroStrategy System Administration Guide.) The relevant point for the

workload management discussion is that it is possible for MicroStrategy report

requests to consist of multiple SQL statements, as illustrated below.

create table ZZSP00 (

 YEAR_ID INTEGER,

 SUBCAT_ID INTEGER,

 WJXBFS1 FLOAT)

insert into ZZSP00

select a13.YEAR_ID YEAR_ID,

 a12.SUBCAT_ID SUBCAT_ID,

 sum(a11.TOT_UNIT_SALES) WJXBFS1

from ITEM_MNTH_SLS a11

 join LU_ITEM a12

 on (a11.ITEM_ID = a12.ITEM_ID)

 join LU_MONTH a13

 on (a11.MONTH_ID = a13.MONTH_ID)

group by a13.YEAR_ID,

 a12.SUBCAT_ID

create table ZZSP01 (

 YEAR_ID INTEGER,

 SUBCAT_ID INTEGER,

 WJXBFS1 FLOAT)

insert into ZZSP01

select a13.YEAR_ID YEAR_ID,

 a12.SUBCAT_ID SUBCAT_ID,

 sum(a11.UNITS_RECEIVED) WJXBFS1

from INVENTORY_ORDERS a11

 join LU_ITEM a12

 on (a11.ITEM_ID = a12.ITEM_ID)

 join LU_MONTH a13

 on (a11.MONTH_ID = a13.MONTH_ID)group by a13.YEAR_ID,

 a12.SUBCAT_ID

select pa1.SUBCAT_ID SUBCAT_ID,

 a11.SUBCAT_DESC SUBCAT_DESC,

 pa1.YEAR_ID YEAR_ID,

 pa1.WJXBFS1 WJXBFS1,

 pa2.WJXBFS1 WJXBFS2

from ZZSP00 pa1

 join ZZSP01 pa2

 on (pa1.SUBCAT_ID = pa2.SUBCAT_ID and

 pa1.YEAR_ID = pa2.YEAR_ID)

 join LU_SUBCATEG a11

 on (pa1.SUBCAT_ID = a11.SUBCAT_ID)

drop table ZZSP00

drop table ZZSP01

MicroStrategy generates the SQL for report requests dynamically based on

the definition of the report object and also on user-specified input. Most

MicroStrategy reports make use of prompts. In their simplest form, prompts

allow the user to specify parameters that wind up in the WHERE clause, such

as a time period for the analysis. But prompts can also be used such that the

two executions of the same report result in significantly different SQL, for

example, including additional SQL statements, accessing different tables, or

performing different calculations.

MicroStrategy has a connection mapping feature that determines the

database login to use when submitting a request. Typically, users configure

the system so that all metadata requests are submitted with the same

database login credentials. Some installations also map all report requests to

the same database login. But other installations are set up such that each

MicroStrategy user executes their report requests as a separate database

login. The latter configuration is used when data security rules have been

defined in the RDBMS.

MicroStrategy also has the ability to pool database connections. Once a

session is established with the database, the MicroStrategy Intelligence

Server keeps the session open (subject to a user-configurable maximum

number of open connections). Any request that can use the same login will

use an open session rather than open a new one. Typically, the system is

configured to have 2 to 9 sessions open with the object repository to handle

metadata requests. An additional 10 to 50 connections can be opened to the

reporting RDBMS to handle element and report requests.

All database connections are ODBC connections to the RDBMS. Any SQL

syntax that MicroStrategy submits to the RDBMS must be valid over an ODBC

connection.

MicroStrategy has the ability to issue pre- and post-SQL statements with

element requests and report requests. These are user-defined SQL strings

that are executed either before or after the SQL for the request itself. Pre-

and post-SQL statements can be parameterized by which MicroStrategy

variables such as date, timestamp, MicroStrategy user login, report name,

project name, and job ID are dynamically inserted into the SQL syntax. The

SQL snippet below is a contrived example that illustrates how a pre-SQL

statement can be configured to call a hypothetical stored procedure “my_sp1”

passing in the MicroStrategy user login and the report name as arguments; it

also shows how a post-SQL statement can be configured to call a “my_sp2”

procedure passing in the project name, job number, and date of execution as

arguments. (The complete list of variables available for pre- and post-SQL

statements is given later in this document.)

call my_sp1(‘MSTRUser’, ‘Management Report’)

create table ZZSP00 (

 YEAR_ID INTEGER,

 SUBCAT_ID INTEGER,

 WJXBFS1 FLOAT)

insert into ZZSP00

select a13.YEAR_ID YEAR_ID,

 a12.SUBCAT_ID SUBCAT_ID,

 sum(a11.TOT_UNIT_SALES) WJXBFS1

…

drop table ZZSP00

drop table ZZSP01

call my_sp2(‘Finance Project’, ‘Job 123’, ‘20070302’)

In summary, when a user executes a report in MicroStrategy, the following

activity can be submitted to the RDBMS:

o One or more metadata requests can be executed to load the definition

of the report.

o These are submitted through dedicated connections to the

metadata repository, where multiple users share the same login

credentials and, in fact, the same database session.

o If the report contains prompts, some element requests can be

submitted to populate pick lists to display to the user.

o These can be submitted through a new connection to the

reporting database or through an already-open connection that

uses the same database login as a previous request.

o After prompts have been answered, a report request is submitted.

o This request, which can consist of multiple SQL statements, is

submitted as described above for element requests.

C. Workload Management in DB2 9.5

Comprehensive workload management (WLM) has been integrated into DB2

9.5. With the WLM features of DB2 9.5, you can divide work into classes and

tailor the DB2 9.5 server to support a variety of users and applications on the

same system.

All work within DB2 9.5 is executed within the context of a specific service

class. A service class acts as a unique execution environment for a grouping

of work. Resources such as CPU priority can be allocated differently to

different service classes, so that higher priority work requests receive more

resources.

Connections coming into DB2 9.5 are classified into workloads, which are then

mapped to service classes. A workload definition consists of a series of

values for one or more connection attributes, such as the application name or

SESSION_USER. Each incoming connection is assigned to a workload by

comparing its connection attributes to the definitions of each DB2 9.5

workload; the first match that is found is the workload that is used. For

example, a workload can be defined as all requests coming from

SESSION_USER jdoe. The following connection attributes can be used to

define workloads:

• Application name

• SYSTEM_USER

• SESSION_USER

• Any group of SESSION_USER

• Any role of SESSION_USER

• CLIENT USERID

• CLIENT APPLNAME

• CLIENT WRKSTNNAME

• CLIENT ACCTNG

The last four attributes, known as client information fields, can be changed

during an open session through the use of the WLM_SET_CLIENT_INFO stored

procedure. The syntax of this procedure is:

WLM_SET_CLIENT_INFO (client_userid, client_wrkstnname, client_applname,

client_acctstr, client_workload)

where the value of each client information field can be passed in as a string.

The client_workload argument provides a way to directly assign the

connection to the built-in workload SYSDEFAULTADMWORKLOAD. For

example, the SQL snippet below sets the user ID, workstation name,

application name, accounting string, and workload assignment mode for the

client.

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘DB2USER’,

‘machine.torolab.ibm.com’, ‘microstrategy’, ‘accounting department’,

‘AUTOMATIC’)

It is not necessary to specify all client information fields when using this

stored procedure. The following SQL snippet sets the user ID to DB2USER2

for the client without setting the other client attributes.

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘DB2USER2’, , , ,)

See

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw

.sql.rtn.doc/doc/r0053116.html for a complete description of the

WLM_SET_CLIENT_INFO procedure.

While workload definitions classify work based on connection attributes, DB2

9.5 also provides ways to treat work activities differently based on their type

or some individual characteristic that is independent of connection attributes.

Work class sets and work action sets provide the capability to further

discriminate activities based on such characteristics, such as “put DML in a

different service class than DDL” or “put all read queries of less than 100

timerons in a different service class than all the other read queries.”

D. Configuring MicroStrategy and DB2 for Workload Management
In this section, we describe one way to configure a system running

MicroStrategy software and DB2 9.5 to achieve some common workload

management objectives. Note that this is not the only possible configuration;

some alternative configurations are described in the section “Alternative

Workload Management Configurations.” Our objectives in this example are as

follows:

• Metadata requests should return promptly. Application designers
want to ensure that metadata requests return promptly. These

requests are submitted as a result of browsing through folders, loading

report definitions, etc. Metadata requests need to return quickly (sub-

second) in order for the application to feel “snappy.”

• Element requests should return promptly. Application designers

want to ensure that element requests return promptly. After

executing a report, the user must wait until all pick lists have returned

before prompts are displayed. Element requests need to return

quickly so that the user doesn’t wait very long before even submitting

their selections.

• Prioritized users should get prioritized resource allocation.
Application designers want to prioritize report requests based on

variables that are known at the time the report is submitted. For

example, report requests from the CEO should be prioritized ahead of

other requests. Combinations of variables can also be used for

prioritizing resources. For example, users from the Finance

department should have priority over non-Finance users when

submitting reports in the Finance application, while Marketing users

have priority over non-Marketing users when submitting reports in the

Marketing application.

• Report requests should be prioritized based on estimated cost.
Application designers want to ensure that short-running reports are

executed quickly, while it might be acceptable for long-running queries

to run longer. Furthermore, application designers want to ensure that

a group of long-running queries doesn’t “starve out” other shorter-

running queries. Users expect that their simple requests will come

back quickly and not depend on other analysis being conducted at the

same time.

MicroStrategy Configuration

In order for DB2 9.5 to classify work submitted by MicroStrategy, the

MicroStrategy application must be configured to send identifying information

along with each query it submits.

Metadata Requests

We will configure MicroStrategy to submit all metadata requests using a

dedicated DB2 login. Then we can identify any request coming from that

login as a metadata request.

A database instance is a MicroStrategy object that represents a database or

database server. A database instance has an ODBC connection string and a

login associated with it. To direct all metadata requests to the same workload

in DB2 9.5, configure a separate database instance to represent the metadata

repository. Use a dedicated DB2 login such as ‘MSTR_MD’ as the default login

for this database instance. All metadata requests from all MicroStrategy

users will be submitted on dedicated connections using this same login.

Prioritized Element Requests and Report Requests

We cannot use the DB2 login to identify report requests and element

requests, because MicroStrategy can be configured to submit these requests

using a different DB2 login for each user. (MicroStrategy can also be

configured to submit report/element requests using a pooled DB2 login. But

the relevant point for workload management is that either of these

configurations can be used, so we cannot rely on a dedicated DB2 login to

identify report or element requests.) Instead, we will configure MicroStrategy

to include some additional identifying information in the SQL it submits for

each request.

Configure the “report pre-SQL statement” (a VLDB setting at the Project

level) to the following string:

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘MSTRUser=!u’, , ‘Project=!p’,

‘Report=!o’,)

This stored procedure call sets the DB2 9.5 connection attributes CLIENT

USERID, CLIENT APPLNAME, CLIENT ACCTNG to hold the values for the

MicroStrategy user ID, project name, and report name, respectively. The

CLIENT WRKSTNNAME (the second argument in the WLM_SET_CLIENT_INFO

procedure) is not set.

The result for report requests will be the following SQL:

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘MSTRUser=jdoe’, ,

‘Project=CategoryManagement’, ‘Report=SalesSummary’,)

create table ZZSP00 (

 YEAR_ID INTEGER,

 SUBCAT_ID INTEGER,

 WJXBFS1 FLOAT)

insert into ZZSP00

select a13.YEAR_ID YEAR_ID,

 a12.SUBCAT_ID SUBCAT_ID,

…

and the following SQL for element requests:

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘MSTRUser=jdoe’, ,

‘Project=CategoryManagement’, ‘Report=-’,)

select count(distinct a21.QUARTER_ID) WJXBFS1

from LU_QUARTER a21

select a11.QUARTER_ID QUARTER_ID,

 a11.QUARTER_DESC QUARTER_DESC0

from LU_QUARTER a11

order by 1 asc

The following MicroStrategy variables can also be submitted to DB2 9.5 and

used for WLM:

!d Date from Intelligence Server

!t Time from Intelligence Server

!u MicroStrategy user name

!o Report name

!r Report ID (16-digit hex ID)

!p Project name

!z Project ID (16-digit hex ID)

!j Intelligence Server job ID

!i Intelligence Server job priority (integer from 0 to 999)

DB2 9.5 Configuration

The diagram below illustrates the workloads, service classes, work class sets,

and work action sets in DB2 9.5 that we will use to achieve these objectives.

Service Classes

With the DB2 9.5 commands below, we will establish five service classes to

handle the work from the MicroStrategy application. We will see later how we

map the different types of work to each of these service classes.

• Metadata requests get a dedicated service class (Service Class C in the

diagram).

• Element requests get a dedicated service class (Service Class B).

MSTR Report Requests

Priority User
Reports Workload

MSTR Metadata Requests

General Reports
Workload

Service Class A:
Reports

Service Class C:
Metadata

Work
Action

Set

Subclass A1:
High Priority

MSTR Element Requests

Executive
Users

Other
Users

Service Class B:
Element Browsing

Metadata Workload

Elements Workload

Subclass A2:
Medium Priority

Default Subclass:
Low Priority

• Report requests are mapped to a service class that is separate from

metadata and element requests (Service Class A). Each query

associated with a report request can be further mapped to a service

subclass based on the estimated cost of the query:

o Simple (lowest-cost) queries get a prioritized service subclass

(Service Class A1).

o Medium (moderate-cost) report requests get a dedicated

service subclass (Service Class A2).

o Complex (highest-cost) report requests remain in the default

subclass of the service super class (Service Class A) separate

from the prioritized service subclasses. Note that this default

subclass is created automatically by DB2 when the super class

is created.

• Report requests from high-priority users are “fast-tracked” to the high-

priority service subclass (Service Class A1) regardless of the estimated

cost of each query.

CREATE SERVICE CLASS scMSTRMetadata;

CREATE SERVICE CLASS scMSTRElementBrowsing;

CREATE SERVICE CLASS scMSTRReports;

CREATE SERVICE CLASS scMSTRMediumPriority UNDER scMSTRReports;

CREATE SERVICE CLASS scMSTRHighPriority UNDER scMSTRReports;

In this configuration, you can allocate CPU priority to the “priority” service

classes if you want: scMSTRMetadata, scMSTRElementBrowsing,

scMSTRMediumPriority, and scMSTRHighPriority. Service class

scMSTRReports serves as an “all other” service class that does not receive the

same level of priority as the other service classes.

Workloads

Next we will define workloads to classify the requests coming from

MicroStrategy based on the identifying information available from the

connections:

o wlMSTRMetadata: Any connection with SESSION_USER ‘MSTR_MD’ will

be considered a metadata connection and mapped to the

scMSTRMetadata service class.

o wlMSTRElementBrowsing: Any connection not identified as a metadata

one, with the application name ‘MJMulPrc_32.EXE’ and CLIENT

ACCTNG string ‘Report=-’, will be identified as an element request

connection. Note that the evaluation order of this workload is

positioned after wlMSTRMetadataRequests, so only connections not

matching the attributes of that workload will be considered for this

workload. MJMulPrc_32.EXE is the MicroStrategy process that submits

requests to DB2 9.5 and this is what DB2 9.5 sees as the application

name. When MicroStrategy issues an element request, the report

name is empty and appears as ‘Report=-’ in the SQL submitted.

o wlMSTRPriorityReports: Any connection not identified as a metadata or

element request connection, with the application name

‘MJMulPrc_32.EXE’ and CLIENT USERID string ‘MSTRUser=ceo’ or

‘MSTRUser=coo’ or ‘MSTRUser=cfo’, will be identified as a high-priority

connection and mapped to the scMSTRHighPriorityReports service

class.

o wlMSTRReports: Any connection not identified as one of the previous

workloads (enforced in the workload definition by use of the POSITION

AFTER specification) with application name ‘MJMulPrc_32.EXE’ will be

identified as part of this catch-all workload and mapped to the

scMSTRReports service class.

CREATE WORKLOAD wlMSTRMetadata

 SESSION_USER(‘MSTR_MD’)

 SERVICE CLASS scMSTRMetadata;

CREATE WORKLOAD wlMSTRElementBrowsing

 APPLNAME(‘MJMulPrc_32.EXE’)

 CURRENT CLIENT_ACCTNG(‘Report=-’)

 SERVICE CLASS scMSTRElementBrowsing

 POSITION AFTER wlMSTRMetadata;

CREATE WORKLOAD wlMSTRPriorityReports

 APPLNAME(‘MJMulPrc_32.EXE’)

 CURRENT CLIENT_USERID(‘MSTRUser=ceo’, ‘MSTRUser=cfo’,

‘MSTRUser=coo’)

 SERVICE CLASS scMSTRHighPriorityReports

 POSITION AFTER wlMSTRElementBrowsing;

CREATE WORKLOAD wlMSTRReports

 APPLNAME(‘MJMulPrc_32.EXE’)

 SERVICE CLASS scMSTRReports

 POSITION AFTER wlMSTRPriorityReports;

With these workload definitions, we have used connection information to

identify metadata requests, element requests, and report requests from high-

priority users and to map them to their appropriate service classes.

Work Class Sets and Work Action Sets

Now we will use a work class set and a work action set to differentiate among

report requests based on their estimated cost so that simpler reports can be

prioritized accordingly. Note that if temporary tables are used, then a single

MicroStrategy report request can consist of multiple SQL statements sent to

DB2 9.5. The cost estimate from DB2 9.5 is expressed in units called

timerons and is provided by the SQL Compiler for each individual query within

a report not the report as a whole. Some passes might be considered costly

while other passes in the same report are considered simple.

An example work class set wcsALLDML (shown below) identifies DML

statements based on their estimated cost. Statements that are estimated to

cost between 0 and 1000 timerons are identified as “simple” statements;

statements between 1000 and 20000 timerons are “medium.”1

The work action set wasMSTActions maps the statements as identified by the

work classes above to an appropriate service class: scMSTRHighPriority for

the simple reports, and scMSTRMediumPriority for the medium reports.

1 Note that these specific estimate values have been created simply for the purposes

of the example and do not reflect any real or expected estimate values for the SQL

statements.

CREATE WORK CLASS SET wcsALLDML

 (WORK CLASS wcSmallDML WORK TYPE DML

 FOR TIMERONCOST FROM 0 TO 1000

 WORK CLASS wcMediumDML WORK TYPE DML

 FOR TIMERONCOST FROM 1000 TO 20000);

CREATE WORK ACTION SET wasMSTRActions

 FOR SERVICE CLASS scMSTRReports

 USING WORK CLASS SET wcsALLDML

 (WORK ACTION waMSTRHighPriority ON WORK CLASS wcSmallDML

 MAP ACTIVITY TO scMSTRHighPriority

 WORK ACTION waMSTRMediumPriority ON WORK CLASS wcMediumDML

 MAP ACTIVITY TO scMSTRMediumPriority);

The result of these definitions is that simple queries will be placed in the high-

priority service subclass, and medium queries will be placed in the medium-

priority service subclass. Any statement not identified as simple or medium

by the work class set, which includes “complex” DML statements estimated to

cost more than 20000 timerons as well as DDL statements such as DROP

TABLE, will remain in the scMSTRReports service super class and therefore

execute in the default service subclass.

Note again that because the cost estimation occurs on a per-statement basis,

a single MicroStrategy report consisting of multiple statements could be

distributed across multiple service subclasses.

Configuration Summary

The DB2 9.5 and MicroStrategy configurations above will result in the

following behavior:

o Metadata requests are submitted through a dedicated DB2 login.

These requests are identified as a workload (wlMSTRMetadata) based

on this login (SESSION_USER) and mapped to a dedicated service

class (scMSTRMetadata).

o Element requests are submitted with some additional information in

the CLIENT_USERID, CLIENT_APPLNAME, and CLIENT_ACCTNG

registers using the WLM_SET_CLIENT_INFO stored procedure. These

requests are identified as a workload (wlMSTRElementBrowsing) based

on the CLIENT_ACCTNG string and mapped to a dedicated service

class (scMSTRElementBrowsing).

o Report requests are submitted with some additional information in the

CLIENT_USERID, CLIENT_APPLNAME, and CLIENT_ACCTNG registers

using the WLM_SET_CLIENT_INFO stored procedure. Requests from

high-priority users are identified as a workload

(wlMSTRPriorityReports) based on the CLIENT_USERID string and

mapped to a dedicated service class (scMSTRHighPriorityReports).

o Note that this workload makes no distinction between work

requests based on estimated cost and those based on DML. If

the CLIENT_USERID string indicates that this is a high-priority

request, then all statements that comprise this report will be

submitted to the same service class.

o All other report requests are routed to the scMSTRReports service

calls, where they might also be routed to dedicated subclasses based

on their estimated cost.

o INSERT from SELECTs, SELECTs with low cost will go to the

scMSTRHighPriorityReports service class.

o INSERT from SELECTs, SELECTs with medium cost will go to

the scMSTRMediumPriorityReports service class.

o Other INSERT from SELECTs, SELECTs will remain in the

scMSTRReports service class.

o DECLAREs, DROPs, CREATE INDEXs, CALL RUNSTATS, and

other DDL or unidentifiable statements will remain in the

scMSTRReports service class.

E. Workload Management in DB2 9.5

Monitoring and Control

Once workload management has been configured, DB2 9.5 provides extensive

features for monitoring and controlling database activities. Below we discuss

some simple queries that can be used to confirm that the workload

management configuration described in this document is functioning as

expected. See

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.i

bm.db2.luw.admin.wlm.doc/doc/c0051399.html for a more complete

description of monitoring and control capabilities of DB2 9.5 workload

management.

Monitoring Queries using SQL

The WLM_GET_SERVICE_SUPERCLASS_STATS procedure returns basic

statistics of one or more service super classes. Use this table function to

obtain information about the concurrent connection high watermark that was

calculated since the last statistics reset.

select *

from table(WLM_GET_SERVICE_SUPERCLASS_STATS(cast(null as

VARCHAR(128)), -2)) as scstats

The WLM_GET_SERVICE_SUBCLASS_STATS procedure returns basic statistics

of one or more service subclasses. Use this table function to obtain

summarized statistics such as the number of activities and average execution

time calculated since the last statistics reset.

select *

from table(WLM_GET_SERVICE_SUBCLASS_STATS(cast(null as

VARCHAR(128)), cast(null as VARCHAR(128)), -2)) as scstats

The WLM_GET_WORKLOAD_STATS procedure returns workload statistics for

every combination of workload name and database partition number. Use

this table function to obtain summarized statistics for one or all workloads and

database partitions.

select *

from table(WLM_GET_WORKLOAD_STATS(cast(null as VARCHAR(128)), -2))

as wlstats

Monitoring Queries using Event Monitors

The WLM_COLLECT_STATS procedure causes statistics for service classes,

workloads, work classes, and threshold queues to be gathered and written to

the statistics event monitor. The statistics for service classes, workloads,

work classes, and threshold queues are also reset at this time. If you activate

aggregate activity statistics using the COLLECT AGGREGATE ACTIVITY DATA

clause on any work action or service classes, then DB2 9.5 will also collect

distribution information about the different activities being processed.

call wlm_collect_stats()

Alternatively, you can set the WLM_COLLECT_INT database configuration

parameter to have DB2 9.5 automatically collect these statistics for you at a

regular interval and write them out to the activity statistics event monitor.

If you want information about the individual SQL statements being run by any

specific workload, work action, or service class, you can activate capture of

activity information using the COLLECT ACTIVITY DATA clause on the area of

interest. Doing so will cause a record to be written for each SQL statement

executed in that area to the activities event monitor. Different levels of

information are available for this clause including ones that provide the

statement text, compilation environment, and input data values. In addition,

if the system monitor switches are active, any relevant information for each

statement is also captured to the same event monitor along with the basic

statement information.

Thresholds and CONCURRENTDBCOORDACTIVITIES

A threshold is a control feature that allows you to establish limits over

different behaviors of an SQL statement, such as consumption of a specific

resource or maximum time for processing. If a threshold is violated, a

specified action can be triggered such as stopping execution of the activity

that caused the threshold to be violated.

The CONCURRENTDBCOORDACTIVITIES threshold specifies the maximum

number of recognized coordinator activities2 that can run concurrently across

all database partitions. This type of threshold, a concurrency control

threshold, is a very effective and powerful tool used to sequence and limit the

amount of work being asked of the database at any particular time. In some

cases where this threshold is used, applications that start more than one

concurrent activity can potentially consume all the concurrency available for

this threshold, thus creating a self-deadlock scenario. However, the

MicroStrategy application submits all work for the same report in a serial

manner: each statement must complete before the next statement is sent.

2 In DB2 9.5, a recognized activity is a DML or DDL SQL statement or Load.

As a result, the MicroStrategy application is not susceptible to this self-

deadlock scenario and is compatible with the use of the

CONCURRENTDBCOORDACTIVITIES threshold.

F. Workload Management in DB2 9.5

Example MicroStrategy Reports

The following reports were executed using the configuration defined above.

The SQL syntax below illustrates which queries were directed to which service

classes in DB2 9.5.

Report 1a: Common Table Expressions

This report consists of two SQL passes generated by MicroStrategy. Because

it is generated using Intermediate Table Type = Common Table Expressions,

DB2 9.5 sees the entire report as one READ statement. Because the

estimated cost of the query exceeded the 20000 timerons threshold specified

above, the request is left in the general MSTR Reports service class.

(Executes in scMSTRReports)

with gopa1 as

 (select a11.CUSTOMER_ID CUSTOMER_ID

 from CUSTOMER_SLS a11

 group by a11.CUSTOMER_ID

 having sum(a11.TOT_DOLLAR_SALES) > 1000.0

)select a13.SUBCAT_ID SUBCAT_ID,

 max(a14.SUBCAT_DESC) SUBCAT_DESC,

 sum(a11.QTY_SOLD) WJXBFS1

from ORDER_DETAIL a11

 join gopa1 pa12

 on (a11.CUSTOMER_ID = pa12.CUSTOMER_ID)

 join LU_ITEM a13

 on (a11.ITEM_ID = a13.ITEM_ID)

 join LU_SUBCATEG a14

 on (a13.SUBCAT_ID = a14.SUBCAT_ID)

group by a13.SUBCAT_ID

Report 1b: Temporary Tables

This is the same report as in the previous example, except that the

intermediate table type is now set to temporary tables. When using

temporary tables, DB2 9.5 sees the report as one DDL statement, one WRITE

(INSERT) statement, one READ (SELECT) statement, and a second DDL

(DROP) statement. In this example, the INSERT statement has low estimated

cost, and is routed to the High Priority service subclass. The SELECT

statement has higher estimated cost and is left in the general MSTR Reports

service class. The DDL statements are always left in the general MSTR

Reports service class. This example shows how one MicroStrategy report can

be broken down into work that crosses multiple service classes.

(Executes in scMSTRReports)

declare global temporary table session.ZZMQ00(

 CUSTOMER_ID SMALLINT)

partitioning key (CUSTOMER_ID) on commit preserve rows not logged

(Executes in scHighPriorityReports)

insert into session.ZZMQ00

select a11.CUSTOMER_ID CUSTOMER_ID

from CUSTOMER_SLS a11

group by a11.CUSTOMER_ID

having sum(a11.TOT_DOLLAR_SALES) > 1000.0

(Executes in scMSTRReports)

select a13.SUBCAT_ID SUBCAT_ID,

 max(a14.SUBCAT_DESC) SUBCAT_DESC,

 sum(a11.QTY_SOLD) WJXBFS1

from ORDER_DETAIL a11

 join session.ZZMQ00 pa12

 on (a11.CUSTOMER_ID = pa12.CUSTOMER_ID)

 join LU_ITEM a13

 on (a11.ITEM_ID = a13.ITEM_ID)

 join LU_SUBCATEG a14

 on (a13.SUBCAT_ID = a14.SUBCAT_ID)

group by a13.SUBCAT_ID

(Executes in scMSTRReports)

drop table session.ZZMQ00

Report 2a: Common Table Expressions

This report consists of three SQL passes generated by MicroStrategy.

Because the estimated cost of the query is within the 1000 to 20000 timerons

threshold specified above, the request is routed to the Medium Priority

service subclass.

(Executes in scMediumPriorityReports)

with gopa1 as

 (select a11.SUBCAT_ID SUBCAT_ID,

 sum(a11.TOT_UNIT_SALES) WJXBFS1

 from CITY_SUBCATEG_SLS a11

 group by a11.SUBCAT_ID

),

 gopa2 as

 (select a12.SUBCAT_ID SUBCAT_ID,

 sum(a11.UNITS_RECEIVED) WJXBFS1

 from INVENTORY_ORDERS a11

 join LU_ITEM a12

 on (a11.ITEM_ID = a12.ITEM_ID)

 group by a12.SUBCAT_ID

)select pa11.SUBCAT_ID SUBCAT_ID,

 a13.SUBCAT_DESC SUBCAT_DESC,

 pa11.WJXBFS1 WJXBFS1,

 pa12.WJXBFS1 WJXBFS2

from gopa1 pa11

 join gopa2 pa12

 on (pa11.SUBCAT_ID = pa12.SUBCAT_ID)

 join LU_SUBCATEG a13

 on (pa11.SUBCAT_ID = a13.SUBCAT_ID)

Report 2b: Temporary Tables

This is the same report using temporary tables. Again, all the DDL

statements are left in the General Reports service class. But in this example,

all INSERT and SELECT statements have low cost and are routed to the High

Priority service subclass.

(Executes in scMSTRReports)

declare global temporary table session.ZZSP00(

 SUBCAT_ID SMALLINT,

 WJXBFS1 DOUBLE)

partitioning key (SUBCAT_ID) on commit preserve rows not logged

(Executes in scHighPriorityReports)

insert into session.ZZSP00

select a11.SUBCAT_ID SUBCAT_ID,

 sum(a11.TOT_UNIT_SALES) WJXBFS1

from CITY_SUBCATEG_SLS a11

group by a11.SUBCAT_ID

(Executes in scMSTRReports)

declare global temporary table session.ZZSP01(

 SUBCAT_ID SMALLINT,

 WJXBFS1 DOUBLE)

partitioning key (SUBCAT_ID) on commit preserve rows not logged

(Executes in scHighPriorityReports)

insert into session.ZZSP01

select a12.SUBCAT_ID SUBCAT_ID,

 sum(a11.UNITS_RECEIVED) WJXBFS1

from INVENTORY_ORDERS a11

 join LU_ITEM a12

 on (a11.ITEM_ID = a12.ITEM_ID)

group by a12.SUBCAT_ID

(Executes in scHighPriorityReports)

select pa11.SUBCAT_ID SUBCAT_ID,

 a13.SUBCAT_DESC SUBCAT_DESC,

 pa11.WJXBFS1 WJXBFS1,

 pa12.WJXBFS1 WJXBFS2

from session.ZZSP00 pa11

 join session.ZZSP01 pa12

 on (pa11.SUBCAT_ID = pa12.SUBCAT_ID)

 join LU_SUBCATEG a13

 on (pa11.SUBCAT_ID = a13.SUBCAT_ID)

(Executes in scMSTRReports)

drop table session.ZZSP00

(Executes in scMSTRReports)

drop table session.ZZSP01

G. Alternative Workload Management Configurations

Prioritizing Reports Based on User Is Optional

In the configuration described above, the workload wlMSTRPriorityReports is

entirely optional. If you do not want to prioritize report requests based on

MSTR user names, simply omit the definition of this workload.

Identifying Workloads Based on MicroStrategy Report Priority

MicroStrategy provides several variables in addition to those described in the

above configuration, which can be passed in to DB2 9.5 using the

WLM_SET_CLIENT_INFO stored procedure. Workload management could be

configured to classify reports based on the MicroStrategy job priority.

MicroStrategy job priority is a function of the MicroStrategy user, the project,

the request type, and a report-specific “cost” attribute. See MicroStrategy

System Administration Guide for more details on setting up job priority in

MicroStrategy.3

To pass MicroStrategy job priority into DB2 WLM, change the pre- and post-

SQL statement for reports as follows:

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘MSTRUser=!u’, , ‘Project=!p’,

‘Priority=!i’,)

This will result in the following SQL for report requests:

CALL SYSPROC.WLM_SET_CLIENT_INFO(‘MSTRUser=jdoe’, ,

‘Project=CategoryManagement’, ‘Priority=999’,)

create table ZZSP00 (

 YEAR_ID INTEGER,

 SUBCAT_ID INTEGER,

 WJXBFS1 FLOAT)

insert into ZZSP00

select a13.YEAR_ID YEAR_ID,

 a12.SUBCAT_ID SUBCAT_ID,

…

The priority value is 999 for high priority, 666 for medium priority, and 333

for low priority.

The corresponding workloads in DB2 9.5 could be configured as follows:

3 This will be available with the MicroStrategy 9 release.

CREATE WORKLOAD wlMSTRHighPriorityReports

 APPLNAME(‘MJMulPrc_32.EXE’)

 CURRENT CLIENT_ACCTNG(‘Priority=999’) SERVICE CLASS

scMSTRHighPriorityReports

CREATE WORKLOAD wlMSTRMediumPriorityReports

 APPLNAME(‘MJMulPrc_32.EXE’)

 CURRENT CLIENT_ACCTNG(‘Priority=666’) SERVICE CLASS

scMSTRMediumPriorityReports

CREATE WORKLOAD wlMSTRLowPriorityReports

 APPLNAME(‘MJMulPrc_32.EXE’)

 CURRENT CLIENT_ACCTNG(‘Priority=333’) SERVICE CLASS scMSTRReports

© Copyright IBM Corporation 2009
All Rights Reserved.
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
1-09

Neither this documentation nor any part of it may be copied or
reproduced in any form or by any means or translated into another
language, without the prior consent of all of the above mentioned
copyright owners.

IBM and MicroStrategy make no warranties or representations with respect to the
content hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. IBM and MicroStrategy assume no
responsibility for any errors that may appear in this document. The
information contained in this document is subject to change without
any notice. IBM and MicroStrategy reserve the right to make any such changes without
obligation to notify any person of such revision or changes. IBM and MicroStrategy
make no commitment to keep the information contained herein up to
date.

The information in this document concerning non-IBM products was
obtained from the supplier(s) of those products. IBM has not tested
such products and cannot confirm the accuracy of the performance,
compatibility or any other claims related to non-IBM products.
Questions about the capabilities of non-IBM products should be
addressed to the supplier(s) of those products.

The information contained in this document is provided for informational
purposes only. Although efforts were made to verify the completeness
and accuracy of the information contained in this document, it is provided

“as-is” without warranty of any kind, express or implied. In addition. This
Information is based on IBM’s and MicroStrategy’s current product plans and strategy, which
are subject to change by IBM and MicroStrategy without notice. IBM and MicroStrategy shall not be responsible
for any damages arising out of the use of, or otherwise related to, this
document or any other documentation. Nothing contained in this presentation
is intended to, or shall have the effect of creating any warranty or
representation from IBM and MicroStrategy (or its affiliates or its or their suppliers and/or
licensors); or altering the terms and conditions of the applicable license
agreement governing the use of IBM and MicroStrategy software.

IBM, the IBM logo, ibm.com, and DB2 are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

MicroStrategy and MicroStrategy Version 9 are a registered trademarks of MicroStrategy Incorporated in the United
States and elsewhere

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other
 countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM and MicroStrategy products, programs, or services do
not imply that they will be available in all countries in which IBM or MicroStrategy operate.
Product release dates and/or capabilities referenced in this presentation
may change at any time at IBM’s and MicroStrategy’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to
future product or feature availability in any way. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that
any activities undertaken by you will result in any specific sales, revenue
growth, savings or other results.

