
DB2 DataJoiner®

Application Programming and SQL
Reference Supplement
Version 2 Release 1 Modification 1

SC26-9148-01

IBM

DB2 DataJoiner®

Application Programming and SQL
Reference Supplement
Version 2 Release 1 Modification 1

SC26-9148-01

IBM

Note
Before using this information and the product it supports, please read the general information under “Notices” on
page 217.

Second Edition (July 1998)

This edition replaces and makes obsolete the previous edition, SC26-9148-00. The technical changes for this edition
are summarized under “What’s New in DataJoiner Version 2?” on page xi, and are indicated by a vertical bar to the left
of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P. O. Box 49023
San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book . vii
Who Should Use This Book vii
Terms for Products . vii
Highlighting Conventions . viii
How to Read the Syntax Diagrams. viii

What’s New in DataJoiner Version 2? xi

Chapter 1. Accessing, Querying, and Configuring Data Sources 1
Accessing Data Sources . 1

Interfaces to DataJoiner 2
Authorization . 3
DataJoiner-to-Data Source Associations 4
Isolation Levels . 6

Querying Data Sources . 7
Structured Query Language (SQL) 7
Compensation . 8
Pass-Through Sessions for Querying Data Sources in Their Own SQL 8
Error Codes . 11

Using Server Options to Configure Data Sources 11
Server Options . 11
Multi-Database Transactions 13
Collating Sequences . 14
Summary of Server Options and Their Settings. 17

Chapter 2. Referencing and Manipulating Database Objects 23
Working with Tables, Views, and Stored Procedures 23

Nicknames. 23
Data Type Mappings . 26
Data Source Tables That You Create from DataJoiner 29
Referential Integrity . 31
Indexes . 32
Tables Accessed through the dblib Protocol 32
System Catalog Views . 32
Stored Procedures . 34

Working with User-Defined Functions, User-Defined Types, and Large Objects . . 37
User-Defined Functions (UDFs) and User-Defined Types (UDTs) 37
Large Objects (LOBs) . 40

Chapter 3. Specifying Identifiers 45
Identifiers Used By DataJoiner 45

SQL and Host Identifiers 45
Identifiers in DataJoiner SQL. 46
Limits Imposed by DataJoiner 49

Ensuring the Case of Case-Sensitive Values 50
Finding Node Names . 51

© Copyright IBM Corp. 1995, 1998 iii

Chapter 4. DataJoiner SQL Statements 53
ALLOCATE CURSOR . 55
ALTER NICKNAME . 56
ALTER SERVER MAPPING 59
ALTER SERVER OPTION 62
ALTER TABLE . 65
ALTER USER MAPPING . 69
CALL . 71
COMMENT ON . 74
CREATE ALIAS . 77
CREATE FUNCTION . 79
CREATE FUNCTION MAPPING 80
CREATE INDEX . 84
CREATE NICKNAME . 86
CREATE REVERSE TYPE MAPPING. 89
CREATE SERVER MAPPING 96
CREATE SERVER OPTION 100
CREATE STORED PROCEDURE NICKNAME 103
CREATE TABLE . 107
CREATE TYPE MAPPING 112
CREATE USER MAPPING 118
DESCRIBE CURSOR . 120
DROP . 121
GRANT PASSTHRU . 126
REVOKE PASSTHRU . 128
SET PASSTHRU. 129
SET PASSTHRU RESET . 131
SET SERVER OPTION . 132

Appendix A. Default Forward Type Mappings 135
Default Type Mappings from Classic Connect Data Sources to DataJoiner. . . . 135
Default Type Mappings from CrossAccess Data Sources to DataJoiner 136
Default Type Mappings from DB2 for CS Data Sources to DataJoiner 137
Default Type Mappings from DB2 for OS/390 Data Sources to DataJoiner 139
Default Type Mappings from DB2 for OS/400 Data Sources to DataJoiner 141
Default Type Mappings from DB2 for VM Data Sources to DataJoiner 142
Default Type Mappings from Generic Data Sources to DataJoiner 143
Default Type Mappings from Informix Data Sources to DataJoiner 145
Default Type Mappings from Microsoft SQL Server Data Sources to DataJoiner . . 146
Default Type Mappings from Oracle Data Sources to DataJoiner 149
Default Type Mappings from RDB Data Sources to DataJoiner 150
Default Type Mappings from SQL Anywhere Data Sources to DataJoiner 151
Default Type Mappings from Sybase Data Sources to DataJoiner 152

Appendix B. Default Reverse Type Mappings 155
Default Type Mappings from DataJoiner to DB2 for CS Data Sources 155
Default Type Mappings from DataJoiner to DB2 for OS/390 Data Sources 156
Default Type Mappings from DataJoiner to OS/400 Data Sources 157
Default Type Mappings from DataJoiner to DB2 for VM Data Sources 159

iv Application Programming and SQL Reference Supplement

Default Type Mappings from DataJoiner to Generic Data Sources 159
Default Type Mappings from DataJoiner to Informix Data Sources 160
Default Type Mappings from DataJoiner to Microsoft SQL Server Data Sources . . 162
Default Type Mappings from DataJoiner to Oracle Data Sources 163
Default Type Mappings from DataJoiner to SQL Anywhere Data Sources 164
Default Type Mappings from DataJoiner to Sybase Data Sources 165

Appendix C. Combined DataJoiner and DB2 for CS Syntax for CREATE
TABLE . 167

Appendix D. Sample Program Fragment for Invoking a Stored Procedure 173

Appendix E. System Catalog Views 175
SYSCAT.COLUMNS . 176
SYSCAT.INDEXES . 179
SYSCAT.PASSTHRU_AUTH 181
SYSCAT.PROCEDURES . 181
SYSCAT.PROCPARMS . 182
SYSCAT.REMOTEUSERS 183
SYSCAT.REVTYPEMAPPINGS 184
SYSCAT.SERVERS . 187
SYSSTAT.SERVERS . 190
SYSCAT.SERVER_DATATYPES 190
SYSCAT.SERVER_FUNCTIONS 193
SYSSTAT.SERVER_FUNCTIONS 194
SYSCAT.SERVER_OPTIONS 195
SYSCAT.TABLES . 196

Appendix F. Resolving Problems Encountered by Applications That Predate
Version 2.1.1 . 201

Querying System Catalog Tables and Views. 201
Changes . 201
Problems . 204
Resolution . 204

Modifying System Catalog Tables 204
Change . 204
Problem. 205
Resolution . 205

Appendix G. Where to Find Out More about DataJoiner, DB2 for CS, and
Replication Products . 207

DataJoiner, DB2 for CS, and Replication Publications 207
How to Order, View, and Print Publications 211
Internet Resources . 211

Appendix H. DataJoiner Classes and Services 213
DataJoiner Classes . 213

Using DataJoiner. 213
DataJoiner Administration 214

Contents v

DataJoiner Services. 214
First Phase: Planning . 214
Second Phase: Implementation 215

Notices . 217
Trademarks . 219

Index . 221

Readers’ Comments — We’d Like to Hear from You 227

vi Application Programming and SQL Reference Supplement

About This Book

This book provides SQL statements, descriptions of system catalog data, pointers on
optimizing queries, and other information for application programmers. With this
information, application programmers can use DataJoiner to perform multiple tasks in a
distributed database environment—tasks such as submitting distributed queries to
heterogeneous data sources, performing multi-database transactions, creating data
source tables, and invoking stored procedures.

Who Should Use This Book

This book is for application programmers who develop applications to access
heterogeneous data with DataJoiner. Heterogeneous data is data from a variety of data
sources including members of the DB2 family of databases, Sybase, Oracle, and IMS.
This book also provides reference information for database administrators and system
administrators. For information specific to the data sources that you are using, refer to
the documentation for those data sources.

Terms for Products

Some product names in the documentation refer to more than one product, some refer
to specific product levels, and some are shortened versions of full names. These
product names are:

DataJoiner
Refers to DB2 DataJoiner Version 2. References specific to or including
DataJoiner Version 1 will include the version.

DB2 By itself, refers to any one or all of the DB2 for common server Version 2
database server products on all platforms, which includes DataJoiner.

If a DB2 reference is qualified with a specific operating system or version, the
reference applies only to that particular version.

DB2 Family
Refers to all DataJoiner-supported versions of DATABASE 2 (DB2) database
server products on all platforms (DB2 for OS/390, DB2 for VM, DB2 for
common servers, DataJoiner, and so on). Supported versions are listed in the
DataJoiner Planning, Installation, and Configuration Guide for your platform.

DB2 for CS
Refers to any DB2 for common servers Version 2 database server product.
This term is often used when describing DataJoiner and DB2 for common
servers functional differences.

RDB Refers to Oracle RDB Version 6 or above.

SQL Anywhere
Refers to Sybase SQL Anywhere Version 5.

© Copyright IBM Corp. 1995, 1998 vii

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||

|
|

Highlighting Conventions

This book uses these highlighting conventions:

Boldface type
Indicates commands and graphical user interface (GUI) controls (for example,
names of fields, names of folders, menu choices). Boldface type also indicates
examples of SQL keywords in the Application Programming and SQL
Reference Supplement.

Monospace type
Indicates examples of coding or of text that you type.

Italic type
Indicates variables that you should replace with a value. Italic type also
indicates book titles and emphasizes words.

UPPERCASE TYPE
Indicates SQL keywords and names of objects (for example, tables, views, and
servers).

How to Read the Syntax Diagrams

The following rules apply to the syntax diagrams used in this book:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

ÊÊ─── Indicates the beginning of a statement.

───Ê Indicates that the statement syntax is continued on the next line.

Ê─── Indicates that a statement is continued from the previous line.

───ÊÍ Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
Ê─── symbol and end with the ───Ê symbol.

Conventions

v SQL commands appear in uppercase.

v Variables appear in italics (for example, column-name). They represent
user-defined parameters or suboptions.

v When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

v Enter punctuation marks (slashes, commas, periods, parentheses, quotation
marks, equal signs) and numbers exactly as given.

v Footnotes are shown by a number in parentheses, for example, (1).

v A � symbol indicates one blank position.

viii Application Programming and SQL Reference Supplement

|
|
|
|

|
|

Required items
Required items appear on the horizontal line (the main path).

ÊÊ REQUIRED-ITEM ÊÍ

Optional items
Optional items appear below the main path.

ÊÊ REQUIRED-ITEM
optional-item

ÊÍ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

ÊÊ
optional-item

REQUIRED-ITEM ÊÍ

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ REQUIRED-ITEM
required-choice1
required-choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the
main path.

ÊÊ
optional-choice1
optional-choice2

ÊÍ

Repeatable items
An arrow returning to the left above the main line indicates that an item can be
repeated.

ÊÊ » REQUIRED-ITEM repeatable-item ÊÍ

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

ÊÊ »

,

REQUIRED-ITEM repeatable-item ÊÍ

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

About This Book ix

Default keywords
IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

ÊÊ
default-choice

optional-choice1
optional-choice2

ÊÍ

x Application Programming and SQL Reference Supplement

What’s New in DataJoiner Version 2?

DataJoiner Version 2 offers new features and enhancements. They include:

DB2 Version 2 functionality
DataJoiner is built on the DB2 Version 2 code base, which means that
DataJoiner provides all the major functional enhancements provided by DB2,
including:

v Extended SQL capabilities

v An enhanced SQL optimizer

v Improved database performance

v Systems management support

v Robust integrity and data protection

v Object relational capabilities

v National language support (NLS)

v Support for the Java Development Kit (JDK) 1.1 for the Java Database
Connectivity (JDBC) API

For detailed information about many of these features, see the DB2
Administration Guide.

DataJoiner for Windows NT
DataJoiner has extended its reach to provide industrial strength heterogeneous
database management on Windows NT systems. DataJoiner for Windows NT
supports the same SQL and features as DataJoiner for UNIX-based platforms.

Support for Oracle 8, RDB, and SQL Anywhere
With Version 2, DataJoiner continues to increase the number of
natively-supported data sources. The most recent additions are:

v Oracle 8 (on any system that DataJoiner accesses from AIX or Windows
NT)

v Oracle RDB Version 6 and above (on any system that DataJoiner accesses
from Windows NT)

v Sybase SQL Anywhere Version 5.0 (on any system that DataJoiner
accesses from Windows NT)

Spatial Extender
DataJoiner now supports geographic information system (GIS) data (also
known as spatial or geographic data). New data types, spatially-enabled
columns, and spatial join capability allow you to take advantage of geographic
data in your applications. Included are powerful two-dimensional functions that
allow you to create specific relationships among the geographic objects you
define. Included with the spatial extender are the following components:

v A set of spatial data types

v A set of spatial operations and predicates

© Copyright IBM Corp. 1995, 1998 xi

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|

v A set of spatial index data types

v An administration tool suite for the spatial extender

v Sample programs

You can also take advantage of existing geographic data stores using the load
and transform capability of the Spatial Extender.

Expanded DataJoiner SQL support
This version of DataJoiner contains many new and modified SQL statements.
New DDL statements provide greater flexibility and safety in defining your
DataJoiner environment—users can create, alter, and drop mappings for data
sources, users, user-defined and built-in functions, and data types. Additionally,
new SQL DML statements provide enhanced functions for local and distributed
queries; an example is the CASE expression, which is useful for selecting an
expression based on the evaluation of one or more conditions.

DataJoiner SQL for creating, altering, and deleting data source tables
Version 2 includes a new DataJoiner SQL statement for creating tables in
different types of data sources. If the native SQL for creating tables in these
data sources includes a unique option—for example, the option in DB2 for
OS/390 for specifying what database you want a table to reside in—you can
code this option in the new DataJoiner statement. If you create a data source
table with this new statement, you can also alter and delete it with DataJoiner
SQL.

Heterogeneous data replication
DataJoiner now provides replication administration as an integrated
component. You can define, automate, and manage replication data from a
single control point across your enterprise. The replication administration tool
provides administrative support for the replication environment, with objects
and actions that define and manage source and target table definitions.
DataJoiner’s Apply component performs the actual replication, tailoring and
enhancing data as you specify, and serving as the interface point to and from
your various data sources. DataJoiner also supplies an executable, IBM DB2
DataPropagator for Microsoft Jet, that allows you to replicate server data for
browsing and updating in LAN, occasionally connected, and mobile
environments.

Distributed heterogeneous update support
DataJoiner now allows you to update multiple heterogeneous data sources
within a distributed unit of work while maintaining transaction atomicity. This
task is accomplished through adherence to the two-phase commit model.
Supported data sources include most versions of the DB2 Family and, with the
appropriate XA libraries, various other data sources as well.

New graphical installation, configuration, and administration tools
A variety of new tools is available to help you accomplish administrative
chores. Wizards walk you through data source configuration. And the
Administrator’s Toolkit provides a collection of tools designed to assist you with
the day-to-day operation of DataJoiner. It includes the following components:

xii Application Programming and SQL Reference Supplement

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

The Database Director
Allows you to perform configuration, backup and recovery, directory
management, and media management tasks.

Visual Explain
A tool for graphically viewing and navigating complex SQL access
plans.

The DB2 Performance Monitor
Monitors the performance of your DB2 system for tuning purposes.

Stored procedures
DataJoiner now supports stored procedures at remote data sources as well as
the local DataJoiner database. Use stored procedures to speed application
performance. For example, applications that process huge amounts of data at
a server but return smaller result sets should run faster as stored procedures.
Another benefit is that stored procedures usually reduce network traffic
between clients and databases.

DataJoiner stored procedures can augment standard data security. For
example, in a 3-tier environment, data can be retrieved from a remote server
and then processed at the DataJoiner server; only a subset of data needs to
be available to the client.

System catalog information available in views
DataJoiner provides views from which you can access system catalog
information about each DataJoiner database. Some of these views contain
data—for example, data about tables, indexes, and servers—that was
accessible only from tables in previous versions of DataJoiner. Other views
contain data—for example, data about stored procedures, server options, and
server functions—that is now available in Version 2.

Performance enhancements
In addition to general engine performance improvements, this latest version
offers new query rewrite capabilities, improved pushdown performance, and
remote query caching.

What’s New in DataJoiner Version 2? xiii

|
|
|

|
|
|

|
|

xiv Application Programming and SQL Reference Supplement

Chapter 1. Accessing, Querying, and Configuring Data Sources

DataJoiner is a multi-database server that provides client access to diverse data
sources, both relational and nonrelational, on multiple platforms. A data source is a
logical database management system plus the database or databases that the system
supports. The particulars of the system and supported databases vary with RDBMS
type. For example, in DB2 for OS/390, each system is an instance of the database
manager and supports multiple databases. In Oracle, each system is a combination of
processes and memory buffers, and supports a single database. Each instance of
DataJoiner presents a unified database image of the various data sources that it
supports to its users.

Note on terms: Because you use DataJoiner to submit requests to data sources, you
can regard data sources as servers. Accordingly, this book uses the
terms data source and server interchangeably. Be aware that
DataJoiner SQL uses server to refer to data sources. An example is
the following statement, which creates a mapping between a data type
defined to the DataJoiner database and a data type defined to an
Oracle database:

CREATE TYPE MAPPING MY_ORACLE_DATE
FROM SYSIBM.DATE
TO SERVER ORACLE1
TYPE DATE

This statement refers to ORACLE1 as a server; but in keeping with the
convention of this book, you can refer to ORACLE1 also as a data
source. (For more information about this statement, see “CREATE
TYPE MAPPING” on page 112.)

This chapter provides information to help you to:

v Access data sources

v Submit queries to retrieve and manipulate their data

v Configure data sources to facilitate optimization and to enable certain kinds of
processing, such as two-phase commit transactions

Accessing Data Sources

This section discusses:

v The interfaces through which you can access DataJoiner and the data sources that it
supports

v The authorizations that are required to use these data sources

v Associations that DataJoiner establishes with data sources; for example,
DataJoiner-to-data source mappings by which DataJoiner references specific data
sources and specific data source tables.

© Copyright IBM Corp. 1995, 1998 1

|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

||

|

|

|
|

||

|
|

|

|
|
|

v The way in which DataJoiner responds to requests for isolation levels for locks on
data source data

Interfaces to DataJoiner

You can access the DataJoiner database and data sources supported by DataJoiner
through:

v The command line processor (CLP)

v Embedded SQL in an application program

v The DB2 Call Level Interface (CLI)

v The Java Database Connectivity (JDBC) API

You can access data sources not supported by DataJoiner through:

v A third-party gateway such as CrossAccess.

v A custom data access module that you create. You can create this module with the
Generic Access API. For more information, see the DataJoiner Generic Access API
Reference.

The following sections discuss the CLP, embedded SQL, the DB2 CLI, and the JDBC
API.

The CLP

Use the CLP to access and manipulate DataJoiner and data source databases from the
system command prompt. With the CLP, you can:

v Issue SQL statements and DataJoiner commands

v Maintain a history file of all requests

v Redirect the output of a CLP request

v Access both local and remote databases

v Request syntax help for DB2 commands

v Request message help

The CLP is automatically installed with DataJoiner. For more information about it, see
the DB2 Command Reference.

Embedded SQL

You can access and manipulate data by embedding SQL statements in application
programs. DataJoiner provides support for compiled languages such as C, COBOL, and
FORTRAN, and for interpreted languages, such as REXX. For a compiled language, an
appropriate precompiler must be available to process the SQL statements. For a list of
compilers, see the DataJoiner Planning, Installation, and Configuration Guide for your
platform. You can use other programming languages if you write a customized
precompiler by using the DataJoiner precompiler API. See the DB2 Command
Reference for more information about the precompiler API.

2 Application Programming and SQL Reference Supplement

|
|

|

|
||

|

|

|
|

|
|
|
|
|
|
|
||

The DB2 CLI

The DB2 CLI provides a set of standard function calls that invoke SQL statements and
direct the processing of them. For example, the function call SQLTables() invokes the
SQL for querying tables and views. The function SQLExecute initiates the processing of
an SQL statement.

Unlike embedded SQL, the SQL that’s invoked by the DB2 CLI doesn’t need to be
compiled. Therefore, an application that uses this interface is independent of any
particular database server. Accordingly, the application doesn’t need to be recompiled to
access different database servers, but can select the appropriate server at run time.

The DB2 CLI is based on the evolving X/Open Call Level Interface standard, which is
compatible with the Microsoft Core Open Database Connectivity (ODBC) standard.

The JDBC API

You can use function calls based on the Java Database Connectivity (JDBC) API to
construct and execute SQL. You invoke the calls from Java applets and applications.
DataJoiner supports the Java Development Kit (JDK) 1.1 implementation of JDBC.

Authorization

Authorizations to use databases and database objects reside at DataJoiner and at the
clients and data sources that you use with DataJoiner. You need to carefully coordinate
the authorizations between DataJoiner, the clients, and the data sources. A user must
have authority (whether granted explicitly or implicitly) to perform an action at
DataJoiner. The corresponding user ID at the data source must also have authority to
perform the action. If matching authorizations do not exist both at DataJoiner and at the
data source, the action fails.

For example, suppose that DataJoiner is connected to a DB2 for OS/390 data source
and an Oracle data source. A user, Bob Smith, is assigned the authorization ID
BOBSMITH on the DataJoiner server. The same user is assigned the authorization ID
SMITHB on the DB2 for OS/390 data source and the authorization ID BOBS on the
Oracle data source. Bob wants to join an Oracle table named JOBS with a DB2 for
OS/390 table named EMPLOYEE. The DataJoiner nicknames for the tables are the
same as their table names.

When BOBSMITH attempts to access DataJoiner, DataJoiner checks to see if
BOBSMITH has connect authority. If so, DataJoiner gives BOBSMITH access to the
server. When BOBSMITH submits a query, DataJoiner checks to see if this
authorization ID has authority to access the nicknames or local tables contained in the
query. If so, DataJoiner constructs the appropriate queries and sends them to the DB2
for OS/390 and Oracle data sources. For DataJoiner to access the data, the
authorization IDs SMITHB and BOBS must have authority at their respective data
sources, to first connect and then select the required data from the tables.

Chapter 1. Accessing, Querying, and Configuring Data Sources 3

|

|
|
|
|

|
|
|
|

|
||

|

|
|
|

For Bob to perform his join, all the following requirements must be met:

v User BOBSMITH on the DataJoiner server must have:

– Connect authority for the DataJoiner database

– Select authority for the nicknames EMPLOYEE and JOBS

v User SMITHB on the DB2 for OS/390 data source must have:

– Connect authority for the DB2 for OS/390 database

– Select authority for the EMPLOYEE table

v User BOBS on the Oracle data source must have:

– Connect authority for the Oracle database

– Select authority for the JOBS table

v SYSCAT.REMOTEUSERS must contain entries that map BOBSMITH to:

– SMITHB on the DB2 for OS/390 data source

– BOBS on the Oracle data source

v SYSCAT.SERVERS must contain entries in the SERVER column that match the
SERVER entries in SYSCAT.REMOTEUSERS for the DB2 for OS/390 and Oracle
data sources.

System administrators and database administrators control who has access to
DataJoiner and the data sources, and to what extent each user has access, and are
responsible for the safety and integrity of the data.

DataJoiner provides four administrative authorities:

SYSADM System administrator authority

DBADM Database administrator authority

SYSCTRL System control authority

SYSMAINT System maintenance authority

For more information on security, see the DataJoiner Administration Supplement

DataJoiner-to-Data Source Associations

For DataJoiner to operate on data sources, you need to create (or, in some cases,
make use of) certain kinds of associations, or mappings, between DataJoiner and the
data sources; for example, mappings between:

v DataJoiner’s identifiers for data sources and the data sources themselves

v User IDs at DataJoiner and their counterparts at data sources

v DataJoiner’s identifiers for data source objects and the objects themselves

v Function specifications at DataJoiner and corresponding functions at data sources

v DataJoiner data types and data source data types

4 Application Programming and SQL Reference Supplement

|
|
||

|

|

|

|

|

Identifiers for Data Sources

For DataJoiner to operate on a specific data source, DataJoiner must associate an
identifier (specifically, a server name) with that data source. You form this association
with the CREATE SERVER MAPPING statement (described on page 96). If you want,
you can later modify the association (for example, assign a new server name to a data
source) with the ALTER SERVER MAPPING statement (described on page 59).

Mappings between User IDs

For a user to access data sources from DataJoiner, DataJoiner must associate the ID
under which the user connects to DataJoiner with the IDs under which the user
connects to these data sources. You can create such an association with the CREATE
USER MAPPING statement (described on page118) and modify it with the ALTER
USER MAPPING statement (page 69).

Identifiers for Tables, Views, and Stored Procedures

So that DataJoiner can access a table, view, or stored procedure at a data source, you
need to create a nickname by which DataJoiner can reference the table, view or stored
procedure. You do this with the CREATE NICKNAME statement (described on page 86)
and CREATE STORED PROCEDURE NICKNAME statement (page 103). To change a
nickname associated with a table or view, use the ALTER NICKNAME statement. For
more information, see “Nicknames” on page 23.

Mappings between Functions

If you want DataJoiner to invoke a function at a data source, and the function is
user-defined or built-in but unknown to DataJoiner, you must map it to a function or
function specification at the DataJoiner database. You do this with the CREATE
FUNCTION MAPPING statement (described on page 80). For more information, see
“UDFs” on page 38.

Mappings between Data Types

DataJoiner maintains two kinds of mappings between data source data types (called
remote types here, for short) and data types defined to the DataJoiner database (called
local types here, for short). In a forward type mapping, a remote type points to a
comparable local type. For example, there’s a default forward type mapping in which
the Sybase type int points to the local type INTEGER.

When you define a remote table or view to DataJoiner, DataJoiner includes in the
definition the local types that the table’s or view’s types point to. For example, suppose
that a Sybase table contains a column C1 with a data type of int. If you create a
nickname for this table, the table will be defined to DataJoiner and, if you don’t override
the default mapping of int to INTEGER, the definition will include INTEGER as the local
counterpart to int for C1.

Chapter 1. Accessing, Querying, and Configuring Data Sources 5

|

|

|
|
|
|
|

|
|
|
|
|
|

In a reverse type mapping, a local type points to a comparable remote type. For
example, there’s a default reverse mapping in which the local type DECIMAL points to
the SQL Anywhere type NUMERIC.

When you use DataJoiner’s CREATE TABLE statement to create a remote table, the
table’s columns are assigned types that the local types in the statement point to. For
example, suppose that you use the CREATE TABLE statement to define an RDB table
with a column C2, and that you specify INTEGER for C2 in the statement. If you don’t
override the default mapping of INTEGER to SQL_INTEGER, SQL_INTEGER will be
defined for C2 at the RDB data source.

You can override a default forward type mapping, or create a new forward type
mapping, with the CREATE TYPE MAPPING statement (described on page 112). You
can override a default reverse type mapping, or create a new reverse type mapping,
with the CREATE REVERSE TYPE MAPPING statement (page 89).

For more information, see “Data Type Mappings” on page 26.

Isolation Levels

When DataJoiner issues queries to a data source, it tries to ensure that the isolation
level requested by the user is mapped correctly on the remote database. Table 1 lists:

v The isolation levels that the user can request from DataJoiner. They are:

CS Cursor stability

RR Repeatable read

RS Read stability

UR Uncommitted read

v Data source isolation levels that requested levels map to.

Table 1. Comparable Isolation Levels between DataJoiner, Sybase, Microsoft SQL
Server, Oracle, Informix, and RDB

DataJoiner CS RR RS UR

Sybase Default HOLDLOCK HOLDLOCK Same as
cursor
stability

Microsoft
SQL Server

Default HOLDLOCK HOLDLOCK Same as
cursor
stability

Oracle Default Transaction read-only
(when the transaction is
read-only).

Default (when the
transaction is not
read-only).

Transaction read-only
(when the transaction is
read-only).

Default (when the
transaction is not
read-only).

Same as
cursor
stability

6 Application Programming and SQL Reference Supplement

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|

||

||

||

||

|

|
|
|

|
|
|

|
|
|

Table 1. Comparable Isolation Levels between DataJoiner, Sybase, Microsoft SQL
Server, Oracle, Informix, and RDB (continued)

Informix Cursor
stability

Repeatable read Repeatable read Dirty read

RDB Default SQL_TXN_SERIALIZABLE SQL_TXN_REPEATABLE
_READ

Not
supported

For more information about DB2 for CS isolation levels, see the DB2 Administration
Guide.

Querying Data Sources

This section discusses:

v The language that you use to define and manipulate data at data sources: structured
query language (SQL)

v How you can use DataJoiner’s SQL to perform operations at a data source that the
data source’s native SQL can’t perform

v How you can use DataJoiner to query a data source with the data source’s own SQL

v What error codes DataJoiner issues when errors occur

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a relational
database. DataJoiner uses the SQL language of DB2. This section describes the SQL
concepts for DataJoiner that differ from or add to the SQL used by DB2. For more
information on general SQL concepts, see the DATABASE 2 SQL Reference.

DataJoiner allows for both dynamic and static SQL statements. The method of
compiling an SQL statement and the persistence of its operational form distinguish
static SQL from dynamic SQL.

Dynamic SQL statements are constructed and made operational at run time. This can
be done in several ways; for example, through:

v The processing of two specialized embedded SQL statements, PREPARE and
EXECUTE

v The DB2 CLI

For more information about dynamic SQL, see the DB2 Application Programming Guide
and the DATABASE 2 SQL Reference for common servers.

Static SQL statements must be embedded within application programs. Static SQL
statements are transformed to their operational form at precompile time, as opposed to
application run time. In some cases, static SQL provides a performance advantage over
dynamic SQL. The DataJoiner precompile process is identical to that of DB2.

Chapter 1. Accessing, Querying, and Configuring Data Sources 7

||

|
|

|
|

|

|

|
|

|
|

|

|
|

How DataJoiner handles a static SQL statement that references a table or view
depends on whether the table or view is local or remote:

v If the table or view is local, the statement is prepared before the program that
contains it is run. In addition, the operational form of the statement persists beyond
the execution of the program. This procedure is identical to how the DB2 family of
databases handles static SQL statements.

v If the table or view is remote and the statement references it by a nickname,
DataJoiner handles the statement dynamically, so that it becomes operational at run
time and does not persist after the program containing it is executed. Even if a static
SQL statement could be passed to a data source unchanged, DataJoiner passes it
as a dynamic statement because many data sources do not support the concept of
static SQL. Each data source is responsible for optimizing the dynamic SQL
statements that it receives from DataJoiner.

Compensation

Compensation is the processing of SQL statements for RDBMSs that do not support
those statements. Each type of RDBMS (DB2, Informix, Oracle, and so on) supports a
subset of the international standard of SQL. In addition, some types support SQL
constructs that exceed this standard; for example, DB2’s rules for updating views
surpass the standard. The totality of SQL that a type of RDBMS supports is called an
SQL dialect. With DataJoiner, you can use DB2’s SQL dialect to compensate for lacks
in other RDBMS’s SQL dialects.

For example:

v Only DB2 SQL includes the clause, common-table-expression. In this clause, you
specify a name by which all FROM clauses in a fullselect can reference a table. With
DataJoiner, you can process common-table-expression for a database in Informix,
Sybase, or any other non-DB2 family RDBMS, even though the SQL dialect
supported by this other RDBMS doesn’t include common-table-expression.

v When connecting to a data source that does not support multiple open cursors within
an application, DataJoiner can simulate this function by establishing separate,
simultaneous connections to the data source. DataJoiner can use this same
technique to simulate CURSOR WITH HOLD capability for a data source that does
not provide that function.

Compensation makes it possible to use the DB2 SQL dialect to make all queries
supported by DataJoiner. You don’t need to use dialects specific to RDBMSs other than
DB2.

Pass-Through Sessions for Querying Data Sources in Their Own SQL

With the pass-through function (called pass-through for short), you can query a data
source in the SQL that’s native to that data source. This section:

v Summarizes the SQL for using pass-through

v Describes occasions for using pass-through

8 Application Programming and SQL Reference Supplement

|

|

|
||

|

|

v States what kind of SQL statements DataJoiner and data sources process in
pass-through sessions

v Lists considerations and restrictions to be aware of when you use pass-through

SQL for Using Pass-Through

DataJoiner provides the following SQL statements to manage pass-through sessions:

SET PASSTHRU
Provides a way to communicate with a data source in the SQL dialect
directly supported by that data source.

SET PASSTHRU RESET
Terminates a pass-through session

GRANT PASSTHRU
Grants a user, group, list of authorization IDs, or PUBLIC the privilege
to initiate pass-through sessions to a specific server

You use the GRANT PASSTHRU SQL statement if you want users
(other than those having SYSADM, DBADM, SYSCTRL, or
SYSMAINT authority) to issue SET PASSTHRU SQL statements. For
example:

GRANT PASSTHRU ON SERVER ORACLE1 TO USER SHAWNB

REVOKE PASSTHRU
Removes the privilege to initiate pass-through sessions to a specific
server from a user, group, list of authorization IDs, or PUBLIC.

When to Use Pass-Through

You might use a pass-through session to submit:

v Data Definition Language (DDL) statements in a data source’s own SQL dialect

v Data Manipulation Language (DML) statements that are not supported by DataJoiner

You can issue the SET PASSTHRU and SET PASSTHRU RESET SQL statements only
as dynamic SQL. You can issue these SQL statements via the PREPARE, EXECUTE,
or EXECUTE IMMEDIATE SQL statements.

SQL Processing in Pass-Through Sessions

The following rules specify whether an SQL statement is processed by the data source
or by DataJoiner:

v DataJoiner processes all static SQL statements.

v The data source processes dynamic SQL statements that undergo a PREPARE
within the pass-through session.

v DataJoiner processes dynamic SQL statements that do not undergo a PREPARE
within the pass-through session.

Chapter 1. Accessing, Querying, and Configuring Data Sources 9

|
|

|

|

|

|

|

v The COMMIT, ROLLBACK, SET PASSTHRU, and SET PASSTHRU RESET
statements are not “passed through” to data sources. These statements are
processed by the local DataJoiner instance.

Considerations and Restrictions

There are a number of considerations and restrictions to bear in mind when you use
pass-through. Some of these considerations and restrictions are of a general nature;
others apply to specific data sources: namely, Microsoft SQL Server, Sybase, and
Oracle.

General Information:

v An application can have several SET PASSTHRU statements in effect at the same
time to different data sources. Although the application might have issued multiple
SET PASSTHRU SQL statements, the pass-through sessions are not truly nested.
DataJoiner will not pass through one server to access another server. DataJoiner
accesses each server directly. A SET PASSTHRU RESET ends all pass-through
sessions. For example:

CONNECT TO DJDB
SET PASSTHRU LOC1
INSERT INTO TAB1 VALUES ('A')
SET PASSTHRU LOC2
SELECT * FROM TAB2
SET PASSTHRU RESET

In this example, the application passes through to LOC2 from DJDB, not from LOC1.
After SET PASSTHRU RESET, no pass-through sessions remain in effect.

v Host variables defined in SQL statements within a pass-through session must take
the form :Hn where H is uppercase and n is a unique whole number. The values of n
must be numbered consecutively beginning with zero.

v You cannot use WHERE CURRENT OF conditions in UPDATE and DELETE
statements within a pass-through session.

v You cannot pass through to more than one data source at a time.

v Pass-through does not support stored procedure calls.

v Pass-through does not support Classic Connect and CrossAccess data sources.

Microsoft SQL Server and Sybase: The following information applies to both
Microsoft SQL Server and Sybase data sources:

v You cannot use user-defined transactions for Sybase in pass-through mode, because
Sybase restricts which SQL statements can be specified within a user-defined
transaction. Because SQL statements that are processed in pass-through mode are
not parsed by DataJoiner, it is not possible to detect whether the user specified an
SQL statement that is permitted within a user-defined transaction.

v The COMPUTE clause is not supported on Sybase data sources.

v DDL statements are not subject to transaction semantics on Sybase data sources.
The operation, when complete, is automatically committed by Sybase. If a rollback
occurs, the DDL is not rolled back.

10 Application Programming and SQL Reference Supplement

|
|
|

v If you run system defined stored procedures in Sybase, no immediate errors are
returned. However, the subsequent SELECT statement in pass-through mode returns
SQL30081N, which maps to Sybase error 20019.

Oracle: The following information applies to Oracle data sources:

v Remote clients that issue SELECT statements with a CLP against an Oracle data
source using DataJoiner pass-through functionality will receive an SQLCODE –30090
with reason code 11 if the client code is a DB2 SDK prior to UDB Version 5. In order
for remote clients to use a CLP in pass-through mode to issue SELECT statements
against an Oracle data source, the remote clients must use a DB2 SDK that is at
Version 5 or greater or use the DataJoiner SDK.

v Any DDL statement issued against an Oracle server is performed at parse time and
is not subject to transaction semantics. The operation, when complete, is
automatically committed by Oracle. If a rollback occurs, the DDL is not rolled back.

v When you issue a SELECT statement from raw data types, use the RAWTOHEX
function to receive the hexadecimal values. When you perform an INSERT into raw
data types, provide the hexadecimal representation.

Error Codes

DataJoiner issues the same SQLCODE error codes as DB2. DataJoiner maps the SQL
error codes returned from the data sources to DB2 SQLCODE error codes whenever
possible. If no mapping is available, DataJoiner reflects the SQL error code from the
data source using the SQLCODE 1822. If more than one error message is associated
with a statement, DataJoiner propagates the first error received to the user.

Using Server Options to Configure Data Sources

This section discusses using configuration specifications, called server options, to:

v Configure data sources to facilitate optimization and to enable certain kinds of
processing, such as two-phase commit transactions

v Configure data sources to enable two-phase commit transactions among multiple
databases

v Indicate when DataJoiner and data sources use the same collating sequence—a
correspondence that helps to optimize queries. This section also indicates how you
can use an API to create such a correspondence.

This section concludes by summarizing the server options and their settings.

Server Options

You can specify options that affect how DataJoiner operates on data sources and that
facilitate optimization. Data sources are denoted by the keyword SERVER in
DataJoiner-specific SQL; accordingly, these options are called server options.

Chapter 1. Accessing, Querying, and Configuring Data Sources 11

||

|
|

|
|

|
|
|

|

For example, you can set the two_phase_commit option to allow applications to update
databases in multiple data sources in a single transaction. As a prerequisite, the data
sources must support this type of transaction. For data sources that don’t support it,
you can set the two_phase_commit option to exclude them from it. (For more
information about multiple updates in a single transaction, see “Multi-Database
Transactions” on page 13.)

You can set the fold_id option so that before DataJoiner sends an authorization name
to a data source, DataJoiner transforms the name to the case (upper or lower) that the
data source requires. Alternatively, if you define the name to DataJoiner in the required
case, you can set the fold_id option to prevent transformation and its associated
overhead.

There are three SQL statements for setting server options: CREATE SERVER OPTION,
ALTER SERVER OPTION, and SET SERVER OPTION. Use the CREATE SERVER
OPTION statement to set an option to a value that persists indefinitely over time for
multiple connections to a data source. With this statement, you can set an option to a
value other than the default or, if an option has no default value, you can set it to one of
the valid values allowed by DataJoiner. (To find out what the default and other allowable
values are, see Table 2 on page 17.)

For example, the default setting for the two_phase_commit option is ’n’ (no, do not
enable two-phase commit processing). Suppose that this option has never been used at
a data source called GOSHEN, and that GOSHEN contains a couple tables, T1 and T2,
for which nicknames have been defined. Then imagine that on a table in the DataJoiner
database, you define a trigger that causes T1 and T2 to be updated whenever the
DataJoiner table is updated. This two-database update requires a two-phase commit.
So, for GOSHEN, you need to supersede the default with ’y’ (yes, enable two-phase
commit processing). Because you want the trigger to operate indefinitely for multiple
connections to GOSHEN, you use the CREATE SERVER OPTION statement to
supersede the default:

CREATE SERVER OPTION TWO_PHASE_COMMIT
FOR SERVER GOSHEN
SETTING 'y'

If, after defining an option setting with the CREATE SERVER OPTION STATEMENT,
you later need to set the option differently for multiple connections over time, you can
do so with the ALTER SERVER OPTION statement. For example, suppose the tables
T1 and T2 at GOSHEN are dropped, ending the need for two-phase commit processing
at that data source. Accordingly, you decide to reset two_phase_commit for GOSHEN
to ’n’. Because you want this new setting to remain in effect for the foreseeable future,
you define it with the ALTER SERVER OPTION statement:

ALTER SERVER OPTION TWO_PHASE_COMMIT
FOR GOSHEN
SETTING 'n'

12 Application Programming and SQL Reference Supplement

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
||

|
|
|
|
|
|
|

|
|
|

Regardless of whether you set an option with the CREATE SERVER OPTION
statement or the ALTER SERVER OPTION statement, you can, except in one case,1

override the option for the duration of a single connection between an application and a
database. You do this with the SET SERVER OPTION statement. For example, Oracle
data sources do not process DDL in two-phase commit mode. So if an application
needs to submit DDL for processing at an Oracle data source for which
two_phase_commit is set to ’y’, the ’y’ would need to be changed to ’n’ for the duration
of the processing. You would set the ’n’ with the SET SERVER OPTION statement. For
example, if the name of the data source is SEER, you’d specify:

SET SERVER OPTION TWO_PHASE_COMMIT
TO 'n'
FOR SERVER SEER

To permanently remove a server option, use the DROP statement.

For the syntax of the SQL statements for using and removing server options, see
“Chapter 4. DataJoiner SQL Statements” on page 53.

Multi-Database Transactions

For IBM relational database products, a transaction is commonly called a unit of work. A
unit of work is a recoverable sequence of operations within an application process and
is the basic building block used to ensure that a database is in a consistent state. Any
reading or writing to the database is done within a unit of work. A point of consistency
(or commit point) is a time when all recoverable data that an application accesses is
consistent with related data.

A transaction can involve one or more databases. A transaction that involves two or
more databases is a distributed unit of work (DUOW). In DataJoiner, you can write
applications to perform DUOWs that involve combinations of databases such as:

v The DataJoiner database and one or more databases in one or more data sources

v Multiple databases within a data source

v Multiple databases within multiple data sources

Applications that connect to a DataJoiner database must end units of work by issuing
either a COMMIT or a ROLLBACK statement. The COMMIT statement makes
permanent all changes made within the transaction, whereas the ROLLBACK statement
restores data to the state it was in at the prior commit point. If an application ends
normally, without a COMMIT or ROLLBACK statement, a COMMIT is issued implicitly. If
an application ends abnormally while in the middle of a unit of work, the unit of work is
automatically rolled back. When issued, a COMMIT or ROLLBACK cannot be stopped.
A COMMIT makes all updates to the databases referenced in the transaction
permanent.

1. The exception is that if two_phase_commit is set to ’d’, it can’t be overridden by SET SERVER OPTION.

Chapter 1. Accessing, Querying, and Configuring Data Sources 13

|
|
|

|

In a nondistributed unit of work, or in a DUOW involving reading from one or more
databases to update another database, each COMMIT is processed in one operation.
Accordingly, the operation is called a one-phase commit. In a DUOW involving updates
of multiple databases, the updates are committed in two phases: prepare and commit.
During the prepare phase, DataJoiner polls data sources to ensure that they are ready
to commit the transaction. In phase two, if all data sources voted that they commit the
transaction, it is committed. If one or more data sources voted that they cannot commit
the transaction, the updates are rolled back. Taken together, prepare and commit are
called a two-phase commit.

Not every data source is capable of participating in a two-phase commit transaction. For
example, DB2 for MVS Version 2.3 is a valid data source, but it cannot support
two-phase commit. The Generic Access API also does not support two-phase commit.
For a list of data sources that support two-phase commit, and for rules and restrictions
that govern the use of one-phase and two-phase commits under DataJoiner, see the
DataJoiner Administration Supplement.

In any DUOW application that you write for DataJoiner, you need to specify whether a
two-phase commit is to be enforced or disallowed by each data source that the
application acts on. (Be aware that it’s possible to have a mixed-mode transaction, in
which one-phase and two-phase data sources are involved in a single transaction
request.) To specify the sort of commit you want, you set the two_phase_commit server
option to the appropriate value in the CREATE SERVER OPTION, ALTER SERVER
OPTION, or SET SERVER OPTION statement. For an overview of these statements,
see “Server Options” on page 11. For their syntax, see “Chapter 4. DataJoiner SQL
Statements” on page 53. For guidelines on deciding what value to assign to
option-value, see the DataJoiner Administration Supplement.

Collating Sequences

You can help to optimize queries by configuring a DataJoiner database to use the same
collating sequence that a data source uses. In general terms, a collating sequence is a
defined ordering for character data that determines whether a particular character sorts
higher, lower, or the same as another. This section explains:

v How collating sequences determine sort orders

v How to set your local collating sequence to optimize queries of sorted data

v How to indicate whether local and remote collating sequences are the same

How Collating Sequences Determine Sort Orders

A collating sequence determines the sort order of the characters in a coded character
set. A character set is the aggregate of characters that are used in a computer system
or programming language. In a coded character set, each character is assigned to a
different number within the range of 0 to 255 (or the hexidecimal equivalent thereof).
The numbers are called code points; the assignments of numbers to characters in a set
are collectively called a code page.

14 Application Programming and SQL Reference Supplement

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

In addition to being assigned to a character, a code point can be mapped to the
character’s position in a sort order. In technical terms, then, a collating sequence is the
collective mapping of a character set’s code points to the sort order positions of the
set’s characters. A character’s position is represented by a number; this number is
called the weight of the character. In the simplest collating sequence, called an identity
sequence, the weights are identical to the code points.

The order in which data in a database is sorted depends on the collating sequence
defined for the database. For example, suppose that database A uses the EBCDIC
code page’s default collating sequence and that database B uses the ASCII code
page’s default collating sequence. Sort orders at these two databases would differ, as
shown in Figure 1.

Similarly, character comparisons in a database depend on the collating sequence
defined for that database. So if database A uses the EBCDIC code page’s default
collating sequence and database B uses the ASCII code page’s default collating
sequence, the results of character comparisons at the two databases would differ.
Figure 2 illustrates the difference.

Setting the Local Collating Sequence to Optimize Queries

SELECT.....
ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2
---- ----
V1G 7AB
Y2W V1G
7AB Y2W

Figure 1. Example of How a Sort Order in an EBCDIC-Based Sequence Differs from a
Sort Order in an ASCII-Based Sequence

SELECT.....
WHERE COL2 > 'TT3'

EBCDIC-Based Results ASCII-Based Results

COL2 COL2
---- ----
TW4 TW4
X72 X72
39G

Figure 2. Example of How a Comparison of Characters in an EBCDIC-Based Sequence
Differs from a Comparison of Characters in an ASCII-Based Sequence

Chapter 1. Accessing, Querying, and Configuring Data Sources 15

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

When a query from DataJoiner requires sorting, the place where the sorting is
processed depends on whether DataJoiner’s collating sequence is the same as that of
the data source where the queried data is stored. If the two collating sequences are the
same, the sorting can be performed at the data source. If the query also requires a
comparison of character data, this comparison can also be performed at the data
source.

But if DataJoiner’s and the data source’s collating sequences differ, DataJoiner retrieves
the data to its own database, so that it can do the sorting and comparison locally. The
reason is that users expect to see the query results ordered according to the collating
sequence defined for DataJoiner; by ordering the data locally, DataJoiner ensures that
this expectation is fulfilled.

Retrieving data for local sorts and comparisons usually decreases performance.
Therefore, we recommend that you configure the DataJoiner database to use the same
collating sequences that your data sources use. That way, performance can be optimal,
because DataJoiner can avoid the retrieval and allow the sorts and comparisons to take
place at the data sources. If your data sources use different collating sequences, then
configure the DataJoiner database to use the collating sequence used by the data
source that you access most often, or by the data source whose performance is most
critical to you.

You set the DataJoiner database’s collating sequence as part of the CREATE
DATABASE API. Through this API, you can specify one of the following sequences:

v An identity sequence

v A system sequence (the sequence used by the operating system that supports the
database)

v A customized sequence (a predefined sequence that DB2 supplies or that you define
yourself)

For example, in DB2 for OS/390, sorts defined by ORDER BY clauses are implemented
by a collating sequence based on an EBCDIC code page. If you want to use DataJoiner
to retrieve DB2 for OS/390 data sorted in accordance with ORDER BY clauses, it is
advisable to configure the DataJoiner database so that it uses the predefined collating
sequence based on the EBCDIC code page CCS 500. For more information about the
CREATE DATABASE API, see the API Reference.

If the collating sequences at DataJoiner and the data source differ, and you do need to
see the data ordered in the data source’s sequence, you can submit your query in
pass-through mode, or define the query in a remote view.

Indicating Whether the Local and Remote Collating Sequences Are
the Same

If the DataJoiner database and a data source use the same collating sequence, set the
colseq server option for the data source to ‘y’. If the DataJoiner database uses a
different collating sequence than a data source uses, set the colseq server option for

16 Application Programming and SQL Reference Supplement

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|
|

|
|
||

|
|

the data source to ‘n’ or ‘i’. Specify ‘n’ if the data source’s collating sequence is
case-sensitive; specify ‘i’ if this collating sequence is case-insensitive.

To set the colseq server option as a default for all sessions with a data source, use the
CREATE SERVER OPTION or ALTER SERVER OPTION statement. To set this option
to be in effect during a specific session with a data source, use the SET SERVER
OPTION statement. For the syntax of these statements, see “Chapter 4. DataJoiner
SQL Statements” on page 53.

Summary of Server Options and Their Settings

Table 2 describes the server options and the values that you can set them to.

Table 2. Server Options and Their Settings

Option Valid Settings Default
Setting

colseq Specifies whether the data source uses the same default collating
sequence as DataJoiner, based on the code set and the country
information:

’y’ Data source’s collating sequence is the same as DataJoiner’s.

’n’ Data source’s collating sequence is not the same as
DataJoiner’s.

’i’ Data source’s collating sequence is different from DataJoiner’s
and is case-insensitive (for example, ’TOLLESON’ and
’TolLESon’ are considered equal).

’n’

connectstring Use this option to set timeout thresholds to interrupt queries that run for
too long a period of time. For more information, see the Planning,
Installation, and Configuration Guide for your platform. This field is
case-sensitive.

None.

DATEFORMAT (See note 1.) The date format used by the data source. Enter the format using 'DD',
'MM', and 'YY' or 'YYYY' to represent the numeric form of the date. You
should also specify the delimiter such as a space or comma. For
example, to represent the date format for '1994-01-01', use
'YYYY-MM-DD'. This field is nullable.

None.

deferred_lob_retrieval Specifies whether the retrieval of LOB data is to be deferred until the
data is assigned to a location in user space—a host variable or a file on
disk. Deferring retrieval can substantially boost query performance while
reducing network traffic.

’y’ Deferred LOB retrieval is valid for a LOB column.

’n’ Deferred LOB retrieval is not valid for a LOB column.

For all data sources, this option’s initial setting is ’n’. This setting is the
default because deferred LOB retrieval cannot be guaranteed by most
data sources. If the correctness of the deferred LOB retrieval can be
guaranteed by the data source, change the server option to ’y’.

’n’

Chapter 1. Accessing, Querying, and Configuring Data Sources 17

|

|
|
|
|

|

|

|
|
|
|

||

||

|
|
|
|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

fold_id (See note 2.) Specifies if and how user IDs are folded. Valid values are:

’u’ DataJoiner folds the user ID to uppercase before sending it to
the data source. (See note 3.)

’n’ DataJoiner does nothing to the user ID before sending it to the
data source. (See note 3.)

’l’ DataJoiner folds the user ID to lowercase before sending it to
the data source.

If none of these settings are used, DataJoiner first tries to send the user
ID to the data source as uppercase. If the user ID fails in uppercase,
DataJoiner tries sending it as lowercase.

None.

fold_pw (See notes 2 and
4.)

Specifies if and how passwords are folded. Valid values are:

’u’ DataJoiner folds the password to uppercase before sending it
to the data source.

’n’ DataJoiner does nothing to the password before sending it to
the data source.

’l’ DataJoiner folds the password to lowercase before sending it
to the data source.

If none of these settings are used, DataJoiner first tries to send the
password to the data source as uppercase. If the password fails in
uppercase, DataJoiner tries sending it as lowercase.

None.

18 Application Programming and SQL Reference Supplement

|
|
|

|

|
|
|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

ignore_udt Specifies whether DataJoiner should determine the built-in type that
underlies a UDT without strong typing. Applies only to data sources
accessed through the ctlib and dblib protocols. Valid values are:

’y’ Ignore the fact that UDTs are user-defined and determine what
built-in types under lie them.

’n’ Do not ignore user-defined specifications of UDTs.

When DataJoiner creates nicknames, it looks for and catalogs
information about the objects (tables, views, stored procedures) that the
nicknames point to. As it looks for the information, it might find that
some objects have data types that it doesn’t recognize (that is, data
types that don’t map to counterparts at the DataJoiner database). Such
unrecognizable types can include:

v New built-in types

v UDTs with strong typing

v UDTs without strong typing; that is, built-in types that the user has
simply renamed. These types are supported only by certain data
sources, such as Sybase and Microsoft SQL Server.

When DataJoiner encounters data types that it doesn’t recognize, it
returns the error message, SQL3324N. However, it can make an
exception to this practice. For data sources accessible through the ctlib
or dblib protocols, you can set the ignore_udt server option so that when
DataJoiner encounters an unrecognizable UDT without strong typing,
DataJoiner determines what the UDT’s underlying built-in type is. Then,
if DataJoiner recognizes this built-in type, DataJoiner returns information
about the built-in type to the catalog.

To have DataJoiner determine the underlying built-in types of UDTs that
do not have strong typing, set ignore_udt to ’y’.

’n’

password Specifies whether the password is to be validated at a data source.

’y’ Passwords are always to be sent to the data source and
validated.

’n’ Password are not sent to the data source (regardless of any
user mappings) and not validated.

’n’

Chapter 1. Accessing, Querying, and Configuring Data Sources 19

||
|
|

||
|

||

|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

plan_hints Specifies whether plan hints are to be enabled. Plan hints are statement
fragments that provide extra information for data source optimizers. This
information can, for certain query types, improve query performance.
The plan hints can help the data source optimizer decide whether to use
an index, which index to use, or which table join sequence to use.

’y’ Plan hints are to be enabled at the data source if the data
source supports plan hints.

’n’ Plan hints are not to be enabled at the data source.

’n’

pushdown
’y’ DataJoiner will consider letting the remote data source

evaluate as many operations as possible.

’n’ DataJoiner will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’y’

remote_query_caching Specifies whether the performance enhancement of remote query
caching should be considered:

’y’ DataJoiner will consider caching the result for a remote query
so that subsequent execution of the same query can reuse the
same result. This reuse can potentially save resources on the
network and the remote data sources.

’n’ DataJoiner will not cache the result for a remote query.

’y’

TIMEFORMAT (See note 1.) The time format used by the data source. Enter the format using 'hh12',
'hh24', 'mm', 'ss', 'AM', or 'A.M'. For example, to represent the time
format of '16:00:00', use 'hh24:mm:ss'. To represent the time format of
'8:00:00 AM', use 'hh12:mm:ss AM'. This field is nullable.

None.

TIMESTAMPFORMAT (See
note 1.)

The timestamp format used by the data source. The format follows that
for date and time, plus 'n' for tenth of a second, 'nn' for hundredth of a
second, 'nnn' for milliseconds, and so on, up to 'nnnnnn' for
microseconds. For example, to represent the timestamp format of
'1994-01-01-24:00:00.000000', use 'YYYY-MM-DD-hh24:mm:ss.nnnnnn'.
This field is nullable.

None.

20 Application Programming and SQL Reference Supplement

|

|

|

|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

two_phase_commit Specifies whether DataJoiner should participate with data sources in
distributed, two-phase commit transactions. Valid values are:

’y’ DataJoiner is to participate with the specified data source (or
data sources) in two-phase commit transactions.

’n’ DataJoiner is not to participate with the specified data source
(or data sources) in two-phase commit transactions.
Exception: If two_phase_commit is set to ’n’ for a data source
in the CREATE SERVER OPTION or ALTER SERVER
OPTION statement and to ’y’ for the same server in the SET
SERVER OPTION statement, the ’y’ overrides the ’n’ when the
SET SERVER OPTION statement is processed.

’d’ In the CREATE SERVER OPTION and ALTER SERVER
OPTION statement, ’d’ (disabled) means: Do not participate in
two-phase commit and do not allow the SET SERVER
OPTION statement to override this option. If
two_phase_commit is set to ’d’ for a server in the CREATE
SERVER OPTION or ALTER SERVER OPTION statement and
to ’y’ for the same server in the SET SERVER OPTION
statement, an error is generated when the SET SERVER
OPTION statement is processed. In the SET SERVER
OPTION statement, ’d’ means the same as ’n’: Do not
participate in two-phase commit.

’n’

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from all VARCHAR and
VARCHAR2 columns:

’y’ None of the VARCHAR columns at this data source have
trailing blanks.

’n’ One or more VARCHAR columns at this data source have
trailing blanks.

The optimizer’s strategy for accessing Oracle data sources depends in
part on whether there are trailing blanks in VARCHAR and VARCHAR2
columns of tables residing at the data sources. By default, the optimizer
“assumes” that all Oracle VARCHAR and VARCHAR2 columns have
trailing blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from these
columns are the ones that the user expects. If, however, a VARCHAR or
VARCHAR2 column has no trailing blanks, and you let the optimizer
know this, it can develop a more efficient access strategy. To tell the
optimizer that the VARCHAR and VARCHAR2 columns at an Oracle
data source have no trailing blanks, set the varchar_no_trailing_blanks
option to ’y’ for that data source. To tell the optimizer that a specific
column has no trailing blanks, specify that column in the ALTER
NICKNAME statement (for guidelines, see “ALTER NICKNAME” on page
56).

’n’

Chapter 1. Accessing, Querying, and Configuring Data Sources 21

|

|
|

||
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

Notes on Table 2 on page 17:

1. This option is used only when the value of SERVER_TYPE is GENERIC. This
option is ignored for all other values of SERVER_TYPE.

2. This field is applied regardless of the SECURITY specification.

3. Because DataJoiner stores user IDs in uppercase, the values ‘n’ and ‘u’ are logically
equivalent to each other.

4. The setting for fold_pw has no effect when the setting for password is ‘n’. Because
no password is sent, case cannot be a factor.

22 Application Programming and SQL Reference Supplement

Chapter 2. Referencing and Manipulating Database Objects

This chapter explains how you can use DataJoiner to reference and manipulate
database objects. The first section focuses on:

v Defining and using data source tables

v Invoking data source stored procedures

v Accessing DataJoiner catalog views

The second section focuses on:

v Enabling DataJoiner to access user-defined functions (UDFs) and to recognize
user-defined data types (UDTs)

v Retrieving and manipulating large objects (LOBs)

Working with Tables, Views, and Stored Procedures

This section provides information to help you access and use tables, views, and stored
procedures. The section begins by explaining:

v Nicknames that you create so that DataJoiner can reference tables, views, and
stored procedures

v Mappings between data types defined to DataJoiner and data types included in the
definitions of data source tables, views, and stored procedures

Next comes information that pertains mainly to tables:

v How you can use DataJoiner to create, alter, and delete data source tables

v What referential integrity is; how DataJoiner enforces it locally, but not for data
sources

v How you can use indexes to facilitate access to DataJoiner and to data source tables

v Requirements for tables accessed through the dblib protocol

This section also explains:

v What catalog data you can access and update from views

v How you can invoke stored procedures from DataJoiner

Nicknames

When a client connects to DataJoiner, that client issues SQL requests intended for data
sources. A simple way to recognize requests intended for data sources is to require
three-part names consisting of location, qualifier, and table name; however, this
requirement provides no location transparency or independence to the client or
application program.

DataJoiner uses nicknames to map two- and three-part table and view names to data
sources. In the same way, it uses nicknames to map two- and three-part stored

© Copyright IBM Corp. 1995, 1998 23

|
||

|

|

|

||

|
|

|

|
||

|
|

|
|

||

|

|
|

|

|

||

|

|

procedure names to data sources. Nicknames are not alternate names for tables,
views, and stored procedures; rather, they are pointers by which DataJoiner references
these objects.

The name of every remote table, view, or stored procedure that is referenced must
have an associated nickname; however, you can reference anything explicitly if you
establish a pass-through session.

When a nickname is created for a table at a data source, DataJoiner updates the
DataJoiner catalog with data pertaining to the table. This data includes column
definitions; you can access them from the catalog view, SYSCAT.COLUMNS. If the
table has an index, the definition of this index might also be cataloged. If it is, you can
access it from the view, SYSCAT.INDEXES.

Not all data about a table can be cataloged when a nickname is created for the table.
However, there are ways to obtain or make up for missing data. To supply missing
statistics, run the RUNSTATS utility against the nickname. If information about indexes
is missing, you can compensate for this lack by creating a local definition of an index
(not an actual index) for the table. You create this definition with the DataJoiner
CREATE INDEX statement. For more information about obtaining statistics and index
information for the catalog, see the DataJoiner Administration Supplement.

Considerations and Restrictions

There are several considerations and restrictions to bear in mind when you want to:

v Define, change, and drop nicknames

v Reference objects by their nicknames

v Perform operations on objects that are referenced by nicknames

Defining, Changing, and Dropping Nicknames:

v The objects for which you can define nicknames include tables, views, and stored
procedures. To define a nickname associated with a table or view, use the CREATE
NICKNAME statement. To define a nickname associated with a stored procedure,
use the CREATE STORED PROCEDURE NICKNAME statement.

v You can define more than one nickname for the same table, view, or stored
procedure.

v The ALTER TABLE statement cannot be used with a nickname. To change a
nickname, use the ALTER NICKNAME statement.

v Dropping a nickname causes any views defined using the nickname to be dropped
and invalidates any plans that are dependent upon it.

Referencing Objects by Nickname:

v If an object is identified by a nickname, DDL statements can reference the object by
the nickname, with one exception. A trigger definition can reference a table by its
name or alias, but not by its nickname.

24 Application Programming and SQL Reference Supplement

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|
|
|

v Any reference to a remote table must use the defined nickname (except within a
pass-through session). For example, if you define the nickname DEPT to represent
the remote table DB2MVS1.PERSON.DEPT, the statement SELECT * FROM DEPT
is allowed, but SELECT * FROM DB2MVS1.PERSON.DEPT is not allowed.

Performing Operations on Objects That Have Nicknames:

v COMMENT ON, IMPORT, and EXPORT statements are valid against a nickname or
columns defined on nicknames. The COMMENT ON statement updates the system
catalog at the DataJoiner database; it doesn’t update data source catalogs.

v INSERT, UPDATE, and DELETE statements are valid against a nickname whose
source permits update.

v GRANT and REVOKE statements are valid against a nickname for all privileges and
users. However, DataJoiner does not issue a corresponding GRANT or REVOKE
against the underlying remote table or view. Therefore, the overall desired result
might not be accomplished by a nickname GRANT or REVOKE alone. For example,
a GRANT DELETE statement on a nickname causes DataJoiner to accept a delete
statement against the nickname, but the data source might deny access if a
corresponding GRANT DELETE statement was not issued for the remote table
represented by the nickname. See the DataJoiner Administration Supplement for
more information about nickname privileges.

v You can use the LOCK TABLE statement with a nickname only if the data source
supports the LOCK TABLE statement.

v The LOAD and REORGANIZE TABLE utilities cannot be used with a nickname.

v A view with UNION ALL statements for multiple nicknames cannot be updated.
Attempts to update such views can cause unpredictable behavior.

Using Nicknames with Views

You can create a nickname for a view on a data source, define views on nicknames for
remote tables and views, and manipulate all such views. DataJoiner treats the
nickname for a remote view the same way it treats the nickname for a remote table.

Views do not have statistics or indexes of their own because they are not actual tables
located in a database. This statement is true even when a view is identical in structure
and content to a single base table. For more information about statistics and indexes,
see DATABASE 2 Administration Guide.

Because DataJoiner can accommodate a join of base tables at different locations, you
can easily define global views from base tables that reside at different data sources.
Multi-location views offer a high degree of data independence for a globally integrated
database, just as views defined on multiple local tables do for centralized relational
database managers. This global view mechanism is one way that DataJoiner offers a
high degree of data independence.

When you modify data through views, be aware of the data source’s rules for updates.
For example, some types of data sources currently do not allow updates through views

Chapter 2. Referencing and Manipulating Database Objects 25

|

|
|
|
|

|
|

if the UPDATE statement references more than one table in the top subselect. These
rules can change from release to release.

Data Type Mappings

DataJoiner uses mappings between data source data types and data types defined in
the DataJoiner database to determine:

v What data types to define locally (that is, to the DataJoiner database) for columns of
data source tables and views

v What data types to define at the data source for columns of data source tables
created from DataJoiner

v What values are to be returned when you:

– Query a data source table or view

– Invoke a data source function or stored procedure

This section explains how DataJoiner makes these determinations and how you can
override default data type mappings or create new ones.

How DataJoiner Determines What Data Types to Define Locally

When you create a nickname for a table, DataJoiner adds information about this table
to the DataJoiner catalog. This information includes, but isn’t limited to, the nickname,
the table’s name, all column names and, for each column:

v The data type that was defined for the column at the data source

v A corresponding data type that’s supported by the DataJoiner RDBMS (DB2 for CS).

This section refers to the first data type as a remote type and to the second as a local,
or locally-defined, type.

How does DataJoiner determine what local type to use for a remote column? It consults
a pre-existing mapping between the column’s type at the data source and a comparable
local type, and chooses the latter. For example, in a default mapping supplied by
DataJoiner, an Informix data type CHAR, which supports up to 254 bytes, points to the
DB2 for CS data type CHARACTER. So if you’re creating a nickname for an Informix
table, and column C1 of the table has a data type of CHAR with a maximum length of
200, then, unless you override the default, C1’s locally-defined type will be
CHARACTER. A remote-to-local data type mapping from which DataJoiner determines
what local type to use for a remote column is called a forward type mapping.

How DataJoiner Determines What Data Types to Define at Data
Sources

From DataJoiner, you can use DataJoiner’s CREATE TABLE statement to define data
source tables. In pre-existing local-to-remote data type mappings, the types that you
specify in this statement point to corresponding data source data types. These
corresponding data types will be defined at the data source for the columns of the
tables that you create with this statement.

26 Application Programming and SQL Reference Supplement

|
||

|

|
|

|
|

|
|

|

|

|

|
|

|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

For example, the DB2 for CS data type DOUBLE maps by default to the Oracle type
FLOAT. So if you’re creating an Oracle table from DataJoiner, and your CREATE
TABLE statement specifies DOUBLE for column C1, then, unless you override the
default, C1’s data type at the data source will be FLOAT. Data type mappings used to
determine what data source type to use for a data source column are called reverse
type mappings.

How Type Mappings Determine What Values Are Returned

When you query a column of a data source table from DataJoiner, DataJoiner returns
values that are common to this column’s data type and its associated data type—that
is, the one it maps to—at the DataJoiner database. Similarly, when you use DataJoiner
to invoke a data source function that has an input or output parameter, or to invoke a
stored procedure that has input, output, or result set parameters, DataJoiner returns
values that are common to the parameters’ data types and these data types’ associated
counterparts at the DataJoiner database.

Because of differences between RDBMSs, a mapping between a data source and
DataJoiner data type usually isn’t 1-to-1. However, the mapping can be close enough to
ensure that all requested values are returned.

For example, there’s a default forward type mapping between:

v The Oracle type NUMBER(9,0) (where 9 is the maximum precision and 0 the
maximum scale)

v The DB2 for CS type INTEGER, with a maximum length of 4 bytes

Suppose that you create a nickname for an Oracle table that has a column C2 with a
type of NUMBER(9,0). If you don’t change the default mapping, the type for C2 will be
locally defined as INTEGER. And because the 4 bytes of INTEGER support a maximum
precision of 10, you can be sure that all values of C2 will be returned when C2 is
queried from DataJoiner.

Similarly, there are default reverse type mappings between:

v DB2 for CS type TIMESTAMP and Sybase type datetime

v DB2 for CS type DATE and Sybase type datetime

v DB2 for CS type TIME and Sybase type datetime

TIMESTAMP and datetime are for time stamps; DATE is for dates; TIME is for times.
Suppose that you’re creating a Sybase table from DataJoiner, and that your CREATE
TABLE statement specifies TIMESTAMP for column C3. If you don’t change the default
mapping, C3’s data type at the data source will be datetime. Because time stamps are
common to both TIMESTAMP and datetime, you can be sure that all timestamps in C3
will be returned when C3 is queried from DataJoiner.

If the CREATE TABLE statement specifies DATE for C3, C3’s type at the data source
will be datetime, and values common to DATE and datetime—that is, dates—will be

Chapter 2. Referencing and Manipulating Database Objects 27

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|

|

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
||

|
|

returned for queries from DataJoiner. If the statement specifies TIME, C3’s type at the
data source will still be datetime, and values common to TIME and datetime—that is,
times—will be returned.

Overriding Type Mappings and Creating New Ones

Default forward and reverse type mappings are shipped with DataJoiner. As the
preceding examples indicate, the local type and remote type in a default mapping are
similar enough to ensure that when you query remote columns for which the remote
type is defined, all values that conform to both types will be returned. But sometimes,
you might require an alternative mapping. Consider these scenarios:

Defining a Forward Type Mapping That Applies to One or More Data Sources: An
Oracle table T1 has a column C4 with a data type DATE, for time stamps. In a default
forward type mapping, this type points to the local DB2 for CS type TIMESTAMP. So if
you were to create a nickname for T1 without changing the default, TIMESTAMP would
be defined locally for C4, and queries of C4 from DataJoiner would yield time stamps.
But suppose that you want queries of C4 to yield times only. You could then map
Oracle DATE to DB2 for CS TIME, overriding the default. That way, when you create
the nickname, TIME, not TIMESTAMP, is defined locally for C4. As a result, when you
subsequently query C4 from DataJoiner, only the time portion of the time stamps in C4
is returned.

To override or create a forward type mapping for data source tables and views that you
want to define to DataJoiner, use the CREATE TYPE MAPPING statement. In this
statement, you indicate whether the mapping is to apply to a specific data source (for
example, a data source that a department in your organization uses) or to all data
sources of a specific version or type (for example, all of your organization’s Informix 7.2
data sources, or all of its Informix data sources, regardless of version).

Defining a Reverse Type Mapping That Applies to One or More Data Sources:
You want to use DataJoiner to create a UDB table with a column, C5, for dollar
amounts. Because Oracle has no data type for monetary units, you create one at the
UDB data source, and call it DOLLAR. And because there has to be a reverse type
mapping between DOLLAR and a local counterpart before DOLLAR can be defined for
C5, you create both the local counterpart, calling it DB2MONEY, and the required
mapping. Thus, when you code the CREATE TABLE statement, you can specify
DB2MONEY as the data type for C5, knowing that, because of the mapping, DOLLAR
will be defined for C5 at the data source.

To override or create a reverse type mapping for data source tables that you want to
create from DataJoiner, use the CREATE REVERSE MAPPING statement. In this
statement, you indicate whether the mapping is to apply to a specific data source (for
example, a data source that contains your organization’s payroll data) or to all data
sources of a specific version or type (for example, all of your organization’s Oracle 8.0.3
data sources, or all of its Oracle data sources, regardless of version).

Changing a Type Mapping for a Specific Table: You can change the local type in a
forward or reverse type mapping for a specific table. For example, Oracle

28 Application Programming and SQL Reference Supplement

|
|
||

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

NUMBER(32,3) maps by default to DB2 for CS DOUBLE, a floating decimal data type.
Suppose that in an Oracle table for employee information, a column BONUS was
defined with a data type of NUMBER(32,3). Because of the mapping, a query of
BONUS could return values that look like this:

5.0000000000000E+002
1.0000000000000E+003

where +002 signifies that the decimal point should be moved two places to the right,
and +003 signifies that the decimal point should be moved three places to the right.

So that queries of BONUS can return values that look like dollar amounts, you could,
for this particular table, remap NUMBER(32,3) to DB2 for CS DECIMAL(6,2). Under the
constraint of this new mapping, a query of BONUS would return values like this:

000500.00
001000.00

To change the type mapping for a column of a specific table, use the ALTER
NICKNAME statement (described in “ALTER NICKNAME” on page 56). With this
statement, you can change the type defined locally for a column of a table for which a
nickname has been defined.

Data Source Tables That You Create from DataJoiner

You can use the DataJoiner SQL statements CREATE TABLE, ALTER TABLE, and
DROP to create, alter, and delete tables at these types of data sources: DB2 Family,
Generic, Informix, Microsoft SQL Server, Oracle, SQL Anywhere, and Sybase. This
section summarizes what you do to:

v Create a data source table and its nickname in one operation

v Alter this table

v Delete this table and its nickname in one operation

Creating Data Source Tables from DataJoiner

This section provides overviews of:

v The task of using DataJoiner to create data source tables and their nicknames

v The role that local-to-remote type mappings play in this task

v The steps for combining this task with the creation of any type mappings that you
need

Creating Tables and Their Nicknames: With the DataJoiner CREATE TABLE
statement, you can define a data source table’s name, columns, data types, and
primary keys. You can also specify an option that’s specific to the data source. For
example, if you’re creating a DB2 for OS/390 table, you can specify the IN DATABASE
option, which is specific to DB2 for OS/390 tables.

Chapter 2. Referencing and Manipulating Database Objects 29

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
||

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

When you run the CREATE TABLE statement, DataJoiner automatically creates a
nickname for the table that you’re creating. The nickname is the same as the table’s
name.

To give your table attributes that are supported by the data source but not by the
DataJoiner CREATE TABLE statement—for example, foreign keys—open a
pass-through session to access the table after it’s created. Then, in this session, use
the data source’s native SQL to define the attributes that you want. If you also want the
table to have an index at this point, you can create this index in the pass-through
session as well. For information about pass-through, see “Pass-Through Sessions for
Querying Data Sources in Their Own SQL” on page 8.

The DataJoiner CREATE TABLE statement is a specialized version of the DB2 for CS
CREATE TABLE statement. For the syntax of the DataJoiner statement, see “CREATE
TABLE” on page 107. For the combined syntax of the DataJoiner and DB2 for CS
CREATE TABLE statements, see page 167.

Using Data Type Mappings to Set Data Types: DataJoiner supplies default
mappings between the DB2 for CS data types that you can specify in the DataJoiner
CREATE TABLE statement and comparable data types at the data sources. For
example, DB2 for CS DOUBLE maps by default to Oracle FLOAT, and DB2 for CS
CLOB maps by default to Informix TEXT. Such mappings are called reverse type
mappings.

When, in the CREATE TABLE statement, you specify a data type for a column of a data
source table, this type is included in DataJoiner’s local definition of the column. In
addition, the type that it maps to is defined for the column at the data source. For
example, if you specify DOUBLE for column C1 of an Oracle table, and you don’t
override the default mapping between DOUBLE and FLOAT, then DOUBLE is defined
for C1 locally and FLOAT is defined for C1 at the data source.

Before you run the CREATE TABLE statement, the data types that you specify in the
statement must map to the data types that you want defined at the data source. So if
there is no reverse mapping between a data type that you want to define at the data
source and a DB2 for CS type, then you need to create such a mapping. You do this
with the CREATE REVERSE TYPE MAPPING statement (described in “CREATE
REVERSE TYPE MAPPING” on page 89).

For more information about reverse type mappings, see “Data Type Mappings” on page
26.

Steps for Creating Data Source Tables and Associated Type Mappings: To create
a data source table and to provide type mappings, as needed, for it:

1. Determine whether there are reverse mappings between data types that you want
defined at the data source and the data types that you can specify in DataJoiner’s
CREATE TABLE statement. To do this, you might check “Appendix B. Default
Reverse Type Mappings” on page 155. Or you might query the
SYSCAT.REVTYPEMAPPINGS view to obtain listings of all reverse mappings, both

30 Application Programming and SQL Reference Supplement

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

default and non-default. For information about this view, see
“SYSCAT.REVTYPEMAPPINGS” on page 184.

2. If you don’t find mappings that you need, specify them with the CREATE REVERSE
TYPE MAPPING statement.

3. Code the CREATE TABLE statement so that it defines the table and specifies the
data source. For guidelines, see page 107.

4. Run any CREATE REVERSE TYPE MAPPING statements that you coded. Then
run the CREATE TABLE statement.

Altering Tables

You can use the DataJoiner ALTER TABLE statement to add columns and primary keys
to a data source table that was created with the DataJoiner CREATE TABLE statement.
Any column that you select for a primary key cannot be nullable. If you want to make
additional changes to the table—for example, to drop a primary key or add a foreign
key—you can do so in a pass-through session with the SQL that’s native to the table’s
data source.

For the syntax of the DataJoiner ALTER TABLE statement, see “ALTER TABLE” on
page 65.

Deleting Tables

You can use the DataJoiner DROP statement to delete a data source table that was
created with the DataJoiner CREATE TABLE statement. The DROP statement also
deletes the table’s nickname. For the syntax of this statement, see“DROP” on page
121.

Referential Integrity

Referential integrity is the state of a database in which all values of all foreign keys are
valid. A foreign key is a key that is part of the definition of a referential constraint. A
referential constraint is the rule that the values of the foreign key are valid only if they
also appear as values of a primary key. The table containing the primary key is called
the parent table of the referential constraint, and the table containing the foreign key is
said to be a dependent of that table.

The insert rule of a referential constraint is that a non-null insert value of the foreign key
must match some value of the primary key of the parent table. The update rule of a
referential constraint is that a non-null update value of the foreign key must match some
value of the primary key of the parent table. The value of a composite foreign key is
null if any component of the value is null.

DataJoiner enforces referential constraints between tables within the DataJoiner
database. It doesn’t enforce referential constraints between tables in the same data
source, or tables in different data sources. DataJoiner does not compensate for

Chapter 2. Referencing and Manipulating Database Objects 31

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|
|

referential integrity differences between data sources, nor does DataJoiner interfere with
referential integrity enforcement at the data sources. However, referential integrity
constraints at a data source can affect DataJoiner processing. For example, if an insert
into a table at a data source violates a referential integrity constraint at that data
source, DataJoiner maps the resulting data source error to a DataJoiner error.
Referential integrity between data sources is the responsibility of the applications.

Indexes

An index is an ordered set of identifiers that is separate from the data in the table and
identifying rows of a base table. A database manager builds indexes and uses them to
expedite access to the data. Because indexes dramatically affect the performance of
queries that are able to exploit them, DataJoiner needs accurate information about
indexes. When a CREATE NICKNAME statement is run, DataJoiner tries to determine
what indexes exist on the table to which the nickname being created refers. If
DataJoiner finds any indexes, it records their characteristics in the DataJoiner catalog.

There are environments in which DataJoiner cannot determine whether an index exists
on a table for which a nickname has been defined. In these situations, you can code a
definition of an index in the DataJoiner CREATE INDEX statement, and then run this
statement against the table’s name or nickname. This action doesn’t create an actual
index at the data source. Rather, it populates the DataJoiner catalog with index
information that helps DataJoiner to optimize queries of the table. To decide whether to
issue CREATE INDEX for a table, consult the SYSCAT.INDEXES catalog view. If the
table or its nickname isn’t listed in the TABNAME column, you can conclude that
DataJoiner either has determined that the table has no index, or has not determined
whether the table has an index. For more information about CREATE INDEX, see
“CREATE INDEX” on page 84 and the DataJoiner Administration Supplement .

Just as you can issue a CREATE INDEX statement against a table’s nickname to
create a local index definition for the table, so can you issue a DROP statement against
the nickname to remove this definition.

Tables Accessed through the dblib Protocol

If you use dblib as the protocol for a positioned update or delete against a Sybase or
Microsoft SQL Server table, or for an operation in which DataJoiner issues a positioned
update or delete against a Sybase or Microsoft SQL Server table, the table must have:

v A unique index known to DataJoiner

v A column with a data type of timestamp

System Catalog Views

This section introduces you to DataJoiner’s system catalog views and explains how you
can update two of them to improve performance.

Introduction to DataJoiner’s Catalog Views

32 Application Programming and SQL Reference Supplement

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
||

|

|
||

|

DataJoiner maintains a set of system catalog views for each database created. Some of
these views are identical to the catalog views maintained by DB2 for its databases,
some are DB2 catalog views that were modified for use by DataJoiner, and some are
unique to DataJoiner. The ones that are unique to DataJoiner contain information used
to communicate with data sources. All system catalog views are created when you run
the CREATE DATABASE statement.

When you run DataJoiner DDL (for example, statements to define data sources to
DataJoiner and to create data source tables), the values specified in the DDL are
added to the system tables from which the catalog views are derived. Then, with the
proper authorization, you can access these values from the views.

DataJoiner ensures that the catalog contains accurate descriptions of the objects in the
database with the exception of objects associated with nicknames. DataJoiner cannot
ensure the accuracy of objects associated with nicknames because DataJoiner is not
informed when an object changes at a remote data source.

For information about catalog views that are identical in DataJoiner and DB2, see the
DATABASE 2 SQL Reference for common servers. For information about views that
were modified specifically for DataJoiner Version 2.1.1, see “Changes in DB2 for CS
Views That Support the Spatial Extender” on page 203. For complete information about
the other DB2 catalog views that were modified for DataJoiner, and about the views that
are unique to DataJoiner, see “Appendix E. System Catalog Views” on page 175.

Updating Catalog Views to Improve Performance

You can use two of the catalog views—SYSSTAT.SERVERS and
SYSSTAT.SERVER_FUNCTIONS—not only to access values, but also to update them.
These changes are propagated to the tables that underlie the views.

The values that you can update are statistics that the DataJoiner optimizer can use to
develop access plans. To illustrate: When you code DDL (the CREATE SERVER
MAPPING statement) to define a data source to DataJoiner, you can specify certain
statistics—for example, a number denoting how much faster or slower the data source
CPU is compared to the DataJoiner CPU, or a number denoting how the data source
I/O device rate compares to the DataJoiner I/O device rate. When you run this DDL,
these statistics are included in two catalog views: SYSCAT.SERVERS and
SYSSTAT.SERVERS. If the statistics change (as might happen, for instance, if the data
source CPU is upgraded), you can update SYSSTAT.SERVERS with the change. The
optimizer then uses your update in developing its next access plan for the data source.

Similarly, the DDL for mapping definitions of local functions to data source
functions—the CREATE FUNCTION MAPPING statement—can include such statistics
as the estimated number of I/Os and instructions per invocation of a data source
function. When you run the CREATE FUNCTION MAPPING statement, these statistics
are added to the SYSCAT.SERVER_FUNCTIONS and
SYSSTAT.SERVER_FUNCTIONS views. If the statistics change, you can update
SYSSTAT.SERVER_FUNCTIONS accordingly, so that the optimizer can make a

Chapter 2. Referencing and Manipulating Database Objects 33

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
||

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

corresponding adjustment in its next access plan for the data source in question.

Stored Procedures

You can use DataJoiner to invoke stored procedures from DB2 for OS/390, Informix,
Microsoft SQL Server, Oracle, and Sybase data sources. A stored procedure is a
reusable block of code that performs a particular task. The language of the code
depends on the data source where the stored procedure resides. For example, a stored
procedure in a DB2 data source can include SQL statements as well as statements in
other languages, such as C++, COBOL, and FORTRAN.

You can use stored procedures to perform tasks that need to be done often; for
example, receiving a fixed set of data, performing the same multiple requests against a
database, or returning a fixed set of data. Applications that process huge amounts of
data at a server site, but return smaller amounts of data as the result of the processing,
are strong candidates for being written as stored procedures. As stored procedures,
they would allow for the amount of data shipped between client and server to be
considerably reduced.

This section tells you:

v The format of data returned by stored procedures

v What SQL statements you issue to invoke stored procedures from DataJoiner

v Factors and restrictions to consider when you invoke stored procedures from
DataJoiner

Data Returned by Stored Procedures

A stored procedure can be coded to return either single values or tuples of values
called result sets. Tuple is a relational database term that refers to a row or record of
data; a result set can consist of one or more tuples.

A stored procedure might return uniform result sets—that is, consecutive result sets that
have the same number of values and the same data types; or non-uniform result
sets—that is, consecutive result sets that have different numbers of values and different
data types. For example, if stored procedure X returns two result sets with one value
each and a data type of CHAR(1), then these result sets are referred to as uniform
result sets. If stored procedure Y returns a result set with one value and a data type of
INTEGER followed by a result set with two values and the data types of INTEGER and
CHAR(1), these result sets are referred to as non-uniform result sets.

SQL for Invoking Stored Procedures from DataJoiner

To invoke a stored procedure at a data source from DataJoiner, an application must first
issue the CREATE STORED PROCEDURE NICKNAME statement. Through this
statement, DataJoiner associates a nickname with the stored procedure. The

34 Application Programming and SQL Reference Supplement

|

|
|
|
|
|
|

|

|

|

|
|

|
|
|

|
|
|

application then issues a CALL statement that references the stored procedure by its
nickname.

If the stored procedure is coded to return a result set, the application must issue an
ALLOCATE CURSOR statement. This statement associates a cursor with the stored
procedure. A cursor is a control structure that is used to retrieve rows from an ordered
set of rows, such as a result set.

After the stored procedure is executed and produces the result set, the application has
the option of issuing a DESCRIBE CURSOR statement to obtain a description of the
result set. Next, the application issues a FETCH statement. This statement causes the
cursor to point to the rows of the result set; as it points to each row, that row is returned
to the calling application.

When the application finishes processing the result set, it issues the CLOSE statement.
The SQLCODE associated with this statement informs the application whether more
result sets exist. If any more do exist, the application can issue the DESCRIBE
CURSOR, FETCH, and CLOSE statements against each one. When the SQLCODE
associated with the CLOSE statement indicates that no more result sets exist
(SQLCODE 0), the cursor is closed.

For the syntax of the CALL, ALLOCATE CURSOR, and DESCRIBE CURSOR
statements, see “Chapter 4. DataJoiner SQL Statements” on page 53. For examples of
using these statements together, see “Notes” on page 71 and “Appendix D. Sample
Program Fragment for Invoking a Stored Procedure” on page 173.

Considerations and Restrictions

This section discusses factors to consider and restrictions to observe when you plan to
use data source stored procedures that yield result sets.

General Information: When you write code to retrieve result sets from a stored
procedure at a data source, be aware that:

v The CALL statement returns an SQLCODE +466 if one or more result sets are
associated with the stored procedure.

v Unlike a conventional cursor, a cursor associated with a stored procedure does not
get opened. The reason is that the stored procedure at the data source does the
processing that makes it possible for rows of data to be returned to the
application.Therefore, if you issue the ALLOCATE CURSOR statement to associate a
cursor with a stored procedure, you should not issue the OPEN statement. If you do,
an SQLCODE will be returned. If you issue the OPEN statement after issuing a
DESCRIBE CURSOR statement, this SQLCODE will be -502 (the cursor specified in
an OPEN statement is already open). If you issue the OPEN statement without
issuing a DESCRIBE CURSOR statement beforehand, the SQLCODE will be -517
(the cursor identifies a prepared statement that is not a SELECT or VALUES
statement).

v When an application finishes processing a result set, the application can issue a
CLOSE statement. If this statement returns an SQLCODE of +467, then another

Chapter 2. Referencing and Manipulating Database Objects 35

|
|

|
|

result set needs to be returned to the application. The application can then process
this result set by issuing a DESCRIBE CURSOR, FETCH, or CLOSE statement
against the cursor.

v Define only one cursor to process all result sets—uniform or non-
uniform—associated with a stored procedure.

v When a stored procedure is executed against a DRDA or DB2RA data source, the
CALL statement might return an error indicating that a package is not found. If this
error occurs, bind the package sqllib/bnd/db2cliv2.bnd against the data source
using the SQLERROR CONTINUE bind option. Then, retry executing the stored
procedure.

v Stored procedures currently do not support LOBs as input or output parameters or in
result sets.

v For input parameters, output parameters, and result sets, the DataJoiner default data
types for the data source are used.

DB2 for OS/390 Stored Procedures: DataJoiner supports DB2 for OS/390 stored
procedures that return output parameters only; it doesn’t support DB2 for OS/390 stored
procedures that return output parameters and result sets, or result sets only.

Informix Stored Procedures: Informix stored procedures can return uniform result
sets; they can’t return non-uniform result sets.

Microsoft SQL Server Stored Procedures: When you write code to invoke Microsoft
SQL Server stored procedures, be aware that you can access them from DataJoiner in
either of two ways:

v Through the dblib protocol. If a stored procedure accessed in this way returns result
sets, it cannot have output parameters.

v By using an ODBC driver.

When accessed through the dblib protocol, Microsoft SQL Server stored procedures
can return uniform as well as non-uniform result sets. When accessed under ODBC,
they can return non-uniform result sets but not uniform ones.

Oracle Stored Procedures: An Oracle stored procedure is written as a PL/SQL
procedure. In order for a DataJoiner application to access an Oracle stored procedure
for which a nickname has been defined, the stored procedure should meet the following
requirements:

v It should fetch each record in its result set and fill in the Oracle array interface, one
record at a time.

v The size of the Oracle array interface should be 1.

v Each stored procedure must check for the end-of-data condition. In addition,
whenever end-of-data is reached, the stored procedure must, through one of its
parameters, return end-of-data information to the application. Therefore, after the
application performs each fetch call, the application should check this parameter to
determine whether end-of-data was reached (end-of-data is inferred through this
parameter). In particular, the application should not expect the usual SQLCODE of

36 Application Programming and SQL Reference Supplement

|
|
||

|
||

|
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

100 to indicate end-of-data for any form of data (that is, for input, output, or result set
parameters).

When you write code to invoke Oracle stored procedures that can return result sets, be
aware that:

v Oracle stored procedures can return uniform result sets; they can’t return
non-uniform result sets.

v In your application, all input, output, and result set parameters of an Oracle stored
procedure should be specified in the CREATE STORED PROCEDURE NICKNAME
statement as well as in the CALL statement. This distinction is unique to Oracle
stored procedures (as opposed to stored procedures defined in other types of data
sources, such as Sybase or Microsoft SQL Server).

v The maximum number of rows that can be obtained from an Oracle stored procedure
call is currently fixed at 10,000.

Sybase Stored Procedures: When you write code to invoke Sybase stored
procedures, be aware that:

v They can be accessed from DataJoiner only through the dblib protocol.

v They can return uniform as well as non-uniform result sets.

v If they return result sets, they cannot also return output parameters.

Working with User-Defined Functions, User-Defined Types, and Large Objects

This section provides information to help you access and use user-defined functions,
user-defined data types, and large objects. The section explains:

v What user-defined functions are; how you can enable DataJoiner to access them and
new built-in functions at data sources

v What user-defined data types are; how you can enable DataJoiner to recognize them
at data sources

v How you can retrieve and manipulate large objects that reside at data sources

User-Defined Functions (UDFs) and User-Defined Types (UDTs)

The following sections introduce:

v User-defined functions (UDFs) and the way to make them and new built-in functions
accessible from DataJoiner

v User-defined data types (called user-defined types [UDTs] for short) and the way to
make them known to DataJoiner

Chapter 2. Referencing and Manipulating Database Objects 37

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
||

UDFs

This section provides an overview of UDFs and discusses the mappings through which
DataJoiner accesses them and new built-in functions from data sources.

Overview of UDFs: Application developers often need to create their own suite of
functions specific to their application or domain. They can use user-defined scalar
functions for this purpose.

For example, a retail store could define a PRICE data type for tracking the cost of items
that it sells. This store might also want to define a SALES_TAX function, which would
take a given price value as input, compute the applicable sales tax, and return this data
to the requesting user or application.

These functions can operate over all database types, including large object types and
distinct types. UDFs allow queries to contain powerful computation and search
predicates to filter irrelevant data close to the source of the data, thereby reducing
response time. The SQL optimizer treats UDFs exactly like built-in functions such as
SUBSTR and LENGTH. Applications can be developed using different application
language environments, such as C, C++, COBOL, and FORTRAN, while sharing a set
of SQL UDFs.

UDFs can not only manipulate data but also perform actions. For example, a UDF
might be enabled to send an electronic message or to update a flat file.

In DB2, UDFs can include:

v Functions that you define from scratch.

v Functions in the SYSFUN schema. Examples include mathematical functions such as
SIN, COS, and TAN; scientific functions such as RADIANS, LOG10, and POWER;
and general purpose functions such as LEFT, DIFFERENCE, and UCASE.

For information on how to create new UDFs and how to make use of the UDFs in
SYSFUN, see the DB2 SQL Reference.

Enabling DataJoiner to Access UDFs and New Built-In Functions at Data
Sources: You can use DataJoiner in connection with UDFs when:

v Under DataJoiner, you want to directly invoke a UDF at a data source. You can do
this in a pass-through session. For information to help you set up the session, see
“Pass-Through Sessions for Querying Data Sources in Their Own SQL” on page 8
and “SET PASSTHRU” on page 129.

v You want DataJoiner to access either a UDF at a data source or a built-in function
that resides at a data source and that’s unknown to DataJoiner.

Before you can use DataJoiner to invoke a user-defined or unknown built-in function at
a data source, DataJoiner must associate this function with a function specification
stored in the DataJoiner database. The signature in this specification must correspond
to the signature of the function that you want to invoke. A signature is the combination

38 Application Programming and SQL Reference Supplement

|
|

of a function’s name and input parameters. Signatures correspond if they contain the
same names and the same number of parameters, and if the data type of each
parameter in one signature is the same as, or can be converted to, the data type of the
corresponding parameter in the other signature.

There are two conditions under which DataJoiner can associate a function specification
at its database with a user-defined or unknown built-in function at a data source:

v If the DataJoiner database contains a function whose signature corresponds to that
of the signature of the user-defined or built-in function, you can map one function to
the other.

v If the DataJoiner database doesn’t contain a function with the requisite signature, you
can define to the database a UDF template that contains this signature. (A template,
in this context, is a minimal specification without any associated executable code.)
Then you map the template to the function that you want to invoke.

To define a UDF template to the DataJoiner database, use the CREATE FUNCTION
statement. To map a function or a UDF template at the DataJoiner database to a
user-defined or built-in function at a data source, use the CREATE FUNCTION
MAPPING statement. For information about these statements, see “CREATE
FUNCTION” on page 79 and “CREATE FUNCTION MAPPING” on page 80.

UDTs

This section provides an overview of UDTs and discusses the mappings that enable
DataJoiner to recognize UDTs at data sources.

Overview of UDTs: A UDT is a distinct user-defined data type that shares its internal
representation with an existing type, but is considered to be a separate and
incompatible type for semantic purposes. For example, a user might want to define a
PICTURE type, a TEXT type, and an AUDIO type, all of which have quite different
semantics, but which all use the predefined data type binary large object (BLOB) for
their internal representation.

One of the benefits of UDTs is strong typing. Strong typing guarantees that only
functions and operations defined on the distinct type can be applied to the type. For
example, the system would not allow you to directly compare a PICTURE type with an
AUDIO type even though they share the same underlying type. If you did want to do
such a comparison, you would need to first convert values of one type to values of the
other. For information about this process, called casting, see SQL Reference for
common servers.

User-defined types, like built-in types, can be used for columns of tables as well as
parameters of functions. For example, a user can define a data type such as ANGLE
(which varies between 1 and 360) and a set of UDFs to act on it, such as SINE,
COSINE and TANGENT.

Enabling DataJoiner to Recognize UDTs at Data Sources: In some cases, the
definition of a table, view, or function at a data source might include a UDT that

Chapter 2. Referencing and Manipulating Database Objects 39

|
|

|
|
|
|
|
|
|

|

||
|

DataJoiner doesn’t recognize. So that DataJoiner can recognize the UDT (and
consequently access the table, view, or function), you must map the UDT to a
corresponding one at the DataJoiner database. If the DataJoiner database doesn’t
contain a corresponding UDT, you can create one with the DB2 CREATE DISTINCT
TYPE statement. To create the mapping, use the DataJoiner CREATE TYPE MAPPING
statement. For information about the CREATE TYPE MAPPING statement, see
“CREATE TYPE MAPPING” on page 112.

Large Objects (LOBs)

DataJoiner supports three types of LOBs: character large objects (CLOBs), double-byte
character large objects (DBCLOBs) and binary large objects (BLOBs). For general
information about these LOBs, see the following DB2 books:

v DATABASE 2 Application Programming Guide

v DATABASE 2 SQL Reference

v DATABASE 2 Administration Guide

DataJoiner provides additional support so that DB2 functionality to access and
manipulate LOBs works for similar objects at remote data sources.

Because LOBs can be very large, the transfer of LOBs from a remote data source can
be time consuming. DataJoiner attempts to minimize the transfer of LOB data between
the data source and DataJoiner and also attempts to deliver requested LOB data
directly from the data source to the requesting application without materializing the LOB
at DataJoiner.

This section discusses:

v How DataJoiner retrieves LOBs

v How applications can use LOB handles

v How DataJoiner supports remote inserts, updates, and deletions of LOBs

v How pass-through supports LOBs

v Mappings between LOB and non-LOB data types

How DataJoiner Retrieves LOBs

DataJoiner uses three mechanisms to retrieve LOBs:

v LOB streaming

v LOB deferred retrieval

v LOB materialization

LOB Streaming: In LOB streaming, LOB data is retrieved piecemeal. DataJoiner uses
LOB streaming for data in result sets of queries that are completely pushed down. For
example, consider the query:

SELECT EMPNAME,PICTURE FROM O_T1 WHERE EMPNO = '01192345'

40 Application Programming and SQL Reference Supplement

|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|
|

|

where PICTURE is a LOB column and O_T1 is a nickname referencing an Oracle table.
The DataJoiner optimizer would mark the picture column for streaming if it decides to
execute this query in its entirety at the Oracle data source. At execution time, when
DataJoiner notes that a LOB is marked for streaming, it retrieves the LOB piecemeal
from the data source. DataJoiner then transfers the data to either the application
memory space or a file (as requested by the application).

LOB Deferred Retrieval: In LOB deferred retrieval, retrieval of a LOB is postponed
until the LOB is assigned to a location in user space—a host variable or a file on disk.
For example, in a join between two remote tables where LOB deferred retrieval is
enabled, DataJoiner retrieves LOB values only for the rows that meet the join criteria.
This approach can substantially boost query performance while reducing network traffic.

Remote deferred LOB retrieval is valid for a LOB column if all the following conditions
are true:

v The deferred_lob_retrieval server option for the data source is set to ’y’ (yes). For all
data sources, this option’s initial setting is ’n’. This setting is the default because
deferred LOB retrieval cannot be guaranteed by most data sources. If the
correctness of the deferred LOB retrieval can be guaranteed by the data source,
change the server option to ’y’. To change it for a single session between an
application and the data source, use the SET SERVER OPTION statement. To
change it so that it remains in effect indefinitely over multiple sessions, use the
CREATE SERVER OPTION statement. For information about these statements, see
“SET SERVER OPTION” on page 132 and “CREATE SERVER OPTION” on page
100.

Note on static LOB data: If your LOB data at a data source is relatively static, you
can set the deferred_lob_retrieval server option for that data source to ’y’ even if the
correctness of deferred LOB retrieval for that data source cannot be guaranteed.

v The LOB column is not marked for streaming.

v No local DataJoiner functions are being applied on the remote LOB column.

v The remote LOB column is uniquely identified on the remote table by either a
ROWID or a unique index. For example, in Oracle data sources, the ROWID is used
as a remote LOB locator.

If LOB columns can be retrieved on a deferred basis, DataJoiner retrieves LOB locators
for the columns rather than the columns themselves. Each locator uniquely identifies its
respective column. DataJoiner then does SQL processing, such as joins, predicate
evaluation, and so on, on the columns; this processing is based on the plan generated
by the DataJoiner global optimizer. When DataJoiner needs to transfer the LOB values
from the columns to the application space, it uses the LOB locators to retrieve these
values. If the values are being transferred to a file on the application side, they are
streamed piecemeal from the remote data source directly to the file without being stored
at DataJoiner.

LOB Materialization: In LOB materialization, remote LOB data is retrieved by
DataJoiner and stored locally. LOB materialization occurs when:

Chapter 2. Referencing and Manipulating Database Objects 41

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

v A local function must be applied to a LOB column, which happens when DataJoiner
compensates for unavailable functions at a remote data source. For example,
Sybase SQL Server does not provide a SUBSTR function for LOB columns. To
compensate, DataJoiner materializes the LOB column locally and applies the
DataJoiner SUBSTR function to the retrieved LOB.

v The LOB column cannot be deferred or streamed.

How Applications Can Use LOB Handles

Applications can request LOB handles for LOBs stored in remote data sources. See the
DATABASE 2 Application Programming Guide for general information about LOB
handles.

DataJoiner can retrieve LOBs from remote data sources, store them at DataJoiner, and
then issue a LOB handle against the stored LOB. LOB handles are released when:

v Applications issue ″FREE LOCATOR″ SQL statements.

v Applications issue COMMIT statements.

v DataJoiner is restarted.

How DataJoiner Supports LOB Operations at Data Sources

DataJoiner supports operations (inserts, updates, deletes) on LOBs at Informix,
Microsoft SQL Server, Oracle (Version 7.2 or lower), and Sybase data sources.

When DataJoiner is ready to insert a LOB into a data source table, or to update a LOB
in a data source table, the new or updated LOB will be transferred to the table in one of
two ways. If the LOB is stored in a file, DataJoiner attempts to transfer the LOB directly
from the application space. If the LOB is stored in the application space, it is transferred
to DataJoiner and then to the table. The transfer to the table is done piecemeal if
possible.

When DataJoiner is ready to append data to an existing remote LOB, DataJoiner can
perform the append either at the data source (provided that the data source supports
appends) or in DataJoiner’s own environment. In the second case, the LOB is
materialized at DataJoiner, the append is performed, and then the LOB, now enlarged
by the append, is inserted back into the data source.

When you want to insert, update, or delete remote LOBs, you need to be aware of the
following data source restrictions and requirements:

Microsoft SQL Server: For Microsoft SQL Server data sources accessed with the
dblib protocol, you need to observe the requirements that apply to Sybase data sources
accessed with dblib (see “Sybase” on page 43). For Microsoft SQL Server data sources
accessed with ODBC, there are no requirements for, or restrictions on, LOB operations.

Oracle 7.2 and Previous Versions: For Oracle data sources version 7.2 and lower,
there is no mechanism to insert or update LOBs in a piecemeal fashion.

42 Application Programming and SQL Reference Supplement

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
||

Sybase: For an application to insert a LOB into a Sybase table, or to update a LOB in
this table or in a view based on the table, the following requirements must be met:

v If the table resides at a data source accessed with the ctlib protocol:

– There must be a unique index over one or more of the table’s columns.

– This index must be locally defined to DataJoiner.

– When the application inserts or updates a LOB in the table, it must also insert or
update an associated value in the indexed column or columns.

v If the table resides at a data source accessed with the dblib protocol:

– There must be a unique index over one or more of the table’s columns.

– This index must be locally defined to DataJoiner.

– The table must have a column for time stamps.

– When the application inserts or updates a LOB in the table, it must also insert or
update an associated value in the indexed column or columns. When the insertion
or update is made, a time stamp is automatically generated in the time stamp
column.

For example, suppose that Table T1 resides at a Sybase server accessed with the ctlib
protocol. T1 has a column, PICTURE, for photographs of employees, but no unique
index. So that an application can populate PICTURE, you:

v Define a unique index for T1. Assume that you define it over two columns,
SOC_SEC_NO and EMP_NO.

v Program the application so that when it inserts data for an employee’s photo into
PICTURE, it also inserts the employee’s social security and employee numbers into
SOC_SEC_NO and EMP_NO.

How Pass-Through Supports LOBs

LOBs are supported in pass-through mode. LOB functionality is limited by the
functionality supported by the remote data source.

LOB handles are not supported in pass-through mode.

Mappings between LOB and Non-LOB Data Types

There are few cases in which you can map a DataJoiner (that is, a DB2 for CS) LOB
data type to a non-LOB data type at a data source. When you need to create a
mapping between a DataJoiner LOB type and a counterpart at a data source, we
recommend that you use a LOB type as the counterpart if at all possible.

Chapter 2. Referencing and Manipulating Database Objects 43

|
|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|

|
|
|
||

44 Application Programming and SQL Reference Supplement

Chapter 3. Specifying Identifiers

An identifier is a token that is used to form a name. This chapter describes:

v The types, characteristics, and limits of the identifiers that users can specify in
DataJoiner SQL statements

v How to ensure that case-sensitive identifiers and passwords are specified correctly at
the data source

v How to find node identifiers that you need to specify in DataJoiner SQL statements

Identifiers Used By DataJoiner

In DataJoiner, you can use the same types of identifiers that you use in DB2 for CS. In
addition, you need to use identifiers that are specific to DataJoiner. This section
discusses:

v The two basic kinds of identifiers: SQL and host

v Characteristics of identifiers in DataJoiner SQL statements

v Limits that DataJoiner imposes on length of identifiers

For complete information about identifiers that are common to DataJoiner and DB2 for
CS, see DATABASE 2 SQL Reference for common servers.

SQL and Host Identifiers

An identifier in an SQL statement is either an SQL identifier or a host identifier.

SQL Identifiers

The three types of SQL identifiers are:

Ordinary identifier
A letter followed by zero or more characters, each of which is an uppercase
letter, a digit, or the underscore character. An ordinary identifier must not be
identical to a reserved word. Examples might be WKLYSAL and WKLY_SAL. See
the DATABASE 2 SQL Reference for a list of SQL reserved words.

Delimited identifier
A sequence of one or more characters enclosed within quotation marks (").
When you define an identifier—for example, when you define the name of a
table that you’re creating—you need to delimit it if it violates the guidelines for
an ordinary identifier. Examples are reserved words, words in lowercase, and
terms enclosed by quotation marks. Thus, to designate the reserved word
UNION as a name, you’d specify it as "UNION". To define wkly_sal as a name,

© Copyright IBM Corp. 1995, 1998 45

|

|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|
|

|
|
|
|
|
|

specify it as "wkly_sal"; and to define “Mickey” as a name, specify it as
""Mickey"".

Remote identifier
A sequence of one or more characters that is used in several statements to
identify a data source or an object at a data source. For example, the CREATE
NICKNAME statement includes a parameter, remote-object-name, which can
consist of either two or three parts. In the statement, you assign a remote
identifier to each part. For example, if remote-object-name consists of
remote-table-name and data-source-name, then you assign the name of the
table for which you’re creating a nickname to remote-table-name, and you
assign the name of the data source where the table resides to
data-source-name.

Ordinary and delimited identifiers are also classified according to their maximum length.
A long identifier has a maximum length of 18 bytes. A short identifier has a maximum
length of 8 bytes. These limits do not include the quotation marks surrounding the
delimited identifier. Remote identifiers are limited to 128 characters or the maximum for
the data source.

Host Identifiers

A host identifier is a name declared in the host program. The rules for forming a host
identifier are the rules of the host language. A host identifier cannot be greater than 30
characters and cannot begin with SQL.

Identifiers in DataJoiner SQL

This section describes the names and terms used in the syntax descriptions for the
DataJoiner SQL statements described in “Chapter 4. DataJoiner SQL Statements” on
page 53 . See the DataJoiner Administration Supplement for more information on
naming rules in DataJoiner. See “Limits Imposed by DataJoiner” on page 49 for limits on
the length of a term. The following list defines these terms:

authorization-name
For DataJoiner users, a short identifier that designates a DataJoiner user.
When the authorization name is local to DataJoiner, the following restrictions
apply:

v The underscore character (_) is not valid.

v The name must not begin with the characters SYS, IBM, or SQL, or the
numbers 0 through 9.

v The name must not be PUBLIC.

v A delimited authorization name must not contain lowercase letters.

v Letters from the extended character set are not valid.

For selected examples of authorization names, see “GRANT PASSTHRU” on
page 126 and “REVOKE PASSTHRU” on page 128.

46 Application Programming and SQL Reference Supplement

|
|

|
|
|
|
|
|
|
|
|

|

|
|

column-name
A qualified or unqualified name that designates a column of a table or view.
The unqualified form of a column name is a long identifier. The qualified form
is a qualifier, followed by a period and a long identifier. The qualifier is a
nickname, table name, view name, or correlation name. Column names have
some restrictions specified in the DB2 Administration Guide.

For selected examples of column names, see “COMMENT ON” on page 74,
“CREATE INDEX” on page 84, and “CREATE TABLE” on page 107.

correlation-name
A long identifier that designates a nickname, local table, or view. For examples,
see DATABASE 2 SQL Reference for common servers.

cursor-name
A long ordinary identifier that designates an SQL cursor. For examples, see
“ALLOCATE CURSOR” on page 55 and “Appendix D. Sample Program
Fragment for Invoking a Stored Procedure” on page 173.

data-source-name
A long ordinary identifier that designates a data source. It is the name of a
server listed in the SYSIBM.SYSSERVERS catalog. For selected examples,
see “CREATE NICKNAME” on page 86 and “CREATE STORED PROCEDURE
NICKNAME” on page 103.

host-variable
A sequence of tokens that designates a host variable. A host variable includes
at least one host identifier. For an example of a host variable, see “CALL” on
page 71 . For more information about host variables, see DATABASE 2 SQL
Reference for common servers.

index-name
A qualified or unqualified name that designates an index. The unqualified form
of an index name is a long identifier. An unqualified index name in an SQL
statement is implicitly qualified by the authorization ID of that statement. The
qualified form is an authorization ID followed by a period and a long identifier.
For an example of an index name, see “CREATE INDEX” on page 84.

nickname
A qualified or unqualified name by which DataJoiner references a table, view,
or stored procedure. The unqualified form of a nickname is a long identifier. An
unqualified nickname in an SQL statement is implicitly qualified by the
authorization ID of that statement. The qualified form is an authorization name
followed by a period and a long identifier. For selected examples of nicknames,
see “CREATE NICKNAME” on page 86.

package-name
A qualified or unqualified name that designates a package. The unqualified
form of a package name is a short SQL identifier. An unqualified package
name in an SQL statement is implicitly qualified by the authorization ID of that
statement. The qualified form is an authorization name followed by a period
and a short SQL identifier. For examples of package names, see DATABASE 2
SQL Reference for common servers.

Chapter 3. Specifying Identifiers 47

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

remote-authorization-name
For data source users, a remote identifier that designates a data source user.
The rules for authorization names vary from data source to data source. For
selected examples of remote authorization names, see “CREATE NICKNAME”
on page 86 and “CREATE STORED PROCEDURE NICKNAME” on page 103.

remote-function-name
Identifies the name of the function on the data source. For examples, see
“CREATE FUNCTION MAPPING” on page 80.

remote-object-name
A two- or three-part name used in CREATE NICKNAME and CREATE
STORED PROCEDURE NICKNAME syntax. It describes a table or stored
procedure at a remote data source. For examples of remote object names, see
“CREATE NICKNAME” on page 86 and “CREATE STORED PROCEDURE
NICKNAME” on page 103.

remote-table-name
A two- or three-part name of a table or view at a data source. For examples,
see “CREATE NICKNAME” on page 86.

remote-type-name
Identifies the name and type of the remote type. Do not use the long form for
system built-in types (for example, use CHAR for CHARACTER type). For
examples of remote type names, see “CREATE REVERSE TYPE MAPPING”
on page 89 and “CREATE TYPE MAPPING” on page 112.

stored-procedure-nickname
A qualified or unqualified name by which DataJoiner references a stored
procedure. The unqualified form of a stored procedure nickname is a short
identifier. An unqualified stored procedure nickname in an SQL statement is
implicitly qualified by the authorization ID of that statement. The qualified form
is an authorization name followed by a period and a short identifier.

For selected examples of stored procedure nicknames, see “COMMENT ON”
on page 74, “CREATE STORED PROCEDURE NICKNAME” on page 103,
and “Appendix D. Sample Program Fragment for Invoking a Stored Procedure”
on page 173.

table-name
A qualified or unqualified name that designates a table. The unqualified form of
a table name is a long identifier. An unqualified table name in an SQL
statement is implicitly qualified by the authorization ID of that statement. The
qualified form is an authorization name followed by a period and a long
identifier.

For selected examples of table names, see “ALTER TABLE” on page 65 and
“CREATE TABLE” on page 107.

view-name
A qualified or unqualified name that designates a view. The unqualified form of
a view name is a long identifier. An unqualified view name in an SQL
statement is implicitly qualified by the authorization ID of that statement. The

48 Application Programming and SQL Reference Supplement

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

qualified form is an authorization name followed by a period and a long
identifier. For an example of an unqualified form, see “DROP” on page 121.

Limits Imposed by DataJoiner

In general, DataJoiner SQL limits match the limits for DB2. See the DB2 SQL
Reference for general limits information.

Some DB2 limits; however, might not apply to SQL used in a pass-through session.
Database manager limits of the data source apply during a pass-through session.

Maximum Lengths

DataJoiner does have limits for its unique identifiers. The limits are in Table 3.

Table 3. Identifier Length Limits

Identifier Limits Limit in Bytes

Longest DataJoiner authorization-name (can be only single-byte
characters)

8

Longest remote-authorization-name 30

Longest constraint name 18

Longest correlation-name 18

Longest cursor-name 18

Longest external program name 8

Longest host identifier 30

Longest schema name 8

Longest server (database alias) name 8

Longest statement name 18

Longest unqualified column-name 18

Longest unqualified package-name 8

Longest unqualified nickname, table-name, view-name, alias-name, or
index name

18

Longest remote-object-name 128

Longest nickname, table or view qualifier 8

Longest server-name 18

Longest remote-table-name 128

Longest remote-column-name 128

Longest DataJoiner index-name 18

Longest remote index-name 128

Longest remote password 32

Chapter 3. Specifying Identifiers 49

|
|

How DataJoiner Enforces Limits on Column Names and Index
Names

NAME fields in SYSCAT.COLUMNS and SYSCAT.INDEXES for remote columns and
indexes are restricted to 18 characters in length. If a name is longer than 18 characters,
DataJoiner truncates the name to 18 characters. If the name is no longer unique after
truncation, DataJoiner replaces the last character with 0. If this still does not make the
name unique, DataJoiner changes the last character to 1. This process is repeated with
numbers 0 through 9 and, if necessary, it is repeated again in the next to last column
and so on, until a unique name is generated. For example, the name
ABCDEFGHIJKLMNOPQRSTUVWXYZ has been specified for a remote column. The
names ABCDEFGHIJKLMNOPQR, and ABCDEFGHIJKLMNOPQ0 already exist. The
new name is over 18 characters so it is truncated to ABCDEFGHIJKLMNOPQR. Since
this name already exists, DataJoiner changes the truncated name to
ABCDEFGHIJKLMNOPQ0. This name exists too, so DataJoiner changes the new name
to ABCDEFGHIJKLMNOPQ1. This name does not already exist, so DataJoiner now
accepts it as a new name. For more information, see “SYSCAT.COLUMNS” on
page 176 and “SYSCAT.INDEXES” on page 179.

Ensuring the Case of Case-Sensitive Values

In certain DataJoiner SQL statements, you sometimes need to specify identifiers and
passwords that are case-sensitive at the data source. To ensure that their case is
correct when they’re passed to the data source, follow these guidelines:

v Specify them in the required case and enclose them in double quotes.

v If you’re specifying a user ID, set the fold_id server option to ’n’ (“No, don’t change
case”) for the data source. If you’re specifying a password, set the fold_pw server
option to ’n’ for the data source.

There is an alternative for user IDs and passwords. If a data source requires a user
ID to be in lowercase, you can specify it in any case and set the fold_id server option
to ’l’ (“Send this ID to the data source in lowercase”). If the data source requires the
ID to be in uppercase, you can specify it in any case and set fold_id to ’u’ (“Send this
ID to the data source in upper case”). In the same way, if a data source requires a
password to be in lowercase or uppercase, you can meet this requirement by setting
the fold_pw server option to ’l’ or ’u’.

For information about setting server options, see “Server Options” on page 11. For
more information about the fold_id and fold_pw server options, see “Summary of
Server Options and Their Settings” on page 17.

v If you enclose a case-sensitive identifier or password in double quotes at an
operating system’s command prompt, you need to ensure that the system parses the
double quotes correctly. To do this:

– On a UNIX system, enclose the statement in single quotes.

– On a Windows NT system, precede each quote with a backward slash.

50 Application Programming and SQL Reference Supplement

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

For example, names of Sybase schemas, tables, and views are case-sensitive.
Suppose you want to create a nickname, NICK1, for a Sybase view, myschema.myview,
that resides in a server called SYBASE1. (In this example, the only case-sensitive
parameters are myschema and myview.)

If you’re entering the SQL for creating the nickname from a UNIX command prompt,
you would type:

db2 'create nickname nick1 for sybase1."myschema"."myview"'

From an NT command prompt, you would type:

db2 create nickname nick1 for sybase1.\"myschema\".\"myview\"

If you enter the SQL from the DB2 interactive mode command prompt, or if you specify
it in an application program, you don’t need the single quotes or the slashes. For
example, from the DB2 command prompt on either a UNIX or NT system, you would
type:

create nickname nick1 for sybase1."myschema"."myview"

Finding Node Names

For the “node-name” parameter of a CREATE SERVER MAPPING or ALTER SERVER
MAPPING statement, you must specify the node where the server specified in the
statements resides. When the statement is run, the node you specify is cataloged as a
value of NODE in SYSCAT.SERVERS. To determine what a server’s node is, consult
the following list.

Classic Connect and CrossAccess (AIX)
The server name specified in the configuration file parameter TASK INFO
ENTRY.

DB2 Family (AIX and Windows NT)
The node name specified in the DB2 node directory. To view this directory, issue
the db2 list node directory command.

Generic (AIX)
The server name specified in the odbc.ini file.

Generic (Windows NT)
The server name specified in the odbc.ini file. To access this name, select
ControlPanel , then the ODBC icon, and finally SystemDSN . If you don’t have
an ODBC icon, proceed as follows:

1. From the Command Prompt window, type:

regedt32

Several windows open, including the Registry Editor and
HKEY_LOCAL_MACHINE on Local Machine windows.

2. From the HKEY_LOCAL_MACHINE on Local Machine window:

Chapter 3. Specifying Identifiers 51

|
|
|
|

|
|

|

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|

|

a. Open the HKEY_LOCAL_MACHINE folder by double-clicking on it.

b. Open the SOFTWARE folder by double-clicking on it.

c. Open the ODBC folder by double-clicking on it.

d. Open the ODBC.INI folder by double clicking on it.

e. Under the ODBC.INI folder, double-click on the name that represents
the odbc.ini file. The nodes in that file are listed on the right side of
the HKEY_LOCAL_MACHINE on Local Machine window.

Informix (AIX)
The server name specified in the Informix sqlhosts file.

Informix (Windows NT)
The server name as defined by Informix SetNet 32.

Microsoft SQL Server (AIX)
For data sources accessed through the dblib protocol: The server name
specified in the Sybase interfaces file.

For data sources accessed through ODBC: The server name specified in the
odbc.ini file.

Microsoft SQL Server (Windows NT)
The server name specified in the odbc.ini file. To find out how to access this
file, see the guidelines in this list under “Generic (Windows NT)”.

Oracle (AIX and Windows NT)
The server name specified in the Oracle tnsnames.ora file. To access this
name on the Windows NT platform, specify the View Configuration
Information option of the Oracle SQL Net Easy Configuration tool.

RDB (Windows NT)
The server name specified in the odbc.ini file. To find out how to access this
file, see the guidelines in this list under “Generic (Windows NT)”.

SQL Anywhere (Windows NT)
The server name specified in the odbc.ini file. To find out how to access this
file, see the guidelines in this list under “Generic (Windows NT)”.

Sybase (AIX and Windows NT)
The server name specified in the Sybase interfaces file. To access this name
on the Windows NT platform, select Sybase DSEDIT ; then select
InterfaceDrivers .

For more information, see the DataJoiner Planning, Installation, and Configuration
Guide for your platform.

52 Application Programming and SQL Reference Supplement

|

|

|

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
||

|
|
|
|

|
|
||

|
|
||

|
|
|
|

|
|

Chapter 4. DataJoiner SQL Statements

This chapter contains the complete syntax diagrams and descriptions for new SQL
statements or statements with substantial modifications or enhancements specific to
DataJoiner. Only the DataJoiner-specific parameters are described. For a complete
description of the syntax for the DB2 SQL statements supported by DataJoiner, see the
DATABASE 2 SQL Reference for common servers.

DataJoiner supports the SQL dialect of DB2. It supports the DB2 SQL DML, translating
it to vendor dialects as necessary. DataJoiner also makes it appear to users as if DB2
SQL function exists in a data source even when that function is not actually supported
by the data source. For information about this capability, referred to as compensation,
see page 8.

In pass-through mode, SQL that is unique to a data source can be passed to the data
source without any processing by DataJoiner. This feature allows existing
vendor-specific SQL applications to work with DataJoiner. For more information, see
“Pass-Through Sessions for Querying Data Sources in Their Own SQL” on page 8.

This chapter describes the SQL statements that are unique to DataJoiner or that
contain clauses that are unique to DataJoiner. Table 4 lists these statements and the
pages on which they’re described.

Table 4. DataJoiner SQL Statements

DataJoiner SQL Statement Page

ALLOCATE CURSOR 55

ALTER NICKNAME 56

ALTER SERVER MAPPING 59

ALTER SERVER OPTION 62

ALTER TABLE 65

ALTER USER MAPPING 69

CALL 71

COMMENT ON 74

CREATE ALIAS 77

CREATE FUNCTION 79

CREATE FUNCTION MAPPING 80

CREATE INDEX 84

CREATE NICKNAME 86

CREATE REVERSE TYPE MAPPING 89

CREATE SERVER MAPPING 96

CREATE SERVER OPTION 100

CREATE STORED PROCEDURE NICKNAME 103

© Copyright IBM Corp. 1995, 1998 53

|
|
|
|
|

|
|
|
|

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 4. DataJoiner SQL Statements (continued)

DataJoiner SQL Statement Page

CREATE TABLE 107

CREATE TYPE MAPPING 112

CREATE USER MAPPING 118

DESCRIBE CURSOR 120

DROP 121

GRANT PASSTHRU 126

REVOKE PASSTHRU 128

SET PASSTHRU 129

SET PASSTHRU RESET 131

SET SERVER OPTION 132

54 Application Programming and SQL Reference Supplement

|

||

||

||

||

||

||

||

||

||

||

||

ALLOCATE CURSOR

Use the ALLOCATE CURSOR statement to enable an application to retrieve results
returned from a stored procedure. This statement declares a cursor and associates this
cursor with the last stored procedure specified by a CALL statement.

Invocation

You must embed this statement in an application program. It cannot be issued
dynamically.

Authorization

None required.

Syntax

ÊÊ ALLOCATE cursor-name CURSOR FOR PROCEDURE procedure-name ÊÍ

Description
cursor-name

Is the name of the cursor. The name cannot match any other declared or allocated
cursor within the source program.

PROCEDURE procedure-name
Specifies the stored procedure that you want to associate the cursor with.

Notes
v A cursor associated with stored procedures does not require an OPEN against that

cursor. For more information, see “Considerations and Restrictions” on page 35.

v An SQLCODE +467 on the CLOSE SQL statement indicates that another result set
exists.

Examples

Declare cursor CUR1 and associate it with stored procedure S_INVENTORY:

EXEC SQL ALLOCATE CUR1 CURSOR FOR PROCEDURE S_INVENTORY

Chapter 4. DataJoiner SQL Statements 55

|
|
|

|
|

|
|

|
||

|

|

ALTER NICKNAME

Use the ALTER NICKNAME statement to change the local specification of the name
and data type of a column in a table identified by a nickname. You can use it also to
indicate that a VARCHAR or VARCHAR2 column in an Oracle table doesn’t contain
trailing blanks. Be aware that the statement doesn’t change the remote specification of
the data type that it references.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions on the DataJoiner database:

v SYSADM authority

v DBADM authority

v CREATETAB privilege

The authorization ID must also have authorization at the data source to access both the
data source system catalog and the table.

Syntax

ÊÊ ALTER NICKNAME table-nickname SET COLUMN old-local-column-name Ê

Ê LOCAL NAME new-local-column-name
LOCAL TYPE data-type
REMOTE TYPE remote-data-type
LOCAL TYPE data-type REMOTE TYPE remote-data-type

ÊÍ

Description
table-nickname

References the nickname for a table that contains the column referenced by
old-local-column-name. table-nickname must already exist as a valid DataJoiner
nickname.

SET COLUMN old-local-column-name
Specifies the current local name of a column in the table referenced by
table-nickname. The name must be a valid DB2 identifier. One of the following
statements is true of the column:

v You want to change the column’s local name.

v You want to change the local specification of the column’s data type.

56 Application Programming and SQL Reference Supplement

|
|
|
|
|

|

|
|

|

|

|

|
|

|
|
|
|

v The column belongs to an Oracle table; the column’s data type is VARCHAR;
and you want to indicate that the column doesn’t contain trailing blanks. You can
also change the local specification of the maximum length of the column’s
values.

LOCAL NAME new-local-column-name
Specifies the local name that is to replace the name specified in
old-local-column-name. The new local name must be a valid DB2 identifier.

LOCAL TYPE data-type
Specifies a new data type in the local definition of the column referenced by
old-local-column-name. Any standard DB2 data type to which the column can be
converted is supported (though no conversion actually takes place). These types
are listed in DATABASE 2 SQL Reference (CREATE TABLE SQL syntax).

REMOTE TYPE remote-data-type
Indicates that the column referenced by old-local-column-name doesn’t contain
trailing blanks. The only valid value for remote-data-type is VARCHARNTB.

Notes

When you change the local specification of a column’s data type, DataJoiner invalidates
any statistics (HIGH2KEY, LOW2KEY, and so on) gathered for that column.

Examples

Example 1: Change the local name of a table column from COL1 to NEWCOL. The
table’s nickname is NICKNAME1.

ALTER NICKNAME NICKNAME1
SET COLUMN COL1
LOCAL NAME NEWCOL

Example 2: Change the local specification of the data type of a table column to
DECIMAL (10, 5). The table’s nickname is NICKNAME1 and the column’s name is
COL1.

ALTER NICKNAME NICKNAME1
SET COLUMN COL1
LOCAL TYPE DECIMAL(10,5)

Example 3: Indicate that in an Oracle table, a column with the data type of VARCHAR
doesn’t have trailing blanks. The table’s nickname is NICKNAME2 and the column’s
name is COL1.

ALTER NICKNAME NICKNAME2
SET COLUMN COL1
REMOTE TYPE VARCHARNTB

Chapter 4. DataJoiner SQL Statements 57

Example 4: Indicate that in an Oracle table, a column with the data type of VARCHAR2
doesn’t have trailing blanks. In addition, change the local specification of the maximum
length of the column’s values to 20. The table’s nickname is NICKNAME3 and the
column’s name is COL1.

ALTER NICKNAME NICKNAME3
SET COLUMN COL1
LOCAL TYPE VARCHAR (20)
REMOTE TYPE VARCHARNTB

58 Application Programming and SQL Reference Supplement

ALTER SERVER MAPPING

Use the ALTER SERVER MAPPING statement to change the characteristics of a
mapping between a local server name (for example, SYBASE1) and the server
database at the data source.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM or
DBADM authority on the DataJoiner database. The authorization ID must also have
authorization at the data source to access the data source system catalog.

Syntax

ÊÊ ALTER SERVER MAPPING FROM server-name SET Ê

Ê » NODE ″node-name″
DATABASE ″remote-database-name″
TYPE server-type
VERSION server-version
PROTOCOL ″protocol-name″
CPU RATIO value
IO RATIO value
COMM RATE value

ÊÍ

Description
FROM server-name

Specifies the name by which the specified data source database is known locally
(for example, the server-name used in a CREATE NICKNAME or SET PASSTHRU
statement). server-name is a long identifier.

NODE ″node-name″
Identifies the node on which the specified data source resides. This field is
protocol-dependent and its value varies. For example, a Sybase value corresponds
to an entry in the interfaces file. An Oracle value corresponds to an entry in the
tnsnames.ora file. DB2 values correspond to entries in a node directory. To find out
how to determine ″node-name″ for your data sources, see “Finding Node Names”
on page 51.

Chapter 4. DataJoiner SQL Statements 59

|
|
|

|

|
|
|

|
|
|
|
|
|

node-name is a long identifier with a maximum of 70 characters and must be
enclosed in double-quotes.

DATABASE ″remote-database-name″
Identifies the specific database on the data source to be accessed when referring
to the server-name. This field is protocol-dependent and its value varies. This field
is not required for Oracle data sources because Oracle instances contain only one
database. For Sybase and DB2, this value corresponds to a specific database
within an instance or, for DB2 for OS/390, the database LOCATION value.

The valid values for this field match the allowed values for the DBNAME column in
the catalog view SYSCAT.SERVERS. See “SYSCAT.SERVERS” on page 187 for
details.

DataJoiner defines a unique index on the NODE and DBNAME columns in
SYSCAT.SERVERS. This unique index prevents you from specifying an identical
combination of values for NODE and NODENAME with two different values in the
SERVER column. remote-database-name is a long identifier and must be enclosed
in double-quotes.

TYPE server-type
Identifies the type of data source.

The valid values for this field match the allowed values for the TYPE column in the
catalog view SYSCAT.SERVERS. See “SYSCAT.SERVERS” on page 187 for
details. Delimited identifiers are converted to uppercase automatically.

server-type can have up to 30 characters.

Examples of valid values:

TYPE ORACLE
TYPE "informix"
TYPE DB2/MVS
TYPE "sybase"

Examples of invalid values:

TYPE NEWDATASOURCE
TYPE unknowndb

VERSION server-version
Identifies the version of the data source. Valid values for server-version are
composed of digits and, optionally, one or two decimal points. Do not enclose these
values in quotes or place a decimal point at the end of them. For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187 .

server-version can have up to 18 characters.

60 Application Programming and SQL Reference Supplement

|
|

|
|

|

PROTOCOL ″protocol-name″
Identifies the data access protocol used by the data source.

The set of valid values for this field matches the allowed values for the
SERVER_PROTOCOL column in the catalog view SYSCAT.SERVERS. Examples
are “drda” and “db2ra”. See “SYSCAT.SERVERS” on page 187 for details.

″protocol-name″ is case-sensitive and cannot exceed 30 characters.

CPU RATIO value
Represents how much faster or slower the data source CPU is compared to the
local CPU. Valid values are unsigned floating-point constants, unsigned decimal
constants, or unsigned integer constants. For example, if the remote CPU is twice
as fast as the local CPU, enter the value 0.5.

IO RATIO value
Represents how much faster or slower the data source workstation I/O is compared
to the local workstation. Valid values for value are unsigned floating-point
constants, unsigned decimal constants, or unsigned integer constants. For
example, if the remote workstation I/O is twice as fast as the local workstation I/O,
enter the value 0.5.

COMM RATE value
Represents the communication rate between the data source workstation and the
local workstation. value represents the number of bytes per second; use unsigned
integer constants. The default is 2 megabytes per second.

Notes

Identifiers without delimiters are converted to uppercase in SYSCAT.SERVERS. The
following examples show how you can use quotes to pass case-sensitive characters to
specific columns in SYSCAT.SERVERS.

Examples

Example 1: Map the local server SYBASE1 to a different database, TEST_DB2.

ALTER SERVER MAPPING FROM SYBASE1 SET DATABASE "test_db2"

Example 2: The local server SYBASE1 is mapped to a Sybase database that predates
version 10. Map SYBASE1 to a Sybase 10 database called TEST_DB2.

ALTER SERVER MAPPING FROM SYBASE1
SET DATABASE "test_db2"
VERSION 10.0

Example 3: Update the server characteristics for DB2MVS1 by setting both CPU ratio
and I/O ratio to 3.0. This ratio means that the local CPU runs three times as fast as the
remote CPU and the local I/O is three times faster than the remote I/O.

ALTER SERVER MAPPING FROM DB2MVS1
SET CPU RATIO 3.0
IO RATIO 3.0

Chapter 4. DataJoiner SQL Statements 61

|
|
|

ALTER SERVER OPTION

Use the ALTER SERVER OPTION statement to change, for an indefinite period, a
server option setting that was defined by the CREATE SERVER OPTION statement.
For an introduction to the ALTER SERVER OPTION statement, see “Server Options” on
page 11.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM or
DBADM authority.

Syntax

ÊÊ ALTER SERVER OPTION option-name FOR Remote Server Clause Ê

Ê SETTING option-value ÊÍ

Remote Server Clause

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Description
option-name

Is the name of the server option. Valid option-name values are listed after the
OPTION column definition for the catalog view SYSCAT.SERVER_OPTIONS (see
“SYSCAT.SERVER_OPTIONS” on page 195). option-name is an identifier; it cannot
exceed 30 characters.

SERVER server-name
Identifies the server to which the option specified in option-name applies. This field
must match an entry in the SERVER column of the SYSCAT.SERVERS catalog
view (see “SYSCAT.SERVERS” on page 187). server-name is a long identifier.

62 Application Programming and SQL Reference Supplement

|
|
|
|

|

|
|

|
|
|
|
|

SERVER TYPE server-type
Identifies the type of server to which the option specified in option-name applies.
Example values include DB2/MVS, ORACLE, and informix. Valid values for
server-type match those listed for the SERVER_TYPE column of
SYSCAT.SERVERS (see “SYSCAT.SERVERS” on page 187). Values for
server-type cannot exceed 30 characters. Delimited identifiers are converted to
uppercase.

VERSION server-version
Identifies the version of the data source. Valid values for server-version are
composed of digits and, optionally, one or two decimal points. Do not enclose these
values in quotes or place a decimal point at the end of them. For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187 .

server-version can have up to 18 characters.

PROTOCOL ″server-protocol″
Identifies the server protocol to which the option specified in option-name applies.
Field values must match one of the allowed entries for the SERVER_PROTOCOL
column of the SYSCAT.SERVERS catalog view (see “SYSCAT.SERVERS” on
page 187). ″server-protocol″ is case-sensitive and cannot exceed 30 characters.

SETTING option-value
Identifies the option setting. Valid values for option-value depend on the value
entered for option-name. See the examples below. option-value can be an integer
constant, floating-point constant, decimal constant, or character literal. If it’s a
character literal, it can contain up to 254 characters, and it must be enclosed in
single quotes. For descriptions of valid settings, see “Summary of Server Options
and Their Settings” on page 17.

Notes
v Server options can be entered in uppercase or lowercase (case does not matter).

v If you set an option to one value for a server type, and set this same option to
another value for an instance of the type, the second value overrides the first for the
instance. For example, suppose that you set remote_query_caching to ’y’ for server
type sybase and use this option’s default (’n’) for a Sybase server named SIBYL. As
a result, query results won’t be cached for SIBYL, but they’ll be cached for other
Sybase servers whenever doing so enhances performance.

v For an overview of the SQL for setting server options, see “Server Options” on
page 11 .

Chapter 4. DataJoiner SQL Statements 63

|
|

|

|
|
|
|

Examples

Example 1: Discontinue two-phase commit on server NOMATCH.

ALTER SERVER OPTION TWO_PHASE_COMMIT
FOR SERVER NOMATCH
SETTING 'n'

Example 2: Begin folding user IDs to uppercase when sending them to DB2 for OS/390
data sources.

ALTER SERVER OPTION FOLD_ID
FOR SERVER TYPE DB2/MVS
SETTING 'y'

Example 3: Remote query caching is not enabled for Informix servers. Enable it for
Informix server INFOMAX, so that it’s available to all applications that use the server.

ALTER SERVER OPTION REMOTE_QUERY_CACHING
FOR SERVER INFOMAX
SETTING 'y'

Example 4: Push down optimization is not enabled for Sybase data sources. Make it
available now.

ALTER SERVER OPTION PUSHDOWN
FOR SERVER TYPE SYBASE
SETTING 'y'

64 Application Programming and SQL Reference Supplement

ALTER TABLE

Use the ALTER TABLE statement to alter data source tables that were created with the
DataJoiner CREATE TABLE statement. (To alter tables in the DataJoiner database, use
the DB2 for CS ALTER TABLE statement.)

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions on the DataJoiner database:

v SYSADM authority

v DBADM authority

v ALTER privilege

The authorization ID must also have authorization at the data source to alter data
source tables.

Syntax

ÊÊ ALTER TABLE table-name Ê

Ê »
(1) COLUMN

ADD Column Definition
Primary Key Constraint

ÊÍ

Notes:

1. ADD is optional for unnamed PRIMARY KEY constraints.

Column Definition

column-name Data Type

Chapter 4. DataJoiner SQL Statements 65

|
|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|

|

|

||||||||||||||
|

Data Type

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) (1)
VARCHAR (integer) FOR BIT DATA
CHARACTER VARYING
CHAR VARYING

LONG VARCHAR

BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Notes:

1. You can specify FOR BIT DATA in random order with the other column constraints
that follow.

Primary Key Constraint

CONSTRAINT constraint-name
PRIMARY KEY »

,

(column-name)

Description
table-name

Is the name of the table that you’re altering, with or without a qualifier. If you
specify a qualifier, it must be the same one that qualifies the table’s nickname.

ADD
Adds a column or primary key to the table. If the table has any rows, every value in

66 Application Programming and SQL Reference Supplement

|

||

|

|

|
|

|

|||||||||||||||||||||||||||||

|

|

|
|
|

|
|

the newly-added column is the column’s default value. The new column is the
table’s “last” column; that is, if the table initially has n columns, the added column is
n+1.

column-name
Is the name of the new column, without a qualifier. The name cannot be the same
as that of any other column in the table.

Data Type
The data type of the column specified in the column-name parameter. This data
type is defined to the DataJoiner database. It’s valid for the table that you’re
altering only if there’s a reverse mapping between it and a data type at the data
source where the table resides. To find out what reverse mappings exist between
data source types and types defined to the DataJoiner database, query the
SYSCAT.REVTYPEMAPPINGS catalog view (documented on page 184). This view
shows both default and user-defined mappings. For lists of default mappings only,
see “Appendix B. Default Reverse Type Mappings” on page 155. If you don’t find a
mapping that you need, you can create it with the CREATE REVERSE TYPE
MAPPING statement (page 89).

For an explanation of the keywords and parameters in the Data Type clause, see
DATABASE 2 SQL Reference for common servers.

Primary Key Constraint
For an explanation of this clause, see DATABASE 2 SQL Reference for common
servers. Be aware that you can include columns in a primary key only if the
columns have already been defined as not nullable.

Notes
v Some data sources do not support DDL in two-phase commit mode. If you’re altering

a table for such a data source, and this data source is configured for two-phase
commit transactions, you need to reconfigure it so that it can commit the ALTER
TABLE statement in one phase. To do this for a single unit of work, follow either of
these procedures:

– Use the SET SERVER OPTION statement to set the two_phase_commit server
option to ’n’. Place the statement immediately after the CONNECT statement.

– Place any CREATE REVERSE TYPE MAPPING statements that you code and
the ALTER TABLE statement immediately after the CONNECT statement.

To reconfigure a data source for one-phase commits indefinitely, run an ALTER
SERVER OPTION statement in which the two_phase_commit option for the data
source is set to ’N’.

For information about the SET SERVER OPTION and ALTER SERVER OPTION
statements, see “Using Server Options to Configure Data Sources” on page 11.

v After you alter the table by running the DataJoiner ALTER TABLE statement, you
can, if you want, alter it further; for example, add referential constraints to it. To do
this, open a pass-through session with the data source where the table resides, and
use the data source’s native ALTER TABLE statement to make the changes that you
want.

Chapter 4. DataJoiner SQL Statements 67

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

Examples

Add a column C10 to table T1 at an SQL Anywhere data source. Designate an existing
column, C9, as a primary key without a name. Assume that:

v T1 was created with the DataJoiner CREATE TABLE statement.

v C9 is not nullable.

ALTER TABLE T1
ADD COLUMN C10 CHAR(200)
ADD PRIMARY KEY (C9)

68 Application Programming and SQL Reference Supplement

|

|
|

|

|

|
|
|
|

ALTER USER MAPPING

Use the ALTER USER MAPPING statement to change the characteristics of a mapping
between an authorization ID, password, or connect option defined locally to DataJoiner,
and the corresponding ID, password, or option used at a specific data source.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ
USER

ALTER USER MAPPING FROM local-authid TO SERVER server-name Ê

Ê »SET AUTHID remote-authid
PASSWORD remote-password
CONNECTOPT ’string’

ÊÍ

Description
local-authid or USER

local-authid identifies the authorization ID under which a specific user connects to
the DataJoiner database.

The valid values for local-authid match the allowed values for the AUTHID column
in the catalog view SYSCAT.REMOTEUSERS. Identifiers without delimiters are
converted to uppercase. See “SYSCAT.REMOTEUSERS” on page 183 for details.
local-authid is a short identifier with a maximum of 8 characters.

USER denotes the special register USER, which specifies the authorization ID
under which you run the ALTER USER MAPPING statement. If you specify USER,
this ID maps automatically to the ID specified by remote-authid.

TO SERVER server-name
Identifies the server that can be connected to under the authorization ID denoted
by remote-authid. This field must match an entry in the SERVER column of the
SYSCAT.SERVERS catalog view (see “SYSCAT.SERVERS” on page 187).

The unique index for SYSCAT.REMOTEUSERS includes the AUTHID and
SERVER columns. You cannot specify two rows in this table with identical values
for both of these columns.

Chapter 4. DataJoiner SQL Statements 69

|
|
|

|

|
|

|
|

|
|
|
|

|
|
||

|
|
|

|
|
|

server-name is a long identifier.

AUTHID remote-authid
Identifies an ID that’s required for connecting to the specified server and that
corresponds to local-authid. remote-authid is an identifier that cannot exceed 30
characters.

PASSWORD remote-password
Identifies the password for the remote-authid on the specified server.
remote-password is an identifier that cannot exceed 32 characters.

CONNECTOPT ’string’
Identifies the connect option for the specified server. The value of ’string’ is
protocol-dependent (for example, for drda protocol, the value is an accounting
string). ’string’ is a character string; its maximum length is 256 characters.

Notes
v Identifiers without delimiters are converted to uppercase in

SYSCAT.REMOTEUSERS. For guidelines on preserving lowercase, see “Ensuring
the Case of Case-Sensitive Values” on page 50.

v If remote-password isn’t specified, the server option for validating passwords
(password) must be set to 'n' for the server denoted by server-name. For more
information about this option, see “SYSCAT.SERVER_OPTIONS” on page 195.

Examples

Example 1: Alter a user mapping.

ALTER USER MAPPING FROM "Kleewein"
TO SERVER ORACLE1
SET AUTHID "jimk"

Example 2: Alter a user mapping with a specified password. Use the special register
USER.

ALTER USER MAPPING FROM USER
TO SERVER DB2MVS1
SET AUTHID "jimk"
PASSWORD "jimmvspw"

70 Application Programming and SQL Reference Supplement

|

|
|
|

|
|
|

|
|
|
|

CALL

Use the CALL statement to invoke a stored procedure. This statement uses the stored
procedure’s name, its nickname, or a host variable, to identify the stored procedure to
DataJoiner.

Invocation

You must embed this statement in an application program. It cannot be issued
dynamically.

Authorization

The authorization ID under which you run this statement must hold the EXECUTE
privilege on the package associated with the stored procedure.

Syntax

ÊÊ CALL procedure-name
procedure-nickname
host-variable

»

()
,

host-variable
USING DESCRIPTOR descriptor-name

ÊÍ

Description
CALL procedure-name or procedure-nickname or host-variable

Identifies the stored procedure to execute. The name can be specified directly, via
a stored procedure nickname, or indirectly within a host variable.

(host-variable,...)
Each specification of host-variable is a parameter of CALL. The nth parameter of
the statement corresponds to the nth parameter of the stored procedure.

USING DESCRIPTOR descriptor-name
Identifies an SQL descriptor area (SQLDA) that contains a valid description of host
variables. The nth SQLVAR element corresponds to the nth parameter of the stored
procedure.

Notes
v Stored procedures can be invoked at DataJoiner or at data sources.

v DataJoiner supports result sets at data sources that support stored procedures that
return result sets. Applications can retrieve result sets by using a cursor. The
ALLOCATE CURSOR statement associates the cursor with the stored procedure.
The DESCRIBE CURSOR statement returns a description of a result set. The
FETCH statement returns a single row of a result set, and the CLOSE statement
closes the cursor. Here’s an example:

Chapter 4. DataJoiner SQL Statements 71

|
|
|

|
|

|
|

CALL S_SELECT;
ALLOCATE C1 CURSOR FOR PROCEDURE S_SELECT;
DESCRIBE CURSOR C1 INTO :*PGM_SQLDA;
FETCH C1 USING DESCRIPTOR :*PGM_SQLDA;
CLOSE C1;

Important: Restrictions exist on invoking stored procedures that return result sets,
See “Considerations and Restrictions” on page 35.

v You can qualify a stored procedure name if you’re using the SDK provided by
DataJoiner or the SDK provided by UDB Version 5. The following statements contain
an example of a qualified stored procedure name:

CALL J15USER1.S_SELECT;
ALLOCATE C1 CURSOR FOR PROCEDURE J15USER1.S_SELECT

v If you’re using an SDK other than one provided by DataJoiner or UDB Version 5, and
if this SDK supports the CALL statement, then:

– In the CALL statement, you must qualify a stored procedure name through the
use of a host variable. For example:

STRCPY(PROCNAME,"J15USER3.S_SELECT")
CALL :PROCNAME

– In the ALLOCATE CURSOR statement, the stored procedure name cannot be
qualified.

v The stored procedure search sequence is:

1. Search for the procedure at the application location

2. Search for the procedure at the database engine location

3. End the search; pass the stored procedure directly to the database engine for
processing

v SQLCODE +466 on the CALL SQL statement indicates that results exist.

v If you are specifying LOB data from an SQLDA, double the number of allocated
SQLVAR entries.

v Do not use the CALL statement with existing DB2 DARI procedures.

Examples

Example 1 (fragment): Invoke stored procedure SIMPLE.

CALL SIMPLE;

Example 2 (fragment that illustrates the use of an input host variable): Invoke stored
procedure SIMP_IN.

QUANTITY=2;
CALL SIMP_IN(:QUANTITY);

Example 3 (fragment that illustrates the use of input and output host variables): Invoke
stored procedure SIMP_INOUT.

72 Application Programming and SQL Reference Supplement

QUANTITY=2;
MEMSET(FRUIT,'\0',6);
CALL SIMP_INOUT(:QUANTITY,:FRUIT);

For more examples, see “Notes” on page 71 and “Appendix D. Sample Program
Fragment for Invoking a Stored Procedure” on page 173.

Chapter 4. DataJoiner SQL Statements 73

COMMENT ON

Use the COMMENT ON statement to add or replace comments in catalog descriptions
of objects.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The privileges held by the authorization ID under which you run this statement must
vary according to the type of object that you want to comment on. For a list of objects
mapped to privileges, see DATABASE 2 SQL Reference for common servers.

Syntax

ÊÊ COMMENT ON Ê

Ê

»

Objects IS string-constant
,

table-name (column-name IS string-constant)
view-name

ÊÍ

74 Application Programming and SQL Reference Supplement

|
|

|

|
|
|

Objects

»

ALIAS alias-name
COLUMN table-name.column-name

view-name.column-name
CONSTRAINT table-name.constraint-name

(1)
DISTINCT TYPE distinct-type-name

(2)
FUNCTION function-name

()
,

data-type
SPECIFIC FUNCTION specific-name
FUNCTION MAPPING function-mapping-name
INDEX index-name
PACKAGE package-name
SERVER MAPPING server-name
SERVER OPTION option-name FOR Remote Server Clause
STORED PROCEDURE NICKNAME stored-procedure-nickname
TABLE table-name

view-name
TABLESPACE tablespace-name
TRIGGER trigger-name
TYPE MAPPING type-mapping-name

Remote Server Clause

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Notes:

1. The keyword DATA can be used as a synonym for DISTINCT

2. The keyword ROUTINE can be used as a synonym for FUNCTION

Description
FUNCTION MAPPING function-mapping-name

Indicates that a comment will be added or replaced for a function mapping name.
The function-mapping-name must identify a distinct function mapping in the catalog.
The comment replaces the value in the REMARKS column of the
SYSCAT.SERVER_FUNCTIONS catalog view for the row describing the function
mapping.

Chapter 4. DataJoiner SQL Statements 75

SERVER MAPPING server-name
Identifies the server mapping being commented on. server-name is a long identifier.

SERVER OPTION option-name
Identifies the server option being commented on. See Table 2 on page 17 for a
complete list of valid options.

STORED PROCEDURE NICKNAME stored-procedure-nickname
Indicates that a comment will be added or replaced for a stored procedure
nickname. The stored-procedure-nickname must identify a distinct stored procedure
nickname in the catalog. The comment replaces the value in the REMARKS
column of the SYSCAT.PROCEDURES catalog view for the row describing the
stored procedure nickname.

TYPE MAPPING type-mapping-name
Indicates that a comment will be added or replaced for a type mapping name. The
type-mapping-name must identify a distinct type mapping in the catalog. The
comment replaces the value in the REMARKS column of the
SYSCAT.SERVER_DATATYPES catalog view for the row describing the type
mapping.

Examples

Supply a comment on a stored procedure.

COMMENT ON STORED PROCEDURE NICKNAME seb_proc
IS 'Returns sum of all publication orders'

76 Application Programming and SQL Reference Supplement

CREATE ALIAS

Use the CREATE ALIAS statement to create an alternate name for a table or view in
the DataJoiner database, or an alternate nickname for a remote table or view.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

If the authorization ID under which you run this statement matches the name of the
schema of the alias that you’re creating, that ID carries sufficient authorization to run
the statement. If the ID differs from the name of the schema, you need either SYSADM
or DBADM authority.

Syntax

ÊÊ CREATE ALIAS
SYNONYM

alias-name FOR table-name
view-name
alias-name2
nickname

ÊÍ

Description
table-name

Is either the fully-qualified name of a table in the DataJoiner database, or the name
only. If the name’s qualifier is a schema name that’s the same as the authorization
ID under which you run this statement, then specify the name only. Otherwise, if
the qualifier differs from the authorization ID, then specify the fully-qualified name.

The qualifier must not be SYSIBM.

view-name
Is either the fully-qualified name of a view in the DataJoiner database, or the name
only. If the name’s qualifier is a schema name that’s the same as the authorization
ID under which you run this statement, then specify the name only. Otherwise, if
the qualifier differs from the authorization ID, then specify the fully-qualified name.

The qualifier must not be SYSIBM.

nickname
Is either the fully-qualified nickname for a data source table or view, or the
nickname only. If the nickname’s qualifier is a schema name that’s the same as the
authorization ID under which you run this statement, then specify the nickname
only. Otherwise, if the qualifier differs from the authorization ID, then specify the
fully-qualified nickname.

The qualifier must not be SYSIBM.

Chapter 4. DataJoiner SQL Statements 77

|
|

|

|
|
|
|

|
|
|
|
|

||

|
|
|
|
|

||

|
|
|
|
|

|

Examples

Designate A1 as an alias for a table referenced by the nickname FUZZYBEAR.

CREATE ALIAS A1 FOR fuzzybear

78 Application Programming and SQL Reference Supplement

|

|

CREATE FUNCTION

In DataJoiner, use the CREATE FUNCTION statement to define a function template that
you can map to a function at a data source. The template consists only of a function
name and input and output parameters. It does not include executable code. For more
information, see “Enabling DataJoiner to Access UDFs and New Built-In Functions at
Data Sources” on page 38.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

If the authorization ID under which you run this statement matches the name of the
schema of the function specification that you’re creating, that ID carries sufficient
authorization to run the statement. If the ID differs from the name of the schema, you
need either SYSADM or DBADM authority.

Syntax

ÊÊ CREATE FUNCTION function-name »

,

()
data-type

Ê

Ê RETURNS data-type1 ÊÍ

Notes
v When a data source function maps to a DataJoiner function template, the function

can be invoked if the access plan chooses to evaluate it at the data source. If,
instead, the access plan chooses to evaluate the function template, a runtime error
can result, because the template has no executable code.

v DataJoiner supports the DB2 for CS CREATE FUNCTION statement.

Examples

Define to DataJoiner a function template that you can map to a function called
CENTRE.

CREATE FUNCTION CENTRE (FLOAT, FLOAT) RETURNS FLOAT

Chapter 4. DataJoiner SQL Statements 79

|

|
|
|
|

|
|
|
|

CREATE FUNCTION MAPPING

Use the CREATE FUNCTION MAPPING statement to create a mapping between a
local (DataJoiner) function or function template (that is, a definition without executable
code) and a function at a data source. The argument signatures of the local function or
template and the data source function must correspond. That is:

v The local function or template must have the same number of parameters as the
data source function.

v Mappings must exist between the data types of the parameters of the local function
or template, and the data types of the parameters of the data source function. You
can find out if such mappings exist by querying the SYSCAT.SERVER_DATATYPES
catalog view.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM
authority or DBADM authority on the DataJoiner database.

Syntax

ÊÊ CREATE FUNCTION MAPPING
function-mapping-name

Ê

Ê FROM Local Function Clause TO Remote Server Clause Ê

Ê Remote Function Clause Function Statistics Clause
WITH INFIX

ÊÍ

Local Function Clause

»

,

local-function-name ()
data-type

FUNCTION ID function-ID
SPECIFIC local-specific-name

80 Application Programming and SQL Reference Supplement

|
|
|
|

|
|

|
|
|
|

|

|
|

Remote Server Clause

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Remote Function Clause

FUNCTION remote-function-name

Function Statistics Clause

IOS_PER_INVOC value INSTS_PER_INVOC value
Ê

Ê
INSTS_PER_INVOC value IOS_PER_ARGBYTE value

Ê

Ê
INSTS_PER_ARGBYTE value PERCET_ARGBYTES value

Ê

Ê
INITIAL_INSTS value INITIAL_IOS value

Description
function-mapping-name

Is a long identifier that names the function mapping. The name must not identify a
function mapping that is already described in SYSCAT.SERVER.FUNCTIONS. If it
does, you receive an error message (SQL0601N).

If function-mapping-name is not specified, a unique name is generated by the
system.

local-function-name
Identifies a local system function or user-defined function. If a schema name is not
specified, the current user ID is assumed. If a schema name is specified, the
local-function-name must be either qualified by SYSIBM or unique within the
DataJoiner database. If the name meets neither of these conditions, you receive an
error message (SQL0476N).

FUNCTION ID function-ID
Identifies the unique function ID assigned to each system-defined or user-defined
function.

Chapter 4. DataJoiner SQL Statements 81

SPECIFIC local-specific-name
Identifies the specific name of a local system function or user-defined function.
local-specific-name must be used if the function does not have a unique
local-function-name within the DataJoiner database.

SERVER server-name
Identifies the server on which the remote function exists. This field must match an
entry in the SERVER column of the SYSCAT.SERVERS table. server-name is a
long identifier.

SERVER TYPE server-type
Identifies the type of server on which the function exists. Valid values for
server-type must match those listed for the SERVER_TYPE column of
SYSCAT.SERVERS_TYPE. Values for server-type cannot exceed 30 characters.
Delimited identifiers will be converted to uppercase.

VERSION server-version
Identifies the version of the server on which the function resides. Values for
server-version are composed of digits and, optionally, one or two decimal points.
Do not enclose these values in quotes or place a decimal point at the end of them.
For example:

VERSION 7
VERSION 8.0.3

server-version can have up to 18 characters.

If the server is built-in, specifying this value assures that the mapping that you’re
creating applies to this and all future versions of the server type (and protocol, if
present).

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187.

PROTOCOL ″server-protocol″
Identifies the server protocol on which the protocol exists. Field values must match
one of the allowed entries for the SERVER_PROTOCOL column of the
SYSCAT.SERVERS.PROTOCOL. ″server-protocol″ is case-sensitive and cannot
exceed 30 characters.

FUNCTION remote-function-name
Identifies the name of the function on the data source.

value
Identifies the value of the specified statistic.

WITH INFIX
Specifies that the remote function be generated in infix format. For example, a local
function “=”(integer,integer) is mapped to the following remote infix function:
integer=integer.

82 Application Programming and SQL Reference Supplement

|
|
|
|

|
||

|

|
|
|

|
|
|

|
|
|
|

|
|
|

Notes

Functions in the SYSIBM schema do not have a specific name. To override the default
function mapping for a function in the SYSIBM schema, specify local-function-name with
qualifier SYSIBM and function name (such as LENGTH). This specification will affect all
invocations of this specific SYSIBM function.

Examples

Example 1: Map a local function template to a UDF that all Oracle data sources can
access. The template is called CENTRE and belongs to a schema called MATH. The
Oracle UDF is called MIDPOINT and belongs to a schema called SMITH.

CREATE FUNCTION MAPPING MY_ORACLE_FUN1
FROM MATH.CENTRE
TO SERVER TYPE ORACLE
FUNCTION SMITH.MIDPOINT

Example 2: Map a local function template called CENTRE to a UDF, also called
CENTRE, that’s used at an Oracle data source called ORACLE1.

CREATE FUNCTION MAPPING MY_ORACLE_FUN1
FROM CENTRE
TO SERVER ORACLE1
FUNCTION CENTRE

Chapter 4. DataJoiner SQL Statements 83

|
|
|

|
|
|
|

|
|

|
|
|
|

CREATE INDEX

Use the CREATE INDEX statement to supply the DataJoiner catalog with a
specification of an index for a data source table that has been defined to DataJoiner,
but that has no index, or that has an index that DataJoiner doesn’t recognize. CREATE
INDEX doesn’t create an actual index. The specification that it supplies is used by the
DataJoiner optimizer to improve access to the table.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions:

v SYSADM authority on the DataJoiner database

v DBADM authority on the DataJoiner database

v CONTROL privilege on the nickname or table

v INDEX privilege on the nickname or table

Syntax

ÊÊ CREATE
UNIQUE

INDEX index-name Ê

Ê »

,
ASC

ON nickname (column-name)
table-name DESC

ÊÍ

Description
UNIQUE

Specifies that the table on which the index is defined cannot contain two or more
rows with the same value of the index key. This constraint is enforced when rows
of the table are updated or new rows are inserted.

When UNIQUE is used, nulls are treated as values. For example, if the key is a
single column that can contain nulls, that column can contain no more than one
null.

INDEX index-name
Names the index. The name, including the implicit or explicit qualifier, must not
identify an index described in the catalog. The qualifier cannot be SYSIBM.

84 Application Programming and SQL Reference Supplement

|
|
|
|
|

|

|
|

|

|

|

|

ON nickname or table-name
Specifies the nickname or actual name of the table on which the index is defined.
The table must reside at a data source; it cannot be a catalog table.

column-name
Represents a column that is part of the index key. You can set column-name to a
value in the COLNAME column of the SYSCAT.COLUMNS catalog view. This value
is in the local definition of the table that you’re specifying; the value needn’t be the
actual column name used at the data source. You can specify up to 16 column
names. Each must be unqualified; none can be repeated.

The sum of the lengths of the specified columns must not exceed 255. To find out
the length of a column, consult the LENGTH column of the SYSCAT.COLUMN
catalog view.

ASC
Signifies that the index entries are in ascending order by column. This setting
is the default.

DESC
Signifies that the index entries are in descending order by column.

Notes
v Because a nickname does not actually contain data, CREATE INDEX on a nickname

creates only a description of the index.

v The index name that you use with a nickname is not required to match the remote
index name to which it corresponds.

Examples

Create a local definition of an existing index for a remote table that is referenced by the
nickname EMPLOYEE. The name of the index is JOB_BY_DPT.

CREATE INDEX JOB_BY_DPT ON EMPLOYEE (WORKDEPT, JOB)

Chapter 4. DataJoiner SQL Statements 85

CREATE NICKNAME

Use the CREATE NICKNAME statement to create a nickname for a remote table or
view. To create a nickname for a stored procedure, see “CREATE STORED
PROCEDURE NICKNAME” on page 103.

Before using nicknames, review “Considerations and Restrictions” on page 24 to be
sure that you understand the restrictions on their usage.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions on the DataJoiner database:

v SYSADM authority

v DBADM authority

v CREATETAB privilege

The authorization ID must also have authorization at the data source to access both the
data source system catalog and the table or view.

Syntax

ÊÊ CREATE NICKNAME nickname FOR remote-object-name ÊÍ

Description
nickname

Represents an identifier with or without a qualifier. If no qualifier is supplied, the
authorization ID of the statement is used as the default value. The qualifier must
not be SYSIBM.

remote-object-name
Represents a two- or three-part name.

v If you’re creating a nickname for a table or view at a data source that supports
schemas, remote-object-name is:

data-source-name.remote-authorization-name.remote-table-name

—where:

data-source-name
Is a value in the SERVER column of the SYSCAT.SERVERS view.

remote-authorization-name
Is the schema to which the table or view belongs.

86 Application Programming and SQL Reference Supplement

|
|
|

|

|
|

|

|

|

|
|

remote-table-name
Is the unique name or an alias of the table or view.

v If the data source doesn’t support schemas, remote-object-name is:

data-source-name.remote-table-name

If remote-authorization-name or remote-table-name is case-sensitive at the data
source, enclose it in delimiters. For example:

sybase1."myschema"."myview"

Be sure to put the period that separates these names outside the delimiters.
Otherwise, the period is considered part of the delimited string and does not act as
a separator. For example, A."B"."C" is the correct form, but A."B.C" is not. Delimited
identifiers must be used for table and view names that are case-sensitive at the
data source.

Notes
v If you’re creating a nickname for a table or view stored in a single-schema RDB

database, remote-object-name is:

data-source-name.remote-table-name

If you’re creating a nickname for a table or view stored in a multi-schema RDB
database, remote-object-name is:

data-source-name.remote-authorization-name.remote-table-name

v The remote table must be an existing table or view on a remote server.

v An unqualified nickname cannot have the same fully-qualified name as an existing
table, view, or nickname.

v Because data types might be incompatible between data sources, DataJoiner makes
minor adjustments to store remote catalog data locally as needed. See “Data Type
Mappings” on page 26 for details.

v NAME fields in SYSCAT.COLUMNS and SYSCAT.INDEXES for remote columns and
indexes are restricted to 18 characters in length. If a name is longer than 18
characters, DataJoiner truncates the name to 18 characters. See “How DataJoiner
Enforces Limits on Column Names and Index Names” on page 50 for information
about how DataJoiner enforces this limit when truncation causes the name to no
longer be unique.

v For more information, see “Nicknames” on page 23.

Examples

Example 1: Create a nickname for a user-defined table, DEPT, owned by PERSON on
a data source with server name DB2MVS1.

CREATE NICKNAME DEPT FOR DB2MVS1.PERSON.DEPT

Example 2: Create a nickname for system object table, SYSOBJECTS, on data source
SYBASE1.

Chapter 4. DataJoiner SQL Statements 87

|
|

|

|
|
|
|
|

CREATE NICKNAME USERID.A1 FOR SYBASE1."dbo"."sysobjects"

Example 3: Select all records from the remote table DEPT. (You must use a nickname
for a remote table. You cannot reference a remote table directly as shown in the
following example except in a pass-through session.)

SELECT * FROM DB2MVS1.PERSON.DEPT Invalid
SELECT * FROM DEPT Valid after nickname DEPT is created

88 Application Programming and SQL Reference Supplement

CREATE REVERSE TYPE MAPPING

Use this statement to create a mapping between:

v A data type that’s local to DataJoiner; and

v A corresponding data type that you want for a column in a table that you plan to
create from DataJoiner

When you create the table, the corresponding data type will be defined for the column.

A data type mapping that determines what type is to be defined at a data source for a
table column is called a reverse type mapping.

You need to create a reverse type mapping only if an existing one doesn’t meet your
requirements. To find out what default reverse type mappings exist, you might check
“Appendix B. Default Reverse Type Mappings” on page 155. For listings of all reverse
type mappings—default and non-default—query the SYSCAT.REVTYPEMAPPINGS
view (described in “SYSCAT.REVTYPEMAPPINGS” on page 184).

For more information about reverse type mappings, see “Data Type Mappings” on
page 26 .

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ CREATE REVERSE TYPE MAPPING
type-mapping-name

FROM Remote Server Ê

Ê
DISTINCT

TYPE Remote Type TO DataJoiner Schema and Type ÊÍ

Remote Server

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Chapter 4. DataJoiner SQL Statements 89

|
|

|

|

|
|

|

|
|

|
|
|
|
|

|
|

|

||

|

|
|

|

||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||

|

|

|||

|

Protocol

PROTOCOL ″server-protocol″

Remote Type

data-source-schema.
data-source-data-type Ê

Ê
(p)

,s FOR BIT DATA

DataJoiner Schema and Type

datajoiner-schema.
DataJoiner Type

NOT NULL

90 Application Programming and SQL Reference Supplement

|

|||||||||
|

|

||||||||||||
|

|
||||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||

|

DataJoiner Type

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (p)
NUMERIC [p..p] ,s p=s
NUM ,[s..s] p>s

p<s
p>=s
p<=s
p<>s

CHARACTER
CHAR (integer) FOR BIT DATA

[integer..integer]
VARCHAR (integer)
CHARACTER VARYING [integer..integer]
CHAR VARYING

LONG VARCHAR
BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
[integer..integer]

VARGRAPHIC (integer)
[integer..integer]

LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Description
type-mapping-name

Name of the mapping that you want to create. The name cannot be the same as
that of any other mapping that’s described in the SYSCAT.REVTYPEMAPPINGS
catalog view. And it can’t be more than 18 characters long. If you don’t specify a
name, DataJoiner will supply one.

SERVER server-name
Name of the data source to which the data type that you’re mapping from is
defined.

SERVER TYPE server-type
Type of data source to which the data type that you’re mapping from is defined.

Chapter 4. DataJoiner SQL Statements 91

|

|||

|

|

|
|
|
|
|

|
|
|

|
|

Valid values for server-type are the same as those in the SERVER_TYPE column
of SYSCAT.SERVERS (see “SYSCAT.SERVERS” on page 187). These values
cannot exceed 30 characters. Delimited identifiers will be converted to uppercase.

VERSION server-version
Identifies the version of the data source. Valid values for server-version are
composed of digits and, optionally, one or two decimal points. Do not enclose these
values in quotes or place a decimal point at the end of them. For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187. server-version can have up to 18 characters.

If the data source data type is built-in, specifying a value for server-version ensures
that the mapping that you’re defining will apply to this and all future versions of the
specified server type (and protocol, if present).

PROTOCOL ″server-protocol″
Identifies the protocol used in accessing data-source-data-type. Valid values for
″server-protocol″ are the same as those in the SERVER_PROTOCOL column of
SYSCAT.SERVERS (described in “SYSCAT.SERVERS” on page 187).
″server-protocol″ is case-sensitive and cannot exceed 30 characters.

DISTINCT
Indicates that the data type denoted by Remote Type is user-defined.

data-source-schema.
Schema of the data type that you’re mapping from.

data-source-data-type
Data type that you’re mapping from.

p For information about this parameter, see page 93.

s For information about this parameter, see page 93.

FOR BIT DATA
Indicates whether the type denoted by data-source-data-type is for bit data.
DataJoiner will determine this attribute if it is not specified on a character data type.

datajoiner-schema.
Schema of the data type that you’re mapping to. This type is defined to the
DataJoiner database. If this type is built-in, the schema is SYSIBM. Otherwise, if
the type is user-defined, the schema is either SYSFUN or a schema that a user
has created.

DataJoiner Type
The data type that you’re mapping to. It must be defined to the DataJoiner
database. If it’s built-in, do not specify the long form; for example, specify CHAR
instead of CHARACTER. For an explanation of this clause, see the section on
CREATE TABLE in the DB2 SQL Reference for common servers.

92 Application Programming and SQL Reference Supplement

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
||

|
|

|
|

|
|

||

||

|
|
|

|
|
|
|
|

|
|
|
|
|

If you specify an incorrect data type, or a value that isn’t valid for integer, you’ll
receive an error message (for example, SQLCODE -204).

p For a decimal data type, p specifies the maximum number of digits that a value can
have. For other character data types, p specifies the maximum number of
characters that a value can have. If you don’t specify p and the data type requires
it, DataJoiner will determine the best match.

For Informix DATETIME data types, p specifies the first precision. In this instance,
use the field qualifier values listed in Table 5.

Table 5. Field Qualifier Values for Informix DATETIME Data Types

Precision Qualifier

year 0

month 2

day 4

hour 6

minute 8

second 10

fraction(1) 11

fraction(2) 12

fraction(3) 13

fraction(4) 14

fraction(5) 15

[p..p]
For a decimal data type, [p..p] specifies the minimum and maximum number of
digits that a value can have. For other character data types, [p..p] specifies the
minimum and maximum number of characters allowed for an entire value. In all
cases, the maximum must equal or exceed the minimum; and both numbers must
be valid with respect to the data type.

For Informix DATETIME data types, [p..p] specifies an inclusive range of the first
precision. Use the field qualifier values listed in Table 5.

s For a decimal data type, s specifies the maximum number of digits that are allowed
to the right of the decimal point. The number you specify must be valid with respect
to the data type. If you don’t specify a number and the data type requires one,
DataJoiner will determine the best match.

For Informix DATETIME data types, s specifies the second precision value. For
example, in Informix, DATETIME year to month is used to specify the month, which
should be specified with a value of 2 as in Table 5.

[s..s]
For a decimal data type, [s..s] specifies the minimum and maximum number of
digits allowed to the right of the decimal point. The maximum must equal or exceed
the minimum, and both numbers must be valid with respect to the data type.

Chapter 4. DataJoiner SQL Statements 93

|
|

||
|
|
|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|
|
|
|

|
|

||
|
|
|

|
|
|

|
|
|
|

For Informix datetime types, [s..s] specifies an inclusive range of the first precision.
Use the field qualifier values listed in Table 5 on page 93.

p_operand_s
For a decimal data type, p_operand_s specifies a comparison between the
maximum number of digits that a value can have and the maximum number of
digits allowed to the right of the decimal point. For example, the operand =
indicates that the numbers are the same, and the operand > indicates that the first
number is greater than the second. Specify this attribute only if you need to enforce
this level of checking.

CHARACTER (integer) or CHAR(integer)
For a fixed-length character string of length integer, where integer is any whole
number from 1 through 254. The default is 1.

CHARACTER [integer..integer] or CHAR[integer..integer]
For a fixed-length character string whose length lies within the range denoted by
[integer..integer]. The lower bound of the range can be as low as 1; the upper
bound can be as high as 254.

VARCHAR (integer), or CHARACTER VARYING (integer), or CHAR VARYING (integer)
For varying-length character strings of maximum length integer, where integer is
any whole number from 1 through 4000.

VARCHAR [integer..integer], or CHARACTER VARYING [integer..integer], or CHAR

VARYING[integer..integer]
For varying-length character strings whose lengths lie within the range denoted by
[integer..integer]. The lower bound of the range can be as low as 1; the upper
bound can be as high as 4000.

GRAPHIC(integer)
For a fixed-length graphic string of length integer, where integer is any whole
number from 1 through 127. The default is 1.

GRAPHIC[integer..integer]
For a fixed-length graphic string whose lengths lies within the range denoted by
[integer..integer]. The lower bound of the range can be as low as 1; the upper
bound can be as high as 127.

VARGRAPHIC (integer)
For varying-length graphic strings of maximum length integer, where integer is any
whole number from 1 through 2000.

VARGRAPHIC [integer..integer]
For varying-length graphic strings whose lengths lie within the range denoted by
[integer..integer]. The lower bound of the range can be as low as 1; the upper
bound can be as high as 2000.

Notes
v Together, the values for datajoiner-schema and DataJoiner Type make up the

fully-qualified name of the data type that you’re mapping from.

94 Application Programming and SQL Reference Supplement

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

v Together, the value for data-source-schema and the value for data-source-data-type
make up the fully-qualified name of the data type that you’re mapping to.

v If data-source-data-type is case-sensitive at the data source, put double quotes
around the values that you assign to data-source-schema (before the period) and to
data-source-data-type. For example:

CREATE REVERSE TYPE MAPPING ADDRESS_BOOK
FROM SYBASE
DISTINCT TYPE "jones"."address"
TO ADDRESS

In addition, if you’re submitting the CREATE TYPE MAPPING statement from a UNIX
command prompt, put single quotes around the whole statement. For example:

'CREATE REVERSE TYPE MAPPING ADDRESS_BOOK
FROM SYBASE
DISTINCT TYPE "jones"."address"
TO ADDRESS'

If you’re submitting the statement from a Windows NT command prompt, precede
each double quote with a backward slash. For example:

CREATE REVERSE TYPE MAPPING ADDRESS_BOOK
FROM SYBASE
DISTINCT TYPE \"jones\".\"address\"
TO ADDRESS

Examples

You plan to use DataJoiner’s CREATE TABLE statement to create Oracle 8 tables that
can contain dollar amounts. Accordingly, you create a distinct data type for dollar
amounts at the Oracle 8 data sources, and a similar type in a schema called COSTS at
the DataJoiner RDBMS. You call both types MONEY. Before you can create the tables,
you need to create a reverse type mapping between the two data types.

CREATE REVERSE TYPE MAPPING MONEYMAP
FROM SERVER TYPE ORACLE
VERSION 8.0.3
TYPE MONEY
TO COSTS.MONEY

For another example, see page 111.

Chapter 4. DataJoiner SQL Statements 95

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

CREATE SERVER MAPPING

Use the CREATE SERVER MAPPING statement to define a data source to DataJoiner
as a server. After you create this definition, you can use DataJoiner to perform
operations such as:

v Creating nicknames by which DataJoiner can reference tables, views, and stored
procedures stored at the data source

v Creating tables at the data source

v Producing result tables that combine information from this data source with
information from other data sources

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ CREATE SERVER MAPPING FROM server-name TO NODE ″node-name″ Ê

Ê TYPE server-type
DATABASE ″remote-database-name″

Ê

Ê VERSION server-version PROTOCOL ″protocol-name″ Ê

Ê »

CPU RATIO value
IO RATIO value
COMM RATE value

AUTHID name PASSWORD password
AUTHID name

ÊÍ

96 Application Programming and SQL Reference Supplement

|
|
|

|
|

|

|
|

|

|
|

Description
FROM server-name

Identifies the name by which the specified data source database will be known
locally. server-name is a long identifier.

TO NODE ″node-name″
Identifies the node on which the specified data source resides. This field is protocol
dependent and its value varies. For example, DB2 values correspond to entries in
a node directory. An Oracle value corresponds to an entry in the tnsnames.ora file.
A Sybase value corresponds to an entry in the interfaces file. To find out how to
determine ″node-name″ for your data sources, see “Finding Node Names” on
page 51 . ″node-name″ is a long identifier with a maximum of 70 characters and
must be enclosed in double-quotes.

DATABASE ″remote-database-name″
Identifies the specific database on the data source accessed when referring to
server-name. This field is protocol dependent and its value varies. This field is not
required for Oracle data sources because Oracle instances contain only one
database. For Sybase and DB2, this value corresponds to a specific database
within an instance or, if DB2 for OS/390, the database LOCATION value.

The valid values for this field match the allowed values for the DBNAME column in
the catalog view SYSCAT.SERVERS. See “SYSCAT.SERVERS” on page 187 for
details.

DataJoiner defines a unique index on the NODE and DBNAME columns in
SYSCAT.SERVERS. This unique index prevents you from specifying an identical
combination of values for NODE and DATABASE with two different values in the
SERVER column. remote-database-name is a long identifier and must be enclosed
in double-quotes.

TYPE server-type
Identifies the type of data source. Example values include ORACLE, INFORMIX,
and DB2/MVS.

The valid values for this field match the allowed values for the TYPE column in the
catalog view SYSCAT.SERVERS. See “SYSCAT.SERVERS” on page 187 for
details. Delimited identifiers are converted to uppercase automatically.

server-type is an identifier with a maximum of 30 characters.

VERSION server-version
Identifies the version of the data source. Valid values for server-version are
composed of digits and, optionally, one or two decimal points. Do not enclose these
values in quotes or place a decimal point at the end of them. For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187.

Chapter 4. DataJoiner SQL Statements 97

|
|
|

|
||

|
|
|

server-version can have up to 18 characters.

PROTOCOL ″protocol-name″
Identifies the data access protocol used by the data source. The set of valid values
for this field matches the allowed values for the SERVER_PROTOCOL column in
the catalog view SYSCAT.SERVERS. Examples are “drda” and “db2ra”. See
“SYSCAT.SERVERS” on page 187 for details.

″protocol-name″ is case-sensitive and cannot exceed 30 characters.

CPU RATIO value
Represents how much faster or slower the data source CPU is compared to the
local CPU. Valid values are unsigned floating-point constants, unsigned decimal
constants, or unsigned integer constants. For example, if the remote CPU is twice
as fast as the local CPU, enter the value 0.5. If this value is not specified, see
CPU_RATIO in “SYSCAT.SERVERS” on page 187 for the default value.

IO RATIO value
Represents how much faster or slower the data source workstation I/O is compared
to the local workstation. Valid values for value are unsigned floating-point
constants, unsigned decimal constants, or unsigned integer constants. For
example, if the remote workstation I/O is twice as fast as the local workstation I/O,
enter the value 0.5. If this value is not specified, see IO_RATIO in
“SYSCAT.SERVERS” on page 187 for the default value.

COMM RATE value
Represents the communication rate between the data source workstation and the
local workstation. value represents the number of bytes per second; use unsigned
integer constants.

AUTHID name
Specifies the authorization name under which any necessary actions, such as
binding packages that DataJoiner requires, are performed at the data source when
the CREATE SERVER MAPPING statement is processed. The name must hold the
authority (BINDADD or its equivalent) that the necessary actions require.

Type name in the case required by the data source; if any letters in name must be
in lowercase, enclose name in quotation marks. If you don’t specify an
authorization name, the one under which you connected to DataJoiner will be used.

PASSWORD password
Specifies the password associated with the authorization name represented by
name. Type password in the case required by the data source; if any letters in
password must be in lowercase, enclose password in quotation marks.

If you specify name but not password, you’re indicating that there’s no need to
validate the password.

Notes

Identifiers without delimiters are converted to uppercase in SYSCAT.SERVERS. The
following examples show how you can use quotes to pass case-sensitive characters to
specific columns in SYSCAT.SERVERS.

98 Application Programming and SQL Reference Supplement

||

|
|
|
|

|

|
|
|
|

|
|
|

Examples

Example 1: Create a server mapping with a specified database.

CREATE SERVER MAPPING FROM SYBASE1
TO NODE "Sybase1"
DATABASE "test_db"
TYPE SYBASE
VERSION 10.0
PROTOCOL "ctlib"

Example 2: Create a server mapping with a specified CPU ratio.

CREATE SERVER MAPPING FROM ORACLE1
TO NODE "mvpdb0"
TYPE ORACLE
VERSION 7.0
PROTOCOL "sqlnet"
CPU RATIO 2.0

Chapter 4. DataJoiner SQL Statements 99

CREATE SERVER OPTION

Use the CREATE SERVER OPTION statement to set configuration options that persist
for multiple connections to specific servers, or to servers of a specific type. With these
options, you can optimize performance and control certain interactions between
DataJoiner and data sources. The catalog view SYSCAT.SERVER_OPTIONS contains
the server option settings. For an introduction to the CREATE SERVER OPTION
statement, see “Server Options” on page 11.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ CREATE SERVER OPTION option-name FOR Remote Server Clause Ê

Ê SETTING option-value ÊÍ

Remote Server Clause

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Description
option-name

Is the name of the server option. Valid option-name values are listed in Table 2 on
page 17. option-name is an identifier; it cannot exceed 30 characters.

SERVER server-name
Identifies the server to which option-name applies. This field must match an entry
in the SERVER column of the SYSCAT.SERVERS catalog view (see
“SYSCAT.SERVERS” on page 187). server-name is a long identifier.

100 Application Programming and SQL Reference Supplement

|
|
|
|
|
|

|

|
|

|
|
|

SERVER TYPE server-type
Identifies the type of server to which option-name applies. Example values include
DB2/MVS, ORACLE, and informix. Valid values for server-type match those listed
for the SERVER_TYPE column of SYSCAT.SERVERS_OPTIONS catalog view
(see Table 43 on page 196). Values for server-type values cannot exceed 30
characters. Delimited identifiers will be converted to uppercase.

VERSION server-version
Identifies the version of the server to which option-name applies. Valid values for
server-version are composed of digits and, optionally, one or two decimal points.
Do not enclose these values in quotes or place a decimal point at the end of them.
For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187 .

server-version can have up to 18 characters.

PROTOCOL ″server-protocol″
Identifies the server protocol to which option-name applies. Field values must
match one of the allowed entries for the SERVER_PROTOCOL column of the
SYSCAT.SERVERS_OPTIONS catalog view (see Table 43 on page 196).
″server-protocol″ is case-sensitive and cannot exceed 30 characters.

SETTING option-value
Identifies the option setting. Valid values for option-value depend on the value
entered for option-name. See the examples below. option-value can be an integer
constant, floating-point constant, decimal constant, or character literal. If it’s a
character literal, it can contain up to 254 characters and must be enclosed in single
quotes. For descriptions of valid option-values, see “Summary of Server Options
and Their Settings” on page 17.

Notes
v Server options can be in uppercase or lowercase (case does not matter).

v If you set an option to one value for a server type, and set this same option to
another value for an instance of the type, the second value overrides the first one for
the instance. For example, suppose that you set two_phase_commit to ’y’ for server
type ORACLE and to ’n’ for an Oracle server named DELPHI. As a result, DELPHI
won’t operate in two-phase commit mode, but all other Oracle servers will.

v There is a unique index on the catalog columns (OPTION, SERVER,
SERVER_TYPE, SERVER_VERSION, SERVER_PROTOCOL); therefore, an existing
server option cannot be duplicated. Use the ALTER SERVER OPTION statement to
change server options.

v For an overview of the SQL for setting server options, see “Server Options” on
page 11 . For additional information about the CREATE SERVER OPTION statement,
see the DataJoiner Administration Supplement.

Chapter 4. DataJoiner SQL Statements 101

|
|
|
|

|
||

|
|
|

||

|
|
|
|
||

Examples

Example 1: Enable two-phase commit for server WRANGLER.

CREATE SERVER OPTION TWO_PHASE_COMMIT
FOR SERVER WRANGLER
SETTING 'y'

Example 2: Indicate that the collating sequence at all Oracle data sources is
case-insensitive.

CREATE SERVER OPTION COLSEQ
FOR SERVER TYPE ORACLE
SETTING 'i'

Example 3: Send all Oracle passwords to, and validate them at, Oracle data sources.

CREATE SERVER OPTION PASSWORD
FOR SERVER TYPE ORACLE
SETTING 'y'

Example 4: Make push down optimization available for all Sybase data sources.

CREATE SERVER OPTION PUSHDOWN
FOR SERVER TYPE SYBASE
SETTING 'y'

102 Application Programming and SQL Reference Supplement

CREATE STORED PROCEDURE NICKNAME

Use the CREATE STORED PROCEDURE NICKNAME statement to create a nickname
for a remote stored procedure. This statement is actually an extension to the CREATE
NICKNAME statement. CREATE STORED PROCEDURE NICKNAME creates entries in
the system catalog; these entries can be seen in the catalog views
SYSCAT.PROCEDURES and SYSCAT.PROCPARMS.

Before using nicknames, review “Considerations and Restrictions” on page 24 to be
sure you understand the restrictions on their usage.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either SYSADM or
DBADM authority on the DataJoiner database. The authorization ID must also have
authorization at the data source to access both the data source system catalog and the
stored procedure that you’re creating a nickname for.

Syntax

ÊÊ CREATE STORED PROCEDURE NICKNAME stored-procedure-nickname Ê

Ê FOR remote-object-name Ê

Ê

»

,

(IN Remote Type)
OUT parameter-name
INOUT

ÊÍ

Remote Type

REMOTE TYPE data-source-data-type Local Type
NOT NULL

Local Type

LOCAL TYPE DataJoiner Data Type
NOT NULL

Chapter 4. DataJoiner SQL Statements 103

|
|
|
|
|

|

|
|
|
|

DataJoiner Data Type

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) FOR BIT DATA
VARCHAR (integer)
CHARACTER VARYING
CHAR VARYING

LONG VARCHAR
BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Description
stored-procedure-nickname

Represents a short identifier with or without a qualifier. If no qualifier is supplied,
the authorization ID of the statement is used as the default value. A nickname
cannot exceed 8 characters. The qualifier must not be SYSIBM.

remote-object-name
Represents a two- or three-part name.

v If you’re creating a nickname for a table or view at a data source that supports
schemas, remote-object-name is:

data-source-name.remote-authorization-name.remote-table-name

—where:

data-source-name
Is a value in the SERVER column of the SYSCAT.SERVERS view. This
value can’t have more than 18 characters.

remote-authorization-name
Is the schema to which the table or view belongs. This value can’t have
more than 128 characters.

104 Application Programming and SQL Reference Supplement

remote-table-name
Is the unique name or an alias of the table or view. This value can’t have
more than 128 characters.

v If the data source doesn’t support schemas, remote-object-name is:

data-source-name.remote-table-name

If remote-authorization-name or remote-table-name is case-sensitive at the data
source, enclose it in delimiters. For example:

sybase1."myschema"."myview"

Be sure to put the period that separates these names outside the delimiters.
Otherwise, the period is considered part of the delimited string and does not act as
a separator. For example, A."B"."C" is the correct form, but A."B.C" is not. Delimited
identifiers must be used for stored procedure names that are case-sensitive at the
data source.

data-source-data-type
The data type of the stored procedure as defined on the data source. This value
cannot exceed 128 characters.

DataJoiner Data Type
Providing one of the listed data types (shown in the syntax diagram on page
“Syntax” on page 103) is optional. If no data type is provided, DataJoiner uses the
catalog view SYSCAT.SERVER_DATATYPES to derive the DataJoiner data type.
For the definitions for the listed data types, see the CREATE TABLE section in
DATABASE 2 SQL Reference for common servers.

Notes
v A stored procedure nickname must not be the same as the name of a local stored

procedure; otherwise, the local stored procedure is used instead of the procedure
identified by the nickname.

v The parameters specified in the CREATE STORED PROCEDURE NICKNAME
statement should describe only the input and output parameters of a stored
procedure, not any result sets that the stored procedure returns.

v If you specify both a REMOTE TYPE and a LOCAL TYPE for an input or output
parameter, no checking is done at CREATE STORED PROCEDURE NICKNAME run
time to ensure that the data types are compatible.

v Remote types correspond to the remote schema and remote type name specified in
the catalog view SYSCAT.SERVER_DATATYPES.

v Because data types might be incompatible between data sources, DataJoiner makes
minor adjustments to store remote catalog data locally as needed. See “Data Type
Mappings” on page 26 for details.

Examples

Example 1: Create a nickname for a stored procedure that resides at a Sybase data
source (no parameters).

Chapter 4. DataJoiner SQL Statements 105

|
|

|

|
|
|
|
|

CREATE STORED PROCEDURE NICKNAME S_SIMPLE FOR SYBASE1."j15user1"."simple"

Example 2: Create a nickname for a stored procedure that resides at a Sybase data
source (input parameter).

CREATE STORED PROCEDURE NICKNAME S_IN
FOR SYBASE1."j15user1"."simp_in"
(IN C1
REMOTE TYPE "dbo"."char"(15))

Note: The data type specification matches the remote schema and remote type name
specified in SYSCAT.SERVER_DATATYPES.

Example 3: Create a nickname for a stored procedure that resides at a Sybase data
source (input and output parameters).

CREATE STORED PROCEDURE NICKNAME S_INOUT
FOR SYBASE1."j15user1"."simp_inout"
(IN QUANTITY
REMOTE TYPE "dbo"."int",
OUT FRUIT
REMOTE TYPE "dbo"."char"(5))

106 Application Programming and SQL Reference Supplement

CREATE TABLE

Use this statement to create tables at the following types of data sources: DB2 Family,
Generic, Informix, Microsoft SQL Server, Oracle, SQL Anywhere, and Sybase. With this
statement, you can define a data source table’s name, columns, and primary key (or
keys). You can also define an option that’s unique to the data source’s native CREATE
TABLE statement; for example, the IN DATABASE option in the DB2 for OS/390
CREATE TABLE statement. To define additional attributes—for example, foreign keys,
check constraints, and table space options—use the data source’s native CREATE
TABLE statement in a DataJoiner pass-through session.

You cannot use this statement to create tables for the DataJoiner database. To create
these tables, use the DB2 for CS CREATE TABLE statement.

For the combined syntax of the DataJoiner and DB2 for CS CREATE TABLE
statements, see “Appendix C. Combined DataJoiner and DB2 for CS Syntax for
CREATE TABLE” on page 167.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions on the DataJoiner database:

v SYSADM authority

v DBADM authority

v CREATETAB privilege

The authorization ID must also have authority at the data source to create data source
tables.

Syntax

ÊÊ CREATE TABLE table-name »

,

(Column Definition)
Primary Key Constraint

Ê

Ê IN server-name
REMOTE OPTION ‘remote-option’

ÊÍ

Chapter 4. DataJoiner SQL Statements 107

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|

||

|

|
|

|

|

|

|
|

|

|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||

|
|

Column Definition

column-name Data Type »

NOT NULL
PRIMARY KEY

Data Type

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) (1)
VARCHAR (integer) FOR BIT DATA
CHARACTER VARYING
CHAR VARYING

LONG VARCHAR

BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Notes:

1. You can specify FOR BIT DATA in random order with the other column constraints
that follow.

Primary Key Constraint

CONSTRAINT constraint-name
PRIMARY KEY »

,

(column-name)

108 Application Programming and SQL Reference Supplement

|

||||||||||||||||||||||||||||||

|

|

||

|

|

|
|

|

|||||||||||||||||||||||||||||

|

Description
table-name

Name of the table that you’re creating, with or without a qualifier. The name cannot
be the same as any alias, view name, or other table name in the DataJoiner
catalog.

You can qualify the name with the name of a local schema (other than SYSIBM,
SYSCAT, and SYSSTAT). If you do, this schema name will be used as the qualifier
in the table’s fully-qualified name. If you don’t specify a qualifier, the qualifier in the
fully-qualified name will be your authorization ID at the data source.

Note on the table’s nickname: When the table is created, DataJoiner
automatically creates a nickname for it. If you
specified a table name qualified by a local
schema name, the fully-qualified nickname will be
the same as the name and qualifier that you
specified. If you specified a table name without a
qualifier, the fully-qualified nickname will be the
name that you specified, qualified by your local
authorization ID.

column-name
Name of a table column, without a qualifier. The name cannot be the same as that
of any other column in the table.

Data Type
The data type of the values of the column specified in the column-name parameter.
This data type is defined to the DataJoiner database. It’s valid for the table that
you’re creating only if there’s a reverse mapping between it and a data type at the
data source where the table resides. To find out what reverse mappings exist
between data source types and types defined to the DataJoiner database, query
the SYSCAT.REVTYPEMAPPINGS catalog view (documented on page 184). This
view shows both default and user-defined mappings. For lists of default mappings
only, see “Appendix B. Default Reverse Type Mappings” on page 155. If you don’t
find a mapping that you need, you can create it with the CREATE REVERSE TYPE
MAPPING statement (described on page 89).

For an explanation of the keywords and parameters in the Data Type clause, see
DATABASE 2 SQL Reference for common servers.

NOT NULL
The column specified in the column-name parameter cannot contain nulls. If you
don’t specify this option, the column will be marked nullable by default.

PRIMARY KEY
Indicates that the column that you’re defining is to be a primary key. Be aware that
a column used as a primary key cannot be nullable.

If you want the primary key to consist of a single column, you can specify the key
in either the Column Definition clause or in the Primary Key Constraint clause. For
example, if you’re defining a column named C, and you want to designate it as a
primary key, you can do so in either of the following ways:

Chapter 4. DataJoiner SQL Statements 109

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

v In the Column Definition clause, specify:

PRIMARY KEY

v In the Primary Key Constraint clause, specify:

PRIMARY KEY (C)

Primary Key Constraint
For an explanation of this clause, see DATABASE 2 SQL Reference for common
servers. Be aware that the columns in a primary key cannot be nullable.

IN server-name
Name of the data source at which the table is to reside.

REMOTE OPTION ‘remote-option’
Any option within the data source’s native CREATE TABLE DDL that’s specific to
the data source. For example, the CREATE TABLE DDL for DB2 for OS/390
includes syntax for specifying the database in which a table is to be stored. If
you’re creating a DB2 for OS/390 table that you want stored in a database called
TEST01, you could specify:

REMOTE OPTION 'IN DATABASE TEST01'

Notes
v Some data sources do not support DDL in two-phase commit mode. If you’re

creating a table for such a data source, and this data source is configured for
two-phase commit transactions, you need to reconfigure it so that it can commit the
CREATE TABLE statement in one phase. To do this for a single unit of work, follow
either of these procedures:

– Use the SET SERVER OPTION statement to set the two_phase_commit server
option to ’n’. Place the statement immediately after the CONNECT statement.

– Place any CREATE REVERSE TYPE MAPPING statements that you code and
the CREATE TABLE statement immediately after the CONNECT statement.

To reconfigure a data source for one-phase commits indefinitely, run an ALTER
SERVER OPTION statement in which the two_phase_commit option for the data
source is set to ’N’.

For information about the SET SERVER OPTION and ALTER SERVER OPTION
statements, see “Using Server Options to Configure Data Sources” on page 11.

v After the table is created, you can use pass-through to define attributes for it that the
data-source supports; for example, data source-specific constraints and indexes.

Examples

Example 1: Create a table with four columns at a Sybase data source called SYBASE1.
Assume that:

v The DataJoiner and data source authorization IDs under which your CREATE TABLE
statement will be processed are HOMEUSR1 and SYUSR1, respectively.

110 Application Programming and SQL Reference Supplement

|

|

|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|
|

|
||

|
|

|

|
|

|
|

v You want the table’s name to be qualified by SYUSR1 by default.

v You want the first two columns to comprise a primary key called LARGO.

v Earlier, in a pass-through session, you used Sybase SQL to create a segment, called
MY_SEGMENT, to hold the table.

CREATE TABLE T1
(C1 INT NOT NULL,
C2 CHAR(2) NOT NULL,
C3 CHAR(3),
C4 CHAR(2),
CONSTRAINT LARGO
PRIMARY KEY (C1, C2))
IN SYBASE1
REMOTE OPTION 'ON MY_SEGMENT'

After this statement is processed, the table’s fully-qualified name will be SYUSR1.T1,
and its fully-qualified nickname will be HOMEUSR1.T1.

Example 2: You want to create Oracle 8 tables with decimal values that have:

v A maximum precision of 30

v A scale that can vary from 1 to 4 digits

Because the scale can vary, the Oracle data type for these
values—NUMBER(30,4)—must be mapped to by a DataJoiner-supported data type with
floating decimal points; namely, DOUBLE.

In one unit of work, you create:

v This mapping.

v A table T2 in an Oracle 8 data source called DELPHI. In T2, column C1 is to be the
primary key. Column C2 is for the decimal values.

CONNECT TO LOCAL_DB;
CREATE REVERSE TYPE MAPPING NEWMAP

FROM SERVER TYPE ORACLE
VERSION 8.0.3
TYPE NUMBER(30,4)
TO SYSIBM.DOUBLE;

CREATE TABLE T2
(C1 CHARACTER NOT NULL PRIMARY KEY,
C2 DOUBLE)
IN DELPHI

Chapter 4. DataJoiner SQL Statements 111

|

|

|
|

|
|
|
|
|
|
|
|
|

|
||

|

|

|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

CREATE TYPE MAPPING

Use this statement to create a mapping between these data types:

v A data type of a column of a data source table or view that you plan to define to
DataJoiner

v A corresponding data type that’s local to DataJoiner. This corresponding data type
will be defined locally for the column when you define the table or view to DataJoiner.

A data type mapping that determines what type is to be locally defined for a column of
a data source table or view is called a forward type mapping.

You need to create a forward type mapping only if an existing one doesn’t meet your
requirements. To find out what default forward type mappings exist, you might check
“Appendix A. Default Forward Type Mappings” on page 135. For listings of all forward
type mappings—default and non-default—query the SYSCAT.SERVER_DATATYPES
view (described in “SYSCAT.SERVER_DATATYPES” on page 190).

For more information about forward type mappings, see “Data Type Mappings” on
page 26 .

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ CREATE TYPE MAPPING FROM Local Type
type-mapping-name

TO Ê

Ê Remote Server TYPE Remote Type Name
DISTINCT

ÊÍ

Local Type

datajoiner-schema.
DataJoiner Data Type

NOT NULL

112 Application Programming and SQL Reference Supplement

|

|
|

|
|
|
|
|

|
|

|

|
|

DataJoiner Data Type

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) FOR BIT DATA
VARCHAR (integer)
CHARACTER VARYING
CHAR VARYING

LONG VARCHAR
BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Remote Server

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Remote Type Name

data-source-schema.
data-source-data-type Ê

Chapter 4. DataJoiner SQL Statements 113

Ê
(p)

[p..p] ,s p=s FOR BIT DATA
,[s..s] p>s

p<s
p>=s
p<=s
p<>s

Description
type-mapping-name

Identifies the data type mapping. The name must not identify a data type mapping
that is already described in SYSCAT.SERVER_DATATYPES. type-mapping-name
cannot exceed 18 characters. If type-mapping-name is not specified, DataJoiner
generates a unique name.

datajoiner-schema.
Is the name of the schema of a data type that’s defined to the DataJoiner database
and that you want to map to a data type at a data source. If the data type at the
DataJoiner database is built-in, the schema is SYSIBM. Otherwise, if this data type
is user-defined, the schema is either SYSFUN or a schema that a user created.

DataJoiner Data Type
Identifies a data type that’s defined to the DataJoiner database and that you want
to map to a data type at a data source. For an explanation of this clause, see the
discussion of the CREATE TABLE statement in DATABASE 2 SQL Reference for
common servers .

If you specify an incorrect data type, or a value that isn’t valid for integer, you’ll
receive an error message (for example, SQLCODE -204).

SERVER TYPE server-type
Identifies the type of server to which data-source-data-type is defined. Valid values
for server-type are the same as those in the SERVER_TYPE column of
SYSCAT.SERVERS (see “SYSCAT.SERVERS” on page 187). These values cannot
exceed 30 characters. Delimited identifiers are converted to uppercase.

VERSION server-version
Identifies the version of the server to which data-source-data-type is defined. Valid
values for server-version are composed of digits and, optionally, one or two decimal
points. Do not enclose these values in quotes or place a decimal point at the end
of them. For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187.

server-version can have up to 18 characters.

114 Application Programming and SQL Reference Supplement

|
|
|
|

|
||

|
|
|

|

If the data source data type is built-in, specifying a value for server-version ensures
that the mapping that you’re defining will apply to this and all future versions of the
specified server type (and protocol, if present).

PROTOCOL ″server-protocol″
Identifies the protocol used in accessing data-source-data-type. Valid values for
server-protocol are the same as those in the SERVER_PROTOCOL column of
SYSCAT.SERVERS (see “SYSCAT.SERVERS” on page 187). These values are
case-sensitive and cannot exceed 30 characters.

DISTINCT
Indicates that you’re mapping the type denoted by DataJoiner Data Type to a
user-defined data type. Be sure to specify this keyword when it applies; otherwise,
DataJoiner might not generate the required casting operator for SQL statements at
the data source.

data-source-schema.
Is the name of the schema of data type to which you’re mapping the type denoted
by DataJoiner Data Type .

data-source-data-type
Is the data type to which you’re mapping the type denoted by DataJoiner Data
Type . data-source-data-type can be either built-in or user-defined. If it’s built-in, do
not specify the long form; for example, specify CHAR instead of CHARACTER.

p For a decimal data type, p specifies the maximum number of digits that a value can
have. For all other data types for character data, p specifies the maximum number
of characters that a value can have. If you don’t specify p and the data type
requires it, DataJoiner will determine the best match.

For Informix DATETIME data types, p specifies the first precision. In this instance,
use the field qualifier values listed in Table 5 on page 93.

Table 6. Field Qualifier Values for Informix DATETIME Data Types

Precision Qualifier

year 0

month 2

day 4

hour 6

minute 8

second 10

fraction(1) 11

fraction(2) 12

fraction(3) 13

fraction(4) 14

fraction(5) 15

[p..p]
For a decimal data type, [p..p] specifies the minimum and maximum number of

Chapter 4. DataJoiner SQL Statements 115

|
|
|

|
|
|
|

|

digits that a value can have. For all other data types for character data, [p..p]
specifies the minimum and maximum number of characters that a value can have.
In all cases, the maximum must equal or exceed the minimum; and both numbers
must be valid with respect to the data type.

For Informix DATETIME data types, [p..p] specifies an inclusive range of the first
precision. Use the field qualifier values listed in Table 5 on page 93.

s For a decimal data type, s specifies the allowable maximum number of digits to the
right of the decimal point. The number you specify must be valid with respect to the
data type. If you don’t specify a number and the data type requires one, DataJoiner
will determine the best match.

For Informix DATETIME data types, s specifies the second precision value. For
example, in Informix, DATETIME year to month is used to specify the month, which
should be specified with a value of 2 as in Table 5 on page 93.

[s..s]
For a decimal data type, [s..s] specifies the minimum and maximum number of
digits allowed to the right of the decimal point. The maximum must equal or exceed
the minimum, and both numbers must be valid with respect to the data type.

For Informix datetime types, [s..s] specifies an inclusive range of the first precision.
Use the field qualifier values listed in Table 5 on page 93.

p_operand_s
For a decimal data type, p_operand_s specifies a comparison between the
maximum number of digits allowed to the left of the decimal point and the
maximum number of digits allowed to the right of the decimal point. For example,
the operand = indicates that the numbers are the same, and the operand >
indicates that the first number is greater than the second. Specify this attribute only
if you need to enforce this level of checking.

FOR BIT DATA
Indicates whether data-source-data-type is for bit data. DataJoiner will determine
this attribute if it is not specified on a character data type.

Notes
v Together, the values for datajoiner-schema and DataJoiner Data Type constitute the

fully-qualified name of a data type that’s defined to the DataJoiner database. In this
name, the value for datajoiner-schema qualifies the value for DataJoiner Data Type .

v Together, the values for data-source-schema and data-source-data-type constitute
the fully-qualified name of a data type that’s defined to a data source. In this name,
the value for data-source-schema qualifies the value for data-source-data-type.

v If data-source-data-type is case-sensitive at the data source, put double quotes
around the values that you assign to data-source-schema (before the period) and to
data-source-data-type. For example:

CREATE TYPE MAPPING DBO_AU_ID
FROM SYSIBM.CHAR(11)
TO SERVER TYPE MSSQLSERVER
TYPE "dbo"."id"

116 Application Programming and SQL Reference Supplement

|
|
|
|

|
|

|
|
|

|
|
|
|

In addition, if you’re submitting the CREATE TYPE MAPPING statement from a UNIX
command prompt, put single quotes around the whole statement. For example:

'CREATE TYPE MAPPING DBO_AU_ID
FROM SYSIBM.CHAR(11)
TO SERVER TYPE MSSQLSERVER
TYPE "dbo"."id"'

If you’re submitting the statement from a Windows NT command prompt, precede
each double quote with a backward slash. For example:

CREATE TYPE MAPPING DBO_AU_ID
FROM SYSIBM.CHAR(11)
TO SERVER TYPE MSSQLSERVER
TYPE \"dbo\".\"id\"

Examples

Example 1: Map SYSIBM.DATE, which is defined to the DataJoiner database, to the
Oracle data type DATE at all Oracle servers.

CREATE TYPE MAPPING MY_ORACLE_DATE
FROM SYSIBM.DATE
TO SERVER TYPE ORACLE1
TYPE DATE

Example 2: Map SYSIBM.DATE, which is defined to the DataJoiner database, to the
Oracle data type DATE at the Oracle server ORACLE1.

CREATE TYPE MAPPING MY_ORACLE_DATE
FROM SYSIBM.DATE
TO SERVER ORACLE1
TYPE DATE

Chapter 4. DataJoiner SQL Statements 117

|
|

|
|
|
|

|
|

|
|
|
|

CREATE USER MAPPING

Use the CREATE USER MAPPING statement to create a mapping between the
authorization ID under which a user accesses the DataJoiner database and the
authorization ID under which this user accesses a data source.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions on the DataJoiner database:

v SYSADM authority

v DBADM authority

v CREATETAB privilege

Syntax

ÊÊ CREATE USER MAPPING FROM local-authid
USER

Ê

Ê TO SERVER server-name AUTHID remote-authid Ê

Ê
PASSWORD remote-password CONNECTOPT ’string’

ÊÍ

Description
FROM local-authid or USER

local-authid identifies the specific authorization ID under which a user connects to
the DataJoiner database. The valid values for this field match the allowed values
for the AUTHID column in the catalog view SYSCAT.REMOTEUSERS. Identifiers
without delimiters are converted to uppercase. See “SYSCAT.REMOTEUSERS” on
page 183 for details. local-authid is a short identifier with a maximum of 8
characters.

USER denotes the special register USER, which specifies the authorization ID
under which you run the CREATE USER MAPPING statement. If you specify
USER, this ID maps automatically to the ID specified by remote-authid.

TO SERVER server-name
Identifies the name of the server containing authid remote-authid. This field must
match an entry in the SERVER column of the SYSCAT.SERVERS catalog view
(see “SYSCAT.SERVERS” on page 187).

118 Application Programming and SQL Reference Supplement

|
|
|

|

|
|

|

|

|

|
|
|
|
|
|
|

|
|
||

|
|
|

The unique index for SYSCAT.REMOTEUSERS includes the AUTHID and
SERVER columns. You cannot specify two rows in this table with identical values
for both of these columns.

server-name is a long identifier.

AUTHID remote-authid
Identifies the authorization ID on the specified server that corresponds to the
local-authid. remote-authid is an identifier that cannot exceed 30 characters.

PASSWORD remote-password
Identifies the password for the remote-authid on the specified server.
remote-password is an identifier that cannot exceed 32 characters.

CONNECTOPT ’string’
Identifies the connect option for the specified server. This value is
protocol-dependent. ’string’ is a character string and has a maximum length of 256
characters.

Notes
v Identifiers without delimiters are converted to uppercase in

SYSCAT.REMOTEUSERS. The following examples show how you can use quotes to
pass case-sensitive characters for each keyword, such as, AUTHID, SERVER, and
PASSWORD.

v If remote-password isn’t specified, the server option for validating passwords
(password) must be set to ’N’ for the server denoted by server-name. For more
information about this option, see “SYSCAT.SERVER_OPTIONS” on page 195.

Examples

Example 1: Create a user mapping.

CREATE USER MAPPING FROM BENHAM
TO SERVER ORACLE1
AUTHID "shawnb"

Example 2: Create a user mapping with a specified password. Use the special register
USER.

CREATE USER MAPPING FROM USER
TO SERVER DB2MVS1
AUTHID "sysadm"
PASSWORD "sysadmpw"

Chapter 4. DataJoiner SQL Statements 119

|
|
|

|

|
|
|
||

|
|
|
|

DESCRIBE CURSOR

Use the DESCRIBE CURSOR SQL statement to return the description of a result set
associated with a cursor. The cursor may be associated with a SELECT or a CALL SQL
statement.

Invocation

You must embed this statement in an application program. It cannot be issued
dynamically.

Authorization

None required.

Syntax

ÊÊ DESCRIBE CURSOR cursor-name INTO descriptor-name ÊÍ

Description
cursor-name

Is the name of a cursor that has been allocated or declared within this application
program. If the cursor was closed by a COMMIT or a ROLLBACK operation, or if
no cursor was allocated or declared, the system returns SQLCODE -504 (The
cursor <name> is not defined).

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the SQLDA
describes the result set associated with the cursor.

The SQLDA that is returned is similar to the SQLDA that is returned on a
DESCRIBE of a select-list. The differences are:

v The first 5 bytes of the SQLDAID field are set to SQLRS.

v Bytes 6 to 8 of the SQLDAID field are reserved.

Data from multi-row or non-uniform result sets will be retrieved with the cursor that
was declared through the ALLOCATE CURSOR SQL statement. Use the FETCH
statement to cause the cursor to point to the rows of the result sets, so that the
rows can be returned to the calling application. Then use the CLOSE statement to
close the cursor.

Examples

Describe a cursor in a stored procedure (application logic fragment).

EXEC SQL DESCRIBE CURSOR CUR1 INTO :OUTPUT_SQLDA

120 Application Programming and SQL Reference Supplement

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

DROP

Use this statement to delete:

v An object from the DataJoiner database. When you delete the object, any objects
that are directly or indirectly dependent on it are also deleted. In addition, its
description is deleted from the catalog, and any packages that reference it are
invalidated.

v A data source table that was created with the DataJoiner CREATE TABLE statement.
When you delete the table, its local specification—its nickname, the names of its
columns, and so on—are deleted from the catalog.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one of the following
permissions:

v SYSADM authority

v DBADM authority

v CONTROL privilege on the object you want to drop

v CONTROL privilege on a table whose index you want to drop

Chapter 4. DataJoiner SQL Statements 121

|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

Syntax

ÊÊ DROP

»

(1)
ALIAS alias-name

(2)
DISTINCT TYPE distinct-type-name
EVENT MONITOR event-monitor-name
FUNCTION function-name

()
,

data-type
(3)

SPECIFIC FUNCTION specific-name
FUNCTION MAPPING function-mapping-name
INDEX index-name
NICKNAME nickname

(4)
PACKAGE package-name
SERVER MAPPING server-name
SERVER OPTION option-name FOR Remote Server Clause
STORED PROCEDURE NICKNAME stored-procedure-nickname
TABLE DataJoiner-table-name

data-source-table-name
TABLESPACE tablespace-name
TRIGGER trigger-name
TYPE MAPPING type-mapping-name
USER MAPPING FROM local-authid TO SERVER server-name

USER
VIEW view-name

ÊÍ

Remote Server Clause

SERVER server-name
SERVER TYPE server-type VERSION server-version Protocol
SERVER TYPE server-type VERSION server-version
SERVER TYPE server-type

Protocol

PROTOCOL ″server-protocol″

Notes:

1. SYNONYM can be used as a synonym for ALIAS.

2. DATA can be used as a synonym for DISTINCT.

3. ROUTINE can be used as a synonym for FUNCTION.

4. PROGRAM can be used as a synonym for PACKAGE.

122 Application Programming and SQL Reference Supplement

Description
FUNCTION MAPPING function-mapping-name

Identifies the function mapping to be dropped. function-mapping-name must be a
user-created function mapping that exists in the catalog view
SYSCAT.SERVER_FUNCTIONS. System function mappings generated by
DataJoiner cannot be dropped. function-mapping-name is a long identifier.

Dropping a local function causes all function mappings dependent on this specific
function to be dropped.

INDEX index-name
Identifies the index to be dropped. The index specified must be described in the
index catalog. When index-name represents index information for a nickname, the
index information is dropped in DataJoiner. The actual index at the data source is
not affected.

NICKNAME nickname
Identifies the nickname to be dropped. The nickname specified must be described
in the catalog. DataJoiner deletes the nickname from the database, along with
information about the column, views, and indexes associated with the nickname.
The table at the data source, for which the nickname was defined, is not affected.

PACKAGE package-name
Identifies the package to be dropped. The package specified must be described in
the catalog.

SERVER MAPPING server-name
Identifies the server mapping to be dropped. The mapping between a local
(DataJoiner) server name and a server database at a data source is dropped. All
nicknames dependent upon that server are dropped. Also, all type mapping, server
mapping, user mapping, and server option catalog entries are similarly dropped. All
plans dependent on the dropped objects are invalidated. server-name is a long
identifier.

SERVER OPTION option-name FOR
Identifies the server option. Valid values for option-name match those listed for the
column OPTION in the catalog view SYSCAT.SERVER_OPTIONS (see
“SYSCAT.SERVER_OPTIONS” on page 195). Values for option-name cannot
exceed 30 characters.

SERVER server-name
Identifies the server to which option-name applies. This parameter identifies the
server that will no longer have the specified server option. This field must match an
entry in the SERVER column of the SYSCAT.SERVERS catalog view. server-name
is a long identifier.

SERVER TYPE server-type
Identifies the type of server to which option-name applies. This parameter identifies
the server type that will no longer have the specified server option. Valid values for
server-type match those listed for the SERVER_TYPE column of

Chapter 4. DataJoiner SQL Statements 123

SYSCAT.SERVER_OPTIONS (see “SYSCAT.SERVER_OPTIONS” on page 195).
Values for server-type cannot exceed 30 characters. Delimited identifiers will be
converted to uppercase.

VERSION server-version
Identifies the version of the server to which option-name applies. Valid values for
server-version are composed of digits and, optionally, one or two decimal points.
Do not enclose these values in quotes or place a decimal point at the end of them.
For example:

VERSION 7
VERSION 8.0.3

The valid values for this field match the allowed values for the VERSION column in
the catalog view SYSCAT.SERVERS. For details, see “SYSCAT.SERVERS” on
page 187.

server-version can have up to 18 characters.

PROTOCOL ″server-protocol″
Identifies the server protocol to which option-name applies. ″server-protocol″ is
case-sensitive and cannot exceed 30 characters.

STORED PROCEDURE NICKNAME stored-procedure-nickname
Represents a short identifier with or without a qualifier. If no qualifier is supplied,
the authorization ID of the statement is used as the default value. A nickname
cannot exceed 8 characters. The qualifier must not be SYSIBM.

TABLE DataJoiner-table-name or data-source-table-name
Identifies the table to be dropped. The table must be described in the catalog and
cannot be a catalog table. All indexes, views, primary keys, and foreign keys
defined on the table are dropped, and all foreign keys that reference the table are
also dropped.

DataJoiner-table-name is a table in the DataJoiner database. data-source-table-
name is a data source table that was created with DataJoiner’s CREATE TABLE
statement.

TYPE MAPPING type-mapping-name
Identifies the data type mapping to be dropped. type-mapping-name must exist in
the catalog view SYSCAT.SERVER_DATATYPES. System type mappings
generated by DataJoiner cannot be dropped. type-mapping-name is a long
identifier.

Dropping a local distinct type causes all functions (and also all function mappings
dependent on the function) that use that data type to be dropped. Also, dropping a
local distinct type causes all type mappings dependent on that local data type to be
dropped.

USER MAPPING FROM local-authid or USER TO SERVER server-name
Identifies the mapping to be dropped between a local DataJoiner authorization ID
and the authorization ID on the specified data source server. The variables
local-authid or USER identify the local authorization ID. local-authid is a specific ID.

124 Application Programming and SQL Reference Supplement

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Its values must be a maximum of 8 characters and are automatically changed to
uppercase. USER refers to the special register USER, which stands for the
authorization ID under which you run the DROP statement. Therefore, if you’re
dropping a mapping between this ID and a remote one, you can specify USER
rather than the ID itself.

server-name is the name of the server that is accessible under an authorization ID
to which local-authid or USER maps.

VIEW view-name
Identifies the view to be dropped. The view specified must be described in the
catalog and cannot be a catalog view. The definition of the view is deleted from the
catalog. The definition of any view that is directly or indirectly dependent on that
view is also deleted.

Notes

When dropping objects, be aware of object dependencies. Ensure that you want all
associated objects to be dropped.

Examples

Example 1: Drop table CORPDATA.TDEPT.

DROP TABLE CORPDATA.TDEPT

Example 2: Drop server mapping DJTOSYBASE1.

DROP SERVER MAPPING DJTOSYBASE1

Example 3: Drop the user mapping SHAWN from the server ORACLE1.

DROP USER MAPPING FROM SHAWN TO SERVER ORACLE1

Example 4: Drop the view VDEPT.

DROP VIEW VDEPT

Example 5: Drop the nickname A1.

DROP NICKNAME A1

Example 6: Drop the two-phase commit server option for a particular server.

DROP SERVER OPTION TWO_PHASE_COMMIT FOR SERVER SYBASE1

Example 7: Drop the two-phase commit server option for a specific server type and
version.

DROP SERVER OPTION TWO_PHASE_COMMIT
FOR SERVER TYPE INFORMIX
VERSION 4.1

Chapter 4. DataJoiner SQL Statements 125

|
|
|
|
|

|
|

GRANT PASSTHRU

Use the GRANT PASSTHRU statement to grant a user or group the authority to query
a specified server in pass-through mode.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either DBADM or
SYSADM authority on the DataJoiner database.

Syntax

ÊÊ GRANT PASSTHRU ON SERVER server-name TO Ê

Ê »

,

authorization-name
USER
GROUP

PUBLIC

ÊÍ

Description
SERVER server-name

Identifies the server on which you’re granting pass-through authority. This field
must match an entry in the SERVER column of the SYSCAT.SERVERS catalog
view (see “SYSCAT.SERVERS” on page 187). server-name is a long identifier.

Examples

Example 1: Give users whose user IDs are SMITH and JONES the authority to pass
through to server SERVALL.

GRANT PASSTHRU ON SERVER SERVALL
TO USER SMITH,
USER JONES

Example 2: Grant PASSTHRU authority on server EASTWING to a group whose ID is
D024. There is a user whose ID is also D024.

GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

126 Application Programming and SQL Reference Supplement

|
|

|

|
|

The GROUP keyword must be specified; otherwise, an error will occur because D024 is
a user’s ID as well as the specified group’s ID. Any member of group D024 will be
allowed to pass through to EASTWING. Therefore, if user D024 belongs to the group,
this user will be able to pass through to EASTWING.

Chapter 4. DataJoiner SQL Statements 127

REVOKE PASSTHRU

Use the REVOKE PASSTHRU statement to revoke a user’s or group’s authority to
query a specified server in pass-through mode.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold either DBADM or
SYSADM authority on the DataJoiner database.

Syntax

ÊÊ REVOKE PASSTHRU ON SERVER server-name FROM Ê

Ê »

,

authorization-name
USER
GROUP

PUBLIC

ÊÍ

Description
SERVER server-name

Identifies the server for which you’re revoking pass-through authority. This field
must match an entry in the SERVER column of the SYSCAT.SERVERS catalog
view (see “SYSCAT.SERVERS” on page 187). server-name is a long identifier.

Examples

Example 1: Revoke USER6’s authority to pass through to server MOUNTAIN.

REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

Example 2: Revoke group D024’s authority to pass through to server EASTWING.

REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will be no longer be able to use their group ID to pass
through to EASTWING. But if any members have authority to pass through to
EASTWING under their user IDs, they will retain this authority.

128 Application Programming and SQL Reference Supplement

|
|

|

|
|

SET PASSTHRU

Use the SET PASSTHRU statement open a session for submitting a data source’s
native SQL directly to that data source.

Invocation

You issue this statement dynamically.

Authorization

The authorization ID under which you run this statement must carry authorization to:

v Pass through to the data source. For information about how this authority is granted,
see “Pass-Through Sessions for Querying Data Sources in Their Own SQL” on
page 8 and “GRANT PASSTHRU” on page 126.

v Satisfy security measures at the data source.

Syntax

ÊÊ SET PASSTHRU data-source-name ÊÍ

Description
data-source-name

Represents the data source name in the SERVER column of the
SYSCAT.SERVERS catalog view.

Notes

For factors to consider and restrictions to observe when you use pass-through, see
“Considerations and Restrictions” on page 10.

Examples

Example 1: Start a pass-through session to the data source BACKEND.

STRCPY (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

Example 2: Start a pass-through session with a PREPARE statement.

STRCPY (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL PREPARE STMT FROM :PASS_THRU;
EXEC SQL EXECUTE STMT;

Example 3: Start a pass-through session and perform updates at the data source.

Chapter 4. DataJoiner SQL Statements 129

|
|

|

|
|
|

|

EXEC SQL DECLARE CURSOR C1 FOR native mode
SELECT * FROM AS1T1; alias for a table at BACKEND1

EXEC SQL OPEN CURSOR C1;
EXEC SQL FETCH C1 INTO :HV;
EXEC SQL UPDATE AS2T2 native mode

SET COL1='1' WHERE COL2='X'; alias to a table at BACKEND2
STRCPY (PASS_THRU,"SET PASSTHRU BACKEND2");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;
EXEC SQL PREPARE STMT2 pass-through mode

FROM "CREATE UNIQUE
CLUSTERED INDEX TABLE2_INDEX
ON USER2.TABLE2 table is not an
WITH IGNORE DUP KEY"; alias

EXEC SQL EXECUTE STMT2;
EXEC SQL UPDATE AS2T1 native mode

SET COL1='2' WHERE COL2='Y'; alias to a table at BACKEND2
strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

130 Application Programming and SQL Reference Supplement

SET PASSTHRU RESET

Use the SET PASSTHRU RESET statement to terminate one or more pass-through
sessions.

Invocation

You issue this statement dynamically.

Authorization

None required.

Syntax

ÊÊ SET PASSTHRU RESET ÊÍ

Examples

Example 1: End a pass-through session.

STRCPY (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

Example 2: Use the PREPARE and EXECUTE statements to end a pass-through
session.

STRCPY (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL PREPARE STMT FROM :PASS_THRU_RESET;
EXEC SQL EXECUTE STMT;

Chapter 4. DataJoiner SQL Statements 131

|
|

|

|
|

|
|
|

SET SERVER OPTION

Use the SET SERVER OPTION statement to set configuration options that persist while
an application client is connected to a specific server. With these options, you can help
to optimize performance while the connection is in effect. After the connection ends,
options set by the CREATE SERVER OPTION or ALTER SERVER OPTION statement
are reinstated. The catalog view SYSCAT.SERVER_OPTIONS contains the server
option settings.

Invocation

You can embed this statement in an application program or issue it dynamically.

Authorization

The authorization ID under which you run this statement must hold one SYSADM or
DBADM authority on the DataJoiner database.

Syntax

ÊÊ SET SERVER OPTION option-name TO option-value FOR SERVER server-name ÊÍ

Description
option-name

Is the name of the server option. Valid option-name values are listed after the
OPTION column definition for the catalog view SYSCAT.SERVER_OPTIONS (see
“SYSCAT.SERVER_OPTIONS” on page 195). option-name is an identifier; it cannot
exceed 30 characters.

TO option-value
Identifies the option setting. Valid values for option-value depend on the value of
option-name. See the examples in this section. option-value can be an integer
constant, floating-point constant, decimal constant, or character literal. If it’s a
character literal, it can contain up to 254 characters, and it must be enclosed in
single quotes. For descriptions of valid option-values, see “Summary of Server
Options and Their Settings” on page 17.

SERVER server-name
Identifies the server to which option-name applies. This field must match an entry
in the SERVER column of the SYSCAT.SERVERS catalog view (see
“SYSCAT.SERVERS” on page 187). server-name is a long identifier.

Notes
v Server options can be entered in uppercase or lowercase (case does not matter).

v You must specify the SET SERVER OPTION statement immediately after the
CONNECT statement.

132 Application Programming and SQL Reference Supplement

|
|
|
|
|
|

|

|
|

v For an overview of the SQL for setting server options, see “Server Options” on
page 11 . For additional information about the SET SERVER OPTION statement, see
the DataJoiner Administration Supplement.

Examples

Example 1: Server SYBASE1 is defined to DataJoiner database DJDB. During a
specific session with a database on SYBASE1, have the database operate in
two-phase commit mode.

CONNECT TO DJDB
SET SERVER OPTION TWO_PHASE_COMMIT
TO 'y'
FOR SERVER SYBASE1

Example 2: Server RATCHIT is defined to DataJoiner database DJDB. A database on
RATCHIT is configured for a case-insensitive collating sequence that differs from the
one configured for DJDB. You want DataJoiner to recognize this difference during a
specific session between an application and the database on RATCHIT.

CONNECT TO DJDB
SET SERVER OPTION COLSEQ
TO 'i'
FOR SERVER RATCHIT

Example 3: Server ORACLE1 is defined to DataJoiner database DJDB. During a
specific session between an application and the database on ORACLE1, have all
passwords validated at that database.

CONNECT TO DJDB
SET SERVER OPTION PASSWORD TO 'y'
FOR SERVER ORACLE1

Chapter 4. DataJoiner SQL Statements 133

|
|
|

134 Application Programming and SQL Reference Supplement

Appendix A. Default Forward Type Mappings

This appendix shows default forward mappings between DB2 for CS data types defined
to DataJoiner and data types defined to data sources. In these mappings, the types
defined to the data sources point to the types defined to DataJoiner. The following list
identifies these data sources. It also cites tables that show the default reverse type
mappings between the data sources and DataJoiner.

v Classic Connect (Table 7)

v CrossAccess (Table 8 on page 136)

v DB2 for CS (Table 9 on page 137)

v DB2 for OS/390 (Table 10 on page 139)

v DB2 for OS/400 (Table 11 on page 141)

v DB2 for VM (SQL/DS) (Table 12 on page 142)

v Generic (Table 13 on page 143)

v Informix (Table 14 on page 145)

v Microsoft SQL Server (Table 15 on page 146)

v Oracle (Table 16 on page 149)

v RDB (Table 17 on page 150)

v SQL Anywhere (Table 18 on page 151)

v Sybase (Table 19 on page 152)

Default Type Mappings from Classic Connect Data Sources to DataJoiner

Table 7. Classic Connect Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

© Copyright IBM Corp. 1995, 1998 135

|
|
|
|
|

|

|
|

Table 7. Classic Connect Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

LONGVAR S N - - - - - LONG VARCHAR N 32700 -

LONGVARCHAR S N - - - - - LONG VARCHAR N 32700 -

DATE S N - - - - - TIMESTAMP Y 10 -

Default Type Mappings from CrossAccess Data Sources to DataJoiner

Table 8. CrossAccess Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

136 Application Programming and SQL Reference Supplement

|

||||||||||||

|

Table 8. CrossAccess Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

CHAR S N 255 4000 - - - VARCHAR N - -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

LONGVARCHAR S N - - - - - LONG VARCHAR N 32700 -

LONGVAR S N - - - - - LONG VARCHAR N 32700 -

DATE S N - - - - - TIMESTAMP Y 10 -

Default Type Mappings from DB2 for CS Data Sources to DataJoiner

Table 9. DB2 for CS Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

DOUBLE S N - - - - - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

Appendix A. Default Forward Type Mappings 137

||

||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 9. DB2 for CS Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

CHAR S Y 4001 32700 - - - LONG VARCHAR Y - -

VARCHAR S Y 1 4000 - - - VARCHAR Y - -

VARCHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

LONGVARCHAR S N - - - - - LONG VARCHAR N 32700 -

GRAPHIC S N 1 127 - - - GRAPHIC N - -

GRAPHIC S N 128 2000 - - - VARGRAPHIC Y - -

GRAPHIC S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

VARGRAPH S N 1 2000 - - - VARGRAPHIC Y - -

VARGRAPH S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

LONGVARG S N - - - - -
LONG
VARGRAPHIC

Y 16350 -

BLOB S N - - - - - BLOB Y 2147483647 -

CLOB S N - - - - - CLOB N 2147483647 -

DBCLOB S N - - - - - DBCLOB Y 1073741823 -

CHAR S Y 1 254 - - - CHARACTER Y - -

CHAR S Y 255 4000 - - - VARCHAR Y - -

CHAR S Y 4001 32700 - - - VARCHAR Y - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

VARCHAR S Y 1 4000 - - - VARCHAR Y - -

VARCHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

VARCHAR S N 4001 32700 - - - LONG VARCHAR Y 32700 -

LONGVAR S Y - - - - - LONG VARCHAR Y 32700 -

LONGVARCHAR S Y - - - - - LONG VARCHAR Y 32700 -

LONGVARCHAR S Y 4001 32700 - - - VARCHAR Y 32700 -

DATE S N - - - - - DATE Y 4 -

138 Application Programming and SQL Reference Supplement

|

||||||||||||

||||||||||||

||||||||||||

|||||||||
||||

|||||||||
||||

|||||||||
||||

|

Table 9. DB2 for CS Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

TIME S N - - - - - TIME Y 3 -

TIMESTMP S N - - - - - TIMESTAMP Y 10 -

TIMESTAMP S N - - - - - TIMESTAMP Y 10 -

Default Type Mappings from DB2 for OS/390 Data Sources to DataJoiner

Table 10. DB2 for OS/390 Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

LONGVAR S N - - - - - LONG VARCHAR N 32700 -

LONGVAR S N 4001 32700 - - - VARCHAR N 4000 -

Appendix A. Default Forward Type Mappings 139

||||||||||||

||||||||||||

||||||||||||

Table 10. DB2 for OS/390 Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

CHAR S Y 1 254 - - - CHARACTER Y - -

CHAR S Y 255 4000 - - - VARCHAR Y - -

CHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

VARCHAR S Y 1 4000 - - - VARCHAR Y - -

VARCHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

LONGVAR S Y - - - - - LONG VARCHAR Y 32700 -

GRAPHIC S N 1 127 - - - GRAPHIC N - -

GRAPHIC S N 128 2000 - - - VARGRAPHIC Y - -

GRAPHIC S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

VARG S N 1 2000 - - - VARGRAPHIC Y - -

VARGRAPH S N 1 2000 - - - VARGRAPHIC Y - -

VARG S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

VARGRAPH S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

LONGVARG S N - - - - -
LONG
VARGRAPHIC

Y 16350 -

DATE S N - - - - - DATE Y 4 -

TIME S N - - - - - TIME Y 3 -

TIMESTMP S N - - - - - TIMESTAMP Y 10 -

140 Application Programming and SQL Reference Supplement

||||||||||||

||||||||||||

||||||||||||

|||||||||
||||

|||||||||
||||

|||||||||
||||

|||||||||
||||

||||||||||||

Default Type Mappings from DB2 for OS/400 Data Sources to DataJoiner

Table 11. DB2 for OS/400 Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

CHAR S Y 1 254 - - - CHARACTER Y - -

CHAR S Y 255 4000 - - - VARCHAR Y - -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

GRAPHIC S N 1 127 - - - GRAPHIC N - -

GRAPHIC S N 128 2000 - - - VARGRAPHIC Y - -

GRAPHIC S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16300 -

VARG S N 1 2000 - - - VARGRAPHIC Y - -

VARG S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16300 -

LONGVARG S N - - - - -
LONG
VARGRAPHIC

Y 32700 -

DATE S N - - - - - DATE Y 4 -

TIME S N - - - - - TIME Y 3 -

TIMESTMP S N - - - - - TIMESTAMP Y 10 -

NUMERIC S N 1 31 0 31 - DECIMAL Y - -

Appendix A. Default Forward Type Mappings 141

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||
||||

|||||||||
||||

|||||||||
||||

Default Type Mappings from DB2 for VM Data Sources to DataJoiner

Table 12. DB2 for VM (SQL/DS) Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

INTEGER S N - - - - - INTEGER Y 4 -

DBAINT S N - - - - - INTEGER Y 4 -

SMALLINT S N - - - - - SMALLINT Y 2 -

DBAHW S N - - - - - SMALLINT Y 2 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

CHAR S Y 1 254 - - - CHARACTER Y - -

CHAR S Y 255 4000 - - - VARCHAR Y - -

CHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

VARCHAR S Y 4001 32700 - - - LONG VARCHAR Y 32700 -

LONGVARCHAR S N - - - - - LONG VARCHAR Y 32700 -

LONGVARCHAR S Y - - - - - LONG VARCHAR N 32700 -

GRAPHIC S N 1 127 - - - GRAPHIC N - -

GRAPHIC S N 128 2000 - - - VARGRAPHIC Y - -

GRAPHIC S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

VARGRAPH S N 1 2000 - - - VARGRAPHIC Y - -

VARGRAPH S N 2001 16350 - - -
LONG
VARGRAPHIC

Y 16350 -

LONGVARG S N - - - - -
LONG
VARGRAPHIC

Y 16350 -

142 Application Programming and SQL Reference Supplement

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||
||||

|||||||||
||||

|||||||||
||||

Table 12. DB2 for VM (SQL/DS) Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

DATE S N - - - - - DATE Y 4 -

TIME S N - - - - - TIME Y 3 -

TIMESTMP S N - - - - - TIMESTAMP Y 10 -

LNGVCHAR S N - - - - - LONG VARCHAR N 32700 -

LNGVCHAR S Y - - - - - LONG VARCHAR Y 32700 -

Default Type Mappings from Generic Data Sources to DataJoiner

Table 13. Generic Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_INTEGER S N - - - - - INTEGER Y 4 -

SQL_SMALLINT S N - - - - - SMALLINT Y 2 -

SQL_DECIMAL S N 1 31 0 31 - DECIMAL Y - -

SQL_DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

SQL_NUMERIC S N 1 31 0 31 - DECIMAL Y - -

SQL_NUMERIC S N 32 32 0 31 - DOUBLE Y 8 -

SQL_FLOAT S N - - - - - DOUBLE Y 8 -

SQL_DOUBLE S N - - - - - DOUBLE Y 8 -

SQL_REAL S N - - - - - DOUBLE Y 8 -

SQL_CHAR S N 1 254 - - - CHARACTER N - -

Appendix A. Default Forward Type Mappings 143

||||||||||||

||||||||||||

||||||||||||

|
|

Table 13. Generic Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_CHAR S N 255 4000 - - - VARCHAR N - -

SQL_CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

SQL_BINARY S N 1 254 - - - CHARACTER Y - -

SQL_BINARY S N 255 4000 - - - VARCHAR Y - -

SQL_BINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_VARCHAR S N 1 4000 - - - VARCHAR N - -

SQL_VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

SQL_VARBINARY S N 1 4000 - - - VARCHAR Y - -

SQL_VARBINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_LONGVARCHAR S N - - - - - CLOB N 2147483647 -

SQL_LONGVARBINARY S N - - - - - BLOB Y 2147483647 -

SQL_DATE S N - - - - - DATE Y 4 -

SQL_TIME S N - - - - - TIME Y 3 -

SQL_TIMESTAMP S N - - - - - TIMESTAMP Y 10 -

SQL_BIT S N - - - - - SMALLINT Y 2 -

SQL_TINYINT S N - - - - - SMALLINT Y 2 -

SQL_BIGINT S N - - - - - DECIMAL Y - -

144 Application Programming and SQL Reference Supplement

||

||

||

||

||

||

Default Type Mappings from Informix Data Sources to DataJoiner

Table 14. Informix Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SMALLINT S N - - - - - SMALLINT Y 2 -

INTEGER S N - - - - - INTEGER Y 4 -

SERIAL S N - - - - - INTEGER Y 4 -

DECIMAL S N 1 31 0 31 - DECIMAL Y - -

DECIMAL S N 32 32 -255 255 - DOUBLE Y 8 -

DECIMAL S N 1 31 255 255 - DOUBLE Y 8 -

MONEY S N 1 31 0 31 - DECIMAL Y - -

MONEY S N 32 32 - - - DOUBLE Y 8 -

FLOAT S N - - - - - DOUBLE Y 8 -

SMALLFLOAT S N - - - - - DOUBLE Y 8 -

INTERVAL S N - - - - - CHARACTER N - -

BYTE S N - - - - - BLOB Y 2147483647 -

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

VARCHAR S N 1 4000 - - - VARCHAR N - -

VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

NCHAR S N 1 254 - - - CHARACTER N - -

NCHAR S N 255 4000 - - - VARCHAR N - -

NCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

NVARCHAR S N 1 4000 - - - VARCHAR N - -

NVARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

TEXT S N - - - - - CLOB N 2147483647 -

DATE S N - - - - - DATE Y 4 -

DATETIME S N 0 4 0 4 - DATE Y 4 -

DATETIME S N 6 10 6 10 - TIME Y 3 -

Appendix A. Default Forward Type Mappings 145

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 14. Informix Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

DATETIME S N 0 4 6 15 - TIMESTAMP Y 10 -

DATETIME S N 6 10 11 15 - TIMESTAMP Y 10 -

Default Type Mappings from Microsoft SQL Server Data Sources to DataJoiner

Table 15. Microsoft SQL Server Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

int S N - - - - - INTEGER Y 4 -

intn S N - - - - - INTEGER Y 4 -

smallint S N - - - - - SMALLINT Y 2 -

tinyint S N - - - - - SMALLINT Y 2 -

bit S N - - - - - SMALLINT Y 2 -

float S N - - - - - DOUBLE Y 8 -

floatn S N - - - - - DOUBLE Y 8 -

real S N - - - - - DOUBLE Y 8 -

money S N - - - - - DECIMAL Y 19 4

moneyn S N - - - - - DECIMAL Y 19 4

smallmoney S N - - - - - DECIMAL Y 10 4

smallmoneyn S N - - - - - DECIMAL Y 10 4

decimal S N 1 31 0 31 - DECIMAL Y - -

146 Application Programming and SQL Reference Supplement

Table 15. Microsoft SQL Server Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

decimal S N 32 38 0 38 - DOUBLE Y 8 -

decimaln S N 1 31 0 31 - DECIMAL Y - -

decimaln S N 32 38 0 38 - DOUBLE Y 8 -

numeric S N 1 31 0 31 - DECIMAL Y - -

numeric S N 32 38 0 38 - DOUBLE Y 8 -

numericn S N 1 31 0 31 - DECIMAL Y - -

numericn S N 32 38 0 38 - DOUBLE Y 8 -

char S N 1 254 - - - CHARACTER N - -

sysname S N 1 254 - - - CHARACTER N - -

char S N 255 4000 - - - VARCHAR N - -

char S N 4001 32700 - - - LONG VARCHAR N 32700 -

varchar S N 1 4000 - - - VARCHAR N - -

varchar S N 4001 32700 - - - LONG VARCHAR N 32700 -

text S N - - - - - CLOB N 2147483647 -

nchar S N 1 254 - - - CHARACTER N - -

nchar S N 255 4000 - - - VARCHAR N - -

nchar S N 4001 32700 - - - LONG VARCHAR N 32700 -

nvarchar S N 1 4000 - - - VARCHAR N - -

nvarchar S N 4001 32700 - - - LONG VARCHAR N 32700 -

binary S N 1 254 - - - CHARACTER Y - -

binary S N 255 4000 - - - VARCHAR Y - -

binary S N 4001 32700 - - - LONG VARCHAR Y 32700 -

varbinary S N 1 4000 - - - VARCHAR Y - -

varbinary S N 4001 32700 - - - LONG VARCHAR Y 32700 -

image S N - - - - - BLOB Y 2147483647 -

datetime S N - - - - - TIMESTAMP Y 10 -

datetimn S N - - - - - TIMESTAMP Y 10 -

smalldatetime S N - - - - - TIMESTAMP Y 10 -

Appendix A. Default Forward Type Mappings 147

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 15. Microsoft SQL Server Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

timestamp S N - - - - - VARCHAR Y 8 -

sysname S N - - - - - VARCHAR N 30 -

SQL_INTEGER S N - - - - - INTEGER Y 4 -

SQL_SMALLINT S N - - - - - SMALLINT Y 2 -

SQL_DECIMAL S N 1 31 0 31 - DECIMAL Y 8 -

SQL_DECIMAL S N 32 38 0 38 - DOUBLE Y 8 -

SQL_NUMERIC S N 1 31 0 31 - DECIMAL Y - -

SQL_NUMERIC S N 32 32 0 31 - DOUBLE Y 8 -

SQL_FLOAT S N - - - - - DOUBLE Y 8 -

SQL_DOUBLE S N - - - - - DOUBLE Y 8 -

SQL_REAL S N - - - - - DOUBLE Y 8 -

SQL_CHAR S N 1 254 - - - CHARACTER N - -

SQL_CHAR S N 255 4000 - - - VARCHAR N - -

SQL_CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

SQL_BINARY S N 1 254 - - - CHARACTER Y - -

SQL_BINARY S N 255 4000 - - - VARCHAR Y - -

SQL_BINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_VARCHAR S N 1 4000 - - - VARCHAR N - -

SQL_VARBINARY S N 1 4000 - - - VARCHAR Y - -

SQL_VARBINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_LONGVARCHAR S N - - - - - CLOB N 2147483647 -

SQL_LONGVARBINARY S N - - - - - BLOB Y 2147483647 -

SQL_DATE S N - - - - - DATE Y 4 -

SQL_TIME S N - - - - - TIME Y 3 -

SQL_TIMESTAMP S N - - - - - TIMESTAMP Y 10 -

SQL_BIT S N - - - - - SMALLINT Y 2 -

SQL_TINYINT S N - - - - - SMALLINT Y 2 -

SQL_BIGINT S N - - - - - DECIMAL Y - -

148 Application Programming and SQL Reference Supplement

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Default Type Mappings from Oracle Data Sources to DataJoiner

Table 16. Oracle Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

CHAR S N 1 254 - - - CHARACTER N - -

CHAR S N 255 4000 - - - VARCHAR N - -

CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

VARCHAR2 S N 1 4000 - - - VARCHAR N - -

VARCHAR2 S N 4001 32700 - - - LONG VARCHAR N 32700 -

LONG S N - - - - - CLOB N 2147483647 -

NUMBER S N 1 38 -84 127 - DOUBLE Y 8 -

NUMBER S N 1 31 0 31 >= DECIMAL Y - -

NUMBER S N 1 4 0 0 - SMALLINT Y 2 -

NUMBER S N 5 9 0 0 - INTEGER Y 4 -

FLOAT S N - - - - - DOUBLE Y 8 -

RAW S N 1 254 - - - CHARACTER Y - -

RAW S N 255 4000 - - - VARCHAR Y - -

RAW S N 4001 32700 - - - LONG VARCHAR Y 32700 -

LONG RAW S N - - - - - BLOB Y 2147483647 -

DATE S N - - - - - TIMESTAMP Y 10 -

ROWID S N - - - - - CHARACTER N 18 -

MLSLABEL S N - - - - - VARCHAR N 255 -

Appendix A. Default Forward Type Mappings 149

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Default Type Mappings from RDB Data Sources to DataJoiner

Table 17. RDB Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_INTEGER S N - - - - - INTEGER Y 4 -

SQL_BIGINT S N - - - - - DECIMAL Y - -

SQL_SMALLINT S N - - - - - SMALLINT Y 2 -

SQL_TINYINT S N - - - - - SMALLINT Y 2 -

SQL_DECIMAL S N 1 31 0 31 - DECIMAL Y - -

SQL_DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

SQL_NUMERIC S N 1 31 0 31 - DECIMAL Y - -

SQL_NUMERIC S N 32 32 0 31 - DOUBLE Y 8 -

SQL_FLOAT S N - - - - - DOUBLE Y 8 -

SQL_DOUBLE S N - - - - - DOUBLE Y 8 -

SQL_REAL S N - - - - - DOUBLE Y 8 -

SQL_CHAR S N 1 254 - - - CHARACTER N - -

SQL_CHAR S N 255 4000 - - - VARCHAR N - -

SQL_CHAR S N 4001 32700 - - - CLOB N 2147483647 -

SQL_CHAR S N 32701 65271 - - - CLOB N 2147483647 -

SQL_BINARY S N 1 254 - - - CHARACTER Y - -

SQL_BINARY S N 255 4000 - - - VARCHAR Y - -

SQL_BINARY S N 4001 32700 - - - BLOB Y 2147483647 -

SQL_VARCHAR S N 1 4000 - - - VARCHAR N - -

SQL_VARCHAR S N 4001 32700 - - - CLOB N 2147483647 -

SQL_VARCHAR S N 32701 65269 - - - CLOB N 2147483647 -

SQL_VARBINARY S N 1 4000 - - - VARCHAR Y - -

SQL_VARBINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_LONGVARCHAR S N - - - - - CLOB N 2147483647 -

SQL_LONGVARBINARY S N - - - - - BLOB Y 2147483647 -

SQL_DATE S N - - - - - DATE Y 4 -

SQL_TIME S N - - - - - TIME Y 3 -

150 Application Programming and SQL Reference Supplement

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 17. RDB Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_TIMESTAMP S N - - - - - TIMESTAMP Y 10 -

Default Type Mappings from SQL Anywhere Data Sources to DataJoiner

Table 18. SQL Anywhere Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_INTEGER S N - - - - - INTEGER Y 4 -

SQL_SMALLINT S N - - - - - SMALLINT Y 2 -

SQL_DECIMAL S N 1 31 0 31 - DECIMAL Y - -

SQL_DECIMAL S N 32 32 0 31 - DOUBLE Y 8 -

SQL_NUMERIC S N 1 31 0 31 - DECIMAL Y - -

SQL_NUMERIC S N 32 32 0 31 - DOUBLE Y 8 -

SQL_FLOAT S N - - - - - DOUBLE Y 84 -

SQL_DOUBLE S N - - - - - DOUBLE Y 8 -

SQL_REAL S N - - - - - DOUBLE Y 8 -

SQL_CHAR S N 1 254 - - - CHARACTER N - -

SQL_CHAR S N 255 4000 - - - VARCHAR N - -

SQL_BINARY S N 1 254 - - - CHARACTER Y - -

SQL_BINARY S N 255 4000 - - - VARCHAR Y - -

SQL_VARCHAR S N 1 4000 - - - VARCHAR N - -

Appendix A. Default Forward Type Mappings 151

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 18. SQL Anywhere Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

SQL_VARBINARY S N 1 4000 - - - VARCHAR Y - -

SQL_LONGVARCHAR S N - - - - - CLOB N 2147483647 -

SQL_LONGVARBINARY S N - - - - - BLOB Y 2147483647 -

SQL_DATE S N - - - - - DATE Y 4 -

SQL_TIME S N - - - - - TIME Y 3 -

SQL_TIMESTAMP S N - - - - - TIMESTAMP Y 10 -

SQL_BIT S N - - - - - SMALLINT Y 2 -

SQL_TINYINT S N - - - - - SMALLINT Y 2 -

SQL_BIGINT S N - - - - - DECIMAL Y - -

SQL_CHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

SQL_BINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

SQL_VARCHAR S N 4001 32700 - - - LONG VARCHAR N 32700 -

SQL_VARBINARY S N 4001 32700 - - - LONG VARCHAR Y 32700 -

Default Type Mappings from Sybase Data Sources to DataJoiner

Table 19. Sybase Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

int S N - - - - - INTEGER Y 4 -

intn S N - - - - - INTEGER Y 4 -

152 Application Programming and SQL Reference Supplement

|
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 19. Sybase Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

smallint S N - - - - - SMALLINT Y 2 -

tinyint S N - - - - - SMALLINT Y 2 -

bit S N - - - - - SMALLINT Y 2 -

float S N - - - - - DOUBLE Y 8 -

floatn S N - - - - - DOUBLE Y 8 -

real S N - - - - - DOUBLE Y 8 -

money S N - - - - - DECIMAL Y 19 4

moneyn S N - - - - - DECIMAL Y 19 4

smallmoney S N - - - - - DECIMAL Y 10 4

smallmoneyn S N - - - - - DECIMAL Y 10 4

decimal S N 1 31 0 31 - DECIMAL Y - -

decimal S N 32 32 - - - DOUBLE Y 8 -

decimaln S N 1 31 0 31 - DECIMAL Y - -

decimaln S N 32 32 - - - DOUBLE Y 8 -

numeric S N 1 31 0 31 - DECIMAL Y - -

numeric S N 32 32 - - - DOUBLE Y 8 -

numericn S N 1 31 0 31 - DECIMAL Y - -

numericn S N 32 32 - - - DOUBLE Y 8 -

char S N 1 254 - - - CHARACTER N - -

sysname S N 1 254 - - - CHARACTER N - -

char S N 255 4000 - - - VARCHAR N - -

char S N 4001 32700 - - - LONG VARCHAR N 32700 -

varchar S N 1 4000 - - - VARCHAR N - -

varchar S N 4001 32700 - - - LONG VARCHAR N 32700 -

text S N - - - - - CLOB N 2147483647 -

nchar S N 1 254 - - - CHARACTER N - -

nchar S N 255 4000 - - - VARCHAR N - -

nchar S N 4001 32700 - - - LONG VARCHAR N 32700 -

Appendix A. Default Forward Type Mappings 153

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 19. Sybase Default Data Type Mappings in SYSCAT.SERVER_DATATYPES (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

LE

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

LE

R
E

M
O

T
E

_S
_O

P
R

_P

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LE
N

G
T

H

S
C

A
LE

nvarchar S N 1 4000 - - - VARCHAR N - -

nvarchar S N 4001 32700 - - - LONG VARCHAR N 327400 -

binary S N 1 254 - - - CHARACTER Y - -

binary S N 255 4000 - - - VARCHAR Y - -

binary S N 4001 32700 - - - LONG VARCHAR Y 32700 -

varbinary S N 1 4000 - - - VARCHAR Y - -

varbinary S N 4001 32700 - - - LONG VARCHAR Y 32700 -

image S N - - - - - BLOB Y 2147483647 -

datetime S N - - - - - TIMESTAMP Y 10 -

datetimn S N - - - - - TIMESTAMP Y 10 -

smalldatetime S N - - - - - TIMESTAMP Y 10 -

timestamp S N - - - - - VARCHAR Y 8 -

sysname S N - - - - - VARCHAR N 30 -

154 Application Programming and SQL Reference Supplement

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Appendix B. Default Reverse Type Mappings

This appendix shows default reverse mappings between DB2 for CS data types defined
to DataJoiner and data types defined to data sources. In these mappings, the types
defined to DataJoiner point to the types at the data sources. The following list identifies
these data sources. It also cites tables that show the default reverse type mappings
between the data sources and DataJoiner.

v DB2 for CS (Table 20)

v DB2 for OS/390 (Table 21 on page 156)

v DB2 for OS/400 (Table 22 on page 157)

v DB2 for VM (SQL/DS) (Table 23 on page 159)

v Generic (Table 24 on page 159)

v Informix (Table 25 on page 160)

v Microsoft SQL Server (Table 26 on page 162)

v Oracle (Table 27 on page 163)

v SQL Anywhere (Table 28 on page 164)

v Sybase (Table 29 on page 165)

Default Type Mappings from DataJoiner to DB2 for CS Data Sources

Table 20. DB2 Common Server Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

SMALLINT S N - - SMALLINT Y - 2 - - -

DECIMAL S N - - DECIMAL Y - - - - -

DOUBLE S N - - DOUBLE Y - 8 - - -

FLOAT S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

VARCHAR S N - - VARCHAR N - - - - -

© Copyright IBM Corp. 1995, 1998 155

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 20. DB2 Common Server Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

GRAPHIC S N - - GRAPHIC N - - - - -

VARGRAPH S N - - VARGRAPHIC Y - - - - -

LONGVARCH S N - - LONG VARCHAR N - 32700 - - -

LONGVARG S N - -
LONG
VARGRAPHIC

Y - 16350 - - -

BLOB S N - - BLOB Y - 2147483647 - - -

CLOB S N - - CLOB N - 2147483647 - - -

DBCLOB S N - - DBCLOB Y - 1073741823 - - -

DATE S N - - DATE Y - 4 - - -

TIME S N - - TIME Y - 3 - - -

TIMESTAMP S N - - TIMESTAMP Y - 10 - - -

CHAR S Y - - CHARACTER Y - - - - -

VARCHAR S Y - - VARCHAR Y - - - - -

LONGVARCH S Y - - LONG VARCHAR Y - 32700 - - -

Default Type Mappings from DataJoiner to DB2 for OS/390 Data Sources

Table 21. DB2 for OS/390 Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

SMALLINT S N - - SMALLINT Y - 2 - - -

DECIMAL S N - - DECIMAL Y - - - - -

156 Application Programming and SQL Reference Supplement

|
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Table 21. DB2 for OS/390 Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

FLOAT S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

VARCHAR S N - - VARCHAR N - - - - -

CHAR S Y - - CHARACTER Y - - - - -

VARCHAR S Y - - VARCHAR Y - - - - -

LONGVAR S Y - - LONG VARCHAR Y - 32700 - - -

GRAPHIC S N - - GRAPHIC N - - - - -

VARGRAPH S N - - VARGRAPHIC Y - - - - -

DATE S N - - DATE Y - 4 - - -

TIME S N - - TIME Y - 3 - - -

TIMESTAMP S N - - TIMESTAMP Y - 10 - - -

LONGVARCH S N - - CLOB N - 2147483647 - - -

LONGVARCH S N - - LONG VARCHAR N - 32700 - - -

FLOAT S N - - DOUBLE Y - 8 - - -

LONGVAR S N - - BLOB Y - 2147483647 - - -

Default Type Mappings from DataJoiner to OS/400 Data Sources

Table 22. DB2 for OS/400 Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

Appendix B. Default Reverse Type Mappings 157

|
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|
|

||
|

||||||||||||

||||||||||||

Table 22. DB2 for OS/400 Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

SMALLINT S N - - SMALLINT Y - 2 - - -

DECIMAL S N - - DECIMAL Y - - - - -

FLOAT S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

VARCHAR S N - - VARCHAR N - - - - -

GRAPHIC S N - - GRAPHIC N - - - - -

VARG S N - - VARGRAPHIC Y - - - - -

DATE S N - - DATE Y - 4 - - -

TIME S N - - TIME Y - 3 - - -

TIMESTMP S N - - TIMESTAMP Y - 10 - - -

NUMERIC S N - - DECIMAL Y - - - - -

CHAR S Y - - CHARACTER Y - - - - -

VARCHAR S Y - - VARCHAR Y - - - - -

LONGVARCH S Y - -
LONG
VARCHAR

Y - 32700 - - -

BLOB S N - - BLOB Y - 2147483647 - - -

CLOB S N - - CLOB N - 2147483647 - - -

DBCLOB S N - - DBCLOB Y - 1073741823 - - -

LONGVARCH S N - -
LONG
VARCHAR

N - 32700 - - -

158 Application Programming and SQL Reference Supplement

|
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

Default Type Mappings from DataJoiner to DB2 for VM Data Sources

Table 23. DB2 for VM (SQL/DS) Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

SMALLINT S N - - SMALLINT Y - 2 - - -

DECIMAL S N - - DECIMAL Y - - - - -

DECIMAL S N 31 - DOUBLE Y - 8 - - -

FLOAT S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

VARCHAR S N - - VARCHAR N - - - - -

LONGVARCHAR S N - -
LONG
VARCHAR

N - 32700 - - -

GRAPHIC S N - - GRAPHIC N - - - - -

LONGVARG S N - - VARGRAPHIC Y - - - - -

DATE S N - - DATE Y - 4 - - -

TIME S N - - TIME Y - 3 - - -

TIMESTMP S N - - TIMESTAMP Y - 10 - - -

Default Type Mappings from DataJoiner to Generic Data Sources

Table 24. Generic Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

SQL_INTEGER S N - - INTEGER Y - 4 - - -

Appendix B. Default Reverse Type Mappings 159

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|
|

||
|

||||||||||||

||||||||||||

Table 24. Generic Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

SQL_SMALLINT S N - - SMALLINT Y - 2 - - -

SQL_DECIMAL S N - - DECIMAL Y - - - - -

SQL_NUMERIC S N - - DECIMAL Y - - - - -

SQL_FLOAT S N - - DOUBLE Y - 8 - - -

SQL_DOUBLE S N - - DOUBLE Y - 8 - - -

SQL_CHAR S N - - CHARACTER N - - - - -

SQL_VARCHAR S N - - VARCHAR N - - - - -

SQL_BINARY S N - - CHARACTER Y - - - - -

SQL_VARBINARY S N - - VARCHAR Y - - - - -

SQL_LONGVARCHAR S N - -
LONG
VARCHAR

N - 32700 - - -

SQL_LONGVARCHAR S N - - CLOB N - 2147483647 - - -

SQL_LONGVARBINARY S N - - BLOB Y - 2147483647 - - -

SQL_DATE S N - - DATE Y - 4 - - -

SQL_TIME S N - - TIME Y - 3 - - -

SQL_TIMESTAMP S N - - TIMESTAMP Y - 10 - - -

Default Type Mappings from DataJoiner to Informix Data Sources

Table 25. Informix Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

SMALLINT S N - - SMALLINT Y - 2 - - -

160 Application Programming and SQL Reference Supplement

|
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|
|

||
|

||||||||||||

||||||||||||

Table 25. Informix Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

DECIMAL S N - - DECIMAL Y - - - - -

DECIMAL S N 31 - DOUBLE Y - 8 - - -

FLOAT S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

BYTE S N - - BLOB Y - 2147483647 - - -

VARCHAR S N - - VARCHAR N 1 254 - - -

TEXT S N - - VARCHAR N 255 4000 - - -

TEXT S N - -
LONG
VARCHAR

N - 32700 - - -

TEXT S N - - CLOB N - 2147483647 - - -

DATE S N - - DATE Y - 4 - - -

DATETIME S N - - TIME Y - 3 - - -

DATETIME S N - - TIMESTAMP Y - 10 - - -

BYTE S N - - CHARACTER Y - - - - -

BYTE S N - - VARCHAR Y - - - - -

BYTE S N - -
LONG
VARCHAR

Y - 32700 - - -

Appendix B. Default Reverse Type Mappings 161

|
|

||||||||||||

||||||||||||

|||||||||||||

|||||||||||||

||||||||||||

|||||||||||||

|||||||||||||

||||||||||||

|||||||||||||

||||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

Default Type Mappings from DataJoiner to Microsoft SQL Server Data Sources

Table 26. Microsoft SQL Server Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

int S N - - INTEGER Y - 4 - - -

smallint S N - - SMALLINT Y - 2 - - -

float S N - - DOUBLE Y - 8 - - -

decimal S N - - DECIMAL Y - - - - -

numeric S N - - DECIMAL Y - - - - -

char S N - - CHARACTER N - - - - -

char S N - - VARCHAR N 1 254 - - -

text S N - - VARCHAR N 255 4000 - - -

text S N - -
LONG
VARCHAR

N - 32700 - - -

text S N - - CLOB N - 2147483647 - - -

binary S N - - CHARACTER Y - - - - -

varbinary S N - - VARCHAR Y 1 254 - - -

image S N - - VARCHAR Y 255 4000 - - -

image S N - -
LONG
VARCHAR

Y - 32700 - - -

image S N - - BLOB Y - 2147483647 - - -

datetime S N - - TIMESTAMP Y - 10 - - -

datetime S N - - TIME Y - 3 - - -

datetime S N - - DATE Y - 4 - - -

162 Application Programming and SQL Reference Supplement

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Default Type Mappings from DataJoiner to Oracle Data Sources

Table 27. Oracle Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

CHAR S N - - CHARACTER N 1 254 - - -

VARCHAR2 S N - - VARCHAR N 1 2000 - - -

LONG S N - - VARCHAR N 2001 4000 - - -

LONG S N - - CLOB N - 2147483647 - - -

LONG S N - -
LONG
VARCHAR

N - 32700 - - -

FLOAT S N 8 - DOUBLE Y - 8 - - -

FLOAT S N 8 - DOUBLE Y - 8 - - -

NUMBER S N - - DECIMAL Y - - - - -

NUMBER S N - - DECIMAL Y - - - - -

NUMBER S N 5 0 SMALLINT Y - 2 - - -

NUMBER S N 10 0 INTEGER Y - 4 - - -

RAW S N - - CHARACTER Y - - - - -

RAW S N - - VARCHAR Y 1 255 - - -

LONG RAW S N - - VARCHAR Y 256 4000 - - -

LONG RAW S N - -
LONG
VARCHAR

Y - 32700 - - -

LONG RAW S N - - BLOB Y - 2147483647 - - -

DATE S N - - TIMESTAMP Y - 10 - - -

DATE S N - - DATE Y - 4 - - -

DATE S N - - TIME Y - 3 - - -

Appendix B. Default Reverse Type Mappings 163

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Default Type Mappings from DataJoiner to SQL Anywhere Data Sources

Table 28. SQL Anywhere Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All
Columns Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

INTEGER S N - - INTEGER Y - 4 - - -

SMALLINT S N - - SMALLINT Y - 2 - - -

DECIMAL S N - - DECIMAL Y - - - - -

NUMERIC S N - - DECIMAL Y - - - - -

FLOAT S N - - DOUBLE Y - 8 - - -

DOUBLE S N - - DOUBLE Y - 8 - - -

CHAR S N - - CHARACTER N - - - - -

VARCHAR S N - - VARCHAR N - - - - -

BINARY S N - - CHARACTER Y 1 254 - - -

BINARY S N - - VARCHAR Y - - - - -

LONG BINARY S N - -
LONG
VARCHAR

Y - 32700 - - -

LONG VARCHAR S N - -
LONG
VARCHAR

N - 32700 - - -

LONG VARCHAR S N - - CLOB N - 2147483647 - - -

LONG BINARY S N - - BLOB Y - 2147483647 - - -

DATE S N - - DATE Y - 4 - - -

TIME S N - - TIME Y - 3 - - -

TIMESTAMP S N - - TIMESTAMP Y - 10 - - -

164 Application Programming and SQL Reference Supplement

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

Default Type Mappings from DataJoiner to Sybase Data Sources

Table 29. Sybase Default Data Type Mappings in SYSCAT.REVTYPEMAPPINGS (Not All Columns
Shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_M
E

TA
_T

Y
P

E

R
E

M
O

T
E

_B
IT

_D
AT

A

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
LE

T
Y

P
E

N
A

M
E

B
IT

_D
AT

A

LO
C

A
L_

LO
W

E
R

_L
E

N

LO
C

A
L_

U
P

P
E

R
_L

E
N

LO
C

A
L_

LO
W

E
R

_S
C

A
LE

LO
C

A
L_

U
P

P
E

R
_S

C
A

LE

LO
C

A
L_

S
_O

P
R

_P

int S N - - INTEGER Y - 4 - - -

smallint S N - - SMALLINT Y - 2 - - -

float S N - - DOUBLE Y - 8 - - -

decimal S N - - DECIMAL Y - - - - -

numeric S N - - DECIMAL Y - - - - -

char S N - - CHARACTER N - - - - -

char S N - - VARCHAR N 1 254 - - -

text S N - - VARCHAR N 255 4000 - - -

text S N - - CLOB N - 2147483647 - - -

text S N - -
LONG
VARCHAR

N - 32700 - - -

binary S N - - CHARACTER Y - - - - -

binary S N - - VARCHAR Y 1 254 - - -

binary S N - - VARCHAR Y 255 4000 - - -

image S N - -
LONG
VARCHAR

Y - 32700 - - -

image S N - - BLOB Y - 2147483647 - - -

datetime S N - - TIMESTAMP Y - 10 - - -

datetime S N - - TIME Y - 3 - - -

datetime S N - - DATE Y - 4 - - -

Appendix B. Default Reverse Type Mappings 165

|
|

||
|

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||||

|||||||||||||

||||||||||||

||||||||||||

||||||||||||
|

166 Application Programming and SQL Reference Supplement

Appendix C. Combined DataJoiner and DB2 for CS Syntax for
CREATE TABLE

You use the DB2 for CS CREATE TABLE statement to create DataJoiner tables, and
the DataJoiner CREATE TABLE statement to create data source tables from
DataJoiner. The DataJoiner statement contains elements of the DB2 for CS statement,
plus elements of its own. This appendix shows both statements in combination.

For more information about the DB2 for CS CREATE TABLE statement (for example,
descriptions of keywords and parameters), see DATABASE 2 SQL Reference for
common servers. For more information about the DataJoiner CREATE TABLE
statement, see “CREATE TABLE” on page 107.

In the following diagram:

v Syntax used in the DB2 for CS CREATE TABLE statement is marked “DB2”.

v Syntax used in the DataJoiner CREATE TABLE statement is marked “DataJoiner”.

ÊÊ
(1)

CREATE TABLE table-name Ê

Ê »

,

(Column Definition (DataJoiner and DB2))
Primary Key Constraint (DataJoiner and DB2)
Referential Constraint (DB2)
Check Constraint (DB2)

Ê

Ê
DATA CAPTURE NONE (2)

DATA CAPTURE CHANGES
Ê

Ê
(3)

IN server-name
(4)

REMOTE OPTION ‘remote-option’
(5)

IN tablespace-name Tablespace Options (DB2)

ÊÍ

Notes:

1. DB2 and DataJoiner

2. DB2

3. Required in the DataJoiner CREATE TABLE statement

4. DataJoiner

5. DB2

© Copyright IBM Corp. 1995, 1998 167

|

|

|

|
|
|
|

|
|
|
|

|

|

|

||||||||||
|

|
||
|

|
||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

|

|

|

|

|

Column Definition (DataJoiner)

column-name Data Type »

NOT NULL
PRIMARY KEY

Column Definition (DB2)

column-name Data Type Ê

Ê »

NOT NULL
Default Clause

(1)
Lob Options Clause

(3)
PRIMARY KEY

(2) References Clause
CONSTRAINT constraint-name CHECK (check-condition)

Notes:

1. This clause applies only to large object types (BLOB, CLOB, and DBCLOB) and
distinct types based on large object types.

2. For compatibility with DB2/6000, you can omit the CONSTRAINT keyword if your
Column Definition Clause includes a References Clause.

3. DataJoiner and DB2

168 Application Programming and SQL Reference Supplement

|

||||||||||||||||||||||||||||||

|

|

||||||||||||
|

|
|||

|

|

|
|

|
|

|

Data Type for DataJoiner and DB2

INTEGER
INT

SMALLINT
DOUBLE
DOUBLE PRECISION
FLOAT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) (1)
VARCHAR (integer) FOR BIT DATA
CHARACTER VARYING
CHAR VARYING

LONG VARCHAR

BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
distinct-type-name

Notes:

1. You can specify FOR BIT DATA in random order with the other column constraints
that follow.

Default Clause (DB2)

WITH

DEFAULT constant
datetime-special-register
USER
NULL
cost-function (constant)

datetime-special-register
PRIMARY KEY

Lob Options Clause (DB2)

Appendix C. Combined DataJoiner and DB2 for CS Syntax for CREATE TABLE 169

|

||

|

|

|
|

|

|||

|

|

|

LOGGED

NOT LOGGED

NOT COMPACT

COMPACT

References Clause (DB2)

REFERENCES table-name

»

,

(column-name)

Rule Clause (DB2)

Rule Clause (DB2)

DATA CAPTURE NONE

ON DELETE RESTRICT
CASCADE
SET NULL

Primary Key Constraint (DataJoiner and DB2)

CONSTRAINT constraint-name
PRIMARY KEY »

,

(column-name)

Referential Constraint (DB2)

CONSTRAINT constraint-name
FOREIGN KEY »

,
(1)

(column-name) Ê

Ê References Clause

Notes:

1. For compatibility with DB2 /6000, you can omit the CONSTRAINT keyword and
specify constraint-name after the FOREIGN KEY keyword.

Check Constraint (DB2)

CONSTRAINT constraint-name
CHECK (check-condition)

170 Application Programming and SQL Reference Supplement

|||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||
|

|
||||||||||||

|

|

|
|

|

||||||||||||||||||||||

|

Tablespace Options (DB2)

(1)
INDEX IN tablespace-name

LONG IN tablespace-name

Notes:

1. You can specify which table space will contain a table’s index only when the table is
created.

Appendix C. Combined DataJoiner and DB2 for CS Syntax for CREATE TABLE 171

|

||||||||||||||||||||||||||

|

|

|
|

172 Application Programming and SQL Reference Supplement

Appendix D. Sample Program Fragment for Invoking a Stored
Procedure

This appendix contains an example of SQL statements that invoke a Sybase stored
procedure. The statements are CONNECT, ALLOCATE CURSOR, CALL, DESCRIBE
CURSOR, FETCH, and CLOSE.

The following list itemizes the key events specified in this fragment. The number next to
each item also appears to the right of the code for that item.

1 Connect to the database.

2 Associate a cursor with this stored procedure’s nickname.

3 Invoke the stored procedure.

4 If SQLCODE +466 is returned, it means that a result set exists.

5 Describe the result set.

6 Retrieve a row of data from the stored procedure.

7 Close the cursor.

8 If SQLCODE +467 is returned, it means that another result set exists.

printf("Dynamic Insert Program\n");
EXEC SQL CONNECT TO DJV2 IN SHARE MODE; 1
printf("CONNECT : SQLCODE = %ld\n", SQLCODE);
if (SQLCODE != 0)

exit(1);

EXEC SQL ALLOCATE c1 CURSOR for PROCEDURE s_two1; 2
printf("ALLOCATE c1\n");

EXEC SQL CALL S_TWO1; 3
printf("CALL s_two %ld\n",SQLCODE);

if (SQLCODE == +466)
more_results = TRUE; 4

else
more_results = FALSE;

while (more_results == TRUE)
{
EXEC SQL DESCRIBE CURSOR c1 INTO :*pgm_sqlda; 5
printf("DESCRIBE CURSOR %ld\n",SQLCODE);
if (SQLCODE >= 0)
for (i=0; isqld; i++)
{
length = pgm_sqlda->sqlvar[i].sqllen;
stg_ptr = (char *)malloc(length);
memset(stg_ptr,'\0',length);
pgm_sqlda->sqlvar[i].sqldata = stg_ptr;
length = 2;
stg_ptr = (char *)malloc(length);

© Copyright IBM Corp. 1995, 1998 173

memset(stg_ptr,'\0',length);
pgm_sqlda->sqlvar[i].sqlind = (short *)stg_ptr;
}

while ((SQLCODE >= 0) & (SQLCODE != 100))
{
EXEC SQL FETCH c1 USING DESCRIPTOR :*pgm_sqlda; 6
printf("FETCH c1 %ld\n",SQLCODE);
if (SQLCODE == 0)
{
if (pgm_sqlda->sqld == 2)
{
memcpy(fruit,pgm_sqlda->sqlvar[0].sqldata,

pgm_sqlda->sqlvar[0]sqllen);
quantity = (long *)(pgm_sqlda->sqlvar[1].sqldata);
printf("Fruit is %s quantity is %ld\n",fruit,*quantity);
}

else
{
quantity = (long *)(pgm_sqlda->sqlvar[0].sqldata);
printf("Quantity is %ld\n",*quantity);
}

}
}

EXEC SQL CLOSE c1; 7
printf("CLOSE c1 %ld\n",SQLCODE);
if (SQLCODE == +467)
more_results = TRUE; 8

else
more_results = FALSE;

}

174 Application Programming and SQL Reference Supplement

Appendix E. System Catalog Views

DataJoiner maintains a set of system catalog views for each database created. All
system catalog views have one of two qualifiers: SYSCAT or SYSSTAT. Several of
these views are identical to the catalog views maintained by DB2 for its databases. The
DataJoiner catalog views that contain values specific to DataJoiner and the new catalog
views for DataJoiner are described in this appendix. See the DATABASE 2 SQL
Reference for information on catalog views that are identical in DataJoiner and DB2.
The views that have been modified for use by DataJoiner include:

View Page

SYSCAT.COLUMNS 176

SYSCAT.INDEXES 179

SYSCAT.TABLES 196

The DataJoiner views (not provided with DB2) contain information that is used in
communicating with data sources. The DataJoiner views are:

View Page

SYSCAT.PASSTHRU_AUTH 181

SYSCAT.PROCEDURES 181

SYSCAT.PROCPARMS 182

SYSCAT.REMOTEUSERS 183

SYSCAT.REVTYPEMAPPINGS 184

SYSCAT.SERVERS 187

SYSSTAT.SERVERS 190

SYSCAT.SERVER_DATATYPES 190

SYSCAT.SERVER_FUNCTIONS 193

SYSSTAT.SERVER_FUNCTIONS 194

SYSCAT.SERVER_OPTIONS 195

All the system catalog views are created when you run the CREATE DATABASE
statement. You cannot explicitly create or drop the catalog views. The system catalog
views are updated during normal operation as a result of SQL data definition
statements, environment routines, and certain utilities.

Data in the system catalog views is available through normal SQL query facilities.

© Copyright IBM Corp. 1995, 1998 175

||

SYSCAT.COLUMNS

The SYSCAT.COLUMNS catalog view is filled in by DataJoiner when you create a
nickname. DataJoiner inserts one row in the SYSCAT.COLUMNS catalog view for each
column that is defined for a nickname, table, or view. All catalog views have entries in
SYSCAT.COLUMNS. Table 30 describes the columns in this view.

Table 30. Columns in SYSCAT.COLUMNS Catalog View

Name Data Type Nullable? Content

TABSCHEMA CHAR(8) No Qualifier of the nickname, table, or view.

TABNAME VARCHAR(18) No Nickname, table, or view, that contains the column.

COLNAME VARCHAR(18) No Column name. You can specify a different name
from the name used at the data source.

COLNO SMALLINT No Numerical place of column in table or view.

TYPESCHEMA CHAR(8) No Data type qualifier, if the data type of the column is
distinct. If not distinct, TYPESCHEMA contains the
value SYSIBM and TYPENAME contains the data
type of the column (in long form; for example,
CHARACTER).

TYPENAME VARCHAR(18) No Data type of the column (LONGVAR for LONG
VARCHAR type, VARGRAPH for VARGRAPHIC
type, LONGVARG for LONG VARGRAPHIC type,
and TIMESTMP for TIMESTAMP type).

LENGTH INTEGER No For decimal data types, LENGTH is the maximum
precision that a value can have. For character data
types, LENGTH is the maximum number of
characters that a value can have.

SCALE SMALLINT No Scale for DECIMAL fields; 0 if not DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table expressed as
a constant, special register, or cast-function
appropriate for the data type of the column. Can
also be the keyword NULL. (See note 1.)

Values can be converted from what was specified
as a default value. For example, date and time
constraints are presented in ISO format and
cast-function names are delimited. (See note 2.)

A null value is assumed if a DEFAULT clause was
not specified or the column is a view column

DataJoiner does not retrieve the default value for
columns of a nickname.

NULLS (See note 3.) CHAR(1) No Valid values are:

Y Nullable

N Not nullable

176 Application Programming and SQL Reference Supplement

|

|
|
|
|

|
|
|
|

|
|
|
||

|
|

|
|

||

||

||

Table 30. Columns in SYSCAT.COLUMNS Catalog View (continued)

Name Data Type Nullable? Content

CODEPAGE SMALLINT No 0 if the column is defined with the FOR BIT DATA
option. Contains an SBCS code page ID if
COLTYPE=CHAR, CLOB, VARCHAR, or LONG
VARCHAR, and if FOR BIT DATA is not set.
Otherwise, contents are unpredictable.

LOGGED CHAR(1) No Applies only to columns whose type is LOB or
distinct based on LOB (blank otherwise).

Y Column is logged.

N Column is not logged.

COMPACT CHAR(1) No Applies only to columns whose type is LOB or
distinct based on LOB (blank otherwise).

Y Column is compacted in storage.

N Column is not compacted.

COLCARD INTEGER No Number of distinct values in the column; −1 if
statistics are not gathered.

HIGH2KEY VARCHAR(33) No Second highest value of the column. This field is
empty if statistics are not gathered. The data in
columns with noncharacter data types is printable.
(See note 4.)

LOW2KEY VARCHAR(33) No Second lowest value of the column. This field is
empty if statistics are not gathered. The data in
columns with noncharacter data types is printable.
(See note 4.)

AVGCOLLEN INTEGER No Average column length.

KEYSEQ SMALLINT Yes Ordinality of the column within the primary key of its
table. This field is null or 0 if the column is not part
of the primary key.

NQUANTILES SMALLINT No Number of quantile values recorded in
SYSCAT.SYSCOLDIST for this column; -1 if no
statistics.

NMOSTFREQ SMALLINT No Number of most-frequent values recorded in
SYSCAT.SYSCOLDIST for this column; -1 if no
statistics.

REMOTE_COLNAME VARCHAR(128) Yes Name of the column as defined on the data source;
Null when TABNAME is not a nickname. This field is
case-sensitive.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Qualified name of the data type name as defined on
the data source. Null when TABNAME is not a
nickname or if no qualified name is provided.

Appendix E. System Catalog Views 177

|

|
|
|
|

|
|
|
|

Table 30. Columns in SYSCAT.COLUMNS Catalog View (continued)

Name Data Type Nullable? Content

REMOTE_TYPENAME VARCHAR(128) Yes Data type of column as defined on the data source.
It is updatable only on Oracle with types of
VARCHAR or VARCHAR2 to VARCHARNTB, which
indicates that the remote column contains
varying-length character strings with no trailing
blanks. This field applies only to nicknames. It is
null when TABNAME is not a nickname.

REMOTE_SOURCENAME VARCHAR(128) Yes Name of the source type for distinct type. Note that
this field contains only system built-in type names.
Null when TABNAME is not a nickname or
REMOTE_TYPE is not a distinct type.

REMOTE_LENGTH INTEGER Yes Applies to columns of tables or views at data
sources. For columns with decimal data types,
LENGTH is the maximum precision that a value can
have. For columns with character data types,
LENGTH is the maximum number of characters that
a value can have.

REMOTE_SCALE SMALLINT Yes Scale for remote DECIMAL fields. 0 if
REMOTE_TYPE is not DECIMAL. Null when
TABNAME is not a nickname.

REMARKS VARCHAR(254) Yes User’s comments.

Notes on Table 30 on page 176:

1. Value D (indicating not null with a default) is no longer used. Instead, use of WITH
DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Previously, case-function names were not delimited and can still appear this way in
the DEFAULT column. Also, some view columns included default values which will
still appear in the DEFAULT column.

3. Some data sources support declaration of columns as both WITH DEFAULT and
NULLABLE. If a column is declared at a data source as both WITH DEFAULT and
NULLABLE, the NULLS column of SYSIBM.SYSCOLUMNS contains a value of ’Y’,
meaning NULLABLE. This value is expected and does not inhibit any SQL.

When views are created on either Oracle or Sybase, the DEFAULT attribute is not
carried forward from the base table column to the view column (for example, if you
select from Oracle’s SYS.ALL_TAB_COLUMNS, the DEFAULT_LENGTH column
always contains ’0’ for views). Because DataJoiner has no mechanism to determine
whether an Oracle or Sybase view column is WITH DEFAULT, it assumes that any
NOT NULL column of an Oracle or Sybase view is WITH DEFAULT and sets the
NULLS column accordingly. This setting does not inhibit any SQL but defers
detection of missing column errors (errors identified by an SQLCODE of -407) from
bind/prep time until run time.

4. DataJoiner does not acquire information for the HIGH2KEY and LOW2KEY
columns when nicknames are created. To get this information, run the RUNSTATS
utility on the nickname.

178 Application Programming and SQL Reference Supplement

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

SYSCAT.INDEXES

DataJoiner inserts one row in the SYSCAT.INDEXES catalog view for each index that is
defined for a nickname or table.

The base table that underlies SYSCAT.INDEXES is populated when:

v The CREATE NICKNAME statement is run to create a nickname for a table that has
an index, and information about the index is directly accessible from the data source
where the table is stored.

v The CREATE INDEX statement is run to create a local definition of an index of a
table that is stored at a data source.

The base table that underlies SYSCAT.INDEXES is updated when:

v The RUNSTATS utility is run against a table with an index for which entries already
exist in SYSCAT.INDEXES.

v An index is dropped.

Table 31 describes the columns in SYSCAT.INDEXES.

Table 31. Columns in SYSCAT.INDEXES Catalog View

Name Data Type Nullable? Content

INDSCHEMA CHAR(8) No Qualifier for the index.

INDNAME VARCHAR(18) No Name of the index.

DEFINER CHAR(8) No User that created the index.

TABSCHEMA CHAR(8) No Qualifier for the name of the table on which the
index is defined.

TABNAME VARCHAR(18) No Nickname or the name of the table on which the
index is defined.

COLNAMES VARCHAR(320) No List of column names, each preceded by + or − to
indicate ascending or descending order. This
column corresponds to the COLNAME column in
the SYSCAT.COLUMNS catalog view.

UNIQUERULE CHAR(1) No Valid values are:

D Duplicates are allowed.

U Only unique entries are allowed.

P Primary index.

COLCOUNT SMALLINT No Number of columns in the key.

IID SMALLINT No Internal index ID.

NLEAF INTEGER No Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT No Number of index levels; −1 if statistics are not
gathered.

Appendix E. System Catalog Views 179

|

|

||

||

||

Table 31. Columns in SYSCAT.INDEXES Catalog View (continued)

Name Data Type Nullable? Content

FIRSTKEYCARD INTEGER No Number of distinct first key values; −1 if statistics
are not gathered.

FULLKEYCARD INTEGER Yes Number of distinct full key values; −1 if statistics are
not gathered.

CLUSTERRATIO SMALLINT No Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR is used instead).

CLUSTERFACTOR DOUBLE No Finer measurement of the degree of data clustering
with the index; −1 if statistics are not gathered or if
the index is defined for a nickname.

USER_DEFINED SMALLINT No 1 if this index was defined by a user and has not
been dropped; otherwise 0.

SYSTEM_REQUIRED SMALLINT No Number of primary key constraints that are
supported by this index.

CREATE_TIME TIMESTAMP No Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to recorded
statistics for this index. Null if no statistics are
available.

PAGE_FETCH_PAIRS VARCHAR(254) No A list of pairs of integers, represented in character
form. Each pair represents the number of pages in
a hypothetical buffer and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. This is a zero-length
string if no data is available.

REMOTE_INDSCHEMA VARCHAR(128) Yes Authorization ID on the data source. This field is
case-sensitive. It is null when any of the following
statements are true:

v The index is on a local table.

v The index is on a nickname rather than on a
table represented by the nickname.

v The index was created by a user over a
nickname.

REMOTE_INDNAME VARCHAR(128) Yes Name of the index as defined on the data source.
This field is case-sensitive. It is null when:

v The index is on a local table.

v The index is on a nickname rather than on a
table represented by the nickname.

REMARKS VARCHAR(254) Yes User’s comments.

180 Application Programming and SQL Reference Supplement

|

|

SYSCAT.PASSTHRU_AUTH

This catalog view contains information about authorizations to query data sources in
pass-through sessions. A constraint on the base table requires that the values in
SERVER correspond to the values in the SERVER column of SYSCAT.SERVERS.
None of the fields in SYSCAT.PASSTHRU_AUTH are nullable.

Table 32 describes the columns in SYSCAT.PASSTHRU_AUTH.

Table 32. Columns in SYSCAT.PASSTHRU_AUTH Catalog View

Name Data Type Content

GRANTOR CHAR(8) Authorization ID of the user who granted the privilege.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privilege.

GRANTEETYPE CHAR(1) A letter that specifies the type of grantee:

U Grantee is an individual user.

G Grantee is a group.

SERVER VARCHAR(18) Name of the data source that the user or group is being granted
authorization to.

SYSCAT.PROCEDURES

This catalog view contains information about stored procedures.

A unique index is defined on the PROC_NICKNAME, PROC_SCHEMA, and SERVER
columns. A constraint on the base table requires that the values in SERVER correspond
to the values in the SERVER column of SYSCAT.SERVERS.

Table 33 describes the columns in SYSCAT.PROCEDURES.

Table 33. Columns in SYSCAT.PROCEDURES Catalog View

Name Data Type Nullable? Content

PROC_NICKNAME CHAR(8) No Nickname for the stored procedure specified in the
CALL statement.

PROCSCHEMA CHAR(8) No Qualifier of the stored procedure nickname.

SERVER VARCHAR(18) No Name of the data source on which the stored
procedure resides. The value of this field must
correspond to a value in the SERVER column of
SYSCAT.SERVERS.

REMOTE_SCHEMA VARCHAR(128) Yes Owner of the stored procedure at the data source.
If the data source does not support qualified stored
procedure names, this column can be null.

REMOTE_PROC VARCHAR(128) No Name of the stored procedure at the data source.

Appendix E. System Catalog Views 181

|
|
|
|

|
|

|

|
|
|

|

|

|

|

|

Table 33. Columns in SYSCAT.PROCEDURES Catalog View (continued)

Name Data Type Nullable? Content

REMARKS VARCHAR(254) Yes User-supplied comment.

SYSCAT.PROCPARMS

This catalog view contains information about stored procedure parameters.

A unique index is defined on the PROC_NICKNAME, PROC_SCHEMA, SERVER, and
POSITION columns. A constraint on the base table requires that the values in the
PROC_NICKNAME correspond to the values in the PROC_NICKNAME column of
SYSCAT.PROCEDURES.

Table 34 describes the columns in SYSCAT.PROCPARMS.

Table 34. Columns in SYSCAT.PROCPARMS Catalog View

Name Data Type Nullable? Content

PROC_NICKNAME CHAR(8) No Nickname for the stored procedure. The value of
this field corresponds to the NICKNAME column in
SYSCAT.PROCEDURES.

PROCSCHEMA CHAR(8) No Qualifier of the stored procedure nickname.

SERVER VARCHAR(18) No Name of the data source on which the stored
procedure resides.

POSITION INTEGER No Position in the parameter list.

NAME VARCHAR(128) Yes The parameter name at the data source.

TYPE CHAR(5) No Whether this parameter is used for:

v IN

v OUT

v INOUT

CODEPAGE SMALLINT Yes DataJoiner SBCS codepage if applicable. This field
will be null for numeric fields.

DBCS_CODEPAGE SMALLINT Yes DataJoiner DBCS if applicable. This field will be
null for numeric fields.

DATATYPE CHAR(8) No DataJoiner data type of the parameter.

NULLS CHAR(1) No Values valid locally to DataJoiner:

Y Nullable

N Not nullable

182 Application Programming and SQL Reference Supplement

|

|
|
|
|

|

|

||

||

Table 34. Columns in SYSCAT.PROCPARMS Catalog View (continued)

Name Data Type Nullable? Content

LENGTH SMALLINT No DataJoiner parameter length. For decimal fields,
this value indicates the precision.

SCALE SMALLINT No DataJoiner scale for decimal fields; 0 for
nondecimal fields.

REMOTE_CODEPAGE SMALLINT Yes Data source codepage if applicable. This field will
be null for numeric fields. It is reserved for future
use.

REMOTE_DATATYPE VARCHAR(128) No Data source parameter type.

REMOTE_NULLS CHAR(1) No Values valid at the data source:

Y Nullable

N Not nullable

REMOTE_LENGTH SMALLINT No Data source parameter length. For decimal fields,
this value indicates the precision.

REMOTE_SCALE SMALLINT No Data source scale for decimal fields; 0 for
nondecimal fields.

SYSCAT.REMOTEUSERS

This view contains information about the authorization IDs and passwords that are used
to access remote data sources. The unique index for the source table includes the
AUTHID and SERVER columns. You cannot specify two rows with identical values for
both of these columns. None of the fields in SYSCAT.REMOTEUSERS are nullable.

Table 35 describes the columns in SYSCAT.REMOTEUSERS.

Table 35. Columns in SYSCAT.REMOTEUSERS Catalog View

Name Data Type Content

AUTHID CHAR(8) DataJoiner (local) authorization ID. This field is uppercase.

SERVER VARCHAR(18) Name of the server at which the remote_authid is defined. This
field must match an entry in the SERVER column of the
SYSSERVERS table. This field is uppercase.

REMOTE_AUTHID VARCHAR(30) Authorization ID used at the data source. This field is
case-sensitive.

REMOTE_PW VARCHAR(32) Password of the remote_authid used at the data source, stored in
an encrypted form. SELECT statements performed on
SYSREMOTEUSERS do not return a value for this column (they
return an asterisk (*)). If this password is not available when you
create the entry, insert an empty string (''), because this column
cannot be null. This field is case-sensitive.

CONNECTOPT VARCHAR(256) The valid values of this field are listed in Table 36 on page 184.

Appendix E. System Catalog Views 183

|

|

|

The content of CONNECTOPT is protocol-dependent. The use by protocol is
summarized in Table 36.

Table 36. Protocol Options in the CONNECTOPT Column of SYSCAT.REMOTEUSERS

Data Access Module Use

drda Accounting string (see the DDCS Version 2.3 User’s Guide for more information).

drdaIP Accounting string (see the DDCS Version 2.3 User’s Guide for more information).

db2ra Not Used (NU)

informix NU

sqlnet NU

dblib NU

ctlib NU

SYSCAT.REVTYPEMAPPINGS

This catalog view shows reverse data type mappings; that is, mappings from (1) data
types locally defined to DataJoiner to (2) data source data types. A mapping might
associate one user-defined type with another, or a user-defined type with a built-in type,
or one built-in type with another. Most of the mappings between built-in types are
defaults; for a list, see “Appendix B. Default Reverse Type Mappings” on page 155. All
other mappings were created with the CREATE REVERSE TYPE MAPPING
STATEMENT (page 89).

DataJoiner uses these mappings to determine what data source data types to define for
columns of tables created with DataJoiner’s CREATE TABLE statement. For more
information, see “Data Type Mappings” on page 26.

Table 37 describes the columns in SYSCAT.REVTYPEMAPPINGS.

Table 37. Columns in SYSCAT.REVTYPEMAPPINGS Catalog View

Name Data Type Nullable? Content

TYPE_MAPPING VARCHAR(18) No Name of the mapping. (If a mapping is created
with the CREATE REVERSE TYPE MAPPING
statement, and no name is specified in the
statement, DataJoiner supplies the name.
DataJoiner also supplies the name for all default
mappings.)

TYPESCHEMA CHAR(8) Yes Schema to which the local type belongs. If
TYPESCHEMA is null, assume that this type is
built-in.

184 Application Programming and SQL Reference Supplement

|

|
|

|
|
|
|
|
|
|

|
|
|

|

||

|||||

||||
|
|
|
|
|

|

||||
|
|

|

Table 37. Columns in SYSCAT.REVTYPEMAPPINGS Catalog View (continued)

Name Data Type Nullable? Content

TYPENAME VARCHAR(18) No The local data type. TYPESCHEMA and
TYPENAME make up the type’s fully-qualified
name. This is the name by which DataJoiner
references the remote type. The name is stored in
the DataJoiner catalog when a nickname for the
table is created.

DEFINER CHAR(8) No Authorization ID under which the mapping was
created. If the value of DEFINER is sysibm, it
means that the local type is built-in.

LOCAL_LOWER_LEN INTEGER Yes If the local type is decimal, LOCAL_LOWER_LEN
is the minimum number of digits that values of this
type can have. If the type is a character type other
than decimal, LOCAL_LOWER_LEN is the
minimum number of characters that values of the
type can have.

LOCAL_UPPER_LEN INTEGER Yes Maximum precision. If the local type is decimal,
LOCAL_UPPER_LEN is the maximum number of
digits that values of this type can have. If the type
is a character type other than decimal,
LOCAL_UPPER_LEN is the maximum number of
characters that values of the type can have.

Together, LOCAL_LOWER_LEN and
LOCAL_UPPER_LEN indicate the full allowable
precision for a value.

LOCAL_LOWER_SCALE SMALLINT Yes For local decimal data types,
LOCAL_LOWER_SCALE is the minimum number
of digits allowed to the right of the decimal point. If
LOCAL_LOWER_SCALE is null, assume that
users do not need to set this minimum.

LOCAL_UPPER_SCALE SMALLINT Yes For local decimal data types,
LOCAL_UPPER_SCALE is the maximum number
of digits allowed to the right of the decimal point.

Together, LOCAL_LOWER_SCALE and
LOCAL_UPPER_SCALE indicate the full allowable
scale.

LOCAL_S_OPR_P CHAR(2) Yes Relationship between local scale and remote
precision. Basic comparison operators (=, <, >, <=,
>=, <>) can be used. A null indicates that no
specific relationship is required.

LOCAL_BIT_DATA CHAR(1) Yes Applies only to types for character strings.
Indicates whether the local type is for bit data:

Y Yes, this type is for bit data.

N No, this type is not for bit data.

Appendix E. System Catalog Views 185

|

|||||

||||
|
|
|
|
|

|

||||
|
|

|

||||
|
|
|
|
|

|

||||
|
|
|
|
|

|
|
|

|

||||
|
|
|
|

|

||||
|
|

|
|
|

|

||||
|
|
|

|

||||
|

||

|||

|

Table 37. Columns in SYSCAT.REVTYPEMAPPINGS Catalog View (continued)

Name Data Type Nullable? Content

SERVER VARCHAR(18) Yes Name of the data source that supports the remote
type.

SERVER_TYPE VARCHAR(30) Yes Type of the data source that supports the remote
data type; for example, Oracle or Sybase.

SERVER_VERSION VARCHAR(18) Yes Version of the type specified in SERVER_TYPE;
for example, if SERVER_TYPE is Informix,
SERVER_VERSION might be 7.1 or 7.2.

SERVER_PROTOCOL VARCHAR(30) Yes The protocol used in accessing the remote type.

SERVER_TYPESCHEMA VARCHAR(128) Yes Schema to which the remote type belongs.

REMOTE_TYPENAME VARCHAR(128) No The remote data type. Together,
SERVER_TYPESCHEMA and
REMOTE_TYPENAME make up this type’s
fully-qualified name.

REMOTE_META_TYPE CHAR(1) Yes Indicates whether the remote type is built-in or
user-defined:

S The type is built-in.

T The type is user-defined.

REMOTE_LENGTH INTEGER Yes If the remote type is decimal, REMOTE_LENGTH
is the maximum number of digits that values of this
type can have. If the remote type is a character
type other than decimal, REMOTE_LENGTH is the
maximum number of characters that values of this
type can have. If REMOTE_LENGTH is null,
assume that users do not need to determine the
length.

REMOTE_SCALE SMALLINT Yes For remote decimal types, REMOTE_SCALE is the
maximum number of digits allowed to the right of
the decimal point. If REMOTE_SCALE is null,
assume that users do not need to determine the
scale.

REMOTE_BIT_DATA CHAR(1) Yes Applies only to types for character strings.
Indicates whether the remote type is for bit data:

Y Yes, this type is for bit data.

N No, this type is not for bit data.

CREATE_TIME TIMESTAMP No The time at which this mapping was created.

REMARKS VARCHAR(254) Yes User-supplied comment.

186 Application Programming and SQL Reference Supplement

|

|||||

||||
|
|

||||
|
|

||||
|
|

|

|||||

|||||

||||
|
|
|

|

||||
|

||

||
|

|

||||
|
|
|
|
|
|
|

|

||||
|
|
|
|

|

||||
|

||

||
|

|

|||||

|||||

SYSCAT.SERVERS

When you use the CREATE SERVER MAPPING SQL statement, one or more rows in
the SYSCAT.SERVERS catalog view are added for each data source accessed by
DataJoiner. You do not need entries in SERVERS for tables that are stored in the same
DataJoiner instance that contains this view. Table 38 describes the columns in
SYSCAT.SERVERS.

Table 38. Columns in SYSCAT.SERVERS Catalog View

Name Data Type Nullable? Content

SERVER VARCHAR(18) No Name of the data source as it is known to
DataJoiner. This name is defined by the person who
adds a row to SYSSERVERS and does not need to
be the same name used outside of DataJoiner. The
entry in this field identifies a server node and
database. This field is the primary key for this table.
The server name can consist of the single-byte
uppercase letters (A-Z), the Arabic numerals (0-9),
the underscore character (_), and the three special
characters #, @, and $. The three special
characters provide compatibility with host database
products; however, they should be used with care in
an NLS environment, because they are not included
in the NLS host (EBCDIC) invariant character set.

NODE VARCHAR(70) No Node at which the data source resides. For
guidelines on finding out what values to assign to
NODE, see “Finding Node Names” on page 51. This
field is case-sensitive.

DBNAME VARCHAR(18) No Name of the database on the data source. This field
is required when a database manager supports
multiple databases for each instance and has a
catalog for each database or requires a connect for
each database. This field is case-sensitive.

Appendix E. System Catalog Views 187

|

|
|
|
|

Table 38. Columns in SYSCAT.SERVERS Catalog View (continued)

Name Data Type Nullable? Content

SERVER_TYPE VARCHAR(30) No The type of data source. The valid values for this
field are:

CLASSIC
CROSSACCESS
DATAJOINER
DB2/6000
DB2/CS
DB2/HP
DB2/MVS
DB2/NT
DB2/PE
DB2/SUN
DB2/VM
DB2/VSE
DB2/2
DB2/400
GENERIC
INFORMIX
MSSQLSERVER
ORACLE
RDB
SQLANYWHERE
SQL/DS
SYBASE
XACCESS

These character constants define the set of data
sources supported by DataJoiner. This field is
uppercase.

SERVER_VERSION VARCHAR(18) No The version of the data source specified in the
TYPE field. The valid values for this field are
defined by the set of data sources supported by
DataJoiner. For example, the VERSION can contain
values such as:
7.3.2
10.0

188 Application Programming and SQL Reference Supplement

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 38. Columns in SYSCAT.SERVERS Catalog View (continued)

Name Data Type Nullable? Content

SERVER_PROTOCOL VARCHAR(30) No Data access protocol used. The protocol must
match the one used to configure the data source as
described in the Planning, Installation, and
Configuration Guide for your platform.

The default protocols in DataJoiner are:

drda Used with DRDA application
servers such as DB2 for
OS/390 (accessed via SNA)

drdaIP Used with DRDA application
servers such as DB2 for
OS/390 (accessed via TCP/IP)

db2ra Used with DB2 for CS and DB2
for PE

djxclassic Used with Classic Connect

ctlib Used with Sybase System 10
and above

dblib Used with Sybase and Microsoft
SQL Server

djxmssql Used with Microsoft SQL Server

informix Used with Informix

informix7 Used with Informix 7

net8 Used with Oracle 8.0.3 or
higher

sqlnet Used with Oracle 7

You can add other protocols to your system by
following procedures described in the Planning,
Installation, and Configuration Guide for your
platform.

This field is case-sensitive.

CODESET VARCHAR(10) No Reserved for future use.

CPU_RATIO FLOAT Yes CPU ratio. This ratio represents how much faster or
slower the remote CPU is compared to the local
CPU. For example, if the remote CPU is twice as
fast as the local CPU, enter the value 0.5. If the
local CPU is twice as fast as the remote CPU, enter
the value 2. If no value is provided, 1.0 is used by
the database manager.

Appendix E. System Catalog Views 189

|

||
|

||

|

Table 38. Columns in SYSCAT.SERVERS Catalog View (continued)

Name Data Type Nullable? Content

IO_RATIO FLOAT Yes I/O ratio. This ratio represents the local I/O device
rate, compared to the remote I/O device. For
example, if the remote I/O device is twice as fast as
the local I/O device, enter the value 0.5. If the local
I/O device is twice as fast as the remote I/O device,
enter the value 2. When no value is provided, 1.0 is
used by the database manager.

COMM_RATE INTEGER Yes Communication rate between the local and remote
systems. Enter the rate in the unit of bytes per
second. If no value is provided, the database
manager uses a default of 2MB per second.

REMARKS VARCHAR(254) Yes User’s comments.

SYSSTAT.SERVERS

This is a partly-updatable catalog view on SYSIBM.SYSSERVERS. It contains the
statistics for a server. Table 39 describes its columns.

Table 39. Columns in SYSSTAT.SERVERS Catalog View

Name Data Type Nullable? Updatable? Content

SERVER VARCHAR(18) No No Name of the server.

COMM_RATE INTEGER Yes Yes Communication rate to the data source.

IO_RATIO FLOAT Yes Yes I/O ratio for the data source.

CPU_RATIO FLOAT Yes Yes CPU ratio for the data source.

SYSCAT.SERVER_DATATYPES

This catalog view shows forward data type mappings; that is, mappings from data
source data types to data types defined locally to DataJoiner. A mapping might
associate one user-defined type with another, or a user-defined type with a built-in type,
or one built-in type with another. Most of the mappings between built-in types are
defaults; for a list, see “Appendix A. Default Forward Type Mappings” on page 135. All
other mappings were created with the CREATE TYPE MAPPING STATEMENT (page
112).

DataJoiner uses these mappings to determine what data types to define locally for
columns of a data source table or view that was created with the data source’s own
SQL. For more information, see “Data Type Mappings” on page 26.

Table 40 on page 191 describes the columns in SYSCAT.SERVER_DATATYPES.

190 Application Programming and SQL Reference Supplement

|

|

|

|

|
|
|
|
|
|
|

|
|
|

Table 40. Columns in SYSCAT.SERVER_DATATYPES Catalog View

Name Data Type Nullable? Content

TYPE_MAPPING VARCHAR(18) No Name of the mapping. (If a mapping is created
with the CREATE TYPE MAPPING statement, and
no name is specified in the statement, DataJoiner
supplies the name. DataJoiner also supplies the
name for all default mappings.)

TYPESCHEMA CHAR(8) Yes Schema to which the local type belongs. If
TYPESCHEMA is null, assume that this type is
built-in.

TYPENAME VARCHAR(18) No The local data type. TYPESCHEMA and
TYPENAME make up the type’s fully-qualified
name. This is the name by which DataJoiner
references the remote type. The name is stored in
the DataJoiner catalog when a nickname for the
table is created.

DEFINER CHAR(8) No Authorization ID under which the mapping was
created. If the value of DEFINER is sysibm, it
means that the local type is built-in.

LENGTH INTEGER Yes If the local type is decimal, LENGTH is the
maximum number of digits that values of this type
can have. If the local type is a character type other
than decimal, LENGTH is the maximum number of
characters that values of this type can have. If
LENGTH is null, DataJoiner determines what this
maximum should be.

SCALE SMALLINT Yes For local decimal types, SCALE is the maximum
number of digits allowed to the right of the decimal
point. If SCALE is null, DataJoiner determines
what this maximum should be.

BIT_DATA CHAR(1) Yes Applies only to types for character strings.
Indicates whether a local type is for bit data:

Y Yes, this type is for bit data.

N No, this type is not for bit data.

SERVER VARCHAR(18) Yes Name of the data source that supports the remote
type.

SERVER_TYPE VARCHAR(30) Yes Type of the data source that supports the remote
data type; for example, Oracle or Sybase.

SERVER_VERSION VARCHAR(18) Yes Version of the type specified in SERVER_TYPE;
for example, if SERVER_TYPE is Informix,
SERVER_VERSION might be 7.1 or 7.2.

SERVER_PROTOCOL VARCHAR(30) Yes The protocol used in accessing the remote type.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema to which the remote type belongs.

Appendix E. System Catalog Views 191

||

|||||

||||
|
|
|
|

|

||||
|
|

|

||||
|
|
|
|
|

|

||||
|
|

|

||||
|
|
|
|
|
|

|

||||
|
|
|

|

||||
|

||

|||

|

||||
|
|

||||
|
|

||||
|
|

|

|||||

|||||

Table 40. Columns in SYSCAT.SERVER_DATATYPES Catalog View (continued)

Name Data Type Nullable? Content

REMOTE_TYPENAME VARCHAR(128) No The remote data type. Together,
REMOTE_TYPESCHEMA and
REMOTE_TYPENAME make up this type’s
fully-qualified name.

REMOTE_META_TYPE CHAR(1) Yes Indicates whether the remote type is built-in or
user-defined:

S The type is built-in.

T The type is user-defined.

REMOTE_LOWER_LEN INTEGER Yes If the remote type is decimal,
REMOTE_LOWER_LEN is the minimum number
of digits that values of this type can have. If the
type is a character type other than decimal,
REMOTE_LOWER_LEN is the minimum number
of characters that values of the type can have.

REMOTE_UPPER_LEN INTEGER Yes Maximum precision. If the remote type is decimal,
REMOTE_UPPER_LEN is the maximum number
of digits that values of this type can have. If the
type is a character type other than decimal,
REMOTE_UPPER_LEN is the maximum number
of characters that values of the type can have.

Together, REMOTE_LOWER_LEN and
REMOTE_UPPER_LEN indicate the full allowable
precision for a value.

REMOTE_LOWER_SCALE SMALLINT Yes For remote decimal data types,
REMOTE_LOWER_SCALE is the minimum
number of digits allowed to the right of the decimal
point. If REMOTE_LOWER_SCALE is null,
assume that users do not need to set this
minimum.

REMOTE_UPPER_SCALE SMALLINT Yes For remote decimal data types,
REMOTE_UPPER_SCALE is the maximum
number of digits allowed to the right of the decimal
point

Together, REMOTE_LOWER_SCALE and
REMOTE_UPPER_SCALE indicate the full
allowable scale.

REMOTE_S_OPR_P CHAR(2) Yes Relationship between remote scale and remote
precision. Basic comparison operators (=, <, >, <=,
>=, <>) can be used. A null indicates that no
specific relationship is required.

192 Application Programming and SQL Reference Supplement

|

|||||

||||
|
|
|

|

||||
|

||

||
|

|

||||
|
|
|
|
|

|

||||
|
|
|
|
|

|
|
|

|

||||
|
|
|
|
|

|

||||
|
|
|

|
|
|

|

||||
|
|
|

|

Table 40. Columns in SYSCAT.SERVER_DATATYPES Catalog View (continued)

Name Data Type Nullable? Content

REMOTE_BIT_DATA CHAR(1) Yes Applies only to types for character strings.
Indicates whether the remote type is for bit data:

Y Yes, this type is for bit data.

N No, this type is not for bit data.

CREATE_TIME TIMESTAMP No The time at which this mapping was created.

REMARKS VARCHAR(254) Yes User’s comments.

SYSCAT.SERVER_FUNCTIONS

This catalog view shows mappings between functions defined to data sources and
functions or function templates defined locally to DataJoiner. Mappings can associate:

v Data source built-in functions with local built-in functions

v Data source built-in or user-defined functions with local user-defined functions or
local user-defined function templates

A unique index is defined on the columns FUNCSCHEMA, FUNCNAME, SPECIFIC
NAME, SERVER, SERVER_TYPE, SERVER_VERSION, SERVER_PROTOCOL, and
CREATE_TIME.

Table 41 describes the columns in SYSCAT.SERVER_FUNCTIONS.

Table 41. Columns in SYSCAT.SERVER_FUNCTIONS Catalog View

Name Data Type Nullable? Content

FUNCTION_MAPPING VARCHAR(18) No Name of the function mapping (can be
system-generated).

FUNCSCHEMA CHAR(8) Yes Schema to which the function belongs. If
FUNCSCHEMA is null, assume that this function is
built-in.

FUNCNAME VARCHAR(18) No Name of a local function or function template.
FUNCSCHEMA and FUNCNAME make up the
fully-qualified name of a local function or function
template.

SPECIFICNAME VARCHAR(18) Yes Name of the local function instance.

DEFINER CHAR(8) No Authorization ID under which this mapping was
created. A value of SYSIBM indicates that this is a
system built-in function mapping.

SERVER VARCHAR(18) Yes Name of the data source to which the remote
function in this mapping is defined.

SERVER_TYPE VARCHAR(30) Yes Type of data source to which the remote function
in this mapping is defined; for example, Oracle or
SQL Anywhere.

Appendix E. System Catalog Views 193

|

|||||

||||
|

||

|||

|

|||||

||||||

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

Table 41. Columns in SYSCAT.SERVER_FUNCTIONS Catalog View (continued)

Name Data Type Nullable? Content

SERVER_VERSION VARCHAR(18) Yes Version of the data source type specified in the
SERVER_TYPE column. For example, if the type
is Oracle, the Version might be 8.0.3.

SERVER_PROTOCOL VARCHAR(30) Yes Protocol used in accessing the data source type.

REMOTE_FUNCNAME VARCHAR(1024) No Fully-qualified name of the remote function in this
mapping.

USER_DEFINED CHAR(1) Yes Reserved for future use.

IOS_PER_INVOC DOUBLE No Estimated number of I/Os per invocation of the
remote function; -1 if not known (0 is the default).

INSTS_PER_INVOC DOUBLE No Estimated number of instructions per invocation of
the remote function; -1 if not known (450 is the
default).

IOS_PER_ARGBYTE DOUBLE No Estimated number of I/Os per input argument byte
of the remote function; -1 if not known (0 is the
default).

INSTS_PER_ARGBYTE DOUBLE No Estimated number of instructions per input
argument byte of the remote function; -1 if not
known (0 is the default).

PERCENT_ARGBYTES SMALLINT No Estimated average percent of input argument bytes
that the remote function will actually read; -1 if not
known (100 is the default).

INITIAL_IOS DOUBLE No Estimated number of I/Os performed the first and
last time the function is invoked; -1 if not known (0
is the default).

INITIAL_INSTS DOUBLE No Estimated number of instructions executed the first
and last time the function is invoked; -1 if not
known (0 is the default).

CREATE_TIME TIMESTAMP No The time at which this mapping is created.

REMARKS VARCHAR(254) Yes User’s comments.

SYSSTAT.SERVER_FUNCTIONS

This is a partly-updatable catalog view. The DataJoiner optimizer uses statistics in this
view in developing access plans. Table 42 describes this view’s columns.

Table 42. Columns in SYSSTAT.SERVER_FUNCTIONS Catalog View

Name Data Type Nullable? Updatable? Content

FUNCTION_MAPPING VARCHAR(18) No No Name of the function mapping (may be
system-generated).

SERVER VARCHAR(18) Yes No Name of the data source to which the
remote function in the mapping is defined.

194 Application Programming and SQL Reference Supplement

|

|
|
|

|

|
|

|

|

|

|

|
|

Table 42. Columns in SYSSTAT.SERVER_FUNCTIONS Catalog View (continued)

Name Data Type Nullable? Updatable? Content

SERVER_TYPE VARCHAR(30) Yes No Type of data source to which the remote
function in the mapping is defined; for
example, Oracle or SQL Anywhere.

SERVER_VERSION VARCHAR(18) Yes No Version of the data source type specified
in the SERVER_TYPE column. For
example, if the type is Oracle, the version
might be 8.0.3.

SERVER_PROTOCOL VARCHAR(30) Yes No Protocol used in accessing the data
source type.

REMOTE_FUNCNAME VARCHAR(1024) No No Fully-qualified name of the remote function
in this mapping.

IOS_PER_INVOC DOUBLE No Yes Estimated number of I/Os per invocation
of the remote function; -1 if not known (0
is the default).

INSTS_PER_INVOC DOUBLE No Yes Estimated number of instructions per
invocation of the remote function; -1 if not
known (450 is the default).

IOS_PER_ARGBYTE DOUBLE No Yes Estimated number of I/Os per input
argument byte of the remote function; -1 if
not known (0 is the default).

INSTS_PER_ARGBYTE DOUBLE No Yes Estimated number of instructions per input
argument byte of the remote function; -1 if
not known (0 is the default).

PERCENT_ARGBYTES SMALLINT No Yes Estimated average percent of input
argument bytes that the remote function
will actually read; -1 if not known (100 is
the default).

INITIAL_IOS DOUBLE No Yes Estimated number of I/Os performed the
first/last time the function is invoked; -1 if
not known (0 is the default).

INITIAL_INSTS DOUBLE No Yes Estimated number of instructions executed
the first/last time the function is invoked;
-1 if not known (0 is the default).

SYSCAT.SERVER_OPTIONS

This catalog view shows options that DBAs can set to help DataJoiner optimize
services for data sources.

A unique index is defined on the columns OPTION, SERVER, SERVER_ TYPE,
SERVER_VERSION, and SERVER_PROTOCOL. A constraint on the base table
requires values in the SERVER column to match values in the SERVER column of the
SYSCAT.SERVERS catalog view.

Appendix E. System Catalog Views 195

|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

Table 43 describes the columns in SYSCAT.SERVER_OPTIONS.

Table 43. Columns in SYSCAT.SERVER_OPTIONS Catalog View

Name Data Type Nullable? Content

OPTION VARCHAR(30) No Name of the server option. The valid values of this
field are listed in Table 2 on page 17.

SETTING VARCHAR(254) No Option setting. The valid values depend on
OPTION, and are listed in Table 2 on page 17.

SERVER VARCHAR(18) Yes Name of data source to which an option setting
applies. This field is uppercase.

SERVER_TYPE VARCHAR(30) Yes Type of data source to which an option setting
applies. The valid values for this column are the
same as those in SYSCAT.SERVERS.TYPE.

SERVER_VERSION VARCHAR(18) Yes Version of the type of data source to which an
option setting applies. The valid values for this
column are the same as those in
SYSCAT.SERVERS.VERSION.

SERVER_PROTOCOL VARCHAR(30) Yes Protocol used to access the data source named in
the SERVER column or the type of data source
specified in the SERVER_TYPE column. The valid
values for this field are the same as those in
SYSCAT.SERVERS.PROTOCOL.

REMARKS VARCHAR(254) Yes User’s comments.

SYSCAT.TABLES

DataJoiner inserts one row in the SYSCAT.TABLES catalog view for each nickname,
table, or view that is created. All catalog views (including SYSCAT.TABLES) have
entries in the TABLES catalog view.

Table 44 describes the columns in SYSCAT.TABLES.

Table 44. Columns in SYSCAT.TABLES Catalog View

Name Data Type Nullable? Content

TABSCHEMA CHAR(8) No Nickname, table, or view qualifier.

TABNAME VARCHAR(18) No Nickname, table, or view name. If the
REMOTE_TABNAME or SERVER column is null,
the value in the TABNAME column represents a
local table or view. Otherwise, TABNAME represents
a nickname for a table or view at the data source.

DEFINER CHAR(8) No User who created the table or view.

196 Application Programming and SQL Reference Supplement

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|

Table 44. Columns in SYSCAT.TABLES Catalog View (continued)

Name Data Type Nullable? Content

TYPE CHAR(1) No The type of object:

A Alias

T Table, nickname for a table, or nickname
for a view

V View

STATUS CHAR(1) No The type of object:

N Normal table, view, nickname for a table
or view, or alias

C Check pending on table or nickname for a
table

X Inoperative view or inoperative nickname
for a view

BASE_TABSCHEMA CHAR(8) Yes If TYPE=A, identifies the table, nickname, view, or
alias schema that is referenced by this alias;
otherwise, it is null.

BASE_TABNAME VARCHAR(18) Yes If TYPE=A, identifies the table, nickname, view, or
alias name that is referenced by this alias;
otherwise, it is null.

CREATE_TIME TIMESTAMP No Timestamp indicating when the nickname, table, or
view was first created.

STATS_TIME TIMESTAMP Yes Timestamp indicating when any change was made
to recorded statistics for this nickname or table.

COLCOUNT SMALLINT No Number of columns in the nickname or table.

TABLEID SMALLINT No Internal table identifier.

TBSPACEID SMALLINT No Internal identifier of primary table space for this
table.

CARD INTEGER No Total number of rows in the nickname or table; −1 if
statistics are not gathered or if the row describes a
view or alias.

NPAGES INTEGER No Total number of pages on which the rows of the
nickname or table exist; −1 if statistics are not
gathered or if the row describes a view or alias.

FPAGES INTEGER No Total number of pages in the file; −1 if statistics are
not gathered or if the row describes a view or alias.

OVERFLOW INTEGER No Total number of overflow records in the table; −1 if
statistics are not gathered or if the row describes a
view or alias.

Appendix E. System Catalog Views 197

|

|
|

|

|
|

|
|

Table 44. Columns in SYSCAT.TABLES Catalog View (continued)

Name Data Type Nullable? Content

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If no
other table space is specified, all parts of the table
are stored in this table space. Null for aliases and
views.

INDEX_TABLESPACE VARCHAR(18) Yes Specifies the name of the table space that holds all
indexes created on this table.

LONG_TABLESPACE VARCHAR(18) Yes Specifies the name of the table space that holds all
long data (LONG or LOB column types) for this
table.

PARENTS SMALLINT Yes Number of parent tables of this table (the number of
referential constraints in which this table is a
dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table (the
number of referential constraints in which this table
is a parent).

SELFREFS SMALLINT Yes Number of self-referencing referential constraints for
this table (the number of referential constraints in
which this table is both a parent and a dependent).

KEYCOLUMNS SMALLINT No Number of columns in the primary key of the table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is null or 0
if no primary key exists.

KEYUNIQUE SMALLINT No Reserved for future use.

CHECKCOUNT SMALLINT No Number of check constraints defined on this table.

DATACAPTURE CHAR(1) No Valid values are:

Y Table participates in data propagation
(DPROPR).

N Table does not participate in data
propagation.

CONST_CHECKED CHAR(32) No Byte 1 represents foreign key constraints. Byte 2
represents check constraints. Other bytes are
reserved. Encodes constraint information on
checking. Values are:

Y Checked by system

U Checked by user

N Not checked (pending)

REMOTE_SERVER VARCHAR(18) Yes Name of the data source. This column is used only
with nicknames. If the TABNAME column represents
a table or view rather than a nickname, this column
is null. This field is case-sensitive.

198 Application Programming and SQL Reference Supplement

|

Table 44. Columns in SYSCAT.TABLES Catalog View (continued)

Name Data Type Nullable? Content

REMOTE_TABSCHEMA VARCHAR(128) Yes Authorization ID on the data source. This column is
used only with nicknames. If the TABNAME column
represents a table, view, or two-part nickname, this
column is null. This field is case-sensitive.

REMOTE_TABNAME VARCHAR(128) Yes Name of the remote table as defined on the data
source. This column is used only with nicknames. If
the TABNAME column represents a table or view
rather than a nickname, this column is null. This
field is case-sensitive.

REMARKS VARCHAR(254) Yes User’s comments.

Appendix E. System Catalog Views 199

|

|

200 Application Programming and SQL Reference Supplement

Appendix F. Resolving Problems Encountered by Applications That
Predate Version 2.1.1

This appendix explains how to resolve problems that arise when certain applications,
such as those based on DataJoiner Version 1.2, try to perform operations that are no
longer valid in Version 2.1.1, to query or modify catalog tables that were updated for
Versions 2.1 and 2.1.1, or to query catalog views that were updated for Version 2.1.1.

The word applications here refers to a wide range of programs and instructions; for
example:

v Application program code

v Third-party utilities

v Interactive SQL queries

v Commands

v API invocation

This appendix does not describe:

v DataJoiner operations that are less likely to generate an error in Version 2.1.1 than in
Version 1.2. These operations can have only a positive impact on existing
applications.

v Inter-version differences that are common to DataJoiner and DB2. For a discussion
of problems that can result from them, see “Appendix I. Incompatibilities between
Releases”, in the DB2 SQL Reference for common servers.

The problems that this appendix addresses are those that can arise when applications
that predate DataJoiner Version 2.1.1 try to:

v Query DataJoiner Version 2.1.1 catalog tables, or query DB2 for CS catalog views
that have been updated for DataJoiner Version 2.1.1

v Modify DataJoiner Version 2.1.1 catalog tables

Querying System Catalog Tables and Views

This section explains:

v How DataJoiner catalog tables and DB2 for CS catalog views have been updated to
support DataJoiner Version 2.1.1

v What problems can result when certain applications, such as those based on
DataJoiner Version 1.2, try to query these tables or views

v How to resolve these problems

Changes

Changes have been made to several DataJoiner system catalog tables, and to certain
DB2 for CS catalog views that support DataJoiner. This section discusses:

© Copyright IBM Corp. 1995, 1998 201

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|

||

|
|

|
|

|

|
|

v Changes that could cause problems for applications designed to access catalog
tables that were used by DataJoiner Version 1.2

v Changes that could cause problems for applications designed to access DB2 for CS
views that have been updated to support the Spatial Extender.

Changes in Tables Used by DataJoiner Version 1.2

DataJoiner Version 1.2 uses three DB2 for CS catalog tables—SYSCOLUMNS,
SYSINDEXES, and SYSTABLES—and two tables specific to
DataJoiner—SYSREMOTEUSERS and SYSSERVERS. The following changes, listed
by table, were made for DataJoiner Version 2.1 and retained in Version 2.1.1:

The SYSCOLUMNS Table: The following changes, listed by column, were made to
this table:

HIGH2KEY Non-character values are now in printable format
rather than binary format.

LOW2KEY Non-character values are now in printable format
rather than binary format.

NULLS The value D (not null with default) has been
changed to N (not nullable).

REMOTE_TYPE In Version 1.2, values denoted data types of
columns of data source tables that DataJoiner
referenced by nickname. In Version 2.1.1, these
values are stored in REMOTE_TYPENAME.

The SYSINDEXES Table: In Version 1.2, the value in the CLUSTERRATIO column of
this table was -1 if statistics were not gathered. In Version 2.1.1, the value is -1 either if
statistics are not gathered or if detailed index statistics are gathered. In the latter case,
an appropriate value is added to the CLUSTERFACTOR column.

The SYSREMOTEUSERS Table: The data type for this table’s AUTHID column was
changed from CHAR to VARCHAR.

The SYSSERVERS Table: The following changes, listed by column, were made to
this table:

COLSEQ Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (colseq) in the
OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

CONNECTSTRING Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (connectstring)
in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

CPURATIO Data type changed from DOUBLE to FLOAT.

202 Application Programming and SQL Reference Supplement

|
|

|
||

|
|
|
|

|
|

|
|
|
|

|
|
|
||

|
|

|
|

|
|
|
|

|
|
|
|

DATEFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value
(DATEFORMAT) in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

FOLDID Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (fold_id) in the
OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

IORATIO Data type changed from DOUBLE to FLOAT.

PASSWORD Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (password) in
the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

TIMEFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (TIMEFORMAT)
in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

TIMESTAMPFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value
(TIMESTAMPFORMAT) in the OPTION column of
the SYSCAT.SERVER_OPTIONS catalog view.

The SYSTABLES Table: The following changes, listed by column, were made to this
table:

PACKED_DESC Data type changed from LONGVARCHAR to BLOB.

REL_DESC Data type changed from LONGVARCHAR to BLOB.

VIEW_DESC Data type changed from LONGVARCHAR to BLOB.

Changes in DB2 for CS Views That Support the Spatial Extender

The following DB2 for CS catalog views were changed to support the Spatial Extender,
an optional facility that became available with DataJoiner Version 2.1.1. For information
about the Spatial Extender, see DataJoiner Spatial Extender Administration Guide and
Reference.

The SYSCAT.DATATYPES View: The following columns were added to this view:
EXTRA_LENGTH, TYPE_PRECEDENCE, and INSTANTIABLE.

The SYSCAT.FUNCPARMS View: The following columns were added to this view:
PARMNAME, TYPE_PRESERVING, and MUTATED.

The SYSCAT.FUNCTIONS View: The following columns were added to this view:
CONTAINS_SQL, DBINFO, RESULT_COLS, BODY, EFFECT, TYPE_PRESERVING,
FUNC_PATH, and SELECTIVITY.

Appendix F. Resolving Problems Encountered by Applications That Predate Version 2.1.1 203

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|

|
|

|
|
|

The SYSCAT.TRIGDEP View: A column named DTYPE was added to
SYSCAT.TRIGDEP.

Problems

A variety of problems could occur. For example:

v If a DataJoiner Version 1.2 application does a qualified search on a column that
takes a different value than it did before (for example, a search on NULLS in
SYSIBM.SYSCOLUMNS for a value of D), the application might react differently than
expected.

v If a DataJoiner Version 1.2 application queries a column whose data type has
changed (for example, CPURATIO in SYSIBM.SYSSERVERS), too much or too little
data might be returned.

v If a DB2 for CS application uses star notation (SELECT *) to query a view with new
columns that the application doesn’t recognize (for example, SYSCAT.DATATYPES,
which has several new columns to support the Spatial Extender), the application will
receive an error.

Resolution

Review the changes listed above to decide whether they affect your applications and, if
so, what corrective action to take (for example, updating the application). So that any
problems in accessing or maintaining catalog tables can be avoided, we strongly
recommend that instead of querying these tables, you query the catalog views derived
from them.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR in the SYSCAT.INDEXES catalog view and
choose the greater of the two values that you retrieve.

Modifying System Catalog Tables

This section explains:

v How the method for modifying system catalog tables changed in Version 2.1.1

v What problems can result when Version 1.2 applications try to modify Version 2.1.1
catalog tables

v How to resolve these problems

Change

For DataJoiner to perform operations on a specific data source, DataJoiner must
associate an identifier (specifically, a server name) with that data source. In Version 1.2,
you could create such an association by inserting appropriate values into the table
SYSIBM.SYSSERVERS. You could also modify an association by updating
SYSIBM.SYSSERVERS, and terminate an association by deleting a server name from

204 Application Programming and SQL Reference Supplement

|
|

|
|
|
|

||

|

|
|

|

|
|
|
|
|

SYSIBM.SYSSERVERS. In Versions 2.1 and 2.1.1, you use DDL to perform these
same operations indirectly. Specifically, you create DataJoiner-to-data source
associations with the CREATE SERVER MAPPING statement, modify them with the
ALTER SERVER MAPPING statement, and terminate them with the DROP statement.
These statements operate on SYSCAT.SERVERS, a catalog view derived from
SYSIBM.SYSSERVERS. The changes that you make to the view are propagated to
SYSIBM.SYSSERVERS.

For a user to access data sources from DataJoiner, DataJoiner must associate the ID
under which the user connects to DataJoiner with the IDs under which the user
connects to these data sources. In Version 1.2, you could create such an association
by inserting appropriate values into the table SYSIBM.SYSREMOTEUSERS. You could
also modify an association by updating SYSIBM.SYSREMOTEUSERS, and terminate
an association by deleting an ID from SYSIBM.SYSREMOTEUSERS. In Versions 2.1
and 2.1.1, you use DDL to perform these same operations indirectly. Specifically, you
create associations between IDs with the CREATE USER MAPPING statement, modify
them with the ALTER USER MAPPING statement, and terminate them with the DROP
statement. These statements operate on SYSCAT.REMOTEUSERS, a catalog view
derived from SYSIBM.SYSREMOTEUSERS. The changes that you make to the view
are propagated to SYSIBM.SYSREMOTEUSERS.

Problem

If you issue an INSERT, UPDATE, or DELETE statement against
SYSIBM.SYSSERVERS, SYSIBM.SYSREMOTEUSERS, or any of DataJoiner’s other
system catalog tables, the statement will fail.

Resolution

To modify SYSIBM.SYSSERVERS or SYSIBM.SYSREMOTEUSERS, use the SERVER
MAPPING or USER MAPPING DDLs, as described in “Change” on page 204.

Appendix F. Resolving Problems Encountered by Applications That Predate Version 2.1.1 205

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
||

206 Application Programming and SQL Reference Supplement

Appendix G. Where to Find Out More about DataJoiner, DB2 for CS,
and Replication Products

This appendix lists IBM books about DataJoiner, DB2 for CS, and Replication
Administration; states how to obtain these books; and tells you where to go on the
Internet to learn more about DataJoiner.

DataJoiner, DB2 for CS, and Replication Publications

Table 45 lists the DataJoiner, DB2 for CS, and Replication books applicable to installing,
configuring, administrating, using, and running applications against DataJoiner. The
DataJoiner for AIX Planning, Installation, and Configuration Guide and the DataJoiner
for Windows NT Systems Planning, Installation, and Configuration Guide are provided
in hardcopy with DataJoiner. In addition, these two books and all other DataJoiner
books are provided in softcopy formats (PostScript, HTML, and PDF) on the product
CD-ROM. All other books in Table 45 are provided in PostScript; most are also provided
in HTML (the two exceptions are the DB2 for CS Software Developer Kit publications).
Additionally, most of the DB2 for CS books are provided in INF format (see Table 45).

To understand how the DataJoiner books in Table 45 are organized, it is important to
understand how DataJoiner and DB2 for CS are interrelated. DataJoiner provides a
“superset” of DB2 for CS. The two products share common functions and syntax;
therefore, information that is common to DataJoiner and DB2 for CS is documented in
the DB2 for CS books. The DataJoiner books listed in Table 45 document the function
and syntax that DataJoiner has in addition to the function and syntax that it shares with
DB2 for CS.

Table 45 does not list all of the DB2 for CS books. View or print a DB2 for CS book to
see the publications list for all DB2 for CS books.

If you order Classic Connect, you will receive additional books (the DataJoiner Classic
Connect Planning, Installation, and Configuration Guide, the DataJoiner Classic
Connect data mapper Sample for Windows Installing and Using Guide, and the
DataJoiner Messages and Problem Determination Guide) and a program directory.

Table 45. DataJoiner, DB2 for CS, and Replication publications applicable to DataJoiner

Book Name Form Number File Prefix INF

DataJoiner Version 2.1.1 Books

DataJoiner for Windows NT Systems Planning,
Installation, and Configuration Guide

SC26-9150 DJXN2 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on Microsoft Windows NT operating systems.

© Copyright IBM Corp. 1995, 1998 207

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

Table 45. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

DataJoiner for AIX Systems Planning,
Installation, and Configuration Guide

SC26–9145 DJXG6 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on AIX operating systems.

DataJoiner Administration Supplement SC26–9146 DJXD5 no

This book provides information that assists DBAs and other system administrators of DataJoiner
with performing administrative tasks. It includes a product overview section, security
considerations, data source identification steps, database utility notes, performance considerations,
database system monitor reference data, large object information, and explain tool examples.

DataJoiner Application Programming and SQL
Reference Supplement

SC26–9148 DJXK5 no

This book provides SQL statements, descriptions of system catalog data, guidelines, and other
information for application programmers. With this information, application programmers can use
DataJoiner to perform multiple tasks in a distributed database environment—tasks such as
creating nicknames by which to reference tables and views, invoking functions and stored
procedures, passing SQL directly to databases for processing, and using server options to
optimize query performance.

DataJoiner Generic Access API Reference SC26–9147 DJXM4 no

This book explains how to create a generic access module that allows you to use existing drivers
or to create new drivers to gain access to an unlimited set of data sources.

DataJoiner Classic Connect Planning,
Installation, and Configuration Guide

GC26–8869 DJXC4 no

This book provides information on the DataJoiner Classic Connect for MVS product. The audience
for this information includes application programmers, database administrators, network
administrators, system administrators, and system programmers. The book documents key tasks
required to set up Classic Connect in the MVS operating environment: planning your setup;
installing components via SMP/E, configuring the kernel, DMSIs, and network communications;
managing instances; and creating relational data maps for IMS and VSAM data.

DataJoiner Classic Connect data mapper
Sample for Windows Installing and Using Guide

GC26–8873 DJXZ2 no

This book provides information on the DataJoiner Classic Connect data mapper sample for
Windows. The audience for this information includes system programmers, DBAs, or anyone that
needs to produce relational maps (USE grammar) for IMS and VSAM data. The book documents
key tasks required to set up and use the data mapper in the Windows environment: installing
product files, starting the product, and generating USE grammar statements for input to DataJoiner
Classic Connect projection utilities.

208 Application Programming and SQL Reference Supplement

|

||

|

Table 45. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

DataJoiner Messages and Problem
Determination Guide

SC26–9149 DJXP4 no

This book describes the messages and codes issued by DataJoiner and Classic Connect
instances. For messages that report errors, the book explains the cause of the errors and
recommends corrective actions. The book also provides guidelines on using diagnostic tools to
isolate and understand problems.

DB2 Spatial Extender Administration Guide and
Reference

SC26–9316 DJXS1 no

This book provides instructions for spatially enabling a DataJoiner database, an introduction to
spatial capabilities using geometry data types and functions, descriptions of spatial data exchange
formats, an SQL and message reference for spatial data, and appendices containing the standard
representations of spatial reference systems.

DB2 for CS and Replication Books

DB2 Information and Concepts Guide SH20–4664 SQLG0 no

Provides product and conceptual information to anyone who needs a comprehensive overview of
the DB2 products. It is useful when deciding which DB2 products suit your environment. It also
includes a glossary of terms used in the book.

DB2 Administration Guide S20H-4580 SQLD0 yes

Contains information required to design, implement, and maintain a database to be accessed
either locally or in a client/server environment.

DB2 Database System Monitor Guide and
Reference

S20H–4871 SQLF0 yes

Includes a description of how to use the Database System Monitor and a description of all the data
elements for which information can be collected.

DB2 Command Reference S20H–4645 SQLN0 yes

Provides the reference information needed to use system commands and the DB2 command line
processor to execute database administrative functions. Describes the commands that can be
entered at an operating system command prompt or in a shell script to access the database
manager. Explains how to invoke and use the command line processor, and describes the
command line processor options. Provides a description of all the database manager commands.

DB2 API Reference S20H–4984 SQLB0 yes

Appendix G. Where to Find Out More about DataJoiner, DB2 for CS, and Replication Products 209

|
|
|||

|
|
|
|

Table 45. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

Provides information about the use of application programming interfaces (APIs) to execute
database administrative functions. Presents a description of APIs and the data structures used
when calling APIs, as well as detailed information on the use of database manager API calls in
applications written in the supported programming languages.

DB2 SQL Reference S20H–4665 SQLS0 yes

Is intended to serve as a reference for syntax and rules governing the use of SQL statements.
Syntax diagrams, semantic descriptions, rules, and examples are provided for the SQL statements.
Catalog views, product maximums, release-to-release incompatibilities, and a glossary are also
included in this book.

DB2 Application Programming Guide S20H–4643 SQLA0 yes

Discusses the application development process and how to code, compile, and execute application
programs that use embedded SQL to access the database. It includes discussions on
programming techniques and performance considerations for the application programmer.

DB2 Call Level Interface Guide and Reference S20H–4644 SQLL0 yes

Is a guide and reference manual for programmers using the Call Level Interface. DB2 Call Level
Interface is a callable SQL interface based on the X/Open CLI specification and is compatible with
Microsoft Corporation’s ODBC.

DB2 Messages Reference S20H–4808 SQLM0 yes

Lists messages and explanations. Each explanation includes the action to be taken when a
message or code is issued.

DB2 Problem Determination Guide S20H–4779 SQLP0 yes

Provides information that helps in determining the source of errors, recovering from problems, and
describing and reporting defects.

DDCS User’s Guide S20H–4793 SQLC0 yes

Provides concepts, programming guidelines, and general information about the DDCS products.

DB2 Replication Guide and Reference S95H–0999 DB3E0 no

Describes how to plan, configure, administer, and operate IBM replication products, including the
Apply and Capture programs.

DB2 for CS Platform-Specific Books

DB2 SDK for AIX Building Your Applications S20H-4780 SQLA3 yes

210 Application Programming and SQL Reference Supplement

Table 45. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

This book provides environment setup information and step-by-step instructions to compile and link
DB2 applications on the AIX operating system.

DB2 SDK for Windows 95 and NT Building
Your Applications

S33H-0310 SQLA6 yes

This book provides environment setup information and step-by-step instructions to compile and link
DB2 applications on Windows 95 and NT operating systems.

How to Order, View, and Print Publications

Use order number SBOF-5289 to request one hardcopy of each of the DataJoiner, DB2
for CS, and Replication books shown in Table 45 on page 207.

To view online documentation, follow the instructions located in the README files on
the CD-ROM. Most of the books in Table 45 on page 207 are provided as HTML files
and can be viewed with an HTML browser. You can also view INF versions of many
DB2 for CS books. Instructions for installing the INF reader on AIX are provided in the
DB2 README files; on NT operating systems, the INF reader is installed automatically.
DataJoiner and Replication information is not provided in INF format.

To print individual books, follow the instructions provided in the README files on the
CD-ROM. PostScript files for all the books are provided.

Internet Resources

The following Internet resources provide additional information about DataJoiner.

World Wide Web
The following DataJoiner-specific Web site contains general and technical
(frequently asked questions) product information. The address of the site is:

http://www.software.ibm.com/data/datajoiner/

Also available online are the most current versions of books in the DB2 library.
You can view books in the DB2 library by clicking the Library link from the
following address:

http://www.software.ibm.com/data/pubs/techinfo.html

Internet Newsgroups
DataJoiner questions, answers, and discussions can be found in:

v bit.listserv.db2-l

v comp.databases

Appendix G. Where to Find Out More about DataJoiner, DB2 for CS, and Replication Products 211

v comp.databases.ibm-db2

212 Application Programming and SQL Reference Supplement

Appendix H. DataJoiner Classes and Services

This appendix describes:

v Classes you can take to learn about DataJoiner

v Services to help you plan to use DataJoiner, and to install and configure it

DataJoiner Classes

IBM offers classes that teach you how to install, use, and maintain DataJoiner. These
classes are described in this section.

For more information, or to enroll in any IBM class, call 1-800-IBM-TEACH
(1-800-426-8322) and refer to the IBM US Course Code. For locations outside the
United States, contact your IBM representative.

Class descriptions will also be maintained at the DataJoiner Web site. The DataJoiner
URL is:

http://www.software.ibm.com/data/datajoiner/

Using DataJoiner

IBM US Course Code DW202

Duration
2 days

Format Lecture with classroom exercises.

This course introduces the student to DataJoiner and its powerful
multidatabase server capabilities. After completing this course, students should
be able to effectively use DataJoiner to perform simple and complex distributed
requests. They should also be able to monitor and tune SQL queries,
accounting for the capabilities and characteristics of diverse DataJoiner data
sources. Areas covered include:

v Global optimization

v Multi-vendor query considerations

v Nicknames

v Basic security

v An introduction to the DataJoiner catalog

v DataJoiner query performance

v The DataJoiner Explain tool

v The DataJoiner Database System Monitor

© Copyright IBM Corp. 1995, 1998 213

|

|

|

|

|

|
|

|
|
|

|
|

|

Who Should Take This Course
This course is appropriate for anyone who will be using, managing, installing,
or maintaining a DataJoiner multiple database environment.

Prerequisite
SQL experience. You can obtain this experience by attending the “SQL
Workshop,” IBM US Course Code CF120.

DataJoiner Administration

IBM US Course Code DW212

Duration
3 days

Format Lecture with classroom exercises.

This course trains the student to install, configure, and manage a secure
DataJoiner multidatabase server environment. Areas covered include:

v Installing DataJoiner

v Generating and managing the DataJoiner database

v Configuring DataJoiner

v Enabling DataJoiner client access to remote data sources

v DataJoiner security

v DataJoiner server performance

Who Should Take This Course
This course is appropriate for anyone who will be managing, installing, or
maintaining a DataJoiner multiple database environment.

Prerequisite
DataJoiner knowledge or experience. You can obtain this experience by
attending “Using DataJoiner,” IBM US Course Code DW202.

DataJoiner Services

IBM provides services for DataJoiner that include assistance with planning, installing,
and configuring the product. The assistance is customized to your individual
environment and takes place in two phases.

First Phase: Planning

The first phase helps you plan the installation and configuration of DataJoiner, and to
configure network systems so that DataJoiner can communicate optimally with all data
sources and clients. This phase includes:

v Assessing general readiness

v Defining clients

214 Application Programming and SQL Reference Supplement

|
|

|

|
|

|
|

v Defining data sources

v Assessing applications

v Defining backup and recovery strategies for DataJoiner

v Configuring DataJoiner database parameters

v Identifying test queries for system validation

v Defining security requirements

Second Phase: Implementation

The second phase focuses on implementing the plan developed in the planning phase.
It includes:

v Installing DataJoiner

v Configuring data sources

v Providing access to data source tables and views

v Installing and configuring remote clients

v Validating and documenting the environment

v Providing final turnover to the customer

At the end of this phase, active remote and local clients can access multiple data
sources through DataJoiner.

DataJoiner services can be combined with replication services if you are interested in
replicating data across a heterogeneous database environment. For more information
about DataJoiner and replication services, contact your IBM representative or see the
DataJoiner Web page. The DataJoiner URL is:

http://www.software.ibm.com/data/datajoiner/

Appendix H. DataJoiner Classes and Services 215

216 Application Programming and SQL Reference Supplement

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1995, 1998 217

W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

218 Application Programming and SQL Reference Supplement

Trademarks

The following terms are trademarks of the International Business Machines Corporation
in the United States, or other countries, or both:

ADSTAR
Advanced Peer-to-Peer Networking
AIX
APPN
AS/400
AT
CICS
CICS/6000
Client Acces
Current
DATABASE 2
DataGuide
DataJoiner
DataPropagator
DataRefresher
DB2
DFSMS
Distributed Relational Database Architecture
DProp
DRDA
Extended Services for OS/2
HACMP/6000
IBM

IIN
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
MVS/XA
NetView
Operating System/2
Operating System/400
OS/2
OS/390
OS/400
RACF
RETAIN
RISC System/6000
RS/6000
RT
SP
SQL/DS
SQL/400
System/390
VisualAge
VTAM

Intel is a registered trademark of the Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, WindowsNT®, and the Windows logo are registered trademarks of
Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of
others.

Notices 219

220 Application Programming and SQL Reference Supplement

Index

A
ALLOCATE CURSOR statement

discussion 35
syntax 55

ALTER NICKNAME statement
discussion 5
syntax 56

ALTER SERVER MAPPING statement
discussion 5
syntax 59

ALTER SERVER OPTION statement
discussion 12
syntax 62

ALTER TABLE statement
discussion 31
syntax 65

ALTER USER MAPPING statement
discussion 5
syntax 69

authorization
authorization-name

description 46
maximum length 49

discussion 3
GRANT PASSTHRU statement 126
provided by DataJoiner 4
remote-authorization-name

description 48
maximum length 49

REVOKE PASSTHRU statement 128
SYSCAT.PASSTHRU_AUTH 181

B
books, ordering and viewing 211

C
CALL statement

discussion 35
syntax 71

case-sensitivity
ensuring correct case

CREATE REVERSE TYPE MAPPING statement
95

CREATE TYPE MAPPING statement 116
fold_id server option 18
fold_pw server option 18
guidelines 50

protocol names 189
character string comparisons 14
Classic Connect data sources

default forward type mappings 135

Classic Connect data sources (continued)
node names, location of 51
unavailable in pass-through 10
value of SERVER_TYPE 188

collating sequences 14
colseq server option

settings 16, 17
use of 16

column-name
description 47
maximum length

how DataJoiner enforces 50
in bytes 49

command line processor 2
COMMENT ON statement 74
compensation 8, 53
connectstring server option 17
correlation-name

description 47
maximum length 49

CREATE ALIAS statement 77
CREATE FUNCTION MAPPING statement

discussion 5
syntax 80

CREATE FUNCTION statement 79
CREATE INDEX statement

discussion 32
syntax 84

CREATE NICKNAME statement
discussion 5
syntax 86

CREATE REVERSE TYPE MAPPING statement
discussion 6
syntax 89

CREATE SERVER MAPPING statement
discussion 5
syntax 96

CREATE SERVER OPTION statement
discussion 12
syntax 100

CREATE STORED PROCEDURE NICKNAME statement
discussion 5
syntax 103

CREATE TABLE statement, DataJoiner
discussion 29
syntax

combined with DB2 for CS CREATE TABLE
statement 167

diagram and description 107
CREATE TABLE statement, DB2 for CS 167

© Copyright IBM Corp. 1995, 1998 221

CREATE TYPE MAPPING statement
discussion 6
syntax 112

CREATE USER MAPPING statement
discussion 5
syntax 118

CrossAccess data sources
default forward type mappings 136
node names, location of 51
unavailable in pass-through 10
value of SERVER_TYPE 188

cursor-name
description 47
maximum length 49

D
data-source-name, description 47
data sources

collating sequences 14
definition 1
error handling 11
interfaces to 2
mappings to DataJoiner 4

data type mappings 26
between LOB and non-LOB types 43
forward

CREATE TYPE MAPPING statement 112
default mappings 135
discussion 26
introduction 5
SYSCAT.SERVER_DATATYPES 190

reverse
CREATE REVERSE TYPE MAPPING statement

89
default mappings 155
discussion 26, 30
introduction 6
SYSCAT.REVTYPEMAPPINGS 184

data types
determined by mappings 26, 30
user-defined

enabling DataJoiner to recognize 39
ignore_udt server option 18
overview 39
strong typing 39

DataJoiner
classes 213
description 1
differences between versions 201

DataJoiner WWW site 211
DATEFORMAT server option 17
DB2 Call Level Interface 3
DB2 Family data sources

node names, location of 51

DB2 Family data sources (continued)
values of SERVER_TYPE 188

DB2 for CS data sources
default forward type mappings 137
default reverse type mappings 155

DB2 for OS/390 data sources
default forward type mappings 139
default reverse type mappings 156
stored procedures, considerations and restrictions

36
DB2 for OS/400 data sources

default forward type mappings 141
default reverse type mappings 157

DB2 for VM data sources
default forward type mappings 142
default reverse type mappings 159

DB2 WWW site 211
deferred_lob_retrieval server option

settings 17
use of 17, 41

delimited identifier 45
DESCRIBE CURSOR statement

discussion 35
syntax 120

distributed databases, access to 2
DROP statement

discussion 13, 32
syntax 121

E
electronic information 211
error handling 11
escape character in SQL 45

F
FETCH statement 35
fold_id server option

settings 18
use of 18, 50

fold_pw server option
settings 18
use of 18, 50

foreign keys 31
forward type mappings

CREATE TYPE MAPPING statement 112
default 135
discussion 26
introduction 5
SYSCAT.SERVER_DATATYPES 190

function mappings
CREATE FUNCTION MAPPING statement 80
discussion 5, 79
optimization 33
SYSCAT.SERVER_FUNCTIONS 193
SYSSTAT.SERVER_FUNCTIONS 194

222 Application Programming and SQL Reference Supplement

function templates 79, 80
functions

CREATE FUNCTION statement 79
user-defined

accessing 38
overview 38

G
general library information 207
Generic data sources

default forward type mappings 143
default reverse type mappings 159
node names, location of 51
value of SERVER_TYPE 188

GRANT PASSTHRU statement
discussion 9
syntax 126

H
host identifier

description 46
in host variable 47
maximum length 49

host variable
description 47
host identifier in 47
syntax 47

I
identifiers

description 45
ensuring correct case

CREATE REVERSE TYPE MAPPING statement
95

CREATE TYPE MAPPING statement 116
guidelines 50

host 45, 46
maximum lengths 49
node names

ALTER SERVER MAPPING statement 59
CREATE SERVER MAPPING statement 97
finding 51

protocol names 189
SQL 45

ignore_udt server option 18
index-name

description 47
maximum length

how DataJoiner enforces 50
in bytes 49

indexes
CREATE INDEX statement 84
discussion 32

Informix data sources
default forward type mappings 145
default reverse type mappings 160
isolation levels 6
node names, location of 52
stored procedures, considerations and restrictions

36
value of SERVER_TYPE 188

insert rule with referential constraint 31
Internet information 211
isolation levels

data sources 6
DataJoiner 6

J
Java Database Connectivity (JDBC) API 3

K
keys, foreign 31

L
large objects (LOBs)

data source operations 42
deferred LOB retrieval

discussion 41
server option 17, 41

LOB handles 42
LOB materialization 41
LOB streaming 40
mappings between LOB and non-LOB types 43
pass-through support 43

library information, general 207
LOB handles 42
LOB materialization 41
LOB streaming 40
long identifier 46

M
Microsoft SQL Server data sources

default forward type mappings 146
default reverse type mappings 162
ignore_udt server option 19
isolation levels 6
LOB operations 42
node names, location of 52
pass-through support 10
positioned updates and deletes 32
stored procedures, considerations and restrictions

36
value of SERVER_TYPE 188

multi-site database updates 13

N
naming conventions in SQL 46
nicknames

ALTER NICKNAME statement 56

Index 223

nicknames (continued)
CREATE NICKNAME statement 86
CREATE STORED PROCEDURE NICKNAME

statement 103
deleting, using DROP statement 121
discussion 23
maximum length 49
naming conventions 47
restrictions 24
using with views 25

node names
ALTER SERVER MAPPING statement

59
CREATE SERVER MAPPING statement

97
finding 51

notices 217

O
optimization

colseq server option 16, 17
deferred_lob_retrieval server option 41
fold_id server option 18
fold_pw server option 18
function mappings 79
function statistics

for access plans 33
SYSSTAT.SERVER_FUNCTIONS (updatable

view) 194
index information

populating SYSCAT.INDEXES 179
using CREATE INDEX 24, 32

plan_hints server option 19
pushdown server option 20
remote_query_caching server option 20
server statistics

for access plans 33
SYSSTAT.SERVERS (updatable view) 190

table statistics, updating 24, 178
varchar_no_trailing_blanks server option 21

Oracle data sources
default forward type mappings 149
default reverse type mappings 163
indicating trailing blanks in columns

ALTER NICKNAME statement 56
varchar_no_trailing_blanks server option 21

isolation levels 6
LOB operations 42
node names, location of 52
pass-through support 11
stored procedures, considerations and restrictions

36
value of SERVER_TYPE 188

ordering publications 211
ordinary identifier 45

P
package-name

description 47
maximum length 49

pass-through
discussion 8
GRANT PASSTHRU statement 126
Microsoft SQL Server data sources 10
Oracle data sources 11
processing SQL in 9
REVOKE PASSTHRU statement 128
SET PASSTHRU RESET statement 131
SET PASSTHRU statement 129
starting 129
stopping 131
support for LOBs 43
Sybase data sources 10

password server option 19
plan_hints server option 19
printing publications 211
program fragment for invoking stored procedures 173
protocol names, default 189
publications 211
pushdown server option 20

R
RDB data sources

CREATE NICKNAME statement 87
default forward type mappings 150
isolation levels 7
node names, location of 52
value of SERVER_TYPE 188

referential integrity 31
remote-authorization-name

description 48
maximum length 49

remote-function-name, description 48
remote identifier 46
remote-object-name

CREATE NICKNAME statement 86
CREATE STORED PROCEDURE NICKNAME

statement 104
description 48
maximum length 49

remote_query_caching server option 20
remote-table-name

description 48
maximum length 49

remote-type-name, description 48
reserved words 45
reverse type mappings

CREATE REVERSE TYPE MAPPING statement 89
default 155
discussion 26, 30

224 Application Programming and SQL Reference Supplement

reverse type mappings (continued)
introduction 6
SYSCAT.REVTYPEMAPPINGS 184

REVOKE PASSTHRU statement
discussion 9
syntax 128

RUNSTATS utility
supplying missing table statistics 24
updating base table for SYSCAT.INDEXES 179
updating HIGH2KEY and LOW2KEY columns 178

S
sample code for invoking stored procedure 173
server options

colseq
settings 16, 17
use of 16

connectstring 17
DATEFORMAT 17
deferred_lob_retrieval

settings 17
use of 17, 41

fold_id
settings 18
use of 18, 50

fold_pw
settings 18
use of 18, 50

ignore_udt 18
password 19
plan_hints 19
pushdown 20
remote_query_caching 20
TIMEFORMAT 20
TIMESTAMPFORMAT 20
two_phase_commit

settings 12, 21
use of 12, 14

varchar_no_trailing_blanks 21
SET PASSTHRU RESET statement

discussion 9
syntax 131

SET PASSTHRU statement
discussion 9
syntax 129

SET SERVER OPTION statement
discussion 12
syntax 132

short identifier 46
sort order 14
SQL

dynamic 7
embedded 2

SQL (continued)
identifiers

delimited 45
long 46
ordinary 45
remote 46
short 46

naming conventions 46
processing in pass-through sessions 9
statements

ALLOCATE CURSOR 55
ALTER NICKNAME 56
ALTER SERVER MAPPING 59
ALTER SERVER OPTION 62
ALTER TABLE 65
ALTER USER MAPPING 69
CALL 71
COMMENT ON 74
CREATE ALIAS 77
CREATE FUNCTION 79
CREATE FUNCTION MAPPING 80
CREATE INDEX 84
CREATE NICKNAME 86
CREATE REVERSE TYPE MAPPING 89
CREATE SERVER MAPPING 96
CREATE SERVER OPTION 100
CREATE STORED PROCEDURE NICKNAME

103
CREATE TABLE (DataJoiner) 107
CREATE TABLE (DB2 for CS) 167
CREATE TYPE MAPPING 112
CREATE USER MAPPING 118
DESCRIBE CURSOR 120
DROP 121
GRANT PASSTHRU 126
overview 53
REVOKE PASSTHRU 128
SET PASSTHRU 129
SET PASSTHRU RESET 131
SET SERVER OPTION 132

static 7
SQL Anywhere data sources

default forward type mappings 151
default reverse type mappings 164
node names, location of 52
value of SERVER_TYPE 188

statistics 24
stored-procedure-nickname, description 48
stored procedures

ALLOCATE CURSOR statement 55
CALL statement 71
CREATE STORED PROCEDURE NICKNAME

statement 103
DESCRIBE CURSOR statement 120

Index 225

stored procedures (continued)
overview 34
sample program fragment for invoking 173
SYSCAT.PROCEDURES 181
SYSCAT.PROCPARMS 182

string comparison 14
strong typing 19, 39
Sybase data sources

default forward type mappings 152
default reverse type mappings 165
ignore_udt server option 19
isolation levels 6
LOB operations 43
node names, location of 52
pass-through support 10
positioned updates and deletes 32
stored procedures

considerations and restrictions 37
sample program fragment for invoking 173

value of SERVER_TYPE 188
SYSCAT.COLUMNS 176
SYSCAT.INDEXES 179
SYSCAT.PASSTHRU_AUTH 181
SYSCAT.PROCEDURES 181
SYSCAT.PROCPARMS 182
SYSCAT.REMOTEUSERS 183
SYSCAT.REVTYPEMAPPINGS 184
SYSCAT.SERVER_DATATYPES 190
SYSCAT.SERVER_FUNCTIONS 193
SYSCAT.SERVER_OPTIONS 195
SYSCAT.SERVERS 187
SYSCAT.TABLES 196
SYSSTAT.SERVER_FUNCTIONS 194
SYSSTAT.SERVERS 190
system catalog views

introduction 32
SYSCAT.COLUMNS 176
SYSCAT.INDEXES 179
SYSCAT.PASSTHRU_AUTH 181
SYSCAT.PROCEDURES 181
SYSCAT.PROCPARMS 182
SYSCAT.REMOTEUSERS 183
SYSCAT.REVTYPEMAPPINGS 184
SYSCAT.SERVER_DATATYPES 190
SYSCAT.SERVER_FUNCTIONS 193
SYSCAT.SERVER_OPTIONS 195
SYSCAT.SERVERS 187
SYSCAT.TABLES 196
SYSSTAT.SERVER_FUNCTIONS 194
SYSSTAT.SERVERS 190
updating 33

T
table-name

description 48
maximum length 49

tables, data source
altering

ALTER TABLE statement 65
discussion 31

creating
CREATE TABLE statement 107
discussion 29

deleting
discussion 31
DROP statement 121

updating statistics for 24, 178
TIMEFORMAT server option 20
TIMESTAMPFORMAT server option 20
trademarks 219
two_phase_commit server option

settings 12, 21
use of 12, 14

U
update rule with referential constraint 31
user-defined data types (UDTs)

enabling DataJoiner to recognize 39
ignore_udt server option 18
overview 39
strong typing 19, 39

user-defined functions (UDFs)
accessing 38
overview 38

V
varchar_no_trailing_blanks server option 21
view-name

description 48
maximum length 49

viewing publications 211
views

system catalog
descriptions 175
introduction 32
updating 33

using nicknames with 25

W
WWW information 211

X
X/Open Call Level Interface 3

226 Application Programming and SQL Reference Supplement

Readers’ Comments — We’d Like to Hear from You

DB2 DataJoiner ®

Application Programming and SQL Reference Supplement
Version 2 Release 1 Modification 1

Publication No. SC26-9148-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it

believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9148-01

SC26-9148-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9148-01

Spine information:

IBM DB2 DataJoiner®
Application Programming and SQL
Reference Supplement

Version 2
Release 1
Modification 1

SC26-
9148-01

