
DB2 Spatial Extender

Administration Guide and Reference
Version 2 Release 1 Modification 1

SC26-9316-00

IBM





DB2 Spatial Extender

Administration Guide and Reference
Version 2 Release 1 Modification 1

SC26-9316-00

IBM



Note
Before using this information and the product it supports, please read the general information under “Notices” on
page 209.

First Edition (July 1998)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P. O. Box 49023
San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About This Book . . . . . . . . . . . . . . . . . . . . . . xiii
Who Should Use This Book . . . . . . . . . . . . . . . . . . . xiii
Terms for Products . . . . . . . . . . . . . . . . . . . . . . xiii

What’s New in DataJoiner Version 2? . . . . . . . . . . . . . . . xv

Chapter 1. About the Spatial Extender . . . . . . . . . . . . . . . 1
The Complete Spatial System . . . . . . . . . . . . . . . . . . 1

The DB2 Spatial Extender Component . . . . . . . . . . . . . . 2
The Spatial Database Engine Component . . . . . . . . . . . . . 2
The ArcView Client Component . . . . . . . . . . . . . . . . . 3

Current Limitations . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. Setting-up the Environment . . . . . . . . . . . . . . 5
Types of Configuration . . . . . . . . . . . . . . . . . . . . . 5

Stand-Alone on Windows NT. . . . . . . . . . . . . . . . . . 5
Client-Server . . . . . . . . . . . . . . . . . . . . . . . 6

Installing the Components. . . . . . . . . . . . . . . . . . . . 6
Configuring DataJoiner (AIX or NT) . . . . . . . . . . . . . . . 6
Configuring the SDE (AIX or NT) . . . . . . . . . . . . . . . . 10
Configuring ArcView (Windows 95 or NT only) . . . . . . . . . . . . 13

Installation Verification . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3. Working with Spatial Extender Data . . . . . . . . . . . . 15
Administrative Privileges . . . . . . . . . . . . . . . . . . . . 15
Administering the Spatial Extender with db2seadm . . . . . . . . . . . 15
Administering the Spatial Extender with SDE . . . . . . . . . . . . . 16
A Sample Program on AIX . . . . . . . . . . . . . . . . . . . 17
Tuning DataJoiner for Spatial Data . . . . . . . . . . . . . . . . . 17
Spatial Data Types . . . . . . . . . . . . . . . . . . . . . . 18
Spatial Functions and Predicates . . . . . . . . . . . . . . . . . 18
Spatial Index Extensions . . . . . . . . . . . . . . . . . . . . 18
Meta Tables and Views . . . . . . . . . . . . . . . . . . . . 19

SPATIAL_REFERENCES and SPATIAL_REF_SYS . . . . . . . . . . 19
DB2_GEO_COLUMNS and GEOMETRY_COLUMNS . . . . . . . . . 19

Database Privileges. . . . . . . . . . . . . . . . . . . . . . 20
Creating a Spatial Table . . . . . . . . . . . . . . . . . . . . 23
Inserting Data into a Spatial Column . . . . . . . . . . . . . . . . 23
Spatial Indexes . . . . . . . . . . . . . . . . . . . . . . . 25

The B+ tree indexes . . . . . . . . . . . . . . . . . . . . 26
Generating the Spatial Index . . . . . . . . . . . . . . . . . . 27
Using the spatial index . . . . . . . . . . . . . . . . . . . . 31

© Copyright IBM Corp. 1998 iii



Querying a Spatial Table . . . . . . . . . . . . . . . . . . . . 32

Chapter 4. Programming Concepts . . . . . . . . . . . . . . . . 37
About Geometry . . . . . . . . . . . . . . . . . . . . . . . 37
Geometry Properties . . . . . . . . . . . . . . . . . . . . . 37

Interior, boundary, exterior. . . . . . . . . . . . . . . . . . . 37
Simple or non-simple . . . . . . . . . . . . . . . . . . . . 38
Empty or not empty . . . . . . . . . . . . . . . . . . . . . 38
Number of points. . . . . . . . . . . . . . . . . . . . . . 38
Envelope . . . . . . . . . . . . . . . . . . . . . . . . 38
Dimension . . . . . . . . . . . . . . . . . . . . . . . . 39
Z coordinates . . . . . . . . . . . . . . . . . . . . . . . 39
Measures . . . . . . . . . . . . . . . . . . . . . . . . 39
Spatial reference system . . . . . . . . . . . . . . . . . . . 40
Instantiable Subclasses . . . . . . . . . . . . . . . . . . . 40
Point . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Linestring . . . . . . . . . . . . . . . . . . . . . . . . 41
Polygon. . . . . . . . . . . . . . . . . . . . . . . . . 42
Multipoint . . . . . . . . . . . . . . . . . . . . . . . . 43
Multilinestring . . . . . . . . . . . . . . . . . . . . . . . 43
Multipolygon . . . . . . . . . . . . . . . . . . . . . . . 44

Geometry Data Exchange. . . . . . . . . . . . . . . . . . . . 45
Well-Known Text Representation . . . . . . . . . . . . . . . . 45
Well-Known Binary Representation . . . . . . . . . . . . . . . . 46
ESRI Shape Representation . . . . . . . . . . . . . . . . . . 47

Geometry Relations . . . . . . . . . . . . . . . . . . . . . . 48
Predicates . . . . . . . . . . . . . . . . . . . . . . . . 48
Equals . . . . . . . . . . . . . . . . . . . . . . . . . 49
Disjoint . . . . . . . . . . . . . . . . . . . . . . . . . 50
Intersects . . . . . . . . . . . . . . . . . . . . . . . . 51
Touch . . . . . . . . . . . . . . . . . . . . . . . . . 52
Overlap . . . . . . . . . . . . . . . . . . . . . . . . . 54
Cross . . . . . . . . . . . . . . . . . . . . . . . . . 55
Within . . . . . . . . . . . . . . . . . . . . . . . . . 56
Contains . . . . . . . . . . . . . . . . . . . . . . . . 58
Minimum Distance . . . . . . . . . . . . . . . . . . . . . 59
Intersection of Geometries . . . . . . . . . . . . . . . . . . 59
Difference of geometries . . . . . . . . . . . . . . . . . . . 60
Union of geometries. . . . . . . . . . . . . . . . . . . . . 61
Symmetric Difference of Geometries . . . . . . . . . . . . . . . 61

Geometry Transforms . . . . . . . . . . . . . . . . . . . . . 62
Buffering Geometries . . . . . . . . . . . . . . . . . . . . 63
Locatealong . . . . . . . . . . . . . . . . . . . . . . . 64
Locatebetween . . . . . . . . . . . . . . . . . . . . . . 64
Convexhull . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5. SQL Reference . . . . . . . . . . . . . . . . . . . 67
area . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
asbinary . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv Administration Guide and Reference



asbinaryshape . . . . . . . . . . . . . . . . . . . . . . . 71
astext . . . . . . . . . . . . . . . . . . . . . . . . . . 72
boundary . . . . . . . . . . . . . . . . . . . . . . . . . 73
buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 75
centroid . . . . . . . . . . . . . . . . . . . . . . . . . . 76
contains . . . . . . . . . . . . . . . . . . . . . . . . . 78
convexhull . . . . . . . . . . . . . . . . . . . . . . . . . 80
cross. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
difference . . . . . . . . . . . . . . . . . . . . . . . . . 83
dimension . . . . . . . . . . . . . . . . . . . . . . . . . 85
disjoint . . . . . . . . . . . . . . . . . . . . . . . . . . 87
distance . . . . . . . . . . . . . . . . . . . . . . . . . 89
endpoint . . . . . . . . . . . . . . . . . . . . . . . . . 90
envelope . . . . . . . . . . . . . . . . . . . . . . . . . 91
envelopesintersect . . . . . . . . . . . . . . . . . . . . . . 93
equals . . . . . . . . . . . . . . . . . . . . . . . . . . 95
exteriorring. . . . . . . . . . . . . . . . . . . . . . . . . 96
geometryfromshape . . . . . . . . . . . . . . . . . . . . . . 97
geometryfromtext . . . . . . . . . . . . . . . . . . . . . . 99
geometryfromwkb . . . . . . . . . . . . . . . . . . . . . . 101
geometryn . . . . . . . . . . . . . . . . . . . . . . . . . 103
geometrytype . . . . . . . . . . . . . . . . . . . . . . . . 104
interiorringn . . . . . . . . . . . . . . . . . . . . . . . . 106
intersection . . . . . . . . . . . . . . . . . . . . . . . . 112
intersects . . . . . . . . . . . . . . . . . . . . . . . . . 114
is3d . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
isclosed. . . . . . . . . . . . . . . . . . . . . . . . . . 116
isempty . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ismeasured . . . . . . . . . . . . . . . . . . . . . . . . 120
isring. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
issimple. . . . . . . . . . . . . . . . . . . . . . . . . . 123
length . . . . . . . . . . . . . . . . . . . . . . . . . . 124
linefromshape. . . . . . . . . . . . . . . . . . . . . . . . 126
linefromtext . . . . . . . . . . . . . . . . . . . . . . . . 128
linefromwkb . . . . . . . . . . . . . . . . . . . . . . . . 129
locatealong . . . . . . . . . . . . . . . . . . . . . . . . 131
locatebetween . . . . . . . . . . . . . . . . . . . . . . . 133
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
mlinefromshape . . . . . . . . . . . . . . . . . . . . . . . 136
mlinefromtext . . . . . . . . . . . . . . . . . . . . . . . . 138
mlinefromwkb . . . . . . . . . . . . . . . . . . . . . . . . 139
mpointfromshape . . . . . . . . . . . . . . . . . . . . . . 141
mpointfromtext . . . . . . . . . . . . . . . . . . . . . . . 143
mpointfromwkb . . . . . . . . . . . . . . . . . . . . . . . 144
mpolyfromshape . . . . . . . . . . . . . . . . . . . . . . . 146
mpolyfromtext . . . . . . . . . . . . . . . . . . . . . . . . 147
mpolyfromwkb . . . . . . . . . . . . . . . . . . . . . . . 148
numgeometries . . . . . . . . . . . . . . . . . . . . . . . 149
numinteriorrings . . . . . . . . . . . . . . . . . . . . . . . 150

Contents v



numpoints . . . . . . . . . . . . . . . . . . . . . . . . . 151
overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 152
pointfromshape . . . . . . . . . . . . . . . . . . . . . . . 153
pointfromtext . . . . . . . . . . . . . . . . . . . . . . . . 155
pointfromwkb . . . . . . . . . . . . . . . . . . . . . . . . 156
pointn . . . . . . . . . . . . . . . . . . . . . . . . . . 158
pointonsurface . . . . . . . . . . . . . . . . . . . . . . . 159
polyfromshape . . . . . . . . . . . . . . . . . . . . . . . 160
polyfromtext . . . . . . . . . . . . . . . . . . . . . . . . 162
polyfromwkb . . . . . . . . . . . . . . . . . . . . . . . . 163
srid . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
startpoint . . . . . . . . . . . . . . . . . . . . . . . . . 166
symmetricdiff . . . . . . . . . . . . . . . . . . . . . . . . 167
touch . . . . . . . . . . . . . . . . . . . . . . . . . . 169
union . . . . . . . . . . . . . . . . . . . . . . . . . . 170
within . . . . . . . . . . . . . . . . . . . . . . . . . . 171
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
z . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Chapter 6. Messages . . . . . . . . . . . . . . . . . . . . . 175

Appendix A. Representing Spatial Reference Systems as Text . . . . . . 179
Supported Linear Units. . . . . . . . . . . . . . . . . . . . . 180
Supported Angular Units . . . . . . . . . . . . . . . . . . . . 181
Supported Spheroids . . . . . . . . . . . . . . . . . . . . . 181
Supported Geodetic Datums . . . . . . . . . . . . . . . . . . . 182
Supported Prime Meridians . . . . . . . . . . . . . . . . . . . 184
Supported Map Projections . . . . . . . . . . . . . . . . . . . 185
Conic Projections . . . . . . . . . . . . . . . . . . . . . . 185
Azimuthal or Planar Projections . . . . . . . . . . . . . . . . . . 185
Map Projection Parameters . . . . . . . . . . . . . . . . . . . 186

Appendix B. The OGIS Well-Known Text Representation . . . . . . . . 187

Appendix C. The OGIS Well-Known Binary Representation . . . . . . . 193
Numeric Type Definitions . . . . . . . . . . . . . . . . . . . . 193
XDR (Big Endian) Encoding of Numeric Types . . . . . . . . . . . . . 193
NDR (Little Endian) Encoding of Numeric Types . . . . . . . . . . . . 193
Conversion between NDR and XDR . . . . . . . . . . . . . . . . 194
Description of WKBGeometry Byte Streams . . . . . . . . . . . . . . 194
Assertions for the WKB Representation . . . . . . . . . . . . . . . 196

Appendix D. The ESRI Shape Representations . . . . . . . . . . . . 197
Shape Types in XY Space . . . . . . . . . . . . . . . . . . . 197

Point . . . . . . . . . . . . . . . . . . . . . . . . . . 197
MultiPoint . . . . . . . . . . . . . . . . . . . . . . . . 197
PolyLine . . . . . . . . . . . . . . . . . . . . . . . . 198
Polygon. . . . . . . . . . . . . . . . . . . . . . . . . 199

vi Administration Guide and Reference



Measured Shape Types in XY Space . . . . . . . . . . . . . . . . 201
PointM . . . . . . . . . . . . . . . . . . . . . . . . . 201

Shape Types in XYZ Space . . . . . . . . . . . . . . . . . . . 204
PointZ . . . . . . . . . . . . . . . . . . . . . . . . . 204
MultiPointZ. . . . . . . . . . . . . . . . . . . . . . . . 205
PolyLineZ . . . . . . . . . . . . . . . . . . . . . . . . 205
PolygonZ . . . . . . . . . . . . . . . . . . . . . . . . 207

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . 211

Index . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Readers’ Comments — We’d Like to Hear from You . . . . . . . . . . 217

Contents vii



viii Administration Guide and Reference



Figures

1. The components of a complete spatial system . . . . . . . . . . . 2
2. Stand-alone setup . . . . . . . . . . . . . . . . . . . . 5
3. Client-server setup . . . . . . . . . . . . . . . . . . . . 6
4. Create the db2se user . . . . . . . . . . . . . . . . . . . 9
5. Adding the SDE Service ID to the Power User group . . . . . . . . . 11
6. SDE Installation - Create SDE Service panel . . . . . . . . . . . . 12
7. Application of a 10.0e0 grid level . . . . . . . . . . . . . . . . 28
8. Effect of adding grid levels 30.0e0 and 60.0e0 . . . . . . . . . . . 30
9. Linestring objects . . . . . . . . . . . . . . . . . . . . . 42

10. Polygons. . . . . . . . . . . . . . . . . . . . . . . . 42
11. Multilinestrings . . . . . . . . . . . . . . . . . . . . . . 44
12. Multipolygons . . . . . . . . . . . . . . . . . . . . . . 45
13. Equals . . . . . . . . . . . . . . . . . . . . . . . . 50
14. Disjoint . . . . . . . . . . . . . . . . . . . . . . . . 51
15. Touch . . . . . . . . . . . . . . . . . . . . . . . . . 53
16. Overlap . . . . . . . . . . . . . . . . . . . . . . . . 54
17. Within. . . . . . . . . . . . . . . . . . . . . . . . . 57
18. Contains . . . . . . . . . . . . . . . . . . . . . . . . 58
19. Intersection . . . . . . . . . . . . . . . . . . . . . . . 60
20. Difference . . . . . . . . . . . . . . . . . . . . . . . 61
21. Union . . . . . . . . . . . . . . . . . . . . . . . . . 61
22. Symmetric difference. . . . . . . . . . . . . . . . . . . . 62
23. Buffer . . . . . . . . . . . . . . . . . . . . . . . . . 63
24. Locatealong. . . . . . . . . . . . . . . . . . . . . . . 64
25. Locatebetween. . . . . . . . . . . . . . . . . . . . . . 65
26. Convexhull . . . . . . . . . . . . . . . . . . . . . . . 65
27. Using area to find a building footprint . . . . . . . . . . . . . . 69
28. A buffer with a 5-mile radius is applied to a point . . . . . . . . . . 76
29. Using contains to ensure all buildings are contained within their lots 79
30. Using cross to find the waterways that pass through a hazardous waste area 83
31. Using disjoint to find the buildings that do not lie within (intersect) any

hazardous waste area . . . . . . . . . . . . . . . . . . . 88
32. Using exteriorring to determine the length of an island shore line . . . . . 97
33. Using interiorringn to determine the length of the lakeshores within each

island . . . . . . . . . . . . . . . . . . . . . . . . . 107
34. Using intersection to determine how large an area in each of the buildings

might be affected by hazardous waste . . . . . . . . . . . . . . 113
35. Using length to determine the total length of the many waterways in a county 125
36. Using overlap to determine the buildings that are at least partially within of a

hazardous waste area . . . . . . . . . . . . . . . . . . . 153
37. Using symmetricdiff to determined the hazardous waste areas that don’t

contain sensitive areas (inhabited buildings) . . . . . . . . . . . . 168
38. Representation in NDR format . . . . . . . . . . . . . . . . 196
39. A polygon with a hole and eight vertices . . . . . . . . . . . . . 200
40. Contents of the polygon byte stream . . . . . . . . . . . . . . 200

© Copyright IBM Corp. 1998 ix



x Administration Guide and Reference



Tables

1. Columns and the values stored in the SPATIAL_REFERENCES table. 21
2. The 10.0e0 grid cell entries . . . . . . . . . . . . . . . . . 28
3. The intersections of the geometries in the three-tiered index. . . . . . . 30
4. Matrix for within . . . . . . . . . . . . . . . . . . . . . 49
5. Matrix for equality . . . . . . . . . . . . . . . . . . . . . 50
6. Matrix for disjoint . . . . . . . . . . . . . . . . . . . . . 51
7. Matrix for intersects (1) . . . . . . . . . . . . . . . . . . . 52
8. Matrix for intersects (2) . . . . . . . . . . . . . . . . . . . 52
9. Matrix for intersects (3) . . . . . . . . . . . . . . . . . . . 52

10. Matrix for intersects (4) . . . . . . . . . . . . . . . . . . . 52
11. Matrix for touch (1) . . . . . . . . . . . . . . . . . . . . 53
12. Matrix for touch (2) . . . . . . . . . . . . . . . . . . . . 53
13. Matrix for touch (3) . . . . . . . . . . . . . . . . . . . . 53
14. Matrix for overlap (1) . . . . . . . . . . . . . . . . . . . . 54
15. Matrix for overlap (2) . . . . . . . . . . . . . . . . . . . . 54
16. Matrix for cross (1) . . . . . . . . . . . . . . . . . . . . 55
17. Matrix for cross (2) . . . . . . . . . . . . . . . . . . . . 56
18. Matrix for within . . . . . . . . . . . . . . . . . . . . . 57
19. Matrix for contains . . . . . . . . . . . . . . . . . . . . 58
20. Point Byte Stream Contents . . . . . . . . . . . . . . . . . 197
21. MultiPoint Byte Stream Contents . . . . . . . . . . . . . . . . 197
22. PolyLine Byte Stream Contents . . . . . . . . . . . . . . . . 198
23. Polygon Byte Stream Contents . . . . . . . . . . . . . . . . 200
24. PointM Byte Stream Contents . . . . . . . . . . . . . . . . . 201
25. MultiPointM Byte Stream Contents . . . . . . . . . . . . . . . 201
26. PolyLineM Byte Stream Contents . . . . . . . . . . . . . . . 202
27. PolygonM Byte Stream Contents . . . . . . . . . . . . . . . . 204
28. PointZ Byte Stream Contents . . . . . . . . . . . . . . . . . 204
29. MultiPointZ Byte Stream Contents . . . . . . . . . . . . . . . 205
30. PolyLineZ Byte Stream Contents . . . . . . . . . . . . . . . . 206
31. PolygonZ Byte Stream Contents . . . . . . . . . . . . . . . . 208

© Copyright IBM Corp. 1998 xi



xii Administration Guide and Reference



About This Book

This book contains information about installing, configuring, administering,
programming, and troubleshooting the DB2 Spatial Extender. Because the DB2 Spatial
Extender is bundled with other applications, there are references to other documents.
These documents are provided in HTML, PDF, and PostScript formats on the respective
product CDs.

Who Should Use This Book

This book is for administrators setting up the spatial environment and for application
programmers developing applications with spatial data.

Terms for Products

Some product names in the documentation refer to more than one product, some refer
to specific product levels, and some are shortened versions of full names. These
product names are:

DataJoiner
Refers to DB2 DataJoiner Version 2. References specific to or including
DataJoiner Version 1 will include the version.

DB2 By itself, refers to any one or all of the DB2 for common server Version 2
database server products on all platforms, which includes DataJoiner.

If a DB2 reference is qualified with a specific operating system or version, the
reference applies only to that particular version.

DB2 Family
Refers to all DataJoiner-supported versions of DATABASE 2 (DB2) database
server products on all platforms (DB2 for OS/390, DB2 for VM, DB2 for
common servers, DataJoiner, and so on). Supported versions are listed in the
DataJoiner Planning, Installation, and Configuration Guide for your platform.

DB2 for CS
Refers to any DB2 for common servers Version 2 database server product.
This term is often used when describing DataJoiner and DB2 for common
servers functional differences.

RDB Refers to Oracle RDB Version 6 or above.

SQL Anywhere
Refers to Sybase SQL Anywhere Version 5.

© Copyright IBM Corp. 1998 xiii



xiv Administration Guide and Reference



What’s New in DataJoiner Version 2?

DataJoiner Version 2 offers new features and enhancements. They include:

DB2 Version 2 functionality
DataJoiner is built on the DB2 Version 2 code base, which means that
DataJoiner provides all the major functional enhancements provided by DB2,
including:

v Extended SQL capabilities

v An enhanced SQL optimizer

v Improved database performance

v Systems management support

v Robust integrity and data protection

v Object relational capabilities

v National language support (NLS)

v Support for the Java Development Kit (JDK) 1.1 for the Java Database
Connectivity (JDBC) API

For detailed information about many of these features, see the DB2
Administration Guide.

DataJoiner for Windows NT
DataJoiner has extended its reach to provide industrial strength heterogeneous
database management on Windows NT systems. DataJoiner for Windows NT
supports the same SQL and features as DataJoiner for UNIX-based platforms.

Support for Oracle 8, RDB, and SQL Anywhere
With Version 2, DataJoiner continues to increase the number of
natively-supported data sources. The most recent additions are:

v Oracle 8 (on any system that DataJoiner accesses from AIX or Windows
NT)

v Oracle RDB Version 6 and above (on any system that DataJoiner accesses
from Windows NT)

v Sybase SQL Anywhere Version 5.0 (on any system that DataJoiner
accesses from Windows NT)

Spatial Extender
DataJoiner now supports geographic information system (GIS) data (also
known as spatial or geographic data). New data types, spatially-enabled
columns, and spatial join capability allow you to take advantage of geographic
data in your applications. Included are powerful two-dimensional functions that
allow you to create specific relationships among the geographic objects you
define. Included with the spatial extender are the following components:

v A set of spatial data types

v A set of spatial operations and predicates

v A set of spatial index data types

© Copyright IBM Corp. 1998 xv



v An administration tool suite for the spatial extender

v Sample programs

You can also take advantage of existing geographic data stores using the load
and transform capability of the Spatial Extender.

Expanded DataJoiner SQL support
This version of DataJoiner contains many new and modified SQL statements.
New DDL statements provide greater flexibility and safety in defining your
DataJoiner environment—users can create, alter, and drop mappings for data
sources, users, user-defined and built-in functions, and data types. Additionally,
new SQL DML statements provide enhanced functions for local and distributed
queries; an example is the CASE expression, which is useful for selecting an
expression based on the evaluation of one or more conditions.

DataJoiner SQL for creating, altering, and deleting data source tables
Version 2 includes a new DataJoiner SQL statement for creating tables in
different types of data sources. If the native SQL for creating tables in these
data sources includes a unique option—for example, the option in DB2 for
OS/390 for specifying what database you want a table to reside in—you can
code this option in the new DataJoiner statement. If you create a data source
table with this new statement, you can also alter and delete it with DataJoiner
SQL.

Heterogeneous data replication
DataJoiner now provides replication administration as an integrated
component. You can define, automate, and manage replication data from a
single control point across your enterprise. The replication administration tool
provides administrative support for the replication environment, with objects
and actions that define and manage source and target table definitions.
DataJoiner’s Apply component performs the actual replication, tailoring and
enhancing data as you specify, and serving as the interface point to and from
your various data sources. DataJoiner also supplies an executable, IBM DB2
DataPropagator for Microsoft Jet, that allows you to replicate server data for
browsing and updating in LAN, occasionally connected, and mobile
environments.

Distributed heterogeneous update support
DataJoiner now allows you to update multiple heterogeneous data sources
within a distributed unit of work while maintaining transaction atomicity. This
task is accomplished through adherence to the two-phase commit model.
Supported data sources include most versions of the DB2 Family and, with the
appropriate XA libraries, various other data sources as well.

New graphical installation, configuration, and administration tools
A variety of new tools is available to help you accomplish administrative
chores. Wizards walk you through data source configuration. And the
Administrator’s Toolkit provides a collection of tools designed to assist you with
the day-to-day operation of DataJoiner. It includes the following components:

xvi Administration Guide and Reference



The Database Director
Allows you to perform configuration, backup and recovery, directory
management, and media management tasks.

Visual Explain
A tool for graphically viewing and navigating complex SQL access
plans.

The DB2 Performance Monitor
Monitors the performance of your DB2 system for tuning purposes.

Stored procedures
DataJoiner now supports stored procedures at remote data sources as well as
the local DataJoiner database. Use stored procedures to speed application
performance. For example, applications that process huge amounts of data at
a server but return smaller result sets should run faster as stored procedures.
Another benefit is that stored procedures usually reduce network traffic
between clients and databases.

DataJoiner stored procedures can augment standard data security. For
example, in a 3-tier environment, data can be retrieved from a remote server
and then processed at the DataJoiner server; only a subset of data needs to
be available to the client.

System catalog information available in views
DataJoiner provides views from which you can access system catalog
information about each DataJoiner database. Some of these views contain
data—for example, data about tables, indexes, and servers—that was
accessible only from tables in previous versions of DataJoiner. Other views
contain data—for example, data about stored procedures, server options, and
server functions—that is now available in Version 2.

Performance enhancements
In addition to general engine performance improvements, this latest version
offers new query rewrite capabilities, improved pushdown performance, and
remote query caching.

What’s New in DataJoiner Version 2? xvii



xviii Administration Guide and Reference



Chapter 1. About the Spatial Extender

The Spatial Extender imbeds a Geographic Information System (GIS) into DataJoiner.
The Spatial Extender implements the SQL3 specification of data types, which is a
standard set by the Open GIS consortium (OGIS). These data types are capable of
storing spatial data, such as the actual location of a landmark, a street, or a parcel of
land.

GISs of the past were spatially centric. They focused on gathering spatial data and
attaching a non-spatial attribute data to it. The Spatial Extender integrates spatial and
non-spatial data, providing a single point of access through the SQL interface of
DataJoiner.

In addition to new data types, the Spatial Extender also provides new capabilities, such
as spatial joins. Application programmers typically join tables by comparing two or more
columns to determine whether their values are equal, not equal, greater than, and so
on. The Spatial Extender includes functions capable of comparing the values of spatial
columns to determine if they intersect, if one is inside the other, if one overlaps the
other, and so on. These two-dimensional functions are very powerful because they
make it possible to join tables based on the spatial relationship of geographic elements.

These functions can be used to answer questions such as: ″Is this school within a
five-mile radius of a hazardous waste site?″ To answer this question, the Spatial
Extender’s overlaps function would be used: ″Does this polygon, (the building footprint
of a school), overlap this circular area, (the 5-mile radius of a hazardous waste site)?″
An application programmer would join a table that stores schools, playgrounds,
hospitals, and other sensitive sites with another table that contains the location of
hazardous sites. The results of that join would return a list of sensitive areas at risk.

The Complete Spatial System

The DB2 Spatial Extender is implemented as a separately-installable component of DB2
DataJoiner Version 2.1.1. It is one of three products provided for you to create a spatial
system. The other two products are:

v ESRI Spatial Database Engine™ Version 3.0.2 (Windows NT or AIX)

v ESRI ArcView™ GIS Version 3.0a (Windows NT only)

This book contains instructions for installing and configuring the Spatial Database
Engine (SDE) and the Spatial Extender. Administration and Programming information for
the Spatial Extender is also provided in this book. For information on the other two
products, refer to the ESRI documentation provided in PDF format on each product’s
CD-ROM.

© Copyright IBM Corp. 1998 1



The DB2 Spatial Extender Component

Once the Spatial Extender has been installed, configured, and spatially enabled, you
can create tables that include spatial columns, or you can add spatial columns to
existing tables. The geographic features can be inserted into the spatial columns. The
Spatial Extender includes functions that will convert spatial data into its own storage
format from one of three external formats including:

v OGIS well-known text representation

v OGIS well-known binary representation

v ESRI shapes

Using the Spatial Extender functions, an application can be written to populate columns
in a spatially enabled database.

After integrating spatial data into the database, you can include Spatial Extender
functions in your SQL statements that compare the values of spatial columns, transform
the values into other spatial data, and describe the properties of the data.

The Spatial Database Engine Component

The ESRI Spatial Database Engine (SDE) is a gateway that interfaces between GIS
clients and database engines. The SDE for DataJoiner is designed to work specifically
with the Spatial Extender to interface between GIS clients (using SDE APIs) and
DataJoiner (using ODBC).

In most scenarios, the SDE for DataJoiner will reside on the same server as DataJoiner
and the Spatial Extender.

The SDE comes with many utilities to work with GIS data, including:

geocoder
Loads spatial data into a DataJoiner database

map loader and map exporter
Convert map data into spatial database data

Figure 1. The components of a complete spatial system

2 Administration Guide and Reference



import and export
Imports and exports various other types of data

For more information on using the SDE, refer to the SDE Administrator’s Guide .

The ArcView Client Component

ArcView is a powerful client used to view and analyze geographic data.

To interface with relational databases, ArcView has a database extension, which it uses
to create themes. These themes contain data that can be displayed both geographically
and in tabular form.

ArcView also comes with a query composer, which allows you to interact with the
database directly, as well as with the themes themselves.

For more information, refer to the ArcView documentation that comes with the product.

Current Limitations

Only DataJoiner databases can be spatially enabled. Nicknames, type mappings, and
function mappings are not applicable to spatially-enabled databases. Spatial function is
available from a remote DataJoiner server only by using pass-through. Furthermore,
replication between tables with spatially-enabled columns is not supported.

The Spatial Extender implements the OpenGIS SQL specification through spatial data
types, spatial functions, and spatial indexes. The currently supported data types are
point, line, and polygon. These can be used as column data types in both CREATE
TABLE and ALTER TABLE statements. However, the following limitations apply:

v The with default clause is not allowed. Use of the clause will generate an error.

v The lob options clause is not necessary, nor is it allowed. Use of the clause will
produce a syntax error.

Some general limitations on spatially-enabled columns are:

v The functions order by , group by , avg , sum , min , max , count , distinct , and
length are not allowed.

v The column cannot be a primary key or foreign key. If it is, a syntax error will result.

v The column cannot be included in the insert column list for import and load
commands.

v The column cannot be included in the select column list for export .

v Capture and apply have the same restrictions for spatial data types as they do for
LOBs.

v runstats will not gather statistics on spatial columns or spatial indexes.

v db2 reorg table cannot reorganize a table with a spatial index.

Chapter 1. About the Spatial Extender 3



v db2 reorg will not reorganize any LOB data for a table that has a spatially-enabled
column.

4 Administration Guide and Reference



Chapter 2. Setting-up the Environment

This section details the step-by-step procedures for installing the three products
provided in the entitled release of the DB2 Spatial Extender:

v DB2® Spatial Extender Version 2.1.1 (Windows NT® or AIX®)

v ESRI Spatial Database Engine™ Version 3.0.2 (Windows NT or AIX)

v ESRI ArcView™ GIS Version 3.0a (Windows NT only)

Types of Configuration

These products can be installed on a stand-alone system or in a client-server
configuration.

Stand-Alone on Windows NT

NT stand-alone

Disk space: 300M

Memory: 64M

A stand-alone system has all the components installed on the same Windows NT
machine. This is a relatively simple configuration and is good for demonstration
purposes.

If your organization has a GIS analyst who will be connecting with a shape database on
a large remote system, and if you have a powerful NT workstation, you might choose
this setup as a ″heavy″ client to that remote database.

Figure 2. Stand-alone setup

© Copyright IBM Corp. 1998 5



Client-Server

NT|95 client NT|AIX server

Disk space: 100M 200M

Memory: 32M 64M

In this scenario, the Spatial Database Engine (SDE) and DataJoiner with the Spatial
Extender can co-exist on an NT or AIX server to which one or more ArcView clients can
connect. This is the recommended configuration.

Installing the Components

Before proceeding, ensure you have checked the README file on the CD for any
changes to the installation process. The following sequence to install the components is
presented from back-to-front:

1. Install and configure DataJoiner with the Spatial Extender.

2. Install and configure SDE.

3. Install and configure ArcView.

Configuring DataJoiner (AIX or NT)

If you have not already done so, install DataJoiner with the Spatial Extender. The
instructions are in the DataJoiner Planning, Installation, and Configuration Guide for
either AIX or NT. You do not yet need to configure DataJoiner to its data sources,
unless you want to use DataJoiner in that context. You do, however, need to configure
it to communicate with clients using TCP/IP. When you have completed these steps,
proceed with the following configuration instructions that are relevant to your server
platform:

Figure 3. Client-server setup

6 Administration Guide and Reference



For AIX
1. Log on with the user ID of a DataJoiner instance. This instance will manage the

spatial database, and must be configured to communicate with ODBC clients using
TCP/IP. You can ensure this has been done by starting DB2 and checking if the
db2tcpcm process is running:

$ db2start
$ ps -ef | grep ′whoami′

If the process is not running, refer to the IBM DataJoiner for AIX Planning,
Installation, and Configuration Guide and configure TCP/IP client communications
before proceeding.

2. Swich user to root and create a new user ID, named db2se , which the SDE will
use to communicate to DataJoiner:

$ su root
$ mkuser pgrp='groupname' admgroups='groupname' db2se
$ passwd password

where groupname is the name of the primary group of the DataJoiner instance.
(You can determine the name of the group with the command: lsuser -a pgrp
instance_ID.)

3. Switch user to db2se and add the DataJoiner instance’s profile information to the
.profile file. One way to accomplish this is by appending the following entry to the
file:

. /djinst_path/sqllib/db2profile

where djinst_path is the complete path to the home directory of the instance.

4. After switching back to the instance user (exit twice), increase the UDF memory
size.

$ db2 update dbm cfg using UDF_MEM_SZ 4096

For more details on the memory requirements for the Spatial Extender, refer to the
Software Requirements table in the DataJoiner Planning, Installation, and
Configuration Guide.

5. Create a spatially-enabled database:

$ create db database_name
$ db2seadm enable_db database_name

6. Grant dbadm authority to the db2se user ID.

$ db2 connect to database_name
$ db2 grant dbadm on database to db2se

For NT
1. Log on to the Windows NT system with a user ID in the Administrators group that

also has DataJoiner SYSADM authority for the instance (for example, the user ID
that you installed DataJoiner under). This instance will manage the spatial database,
and must be configured to communicate with ODBC clients using TCP/IP. You can

Chapter 2. Setting-up the Environment 7



verify this by viewing the database manager configuration and checking that the title
states that it is configured for local and remote access, and that there is an existing
SVCENAME.

db2 get dbm cfg

If DataJoiner is only configured for local access, refer to the IBM DataJoiner for
Windows NT Planning, Installation, and Configuration Guide and configure TCP/IP
client communications before proceeding.

2. Create a new user ID to be used to access the spatial data. Name this user db2se .

a. From the Start menu, select Programs ->Administrator Tools ->User
Manager .

b. From the User menu, select New User .

c. In the New User dialog box:

1) Enter db2se as the New User name.

2) Enter a password in the Password and Confirm Password fields.

Note: You will need to know this password when configuring SDE.

3) Click the Groups button, add db2se to the Administrators group, and click
OK to close the window.

4) Click OK to close the New User window.

8 Administration Guide and Reference



3. Increase the UDF memory heap size:

D:\sqllib> db2 update dbm cfg using UDF_MEM_SZ 4096

For more details on the memory requirements for the Spatial Extender, refer to the
Software Requirements table in the DataJoiner Planning, Installation, and
Configuration Guide.

4. Create a database:

D:\sqllib> db2 create db sde

The name sde is the default database name for SDE. For simplicity, it is
recommended you use this name.

5. Spatially enable the database:

D:\sqllib> db2seadm enable_db sde

6. Grant the user ID, db2se , database administrator authority:

D:\sqllib> db2 connect to database_name
D:\sqllib> db2 grant dbadm on database to user db2se

7. Start the DB2 security service:

a. Open the Services control panel, which can be found in Start->Settings-
>Control Panel .

b. Find the ″DB2 Security Server″ and click Start .

8. Close all programs and log in as user sde .

Figure 4. Create the db2se user

Chapter 2. Setting-up the Environment 9



9. Verify that the db2se user can log on to DB2 from this ID:

D:\sqllib> db2 connect reset
D:\sqllib> db2 connect to sde user db2se

Configuring the SDE (AIX or NT)

Using the values you assigned to DataJoiner and the SDE database in the previous
section, follow the instructions relevant to your server platform:

For AIX
1. Log in as root and create a user ID to install and run the SDE server software (for

these examples the user is named sde ):

$ mkuser pgrp='staff' admgroups='staff' sde
$ passwd sde

2. Insert the CD and mount the CD-ROM drive:

$ mount -v 'cdrfs' -p ' ' -r ' ' /device_name /cdrom

3. Edit the /etc/services file, and add an entry for the SDE listener:

esri_sde 5150/tcp # SDE

4. Log on with the sde user ID and install the SDE:

$ cd /usr/lpp (or the directory where you install system-wide programs)
$ mkdir sde
$ cd sde
$ /cdrom/SDE/RS6000/install -load

5. Add the following lines to the .profile of the sde user:

export SDEHOME=/usr/lpp/sde/sdeexe302
export PATH=$PATH:$SDEHOME/bin
export LIBPATH=$LIBPATH:$SDEHOME/lib
export DB2COMM=TCPIP

6. Start the SDE server, and provide the password of the db2se user on the
DataJoiner system:

$ sdemon -o start

7. Verify the SDE processes are running:

$ sdemon -o status

For NT
1. Log on with a user ID in the Administrators group.

2.

Modify the system environment:

a. Right-click the My Computer icon, and select Properties .

b. Click the Environment tab, and add the following entries to the system
variables:

10 Administration Guide and Reference



Variable Value

SDEHOME SDE_install_path\db2exe\sdeexe302

PATH %PATH%;%SDEHOME%\bin

3. Use the same procedure as in step 2 on page 8 to create a user ID to be used to
run the SDE service (named sde in the figures). The user must be a member of the
Power Users group. If the user is a Domain user, it must be able to start the Net
Logon service. Workgroup users cannot start the service.

4. Edit the C:\winnt\system32\drivers\etc\services file and add an entry for the SDE
listener:

esri_sde 5150/tcp # SDE

5. Run the SDE setup program, which is located in the directory, SDE\intel_nt, on the
CD.

6. Follow the prompts of the installation wizard, and ensure you enter the correct
values on the Create SDE Service panel:

Figure 5. Adding the SDE Service ID to the Power User group

Chapter 2. Setting-up the Environment 11



Instance Name
The TCPIP service name. esri_sde is the default.

SDE DBA Password
The password of the db2se user ID.

Service User Name
The user ID that will run the SDE Service (sde in the examples).

Service User Password
The password of the SDE Service ID

Database Name
The name of the spatially enabled database. sde is the default, which is the
name of the database created in the section, “Configuring DataJoiner (AIX
or NT)” on page 6.

7. When the installation is complete, restart the system and verify the SDE service
(esri_sde ) is running.

a. Open the Services control panel, found in Start->Settings->Control Panel .

Figure 6. SDE Installation - Create SDE Service panel

12 Administration Guide and Reference



b. Scroll to find the SDE Service (esri_sde), which should be set as ″Started″ and
″Automatic.″

Configuring ArcView (Windows 95 or NT only)
1. Install ArcView following the instructions in the ArcView GIS Guide.

2. Install the Database Access Extension, which is available from the ESRI web site at
http://www.esri.com. Search for the ArcView Database Access Extension, which at
the time of this publication is located at:
http://www.esri.com/base/products/arcview/extensions/dbaccess/windows.html

Installation Verification

Once the system is up and running, you can verify the installation by loading a shape
file and creating a database theme using the ArcView client:

v To learn more about loading a shape file, refer to the shp2sde command in the SDE
Administrator’s Guide. Sample shape files are located on the ArcView CD.

v To create a database theme, refer to the Introduction to ArcView Database Access
book or the ″Extensions″ chapter of the ArcView online help.

Chapter 2. Setting-up the Environment 13

HTTP://WWW.ESRI.COM/
http://www.esri.com/base/products/arcview/extensions/dbaccess/windows.html


14 Administration Guide and Reference



Chapter 3. Working with Spatial Extender Data

A spatial database is a relational database like any other, administered using the same
familiar tasks, such as authorizing users, cataloging, and indexing. The Spatial Extender
provides metadata and an indexing scheme to help the DBA carry out effective
administration of the system. Proper administration enables the programmer to create
high performance spatial applications. This chapter describes these database
extensions, and presents the tools necessary to ensure proper administration is carried
out.

Administrative Privileges

Administrative processes for the Spatial Extender are performed by the db2se user ID,
which is granted DBADM authority during setup. DBADM or SYSADM privileges are
required to run db2seadm .

If a user other than the DBA of the DB2 database will own the Spatial Extender
functions and data types, the DBA must grant that user CREATE_NOT_FENCED
privileges. The Spatial Extender creates its functions in unfenced mode so that it can
run them in the database address space for better performance.

Users who want to use the Spatial Extender must add db2se to their function path:

SET CURRENT FUNCTION PATH = SYSTEM PATH, db2se

Administering the Spatial Extender with db2seadm

The Spatial Extender comes with a program, db2seadm , that is used to enable or
disable spatial capabilities for a database. This program has the following switches:

enable_db
Enables a database for spatial data. It creates the meta tables and views, and
the spatial data types, functions, predicates, and index types.

disable_db
Disables a spatial database by dropping the data types, functions, index types,
and the meta tables and views.

enable_col
Performed on a column in a spatially-enabled database, this option registers
the column in the DB2_GEO_COLUMNS table and creates a check constraint
on the column.

disable_col
Disables a spatial column by dropping the check constraint and removing the
entry from the DB2_GEO_COLUMNS table.

© Copyright IBM Corp. 1998 15



enable_index
Creates a spatial index on the designated spatial column and updates the
DB2_GEO_COLUMNS table to include the index information.

v The update option updates the index information in the table.

v The recover option creates an index and adds a check constraint.

disable_index
Drops the spatial index on a column.

v The drop option drops the index and updates the DB2_GEO_COLUMNS to
not include the index information.

v The invalidate option drops the index, but only removes the check constraint
and leaves the information in the DB2_GEO_COLUMNS table.

register
Registers the entitled product using a registration key.

Administering the Spatial Extender with SDE

After spatially enabling a database, you can use the SDE administration tools to
perform many of the tasks described later in this chapter. Refer to the SDE
Administrator’s Guide for information on using the SDE tools.

With the SDE, you can:

v Create a table with a spatial column (use sdetable).

v Spatially enable a column, and generate the spatial index on it (use sdelayer).

v Accept a grid cell size of the spatial index (use sdelayer). “Selecting the grid cell
size” on page 32 has more information on selecting the grid cell size for the spatial
index.

The SDE automatically adds a record to the spatial reference table whenever it cannot
find a compatible one.

SDE uses the term layer to refer to a spatial column of a DataJoiner table. SDE layers
may be in either LOAD ONLY I/O mode or NORMAL I/O mode.

When a layer is in LOAD ONLY I/O mode, the spatial index is dropped and queries
through the SDE server are disallowed. This state allows the tables to be efficiently
loaded by a program created with the SDE C API or with the shp2sde, cov2sde, and
sdeimport utilities. These utilities convert shape files, coverages, and SDE export files.
When the layer is returned to NORMAL I/O mode, the spatial index is created and
queries are once again allowed.

All SDE client applications work with the SDE included with DataJoiner, including
ArcView, MapObjects, ArcInfo, ArcExplorer applications. MicroStation and AutoCad are
also accessible through the ESRI SDE CAD Client product.

16 Administration Guide and Reference



A Sample Program on AIX

A set of sample scripts is provided with the Spatial Extender AIX installation. These
scripts perform the following tasks:

v Enable a database for spatial data

v Create a table that contains both spatial and traditional columns

v Create spatial indexes over spatial columns

v Load spatial and traditional data into a spatially enabled table

v Query tables and views using traditional predicates and spatial predicates, such as:
within, contain, and intersect

v Disable the spatial database

v Disable a spatial column

The scripts are located in the directory, $INSTHOME/sqllib/samples/db2sampl, where
$INSTHOME represents the home directory of a DataJoiner instance.

1. Log in as the user you want to own the sample tables and data. To demonstrate all
the functions in the sample, this user must have DBADM or SYSADM authority to
this instance.

2. Create a directory in the user’s home directory, and copy the geocoder and all the
script files to this directory. This step is necessary to give the user a set of scripts
with execute permission. For example:

mkdir x/db2sampl
cp $INSTHOME /sqllib/samples/db2sampl/* x/db2sampl

3. Print these scripts for reference.

4. Ensure DB2 is started:

db2start

5. Run the top-level script, redirecting the output to a file:

db2seDemo >demo.txt

6. Browse the output file to examine the results of the demonstration.

Tuning DataJoiner for Spatial Data

The following tuning tips will improve DataJoiner performance when handling spatial
data:

v Using a DMS tablespace is generally faster than using an SMS tablespace,
especially when populating an empty table:

CREATE TABLESPACE dmsTs MANAGED BY DATABASE USING
(FILE '/drive1/dms1' 100000, FILE '/drive2/dms1' 100000, ...)
EXTENTSIZE 32
PREFETCHSIZE 128

v Set the prefetch size to be a multiple of the extent size. For example, in the
CREATE statement above, the prefetch size is set to 32 * 4, assuming that the
extent size is 32 and the number of physical drives used by the table space is 4.

Chapter 3. Working with Spatial Extender Data 17



v Set the number of prefetcher processes to the number of physical drives plus 2. For
example, for 4 drives, set the number of processes to 6 using this command:

UPDATE DB CFG FOR sampleDb UPDATE NUM_IOSERVERS 6

For more information on tuning DataJoiner, see the DB2 Administration Guide and IBM
DataJoiner Administration Supplement.

Spatial Data Types

When you spatially enable a database using the enable_db command, seven spatial
data types are added to your database: geometry, point, linestring, polygon, multipoint,
multilinestring, and multipolygon.

A thorough discussion of these data types is provided in “About Geometry” on page 37.

Spatial Functions and Predicates

The Spatial Extender includes many functions and predicates that store, access, and
model spatial data:

Client-server conversion functions
These convert spatial data between the client and the DB2 Spatial Extender
database. This data can be in ESRI Binary, OGIS Binary, or OGIS Text
formats. The specifications for these data formats are included in the
Appendixes.

Property functions
These describe the properties of spatial data. These functions answer
questions about a particular geometric shape (also called a geometry) such as:
is this geometry empty? ...what is it’s type? ...how many rings does it include?

Relational functions
These determine the relationships between geometries, and answer questions
such as: do these lines cross? ...what is the distance between two shapes?
...taking the union of two areas, what points are located within the boundaries,
give or take a couple of miles?

Spatial functions and predicates are described in detail in “Chapter 4. Programming
Concepts” on page 37 and “Chapter 5. SQL Reference” on page 67.

Spatial Index Extensions

The two-dimensional nature of spatial data requires an indexing structure beyond the
capabilities of the DataJoiner B+ Tree index. Therefore, the Spatial Extender extends
DataJoiner’s index to include a strategy that uses grids. For more information, see
“Spatial Indexes” on page 25.

18 Administration Guide and Reference



Meta Tables and Views

The complex nature of spatial data requires that relationships be maintained in various
meta tables. These tables store particular sets of information about the spatial data,
such as names, types, keys, schemas, and index information.

SPATIAL_REFERENCES and SPATIAL_REF_SYS

The SPATIAL_REFERENCES table stores all of the possible spatial reference systems
of a database. The SPATIAL_REFERENCES table is created with the following create
table statement:

create table db2se.SPATIAL_REFERENCES (
srid int not null,
auth_name varchar(256),
auth_srid int,
falsex float not null,
falsey float not null,
xyunits float not null,
falsez float not null,
zunits float not null,
falsem float not null,
munits float not null,
srtext varchar(2048) not null,
constraint sp_ref_pk primary key (srid));

The SPATIAL_REF_SYS view is created with the following create view statement:

create view db2se.SPATIAL_REF_SYS as
select srid, auth_name, auth_srid, srtext
from db2se.SPATIAL_REFERENCES;

This view is required by the OGIS specification and used by the SDE.

See “Chapter 4. Programming Concepts” on page 37 for information on spatial
reference systems.

DB2_GEO_COLUMNS and GEOMETRY_COLUMNS

The DB2_GEO_COLUMNS table is created with the following create table statement:

create table db2se.DB2_GEO_COLUMNS (
f_table_catalog varchar(256),
f_table_schema varchar(8) not null,
f_table_name varchar(18) not null,
f_geometry_column varchar(18) not null,
geometry_type int,
srid int,
storage_type int,
coordinate_dimension int,
b_table_schema varchar(8),
b_table_name varchar(18),

Chapter 3. Working with Spatial Extender Data 19



b_geometry_column varchar(18),
constraint_name varchar(18),
idx_schema varchar(18),
idx_name varchar(18),
constraint geocol_pk primary key

(f_table_schema,f_table_name,f_geometry_column),
constraint geocol_fk foreign key (srid)

references db2se.SPATIAL_REFERENCES (srid));

The GEOMETRY_COLUMNS view is created with the following create view statement:

create view db2se.GEOMETRY_COLUMNS as
select f_table_catalog, f_table_schema,

f_table_name, f_geometry_column,
geometry_type, srid,
storage_type

from db2se.DB2_GEO_COLUMNS;

When a database is spatially enabled, the DB2_GEO_COLUMNS table stores meta
data about each spatial column in the database.

This view is required by the OGIS specification and used by the SDE.

Database Privileges

Any user of the database may query the DB2_GEO_COLUMNS table and
GEOMETRY_COLUMNS view, but only the db2se user is granted permission to change
their contents.

Any user of the database may query or change the contents of the
SPATIAL_REFERENCES table and its view, SPATIAL_REF_SYS.

The following grant statements are executed to grant privileges on the db2se tables and
views.

grant select on DB2_GEO_COLUMNS to public;
grant select on GEOMETRY_COLUMNS to public;
grant select on SPATIAL_REFERENCES to public;
grant select on SPATIAL_REF_SYS to public;
grant insert on DB2_GEO_COLUMNS to db2se;
grant insert on GEOMETRY_COLUMNS to db2se;
grant insert on SPATIAL_REFERENCES to public;
grant delete on DB2_GEO_COLUMNS to db2se;
grant delete on GEOMETRY_COLUMNS to db2se;
grant delete on SPATIAL_REFERENCES to public;
grant delete on SPATIAL_REF_SYS to public;
grant update on DB2_GEO_COLUMNS to db2se;
grant update on GEOMETRY_COLUMNS to db2se;
grant update on SPATIAL_REFERENCES to public;
grant update on SPATIAL_REF_SYS to public;

20 Administration Guide and Reference



Adding records to the spatial reference table

The spatial reference system identifies the coordinate transformation matrix for each
geometry. All spatial reference systems known to the database are stored in the
SPATIAL_REFERENCES table created by the db2seadm enable_db option.

Internal functions use the parameters of a spatial reference system to translate and
scale each floating point coordinate of the geometry into 32-bit positive integers prior to
storage. Upon retrieval, the Spatial Extender restores the coordinates to their external
floating point format.

The Spatial Extender converts the floating point coordinates to integers by first
subtracting FALSEX and FALSEY, which translates to the false origin and then scales
by multiplying by the XYUNITS, adding a half unit, and truncating the remainder.

The optional Z coordinate and measure are dealt with in the same fashion, except that
they are translated with FALSEZ and FALSEM and scaled with ZUNITS and MUNITS,
respectively.

The SPATIAL_REFERENCES primary key, spatial reference identifier (SRID), contains
a unique number for each spatial reference system. The SRTEXT contains the
Well-Known Text representation of the Spatial Reference System. (see “Appendix B.
The OGIS Well-Known Text Representation” on page 187).

The AUTH_NAME contains the name of the standard or standards body cited for the
reference system, and AUTH_ID is the identifier number of the Spatial Reference
System as defined by the authority cited in AUTH_NAME.

The spatial reference system is assigned to a geometry during its construction. The
spatial reference system must exist in the Spatial Reference Table. The Spatial
Extender requires that all geometries in a column be of the same spatial reference
system.

Below is an example of a spatial reference system inserted into the
SPATIAL_REFERENCES table.

insert into db2se.SPATIAL_REFERENCES
values ( 1,'NULL',NULL,-1000.0,-1000.0,1000,-1000.0,1000,-1000.0,1000,'UNKNOWN' );

Table 1. Columns and the values stored in the SPATIAL_REFERENCES table.

Column Value

srid 1

auth_name NULL

auth_srid NULL

falsex -1000.0

falsey -1000.0

Chapter 3. Working with Spatial Extender Data 21



Table 1. Columns and the values stored in the SPATIAL_REFERENCES
table. (continued)

Column Value

xyunits 1000

falsez -1000.0

zunits 1000

falsem -1000.0

munits 1000

srtext UNKNOWN

Because the coordinates are stored as positive 32-bit integers, the maximum range of
values is between 0 and 2,147,483,648, which, of course, is dependent on the false
origin and system units of the spatial reference system.

A negative false origin will shift the range of values in the negative direction and
positive direction otherwise. For example, a false origin of 1000.0 with a system unit of
0 will store a range of values between 1000.0 to 2,147,482,648.

The system units control scale. The larger the system unit the greater the scale that
can be stored, but it also reduces the range of values. For example, given a system
unit of 1000 and a false origin of 0, the Spatial Extender will store a scale that is three
digits to the right of the decimal point; the range of values stored will be reduced to
0.001 and 2,147,483.648. In contrast, decreasing the system unit will increase the
range of values, but will proportionately decrease the scale as truncation occurs. For
example, a system unit of 0.001 and a false origin of 0 will store a range of values that
is between 1000.0 and 2147,483,648,000.0.

The following formula converts the floating point ordinates into system units.

stored value = truncate(((ordinate false origin) * system unit) + 0.5)

The Spatial Extender will return an error if the application attempts to store a value that
is less than or greater than the range of acceptable values. Therefore, it is important
that you select a false origin and system unit that will store all of your ordinate values at
an acceptable scale. To do so, you must know the range of your data and the scale you
wish to maintain. For example, if you wish to maintain a scale of three digits to the right
of the decimal point, set your system units to 1000. Set the false origin less than the
minimum ordinate value in your data set. Note that the false origin must be small
enough to account for any buffering of the data. So if the minimum ordinate value is
10000, and your application includes functions which buffer the data by 5000, then the
false origin must be set less than 15000. Finally make sure that the maximum ordinate
value will not be greater than 2,147,483,648 after it has been converted to a positive
32-bit integer. To do this, apply the formula to the maximum value. For example, given
a false origin of 15000 and a system unit of 1000, the maximum ordinate 9302912.021
would be converted to 9,317,912,021.

22 Administration Guide and Reference



9,317,912,021 = truncate(((9302912.021 (-15000) * 1000) + 0.5)

This value is larger than 2,147,483,648; therefore, the Spatial Extender would reject
errors for all ordinates larger than 2132483.648. Because it is not possible to shift the
false origin to the positive direction, the only alternative in this case is to reduce the
system units to 100. Now the maximum value is calculated as 931,791,202.

931,791,202 = truncate(((9302912.021 (-15000) * 100) + 0.5)

Because the value is less than the 2,147,483,648, all of the ordinates will now fit. Note
that the need to lower the system unit rarely occurs. The range of values in the vast
majority of data sets are not large enough to require this action.

Creating a Spatial Table

A spatial table is simply a table that includes one or more spatial columns. Spatial
columns are columns created with one of the spatial data types. These columns will
contain spatial data or geometry. (Geometry is the term adopted by the Open GIS
Consortium to refer to two-dimensional spatial data). To create such a table, simply
include a spatial column in the column clause of the CREATE TABLE statement. This
column can only accept data of the type required by the spatial column. For example, a
polygon column rejects integers, characters, and even other types of geometry.

Consider again the sensitive areas and hazardous waste sites example. Stored in the
SENSITIVE_AREAS table are the threatened schools, hospitals and playgrounds, while
the HAZARDOUS_SITES table maintains the hazardous waste sites. The polygon data
type is used to store the sensitive areas, while the hazardous sites are stored as points.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

Inserting Data into a Spatial Column

The geometry stored in a spatial column actually combines several other base data
types and as such cannot be entered directly. Instead the standard geometry formats
must be loaded with special conversion functions. The Spatial Extender supports three
external geometry formats: text representation, well known binary representation, and
ESRIs shape representation. For each of these formats a function exists to convert the
data into each of the Spatial Extenders data types. (See “Geometry Data Exchange” on
page 45 for a complete list of functions.)

Chapter 3. Working with Spatial Extender Data 23



In the code fragment below, a record is inserted into the SENSITIVE_AREAS and
HAZARDOUS_SITES tables. The polyfromshape function converts an ESRI polygon
shape into a Spatial Extender polygon before inserting it into the ZONE column of
SENSITIVE_AREAS. The pointfromshape function converts an ESRI point shape into a
Spatial Extender point before inserting it into the LOCATION column of
HAZARDOUS_SITES. If the original form of the geometry were a text representation,
you would use the functions polyfromtext and pointfromtext. Likewise, a geometry in
well-known binary representation can be converted using polyfromwkb and
pointfromwkb.

/* Create the SQL insert statements to populate the sensitive areas table.
The question mark is a parameter marker that indicates the zone polygon
that will be retrieved at runtime from the variable shape_poly. */

strcpy (shp_sql," insert into SENSITIVE_AREAS values('408',
'Summerhill Elementary School',
100493.94,

'SCHOOL',
polyfromshape(cast(? as blob(1m)),coordref()..srid(1))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the shape to the second parameter. */
pcbvalue1 = blob_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, shape_poly, blob_len, &pcbvalue1);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

/* Create the SQL insert statements to populate the hazardous
sites table. The question mark is a parameter marker that
indicates the location point that will be retrieved at
runtime from the variable shape_point. */

strcpy (shp_sql,"insert into HAZARDOUS_SITES (102,
'W. H. Kleenare Chemical Repository',
pointfromshape(cast(? as blob(1m)),coordref()..srid(1))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the shape to the second parameter. */

24 Administration Guide and Reference



pcbvalue1 = blob_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, shape_point, blob_len, &pcbvalue1);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

In the example above, two records are simply inserted into the tables. However, the
actual amount of data that must be loaded into a GIS system usually ranges between
ten thousand records for smaller systems and one hundred million records for larger
systems. The seamless design of the Spatial Extender is capable of handling the entire
range of these systems. To load vast amounts of spatial data it is necessary for an
application to convert the data into one of the three accepted formats before it can store
the data.

Spatial Indexes

Because spatial columns contain two-dimensional geographic data, applications
querying those columns require an index strategy that quickly identifies all geometries
that lie within a given extent. For this reason, the Spatial Extender provides the
three-tiered spatial index based on a grid.

Before reading more about spatial indexes, here is an example of how an index might
be created and used in SQL. Notice that once the index is created, you can then
perform standard DDL and DML statements on the database, using the spatial functions
and predicates:

create table customers (cid int, addr varchar(40), ..., loc point)
create table stores (sid int, addr varchar(40), ..., loc point, zone polygon)

create index customersx1 on customers(loc) using spatial_index(1000e0, 100e0, 10e0)
create index storesx1 on customers(loc) using spatial_index(1000e0, 100e0, 10e0)
create index storesx2 on customers(loc) using spatial_index(10000e0, 1000e0, 100e0)

insert into customers (cid, addr, loc) values (:cid, :addr, sdeFromBinary(:loc))
insert into customers (cid, addr, loc) values (:cid, :addr, geocode(:addr))
insert into stores (sid, addr, loc) values (:sid, :addr, sdeFromBinary(:loc))

update stores set zone = buffer(loc, 2)

select cid, loc from customers
where within(loc, :polygon) = 1

select cid, loc from customers
where within(loc, :circle1) = 1 OR

within(loc, :circle2) = 1

select c.cid, loc from customers c, stores s
where contains(s.loc, c.loc) = 1

Chapter 3. Working with Spatial Extender Data 25



select avg(c.income) from customers c
where not exist (select * from stores s

where distance(c.loc, s.loc) < 10)

The B+ tree indexes

The two-dimensional spatial index differs from the traditional hierarchical B+ tree index
provided by DataJoiner. To better understand the difference, let us review how a B+
tree index is structured and used.

The top level of a B+ tree index, called the root node, contains one key for each node
at the next level. The value of each of these keys is the largest existing key value for
the corresponding node at the next level. Depending on the number of values in the
base table, several intermediate nodes may be needed. These nodes form a bridge
between the root node and the leaf nodes that hold the actual base table row IDs.

The DataJoiner database manager searches a B+ tree index starting at the root node
and then continues through the intermediate nodes until it reaches the leaf node with
the row ID of the base table.

The B+ tree index cannot be applied to a spatial column because the two-dimensional
characteristic of the spatial column requires the structure of a spatial index. For the
same reason, you cannot apply a spatial index to a non-spatial column. Further, a
spatial index cannot be applied to a composite column of any kind.

To create a spatial index, use the enable_index parameter of the db2seadm command.
You can also use the db2 create index command with the spatial_index function in the
USING clause.

db2seadm enable_index create <database>, <schema>, <table>, <spatial column>,
<grid level 1>, <grid level 2>, <grid level 3>

create index storesx1 on customers(loc) using spatial_index(1000e0, 100e0, 10e0)

Because of the simple nature of the data, a B+ tree was used to design the index. The
database designer directs DataJoiner to create the index on one or more table columns.
The nature of spatial data requires the designer understand its relative size distribution.
The designer must determine the optimum size and number of grid levels with which to
create the spatial index.

The grid levels, <grid level 1>, <grid level 2>, and <grid level 3>, are entered by
increasing the cell size. Thus, the second level must have a larger cell size than the
first, and the third larger than the second. The first grid level is mandatory, but you can
disable the second and third with a double precision zero value (0.0e0).

26 Administration Guide and Reference



Generating the Spatial Index

A spatial index is generated using envelopes. The envelope, a geometry itself,
represents the minimum and maximum X and Y extent of a geometry. For most
geometries, the envelope is a box, but for horizontal and vertical linestrings the
envelope is a two point linestring. For points, the envelope is the point itself. See
“Chapter 4. Programming Concepts” on page 37 for more information about envelopes
and other geometries.

The spatial index is constructed on a spatial column by making one or more entries for
the intersections of each geometry’s envelope with the grid. An intersection is recorded
as the internal ID of the geometry and minimum X and Y coordinates of the grid cell
intersected.

If multiple grid levels exist, the Spatial Extender attempts to use the lowest grid level
possible. When a geometry has intersected four or more grid cells at a given level, it is
promoted to the next higher level. Therefore, given a spatial index that has the three
grid levels of 10.0e0, 100.0e0, and 1000.0e0, the Spatial Extender will first intersect
each geometry with the level 10.0e0 grid. If a given geometry intersects with four or
more 10.0e0 grid cells, it is promoted and intersected with the level 100.0e0 grid. If four
or more intersections result at the 100.0e0 level, the geometry is promoted again to the
1000.0e0 level at which point the intersections must be entered into the spatial index
since this is the highest possible level.

Figure 7 on page 28 illustrates how four different types of geometries intersect a 10.0e
grid. All 23 intersections for the four geometries are recorded in the spatial index.

Chapter 3. Working with Spatial Extender Data 27



Table 2 lists the geometries and their corresponding grid intersections. The envelopes of
four different types of geometries intersect the 10.0e grid. The minimum X and Y
coordinate of each grid cell that it intersects are entered into the spatial index.

Table 2. The 10.0e0 grid cell entries

Geometry Grid X Grid Y

Polygon 20.0 30.0

Polygon 30.0 30.0

Polygon 40.0 30.0

Polygon 20.0 40.0

Polygon 30.0 40/0

Polygon 40.0 40.0

Polygon 20.0 50.0

Polygon 30.0 50.0

Figure 7. Application of a 10.0e0 grid level

28 Administration Guide and Reference



Table 2. The 10.0e0 grid cell entries (continued)

Geometry Grid X Grid Y

Polygon 40.0 50.0

Vertical linestring 50.0 30.0

Vertical linestring 50.0 40.0

Vertical linestring 50.0 50.0

Point 20.0 20.0

Horizontal linestring 20.0 20.0

Horizontal linestring 30.0 20.0

Horizontal linestring 40.0 20.0

Horizontal linestring 50.0 20.0

Horizontal linestring 60.0 20.0

Horizontal linestring 20.0 30.0

Horizontal linestring 30.0 30.0

Horizontal linestring 40.0 30.0

Horizontal linestring 50.0 30.0

Horizontal linestring 60.0 30.0

Now let us examine a multilevel grid index of the geometries. Figure 8 on page 30
displays how the number of intersections is greatly reduced to eight by the addition of
grid levels 30.0e0 and 60.0e0. In this case, the polygon identified as geometry 1 is
promoted to grid level 30.0e0 and the linestring identified as geometry 4 is promoted to
grid level 60.0e0. Instead of the nine and ten intersections that geometries had at the
10.0e0 level, they have only two after promotion.

Chapter 3. Working with Spatial Extender Data 29



The grid levels, 10.0e0, 30.0e0, and 60.0e0, are displayed with ever-increasing line
weights and different shades of gray. The vertical linestring and the point envelope cell
intersections are entered into the index at the 10.0e0 grid level, because both generate
less than four intersections. The polygon intersects nine 10.0e0 grid cells, and is
therefore promoted to the 30.0e0 grid level. At this level, the polygon intersects two grid
cells, which are entered into the index. The linestring identified as geometry 4 intersects
ten 10.0e0 grid cells, and is therefore promoted to the 30.0e0 grid level. Yet at this
level, it intersects six grid cells, so it is again promoted to the 60.0e0 grid level, where it
generates two intersections. The linestring 60.0e0 grid intersections are then entered
into the index. Had the linestring generated four or more intersections at this level, they
still would have been entered into the index because this is the highest level at which a
geometry can be promoted.

Figure 8. Effect of adding grid levels 30.0e0 and 60.0e0. The envelope of the polygon
identified as geometry 1 intersects nine grid cells. The envelope of the vertical linestring
identified as geometry 2 intersects three grid cells. The envelope of the point identified
as geometry 3 intersects just one grid cell. The envelope of the linestring identified as
geometry 4 intersects ten grid cells.

30 Administration Guide and Reference



Table 3. The intersections of the geometries in the three-tiered index

Geometry Grid X Grid Y

The intersections between the vertical linestring and the point in the 10.0e0 grid level.

2 50.0 30.0

2 50.0 40.0

2 50.0 50.0

3 20.0 20.0

The intersections of the polygon in the 30.0e0 grid level

1 0.0 30.0

1 30.0 30.0

The intersections of the linestring in the 60.0e0 grid level

4 0.0 0.0

4 60.0 0.0

The Spatial Extender does not actually create a polygon grid structure of any kind. The
Spatial Extender manifests each grid level parametrically by defining the origin at the
X,Y offset of the columns’ spatial reference system. It then extends the grid into positive
coordinate space. Using a parametric grid, the Spatial Extender generates the
intersections mathematically.

Using the spatial index

The Spatial Extender works with a spatial index to improve the performance of a spatial
query. Consider the most basic and probably most popular spatial query, the box query.
This query asks the Spatial Extender to return all geometries that are either fully or
partially within a user-defined box. If an index does not exist, the Spatial Extender must
compare all of the geometries with the box. However, with an index, the Spatial
Extender can locate all the index entries that have a lower left-hand coordinate greater
than or equal the box’s and an upper right-hand coordinate less than or equal to the
box’s. Because the index is ordered by this coordinate system, the Spatial Extender is
able to quickly obtain a list of candidate geometries. The process just described is
referred to as the first pass.

A second pass determines if each candidate’s envelope intersects the box. A geometry
that qualifies for first pass because its grid cells’ envelope intersects the box may itself
have an envelope that does not.

A third pass compares the actual coordinates of the candidate with the box to determine
if any part of the geometry +is actually within the box. This last and rather complex
process of comparison operates on a list of candidates composed of a sub-set of the
total population, which is significantly reduced by the first two passes.

Chapter 3. Working with Spatial Extender Data 31



All spatial queries perform the three passes except for the envelopesintersect function.
It performs only the first two passes and was designed for display operations because
these types of operations often employ their own built-in clipping routines and don’t
require the granularity of the third pass.

Selecting the grid cell size

The irregular shape of the geometry envelopes complicates the selection of the grid cell
size. Because of this irregularity, some geometry envelopes intersect several grids,
while others fit inside a single grid cell. Conversely, depending on the spatial distribution
of the data, some grid cells intersect many geometry envelopes.

For a spatial index to function well, it is essential that the correct number and size of
grids are selected. To simplify this discussion, let’s first consider a spatial column
containing uniformly sized geometry. In this case, a single grid level will suffice. Start
with a grid cell size that encompasses the average geometry envelope. While testing
your application you may find that increasing the grid cell size improves the
performance of your queries because each grid cell contains more geometries, and the
first pass is able to discard non-qualifying geometries faster. However, you will find that
as you continue to increase the cell size, performance will begin to deteriorate because
eventually the second pass will have to contend with more candidates.

Selecting the number of levels

Not all columns will contain geometry of the same relative size. More often geometries
of most spatial columns can be grouped into several size intervals. For example,
consider a road network in which the geometries are divided into streets, major roads
and highways. Or, consider a county parcel column that contains clusters of small urban
parcels surrounded by larger rural parcels. These situations are very common and
require the use of a multilevel grid.

To select the cell sizes of each level, first determine the intervals of geometry
envelopes. Create a spatial index with grid level cell sizes that are slightly larger than
each interval. Test the index by performing queries against the spatial column.

Each additional level requires an extra index scan, so try adjusting the grid sizes up or
down slightly to determine if an appreciable improvement in performance can be
obtained.

Querying a Spatial Table

Once the spatial indexes have been constructed, the spatial tables are ready for use.
Querying the spatial columns requires that the data be converted to one of the three
supported external formats. The function astext converts a spatial column value to the
text representation, while the asbinary and asbinaryshape functions convert the values
to WKB and ESRI shape representation. Once converted, the applications can display
the data or manipulate it in whatever way they are required to do so.

32 Administration Guide and Reference



The SDE server supplied with the Spatial Extender automatically converts the spatial
column data into ESRI shape representation. The ESRI shape representation is
available to all ESRI supported applications, as well as those applications of other
vendors capable of reading this format.

In the example below, a small program segment illustrates how polygons are read from
the SENSITIVE_AREAS table and passed to an applications display system. The
program makes the standard ODBC function calls to establish an ODBC environment
and then connects to the database. The current display window is fetched from the
application’s display system as polygon shape. The Spatial Extender function call
envelopesintersect returns 1 (TRUE) only for those zone polygons that are visible within
the current display window. Each polygon in the result set is fetched by the ODBC
SQLFetch function into the fetched_binary variable and passed to the applications
draw_polygon function for display. Once all the polygons have been displayed, a call to
SQLFreeStmt closes the cursor and frees the resource associated with the SQL
statement variable hstmt. The remainder of the program disconnects from the database,
and frees the resources associated with the connection.

The functions get_window and draw_polygon are application-level function calls. In this
case, the get_window function returns the coordinates of the display window as a
polygon shape. The draw_polygon function would call the appropriate display drivers to
draw each polygon.

/* Allocate memory for the ODBC environment handle henv and initialize application. */
rc = SQLAllocEnv(henv);

/* Allocate memory for a connection handle within the henv environment. */
rc = SQLAllocConnect(*henv, handle);

/* Load the DB2 ODBC driver and connect to the data source identified by
database, user and password.*/

SQLConnect(*handle, database, SQL_NTS, user, SQL_NTS, password, SQL_NTS,);

/* Allocate memory to the SQL statement handle hstmt. */
SQLAllocStmt(handle, &hstmt);

/* Get the display windows coordinates from the display system as a polygon
shape. Blob_len contains the number of bytes in the shape.*/

get_window(&window, &blob_len);

/* Create the SQL expression. */
strcpy(sqlstmt, "select AsBinaryShape(zone) from SENSITIVE_AREAS where
envelopesintersect(zone,polyfromshape(cast (? as blob(1m)), coordref..srid(1)))
= 1");

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 to the window shape */

Chapter 3. Working with Spatial Extender Data 33



pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, window, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query, (the Zone polygons) to the
fetched_binary variable. */

SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */
while(SQL_SUCCESS == (rc = SQLFetch(hstmt))

draw_polygon(fetched_binary);

/* All polygons have been displayed, so close the cursor, and free all
memory and resources associated with the statement handle hstmt. */

SQLFreeStmt (hstmt, SQL_DROP);

/* Close the connection. */
SQLDisconnect(handle);

/* Release the connection handle and free the memory associated with it. */
SQLFreeConnect(handle);

/* Free the ODBC environment handle henv and free the memory associated
with it. */

SQLFreeEnv(henv);

Not all queries include the spatial column in the result set. Sometimes the spatial
column qualifies the result set. For example, the following SQL statement lists the
sensitive areas with the hazardous sites where the sensitive areas are within five miles
of a hazardous site. The Spatial Extender’s buffer function generates a polygon, which
is a circle representing the 5-mile radius around each hazardous location. The polygon
returned by the buffer function is the argument of the overlaps function, which returns 1
(TRUE) if the zone polygon of the SENSITIVE_AREAS table overlaps the polygon
generated by the buffer function. This is an example of a spatial join, in which the
relationship of two spatial columns defines the result set of a query.

select sa.name "Sensitive Areas", hs.name "Hazardous Sites"
from SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
where overlaps(sa.zone, buffer(hs.location,26400)) = 1;

Changing the Values of a Spatial Column

34 Administration Guide and Reference



The SQL update statement alters the values of a spatial column just as it does any
other type of column. However, a conversion function must be called to convert the
spatial columns data into a supported external format and then a reverse function must
be used during the update of the data altered by the application. The following example
program segment illustrates the ODBC function calls that use the Spatial Extenders
functions to update a value of the spatial column. location of the HAZARDOUS_SITES
table.

/* Allocate memory for the ODBC environment handle henv and initialize
the application. */

rc = SQLAllocEnv(&henv);

/* Allocate memory for a connection handle within the henv environment. */
rc = SQLAllocConnect(henv, &handle);

/* Load the DB2 ODBC driver and connect to the data source identified by
database, user and password. */

SQLConnect(handle, database, SQL_NTS, user, SQL_NTS, password, SQL_NTS,);

/* Allocate memory to the SQL statement handle hstmt. */
SQLAllocStmt(handle, &hstmt);

/* Get the display windows coordinates from the display system.
* Create the SQL expression.
* Set the site_id value to 102.
*
* (The where clause of the SQL select statement returns the record
* of the HAZARDOUS_SITES table whose site_id is equal to 102.)

site_id = 102;

/* Create the SQL SELECT statement that will return the location (point)
of HAZARDOUS_SITES for site_id 102 */

sprintf(sqlstmt, "select AsBinaryShape(location) from HAZARDOUS_SITES where
site_id = %d",site_id);

/* Execute the SELECT statement directly */
rc = SQLExecDirect(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Assign the results of the query, (the location point) to the
fetched_binary variable. */

rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, fetched_binary, 100000, &ind_blob);

/* Fetch the point. */
rc = SQLFetch(hstmt);

/* If a single record is not returned generate an error and exit */
if(rc == SQL_NO_DATA) bailout(-1);

/* Free all memory and resources associated with the statement handle
hstmt. */

Chapter 3. Working with Spatial Extender Data 35



rc = SQLFreeStmt(hstmt,SQL_DROP);

/* Call update_shape an application function presents the current
site_id 102 location point to the user and accepts the new value. */

update_shape(&fetched_binary,&blob_len);

/* Allocate memory to the SQL statement handle hstmt. */
SQLAllocStmt(handle, &hstmt);

/* Create the SQL Update statement. */
sprintf(sqlstmt,
"update HAZARDOUS_SITES set location =
pointfromshape(cast(?as blob(1m)), coordref..srid(1)) where site_id = %d",
site_id);

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 to the length of the binary returned by update_shape */
pcbvalue1 = blob_len;
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB,
0, 0, fetched_binary, &pcbvalue1);

/* Execute the update.*/
rc = SQLExecute(hstmt);

/* Free all memory and resources associated with the statement handle
hstmt. */

SQLFreeStmt (hstmt, SQL_DROP);

/* Close the connection. */
SQLDisconnect(handle);

/* Release the connection handle and free the memory associated with it.*/
SQLFreeConnect(handle);

/* Free the ODBC environment handle henv and free the memory associated with it. */
SQLFreeEnv(henv);

36 Administration Guide and Reference



Chapter 4. Programming Concepts

To program applications for the Spatial Extender, it is important to understand some
GIS concepts and the way in which they can be implemented in a relational database
model. This chapter provides you with an understanding of the geometric data types
available in the Spatial Extender and the possible relations you can make between
them.

About Geometry

The Oxford American Dictionary defines the noun geometry as ″the branch of
mathematics dealing with the properties of and relations of lines, angles, surfaces and
solids.″ On August 11, 1997, the Open GIS Consortium Inc. (OGC) in its publication,
Open GIS Features for ODBC (SQL) Implementation Specification , coined another
definition for the noun. The word geometry was selected to represent the geometric
features that, for the past millennium or more, cartographers have used to map the
world.

Point geometries represent objects at distinct locations, linestrings represent linear
characteristics, and polygons represent spatial extents. A very abstract definition of this
new representation of the word geometry might be ″a point or aggregate of points
symbolizing a feature on the ground″. This definition, however, fails to describe the rich
set of properties and functionality associated with the OGIS geometry.

Geometries have been implemented within the Spatial Extender as a group of
specialized data types with a unique set of properties and methods. These data types
allow you to define columns that store spatial data, and then manipulate that data in
much the same way you would any other data type.

Geometry Properties

Each subclass inherits the properties of the geometry superclass but they also have
properties of their own. Functions that operate on the geometry data type will accept
any of the subclass data types. However, some functions have been defined at the
subclass level and will only accept data types of certain subclasses.

Interior, boundary, exterior

All geometries occupy a position in space defined by their interior, boundary, and
exterior. The exterior of a geometry is all space not occupied by the geometry. The
boundary of a geometry serves as the interface between it interior and exterior. The
interior is the space occupied by the geometry. The subclass inherits the interior and
exterior properties directly, yet the boundary property differs for each.

© Copyright IBM Corp. 1998 37



The boundary function takes a geometry and returns a geometry that represents the
source geometry’s boundary.

Simple or non-simple

Some subclasses of geometry (linestrings, multipoints, and multilinestrings) are either
simple or non-simple. They are simple if they obey all the topological rules imposed on
the subclass, and non-simple if they don’t. A linestring is simple if it does not intersect
its interior. A multipoint is simple if none of its elements occupy the same coordinate
space. A multilinestring is simple if none of its element’s interiors are intersected by its
own interior.

The issimple predicate function takes a geometry and returns 1 (TRUE) if the geometry
is simple and 0 (FALSE) otherwise.

Empty or not empty

A geometry is empty if it does not have any points. An empty geometry has a NULL
envelope, boundary, interior and exterior. An empty geometry is always simple and can
have Z coordinates or measures. Empty linestrings and multilinestrings have a 0 length.
Empty polygons and multipolygons have a 0 area.

The isempty predicate function takes a geometry and returns 1 (TRUE) if the geometry
is empty and 0 (FALSE) otherwise.

Number of points

A geometry can have 0 or more points. A geometry is considered empty if it has 0
points. The point subclass is the only geometry that is restricted to 0 or 1 points, all
other subclasses can have 0 or more.

Envelope

The envelope of a geometry is the bounding geometry formed by the minimum and
maximum (X,Y) coordinates. With the following exceptions, the envelopes of most
geometries form a boundary rectangle:

v The envelope of a point is the point itself, because its minimum and maximum
coordinates are the same.

v The envelope of a horizontal or vertical linestring is a linestring represented by the
boundary (the endpoints) of the source linestring.

The envelope function takes a geometry and returns a bounding geometry, which
represents its envelope.

38 Administration Guide and Reference



Dimension

A geometry can have a dimension of 0, 1, or 2. The dimensions are listed as follows:

v 0 - has neither length or area.

v 1 - has a length

v 2 - contains area

The point and multipoint subclasses have a dimension of 0. Points represent 0
dimensional features that can be modeled with a single coordinate while multipoint
subclasses represent data the must be modeled with a cluster of disconnected
coordinates.

The subclasses linestring and multilinestring have a dimension of one. They store road
segments, branching river systems and any other features that are linear in nature.

Polygon and multipolygon subclasses have a dimension of two. Forest stands, parcels,
water bodies, and other features whose perimeter encloses a definable area can be
rendered by either the polygon or multipolygon data type.

Dimension is important not only as a property of the subclass, but it also plays a part in
determining the spatial relationship of two features. The dimension of the resulting
feature or features determines whether or not the operation was successful. The Spatial
Extender examines the dimension of the features to determine how they should be
compared.

The dimension function takes a geometry and returns its dimension as an integer.

Z coordinates

Some geometries have an associated altitude or depth. Each of the points that form the
geometry of a feature can include an optional Z coordinate that represents an altitude
or depth normal to the earths surface.

The is3d predicate function takes a geometry and returns 1 (TRUE) if the function has
Z coordinates and 0 (FALSE) otherwise.

Measures

Measures are values assigned to each coordinate. The value represents anything that
can be stored as a double precision number.

The ismeasured predicate takes a geometry and returns a 1 (TRUE) if it contains
measures and 0 (FALSE) otherwise.

Chapter 4. Programming Concepts 39



Spatial reference system

The spatial reference system identifies the coordinate transformation matrix for each
geometry.

All spatial reference systems known to the database are stored in the
SPATIAL_REFERENCES table.

For a complete discussion on the creation and maintenance of the
SPATIAL_REFERENCES table refer to “Meta Tables and Views” on page 19.

The srid function takes a geometry and returns its spatial reference identifier as an
integer.

Instantiable Subclasses

The geometry data type is not instantiable but instead must store its instantiable
subclasses. The subclasses are divided into two categories: the base geometry
subclasses, and the homogeneous collection subclasses. The base geometries include
point, linestrings and polygons while the homogeneous collections include multipoint,
multilinestring, and multipolygon. As the names imply, the homogeneous collections are
collections of base geometries. In addition to sharing base geometry properties,
homogeneous collections have some of their own properties as well.

geometrytype
takes a geometry and returns the instantiable subclass in the form of a
character string.

numgeometries
takes a homogeneous collection and returns the number of base geometry
elements it contains.

geometryn
takes a homogeneous collection and an index and returns the nth base
geometry.

Point

A point is a zero-dimensional geometry that occupies a single location in coordinate
space. A point has a single Xi coordinate value. A point is always simple. Points have a
NULL boundary. Points are often used to define features such as oil wells, landmarks,
and elevations.

Functions that operate solely on the point data type:

x returns a point data types X coordinate value as a double precision number.

y returns a point data types Y coordinate values as a double precision number.

z returns a point data types Z coordinate values as a double precision number.

40 Administration Guide and Reference



m returns a point data types M coordinate values as a double precision number.

Linestring

A linestring is a one-dimensional object stored as a sequence of points defining a linear
interpolated path. The linestring is simple if it does not intersect its interior. The
endpoints (the boundary) of a closed linestring occupy the same point in space. A
linestring is a ring if it is both closed and simple. As well as the other properties
inherited from the superclass geometry, linestrings have length. Linestrings are often
used to define linear features such as roads, rivers and power lines.

The endpoints normally form the boundary of a linestring unless the linestring is closed
in which case the boundary is NULL. The interior of a linestring is the connected path
that lies between the endpoints, unless it is closed in which case the interior is
continuous.

Functions that operate on linestrings:

startpoint
Takes a linestring and returns its first point.

endpoint
Takes a linestring and returns its last point.

pointn Takes a linestring and an index to nth point and returns that point.

length Takes a linestring and returns its length as a double precision number.

numpoints
Takes a linestring and returns the number of points in its sequence as an
integer.

isring Takes a linestring and returns 1 (TRUE) if the linestring is a ring and 0
(FALSE) otherwise.

isclosed
Takes a linestring and returns 1 (TRUE) if the linestring is closed and 0
(FALSE) otherwise.

Chapter 4. Programming Concepts 41



Polygon

A polygon is a two-dimensional surface stored as a sequence of points defining its
exterior bounding ring and 0 or more interior rings. Polygons by definition are always
simple. Most often they define parcels of land, water bodies and other features that
have a spatial extent.

The exterior and any interior rings define the boundary of a polygon, and the space
enclosed between the rings define the polygons interior. The rings of a polygon can
intersect at a tangent point but never cross. In addition to the other properties inherited
from the superclass geometry, polygons have area.

Functions that operate on polygons:

area Takes a polygon and returns its area as a double precision number.

exteriorring
Takes a polygon and returns its exterior ring as a linestring.

Figure 9. Linestring objects.
1. A simple non-closed linestring.

2. A non-sismple non-closed linestring.

3. A closed simple linestring and therefore a ring.

4. A closed non-simple linestring. It is not a ring.

Figure 10. Polygons.
1. A polygon whose boundary is defined by an exterior ring.

2. A polygon whose boundary is defined by an exterior ring and two interior rings. The
area inside the interior rings is part of the polygons exterior.

3. A legal polygon because the rings intersect at a single tangent point.

42 Administration Guide and Reference



numinteriorrings
Takes a polygon and returns the number of interior rings that it contains.

interiorringn
Takes a polygon and an index and returns the nth interior ring as a linestring.

centroid
Takes a polygon and returns a point that is the center of the multipolygon’s
extent.

pointonsurface
Takes a polygon and returns a point that is guaranteed to be on the surface of
the polygon.

Multipoint

A multipoint is a collection of points and just like its elements it has a dimension of 0. A
multipoint is simple if none of its elements occupy the same coordinate space. The
boundary of a multipoint is NULL. Multipoints define aerial broadcast patterns, and
incidents of an epidemic outbreak.

Multilinestring

A multilinestring is a collection of linestrings. Multilinestrings are simple if they only
intersect at the endpoints of the linestring elements. Multilinestrings are non-simple if
the interiors of the linestring elements intersect.

The boundary of a multilinestring is the non-intersected endpoints of the linestring
elements. The multilinestring is closed if all of its linestring elements are closed. The
boundary of a multilinestring is NULL if all of the endpoints of all of the elements are
intersected. In addition to the other properties inherited from the superclass geometry,
multilinestrings have length as well. Multilinestrings are used to define streams or road
networks.

Functions that operate on multilinestrings:

length Takes a multilinestring and returns the cumulative length of all its linestring
elements as a double precision number.

isclosed
Takes a multilinestring and returns 1 (TRUE) if the multilinestring is closed and
0 (FALSE) otherwise.

Chapter 4. Programming Concepts 43



Multipolygon

The boundary of a multipolygon is the cumulative length of its element’s exterior and
interior rings. The interior of a multipolygon is defined as the cumulative interiors of its
element polygons. The boundary of a multipolygons elements can only intersect at a
tangent point. In addition to the other properties inherited from the superclass geometry,
multipolygons have area. Multipolygons define features such as a forest stratum or a
non-contiguous parcel of land such as a pacific island chain.

Figure 11. Multilinestrings.
1. A simple multilinestring whose boundary is defined by the four endpoints of its two

linestring elements.

2. A simple multilinestring because only the endpoints of the linestring elements
intersect. The boundary is defined by the two non-intersecting endpoints.

3. A non-simple linestring because the interior of one of its linestring elements is
intersected. The boundary of this multilinestring is defined by the four endpoints,
including the intersecting point.

4. A simple non-closed multilinestring. It is not closed because its element linestrings
are not closed. It is simple because none of the interiors of any of the element
linestrings are intersected.

5. A simple closed multilinestring. It is closed because all of its elements are closed. It
is simple because none of its elements are intersected at the interiors.

44 Administration Guide and Reference



Functions that operate on multipolygons:

area Takes a multipolygon and returns the cumulative area of its polygon elements
as a double precision number.

centroid
Takes a multipolygon and returns a point that is its geometric-weighted center.

Geometry Data Exchange

The Spatial Extender supports three GIS data exchange formats:

v Well-known text representation

v Well-known binary representation

v ESRI binary shape representation

Well-Known Text Representation

The Spatial Extender has several functions that generate geometries from text
descriptions.

geometryfromtextcreates
A geometry from a text representation of any geometry type.

pointfromtext
Creates a point from a point text representation.

linefromtext
Creates a linestring from a linestring text representation.

polyfromtext
Creates a polygon from a polygon text representation.

mpointfromtext
Creates a multipoint from a multipoint representation.

Figure 12. Multipolygons.
1. A multipolygon with two polygon elements. The boundary is defined by the two

exterior rings and the three interior rings.

2. A multipolygon with two polygon elements. The boundary is defined by the two
exterior rings and the two interior rings. The two polygon elements intersect at a
tangent point.

Chapter 4. Programming Concepts 45



mlinefromtext
Creates a multilinestring from a multilinestring representation.

mpolyfromtext
Creates a multipolygon from a multipolygon representation.

The text representation is an ASCII string. It permits geometry to be exchanged in
ASCII text form. These functions do not require the definition of any special program
structures to map a binary representation. So, they can be used in either a 3GL or 4GL
program.

The astext function converts an existing geometry value into text representation.

See “Appendix B. The OGIS Well-Known Text Representation” on page 187 for a
detailed description of the text representation.

Well-Known Binary Representation

The Spatial Extender has several functions that generate geometries from well-known
binary (WKB) representations.

geometryfromwkb
Creates a geometry from a WKB representation of any geometry type.

pointfromwkb
Creates a point from a point WKB representation.

linefromwkb
Creates a linestring from a linestring WKB representation.

polyfromwkb
Creates a polygon from a polygon WKB representation.

mpointfromwkb
Creates a multipoint from a multipoint WKB representation.

mlinefromwkb
Creates a multilinestring from a multilinestring WKB representation.

mpolyfromwkb
Creates a multipolygon from a multipolygon WKB representation.

The well-known binary representation is a contiguous stream of bytes. It permits
geometry to be exchanged between an ODBC client and an SQL database in binary
form. These geometry functions require the definition of a C structures to map the
binary representation. So, they are intended for use within a 3GL program, and are not
suited to a 4GL environment.

The asbinary function converts an existing geometry value into well-known binary
representation.

46 Administration Guide and Reference



See “Appendix C. The OGIS Well-Known Binary Representation” on page 193 for a
detailed description of WKB.

ESRI Shape Representation

The Spatial Extender has several functions that generate geometries from an ESRI
shape representation. Like the text and WKB representations, the ESRI shape
representation supports two-dimensional representations. However, it also supports Z
coordinates and measures.

geometryfromshape
Creates a geometry from a shape of any geometry type.

pointfromshape
Creates a point from a point shape.

linefromshape
Creates a linestring from a polyline shape.

polyfromshape
Creates a polygon from a polyline shape.

mpointfromshape
Creates a multipoint from a multipoint shape.

mlinefromshape
Creates a multilinestring from a multipart polyline shape.

mpolyfromshape
Creates a multipolygon from a multipart polygon shape.

The general syntax of these functions is the same. The first argument is the shape
representation that is entered as a BLOB data type. The second argument is the spatial
reference identifier that will be assigned to the geometry. For example, the
geometryfromshape function has the following syntax:

geometryfromshape(shapegeometry, SRID)

To map the binary representation, these shape functions require the definition of a C
structures. So, they are intended for use within a 3GL program, and are not suited to a
4GL environment.

The asbinaryshape function converts a geometry value into an ESRI shape
representation. See “Appendix D. The ESRI Shape Representations” on page 197 for a
detailed description.

Chapter 4. Programming Concepts 47



Geometry Relations

As one of its primary functions, a geographic information system determines the spatial
relationships that exist between features. The distance separating a hazardous waste
disposal site and a hospital, school or housing development is an example of a spatial
relationship.

The Spatial Extender employs predicates, which are boolean functions used to
determine if a specific relationship exists between a pair of geometries.

Other functions return a value as a result of a spatial relationship. For example, the
result returned by the distance function, the space separating two geometries, is a
double precision number. And a function such asintersection returns a geometry,
resulting from the intersection of two geometries.

Predicates

Predicates return 1 (TRUE) if a comparison meets the function’s criteria, or 0 (FALSE) if
the comparison fails. Predicates that test for a spatial relationship compare pairs of
geometries that can be a different type or dimension.

Predicates compare the X and Y coordinates of the submitted geometries. The Z
coordinates and the measure (if they exist) are ignored. This allows geometries that
have Z coordinates and/or measure to be compared with those that do not.

The Dimensionally Extended 9 Intersection Model (DE-9IM)1is a mathematical approach
that defines the pair-wise spatial relationship between geometries of different types and
dimensions. This model expresses spatial relationships between all types of geometries
as pair-wise intersections of their interior, boundary and exterior, with consideration for
the dimension of the resulting intersections.

Given geometries a and b: I(a ), B(a ), and E(a ) represent the interior, boundary, and
exterior of a. And, I(b), B(b), and E(b) represent the interior, boundary, and exterior of b.
The intersections of I(a), B(a), and E(a) with I(b), B(b), and E(b) produces a 3 by 3
matrix. Each intersection can result in geometries of different dimensions. For example,
the intersection of the boundaries of two polygons consists of a point and a linestring, in
which case the dim function would return the maximum dimension of 1.

The dim function returns a value of 1, 0, 1 or 2. The 1 corresponds to the null set or
dim(null), which is returned when no intersection was found.

1. The DE-91M was developed by Clementini and Felice, who dimensionally extended the 9 Intersection Model of Egenhofer and
Herring. DE-91M is collaboration of three authors, Clementini, Eliseo, Di Felice, P., van Osstrom, P.. They published the model in ″A
Small Set of Formal Topological Relationships Suitable for End-User Interaction,″ D. Abel and B.C. Ooi (Ed.), Advances in Spatial
Database—Third International Symposium. SSD ’93. LNCS 692. Pp. 277-295. The 9 Intersection model by Springer-Verlag Singapore
(1993) Egenhofer M.J. and Herring, J., was published in ″Categorizing binary topological relationships between regions, lines, and
points in geographic databases,″ Tech. Report., Department of Surveying Engineering, University of Maine, Orono, ME 1991.

48 Administration Guide and Reference



Interior Boundary Exterior

Interior dim(I(a)" I(b)) dim(I(a) " B(b)) dim(I(a) " E(b))

Boundary dim(B(a) " I(b)) dim(B(a) " B(b)) dim(B(a) " E(b))

Exterior dim(E(a) " I(b)) dim(E(a) " B(b)) dim(E(a) " E(b))

The results of the spatial relationship predicates can be understood or verified by
comparing the results of the predicate with a pattern matrix that represents the
acceptable values for the DE-9IM.

The pattern matrix contains the acceptable values for each of the intersection matrix
cells. The possible pattern values are:

T An intersection must exist, dim = 0, 1, or 2.

F An intersection must not exist, dim = -1.

* It does not matter if an intersection exists, dim = -1, 0, 1, or 2.

0 An intersection must exist and its maximum dimension must be 0, dim = 0.

1 An intersection must exist and its maximum dimension must be 1, dim = 1.

2 An intersection must exist and its maximum dimension must be 2, dim = 2.

Each predicate has at least one pattern matrix, but some require more than one to
describe the relationships of various geometry type combinations.

Table 4. Matrix for within. The pattern matrix of the within predicate for geometry
combinations.

b

Interior Boundary Exterior

a Interior T * F

Boundary * * F

Exterior * * *

The within predicate returns true when the interiors of both geometries intersect and
when the interior and boundary of a does not intersect the exterior of b. All other
conditions do not matter.

Equals

Equals returns 1 (TRUE) if two geometries of the same type have identical X,Y
coordinate values.

Chapter 4. Programming Concepts 49



Table 5. Matrix for equality. The DE-9IM pattern matrix for equality ensures that the
interiors intersect and that no part interior or boundary of either geometry intersects the
exterior of the other.

b

Interior Boundary Exterior

a Interior T * F

Boundary * * F

Exterior F F *

Disjoint

Disjoint returns 1 (TRUE) if the intersection of the two geometries is an empty set.

Figure 13. Equals. Geometries are equal if they have matching X,Y coordinates.

50 Administration Guide and Reference



Table 6. Matrix for disjoint. The disjoint predicate’s pattern matrix simple states that
neither the interiors nor the boundaries of either geometry intersect.

b

Interior Boundary Exterior

a Interior F F *

Boundary F F *

Exterior * * *

Intersects

Intersects returns 1 (TRUE) if the intersection does not result in an empty set.
Intersects returns the exact opposite result of disjoint.

Figure 14. Disjoint. Geometries are disjoint if they do not intersect one another in any
way.

Chapter 4. Programming Concepts 51



The intersect predicate will return TRUE if the conditions of any of the following pattern
matrices returns TRUE.

Table 7. Matrix for intersects (1). The intersects predicate returns TRUE if the interiors
of both geometries intersect.

b

Interior Boundary Exterior

a Interior T * *

Boundary * * *

Exterior * * *

Table 8. Matrix for intersects (2). The intersects predicate returns TRUE if the boundary
of the first geometry intersects the boundary of the second geometry.

b

Interior Boundary Exterior

a Interior * T *

Boundary * * *

Exterior * * *

Table 9. Matrix for intersects (3). The intersects predicate returns TRUE if the boundary
of the first geometry intersects the interior of the second.

b

Interior Boundary Exterior

a Interior * * *

Boundary T * *

Exterior * * *

Table 10. Matrix for intersects (4). The intersects predicate returns TRUE if the
boundaries of either geometry intersect.

b

Interior Boundary Exterior

a Interior * * *

Boundary * T *

Exterior * * *

Touch

Touch returns 1 (TRUE) if none of the points common to both geometries intersect the
interiors of both geometries. At least one geometry must be a linestring, polygon,
multilinestring or multipolygon.

52 Administration Guide and Reference



The pattern matrices show us that the touch predicate returns TRUE when the interiors
of the geometry do not intersect, and the boundary of either geometry intersects the
other’s interior or its boundary.

Table 11. Matrix for touch (1)

b

Interior Boundary Exterior

a Interior F T *

Boundary * * *

Exterior * * *

Table 12. Matrix for touch (2)

b

Interior Boundary Exterior

a Interior F * *

Boundary T * *

Exterior * * *

Table 13. Matrix for touch (3)

b

Interior Boundary Exterior

a Interior F * *

Figure 15. Touch

Chapter 4. Programming Concepts 53



Table 13. Matrix for touch (3) (continued)

Boundary * T *

Exterior * * *

Overlap

Overlap compares two geometries of the same dimension. It returns 1 (TRUE) if their
intersection set results in a geometry different from both, but that has the same
dimension.

This pattern matrix applies to polygon/polygon, multipoint/multipoint and
multipolygon/multipolygon overlays. For these combinations the overlay predicate
returns TRUE if the interior of both geometries intersect the others interior and exterior.

Table 14. Matrix for overlap (1)

b

Interior Boundary Exterior

a Interior T * T

Boundary * * *

Exterior T * *

This pattern matrix applies to linestring/linestring and multilinestring/multilinestring
overlays. In this case the intersection of the geometries must result in a geometry that
has a dimension of 1 (another linestring). If the dimension of the intersection of the
interiors had been 1 the overlay predicate would return FALSE, however the cross
predicate would have returned TRUE.

Table 15. Matrix for overlap (2)

b

Interior Boundary Exterior

a Interior 1 * T

Boundary * * *

Figure 16. Overlap

54 Administration Guide and Reference



Table 15. Matrix for overlap (2) (continued)

Exterior T * *

Cross

Cross returns 1 (TRUE) if the intersection results in a geometry whose dimension is
one less than the maximum dimension of the two source geometries and the
intersection set is interior to both source geometries. Cross returns t (TRUE) for only a
multipoint/polygon, multipoint/linestring, linestring/linestring, linestring/polygon, and
linestring/multipolygon comparisons.

This pattern matrix applies to multipoint/linestring, multipoint/multilinestring,
multipoint/polygon, multipoint/multipolygon, linestring/polygon, linestring/multipolygon.
The matrix states that the interiors must intersect and that at least the interior of the
primary (geometry a ) must intersect the exterior of the secondary (geometry b )

Table 16. Matrix for cross (1)

b

Interior Boundary Exterior

a Interior T * T

Boundary * * *

Exterior * * *

This pattern matrix applies to the linestring/linestring, linestring/multilinestring and
multilinestring/multilinestring. The matrix states that the dimension of the intersection of

Chapter 4. Programming Concepts 55



the interiors must be 0 (intersect at a point). If the dimension of this intersection was 1
(intersect at a linestring) the cross predicate would return FALSE but the overlay
predicate would return TRUE.

Table 17. Matrix for cross (2)

b

Interior Boundary Exterior

a Interior 0 * *

Boundary * * *

Exterior * * *

Within

Within returns 1 (TRUE) if the first geometry is completely within the second geometry.
Within returns the exact opposite result of contains.

56 Administration Guide and Reference



The within predicate pattern matrix states that the interiors of both geometries must
intersect, and that the interior and boundary of the primary geometry (geometry a )
must not intersect the exterior of the secondary (geometry b ).

Table 18. Matrix for within

b

Interior Boundary Exterior

a Interior T * F

Boundary * * F

Exterior * * *

Figure 17. Within

Chapter 4. Programming Concepts 57



Contains

Contains returns 1 (TRUE) if the second geometry is completely contained by the first
geometry. The contains predicate returns the exact opposite result of the within
predicate.

The pattern matrix of the contains predicate states that the interiors of both geometries
must intersect and that the interior and boundary of the secondary (geometry b ) must
not intersect exterior of the primary (geometry a ).

Table 19. Matrix for contains

b

Interior Boundary Exterior

a Interior T * *

Figure 18. Contains

58 Administration Guide and Reference



Table 19. Matrix for contains (continued)

Boundary * * *

Exterior F F *

Minimum Distance

The distance function reports the minimum distance separating two disjoint features. If
the features are not disjoint, the function will report a 0 minimum distance.

The minimum distance separating disjoint features could, for example, represent the
shortest distance an aircraft must travel between two locations.

Intersection of Geometries

The intersection function returns the intersection set of two geometries. The intersection
set is always returned as a collection that is the minimum dimension of the source
geometries. For example, for a linestring that intersects a polygon, the intersection
function returns a multilinestring comprised of that portion of the linestring common to
the interior and boundary of the polygon. The multilinestring contains more than one
linestring if the source linestring intersects the polygon with two or more discontinuous
segments. If the geometries do not intersect or if the intersection results in a dimension
less that both of the source geometries, an empty geometry is returned.

Chapter 4. Programming Concepts 59



Difference of geometries

The difference function returns the portion of the primary geometry that is not
intersected by the secondary geometry. This is the logical AND NOT of space. The
difference function only operates on geometries of like dimension and returns a
collection that has the same dimension as the source geometries. In the event that the
source geometries are equal, an empty geometry is returned.

Figure 19. Intersection. Examples of the intersection function.

60 Administration Guide and Reference



Union of geometries

The union function returns the union set of two geometries. This is the logical OR of
space. The source geometries must be of like dimension. Union always returns the
result as a collection.

Symmetric Difference of Geometries

The symmetricdiff function returns the symmetric difference of two geometries. This is
the logical XOR of space. The source geometries must be of like dimension. If the
geometries are equal, then the symmetric difference function returns an empty
geometry; otherwise, the function returns the result as a collection.

Figure 20. Difference

Figure 21. Union

Chapter 4. Programming Concepts 61



Geometry Transforms

The Spatial Extender provides four additional transformation functions that generate
new geometry from existing geometry and a formula.

Figure 22. Symmetric difference

62 Administration Guide and Reference



Buffering Geometries

The buffer function generates a geometry by encircling a geometry at a specified
distance. A polygon results when a primary geometry is buffered or whenever the
elements of a collection are close enough such that all of the buffer polygons all
overlap. However, when there is enough separation between the elements of a buffered
collection individual buffer polygons will result in which case the buffer function returns
a multipolygon.

The buffer function accepts both positive and negative distance, however, only
geometries with a dimension of two (polygons and multipolygons) apply a negative
buffer. The absolute value of the buffer distance is used whenever the dimension of the
source geometry is less than 2 (all geometries that are not polygon or multipolygon).
Generally speaking, positive buffer distances generate polygon rings that are away from
the center of the source geometry and for the exterior ring of a polygon or multipolygon
toward the center when distance is negative. For interior rings of a polygon or
multipolygon, the buffer ring is toward the center when the buffer distance is positive
and away from the center when it is negative.

The buffering process merges polygons that overlap. Negative distances greater than
one half the maximum interior width of a polygon result in an empty geometry.

Figure 23. Buffer

Chapter 4. Programming Concepts 63



Locatealong

For geometries that have measures, the location of a particular measure can be found
with the locatealong function. Locatealong returns the location as a multipoint. If the
source geometrys dimension is 0 (i.e. point and multipoint), an exact match is required
and those points having a matching measure value are returned as a multipoint.
However, for source geometries whose dimension is greater than 0, the location is
interpolated. For example, if the measure value entered is 5.5 and the measures on
vertices of a linestring are a respective 3, 4, 5, 6, and 7, the interpolated point that falls
exactly halfway between the vertices with measure values 5 and 6 is returned.

Locatebetween

The locatebetween function returns either the set of paths or locations that lie between
two measure values from a source geometry that has measures. If the source
geometrys dimension is 0, locatebetween returns a multipoint containing all points
whose measures lie between the two source measures. For source geometries whose
dimension is greater than 0, locatebetween returns a multilinestring if a path can be
interpolated; otherwise locatebetween returns a multipoint containing the point locations.
An empty point is returned whenever locatebetween cannot interpolate a path or find a
location between the measures. Locatebetween performs an inclusive search of the
geometries; therefore the geometries measures must be greater than or equal to the
from measure and less than or equal to the to measure.

Figure 24. Locatealong

64 Administration Guide and Reference



Convexhull

The convexhull function returns the convex hull polygon of any geometry that has at
least three vertices forming a convex. If vertices of the geometry do not form a convex,
convexhull returns a null. Convexhull is often the first step in tesselation used to create
a TIN network from a set of points.

Figure 25. Locatebetween

Figure 26. Convexhull

Chapter 4. Programming Concepts 65



66 Administration Guide and Reference



Chapter 5. SQL Reference

© Copyright IBM Corp. 1998 67



area

Area takes a polygon or multipolygon and returns its area.

Syntax

area( pl1 polygon )
area( mpl1 multipolygon )

Return type

Double precision

Examples

The City Engineer needs a list of building areas. To obtain the list a GIS technician
selects the building id and area of each building’s footprint.

The building footprints are stored in the BUILDINGFOOTPRINTS table that was created
with the following create table statement:

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

To satisfy the City Engineer’s request, the technician selects the unique key, the
building_id, and the area of each building footprint from the BUILDINGFOOTPRINTS
table.

select building_id, area (footprint) "Area"
from BUILDINGFOOTPRINTS;

building_id Area
------------ ------------------------

506 +1.40768000000000E+003
1208 +2.55759000000000E+003
543 +1.80786000000000E+003
178 +2.08671000000000E+003
.
.
.

68 Administration Guide and Reference



asbinary

Asbinary takes a geometry object and returns its well-known binary representation.

Syntax

asbinary( g1 geometry )

Return type

blob(1m)

Examples

Below the code fragment illustrates how the asbinary function converts the footprint
multipolygons of the BUILDINGFOOTPRINTS table into WKB multipolygons. These
multipolygons are passed to the application’s draw_polygon function for display.

/* Create the SQL expression. */
strcpy(sqlstmt, "select asbinary (footprint) from BUILDINGFOOTPRINTS
where envelopesintersect(footprint,polyfromwkb(cast(? as blob(1m)),
coordref()..srid(1)))");

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 length of the shape. */

Figure 27. Using area to find a building footprint. Four of the building footprints labeled
with their building id numbers are displayed along side their adjacent street.

Chapter 5. SQL Reference 69



pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, shape, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query, (the Zone polygons) to the
* fetched_binary variable.
*/
SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */
while(SQL_SUCCESS == (rc = SQLFetch(hstmt))
draw_polygon(fetched_binary);

70 Administration Guide and Reference



asbinaryshape

Asbinaryshape takes a geometry object and returns a blob.

Syntax

asbinaryshape( g1 geometry )

Return type

blob(1m)

Examples

Below the code fragment illustrates how the asbinaryshape function converts the zone
polygons of the SENSITIVE_AREAS table into shape polygons. These shape polygons
are passed to the applications draw_polygon function for display.

/* Create the SQL expression. */
strcpy(sqlstmt, "select asbinaryshape (zone) from SENSITIVE_AREAS
where envelopesintersect(zone,polyfromshape(cast(? as blob(1m)),
coordref..srid(1)))");

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 length of the shape. */
pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, shape, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query, (the Zone polygons) to the
fetched_binary variable. */

SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */

while(SQL_SUCCESS == (rc = SQLFetch(hstmt))
draw_polygon(fetched_binary);

Chapter 5. SQL Reference 71



astext

Astext takes a geometry object and returns its well-known text representation.

Syntax

astext( g1 geometry )

Return type

varchar(4000)

Examples

The astext function converts the HAZARDOUS_SITES location point into its text
description.

create table HAZARDOUS_SITES (site_id integer,
name varchar(40),
location point);

insert into HAZARDOUS_SITES
values (102,

W. H. Kleenare Chemical Repository,
pointfromtext(point (1020.12 324.02),coordref()..srid(1)));

select site_id, name, cast(astext (location) as varchar(40)) "Location" from HAZARDOUS_SITES;

SITE_ID Name Location
------- --------------------------------------------- ----------------------------------------

102 W. H. Kleenare Chemical Repository POINT ( 1020.12000000 32402000000)

72 Administration Guide and Reference



boundary

Boundary takes a geometry object and returns its combined boundary as a geometry
object

Syntax

boundary( g1 geometry )

Return type

Geometry

Examples

In this example the BOUNDARY_TEST table is created with two columns, geotype
defined as a varchar and g1 defined as the superclass geometry. The insert statements
that follow insert each one of the subclass geometries. The boundary function retrieves
the boundary of each subclass that is stored in the g1 geometry column. Note that the
dimension of the resulting geometry is always one less than the input geometry. Points
and multipoints always result in a boundary that is an empty geometry, dimension 1.
Linestrings and multilinestring return a multipoint boundary, dimension 0. A polygon or
multipolygon always return a multilinestring boundary, dimension 1.

create table BOUNDARY_TEST (geotype varchar(20), g1 geometry)

insert into BOUNDARY_TEST
values('Point',

pointfromtext('point (10.02 20.01)',
coordref()..srid(1)))

insert into BOUNDARY_TEST
values('Linestring',

linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into BOUNDARY_TEST
values('Polygon',

polyfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94, 10.02 20.01))',

coordref()..srid(1)))

insert into BOUNDARY_TEST
values('Multipoint',

mpointfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into BOUNDARY_TEST
values('Multilinestring',

mlinefromtext('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),
(9.55 23.75,15.36 30.11))',

Chapter 5. SQL Reference 73



coordref()..srid(1)))

insert into BOUNDARY_TEST
values('Multipolygon',

mpolyfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)),

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

coordref()..srid(1)))

select geotype,
cast(astext(boundary (g1)) as varchar(280)) "The boundary"

from BOUNDARY_TEST

GEOTYPE The boundary
-------------------- ----------------------------------------------------------
Point POINT EMPTY
Linestring MULTIPOINT ( 10.02000000 20.01000000, 11.92000000
25.64000000)
Polygon MULTILINESTRING (( 10.02000000 20.01000000, 19.15000000
33.94000000, 25.02000000 34.15000000, 11.92000000 35.64000000, 10.02000000
20.01000000))
Multipoint POINT EMPTY
Multilinestring MULTIPOINT ( 9.55000000 23.75000000, 10.02000000
20.01000000, 11.92000000 25.64000000, 15.36000000 30.11000000)
Multipolygon MULTILINESTRING (( 51.71000000 21.73000000, 73.36000000
27.04000000, 71.52000000 32.87000000, 52.43000000 31.90000000, 51.71000000
21.73000000),( 10.02000000 20.01000000, 19.15000000 33.94000000, 25.02000000
34.15000000, 11.92000000 35.64000000, 10.02000000 20.01000000))

6 record(s) selected.

74 Administration Guide and Reference



buffer

Buffer takes a geometry object and distance and returns the geometry object that
surrounds the source object.

Syntax

buffer( g1 geometry , distance double_precision )

Return type

Geometry

Examples

The County Supervisor needs a list of hazardous sites whose five mile radius overlaps
sensitive areas such as schools, hospitals, and nursing homes. The sensitive areas are
stored in the table SENSITIVE_AREAS that is created with the CREATE TABLE
statement that follows. The zone column is defined as a polygon, which is stored as the
outline of each of the sensitive areas.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table that is created with
the CREATE TABLE statement that follows. The location column, defined as a point,
stores a location that is the geographic center of each hazardous site.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The SENSITIVE_AREAS and HAZARDOUS_SITES table are joined by the overlap
function. The function returns 1 (TRUE) for all SENSITIVE_AREAS rows whose zone
polygons overlap the buffered 5-mile radius of the HAZARDOUS_SITES location point.

select sa.name "Sensitive Areas", hs.name "Hazardous Sites"
from SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
where overlap(sa.zone, buffer (hs.location,(5 * 5280))) = 1;

In Figure 28 on page 76, some of the sensitive areas in this administrative district lie
within the 5-mile buffer of the hazardous site locations. It is clear that both the 5-mile
buffer intersects the hospital and one of them intersects the school. However the
nursing home lies safely outside both radii.

Chapter 5. SQL Reference 75



centroid

Centroid takes a polygon or multipolygon and returns its geometric center as a point.

Syntax

centroid( pl1 polygon )
centroid( mpl1 multipolygon )

Return type

Point

Examples

The City GIS technician wants to display the multipolygons of the building footprints as
single points in a building density graphic.

Figure 28. A buffer with a 5-mile radius is applied to a point

76 Administration Guide and Reference



The building footprints are stored in the BUILDINGFOOTPRINTS table that was created
with the following create table statement.

create table BUILDINGFOOTPRINTS (building_id integer,
lot_id integer,
footprint multipolygon);

The centroid function returns the centroid of each building footprint multipolygon. The
asbinaryshape function converts centroid point into a shape, the external representation
that is recognized by the application.

select building_id,
cast(asbinaryshape(centroid (footprint)) as blob(1m)) "Centroid"

from BUILDINGFOOTPRINTS;

Chapter 5. SQL Reference 77



contains

Contains takes two geometry objects and returns 1 (TRUE) if the first object completely
contains the second. Otherwise it returns 0 (FALSE).

Syntax

contains( g1 geometry, g2 geometry )

Return type

integer

Examples

In the example below two tables are created. One table contains a city’s building
footprints while the other table contains its lots. The city engineer wants to make sure
that all the building footprints are completely inside their lots.

In both tables the multipolygon data type stores the geometry of the building footprints
and the lots. The database designer selected multipolygons for both features. She
realized that often the lots can be disjointed by natural features, such as a river, and
that the building footprints can often be made of several buildings.

create table BUILDINGFOOTPRINTS (building_id integer,
lot_id integer,
footprint multipolygon);

create table LOTS (lot_id integer, lot multipolygon);

The city engineer first selects the buildings that are not completely contained within one
lot.

select building_id
from BUILDINGFOOTPRINTS, LOTS
where contains(lot,footprint) = 0;

The city engineer is smart. She realizes that the first query will provide her with a list of
all building_id that have footprints outside of a lot polygon. But, she also knows that this
information will not tell her if the other buildings have the correct lot_id assigned to
them. This second query performs a data integrity check on the lot_id column of the
BUILDINGFOOTPRINTS table.

select bf.building_id "building id", bf.lot_id "buildings lot_id",
LOTS.lot_id "LOTS lot_id"

from BUILDINGFOOTPRINTS bf, LOTS
where contains(lot,footprint) = 1 and LOTS.lot_id <> bf.lot_id;

78 Administration Guide and Reference



In Figure 29, the building footprints labeled with their building IDs lie inside their lots.
The lot lines are illustrated with dotted lines. Although not shown, these lines extend to
the street centerline and completely encompass the lots and the building footprints
within them.

Figure 29. Using contains to ensure all buildings are contained within their lots

Chapter 5. SQL Reference 79



convexhull

Convexhull takes a geometry object and returns the convex hull.

Syntax

convexhull( g1 geometry )

Return type

Geometry

Examples

The example creates the CONVEXHULL_TEST table that has two columns: geotype
and g1. Geotype, a varchar(20), will store the name of the subclass of geometry that is
stored in g1, which is defined as a geometry.

create table CONVEXHULL_TEST (geotype varchar(20), g1 geometry)

Each insert statement inserts a geometry of each subclass type into the
CONVEXHULL_TEST table.

insert into CONVEXHULL_TEST
values('Point',

pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into CONVEXHULL_TEST
values('Linestring',

linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into CONVEXHULL_TEST
values('Polygon',

polyfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

coordref()..srid(1)))

insert into CONVEXHULL_TEST
values('Multipoint',

mpointfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into CONVEXHULL_TEST
values('Multilinestring',

mlinefromtext('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),
(9.55 23.75,15.36 30.11))',

coordref()..srid(1)))

insert into CONVEXHULL_TEST
values('Multipolygon',

80 Administration Guide and Reference



mpolyfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)),

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

coordref()..srid(1)))

The select statement list the subclass name stored in the geotype column and the
convex hull. The convexhull generated by the convexhull function is converted to text by
the astext function. It is then cast to a varchar(256) because the default output of astext
is varchar(4000).

select geotype, cast(astext(convexhull(g1))) as varchar(256) "The convexhull"
from CONVEXHULL_TEST

Chapter 5. SQL Reference 81



cross

Cross takes two geometry objects and returns 1 (TRUE) if their intersection results in a
geometry object whose dimension is one less than the maximum dimension of the
source objects. The intersection object contains points that are interior to both source
geometries and is not equal to either of the source objects. Otherwise it returns 0
(FALSE).

Syntax

cross( g1 geometry, g2 geometry)

Return type

integer

Examples

The county government is considering a new regulation, which states that all hazardous
waste storage facilities within the county cannot be within 5-miles of any waterway. The
county GIS manager has an accurate representation of rivers and streams, which are
stored as multilinestrings in the WATERWAYS table. But, he only has a single point
location for each of the hazardous waste storage facilities.

create table WATERWAYS (id integer,
name varchar(128),
water multilinestring);

create table HAZARDOUS_SITES ( site_id integer,
name varchar(128),
location point);

To determine if he must alert the County Supervisor to any existing facilities that would
violate the proposed regulation, the GIS manager will have to buffer the hazardous site
locations and see if any rivers or streams cross the buffer polygon. The cross predicate
compares the buffered HAZARDOUS_SITES with WATERWAYS. So, only those
records in which the waterway crosses over the counties proposed regulated radius are
returned.

select ww.name "River or stream", hs.name "Hazardous site"
from WATERWAYS ww, HAZARDOUS_SITES hs
where cross(buffer(hs.location,(5 * 5280)),ww.water) = 1;

In Figure 30 on page 83, the 5-mile buffer of the hazardous waste sites crosses the
stream network that runs through the county’s administrative district. The stream
network has been defined as a multilinestring. So, the result set includes all linestring
segments that are part of those segments that cross the radius.

82 Administration Guide and Reference



difference

Difference takes two geometry objects and returns a geometry object that is the
difference of the source objects

Syntax

difference( g1 geometry, g2 geometry )

Return type

Geometry

Examples

The city engineer needs to know the total area of the city’s lot area not covered by a
building. In fact, she wants the sum of the lot area after the building area has been
removed.

Figure 30. Using cross to find the waterways that pass through a hazardous waste area

Chapter 5. SQL Reference 83



create table BUILDINGFOOTPRINTS (building_id integer,
lot_id integer,
footprint multipolygon);

create table LOTS (lot_id integer,
lot multipolygon);

The city engineer equijoins the BUILDINGFOOTPRINTS and LOTS table on the lot_id.
She then takes the sum of the area of the difference of the lots, less the building
footprints.

select sum(area(difference(lot,footprint)))
from BUILDINGFOOTPRINTS bf, LOTS
where bf.lot_id = LOTS.lot_id;

84 Administration Guide and Reference



dimension

Dimension takes a geometry object and returns its dimension

Syntax

dimension( g1 geometry )

Return type

Integer

Examples

The DIMENSION_TEST table is created with the columns geotype and g1. The geotype
column stores the name of the geometry subclass that is stored in the g1 geometry
column.

create table DIMENSION_TEST (geotype varchar(20), g1 geometry)

The insert statements insert a sample subclass into the DIMENSION_TEST table.

insert into DIMENSION_TEST
values('Point',

pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into DIMENSION_TEST
values('Linestring',

linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into DIMENSION_TEST
values('Polygon',

polyfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

coordref()..srid(1)))

insert into DIMENSION_TEST
values('Multipoint',

mpointfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into DIMENSION_TEST
values('Multilinestring',

mlinefromtext('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),
(9.55 23.75,15.36 30.11))',

coordref()..srid(1)))

insert into DIMENSION_TEST
values('Multipolygon',

mpolyfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,

Chapter 5. SQL Reference 85



19.15 33.94,10.02 20.01)),
((51.71 21.73,73.36 27.04,71.52 32.87,

52.43 31.90,51.71 21.73)))',
coordref()..srid(1)))

The select statement lists the subclass name stored in the geotype column with the
dimension of that geotype.

select geotype, dimension(g1) "The dimension"
from DIMENSION_TEST

GEOTYPE The dimension
-------------------- -------------
Point 0
Linestring 1
Polygon 2
Multipoint 0
Multilinestring 1
Multipolygon 2

6 record(s) selected.

86 Administration Guide and Reference



disjoint

Disjoint takes two geometries and returns 1 (TRUE) if the intersection of two geometries
produces an empty set, otherwise it returns 0 (FALSE)

Syntax

disjoint( g1 geometry, g2 geometry)

Return type

Integer

Examples

An insurance company wants to assess the insurance coverage for the towns hospital,
nursing homes, and schools. Part of this process includes determining the threat that
the hazardous waste sites pose to each institution. The insurance company wants to
consider only those institutions that are not at risk of contamination. The GIS consultant
hired by the insurance company has been commissioned to locate all institutions that
are not within a 5-mile radius of a hazardous waste storage facility.

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the site_id and name
columns, while the actual geographic location of each site is stored in the location point
column.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The select statement lists the names of all sensitive areas that are not within the five
mile radius of a hazardous waste site. The intersects function could replace the disjoint
function in this query as long as the result of the function is set equal to 0 instead of 1,
since intersects and disjoint return the exact opposite result.

select sa.name
from SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
where disjoint(buffer(hs.location,(5 * 5280)),sa.zone) = 1;

Chapter 5. SQL Reference 87



In Figure 31, sensitive are sites are compared to the 5-mile radius of the hazardous
waste sites. The nursing home is the only sensitive area where the disjoint function will
return 1 (TRUE). The disjoint function returns 1 whenever two geometries do not
intersect in any way.

Figure 31. Using disjoint to find the buildings that do not lie within (intersect) any
hazardous waste area

88 Administration Guide and Reference



distance

Distance takes two geometries and returns the closest distance separating them.

Syntax

distance( g1 geometry, g2 geometry )

Return type

Double precision

Examples

The city engineer needs a list of all buildings that are within 1 foot of any lot line.

The building_id column of the BUILDINGFOOTPRINTS table uniquely identifies each
building. The lot_id column identifies the lot each building belongs to. The footprint
multipolygon stores the geometry of each building’s footprint.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

The LOTS table stores the lot_id which uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry.

create table LOTS ( lot_id integer,
lot multipolygon);

The query returns a list of building IDs that are within one foot of their lot lines. The
distance function performs a spatial join between the footprints and the boundary of the
lot multipolygons. However, the equijoin between the bf.lot_id and LOTS.lot_id insures
that only the multipolygons belonging to the same lot are compared by the distance
function.

select bf.building_id
from BUILDINGFOOTPRINTS bf, LOTS

where bf.lot_id = LOTS.lot_id AND
distance(bf.footprint,boundary(LOTS.lot)) <= 1.0;

Chapter 5. SQL Reference 89



endpoint

Endpoint takes a linestring and returns a point that is the linestring’s last point.

Syntax

endpoint( ln1 linestring )

Return type

Point

Examples

The ENDPOINT_TEST table stores the gid integer column which uniquely identifies
each row and the ln1 linestring column that stores linestrings.

create table ENDPOINT_TEST (gid integer, ln1 linestring)

The insert statements insert linestrings into the ENDPOINT_TEST table. The first one
does not have Z coordinates or measures, while the second one does.

insert into ENDPOINT_TEST
values( 1,

linefromtext('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',
coordref()..srid(1)))

insert into ENDPOINT_TEST
values(2,

linefromtext('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92 6.5 7.1,
30.10 40.23 6.9 7.2)',

coordref()..srid(1)))

The query lists the gid column with the output of the endpoint function. The endpoint
function generates a point geometry which is converted to text by the astext function.
The cast function is used to shorten the default varchar(4000) value of the astext
function to a varchar(60).

select gid, cast(astext(endpoint(ln1)) as varchar(60)) "Endpoint"
from ENDPOINT_TEST

GID Endpoint
----------- ------------------------------------------------------------

1 POINT ( 30.10000000 40.23000000)
2 POINT ZM ( 30.10000000 40.23000000 7.00000000 7.20000000)

2 record(s) selected.

90 Administration Guide and Reference



envelope

Envelope takes a geometry object and returns its bounding box as a geometry.

Syntax

envelope( g1 geometry)

Return type

Geometry

Examples

The geotype column in the ENVELOPE_TEST tables stores the name of the geometry
subclass stored in the g1 geometry column.

create table ENVELOPE_TEST (geotype varchar(20), g1 geometry)

The insert statements insert each geometry subclass into the ENVELOPE_TEST table.

insert into ENVELOPE_TEST
values('Point',

pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into ENVELOPE_TEST
values ('Linestring',

linefromtext('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)',
coordref()..srid(1)))

insert into ENVELOPE_TEST
values('Linestring',

linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into ENVELOPE_TEST
values('Polygon',

polyfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

coordref()..srid(1)))

insert into ENVELOPE_TEST
values('Multipoint',

mpointfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into ENVELOPE_TEST
values('Multilinestring',

mlinefromtext('multilinestring ((10.01 20.01,20.01 20.01,30.01 20.01),
(30.01 20.01,40.01 20.01,50.01 20.01))',

coordref()..srid(1)))

Chapter 5. SQL Reference 91



insert into ENVELOPE_TEST
values('Multilinestring',

mlinefromtext('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),
( 9.55 23.75,15.36 30.11))',

coordref()..srid(1)))

insert into ENVELOPE_TEST
values('Multipolygon',

mpolyfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)),

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

coordref()..srid(1)))

The query lists the subclass name along side its envelope. Since the envelope function
returns either a point, linestring or polygon its output is converted to text with the astext
function. The cast function converts the default varchar(4000) result of the astext
function to a varchar(280).

select geotype, cast(astext(envelope(g1)) as varchar(280)) "The envelope"
from ENVELOPE_TEST

GEOTYPE The envelope
-------------------- ----------------------------------------------------------
Point POINT ( 10.02000000 20.01000000)
Linestring LINESTRING ( 10.01000000 20.01000000, 10.01000000
40.01000000)
Linestring POLYGON (( 10.02000000 20.01000000, 11.92000000
20.01000000, 11.92000000 25.64000000, 10.02000000 25.64000000, 10.02000000
20.01000000))
Polygon POLYGON (( 10.02000000 20.01000000, 25.02000000
20.01000000, 25.02000000 35.64000000, 10.02000000 35.64000000, 10.02000000
20.01000000))
Multipoint POLYGON (( 10.02000000 20.01000000, 11.92000000
20.01000000, 11.92000000 25.64000000, 10.02000000 25.64000000, 10.02000000
20.01000000))
Multilinestring LINESTRING ( 10.01000000 20.01000000, 50.01000000
20.01000000)
Multilinestring POLYGON (( 9.55000000 20.01000000, 15.36000000
20.01000000, 15.36000000 30.11000000, 9.55000000 30.11000000, 9.55000000
20.01000000))
Multipolygon POLYGON (( 10.02000000 20.01000000, 73.36000000
20.01000000, 73.36000000 35.64000000, 10.02000000 35.64000000, 10.02000000
20.01000000))

8 record(s) selected.

92 Administration Guide and Reference



envelopesintersect

Envelopesintersect returns 1 (TRUE) if the envelopes of two geometries intersect.
Otherwise it returns 0 (FALSE).

Syntax

envelopesintersect( g1 geometry, g2 geometry )

Return type

Integer

Examples

The get_window function retrieves the display windows coordinates from the
application. The window parameter is actually a polygon shape structure containing a
string of coordinates that represent the display polygon. The polygonfromshape function
converts the display window shape into a Spatial Extender polygon which the
envelopesintersect function uses as its intersection envelopes. All SENSITIVE_AREAS
zone polygons that intersect the interior or boundary of the display window are returned.
Each polygon is fetched from the result set and passed to the draw_polygon function.

/* Get the display window coordinates as a polygon shape.
get_window(&window)

/* Create the SQL expression. The envelopesintersect function
will be used to limit the result set to only those zone polygons
that intersect the envelope of the display window. */

strcpy(sqlstmt, "select AsBinaryShape(zone) from SENSITIVE_AREAS where
envelopesintersect (zone,polyfromshape(cast(? as blob(1m)),
coordref..srid(1)))");

/* Set blob_len to the byte length of a 5 point shape polygon. */
blob_len = 128;

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 to the window shape */
pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, window, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query, (the Zone polygons) to the
fetched_binary variable. */

Chapter 5. SQL Reference 93



SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */
while(SQL_SUCCESS == (rc = SQLFetch(hstmt))
draw_polygon(fetched_binary);

94 Administration Guide and Reference



equals

Equals compares two geometries and returns 1 (TRUE) if the geometries are identical,
otherwise it returns 0 (FALSE)

Syntax

equals( g1 geometry, g2 geometry )

Return type

Integer

Examples

The City GIS technician suspects that some of the data in the BUILDINGFOOTPRINTS
table was somehow duplicated. To alleviate his concern he queries the table to
determine if any of the footprint’s multipolygons are equal.

The BUILDINGFOOTPRINTS table is created with the following statement. The
building_id column uniquely identifies the buildings, the lot_id identifies the building’s lot
and the footprint multipolygon stores the building’s geometry.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

The BUILDINGFOOTPRINTS table is spatially joined to itself by the equals predicate
which returns 1 whenever it finds two of the multipolygons that are equal. The
bf1.building_id <> bf2.building_id condition is required to eliminate the comparison of
the same geometry.

select bf1.building_id, bf2.building_id
from BUILDINGFOOTPRINTS bf1, BUILDINGFOOTPRINTS bf2
where equals(bf1.footprint,bf2.footprint) = 1

and bf1.building_id <> bf2.building_id;

Chapter 5. SQL Reference 95



exteriorring

Exteriorring takes a polygon and returns its exterior ring as a linestring

Syntax

exteriorring( pl1 polygon )

Return type

Linestring

Examples

An ornithologist, wishing to study the bird population on several south sea islands,
knows that the feeding zone of the bird species she is interested in is restricted to the
shoreline. As part of her calculation of the island’s carrying capacity, the ornithologist
requires the island’s perimeter. Some of the islands are so large they have several
ponds on them. However, the shoreline of the ponds are inhabited exclusively by
another more aggressive bird species. Therefore, the ornithologist requires the
perimeter of the exterior ring of the islands.

The ID and name columns of the ISLANDS table identifies each island, and the land
polygon column stores the geometry of each.

create table ISLANDS (id integer,
name varchar(32),
land polygon);

The exteriorring function extracts the exterior ring from each island polygon as a
linestring. The length of the linestring is established by the length function. The
linestring lengths are summarized by the sum function.

select sum(length(exteriorring (land))) from ISLANDS;

In Figure 32 on page 97, the exterior rings of the islands represent the ecological
interface each island shares with the sea. Some of the islands have lakes which are
represented by the interior rings of the polygons.

96 Administration Guide and Reference



geometryfromshape

Geometryfromshape takes a shape and a spatial reference system identity to return a
geometry object.

Syntax

geometryfromshape( s1 blob(1m), srid coordref )

Return type

Geometry

Examples

The following C code fragment contains ODBC functions embedded with Spatial
Extender SQL functions that insert data into the LOTS table.

The LOTS table was created with two columns, the lot_id which uniquely identifies each
lot and the lot polygon column that contains the geometry of each lot.

create table LOTS ( lot_id integer,
lot multipolygon);

The geometryfromshape function converts shapes into Spatial Extender geometry. The
entire insert statement is copied into shp_sql. The insert statement contains parameter
markers to accept the lot_id and lot data dynamically.

Figure 32. Using exteriorring to determine the length of an island shore line

Chapter 5. SQL Reference 97



/* Create the SQL insert statement to populate the lot id and the
lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into LOTS (lot_id, lot) values (?, geometryfromshape
(cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */
pcbvalue2 = blob_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

98 Administration Guide and Reference



geometryfromtext

Geometryfromtext takes a well-known text representation and a spatial reference
system identity and returns a geometry object.

Syntax

geometryfromtext( wkt varchar(4000), srid coordref)

Return type

Geometry

Examples

The GEOMETRY_TEST table contains the integer gid column which uniquely identifies
each row and the g1 column that stores the geometry.

create table GEOMETRY_TEST (gid smallint, g1 geometry)

The insert statements inserts the data into the gid and g1 columns of the
GEOMETRY_TEST table. The geometryfromtext function converts the text
representation of each geometry into its corresponding Spatial Extender instantiable
subclass.

insert into GEOMETRY_TEST
values(1, geometryfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into GEOMETRY_TEST
values (2,

geometryfromtext('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)',
coordref()..srid(1)))

insert into GEOMETRY_TEST
values(3,

geometryfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

coordref()..srid(1)))

insert into GEOMETRY_TEST
values(4,

geometryfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
coordref()..srid(1)))

insert into GEOMETRY_TEST
values(5,

geometryfromtext('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64),
( 9.55 23.75,15.36 30.11))',

coordref()..srid(1)))

Chapter 5. SQL Reference 99



insert into GEOMETRY_TEST
values(6,

geometryfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)),

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

coordref()..srid(1)))

100 Administration Guide and Reference



geometryfromwkb

Geometryfromwkb takes a well-known binary representation and a spatial reference
system identity to return a geometry object.

Syntax

geometryfromwkb( wkb blob(1m), srid coordref )

Return type

Geometry

Examples

The following C code fragment contains ODBC functions embedded with Spatial
Extender SQL functions that insert data into the LOTS table.

The LOTS table was created with two columns, the lot_id which uniquely identifies each
lot and the lot polygon column that contains the geometry of each lot.

create table LOTS ( lot_id integer,
lot multipolygon);

The geometryfromwkb function converts WKB representations into Spatial Extender
geometry. The entire insert statement is copied into wkb_shp char string. The insert
statement contains parameter markers to accept the lot_id and lot data dynamically.

/* Create the SQL insert statement to populate the lot id and the
lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
runtime. */

strcpy (wkb_sql,"insert into LOTS (lot_id, lot) values (?, geometryfromwkb
(cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */
pcbvalue2 = blob_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

Chapter 5. SQL Reference 101



SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

102 Administration Guide and Reference



geometryn

geometryn takes a collection and an integer index and returns the nth geometry object
in the collection

Syntax

geometryn( mpt1 multipoint, index integer )
geometryn( mln1 multilinestring, index integer )
geometryn( mpl1 multipolygon, index integer )

Return type

Geometry

Examples

The city engineer wants to know if the building footprints are all inside the first polygon
of the lot’s multipolygon.

The building_id column uniquely identifies each row of the BUILDINGFOOTPRINTS
table. The lot_id column identifies the building’s lot. The footprints column stores the
building’s geometry.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

create table LOTS ( lot_id integer,
lot multipolygon);

The query lists the BUILDINGFOOTPRINTS building_id and lot_id for all building
footprints that are all within the first lot polygon. The geometryn function returns a first
lot polygon in the multipolygon array.

select bf.building_id,bf.lot_id
from BUILDINGFOOTPRINTS bf,LOTS
where within(footprint,geometryn (lot,1)) = 1

and bf.lot_id = LOTS.lot_id;

Chapter 5. SQL Reference 103



geometrytype

Geometrytype takes a geometry object and returns its geometry type as a string.

Syntax

geometrytype ( g1 geometry )

Return type

Varchar(32) containing either: Point, LineString, Polygon, MultiPoint, MultiLineString, or
MultiPolygon

Examples

The GEOMETRYTYPE_TEST table contains the g1 geometry column.

create table GEOMETRYTYPE_TEST(g1 geometry)

The insert statements insert each geometry subclass into the g1 column.

insert into GEOMETRYTYPE_TEST
values(geometryfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into GEOMETRYTYPE_TEST
values (geometryfromtext('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)',

coordref()..srid(1)))

insert into GEOMETRYTYPE_TEST
values(geometryfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94, 10.02 20.01))',
coordref()..srid(1)))

insert into GEOMETRYTYPE_TEST
values(geometryfromtext('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',

coordref()..srid(1)))

insert into GEOMETRYTYPE_TEST
values(geometryfromtext('multilinestring ((10.02 20.01,10.32 23.98,

11.92 25.64),
(9.55 23.75,15.36 30.11))',

coordref()..srid(1)))

insert into GEOMETRYTYPE_TEST
values(geometryfromtext('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94,10.02 20.01)),
((51.71 21.73,73.36 27.04,71.52 32.87,

52.43 31.90,51.71 21.73)))',
coordref()..srid(1)))

104 Administration Guide and Reference



The query lists the geometry type of each subclass that is stored in the g1 geometry
column.

select geometrytype(g1) "Geometry type" from GEOMETRYTYPE_TEST

Geometry type
--------------------------------
Point
LineString
Polygon
MultiPoint
MultiLineString
MultiPolygon

6 record(s) selected.

Chapter 5. SQL Reference 105



interiorringn

Returns the nth interior ring of a polygon as a linestring. The rings are not organized by
geometric orientation. They are organized according to the rules defined by the internal
geometry verification routines. So, the order of the rings cannot be predefined.

Syntax

interiorringn( pl1 polygon, index integer )

Return type

Linestring

Examples

An ornithologist is studying the bird population on several south sea islands. He knows
that the feeding zone of this passive species is restricted to the seashore. Some of the
islands are so large that they have several lakes on them. The shorelines of the lakes
are inhabited exclusively by another more aggressive species. The ornithologist knows
that for each island, if the perimeter of the ponds exceeds a certain threshold, the
aggressive species will become so numerous that it will threaten the passive seashore
species. Therefore, the ornithologist requires the aggregated perimeter of the interior
rings of the islands.

In Figure 33 on page 107, the exterior rings of the islands represent the ecological
interface each island shares with the sea. Some of the islands have lakes, which are
represented by the interior rings of the polygons.

106 Administration Guide and Reference



The ID and name columns of the ISLANDS table identifies each island, while the land
polygon column stores the island’s geometry.

create table ISLANDS (id integer,
name varchar(32),
land polygon);

The following ODBC program uses the interiorringn function to extract the interior ring
(lake) from each island polygon as a linestring. The perimeter of the linestring that is
returned by the length function is totaled and displayed along with the island’s ID.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include "sg.h"
#include "sgerr.h"
#include "sqlcli1.h"

/*** ***
*** Change these constants ***
*** ***/

#define USER_NAME "sdetest" /* your user name */
#define USER_PASS "acid.rain" /* your user password */
#define DB_NAME "mydb" /* database to connect to */

Figure 33. Using interiorringn to determine the length of the lakeshores within each
island

Chapter 5. SQL Reference 107



static void check_sql_err (SQLHDBC handle,
SQLHSTMT hstmt,
LONG rc,
CHAR *str);

void main( argc, argv )
int argc;
char *argv[];
{
SQLHDBC handle;
SQLHENV henv;
CHAR sql_stmt[256];
LONG rc,

total_perimeter,
num_lakes,
lake_number,
island_id,
lake_perimeter;

SQLHSTMT island_cursor,
lake_cursor;

SDWORD pcbvalue,
id_ind,
lake_ind,
length_ind;

/* Allocate memory for the ODBC environment handle henv and initialize the application. */

rc = SQLAllocEnv (&henv);
if (rc != SQL_SUCCESS)
{
printf ("SQLAllocEnv failed with %d\n", rc);
exit(0);

}

/* Allocate memory for a connection handle within the henv environment. */

rc = SQLAllocConnect (henv, &handle);
if (rc != SQL_SUCCESS)
{
printf ("SQLAllocConnect failed with %d\n", rc);
exit(0);

}

/* Load the ODBC driver and connect to the data source identified by the database,
user, and password.*/

rc = SQLConnect (handle,
(UCHAR *)DB_NAME,
SQL_NTS,

108 Administration Guide and Reference



(UCHAR *)USER_NAME,
SQL_NTS,
(UCHAR *)USER_PASS,
SQL_NTS);

check_sql_err (handle, NULL, rc, "SQLConnect");

/* Allocate memory to the SQL statement handle island_cursor. */

rc = SQLAllocStmt (handle, &island_cursor);
check_sql_err (handle, NULL, rc, "SQLAllocStmt");

/* Prepare and execute the query to get the island IDs and number of
lakes (interior rings) */

strcpy (sql_stmt, "select id, numinteriorrings(land) from ISLANDS");

rc = SQLExecDirect (island_cursor, (UCHAR *)sql_stmt, SQL_NTS);
check_sql_err (NULL, island_cursor, rc, "SQLExecDirect");

/* Bind the island table's ID column to the variable island_id */

rc = SQLBindCol (island_cursor, 1, SQL_C_SLONG, &island_id, 0, &id_ind);
check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Bind the result of numinteriorrings(land) to the num_lakes variable. */

rc = SQLBindCol (island_cursor, 2, SQL_C_SLONG, &num_lakes, 0, &lake_ind);
check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Allocate memory to the SQL statement handle lake_cursor. */

rc = SQLAllocStmt (handle, &lake_cursor);
check_sql_err (handle, NULL, rc, "SQLAllocStmt");

/* Prepare the query to get the length of an interior ring. */

strcpy (sql_stmt,
"select Length(interiorringn(land, cast (? as
integer))) \ from ISLANDS where id = ?");

rc = SQLPrepare (lake_cursor, (UCHAR *)sql_stmt, SQL_NTS);
check_sql_err (NULL, lake_cursor, rc, "SQLPrepare");

/* Bind the lake_number variable as the first input parameter */

pcbvalue = 0;
rc = SQLBindParameter (lake_cursor, 1, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER, 0, 0, &lake_number, 0, &pcbvalue);

Chapter 5. SQL Reference 109



check_sql_err (NULL, lake_cursor, rc, "SQLBindParameter");

/* Bind the island_id as the second input parameter */

pcbvalue = 0;
rc = SQLBindParameter (lake_cursor, 2, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER, 0, 0, &island_id, 0, &pcbvalue);
check_sql_err (NULL, lake_cursor, rc, "SQLBindParameter");

/* Bind the result of the Length(interiorringn(land, cast (? as integer)))
to the variable lake_perimeter */

rc = SQLBindCol (lake_cursor, 1, SQL_C_SLONG, &lake_perimeter, 0,
&length_ind);

check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Outer loop, get the island ids and the number of lakes (interior rings) */

while (SQL_SUCCESS == rc)
{
/* Fetch an island */

rc = SQLFetch (island_cursor);

if (rc != SQL_NO_DATA)
{
check_sql_err (NULL, island_cursor, rc, "SQLFetch");

/* Inner loop, for this island, get the perimeter of all of
its lakes (interior rings) */

for (total_perimeter = 0,lake_number = 1;
lake_number <= num_lakes;
lake_number++)

{
rc = SQLExecute (lake_cursor);
check_sql_err (NULL, lake_cursor, rc, "SQLExecute");

rc = SQLFetch (lake_cursor);
check_sql_err (NULL, lake_cursor, rc, "SQLFetch");

total_perimeter += lake_perimeter;

SQLFreeStmt (lake_cursor, SQL_CLOSE);
}

}

/* Display the Island id and the total perimeter of its lakes. */

110 Administration Guide and Reference



printf ("Island ID = %d, Total lake perimeter = %d\n",
island_id,total_perimeter);

}

SQLFreeStmt (lake_cursor, SQL_DROP);
SQLFreeStmt (island_cursor, SQL_DROP);
SQLDisconnect (handle);
SQLFreeConnect (handle);
SQLFreeEnv (henv);

printf( "\nTest Complete ...\n" );

}

static void check_sql_err (SQLHDBC handle, SQLHSTMT hstmt, LONG rc,
CHAR *str)

{

SDWORD dbms_err = 0;
SWORD length;
UCHAR err_msg[SQL_MAX_MESSAGE_LENGTH], state[6];

if (rc != SQL_SUCCESS)
{
SQLError (SQL_NULL_HENV, handle, hstmt, state, &dbms_err,

err_msg, SQL_MAX_MESSAGE_LENGTH - 1, &length);
printf ("%s ERROR (%d): DBMS code:%d, SQL state: %s, message: \n %s\n",

str, rc, dbms_err, state, err_msg);

if (handle)
{
SQLDisconnect (handle);
SQLFreeConnect (handle);

}
exit(1);

}
}

Chapter 5. SQL Reference 111



intersection

Intersection takes two geometry objects and returns the intersection set as a geometry
object.

Syntax

intersection( g1 geometry, g2 geometry )

Return type

Geometry

Examples

The Fire Marshall must obtain the areas of the hospitals, schools, and nursing homes
that are intersected by the radius of a possible hazardous waste contamination.

The sensitive areas are stored in the table SENSITIVE_AREAS that is created with the
CREATE TABLE statement that follows. The zone column is defined as a polygon that
stores the outline of each of the sensitive areas.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table that is created with
the CREATE TABLE statement that follows. The location column, defined as a point,
stores a location that is the geographic center of each hazardous site.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The buffer function generates a 5-mile buffer that surrounds the hazardous waste site
locations. The intersection function generates polygons from the intersection of the
buffered hazardous waste site polygons and the sensitive areas. The area function
returns the intersection polygon’s area, which is summarized for each hazardous site by
the sum function. The group by clause directs the query to aggregate the intersected
areas by the hazardous waste site_ID.

select hs.name,sum(area(intersection (sa.zone,buffer hs.location,(5 * 5280)))))
from SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
group by hs.site_id;

112 Administration Guide and Reference



In Figure 34, the circles represent the buffered polygons that surround the hazardous
waste sites. The intersection of these buffer polygons with the sensitive area polygons
produces three other polygons. The hospital in the upper left hand corner is intersected
twice, while the school in the lower right hand corner is intersected only once.

Figure 34. Using intersection to determine how large an area in each of the buildings
might be affected by hazardous waste

Chapter 5. SQL Reference 113



intersects

Intersects takes two geometries and returns 1 (TRUE), if the intersection of two
geometries does not result in an empty set. Otherwise, it returns 0 (FALSE).

Syntax

intersects ( g1 geometry, g2 geometry )

Return type

Integer

Examples

The Fire Marshall wants a list of all sensitive areas within a five mile radius of a
hazardous waste site.

The sensitive areas are stored in the table SENSITIVE_AREAS that is created with the
CREATE TABLE statement that follows. The zone column is defined as a polygon that
stores the outline of each of the sensitive areas.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table created with the
CREATE TABLE statement that follows. The location column, defined as a point, stores
a location that is the geographic center of each hazardous site.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The query returns a list of sensitive areas and hazardous site names for sensitive areas
that intersect the 5-mile buffer of the hazardous sites.

select sa.name, hs.name
from SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
where intersects(buffer(hs.location,(5 * 5280)),sa.zone) = 1;

114 Administration Guide and Reference



is3d

Is3D takes a geometry object and returns 1 (TRUE) if the object has 3D coordinates;
otherwise, it returns 0 (FALSE)

Syntax

is3d( g1 geometry )

Return type

Integer

Examples

The THREED_TEST table is created with the integer gid column and the g1 geometry
column.

create table THREED_TEST (gid smallint, g1 geometry)

The insert statements insert two points into the THREED_TEST table. The first point
does not contain Z coordinates while the second does.

insert into THREED_TEST
values(1, pointfromtext(point (10 10),coordref()..srid(1)))

insert into THREED_TEST
values (2, pointfromtext(point z (10.92 10.12 5),coordref()..srid(1)))

The query lists the contents of the gid column with the results of the is3d function. The
function returns a 0 for the first row which does not have Z coordinates, and a 1 for the
second row which does have Z coordinates.

select gid,is3d (g1) "Is it 3d?" from THREED_TEST

gid Is it 3d?
------ ----------

1 0
2 1

Chapter 5. SQL Reference 115



isclosed

Isclosed takes a linestring or multilinestring and returns 1 (TRUE) if it is closed;
otherwise it returns 0 (FALSE)

Syntax

isclosed( ln1 linestring )
isclosed( mln1 multilinestring )

Return type

Integer

Examples

The CLOSED_LINESTRING table is created with a single linestring column.

create table CLOSED_LINESTRING (ln1 linestring)

The insert statements insert two records into the CLOSED_LINESTRING table. The first
record is not a closed linestring, while the second is.

insert into CLOSED_LINESTRING
values(linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',

coordref()..srid(1)))

insert into CLOSED_LINESTRING
values(linefromtext('linestring (10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94,10.02 20.01)',
coordref()..srid(1)))

The query returns the results of the isclosed function. The first row returns a 0 because
the linestring is not closed while the second row returns a 1 because the linestring is
closed.

select isclosed(ln1) "Is it closed" from CLOSED_LINESTRING

Is it closed
------------

0
1

2 record(s) selected.

The CLOSED_MULTILINESTRING table is created with a single multilinestring column.

create table CLOSED_MLINESTRING (mln1 multilinestring)

116 Administration Guide and Reference



The insert statements insert a multilinestring record that is not closed and another that
is.

insert into CLOSED_MLINESTRING
values(mlinefromtext('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),

(9.55 23.75,15.36 30.11))',
coordref()..srid(1)))

insert into CLOSED_MLINESTRING
values(mlinefromtext('multilinestring ((10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94,10.02 20.01),
(51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73))',

coordref()..srid(1)))

The query lists the results of the isclosed function. The row returns 0 because the
multilinestring is not closed. The second row returns 1 because the multilinestring
stored in the mln1 column is closed. A multilinestring is closed if all of its linestring
elements are closed.

select isclosed(mln1) "Is it closed" from CLOSED_MLINESTRING

Is it closed
------------

0
1

2 record(s) selected.

Chapter 5. SQL Reference 117



isempty

Isempty takes a geometry object and returns 1 (TRUE) if it is empty; otherwise it
returns 0 (FALSE)

Syntax

isempty( g1 geometry )

Return type

Integer

Examples

The create table statement below creates the EMPTY_TEST table with two columns.
Geotype stores the data type of the subclasses that are stored in the g1 geometry
column.

create table EMPTY_TEST (geotype varchar(20), g1 geometry)

The insert statements insert two records for the geometry subclasses point, linestring
and polygon. One record is empty and one is not.

insert into EMPTY_TEST
values('Point',pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into EMPTY_TEST
values('Point', pointfromtext('point empty', coordref()..srid(1)))

insert into EMPTY_TEST
values('Linestring',linefromtext('linestring (10.02 20.01,10.32 23.98,

11.92 25.64)',
coordref()..srid(1)))

insert into EMPTY_TEST
values('Linestring',linefromtext('linestring empty',coordref()..srid(1)))

insert into EMPTY_TEST
values('Polygon',polyfromtext('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94,10.02 20.01))',
coordref()..srid(1)))

insert into EMPTY_TEST
values('Polygon', polyfromtext('polygon empty',coordref()..srid(1)))

The query returns the geometry type from the geotype column and the results of the
isempty function.

118 Administration Guide and Reference



select geotype, isempty(g1) "The empty" from EMPTY_TEST

GEOTYPE Is it empty
-------------------- -----------
Point 0
Point 1
Linestring 0
Linestring 1
Polygon 0
Polygon 1

6 record(s) selected.

Chapter 5. SQL Reference 119



ismeasured

Ismeasured takes a geometry object and returns 1 (TRUE) if the object has measures;
otherwise it returns 0 (FALSE)

Syntax

ismeasured( g1 geometry )

Return type

Integer

Examples

The MEASURE_TEST table is created with two columns. The Gid uniquely identifies
the rows, and g1 stores the point geometries. One insert stores a point with measures
and the other stores one without.

create table MEASURE_TEST (gid smallint, g1 geometry)

The insert statements insert two records into the MEASURE_TEST table. The first
record stores a point that does not have a measure while the second records point
does have a measure.

insert into MEASURE_TEST
values(1,pointfromtext(point (10 10),coordref()..srid(1)))

insert into MEASURE_TEST
values (2,pointfromtext(point m (10.92 10.12 5),coordref()..srid(1)))

The query lists the gid column along with the results of the ismeasured function. The
ismeasured function returns a 0 for the first row because the point does not have a
measure. It returns a 1 for the second row because the point does have measures.

select gid,ismeasured (g1) "Has measures?" from MEASURE_TEST

gid Has measures?
------ -------------
0
1

120 Administration Guide and Reference



isring

Isring takes a linestring and returns 1 (TRUE) if it is a ring (namely, the linestring is
closed and simple); otherwise, it returns 0 (FALSE)

Syntax

isring( ln1 linestring )

Return type

Integer

Examples

The RING_LINESTRING table is created with a single linestring column that is called
ln1.

create table RING_LINESTRING (ln1 linestring)

The insert statements insert three linestrings into the ln1 column. The first row contains
a linestrings that is not closed and therefore is not a ring. The second row contains a
linestring that is closed and is simple and therefore is a ring. The third row contains a
linestring that is closed but is not simple because it intersects its own interior; therefore
it is not a ring.

insert into RING_LINESTRING
values(linefromtext('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',

coordref()..srid(1)))

insert into RING_LINESTRING
values(linefromtext('linestring (10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94, 10.02 20.01)',
coordref()..srid(1)))

insert into RING_LINESTRING
values(linefromtext('linestring (15.47 30.12,20.73 22.12,10.83 14.13,

16.45 17.24,21.56 13.37,11.23 22.56,
19.11 26.78,15.47 30.12)',

coordref()..srid(1)))

The query returns the results of the isring function. The first and third rows return a 0
because the linestrings are not rings, while the second row returns a 1 because it is a
ring.

select isring(ln1) "Is it ring" from RING_LINESTRING

Is it ring
-----------

0

Chapter 5. SQL Reference 121



1
0

3 record(s) selected.

122 Administration Guide and Reference



issimple

issimple takes a geometry object and returns 1 (TRUE) if the object is simple;
otherwise, it returns 0 (FALSE).

Syntax

issimple ( g1 geometry )

Return type

Integer

Examples

The table ISSIMPLE_TEST is created with two columns. The pid column, which is a
smallint, contains the unique identifier for each row. The g1 geometry column stores the
simple and non-simple geometry samples.

create table ISSIMPLE_TEST (pid smallint, g1 geometry)

á

The insert statements insert two records into the ISSIMPLE_TEST table. The first is
simple because it is a linestring that does not intersect its interior. The second is
non-simple because it does intersect its interior.

insert into ISSIMPLE_TEST
values (1,linefromtext(linestring (10 10, 20 20, 30 30),coordref()..srid(1)))

insert into ISSIMPLE_TEST
values (2,linefromtext(linestring (10 10,20 20,20 30,10 30,10 20,20 10), coordref()..srid(1)))

The query returns the results of the issimple function. The first record returns a 1
because the linestring is simple while the second record returns a 1 because the
linestring is not simple.

select issimple(g1)
from ISSIMPLE_TEST

g1
--------------
1
0

Chapter 5. SQL Reference 123



length

Length takes a linestring or multilinestring and returns its length

Syntax

length( ln1 linestring )
length( mln1 multilinestring )

Return type

Double precision

Examples

A local ecologist is studying the migratory patterns of the salmon population in the
county’s waterways. He wants to obtain the length of all stream and river systems
running through the county.

The WATERWAYS table is created with the id and name columns which identify each
stream and river system that is stored in the table. The water column is a multilinestring
since the river and stream systems are often an aggregate of several linestrings.

create table WATERWAYS (id integer, name varchar(128), water multilinestring);

The query returns the name of each system along with the length of the system that is
generated by the length function.

The figure displays a the river and stream systems that lie within the county boundary.

124 Administration Guide and Reference



select name, length(water) "Length"
from WATERWAYS;

Figure 35. Using length to determine the total length of the many waterways in a county

Chapter 5. SQL Reference 125



linefromshape

Linefromshape takes a shape of type point and a spatial reference system identity to
return a linestring.

Syntax

linefromshape( s1 blob(1m), srid coordref )

Return type

Linestring

Examples

This code fragment populates the sewerlines table with the unique id, size class and
geometry of each sewer line.

The sewerlines table is created with three columns. The first column sewer_id uniquely
identifies each sewer line. The integer class column identifies the type of sewer line,
generally associated with the lines capacity. The sewer linestring column stores the
sewer lines geometry.

create table sewerlines (sewer_id integer, class integer,
sewer linestring);

/* Create the SQL insert statement to populate the sewer_id, size class and
the sewer linestring. The question marks are parameter markers that
indicate the sewer_id, class and sewer geometry values that will be
retrieved at runtime. */

strcpy (shp_sql,"insert into sewerlines (sewer_id,class,sewer)
values (?,?, linefromshape (cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_id, 0, &pcbvalue1);

/* Bind the integer class value to the second parameter. */
pcbvalue2 = 0;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_class, 0, &pcbvalue2);

/* Bind the shape to the third parameter. */

126 Administration Guide and Reference



pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, sewer_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 5. SQL Reference 127



linefromtext

Linefromtext takes a well-known text representation of type linestring and a spatial
reference system identity and returns a linestring

Syntax

linefromtext( wkt varchar(4000), srid coordref )

Return type

Linestring

Examples

The LINESTRING_TEST table is created with a single ln1 linestring column.

create table LINESTRING_TEST (ln1 linestring)

The insert statement inserts a linestring into the ln1 column using the linefromtext
function.

insert into LINESTRING_TEST
values (linefromtext(linestring(10.01 20.03,20.94 21.34,35.93 19.04),
coordref()..srid(1)))

128 Administration Guide and Reference



linefromwkb

Linefromwkb takes a well-known binary representation of type linestring and a spatial
reference system identity returning a linestring.

Syntax

linefromwkb( wkb blob(1m), srid coordref )

Return type

Linestring

Examples

The following code fragment populates the sewerlines table with the unique id, size
class and geometry of each sewer line.

The sewerlines table is created with three columns. The first column sewer_id uniquely
identifies each sewer line. The integer class column identifies the type of sewer line,
generally associated with the lines capacity. The sewer linestring column store the
sewer lines geometry.

create table sewerlines (sewer_id integer,
class integer,
sewer linestring);

/* Create the SQL insert statement to populate the sewer_id, size class
and the sewer linestring. The question marks are parameter markers that
indicate the sewer_id, class and sewer geometry values that will be
retrieved at runtime. */

strcpy (wkb_sql,"insert into sewerlines (sewer_id,class,sewer)
values (?,?, linefromwkb (cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the integer sewer_id value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_id, 0, &pcbvalue1);

/* Bind the integer class value to the second parameter. */
pcbvalue2 = 0;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_class, 0, &pcbvalue2);

Chapter 5. SQL Reference 129



/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, sewer_wkb, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

130 Administration Guide and Reference



locatealong

Locatelong takes a geometry object and a measure to return as a multipoint the set of
points found at the measure

Syntax

locatelong( g1 geometry, m1 double precision )

Return type

Geometry

Examples

The LOCATEALONG_TEST table is create with two columns. The gid column uniquely
identifies each row and the g1 geometry column stores sample geometry.

create table LOCATEALONG_TEST (gid integer, g1 geometry)

The insert statements insert two rows. The first is a multilinestring, while the second is
a multipoint.

insert into LOCATEALONG_TEST values(
1, mlinefromtext(multilinestring m ((10.29 19.23 5,23.82 20.29 6,30.19 18.47

7,45.98 20.74 8),
(23.82 20.29 6,30.98 23.98 7,42.92 25.98 8)),
coordref()..srid(1)))

insert into LOCATEALONG_TEST values(
2, mpointfromtext(multipoint m (10.29 19.23 5,23.82 20.29 6,30.19 18.47 7,45.98

20.74 8,23.82 20.29 6,30.98 23.98 7,42.92 25.98),
coordref()..srid(1)))

In this query the locatealong function is directed to find points whose measure is 6.5.
The first row returns a multipoint containing two points. However, the second row
returned an empty point. For linear features, (geometry with a dimension greater than
0), locatealong can interpolate the point, however for multipoints the target measure
must match exactly.

select gid, cast(astext(locatealong (g1,6.5)) as
varchar(96)) "Geometry"
from LOCATEALONG_TEST

GID Geometry
----------- --------------------------------------------------------------

1 MULTIPOINT M ( 27.01000000 19.38000000 6.50000000, 27.40000000

Chapter 5. SQL Reference 131



22.14000000 6.50000000)
2 POINT EMPTY

2 record(s) selected.

In this query the locatealong function returns multipoints for both rows. The target
measure of 7 matches the measures in both the multilinestring and multipoint source
data.

select gid,cast(astext(locatealong (g1,7)) as varchar(96)) "Geometry"
from LOCATEALONG_TEST

GID Geometry

----------- --------------------------------------------------------------
1 MULTIPOINT M ( 30.19000000 18.47000000 7.00000000, 30.98000000

23.98000000 7.00000000)
2 MULTIPOINT M ( 30.19000000 18.47000000 7.00000000, 30.98000000

23.98000000 7.00000000)

2 record(s) selected.

132 Administration Guide and Reference



locatebetween

Locatebetween takes a geometry object and two measure locations and returns a
linestring that represents the set of disconnected paths between the two measure
locations

Syntax

locatebetween( g1 geometry, fm double precision, tm double precision )

Return type

Geometry

Examples

The LOCATEBETWEEN_TEST table is created with two columns. The gid integer
column uniquely identifies each row, while the g1 multilinestring stores the sample
geometry.

create table LOCATEBETWEEN_TEST (gid integer, g1 geometry)

The insert statements insert two rows into the LOCATEBETWEEN_TEST table. The first
row is a multilinestring and the second is a multipoint.

insert into LOCATEBETWEEN_TEST
values(1,mlinefromtext(multilinestring m ((10.29 19.23 5,23.82 20.29 6,

30.19 18.47 7,45.98 20.74 8),
(23.82 20.29 6,30.98 23.98 7,
42.92 25.98 8)),

coordref()..srid(1)))

insert into LOCATEBETWEEN_TEST
values(2,mpointfromtext(multipoint m (10.29 19.23 5,23.82 20.29 6,30.19 18.47 7,

45.98 20.74 8,23.82 20.29 6,30.98 23.98 7,
42.92 25.98 8),

coordref()..srid(1)))

The locatebetween function locates measures lying between measures 6.5 and 7.5
inclusive. The first row returns a multilinestring containing several linestrings. The
second row returns a multipoint because the source data was multipoint. When the
source data has a dimension of 0 (point or multipoint) an exact match is required.

select gid, cast(astext(locatebetween (g1,6.5,7.5))
as varchar(96)) "Geometry"

from LOCATEBETWEEN_TEST

GID Geometry
----------- -------------------------------------------------------------------

1 MULTILINESTRING M ( 27.01000000 19.38000000 6.50000000, 31.19000000

Chapter 5. SQL Reference 133



18.47000000 7.00000000,38.09000000 19.61000000 7.50000000),(27.40000000 22.1400
0000 6.50000000, 30.98000000 23.98000000 7.00000000,36.95000000 24.98000000 7.5
0000000)

2 MULTIPOINT M ( 30.19000000 18.47000000 7.00000000, 30.98000000 23.9
8000000 7.00000000)

2 record(s) selected.

134 Administration Guide and Reference



m

M takes a point and returns its measure

Syntax

m( p1 point )

Return type

Double precision

Examples

The M_TEST table is created with the gid integer column which uniquely identifies the
row and the pt1 point column that stores the sample geometry.

create table M_TEST (gid integer, pt1 point)

The insert statements insert a row that contains a point with measures and row that
contains a point without measures.

insert into M_TEST
values(1, pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into M_TEST
values(2, pointfromtext('point zm(10.02 20.01 5.0 7.0)',coordref()..srid(1)))

In this query the m function list the measure values of the points. Since the first point
does not have measures the m function returns a NULL.

select gid, m (pt1) "The measure" from M_TEST

GID The measure
----------- ------------------------

1 -
2 +7.00000000000000E+000

2 record(s) selected.

Chapter 5. SQL Reference 135



mlinefromshape

Mlinefromshape takes a shape of type multilinestring and a spatial reference system
identity to return a multilinestring.

Syntax

mlinefromshape( s1 blob(1m), srid coordref )

Return type

Multilinestring

Examples

This code fragment populates the WATERWAYS table with a unique id, a name and a
water multilinestring.

The WATERWAYS table is created with the id and name columns which identify each
stream and river system stored in the table. The water column is a multilinestring since
the river and stream systems are often an aggregate of several linestrings.

create table WATERWAYS (id integer,
name varchar(128),
water multilinestring);

/* Create the SQL insert statement to populate the id, name and
multilinestring. The question marks are parameter markers that
indicate the id, name and water values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into WATERWAYS (id,name,water)
values (?,?, mlinefromshape (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer id value to the first parameter. */

pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);
/* Bind the varchar name value to the second parameter. */

pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, name_len, 0, &name, name_len, &pcbvalue2);

136 Administration Guide and Reference



/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, water_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 5. SQL Reference 137



mlinefromtext

Mlinefromtext takes a well-known text representation of type multilinestring and a spatial
reference system identity and returns a multilinestring

Syntax

mlinefromtext( wkt varchar(4000), srid coordref )

Return type

Multilinestring

Examples

The MLINESTRING_TEST is created with the gid smallint column which uniquely
identifies the row and the ml1 multilinestring column.

create table MLINESTRING_TEST (gid smallint, ml1 multilinestring)

The insert statement inserts the multilinestring with the mlinefromtext function.

insert into MLINESTRING_TEST
values (1, mlinefromtext(multilinestring((10.01 20.03,10.52 40.11,30.29 41.56,

31.78 10.74),
(20.93 20.81, 21.52 40.10)),

coordref()..srid(1)))

138 Administration Guide and Reference



mlinefromwkb

Mlinefromwkb takes a well-known binary representation of type multilinestring and a
spatial reference system identity to return a multilinestring.

Syntax

mlinefromwkb( wkb blob(1m), srid coordref )

Return type

Multilinestring

Examples

This code fragment populates the WATERWAYS table with a unique id, a name and a
water multilinestring.

The WATERWAYS table is created with the id and name columns which identify each
stream and river system stored in the table. The water column is a multilinestring since
the river and stream systems are often an aggregate of several linestrings.

create table WATERWAYS (id integer,
name varchar(128),
water multilinestring);

/* Create the SQL insert statement to populate the id, name and
multilinestring. The question marks are parameter markers that
indicate the id, name and water values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into WATERWAYS (id,name,water)
values (?,?, mlinefromwkb (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer id value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);

/* Bind the varchar name value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, name_len, 0, &name, name_len, &pcbvalue2);

Chapter 5. SQL Reference 139



/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, water_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

140 Administration Guide and Reference



mpointfromshape

Mpointfromshape takes a shape of type multipoint and a spatial reference system
identity to return a multipoint.

Syntax

mpointfromshape( s1 blob(1m), srid coordref )

Return type

Multipoint

Examples

This code fragment populates a biologist’s SPECIES_SITINGS table

The SPECIES_SITINGS table is created with three columns. The species and genus
columns uniquely identify each row while the sitings multipoint stores the locations of
the species sitings.

create table SPECIES_SITINGS (species varchar(32),
genus varchar(32),
sitings multipoint);

/* Create the SQL insert statement to populate the species, genus and
sitings. The question marks are parameter markers that indicate the
name and water values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into SPECIES_SITINGS (species,genus,sitings)
values (?,?, mpointfromshape (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the varchar species value to the first parameter. */
pcbvalue1 = species_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, species_len, 0, species, species_len, &pcbvalue1);

/* Bind the varchar genus value to the second parameter. */
pcbvalue2 = genus_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, genus_len, 0, name, genus_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;

Chapter 5. SQL Reference 141



rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, sitings_len, 0, sitings_shape, sitings_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

142 Administration Guide and Reference



mpointfromtext

Mpointfromtext takes a well-known text representation of type multipoint and a spatial
reference system identity and returns a multipoint

Syntax

mpointfromtext( wkt blob(1m), srid coordref )

Return type

Multipoint

Examples

The MULTIPOINT_TEST table is created with the single multipoint mpt1 column.

create table MULTIPOINT_TEST (mpt1 multipoint)

The insert statement inserts a multipoint into the mpt1 column using the mpointfromtext
column.

insert into MULTIPOINT_TEST
values (1,mpointfromtext(multipoint(10.01 20.03,10.52 40.11,

30.29 41.56,31.78 10.74),
coordref()..srid(1)))

Chapter 5. SQL Reference 143



mpointfromwkb

Mpointfromwkb takes a well-known binary representation of type multipoint and a spatial
reference system identity to return a multipoint.

Syntax

mpointfromwkb( wkb blob(1m), srid coordref )

Return type

Multipoint

Examples

This code fragment populates a biologist’s SPECIES_SITINGS table.

The SPECIES_SITINGS table is created with three columns. The species and genus
columns uniquely identify each row while the sitings multipoint stores the locations of
the species sitings.

create table SPECIES_SITINGS (species varchar(32),
genus varchar(32),
sitings multipoint);

/* Create the SQL insert statement to populate the species, genus and
sitings. The question marks are parameter markers that
indicate the species, genus and sitings values that will be retrieved at
runtime. */

strcpy (wkb_sql,"insert into SPECIES_SITINGS (species,genus,sitings)
values (?,?, mpointfromwkb (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the varchar species value to the first parameter. */
pcbvalue1 = species_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, species_len, 0, &species, species_len, &pcbvalue1);
/* Bind the varchar genus value to the second parameter. */
pcbvalue2 = genus_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, genus_len, 0, &name, genus_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = sitings_len;

144 Administration Guide and Reference



rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, sitings_len, 0, sitings_wkb, sitings_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 5. SQL Reference 145



mpolyfromshape

Mpolyfromshape takes a shape of type multipolygon and a spatial reference system
identity to return a multipolygon.

Syntax

mpolyfromshape( s1 blob(1m), srid coordref )

Return type

Multipolygon

Examples

This code fragment populates the LOTS table.

The LOTS table stores the lot_id which uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry.

create table LOTS ( lot_id integer, lot multipolygon);

/* Create the SQL insert statement to populate the lot_id, and lot. The
question marks are parameter markers that indicate the lot_id, and lot
values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into LOTS (lot_id,lot)
values (?, mpolyfromshape (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the lot_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the lot shape to the second parameter. */
pcbvalue2 = lot_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, lot_len, 0, lot_shape, lot_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

146 Administration Guide and Reference



mpolyfromtext

Mpolyfromtext takes a well-known text representation of type multipolygon and a spatial
reference system identity and returns a multipolygon

Syntax

mpolyfromtext( wkt varchar(4000), srid coordref )

Return type

Multipolygon

Examples

The MULTIPOLYGON_TEST table is created with the single multipolygon mpl1 column.

create table MULTIPOLYGON_TEST (mpl1 multipolygon)

The insert statement inserts the a multipolygon into the mp11 column using the
mpolyfromtext function.

insert into MULTIPOLYGON_TEST values (
mpolyfromtext(multipolygon(((10.01 20.03,10.52 40.11,30.29 41.56,31.78
10.74,10.01 20.03),(21.23 15.74,21.34 35.21,28.94 35.35,29.02 16.83,21.23
15.74)),((40.91 10.92,40.56 20.19,50.01 21.12,51.34 9.81,40.91 10.92))),
coordref()..srid(1)))

Chapter 5. SQL Reference 147



mpolyfromwkb

Mpolyfromwkb takes a well-known binary representation of type multipolygon and a
spatial reference system identity to return a multipolygon.

Syntax

mpolyfromwkb( wkb blob(1m), srid coordref )

Return type

Multipolygon

Examples

This code fragment populates the LOTS table.

The LOTS table stores the lot_id which uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry.

create table LOTS ( lot_id integer, lot multipolygon);

/* Create the SQL insert statement to populate the lot_id, and lot. The
question marks are parameter markers that indicate the lot_id, and lot
values that will be retrieved at runtime. */

strcpy (wkb_sql,"insert into LOTS (lot_id,lot)
values (?, mpolyfromwkb (cast(? as blob(1m)),
coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the lot_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the lot shape to the second parameter. */
pcbvalue2 = lot_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, lot_len, 0, lot_wkb, lot_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

148 Administration Guide and Reference



numgeometries

Numgeometries takes a collection and returns the number of geometries in the
collection.

Syntax

numgeometries( mpt1 multipoint )
numgeometries( mln1 multilinestring)
numgeometries( mpl1 multipolygon )

Return type

Integer

Examples

The city engineer needs to know the actual number of distinct buildings associated with
each building footprint.

The building footprints are stored in the BUILDINGFOOTPRINTS table that was created
with the following create table statement.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

The query lists the building_id that uniquely identifies each building and the number of
buildings in each footprint with the numgeometries function.

select building_id, numgeometries (footprint) "Number of buildings"
from BUILDINGFOOTPRINTS;

Chapter 5. SQL Reference 149



numinteriorrings

Numinteriorrings takes a polygon and returns the number of its interior rings

Syntax

numinteriorrings( pl1 polygon )

Return type

Integer

Examples

An ornithologist, wishing to study a bird population on several south sea islands, knows
that the feeding zone of the bird species she is interested in is restricted to islands
containing fresh water lakes. Therefore she wants to know which islands contain one or
more lakes.

The id and name columns of the ISLANDS table identifies each island while the land
polygon column stores the island’s geometry.

create table ISLANDS (id integer, name varchar(32), land polygon);

Since interior rings represents the lakes the numinteriorrings function is used to list only
those islands that have at list one interior ring.

select name from ISLANDS where numinteriorrings(land) > 0;

150 Administration Guide and Reference



numpoints

Numpoints takes a linestring and returns its number of points

Syntax

numpoints( ln1 linestring )

Return type

Integer

Examples

The NUMPOINTS_TEST table is created with the geotype column which contains the
geometry type stored in the g1 geometry column.

create table NUMPOINTS_TEST (geotype varchar(12), g1 geometry)

The insert statements insert point, linestring and polygon.

insert into NUMPOINTS_TEST values(point,
pointfromtext(point (10.02 20.01),coordref()..srid(1)))

insert into NUMPOINTS_TEST values( linestring,
linefromtext(linestring (10.02 20.01, 23.73 21.92),coordref()..srid(1)))

insert into NUMPOINTS_TEST values(
polygon,
polyfromtext(polygon ((10.02 20.01, 23.73 21.92, 24.51 12.98, 11.64
13.42, 10.02 20.01)),coordref()..srid(1)))

The query lists the geometry type and the number of points contained within each.

select geotype, numpoints(g1)
from NUMPOINTS_TEST

GEOTYPE Number of points
------------ ----------------
point 1
linestring 2
polygon 5

3 record(s) selected.

Chapter 5. SQL Reference 151



overlap

Overlap takes two geometry objects and returns 1 (TRUE) if the intersection of the
objects results in a geometry object of the same dimension but not equal to either
source objects, otherwise it returns 0 (FALSE)

Syntax

overlap( g1 geometry, g2 geometry )

Return type

Integer

Examples

The County Supervisor needs a list of hazardous wastes sites whose five mile radius
overlaps sensitive areas.

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the site_id and name
columns, while the actual geographic location of each site is stored in the location point
column.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The SENSITIVE_AREAS and HAZARDOUS_SITES table are joined by the overlap
function. It returns 1 (TRUE) for all rows in the SENSITIVE_AREAS table, whose zone
polygons overlap the buffered 5-mile radius of the HAZARDOUS_SITES location point.

select hs.name
from HAZARDOUS_SITES hs, SENSITIVE_AREAS sa
where overlap (buffer(hs.location,(5 * 5280)),sa.zone) = 1;

In Figure 36 on page 153, the hospital and the school overlap the 5-mile radius of the
counties two hazardous waste sites, while the nursing home does not.

152 Administration Guide and Reference



pointfromshape

Pointfromshape takes a shape of type point and a spatial reference system identity to
return a point.

Syntax

pointfromshape( s1 blob(1m),srid coordref )

Return type

Point

Examples

The program fragment populates the HAZARDOUS_SITES table.

Figure 36. Using overlap to determine the buildings that are at least partially within of a
hazardous waste area

Chapter 5. SQL Reference 153



The hazardous sites are stored in the HAZARDOUS_SITES table created with the
CREATE TABLE statement that follows. The location column, defined as a point, stores
a location that is the geographic center of each hazardous site.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

/* Create the SQL insert statement to populate the site_id, name and
location. The question marks are parameter markers that indicate the
site_id, name and location values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into HAZARDOUS_SITES (site_id, name, location)
values (?,?, pointfromshape (cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the site_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the location shape to the third parameter. */
pcbvalue3 = location_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, location_len, 0, location_shape, location_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

154 Administration Guide and Reference



pointfromtext

Pointfromtext takes a well-known text representation of type point and a spatial
reference system identity and returns a point

Syntax

pointfromtext( wkt varchar(4000), srid coordref )

Return type

Point

Examples

The POINT_TEST table is created with the single point column pt1.

create table POINT_TEST (pt1 point)

The pointfromtext function converts the point text coordinates to the $se;’s point format
before the insert statement inserts the point into the pt1 column.

insert into POINT_TEST values (
pointfromtext (point(10.01 20.03),coordref()..srid(1)))

Chapter 5. SQL Reference 155



pointfromwkb

Pointfromwkb takes a well-known binary representation of type point and a spatial
reference system identity to return a point.

Syntax

pointfromwkb( wkb blob(1m), srid coordref )

Return type

Point

Examples

The program fragment populates the HAZARDOUS_SITES table.

The hazardous sites are stored in the HAZARDOUS_SITES table created with the
CREATE TABLE statement that follows. The location column, defined as a point, stores
a location that is the geographic center of each hazardous site.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

/* Create the SQL insert statement to populate the site_id, name and
location. The question marks are parameter markers that indicate the
site_id, name and location values that will be retrieved at runtime. */

strcpy (wkb_sql,"insert into HAZARDOUS_SITES (site_id, name, location)
values (?,?, pointfromwkb(cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the site_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the location shape to the third parameter. */
pcbvalue3 = location_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

156 Administration Guide and Reference



SQL_BLOB, location_len, 0, location_wkb, location_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 5. SQL Reference 157



pointn

Pointn takes a linestring and an integer index and returns a point that is the nth vertice
in the linestrings path

Syntax

pointn( ln1 linestring, index integer )

Return type

Point

Examples

The POINTN_TEST table is create with the gid column which uniquely identifies each
row and the ln1 linestring column.

create table POINTN_TEST (gid integer, ln1 linestring)

The insert statements insert two linestring values. The first linestring does not have Z
coordinates or measures while the second linestring has both.

insert into POINTN_TEST values(1,
linefromtext('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',coordref()..srid(1)))

insert into POINTN_TEST values(2,
linefromtext('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92 6.5 7.1,30.10
40.23 6.9 7.2)',coordref()..srid(1)))

The query lists the gid column and the second vertice of each linestring. The first row
results in a point without a Z coordinate or measure while the second row results in a
point with a Z coordinate and a measure. The pointn function will return points with a Z
coordinate or a measure if they exist in the source linestring.

select gid, cast(astext(pointn(ln1,2)) as varchar(60)) "The 2nd vertice"
from POINTN_TEST

GID The 2nd vertice
----------- ------------------------------------------------------------

1 POINT ( 23.73000000 21.92000000)
2 POINT ZM ( 23.73000000 21.92000000 7.00000000 7.10000000)

2 record(s) selected.

158 Administration Guide and Reference



pointonsurface

pointonsurface takes a polygon or multipolygon and returns a point guaranteed to lie on
its surface

Syntax

pointonsurface( pl1 polygon )
pointonsurface( mpl1 multipolygon )

Return type

Point

Examples

The city engineer wants to create a label point for each of the building footprints.

The building footprints are stored in the BUILDINGFOOTPRINTS table that was created
with the following create table statement.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

The pointonsurface function generates a point that is guaranteed to be on the surface
of the building footprints. The pointonsurface function returns a point that the
asbinaryshape function converts to a shape casted to 1 megabyte character string for
use by the application.

select cast(asbinaryshape(pointonsurface(footprint)) as blob(1m))
from BUILDINGFOOTPRINTS;

Chapter 5. SQL Reference 159



polyfromshape

Polyfromshape takes a shape of type polygon and a spatial reference system identity to
return a polygon.

Syntax

polyfromshape( s1 blob(1m), srid coordref )

Return type

Polygon

Examples

The program fragment populates the SENSITIVE_AREAS table. The question marks
represent parameter markers for the id, name, size, type and zone values that will be
retrieved at runtime.

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

/* Create the SQL insert statement to populate the id, name, size, type and
zone. The question marks are parameter markers that indicate the
id, name, size, type and zone values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into SENSITIVE_AREAS (id, name, size, type, zone)
values (?,?,?,?, polyfromshape (cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);
/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

160 Administration Guide and Reference



/* Bind the size float to the third parameter. */
pcbvalue3 = 0;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT,

SQL_REAL, 0, 0, &size, 0, &pcbvalue3);

/* Bind the type varchar to the fourth parameter. */
pcbvalue4 = type_len;
rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_VARCHAR, type_len, 0, type, type_len, &pcbvalue4);

/* Bind the zone polygon to the fifth parameter. */
pcbvalue5 = zone_len;
rc = SQLBindParameter (hstmt, 5, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, zone_len, 0, zone_shp, zone_len, &pcbvalue5);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 5. SQL Reference 161



polyfromtext

Polyfromtext takes a well-known text representation of type polygon and a spatial
reference system identity and returns a polygon

Syntax

polyfromtext( wkt varchar(4000), srid coordref )

Return type

Polygon

Examples

The POLYGON_TEST table is created with the single polygon column.

create table POLYGON_TEST (pl1 polygon)

The insert statement inserts a polygon into the polygon column using the
polygonfromtext function.

insert into POLYGON_TEST values (1,
polyfromtext(polygon((10.01 20.03,10.52 40.11,30.29 41.56,31.78 10.74,10.01
20.03)),coordref()..srid(1)))

162 Administration Guide and Reference



polyfromwkb

Polyfromwkb takes a well-known binary representation of type polygon and a spatial
reference system identity to return a polygon.

Syntax

polyfromwkb( wkb blob(1m), srid coordref )

Return type

Polygon

Examples

The program fragment populates the SENSITIVE_AREAS table.

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

/* Create the SQL insert statement to populate the id, name, size, type and
zone. The question marks are parameter markers that indicate the id,name,
size, type and zone values that will be retrieved at runtime. */

strcpy (shp_wkb,"insert into SENSITIVE_AREAS (id, name, size, type, zone)
values (?,?,?,?, polyfromwkb (cast(? as blob(1m)),coordref()..srid(1)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

Chapter 5. SQL Reference 163



/* Bind the size float to the third parameter. */
pcbvalue3 = 0;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT,

SQL_REAL, 0, 0, &size, 0, &pcbvalue3);

/* Bind the type varchar to the fourth parameter. */
pcbvalue4 = type_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_VARCHAR, type_len, 0, type, type_len, &pcbvalue4);

/* Bind the zone polygon to the fifth parameter. */
pcbvalue5 = zone_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, zone_len, 0, zone_wkb, zone_len, &pcbvalue5);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

164 Administration Guide and Reference



srid

Srid takes a geometry object and returns its spatial reference system identity

Syntax

srid ( g1 geometry )

Return type

Integer

Examples

á

During the installation of the Spatial Extender the SPATIAL_REFERENCES table is
created. When a geometry is created, the SRID of that geometry is entered into the
SPATIAL_REFERENCES table. The srid function returns the value of that entry.

For example, a geometry type is used in a create table statement.

create table SRID_TEST(g1 geometry)

In the next statement, a point geometry located at coordinate 10.01,50.76 is inserted
into the geometry column g1. When the point geometry was created by the
pointfromtext function it was assigned the srid value of 1.

insert into SRID_TEST
values (pointfromtext(point(10.01 50.76),coordref()..srid(1)))

The srid function returns the spatial reference system identity of the geometry just
entered.

select srid(g1) from SRID_TEST

g1
--------------
1

Chapter 5. SQL Reference 165



startpoint

Startpoint takes a linestring and returns a point that is the linestrings first point

Syntax

startpoint( ln1 linestring )

Return type

Point

Examples

The STARTPOINT_TEST table is created with the gid integer column which uniquely
identifies the rows of the table and the ln1 linestring column.

create table STARTPOINT_TEST (gid integer, ln1 linestring)

The insert statements insert the linestrings into the ln1 column. The first linestring does
not have Z coordinates or measures while the second linestring has both.

insert into STARTPOINT_TEST values(1,
linefromtext('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',coordref()..srid(1)))

insert into STARTPOINT_TEST values(2,
linefromtext('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92 6.5 7.1,30.10
40.23 6.9 7.2)',coordref()..srid(1)))

The startpoint function extracts the first point of each linestring. The astext function
converts the point to its text format. The first point in the list does not have a Z
coordinate or a measure, while the second point has both because the source linestring
did.

select gid, cast(astext(startpoint (ln1)) as varchar(60)) "Startpoint"
from STARTPOINT_TEST

GID Startpoint
----------- ------------------------------------------------------------

1 POINT ( 10.02000000 20.01000000)
2 POINT ZM ( 10.02000000 20.01000000 5.00000000 7.00000000)

2 record(s) selected.

166 Administration Guide and Reference



symmetricdiff

symmetricdiff takes two geometry objects and returns a geometry object that is the
symmetrical difference of the source objects

Syntax

symmetricdiff( g1 geometry, g2 geometry )

Return type

Geometry

Examples

For a special report, the county supervisor must determine the area of sensitive areas
and 5-mile hazardous site radius that is not intersected.

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the site_id and name
columns, while the actual geographic location of each site is stored in the location point
column.

create table HAZARDOUS_SITES (site_id integer,
name varchar(128),
location point);

The buffer function generates a 5-mile buffer surrounding the hazardous waste site
locations. The symmetricdiff function generates polygons from the intersection of the
buffered hazardous waste site polygons and the sensitive areas. The area function
returns the intersection polygon;s area for each hazardous site.

select sa.name, hs.name,
area(symmetricdiff (buffer(hs.location,(5 * 5280)),sa.zone))

from HAZARDOUS_SITES hs, SENSITIVE_AREAS sa

Chapter 5. SQL Reference 167



In Figure 37, the symmetric difference of the hazardous waste sites and the sensitive
areas results in the subtraction of the intersected areas.

Figure 37. Using symmetricdiff to determined the hazardous waste areas that don’t
contain sensitive areas (inhabited buildings)

168 Administration Guide and Reference



touch

Touch returns 1 (TRUE) if none of the points common to both geometries intersect the
interiors of both geometries. Otherwise, it returns 0 (FALSE). At least one geometry
must be a linestring, polygon, multilinestring or multipolygon.

Syntax

touch( g1 geometry, g2 geometry)

Return type

Integer

Examples

The GIS technician has been asked by his boss to provide a list of all sewer lines
whose endpoints intersect another sewerline.

The sewerlines table is created with three columns. The first column sewer_id uniquely
identifies each sewer line. The integer class column identifies the type of sewer line,
generally associated with the lines capacity. The sewer linestring column stores the
sewer lines geometry.

create table sewerlines (sewer_id integer, class integer, sewer linestring);

The query returns an ordered list of SEWER_IDS that touch one another.

select s1.sewer_id, s2.sewer_id
from sewerlines s1, sewerlines s2
where touch (s1.sewer, s2.sewer) = 1,
order by 1,2;

Chapter 5. SQL Reference 169



union

Union takes two geometry objects and returns a geometry object that is the union of the
source objects.

Syntax

union( g1 geometry, g2 geometry )

Return type

Geometry

Examples

The SENSITIVE_AREAS table contains several columns that describe the threatened
institutions in addition to the zone column which stores the institution’s polygon
geometry.

create table SENSITIVE_AREAS (id integer,
name varchar(128),
size float,
type varchar(10),
zone polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the site_id and name
columns, while the actual geographic location of each site is stored in the location point
column.

create table HAZARDOUS_SITES (site_id integer, name varchar(128), location point);

The buffer function generates a 5-mile buffer surrounding the hazardous waste site
locations. The union function generates polygons from the union of the buffered
hazardous waste site polygons and the sensitive areas. The area function returns the
unioned polygon;s area.

select sa.name, hs.name,
area(union(buffer(hs.location,(5 * 5280)),sa.zone))

from HAZARDOUS_SITES hs, SENSITIVE_AREAS sa;

170 Administration Guide and Reference



within

Within takes two geometry objects and returns 1 (TRUE) if the first object is completely
within the second, otherwise it returns 0 (FALSE).

Syntax

within( g1 geometry, g2 geometry)

Return type

Integer

Examples

In the example below two tables are created. One, BUILDINGFOOTPRINTS, contains a
city’s building footprints while the other, LOTS, contains its lots. The city engineer wants
to make sure that all the building footprints are completely inside their lots.

In both tables the multipolygon data type stores the geometry of the building footprints
and the lots. The database designer selected multipolygons for both features because
she realized that often lots can be disjointed by natural features such as a river and
building footprints can often be made up of several buildings.

create table BUILDINGFOOTPRINTS ( building_id integer,
lot_id integer,
footprint multipolygon);

create table LOTS ( lot_id integer, lot multipolygon );

The city engineer first selects the buildings that are not completely within a lot.

select building_id
from BUILDINGFOOTPRINTS, LOTS

where within(footprint,lot) = 0;

The city engineer is smart. She realizes that although the first query will provide her
with a list of all building_id that have footprints outside of a lot polygon, it will not tell her
if the rest have the correct lot_id assigned to them. This second query performs a data
integrity check on the lot_id column of the BUILDINGFOOTPRINTS table.

select bf.building_id "building id",
bf.lot_id "buildings lot_id",
LOTS.lot_id "LOTS lot_id"

from BUILDINGFOOTPRINTS bf, LOTS
where within(footprint,lot) = 1 AND

LOTS.lot_id <> bf.lot_id;

Chapter 5. SQL Reference 171



x

X takes a point and returns its X coordinate

Syntax

x( pt1 point )

Return type

Double precision

Examples

The X_TEST table is created with two columns: the gid column uniquely identifies the
row, and the pt1 point column.

create table X_TEST (gid integer, pt1 point)

The insert statements insert two rows. One is a point without a Z coordinate or a
measure. The other column has both a Z coordinate and a measure.

insert into X_TEST values(1,
pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into X_TEST values(2,
pointfromtext('point zm (10.02 20.01 5.0 7.0)',coordref()..srid(1)))

The query lists the gid column and the double precision X coordinate of the points.

select gid, x(pt1) "The X coordinate" from X_TEST

GID The X coordinate
----------- ------------------------

1 +1.00200000000000E+001
2 +1.00200000000000E+001

2 record(s) selected.

172 Administration Guide and Reference



y

Y takes a point and returns its Y coordinate

Syntax

y( p1 point )

Return type

Double precision

Examples

The Y_TEST table is created with two columns: the gid column uniquely identifies the
row, and the pt1 point column.

create table Y_TEST (gid integer, pt1 point)

The insert statements insert two rows. One is a point without a Z coordinate or a
measure. The other column has both a Z coordinate and a measure.

insert into Y_TEST values(1,
pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into Y_TEST values(2,
pointfromtext('point zm (10.02 20.01 5.0 7.0)',coordref()..srid(1)))

The query lists the gid column and the double precision Y coordinate of the points.

select gid, y(pt1) "The Y coordinate" from Y_TEST

GID The Y coordinate
----------- ------------------------

1 +2.00100000000000E+001
2 +2.00100000000000E+001

2 record(s) selected.

Chapter 5. SQL Reference 173



z

Z takes a point and returns its Z coordinate

Syntax

z( p1 point )

Return type

Double precision

Examples

The Z_TEST table is created with two columns: the gid column uniquely identifies the
row, and the pt1 point column.

create table Z_TEST (gid integer, pt1 point)

The insert statements insert two rows. One is a point without a Z coordinate or a
measure. The other column has both a Z coordinate and a measure.

insert into Z_TEST values(1,
pointfromtext('point (10.02 20.01)',coordref()..srid(1)))

insert into Z_TEST values(2,
pointfromtext('point zm (10.02 20.01 5.0 7.0)',coordref()..srid(1)))

The query lists the gid column and the double precision Z coordinate of the points. The
first row is NULL because the point does not have a Z coordinate.

select gid, z(pt1) "The Z coordinate" from Z_TEST

GID The Z coordinate
----------- ------------------------

1 -
2 +5.00000000000000E+000

2 record(s) selected.

174 Administration Guide and Reference



Chapter 6. Messages

38600 Invalid Well-Known Text
representation string

Explanation: The text string entered in the
Well-Known Text representation function is invalid.

User Response: Correct the string and execute
the function again. Refer to “Appendix B. The
OGIS Well-Known Text Representation” on
page 187 for the valid format.

38601 Invalid Spatial Reference
Identifier

Explanation: The Spatial Reference Identifier
(SRID) supplied with the geometry does not exist
in the SPATIAL_REFERENCES table.

User Response: Either use an SRID that is
currently in the SPATIAL_REFERENCES table or
add a spatial reference system to the table that
corresponds to the rejected SRID.

38602 System has run out of memory

Explanation: Not enough memory was available.
The Spatial Extender requires up to a maximum of
1 Megabyte of memory to create features.

User Response: Reallocate memory to make
more available to the Spatial Extender, or if this is
not possible upgrade the system by adding more
physical memory.

38603 The spatial reference systems of
two geometries are not same.

Explanation: Geometries passed to a Spatial
Extender function must share the same spatial
reference identifier.

User Response: Recreate one of the geometries
so that its spatial reference system matches that
of the other.

38604 The binary string is invalid

Explanation: The Well-Known Binary
representation or ESRI Binary representation
string was not constructed properly.

User Response: Reconstruct the string with the
correct format. Refer to “Appendix C. The OGIS
Well-Known Binary Representation” on page 193
or “Appendix D. The ESRI Shape
Representations” on page 197 for the correct
format.

38605 The geometrytype is invalid

Explanation: An invalid geometry type was
passed to the function. Valid geometry types are
geometry, point, linestring, polygon, multipoint,
multilinestring, or multipolygon.

User Response: Resubmit the SQL statement
with a valid geometry type.

38606 Parenthesis mismatch

Explanation: The parentheses of the
Well-Known Text representation string do not
match.

User Response: Balance the parentheses and
reenter the text description.

38607 Too many parts specified

Explanation: The number of parts indicated in
the binary or text string is greater than the actual
number of parts supplied.

User Response: Reenter the string with the
correct number of parts.

38608 Geometry type mismatch

Explanation: The wrong geometry type was
passed to the function. For instance
polygonfromtext expects polygon and was
passed linestring.

© Copyright IBM Corp. 1998 175



User Response: Use a function that accepts the
geometry type.

38609 Text string is too long

Explanation: The geometry text string exceeds
the maximum length of 4000 characters.

User Response: The geometry contains too
much detail to be converted to text. However, you
can instead convert it to either the WKB or the
ESRI shape binary formats.

38610 Invalid parameter value

Explanation: An invalid parameter was passed
to the function.

User Response: Compare the syntax of the
function with that listed in “Chapter 5. SQL
Reference” on page 67. Correct the invalid
parameter and resubmit the function.

38612 Invalid grid size

Explanation: Returned by CREATE INDEX if
any grid size is less than 0, the first grid size is
equal 0, the second grid size is less than the first
or the third grid size is less than the second.

User Response: Make sure all of the grid sizes
are correct and resubmit the CREATE INDEX
statement.

38613 The grid size is too small

Explanation: Returned by CREATE INDEX if a
grid size results in more than 1000 grid cells per
geometry.

User Response: Increase the grid size or add
another grid level. Then, resubmit the CREATE
INDEX statement.

38800 Invalid geometry

Explanation: The parameters entered have
produced an invalid geometry. For example, the
parameters entered with linefromshape produce
an invalid geometry. An invalid geometry is one

that violates a geometry property.

User Response: Correct the parameter and
resubmit the geometry.

38801 Incompatible geometry

Explanation: The function expected two
geometries of a certain type and did not receive
them. For example, the union function expects
two geometries of the same dimension and
received a point and a linestring, which are of
different dimensions.

User Response: Refer to Chapter 6, SQL
Reference, and resubmit the function with the
correct geometry types.

38802 Geometry integrity error

Explanation: The function cannot construct a
geometry because one or more of its properties
have been violated.

User Response: Refer to “About Geometry” on
page 37 or “Chapter 5. SQL Reference” on
page 67 , and resubmit the geometry with the
correct properties.

38803 Too many points

Explanation: The construction of a geometry
has exceeded the 1 MB storage limit; the
geometry has too many points.

User Response: Remove unnecessary points.
For performance and storage considerations, only
those points needed to render a geometry should
be included. All non-essential points should be
excluded.

38804 Result is too small

Explanation: The resulting polygons of the
intersections , union , difference or
symmetricdiff functions are too small to be
represented with the current coordinate system.

User Response: If a result is absolutely
required, increase the XYUNITS of the source
geometrys coordinate reference system., and

176 Administration Guide and Reference



recreate the table. Changing the coordinate
reference system requires that the table containing
the source geometry be recreated.

38805 Buffer out of bounds

Explanation: The buffer function has created a
buffer outside the coordinate system.

User Response: Either reduce the buffer
distance or change the source geometry’s
coordinate system. In most cases changing the
coordinate system requires the spatial column be
reloaded.

38806 Invalid system units

Explanation: The system units (XYUNITS,
ZUNITS or MUNITS of the
SPATIAL_REFERENCES table) cannot be less
than 1.

User Response: Correct any of the system unit
values in the SPATIAL_REFERENCES table that
are less than 1. (See “Meta Tables and Views” on
page 19 .)

38807 Ordinate out of bounds

Explanation: An ordinate is either too large or
too small to fit within the bounds of the coordinate
system.

User Response: Ensure the ordinates value is
correct and if it is, ensure the coordinate system
can accept the ordinate value. (See “Meta Tables
and Views” on page 19.)

38811 Polygon rings overlap

Explanation: The rings of a polygon cannot
overlap, but they may intersect at a tangent.

User Response: Correct the coordinates of the
polygon and resubmit it.

38812 Too few coordinates

Explanation: Linestring geometries require at
least two coordinates and polygons require three.

User Response: Resubmit the geometry with
the correct number of coordinates.

38813 Polygon is not closed

Explanation: The start and end point
coordinates of the polygon are not the same.

User Response: Edit the coordinate list of the
polygon, making sure the start and end points are
the same, and resubmit it.

38814 Exterior ring is invalid

Explanation: The exterior ring does not enclose
the interior ring. The interior ring is completely
outside the exterior ring with no overlap.

User Response: Make sure the coordinates of
the interior ring are completely inside the exterior
ring. If the interior ring actually represents the
exterior ring of another polygon, then enter the
geometry as a multipolygon. Correct the geometry
and resubmit it.

38815 The polygon has no area

Explanation: A geometry is a polygon only if its
coordinates span two dimensions in space.

User Response: Edit the coordinates of the
polygon so they enclose an area and resubmit the
polygon. Or, submit a linestring if appropriate.

38816 The polygon contains a spike

Explanation: Only the end point and start point
of a polygon must be same. All other coordinates
of a polygon ring must be different and collectively
enclose an area.

User Response: Look for coordinate pairs that
have the same X and Y values. Edit these points
so that the polygon encloses a single area and
resubmit the polygon.

Chapter 6. Messages 177



38817 Multipolygon exterior rings
overlap

Explanation: The exterior rings of a multipolygon
may intersect at a tangent, but they cannot
overlap.

User Response: Edit the coordinates of the
exterior rings so that they do not overlap, then
resubmit the multipolygon.

38818 Polygon self intersects

Explanation: The ring of a polygon cannot
intersect itself.

User Response: Edit the coordinates of the ring
that intersects itself and resubmit the polygon.

38819 Invalid number of measures

Explanation: The number of measures
parameter of the binary string contains a different
number than was supplied.

User Response: Edit the number of measures
parameter so that it corresponds to the number
supplied in the binary string.

38820 Invalid number of parts

Explanation: The number of parts parameter of
the binary string specified a number of parts
different than what has been supplied with the
string.

User Response: Edit the number of parts
parameter so that it corresponds to the number
supplied in the binary string.

38821 Invalid part offset

Explanation: The part offset parameter of the
binary string specified a part offset different than

what has been supplied within the string.

User Response: Edit the part offset parameter
so that it corresponds to the part offsets supplied
within the binary string.

38823 Binary too small

Explanation: The number of bytes in the blob
specified is less than the number of bytes in the
blob supplied.

User Response: Make the blob length equal to
the number of bytes in the blob and resubmit the
function.

38825 Invalid byte order

Explanation: The byte order must be 0 or 1.

User Response: Edit the byte order so that it is
either 0 for little endian or 1 for big endian.

38826 Invalid part

Explanation: A function parameter indexed a
part that does not exist. For example, this error
would occur if the geometryn function was
passed a 3 to return the third point in a multipoint,
when the multipoint only contains two points.

User Response: Edit the parameter and
resubmit the function.

38999 Unknown system failure

Explanation: An unexpected system error has
occurred.

User Response: Correct the syntax and
resubmit the function. If you still encounter the
problem contact technical support.

178 Administration Guide and Reference



Appendix A. Representing Spatial Reference Systems as Text

The Well-known Text Representation of Spatial Reference Systems provides a standard
textual representation for spatial reference system information. The definitions of the
well-known text representation are modeled after the POSC/EPSG coordinate system
data model.

A spatial reference system, also referred to as a coordinate system, is a geographic
(latitude-longitude), a projected (X,Y), or a geocentric (X,Y,Z) coordinate system. The
coordinate system is composed of several objects. Each object has a keyword in upper
case (for example, DATUM or UNIT) followed by the defining, comma-delimited,
parameters of the object in brackets. Some objects are composed of other objects, so
the result is a nested structure. Implementations are free to substitute standard brackets
( ) for square brackets [ ] and should be prepared to read both forms of brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of a
coordinate system is as follows, using square brackets, see note above:

<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>
<projected cs> = PROJCS["<name>", <geographic cs>, <projection>, {<parameter>,}*

<linear unit>]
<projection> = PROJECTION["<name>"]
<parameter> = PARAMETER["<name>", <value>]
<value> = <number>

A data set’s coordinate system is identified by the PROJCS keyword if the data are in
projected coordinates, by GEOGCS if in geographic coordinates, or by GEOCCS if in
geocentric coordinates. The PROJCS keyword is followed by all of the ″pieces″ which
define the projected coordinate system. The first piece of any object is always the
name. Several objects follow the projected coordinate system name: the geographic
coordinate system, the map projection, 1 or more parameters, and the linear unit of
measure. All projected coordinate systems are based upon a geographic coordinate
system so we will describe the pieces specific to a projected coordinate system first. As
an example, UTM zone 10N on the NAD83 datum is defined as:

PROJCS["NAD_1983_UTM_Zone_10N",
<geographic cs>,
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],
PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],
PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in turn:
the datum, the prime meridian, and the angular unit of measure.

<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]
<datum> = DATUM["<name>", <spheroid>]
<spheroid> = SPHEROID["<name>", <semi-major axis>, <inverse flattening>]

© Copyright IBM Corp. 1998 179



<semi-major axis> = <number>
(semi-major axis is measured in meters and must be > 0.)

<inverse flattening> = <number>
<prime meridian> = PRIMEM["<name>", <longitude>]
<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NAD83:

GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures:

<angular unit> = <unit>
<linear unit> = <unit>
<unit> = UNIT["<name>", <conversion factor>]
<conversion factor> = <number>

The conversion factor specifies number of meters (for a linear unit) or number of
radians (for an angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is as follows:

PROJCS["NAD_1983_UTM_Zone_10N",
GEOGCS["GCS_North_American_1983",
DATUM[ "D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate system:

<geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

Supported Linear Units

Unit Conversion Factor

Meter 1.0

Foot (International) 0.3048

U.S. Foot 12/39.37

Modified American Foot 12.0004584/39.37

Clarke’s Foot 12/39.370432

Indian Foot 12/39.370141

Link 7.92/39.370432

180 Administration Guide and Reference



Unit Conversion Factor

Link (Benoit) 7.92/39.370113

Link (Sears) 7.92/39.370147

Chain (Benoit) 792/39.370113

Chain (Sears) 792/39.370147

Yard (Indian) 36/39.370141

Yard (Sears) 36/39.370147

Fathom 1.8288

Nautical Mile 1852.0

Supported Angular Units

Unit Conversion Factor

Radian 1.0

Decimal Degree p/180

Decimal Minute (p/180)/60

Decimal Second (p/180)/36000

Gon p/200

Grad p/200

Supported Spheroids

Name Semi-major Axis Inverse Flattening

Airy 6377563.396 299.3249646

Modified Airy 6377340.189 299.3249646

Australian 6378160 298.25

Bessel 6377397.155 299.1528128

Modified Bessel 6377492.018 299.1528128

Bessel (Namibia) 6377483.865 299.1528128

Clarke 1866 6378206.4 294.9786982

Clarke 1866 (Michigan) 6378693.704 294.978684677

Clarke 1880 6378249.145 293.465

Clarke 1880 (Arc) 6378249.145 293.466307656

Clarke 1880 (Benoit) 6378300.79 293.466234571

Clarke 1880 (IGN) 6378249.2 293.46602

Clarke 1880 (RGS) 6378249.145 293.465

Clarke 1880 (SGA) 6378249.2 293.46598

Everest 1830 6377276.345 300.8017

Appendix A. Representing Spatial Reference Systems as Text 181



Name Semi-major Axis Inverse Flattening

Everest 1975 6377301.243 300.8017

Everest (Sarawak and Sabah) 6377298.556 300.8017

Modified Everest 1948 6377304.063 300.8017

Fischer 1960 6378166 298.3

Fischer 1968 6378150 298.3

Modified Fischer (1960) 6378155 298.3

GEM10C 6378137 298.257222101

GRS 1980 6378137 298.257222101

Hayford 1909 6378388 297.0

Helmert 1906 6378200 298.3

Hough 6378270 297.0

International 1909 6378388 297.0

International 1924 6378388 297.0

New International 1967 6378157.5 298.2496

Krasovsky 6378245 298.3

Mercury 1960 6378166 298.3

Modified Mercury 1968 6378150 298.3

NWL9D 6378145 298.25

OSU_86F 6378136.2 298.25722

OSU_91A 6378136.3 298.25722

Plessis 1817 6376523 308.64

South American 1969 6378160 298.25

Southeast Asia 6378155 298.3

Sphere (radius = 1.0) 1 0

Sphere (radius = 6371000 m) 6371000 0

Sphere (radius = 6370997 m) 6370997 0

Struve 1860 6378297 294.73

Walbeck 6376896 302.78

War Office 6378300.583 296

WGS 1960 6378165 298.3

WGS 1966 6378145 298.25

WGS 1972 6378135 298.26

WGS 1984 6378137 298.257223563

Supported Geodetic Datums

Adindan Lisbon

182 Administration Guide and Reference



Afgooye Loma Quintana

Agadez Lome

Australian Geodetic Datum 1966 Luzon 1911

Australian Geodetic Datum 1984 Mahe 1971

Ain el Abd 1970 Makassar

Amersfoort Malongo 1987

Aratu Manoca

Arc 1950 Massawa

Arc 1960 Merchich

Ancienne Triangulation Francaise Militar-Geographische Institute

Barbados Mhast

Batavia Minna

Beduaram Monte Mario

Beijing 1954 M’poraloko

Reseau National Belge 1950 NAD Michigan

Reseau National Belge 1972 North American Datum 1927

Bermuda 1957 North American Datum 1983

Bern 1898 Nahrwan 1967

Bern 1938 Naparima 1972

Bogota Nord de Guerre

Bukit Rimpah NGO 1948

Camacupa Nord Sahara 1959

Campo Inchauspe NSWC 9Z-2

Cape Nouvelle Triangulation Francaise

Carthage New Zealand Geodetic Datum 1949

Chua OS (SN) 1980

Conakry 1905 OSGB 1936

Corrego Alegre OSGB 1970 (SN)

Cote d’Ivoire Padang 1884

Datum 73 Palestine 1923

Deir ez Zor Pointe Noire

Deutsche Hauptdreiecksnetz Provisional South American Datum 1956

Douala Pulkovo 1942

European Datum 1950 Qatar

European Datum 1987 Qatar 1948

Egypt 1907 Qornoq

European Reference System 1989 RT38

Appendix A. Representing Spatial Reference Systems as Text 183



Fahud South American Datum 1969

Gandajika 1970 Sapper Hill 1943

Garoua Schwarzeck

Geocentric Datum of Australia 1994 Segora

Guyane Francaise Serindung

Herat North Stockholm 1938

Hito XVIII 1963 Sudan

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbalai 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875 Trinidad 1903

Jamaica 1969 Trucial Coast 1948

Kalianpur Voirol 1875

Kandawala Voirol Unifie 1960

Kertau WGS 1972

Kuwait Oil Company WGS 1972 Transit Broadcast Ephemeris

La Canoa WGS 1984

Lake Yacare

Leigon Yoff

Liberia 1964 Zanderij

Supported Prime Meridians

Greenwich 0° 0’ 0″

Bern 7° 26’ 22.5″ E

Bogota 74° 4’ 51.3″ W

Brussels 4° 22’ 4.71″ E

Ferro 17° 40’ 0″ W

Jakarta 106° 48’ 27.79″ E

Lisbon 9° 7’ 54.862″ W

Madrid 3° 41’ 16.58″ W

Paris 2° 20’ 14.025″E

Rome 12° 27’ 8.4″ E

Stockholm 18° 3’ 29″ E

184 Administration Guide and Reference



Supported Map Projections

Cylindrical Projections Pseudocylindrical Projections

Behrmann Craster parabolic

Cassini Eckert I

Cylindrical equal area Eckert II

Equirectangular Eckert III

Gall’s stereographic Eckert IV

Gauss-Kruger Eckert V

Mercator Eckert VI

Miller cylindrical McBryde-Thomas flat polar quartic

Oblique Mercator (Hotine) Mollweide

Plate-Carée Robinson

Times Sinusoidal (Sansom-Flamsteed)

Transverse Mercator Winkel I

Conic Projections

Albers conic equal-area Chamberlin trimetric

Bipolar oblique conformal conic Two-point equidistant

Bonne Hammer-Aitoff equal-area

Equidistant conic Van der Grinten I

Lambert conformal conic Miscellaneous

Polyconic Alaska series E

Simple conic Alaska Grid (Modified-Stereographic by Snyder)

Azimuthal or Planar Projections
v Azimuthal equidistant

v General vertical near-side perspective

v Gnomonic

v Lambert Azimuthal equal-area

v Orthographic

v Polar Stereographic

v Stereographic

Appendix A. Representing Spatial Reference Systems as Text 185



Map Projection Parameters

central_meridian the line of longitude chosen as the origin of
x-coordinates.

scale_factor used generally to reduce the amount of
distortion in a map projection.

standard_parallel_1 a line of latitude that has no distortion generally.
Also used for ″latitude of true scale.″

standard_parallel_2 a line of latitude that has no distortion generally.

longitude_of_center the longitude which defines the center point of
the map projection.

latitude_of_center the latitude which defines the center point of the
map projection.

latitude_of_origin the latitude chosen as the origin of
y-coordinates.

false_easting added to x-coordinates. Used to give positive
values.

false_northing added to y-coordinates. Used to give positive
values.

azimuth the angle east of north which defines the center
line of an oblique projection.

longitude_of_point_1 the longitude of the first point needed for a map
projection.

latitude_of_point_1 the latitude of the first point needed for a map
projection.

longitude_of_point_2 the longitude of the second point needed for a
map projection.

latitude_of_point_2 the latitude of the second point needed for a
map projection.

longitude_of_point_3 the longitude of the third point needed for a map
projection.

latitude_of_point_3 the latitude of the third point needed for a map
projection.

landsat_number the number of a Landsat satellite.

path_number the orbital path number for a particular satellite.

perspective_point_height the height above the earth of the perspective
point of the map projection.

fipszone State Plane Coordinate System zone number.

zone UTM zone number.

186 Administration Guide and Reference



Appendix B. The OGIS Well-Known Text Representation

Each geometry type has a well-known text representation that can be used both to
construct new instances of the type and to convert existing instances to textual form for
alphanumeric display.

The well-known text representation of Geometry is defined below; the notation {}*
denotes 0 or more repetitions of the tokens within the braces, the braces do not appear
in the output token list.

<Geometry Tagged Text> :=
| <Point Tagged Text>
| <LineString Tagged Text>
| <Polygon Tagged Text>
| <MultiPoint Tagged Text>
| <MultiLineString Tagged Text>
| <MultiPolygon Tagged Text>

<Point Tagged Text> :=
POINT <Point Text>

<LineString Tagged Text> :=
LINESTRING <LineString Text>

<Polygon Tagged Text> :=
POLYGON <Polygon Text>

<MultiPoint Tagged Text> :=
MULTIPOINT <Multipoint Text>

<MultiLineString Tagged Text> :=
MULTILINESTRING <MultiLineString Text>

<MultiPolygon Tagged Text> :=
MULTIPOLYGON <MultiPolygon Text>

<Point Text> := EMPTY
| <Point>
| Z <PointZ>
| M <PointM>
| ZM <PointZM>

<Point> := <x> <y>
<x> := double precision literal
<y> := double precision literal
<PointZ> := <x> <y> <z>
<x> := double precision literal
<y> := double precision literal
<z> := double precision literal
<PointM> := <x> <y> <m>
<x> := double precision literal
<y> := double precision literal
<m> := double precision literal

© Copyright IBM Corp. 1998 187



<PointZM> := <x> <y> <z> <m>
<x> := double precision literal
<y> := double precision literal
<z> := double precision literal
<m> := double precision literal

<LineString Text> := EMPTY
| ( <Point Text > {, <Point Text> }* )
| Z ( <PointZ Text > {, <PointZ Text> }* )
| M ( <PointM Text > {, <PointM Text> }* )
| ZM ( <PointZM Text > {, <PointZM Text> }* )

<Polygon Text> := EMPTY
| ( <LineString Text > {,< LineString Text > }*)

<Multipoint Text> := EMPTY
| ( <Point Text > {, <Point Text > }* )

<MultiLineString Text> := EMPTY
| ( <LineString Text > {,< LineString Text>}* )

<MultiPolygon Text> := EMPTY
| ( < Polygon Text > {, < Polygon Text > }* )

The basic function syntax is:

function (<text description>,<SRID>)

The SRID, the spatial reference identifier and primary key to the
SPATIAL_REFERENCES table. identifies the geometrys spatial reference system that
are stored in the SPATIAL_REFERENCES table. Before a geometry can be inserted
into a spatial column its SRID must match the SRID of the spatial column.

The text description is made up of four basic components enclosed in single quotes
defined as follows:

<geometry type> [coordinate type] [coordinate list]

geometry type
one of the following: point, linestring, polygon, multipoint, multilinestring, or
multipolygon.

coordinate type
specifies whether or not the geometry has Z coordinates and/or measures.
Leave this argument blank if the geometry does has neither, otherwise set the
coordinate type to Z for geometries containing a Z coordinates, M for a
geometries with measures, and ZM for geometries that have both.

coordinate list
defines the vertices of the geometry. Coordinate lists are comma delimited and
enclosed by parenthesis. Geometries having multiple components require sets

188 Administration Guide and Reference



of parenthesis to enclose each component part. If the geometry is empty, the
EMPTY keyword replaces the coordinate.

The following examples provide complete list of all possible permutations of text
representations:

Geometry type Text Description Comment

point point empty empty point

point point z empty empty point with z coordinate

point point m empty empty point with measure

point point zm empty empty point with z coordinate
and measure

point point ( 10.05 10.28 ) point

point point z ( 10.05 10.28 2.51 ) point with z coordinate

point point m ( 10.05 10.28 4.72 ) point with measure

point point zm ( 10.05 10.28 2.51
4.72 )

point with z coordinate and
measure

linestring linestring empty empty linestring

linestring linestring z empty empty linestring with z
coordinates

linestring linestring m empty empty linestring with measures

linestring linestring zm empty empty linestring with z
coordinates and measures

linestring linestring ( 10.05 10.28 , 20.95
20.89 )

linestring

linestring linestring z ( 10.05 10.28 3.09,
20.95 31.98 4.72, 21.98 29.80
3.51 )

linestring with z coordinates

linestring linestring m ( 10.05 10.28 5.84,
20.95 31.98 9.01, 21.98 29.80
12.84 )

linestring with measures

linestring linestring zm ( ) linestring with z coordinates
and measures

polygon polygon empty empty polygon

polygon polygon z empty empty polygon with z
coordinates

polygon polygon m empty empty polygon with measures

polygon polygon zm empty empty polygon with z
coordinates and measures

polygon polygon (( 10 10, 10 20, 20 20,
20 15, 10 10))

polygon

polygon polygon z (( )) polygon with z coordinates

polygon polygon m (( )) polygon with measures

Appendix B. The OGIS Well-Known Text Representation 189



Geometry type Text Description Comment

polygon polygon zm (( )) polygon with z coordinates and
measures

multipoint multipoint empty empty multipoint

multipoint multipoint z empty empty multipoint with z
coordinates

multipoint multipoint m empty empty multipoint with measures

multipoint multipoint zm empty empty multipoint with z
coordinates with measures

multipoint multipoint empty empty multipoint

multipoint multipoint (10 10, 20 20) multipoint with two points

multipoint multipoint z (10 10 2, 20 20 3) multipoint with z coordinates

multipoint multipoint m (10 10 4, 20 20 5) multipoint with measures

multipoint multipoint zm (10 10 2 4, 20 20
3 5)

multipoint with z coordinates
and measures

multilinestring multilinestring empty empty multilinestring

multilinestring multilinestring z empty empty multilinestring with z
coordinates

multilinestring multilinestring m empty empty multilinestring with
measures

multilinestring multilinestring zm empty empty multilinestring with z
coordinates and measures

multilinestring multilinestring (( )) multilinestring

multilinestring multilinestring z (( )) multilinestring with z
coordinates

multilinestring multilinestring m (( )) multilinestring with measures

multilinestring multilinestring zm (( )) multilinestring with z
coordinates and measures

multipolygon multipolygon empty empty multipolygon

multipolygon multipolygon z empty empty multipolygon with z
coordinates

multipolygon multipolygon m empty empty multipolygon with
measures

multipolygon multipolygon z empty multipolygon with z
coordinates and measures

multipolygon multipolygon ((( ))) multipolygon

multipolygon multipolygon z ((( ))) multipolygon with z coordinates

multipolygon multipolygon m (((10 10 2, 10
20 3, 20 20 4, 20 15 5, 10 10
2), (50 40 7, 50 50 3, 60 50 4,
60 40 5, 50 40 7)))

multipolygon with measures

190 Administration Guide and Reference



Geometry type Text Description Comment

multipolygon multipolygon zm ((( ))) multipolygon with z coordinates
and measures

Appendix B. The OGIS Well-Known Text Representation 191



192 Administration Guide and Reference



Appendix C. The OGIS Well-Known Binary Representation

The Well-Known Binary Representation for OGIS Geometry (WKBGeometry), provides
a portable representation of a geometry value as a contiguous stream of bytes. It
permits Geometry values to be exchanged between an ODBC client and an SQL
database in binary form.

The Well-Known Binary Representation for Geometry is obtained by serializing a
geometry instance as a sequence of numeric types drawn from the set {Unsigned
Integer, Double} and then serializing each numeric type as a sequence of bytes using
one of two well defined, standard, binary representations for numeric types (NDR,
XDR). The specific binary encoding (NDR or XDR) used for a geometry byte stream is
described by a one byte tag that precedes the serialized bytes. The only difference
between the 2 encodings of geometry is one of byte order, the XDR encoding is Big
Endian, the NDR encoding is Little Endian.

Numeric Type Definitions

An Unsigned Integer is a 32 bit (4 byte) data type that encodes a nonnegative integer
in the range [0, 4294967295].

A Double is a 64 bit (8 byte) double precision data type that encodes a double
precision number using the IEEE 754 double precision format

The above definitions are common to both XDR and NDR.

XDR (Big Endian) Encoding of Numeric Types

The XDR representation of an Unsigned Integer is Big Endian (most significant byte
first).

The XDR representation of a Double is Big Endian (sign bit is first byte).

NDR (Little Endian) Encoding of Numeric Types

The NDR representation of an Unsigned Integer is Little Endian (least significant byte
first).

The NDR representation of a Double is Little Endian (sign bit is last byte).

© Copyright IBM Corp. 1998 193



Conversion between NDR and XDR

Conversion between the NDR and XDR data types for Unsigned Integers and Doubles
is a simple operation involving reversing the order of bytes within each Unsigned
Integer or Double in the byte stream.

Description of WKBGeometry Byte Streams

The Well-Known Binary Representation for Geometry is described below. The basic
building block is the byte stream for a Point which consists of two doubles. The byte
streams for other geometries are built using the byte streams for geometries that have
already been defined.

// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
double x;
double y;

};
LinearRing {
uint32 numPoints;
Point points[numPoints];

};
enum wkbGeometryType {
wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,

};
enum wkbByteOrder {
wkbXDR = 0, // Big Endian
wkbNDR = 1 // Little Endian

};
WKBPoint {
byte byteOrder;
uint32 wkbType; // 1
Point point;

};
WKBLineString {
byte byteOrder;
uint32 wkbType; // 2
uint32 numPoints;
Point points[numPoints];

}

194 Administration Guide and Reference



WKBPolygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];

}
WKBMultiPoint {
byte byteOrder;
uint32 wkbType; // 4
uint32 num_wkbPoints;
WKBPoint WKBPoints[num_wkbPoints];

}
WKBMultiLineString {
byte byteOrder;
uint32 wkbType; // 5
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];

}

wkbMultiPolygon {
byte byteOrder;
uint32 wkbType; // 6
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];

}

WKBGeometry {
union {
WKBPoint point;
WKBLineString linestring;
WKBPolygon polygon;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;

}
};

Appendix C. The OGIS Well-Known Binary Representation 195



Assertions for the WKB Representation

The Well-Known Binary Representation for Geometry is designed to represent
instances of the geometry types described in the Geometry Object Model and in the
OpenGIS Abstract Specification

These assertions imply the following for Rings, Polygons and MultiPolygons:

Linear Rings
Rings are simple and closed which means that Linear Rings may not self
intersect.

Polygons
No two Linear Rings in the boundary of a Polygon may cross each other, the
Linear Rings in the boundary of a polygon may intersect at most at a single
point but only as a tangent.

MultiPolygons
The interiors of 2 Polygons that are elements of a MultiPolygon may not
intersect. The Boundaries of any 2 Polygons that are elements of a
MultiPolygon may touch at only a finite number of points.

Figure 38. Representation in NDR format. (B=1) of type polygon (T=3) with 2 linears
(NR=2), each ring having 3 points (NP=3).

196 Administration Guide and Reference



Appendix D. The ESRI Shape Representations

A shape type of 0 indicates a null shape, with no geometric data for the shape.

Value Shape Type

0 Null Shape

1 Point

3* PolyLine

5 Polygon

8 MultiPoint

11 PointZ

13 PolyLineZ

15 PolygonZ

18 MultiPointZ

21 PointM

23 PolyLineM

25 PolygonM

28 MultiPointM

Note: * Shape types not specified above (2, 4, 6, etc.) are reserved for future use.

Shape Types in XY Space

Point

A point consists of a pair of double precision coordinates in the order X, Y.

Table 20. Point Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 1 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

MultiPoint

A MultiPoint consists of a collection of points. The bounding box is stored in the order
Xmin, Ymin, Xmax, Ymax.

Table 21. MultiPoint Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 8 Integer 1 Little

© Copyright IBM Corp. 1998 197



Table 21. MultiPoint Byte Stream Contents (continued)

Position Field Value Type Number Order

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

PolyLine

A PolyLine is an ordered set of vertices which consists of one or more parts. A part is a
connected sequence of two or more points. Parts may or may not be connected to one
another. Parts may or may not intersect one another.

Because this specification does not forbid consecutive points with identical coordinates,
shapefile readers must handle such cases. On the other hand, the degenerate, zero
length parts that might result are not allowed.

The fields for a PolyLine:

Box The bounding box for the PolyLine stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of parts in the PolyLine.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Stores, for each PolyLine, the index of its first
point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the PolyLine are
stored end to end. The points for part 2 follow the points for part 1, and so on.
The parts array holds the array index of the starting point for each part. There
is no delimiter in the points array between parts.

Table 22. PolyLine Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 3 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Note: X = 44 + 4 * NumParts.

198 Administration Guide and Reference



Polygon

A polygon consists of one or more rings. A ring is a connected sequence of four or
more points that form a closed, non-self-intersecting loop. A polygon may contain
multiple outer rings. The order of vertices or orientation for a ring indicates which side
of the ring is the interior of the polygon. The neighborhood to the right of an observer
walking along the ring in vertex order is the neighborhood inside the polygon. Vertices
of rings defining holes in polygons are in a counter-clockwise direction. Vertices for a
single, ringed polygon are, therefore, always in clockwise order. The rings of a polygon
are referred to as its parts.

Because this specification does not forbid consecutive points with identical coordinates,
shapefile readers must handle such cases. On the other hand, the degenerate, zero
length or zero area parts that might result are not allowed

The fields for a polygon:

Box The bounding box for the polygon stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of rings in the polygon.

NumPoints
The total number of points for all rings.

Parts An array of length NumParts. Stores, for each ring, the index of its first point in
the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the polygon are
stored end to end. The points for Ring 2 follow the points for Ring 1, and so
on. The parts array holds the array index of the starting point for each ring.
There is no delimiter in the points array between rings.

Important notes about Polygon shapes::

1. The rings are closed (the first and last vertex of a ring MUST be the same).

2. The order of rings in the points array is not significant.

3. Polygons stored in a shapefile must be clean. A clean polygon is one that:

a. Has no self-intersections. This means that a segment belonging to one ring may
not intersect a segment belonging to another ring. The rings of a polygon can
touch each other at vertices but not along segments. Colinear segments are
considered intersecting.

b. Has the inside of the polygon on the ″correct″ side of the line that defines it. The
neighborhood to the right of an observer walking along the ring in vertex order is
the inside of the polygon. Vertices for a single, ringed polygon are, therefore,
always in clockwise order. Rings defining holes in these polygons have a
counterclockwise orientation.

″Dirty″ polygons occur when the rings that define holes in the polygon also go
clockwise, which causes overlapping interiors.

Appendix D. The ESRI Shape Representations 199



An Example Polygon Instance

Table 23. Polygon Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 5 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Figure 39. A polygon with a hole and eight vertices

Figure 40. Contents of the polygon byte stream. NumParts equals 2 and NumPoints
equals 10. Note that the order of the points for the donut (hole) polygon are reversed.

200 Administration Guide and Reference



Note: X = 44 + 4 * NumParts.

Measured Shape Types in XY Space

PointM

A PointM consists of a pair of double precision coordinates in the order X, Y, plus a
measure M.

Table 24. PointM Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 21 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

Byte 20 M M Double 1 Little

MultiPointM

The fields for a MultiPointM:

Box The bounding box for the MultiPointM stored in the order Xmin, Ymin, Xmax,
Ymax.

NumPoints
The number of Points.

Points An array of Points of length NumPoints.

NumMs
The number of Measures that follow. NumMs can only have two values zero if
no Measures follow this field; or equal to NumPoints if Measures are present.

M Range
The minimum and maximum measures for the MultiPointM stored in the order
Mmin, Mmax.

M Array
An array of Measures of length NumPoints.

Table 25. MultiPointM Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 28 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

Byte X NumMs NumMs Integer 1 Little

Byte X+4* Mmin Mmin Double 1 Little

Appendix D. The ESRI Shape Representations 201



Table 25. MultiPointM Byte Stream Contents (continued)

Position Field Value Type Number Order

Byte X+12* Mmax Mmax Double 1 Little

Byte X+20* Marray Marray Double NumPoints Little

Notes:

1. X = 40 + (16 * NumPoints)

2. * optional

PolyLineM

A shapefile PolyLineM consists of one or more parts. A part is a connected sequence of
two or more points. Parts may or may not be connected to one another. Parts may or
may not intersect one another.

The fields for a PolyLineM:

Box The bounding box for the PolyLineM stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of parts in the PolyLineM.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Stores, for each part, the index of its first point in
the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the PolyLineM are
stored end to end. The points for part 2 follow the points for part 1, and so on.
The parts array holds the array index of the starting point for each part. There
is no delimiter in the points array between parts.

NumMs
The number of Measures that follow. NumMs can only have two values zero if
no Measures follow this field; or equal to NumPoints if Measures are present.

M Range
The minimum and maximum measures for the PolyLineM stored in the order
Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each part in the PolyLineM
are stored end to end. The measures for part 2 follow the measures for part 1,
and so on. The parts array holds the array index of the starting point for each
part. There is no delimiter in the measure array between parts.

Table 26. PolyLineM Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 13 Integer 1 Little

202 Administration Guide and Reference



Table 26. PolyLineM Byte Stream Contents (continued)

Position Field Value Type Number Order

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints).

2. * optional

PolygonM

A PolygonM consists of a number of rings. A ring is a closed, non-self-intersecting loop.
Note that intersections are calculated in XY space, not in XYM space. A PolygonM may
contain multiple outer rings. The rings of a PolygonM are referred to as its parts.

The fields for a PolygonM:

Box The bounding box for the PolygonM stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of rings in the PolygonM.

NumPoints
The total number of points for all rings.

Parts An array of length NumParts. Stores, for each ring, the index of its first point in
the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the PolygonM are
stored end to end. The points for Ring 2 follow the points for Ring 1, and so
on. The parts array holds the array index of the starting point for each ring.
There is no delimiter in the points array between rings.

NumMs
The number of Measures that follow. NumMs can have only two zero values if
no Measures follow this field, or equal to NumPoints if Measures are present.

M Range
The minimum and maximum measures for the PolygonM stored in the order
Mmin, Mmax.

Appendix D. The ESRI Shape Representations 203



M Array
An array of length NumPoints. The measures for each ring in the PolygonM
are stored end to end. The measures for Ring 2 follow the measures for Ring
1, and so on. The parts array holds the array index of the starting measure for
each ring. There is no delimiter in the measure array between rings.

Important notes about PolygonM shapes::

1. The rings are closed (the first and last vertex of a ring must be the same).

2. The order of rings in the points array is not significant.

Table 27. PolygonM Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 15 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints).

2. * optional

Shape Types in XYZ Space

PointZ

A PointZ consists of a triplet of double precision coordinates in the order X, Y, Z plus a
measure.

Table 28. PointZ Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 11 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

Byte 20 Z Z Double 1 Little

Byte 28 Measure M Double 1 Little

204 Administration Guide and Reference



MultiPointZ

A MultiPointZ represents a set of PointZs, as follows:

v The bounding box is stored in the order Xmin, Ymin, Xmax, Ymax.

v The bounding Z range is stored in the order Zmin, Zmax. Bounding M Range is
stored in the order Mmin, Mmax.

Table 29. MultiPointZ Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 18 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

Byte X Zmin Zmin Double 1 Little

Byte X+8 Zmax Zmax Double 1 Little

Byte X+16 Zarray Zarray Double NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

Notes:

1. X = 40 + (16 * NumPoints); Y = X + 16 + (8 * NumPoints)

2. * optional

PolyLineZ

A PolyLineZ consists of one or more parts. A part is a connected sequence of two or
more points. Parts may or may not be connected to one another. Parts may or may not
intersect one another.

The fields for a PolyLineZ:

Box The bounding box for the PolyLineZ stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of parts in the PolyLineZ.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Stores, for each part, the index of its first point in
the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the PolyLineZ are
stored end to end. The points for part 2 follow the points for part 1, and so on.

Appendix D. The ESRI Shape Representations 205



The parts array holds the array index of the starting point for each part. There
is no delimiter in the points array between parts.

Z Range
The minimum and maximum Z values for the PolyLineZ stored in the order
Zmin, Zmax.

Z Array
An array of length NumPoints. The Z values for each part in the PolyLineZ are
stored end to end. The Z values for part 2 follow the Z values for part 1, and
so on. The parts array holds the array index of the starting point for each part.
There is no delimiter in the Z array between parts.

NumMs
The number of Measures that follow. NumMs can only have two values zero if
no Measures follow this field; or equal to NumPoints if Measures are present.

M Range
The minimum and maximum measures for the PolyLineZ stored in the order
Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each part in the PolyLineZ
are stored end to end. The measures for Part 2 follow the measures for Part 1,
and so on. The parts array holds the array index of the starting measure for
each part. There is no delimiter in the measure array between parts.

Table 30. PolyLineZ Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 13 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y Zmin Zmin Double 1 Little

Byte Y+8 Zmax Zmax Double 1 Little

Byte Y+16 Zarray Zarray Double NumPoints Little

Byte Z NumMs NumMs Integer 1 Little

Byte Z+4* Mmin Mmin Double 1 Little

Byte Z+12* Mmax Mmax Double 1 Little

Byte Z+20* Marray Marray Double NumPoints Little

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints), Z = Y + 16 + (8 * NumPoints)

2. * optional

206 Administration Guide and Reference



PolygonZ

A PolygonZ consists of a number of rings. A ring is a closed, non-self-intersecting loop.
A PolygonZ may contain multiple outer rings. The rings of a PolygonZ are referred to as
its parts.

The fields for a PolygonZ:

Box The bounding box for the PolygonZ stored in the order Xmin, Ymin, Xmax,
Ymax.

NumParts
The number of rings in the PolygonZ.

NumPoints
The total number of points for all rings.

Parts An array of length NumParts. Stores, for each ring, the index of its first point in
the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the PolygonZ are
stored end to end. The points for Ring 2 follow the points for Ring 1, and so
on. The parts array holds the array index of the starting point for each ring.
There is no delimiter in the points array between rings.

Z Range
The minimum and maximum Z values for the arc stored in the order Zmin,
Zmax.

Z Array
An array of length NumPoints. The Z values for each ring in the PolygonZ are
stored end to end. The Z values for Ring 2 follow the Z values for Ring 1, and
so on. The parts array holds the array index of the starting Z value for each
ring. There is no delimiter in the Z value array between rings.

NumMs
The number of Measures that follow. NumMs can only have two values zero if
no Measures follow this field; or equal to NumPoints if Measures are present.

M Range
The minimum and maximum measures for the PolygonZ stored in the order
Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each ring in the PolygonZ are
stored end to end. The measures for Ring 2 follow the measures for Ring 1,
and so on. The parts array holds the array index of the starting measure for
each ring. There is no delimiter in the measure array between rings.

Important notes about PolygonZ shapes::

1. The rings are closed (the first and last vertex of a ring MUST be the same).

2. The order of rings in the points array is not significant.

Appendix D. The ESRI Shape Representations 207



Table 31. PolygonZ Byte Stream Contents

Position Field Value Type Number Order

Byte 0 Shape Type 15 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y Zmin Zmin Double 1 Little

Byte Y+8 Zmax Zmax Double 1 Little

Byte Y+16 Zarray Zarray Double NumPoints Little

Byte Z NumMs NumMs Integer 1 Little

Byte Z+4* Mmin Mmin Double 1 Little

Byte Z+12* Mmax Mmax Double 1 Little

Byte Z+20* Marray Marray Double NumPoints Little

208 Administration Guide and Reference



Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998 209



W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

210 Administration Guide and Reference



Trademarks

The following terms are trademarks of the International Business Machines Corporation
in the United States, or other countries, or both:

ADSTAR
Advanced Peer-to-Peer Networking
AIX
APPN
AS/400
AT
CICS
CICS/6000
Client Acces
Current
DATABASE 2
DataGuide
DataJoiner
DataPropagator
DataRefresher
DB2
DFSMS
Distributed Relational Database Architecture
DProp
DRDA
Extended Services for OS/2
HACMP/6000
IBM

IIN
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
MVS/XA
NetView
Operating System/2
Operating System/400
OS/2
OS/390
OS/400
RACF
RETAIN
RISC System/6000
RS/6000
RT
SP
SQL/DS
SQL/400
System/390
VisualAge
VTAM

Intel is a registered trademark of the Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, WindowsNT®, and the Windows logo are registered trademarks of
Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of
others.

Notices 211



212 Administration Guide and Reference



Index

Special Characters
/etc/services 10, 11
.profile 10

Numerics
3D 39, 40
3GL 46
4GL 46
9 Intersection Model 48

A
Administrator user ID 7, 10
ALTER TABLE 3
altitude 39
angular units 181
ArcExplorer 16
ArcInfo 16
ArcView 1, 3, 5, 10, 16

database access extension 13
installing and configuring 13

area 42, 45, 68
asbinary 32, 69
asbinaryshape 71
astext 32, 72
AutoCad 16
avg 3

B
B+ Tree index 18, 26
big endian 193
BLOB 47
boundary 37, 42, 43, 44, 73
buffer 63, 75
byte streams 194

C
CAD 16
CD-ROM, mounting on AIX 10
centroid 42, 45, 76
check constraint 16
class 37
Clementi 48
client-server 6, 18
collection 43
collections, homogeneous 40
components

system 2
configuring 5
conic projections 185
contains 58, 78
converting data 24, 45

convexhull 65, 80
coordinates 40
count 3
cov2sde 16
CREATE_NOT_FENCED 15
CREATE TABLE 3
creating a database 6
cross 55, 82

D
data exchange 45
data types 18
database access extension, ArcView 13
database theme, ArcView 13
DATUM 179
DB2_GEO_COLUMNS table 15
DB2_GEO_COLUMNS view 19
db2 reorg table 3
DB2COMM 10
DB2INSTANCE environment variable 7
db2sampl 17
db2se 9, 10, 15
db2se user ID 7
db2seadm 17, 26

enable_db 9, 15
db2seDemo 17
dbadm 7
DBADM 15
DDL 25
DE-91M 48
DE-9IM pattern matrix 48
demonstration program 17
depth 39
difference 60, 83
dim 48
dimension 39, 85
dimensions 48
disjoint 50, 87
distance 48, 89
distance, minimum 59
distinct 3
DML 25
DMS tablespace 17
drop 15

E
EBNF (Extended Backus Naur Form) 179
Egenhofer 48
empty 38
enable_db 9, 15
endian, little and big 193
endpoint 41, 90

© Copyright IBM Corp. 1998 213



envelope 27, 38, 91
envelopesintersect 33, 93
environment variables 7

DB2COMM 10
DB2INSTANCE 7
LIBPATH 10
PATH 10
SDEHOME 10

equals 49, 95
ESRI

ArcView 1
shape representation 47
Spatial Database Engine 1

example program 17
exchanging data 45
export 3
exterior 37
exterior ring 42
exteriorring 42, 96

F
Felice 48
foreign key 3

G
gateway 2
geocentric coordinate system 180
geocoder, SDE 2
geodetic datums 182
GEOGCS 179
geometry 37
GEOMETRY_COLUMNS view 20
geometryfromshape 47, 97
geometryfromtext 99
geometryfromtextcreates 45
geometryfromwkb 101
geometryn 40, 103
geometrytype 40, 104
GIS (Geographic Information System) 1
granting authority 7, 9, 20

CREATE_NOT_FENCED 15
DBADM 15

grid 26
grid indexing strategy 18
group by 3

H
Herring 48
homogeneous collections 40

I
import 3
index 25

drop 16
invalidate 16

index (continued)
recover 16
update 16

index extensions 18
input 73
inserting data 23
installation guide, DataJoiner 6
installing 5

verification 13
instantiation 40
interior 37
interior ring 42
interiorringn 42, 106
intersect 43
intersection 48, 59, 112
intersects 51, 114
is3d 39, 115
isclosed 41, 43, 116
isempty 38, 118
ismeasured 39, 120
isring 41, 121
issimple 38, 123

J
join, spatial 34

K
key

foreign 3
primary 3

keys 19

L
length 3, 41, 43, 124
levels, index 27
LIBPATH 10
limitations 3
linear rings, OGIS 196
linear units 180
linefromshape 47, 126
linefromtext 45, 128
linefromwkb 129
linestring 42
little endian 193
load 3
LOB 4
lob options 3
locatealong 64, 131
locatebetween 64, 133

M
m 135
M coordinate 40
map exporter, SDE 2
map loader, SDE 2

214 Administration Guide and Reference



map projections 185
MapObjects 16
matrices 49
matrix, DE-9IM pattern 48
max 3
measure 64
measures 39, 47
memory requirements 5
memory size, UDF 7
meta tables 40
meta tables and views 19
MicroStation 16
min 3
minimum distance 59
mlinefromshape 47, 136
mlinefromtext 45, 138
mlinefromwkb 139
mounting a CD-ROM drive on AIX 10
mpointfromshape 47, 141
mpointfromtext 45, 143
mpointfromwkb 144
mpolyfromshape 47, 146
mpolyfromtext 45, 147
mpolyfromwkb 148
multilinestring 43
multipoint 43
multipolygon 44
multipolygons, OGIS 196

N
NDR 193
negative buffer 63
non-simple 38
not empty 38
notices 209
numeric type definitions 193
numgeometries 40, 149
numinteriorrings 42, 150
numpoints 41, 151

O
ODBC 33, 46
OGIS 1, 19, 37

Assertions 196
specifications 179

OR 61
order by 3
overlap 54, 152

P
PATH 10
pattern matrices 49
planar projections 185
planning for installation 5
point 40

pointfromshape 24, 47, 153
pointfromtext 24, 45, 155
pointfromwkb 156
pointn 41, 158
pointonsurface 42, 159
points 38
polyfromshape 24, 47, 160
polyfromtext 24, 45, 162
polyfromwkb 163
polygon 42
polygons, OGIS 196
POSC/EPSB 179
predicates 48
prefetch size 17
primary key 3
prime meridians 184
privileges 20
product inventory 5
PROJCS 179
projection parameters 186
projections 185

Q
query 32

R
recover index 16
reference system 40, 179
registering the product 16
relations 48
reorg table 3
representations 45
runstats 3

S
sample program 17
SDE (Spatial Database Engine) 1, 5

configuring 10
converting and importing data 16
geocoder 2
map exporter 2
map loader 2
starting 10
to administer the Spatial Extender 16

SDEHOME 10
sdemon 10
setting-up 5
shp2sde 16
simple 38
SMS tablespace 17
spatial

complete system 1
data types 18
enablement 9
functions 18

Index 215



spatial (continued)
index 25
join 34
predicates 18
reference system 40, 179
relations 48

SPATIAL_REF_SYS view 19
SPATIAL_REFERENCES 40
SPATIAL_REFERENCES table 19, 21
specifications, OGIS 179
spheroids 181
SQL 67
SQLFetch 33
SQLFreeStmt 33
srid 40, 165
stand-alone 5
startpoint 41, 166
subclass 37
sum 3
superclass 37
symmetric difference 61
symmetricdiff 167
SYSADM 7, 15
system components 2

T
tablespace 17
TCP/IP 10, 11
tesselation 65
theme, ArcView database 13
TIN network 65
touch 52, 169
trademarks 211
transformation 62
tuning information 17

U
UDF memory size 7, 9
union 61, 170
UNIT 179
units of measure 180, 181
update 35
update index 16

V
verifying installation 13
version information 5

W
web site 13
well-known binary representation 193
well-known text representation 45, 179, 187
Windows NT 5, 7
with default 3
within 56, 171

WKB 32, 45
WKBGeometry 193

X
x 172
XDR 193
XOR 61

Y
y 173

Z
z 174
Z coordinates 39, 47, 48

216 Administration Guide and Reference



Readers’ Comments — We’d Like to Hear from You

DB2 Spatial Extender
Administration Guide and Reference
Version 2 Release 1 Modification 1

Publication No. SC26-9316-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it

believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.



Readers’ Comments — We’d Like to Hear from You
SC26-9316-00

SC26-9316-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9316-00



Spine information:

IBM DB2 Spatial Extender Administration Guide and Reference

Version 2
Release 1
Modification 1

SC26-
9316-00


