
IBM DB2 Information Integrator

Data Source Configuration Guide

Version 8

���

IBM DB2 Information Integrator

Data Source Configuration Guide

Version 8

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 435.

This document contains proprietary information of IBM. It is provided under a license agreement and Copyright law
protects it. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative:
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998 - 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book xi
Who should read this book xi
Conventions xi
How to read the syntax diagrams xi

Chapter 1. Overview of configuring access
to data sources 1
Fast track to configuring your data sources . . 1
Supported data sources 2
Create nicknames for each data source object . 4

Including column options when you create
a nickname. 6
Creating a nickname on a nickname . . . 7

Optional configuration steps 7

Chapter 2. Overview of a federated system 9
Wrappers and wrapper modules 9
Server definitions and server options. . . . 10
Collating sequences and data source
configuration. 11
User mappings 11
Nicknames and data source objects 12
Valid data source objects 13
Column options. 14
Data type mappings 15
Function mappings 16
Index specifications 16

Chapter 3. Planning for federated data
source configuration 19
Federated object naming rules 19
Preserving case-sensitive values in a federated
system 20
Update data source statistics 22
Plan the data type mappings 22
Plan the function mappings 24
Plan the user mappings 25
Choose the correct wrapper 25
Checklist for planning your federated system
configuration. 26

Checklist: Federated object naming rules 26
Checklist: Preserving case-sensitive values 26
Checklist: Data source statistics 27
Checklist: Data type mappings 27
Checklist: User mappings 28

Checklist: Wrappers 28

Chapter 4. Configuring access to DB2
family data sources 31
Adding DB2 family data sources to federated
servers 31
Cataloging a node entry in the federated node
directory 32
Cataloging the remote database in the
federated system database directory 33
Registering the DB2 wrapper 34
Registering the server definitions for a DB2
data source 35
CREATE SERVER statement - Examples for
DB2 wrapper. 37
Creating the user mapping for a DB2 data
source 38
CREATE USER MAPPING statement -
Examples for DB2 wrapper 39
Testing the connection to the DB2 data source
server 40
Registering nicknames for DB2 tables and
views 41
CREATE NICKNAME statement - Examples
for DB2 wrapper 42
Tuning and troubleshooting the configuration
to DB2 family data sources 43

Improving performance by setting the
DB2_DJ_COMM variable (UNIX) 43

Chapter 5. Configuring access to Informix
data sources 45
Adding Informix data sources to federated
servers 45
Setting up and testing the Informix client
configuration file 46
Registering the Informix wrapper 48
Registering the server definitions for an
Informix data source 49
CREATE SERVER statement - Examples for
Informix wrapper 50
Creating the user mapping for an Informix
data source 52
CREATE USER MAPPING statement -
Examples for Informix wrapper 53

© Copyright IBM Corp. 1998 - 2003 iii

Testing the connection to the Informix server 54
Registering nicknames for Informix tables,
views, and synonyms 55
CREATE NICKNAME statement - Examples
for Informix wrapper 56
Tuning and troubleshooting the configuration
to Informix data sources 57

Improving performance by setting the
FOLD_ID and FOLD_PW server options . 57
Improving performance by setting the
DB2_DJ_COMM variable (UNIX) 58

Chapter 6. Configuring access to Oracle
data sources 59
Adding Oracle data sources to federated
servers 59
Setting up and testing the Oracle client
configuration file 60
Registering the Oracle wrapper 61
Oracle wrappers and library names 63
Registering the server definitions for an
Oracle data source 64
CREATE SERVER statement - Examples for
Oracle wrapper 65
Creating the user mappings for an Oracle
data source 66
CREATE USER MAPPING statement -
Examples for Oracle wrapper 67
Testing the connection to the Oracle server. . 68
Registering nicknames for Oracle tables and
views 69
CREATE NICKNAME statement - Examples
for Oracle wrapper. 70
Tuning and troubleshooting the configuration
to Oracle data sources. 71

Improving performance by setting the
DB2_DJ_COMM variable (UNIX) 71
Connectivity problems 72

Chapter 7. Configuring access to Sybase
data sources 73
Adding Sybase data sources to federated
servers 73
Setting up and testing the Sybase client
configuration file 74
Registering the Sybase wrapper 76
Registering the server definitions for a Sybase
data source 77
CREATE SERVER statement - Examples for
Sybase wrapper 78

Creating a user mapping for a Sybase data
source 80
CREATE USER MAPPING statement -
Examples for Sybase wrapper 81
Testing the connection to the Sybase server . 82
Registering nicknames for Sybase tables and
views 84
CREATE NICKNAME statement - Examples
for Sybase wrapper 85
Tuning and troubleshooting the configuration
to Sybase data sources 85

Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX). 86
Using CTLIB instead of DBLIB 86
Resolving the sp_helpindex error 87

Chapter 8. Configuring access to Microsoft
SQL Server data sources 89
Adding Microsoft SQL Server data sources to
federated servers 89
Preparing the federated server and database
to access Microsoft SQL Server data sources . 90
Registering the Microsoft SQL Server wrapper 92
Registering the server definitions for a
Microsoft SQL Server data source 93
CREATE SERVER statement - Examples for
Microsoft SQL Server wrapper 94
Creating a user mapping for a Microsoft SQL
Server data source 96
CREATE USER MAPPING statement -
Examples for Microsoft SQL Server wrapper . 97
Testing the connection to the Microsoft SQL
Server remote server 98
Registering nicknames for Microsoft SQL
Server tables and views 99
CREATE NICKNAME statement - Examples
for Microsoft SQL Server wrapper 101
Tuning and troubleshooting the
configuration to Microsoft SQL Server data
sources 101

Improving performance by setting the
DB2_DJ_COMM variable (UNIX) . . . 102
Obtaining ODBC traces 102

Chapter 9. Configuring access to ODBC
data sources 105
Adding ODBC data sources to federated
servers 105

iv Data Source Configuration Guide

Preparing the federated server and database
to access data sources through ODBC . . . 107
Registering the ODBC wrapper 108
CREATE WRAPPER statement - Examples
for ODBC wrapper 109
Registering the server definitions for an
ODBC data source 110
CREATE SERVER statement - Examples of
ODBC wrapper 111
Creating a user mapping for an ODBC data
source. 112
CREATE USER MAPPING statement -
Examples for ODBC wrapper 113
Testing the connection to the ODBC data
source server 114
Registering nicknames for ODBC data source
tables and views 116
CREATE NICKNAME statement - Examples
for ODBC wrapper 117
Tuning and troubleshooting the
configuration to ODBC data sources . . . 118

Improving performance by setting the
DB2_DJ_COMM variable 118
Obtaining ODBC traces 119

Chapter 10. Configuring access to
Teradata data sources 121
Adding Teradata data sources to federated
servers 121
Testing the connection to the Teradata server 123
Verifying that the Teradata library is enabled
for run-time linking (AIX) 124
Registering the Teradata wrapper 125
Registering the server definitions for a
Teradata data source 126
CREATE SERVER statement - Examples for
Teradata wrapper 127
Creating the user mapping for a Teradata
data source 128
CREATE USER MAPPING statement -
Examples for Teradata wrapper 129
Testing the connection from the federated
server to the Teradata server 130
Teradata nicknames on federated servers . . 132
Registering nicknames for Teradata tables
and views 132
CREATE NICKNAME statement - Examples
for Teradata wrapper 133
Tuning and troubleshooting the
configuration to Teradata data sources . . . 134

Improving access to the Teradata server
by setting the DB2_DJ_COMM variable . 134
Tuning and disabling Teradata access
logging 135
Enabling run-time linking for libcliv2.so
(AIX) 135

Chapter 11. Configuring access to OLE
DB data sources 137
Adding OLE DB data sources to federated
servers 137
Registering the OLE DB wrapper 138
Registering the server definitions for an OLE
DB data source. 139
CREATE SERVER statement - Examples for
OLE DB wrapper 140
Creating a user mapping for an OLE DB
data source 141
CREATE USER MAPPING statement -
Examples for OLE DB wrapper 141

Chapter 12. Configuring access to
Table-structured file data sources . . . 143
What are table-structured files? 143
Types of table-structured files 143

Sorted files 144
Unsorted files 144

How DB2 Information Integrator works with
table-structured files 144
Adding table-structured files to a federated
system 146
Registering the table-structured file wrapper 146
Setting the DB2_DJ_COMM DB2 profile
variable for the table-structured file wrapper. 147
Registering the server for table-structured
files 148
Registering nicknames for table-structured
files 149
CREATE NICKNAME statement - Examples
for table-structured file wrapper 150
File access control model for the
table-structured file wrapper 151
Optimization tips and considerations for the
table-structured file wrapper 151
Messages for the table-structured file
wrapper 152

Chapter 13. Configuring access to
Documentum data sources 157
What is Documentum? 157

Contents v

Adding Documentum to a federated system 159
Making the Documentum client library
available to DB2 (AIX and Solaris Operating
Environment only) 160
Pointing to Documentum’s client dmcl.ini
file 161
Registering the Documentum wrapper . . . 162
Setting the DB2_DJ_COMM DB2 profile
variable for the Documentum wrapper. . . 163
Registering the server for Documentum data
sources 164
Mapping users (Documentum wrapper) . . 164
Registering nicknames for Documentum
data sources 165

Understanding pseudo columns 166
CREATE NICKNAME statement - Example
for Documentum wrapper 170
Registering custom functions for
Documentum data sources 172

Custom function string argument rules 173
Using custom functions in queries . . . 173
Custom function table 174

Documentum data source – Example queries 179
What is the CreateNicknameFile utility for
the Documentum wrapper? 180
Installing the CreateNicknameFile utility
(Documentum wrapper) 181
Configuring the CreateNicknameFile utility
(Documentum wrapper) 181
Mapping the DM_ID object type in
Documentum registered tables 182
Dual defining repeating attributes
(Documentum wrapper) 183
Access control for the Documentum wrapper 184
Messages for the Documentum wrapper . . 184

Chapter 14. Configuring access to Excel
data sources 191
What is Excel? 191
Adding Excel to a federated system. . . . 193
Registering the Excel wrapper 193
Registering the server for an Excel data
source 194
Registering nicknames for Excel data sources 194
Excel data source – Example queries . . . 195
Excel data source – Sample scenario . . . 196
File access control model for the Excel
wrapper 198
Messages for the Excel wrapper 198

Chapter 15. Configuring access to BLAST
data sources 205
What is BLAST? 205
Adding BLAST to a federated system . . . 210
Verifying that the correct version of the
blastall executable and matrix files are
installed 211
Configuring the BLAST daemon 211
Starting the BLAST daemon 214
Registering the BLAST wrapper 215
Setting the DB2_DJ_COMM DB2 profile
variable for the BLAST wrapper 216
Registering the server for a BLAST data
source 217
Registering nicknames for BLAST data
sources 217

Definition line parsing 218
Fixed columns 218

CREATE NICKNAME statement - Examples
for BLAST wrapper 223
Setting up TurboBlast to work with the
BLAST wrapper 224
Constructing BLAST SQL queries 225
BLAST data source – Example queries . . . 226
Optimization tips for the BLAST wrapper 228
Messages for the BLAST wrapper 228

Chapter 16. Configuring access to XML
data sources 231
What is XML? 231
Adding XML to a federated system 235
Registering the XML wrapper. 236
Setting the DB2_DJ_COMM DB2 profile
variable for the XML wrapper 236
Registering the server for an XML data
source 237
Data associations between nicknames and
XML documents 238
The cost model facility for the XML wrapper 240
Optimization tips for the XML cost model
facility 241
Registering nicknames for XML data sources 243
CREATE NICKNAME statement - Examples
for XML wrapper 244
Creating federated views for nonroot
nicknames (XML wrapper) 249
XML data source - Example queries. . . . 250
Messages for the XML wrapper 251

vi Data Source Configuration Guide

Chapter 17. Configuring access to Entrez
data sources 261
What is Entrez? 261
Adding Entrez to a federated system . . . 262
Registering custom functions for the Entrez
wrapper 263
Registering the Entrez wrapper 263
Setting the DB2_DJ_COMM DB2 profile
variable for the Entrez wrapper 264
Registering the server for an Entrez data
source 265
Registering nicknames for Entrez data
sources 266
Custom functions and Entrez queries . . . 267
Relational predicates for the Entrez wrapper 269
Invalid WHERE clauses for the Entrez
wrapper 270
Schema data element simplification 270

Item lists. 270
Names 270
Dates 271

Entrez data source — Example queries. . . 271
Custom function table - Entrez wrapper . . 273
PubMed and Nucleotide schema tables . . 273
Messages for the Entrez wrapper 281

Chapter 18. Configuring access to
Extended Search data sources 287
What is Extended Search? 287

Extended Search data sources 288
How the Extended Search wrapper works 288

Extended Search nicknames 290
Extended Search vertical tables 292
Adding Extended Search data sources to a
federated server 295
Registering the Extended Search wrapper 295
Registering the server for Extended Search
data sources 296
Registering nicknames for Extended Search
data sources 297
Registering user mappings for Extended
Search data sources 298
Registering the Extended Search custom
function 299
Extended Search wrapper - Query guidelines 300
Extended Search wrapper - Example queries 303
Extended Search wrapper - Generalized
query language 305
Messages for the Extended Search wrapper 307

Chapter 19. Configuring access to
HMMER data sources 313
What is HMMER? 313
Adding HMMER to a federated system . . 317
Verifying that the correct version of the
hmmpfam executable is installed. 318
Configuring the HMMER daemon 318
Starting the HMMER daemon. 321
Registering the HMMER wrapper 322
Setting the DB2_DJ_COMM DB2 profile
variable for the HMMER wrapper 323
Registering the server for a HMMER data
source 323

Arguments 324
Options 324

Registering nicknames for HMMER data
sources 325

Nickname options 325
Fixed columns 326

CREATE NICKNAME statement - Example
for HMMER wrapper 328
HMMER data source – complete example 328
Construct new HMMER queries with
samples 330
Optimization tips for the HMMER wrapper 331
Messages for the HMMER wrapper 331

Chapter 20. Altering nicknames 333
Altering nicknames 333
Changing the data type 333
Changing the nickname option 334

Chapter 21. DDL command reference . . 335
CREATE FUNCTION statement syntax -
Extended Search wrapper 335
CREATE NICKNAME statement syntax -
BLAST wrapper 336
CREATE NICKNAME statement syntax -
Documentum wrapper 338
CREATE NICKNAME statement syntax -
Excel wrapper 341
CREATE NICKNAME statement syntax -
Extended Search wrapper 343
CREATE NICKNAME statement options -
Entrez wrapper 346
CREATE NICKNAME statement syntax -
Table-structured file wrapper 347
CREATE NICKNAME statement syntax -
XML wrapper 351

Contents vii

CREATE SERVER statement arguments -
BLAST wrapper 357
CREATE SERVER statement arguments and
options - Documentum wrapper 357
CREATE SERVER statement arguments -
Entrez wrapper 358
CREATE SERVER statement arguments -
Excel wrapper 359
CREATE SERVER statement syntax -
Extended Search wrapper 359
CREATE USER MAPPING statement options
- Documentum wrapper 361
CREATE USER MAPPING statement syntax
- Extended Search wrapper 361
CREATE WRAPPER statement syntax -
Extended Search wrapper 362

Appendix A. Views in the global catalog
table containing federated information . . 363

Appendix B. Server options for federated
systems 367

Appendix C. User mapping options for
federated systems 377

Appendix D. Column options for
federated systems 379

Appendix E. Function mapping options
for federated systems. 381

Appendix F. Valid server types in SQL
statements 383
CTLIB wrapper 383
DBLIB wrapper 383
DJXMSSQL3 wrapper 383
DRDA wrapper 383
Informix wrapper 385
MSSQLODBC3 wrapper 385
NET8 wrapper 385
ODBC wrapper 385
OLE DB wrapper 385
SQLNET wrapper. 386
Teradata wrapper 386

Appendix G. Default forward data type
mappings 387
DB2 for z/OS and OS/390 data sources . . 388

DB2 for iSeries data sources 389
DB2 Server for VM and VSE data sources 390
DB2 for Linux, UNIX, and Windows data
sources 391
Informix data sources 393
Microsoft SQL Server data sources 395
ODBC data sources 398
Oracle NET8 data sources 400
Oracle SQLNET data sources 401
Sybase data sources 402
Teradata data sources 404

Appendix H. Default reverse data type
mappings 407
DB2 for z/OS and OS/390 data sources . . 408
DB2 for iSeries data sources 409
DB2 for VM and VSE data sources 410
DB2 for Linux, UNIX, and Windows data
sources 411
Informix data sources 412
Microsoft SQL Server data sources 414
Oracle SQLNET data sources 415
Oracle NET8 data sources 416
Sybase data sources 417
Teradata data sources 418

DB2 Information Integrator technical
documentation 421
Accessing books and release information . . 421

DB2 Information Integrator books . . . 421
Release notes 424
FixPaks for DB2 Information Integrator
documentation 425

Accessing topics using the DB2 Information
Integrator Information Center or the DB2
HTML Documentation CD 425

Features of the DB2 Information
Integrator Information Center 425
Finding topics in the DB2 Information
Integrator Information Center 426
Using the DB2 HTML Documentation . . 427
Searching the DB2 documentation . . . 430
Troubleshooting DB2 documentation
search with Netscape 4.x 431

Accessibility 433
Keyboard input and navigation 433
Accessible display 433

Font settings 433
Nondependence on color 433

viii Data Source Configuration Guide

Alternative alert cues 433
Compatibility with assistive technologies 434
Accessible documentation 434

Notices 435
Trademarks 437

Index 439

Contacting IBM 445
Product information 445
Comments on the documentation 445

Contents ix

x Data Source Configuration Guide

About this book

This book contains:
v Instructions for adding data sources to a federated system by registering

wrappers. Wrappers are modules that enable you or an application to
communicate with a data source using SQL statements.

Technical changes to the text are indicated by a vertical line to the left of the
change.

Who should read this book

This book is for administrators who are setting up a federated database
environment, and for application programmers who are developing
applications for such an environment.

Conventions

This book uses these highlighting conventions:

Boldface type
Indicates commands and graphical user interface (GUI) controls (for
example, names of fields, names of folders, menu choices).

Monospace type
Indicates examples of coding or of text that you type.

Italic type
Indicates variables that you should replace with a value. Italic type
also indicates book titles and emphasizes words.

UPPERCASE TYPE
Indicates SQL keywords and names of objects (for example, tables,
views, and servers).

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

© Copyright IBM Corp. 1998 - 2003 xi

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous
line.

The ──� symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

�� STATEMENT required item �

Optional items appear below the main path.

�� STATEMENT
optional item

�

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

�� STATEMENT
optional item

�

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

�� STATEMENT required choice1
required choice2

�

If choosing none of the items is an option, the entire stack appears below the
main path.

�� STATEMENT
optional choice1
optional choice2

�

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

xii Data Source Configuration Guide

�� STATEMENT
default choice

optional choice
optional choice

�

An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

�� STATEMENT � repeatable item �

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

�� STATEMENT �

,

repeatable item �

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For
example, in the following diagram, the variable parameter-block can be
replaced by any of the interpretations of the diagram that is headed
parameter-block:

�� STATEMENT parameter-block �

parameter-block:

parameter1
parameter2 parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in
any sequence.

About this book xiii

�� STATEMENT item1 * item2 * item3 * item4 �

The above diagram shows that item2 and item3 may be specified in either
order. Both of the following are valid:
STATEMENT item1 item2 item3 item4
STATEMENT item1 item3 item2 item4

xiv Data Source Configuration Guide

Chapter 1. Overview of configuring access to data sources

The following sections provide a concise guide to configuring a federated
server and database to access your data sources:
v They contain information about the basic steps needed to quickly perform

the configuration steps.
v They outline several optional steps, if you need them, to fine-tune the data

source configuration.

There are individual configuration chapters for each data source.

Fast track to configuring your data sources

You can accomplish most of the steps required to configure access to a data
source through the DB2® Control Center. Use the DB2 Command Center for
the steps that require a command line. Toggle between these graphical user
interfaces to quickly configure access to a data source. The steps to configure
access are simliar, regardless of the data source. The basic steps and
recommended interface are:

Table 1. The recommended interface and configuration steps

Configuration step Recommended interface Notes

1. Prepare the federated
server for the data source

Client Configuration
Assistant

For DB2 family data
sources: Catalog the node
and the remote database

For Informix, Oracle,
Sybase, Microsoft® SQL
Server data sources: Setup
and test the client
configuration file

2. Create the wrappers DB2 Control Center

3. Create the server
definitions

DB2 Control Center The concept of a node
varies from data source to
data source. For relational
data sources, a node reflects
a server instance of the data
source. In DB2 a node is
equivalent to an instance,
which is running copy of
DB2.

© Copyright IBM Corp. 1998 - 2003 1

Table 1. The recommended interface and configuration steps (continued)

Configuration step Recommended interface Notes

4. Create the user mappings DB2 Control Center If you attempt to retrieve
the remote password
associated with a user
mapping from the
SYSCAT.USEROPTIONS
catalog view, the remote
password value is
displayed encrypted.

5. Test the connection to the
data source server

DB2 Command Center Use the Show All Tables
panel in the DB2 Control
Center to verify the
connections.

6. Create the nicknames DB2 Control Center

However, before you can configure access to a data source, you must make
sure that the federated server has been set up properly. It is especially
important that you:
v Link DB2 to the client software. This creates the data source wrapper

libraries on the federated server.
v Set up the data source environment variables.

Related concepts:

v “Optional configuration steps” on page 7

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

Related reference:

v “Federated object naming rules” on page 19

Supported data sources

There are many data sources that you can access using a federated system.
The following table lists the supported data sources:

2 Data Source Configuration Guide

Table 2. Supported data source versions and access methods.

Data source Supported versions Access method

DB2 Universal
Database™ for Linux,
UNIX, and Windows®

7.1, 7.2, 8.1 DRDA®

DB2 Universal Database
for z/OS™ and OS/390®

6.1, 7.1 with the
following APARs
applied:

v PQ62695

v PQ55393

v PQ56616

v PQ54605

v PQ46183

v PQ62139

DRDA

DB2 Universal Database
for iSeries™

4.5 (or later) with the
following APARs
applied:

v SA95719

v SE06003

v SE06872

v SI05990

v SI05991

DRDA

DB2 Server for VM and
VSE

7.1 (or later) with fixes
for APARs for schema
functions applied.

DRDA

Informix™ 7, 8, 9 Informix Client SDK

ODBC 3.x ODBC driver for the data
source, such as Redbrick
ODBC Driver to access
Redbrick.

OLE DB OLE DB 2.0 (or later)

Oracle 7.3.4, 8.x, 9.x SQLNET or NET8 client
software

Microsoft SQL Server 6.5, 7.0, 2000 On Windows, the Microsoft
SQL Server Client ODBC
3.0 (or later) driver.

On UNIX, the DataDirect
Technologies (formerly
MERANT) Connect ODBC
3.7 (or later) driver.

Sybase 11.x,12.x Sybase Open Client

Chapter 1. Overview of configuring access to data sources 3

Table 2. Supported data source versions and access methods. (continued)

Data source Supported versions Access method

Teradata V2R3, V2R4 Teradata Call-Level
Interface Version 2 (CLIv2)
Release 04.06 (or later)

BLAST 2.x BLAST daemon (supplied
with the wrapper)

Documentum Documentum server:
EDMS 98 (also referred
to as version 3) and 4i.

Documentum Client
API/Library

Entrez 1.0 None

HMMER 2.2g HMMER daemon (supplied
with the wrapper)

IBM Lotus Extended
Search

4.0 Extended Search Client
Library (supplied with the
wrapper)

Microsoft Excel 97, 2000 Excel 97 or 2000 installed
on the federated server

Table-structured files None

XML 1.0 specification None

Related concepts:

v “Data sources” in the Federated Systems Guide

Create nicknames for each data source object

The task of creating a nickname is typically the most involved of the
configuration tasks. This section provides an example of what you have to do
to identify candidates for nicknames and to register a nickname for a
federated data source object.

Data source objects can be relational or nonrelational. Examples of relational
data source objects are: database tables, views, and synonyms (Informix only).
Examples of nonrelational data source objects are: BLAST search algorithms,
objects and registered tables in a Documentum Docbase, Microsoft® Excel files
(.xls), table-structured files (.txt), and XML tagged files.

Tables and views that reside in the federated database are local objects. You do
not create nicknames for these objects. You use the actual object name in your
queries.

4 Data Source Configuration Guide

Remote objects are:
v Tables and views in another DB2® database instance on the federated

server. You need to create nicknames for these objects.
v Data source objects that reside in another data source, such as: Oracle,

Sybase, Documentum, and ODBC. You need to create nicknames for these
objects.

When you submit a distributed request to the federated server, the request
references a data source object by its nickname. Nicknames are mapped to
specific object names at the data source. The mappings eliminate the need to
qualify the nicknames by data source names. The location of the data source
objects are transparent to the client application or end user. Nicknames are not
alternative names for data source objects. They are pointers by which the
federated server references these objects.

For example, if you define the nickname DEPT to represent an Informix™

database table called NFX1.PERSON.DEPT, the statement SELECT * FROM
DEPT is allowed from the federated server. However, the statement, SELECT *
FROM NFX1.PERSON.DEPT is not allowed.

When you create a nickname for a relational data source object, catalog data
from the remote server is retrieved and stored in the federated global catalog.

For non-relational data sources, the way that data source information is stored
in the global catalog varies from data source to data source. The information
might be retrieved from the remote server, or you might have to include this
information in the CREATE NICKNAME statement.

SQL Compiler uses this metadata to facilitate access to the data source object.
For example, suppose that a nickname is defined for a table with an index.
The metadata supplied to the global catalog is information related to the
index, such as the name of each column in the index key.

To create a nickname, use the DB2 Control Center. You can also issue the
CREATE NICKNAME statement in the DB2 Command Center or in the
command line processor (CLP). You can define more than one nickname for
the same data source object.

The following example shows a CREATE NICKNAME statement:
CREATE NICKNAME SYBSALES FOR SYBSERVER."salesdata"."europe"

where:

SYBSALES
Is a unique nickname for the Sybase table or view.

Chapter 1. Overview of configuring access to data sources 5

Note: The nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authid of the user creating the
nickname. Nicknames can be 128 characters in length.

SYBSERVER.″salesdata″.″europe″
Is a three-part identifier for the remote data source object.
v SYBSERVER is the name you assigned to the data source server in

the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the object

belongs. This value is case sensitive.
v europe is the name of the remote object that you want to access. This

value is case sensitive.

When you create the nickname, the federated server uses the nickname to test
the connection to the data source. It attempts to query the data source catalog.
If the connection does not work, you will receive an error message.

Including column options when you create a nickname
Suppose that you want to create the nickname INDSALES for a table called
INDONESIA_SALES. The table contains the column POSTAL_CODE with the
data type of CHAR. The column contains only numeric characters. The data
source has a collating sequence that differs from the federated database
collating sequence. Typcially, the federated server would not sort this column
at the data source. However, the POSTAL_CODE column contains only
numeric characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of
’Y’ to the NUMERIC_STRING column option. This gives the DB2 query
optimizer the option of performing the sort at the data source. If the sort is
performed remotely, you can avoid the overhead of porting the data to the
federated server. To provide this information to the federated server, you add
the NUMERIC_STRING column option to the CREATE NICKNAME
statement. For example:
CREATE NICKNAME INDSALES FOR SERVER44."sales"."INDONESIA_SALES"
OPTIONS (POSTAL_CODE NUMERIC_STRING ’Y’)

For some nonrelational data sources, the wrappers do not contain the default
type mappings. If the wrapper does not contain the default type mappings,
the corresponding DB2 for UNIX® and Windows® data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object. For example:
CREATE NICKNAME DRUGDATA1
(DCODE INTEGER,DRUG CHAR(20),MANUFACTURER CHAR(20))
FOR SERVER biochem_lab
OPTIONS (FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,
COLUMN_DELIMITER ’,’, KEY_COLUMN ’Dcode’, VALIDATE_DATA_FILE ’Y’)

6 Data Source Configuration Guide

Creating a nickname on a nickname
Occasionally, you may need to create a nickname on a nickname. Suppose you
have a federated server using AIX® and a federated server using Windows.
You want to access an Excel spreadsheet from both federated servers.
However, the Excel wrapper is only supported on federated servers that use
Windows. To access the Excel spreadsheet from the AIX federated server, use
these steps:
1. On the Windows federated server, setup and configure the server to access

Excel data sources.
2. Create a nickname for the Excel spreadsheet.
3. On the AIX federated server, setup and configure the server to access DB2

family data sources.
4. Create a nickname for the Excel nickname on the Windows federated

server.

Related tasks:

v “Nicknames : Federated Systems help”
v “Filtering tables and views for creating nicknames : Federated Systems

help”
v “Filtering tables for creating nicknames: Federated Systems help”
v “Creating nicknames: Federated Systems help”

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “Federated object naming rules” on page 19

Optional configuration steps

You can customize or tune columns of a nickname that are used in federated
queries in the following manner:
v Specify indexes for objects that did not have an index when you originally

configured access to the data source. For example, you would create an
index specification when a table acquires a new index. Likewise, you would
create an index specification if the data source object (such as a view)
typically does not have indexes.

v Define alternative data type mappings, instead of using the default data
type mappings. You can specify a mapping that is used only for a specific
data source object, such as a specific table within a database.

v Define alternative function mappings, instead of using the default function
mappings. This is especially useful when you want to force DB2® to use a
user-defined function at the data source.

Chapter 1. Overview of configuring access to data sources 7

8 Data Source Configuration Guide

Chapter 2. Overview of a federated system

The following sections provide an overview of a federated system.

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated server interacts with data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data
from it iteratively. Typically, the DB2® federated instance owner uses the
CREATE WRAPPER statement to register a wrapper in the federated
database.

You create one wrapper for each type of data source that you want to access.
For example, suppose that you want to access three DB2 for z/OS™ database
tables, one DB2 for iSeries™ table, two Informix™ tables, and one Informix
view. You need to create only two wrappers: one for the DB2 data source
objects and one for the Informix data source objects. Once these wrappers are
registered in the federated database, you can use these wrappers to access
other objects from those data sources. For example, you can use the DRDA®

wrapper with all DB2 family data source objects—DB2 for Linux, UNIX,® and
Windows, DB2 for z/OS and OS/390, DB2 for iSeries, and DB2 Server for VM
and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

A wrapper performs many tasks. Some of these tasks are:
v It connects to the data source. The wrapper uses the standard connection

API of the data source.
v It submits queries to the data source.

– For data sources that support SQL, the query is submitted in SQL.
– For data sources that do not support SQL, the query is translated into

the native query language of the source or into a series of source API
calls.

v It receives results sets from the data source. The wrapper uses the data
source standard APIs for receiving results set.

v It responds to federated server queries about the default data type
mappings for a data source. The wrapper contains the default type

© Copyright IBM Corp. 1998 - 2003 9

mappings that are used when nicknames are created for a data source
object. For relational wrappers, data type mappings that you create override
the default data type mappings. User-defined data type mappings are
stored in the global catalog.

v It responds to federated server queries about the default function mappings
for a data source. The wrapper contains information that the federated
server needs to determine if DB2 functions are mapped to functions of the
data source, and how the functions are mapped. This information is used
by the SQL Compiler to determine if the data source is able to perform the
query operations. For relational wrappers, function mappings that you
create override the default function type mappings. User-defined function
mappings are stored in the global catalog.

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper.

Related concepts:

v “Server definitions and server options” on page 10

Related reference:

v “Default wrapper names” in the Federated Systems Guide

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner
defines the data sources to the federated database. The instance owner
supplies a name to identify the data source, and other information that
pertains to the data source. If the data source is an RDBMS, this information
includes:
v The type and version of the RDBMS
v The database name for the data source on the RDBMS
v Metadata that is specific to the RDBMS

For example, a DB2® family data source can have multiple databases. The
definition must specify which database the federated server can connect to. In
contrast, an Oracle® data source has one database, and the federated server
can connect to the database without knowing its name. The database name is
not included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the
federated server are collectively called a server definition. Data sources answer
requests for data and are servers in their own right.

10 Data Source Configuration Guide

The CREATE SERVER and ALTER SERVER statements are used to create and
modify a server definition.

Some of the information within a server definition is stored as server options.
When you create server definitions, it is important to understand the options
that you can specify about the server. Some server options configure the
wrapper and some affect the way DB2 uses the wrapper.

Server options can be set to persist over successive connections to the data
source, or set for the duration of a single connection.

Related concepts:

v “User mappings” on page 11

Related reference:

v Appendix B, “Server options for federated systems”, on page 367

Collating sequences and data source configuration

As part of the DB2 Information Integrator installation, the federated database
was created. At that time, a collating sequence that matches the data source
collating sequence was designated. When you register the server definition
with the federated database, you need to set the COLLATING_SEQUENCE
server option to ’Y’. This setting tells the federated database that the collating
sequences of the federated database and the data source server match.

User mappings

When a federated server needs to pushdown a request to a data source, the
server must first establish a connection to the data source.

For most data sources, the federated server does this by using a valid user ID
and password to that data source. When a user ID and password is required
to connect to a data source, you must define an association between the
federated server user ID and password and the data source user ID and
password. This association must be created for each user ID that will be using
the federated system to send distributed requests. This association is called a
user mapping.

Related concepts:

v “Nicknames and data source objects” on page 12

Chapter 2. Overview of a federated system 11

Nicknames and data source objects

After you create the server definitions and user mappings, the federated
instance owner creates the nicknames. A nickname is an identifier that is used
to reference the object located at the data sources that you want to access. The
objects that nicknames identify are referred to as data source objects.

Nicknames are not alternative names for data source objects in the same way
that aliases are alternative names. They are pointers by which the federated
server references these objects. Nicknames are typically defined with the
CREATE NICKNAME statement.

When an end user or a client application submits a distributed request to the
federated server, the request does not need to specify the data sources.
Instead, the request references the data source objects by their nicknames. The
nicknames are mapped to specific objects at the data source. These mappings
eliminate the need to qualify the nicknames by data source names. The
location of the data source objects is transparent to the end user or the client
application.

Suppose that you define the nickname DEPT to represent an Informix™

database table called NFX1.PERSON. The statement SELECT * FROM DEPT is
allowed from the federated server. However, the statement SELECT * FROM
NFX1.PERSON is not allowed from the federated server (except in a
pass-through session).

When you create a nickname for a data source object, metadata about the
object is added to the global catalog. The query optimizer uses this metadata,
and the information in the wrapper, to facilitate access to the data source
object. For example, if the nickname is for a table that has an index, the global
catalog contains information about the index. The wrapper contains the
mappings between the DB2® data types and the data source data types.

Currently, you cannot execute DB2 some utility operations (REORG,
REORGCHK, IMPORT, RUNSTATS, and so on) on nicknames.

Related concepts:

v “Column options” on page 14

Related reference:

v “Valid data source objects” on page 13

12 Data Source Configuration Guide

Valid data source objects

Nicknames identify objects at the data source that you want to access. The
following table lists the types of objects that you can create a nickname for in
a federated system.

Table 3. Valid data source objects

Data source Valid objects

DB2 for Linux, UNIX, and Windows Nicknames, materialized query tables,
tables, views

DB2 for z/OS and OS/390 Tables, views

DB2 for iSeries Tables, views

DB2 for VM and VSE Tables, views

Informix Tables, views, synonyms

Microsoft SQL Server Tables, views

ODBC Tables, views

Oracle Tables, views, synonyms

Sybase Tables, views

Teradata Tables, views

BLAST FASTA files indexed for BLAST search
algorithms

Documentum Objects and registered tables in a
Documentum Docbase

Entrez Entrez databases

Extended Search Files from data sources such as Lotus
Notes databases, Microsoft Access,
Microsoft Index Server, Web search
engines, and LDAP directories.

HMMER HMM database files (libraries of
Hierarchical Markov Models, such as
PFAM), that can be searched by HMMER’s
hmmpfam program.

Microsoft Excel .xls files (only the first sheet in the
workbook is accessed)

Table-structured files .txt files (text files that meet a very specific
format)

XML-tagged files Sets of items in an XML document

Related concepts:

Chapter 2. Overview of a federated system 13

v “Nicknames and data source objects” on page 12
v “Column options” on page 14

Column options

You can supply the global catalog with additional metadata information about
the nicknamed object. This metadata describes values in certain columns of
the data source object. You assign this metadata to parameters that are called
column options. The column options tell the wrapper to handle the data in a
column differently than it normally would handle it. The SQL Complier and
query optimizer use the metadata to develop better plans for accessing the
data.

Column options are used to provide other information to the wrapper as well.
For example for XML data sources, a column option is used to tell the
wrapper the XPath expression to use when the wrapper parses the column
out of the XML document.

With federation, the DB2® server treats the data source object that a nickname
references as if it is a local DB2 table. As a result, you can set column options
for any data source object that you create a nickname for. Some column
options are designed for specific types of data sources and can be applied
only to those data sources.

Suppose that a data source has a collating sequence that differs from the
federated database collating sequence. The federated server typically would
not sort any columns containing character data at the data source. It would
return the data to the federated database and perform the sort locally.
However, suppose that the column is a character data type (CHAR or
VARCHAR) and contains only numeric characters (’0’,’1’,...,’9’). You can
indicate this by assigning a value of ’Y’ to the NUMERIC_STRING column
option. This gives the DB2 query optimizer the option of performing the sort
at the data source. If the sort is performed remotely, you can avoid the
overhead of porting the data to the federated server and performing the sort
locally.

Attention: The NUMERIC_STRING column option is valid for only relational
data sources.

You can define column options in the CREATE NICKNAME and ALTER
NICKNAME statements.

Related concepts:

v “Data type mappings” on page 15

14 Data Source Configuration Guide

Related tasks:

v “Working with nicknames” in the Federated Systems Guide

Related reference:

v Appendix D, “Column options for federated systems”, on page 379

Data type mappings

The data types at the data source must map to corresponding DB2® data
types so that the federated server can retrieve data from data sources. Some
examples of default data type mappings are:
v The Oracle® type FLOAT maps to the DB2 type DOUBLE
v The Oracle type DATE maps to the DB2 type TIMESTAMP
v The DB2 for z/OS™ type DATE maps to the DB2 type DATE

For most data sources, the default type mappings are in the wrappers. The
default type mappings for DB2 data sources are in the DRDA® wrapper. The
default type mappings for Informix™ are in the INFORMIX wrapper, and so
forth.

For some nonrelational data sources, you must specify data type information
in the CREATE NICKNAME statement. The corresponding DB2 for Linux,
UNIX,® and Windows® data types must be specified for each column of the
data source object when the nickname is created. Each column must be
mapped to a particular field or column in the data source object.

For relational data sources, you can override the default data type mappings,
or create mappings when there is no default. For example, you can create a
type mapping when a new built-in type is available at the data source, or
when there is a user-defined type at the data source that you want to map to.

Attention: You should create new type mappings or modify the default type
mappings before you create nicknames. Otherwise nicknames created before
the type mapping changes will not reflect the new mappings.

Related concepts:

v “Data type mappings in a federated system” in the Federated Systems Guide

Chapter 2. Overview of a federated system 15

Function mappings

For the federated server to recognize a data source function, the function must
be mapped against an existing counterpart function in DB2® for Linux,
UNIX® and Windows. DB2 Information Integrator supplies default mappings
between existing built-in data source functions and built-in DB2 counterpart
functions. For most data sources, the default function mappings are in the
wrappers. The default function mappings to DB2 for z/OS™ and OS/390®

functions are in the DRDA® wrapper. The default function mappings to
Sybase functions are in the CTLIB and DBLIB wrappers, and so forth.

For relational data sources, you can create a function mapping when you
want to use a data source function that the federated server does not
recognize. The mapping that you create is between the data source function
and a DB2 counterpart function at the federated database. Function mappings
are typically used when a new built-in function or a new user-defined
function become available at the data source. Function mappings are also used
when a DB2 counterpart function does not exist.

Related concepts:

v “Function mappings in a federated system” in the Federated Systems Guide

v “Index specifications” on page 16

Index specifications

When you create a nickname for a data source table, information about any
indexes that the data source table has is added to the global catalog. The
query optimizer uses this information to expedite the processing of
distributed requests. The catalog information about a data source index is a
set of metadata, and is called an index specification. A federated server does not
create an index specification when you create a nickname for:
v A table that has no indexes
v A view, which typically does not have any index information stored in the

remote catalog
v A data source object that does not have a remote catalog from which the

federated server can obtain the index information

Suppose that a table acquires a new index, in addition to the ones it had
when the nickname was created. Because index information is supplied to the
global catalog at the time the nickname is created, the federated server is
unaware of the new index. Similarly, when a nickname is created for a view,
the federated server is unaware of the underlying table (and its indexes) from
which the view was generated. In these circumstances, you can supply the
necessary index information to the global catalog. You can create an index

16 Data Source Configuration Guide

specification for tables that have no indexes. The index specification tells the
query optimizer which column or columns in the table to search on to find
data quickly.

Related concepts:

v “Index specifications in a federated system” in the Federated Systems Guide

Chapter 2. Overview of a federated system 17

18 Data Source Configuration Guide

Chapter 3. Planning for federated data source
configuration

The following sections provide information you can use to help you plan your
federated system.

Federated object naming rules

As with other DB2 objects, there are rules for naming federated database
objects.

Federated database objects include:
v Function mappings
v Index specifications
v Nicknames
v Servers
v Type mappings
v User mappings
v Wrappers

Federated object names must begin with one of the following:
v A letter, including a valid accented letter (such as Ö)
v A multibyte character, except a multibyte space (for multibyte

environments)

Federated object names cannot begin with a number or with the underscore
character.

Federated object names can also include the following characters:
v A through Z
v 0 through 9
v @, #, $, and _ (underscore)

Federated object names cannot exceed 128 bytes.

Options (such as server options and nickname options) and option settings are
limited to 255 bytes.

Names without quotation marks are converted to uppercase.

© Copyright IBM Corp. 1998 - 2003 19

Related concepts:

v “Naming rules in an NLS environment” in the Administration Guide:
Planning

v “Naming rules in a Unicode environment” in the Administration Guide:
Planning

Related reference:

v “Preserving case-sensitive values in a federated system” on page 20

Preserving case-sensitive values in a federated system

In a federated system you occasionally need to specify values, such as user
IDs and passwords, that are case-sensitive at the data source. To ensure that
the case is correct when these values are passed to the data source, follow
these guidelines:
v Specify the values in the required case and enclose them in the proper

quotation marks. Double quotation marks are optional for object names,
such as the name of a wrapper or nickname. Single quotation marks are
required for option values, such as REMOTE_AUTHID and
REMOTE_PASSWORD.

v For user IDs and passwords, you can set the FOLD_ID and FOLD_PW
server options to automatically convert the values to the proper case. With
this option, you don’t have to remember the required case for each data
source. You can type the values in any case and they will be converted
automatically.

Information about server options and their valid settings are discussed in
separate topics.

From a UNIX operating system command prompt:

If you enclose a case-sensitive value in quotation marks at the federated
server operating system command prompt, you must ensure that the
quotation marks are parsed correctly:
v Suppose the SQL statement contains double quotation marks, but no single

quotation marks. Then you enclose the statement in single quotation marks.
For example, if you want to issue this SQL statement:
CREATE NICKNAME my_nick FOR my_server."owner"."my_table"

You enter the following text at the UNIX command prompt
DB2 ’CREATE NICKNAME my_nick FOR my_server."owner"."my_table"’

20 Data Source Configuration Guide

v Suppose the SQL statement contains single quotation marks, but no double
quotation marks. Then you enclose the statement in double quotation
marks. For example, if you want to issue this SQL statement:
CREATE USER MAPPING FOR USER SERVER my_server

OPTIONS(REMOTE_AUTHID ’my_id’, REMOTE_PASSWORD ’my_password’)

You enter the following text at the UNIX command prompt
DB2 "CREATE USER MAPPING FOR USER SERVER my_server

OPTIONS(REMOTE_AUTHID ’my_id’, REMOTE_PASSWORD ’my_password’) "

v Suppose the SQL statement contains both single and double quotation
marks, then you enclose the statement in double quotation marks and
precede all double quotes in the statement with a backslash. For example, if
you want to issue this SQL statement:
CREATE USER MAPPING FOR "local_id" SERVER my_server

OPTIONS(REMOTE_AUTHID ’my_id’, REMOTE_PASSWORD ’my_password’)

You enter the following text at the UNIX command prompt
DB2 "CREATE USER MAPPING FOR \"local_id\" SERVER my_server

OPTIONS(REMOTE_AUTHID ’my_id’, REMOTE_PASSWORD ’my_password’)"

Note: The above examples assume you are entering SQL statements from the
UNIX command prompt and passing the statement to the db2 command,
without the -f option. If you enter the SQL statements from a file using the
db2 command with the -f option, then you should not precede double
quotation marks with a backslash.

From a Windows operating system command prompt:

On Windows, precede each quotation mark with a backward slash. For
example, suppose you want to create the nickname NICK1 for a Microsoft SQL
Server table. The table resides in the NORBASE database. The schema is
my_schema and the table is weekly_salary.

At the Windows command prompt on your federated server, you type:
DB2 CREATE NICKNAME nick1

FOR norbase.\"my_schema\".\"weekly_salary\"

From the DB2 CLP or from an application program:

When you enter the value from the DB2 command line prompt (CLP) or you
specify the value in an application program, you do not need the single
quotation marks or the backslashes. Using the example above, at the DB2
command prompt you type:
CREATE NICKNAME nick1

FOR norbase."my_schema"."weekly_salary"

Chapter 3. Planning for federated data source configuration 21

Related reference:

v Appendix B, “Server options for federated systems”, on page 367

Update data source statistics

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the query optimizer is read from the data source catalogs and put
into the global catalog on the federated server. Because some or all of the data
source catalog information might be used by the query optimizer, it is
advisable to update statistics (using the data source command equivalent to
RUNSTATS) at the data source before you create a nickname.

The federated database retrieves remote statistical information for an object
only once when you create a nickname for the object. If the remote source
updates its catalog statistics for a remote object after your create the
nickname, the changed statistical information is not propagated to the
federated server’s global catalog. To make sure that the global catalog on the
federated server reflects current statistics for the remote object, you must drop
and recreate the nickname.

Action: Identify objects at the data sources that you want to include in the
federated server. These will be objects that you will create nicknames for.
Decide which of these data sources you can update the statistics for and list
those data sources in the data source statistics table in the planning checklist.

Plan the data type mappings

Data source data types are referred to as remote data types, and federated
database data types are referred to as local data types.

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. A reverse type mapping is used with transparent DDL. In
a reverse type mapping, the mapping is from a local type to a comparable
remote type. Additional information about the two kinds of data type
mappings is discussed in separate topics.

22 Data Source Configuration Guide

DB2 for UNIX and Windows uses data type mappings to determine what
DB2-supported data types should be defined for columns in a data source
object. Default data type mappings are built into the data source wrappers.

However, your applications might require data type mappings that are
different than the default mappings. You can override the default mappings
to:
v Change a type mapping for all data source objects located on a specific

server
v Change a type mapping for a specific data source object
v Change a type mapping for a specific data source type
v Change a type mapping for a specific data source type and version

Use the CREATE TYPE MAPPING statement to define new data type
mappings. Mappings you create are stored in the federated database global
catalog SYSCAT.TYPEMAPPINGS view.

Change a data type mapping before you create nicknames for the data source
objects. When you create a nickname for a data source object, the federated
server populates the global catalog with information about the table. This
information includes the nickname, the data source table name, the column
names and the data types that are defined for each table column.

Only nicknames created after a mapping is changed reflect the new type
mapping. Nicknames created before the mapping is changed will use the
default data type mapping.

If you create the data type mappings after you create the nicknames, you will
have to alter each nickname to reflect the new mapping or drop and re-create
the nicknames.

Note: If a data source table contain columns that are distinct or user-defined
data types, you have two choices:
v You can create the type mapping in the federated database before you

create a nickname for that data source table. By creating the type mappings
before you create the nickname, the federated server will know what data
type to map these columns to. If the mappings for these distinct or
user-defined data types are not created before you issue the CREATE
NICKNAME statement, you will receive an error.

v If the columns in the data source table meet either of the following
conditions:
– The columns are user-defined data types that are based on system or

built-in data types

Chapter 3. Planning for federated data source configuration 23

– The columns have attributes that are not supported for data type
mappings

You can create a view at the data source in which the columns are
associated with or cast to the underlying built-in data type. Then create a
nickname for the view instead of for the table.

Action: Identify the data type mappings that you want to define new
mappings for. List the data sources and the type mappings you want to create
in the data type mappings table in the planning checklist.

Related concepts:

v “Data type mappings” on page 15
v “Tuning query processing” in the Federated Systems Guide

Related reference:

v Appendix G, “Default forward data type mappings”, on page 387
v Appendix H, “Default reverse data type mappings”, on page 407

Plan the function mappings

DB2 for UNIX and Windows supplies default function mappings between
existing built-in data source functions and built-in DB2 functions. For most
data sources, the default function mappings are in the wrappers. For some
nonrelational data sources, you cannot alter the default function mappings.

To use a data source function that the federated server does not recognize,
you must create a function mapping. The mapping you create is between the
data source function and a counterpart function at the federated database.
Function mappings are typically used when a new built-in function or a new
user-defined function becomes available at the data source.

Function mappings are also used when a DB2 counterpart function does not
exist. In this situation, before you create the function mapping you will have
to create a function template in the federated database.

Action: Determine if you need to create function mappings for your data
sources. List the function mappings needed in the function mappings table in
the planning checklist.

Related concepts:

v “Function mappings” on page 16

24 Data Source Configuration Guide

Plan the user mappings

When a federated server needs to pushdown a request to a data source, the
server must first establish a connection to the data source. The server does
this by using a valid user ID and password to that data source. You must
define an association between the federated server user ID and password and
the data source user ID and password. This association must be created for
each user ID that will be using the federated system to send distributed
requests. This association is called a user mapping.

You can use the DB2 Control Center to create a user mapping for a group of
users that will access a data source with the same user ID and password.

Action: Identify the user IDs that require a user mapping between the
federated server and the data source. List the federated server user IDs and
corresponding data source user IDs in the user mapping table in the planning
checklist.

Choose the correct wrapper

Some data sources have more than one wrapper that you can use. The one
you choose might depend on the version of the data source clients software
that you are using. Or it might depend on the operating system that you have
on your federated server.

For example there are two wrappers you can use with Oracle data sources:
the SQLNET wrapper and the NET8 wrapper. Suppose that you are using
Oracle Version 8, and the operating system on your federated server is
Windows NT. Originally you create the SQLNET wrapper. Later you learn
that the SQLNET wrapper does not support LOB data types, but that the
NET8 wrapper does support LOBs. To take advantage of the LOB support in
the NET8 wrapper, you will have to drop the SQLNET wrapper and create
the NET8 wrapper.

Note: The NET8 wrapper requires a more recent version of the Oracle client
than the SQLNET wrapper.

There are significant cascading consequences when you drop a wrapper. Other
objects in the federated system are impacted:
v All server definitions, user-defined functions mappings, and user-defined

data type mappings that are dependent on the dropped wrapper are also
dropped.

Chapter 3. Planning for federated data source configuration 25

v All user-defined function mappings, nicknames, user-defined data type
mappings, and user mappings that are dependent on the dropped server
definition are also dropped.

v Any index specifications dependent on the dropped nicknames are also
dropped.

v Any federated views dependent on these nicknames are marked
inoperative.

v All applications dependent on the dropped objects and inoperative views
are invalidated.

DB2 Relational Connect provides multiple wrappers for Oracle, Microsoft SQL
Server, and Sybase data sources. The distinctions between the wrappers is
discussed in the configuration topics for each data source.

Action: Identify the wrappers you will create for your federated system in the
wrapper table in the planning checklist.

Related concepts:

v “Wrappers and wrapper modules” on page 9

Related tasks:

v “Adding Microsoft SQL Server data sources to a federated server” in the
Federated Systems Guide

v “Adding Oracle data sources to a federated server” in the Federated Systems
Guide

v “Adding Sybase data sources to a federated server” in the Federated Systems
Guide

Checklist for planning your federated system configuration

You can make the federated system configuration easier by following this
planning checklist. This checklist guides you in ways to optimize the
federated system configuration.

Checklist: Federated object naming rules
Are you familiar with the naming rules for federated objects?

See the related links at the end of this section to locate information about the
federated object naming rules.

Checklist: Preserving case-sensitive values
Do you intend to set the FOLD_ID and FOLD_PW server options to preserve
case for user ID and password values sent to the data sources? Use the
following table to identify which server definitions you will apply these
options to.

26 Data Source Configuration Guide

Table 4. Planning checklist: FOLD_ID and FOLD_PW server options to set for the
federated system

Data source Server name (in the
server definition)

Setting for the
FOLD_ID server
option

Setting for the
FOLD_PW server
option

Checklist: Data source statistics
In the following table, list the data sources that will be part of your federated
system. Indicate which data sources you will update the statistics for.

Table 5. Planning checklist: Data sources statistics to update for the federated system

Data source Maintains catalog
information? (Y/N)

Will update
statistics for this
data source? (Y/N)

Data source utility
name used to
update statistics

DB2 for UNIX and
Windows

Y Y RUNSTATS

Checklist: Data type mappings
In the following table, identify the data source data types and the
corresponding federated server data types that you need to create a mapping
for.

Table 6. Planning checklist: Data type mappings to create for the federated system

Data source Server name
(in the server
definition)

Data source data type DB2 for UNIX and
Windows data type

Chapter 3. Planning for federated data source configuration 27

Table 6. Planning checklist: Data type mappings to create for the federated
system (continued)

Data source Server name
(in the server
definition)

Data source data type DB2 for UNIX and
Windows data type

Checklist: User mappings
In the following table, identify the federated server user IDs and
corresponding user IDs for each data source that will be part of the federated
system.

Table 7. Planning checklist: User mappings to create for the federated system

Data source

Data source

Data source

User name DB2 for UNIX and
Windows user ID

User ID User ID User ID

Checklist: Wrappers
In the following table, identify the wrappers that you will create.

Table 8. Planning checklist: Wrappers to create for the federated system

Data source Default wrapper
name(s)

Wrapper to create

DB2 Universal Database™ for UNIX and
Windows®

DB2 Universal Database for z/OS and
OS/390®

DB2 Universal Database for iSeries

DB2 Server for VM and VSE

DRDA

Informix INFORMIX

28 Data Source Configuration Guide

Table 8. Planning checklist: Wrappers to create for the federated system (continued)

Data source Default wrapper
name(s)

Wrapper to create

Oracle SQLNet

Net8

Microsoft® SQL Server DJXMSSQL3

MSSQLODBC3

ODBC none

OLE DB OLEDB

Sybase CTLIB

DBLIB

BLAST none

Documentum none

Microsoft Excel none

Table-structured files none

XML none

Chapter 3. Planning for federated data source configuration 29

30 Data Source Configuration Guide

Chapter 4. Configuring access to DB2 family data sources

This chapter explains how to configure your federated server to access data
that is stored in DB2 family databases. These databases include DB2 for UNIX
and Windows, DB2 for z/OS and OS/390, DB2 for iSeries, and DB2 Server for
VM and VSE.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to DB2 family data sources.

Adding DB2 family data sources to federated servers

Configuring the federated server to access DB2 data sources involves
supplying the server with information about the DB2 data sources and objects
that you want to access.

You can configure access to DB2 data sources through the DB2 Control Center,
through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to DB2 data sources. However, you
cannot use the DB2 Control Center to initiate the following configuration
tasks:
v Cataloging the node
v Cataloging the remote database
v Testing the connection to the data source server to validate the server

definition and the user mappings
v Adding or droping column options

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor
v A federated server and database that are set up to access DB2 family data

sources

Restriction:

© Copyright IBM Corp. 1998 - 2003 31

You cannot create a nickname for a DB2 data source alias if you are accessing
data that is stored in DB2 for UNIX and Windows, Version 8.1.

Procedure:

To add a DB2 data source to a federated server:
1. Catalog the node.
2. Catalog the remote database.
3. Register the wrapper.
4. Register the server definition and set the server options.
5. Create the user mappings.
6. Test the connection to the DB2 server.
7. Register the nicknames for tables and views.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Cataloging a node entry in the federated node directory” on page 32
v “Tuning and troubleshooting the configuration to DB2 family data sources”

on page 43

Cataloging a node entry in the federated node directory

Cataloging a node entry in the federated node directory is part of the larger
task of adding DB2 family data sources to federated servers.

To point to the location of the DB2 data source, catalog an entry in the node
directory of the federated server. The federated server uses this entry to
determine the proper access method to connect to a DB2 data source.

Procedure:

To catalog a node entry in the federated node directory:
1. Determine the communication protocol that you will be using.
2. Issue the appropriate command to catalog the node entry.

v If your communication protocol is Transmission Control
Protocol/Internet Protocol (TCP/IP), issue the CATALOG TCPIP
NODE command.

32 Data Source Configuration Guide

For example:
CATALOG TCPIP NODE DB2NODE REMOTE SYSTEM42 SERVER DB2TCP42

The DB2NODE value is the name that you assign to the node that you
are cataloging. REMOTE SYSTEM42 is the host name of the system
where the data source resides. SERVER DB2TCP42 is the service name
or primary port number of the server database manager instance. If a
service name is used, it is case sensitive.

v If your communication protocol is SNA, issue the CATALOG APPC
NODE command.
For example:
CATALOG APPC NODE DB2NODE REMOTE DB2CPIC SECURITY PROGRAM

The DB2NODE value is the name that you assign to the node that you
are cataloging. REMOTE DB2CPIC is the SNA partner logical unit (LU)
name of the remote partner node. SECURITY PROGRAM specifies that
both a user name and a password are to be included in the allocation
request that is sent to the partner LU.

The next task in this sequence of tasks is cataloging the remote database in
the federated system database directory.

Related tasks:

v “Cataloging the remote database in the federated system database
directory” on page 33

Cataloging the remote database in the federated system database directory

Cataloging the remote database in the federated system database directory is
part of the larger task of adding DB2 family data sources to federated servers.

You specify which DB2 data source database that the federated server
connects to by cataloging the remote database in the federated server system
database directory,

Procedure:

To catalog the remote database in the federated server system database
directory:
1. Use the Client Configuration Assistant (CCA).

For federated servers on UNIX, you can alternatively use the CATALOG
DATABASE command. For example:
CATALOG DATABASE DB2DB390 AS CLIENTS390 AT NODE DB2NODE AUTHENTICATION DCS

Chapter 4. Configuring access to DB2 family data sources 33

The value DB2DB390 is the name of the remote database that you are
cataloging in the federated server system database directory. AS
CLIENTS390 is the alias for the database being cataloged. If you do not
specify an alias, the database manager uses the database name (for
example DB2DB390) as the alias. AT NODE DB2NODE is the name of the
node that you specified when cataloging the node entry in the node
directory. AUTHENTICATION SERVER specifies that authentication takes
place on the DB2 data source node.

2. If the name of the remote database is more than eight characters, you must
create a DCS directory entry by issuing the CATALOG DCS DATABASE
command. For example:
CATALOG DCS DATABASE SALES400 AS SALES_DB2DB400

The value SALES400 is the alias of the remote database to catalog. This
name should match the name of an entry in the federated server system
database directory that is associated with the remote node. It is the same
name you entered in the CATALOG DATABASE command. AS
SALES_DB2DB400 is the name of the target host database that you want to
catalog.

The next task in this sequence of tasks is registering the DB2 wrapper.

Related tasks:

v “Cataloging a node entry in the federated node directory” on page 32
v “Registering the DB2 wrapper” on page 34

Registering the DB2 wrapper

Registering the DB2 wrapper is part of the larger task of adding DB2 family
data sources to federated servers.

To specify the wrapper that will be used to access DB2 data sources, issue the
CREATE WRAPPER statement. Every DB2 Server Edition (Enterprise,
Personal, and Workgroup) includes one wrapper called DRDA for the DB2
family.

Procedure:

To specify the wrapper that you want to use to access DB2 family data
sources, issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER DRDA

34 Data Source Configuration Guide

Recommendation: Use the default wrapper name called DRDA. When you
register the wrapper by using the default name, the federated server
automatically takes the default library name that is associated with that
wrapper name. If the wrapper name conflicts with an existing wrapper name
in the federated database, you can substitute the default wrapper name with a
name you choose. If you use a name that is different from the default name,
you must include the LIBRARY parameter in the CREATE WRAPPER
statement. Suppose that you have a federated server running on AIX, and you
decide to use a wrapper name that is different from the default name. You
must include the LIBRARY parameter in the CREATE WRAPPER statement.

For example:
CREATE WRAPPER mywrapper LIBRARY ’libdb2drda.a’

The mywrapper value is the name that you give to the wrapper instead of
using the default wrapper name.

The following table lists the wrapper library names for DB2 by operating
system:

Table 9. DB2 wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2drda.a

Solaris Operating Environment libdb2drda.so

HP-UX libdb2drda.sl

Linux libdb2drda.so

Windows NT and Windows 2000 db2drda.dll

The next task in this sequence of tasks is registering the server definitions for
a DB2 data source.

Related tasks:

v “Registering the server definitions for a DB2 data source” on page 35

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for a DB2 data source

Registering the server definitions for a DB2 data source is part of the larger
task of adding DB2 family data sources to federated servers.

Chapter 4. Configuring access to DB2 family data sources 35

In the federated database, you must define each DB2 server that you want to
access. When you register the server definition, the federated server connects
to the DB2 server and binds packages to the database. Because the
information for authorization and password are not stored in the federated
global catalog, you must include them in the server definition.

Procedure:

To register a server definition for a DB2 data source, issue the CREATE
SERVER statement.

For example:
CREATE SERVER server_name TYPE DB2/ZOS VERSION 6 WRAPPER DRDA

AUTHORIZATION "name1" PASSWORD "passwd1"
OPTIONS (DBNAME ’db_name’)

The name that you assign to a server must be unique. Duplicate server names
are not allowed.

The VERSION option that you specify is the version of the DB2 database
server that you want to access. The supported versions are:
v DB2 for UNIX and Windows, Version 6, Version 7.1, Version 7.2, and

Version 8.1
v DB2 for z/OS and OS/390, Version 5 or later
v DB2 for iSeries, Version 4 or later

The name of the WRAPPER parameter must be the name that you specified in
the CREATE WRAPPER statement.

Although the database name is specified as an option in the CREATE SERVER
statement, it is required for DB2 data sources.

When you issue the CREATE SERVER statement, the federated server will test
the connection to the DB2 data source server.

After you register the server definition, you can add or drop server options by
issuing the ALTER SERVER statement.

The next task in this sequence of tasks is creating the user mapping for a DB2
data source.

Related tasks:

v “Creating the user mapping for a DB2 data source” on page 38

Related reference:

36 Data Source Configuration Guide

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement - Examples for DB2 wrapper” on page 37

CREATE SERVER statement - Examples for DB2 wrapper

This topic provides examples that show you how to use the CREATE SERVER
statement to register servers for wrappers on DB2 family data sources. This
topic includes a complete example, which shows how to create a server with
all required parameters, and an example with additional server options.

Complete example:

The following example shows you how to create a server definition for a DB2
wrapper by using the CREATE SERVER statement:
CREATE SERVER DB2SERVER TYPE DB2/ZOS VERSION 6 WRAPPER DRDA

AUTHORIZATION "spalten" PASSWORD "db2guru"
OPTIONS (DBNAME ’CLIENTS390’)

DB2SERVER
A name that you assign to the DB2 database server. This name must
be unique. Duplicate server names are not allowed.

TYPE DB2/ZOS
Specifies the type of data source server to which you are configuring
access.

VERSION 6
The version of the DB2 database server that you want to access.

WRAPPER DRDA
The name that you specified in the CREATE WRAPPER statement.

AUTHORIZATION ″spalten″
The authorization ID at the data source. This ID must have BINDADD
authority at the data source. This value is case sensitive.

PASSWORD ″db2guru″
The password that is associated with the authorization ID at the data
source. This value is case sensitive.

DBNAME ’CLIENTS390’
The alias for the DB2 database that you want to access. You defined
this alias when you cataloged the database using the CATALOG
DATABASE command. This value is case sensitive.

This database name is required for DB2 data sources.

Server option example:

Chapter 4. Configuring access to DB2 family data sources 37

When you register the server definition, you can specify additional server
options in the CREATE SERVER statement. These options include general
server options and DB2 data source-specific server options.

The following example shows a server definition with the CPU_RATIO
option.
CREATE SERVER DB2SERVER TYPE DB2/ZOS VERSION 6 WRAPPER DRDA

AUTHORIZATION "spalten" PASSWORD "db2guru"
OPTIONS (DBNAME ’CLIENTS390’, CPU_RATIO ’0.001’)

If you set the CPU_RATIO option to ’0.001’, this indicates the CPU at the
remote data source 1000 times more available capacity than the federated
server.

Related tasks:

v “Registering the server definitions for a DB2 data source” on page 35

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix F, “Valid server types in SQL statements”, on page 383

Creating the user mapping for a DB2 data source

Creating the user mapping for a DB2 data source is part of the larger task of
adding DB2 family data sources to federated servers.

When you attempt to access a DB2 server, the federated server establishes a
connection to the data source using a user ID and password that are valid for
that data source. You must define an association (a user mapping) between
the federated server user ID and password and the corresponding data source
user ID and password. Create a user mapping for each user ID that will
access the federated system to send distributed requests.

Procedure:

To map the local user ID to the DB2 server user ID and password, issue a
CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR USERID SERVER DB2SERVER

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The REMOTE_AUTHID is the connect authorization ID, not the bind
authorization ID.

38 Data Source Configuration Guide

The next task in this sequence of tasks is testing the connection to the DB2
data source server.

Related tasks:

v “Testing the connection to the DB2 data source server” on page 40

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for DB2 wrapper” on
page 39

CREATE USER MAPPING statement - Examples for DB2 wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a local user ID to the DB2 server user ID and
password. This topic includes a complete example with all required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a local user ID to the DB2 server
user ID:
CREATE USER MAPPING FOR DB2USER SERVER DB2SERVER

OPTIONS (REMOTE_AUTHID ’db2admin’, REMOTE_PASSWORD ’day2night’)

DB2USER
Specifies the local user ID that you are mapping to a user ID that is
defined at a DB2 family data source server.

SERVER DB2SERVER
Specifies the name of the DB2 family data source server that you
defined in the CREATE SERVER statement.

REMOTE_AUTHID ’db2admin’
Specifies the connect authorization user ID at the DB2 family data
source server to which you are mapping DB2USER. Use single
quotation marks to preserve the case of this value unless you set the
FOLD_ID server option to ’U’ or ’L’ in the CREATE SERVER
statement.

REMOTE_PASSWORD ’day2night’
Specifies the password that is associated with ’db2admin’. Use single
quotation marks to preserve the case of this value unless you set the
FOLD_PW server option to ’U’ or ’L’ in the CREATE SERVER
statement.

Chapter 4. Configuring access to DB2 family data sources 39

Special register example:

The following is an example of the CREATE USER MAPPING statement
which includes the special register USER:
CREATE USER MAPPING FOR USER SERVER DB2SERVER

OPTIONS (REMOTE_AUTHID ’db2admin’, REMOTE_PASSWORD ’day2night’)

You can use the DB2 special register USER to map the authorization ID of the
person issuing the CREATE USER MAPPING statement to the data source
authorization ID specified in the REMOTE_AUTHID user option.

Related tasks:

v “Creating the user mapping for a DB2 data source” on page 38

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the DB2 data source server

Testing the connection to the DB2 data source server is part of the larger task
of adding DB2 family data sources to federated servers.

You can test the connection to the DB2 server by using the server definition
and user mappings that you defined.

Procedure:

To test the connection:
1. Open a pass-through session to issue an SQL SELECT statement on the

DB2 system tables.
For example:
v On DB2 for z/OS and OS/390:

SET PASSTHRU server_name
SELECT count(*) FROM sysibm.systables
SET PASSTHRU RESET

v On DB2 for iSeries:
SET PASSTHRU remote_server_name
SELECT count(*) FROM qsys2.systables
SET PASSTHRU RESET

If the SQL SELECT statement returns a count, your server definition and
your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Check the remote server to make sure that it is started.

40 Data Source Configuration Guide

v Check the listener on the remote server to make sure that it is
configured for incoming connections.

v Check your user mapping to make sure that the settings for the
REMOTE_AUTHID and REMOTE_PASSWORD options are valid for
connections to the DB2 server.

v Check the DB2 catalog entries for the node and database.
v Check the settings of your DB2 federated variables to verify that you

can access the remote DB2 server. These variables include the system
environment variables, the db2dj.ini variables, and the DB2 Profile
Registry (db2set) DB2COMM variable.

v Check your server definition. If necessary, drop the server definition,
and create it again.

v Check your user mapping. If necessary, alter the user mapping, or create
another user mapping.

The next task in this sequence of tasks is registering nicknames for DB2 tables
and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for DB2 tables and views” on page 41

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Registering nicknames for DB2 tables and views

Registering nicknames for DB2 tables and views is part of the larger task of
adding DB2 family data sources to federated servers.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update

Chapter 4. Configuring access to DB2 family data sources 41

statistics (using the data source command equivalent to the RUNSTATS
command) at the data source before you register a nickname.

Use the CREATE NICKNAME statement to register a nickname for a view or
table that is located at your DB2 family data source. Use these nicknames,
instead of the names of the data source objects, when you query the DB2
family data source.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME DB2NICKNAME FOR DB2SERVER.remote_schema.remote_table

Nicknames can be up to 128 characters in length.

Repeat this step for each DB2 table or view for which you want to register a
nickname.

When you register the nickname, the federated server will use the connection
to query the data source catalog. This query tests your connection to the data
source by using the nickname. If the connection does not work, you will
receive an error message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for DB2 wrapper” on page 42

CREATE NICKNAME statement - Examples for DB2 wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for a DB2 table or view that
you want to access.

The following example shows a CREATE NICKNAME statement:
CREATE NICKNAME DB2SALES FOR DB2SERVER.SALESDATA.EUROPE

DB2SALES
A unique nickname that is used to identify the DB2 table or view.

42 Data Source Configuration Guide

Note: The nickname is a two-part name that includes the schema and
the nickname. If you omit the schema when you register the
nickname, the schema of the nickname will be the authorization ID of
the user creating the nickname.

DB2SERVER.SALESDATA.EUROPE
A three-part identifier for the remote object:
v DB2SERVER is the name that you assigned to the DB2 database

server in the CREATE SERVER statement.
v SALESDATA is the name of the remote schema to which the table

or view belongs. This value is case sensitive.
v EUROPE is the name of the remote table or view that you want to

access.

Tuning and troubleshooting the configuration to DB2 family data sources

After you set up the configuration to DB2 data sources, you might want to
modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM DB2 profile registry variable to improve
performance when the DB2 data source is accessed.

Improving performance by setting the DB2_DJ_COMM variable (UNIX)
If you find that it takes a long time to access the DB2 data source server, you
can improve the performance by setting the DB2_DJ_COMM profile registry
variable. When you set the DB2_DJ_COMM variable, the federated server
loads the wrapper upon initialization rather than when you attempt to access
the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified. Use the commands in the following
table to set the DB2_DJ_COMM variable.

Table 10. Commands to set the DB2_DJ_COMM variable for DB2 data sources

Federated server operating
system

Command

AIX DB2_DJ_COMM= ’libdb2drda.a’

Solaris Operating Environment DB2_DJ_COMM= ’libdb2drda.so’

HP-UX DB2_DJ_COMM= ’libdb2drda.sl’

Linux DB2_DJ_COMM= ’libdb2drda.so’

Chapter 4. Configuring access to DB2 family data sources 43

Table 10. Commands to set the DB2_DJ_COMM variable for DB2 data
sources (continued)

Federated server operating
system

Command

Windows NT and Windows
2000

DB2_DJ_COMM= ’db2drda.dll’

Use the db2set command to set the DB2_DJ_COMM variable. For
example, if the federated server operating system is AIX, the command
would be:
db2set DB2_DJ_COMM=’libdb2drda.a’

2. Export the DB2_DJ_COMM variable. For example:
export DB2_DJ_COMM

3. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made.

Related tasks:

v “Adding DB2 family data sources to federated servers” on page 31

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

44 Data Source Configuration Guide

Chapter 5. Configuring access to Informix data sources

This chapter explains how to configure your federated server to access data
that is stored in Informix data sources.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to Informix data sources.

Adding Informix data sources to federated servers

Configuring the federated server to access Informix data sources involves
supplying the server with information about the Informix data sources and
objects that you want to access.

You can configure access to Informix data sources through the DB2 Control
Center, through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to Informix data sources. However,
you cannot use the DB2 Control Center to initiate the following configuration
tasks:
v Setting up and testing the Informix client configuration file
v Testing the connection to the Informix server to validate the server

definition and user mappings
v Adding or dropping column options

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access Informix data

sources.
v The Informix Client SDK software that is installed and configured on the

federated server.
v The proper setup of the system environment variables, db2dj.ini variables

(including code page conversion variables), and DB2 Profile Registry
(db2set) variables. The variables are: INFORMIXDIR, INFORMIXSERVER,
CLIENT_LOCALE (optional), DB_LOCALE (optional), DBNLS (optional),

© Copyright IBM Corp. 1998 - 2003 45

and INFORMIXSQLHOSTS (optional). You must set the
INFORMIXSQLHOSTS variable only if the sqlhosts file or registry is not in
the default location.

v On AIX federated servers, the AIX Base Application Development Math
Library. You can determine if the Library is installed by issuing the AIX
command lslpp -l bos.adt.libm.

Procedure:

To add an Informix data source to a federated server:
1. Set up and test the Informix client configuration file.
2. Register the wrapper.
3. Register the server definition.
4. Create the user mappings.
5. Test the connection to the Informix server.
6. Register nicknames for Informix tables, views, and synonyms.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Setting up and testing the Informix client configuration file” on page 46
v “Tuning and troubleshooting the configuration to Informix data sources” on

page 57

Setting up and testing the Informix client configuration file

Setting up and testing the Informix client configuration file is part of the
larger task of adding Informix data sources to federated servers.

The client configuration file is used to connect to Informix, using the client
libraries that are installed on the federated server. This file specifies the
location of each Informix database server and type of connection (protocol) for
the database server.
v On UNIX operating systems, the default name is

$INFORMIXDIR/etc/sqlhosts. The sqlhosts file resides on each installation
of the Informix client SDK.

v On Windows operating systems, the default location of the sqlhosts
registry is the local computer.

46 Data Source Configuration Guide

The format of sqlhosts is described in the Administrator’s Guide for Informix
Dynamic Server.

Procedure:

To set up and test the Informix client configuration file:
1. Create the sqlhosts file or set up the registry with the Informix Setnet32

utility.
You can copy the sqlhosts file or registry from another system that has
Informix Connect or Informix Client SDK installed. You can also configure
the Informix Client SDK on the federated server to connect to an Informix
server, which creates the sqlhosts file or registry. The federated server will
use the sqlhosts that is in the Informix SDK directory or the Windows
registry.

2. Verify the location of the sqlhosts file or registry.
v On UNIX operating systems, the sqlhosts file is located in the

$INFORMIXDIR/etc/sqlhosts directory.
v On Windows operating systems, the sqlhosts information is kept in the

following key in the Windows registry:
HKEY_LOCAL_MACHINE\SOFTWARE\INFORMIX\SQLHOSTS

3. If the sqlhosts file or registry is not in the default location, set the
environment variable INFORMIXSQLHOSTS.
a. On UNIX operating systems, set the environment variable

INFORMIXSQLHOSTS to the fully-qualified name of the sqlhosts file.
On Windows operating systems, set the environment variable
INFORMIXSQLHOSTS to the name of the Windows computer that
stores the registry.

b. Issue the following commands to recycle the DB2 instance and ensure
that the environment variable is set in the program:
db2stop
db2start

4. Test the connection to ensure that the client software is able to connect to
the Informix server. If the Informix dbaccess tool is on the federated
server, use this tool to test the connection. Otherwise, run the Informix
demo program to test the client setup.

The next task in this sequence of tasks is registering the Informix wrapper.

Related tasks:

v “Registering the Informix wrapper” on page 48
v “Tuning and troubleshooting the configuration to Informix data sources” on

page 57

Chapter 5. Configuring access to Informix data sources 47

Registering the Informix wrapper

Registering the Informix wrapper is part of the larger task of adding Informix
data sources to federated servers.

To specify the wrapper that will be used to access Informix data sources, use
the CREATE WRAPPER statement. Every DB2 Server Edition (Enterprise,
Personal, Workgroup) includes one wrapper for Informix called INFORMIX.

Procedure:

To specify the wrapper that you want to use to access Informix data sources,
issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER INFORMIX

Recommendation: Use the default wrapper name INFORMIX. When you
register the wrapper using the default name, the federated server
automatically takes the default library name that is associated with that
wrapper name. If the wrapper name conflicts with an existing wrapper name
in the federated database, you can substitute the default wrapper name with a
name that you choose. If you use a name that is different from one of the
default names, you must include the LIBRARY parameter in the CREATE
WRAPPER statement.

Suppose that you have a federated server running on AIX, and you decide to
use a wrapper name that is not one of the default names. You must include
the LIBRARY parameter in the CREATE WRAPPER statement.

For example:
CREATE WRAPPER mywrapper LIBRARY ’libdb2informix.a’

The wrapper library names for Informix are:

Table 11. Informix wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2informix.a

HP-UX libdb2informix.sl

Linux libdb2informix.so

Solaris Operating Environment libdb2informix.so

Windows NT and Windows 2000 db2informix.dll

48 Data Source Configuration Guide

The next task in this sequence of tasks is registering the server definitions for
an Informix data source.

Related tasks:

v “Registering the server definitions for an Informix data source” on page 49

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for an Informix data source

Registering the server definitions for an Informix data source is part of the
larger task of adding Informix data sources to federated servers.

In the federated database, you must define each Informix server that you
want to access. You must first locate the node name of the Informix data
source, and then use this node name when you register the server.

Procedure:

To register a server definition for an Informix data source:
1. Locate the node name in the Informix sqlhosts file or registry.

Example sqlhosts file:
inf724 onsoctcp anaconda inmx724
inf731 onscotcp boa ifmx731
inf92 onsoctcp python ifmx92

The first value in each line is the node_name, such as inf724.

The second value in each line is the nettype, or type of connection. In this
example onscotcp indicates this is a TCP/IP connection.

The third value in each line is the host name, such as anaconda, boa, and
python.

The fourth value in each line is the service name, such as inmx724. The
service name field depends on the nettype listed in the second value.

Although the node_name is specified as an option in the CREATE SERVER
SQL statement, it is required for Informix data sources.

For more information about the format of this file and the meaning of
these fields, see the Informix manual Administrators Guide for Informix
Dynamic Server.

Chapter 5. Configuring access to Informix data sources 49

2. Issue the CREATE SERVER statement.
For example:
CREATE SERVER server_name TYPE informix VERSION 9 WRAPPER INFORMIX

OPTIONS (NODE ’node_name’, DBNAME ’db_name’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

The next task in this sequence of tasks is creating the user mapping for an
Informix data source.

Related tasks:

v “Creating the user mapping for an Informix data source” on page 52

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix B, “Server options for federated systems”, on page 367
v “CREATE SERVER statement - Examples for Informix wrapper” on page 50

CREATE SERVER statement - Examples for Informix wrapper

This topic provides several examples that show you how to use the CREATE
SERVER statement to register servers for the Informix wrapper. This topic
includes a complete example, which shows how to register a server with
required parameters, and an example with additional server options.

Complete example:

The following example shows you how to register a server definition for an
Informix wrapper by using the CREATE SERVER statement:
CREATE SERVER asia TYPE informix VERSION 9 WRAPPER INFORMIX

OPTIONS (NODE ’abc’, DBNAME ’sales’, IUD_APP_SVPT_ENFORCE ’N’)

asia A name you assign to the Informix database server. This name must
be unique. Duplicate server names are not allowed.

TYPE informix
Specifies the type of data source server to which you are configuring
access. For the Informix wrapper, the server type must be informix.

VERSION 9
The Informix database server version that you want to access. The
supported Informix versions are 7, 8, and 9.

WRAPPER INFORMIX
The name you specified in the CREATE WRAPPER statement.

50 Data Source Configuration Guide

NODE ’abc’
The name of the node where Informix database server resides. Obtain
the node name from the sqlhosts file. This value is case sensitive.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Informix data sources.

DBNAME ’sales’
The name of the Informix database that you want to access. This
value is case sensitive.

Although the database name is specified as an option in the CREATE
SERVER statement, it is required for Informix data sources.

IUD_APP_SVPT_ENFORCE ’N’
Specifies whether DB2 federated system should enforce detecting or
building of application savepoint statements. Informix does not
support application savepoint statements. When set to ’N’, the
federated server will allow INSERT, UPDATE, or DELETE statements
on nicknames for Informix data sources.

The IUD_APP_SVPT_ENFORCE server option must be set to ’N’ to
enable replication to or from Informix data sources.

Although the application savepoint enforcement is specified as an
option in the CREATE SERVER statement, it is required for Informix
data sources.

Server options example:

When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. These server options include
general server options and Informix-specific server options.

The following example shows an Informix server definition with additional
server options:
CREATE SERVER asia TYPE informix VERSION 9 WRAPPER INFORMIX

OPTIONS (NODE ’abc’, DBNAME ’sales’, FOLD_ID ’N’, FOLD_PW ’N’)

When the federated server connects to a data source, it tries to connect using
all possible combinations of upper and lower case for the user ID and
password, as well as the current case. The server might make up to nine
connect attempts before successfully connecting to the data source server.
These attempts can slow down connect times and might result in the user ID
being locked out. You can prevent lock outs by specifying values for the
FOLD_ID and FOLD_PW server options.

For example, you can set the FOLD_ID and FOLD_PW server options to ’N’ (do
not fold the user ID or password). If you establish these settings, then you

Chapter 5. Configuring access to Informix data sources 51

must specify the user ID and password in the correct case. The advantage to
setting these options to ’N’ is that when an invalid user ID or password is
specified, the wrapper will not keep trying the various combinations. This
setting reduces the chance of exceeding the maximum number of failed login
attempts and the ID getting locked out.

Related tasks:

v “Registering the server definitions for an Informix data source” on page 49

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating the user mapping for an Informix data source

Creating the user mapping for an Informix data source is part of the larger
task of adding Informix data sources to federated servers.

When you attempt to access an Informix server, the federated server
establishes a connection to the data source using a user ID and password that
are valid for that data source. You must define an association (a user
mapping) between each federated server user ID and password and the
corresponding data source user ID and password. Create a user mapping for
each user ID that will access the federated system to send distributed requests
to the Informix data source.

Procedure:

To map a local user ID to the Informix server user ID and password, issue a
CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR USERID SERVER INFORMIXSERVER

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The next task in this sequence of tasks is testing the connection to the
Informix server.

Related tasks:

v “Testing the connection to the Informix server” on page 54

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for Informix wrapper” on
page 53

52 Data Source Configuration Guide

CREATE USER MAPPING statement - Examples for Informix wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a federated server user ID to an Informix server
user ID and password. This topic includes a complete example with required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a federated server user ID
(VINCENT) to an Informix server user ID and password (’vinnie’ and
’close2call’):
CREATE USER MAPPING FOR VINCENT SERVER asia

OPTIONS (REMOTE_AUTHID ’vinnie’, REMOTE_PASSWORD ’close2call’)

VINCENT
Specifies the local user ID that you are mapping to a user ID that is
defined at an Informix server.

SERVER asia
Specifies the name of the Informix server that you registered in the
CREATE SERVER statement.

REMOTE_AUTHID ’vinnie’
Specifies the user ID at the Informix database server to which you are
mapping VINCENT. Use single quotation marks to preserve the case
of this value unless you set the FOLD_ID server option to ’U’ or ’L’ in
the CREATE SERVER statement.

REMOTE_PASSWORD ’close2call’
Specifies the password associated with ’vinnie’. Use single quotation
marks to preserve the case of this value unless you set the FOLD_PW
server option to ’U’ or ’L’ in the CREATE SERVER statement.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER asia

OPTIONS (REMOTE_AUTHID ’vinnie’, REMOTE_PASSWORD ’close2call’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

Chapter 5. Configuring access to Informix data sources 53

v “Creating the user mapping for an Informix data source” on page 52

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the Informix server

Testing the connection to the Informix server is part of the larger task of
adding Informix data sources to federated servers.

You can test the connection to the Informix server by using the server
definition and user mappings that you defined.

Procedure:

To test the connection:
1. Open a pass-through session to issue an SQL SELECT statement on the

Informix system tables.
For example:
SET PASSTHRU server_name
SELECT count(*) FROM informix.systables
SET PASSTHRU RESET

If the SQL SELECT statement returns a count, your server definition and
your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Check the Informix server to make sure that it is configured for

incoming connections.
v Check your user mapping to make sure that the settings for the

REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the Informix server. Alter the user mapping, or create
another user mapping as necessary.

v Check the Informix Client SDK software on the DB2 federated server to
make sure that it is installed and configured correctly to connect to the
Informix server.

v Check the settings of your DB2 federated variables to verify that they
are correct for the Informix server. These variables include the system
environment variables, the db2dj.ini variables, and the DB2 Profile
Registry (db2set) variable.

v Check your server definition. If necessary, drop it and create it again.

The next task in this sequence of tasks is registering nicknames for Informix
tables, views, and synonyms.

54 Data Source Configuration Guide

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for Informix tables, views, and synonyms” on page
55

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Registering nicknames for Informix tables, views, and synonyms

Registering nicknames for Informix tables, views, and synonyms is part of the
larger task of adding Informix data sources to federated servers.

For each Informix server that you define, register a nickname for each table,
view, or synonym that you want to access. Use these nicknames, instead of
the names of the data source objects, when you query the Informix servers.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object by using the CREATE NICKNAME
statement. The federated database verifies the presence of the object at the
data source, and then attempts to gather existing data source statistical data.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update statistics (using the data source command that is equivalent
to the DB2 RUNSTATS command) at the data source before you register a
nickname.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME informix_name FOR INFOSERVER."remote_schema"."remote.table"

Nicknames can be up to 128 characters in length.

Chapter 5. Configuring access to Informix data sources 55

Repeat this step for each Informix table, view, or synonym for which you
want to create a nickname.

When you create the nickname, DB2 will use the connection to query the data
source catalog. This query tests your connection to the data source by using
the nickname. If the connection does not work, you will receive an error
message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for Informix wrapper” on
page 56

CREATE NICKNAME statement - Examples for Informix wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for an Informix table, view, or
synonym that you want to access.

This example shows how to specify a remote object for the Informix server
under which the nickname is assigned:
CREATE NICKNAME JPSALES FOR asia."salesdata"."japan"

JPSALES
A unique nickname used to identify the Informix table, view, or
synonym.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when you register the nickname,
the schema of the nickname will be the authorization ID of the user
who is registering the nickname.

asia.″salesdata″.″japan″
A three-part identifier for the remote object.
v asia is the name that you assigned to the Informix database server

in the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the table, view,

or synonym belongs.
v japan is the name of the remote table, view, or synonym that you

want to access.

The federated server folds the names of the Informix schemas and tables to
uppercase unless you enclose the names in quotation marks.

56 Data Source Configuration Guide

Related tasks:

v “Registering nicknames for Informix tables, views, and synonyms” on page
55

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to Informix data sources

After you set up the configuration to Informix data sources, you might want
to modify the configuration to improve performance. For example, you can set
the DB2_DJ_COMM profile registry variable to improve performance when
the Informix data source is accessed.

Improving performance by setting the FOLD_ID and FOLD_PW server
options

When the federated server connects to a data source, it tries to connect using
all possible combinations of upper and lower case for the user ID and
password, as well as the current case. The server might make up to nine
connect attempts before successfully connecting to the data source server.
These attempts can slow down connect times.

Procedure:

To improve performance, specify values for the FOLD_ID and FOLD_PW
server options by using the ALTER SERVER OPTION statement.
v Suppose all your Informix user IDs and passwords are in lowercase, then

setting FOLD_ID and FOLD_PW to the value L (delimited by single quotes)
could improve your connect time. For example:
ALTER SERVER TYPE INFORMIX OPTIONS (ADD FOLD_ID ’L’)
ALTER SERVER TYPE INFORMIX OPTIONS (ADD FOLD_PW ’L’)

v Because the federated server attempts each combination of uppercase and
lowercase values for the user ID and password, you can reduce the chance
of the maximum number of failed login attempts being exceeded and the
ID getting locked out by setting these options to ’N’ (do not fold the user
ID and the password). If you establish these settings, then you need to
always specify the user ID and password in the correct case. If an invalid
user ID and password are specified, the wrapper will not keep trying the
various combinations. For example:
ALTER SERVER TYPE INFORMIX OPTIONS (ADD FOLD_ID ’N’)

ALTER SERVER TYPE INFORMIX OPTIONS (ADD FOLD_PW ’N’)

Chapter 5. Configuring access to Informix data sources 57

Improving performance by setting the DB2_DJ_COMM variable (UNIX)
If you find that it takes a long time to access the Informix server, you can
improve the performance by setting the DB2_DJ_COMM DB2 profile registry
variable to load the wrapper when the federated server initializes rather than
when you attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified. Suppose that your federated server is
running AIX . The command to set the DB2_DJ_COMM variable is:
db2set DB2_DJ_COMM=’libdb2informix.a,libdb2informixF.a,libdb2informixU.a’

The following table lists the DB2_DJ_COMM commands with the
appropriate library names by operating system.

Table 12. Commands to set the DB2_DJ_COMM variable for Informix data sources

Federated server operating
system

Command

AIX DB2_DJ_COMM= ’libdb2informix.a’

HP-UX DB2_DJ_COMM= ’libdb2informix.sl’

Linux DB2_DJ_COMM= ’libdb2informix.so’

Solaris Operating Environment DB2_DJ_COMM= ’libdb2informix.so’

2. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made

Related tasks:

v “Adding Informix data sources to federated servers” on page 45

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

v “ALTER SERVER statement” in the SQL Reference, Volume 2

58 Data Source Configuration Guide

Chapter 6. Configuring access to Oracle data sources

This chapter explains how to configure your federated server to access data
that is stored in Oracle data sources.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to Oracle data sources.

Adding Oracle data sources to federated servers

Configuring the federated server to access Oracle data sources involves
supplying the server with information about the Oracle data sources and
objects that you want to access.

You can configure access to Oracle data sources through the DB2 Control
Center, through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to Oracle data sources. However,
you cannot use the DB2 Control Center to initiate the following configuration
tasks:
v Setting up and testing the Oracle client configuration file
v Testing the connection to the Oracle server to validate the server definition

and user mappings
v Adding or dropping column options

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access Oracle data

sources.
v The Oracle client software that is installed and configured on the federated

server.
v The proper setup of the system environment variables, db2dj.ini variables,

and DB2 Profile Registry (db2set) variables. The variables are:
ORACLE_HOME, ORACLE_BASE, ORA_NLS, and TNS_ADMIN.

© Copyright IBM Corp. 1998 - 2003 59

Procedure:

To add an Oracle data source to a federated server:
1. Set up and test the Oracle client configuration file.
2. Register the wrapper.
3. Register the server definition.
4. Create the user mappings.
5. Test the connection to the Oracle server.
6. Register nicknames for Oracle tables and views.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Setting up and testing the Oracle client configuration file” on page 60
v “Tuning and troubleshooting the configuration to Oracle data sources” on

page 71

Setting up and testing the Oracle client configuration file

Setting up and testing the Oracle client configuration file is part of the larger
task of adding Oracle data sources to federated servers.

The client configuration file is used to connect to Oracle databases, using the
client libraries that are installed on the federated server. This file specifies the
location of each Oracle database server and type of connection (protocol) for
the database server. The default name for the Oracle client configuration file is
tnsnames.ora.

Procedure:

To set up and test the Oracle client configuration file:
1. Use the utility that comes with the Oracle client software.

See the installation documentation from Oracle for more information about
using this utility. Within the tnsnames.ora file, the SID (or
SERVICE_NAME) is the name of the Oracle instance, and the HOST is the
host name where the Oracle server is located.
The directory in which the tnsnames.ora file is created depends on the
operating system running on your federated server.

60 Data Source Configuration Guide

v On UNIX operating systems, the default path and name of this file is
$ORACLE_HOME/network/admin .

v On Windows operating systems, the default path and name of this file is
%ORACLE_HOME%\NETWORK\ADMIN.

2. If you want to place the tnsnames.ora file in a path other than the default
search path, set the TNS_ADMIN environment variable to specify the file
location.
a. Edit the db2dj.ini file that is located in the sqllib/cfg directory, and set

the TNS_ADMIN environment variable:
TNS_ADMIN=x:/path/

b. Issue the following commands to recycle the DB2 instance and ensure
that the environment variable is set in the program:
db2stop
db2start

3. Test the connection by using the Oracle sqlplus tool to ensure that the
client software is able to connect to the Oracle server.

The next task in this sequence of tasks is registering the Oracle wrapper.

Related tasks:

v “Registering the Oracle wrapper” on page 61
v “Tuning and troubleshooting the configuration to Oracle data sources” on

page 71

Registering the Oracle wrapper

Registering the Oracle wrapper is part of the larger task of adding Oracle data
sources to federated servers.

To specify the wrapper that will be used to access Oracle data sources, use the
CREATE WRAPPER statement. Two wrappers for Oracle, SQLNET and NET8, are
included with DB2 Information Integrator.

Procedure:

To specify the wrapper that you want to use to access Oracle data sources,
issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER NET8

Chapter 6. Configuring access to Oracle data sources 61

To determine which wrapper name (SQLNET or NET8) to use with the
CREATE WRAPPER statement, see the Related reference at the end of this
topic.

The SQLNET wrapper uses OCI 7 (Oracle Call Interface) API calls. The NET8
wrapper uses OCI 8 API calls. If the Oracle 8 or Oracle 9 client is installed,
you will experience better performance and functionality by using the NET8
wrapper. Additionally, the NET8 wrapper has LOB support. Because the OCI 7
does not support LOB data types, the SQLNET wrapper does not support
Oracle LOB data types.
v The SQLNET wrapper maps Oracle LONG data types to DB2 for UNIX and

Windows LOB data types.
v The NET8 wrapper does not support Oracle LONG data types. It does map

Oracle LOB data types to DB2 for UNIX and Windows LOB data types.

Recommendation: Use the default wrapper name (SQLNET or NET8). When
you register the wrapper by using one of the default names, the federated
server automatically takes the default library name associated with that
wrapper. If the wrapper name conflicts with an existing wrapper name in the
federated database, you can substitute the default wrapper name with a name
that you choose. If you use a name that is different from one of the default
names, you must include the LIBRARY parameter in the CREATE WRAPPER
statement.

Suppose that you have a federated server running on AIX, and you decide to
use a wrapper name that is not one of the default names. Examples of the
CREATE WRAPPER statements for SQLNET and NET8 are:
CREATE WRAPPER mywrapper LIBRARY ’libdb2sqlnet.a’

CREATE WRAPPER mywrapper LIBRARY ’libdb2net8.a’

See the Related reference at the end of this topic for a list of Oracle wrapper
library names.

The next task in this sequence of tasks is registering the server definitions for
an Oracle data source.

Related tasks:

v “Registering the server definitions for an Oracle data source” on page 64

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v “Oracle wrappers and library names” on page 63

62 Data Source Configuration Guide

Oracle wrappers and library names

This topic provides the Oracle wrapper names and the Oracle library names
that you can use when you register a wrapper to access Oracle data sources.

The following table lists the Oracle wrapper names to use depending on the
Oracle client version and the operating system that you are using.

Table 13. Oracle wrappers by client version and operating system

Oracle client Operating system Wrapper to use

Oracle Version 7 AIX SQLNET

Windows NT and
Windows 2000

SQLNET

HP-UX, Linux, and
Solaris Operating
Environment

not applicable

Oracle Version 8 AIX NET8

Windows NT or
Windows 2000

NET8 (recommended) or SQLNET

HP-UX, Linux, and
Solaris

NET8

Oracle Version 9 AIX NET8

Windows NT or
Windows 2000

NET8 (recommended) or SQLNET

HP-UX, Linux, and
Solaris

NET8

The following table lists the Oracle wrapper library names to use depending
on the operating system of your federated server.

Table 14. Oracle wrapper library names

Operating system on your
federated server

Wrapper library names for
SQLNET

Wrapper library names for
NET8

AIX libdb2sqlnet.a libdb2net8.a

HP-UX libdb2sqlnet.sl libdb2net8.sl

Linux libdb2sqlnet.so libdb2net8.so

Solaris Operating
Environment

libdb2sqlnet.so libdb2net8.so

Windows NT and Windows
2000

db2sqlnet.dll db2net8.dll

Chapter 6. Configuring access to Oracle data sources 63

Related tasks:

v “Registering the server definitions for an Oracle data source” on page 64

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for an Oracle data source

Registering the server definitions for an Oracle data source is part of the
larger task of adding Oracle data sources to federated servers.

In the federated database, you must define each Oracle server that you want
to access. You must first locate the node name of the Oracle data source, and
then use this node name when you register the server.

Procedure:

To register a server definition for an Oracle data source:
1. Locate the node name in the Oracle tnsnames.ora file.

Example tnsnames.ora file:
paris_node =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = somehost)(PORT = 1521)))
(CONNECT_DATA = (SERVICE_NAME = ora9i.seel)))

In this example, the node value to use in the CREATE SERVER statement
is paris_node.

Although the node_name is specified as an option in the CREATE SERVER
SQL statement, it is required for Oracle data sources.

2. Issue the CREATE SERVER statement.
For example:
CREATE SERVER server_name TYPE oracle VERSION 8.1.7 WRAPPER net8

OPTIONS (NODE ’node_name’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

The next task in this sequence of tasks is creating the user mappings for an
Oracle data source.

Related tasks:

v “Creating the user mappings for an Oracle data source” on page 66

64 Data Source Configuration Guide

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix B, “Server options for federated systems”, on page 367
v “CREATE SERVER statement - Examples for Oracle wrapper” on page 65

CREATE SERVER statement - Examples for Oracle wrapper

This topic provides examples that show you how to use the CREATE SERVER
statement to register servers for the Oracle wrapper. This topic includes a
complete example, which shows how to register a server with required
parameters, and an example with additional server options.

Complete example:

The following example shows you how to register a server definition for an
Oracle wrapper by using the CREATE SERVER statement:
CREATE SERVER oraserver TYPE oracle VERSION 8.1.7 WRAPPER net8

OPTIONS (NODE ’paris_node’)

oraserver
A name that you assign to the Oracle database server. This name must
be unique. Duplicate server names are not allowed.

TYPE oracle
Specifies the type of data source server to which you are configuring
access. The type parameter for the SQLNET and NET8 wrappers must be
oracle.

VERSION 8.1.7
The version of Oracle database server that you want to access. The
supported Oracle versions are 7.3.4, 8.x, and 9.x.

WRAPPER net8
The name that you specified in the CREATE WRAPPER statement.

NODE ’paris_node’
The name of the node where the Oracle database server resides.
Obtain the node name from the tnsnames.ora file.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Oracle data sources.

Server option example:

Chapter 6. Configuring access to Oracle data sources 65

When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. These server options include
general server options and Oracle-specific server options.

DB2 assumes that all of the Oracle VARCHAR columns contain trailing
blanks. If you are certain that all of the VARCHAR columns in the Oracle
database do not contain trailing blanks, you can set a server option to specify
that the data source use a non-blank padded VARCHAR comparison
semantic.

The following example shows an Oracle server definition with this server
option:
CREATE SERVER oraserver TYPE oracle VERSION 8.1.7 WRAPPER net8

OPTIONS (NODE ’paris_node’, VARCHAR_NO_TRAILING_BLANKS ’Y’)

Use the VARCHAR_NO_TRAILING_BLANKS server option when none of the
columns contains trailing blanks. If only some of the VARCHAR columns
contain trailing blanks, you can set an option on those specific columns with
the ALTER NICKNAME statement.

Related tasks:

v “Registering the server definitions for an Oracle data source” on page 64

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating the user mappings for an Oracle data source

Creating the user mappings for an Oracle data source is part of the larger task
of adding Oracle data sources to federated servers.

When you attempt to access an Oracle server, the federated server establishes
a connection to the data source using a user ID and password that are valid
for that data source. You must define an association (a user mapping) between
each federated server user ID and password and the corresponding data
source user ID and password. Create a user mapping for each user ID that
will access the federated system to send distributed requests to the Oracle
data source.

Procedure:

To map a local user ID to the Oracle server user ID and password, issue a
CREATE USER MAPPING statement.

For example:

66 Data Source Configuration Guide

CREATE USER MAPPING FOR userid SERVER oraserver
OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The next task in this sequence of tasks is testing the connection to the Oracle
server.

Related tasks:

v “Testing the connection to the Oracle server” on page 68

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for Oracle wrapper” on
page 67

CREATE USER MAPPING statement - Examples for Oracle wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a federated server user ID to an Oracle server
user ID and password. This topic includes a complete example with required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a federated server user ID to an
Oracle server user ID and password:
CREATE USER MAPPING FOR robert SERVER oraserver

OPTIONS (REMOTE_AUTHID ’rob’, REMOTE_PASSWORD ’then4now’)

robert Specifies the local user ID that you are mapping to a user ID defined
at an Oracle server.

SERVER oraserver
Specifies the name of the Oracle server that you defined in the
CREATE SERVER statement.

REMOTE_AUTHID ’rob’
Specifies the user ID at the Oracle database server to which you are
mapping robert. Use single quotation marks to preserve the case of
this value unless you set the FOLD_ID server option to ’U’ or ’L’ in
the CREATE SERVER statement.

REMOTE_PASSWORD ’then4now’
Specifies the password that is associated with ’rob’. Use single
quotation marks to preserve the case of this value unless you set the
FOLD_PW server option to ’U’ or ’L’ in the CREATE SERVER
statement.

Chapter 6. Configuring access to Oracle data sources 67

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER oraserver

OPTIONS (REMOTE_AUTHID ’rob’, REMOTE_PASSWORD ’then4now’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Restriction: The user ID at the Oracle data source must have been created
using the Oracle create user command with the ’identified by’ clause, instead
of the ’identified externally’ clause.

Related tasks:

v “Creating the user mappings for an Oracle data source” on page 66

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the Oracle server

Testing the connection to the Oracle server is part of the larger task of adding
Oracle data sources to federated servers.

You can test the connection to the Oracle server by using the server definition
and user mappings that you defined.

Procedure:

To test the connection:
1. Open a pass-through session to issue an SQL SELECT statement on the

Oracle system tables.
For example:
SET PASSTHRU remote_server_name
SELECT count(*) FROM sys.all_tables
SET PASSTHRU RESET

If the SQL SELECT statement returns a count, your server definition and
your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:

68 Data Source Configuration Guide

v Check the Oracle server to make sure that it is configured for incoming
connections.

v Check your user mapping to make sure that the settings for the
REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the Oracle server. Alter the user mapping, or create
another user mapping as necessary.

v Check the Oracle client software on the DB2 federated server to make
sure that it is installed and configured correctly to connect to the Oracle
server.

v Check the settings of your DB2 federated variables to verify that they
are correct for the Oracle server. These variables include the system
environment variables, the db2dj.ini variables, and the DB2 Profile
Registry (db2set) variable.

v Check your server definition. If necessary, drop it and create it again.

The next task in this sequence of tasks is registering nicknames for Oracle
tables and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for Oracle tables and views” on page 69

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Registering nicknames for Oracle tables and views

Registering nicknames for Oracle tables and views is part of the larger task of
adding Oracle data sources to federated servers.

For each Oracle server that you define, register a nickname for each table or
view that you want to access. Use these nicknames, instead of the names of
the data source objects, when you query the Oracle servers.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object by using the CREATE NICKNAME

Chapter 6. Configuring access to Oracle data sources 69

statement. The federated database verifies the presence of the object at the
data source, and then attempts to gather existing data source statistical data.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update statistics (using the data source command that is equivalent
to the DB2 RUNSTATS command) at the data source before you register a
nickname.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME oracle_name FOR oraserver."remote_schema"."remote.table"

Nicknames can be up to 128 characters in length.

Repeat this step for each Oracle table or view for which you want to create a
nickname.

When you create the nickname, DB2 will use the connection to query the data
source catalog. This query tests your connection to the data source by using
the nickname. If the connection does not work, you will receive an error
message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for Oracle wrapper” on page
70

CREATE NICKNAME statement - Examples for Oracle wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for an Oracle table or view that
you want to access.

This example shows how to specify a remote object for the Oracle server
under which the nickname is assigned:
CREATE NICKNAME PARISINV FOR oraserver."france"."inventory"

PARISINV
A unique nickname used to identify the Oracle table or view.

70 Data Source Configuration Guide

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when you register the nickname,
the schema of the nickname will be the authorization ID of the user
who is registering the nickname.

oraserver.″france″.″inventory″
A three-part identifier for the remote object:
v oraserver is the name that you assigned to the Oracle database

server in the CREATE SERVER statement.
v france is the name of the remote schema to which the table or view

belongs.
v inventory is the name of the remote table or view that you want to

access.

The federated server folds the names of the Oracle schemas and tables to
uppercase unless you enclose the names in quotation marks.

Related tasks:

v “Registering nicknames for Oracle tables and views” on page 69

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to Oracle data sources

After you set up the configuration to Oracle data sources, you can modify the
configuration to improve performance. For example, you might want to set
the DB2_DJ_COMM profile registry variable to improve performance when
the Oracle data source is accessed.

Improving performance by setting the DB2_DJ_COMM variable (UNIX)
If you find that it takes a long time to access the Oracle server, you can
improve the performance by setting the DB2_DJ_COMM variable. When you
set the DB2_DJ_COMM, the federated server loads the wrapper upon
initialization rather than when you attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified. Suppose that your federated server is
running AIX and the wrapper you are using is NET8. The command to set
the DB2_DJ_COMM variable is:
db2set DB2_DJ_COMM= ’libdb2net8.a’

Chapter 6. Configuring access to Oracle data sources 71

The following table lists the valid Oracle library names.

Table 15. Oracle wrapper library names

Operating system on your
federated server

SQLNET wrapper library
names

NET8 wrapper library
names

AIX libdb2sqlnet.a libdb2net8.a

HP-UX libdb2sqlnet.sl libdb2net8.sl

Linux libdb2sqlnet.so libdb2net8.so

Solaris Operating
Environment

libdb2sqlnet.so libdb2net8.so

2. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made.

Connectivity problems
For each HOST in the DESCRIPTION section of the tnsnames.ora file, you
might need to update the hosts file. Whether you update this file depends on
how TCP/IP is configured on your network. Part of the network must
translate the remote host name that is specified in the DESCRIPTION section
in the tnsnames.ora file to an address.

If your network has a named server that recognizes the host name, you do
not need to update the TCP/IP hosts file. Otherwise, you need an entry for
the remote host. See your network administrator to determine how your
network is configured. If you need to update the hosts file, the file location
depends on the federated server operating system:

On UNIX federated servers
Update the /etc/hosts file.

On Windows federated servers
Update the x:\winnt\system32\drivers\etc\hosts file.

Related tasks:

v “Adding Oracle data sources to federated servers” on page 59

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

72 Data Source Configuration Guide

Chapter 7. Configuring access to Sybase data sources

This chapter explains how to configure your federated server to access data
that is stored in Sybase data sources.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to Sybase data sources.

Adding Sybase data sources to federated servers

Configuring the federated server to access Sybase data sources involves
supplying the server with information about the Sybase data sources and
objects that you want to access.

You can configure access to Sybase data sources through the DB2 Control
Center, through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to Sybase data sources. However,
you cannot use the DB2 Control Center to initiate the following configuration
tasks:
v Setting up and testing the Sybase client configuration file
v Testing the connection to the Sybase server to validate the server definition

and user mappings
v Adding or dropping column options

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access Sybase data

sources.
v The Sybase client software that is installed and configured on the federated

server.
v The proper setup of the system environment variables, db2dj.ini variables,

and DB2 Profile Registry (db2set) variables. The variables are: SYBASE and
SYBASE_OCS.

© Copyright IBM Corp. 1998 - 2003 73

Restriction:

The Sybase Open Client DB-Library wrapper called DBLIB is a read-only
wrapper and does not support INSERT, UPDATE, or DELETE operations.

Procedure:

To add a Sybase data source to a federated server:
1. Set up and test the Sybase client configuration file.
2. Register the wrapper.
3. Register the server definition.
4. Create the user mappings.
5. Test the connection to the Sybase server.
6. Register nicknames for Sybase tables and views.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Setting up and testing the Sybase client configuration file” on page 74

Setting up and testing the Sybase client configuration file

Setting up and testing the Sybase client configuration file is part of the larger
task of adding Sybase data sources to federated servers.

The client configuration file is used to connect to Sybase using the Sybase
Open Client libraries that are installed on the federated server. This file
specifies the location of each Sybase SQL Server and Adaptive Server
Enterprise instance and the type of connection (protocol) for the database
server.

You must set up a client configuration file on each instance in the DB2
federated server that will be used to connect to Sybase. The steps that you
must use to set up and test this file depend on the operating system that you
are running on your federated server.

Procedure:

To set up and test the client configuration file:

74 Data Source Configuration Guide

On UNIX operating systems:

1. Set up the client configuration file by using the utility that comes with the
Sybase Open Client software. This file is created in the
$SYBASE/interfaces directory. See the Sybase documentation for more
information about using this utility.

2. Make the interfaces file accessible to the DB2 federated server instance by
using one of the following methods:
v Copy this file to the $HOME/sqllib directory of the DB2 federated

instance.
v Use the ln command to create a link from the /sqllib subdirectory to the

interfaces file in the instance $HOME/sqllib directory. For example:
ln -s -f /home/sybase/interfaces /home/db2djinst1/sqllib

v Use the IFILE server option to specify the full path to the Sybase
interfaces file.

3. Test the connection to ensure that the Sybase Open client software is able
to connect to the Sybase server. Use an appropriate Sybase query utility,
such as isql.

On Windows operating systems:

1. Set up the client configuration file by using the utility that comes with the
Sybase Open Client software. This file is created in the
%SYBASE%\ini\sql.ini directory. See the Sybase documentation for more
information about using this utility.

2. Make this sql.ini file accessible to the DB2 federated server instance by
using copying this file to the c:\Program Files\IBM\SQLLIB directory of
the DB2 federated instance.
Because DB2 Information Integrator uses interfaces as the default name for
the Sybase client configuration file, rename the Windows sql.ini file in the
c:\Program Files\IBM\SQLLIB directory to interfaces.
Required: If you do not rename the sql.ini file to interfaces, you must use
the IFILE server option when you create the server definition.

3. Test the connection to ensure that the Sybase Open client software is able
to connect to the Sybase server. Use an appropriate Sybase query utility,
such as isql.

The next task in this sequence of tasks is registering the Sybase wrapper.

Related tasks:

v “Registering the Sybase wrapper” on page 76

Chapter 7. Configuring access to Sybase data sources 75

Registering the Sybase wrapper

Registering the Sybase wrapper is part of the larger task of adding Sybase
data sources to federated servers.

To specify the wrapper that will be used to access Sybase data sources, use
the CREATE WRAPPER statement. Two wrappers for Sybase, the Open Client
Client-Library wrapper called CTLIB and the Open Client DB-Library
wrapper called DBLIB, are included with DB2 Information Integrator.

Procedure:

To specify the wrapper that you want to use to access Sybase data sources,
issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER CTLIB

You can use either the CTLIB or DBLIB wrapper regardless of the operating
system that is running on your federated server.

Recommendation: Use one of the default wrapper names (CTLIB or DBLIB).
When you register the wrapper by using one of the default names, the
federated server automatically takes the default library name that is associated
with that wrapper. If the wrapper name conflicts with an existing wrapper
name in the federated database, you can substitute the default wrapper name
with a name that you choose. If you use a name that is different from one of
the default names, you must include the LIBRARY parameter in the CREATE
WRAPPER statement. Suppose that you have a federated server running on
AIX and you decide to use a wrapper name that is not one of the default
names. Examples of the CREATE WRAPPER statements for CTLIB and DBLIB
are:
CREATE WRAPPER mywrapper LIBRARY ’libdb2ctlib.a’

CREATE WRAPPER mywrapper LIBRARY ’libdb2dblib.a’

The wrapper library names for Sybase are:

Table 16. Sybase wrapper library names

Operating system on your
federated server

CTLIB wrapper library
names

DBLIB wrapper library
names

AIX libdb2ctlib.a libdb2dblib.a

HP-UX libdb2ctlib.sl libdb2dblib.sl

Linux libdb2ctlib.so libdb2dblib.so

76 Data Source Configuration Guide

Table 16. Sybase wrapper library names (continued)

Operating system on your
federated server

CTLIB wrapper library
names

DBLIB wrapper library
names

Solaris Operating
Environment

libdb2ctlib.so libdb2dblib.so

Windows NT and Windows
2000

db2ctlib.dll db2dblib.dll

The next task in this sequence of tasks is registering the server definitions for
a Sybase data source.

Related tasks:

v “Registering the server definitions for a Sybase data source” on page 77

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for a Sybase data source

Registering the server definitions for a Sybase data source is part of the larger
task of adding Sybase data sources to federated servers.

In the federated database, you must define each Sybase server that you want
to access. You must first locate the node name of the Sybase data source, and
then use this node name when you register the server.

Procedure:

To register a server definition for a Sybase data source:
1. Locate the node name in the Sybase interfaces file.

Example interfaces file on UNIX operating systems:
sybase119
query tcp ether anaconda 4100

Example interfaces file on Windows NT or Windows 2000 operating
systems:
[sybase119]
query=TCP,anaconda,4100

In these examples, the node name is sybase119. The node name is followed
by the type of connection (TCP/IP) and the host name (anaconda).

Chapter 7. Configuring access to Sybase data sources 77

Although the node name is specified as an option in the CREATE SERVER
statement, it is required for Sybase data sources.

2. Issue the CREATE SERVER statement.
For example:
CREATE SERVER server_name TYPE SYBASE VERSION 12.0 WRAPPER CTLIB

OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

Important: If you did not rename the sql.ini file to interfaces when you set up
the Sybase client configuration file, you must use the IFILE server option
when you register the server definition.

The next task in this sequence of tasks is creating a user mapping for a Sybase
data source.

Related tasks:

v “Creating a user mapping for a Sybase data source” on page 80

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix B, “Server options for federated systems”, on page 367
v “CREATE SERVER statement - Examples for Sybase wrapper” on page 78

CREATE SERVER statement - Examples for Sybase wrapper

This topic provides examples that show you how to use the CREATE SERVER
statement to register servers for the Sybase wrapper. This topic includes a
complete example, which shows how to register a server with required
parameters, and an example with additional server options.

Complete example:

The following example shows you how to register a server definition for a
Sybase wrapper by issuing the CREATE SERVER statement:
CREATE SERVER SYBSERVER TYPE SYBASE VERSION 12.0 WRAPPER CTLIB

OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’)

SYBSERVER
A name that you assign to the Sybase server. This name must be
unique. Duplicate server names are not allowed.

78 Data Source Configuration Guide

TYPE SYBASE
Specifies Sybase as the type of data source to which you are
configuring access. The TYPE parameter for the CTLIB and DBLIB
wrappers must be SYBASE.

VERSION 12.0
The version of the Sybase database server software that you want to
access. The supported versions are 11, 11.5, 11.9, 12, and 12.5.

WRAPPER CTLIB
The wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’sybnode’
The name of the node where SYBSERVER resides. Obtain the node
name from the interfaces file. This value is case sensitive.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Sybase data sources.

DBNAME ’sybdb’
The name of the Sybase database that you want to access. Obtain this
name from the Sybase server. This value is case sensitive.

Although the database name is specified as an option in the CREATE
SERVER statement, it is required for Sybase data sources.

Important: If you did not rename the sql.ini file to interfaces when you set up
the Sybase client configuration file, you must use the IFILE server option
when you register the server definition.

Server option examples:

When you register the server, you can specify additional server options in the
CREATE SERVER statement. These server options include general server
options and Sybase-specific server options.

The following example shows how to use the TIMEOUT server option when
you register a server with the CTLIB wrapper on a UNIX operating system:
CREATE SERVER SYBSERVER TYPE SYBASE

VERSION 12.0 WRAPPER CTLIB
OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’,
TIMEOUT ’60’, LOGIN_TIMEOUT ’60’, PACKET_SIZE ’1024’,
IFILE ’/home/sybase/interfaces’)

The timeout value is the number of seconds that the wrapper waits for a
response from the Sybase server. Use the TIMEOUT option to avoid deadlocks
on transactions.

Chapter 7. Configuring access to Sybase data sources 79

The following example shows how to use the IFILE server option when you
register a server on a Windows operating system:
CREATE SERVER SYBSERVER TYPE SYBASE

VERSION 12.0 WRAPPER CTLIB
OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’,
IFILE ’C:\Sybase\ini\sql.ini’)

The additional Sybase-specific server options are:

IFILE
Specifies the full path and name of the Sybase Open Client interfaces file.

Use this server option if you did not copy or link the sql.ini file as
$SQLLIB\interfaces (on UNIX systems) or as %SQLLIB%/interfaces (on
Windows operating systems).

IGNORE_UDT
Specifies whether the federated server determines the built-in type that
underlies a UDT without strong typing.

LOGIN_TIMEOUT
Specifies the length of time, in seconds, that DB2 Universal Database
waits for a login response when making a connection attempt. The default
behavior is to wait indefinitely for a response from the Sybase server.

PACKET_SIZE
Determines the packet size that Client-Library uses when sending Tabular
Data Stream (TDS) packets. If an application needs to send or receive
large amounts of text, image, or bulk data, a larger packet size might
improve efficiency.

TIMEOUT
Specifies the length of time, in seconds, that DB2 Universal Database
waits for a server response to a command. The default behavior is to wait
indefinitely for a response from the Sybase server. The Sybase Open Client
uses timeout thresholds to interrupt queries and responses that run for a
long a period of time.

Related tasks:

v “Registering the server definitions for a Sybase data source” on page 77

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating a user mapping for a Sybase data source

Creating a user mapping for a Sybase data source is part of the larger task of
adding Sybase data sources to federated servers.

80 Data Source Configuration Guide

When you attempt to access a Sybase server, the federated server establishes a
connection to the data source using a user ID and password that are valid for
that data source. You must define an association (a user mapping) between
each federated server user ID and password and the corresponding data
source user ID and password. Create a user mapping for each user ID that
will access the federated system to send distributed requests to the Sybase
data source.

Procedure:

To map a local user ID to the Sybase server user ID and password, issue a
CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR userid SERVER SYBSERVER

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The next task in this sequence of tasks is testing the connection to the Sybase
server.

Related tasks:

v “Testing the connection to the Sybase server” on page 82

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for Sybase wrapper” on
page 81

CREATE USER MAPPING statement - Examples for Sybase wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a federated server user ID to a Sybase server
user ID and password. This topic includes a complete example with required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a federated server user ID to a
Sybase server user ID and password:
CREATE USER MAPPING FOR maria SERVER SYBSERVER

OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

maria Specifies the local user ID that you are mapping to a user ID that is
defined at the Sybase server.

Chapter 7. Configuring access to Sybase data sources 81

SERVER SYBSERVER
Specifies the name of the Sybase server that you defined in the
CREATE SERVER statement.

REMOTE_AUTHID ’mary’
Specifies the user ID at the Sybase server to which you are mapping
maria. Use single quotation marks to preserve the case of this value
unless you set the FOLD_ID server option to ’U’ or ’L’ in the CREATE
SERVER statement.

REMOTE_PASSWORD ’day2night’
Specifies the password that is associated with ’mary’. Use single
quotation marks to preserve the case of this value unless you set the
FOLD_PW server option to ’U’ or ’L’ in the CREATE SERVER
statement.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER SYBSERVER

OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

v “Creating a user mapping for a Sybase data source” on page 80

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the Sybase server

Testing the connection to the Sybase server is part of the larger task of adding
Sybase data sources to federated servers.

You can test the connection to the Sybase server by using the server definition
and user mappings that you defined.

Procedure:

To test the connection:

82 Data Source Configuration Guide

1. Open a pass-through session to issue an SQL SELECT statement on the
Sybase system tables.
For example:
SET PASSTHRU local_server_name
SELECT count(*) FROM dbo.sysobjects
SET PASSTHRU RESET

Where local_server_name is the name you used to register the remote server
in the federated database catalog. If the SQL SELECT statement returns a
count, your server definition and your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Check the Sybase server to make sure that it is configured for incoming

connections.
v Check your user mapping to make sure that the settings for the

REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the Sybase server. Alter the user mapping, or create
another user mapping as necessary.

v Check the Sybase client software on the DB2 federated server to make
sure that it is installed and configured correctly to connect to the Sybase
server.

v Check the settings of your DB2 federated variables to verify that they
are correct for the Sybase server. These variables include the system
environment variables, the db2dj.ini variables, and the DB2 Profile
Registry (db2set) variable.

v Check your server definition. If necessary, drop it and create it again.

The next task in this sequence of tasks is registering nicknames for Sybase
tables and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for Sybase tables and views” on page 84

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Chapter 7. Configuring access to Sybase data sources 83

Registering nicknames for Sybase tables and views

Registering nicknames for Sybase tables and views is part of the larger task of
adding Sybase data sources to federated servers.

For each Sybase server that you define, register a nickname for each table or
view that you want to access. Use these nicknames, instead of the names of
the data source objects, when you query the Sybase servers.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object by using the CREATE NICKNAME
statement. The federated database verifies the presence of the object at the
data source, and then attempts to gather existing data source statistical data.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update statistics (using the data source command that is equivalent
to the DB2 RUNSTATS command) at the data source before you register a
nickname.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME sybase_name FOR SYBSERVER."remote_schema"."remote.table"

Nicknames can be up to 128 characters in length.

Repeat this step for each Sybase table or view for which you want to create a
nickname.

When you create the nickname, DB2 will use the connection to query the data
source catalog. This query tests your connection to the data source by using
the nickname. If the connection does not work, you will receive an error
message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for Sybase wrapper” on page
85

84 Data Source Configuration Guide

CREATE NICKNAME statement - Examples for Sybase wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for a Sybase table or view that
you want to access.

This example shows how to specify a remote object for the Sybase server
under which the nickname is assigned:
CREATE NICKNAME SYBSALES FOR SYBSERVER."salesdata"."europe"

SYBSALES
Is a unique nickname for the Sybase table or view.

The nickname is a two-part name—the schema and the nickname. If
you omit the schema when creating the nickname, the schema of the
nickname will be the authentication ID of the user creating the
nickname.

SYBSERVER.″salesdata″.″europe″
Is a three-part identifier for the remote object.
v SYBSERVER is the name you assigned to the Sybase database

server in the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the table or

view belongs.
v europe is the name of the remote table or view that you want to

access.

The federated server folds the names of the Sybase schemas and tables to
uppercase unless you enclose the names in quotation marks.

Related tasks:

v “Registering nicknames for Sybase tables and views” on page 84

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to Sybase data sources

After you set up the configuration to Sybase data sources, you might want to
modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM environment variable to improve
performance when the Sybase data source is accessed.

Chapter 7. Configuring access to Sybase data sources 85

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes a long time to access the Sybase server, you can
improve the performance by setting the DB2_DJ_COMM environment
variable. When you set the DB2_DJ_COMM environment variable, the
federated server loads the wrapper upon initialization rather than when you
attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose that your
federated server is running AIX and the wrapper you are using is CTLIB.
The command to set the DB2_DJ_COMM environment variable is:
db2set DB2_DJ_COMM= ’libdb2ctlib.a’

Consult the following table for the proper library name.

Table 17. Sybase wrapper library names

Operating system on your
federated server

CTLIB wrapper library
names

DBLIB wrapper library
names

AIX libdb2ctlib.a libdb2dblib.a

HP-UX libdb2ctlib.sl libdb2dblib.sl

Linux libdb2ctlib.so libdb2dblib.so

Solaris Operating
Environment

libdb2ctlib.so libdb2dblib.so

2. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made.

Using CTLIB instead of DBLIB
CT-Library supports dynamic prepare-and-execute of statements. This allows
CT-Library applications to prepare a statement one time and execute it many
times with different inputs. Preparing a statement one time eliminates the
need to recompile the statement for each input parameter change. Although
the DB2 application might not take advantage of dynamic SQL, federated
query processing of remote queries uses dynamic SQL exclusively.

86 Data Source Configuration Guide

Resolving the sp_helpindex error
The federated system relies on one of the Sybase catalog stored procedures,
sp_helpindex. If you receive the following SQL error, the Sybase catalog
stored procedures might not be installed on the Sybase server.
SQL0204N "sp_helpindex" is an undefined name.

Have the Sybase administrator install the catalog stored procedures on the
Sybase server.

Related tasks:

v “Adding Sybase data sources to federated servers” on page 73

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Chapter 7. Configuring access to Sybase data sources 87

88 Data Source Configuration Guide

Chapter 8. Configuring access to Microsoft SQL Server
data sources

This chapter explains how to configure your federated server to access data
that is stored in Microsoft SQL Server databases.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to Microsoft SQL Server data sources.

Adding Microsoft SQL Server data sources to federated servers

Configuring the federated server to access Microsoft SQL Server data sources
involves supplying the federated server with information about the Microsoft
SQL Server data sources and objects that you want to access.

You can configure access to Microsoft SQL Server data sources through the
DB2 Control Center, through the DB2 Command Center, or through the DB2
command line processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to Microsoft SQL Server data
sources. However, you cannot use the DB2 Control Center to initiate the
following configuration tasks:
v Testing the connection to the Microsoft SQL Server server to validate the

server definition and user mappings
v Adding or dropping column options

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access Microsoft SQL

Server data sources.
v The Microsoft SQL Server ODBC driver that is installed and configured on

the federated server.
v The proper setup of the system environment variables, db2dj.ini variables,

and DB2 Profile Registry (db2set) variables. The variables are:
DJXODBCTRACE, DJX_ODBC_LIBRARY_PATH, ODBCINI, DB2LIBPATH,
and DB2ENVLIST.

© Copyright IBM Corp. 1998 - 2003 89

Procedure:

To add a Microsoft SQL Server data source to a federated server:
1. Prepare the federated server and federated database.

v On Windows, confirm that the ODBC System DSN is properly set up,
and test the connection to the Microsoft SQL Server remote server.

v On UNIX systems, update or create an odbc.ini file, and test the
connection to the Microsoft SQL Server remote server.

2. Register the wrapper.
3. Register the server definition.
4. Create the user mappings.
5. Test the connection to the Microsoft SQL Server remote server.
6. Register nicknames for Microsoft SQL Server tables and views.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Preparing the federated server and database to access Microsoft SQL
Server data sources” on page 90

Preparing the federated server and database to access Microsoft SQL Server
data sources

Preparing the federated server and database to access Microsoft SQL Server
data sources is part of the larger task of adding Microsoft SQL Server data
sources to federated servers.

The steps that you need to follow to prepare the federated server and
database to access Microsoft SQL Server data sources depend on the operating
system that is running on your federated server.

Procedure:

To prepare the federated server and database:

On Windows:

1. Verify that the ODBC System DSN is set to connect to the Microsoft SQL
Server data source by checking this setting in the Control Panel.
a. From the Start menu, open the Control Panel.

90 Data Source Configuration Guide

b. Double-click ODBC Data Sources to display the ODBC Data Source
Administrator window.

c. Click the System DSN tab, and locate an entry for the Microsoft SQL
Server remote server.
The entry is the value that you will use for the NODE server option
when you register the server in the federated database.

2. From the ODBC Data Source Administrator window, select Configure to
test the connection from the ODBC Systems DSN to the Microsoft SQL
Server data source. Alternatively, you can test the connection by using the
Microsoft SQL Server query tool.

On UNIX systems:

1. Verify that the odbc.ini file is updated (or if necessary created) on the
federated server.
Recommendation: Place the odbc.ini file or a copy of this file in the home
directory of the DB2 instance owner.

2. Verify that the path to the odbc.ini is in the ODBCINI environment
variable.

3. Verify that the appropriate symbolic link is created:
v On HP-UX, the symbolic link is from /usr/exe/libodbcinst.sl to

$DJX_ODBC_LIBRARY_PATH/libodbcinst.sl.
v On Linux, the symbolic link is from /usr/local/locale to

$DJX_ODBC_LIBRARY_PATH/../locale.
v On Solaris Operating Environments, the symbolic link is from

$HOME/sqllib/locale to $DJX_ODBC_LIBRARY_PATH/../locale. $HOME is the
home directory of the DB2 instance owner.

4. Test the connection from the federated server to the Microsoft SQL server
data source by using the DataDirect Connect ODBC demoodbc tool.
a. From an operating system command prompt, issue the following

command:
export ODBCINI=$HOME/.odbc.ini

b. Run the /opt/odbc/odbc.sh script. This script sets up several operating
specific environment variables.

c. Test the connection to the Microsoft SQL server data source by using
the DataDirect Connect ODBC demoodbc tool. The demoodbc tool is
located in the /demo subdirectory of the Connect ODBC libraries.

The next task in this sequence of tasks is registering the Microsoft SQL Server
wrapper.

Related tasks:

v “Registering the Microsoft SQL Server wrapper” on page 92

Chapter 8. Configuring access to Microsoft SQL Server data sources 91

Registering the Microsoft SQL Server wrapper

Registering the Microsoft SQL Server wrapper is part of the larger task of
adding Microsoft SQL Server data sources to federated servers.

To specify the wrapper that you will use to access Microsoft SQL Server data
sources, issue the CREATE WRAPPER statement. DB2 Information Integrator
includes two wrappers for Microsoft SQL Server. The wrapper that you use
depends on the operating system of your federated server.
v On UNIX systems, the default wrapper name is MSSQLODBC3 for the

DataDirect Connect ODBC 3.7 (or later) driver.
v On Windows, the default wrapper name is DJXMSSQL3 for the ODBC 3.0

(or later) driver.

Procedure:

To specify the wrapper that you want to use to access Microsoft SQL Server
data sources, issue the CREATE WRAPPER statement.

For example on Windows NT and Windows 2000:
CREATE WRAPPER DJXMSSQL3

Recommendation: Use one of the default wrapper names (DJXMSSQL3 or
MSSQLODBC3). When you register the wrapper by using one of the default
names, the federated server automatically takes the default library name that
is associated with that wrapper. If the wrapper name conflicts with an existing
wrapper name in the federated database, you can substitute the default
wrapper name with a name that you choose. If you use a name that is
different from one of the default names, you must include the LIBRARY
parameter in the CREATE WRAPPER statement. Suppose that you have a
federated server running on AIX, and you decide to use a wrapper name that
is not one of the default names. The CREATE WRAPPER statement that you
need to issue is:
CREATE WRAPPER mywrapper LIBRARY ’libdb2mssql3.a’

The value mywrapper is the name that you give to the wrapper instead of
using the default wrapper name.

The wrapper library names for Microsoft SQL Server are:

Table 18. Microsoft SQL Server wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2mssql3.a

92 Data Source Configuration Guide

Table 18. Microsoft SQL Server wrapper library names (continued)

Operating system on your federated
server

Wrapper library name

HP-UX libdb2mssql3.sl

Linux libdb2mssql3.so

Solaris Operating Environment libdb2mssql3.so

Windows db2mssql3.dll

The next task in this sequence of tasks is registering the server definitions for
a Microsoft SQL Server data source.

Related tasks:

v “Registering the server definitions for a Microsoft SQL Server data source”
on page 93

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for a Microsoft SQL Server data source

Registering the server definitions for a Microsoft SQL Server data source is
part of the larger task of adding Microsoft SQL Server data sources to
federated servers.

In the federated database, you must define each Microsoft SQL Server remote
server that you want to access. You must first locate the node name of the
Microsoft SQL Server remote server, and then use this node name when you
register the server definition by issuing the CREATE SERVER statement.

Procedure:

To register a server definition for a Microsoft SQL Server data source:
1. Locate the node name.

v If your federated server is using Windows NT or Windows 2000, the
NODE is the System DSN name that you specified for the Microsoft
SQL Server remote server that you are accessing.

v If your federated server is using AIX, HP-UX, Linux, or Solaris
Operating Environment, the NODE is defined in the .odbc.ini file.
The following is an example of a .odbc.ini file on AIX.
Example .odbc.ini file on AIX:

Chapter 8. Configuring access to Microsoft SQL Server data sources 93

rawilson=MS SQL Server 7.0
medusa=MS SQL Server 7.0
[rawilson]
Driver=/opt/odbc/lib/ivmsss16.so
Description=MS SQL Server Driver for AIX

Address=9.112.30.39,1433
[medusa]
Driver=/opt/odbc/lib/ivmsss16.so
Description=MS SQL Server Driver for AIX
Address=9.112.98.123,1433

At the top of the .odbc.ini file, there is a section labeled [ODBC Data
Sources] which lists the nodes. Each of the nodes has a section
[node_name] that describes each node.

Although the node name is specified as an option in the CREATE SERVER
statement, it is required for Microsoft SQL Server data sources.

2. Issue the CREATE SERVER statement.
For example:
CREATE SERVER server_name TYPE MSSQLSERVER VERSION 7.0 WRAPPER djxmssql3

OPTIONS (NODE ’sqlnode’, DBNAME ’mssdb’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

The next task in this sequence of tasks is creating a user mapping for a
Microsoft SQL Server data source.

Related tasks:

v “Creating a user mapping for a Microsoft SQL Server data source” on page
96

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix B, “Server options for federated systems”, on page 367
v “CREATE SERVER statement - Examples for Microsoft SQL Server

wrapper” on page 94

CREATE SERVER statement - Examples for Microsoft SQL Server wrapper

This topic provides examples that show you how to use the CREATE SERVER
statement to register servers for the Microsoft SQL Server wrapper. This topic
includes a complete example, which shows how to register a server with
required parameters, and an example with additional server options.

94 Data Source Configuration Guide

Complete example:

The following example shows you how to register a server definition for a
Microsoft SQL Server wrapper by issuing the CREATE SERVER statement:
CREATE SERVER sqlserver TYPE MSSQLSERVER VERSION 7.0 WRAPPER djxmssql3

OPTIONS (NODE ’sqlnode’, DBNAME ’africa’)

sqlserver
A name that you assign to the Microsoft SQL Server remote server.
This name must be unique. Duplicate server names are not allowed.

TYPE MSSQLSERVER
The type of data source to which you are configuring access. The
TYPE parameter for the Microsoft SQL Server wrappers must be
MSSQLSERVER.

VERSION 7.0
The version of Microsoft SQL Server database server software that
you want to access. Supported versions are 6.5, 7.0, and 2000.

WRAPPER djxmssql3
The wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’sqlnode’
The name of the node where the Microsoft SQL Server remote server
resides. This value is case sensitive.

Although the name of the node is specified as an option in the
CREATE SERVER statement, it is required for Microsoft SQL Server
data sources.

DBNAME ’africa’
The name of the database that you want to access. This value is case
sensitive.

Although the name of the database is specified as an option in the
CREATE SERVER statement, it is required for Microsoft SQL Server
data sources.

Server option examples:

When you register the server, you can specify additional server options in the
CREATE SERVER statement. These server options include general server
options and Microsoft SQL Server-specific server options.

The following example shows how to use the COLLATING_SEQUENCE
server option:
CREATE SERVER sqlserver TYPE MSSQLSERVER VERSION 7.0 WRAPPER djxmssql3

OPTIONS (NODE ’sqlnode’, DBNAME ’africa’, COLLATING_SEQUENCE ’I’)

Chapter 8. Configuring access to Microsoft SQL Server data sources 95

The COLLATING_SEQUENCE server option specifies whether the data source
uses the same collating sequence as the federated server. On a Microsoft SQL
Server database server that is running Windows NT or Windows 2000, the
default collating sequence is case insensitive (for example, ’STEWART’ and
’StewART’ are considered equal). To guarantee correct results from the
federated server, set the COLLATING_SEQUENCE server option to ’I’. This
setting indicates that the Microsoft SQL Server data source is case insensitive.

Note: The federated server does not push down queries if the results that are
returned from the data sources will be different from the results that are
returned when processing the query at the federated server. When you set the
COLLATING_SEQUENCE server option to ’I’, the federated server does not
push down queries with string data or expressions and that include the
following clauses, predicates, or functions:
v GROUP BY clauses
v DISTINCT clauses
v Basic predicates, such as equal to (=)
v Aggregate functions, such as MIN or MAX

Related tasks:

v “Registering the server definitions for a Microsoft SQL Server data source”
on page 93

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating a user mapping for a Microsoft SQL Server data source

Creating a user mapping for a Microsoft SQL Server data source is part of the
larger task of adding Microsoft SQL Server data sources to federated servers.

When you attempt to access a Microsoft SQL Server data source, the federated
server establishes a connection to the data source using a user ID and
password that are valid for that data source. You must define an association (a
user mapping) between each federated server user ID and password and the
corresponding data source user ID and password. Create a user mapping for
each user ID that will access the federated system to send distributed
requests.

Procedure:

To map a local user ID to the Microsoft SQL Server remote server user ID and
password, issue a CREATE USER MAPPING statement.

96 Data Source Configuration Guide

For example:
CREATE USER MAPPING FOR userid SERVER sqlserver

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The next task in this sequence of tasks is testing the connection to the
Microsoft SQL Server remote server.

Related tasks:

v “Testing the connection to the Microsoft SQL Server remote server” on page
98

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for Microsoft SQL Server
wrapper” on page 97

CREATE USER MAPPING statement - Examples for Microsoft SQL Server
wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a federated server user ID to a Microsoft SQL
Server remote server user ID and password. This topic includes a complete
example with required parameters and an example that shows you how to
use the DB2 special register USER with the CREATE USER MAPPING
statement.

Complete example:

The following example shows how to map a federated server user ID to a
Microsoft SQL Server remote server user ID and password:
CREATE USER MAPPING FOR elizabeth SERVER sqlserver

OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

elizabeth
Specifies the local user ID that you are mapping to a user ID that is
defined at the Microsoft SQL Server remote server.

SERVER sqlserver
Specifies the name of the Microsoft SQL Server remote server that you
defined in the CREATE SERVER statement.

REMOTE_AUTHID ’liz’
Specifies the user ID at the Microsoft SQL Server remote server to
which you are mapping elizabeth. Use single quotation marks to
preserve the case of this value unless you set the FOLD_ID server
option to ’U’ or ’L’ in the CREATE SERVER statement.

Chapter 8. Configuring access to Microsoft SQL Server data sources 97

REMOTE_PASSWORD ’abc123’
Specifies the password that is associated with ’liz’. Use single
quotation marks to preserve the case of this value unless you set the
FOLD_PW server option to ’U’ or ’L’ in the CREATE SERVER
statement.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER sqlserver

OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

v “Creating a user mapping for a Microsoft SQL Server data source” on page
96

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the Microsoft SQL Server remote server

Testing the connection to the Microsoft SQL Server remote server is part of the
larger task of adding Microsoft SQL Server data sources to federated servers.

You can test the connection to the Microsoft SQL Server remote server by
using the server definition and user mappings that you defined.

Procedure:

To test the connection:
1. Open a pass-through session to issue an SQL SELECT statement on the

Microsoft SQL Server system tables.
For example:
SET PASSTHRU remote_server_name
SELECT count(*) FROM dbo.sysobjects
SET PASSTHRU RESET

98 Data Source Configuration Guide

If the SQL SELECT statement returns a count, your server definition and
your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Check the Microsoft SQL Server remote server to make sure that it is

started.
v Check the Microsoft SQL Server remote server to make sure that it is

configured for incoming connections.
v Check your user mapping to make sure that the settings for the

REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the Microsoft SQL Server remote server. Alter the user
mapping, or create another user mapping as necessary.

v Check the ODBC drivers on the DB2 federated server to make sure that
they are installed and configured correctly to connect to the Microsoft
SQL Server remote server.

v Check the settings of your DB2 federated variables to verify that they
are correct for the Microsoft SQL Server remote server. These variables
include the system environment variables, the db2dj.ini variables, and
the DB2 Profile Registry (db2set) variable.

v Check your server definition. If necessary, drop it and create it again.

The next task in this sequence of tasks is registering nicknames for Microsoft
SQL Server tables and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for Microsoft SQL Server tables and views” on page
99

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Registering nicknames for Microsoft SQL Server tables and views

Registering nicknames for Microsoft SQL Server tables and views is part of
the larger task of adding Microsoft SQL Server data sources to federated
servers.

Chapter 8. Configuring access to Microsoft SQL Server data sources 99

For each Microsoft SQL Server remote server that you define, register a
nickname for each table or view that you want to access. Use these
nicknames, instead of the names of the data source objects, when you query
the Microsoft SQL Server remote servers.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object by using the CREATE NICKNAME
statement. The federated database verifies the presence of the object at the
data source, and then attempts to gather existing data source statistical data.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update statistics (using the data source command that is equivalent
to the DB2 RUNSTATS command) at the data source before you register a
nickname.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME mss_name FOR sqlserver."remote_schema"."remote.table"

Nicknames can be up to 128 characters in length.

Repeat this step for each Microsoft SQL Server table or view for which you
want to create a nickname.

When you create the nickname, DB2 uses the connection to query the data
source catalog tables (Microsoft SQL Server refers to these tables as system
tables). This query tests your connection to the data source by using the
nickname. If the connection does not work, you will receive an error message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for Microsoft SQL Server
wrapper” on page 101

100 Data Source Configuration Guide

CREATE NICKNAME statement - Examples for Microsoft SQL Server wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for a Microsoft SQL Server
table or view that you want to access.

This example shows how to specify a remote object for the Microsoft SQL
Server remote server under which the nickname is assigned:
CREATE NICKNAME cust_africa FOR sqlserver.customers.egypt

cust_africa
A unique nickname for the Microsoft SQL Server table or view.

Note: The nickname is a two-part name which includes the schema
and the nickname. If you omit the schema when you register the
nickname, the schema of the nickname will be the authentication ID of
the user creating the nickname.

sqlserver.customers.egypt
A three-part identifier for the remote object.
v sqlserver is the name that you assigned to the Microsoft SQL Server

database server in the CREATE SERVER statement.
v customers is the name of the remote schema to which the table or

view belongs.
v egypt is the name of the remote table or view that you want to

access.

The federated server folds the names of the Microsoft SQL Server schemas
and tables to uppercase unless you enclose the names in quotation marks.

Related tasks:

v “Registering nicknames for Microsoft SQL Server tables and views” on page
99

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to Microsoft SQL Server data
sources

After you set up the configuration to Microsoft SQL Server data sources, you
might want to modify the configuration to improve performance. For
example, you might want to set the DB2_DJ_COMM profile registry variable
to improve performance when the federated server accesses the Microsoft SQL
Server data source.

Chapter 8. Configuring access to Microsoft SQL Server data sources 101

Improving performance by setting the DB2_DJ_COMM variable (UNIX)
If you find that it takes a long time to access the Microsoft SQL Server remote
server, you can improve the performance by setting the DB2_DJ_COMM DB2
profile registry variable. When you set the DB2_DJ_COMM variable, the
federated server loads the wrapper upon initialization rather than when you
attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified. Suppose that your federated server is
running AIX and the wrapper that you are using is MSSQLODBC3. The
command to set the DB2_DJ_COMM variable is:
db2set DB2_DJ_COMM=’libdb2mssql3.a’

The following table lists the valid library names by supported operating
system.

Table 19. Microsoft SQL Server wrapper library names

Operating system on your
federated server

MSSQLODBC3 wrapper
library names

DJXMSSQL3 wrapper
library names

AIX libdb2mssql3.a none

HP-UX libdb2mssql3.sl none

Linux libdb2mssql3.so none

Solaris Operating
Environment

libdb2mssql3.so none

Windows NT and Windows
2000

none db2mssql3.dll

2. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made.

Obtaining ODBC traces
If you are experiencing problems when accessing the data source, you can
obtain ODBC tracing information to analyze and resolve these problems.
Activating a trace impacts system performance. Therefore, you should turn off
tracing after you resolved the problems.

102 Data Source Configuration Guide

On Windows federated servers, use the trace tool that is provided by the
ODBC Data Source Administrator to ensure that the ODBC tracing works
properly.

On UNIX federated servers, set the DJXODBCTRACE variable in the db2dj.ini
file. For example:
DJXODBCTRACE=/home/user1/trace_dir/filename.xxx

You also need to set tracing on for the .odbc.ini file. For example, suppose
you are using the DataDirect ODBC 3.x driver. Find the example of the
.odbc.ini file in the client directory. This file contains a sample of what is
needed for trace files:
[ODBC]
Trace=0
TraceFile=/home/user1/trace_dir/filename.xxx
TraceDll==/opt/odbc/lib/odbctrac.so
InstallDir=/opt/odbc

The first line is set to Trace=0 when tracing is OFF, and this first line is set to
Trace=1 when tracing is ON. The TraceFile should point to a path and file
name that the instance has write access to. This path and file name should
also match the line that is placed in the db2dj.ini file,
DJXODBCTRACE=/home/user1/trace_dir/filename.xxx

Related tasks:

v “Adding Microsoft SQL Server data sources to federated servers” on page
89

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Chapter 8. Configuring access to Microsoft SQL Server data sources 103

104 Data Source Configuration Guide

Chapter 9. Configuring access to ODBC data sources

This chapter explains how to configure your federated server to access data
that is stored in ODBC data sources.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to ODBC data sources.

Adding ODBC data sources to federated servers

DB2 Information Integrator provides wrappers that support specific data
sources that are accessed through the ODBC API. Examples of these data
sources include Oracle, Microsoft SQL Server, and Microsoft Excel. You will
experience better performance if you use the wrappers specifically designed
for those data sources. Data sources that are accessed through the ODBC API
are referred to in this text as ODBC data sources.

Use the ODBC wrapper to access any data source that has an ODBC driver
but is not supported by specific data source wrappers that are included with
DB2 Information Integrator.

The ODBC wrapper supports ODBC Version 3.x.

Configuring the federated server to access ODBC data sources involves
supplying the federated server with information about the ODBC data sources
and objects that you want to access.

You can configure access to ODBC data sources through the DB2 Control
Center, through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to ODBC data sources.

You can use the ODBC wrapper on federated servers that use the following
operating systems:
v AIX
v HP-UX

© Copyright IBM Corp. 1998 - 2003 105

v Linux on Intel operating systems
v Solaris Operating Environment
v Windows NT, Windows 2000, Windows .NET

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access ODBC data

sources.
v The ODBC driver that is installed and configured on the federated server.
v The proper setup of the system environment variables, db2dj.ini variables,

and DB2 Profile Registry (db2set) variables. Check the vendor
documentation for the required variables for your ODBC client. The
LIBPATH variable might be required.

Restrictions:

v The ODBC wrapper does not support the following functions and
statements:
– LOCK TABLE statements on nicknames
– Features deprecated in ODBC Version 3.x
– X/Open or SQL/CLI drivers
– Stored procedure nicknames
– Statement-level atomicity enforcement using remote savepoint statements
– 64–bit clients

v Positioned UPDATE and DELETE statements and certain complex, searched
UPDATE and DELETE statements on a nickname will fail if a unique index
on non-nullable columns does not exist on the nickname or its
corresponding remote table.

v The ODBC wrapper supports read and write operations with most data
sources.

Procedure:

To add an ODBC data source to a federated server:
1. Prepare the federated server and federated database.
2. Register the wrapper.
3. Register the server definition.
4. Create the user mappings.
5. Test the connection to the ODBC data source.
6. Register nicknames for ODBC data source tables and views.

Related concepts:

106 Data Source Configuration Guide

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Preparing the federated server and database to access data sources
through ODBC” on page 107

Preparing the federated server and database to access data sources through
ODBC

Preparing the federated server and database to access data sources through
ODBC is part of the larger task of adding ODBC data sources to federated
servers.

The steps that you need to follow to prepare the federated server and
database to access data sources through ODBC depend on the operating
system that is running on your federated server.

Note: The ODBC driver and the operating system that you are using have
unique library path locations.

Procedure:

To prepare the federated server and database:

On Windows:

1. Verify that the ODBC System DSN is set to connect to the ODBC data
source. You can use the ODBC Data Source Administrator to configure the
DSN. Check this setting in the Control Panel.
a. From the Start menu, open the Control Panel.
b. Double-click ODBC Data Sources to access the ODBC device manager.
c. Click the System DSN tab to confirm that the System DSN that you

defined for the ODBC driver appears on the list.
The node name for the ODBC data source must be defined in the
System DSN.

2. From the ODBC Data Source Administrator window, select Configure to
test the connection from the ODBC Systems DSN to the ODBC data
source.

On UNIX systems:

Chapter 9. Configuring access to ODBC data sources 107

Consult the ODBC client vendor’s documentation for instructions on how to
configure the ODBC client.

The next task in this sequence of tasks is registering the ODBC wrapper.

Related tasks:

v “Registering the ODBC wrapper” on page 108

Registering the ODBC wrapper

Registering the ODBC wrapper is part of the larger task of adding ODBC data
sources to federated servers.

You must issue the CREATE WRAPPER statement to register an ODBC
wrapper.

Procedure:

To specify the wrapper that you want to use to access ODBC data sources,
issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER odbc

Recommendation: Use the default wrapper name called ODBC when you
issue the CREATE WRAPPER statement. When you register the wrapper that
uses the default name, the federated server automatically takes the default
library name that is associated with that wrapper. If the wrapper name
conflicts with an existing wrapper name in the federated database, you can
substitute the default wrapper name with a name that you choose. If you use
a name that is different from the default name, you must include the
LIBRARY parameter in the CREATE WRAPPER statement. Suppose that you
have a federated server running on AIX, and you decide to use a wrapper
name that is not the default name. An example of the CREATE WRAPPER
statement that you need to issue is:
CREATE WRAPPER mywrapper

LIBRARY ’libdb2rcodbc.a’ OPTIONS (MODULE ’/usr/lib/odbc.a’)

MODULE ’/usr/lib/odbc.a’ is the full path of the library that contains the ODBC
Driver Manager.

You need to register the ODBC wrapper only one time regardless of the
number of ODBC data sources that you plan to access. You specify the data
source location when you register the server definition. You specify the exact
data source object when you register the nickname.

108 Data Source Configuration Guide

The next task in this sequence of tasks is registering the server definitions for
an ODBC data source.

Related tasks:

v “Registering the server definitions for an ODBC data source” on page 110

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v “CREATE WRAPPER statement - Examples for ODBC wrapper” on page
109

CREATE WRAPPER statement - Examples for ODBC wrapper

This topic provides examples that show you how to use the CREATE
WRAPPER statement to register wrappers for ODBC data sources.

Example for UNIX systems:

The following example shows you how to register a wrapper by issuing the
CREATE WRAPPER statement on a UNIX operating system:
CREATE WRAPPER odbc OPTIONS (MODULE ’/usr/lib/odbc.so’)

In this example, odbc is the name that you assign to the wrapper that is being
registered in the federated database. MODULE ’/usr/lib/odbc.so’ is the full path
of the library that contains the ODBC Driver Manager.

You must specify the MODULE option on UNIX operating systems. On
Windows, the MODULE option defaults to ’odbc32.dll’.

Example for Windows:

The following example shows you how to register a wrapper by issuing the
CREATE WRAPPER statement on a Windows operating system:
CREATE WRAPPER odbc LIBRARY ’db2rcodbc.dll’

In this example, odbc is the name that you assign to wrapper that is being
registered in the federated database. LIBRARY ’db2rcodbc.dll’ is the library
name for the ODBC wrapper.

The following table lists the wrapper library names for ODBC by operating
system:

Chapter 9. Configuring access to ODBC data sources 109

Table 20. ODBC wrapper library names

Operating system on your federated
server

ODBC wrapper library names

AIX libdb2rcodbc.a

HP-UX libdb2rcodbc.sl

Linux libdb2rcodbc.so

Solaris Operating Environment libdb2rcodbc.so

Windows db2rcodbc.dll

Related tasks:

v “Registering the ODBC wrapper” on page 108

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for an ODBC data source

Registering the server definitions for an ODBC data source is part of the
larger task of adding ODBC data sources to federated servers.

In the federated database, you must define each ODBC data source server that
you want to access.

Procedure:

To register a server definition for an ODBC data source:

Issue the CREATE SERVER statement.

For example:
CREATE SERVER server_name TYPE odbc

VERSION 3.0 WRAPPER odbc_wrapper
OPTIONS (NODE ’node_name’)

Although NODE is specified as optional in the CREATE SERVER statement, it
is required for ODBC data sources.

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

The next task in this sequence of tasks is creating a user mapping for an
ODBC data source.

110 Data Source Configuration Guide

Related tasks:

v “Creating a user mapping for an ODBC data source” on page 112

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v Appendix B, “Server options for federated systems”, on page 367
v “CREATE SERVER statement - Examples of ODBC wrapper” on page 111

CREATE SERVER statement - Examples of ODBC wrapper

This topic provides examples that show you how to use the CREATE SERVER
statement to register servers for the ODBC wrapper. This topic includes a
complete example, which shows how to register a server with required
parameters, and an example with additional server options.

Complete example:

The following example shows you how to register a server definition for an
ODBC wrapper by issuing the CREATE SERVER statement:
CREATE SERVER server_name TYPE odbc

VERSION 3.0 WRAPPER odbc_wrapper
OPTIONS (NODE ’node_name’, DBNAME ’venice’)

server_name
A name that you assign to the ODBC data source server. This name
must be unique. Duplicate server names are not allowed.

TYPE odbc
Specifies the type of data source to which you are configuring access.
For the ODBC wrapper, the server type must be odbc.

VERSION 3.0
The version of the ODBC client that you want to access. All releases
of the ODBC standard Version 3 are supported.

WRAPPER odbc_wrapper
The wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’node_name’
The name of the node (the system DSN name) that was assigned to
the ODBC data source when the DSN was defined. This value is case
sensitive. On Windows, this value must be the name of a system DSN
in the ODBC Data Administration window. On UNIX, consult the
ODBC client vendor documentation for information about the value to
use.

Chapter 9. Configuring access to ODBC data sources 111

Although the NODE is specified as an option in the CREATE SERVER
statement, it is required for ODBC data sources.

DBNAME ’venice’
The name of the database that you want to access. This value is case
sensitive.

Server options example:

The following example shows how to use the DB2_TABLE_QUOTE_CHAR
and DB2_ID_QUOTE_CHAR server options.

Some ODBC data sources (for example, MySQL) cannot process quotation
marks around table names and column names in SQL statements. To access
these data sources, you must supply the following server options in the
CREATE SERVER statement:
v DB2_TABLE_QUOTE_CHAR ’ ’
v DB2_ID_QUOTE_CHAR ’ ’

For example:
CREATE SERVER mysql_server TYPE odbc

VERSION 3.0 WRAPPER odbc_wrapper
OPTIONS (NODE ’mysql’, DB2_TABLE_QUOTE_CHAR ’ ’,

DB2_ID_QUOTE_CHAR ’ ’)

Related tasks:

v “Registering the server definitions for an ODBC data source” on page 110

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating a user mapping for an ODBC data source

Creating a user mapping for an ODBC data source is part of the larger task of
adding ODBC data sources to federated servers.

When you attempt to access an ODBC data source, the federated server
establishes a connection to the data source using a user ID and password that
are valid for that data source. You must define an association (a user
mapping) between each federated server user ID and password and the
corresponding data source user ID and password. Create a user mapping for
each user ID that will access the federated system to send distributed
requests.

Procedure:

112 Data Source Configuration Guide

To map a local user ID to the ODBC data source user ID and password, issue
a CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR userid SERVER server_name

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

The next task in this sequence of tasks is testing the connection to the ODBC
data source server.

Related tasks:

v “Testing the connection to the ODBC data source server” on page 114

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for ODBC wrapper” on
page 113

CREATE USER MAPPING statement - Examples for ODBC wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a local user ID to an ODBC data source user ID
and password. This topic includes a complete example with required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a local user ID to an ODBC data
source user ID and password:
CREATE USER MAPPING FOR arturo SERVER server_name

OPTIONS (REMOTE_AUTHID ’art’, REMOTE_PASSWORD ’red4blue’)

arturo Specifies the local user ID that you are mapping to a user ID that is
defined at the ODBC data source.

server_name
Specifies the name of the ODBC data source that you defined in the
CREATE SERVER statement.

’art’ Specifies the user ID at the ODBC data source to which you are
mapping arturo. Use single quotation marks to preserve the case of
this value unless you set the FOLD_ID server option to ’U’ or ’L’ in
the CREATE SERVER statement.

Chapter 9. Configuring access to ODBC data sources 113

’red4blue’
Specifies the password associated with ’art’. Use single quotation
marks to preserve the case of this value unless you set the FOLD_PW
server option to ’U’ or ’L’ in the CREATE SERVER statement.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER server_name

OPTIONS (REMOTE_AUTHID ’art’, REMOTE_PASSWORD ’red4blue’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

v “Creating a user mapping for an ODBC data source” on page 112

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection to the ODBC data source server

Testing the connection to the ODBC data source server is part of the larger
task of adding ODBC data sources to federated servers.

You can test the connection to the ODBC data source server by using the
server definition and the user mappings that you defined.

Prerequisites:

The data source that you are using must support pass-through sessions.

Procedure:

To test the connection:
1. Open a pass-through session to issue an SQL SELECT statement on the

ODBC data source system tables.
For example:
SET PASSTHRU server_name
SELECT COUNT(*) FROM schema_name.table_name
SET PASSTHRU RESET

114 Data Source Configuration Guide

The server_name is the name of the ODBC data source that you defined in
the CREATE SERVER statement.

The schema_name is the name of the schema at the remote ODBC data
source. If your ODBC data source does not support schemas, omit the
schema from the statement.

The table_name is the name of the table at the remote ODBC data source.

If the SQL SELECT statement returns a count, your server definition and
your user mappings are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Verify that the data source is available.
v If applicable, check the data source server to make sure that it is

configured for incoming connections.
v Check your user mapping to make sure that the settings for the

REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the ODBC data source. Alter the user mapping, or create
another user mapping as necessary.

v Check the ODBC driver on the DB2 federated server to make sure that
it is installed and configured correctly to connect to the ODBC data
source server. On Windows operating systems, use the ODBC Data
Source Administrator tool to check the driver. On UNIX operating
systems, consult the ODBC client vendor’s documentation.

v Check your server definition. If necessary, drop it and create it again.

The next task in this sequence of tasks is registering nicknames for ODBC
data source tables and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

v “Registering nicknames for ODBC data source tables and views” on page
116

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Chapter 9. Configuring access to ODBC data sources 115

Registering nicknames for ODBC data source tables and views

Registering nicknames for ODBC data source tables and views is part of the
larger task of adding ODBC data sources to federated servers.

For each ODBC data source server that you define, register a nickname for
each table or view that you want to access. Use these nicknames, instead of
the names of the data source objects, when you query the ODBC data sources.

In addition to registering nicknames for ODBC data source tables and views,
you can also register nicknames for remote system tables.

For example, suppose that you define the nickname cust_europe to represent a
Microsoft SQL Server table called italy with a schema name of customers. The
SQL statement SELECT * FROM cust_europe is allowed from the federated
server. However, the statement SELECT * FROM server_name.″customers″.″italy″
is not allowed.

If your ODBC data source does not support schemas, omit the schema from
the statement.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you register a
nickname for a data source object by using the CREATE NICKNAME
statement. The federated database verifies the presence of the object at the
data source, and then attempts to gather existing data source statistical data.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update statistics (using the data source command that is equivalent
to the DB2 RUNSTATS command) at the data source before you register a
nickname.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME odbc_name FOR server_name."remote_schema"."remote.table"

Nicknames can be up to 128 characters in length.

Repeat this step for each ODBC table or view for which you want to create a
nickname.

116 Data Source Configuration Guide

When you create the nickname, DB2 will use the connection to query the data
source catalog tables. This query tests your connection to the ODBC data
source by using the nickname. If the connection does not work, you will
receive an error message.

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for ODBC wrapper” on page
117

CREATE NICKNAME statement - Examples for ODBC wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for an ODBC data source table
or view that you want to access.

This example shows how to specify a remote object for the ODBC data source
under which the nickname is assigned:
CREATE NICKNAME cust_europe FOR server_name."customers"."italy"

cust_europe
A unique nickname for the table or view. The nickname must be
unique within the schema.

Note: The nickname is a two-part name that includes the schema and
the nickname. If you omit the schema when you register the
nickname, the schema of the nickname will be the authentication ID of
the user who registers the nickname.

server_name.″customers″.″italy″
A three-part identifier for the remote object.
v server_name is the name that you assigned to the ODBC database

server in the CREATE SERVER statement.
v customers is the name of the remote schema to which the table or

view belongs. If your ODBC data source does not support schemas,
omit the schema from the CREATE NICKNAME statement.

v italy is the name of the remote table or view which you want to
access.

ODBC data source objects might be case sensitive. Enclose both the remote
schema name and the remote table name in quotation marks. Otherwise, DB2
folds these names to uppercase.

Related tasks:

Chapter 9. Configuring access to ODBC data sources 117

v “Registering nicknames for ODBC data source tables and views” on page
116

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to ODBC data sources

After you set up the configuration to ODBC data sources, you might want to
modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM profile registry variable to improve
performance when the federated server accesses the ODBC data source.

Improving performance by setting the DB2_DJ_COMM variable
If you find that it takes a long time to access the ODBC remote server, you
can improve the performance by setting the DB2_DJ_COMM DB2 profile
registry variable. When you set the DB2_DJ_COMM variable, the federated
server loads the wrapper upon initialization rather than when you attempt to
access the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified.
For example:
Suppose that your federated server uses Windows NT, and the wrapper
that you are using is ODBC_WRAPPER. The command to set the
DB2_DJ_COMM variable is:
db2set DB2_DJ_COMM=’db2rcodbc.dll’

The DB2_DJ_COMM variable is added to the Windows Registry.

The following table lists the proper ODBC library names by supported
operating systems.

Table 21. ODBC wrapper library names

Operating system on your federated
server

ODBC wrapper library names

AIX libdb2rcodbc.a

HP-UX libdb2rcodbc.sl

Linux libdb2rcodbc.so

Solaris Operating Environment libdb2rcodbc.so

118 Data Source Configuration Guide

Table 21. ODBC wrapper library names (continued)

Windows NT, Windows 2000, and
Windows .NET

db2rcodbc.dll, db2rcodbcF.dll,
db2rcodbcU.dll

2. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the changes that you made.

Obtaining ODBC traces
If you are experiencing problems when accessing the data source, you can
obtain ODBC tracing information to analyze and resolve these problems.
Activating a trace impacts system performance. Therefore, you should turn off
tracing after you resolve the problems.

On Windows federated servers, use the trace tool provided by the ODBC Data
Source Administrator to ensure that the ODBC tracing works properly. On
UNIX operating systems, consult the ODBC client vendor’s documentation.

Related tasks:

v “Adding ODBC data sources to federated servers” on page 105

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Chapter 9. Configuring access to ODBC data sources 119

120 Data Source Configuration Guide

Chapter 10. Configuring access to Teradata data sources

This chapter explains how to configure your federated server to access data
that is stored in Teradata databases.

This chapter lists the tasks that you need to perform, shows examples of the
SQL statements that you need to issue, and provides tuning and
troubleshooting information that you can use when you set up the
configuration to a Teradata data source.

Adding Teradata data sources to federated servers

To access Teradata data sources from a federated server, you must supply the
federated server with information about the Teradata data sources and the
objects that you want to access.

You can configure access to Teradata data sources through the DB2 Control
Center, through the DB2 Command Center, or through the DB2 command line
processor.

The advantage of using the DB2 Control Center is that you do not need to
type each statement and command. The DB2 Control Center provides the
easiest method to configure access quickly to Teradata data sources. However,
you cannot use the DB2 Control Center to issue SQL statements.

You can add a Teradata wrapper to your federated server on any one of the
supported operating systems:
v AIX Version 4.3 or later
v Windows NT and Windows 2000

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access Teradata data

sources.
v Teradata client software that supports the Teradata Call-Level Interface,

Version 2 (CLIv2) Release 04.06 or later and is installed and configured on
the federated server.

v Access to one or more Teradata servers that are running Teradata release
V2R3 or V2R4.

© Copyright IBM Corp. 1998 - 2003 121

v System environment variables, db2dj.ini variables, and DB2 Profile Registry
(db2set) variables that are properly set to access Teradata data sources.
The db2dj.ini variables that you need to set up properly include:
– The COPLIB and COPERR variables (AIX only).

For example:
COPLIB=coplib_directory
COPERR=coperr_directory

The coplib_directory is the fully qualified path of the directory in which
the libcliv2.so file resides. The coperr_directory is the fully qualified path
of the directory in which the errmsg.txt file resides.

By default, the installation process places the libcliv2.so file and the
errmsg.txt file in the same directory. However, you can specify during
the installation process that the libcliv2.so file and the errmsg.txt file
reside in different directories.

– The Teradata NETRACE and COPANOMLOG variables (optional).
You can enable Teradata tracing if you need to preserve a listing of SQL
statements that are sent to the Teradata server.
For example:
NETRACE=1
COPANOMLOG=trace_file

The trace_file is the fully qualified name of the file that will contain the
trace data.

These variables enable the Teradata tracing facility only and do not affect
the DB2 tracing.

Procedure:

To add a Teradata data source to a federated server:
1. Optional: Test the connection to the Teradata server.
2. Verify that the Teradata library is enabled for run-time linking (AIX).
3. Register the wrapper.
4. Register the server definition.
5. Create the user mappings.
6. Test the connection from the federated server to the Teradata server.
7. Register nicknames for Teradata tables and views.

Related concepts:

v “Fast track to configuring your data sources” on page 1

122 Data Source Configuration Guide

Related tasks:

v “Testing the connection to the Teradata server” on page 123
v “Checking the data source environment variables” in the DB2 Information

Integrator Installation Guide

Testing the connection to the Teradata server

Testing the connection to the Teradata server is part of the larger task of
adding Teradata data sources to federated servers.

Before you create a wrapper, server definition, or user mapping, you can test
the connection to the Teradata server. Test the connection first to verify that
the client software is properly set and to prevent errors when you issue the
CREATE WRAPPER, CREATE SERVER, and CREATE USER MAPPING
statements.

You can use the Basic Teradata Query (BTEQ) utility to submit an SQL query
to verify that you can connect to the Teradata server. See the Teradata
documentation for more information about the BTEQ utility.

Prerequisite:

Ensure that the BTEQ utility and the Teradata Data Connector Application
Program Interface (PIOM) were installed during the Teradata client software
installation process.

Procedure:

To test the connection to the Teradata server:
1. Start a BTEQ utility session, and log on to the Teradata server.
2. Issue an SQL command to verify that you can successfully connect to the

Teradata server. For example:
select count(*) from dbc.tables;

If the connection is successful, you should see the query output on the
screen. For example:
*** Query completed. One row found. One column returned.
*** Total elapsed time was 1 second.

Count(*)

497

If the connection is unsuccessful, check the Teradata client software to
verify that it is properly installed and configured on the federated server.

Chapter 10. Configuring access to Teradata data sources 123

3. Log off from the Teradata server, and end the BTEQ utility session.

The next task in this sequence of tasks is verifying that the Teradata library is
enabled for run-time linking.

Related tasks:

v “Verifying that the Teradata library is enabled for run-time linking (AIX)”
on page 124

Verifying that the Teradata library is enabled for run-time linking (AIX)

Verifying that the Teradata library is enabled for run-time linking is part of
the larger task of adding Teradata data sources to federated servers.

When you add a Teradata data source to your federated server on AIX, you
must verify that run-time linking is enabled before you register wrappers or
servers.

Procedure:

To verify that the Teradata library is enabled for run-time linking:
1. Go to the directory in which the libcliv2.so file resides.

By default, the installation process places this file in the /usr/lib directory.
2. Issue the following UNIX command.

dump - H libcliv2.so | grep libtli.a

3. Check the file names that appear on the screen.
If the libtli.a file name appears, the Teradata library is enabled for run-time
linking.

4. If the libtli.a file name does not appear, issue the following UNIX
commands.
rtl_enable libcliv2.so -F libtli.a
mv libcliv2.so libcliv2.so.old
mv libcliv2.so.new libcliv2.so
chmod a+r libcliv2.so

These commands enable run-time linking for the Teradata library.

The next task in this sequence of tasks is registering the Teradata wrapper.

Related tasks:

v “Registering the Teradata wrapper” on page 125

124 Data Source Configuration Guide

Registering the Teradata wrapper

Registering the Teradata wrapper is part of the larger task of adding Teradata
data sources to federated servers.

You must issue the CREATE WRAPPER statement to register the Teradata
wrapper and to identify the wrapper library to the federated server.

The Teradata wrapper, which is called TERADATA, is included with DB2
Information Integrator.

Procedure:

To specify the wrapper that you want to use to access Teradata data sources,
issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER TERADATA

Recommendation: Use the default wrapper name TERADATA when you issue
the CREATE WRAPPER statement. When you register a wrapper that uses the
default name, the federated server automatically takes the default library
name that is associated with that wrapper. If the wrapper name conflicts with
an existing wrapper name in the federated database, you can substitute the
default wrapper name with a name that you choose. If you use a name that is
different from the default name, you must include the LIBRARY parameter in
the CREATE WRAPPER statement.

For example:
CREATE WRAPPER my_wrapper LIBRARY ’library_name’

The my_wrapper value is the name of the wrapper, and the library_name value
is the library name for the Teradata wrapper on the operating system that you
are using.

On AIX operating systems, the library name for the Teradata wrapper is
libdb2teradata.a.

On Windows operating systems, the library name for the Teradata wrapper is
db2teradata.dll.

The next task in this sequence of tasks is registering the server definition for a
Teradata data source.

Related tasks:

Chapter 10. Configuring access to Teradata data sources 125

v “Registering the server definitions for a Teradata data source” on page 126

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for a Teradata data source

Registering the server definitions for a Teradata data source is part of the
larger task of adding Teradata data sources to federated servers.

In the federated database, you must define each Teradata server that you
want to access. You must first locate the node name of the Teradata data
source, and then use this node name when you register the server.

Procedure:

To register a server definition for a Teradata data source:
1. Locate the node name.

a. Find the hosts file.
On AIX operating systems, the hosts file is /etc/hosts.
On Windows operating systems, the hosts file is
x:\WINNT\system32\drivers\etc\hosts. x: is the drive where the
\WINNT directory resides.

b. Search the hosts file for the alias of the remote server.
This alias begins with an alphabetic string and ends with the suffix
COPn. The value n is the number of the application processor that is
associated with the Teradata communications processor.

c. Find the line in the hosts file that contains this alias.
d. Find the first non-numeric field on that line.

Example hosts file:
127.0.0.1 localhost

9.22.5.77 nodexyz nodexyzCOP1 # teradata server

9.66.111.133 rtplib05.data.xxx.com aap
9.66.111.161 rtpscm11.data.xxx.com aaprwrt
9.66.111.161 rtpscm11.data.xxx.com accessm

In this example, the nodexyz field is the node name.
2. Issue the CREATE SERVER statement.

For example:
CREATE SERVER server_name TYPE TERADATA VERSION 4 WRAPPER wrapper

OPTIONS (NODE ’node_name’)

126 Data Source Configuration Guide

You must specify a server name. The name that you specify must be
unique.

You must set the TYPE parameter to TERADATA for all Teradata servers.

The Teradata wrapper supports all versions of both Teradata V2R3 and
Teradata V2R4. You can specify the version number as one digit or as two
digits with a decimal point. Examples of valid version numbers include 3,
3.0, 3.5, 4, 4.0, 4.4, and so on.

You must specify a name for the wrapper. The name that you specify must
correspond to a Teradata wrapper that you registered with the CREATE
WRAPPER statement.

You must also specify the name of the node where the Teradata server
resides. This node name is case sensitive.

When you register a Teradata server definition, you can specify additional
server options in the CREATE SERVER statement, if required.

After you register the server definition, you can add or drop server options by
issuing the ALTER SERVER statement.

The next task in this sequence of tasks is creating the user mapping for a
Teradata data source.

Related tasks:

v “Creating the user mapping for a Teradata data source” on page 128

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement - Examples for Teradata wrapper” on page
127

CREATE SERVER statement - Examples for Teradata wrapper

This topic provides several examples that show you how to use the CREATE
SERVER statement to register servers for the Teradata wrapper. This topic
includes a complete example, which shows how to create a server with all
required parameters, and an example with optional server options.

Complete example:

Chapter 10. Configuring access to Teradata data sources 127

The following example shows you how to create a server definition for a
Teradata wrapper by using the CREATE SERVER statement:
CREATE SERVER TERASERVER TYPE TERADATA VERSION 4 WRAPPER my_wrapper

OPTIONS (NODE ’tera_node’)

The server option TERASERVER specifies the name that you assign to the
Teradata server. TYPE TERADATA specifies that you are configuring access to
a Teradata data source. VERSION 4 is the version of the Teradata server
software that you want to access. WRAPPER my_wrapper specifies the name of
the Teradata wrapper that you registered through the CREATE WRAPPER
statement. NODE ’tera_node’ is the name of the node where the Teradata
server resides.

Server option example:

The following example shows a Teradata server definition with statistics for
the optimizer:
CREATE SERVER TERASERVER1 TYPE TERADATA

VERSION 4 WRAPPER WRAPPERNAME1
OPTIONS (NODE ’tera_node1’, CPU_RATIO ’2.0’, IO_RATIO ’3.0’)

In this example, TERASERVER1 is the name of the Teradata server,
WRAPPERNAME1 is the wrapper name that you registered through the
CREATE WRAPPER statement, and ’tera_node1’ is the name of the node where
the Teradata server resides. The CPU_RATIO and IO_RATIO server options
provide the following information to the optimizer:
v The CPU resources of the federated server are twice as powerful as the

CPU resources of the Teradata server.
v The I/O devices of the federated server process data three times faster than

the I/O devices of the Teradata server.

Related tasks:

v “Registering the server definitions for a Teradata data source” on page 126

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Creating the user mapping for a Teradata data source

Creating the user mapping for a Teradata data source is part of the larger task
of adding Teradata data sources to federated servers.

When you attempt to access a Teradata server, the federated server establishes
a connection to the data source using a user ID and password that are valid

128 Data Source Configuration Guide

for that data source. You must define an association (a user mapping) between
each federated server user ID and password and the corresponding data
source user ID and password. Create a user mapping for each user ID that
will access the federated system to send distributed requests to the Teradata
data source.

You must create user mappings for each Teradata server that you registered in
the associated CREATE SERVER statement.

Procedure:

To map the federated user ID to the Teradata server user ID and password,
issue a CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR USERID SERVER TERASERVER

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

Alternatively, you can create user mappings by using the Create User
Mapping window of the DB2 Control Center.

The next task in this sequence of tasks is testing the connection from the
federated server to the Teradata server.

Related tasks:

v “Testing the connection from the federated server to the Teradata server” on
page 130

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for Teradata wrapper” on
page 129

CREATE USER MAPPING statement - Examples for Teradata wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a local federated user ID to a Teradata server
user ID and password. This topic includes a complete example with all the
required parameters and an example that shows you how to use the DB2
special register USER with the CREATE USER MAPPING statement.

Complete example:

Chapter 10. Configuring access to Teradata data sources 129

The following example shows how to map a local federated user ID
(MICHAEL) to a Teradata server user ID and password (’mike’ and
’passxyz123’):
CREATE USER MAPPING FOR MICHAEL SERVER TERASERVER

OPTIONS (REMOTE_AUTHID ’mike’, REMOTE_PASSWORD ’passxyz123’)

The option MICHAEL specifies the federated user ID that you are mapping to
a user ID that is defined at the Teradata server. SERVER TERASERVER
specifies the name of the Teradata server that you defined in the CREATE
SERVER statement. REMOTE_AUTHID ’mike’ is the user ID at the Teradata
server to which you are mapping the local user ID called MICHAEL.
REMOTE_PASSWORD ’passxyz123’ is the password that is associated with the
REMOTE_AUTHID value of ’mike’.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER TERASERVER

OPTIONS (REMOTE_AUTHID ’mike’, REMOTE_PASSWORD ’passxyz123’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

v “Creating the user mapping for a Teradata data source” on page 128

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Testing the connection from the federated server to the Teradata server

Testing the connection from the federated server to the Teradata server is part
of the larger task of adding Teradata data sources to federated servers.

You can test the connection from the federated server to the Teradata server
by using the server definition and the user mapping that you defined.

Procedure:

To test the connection:

130 Data Source Configuration Guide

1. From the DB2 command line processor, open a pass-through session to
issue an SQL SELECT statement on a Teradata system table.
For example:
SET PASSTHRU server_name
SELECT count(*) FROM dbc.tables
SET PASSTHRU RESET

If the SQL SELECT statement returns a count, your server definition and
your user mapping are set up properly.

2. If the SQL SELECT statement returns an error, you might need to:
v Check the Teradata server to make sure that it is configured for

incoming connections.
v Check your user mapping to make sure that the settings for the

REMOTE_AUTHID and REMOTE_PASSWORD options are valid for the
connections to the Teradata server. Alter the user mapping, or create
another user mapping as necessary.

v Check the Teradata client software on the DB2 federated server to make
sure that the software is correctly installed and configured to connect to
the Teradata server.

v Check the settings of your DB2 federated variables to verify that you
can access the Teradata server. These variables include the system
environment variables, the db2dj.ini variables, and the DB2 Profile
Registry (db2set) variable.

v Check your server definition. If necessary, drop the server definition and
create it again.

When you initiate a pass-through session to issue SQL statements on
Teradata objects, you cannot submit an SQL PREPARE statement with an
INTO parameter if the statement contains host variables.

The next task in this sequence of tasks is registering nicknames for Teradata
tables and views.

Related concepts:

v “Server definitions and server options” on page 10

Related tasks:

v “Registering nicknames for Teradata tables and views” on page 132
v “Checking the federated server setup” in the DB2 Information Integrator

Installation Guide

v “Checking the data source environment variables” in the DB2 Information
Integrator Installation Guide

Related reference:

Chapter 10. Configuring access to Teradata data sources 131

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

Teradata nicknames on federated servers

You must create a nickname for each Teradata® table and view that you want
to access on each Teradata server that you defined. Use these nicknames,
instead of the names of the data source objects, when you query the Teradata
servers.

The federated server connects to the Teradata data source by using the
nickname that you assigned with the CREATE NICKNAME statement. The
federated server then queries the data source catalog and verifies the
connection to the data source. If the connection does not work, DB2®

generates an error message.

The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object.

The federated database verifies the presence of the object at the data source,
and then attempts to gather existing statistical data from that data source.
Information that is useful to the optimizer is read from the data source
catalogs and placed into the global catalog on the federated server. Because
some or all of the data source catalog information might be used by the
optimizer, update the statistics at the data source before you create a
nickname. Update these statistics at the data source by using a command or
utility that is equivalent to the DB2 RUNSTATS command.

You cannot submit an SQL INSERT, UPDATE, or DELETE statement to a
nickname that references an updatable Teradata view unless that SQL
statement can be completely pushed down to the Teradata data source.

Related tasks:

v “Registering nicknames for Teradata tables and views” on page 132

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement - Examples for Teradata wrapper” on
page 133

Registering nicknames for Teradata tables and views

Registering nicknames for Teradata tables and views is part of the larger task
of adding Teradata data sources to federated servers.

132 Data Source Configuration Guide

For each Teradata server that you define, register a nickname for each table
and view that you want to access.

Procedure:

To register a nickname, issue the CREATE NICKNAME statement.

For example:
CREATE NICKNAME TERANICKNAME FOR TERASERVER."remote_schema"."remote.table"

Recommendation: Because the federated database uses catalog statistics for
nicknamed objects to optimize query processing, update the statistics at the
Teradata data source before registering a nickname. You can use a command
or utility that is equivalent to the DB2 RUNSTATS command.

Nicknames can be up to 128 characters in length.

You can specify the NUMERIC_STRING column option when you issue the
CREATE NICKNAME statement. You can also specify this column option by
using the ALTER NICKNAME statement.

Related concepts:

v “Teradata nicknames on federated servers” on page 132

Related reference:

v “RUNSTATS Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for Teradata wrapper” on
page 133

CREATE NICKNAME statement - Examples for Teradata wrapper

This topic provides an example that shows you how to use the CREATE
NICKNAME statement to register a nickname for a Teradata table or view
that you want to access.

This example shows how to specify a remote object for the Teradata server
under which the nickname is assigned:
CREATE NICKNAME TERASALES FOR TERASERVER."salesdata"."europe"

TERASALES is the unique nickname that you assign for the Teradata table or
view. A nickname is a two-part name: the schema and the actual nickname. If
you omit the schema when you create the nickname, DB2 creates the
nickname using your authentication ID as the schema.

Chapter 10. Configuring access to Teradata data sources 133

TERASERVER.″salesdata″.″europe″ specifies a three-part identifier for the remote
object:
v TERASERVER is the name that you assigned to the Teradata database

server in the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the table or view

belongs.
v europe is the name of the remote table or view that you want to access.

Related concepts:

v “Teradata nicknames on federated servers” on page 132

Related tasks:

v “Registering nicknames for Teradata tables and views” on page 132

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Tuning and troubleshooting the configuration to Teradata data sources

After you set up the configuration to Teradata data sources, you can change
the configuration to improve performance and to eliminate potential errors.

Improving access to the Teradata server by setting the DB2_DJ_COMM
variable

You might want to set the DB2_DJ_COMM DB2 profile registry variable to
improve performance if you find that it takes a long time to access the
Teradata server. When you set the DB2_DJ_COMM variable, the federated
server loads the wrapper upon initialization rather than when you attempt to
access the data source.

Procedure:

To set the DB2_DJ_COMM variable:
1. Set the DB2_DJ_COMM variable to the wrapper library that corresponds

to the wrapper that you specified. Use one of the following commands to
set the DB2_DJ_COMM DB2 profile registry variable:
On AIX:
db2set DB2_DJ_COMM=’libdb2teradata.a’,’libdb2teradataF.a’,’libdb2teradataU.a’

On Windows:
db2set DB2_DJ_COMM=’db2teradata.dll’,’db2teradataF.dll’,’db2teradataU.dll’

2. Issue the following commands to recycle the DB2 instance:

134 Data Source Configuration Guide

db2stop
db2start

By recycling the DB2 instance, you ensure that the DB2 instance accepts
the variable changes that you made.

Tuning and disabling Teradata access logging
The Teradata product provides an access logging feature that generates log
entries when Teradata checks the specific security privileges of various users
on one or more databases. Although access logging provides considerable and
meaningful security information, this feature significantly increases processor
usage and can degrade system performance.

If you need to improve system performance, evaluate the checking privilege
rules that you defined for access logging. Then, terminate any unnecessary
rules by defining END LOGGING statements.

For the best performance, turn off all access logging. Drop the Teradata
DBC.AccLogRules macro and then force a trusted parallel application (TPA)
reset to stop access logging completely.

See the Teradata documentation for more information.

Enabling run-time linking for libcliv2.so (AIX)
If you run the djxlinkTeradata.sh file to link to the Teradata shared library
called libcliv2.so, you might receive an error message when you issue a
CREATE NICKNAME statement.

An example of an error message that you might receive is:
DB21034E The command was processed as an SQL statement because it was not a
valid Command Line Processor command. During SQL processing it returned:
SQL30081N A communication error has been detected. Communication protocol
being used: "TCP/IP". Communication API being used: "SOCKETS". Location
where the error was detected: "9.112.26.28". Communication function detecting
the error: "recv". Protocol specific error code(s): "*", "*", "0".
SQLSTATE=08001

If you receive an error message, check the /sqllib/db2dump directory for any
trap files. Trap file names begin with the letter t and end with a suffix of 000.
For example:
t123456.000

Check the trace information in the trap file for any OsCall function references
that indicate that the OsCall function caused the federated server to stop.

The following example shows trace information with an OsCall function
reference that you might find in a trap file:

Chapter 10. Configuring access to Teradata data sources 135

*** Start stack traceback ***

0x239690E0 OsCall + 0x28C
0x23973FB0 mtdpassn + 0x8A4
0x239795A4 mtdp + 0x208
0x2395A928 MTDPIO + 0x28C
0x239609C4 CLICON + 0xD50
0x23962350 DBCHCL + 0xC4

If you find an OsCall function reference in one of the trap files, issue the
following UNIX commands:
cd /usr/lib
rtl_enable libcliv2.so -F libtli.a
mv libcliv2.so libcliv2.so.old
mv libcliv2.so.new libcliv2.so
chmod a+r libcliv2.so

These commands enable run-time linking for the libcliv2.so shared library.

Related tasks:

v “Adding Teradata data sources to federated servers” on page 121
v “Verifying that the Teradata library is enabled for run-time linking (AIX)”

on page 124

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

136 Data Source Configuration Guide

Chapter 11. Configuring access to OLE DB data sources

This chapter explains how to configure your federated server to access data
that is stored in OLE DB data sources.

This chapter lists the tasks that you need to perform and shows examples of
the SQL statements that you need to issue when you set up the configuration
to OLE DB data sources.

Adding OLE DB data sources to federated servers

Microsoft OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data that is stored in diverse information sources. The
OLE DB component DBMS architecture defines OLE DB consumers and OLE
DB providers. An OLE DB consumer is any system or application that
consumes OLE DB interfaces. An OLE DB provider is a component that
exposes OLE DB interfaces.

The OLE DB wrapper enables you to access OLE DB providers that are
compliant with Microsoft OLE DB 2.0 or later.

The OLE DB wrapper is supported on DB2 federated servers that run on the
Windows NT or the Windows 2000 operating system.

You use the OLE DB wrapper to create table functions. You cannot use the
wrapper to create nicknames on data source tables and views.

Configuring the federated server to access OLE DB data sources involves
supplying the federated server with information about the OLE DB providers.

You can configure access to OLE DB data sources through the DB2 Command
Center or through the DB2 command line processor.

After you configure access to the OLE DB data source, use the CREATE
FUNCTION statement to register a user-defined OLE DB external table
function in the federated database.

Prerequisites:

v Access to the DB2 Command Center or the DB2 command line processor.
v A federated server and database that are set up to access OLE DB data

sources.

© Copyright IBM Corp. 1998 - 2003 137

v The OLE DB 2.0 or later driver and an OLE DB provider that are installed
and configured on the federated server.

Restriction:

The OLE DB wrapper is used only to assist in registering user-defined OLE
DB external table functions. Unlike other wrappers, the OLE DB wrapper does
not use nicknames to access data that is stored in data sources.

Procedure:

To add an OLE DB data source to a federated server:
1. Register the wrapper.
2. Register the server definition.
3. Create the user mappings.

Related concepts:

v “Fast track to configuring your data sources” on page 1

Related tasks:

v “Checking the federated server setup” in the DB2 Information Integrator
Installation Guide

v “Registering the OLE DB wrapper” on page 138

Registering the OLE DB wrapper

Registering the OLE DB wrapper is part of the larger task of adding OLE data
sources to federated servers.

You must issue the CREATE WRAPPER statement to register a wrapper that
will access OLE DB data sources.

Procedure:

To register the wrapper, issue the CREATE WRAPPER statement.

For example:
CREATE WRAPPER OLEDB

Recommendation: Use the default wrapper name called OLEDB when you
issue the CREATE WRAPPER statement. When you register the wrapper that
uses the default name, the federated server automatically takes the default
library name that is associated with that wrapper. If the wrapper name
conflicts with an existing wrapper name in the federated database, you can

138 Data Source Configuration Guide

substitute the default wrapper name with a name that you choose. If you use
a name that is different from the default name, you must include the
LIBRARY parameter in the CREATE WRAPPER statement. For example:
CREATE WRAPPER mywrapper LIBRARY ’db2oledb.dll’

The next task in this sequence of tasks is registering the server definitions for
an OLE DB data source.

Related tasks:

v “Registering the server definitions for an OLE DB data source” on page 139

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server definitions for an OLE DB data source

Registering the server definitions for an OLE DB data source is part of the
larger task of adding OLE DB data sources to federated servers.

In the federated database, you must define each OLE DB data source server
that you want to access.

Procedure:

To register a server definition for an OLE DB data source:

Issue the CREATE SERVER statement.

For example:
CREATE SERVER server_name WRAPPER OLEDB

OPTIONS (CONNECTSTRING ’Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=c:\msdasdk\bin\oledb\nwind.mdb’)

The next task in this sequence of tasks is creating a user mapping for an OLE
DB data source.

Related tasks:

v “Creating a user mapping for an OLE DB data source” on page 141

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement - Examples for OLE DB wrapper” on page
140

Chapter 11. Configuring access to OLE DB data sources 139

CREATE SERVER statement - Examples for OLE DB wrapper

This topic provides an example that shows you how to use the CREATE
SERVER statement to register servers for the OLE DB wrapper.

The following example shows a CREATE SERVER statement:
CREATE SERVER Nwind WRAPPER OLEDB
OPTIONS (CONNECTSTRING ’Provider=Microsoft.Jet.OLEDB.4.0;

Data Source=c:\msdasdk\bin\oledb\nwind.mdb’,
COLLATING_SEQUENCE ’Y’)

Nwind A name that you assign to the OLE DB data source. This name must
be unique. Duplicate server names are not allowed.

WRAPPER OLEDB
The wrapper name that you specified in the CREATE WRAPPER
statement.

CONNECTSTRING ’Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=c:\msdasdk\bin\oledb\nwind.mdb’

Provides initialization properties that are needed to connect to a data
source.

The string contains a series of keyword and value pairs that are
separated by semicolons. The equal sign (=) separates each keyword
and its value. Keywords are the descriptions of the OLE DB
initialization properties (property set DBPROPSET_DBINT) or
provider-specific keywords.

For the complete syntax and semantics of the CONNECTSTRING
option, see the Microsoft OLE DB 2.0 Programmer’s Reference and Data
Access SDK, Microsoft Press, 1998.

COLLATING_SEQUENCE ’Y’
Specifies whether the data source uses the same collating sequence as
the DB2 for UNIX and Windows collating sequence.

Valid values are ’Y’ (the data source uses the DB2 for UNIX and
Windows collating sequence) and ’N’ (the data source uses a collating
sequence that is different from the DB2 for UNIX and Windows
collating sequence). The default value is ’N’.

Related tasks:

v “Registering the server definitions for an OLE DB data source” on page 139

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

140 Data Source Configuration Guide

Creating a user mapping for an OLE DB data source

Creating a user mapping for an OLE data source is part of the larger task of
adding OLE data sources to federated servers.

When you attempt to access an OLE data source, the federated server
establishes a connection to the data source using a user ID and password that
are valid for that data source. You must define an association (a user
mapping) between each federated server user ID and password and the
corresponding data source user ID and password. Create a user mapping for
each user ID that will access the federated system to send distributed
requests.

Procedure:

To map a local user ID to the OLE data source user ID and password, issue a
CREATE USER MAPPING statement.

For example:
CREATE USER MAPPING FOR userid SERVER server_name

OPTIONS (REMOTE_AUTHID ’remote_id’, REMOTE_PASSWORD ’remote_password’)

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement - Examples for OLE DB wrapper” on
page 141

CREATE USER MAPPING statement - Examples for OLE DB wrapper

This topic provides examples that show you how to use the CREATE USER
MAPPING statement to map a local user ID to an OLE data source user ID
and password. This topic includes a complete example with required
parameters and an example that shows you how to use the DB2 special
register USER with the CREATE USER MAPPING statement.

Complete example:

The following example shows how to map a local user ID to an OLE data
source user ID and password:
CREATE USER MAPPING FOR laura SERVER Nwind

OPTIONS (REMOTE_AUTHID ’lulu’, REMOTE_PASSWORD ’raiders’)

laura The local user ID that you are mapping to a user ID that is defined at
the OLE DB data source.

Chapter 11. Configuring access to OLE DB data sources 141

SERVER Nwind
The name of the OLE DB server that you defined in the CREATE
SERVER statement.

REMOTE_AUTHID ’lulu’
The user ID at the OLE DB server to which you are mapping laura.
This value is case sensitive.

REMOTE_PASSWORD ’raiders’
The password that is associated with ’lulu’. This value is case
sensitive.

Special register example:

The following example shows a CREATE USER MAPPING statement that
includes the special register USER:
CREATE USER MAPPING FOR USER SERVER Nwind

OPTIONS (REMOTE_AUTHID ’lulu’, REMOTE_PASSWORD ’raiders’)

You can use the DB2 special register USER to map the authorization ID of the
person who is issuing the CREATE USER MAPPING statement to the data
source authorization ID that is specified in the REMOTE_AUTHID user
option.

Related tasks:

v “Creating a user mapping for an OLE DB data source” on page 141

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

142 Data Source Configuration Guide

Chapter 12. Configuring access to Table-structured file
data sources

This chapter explains what table-structured files are, how to add them as data
sources to your federated system, and lists the error messages associated with
the table-structured file wrapper.

What are table-structured files?

A table-structured file has a regular structure consisting of a series of records,
where each record contains the same number of fields, separated by an
arbitrary delimiter. Null values are represented by two delimiters next to each
other.

The following example shows the contents of a file called DRUGDATA1.TXT.
It contains three records, each with three fields, separated by commas:
234,DrugnameA,Manufacturer1
332,DrugnameB,Manufacturer2
333,DrugnameC,Manufacturer2

The first field is the drug’s unique ID number. The second field is the name of
the drug. The third field is the name of the manufacturer who produces the
drug.

Related concepts:

v “Types of table-structured files” on page 143
v “How DB2 Information Integrator works with table-structured files” on

page 144
v “What is Documentum?” on page 157
v “What is Excel?” on page 191
v “What is BLAST?” on page 205
v “What is XML?” on page 231

Related tasks:

v “Adding table-structured files to a federated system” on page 146

Types of table-structured files

Table-structured files can be sorted or unsorted.

© Copyright IBM Corp. 1998 - 2003 143

Sorted files
DRUGDATA1.TXT contains sorted records. The file is sorted by the first field,
the drug’s unique ID number. This field is the primary key because it is
unique for each drug. Sorted files must be sorted in ascending order.
234,DrugnameA,Manufacturer1
332,DrugnameB,Manufacturer2
333,DrugnameC,Manufacturer2

Unsorted files
DRUGDATA2.TXT contains unsorted records. There is no order to the way the
records are listed in the file.
332,DrugnameB,Manufacturer2
234,DrugnameA,Manufacturer1
333,DrugnameC,Manufacturer2

The wrapper can search sorted data files much more efficiently than
non-sorted files.

Related concepts:

v “What are table-structured files?” on page 143
v “How DB2 Information Integrator works with table-structured files” on

page 144

Related tasks:

v “Adding table-structured files to a federated system” on page 146

How DB2 Information Integrator works with table-structured files

Using a module called a wrapper, DB2® Information Integrator can process
SQL statements that query data in a table-structured file as if it were
contained in an ordinary relational table or view. This enables data in a
table-structured file to be joined with relational data or data in other
table-structured files. This process is illustrated in Figure 1 on page 145.

144 Data Source Configuration Guide

For example, suppose that the table-structured file DRUGDATA2.TXT is located
on your computer in your laboratory. Trying to query this data and match it
up with other tables from other data sources that you use can be tedious.

After you register DRUGDATA2.TXT with DB2 Information Integrator, the file
behaves as if it is a relational data source. You can now query the file together
with other relational and non-relational data sources and analyze the data
together.

For example, you could run the following query:
SELECT * FROM DRUGDATA2 ORDER BY DCODE

This query produces the following results.

Dcode Drug Manufacturer

234 DrugnameA Manufacturer1

332 DrugnameB Manufacturer2

333 DrugnameC Manufacturer2

Related concepts:

v “What are table-structured files?” on page 143
v “Types of table-structured files” on page 143

DB2 Universal
Database
federated
database

Relational
results
table

DB2 Client Federated database

Table-structured
file

Table-structured
file Wrapper

SQL A, B, C, D
E, F, G, H
I, J, K, L

Figure 1. How the table–structured file wrapper works

Chapter 12. Configuring access to Table-structured file data sources 145

Related tasks:

v “Adding table-structured files to a federated system” on page 146

Adding table-structured files to a federated system

Restrictions:

You cannot use pass-through sessions to access a table-structured file data
source.

Procedure:

To add a data source for a table-structured file to a federated server:
1. Register the wrapper using the CREATE WRAPPER command.Register the

wrapper using the CREATE WRAPPER command.
2. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
3. Register the server using the CREATE SERVER command.Register the

server using the CREATE SERVER command.
4. Register nicknames using the CREATE NICKNAME command for all

table-structured files.Register nicknames using the CREATE NICKNAME
command for all table-structured files.

The commands can be run from the DB2 Command Line Processor.

Related tasks:

v “Registering the table-structured file wrapper” on page 146
v “Setting the DB2_DJ_COMM DB2 profile variable for the table-structured

file wrapper” on page 147
v “Registering the server for table-structured files” on page 148
v “Registering nicknames for table-structured files” on page 149

Registering the table-structured file wrapper

Registering the table-structured file wrapper is part of the larger task of
adding table-structured files to a federated system. You must register the
wrapper in order to access a data source. Wrappers are mechanisms that
federated servers use to communicate with and retrieve data from data
sources. Wrappers are installed on your system as library files.

Procedure:

146 Data Source Configuration Guide

To register the wrapper, use the CREATE WRAPPER statement to specify
which wrapper will be used to access table-structured files.

For example, to register a wrapper on AIX, run the following statement:
CREATE WRAPPER laboratory_flat_files LIBRARY ’libdb2lsfile.a’

OPTIONS(DB2_FENCED ’N’);

In this example, laboratory_flat_files is the name chosen for the wrapper.
This name must be unique within the database in which the wrapper is being
registered. The required library name for the table-structured file wrapper on
AIX is libdb2lsfile.a.

The library name is installed as libdb2lsfile.a by default, but it might have
been customized during installation. Check with your system administrator
for the correct name.

For a table of default library filenames for the table-structured file wrapper by
supported platform, see the related tasks section.

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the table-structured file wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the table-structured
file wrapper” on page 147

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the table-structured file
wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the table-structured file
wrapper is part of the larger task of adding table-structured files to a
federated system. To improve performance when table-structured files are
accessed, set the DB2_DJ_COMM DB2 profile variable. This variable
determines whether the federated server loads the wrapper upon
initialization.

Procedure:

Chapter 12. Configuring access to Table-structured file data sources 147

To set the DB2_DJ_COMM DB2 profile variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsfile.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

The next task in this sequence of tasks is registering the server for
table-structured files.

Related tasks:

v “Registering the server for table-structured files” on page 148

Registering the server for table-structured files

Registering the server for table-structured files is part of the larger task of
adding table-structured files to a federated system. After the wrapper is
registered, you must register a corresponding server.

Procedure:

To register the table-structured file server to the federated system, use the
CREATE SERVER statement. For example:
CREATE SERVER biochem_lab WRAPPER laboratory_flat_files

In this example, biochem_lab is the name assigned to the table-structured file
server. The name must be unique to the database in which the server is being
registered.

The next task in this sequence of tasks is registering nicknames for
table-structured files.

Related tasks:

v “Registering nicknames for table-structured files” on page 149

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

148 Data Source Configuration Guide

Registering nicknames for table-structured files

Registering nicknames for table-structured files is part of the larger task of
adding table-structured files to a federated system. After you register a server,
you must register a corresponding nickname. Nicknames are used when you
refer to a table-structured file data source in a query.

Nicknames are associated with your table-structured file in one of two ways:
v in a fixed manner using the FILE_PATH nickname option. When this

option is used, the nickname represents data from a specific table-structured
file.

v with a filename specified at query time using the DOCUMENT nickname
column option. When this option is used, the nickname can be used to
represent data from any table-structured file whose schema matches the
nickname definition.

Restrictions:

If a non-numeric field is too long for its column type, the excess data is
truncated. If a decimal field in the file has more digits after the radix char
than are allowed by the scale parameter of its column type, the excess data is
truncated. The radix character is determined by the RADIXCHAR item of the
LC_NUMERIC National Language Support category.

The maximum line length is 32768.

Files containing multibyte characters are not supported.

Procedure:

To register a nickname, use the CREATE NICKNAME statement for each
table-structured file that you want to access.

There are no further tasks in this sequence of tasks.

Related tasks:

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE NICKNAME statement syntax - Table-structured file wrapper” on
page 347

v “CREATE NICKNAME statement - Examples for table-structured file
wrapper” on page 150

Chapter 12. Configuring access to Table-structured file data sources 149

CREATE NICKNAME statement - Examples for table-structured file wrapper

This topic provides a complete example of using a CREATE NICKNAME
statement to register nicknames for the table-structured file wrapper. It also
includes examples for specific options.

Complete example:

The following example shows a CREATE NICKNAME statement for the
table-structured file DRUGDATA1.TXT:
CREATE NICKNAME DRUGDATA1(Dcode Integer NOT NULL, Drug CHAR(20),

Manufacturer CHAR(20))
FOR SERVER biochem_lab OPTIONS(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,
COLUMN_DELIMITER ’,’, SORTED ’Y’, KEY_COLUMN ’DCODE’, VALIDATE_DATA_FILE ’Y’)

KEY COLUMN option examples:

These examples show that the column designated as the key is designated not
nullable by adding the NOT NULL option to its definition in the nickname
statement:
CREATE NICKNAME tox (tox_id INTEGER NOT NULL, toxicity VARCHAR(100))
FOR SERVER tox_server1

OPTIONS (FILE_PATH’/tox_data.txt’, SORTED ’Y’)

CREATE NICKNAME weights (mol_id INTEGER, wt VARCHAR(100) NOT NULL)
FOR SERVER wt_server

OPTIONS (FILE_PATH’/wt_data.txt’, SORTED ’Y’, KEY_COLUMN ’WT’)

This option is case-sensitive. However, DB2 folds column names to upper case
unless the column is defined with double quotes. The following example will
not work properly because the empno column will be folded to uppercase by
DB2, and the empno key column will be submitted in lowercase. Thus the
column designated as the key will not be found.
CREATE NICKNAME depart (
empno char(6) NOT NULL)
FOR SERVER DATASTORE
OPTIONS(FILE_PATH’data.txt’, SORTED ’Y’, KEY_COLUMN ’empno’);

Related tasks:

v “Registering nicknames for table-structured files” on page 149

Related reference:

v “CREATE NICKNAME statement syntax - Table-structured file wrapper” on
page 347

150 Data Source Configuration Guide

File access control model for the table-structured file wrapper

The database management system will access table-structured files with the
authority of the DB2 instance owner. The wrapper can only access files that
can be read by this user ID (or group ID). The authorization ID of the
application (the ID that establishes the connection to the federated database) is
not relevant.

On DB2 Universal Database Enterprise Server Edition, any table-structured
file for which a nickname has been created must be accessible with the same
path name from each node. The file does not have to be on a DB2 Universal
Database node as long as it can be accessed from any node with a common
path.

To access a table-structured file on a mapped drive if the network has a
Windows NT or Windows 2000 domain configured, the DB2 service logon
account must be an account from the domain that has access to he shared
folder where data files reside.

To access a table-structured file on a mapped drive if the network doesn’t
have a Windows NT or Windows 2000 domain, and your user logs on locally
to each workstation, the DB2 service logon account should have the same user
name and password as a valid user on the machine that shares that folder.
That user must be on the permissions list for the shared folder with at least
read access.

Related reference:

v “Access control for the Documentum wrapper” on page 184
v “File access control model for the Excel wrapper” on page 198

Optimization tips and considerations for the table-structured file wrapper

v The system can search sorted data files much more efficiently than
non-sorted files.

v For sorted files, you can improve performance by specifying a value or
range for the key column when submitting a query.

v Statistics for nicknames of table-structured files must be updated manually
by updating the SYSSTAT and SYSCAT views.

Related reference:

v “Optimization tips for the BLAST wrapper” on page 228

Chapter 12. Configuring access to Table-structured file data sources 151

Messages for the table-structured file wrapper

This section lists and describes messages you might encounter while working
with the wrapper for table-structured files.

Table 22. Messages issued by the wrapper for table-structured files

Error Code Message Explanation

SQL0405N The numeric literal
″<literal>″ is not valid
because its value is out of
range.

A column in the data file, or a predicate
value in an SQL statement, contains a
value that is out of the possible range for
that data type. Correct the data file or
redefine the column to a more appropriate
type.

SQL0408N A value is not compatible
with the data type of it’s
assignment target. Target
name is ″<column_name>″.

A column in the data file contains
characters that are invalid for that data
type. Correct the data file or redefine the
column to a more appropriate type.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Data
source path is NULL″.)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Key
Column retrieval failure″.)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″STAT
failed on data source.
ERRNO =
<error_number>″.)

Ensure that you have the proper directory
permissions. Ensure that the file exists.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″No
column info found″.)

Contact IBM Software Support.

152 Data Source Configuration Guide

Table 22. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason
″Unsupported operator″.)

Contact IBM Software Support.

SQL1816N Wrapper
″<wrapper_name>″ cannot
be used to access the ″type″
of data source (″<type>″ ″″)
that you are trying to define
to the federated database.

The server type was invalid. No server
type should be specified in the CREATE
SERVER statement. Remove the TYPE
keyword and value and rerun it.

SQL1822N Unexpected error code
″ERRNO =
<error_number>″ received
from data source
″<server_name>″.
Associated text and tokens
are ″Unable to read file″.

Check the value of the error number. Make
sure that the file can be read by the DB2
instance owner. Then rerun the SQL
command.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Data source is a
non-standard file″.

The data source file is a directory, socket,
or FIFO. Only standard files can be
accessed as data source. Change the
FILE_PATH option to point to a valid file
and reissue the SQL command.

SQL1822N Unexpected error code
″ERRNO =
<error_number>″ received
from data source
″<server_name>″.
Associated text and tokens
are ″File open error″.

The wrapper was unable to open the file.
Check the error number to determine why
the error occurred. Correct the problem
with the data source and reissue the SQL
command.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Key column missing″.

A record retrieved from the data source
was missing the key field. The key column
must not be null. Correct the data, or
register the file with an unsorted
nickname.

Chapter 12. Configuring access to Table-structured file data sources 153

Table 22. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″File not sorted″.

The file was not sorted on the key column.
Do one of the following: change the
KEY_COLUMN option to point to the
correct column; resort the data file; or
register the nickname as an unsorted
nickname.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Key exceeds definition
size″.

The key column field read from the data
source was larger than the DB2 column
definition which could cause the wrapper
search routines to function incorrectly.
Correct the data or correct the nickname
definition, and reregister the nickname.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Line in data file
exceeds 32k″.

A line in the data file exceeded the
maximum line length allowed by the
wrapper. The line length cannot be greater
than 32768. Shorten the length of the line
in the data file.

SQL1823N No data type mapping
exists for data type
″<data_type>″ from server
″<server_name>″.

The nickname was defined with an
unsupported data type. Redefine the
nickname using only supported data types.

SQL1881N ″<option_name>″ is not a
valid ″<component>″ option
for ″<object_name>″.

The listed value is not a valid option for
the listed object. Remove or change the
invalid option then resubmit the SQL
statement.

SQL1882N The ″Nickname″ option
″COLUMN_DELIMITER″
cannot be set to
″<delimiter>″ for
″<nickname_name>″.

The column delimiter was more than one
character long. Redefine the option with a
single character. Then rerun the SQL
statement command.

SQL1882N The ″Nickname″ option
″KEY_COLUMN″ cannot be
set to ″<column_name>″ for
″<nickname_name>″.

The column selected as the key column is
not defined for this nickname. Correct the
KEY_COLUMN option to be one of the
sorted columns for this nickname, then
reissue the SQL command.

SQL1882N The ″Nickname″ option
″VALIDATE_DATA_FILE″
cannot be set to
″<option_value>″ for
″<nickname_name>″.

The option value was invalid. Valid values
are ″Y″ or ″N″. Correct the option and
register the nickname again.

154 Data Source Configuration Guide

Table 22. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL1883N ″<option_name>″ is a
required ″<component>″
option for ″<object_name>″.

A required option for the wrapper was
missing from the SQL statement. Add the
required option and resubmit the SQL
statement.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″21″.

You attempted a pass-through session. The
table-structured file wrapper does not
support pass-through sessions.

Related reference:

v “Messages for the Documentum wrapper” on page 184
v “Messages for the Excel wrapper” on page 198
v “Messages for the BLAST wrapper” on page 228
v “Messages for the XML wrapper” on page 251

Chapter 12. Configuring access to Table-structured file data sources 155

156 Data Source Configuration Guide

Chapter 13. Configuring access to Documentum data
sources

This chapter explains what Documentum is, how to add Documentum data
sources to your federated system, and lists the error messages associated with
the Documentum wrapper.

What is Documentum?

Documentum is document management software that provides management
of document content and attributes such as check-in, check-out, workflow, and
version management. The Documentum product is a three-tier, client-server
system built on top of a relational database.

A Docbase is a Documentum repository that stores document content,
attributes, relationships, versions, renditions, formats, workflow, and security.
Documentum Query Language (DQL), an extended SQL dialect, is used to
query Documentum data. A Docbase is the equivalent of an Oracle® instance
or a DB2® database plus document content files. The metadata is stored in the
underlying relational database management system (RDBMS), and the content
is stored as binary large objects (BLOBs) in the database or as files stored
within the file-system of the server system. For more information on
Documentum, refer to the Documentum manuals.

The wrapper for Documentum allows you to add a Documentum data source
to a DB2 federated system. By adding the Documentum data source to a
federated system, you can use SQL statements to access and query objects and
registered tables in a Documentum Docbase. You can then integrate this data
with other data sources in your federated system without having to move the
data out of the native data source. The Documentum wrapper uses a client
library to interface with the Documentum server. The Documentum wrapper
provides access to two versions of the Documentum server: EDMS 98 (also
referred to as version 3) and 4i. Figure 2 on page 158 illustrates how the
Documentum wrapper works.

© Copyright IBM Corp. 1998 - 2003 157

After the Documentum wrapper is registered, you can map Documentum
Docbase objects and registered tables as relational tables. This is done by
mapping Docbase attributes to column names in a DB2 relational table.

For example, Table 23 lists a subset of attributes for the Documentum Docbase
default document type, dm_document, along with the associated data. You
have determined that this attribute subset is important to you, and you would
like to connect these attributes into your federated database system. You
named this subset of data DrugAB_data.

Table 23. DrugAB_data

Title Subject Authors Keywords

The effect of drug A on
rabbits

Drug A Curran, L. rabbits, drug A

Toxicity results for drug A Drug A Abelite, P.,
McMurtrey, K.

toxicity, drug A

Drug B interactions Drug B DeNiro, R., Stone, S. interactions, drug B

Chemical structure of
drug B

Drug B Boyslim, F. structure, drug B

After you register the Documentum wrapper, the data can be queried using
SQL statements.

The following query displays the titles and authors whose subject is Drug A.
The result table is shown in Table 24 on page 159.

Application
F E V G B O W Hile dit iew o ookmarks ptions indow elp

DB2 Client Federated database

DB2 Universal
Database
federated
database

SQL

Relational
results
table

Documentum
wrapper

D
ocum

entum
C

lient A
P

I/Library

Documentum
Docbase

server

Documentum
Docbase

Figure 2. How the Documentum wrapper works

158 Data Source Configuration Guide

SELECT title, authors
FROM drugAB_data
WHERE subject = ’Drug A’

Table 24. Query results

Title Authors

The effect of drug A on rabbits Curran, L.

Toxicity results for drug A Abelite, P., McMurtrey, K.

Related concepts:

v “What are table-structured files?” on page 143
v “What is Excel?” on page 191
v “What is BLAST?” on page 205
v “What is XML?” on page 231

Related tasks:

v “Adding Documentum to a federated system” on page 159

Adding Documentum to a federated system

Procedure:

To add the Documentum data source to a federated server:
1. Make the Documentum client library available to DB2.
2. Point to Documentum’s client dmcl.ini file
3. Register the wrapper using the CREATE WRAPPER statement.Register the

wrapper using the CREATE WRAPPER statement.
4. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
5. Register the server using the CREATE SERVER statement.Register the

server using the CREATE SERVER statement.
6. Give users access to the data source by using the CREATE USER

MAPPING statement.
7. Register nicknames using the CREATE NICKNAME statement.Register

nicknames using the CREATE NICKNAME statement.
8. Create custom functions using the CREATE FUNCTION statement.

The statements can be run from the DB2 Command Line Processor. Once
registered, you can run queries on the data source.

Related tasks:

Chapter 13. Configuring access to Documentum data sources 159

v “Making the Documentum client library available to DB2 (AIX and Solaris
Operating Environment only)” on page 160

v “Pointing to Documentum’s client dmcl.ini file” on page 161
v “Registering the Documentum wrapper” on page 162
v “Setting the DB2_DJ_COMM DB2 profile variable for the Documentum

wrapper” on page 163
v “Registering the server for Documentum data sources” on page 164
v “Mapping users (Documentum wrapper)” on page 164
v “Registering nicknames for Documentum data sources” on page 165
v “Registering custom functions for Documentum data sources” on page 172

Making the Documentum client library available to DB2 (AIX and Solaris
Operating Environment only)

Making the Documentum client library available to DB2 (AIX and Solaris
Operating Environment only) is part of the larger task of adding
Documentum to a federated system.

The client library must be available to DB2 in order for the wrapper to
function correctly.

Prerequisites:

The Documentum wrapper uses Version 3.1.7a of the client library. If you are
using Documentum 4i , you will need to acquire the older version of the
client library from Documentum (if it is not already installed).

Procedure:

To make the Documentum client library available to DB2, copy the client
library into the appropriate directory. See Table 25 for the client library names
and copy to directories for each supported operating system. You can also
make a symbolic link for the client library into the appropriate directory.

Table 25. Client library and copy to directory by operating system

Operating System Client Library Copy to directory

AIX libdmcl.a sqllib/lib

Solaris Operating
Environment

libdmcl.so sqllib/lib

Windows dmcl32.dll x:\sqllib\bin

160 Data Source Configuration Guide

The next task in this sequence of tasks is pointing to Documentum’s client
dmcl.ini file.

Related tasks:

v “Pointing to Documentum’s client dmcl.ini file” on page 161

Pointing to Documentum’s client dmcl.ini file

Pointing to Documentum’s client dmcl.ini file is part of the larger task of
adding Documentum to a federated system. Access to Documentum Docbases
are controlled through the Documentum client’s dmcl.ini file. A DB2 instance
must have its environment variables set to the Documentum client’s dmcl.ini
file in order to gain access to a Documentum Docbase.

Procedure:

To set the environment variables:
1. Edit the db2dj.ini file, and set either the DOCUMENTUM or DMCL_CONFIG

environment variable.
The following examples shows how these variables would look on Unix
operating systems.
DOCUMENTUM=<path>

or
DMCL_CONFIG=<path>/dmcl.ini

where <path> is the fully qualified directory that contains the dmcl.ini file
that you want to use.

The default path to the location of Documentum’s dmcl.ini file is
/pkgs/documentum. If both lines are included, DMCL_CONFIG is used.
On Windows operating systems, a backslash would be used instead of the
forward-slash to define the location of the dmcl.ini file.

On AIX and Solaris Operating Environment, the db2dj.ini file is located in
$HOME/sqllib/cfg.

On Windows, the db2dj.ini file is in x:\sqllib\cfg where x: represents the
drive on which the sqllib directory is located.

Ensure that the name of a docbroker, to which all accessible Docbases for
the DB2 instance report, is specified in the dmcl.ini file as shown in
Figure 3 on page 162.

Chapter 13. Configuring access to Documentum data sources 161

2. Recycle the DB2 instance by issuing the following commands:
db2stop
db2start

The next task in this sequence of tasks is registering the Documentum
wrapper.

Related tasks:

v “Registering the Documentum wrapper” on page 162

Registering the Documentum wrapper

Registering the Documentum wrapper is part of the larger task of adding
Documentum to a federated system. You must register the wrapper in order
to access a data source. Wrappers are mechanisms that federated servers use
to communicate with and retrieve data from data sources. Wrappers are
installed on your system as library files.

Procedure:

To register the Documentum wrapper, submit the CREATE WRAPPER
statement.

For example, to create a Documentum wrapper on AIX called Dctm_Wrapper
from the default library file, libdb2lsdctm.a, submit the following statement:
CREATE WRAPPER Dctm_Wrapper LIBRARY ’libdb2lsdctm.a’

OPTIONS(DB2_FENCED ’N’);

################## DOCUMENTUM CLIENT CONFIGURATION FILE ######################
#
Copyright Documentum 1994.
Version 3.1 of the Documentum Server.
#
A generated client init file for the Documentum Server.
#
The only REQUIRED information in this file is the
[DOCBROKER_PRIMARY] section and an entry for host.
The host value should be the name of host on which
your network wide DocBroker is running

[DOCBROKER_PRIMARY]
host = server16.comp2.big.com

Figure 3. Sample dmcl.ini file with docbroker name specified

162 Data Source Configuration Guide

For a table of default library filenames for the Documentum wrapper by
supported platform, see the related tasks section.

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the Documentum wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the Documentum
wrapper” on page 163

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the Documentum wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the Documentum
wrapper is part of the larger task of adding Documentum to a federated
system. To improve performance when Documentum data sources are
accessed, set the DB2_DJ_COMM DB2 profile variable. This variable
determines whether the federated server loads the wrapper upon
initialization.

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsdctm.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

The next task in this sequence of tasks is registering the server for
Documentum data sources.

Related tasks:

v “Registering the server for Documentum data sources” on page 164

Chapter 13. Configuring access to Documentum data sources 163

Registering the server for Documentum data sources

Registering the server for Documentum data sources is part of the larger task
of adding Documentum to a federated system. After the wrapper is registered,
you must register a corresponding server.

Restrictions:

All servers running on the same instance of DB2 must share the same
configuration parameters in the Documentum dmcl.ini file.

Procedure:

To register the Documentum server to the federated system, use the CREATE
SERVER statement.

For example, suppose there is a server called Dctm_Server1 for the
Dctm_Wrapper wrapper created in the associated CREATE WRAPPER
statement. Suppose that server contains a Docbase that runs on AIX and uses
Oracle to store data. To register the server, submit the following statement:
CREATE SERVER Dctm_Server1
TYPE DCTM
VERSION 3
WRAPPER Dctm_Wrapper
OPTIONS(NODE ’Dctm_Docbase’,

OS_TYPE ’AIX’,
RDBMS_TYPE ’ORACLE’);

The next task in this sequence of tasks is mapping users.

Related tasks:

v “Mapping users (Documentum wrapper)” on page 164

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement arguments and options - Documentum
wrapper” on page 357

Mapping users (Documentum wrapper)

Mapping users (Documentum wrapper) is part of the larger task of adding
Documentum to a federated system. You must map users to the previously
defined servers to give them access to the data source.

Procedure:

164 Data Source Configuration Guide

To map users to your federated servers, use the CREATE USER MAPPING
statement.

For example, the following CREATE USER MAPPING statement maps user
Chuck to user Charles on the Dctm_Server1 server.
CREATE USER MAPPING FOR Chuck SERVER Dctm_Server1
OPTIONS(REMOTE_AUTHID ’Charles’, REMOTE_PASSWORD ’Charles_pw’);

You can also define your own user mapping. In the following example, USER
is a keyword meaning the current user, not a user named USER.
CREATE USER MAPPING FOR USER SERVER Dctm_Server1
OPTIONS(REMOTE_AUTHID ’Lisa’, REMOTE_PASSWORD ’Lisa_pw’)

The next task in this sequence of tasks is registering nicknames for
Documentum data sources.

Related tasks:

v “Registering nicknames for Documentum data sources” on page 165

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement options - Documentum wrapper” on
page 361

Registering nicknames for Documentum data sources

Registering nicknames for Documentum data sources is part of the larger task
of adding Documentum to a federated system. After you have registered a
server and mapped your user information to the server, you must register
corresponding nicknames. Nicknames are used when you refer to a
Documentum data source in a query.

Restrictions:

v Pass-through sessions are not supported.
v For each connection to a DB2 database made by a DB2 application, the

Documentum wrapper can support a maximum of 10 simultaneous
Documentum sessions, and each such session can simultaneously manage
up to 10 Documentum queries. A single DB2 application can have several
queries in progress simultaneously; the lifetime of a query begins when it is
submitted to DB2 and ends when the corresponding cursor over the result
set is closed. At any given time, across the entire set of queries in progress
at that time, no more than 10 nicknames from one Documentum server may

Chapter 13. Configuring access to Documentum data sources 165

be referenced. Nicknames mentioned in more than one query, or referenced
multiple times in a single query, must be counted once for each time they
appear.

Procedure:

To register nicknames, use the CREATE NICKNAME statement to create a
nickname for each Docbase for each object type or registered table of interest.

Understanding pseudo columns
The CREATE NICKNAME statement also defines 6 pseudo columns. These
columns are used to access object content and other information

The pseudo-columns and their definitions are listed in Table 26.

Table 26. Pseudo column names and definitions.

Pseudo column name Definition

GET_FILE VARCHAR (255)

GET_FILE_DEL VARCHAR (255)

GET_RENDITION VARCHAR (255)

GET_RENDITION_DEL VARCHAR (255)

HITS INTEGER

SCORE DOUBLE

166 Data Source Configuration Guide

Table 27 lists pseudo columns for SELECT clauses.

Table 27. Pseudo columns for SELECT clauses

Pseudo column name Description

GET_FILE Retrieves the content file for the current row in addition
to the column values.

The extension for the content file is its Documentum
format name. If a file of the same name exists, it will be
overwritten.

GET_FILE attempts to get the object’s base format. Its
value in the row is the fully qualified file name of the file
or the string ″no_content.″

For example:

SELECT object_name, get_file
FROM ...

The content file is placed in the server directory that is
specified by the Server’s CONTENT_DIR option. It is also
placed in a subdirectory named with your DB2 local
name. The subdirectory will be created if it doesn’t exist.

It’s extension will be its DOS extension defined in the
Docbase for the document’s format type. For example,
″.doc″, for MS Word documents.

GET_FILE_DEL This function is the same as GET_FILE except
GET_FILE_DEL first deletes the file retrieved for the
previous row, if any, in that query. Its value in the row is
the fully qualified file name of the file or the string
″no_content.″

Chapter 13. Configuring access to Documentum data sources 167

Table 27. Pseudo columns for SELECT clauses (continued)

Pseudo column name Description

GET_RENDITION Retrieves the content file of that rendition, a copy of the
original document in a different format, for the current
row in addition to the column values.

The extension for the content file is its Documentum
format name. If a file of the same name exists, it will be
overwritten.

To specify the rendition format, a predicate of the form
DCTM.RENDITION_FORMAT(<format) = 1 must be
specified in the WHERE clause.

For example:

SELECT object_name, get_rendition
FROM ...
WHERE DCTM.RENDITION_FORMAT(’pdf’)=1

GET_RENDITION attempts to get the named rendition of
the object. Its value in the row is the fully qualified file
name of the file or the string ″no_content.″

The content file is placed in the server directory that is
specified by the Server’s CONTENT_DIR option. It is also
placed in a subdirectory named with your DB2 local
name. The subdirectory will be created if it doesn’t exist.

It’s extension will be its DOS extension defined in the
Docbase for the document’s format type. For example,
″.doc″, for MS Word documents.

GET_RENDITION_DEL This function is the same as GET_RENDITION except
GET_RENDITION_DEL first deletes the file retrieved for
the previous row, if any, in that query. Its value in the
row is the fully qualified file name of the file or the string
″no_content.″

Table 28 on page 169 lists pseudo columns for SELECT clauses in queries that
contain search clauses.

168 Data Source Configuration Guide

Table 28. Pseudo columns for SELECT clauses in queries that contain search clauses

Pseudo
column
name

Description

HITS Contains an integer number that represents the number of places in the
document in which the search criteria was matched.

For example:

SELECT r_object_id, object_name, hits
FROM std_doc
WHERE DCTM.SEARCH_WORDS (’’’workflow’’ OR ’’flowchart’’’)=1

For each document returned, the number of occurrences of the words
″workflow″ and ″flowchart″ within the document’s content are summed
and returned as the HITS value.

The HITS pseudo column is appropriate when the documents have only
one content file. This is the typical case. This pseudo column can be used
in a WHERE clause qualification for a SELECT statement. However, it
must also be specified in the SELECT clause.

SCORE Contains a document’s relevance ranking.

Use this pseudo column in conjunction with the Documentum’s ACCRUE
concept operator. Both return a number that indicates how many of the
specified words were found in each returned document.

For example:

SELECT object_name, score
FROM std_doc
WHERE
DCTM.SEARCH_TOPIC(’<ACCRUE>("document","management","workflow")’)=1

AND SCORE >=75

The statement returns all documents that have either two or three of the
specified words in their content. If a document has only one of the words,
it is assigned a score of 50 and therefore fails the WHERE clause criteria
and is not returned. If two of the three words are found, a document is
assigned a score of 75. If all three words are found, the document’s score
is 88.

The SCORE pseudo column is used for documents that have one content
file. This is the typical case.

SCORE can be in a SELECT clause only if the WHERE contains a
SEARCH_WORDS() or SEARCH_TOPIC() function. In a WHERE clause, it
is used in conjunction with the ACCRUE concept operator.

For information on the ACCRUE concept operator, see the Documentum
documentation.

Chapter 13. Configuring access to Documentum data sources 169

The next task in this sequence of tasks is registering custom functions for
Documentum data sources.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 180

Related tasks:

v “Registering custom functions for Documentum data sources” on page 172

Related reference:

v “CREATE NICKNAME statement syntax - Documentum wrapper” on page
338

v “CREATE NICKNAME statement - Example for Documentum wrapper” on
page 170

CREATE NICKNAME statement - Example for Documentum wrapper

The following CREATE NICKNAME statement defines the nickname std_doc.
Std_doc is associated with a Documentum Docbase with an object type of
dm_document. Table 29 maps the Documentum attributes and data types to
DB2 relational column names and data types that are then used to construct
the CREATE NICKNAME statement.

Table 29. Mapping of Documentum attributes to DB2 columns for the std_doc nickname

Documentum
attribute name

Documentum
data type

DB2 column
name

DB2 data
type Repeats? Nullable?

object_name string(255) object_name varchar No No

r_object_id ID object_id char(16) No No

r_object_type string(32) object_type varchar No No

title string(255) title varchar No No

subject string(128) subject varchar No No

authors string(32) author varchar Yes Yes

keywords string(32) keyword varchar Yes Yes

r_creation_date time creation_date timestamp No Yes

r_modify_date time modified_date timestamp No Yes

a_status string(16) status varchar No No

a_content_type string(32) content_type varchar No No

r_content_size double content_size integer No No

owner_name string(32) owner_name varchar No Yes

170 Data Source Configuration Guide

Table 30 describes each Documentum attribute used in the nickname.

Table 30. Description of Documentum attributes for the std_doc nickname

Documentum
attribute name Description

object_name The user-defined name of the object.

r_object_id The unique object identifier for this object, set at creation time.

r_object_type The object’s type, set when the object is created.

title The user-defined title of the object.

subject The user-defined subject of the object.

authors The user-defined list of the authors for the object.

keywords The list of user-defined keywords for the object.

r_creation_date The date and time that the object was created.

r_modify_date The date and time that the object was last modified.

a_status Set by server when a router task is forwarded. The value is taken
from the values assigned to attached_task_status in the router object.

a_content_type The file format of the object’s content.

r_content_size The number of bytes in the content. For multi-page documents, this
attribute records the size of the first content associated with the
document.

owner_name The name of the object’s owner (the user who created the object).

Table 29 on page 170 translates into the following CREATE NICKNAME
statement.
CREATE NICKNAME std_doc (

object_name varchar(255) not null,
object_id char(16) not null OPTIONS(REMOTE_NAME ’r_object_id’),
object_type varchar(32) not null OPTIONS(REMOTE_NAME ’r_object_type’),
title varchar(255) not null,
subject varchar(128) not null,
author varchar(32) OPTIONS(REMOTE_NAME ’authors’, IS_REPEATING ’Y’),
keyword varchar(32) OPTIONS(REMOTE_NAME ’keywords’, IS_REPEATING ’Y’),
creation_date timestamp OPTIONS(REMOTE_NAME ’r_creation_date’),
modifed_date timestamp OPTIONS(REMOTE_NAME ’r_modify_date’),
status varchar(16) not null OPTIONS(REMOTE_NAME ’a_status’),
content_type varchar(32) not null OPTIONS(REMOTE_NAME ’a_content_type’),
content_size integer not null OPTIONS(REMOTE_NAME ’r_content_size’),
owner_name varchar(32))

FOR SERVER Dctm_Server2 OPTIONS (REMOTE_OBJECT ’dm_document’, IS_REG_TABLE ’N’)

After you submit the CREATE NICKNAME statement, you can use the
nickname std_doc to query your federated system. You can also join the
std_doc nickname with other nicknames and tables in the federated system.

Chapter 13. Configuring access to Documentum data sources 171

In the catalog, the number of columns for this nickname is 6 more than what
is being specified in the CREATE NICKNAME statement due to the pseudo
columns.

You can use the CreateNicknameFile utility to automatically map
Documentum types to DB2 types and to create an initial CREATE
NICKNAME statement.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 180

Related tasks:

v “Registering nicknames for Documentum data sources” on page 165

Related reference:

v “CREATE NICKNAME statement syntax - Documentum wrapper” on page
338

Registering custom functions for Documentum data sources

Registering custom functions for Documentum data sources is part of the
larger task of adding Documentum to a federated system. You must use the
CREATE FUNCTION statement to register several custom functions. You can
use these functions to access some of the unique capabilities of Documentum,
such as full-text searching and retrieving document content within queries.

Custom functions for predicates are listed in Table 31 on page 174.

References to the TOPIC function are to Documentum function provided as
part of its third-party full-text indexing system from Verity, Inc

Restrictions:

Because DB2 does not support the Boolean type, most of the custom functions
(except for USER) used in the WHERE clause must do a check for ″=1″
because these functions are defined to return an integer.

For example,
"... WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1"

Procedure:

To register custom functions, use the CREATE FUNCTION statement.

172 Data Source Configuration Guide

All custom functions must be registered with the schema name DCTM. The
fully-qualified name of each function is DCTM.<function_name>.

The following example registers the ANY_EQ custom function.
CREATE FUNCTION DCTM.ANY_EQ (CHAR(), CHAR()) RETURNS INTEGER
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

You must register each custom function one time for each DB2 database that
has the Documentum wrapper installed.

To assist you in registering custom functions, the sample file,
create_function_mappings.ddl, is provided in the
sqllib/samples/lifesci/dctm directory. This file contains definitions for each
custom function. You can run this ddl file to register the custom functions for
each DB2 database that has the Documentum wrapper installed.

Custom function string argument rules
All arguments passed as strings must adhere to the following rules:
v Each string is enclosed in single quotes.
v Single quotes within strings are expressed by two single quotes.

Using custom functions in queries
The following examples illustrate the use of the custom functions in queries.

To display the object name and author from the std_doc nickname for
documents that have one or more authors named ’Dave Winters’:
SELECT object_name,authors FROM std_doc
WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1

To display the object name and author from the std_doc nickname for
documents that have one or more authors named ’Dave Winters’ or ’Jon Doe’:
SELECT object_name,authors FROM std_doc
WHERE DCTM.ANY_IN(authors,’Dave Winters’,’Jon Doe’)=1

To display the object name and r_object_id, and to retrieve the content file,
from the std_doc nickname for documents containing strings like ’Dave
Win%’ in the authors column:
SELECT object_name, r_object_id, get_file FROM std_doc
WHERE DCTM.ANY_LIKE(authors,’Dave Win%’)=1

Chapter 13. Configuring access to Documentum data sources 173

Custom function table
Table 31 lists the custom functions for predicates.

Table 31. Custom functions for predicates

Function name Description

ANY_EQ(arg1, arg2) Tests a repeating attribute for any value equal to the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1

ANY_NE(arg1, arg2) Tests a repeating attribute for any value not equal to the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_NE(authors,’Dave Winters’)=1

ANY_LT(arg1, arg2) Tests a repeating attribute for any value less than the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_LT(num_approvers,4)=1

ANY_GT(arg1, arg2) Tests a repeating attribute for any value greater than the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_GT(num_approvers,3)=1

174 Data Source Configuration Guide

Table 31. Custom functions for predicates (continued)

Function name Description

ANY_LE(arg1, arg2) Tests a repeating attribute for any value less than or equal
to the specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_LE(num_approvers,2)=1

ANY_GE(arg1, arg2) Tests a repeating attribute for any value greater than or
equal to the specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_GE(num_approvers,1)=1

ANY_IN(arg1, arg2 –
arg11)

Tests a repeating attribute for any of ten values in a
specified list of values. Takes 3–11 arguments of the same
data type:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2–arg11
Specifies a comma-separated list of values to be
compared.

For example:

... WHERE DCTM.ANY_IN(authors,’Crick’,’Watson’)=1

The maximum number of values in an ANY_IN custom
function for repeating attributes is 10 for a single statement.
Multiple statements can be OR’d.

Chapter 13. Configuring access to Documentum data sources 175

Table 31. Custom functions for predicates (continued)

Function name Description

ANY_LIKE(arg1, arg2) Tests a repeating attribute for any value like the specified
value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the pattern being compared with
sub-strings in single quotes.

For example:

... WHERE DCTM.ANY_LIKE(authors,’Dave Win%’)=1
OR DCTM.ANY_LIKE(keywords,’%_%’)=1

The escape clause is not supported in ANY_LIKE()
predicates.

ANY_NOT_LIKE(arg1,
arg2)

Tests a repeating attribute for any value not like the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the pattern being compared with
sub-strings in single quotes.

For example:

... WHERE DCTM.ANY_NOT_LIKE(authors,’Dave Win%’)=1
OR DCTM.ANY_NOT_LIKE(keywords,’%_%’)=1

The escape clause is not supported in ANY_NOT_LIKE()
predicates.

ANY_NULL(arg) Tests a repeating attribute for IS NULL. Takes one required
argument that is the name of the repeating attribute or
single-valued DATE or TIMESTAMP attribute.

For example:

... WHERE DCTM.ANY_NULL(authors)=1

ANY_NOT_NULL(arg) Tests a repeating attribute for IS NOT NULL. Takes one
required argument that is the name of the repeating
attribute.

For example:

... WHERE DCTM.ANY_NOT_NULL(authors)=1

176 Data Source Configuration Guide

Table 31. Custom functions for predicates (continued)

Function name Description

ANY_SAME_INDEX(arg1
– arg10)

Tests repeating attributes for values at the same index of
each attribute. Takes two to ten of the other ANY_xx()
functions.

The following example checks whether a document has at
least one author named Ken who is not affiliated with
UCD.

... WHERE DCTM.ANY_SAME_INDEX(
ANY_EQ(author_name,’Ken’),
DCTM.ANY_NE(author_affiliation,’UCD’))=1

The maximum number of tests for values at the same index
of repeating attributes is 10. The tests must be AND tests
that are evaluated left to right.

CABINET(arg) and
CABINET_TREE(arg)

Takes one required argument that is the fully-qualified
name of a Docbase cabinet.

For example:

... WHERE DCTM.CABINET(’/Tools’)=1

... WHERE DCTM.CABINET_TREE(’/MyDocs’)=1

Use multiple instances of CABINET and CABINET_TREE
to specify multiple cabinets.

For example:

... WHERE DCTM.CABINET(’/Tools’)=1
OR DCTM.CABINET_TREE(’/Parts’)=1

FOLDER(arg) and
FOLDER_TREE(arg)

Takes one required argument that is the fully-qualified
name of a Docbase folder or cabinet.

For example:

... DCTM.FOLDER(’/Tools/Drills’)=1

... DCTM.FOLDER_TREE(’/MyDocs/WhitePapers’)=1

Use multiple instances of FOLDER and FOLDER_TREE to
specify multiple folders.

For example:

... DCTM.FOLDER(’/Tools/Drills’)=1
OR DCTM.FOLDER_TREE(’/Animals/Horses’)=1

Chapter 13. Configuring access to Documentum data sources 177

Table 31. Custom functions for predicates (continued)

Function name Description

RENDITION_FORMAT
(format)

Works with the GET_RENDITION and
GET_RENDITION_DEL pseudo columns to establish the
format of the rendition to be retrieved. Takes a single
character string argument specifying the format.

The following example retrieves a document in PDF format:

SELECT get_rendition
FROM
WHERE DCTM.RENDITION_FORMAT(’pdf’)=1

USER(1) Compares a value to the Documentum author ID of the
current user. Due to a limitation of DB2, the custom
function USER is defined with an integer argument that is
not used.

For example:

... WHERE approver = DCTM.USER(1)

To make the Documentum author ID correspond to the DB2
author ID, use the CREATE USER MAPPING statement.

SEARCH_WORDS(arg) Takes one required string argument that is a list of
individual words enclosed in single quotes, separated by
AND, OR, or NOT, and using parentheses to control
precedence. Words cannot contain white space and must be
enclosed in single quotes.

For example:

... DCTM.SEARCH_WORDS(’’’yeast’’
AND (’’bread’’ OR ’’cake’’)
AND NOT ’’wedding’’’)=1

SEARCH_TOPIC(arg) Takes one required string argument which is a Verity
TOPIC query statement that is to be passed to
Documentum and Verity verbatim.

For example:

... WHERE DCTM.SEARCH_TOPIC(’"quick"’)=1

There are no further tasks in this sequence of tasks.

Related reference:

v “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

178 Data Source Configuration Guide

Documentum data source – Example queries

After you register the wrapper, you can run SQL queries on the Documentum
data source. This section provides several example queries.

To run queries, you use the nickname and the defined nickname columns in
your SQL statements in the same manner as you would use a regular table
name and table columns.

The Documentum server and DB2 process the LIKE predicate differently.
When a LIKE predicate is pushed down to the Documentum server, the
Documentum semantics apply. In the following example when column c1
contains a zero-length string, the predicate will be true for Documentum and
false for DB2.
c1 LIKE ’%’

The following query displays all of the Docbase documents for documents
named ’Test Document’:
SELECT object_name
FROM std_doc
WHERE object_name=’Test Document’;

The following query uses the custom function ANY_EQ to display all the
documents where one of the authors is ’Joe Doe’.
SELECT object_name
FROM std_doc
WHERE DCTM.ANY_EQ(author,’Joe Doe’)=1

The following query uses the FOLDER_TREE function and the
SEARCH_WORDS function to find all documents in the Approved cabinet
that contain the text ″protein″.
SELECT object_name
FROM std_doc
WHERE DCTM.FOLDER_TREE(’/Approved’)=1

AND DCTM.SEARCH_WORDS(’protein’)=1

The following query uses the GET_FILE pseudo column and the
FOLDER_TREE and ANY_IN custom functions to retrieve the name of the
files, on the DB2 server, into which the content has been placed for all
documents in the Approved cabinet that have any of the authors listed.
SELECT object_name, object_id, get_file
FROM std_doc
WHERE DCTM.FOLDER_TREE(’/Approved’)=1

AND DCTM.ANY_IN(author, ’Mary Black’, ’Joe Carson’, ’Peter Miller’)=1

Related reference:

Chapter 13. Configuring access to Documentum data sources 179

v “Excel data source – Example queries” on page 195

What is the CreateNicknameFile utility for the Documentum wrapper?

You can use a Docbasic utility named CreateNicknameFile, available for free
download, to create an ASCII file that contains a complete definition of any
Docbase object or registered table. You can edit the output file to:
v Define custom local names for columns and attributes. The local and remote

names are initially the names as they are known in the Docbase.
v Delete unwanted columns and attributes. The only predefined

Documentum document type (dm_document) has 59 attributes in EDMS98
and 76 attributes in 4i. Most of these contain metadata for low-level
document management and application development. Deleting the
attributes that are not of interest can make SELECT * SQL statements more
useful without impacting performance.

v Add a value for the FOLDERS option to restrict searches on this nickname
to particular Documentum folders.

v Change DATE mappings to TIMESTAMP if that is desired. The utility
generates a mapping from DQL DATE to DB2® DATE because that seems
the most useful.

v Change CHAR mappings to VARCHAR or vice-versa depending on
application insight.

You must install the utility in a Docbase and run it from a Documentum
Windows® graphical user interface. The files that the utility generates are
specific to the Docbase in which it is installed.

Related tasks:

v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page
181

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 181

v “Mapping the DM_ID object type in Documentum registered tables” on
page 182

180 Data Source Configuration Guide

Installing the CreateNicknameFile utility (Documentum wrapper)

The CreateNicknameFile utility can assist you in writing CREATE
NICKNAME statements for your Documentum data sources.

Procedure:

To install the utility:
1. Download the CreateNicknameFile utility from the download section of

the DB2 Information Integrator product website.
2. Use the EDMS98 Workspace graphical user interface or the 4i Desktop

Client to import the utility, named CreateNicknameFile.txt. You can import
the utility as a procedure type into any Docbase cabinet or folder, and you
can give it any name you want.

3. Check the Can be run by user box on the properties dialog for the newly
imported CreateNicknameFile.txt object.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 180

Related tasks:

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 181

v “Mapping the DM_ID object type in Documentum registered tables” on
page 182

Configuring the CreateNicknameFile utility (Documentum wrapper)

The CreateNicknameFile utility can assist you in writing CREATE
NICKNAME statements for your Documentum data sources.

Prerequisites:

You must install the CreateNicknameFile utility before it can be configured.

Procedure:

To configure the utility after you install it:
1. Double-click on the utility’s icon to run it.
2. Type the Documentum Document/object-type name. The default is

dm_document.

Chapter 13. Configuring access to Documentum data sources 181

Specify dm_registered as the name if you need to create a nickname file
for a registered table. If you specify dm_registered, you will also be
prompted for the fully-qualified table name in <owner>.<table_name>
format. You can use dm_dbo for the owner name if the table is owned by
the Docbase owner (the typical case).
The utility assumes a naming convention for the names of nicknames for
registered tables. The convention is to prefix the table name with ″rt_″ to
indicate ″registered table″. You can change the nickname proposed by the
utility if you don’t want to use this convention.

3. Type the server name associated with the nickname you are creating.
4. Type the name of the nickname.

The names of nickname should be self-explanatory and must be unique
within the DB2 instance. The utility assumes a naming convention of
<server_name>.<object_type> because the same <object_type> might need
to be defined to multiple servers. You can change the nickname proposed
by the utility if you don’t want to follow this convention.

5. Type the name of the output file.
The default is C:\Temp\nickname.txt. The directory to receive the output
file must already exist and writeable to by you.

After you answer the prompts, the nickname file is created and opens in a
text editor.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 180

Related tasks:

v “Registering nicknames for Documentum data sources” on page 165
v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page

181

Mapping the DM_ID object type in Documentum registered tables

The column definitions created by the CreateNicknameFile utility are
compliant with the requirements of the Documentum wrapper, including the
correct mapping of each data type to the corresponding DB2 data type. The
only exception is that Documentum does not support the DM_ID data type in
registered tables. The utility assumes that a column in a registered table is
used to contain an object ID if it is defined as a string, is 16 characters long,
and has a name ending with ″_id″. In the case of the DM_ID data type, the
utility maps the column to the DB2 CHAR(16) data type. In all other cases, all
string/varchar columns are mapped to the DB2 VARCHAR data type.

182 Data Source Configuration Guide

Procedure:

To ensure proper data type mapping:
1. Examine the column data type definitions in the output file created by the

CreateNicknameFile utility.
2. If the utility mapped a data type of a Documentum column to an incorrect

DB2 data type, change the DB2 data type before using the file to register
the nickname to DB2.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 180

Related tasks:

v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page
181

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 181

Dual defining repeating attributes (Documentum wrapper)

To maximize the query capabilities of the wrapper, each attribute must be
defined as its true equivalent DB2 data type. That is, Documentum integers
must be defined as DB2 integers and so forth. However, these definitions
prevent the return of multiple values for non-VARCHAR repeating attributes.
For such columns, only the last value is returned.

This restriction exists because, whenever possible, the wrapper returns only
one row of results per Docbase object. This restriction is an issue only when
repeating attributes are selected. However, you can define a second column
for the same remote repeating attribute but with a data type of VARCHAR.

This column name would be used in the SELECT list to return all values as a
delimiter-separated list of all its values. (Each column’s DELIMITER option
specifies the delimiter to be used.)

You should standardize the local names of the multi-value columns. You can
standardize the local names of each multi-value column by adding a prefix of
″m_″ to the local name of the column that is defined as its true data type.

For example, suppose you have a nickname column of a Documentum
repeating attribute called approval_dates defined with the data type
TIMESTAMP. You can create a second nickname column called

Chapter 13. Configuring access to Documentum data sources 183

m_approval_dates and define it as a VARCHAR data type. You can then use
m_approval_dates in a SELECT list to return all approval dates in a
delimiter-separated list.

You do not need to use dual definitions for repeating attributes whose true
data type is VARCHAR.

Access control for the Documentum wrapper

Queries are subject to your permissions in the Docbase. Only those documents
to which you have at least read access are included in query results.

Related reference:

v “File access control model for the table-structured file wrapper” on page
151

v “File access control model for the Excel wrapper” on page 198

Messages for the Documentum wrapper

This section lists and describes messages you might encounter while working
with the wrapper for Documentum.

Table 32. Messages issued by the wrapper for Documentum

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″sqlno_crule_save_plans
[100]:rc (-2144272209) Empty
plan list detect″.)

The SQL query submitted to DB2 could
not be processed by the wrapper. Correct
the syntax and resubmit.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″dmAPI exec failed:
[DM_QUERY_E_BAD_QUAL]
error: ″The attribute qualifier,
A0, for attribute
<column_name>, is not a
valid qualifier.″″.)

An incorrect Documentum type or
registered table was entered for the
REMOTE_OBJECT nickname option.
Change the nickname to use the correct
Documentum object type or registered
table.

184 Data Source Configuration Guide

Table 32. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid null column
specified″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Nickname
specification is empty″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″The Output object is
empty or incomplete″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unexpected number
of columns requested″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″No column
information found″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unsupported
column type requested″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Incorrect Column
definition″.)

Internal programming error. Contact IBM
Software Support.

Chapter 13. Configuring access to Documentum data sources 185

Table 32. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Inconsistent type;
DB2 request != nickname
type″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Output parameter is
not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Query output
variable is not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid timestamp
length″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Inconsistent number
of columns″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Could not access
data when converting
values″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Failed to initialize
the DMCL client″.)

The Documentum client cannot initialize.
Contact your system administrator.

186 Data Source Configuration Guide

Table 32. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Get_User returned
NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Get_Local_User
returned NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Begin Transaction
failed″.)

Documentum reported that begintrans
failed. Contact your system
administrator.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Input parameter
was not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Dctm functions
must be like
DCTM.function(...) =1″.)

You did not use =1 as the RHS of the
predicate for a Dctm function. Correct
the syntax and run the query again.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid column
number requested″.)

Internal programming error. Contact IBM
Software Support.

SQL1881N ″DELIMITER″ is not a valid
″COLUMN″ option for
″<column-name>″

The DELIMITER option was specified for
column <column-name>, but the
IS_REPEATING option was not specified.

Chapter 13. Configuring access to Documentum data sources 187

Table 32. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL1882N The ″SERVER″ option
″RDBMS_TYPE″ cannot be set
to ″<option-value>″ for
″<server-name>″.

The value specified for the RDBMS_TYPE
server option is invalid. It must be one of
the following: DB2, INFORMIX,
ORACLE, SQLSERVER or SYBASE.

SQL1882N The ″SERVER″ option
″TRANSACTIONS″ cannot be
set to ″<option-value>″ for
″<server-name>″.

The value specified for the
TRANSACTIONS server option is
invalid. It must be one of the following:
NONE, QUERY, PASSTHRU or ALL.

SQL1882N The ″NICKNAME″ option
″IS_REG_TABLE″ cannot be
set to ″<option-value>″ for
″<nickname>″.

The value specified for the
IS_REG_TABLE nickname option is
invalid. It must be one of the following:
’Y’ or ’N’.

SQL1882N The ″NICKNAME″ option
″ALL_VERSIONS″ cannot be
set to ″<option-value>″ for
″<nickname>″.

The value specified for the
ALL_VERSIONS nickname option is
invalid. It must be one of the following:
’Y’ or ’N’.

SQL1882N The ″SERVER″ option
″OS_TYPE″ cannot be set to
″<option-value>″ for
″<server-name>″

The value specified for the OS_TYPE
server option is invalid. It must be: AIX,
HPUX, SOLARIS or WINDOWS.

SQL1882N The ″NICKNAME″ option
″FOLDERS″ cannot be set to
″<option-value>″ for
″<nickname>″

The value specified for the FOLDERS
nickname option is invalid. It cannot be
specified for a table where
IS_REG_TABLE is ’Y’.

SQL1882N The ″NICKNAME″ option
″VERSIONS″ cannot be set to
″<option-value>″ for
″<nickname>″

The value specified for the VERSIONS
nickname option is invalid. It must be
one of the following: ’Y’ or ’N’.
Moreover, VERSIONS ’Y’ cannot be
specified for a table where
IS_REG_TABLE is ’Y’.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Invalid column name,
IS_REG_TABLE, or
IS_REPEATING specified in
nickname″

Check the nickname statement for the
correct specification of the
IS_REG_TABLE, IS_REPEATING,
REMOTE_NAME options, and column
names.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″db2dj.ini missing
DOCUMENTUM or
DMCL_CONFIG env var″

The required environment variables are
not set. Set them in the db2dj.ini file.

188 Data Source Configuration Guide

Table 32. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to open log file for
debugging″

The log file used for troubleshooting is
not accessible. Contact your system
administrator.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Only one search condition
may be specified″

Only one custom search function may be
specified per query.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to create content
directory″

Make sure the destination directory is
writable by the DB2 agent.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to change permissions
on content file″

Make sure the target content directory is
writable by the db2 agent.

Related reference:

v “Messages for the table-structured file wrapper” on page 152
v “Messages for the Excel wrapper” on page 198
v “Messages for the BLAST wrapper” on page 228
v “Messages for the XML wrapper” on page 251

Chapter 13. Configuring access to Documentum data sources 189

190 Data Source Configuration Guide

Chapter 14. Configuring access to Excel data sources

This chapter explains what Excel is, how to add Excel data sources to your
federated system, and lists the error messages associated with the Excel
wrapper.

What is Excel?

An Excel spreadsheet or workbook is a file created using the Microsoft® (MS)
Excel application and has a file extension of xls. DB2® Information Integrator
supports spreadsheets from Excel 97 and Excel 2000. Figure 4 illustrates how
the Excel wrapper connects your spreadsheets to your federated system.

The Excel wrapper uses the CREATE NICKNAME statement to map the
columns in your Excel spreadsheet to columns in your DB2 federated system.
Table 33 shows sample spreadsheet data that is stored in a file called
Compound_Master.xls.

Table 33. Sample spreadsheet for Compound_Master.xls

A B C D

1 compound_A 1.23 367 tested

2 compound_G 210

3 compound_F 0.000425536 174 tested

Application
F E V G B O W Hile dit iew o ookmarks ptions indow elp

DB2 Client Federated database

DB2 Universal
Database
federated
database

SQL

Relational
results
table

Excel wrapper

Excel spreadsheet

Molecular data.xls

B
C
N

atomic
number

atomic
weight

5

6

7

10.8

12.0

14.0

element

Figure 4. How the Excel wrapper works

© Copyright IBM Corp. 1998 - 2003 191

Table 33. Sample spreadsheet for Compound_Master.xls (continued)

A B C D

4 compound_Y 1.00256 tested

5 compound_Q 1024

6 compound_B 33.5362

7 compound_S 0.96723 67 tested

8

9 compound_O 1.2 tested

This information is usually not available to you through standard SQL
commands. When the Excel wrapper is installed and registered, you can
access this information as if it were a standard relational data source. For
example, if you wanted to know all the compound data where the molecular
count is greater than 100, you would run the following SQL query:
SELECT * FROM compound_master WHERE mol_count > 100

The results of the query are shown in Table 34.

Table 34. Query results

COMPOUND_NAME WEIGHT MOL_COUNT WAS_TESTED

compound_A 1.23 367 tested

compound_G 210

compound_F 0.000425536 174 tested

compound_Q 1024

Related concepts:

v “What are table-structured files?” on page 143
v “What is Documentum?” on page 157
v “What is BLAST?” on page 205
v “What is XML?” on page 231

Related tasks:

v “Adding Excel to a federated system” on page 193

192 Data Source Configuration Guide

Adding Excel to a federated system

Procedure:

To add the Excel data source to a federated system:
1. Register the wrapper using the CREATE WRAPPER statement.Register the

wrapper using the CREATE WRAPPER statement.
2. Register the server using the CREATE SERVER statement.Register the

server using the CREATE SERVER statement.
3. Register nicknames using the CREATE NICKNAME statement for each

Excel spreadsheet you want to access.

The commands can be run from the DB2 Command Line Processor.

Related tasks:

v “Registering the Excel wrapper” on page 193
v “Registering the server for an Excel data source” on page 194
v “Registering nicknames for Excel data sources” on page 194

Registering the Excel wrapper

Registering the Excel wrapper is part of the larger task of adding Excel to a
federated system. You must register the wrapper in order to access a data
source. Wrappers are mechanisms that federated servers use to communicate
with and retrieve data from data sources. Wrappers are installed on your
system as library files.

Restrictions:

v The Excel wrappers are only available for Microsoft Windows operating
systems that support DB2 Universal Database Enterprise Server Edition.

v The MS Excel application must be installed on the server where DB2
Information Integrator is installed before an Excel wrapper can be utilized.

v Pass-through sessions are not allowed.

Procedure:

To register the Excel data source wrapper, submit a CREATE WRAPPER
statement.

To create an Excel wrapper for Excel 97 called Excel_9x_Wrapper using the
library file db2lsxls.dll, submit the following statement:
CREATE WRAPPER Excel_9x_Wrapper LIBRARY ’db2lsxls.dll’

OPTIONS(DB2_FENCED ’N’);

Chapter 14. Configuring access to Excel data sources 193

The next task in this sequence of tasks is registering the server for an Excel
data source.

Related tasks:

v “Registering the server for an Excel data source” on page 194

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Registering the server for an Excel data source

Registering the server for an Excel data source is part of the larger task of
adding Excel to a federated system. After the wrapper is registered, you must
register a corresponding server.

Procedure:

To register the Excel server to the federated system, use the CREATE SERVER
statement.

For example, to create a server called biochem_lab, with a node name of
biochem_node1 that registers the server for the Excel_2000_Wrapper wrapper
created using the CREATE WRAPPER statement, submit the following
statement:
CREATE SERVER biochem_lab WRAPPER Excel_2000_Wrapper;

The next task in this sequence of tasks is registering nicknames for Excel data
sources.

Related tasks:

v “Registering nicknames for Excel data sources” on page 194

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement arguments - Excel wrapper” on page 359

Registering nicknames for Excel data sources

Registering nicknames for Excel data sources is part of the larger task of
adding Excel to a federated system. After you register a server, you must
register a corresponding nickname. Nicknames are used when you refer to an
Excel data source in a query.

194 Data Source Configuration Guide

Restrictions:

The wrapper supported date range of the DATE data type is January 1, 1970
to January 18, 2038.

Procedure:

To map the Excel data source to relational tables, create a nickname using the
CREATE NICKNAME statement.

The statement in the following example creates the Compounds nickname
from the Excel spreadsheet file named CompoundMaster.xls. The file contains
three columns of data that are being defined to the federated system as
Compound_ID, CompoundName, and MolWeight.
CREATE NICKNAME Compounds (
Compound_ID INTEGER,
CompoundName VARCHAR(50),
MolWeight FLOAT)
FOR SERVER biochem_lab
OPTIONS(FILE_PATH ’C:\My Documents\CompoundMaster.xls’,
RANGE ’B2:E5’);

There are no further tasks in this sequence of tasks.

Related reference:

v “CREATE NICKNAME statement syntax - Excel wrapper” on page 341

Excel data source – Example queries

This topic lists several sample Excel spreadsheet queries using the example
nickname Compounds.

To run queries, you use the nickname and the defined nickname columns in
your SQL statements in the same manner as you would use a regular table
name and table columns.

The following query displays all compound_ID’s where the molecular weight is
greater than 2000:
SELECT compound_ID
FROM Compounds
WHERE MolWeight > 200;

The following query displays all records where the compound name or
molecular weight is null:

Chapter 14. Configuring access to Excel data sources 195

SELECT *
FROM Compounds
WHERE CompoundName IS NULL
OR MolWeight IS NULL;

The following query displays all records where the compound name contains
the string ase and the molecular weight is greater than or equal to 300:
SELECT *
FROM Compounds
WHERE CompoundName LIKE ’%ase%
AND MolWeight >=300;

Related reference:

v “Documentum data source – Example queries” on page 179
v “Excel data source – Sample scenario” on page 196

Excel data source – Sample scenario

This section demonstrates a sample implementation of the Excel_2000
wrapper accessing an Excel 2000 spreadsheet located in the C:\Data directory.
The scenario registers the wrapper, registers a server and registers one
nickname, that will be used to access the spreadsheet. The statements shown
in the scenario are entered using the DB2 Command Line Processor. After the
wrapper is registered, you can run queries on the spreadsheet.

The scenario starts with a compound spreadsheet, called Compund_Master.xls,
with 4 columns and 9 rows. The fully-qualified path name to the file is
C:\Data\Compound_Master.xls. The contents are show in Table 35.

Table 35. Sample spreadsheet Compound_Master.xls

A B C D

1 compound_A 1.23 367 tested

2 compound_G 210

3 compound_F 0.000425536 174 tested

4 compound_Y 1.00256 tested

5 compound_Q 1024

6 compound_B 33.5362

7 compound_S 0.96723 67 tested

8

9 compound_O 1.2 tested

Procedure:

196 Data Source Configuration Guide

To access an Excel 2000 spreadsheet using the Excel wrapper:
1. Register the Excel_2000 wrapper:

db2 => CREATE WRAPPER Excel_2000 LIBRARY ’db2lsxls.dll’
OPTIONS(DB2_FENCED ’N’)

2. Register the server:
db2 => CREATE SERVER biochem_lab WRAPPER Excel_2000

3. Register a nickname that refers to the Excel spreadsheet:
db2 => CREATE NICKNAME Compound_Master (compound_name VARCHAR(40),
weight FLOAT, mol_count INTEGER, was_tested VARCHAR(20))
FOR biochem_lab
OPTIONS (FILE_PATH ’C:\Data\Compound_Master.xls’)

The registration process is complete. The Excel data source is now part of the
federated system, and can be used in SQL queries.

The following examples show sample SQL queries and results obtained using
the Excel data source.
v Sample SQL query: ″Give me all the compound data where mol_count is

greater than 100″
SELECT * FROM compound_master WHERE mol_count > 100

Result: All fields for rows 1, 2, 3, 5, and 7.
v Sample SQL query: ″Give me the compound_name and mol_count for all

compounds where the mol_count has not yet been determined.
SELECT compound_name, mol_count FROM compound_master
WHERE mol_count IS NULL

Result: Fields compound_name & mol_count of rows 4, 6 and 9 from the
spreadsheet.

v Sample SQL query: ″Count the number of compounds that have not been
tested and the weight is greater than 1.″
SELECT count(*) FROM compound_master
WHERE was_tested IS NULL AND weight > 1

Result: The record count of 1 which represents the single row 6 from the
spreadsheet that meets the criteria.

v Sample SQL query: ″Give me the compound_name and mol_count for all
compounds where the mol_count has been determined and is less than the
average mol_count.″
SELECT compound_name, mol_count
FROM compound_master
WHERE mol_count IS NOT NULL
AND mol_count < (SELECT AVG(mol_count) FROM compound_master

WHERE mol_count IS NOT NULL AND was_tested IS NOT NULL)

Chapter 14. Configuring access to Excel data sources 197

The sub-query returns the average 368 to the main query which then
returns Table 36:

Table 36. Query results

COMPOUND_NAME MOL_COUNT

compound_A 367

compound_G 210

compound_F 174

compound_S 67

Related tasks:

v “Adding Excel to a federated system” on page 193

Related reference:

v “Excel data source – Example queries” on page 195

File access control model for the Excel wrapper

The database management system accesses Excel files with the authority of
the LOG ON AS property of the DB2 database service. This setting can be
viewed in the LOG ON properties page for the DB2 instance. The properties
page is accessed through the Windows NT Services control panel.

Related reference:

v “File access control model for the table-structured file wrapper” on page
151

v “Access control for the Documentum wrapper” on page 184

Messages for the Excel wrapper

This section lists and describes messages you might encounter while working
with the wrapper for Excel.

Table 37. Messages issued by the wrapper for Excel

Error Code Message Explanation

SQL1817N The CREATE SERVER
statement does not identify the
″VERSION″ of data source that
you want defined to the
federated database.

The VERSION parameter was not
specified during the CREATE
SERVER statement. Correct the SQL
statement and run it again.

198 Data Source Configuration Guide

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1000.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Memory allocation error″

Contact IBM Software Support.

SQL1822N Unexpected error code
″-1001.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Unknown option″.

The option specified in the DDL
statement is not supported. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1002.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Creation of DELTA object
failed″.

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1100.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Wrapper options are not
supported″

Wrapper OPTIONS are not
supported by this wrapper. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1200.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″<option> is an unsupported
Server option″.

The specified option is not
supported by this wrapper. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1201.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error obtaining server name″

An internal program error has
occurred. Contact IBM Software
Support.

Chapter 14. Configuring access to Excel data sources 199

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code ″-1209.
<internal program code>″
received from data source
″Excel Wrapper″. Associated
text and tokens are ″ Error
converting VARCHAR data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1211.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are ″
Error converting INTEGER
data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1212.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are ″
Error converting FLOAT data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1400.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″<option> is an unsupported
User option″

The specified option is not
supported by this wrapper. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1401.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Creation of USER Delta object
failed″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1500.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″<option> is an unsupported
Nickname option″

The specified option is not
supported by this wrapper. Correct
the SQL statement and run it again.

200 Data Source Configuration Guide

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1501.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Required option PATH not
specified″

The PATH option is required to
register the NICKNAME. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1502.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Creation of NICKNAME Delta
object failed″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1503.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error obtaining Nickname
column type″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1504.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error obtaining Nickname
column type name″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1505.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″received from data source
″Excel Wrapper″.

The specified <data type> is not
supported by this wrapper. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1506.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error obtaining Nickname
column info″

An internal program error has
occurred. Contact IBM Software
Support.

Chapter 14. Configuring access to Excel data sources 201

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1507.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″<option> option cannot be
dropped″

The specified option cannot be
dropped because it is a required
option.

SQL1822N Unexpected error code
″-1508.VANI″ received from
data source ″Excel Wrapper″.
Associated text and tokens are
″Column names cannot be
altered″

The altering of column names is not
permitted by the Excel wrapper.

SQL1822N Unexpected error code.
″-1509.VCTS″ received from
data source ″Excel Wrapper″.
Associated text and tokens are
″No column info found″.

The column information is not
found.

SQL1822N Unexpected error code
″-1701.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error parsing SQL″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1702.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error accessing NICKNAME
object″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1703.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error building data storage
area″

An internal program error has
occurred. Contact IBM Software
Support.

202 Data Source Configuration Guide

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1704.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error linking SQL to
Nickname Data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1705.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Excel application startup
failed″

The startup of the Excel application
failed. Confirm that Excel is
installed on the system and has
been registered with the correct
version of the wrapper. Check the
LOG ON AS property for the DB2
instance in the Windows NT
Services control panel. The Excel
application will be accessed using
this authority. Confirm that this
user has appropriate rights or
change this property to an
authorized account, then restart
DB2 and run the SQL query again.

SQL1822N Unexpected error code
″-1706.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error opening source
spreadsheet″

A problem occurred while opening
the spreadsheet referenced by the
nickname in the SQL query. Ensure
that the file exists in the PATH
specified during the CREATE
NICKNAME statement during
registration.

SQL1822N Unexpected error code
″-1707.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error accessing DL output
storage area″

An internal program error occurred.
Contact IBM Software Support.

SQL1822N Unexpected error code
″-1708.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Excel application end failed″

An internal program error occurred.
If this error persists after repeated
queries, contact IBM Software
Support.

Chapter 14. Configuring access to Excel data sources 203

Table 37. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1711.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Error during fetch, possible
data/col type mismatch″

The data fetched during the SQL
query was of a different data type
than the data type specified during
the registration of the nickname.
Correct the data in the source
spreadsheet or correct the registered
data type in the nickname. If this
does not correct the problem,
contact IBM Software Support.

SQL1822N Unexpected error code
″-1900.<internal program
code>″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Memory allocation error″

An internal program error has
occurred. Contact IBM Software
Support.

Related reference:

v “Messages for the table-structured file wrapper” on page 152
v “Messages for the Documentum wrapper” on page 184
v “Messages for the BLAST wrapper” on page 228
v “Messages for the XML wrapper” on page 251

204 Data Source Configuration Guide

Chapter 15. Configuring access to BLAST data sources

This chapter explains what BLAST is, how to add BLAST data sources to your
federated system, and lists the error messages associated with the BLAST
wrapper.

What is BLAST?

BLAST (Basic Local Alignment Search Tool) is a utility that is maintained by
the National Center for Biotechnology Information (NCBI). BLAST is used to
scan a nucleotide or amino acid sequence database for ″hits.″ A BLAST hit
contains one or more high-scoring segment pairs (HSPs). A HSP is a pair of
sequence fragments, whose alignment is locally maximal, and whose
similarity score exceeds some threshold value. NCBI provides an executable,
blastall, that is used to perform BLAST searches on BLAST-able data sources,
such as GenBank and SWISS-PROT.

The BLAST wrapper supports all five types of BLAST searches: BLASTn,
BLASTp, BLASTx, tBLASTn, and tBLASTx. These are described in Table 38.

Table 38. BLAST search types supported by the BLAST wrapper

BLAST search type Description

BLASTn A type of BLAST search in which a nucleotide sequence
is compared with the contents of a nucleotide sequence
database to find sequences with regions homologous to
regions of the original sequence.

BLASTp A type of BLAST search in which an amino acid
sequence is compared with the contents of an amino
acid sequence database to find sequences with regions
homologous to regions of the original sequence.

BLASTx A type of BLAST search in which a nucleotide sequence
is compared with the contents of an amino acid
sequence database to find sequences with regions
homologous to regions of the original sequence. The
query sequence is translated in all six reading frames,
and each of the resulting sequences is used to search the
sequence database.

© Copyright IBM Corp. 1998 - 2003 205

Table 38. BLAST search types supported by the BLAST wrapper (continued)

BLAST search type Description

tBLASTn A type of BLAST search in which an amino acid
sequence is compared with the contents of a nucleotide
sequence database to find sequences with regions
homologous to regions of the original sequence. The
sequences in the sequence database are translated in all
six reading frames, and the resulting sequences are
searched for regions homologous to regions of the query
sequence.

tBLASTx A type of BLAST search in which a nucleotide sequence
is compared with the contents of a nucleotide sequence
database to find sequences with regions homologous to
regions of the original sequence. In a tBLASTx search,
both the query sequence and the sequence database are
translated in all six reading frames, and the resulting
sequences are compared to discover homologous
regions.

Figure 5 on page 207 shows how BLAST works with your federated system.

206 Data Source Configuration Guide

On the client side, users or applications submit SQL statements with
BLAST-specific parameter-passing predicates that map to standard BLAST
options. The SQL statements with the input predicates are sent to your DB2®

Universal Database federated database system with the BLAST wrapper
installed.

The BLAST wrapper transforms the query into a format understandable by
the BLAST application and sends the transformed query to your BLAST
server. This server can be a separate machine from the machine with the
federated system. A special daemon program runs on your BLAST server. This
daemon, using information from a daemon configuration file, receives the
query request from the federated system and sends it to the BLAST
application. The BLAST application then runs against a BLAST-able data
source in the usual manner.

The results are returned to BLAST and then to the daemon. The daemon
returns the retrieved data to the BLAST wrapper. The wrapper transforms the
data into a relational table format, and returns this table to you or application.
The returned data contains two parts:
v A series of standard, fixed columns familiar to BLAST users, and

DB2 Universal
Database
federated
database

DB2 Client Federated database

BLAST
Wrapper

Results with
fixed columns
and user-defined
definition line

Daemon
configuration
file

SWISS
-PROT

GenBank X

BLAST server

SQL with
parameter-passing
predictions

BLAST
Daemon

blastall and
matrix files

BLAST-able
data sources

BLAST

BLAST

BLAST

Figure 5. How the BLAST wrapper works

Chapter 15. Configuring access to BLAST data sources 207

v User-configured definition line information.

The following example illustrates how relational information is extracted from
BLAST-able data sources. Data moves from raw fasta file format to a
BLAST-able data set to a relational table that can be joined with other data
sources in your federated system.

Figure 6 is a sample fasta file containing four definition line and nucleotide
sequence records.

>7:4986 PMON5744
GTTCTTCCCAGTGCCCAAGTCCATTCTGACATCAATGAAGAAGGTAAAATCCCTGCGTGATCCCTCTGCC
AAGATGTCGAAATCAGACCCGGATAAACTAGCTGCTGTCAGAATAACAGACAGCCCGGAGGAGATCGTGC
AGAAGTTCCGCAAGGCTGTGACGGACTTCACCTCGGAGGTCACCTACGACCCGGCCAGGCGAGGAGGCGT
GTCCAACTTGGTGGCCATCCACGCGGCAGTGACCGGACTCCCGGTGGAGGAGGTGGTCCGCCGAAGTGCT
GGCATCAACACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTGCACCAATTAAGA
GTGAAATTGAAAAACTGAAGAGGAACAAGGACCACCTAGAGAAGGTTTTACAAGTTGGGTCGGCAAAAGC
CAAAGAATTAGCATATCCCGTGTGCCAGGAGGTGAAGAAATTGGTGGGGTTTCTATAGGCAGTCTCACCT
AGTCCCAGAAAATGTTTTTTATCTTGTGGTCTGCTTGCACACTCAGTCTAATAAAGGCAGCTTTCCTAAG
ACGCCAACAATTCCAGTTTGGGGATGCTTAGTTTACT
>8:9747 PMON5699
AAGAAGTTCTTGTTAGAACTTTCCACCTCCGGCTTCCCCTCCACCTCTCTTACTGTCCCAACCTTCTGAG
ACGCTTTTTCTCCTCCCGAGGATTTATCTCTTTCTCTCTCTCTCTCTCTCTCTCTTTTTTTTTTTCCCCT
TTTCCCCCCCCGAGGCTGGTTTTGCTTTGGGGAGGGGGGGTTTTTTAAAGGGGCCGGGGGGGCCCCCTTT
CTCCCCCCTAATGGGGTTAATTAATAATGGGGGGGGGGGTTTTTTTTTTTTAAACCCCTATTTGGTCCGG
CCCGGGGATTTCCCCCCCCCCCCCCTTGCCCGGTTCCGGGGCCCGGAGGAGGGGGGGAAAAGGGCGGGAA
CCTTTGGTAGTTTCCCCTCGGAAAAAAATTTTTCGGGGGGGAAAACCTCCCT
>13:6512 PMON5498
GATAAGAGGCAGAATAGAAGACTGGACTACTTCTCTCCTAAAAACACATTTAAAACTAAGCCTGAGCAAT
CTCCACCCAAATGGACCGGAAACCTTAAAAAAGAATCCTACTCCTGAAGAAAAAGAGGAGGACACATCAA
GAGGTAGAAGGGGCGATTTCATGATATAAACAACCCCATACCTCCAGAGTGGGAAGCTCCACAGACTGAA
AACTAACTGGTTCACAGAAACTCACCTACAGGAGTGAGCCCCACATCAAACCCTCGAATGTGGGGATCTG
GCACTGGTAGAAAGAGCCCCTGGAGCATCTGGCATTGAAGGCCAGTGGGGCTTGTGTGCAGGAGATCCAC
AGGACTAGGGGAAACGGAGACCCCCATTCTTAAAAGGTGCACACAGACTTTTACGTGCACTGGGTCCCAG
TGCAAAGCAAAGTCTCCATAGGAATCTGGGTCAAACCTGACTGCAGTTCTTGGAGGACCTCCTGGGAAAG
CAAGGGTGAATGTGGCTTCTTGTGGGGAAAGGACATTGGAAGCAAAGCTCTTGGGAATATTCATCAGTGT
GC
>15:8924 PMON5426
GGAGAAACTGACTCCTGAGCAGCTGCAATTCATGCGGCAGGTGCAGCTCGCCCAGTGGCAGAAGACGCTG
CCACAGCGGCGGACCCGGAACATCGTGACCGGCCTGGGCATCGGGGCGCTGGTGTTGGCAATTTGTATCC
GTTTGGACTGTAGACTCAGGGAGACCGCATTTAGGGGAACAGGAAGGGCAGCAGGGGCGTGTAGGAGGGC
AGTGTGGGGGTGGTAGAAGGAGCCCGAGATATGAAAACCTTGGCTCCTTTTAACTCTGAATCAAGCGTTT
GGTGTACCTTACGTTGTCATTTTAAAGGTGTATTTTAGTATAATTGATTAATGATTACGGAGTCGGGTGA
GGGCTCCCAGGAGCAGACGGCAGAAGATCGAATTTGGGAGGATGATCAGCAGCGGTGGTTGAGCAAGTGT
GGGAAAAGGGAATGCGCACATTCCACGTGGTTTCCTGAACCCACCTCCCCAGATGGTTACACCTTCTACT
CGGTGTCCCAGGAGCGTTTCTTGGATGAGCTGGAGGATGAGGCCAAAGCTGCTC

Figure 6. Sample fasta file, nucleo1

208 Data Source Configuration Guide

The standard formatdb application transforms the fasta file to a BLAST-able
data set. The data is now ready for querying by SQL through a federated
system with the BLAST wrapper installed and registered.

The following query, sent by you or an application at the client end, is
transformed by the BLAST wrapper. It then runs against the BLAST-able data
set.
SELECT Unique_ID, Experiment_Number, Organism_Number, HSP_Info, Score
FROM nucleo1
WHERE BlastSeq = ’ACATTCTTATAGAGTATTGCTACTCCTCCAGGATAGAGTCATCTCT
GGTCTCCAGAGCCACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTG
CACCAATACAGAAACTCACCTACAGGAGTGAGCGGGTGGTAGAAGGAGCCCGAGATATGAAA
ACCTTGTTTCAAGACCCCATTGTCACCGGGG’;

The results of the query are transformed by the BLAST wrapper into a
relational table format shown in Table 39.

Table 39. BLAST returns results in relational table form when integrated into your
federated system

Unique ID Experiment
number

Organism
number

HSP_INFO SCORE

PMON5744 4986 7 Identities = 57/201
(28%), Positives =
57/201 (28%), Gaps
= 0/201 (0%)

+1.13487000000000E+002

PMON5426 8924 15 Identities = 35/201
(17%), Positives =
35/201 (17%), Gaps
= 0/201 (0%)

+6.98754000000000E+001

PMON5498 6512 13 Identities = 26/201
(13%), Positives =
26/201 (13%), Gaps
= 0/201 (0%)

+5.20342000000000E+001

The data is in a fully relational form and can be joined with data from other
data sources used by your laboratory. Combining the results of several data
sources can lead to insights not readily or efficiently discovered prior to the
implementation of your federated system.

Related concepts:

v “What are table-structured files?” on page 143
v “What is Documentum?” on page 157
v “What is Excel?” on page 191
v “What is XML?” on page 231

Chapter 15. Configuring access to BLAST data sources 209

Related tasks:

v “Adding BLAST to a federated system” on page 210

Adding BLAST to a federated system

Procedure:

To add the BLAST data source to a federated server:
1. Verify that the correct version of the blastall executable and matrix files are

installed.
2. Configure the BLAST daemon.Configure the BLAST daemon.
3. Start the BLAST daemon.Start the BLAST daemon.
4. Register the wrapper using the CREATE WRAPPER statement.Register the

wrapper using the CREATE WRAPPER statement.
5. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
6. Register the server using the CREATE SERVER statement.Register the

server using the CREATE SERVER statement.
7. Register nicknames using the CREATE NICKNAME statement.Register

nicknames using the CREATE NICKNAME statement.

The statements can be run from the DB2 command line processor. After the
BLAST wrapper is added to your federated system, you can run queries on
the BLAST data source.

Related tasks:

v “Verifying that the correct version of the blastall executable and matrix files
are installed” on page 211

v “Configuring the BLAST daemon” on page 211
v “Starting the BLAST daemon” on page 214
v “Registering the BLAST wrapper” on page 215
v “Setting the DB2_DJ_COMM DB2 profile variable for the BLAST wrapper”

on page 216
v “Registering the server for a BLAST data source” on page 217
v “Registering nicknames for BLAST data sources” on page 217

210 Data Source Configuration Guide

Verifying that the correct version of the blastall executable and matrix files are
installed

Verifying that the correct version of the blastall executable and matrix files are
installed is part of the larger task of adding BLAST to a federated system.

Prerequisites:

Verify that you have the latest version of the blastall executable and
BLOSUM62, BLOSUM80, PAM30, and PAM70 matrix files installed on your
BLAST server machine. If you don’t, you must install the binary files and the
matrix files. The matrix files must be in the same directory as the blastall
executable.

Procedure:

To check the version level of your blastall executable and matrix files:
1. Run a BLAST search from the command line and note the version number

located in the output file.
2. Check this product’s website for versions of BLAST that have been tested

with this wrapper to ensure you have a supported version.

The next task in this sequence of tasks is configuring the BLAST daemon.

Related tasks:

v “Configuring the BLAST daemon” on page 211

Configuring the BLAST daemon

Configuring the BLAST daemon is part of the larger task of adding BLAST to
a federated system.

The BLAST wrapper requires a BLAST daemon to be running on your
UNIX-based machine accessible via TCP/IP from your DB2 Universal
Database federated system. The daemon runs separately from the wrapper
and DB2 Universal Database and listens for BLAST job requests from the
wrapper. The daemon executable file, db2blast_daemon, can reside in any
directory on the BLAST server machine.

During DB2 Universal Database installation, the daemon executable is placed
in the /usr/opt/db2_08_01/bin directory on AIX, and in the
/opt/IBM/db2/V8.1/bin directory on the other Unix platforms, of the machine

Chapter 15. Configuring access to BLAST data sources 211

on which the federated server is being installed. If, in your environment,
BLAST runs on a different machine, you must copy the daemon to a location
of your choice on that machine.

The BLAST daemon must have:
v Execute access to the blastall binary file so that it can run BLAST searches.
v Write access to a directory in which it can write temporary files.
v Read access to at least one BLAST-able data source on which BLAST

searches can be run. The blastall executable must have read access to both
the data file and the BLAST index files generated by the formatdb program.

The BLAST daemon requires a configuration file. A sample daemon
configuration file, named BLAST_DAEMON.config, is placed in the directory
DB2PATH/samples/lifesci, where DB2PATH is the directory in which DB2
Universal Database is installed. BLAST_DAEMON.config is the default name for
the file.

Copy the configuration file to any location accessible to the daemon, rename it
if you want, and edit it to work with your data source. By default the
blast_daemon looks for its configuration information in the working directory
from which it was started.

Procedure:

To configure the daemon, specify the following options in the configuration
file. For options requiring paths, you can specify relative paths. Relative paths
are relative to the directory from which the daemon process was started.

DAEMON_PORT
This is the network port on which the daemon will listen for BLAST
job requests submitted by the wrapper.

MAX_PENDING_REQUESTS
This is the maximum number of BLAST job requests that can be
blocking on the daemon at any one time. This number does not
represent the number of BLAST jobs that are running concurrently,
only the number of job requests that can block at one time. It is
recommended that you set this to a number greater than five. The
BLAST daemon does not restrict the number of BLAST jobs that can
run concurrently.

DAEMON_LOGFILE_DIR
This is the directory in which the daemon will create its log file. This
file will contain useful status and error information generated by the
BLAST daemon.

212 Data Source Configuration Guide

Q_SEQ_DIR_PATH
This is the directory in which a temporary query sequence data file
will be created by the daemon. This temporary file is cleaned up once
the BLAST job completes.

BLAST_OUT_DIR_PATH
This is the directory in which the daemon will create the temporary
file to store the BLAST output data. Data will be read from this file
and passed back to the wrapper via the network connection, at which
point the daemon cleans up the temporary file.

BLASTALL_PATH
This is the fully-qualified name of the BLAST executable file on the
machine running the daemon.

database specification entry
Specifies the location of a BLAST-able data source. For the daemon to
function properly, you must specify each entry name used in the
configuration file in the DATASOURCE option of the CREATE
NICKNAME statement when you create the nickname for the data
source.

The configuration file must contain at least one database specification
entry in the following form:
entry_name = path to BLAST-able_data_source

For example, to specify the GenBank BLAST-able data source, you
would add the following line to the daemon configuration file:
genbank=/dsk/1/nucl_data/genbank

The path indicated in a database specification entry must contain the
three index files.
v For nucleotide data sources, the index files have these extensions:

– .nhr
– .nin
– .nsq

v For amino acid data sources, the index files have these extensions:
– .phr
– .pin
– .psq

The database specification entry must indicate the file name of the file
that contains the original Fasta-formatted data. The three index files
must have the same root file name as the file containing the original
Fasta-formatted data.

Chapter 15. Configuring access to BLAST data sources 213

The first line in the configuration file must be an equal sign. If the equal sign
is missing, the daemon will not start up. An error message will indicate that
the DAEMON_PORT was not specified.

The last line in the configuration file must be terminated by a new line. If it is
not, you will receive an error message when you attempt to run your first
BLAST query using the data source listed on the last line. The sample
configuration file provided does not have the last line terminated by a
newline. For it to run properly, you will need to terminate the last line with
by a new line.

Example:

The following example shows the contents of a sample configuration file, with
the required options and BLAST-able data source specification for GenBank
and SWISS-PROT.
=
DAEMON_PORT=4007
MAX_PENDING_REQUESTS=10
DAEMON_LOGFILE_DIR=./
Q_SEQ_DIR_PATH=./
BLAST_OUT_DIR_PATH=./
BLASTALL_PATH=./blastall
genbank=/dsk/1/nucl_data/genbank
swissprot=/dsk/1/prot_data/swissprot

The next task in this sequence of tasks is starting the BLAST daemon.

Related tasks:

v “Starting the BLAST daemon” on page 214

Related reference:

v “CREATE NICKNAME statement syntax - BLAST wrapper” on page 336

Starting the BLAST daemon

Starting the BLAST daemon is part of the larger task of adding BLAST to a
federated system. Before you can access BLAST data sources, you must have
the BLAST daemon running.

Prerequisites:

Before you start the BLAST daemon, you must have write access to all paths
listed under the DAEMON_LOGFILE_DIR, BLAST_OUT_DIR_PATH, and
Q_SEQ_DIR_PATH entries in the configuration file.

214 Data Source Configuration Guide

Procedure:

To start the BLAST daemon if you are in the daemon installation directory,
did not change the name of the daemon configuration file, and the
configuration file is in the same directory as the daemon executable file, type
the following command at the command line:
db2blast_daemon

The executable starts a new process in which the BLAST daemon runs.

To start the BLAST daemon if you changed the name of the daemon
configuration file or are not in the directory in which the daemon
configuration file is located, you must use the -c option on the wrapper
daemon command to point the daemon executable to the new name or
location.

For example, the following command causes the wrapper daemon to look for
its configuration information in a file called BLAST_D.config in the
subdirectory cfg.
db2blast_daemon -c cfg/BLAST_D.config

The next task in this sequence of tasks is registering the BLAST wrapper.

Related tasks:

v “Registering the BLAST wrapper” on page 215

Registering the BLAST wrapper

Registering the BLAST wrapper is part of the larger task of adding BLAST to
a federated system. You must register the wrapper in order to access a data
source. Wrappers are mechanisms that federated servers use to communicate
with and retrieve data from data sources. Wrappers are installed on your
system as library files.

Procedure:

To register the BLAST wrapper, submit the CREATE WRAPPER statement.

For example, to create a BLAST wrapper on AIX called my_blast from the
default library file, libdb2lsblast.a, submit the following statement:
CREATE WRAPPER my_blast LIBRARY ’libdb2lsblast.a’

OPTIONS(DB2_FENCED ’N’);

For a table of default library filenames for the BLAST wrapper by supported
platform, see the related tasks section.

Chapter 15. Configuring access to BLAST data sources 215

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the BLAST wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the BLAST wrapper”
on page 216

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the BLAST wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the BLAST wrapper is
part of the larger task of adding BLAST to a federated system. To improve
performance when BLAST data sources are accessed, set the DB2_DJ_COMM
DB2 profile variable. This variable determines whether the federated server
loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsblast.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

The next task in this sequence of tasks is registering the server for a BLAST
data source.

Related tasks:

v “Registering the server for a BLAST data source” on page 217

216 Data Source Configuration Guide

Registering the server for a BLAST data source

Registering the server for a BLAST data source is part of the larger task of
adding BLAST to a federated system. After the wrapper is registered, you
must register a corresponding server.

Procedure:

To register the BLAST server to the federated system, use the CREATE
SERVER statement.

For each machine on which the BLAST executable and daemon are installed
in your environment, you must register one server for each type of BLAST
search you want to run using that instance of the BLAST executable and
daemon.

For example, to register a server called blast_server1 for the my_blast wrapper
created using the CREATE WRAPPER statement that will be used for BLASTn
searches, submit the following statement:
CREATE SERVER blast_server1
TYPE blastn

VERSION 2.1.2
WRAPPER my_blast
OPTIONS (NODE ’big_rs.company.com’, DAEMON_PORT ’4007’)

The next task in this sequence of tasks is registering nicknames for BLAST
data sources.

Related tasks:

v “Registering nicknames for BLAST data sources” on page 217

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement arguments - BLAST wrapper” on page 357

Registering nicknames for BLAST data sources

Registering nicknames for BLAST data sources is part of the larger task of
adding BLAST to a federated system. After you register a server, you must
register a corresponding nickname. Nicknames are used when you refer to a
BLAST data source in a query.

Procedure:

Chapter 15. Configuring access to BLAST data sources 217

To register a BLAST nickname, use the CREATE NICKNAME statement. .
Since each type of BLAST search is handled by a separate server, you must
define a separate nickname for each type of BLAST search that you want to
run on a given BLAST-able data source.

The nickname specifies column information for the definition line portion of
the data source. All other columns are fixed. For more information on
definition line parsing, see “Definition line parsing”. For more information on
fixed columns, see “Fixed columns”.

Definition line parsing
The definition line, also called the defline, is like a key for each sequence in
the BLAST-able data source and is returned as part of each BLAST hit.

If you are interested in including the definition line information in your
results table, you must specify the definition line columns in the CREATE
NICKNAME statement. Each column specification must specify an INDEX
option. The DELIMITER option must be specified for each column, except for
the last column specified if you want that column to contain the remainder of
the definition line.

The definition line fields must be of type integer, float, double, or varchar.

If data are found in the Accession Number field of a BLAST hit, these data are
inserted before data in the Definition field of that BLAST hit. The resulting
definition line that contains the Accession Number data followed by the
Definition field data is parsed by the wrapper.

Fixed columns
The CREATE NICKNAME statement automatically creates fixed columns. The
fixed columns do not appear in the CREATE NICKNAME statement, but are
part of the nickname definition and can be referenced in SQL queries. There
are two types of fixed columns, input and output.

Input fixed columns
Input fixed columns are used as parameter-passing predicates in SQL queries.
They pass standard BLAST switches to BLAST. BLAST then runs on the
specified data source using these switches. Input fixed columns can also be
referenced in the query select list and returned as part of the results table.
Input fixed columns are listed in Table 40.

Table 40. Input fixed columns

Name Data type Allowed
operators

Description

BlastSeq varchar(32000) = Passes the query sequence to
the BLAST wrapper.

218 Data Source Configuration Guide

Table 40. Input fixed columns (continued)

Name Data type Allowed
operators

Description

E_Value double < Both an input and an output
parameter. As an input
parameter, this column
indicates to the BLAST
wrapper the upper limit of
expect values that should be
returned from blastall.

QueryStrands integer = Specifies which strands
should be compared when
performing a BLASTn
search. A value of 1 indicates
that the top strand should be
used, 2 indicates the bottom
strand, and 3 indicates that
both strands should be
compared.

GapAlign char(1) = Indicates to the wrapper
whether gapped alignments
are permitted in the BLAST
output.

Matrix varchar(50) = Determines which
substitution matrix is used
by blastall to determine the
degree of similarity between
pairings of amino acids.
Only those BLAST search
types that compare amino
acids to amino acids use this
predicate.

NMisMatchPenalty integer = Specifies the value that
blastall deducts from the
score of an alignment if one
of the pairs of nucleotides in
the homologous region does
not match. Only those
BLAST search types that
compare nucleotides to
nucleotides use this
predicate.

Chapter 15. Configuring access to BLAST data sources 219

Table 40. Input fixed columns (continued)

Name Data type Allowed
operators

Description

NMatchReward integer = Specifies the value that
blastall adds to the score of
an alignment for each of the
pairs of nucleotides in the
homologous region that do
match. Only those BLAST
search types that compare
nucleotides to nucleotides
use this predicate.

FilterSequence char(1) = Indicates to blastall whether
to perform filtering to
remove biologically
uninteresting segments from
the query sequence. If the
search type is BLASTn, the
filter used is DUST.
Otherwise, filtering is
performed by SEG.

NumberOfAlignments integer = Specifies how many HSP
alignments to include in the
BLAST output.

GapCost integer = Specifies the value that
blastall deducts from the
score of an alignment if a
gap must be introduced in
either the query sequence or
the hit sequence to allow the
length of the alignment to
grow.

ExtendedGapCost integer = Specifies the value that
blastall deducts from the
score of an alignment if a
gap that was already
introduced in either the
query sequence or the hit
sequence must be extended
by one nucleotide or amino
acid to allow the length of
the alignment to grow.

WordSize integer = Indicates to blastall the
length of the initial hits that
blastall initially searches in
the database.

220 Data Source Configuration Guide

Table 40. Input fixed columns (continued)

Name Data type Allowed
operators

Description

ThresholdEx integer = Indicates the score threshold
below which BLAST does
not attempt to extend a hit
any further.

The supported BLAST search types and switches for each input fixed column
are listed in Table 41

Table 41. BLAST search types and switches supported by the input fixed columns

Name BLAST
search
types

BLAST
switch

Req? Default

BlastSeq n, p, x, tn,
tx

–l Y N/A

E_Value n, p, x, tn,
tx

–e N 10

QueryStrands n S N 3

GapAlign n, p, x, tn,
tx

–g N T

Matrix p, x, tn, tx –n N BLOSUM62

NMisMatchPenalty n –q N –3

NMatchReward n –r N 1

FilterSequence n, p, x, tn,
tx

–F N T

NumberOfAlignments n, p, x, tn,
tx

–b N 250

GapCost n, p, x, tn,
tx

–G N 11

ExtendedGapCost n, p, x, tn,
tx

–E N 1

WordSize (for Blastn, a value
less than 7 is invalid)

n, p, x, tn,
tx

–W N 11 –BLASTn

3 –BLASTp

ThresholdEx n, p, x, tn,
tx

–f N 0

Chapter 15. Configuring access to BLAST data sources 221

Output fixed columns
Output fixed columns are returned in the query results table and can be used
as predicates. Output fixed columns are listed in Table 42.

Table 42. Output fixed columns

Name Data type Description

Score double The computed score for an HSP as
reported in the BLAST results.

E_value double Both an input and an output
parameter. As an output parameter,
this column provides the computed
score for an HSP as reported in the
BLAST results.

Length integer The length of the hit sequence as
reported in the BLAST results.

HSP_Info varchar(100) The information string for the given
HSP, as reported by BLAST. This
string contains information about the
number of nucleotides or amino acids
that matched between the query
sequence and the hit sequence.

HSP_ALIGNMENT_LENGTH integer The length of the HSP alignment.

HSP_IDENTITY integer The percent identity of the alignment
defined as the number of identities
divided by the alignment length.

HSP_GAPS integer The percent gaps in the alignment
defined as the number of gaps
divided by the alignment length.

HSP_POSITIVE integer The percent positives of the alignment
defined as the number of positives
divided by the alignment length.

HSP_QUERY_FRAME integer The reading frame of the alignment in
the query sequence.

Only available for blastx, tblastn, and
tblastx type servers.

HSP_HIT_FRAME integer The reading frame of the alignment in
the hit sequence.

Only available for blastx, tblastn, and
tblastx type servers.

HSP_Q_Start integer The numeric position of the first
homologous nucleotide or amino acid
on the query sequence.

222 Data Source Configuration Guide

Table 42. Output fixed columns (continued)

Name Data type Description

HSP_Q_End integer The numeric position of the last
homologous nucleotide or amino acid
on the query sequence.

HSP_Q_Seq varchar(32000) The segment of the query sequence
beginning at HSP_Q_Start and ending
at HSP_Q_End.

HSP_H_Start integer The numeric position of the first
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_End integer The numeric position of the last
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_Seq varchar(32000) The segment of the hit sequence
beginning at HSP_H_Start and ending
at HSP_H_End.

HSP_Midline varchar(32000) The string output by BLAST that
indicates the degree of homology
between the amino acids or
nucleotides at each position in the
homologous regions of the query and
hit sequences.

There are no further tasks in this sequence of tasks.

Related reference:

v “CREATE NICKNAME statement syntax - BLAST wrapper” on page 336
v “CREATE NICKNAME statement - Examples for BLAST wrapper” on page

223

CREATE NICKNAME statement - Examples for BLAST wrapper

The following CREATE NICKNAME statement defines the nickname genbank.

It assumes the definition field in a BLAST result contains the following
information:
>276342 15:8924 PMON5426

where:

276342 The accession field of the BLAST result.

Chapter 15. Configuring access to BLAST data sources 223

15:8924 PMON5426
The definition field in a BLAST result containing an organism number
followed by an experiment number and then a unique identifier.

With this information, the following nickname is created:
CREATE NICKNAME genbank (

acc_num integer OPTIONS(INDEX ’1’, DELIMITER ’ ’),
org_num integer OPTIONS(INDEX ’2’, DELIMITER ’:’),
exp_num integer OPTIONS(INDEX ’3’, DELIMITER ’ ’),
u_id varchar(10) OPTIONS(INDEX ’4’))
FOR SERVER blast_server1

OPTIONS(DATASOURCE ’genbank’, TIMEOUT ’300’);

The column acc_num would contain 276342, the column org_num would
contain 15, the column exp_num would contain 8924, and the column u_id
would contain PMON5426.

After you submit the CREATE NICKNAME statement, you can use the
nickname genbank to query your federated system. You can also join the
genbank nickname with other nicknames and tables in your federated system.

Related tasks:

v “Registering nicknames for BLAST data sources” on page 217

Related reference:

v “CREATE NICKNAME statement syntax - BLAST wrapper” on page 336

Setting up TurboBlast to work with the BLAST wrapper

Restrictions:

TurboBlast does not support certain blastall command options. For example,
the gapped alignment option -g F is not supported. If you specify F for the
value of the GapAlign’s column in your BLAST nickname, TurboBlast
generates an error. For a complete list of unsupported options, refer to
theTurboBlast 2.0 User Guide.

Procedure:

To set up TurboBlast to work with the BLAST wrapper:
1. Installed and configure the BLAST wrapper. Run a query on a blastable

database to test your setup.
2. The BLAST wrapper and TurboBlast support AIX, Linux, Solaris and

Windows NT/2000 platforms. The BLAST daemon is not available on

224 Data Source Configuration Guide

Windows NT/2000 operating systems. The daemon will work with
TurboBlast on Windows NT/2000 when the BLAST daemon is available on
those operating systems.

3. Install and configure TurboBlast according to the TurboBlast 2.0 Installation
and Reference Guide. You can install and set up the TurboBlast system in
various ways. To allow the BLAST wrapper to work with TurboBlast, you
need to install and set up the TurboBlast Client on the machine on which
you have your BLAST daemon. The BLAST daemon can invoke the
tblastall command.

4. Be sure to test the TurboBlast system after you’ve installed and configured
TurboBlast. Follow the instructions in the TurboBlast 2.0 Installation and
Reference Guide.

5. Change your BLAST_DAEMON.config file as follows:
a. Specify the BLASTALL_PATH parameter as the complete path of

tblastall. For example:
BLASTALL_PATH=/home/blasttst/turboblast/TBlast-2.1/tblastall

b. Specify the blastable database specification entry as the blastable
database name you used to upload your blastable database to
TurboBlast. The database names are shown when you enter the
listdatabase -l command under TurboBlast. This TurboBlast database
name should be used instead of the path to the blastable data source.
For example: genbank=<the genbank database name in TurboBlast>

6. Restart the BLAST daemon. The blast daemon invokes tblastall instead
of blastall to do search work on the blastable databases.

7. The log files related to tblastall are written to the DAEMON_LOGFILE_DIR
specified in your BLAST_DEAMON.config file. Also check the STDERR.log and
STDOUT.log produced by the blast daemon in the same directory.

Constructing BLAST SQL queries

SQL for BLAST data sources must contain only special input predicates used
to pass standard BLAST switches to the blastall executable file.

Restrictions:

To be valid, every query passed to the BLAST wrapper must contain at least
the BlastSeq input predicate. All other predicates are optional.

Procedure:

To construct a BLAST query, use the input predicates in the WHERE clause of
your SQL statement.

Chapter 15. Configuring access to BLAST data sources 225

The following example shows three input predicates: BlastSeq, GapCost, and
NMisMatchPenalty.
Select * from blast b where
BlastSeq = ’GTCCAGCC...’ AND
GapCost = -10 AND
NMisMatchPenalty = -4;

Related tasks:

v “Registering nicknames for BLAST data sources” on page 217

Related reference:

v “BLAST data source – Example queries” on page 226

BLAST data source – Example queries

Several sample BLAST queries are provided to illustrate how queries are
constructed for BLAST data sources.

To run queries, use the examples as a guide.

In these queries, the name used for each nickname indicates the type of
BLAST search and the data source. This is done so that the registration
statements do not need to be listed with each sample query. Also, some of the
queries make use of other hypothetical data sources so that these examples
can illustrate the behavior of the wrapper when joined with other data
sources.

Query 1
select *
from blastn_genbank
where BlastSeq =
’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’;

When this SQL statement is executed, the wrapper will perform a BLASTn
search of GenBank using the indicated sequence. The wrapper will return all
of the available columns, including both the input parameter columns and the
BLAST result columns.

Query 2
select *
from blastn_genbank
where BlastSeq =
’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’
and GapCost = 8 and NmisMatchPenalty = -4;

226 Data Source Configuration Guide

When this SQL statement is executed, the wrapper will perform a BLASTn
search of GenBank using the indicated sequence. In addition, the wrapper will
pass the two indicated parameters to the daemon, and they will be passed to
the blastall command line. The wrapper will return all of the available
columns, including both the input parameter columns and the BLAST result
columns.

Query 3
select blp.*
from blastp_swissprot blp, protein_db prdb
where prdb.keyword = ’malic enzyme’
and blp.BlastSeq = prdb.sequence;

When this SQL statement is executed, the wrapper will perform zero or more
BLASTp searches of SWISS-PROT, depending on the number of sequences
returned from a hypothetical protein sequence database. This statement will
be broken into two separate queries by DB2, and one BLASTp search will be
run for each row that is returned from the hypothetical protein database. The
wrapper will return all of the available columns, including both the input
parameter columns and the BLAST result columns.

Query 4
select Score, E_Value, HSP_Info, HSP_Q_Seq, HSP_H_Seq, HSP_Midline
from blastx_swissprot
where BlastSeq = ’gagttgtcaatggcgagg’
and GapCost = 8;

When this SQL statement is executed, the wrapper will perform a BLASTx
search of SWISS-PROT using the indicated sequence. In this case, blastall will
translate the input sequence in all six reading frames and perform the
homology search using each of the six newly created protein sequences. The
HSPs in the results will contain amino acid-amino acid alignments, rather
than nucleotide-nucleotide alignments. The supplied parameter will be passed
to the daemon and then to blastall via the command line. The wrapper will
return only those columns that are specifically requested in the query.

Query 5
select tblx.Score, tblx.E_Value, tblx.HSP_Info tblx.HSP_Q_Seq,
HSP_H_Seq, HSP_Midline
from tblastx_genbank tblx, gen_exp_database gedb
where tblx.BlastSeq = gedb.sequence
and gedb.organism = ’interesting organism’
and GapCost = 8
and FilterSequence = ’F’;

When this SQL statement is executed, the wrapper will perform zero or more
tBLASTx searches of GenBank, depending on the number of sequences

Chapter 15. Configuring access to BLAST data sources 227

returned from a hypothetical gene expression database. The statement will be
broken into two separate queries by DB2, and one tBLASTx search will be run
for each row that is returned from the hypothetical gene expression database.
In this case, blastall will translate the input sequence and all of the sequences
in GenBank in all six reading frames and perform the homology search using
each of the six newly created query protein sequences and all of the newly
created database protein sequences. The HSPs in the results will contain
amino acid-amino acid alignments, rather than nucleotide-nucleotide
alignments. The supplied parameters will be passed to the daemon and then
to blastall via the command line. The wrapper will return only those columns
that are specifically requested in the query.

Related reference:

v “Documentum data source – Example queries” on page 179
v “Excel data source – Example queries” on page 195

Optimization tips for the BLAST wrapper

Running both the wrapper and the daemon on the same server can eliminate
potential network communication bottlenecks.

Related reference:

v “Optimization tips and considerations for the table-structured file wrapper”
on page 151

Messages for the BLAST wrapper

This section lists and describes messages that you might encounter when
working with the wrapper for BLAST.

Table 43. Messages issued by the wrapper for BLAST

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″sqlno_crule_save_plans
[100]:rc (–2144272209) Empty
plan list detect″.)

The SQL query submitted to DB2 could
not be processed by the wrapper. Correct
the syntax and resubmit.

228 Data Source Configuration Guide

Table 43. Messages issued by the wrapper for BLAST (continued)

Error Code Message Explanation

SQL1816N Wrapper
″BLAST_WRAPPER″ cannot
be used to access the ″type″
of data source (″<server
type>″ ″″) that you are trying
to define to the federated
database.

The CREATE SERVER statement used an
invalid TYPE. The type must be one of
the supported BLAST types.

SQL1817N The CREATE SERVER
statement does not identify
the ″version″ of data source
that you want defined to the
federated database.

The CREATE SERVER statement did not
specify the version.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Unable to
connect to daemon″.

The blast wrapper was not able to
connect to the daemon. The daemon
might not be running. It might be
misconfigured. The machine that it is
running on might be unreachable.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Blast daemon
timeout expired″.

No results were received from the
daemon before the timeout as specified
on the CREATE NICKNAME statement
elapsed. Increase the timeout or check to
see if there is a problem with the
daemon.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Blast
Daemon Failed″.

The daemon stopped communicating or
the results returned were not properly
formatted.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Unknown
error from the blast daemon″.

The blast wrapper received an error code
from the daemon that it doesn’t
recognize. The daemon version might not
be compatible with the wrapper version.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Column
rename not allowed″.

An ALTER NICKNAME statement was
issued trying to rename one of the
columns. Renaming a column is not
allowed.

Chapter 15. Configuring access to BLAST data sources 229

Table 43. Messages issued by the wrapper for BLAST (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″XML parser
error″.

The Xerces parser is in an invalid state or
has thrown an exception.

SQL1823N No data type mapping exists
for data type ″<data type
name>″ from server ″<server
name>″.

The data type specified is not supported
by this column.

SQL1881N ″DEFAULT″ is not a valid
″COLUMN″ option for
″<column-name>″

The DEFAULT option was used on a
column that does not support it. Output
only columns and definition line columns
do not have default values.

SQL1882N The ″COLUMN″ option
″DEFAULT″ cannot be set to
″<option-value>″ for
″<column-name>″.

The value specified for the DEFAULT
option is of an incompatible type for the
column or is incorrectly formatted.

Related reference:

v “Messages for the table-structured file wrapper” on page 152
v “Messages for the Documentum wrapper” on page 184
v “Messages for the Excel wrapper” on page 198
v “Messages for the XML wrapper” on page 251

230 Data Source Configuration Guide

Chapter 16. Configuring access to XML data sources

This chapter explains what XML is, how to add XML data sources to your
federated system, and lists the error messages associated with the XML
wrapper.

What is XML?

The Extensible Markup Language (XML) is a universal format for structured
documents and data. XML files have a file extension of xml. Like HTML, XML
uses tags (words bracketed by < and >) for structuring data in the document.
A sample XML document is shown in Figure 7.

How the XML wrapper works
The XML wrapper enables the use of SQL to query the following types of
data:

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 7. Sample XML document

© Copyright IBM Corp. 1998 - 2003 231

v External XML documents that are stored in a single file
v Multiple files in a directory path
v Remote XML files that are referenced with a Uniform Reference Identifier

(URI)
v Relational columns

Figure 8 shows how the XML wrapper works with your federated system.

With the XML wrapper, you can map XML data from an external data source
into a relational schema that is composed of a set of nicknames. The structure
of an XML document is logically equivalent to a relational schema in which
the nested and repeating elements are modeled as separate tables with foreign
keys.

The nicknames that correspond to an XML document are organized into a tree
structure in which the child nicknames map to elements that are nested
within the element that corresponds to the parent nickname.

When nested elements are repeated or have distinct identities with complex
structures, you can provide separate nicknames for each nested element.

Child and parent nicknames are connected by primary and foreign keys that
are generated by the wrapper.

DB2
Universal
database

Federated
database

Federated database

SQL

Relational
results
table

W
ra

pp
er

XML
wrapper

DB2 client

XML file

Figure 8. How the XML wrapper works

232 Data Source Configuration Guide

XPath expressions are used to map an XML document into a relational
schema that is composed of a set of nicknames. XPath is an addressing
mechanism for identifying the parts of an XML file (for example, the groups
of nodes and attributes within an XML document tree). The basic XPath
syntax is similar to file system addressing.

Each nickname is defined by an XPath expression that identifies the XML
elements representing individual tuples, and a set of XPath expressions that
specifies how to extract the column values from each element.

An example of XML document mapping:

The following example illustrates how the sample XML document, shown in
Figure 7 on page 231, is mapped into a set of nicknames, how parent and child
relationships are established by using primary and foreign keys, how XPath
expressions are used to define individual tuples and columns within each
element of the document, and how a query can run on the XML document
after the document is registered to your federated system.

The sample XML document contains a set of customer elements. Each element
encloses several order and payment elements.

The order elements enclose several item elements.

The relationship among the elements is shown in Figure 9.

From this structure, you can use the CREATE NICKNAME statement to map
the XML document into a relational schema that includes four nicknames:
v customers
v orders
v payments
v items

customer

payment

item

order

Figure 9. Tree structure of the sample XML document

Chapter 16. Configuring access to XML data sources 233

You define relationships between the nicknames by specifying each nickname
as a parent nickname or a child nickname by using special primary and
foreign key nickname column options. Each parent nickname must have a
special column that is designated with a primary key column option. You
define the children of a parent nickname with the foreign key column option
that references the primary key column of a parent nickname. The designated
primary and foreign nickname columns do not correspond to data in your
XML document because these nickname columns will contain keys that are
generated by the wrapper. A nickname can have multiple children, but a
nickname can have only one parent. The root nickname has no parent.

For the sample XML document, the customers nickname has a defined
primary key, and the orders, payments, and items nicknames have defined
foreign keys that point to the parent nickname. The foreign keys of the orders
and payments nicknames point to the customers nickname, and the foreign
key of the items nickname points to the orders nickname.

To identify the XML elements representing individual tuples, you create one
XPath expression. In this example, all the customer elements are referenced by
using the //customer XPath expression, and all the order elements are
referenced by using the .//order XPath expression. The period in the
.//order XPath expression indicates that the tuples of each order element are
nested within the tuples of the corresponding customer element.

You create a set of XPath expressions to specify how to extract the column
values from each element. In this example, the id attribute of the customer
elements, now a column defined in the nickname, is referenced by using the
./@id XPath expression. The name element of the customer elements is
referenced by using the .//name XPath expression, and the address element of
the customer elements is referenced by using the .//address/@street XPath
expression.

After you map the XML document into a set of nicknames by using the
CREATE NICKNAME statement, you define each nickname as a parent or
child by using primary and foreign keys, with XPath expressions that define
individual tuples and columns within each element of the document. You can
then run SQL queries on the XML document.

Related concepts:

v “What are table-structured files?” on page 143
v “What is Documentum?” on page 157
v “What is Excel?” on page 191
v “What is BLAST?” on page 205
v “Data associations between nicknames and XML documents” on page 238

234 Data Source Configuration Guide

Related tasks:

v “Adding XML to a federated system” on page 235

Adding XML to a federated system

You can use an XML data source with your federated server by registering an
XML wrapper. After you register an XML wrapper, you then register a
corresponding server and nicknames to enable your federated server to
retrieve and process XML data.

Procedure:

To add an XML data source to a federated server:
1. Register the wrapper using the CREATE WRAPPER statement.Register the

wrapper by using the CREATE WRAPPER statement.
2. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
3. Register the server using the CREATE SERVER statement.Register the

server by using the CREATE SERVER statement.
4. Register nicknames using the CREATE NICKNAME statement.Register

nicknames by using the CREATE NICKNAME statement.
5. Create federated views for non-root nicknames

Root nicknames identify the elements at the top level of an XML
document. Nonroot nicknames identify the elements at the lower levels
within that XML document.

You can run the statements from the DB2 Control Center or from a DB2
command line processor. After you add the XML wrapper to your federated
system, you can run queries on an XML data source.

Related tasks:

v “Registering the XML wrapper” on page 236
v “Setting the DB2_DJ_COMM DB2 profile variable for the XML wrapper” on

page 236
v “Registering the server for an XML data source” on page 237
v “Registering nicknames for XML data sources” on page 243
v “Creating federated views for nonroot nicknames (XML wrapper)” on page

249

Chapter 16. Configuring access to XML data sources 235

Registering the XML wrapper

Registering the XML wrapper is part of the larger task of adding XML to a
federated system. You must register the wrapper to access a data source.
Wrappers are mechanisms that federated servers use to communicate with
and retrieve data from the data sources. Wrappers are installed on your
system as library files.

You can use the XML wrapper on the following operating systems:
v AIX
v HP-UX
v Linux
v Solaris Operating Environment
v Windows NT

Procedure:

To register the XML wrapper, submit the CREATE WRAPPER statement.

For example, to register an XML wrapper on AIX called my_xml from the
default library file, libdb2lsxml.a, issue the following statement:
CREATE WRAPPER my_xml LIBRARY ’libdb2lsxml.a’;

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the XML wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the XML wrapper” on
page 236

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the XML wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the XML wrapper is part
of the larger task of adding XML to a federated system. To improve
performance when you are accessing XML documents, you can optionally set
the DB2_DJ_COMM DB2 profile variable. This variable determines whether
the federated server loads the wrapper during initialization.

236 Data Source Configuration Guide

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsxml.a’

Ensure that there are no spaces on either side of the equal sign (=).

Processor usage of your system increases when the federated server loads the
wrapper libraries during database startup. To avoid excessive usage, specify
only the libraries that you intend to access.

The next task in this sequence of tasks is registering the server for an XML
data source.

Related concepts:

v “Environment Variables and the Profile Registry” in the Administration
Guide: Implementation

Related tasks:

v “Registering the server for an XML data source” on page 237

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Registering the server for an XML data source

Registering the server for an XML data source is part of the larger task of
adding XML to a federated system. After you register the wrapper, you must
register a corresponding server.

Restrictions:

The XML wrapper does not use the TYPE and VERSION keywords. An error
occurs if these keywords are used in the CREATE SERVER statement.

The XML wrapper does not support pass-through sessions to the federated
system.

Procedure:

Chapter 16. Configuring access to XML data sources 237

To register the XML server to the federated system, issue the CREATE
SERVER statement.

For example:
CREATE SERVER xml_server WRAPPER my_xml;

The next task in this sequence of tasks is registering nicknames for XML data
sources.

Related tasks:

v “Registering nicknames for XML data sources” on page 243

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Data associations between nicknames and XML documents

Nicknames correspond to the tree structure of your XML document data.
Parent nicknames and child nicknames correspond to the root structure and
nested elements of the data tree structure. These parent and child nicknames
are connected by primary and foreign keys that are specified with the
CREATE NICKNAME statement.

Each nickname is defined by XPath expressions that perform the following
functions:
v Identifies the XML elements that represent individual tuples
v Specifies how to extract the column values from each element

The XML wrapper uses XPath expressions to establish a correspondence
between the data in the XML document and the rows in a relational table.
These XPath expressions identify the values within the XML document and
determine how these values correspond to the columns of each row. The XML
wrapper reads the XML document data only. The XML wrapper does not
update this data.

When you create a nickname, you choose options that specify the association
between the nickname and the XML document. Nicknames are associated
with your XML documents either in a fixed manner or with source names that
you specify.

With a fixed association, the nickname represents data from specific XML
documents. These XML documents include:

One local file
You specify one XML file as your XML document.

238 Data Source Configuration Guide

Multiple local files in a directory path
You specify a directory path in which multiple XML files reside. The
XML files in this directory path provide the XML document data to
the nickname. All of the XML files must have the same configuration.
If any XML file in the directory has a configuration that is different
from the configuration of the nickname, the XML wrapper returns
null values when it processes that XML data file. The directory must
be either local to the federated server or accessible from a shared file
system.

Note: When scanning the directory, the XML wrapper retains and
parses only those files with a .xml extension. The XML wrapper
ignores all other files, including files with a .txt extension, files with a
.xsd extension, and files without extensions.

Use the FILE_PATH option of the CREATE NICKNAME statement to specify
fixed data from a file. Use the DIRECTORY_PATH option to specify fixed data
from a directory.

When the source data is specified while the query is running, you can use the
nickname to represent data from any XML document source whose schema
matches the nickname definition. These XML documents include:

Uniform Reference Identifiers
A remote XML file that a URI refers to supplies the XML document
data to the nickname. (Specify this document source by using the
DOCUMENT ’URI’ nickname column option.)

Relational columns
Columns from a relational table, view, or nickname are used as input
to your XML document. (Specify this document source by using the
DOCUMENT ’COLUMN’ nickname column option.)

File A single file that contains XML data is supplied as input while the
query runs. (Specify this document source by using the DOCUMENT
’FILE’ nickname column option.)

Directory
Multiple XML files under a specified directory path supply the data
while the query runs. (Specify this document source by using the
DOCUMENT ’DIRECTORY’ nickname column option.)

You specify the DOCUMENT column option to indicate that the source data is
supplied at query time. Specify either URI, COLUMN, FILE, or DIRECTORY
with the DOCUMENT column to indicate the type of XML document source.

You cannot specify a FILE_PATH option or a DIRECTORY_PATH option with
a DOCUMENT column option.

Chapter 16. Configuring access to XML data sources 239

Regardless of the type of data that you are using (data in a fixed format or
data from source names that are specified at query time), you can specify the
STREAMING option so that the XML wrapper separates the XML document
data into fragments. The XML wrapper processes the resulting stream of XML
data and extracts the information that is requested by a query fragment. The
XML wrapper parses one fragment at a time. Because fragments are parsed
one at a time, total memory use decreases but the processing time required to
run the entire query increases depending on the memory capacity of your
server. Therefore, use the STREAMING option to parse large XML documents
(documents of 50 megabytes or more) only.

You can also choose nickname option values that help you optimize queries
that retrieve large amounts of XML data or data that contains multiple nested
elements. These options include:
v INSTANCE_PARSE_TIME
v XPATH_EVAL_TIME
v NEXT_TIME

You can set values for these options to test and optimize the XML query.
These option values control the processing time that is needed to locate
elements and to parse the data in the rows of the XML document.

Related concepts:

v “What is XML?” on page 231
v “The cost model facility for the XML wrapper” on page 240
v “Optimization tips for the XML cost model facility” on page 241

Related tasks:

v “Registering nicknames for XML data sources” on page 243

Related reference:

v “CREATE NICKNAME statement syntax - XML wrapper” on page 351
v “CREATE NICKNAME statement - Examples for XML wrapper” on page

244

The cost model facility for the XML wrapper

The XML wrapper provides a cost model facility to optimize queries on
nicknames that correspond to your XML source documents.

When you create a nickname by using the CREATE NICKNAME statement,
you can specify the following parameters as nickname option values to
support the cost model facility:

240 Data Source Configuration Guide

v INSTANCE_PARSE_TIME
v XPATH_EVAL_TIME

You can use the default values for these parameters. Or you can set the values
for these parameters to optimize queries on the root and nonroot nicknames
that you create.

The INSTANCE_PARSE_TIME parameter is the amount of time (in
milliseconds) that is required to read and parse one row-producing root
element of the root nickname (for example, customers), including all
contained row-producing nonroot elements (for example, all elements that
correspond to the orders, payments, and items of each customer). The XML
wrapper builds a structure in memory to represent these row-producing root
and nonroot elements.

The XPATH_EVAL_TIME parameter is the amount of time (in milliseconds)
that is required to evaluate the XPath expressions that locate the data
corresponding to a row of the nickname. The XPath expressions that are
evaluated include the XPath expressions that locate the actual rows and the
XPath expressions that locate column values within these rows.

Related concepts:

v “What is XML?” on page 231
v “Data associations between nicknames and XML documents” on page 238
v “Optimization tips for the XML cost model facility” on page 241

Related reference:

v “CREATE NICKNAME statement syntax - XML wrapper” on page 351
v “CREATE NICKNAME statement - Examples for XML wrapper” on page

244

Optimization tips for the XML cost model facility

The cost model facility for the XML wrapper helps optimize queries on the
nicknames that you create.

The cost model facility uses the following parameters of the CREATE
NICKNAME statement:
v INSTANCE_PARSE_TIME
v XPATH_EVAL_TIME

You can specify values for these parameters when you issue a CREATE
NICKNAME statement to register a nickname for an XML data source.

Chapter 16. Configuring access to XML data sources 241

The cost model facility uses these parameter values when determining the
amount of time required to parse data in each row of an XML source
document and to evaluate the nickname’s XPath expression.

You can use the default values for these parameters. However, if you want to
optimize queries on large or complex XML source structures for the
nicknames that you create, use the following example as a guide.

An example of optimizing a large query:

Assume that your XML document has a relational schema with four
nicknames:
v customers
v orders
v payments
v items

Also, assume that the customers nickname is the root nickname.

Run queries on each nickname. Run each query on a sample of the XML data
that is typical for your environment.

For example:
SELECT * from customers;
SELECT * from orders;
SELECT * from payments;
SELECT * from items;

Note the amount of time (in milliseconds) that is required to run each query
by using the db2batch command or equivalent command or utility. (You can
use the db2batch command to obtain an output file that contains the time
required to run queries.) Also, note the number of tuples that are returned.

For each nickname, use the following formulas to determine the optimal
values for the INSTANCE_PARSE_TIME and XPATH_EVAL_TIME
parameters:
INSTANCE_PARSE_TIME = (75% X run time of SELECT * query) ÷ number of tuples returned

XPATH_EVAL_TIME = (25% X run time of SELECT * query) ÷ number of tuples returned

For the root nickname (in the example, customers), use the calculated values
for the INSTANCE_PARSE_TIME and XPATH_EVAL_TIME parameters.

242 Data Source Configuration Guide

For nonroot nicknames, (in the example, orders, payments, and items), use
only the calculated value for the XPATH_EVAL_TIME parameter. The
INSTANCE_PARSE_TIME parameter value is not applicable for nonroot
nicknames.

You can use these formulas as a guide for tuning your queries. The optimal
values for these parameters also depend on the complexity of your XML
source documents and on the speed of the processor that you are using.

Related concepts:

v “What is XML?” on page 231
v “Data associations between nicknames and XML documents” on page 238
v “The cost model facility for the XML wrapper” on page 240

Related reference:

v “db2batch - Benchmark Tool Command” in the Command Reference

Registering nicknames for XML data sources

Registering nicknames for XML data sources is part of the larger task of
adding XML to a federated system. You must create nicknames that
correspond to the tree structure of your XML data source. Parent nicknames
correspond to the root structure of the tree. Child nicknames correspond to
the elements that are nested within the element for the parent nickname.

Prerequisite:

The database code page must match the character set of the XML source files.

Restriction:

Namespaces are not supported.

Procedure:

To register nicknames for XML data sources, issue a CREATE NICKNAME
statement.

The next task in this sequence of tasks is creating federated views for nonroot
nicknames (XML wrapper).

Related tasks:

v “Creating federated views for nonroot nicknames (XML wrapper)” on page
249

Chapter 16. Configuring access to XML data sources 243

Related reference:

v “CREATE NICKNAME statement syntax - XML wrapper” on page 351
v “CREATE NICKNAME statement - Examples for XML wrapper” on page

244

CREATE NICKNAME statement - Examples for XML wrapper

This topic provides several examples that show you how to use the CREATE
NICKNAME statement to register nicknames for the XML wrapper. This topic
includes a complete example, which shows how to create parent and child
nicknames, examples for specific column options, and examples that show the
use of views.

Complete example:

The following example shows how to create nicknames for XML data sources
by using the sample XML file shown in Figure 10.

To create the parent nickname, customers, issue the following statement:

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 10. Sample XML file

244 Data Source Configuration Guide

CREATE NICKNAME customers
(

id VARCHAR(5) OPTIONS(XPATH ’./@id’)
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(DIRECTORY_PATH ’/home/db2user’,

XPATH ’//customer’, STREAMING ’YES’);

This statement creates the customers nickname over multiple XML files under
the specified directory path, /home/db2user. The STREAMING option
indicates that the XML source data is separated and processed by node (in
this example, by customer record).

You can now create nicknames for the children of the customers nickname
(orders, payments, and items).

Issue the following nickname statement to create the orders nickname.
CREATE NICKNAME orders
(

amount INTEGER OPTIONS(XPATH ’./amount’),
date VARCHAR(10) OPTIONS(XPATH ’./date’),
oid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’),
cid VARCHAR(16) OPTIONS(FOREIGN_KEY ’CUSTOMERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//order’);

Issue the following nickname statement to create the payments nickname.
CREATE NICKNAME payments
(

number INTEGER OPTIONS(XPATH ’./number’),
date VARCHAR(10) OPTIONS(XPATH ’./date’),
cid VARCHAR(16) OPTIONS(FOREIGN_KEY ’CUSTOMERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//payment’);

Issue the following nickname statement to create the items nickname.
CREATE NICKNAME items
(

name VARCHAR(20) OPTIONS(XPATH ’./name’),
quantity INTEGER OPTIONS(XPATH ’./@quant’),
oid VARCHAR(16) OPTIONS(FOREIGN_KEY ’ORDERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//item’);

Column option examples:

The column option examples show you how to create nicknames by using the
DOCUMENT column options.

Chapter 16. Configuring access to XML data sources 245

The following CREATE NICKNAME example shows the use of the
DOCUMENT ’FILE’ column option:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’FILE’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

You can then run the following query on the customers nickname, specifying
the location of the XML document in the WHERE clause:
SELECT * FROM customers WHERE doc = ’/home/db2user/Customers.xml’;

The following CREATE NICKNAME example shows the use of the
DOCUMENT ’DIRECTORY’ column option:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’DIRECTORY’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

You can then run the following query on the customers nickname:
SELECT name FROM customers WHERE doc = ’/home/data/xml’;

This query retrieves the XML documents that are located under the directory
path /home/data/xml, which is specified in the WHERE clause.

The following CREATE NICKNAME example shows the use of the
DOCUMENT ’URI’ nickname column option:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’URI’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

You can then run the following query on the customers nickname to retrieve
the XML data from the remote location:
SELECT * FROM customers WHERE doc = ’http://www.lg-mv.org/foo.xml’;

246 Data Source Configuration Guide

The following CREATE NICKNAME example shows the use of the
DOCUMENT ’COLUMN’ nickname column option:
CREATE NICKNAME emp
(

doc VARCHAR(500) OPTIONS(DOCUMENT ’COLUMN’)
fname VARCHAR(16) OPTIONS(XPATH ’@first’),
lname VARCHAR(16) OPTIONS(XPATH ’@last’))
FOR SERVER xml_server
OPTIONS(XPATH ’//employee’);

You can then run one of the following queries on the emp nickname to retrieve
the XML data:
SELECT * FROM emp WHERE doc = ’<?xml version="1.0" encoding="UTF-8"?>

<doc>
<title> employees </title>
<name first="David" last="Marston"/>
<name first="Donald" last="Leslie"/>
<name first="Emily" last="Farmer"/>
<name first="Myriam" last="Midy"/>
<name first="Lee" last="Tran"/>
<name first="Lili" last="Farmer"/>
<name first="Sanjay" last="Kumar"/>

</doc>’;

or
SELECT * FROM emp WHERE doc = (SELECT * FROM xml_tab);

The xml_tab table contains one column that is populated with the XML data.

View examples:

The view examples show you how to create views for nonroot nicknames to
describe XML source documents. In these examples, assume that the
nicknames of the sample file shown in Figure 11 on page 248 were previously
created as customers, orders, payments, and items.

Chapter 16. Configuring access to XML data sources 247

The following example shows how to create a view for the nonroot nickname
order:
CREATE VIEW order_view AS
SELECT o.amount, o.date, o.oid, c.cid
FROM customers c, orders o
WHERE c.cid = o.cid;

The following example shows how to create a view for the nonroot nickname
payment:
CREATE VIEW payment_view AS
SELECT p.amount, p.date, c.cid
FROM customers c, payments p
WHERE c.cid = p.cid;

The following example shows how to create a view for the nonroot nickname
item:
CREATE VIEW item_view AS
SELECT it.quantity, it.name, o.oid
FROM customers c, orders o, items i
WHERE c.cid = o.cid AND o.oid = i.oid;

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 11. Sample XML file

248 Data Source Configuration Guide

Queries that are submitted to these views are processed correctly because the
join path to the root directory is present.

For example, the following query pairs the amounts of customer’s orders and
payments from the same date:
SELECT o.amount, p.amount
FROM order_view o, payment_view p
WHERE p.date = o.date AND

p.cid = o.cid;

Related tasks:

v “Registering nicknames for XML data sources” on page 243

Related reference:

v “CREATE NICKNAME statement syntax - XML wrapper” on page 351

Creating federated views for nonroot nicknames (XML wrapper)

Creating federated views for nonroot nicknames (XML wrapper) is part of the
larger task of adding XML to a federated system.

You can define federated views over the hierarchy of nicknames that describe
an XML document. Defining federated views ensures that the queries that join
pieces of an XML nickname hierarchy (not including the root nickname and
queries that join columns other than the special PRIMARY_KEY and
FOREIGN_KEY columns) run properly.

Procedure:

To define federated views that include all required predicates and a full path
to the root directory, follow these steps:
1. Define a view for each nonroot nickname as a join of all the nicknames on

the path to the root.
2. In the WHERE clause, make the join predicates over the PRIMARY_KEY

and FOREIGN_KEY columns.
3. In the SELECT list, include all the columns of the nonroot nickname

except the column that is designated with the FOREIGN_KEY nickname
column option.

4. In the SELECT list, include the column of the parent nickname designated
with the PRIMARY_KEY option.

Related reference:

v “CREATE NICKNAME statement - Examples for XML wrapper” on page
244

Chapter 16. Configuring access to XML data sources 249

XML data source - Example queries

This topic provides several sample queries that use the nicknames customers,
orders, and items. These nicknames were previously registered by using
CREATE NICKNAME statements.

The following query displays all customer names:
SELECT name FROM customers;

The following query displays all records in which the customer name is
Chang:
SELECT * FROM customers where name=’Chang’;

The following query displays the customer names and amounts for each order
of each customer:
SELECT c.name, o.amount FROM customers c, orders o where c.cid=o.cid;

You must specify the join, c.cid=o.cid, to indicate the parent-child relationship
between the customers nickname and the orders nickname.

The following query selects the customer addresses, order amounts, and item
names for each order and item of each customer:
SELECT c.address, o.amount, i.name FROM customers c, orders o, items i
WHERE c.cid=o.cid AND o.oid=i.oid;

You must specify the two joins to maintain the parent-child relationships.

The following examples show how to write queries by using a nickname that
specifies a DOCUMENT column option rather than a FILE_PATH nickname
option. The corresponding CREATE NICKNAME statement that is used to
create the customers nickname is shown here:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’FILE’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

The following query selects all the data from the XML file Customers.xml
with a file path of /home/db2user/Customers.xml:
SELECT * FROM customers WHERE doc=’/home/db2user/Customers.xml’;

The following query selects names of customers and dates of their orders
from the Customers.xml file for each order with an amount over 1000:

250 Data Source Configuration Guide

SELECT c.name, o.date FROM customers c, orders o
WHERE c.doc=’/home/db2user/Customers.xml’ AND o.amount > 1000;

The file path of /home/db2user/Customers.xml specifies the location of the
Customers.xml file.

Related reference:

v “CREATE NICKNAME statement syntax - XML wrapper” on page 351
v “CREATE NICKNAME statement - Examples for XML wrapper” on page

244

Messages for the XML wrapper

This topic describes messages that you might encounter when working with
the wrapper for XML. For more information about messages, see the DB2
Message Reference.

Table 44. Messages issued by the wrapper for XML

Error Code Message Explanation

SQL0405N The numeric literal
″<column_name>″ is not valid
because its value is out of range.

The specified numeric literal is not
within the acceptable range. Check the
data type of the column in the
CREATE NICKNAME statement.

SQL0408N A value is not compatible with
the data type of its assignment
target. Target name is
″<column_name>.″

The data type of the value that is being
assigned to the column is not
compatible with the declared data type
of the assignment target. Check the
data type of the column in the
CREATE NICKNAME statement.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error creating wrapper
object.″)

An error occurred when creating a new
wrapper object. Contact IBM Software
Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason
″<xerces_xalan_error_message>.″)

An error occurred during a call to a
Xerces or a Xalan function. Check the
XML document. If the document is
well structured, refer to the Xalan
documentation for more information
about the error message.

Chapter 16. Configuring access to XML data sources 251

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″XalanDOMException:
exception code is
<exception_code>.″)

A XalanDOMException exception
occurred. Refer to the Xalan
documentation for more information
about the exception code.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″XMLException:
<exception_error_message>.″)

An XMLException exception occurred.
Refer to the Xalan documentation for
more information about the exception
code.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″XSLException:
<exception_error_message>.″)

An XSLException exception occurred.
Refer to the Xalan documentation for
more information about the exception
code.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″SAXParseException:
<exception_error_message>.″)

A SAXParseException exception
occurred. Refer to the Xalan
documentation for more information
about the exception code.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error getting node
value.″)

Xalan tried to access a node that is not
valid. Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error parsing XML
document.″)

An error occurred when parsing the
XML document. Check the XML
document.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error getting root
element of XML document.″)

After parsing the XML document,
Xalan tried to retrieve the root element
but failed. Check the XML document.

252 Data Source Configuration Guide

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified exception
while evaluating XPath
expression.″)

Xalan generated an unspecified
exception when evaluating an XPath
expression. Check the XML document,
and refer to the Xalan documentation.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified exception
while getting node value.″)

Xalan generated an unspecified
exception when retrieving a node
value. Check the XML document, and
refer to the Xalan documentation.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified exception
while parsing input document.″)

Xalan generated an unspecified
exception when parsing the XML
document. Check the XML document,
and refer to the Xalan documentation.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error when evaluating
cardinality.″)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason
″<SOAP_error_message>.″)

The SOAP library issued an error. If
you cannot resolve the SQL statement
error, contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Invalid URI.″)

The wrapper cannot access the
specified URL. Verify that the URL is
accessible.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Invalid XML document
content.″)

The content of the XML document is
not valid. Verify that the document is
well structured.

Chapter 16. Configuring access to XML data sources 253

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Invalid SOAP
envelope.″)

The SOAP envelope is not valid. Check
its syntax and content.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Memory allocation
error.″)

An error occurred when allocating
memory.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Incorrect DATE format.″

A date value in the XML document
does not have the correct format. The
valid format for date values is
yyyy-mm-dd. Check the XML
document.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Column data type not
supported.″

A nickname column has an
unsupported data type. Check the
CREATE NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″TYPE clause not supported.″

The CREATE SERVER statement
contains a TYPE clause. This clause is
not supported by the XML wrapper.
Remove the clause.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″VERSION clause not
supported.″

The CREATE SERVER statement
contains a VERSION clause. This
clause is not supported by the XML
wrapper. Remove the clause.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid use of predicate with
DOCUMENT column.″

The query contains a predicate with
incorrect operands. Check the
predicates in the query.

254 Data Source Configuration Guide

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid use of predicate with
FOREIGN_KEY column.″

The query contains a predicate with
incorrect operands. Check the
predicates in the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid use of predicate with
PRIMARY_KEY column.″

The query contains a predicate with
incorrect operands. Check the
predicates in the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″XPATH and DOCUMENT
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″XPATH and FOREIGN_KEY
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″XPATH and PRIMARY_KEY
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DOCUMENT and
FOREIGN_KEY options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DOCUMENT and
PRIMARY_KEY options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

Chapter 16. Configuring access to XML data sources 255

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FOREIGN_KEY and
PRIMARY_KEY options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Column option missing.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DOCUMENT column option
not unique.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FOREIGN_KEY column option
not unique.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″PRIMARY_KEY column option
not unique.″

The CREATE NICKNAME statement is
not correct as specified. Check the
syntax of the statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid DOCUMENT option
value.″

The value of the DOCUMENT option
that is specified in the CREATE
NICKNAME statement is not valid.
The value must be FILE. Check the
CREATE NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid PRIMARY_KEY option
value.″

The value of the PRIMARY_KEY
option that is specified in the CREATE
NICKNAME statement is not valid.
The value must be YES. Check the
CREATE NICKNAME statement.

256 Data Source Configuration Guide

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Invalid FOREIGN_KEY option
value.″

The value of the FOREIGN_KEY
option that is specified in the CREATE
NICKNAME statement is not valid.
The value does not match any parent
nickname. Check the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FILE_PATH and DOCUMENT
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
FILE_PATH and DOCUMENT options
cannot be specified at the same time.
Check the syntax of the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FILE_PATH and SOAP options
not compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
FILE_PATH and SOAP options cannot
be specified at the same time. Check
the syntax of the CREATE NICKNAME
statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DIRECTORY_PATH and SOAP
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
DIRECTORY_PATH and SOAP options
cannot be specified at the same time.
Check the syntax of the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FILE_PATH and
DIRECTORY_PATH options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
FILE_PATH and DIRECTORY_PATH
options cannot be specified at the same
time. Check the syntax of the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″VALIDATE and STREAMING
options not compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
VALIDATE and STREAMING options
cannot be specified at the same time.
Check the syntax of the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″FILE_PATH and
FOREIGN_KEY options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
FILE_PATH and FOREIGN_KEY
options cannot be specified at the same
time. Check the syntax of the CREATE
NICKNAME statement.

Chapter 16. Configuring access to XML data sources 257

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DIRECTORY_PATH and
FOREIGN_KEY options not
compatible.″

The CREATE NICKNAME statement is
not correct as specified. The
DIRECTORY_PATH and
FOREIGN_KEY options cannot be
specified at the same time. Check the
syntax of the CREATE NICKNAME
statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″XPATH option value not valid
with STREAMING enabled.″

The nickname XPATH expression is not
valid when you enable the
STREAMING feature. Check the
XPATH option for values that are not
valid such as /, ./, and //.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Unable to read XML file.″

The file path that is specified in the
CREATE NICKNAME statement or in
the query is not valid. The specified
file does not exist. Check the CREATE
NICKNAME statement and the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Unable to open directory.″

The directory path that is specified in
the CREATE NICKNAME statement or
in the query is not valid. The specified
directory does not exist. Check the
CREATE NICKNAME statement and
the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″Reference to XML data
missing.″

The CREATE NICKNAME statement
must contain a reference to the XML
data. Check the CREATE NICKNAME
statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″DOCUMENT column option
with value ’SOAP’ missing.″

The CREATE NICKNAME statement is
not correct as specified. Check the
value of the DOCUMENT option. The
value must be SOAP.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″SOAP option missing.″

The CREATE NICKNAME statement is
not correct as specified. You must
specify the SOAP option.

258 Data Source Configuration Guide

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″INSTANCE_PARSE_TIME only
for root nicknames.″

The CREATE NICKNAME statement is
not correct as specified. You can specify
an INSTANCE_PARSE_TIME value
only for root nicknames. Check the
CREATE NICKNAME syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″VALIDATE option only for root
nicknames.″

The CREATE NICKNAME statement is
not correct as specified. You can set the
VALIDATE option to YES only if the
specified nickname is a root nickname.
Check the CREATE NICKNAME
syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper.″
Associated text and tokens are
″STEAMING option only for
root nicknames.″

The CREATE NICKNAME statement is
not correct as specified. You can set the
STREAMING option to YES only if the
specified nickname is a root nickname.
Check the CREATE NICKNAME
syntax.

SQL1823N No data type mapping exists for
data type ″<data_type_name>″
from server ″<server_name>.″

The CREATE NICKNAME statement is
not correct as specified. A column data
type is not valid. Check the CREATE
NICKNAME syntax.

SQL1881N ″<option_name>″ is not a valid
″<option_type>″ option for
″<object_name>.″

The specified option might not exist or
might not be valid for this data source.
Check the CREATE NICKNAME
statement.

SQL1881N ″DIRECTORY_PATH″ is not a
valid ″NICKNAME″ option for
″<object_name>.″

The value of the DIRECTORY_PATH
option that is specified in the CREATE
NICKNAME statement is not valid.
The specified directory must be a root
directory. Check the CREATE
NICKNAME statement.

SQL1882N The ″nickname″ option
″VALIDATE″ cannot be set to
″<option_value>″ for
″<object_name>.″

The value of the VALIDATE option
that is specified in the CREATE
NICKNAME statement is not valid.
This value must be either YES or NO.
Check the CREATE NICKNAME
statement.

Chapter 16. Configuring access to XML data sources 259

Table 44. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1882N The ″nickname″ option
″STREAMING″ cannot be set to
″<option_value>″ for
″<object_name>.″

The value of the STREAMING option
that is specified in the CREATE
NICKNAME statement is not valid.
This value must be either YES or NO.
Check the CREATE NICKNAME
statement.

SQL1883N ″<option_name>″ is a required
″<option_type>″ option for
″<object_name>.″

A required DB2 option was not
specified. Check the CREATE
NICKNAME statement.

Related reference:

v “Messages for the table-structured file wrapper” on page 152
v “Messages for the Documentum wrapper” on page 184
v “Messages for the Excel wrapper” on page 198
v “Messages for the BLAST wrapper” on page 228
v “CREATE NICKNAME statement syntax - XML wrapper” on page 351

260 Data Source Configuration Guide

Chapter 17. Configuring access to Entrez data sources

This chapter explains what Entrez is, how to add Entrez data sources to your
federated system, and lists the error messages associated with the Entrez
wrapper.

What is Entrez?

Entrez is a query and retrieval system developed by the National Center for
Biotechnology Information (NCBI). You can use Entrez to access several linked
databases hosted by the NCBI.

These databases include:
v PubMed (biomedical literature)
v Nucleotide (a sequence database also called GenBank)
v OMIM (Online Mendelian Inheritance in Man from John Hopkins

University)
v Genome (complete genome assemblies)

You can access all of the Entrez databases through a uniform set of Web-based
tools. The Entrez wrapper uses these tools to federate the Entrez databases
into the DB2® environment. Although the Entrez interface supports many
databases, the Entrez wrapper supports only PubMed and Nucleotide.

PubMed
Database

Nucleotide
Database

Entrez
Application

DB2
Universal
federated
database

Federated database

SQL

Relational
results
table

W
ra

pp
er

Entrez
wrapper

National Center for
Biotechnology Information

server

Figure 12. How the Entrez wrapper works

© Copyright IBM Corp. 1998 - 2003 261

Many elements of the Entrez wrapper are common to all of the databases.
These elements include:
v Connectivity with NCBI through the Web and the Entrez ESearch and

EFetch utilities
v Mapping of hierarchical XML data into relational tables
v Joins between related tables through the XML wrapper technology

Related concepts:

v “What are table-structured files?” on page 143
v “What is Documentum?” on page 157
v “What is Excel?” on page 191
v “What is BLAST?” on page 205
v “What is XML?” on page 231

Related tasks:

v “Adding Entrez to a federated system” on page 262

Adding Entrez to a federated system

You can run statements from the DB2 Command Line Processor. After you
add the Entrez wrapper to your federated system, you can run queries on an
Entrez data source.

Procedure:

To add the Entrez data source to a federated server:
1. Register custom functions by issuing a CREATE FUNCTION statement.
2. Register the wrapper by issuing a CREATE WRAPPER statement.
3. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
4. Register the server by issuing a CREATE SERVER statement.
5. Register nicknames by issuing a CREATE NICKNAME statement.

Related tasks:

v “Registering custom functions for the Entrez wrapper” on page 263

262 Data Source Configuration Guide

Registering custom functions for the Entrez wrapper

Registering custom functions for the Entrez wrapper is part of the larger task
of adding Entrez to a federated system. After the custom functions are
registered, you must register the wrapper.

Restrictions:

v All of the custom functions for the Entrez wrapper must be registered with
the schema name Entrez.

v You must register each custom function once for each DB2 database that
has the Entrez wrapper installed.

Procedure:

To register custom functions, you must issue the CREATE FUNCTION
statement with the AS TEMPLATE keyword.

The fully qualified name of each function is Entrez.<function–name>.

The following example registers one version of the CONTAINS function:
CREATE FUNCTION entrez.contains (varchar(), varchar())

RETURNS INTEGER AS TEMPLATE;

To assist you in registering custom functions, the sample file,
create_function_mappings.ddl, is provided in the samples/lifesci/entrez
directory. This file contains definitions for each custom function. You can run
this DDL file to register the custom functions for each DB2 database that has
the Entrez wrapper installed.

The next task in this sequence of tasks is registering the Entrez wrapper.

Related reference:

v “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

v “Custom functions and Entrez queries” on page 267
v “Custom function table - Entrez wrapper” on page 273

Registering the Entrez wrapper

Registering the Entrez wrapper is part of the larger task of adding Entrez to a
federated system. You must register the wrapper in order to access a data
source. Wrappers are mechanisms that federated servers use to communicate
with and retrieve data from data sources. You install wrappers on your
system as library files.

Chapter 17. Configuring access to Entrez data sources 263

Procedure:

To register the Entrez wrapper, issue a CREATE WRAPPER statement.

For example, to create an Entrez wrapper on AIX called entrez_wrapper from
the default library file, libdb2lsentrez.a, submit the following statement:
CREATE WRAPPER entrez_wrapper LIBRARY ’libdb2lsentrez.a’

OPTIONS(EMAIL ’jeff@someplace.com’, DB2_FENCED ’N’);

You must specify an e-mail address when you register a wrapper. This e-mail
address is included with all queries and allows NCBI to contact you if there
are problems, such as too many queries overloading the NCBI servers.

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the Entrez wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the Entrez wrapper”
on page 264

v “After installing nonrelational wrappers” in the DB2 Information Integrator
Installation Guide

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the Entrez wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the Entrez wrapper is
part of the larger task of adding Entrez to a federated system. To improve
performance when Entrez data sources are accessed, set the DB2_DJ_COMM
DB2 profile variable. This variable determines whether the federated server
loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, issue the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.
db2set DB2_DJ_COMM=’libdb2lsentrez.a’

Ensure that there are no spaces on either side of the equal sign (=).

Processor usage increases when the federated server loads the wrapper
libraries during database startup. To avoid excessive usage, specify only the
libraries that you intend to access.

264 Data Source Configuration Guide

The next task in this sequence of tasks is registering the server for an Entrez
data source.

Related tasks:

v “Registering the server for an Entrez data source” on page 265

Registering the server for an Entrez data source

Registering the server for an Entrez data source is part of the larger task of
adding Entrez to a federated system. After you register the wrapper, you must
register a corresponding server.

The database, PubMed or Nucleotide, that is represented by a particular data
source is identified by the server type value, as expressed on the CREATE
SERVER statement. This server type value controls the structure of any
nicknames that are created.

Procedure:

To register the Entrez server to the federated system, issue a CREATE SERVER
statement.

For example, to register a server named pubmed_server1 for the
entrez_wrapper wrapper, issue the following statement:
CREATE SERVER pubmed_server1
TYPE PUBMED

VERSION 1.0
WRAPPER entrez_wrapper;

Additionally, to register a server named nucleotid_server1 for the
entrez_wrapper wrapper, issue the following statement:
CREATE SERVER nucleotid_server1
TYPE NUCLEOTIDE

VERSION 1.0
WRAPPER entrez_wrapper;

The next task in this sequence of tasks is registering nicknames for Entrez
data sources.

Related tasks:

v “Registering nicknames for Entrez data sources” on page 266

Related reference:

v “CREATE SERVER statement arguments - Entrez wrapper” on page 358

Chapter 17. Configuring access to Entrez data sources 265

Registering nicknames for Entrez data sources

Registering nicknames for Entrez data sources is part of the larger task of
adding Entrez to a federated system.

Restrictions:

The schema for each Entrez database is fixed by the wrapper and cannot be
changed or amended. For each database, there is a fixed set of tables with a
fixed list of columns for each table. The tables in a database have a
hierarchical relationship. One table, which is the parent of all of the other
tables in the database, is called the root table. All of the other tables in the
database have a parent-child relationship that leads back to the root table.

Procedure:

To register nicknames for Entrez data sources, issue a CREATE NICKNAME
statement.

Because the list of columns for the nicknames is fixed and is supplied by the
wrapper, the basic syntax to create Nucleotide nicknames is simple. For
example:
CREATE NICKNAME GBSeq FOR SERVER nuc1;
CREATE NICKNAME GBFeatures FOR SERVER nuc1;
CREATE NICKNAME GBIntervals FOR SERVER nuc1;
CREATE NICKNAME GBQualifiers FOR SERVER nuc1;
CREATE NICKNAME GBReference FOR SERVER nuc1;

Here is an example of the basic syntax to create PubMed nicknames:
CREATE NICKNAME pmarticles FOR SERVER pubmed_server;
CREATE NICKNAME PMACCESSION FOR SERVER pubmed_server;
CREATE NICKNAME PMCHEMICAL FOR SERVER pubmed_server;
CREATE NICKNAME PMMESH FOR SERVER pubmed_server;
CREATE NICKNAME PMCOMMENTS FOR SERVER pubmed_server;
CREATE NICKNAME PMARTICLEID FOR SERVER pubmed_server;
CREATE NICKNAME PMURL FOR SERVER pubmed_server;

The name of the nickname is the name of the underlying table.

Use of this syntax limits you to one family of nicknames per DB2 schema. You
can use other names by using the nickname options REMOTE_OBJECT and
PARENT. For a root nickname, only REMOTE_OBJECT is required. For any
other nickname, both REMOTE_OBJECT and PARENT must be provided.

The following example shows the same set of Nucleotide nicknames using the
renaming capability:

266 Data Source Configuration Guide

CREATE NICKNAME NewSeq FOR SERVER nuc1 OPTIONS (REMOTE_OBJECT ’GBSEQ’);
CREATE NICKNAME NewFeatures FOR SERVER nuc1
OPTIONS (REMOTE_OBJECT ’GBFEATURES’, PARENT ’NEWSEQ’);
CREATE NICKNAME NewIntervals FOR SERVER nuc1
OPTIONS (REMOTE_OBJECT ’GBINTERVALS’, PARENT ’NEWFEATURES’);
CREATE NICKNAME NewQualifiers FOR SERVER nuc1
OPTIONS (REMOTE_OBJECT ’GBQUALIFIERS’, PARENT ’NEWFEATURES’);
CREATE NICKNAME NewReference FOR SERVER nuc1
OPTIONS (REMOTE_OBJECT ’GBREFERENCE’, PARENT ’NEWSEQ’);

This example shows the same set of PubMed nicknames using the renaming
capability:
CREATE NICKNAME newpmarticles FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMARTICLES’);
CREATE NICKNAME NEWPMACCESSION FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMACCESSION’, PARENT ’NEWPMARTICLES’);
CREATE NICKNAME NEWPMCHEMICAL FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMCHEMICAL’ , PARENT ’NEWPMARTICLES’);
CREATE NICKNAME NEWPMMESH FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMMESH’ , PARENT ’NEWPMARTICLES’);
CREATE NICKNAME NEWPMCOMMENTS FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMCOMMENTS’ , PARENT ’NEWPMARTICLES’);
CREATE NICKNAME NEWPMARTICLEID FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMARTICLEID’ , PARENT ’NEWPMARTICLES’);
CREATE NICKNAME NEWPMURL FOR SERVER pubmed_server
OPTIONS (REMOTE_OBJECT ’PMURL’ , PARENT ’NEWPMARTICLES’);

The next task in this sequence of tasks is to register custom functions for
Entrez data sources.

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “PubMed and Nucleotide schema tables” on page 273

Custom functions and Entrez queries

The federated environment uses two query engines. For the Entrez wrapper,
these query engines are DB2 and Entrez. With one exception, you specify all
predicates for the Entrez engine through custom functions. For the DB2
engine, you specify all predicates through the relational operators.

The main custom function is ENTREZ.CONTAINS. The CONTAINS function
requires a search term column argument and a query text argument. The
following example shows an ENTREZ.CONTAINS statement:
ENTREZ.CONTAINS (<search term column>, <query text>)

A tag in the Q column of the schema tables identifies a search term. The
query text must be in the modified Entrez query syntax. This syntax consists
of search terms separated by Boolean operators (OR, AND, and NOT) and

Chapter 17. Configuring access to Entrez data sources 267

grouped by using parentheses. The syntax of the CONTAINS query text
argument differs from the standard Entrez query syntax in that search term
qualifiers, such as [pd], are not allowed.

The custom functions are registered in the Entrez schema, which must be used
to refer to the functions. When the custom functions are used, their return
value must be compared to the value 1 in an equality predicate.

In some situations, DB2 and Entrez predicates might be mixed in such a way
that they cannot be processed. These cases generate the error message
SQL0142N (″SQL statement not supported″).

For example, in the following query, you cannot separate the parts of the
predicate that are processed by the wrapper (the ENTREZ.CONTAINS
invocations) and the parts that must be processed by DB2 (the relational
predicate on BaseCountA).
WHERE
ENTREZ.CONTAINS (Organism, ’drosophila’) = 1
OR (BaseCountA > 10 AND ENTREZ.CONTAINS (Keywords, ’glop’) = 1)

Some search fields do not have corresponding columns in the Entrez schema.
For example, in the nucleotide database, the term [ALL] searches all
searchable fields, while [WORD] searches all of the free text associated with a
record. Pseudo-columns are provided for these search terms. If a
pseudo-column is referenced in a select list, a value of NULL is returned.

You can run queries that might not otherwise be possible by issuing the
ENTREZ.SEARCH_TERM master function. If you specify the
ENTREZ.SEARCH_TERM master function, it must be the only custom
function in a query. For each query, there can be only one
ENTREZ.SEARCH_TERM master function per Entrez nickname. Also,
SEARCH_TERM and CONTAINS functions cannot be mixed for the same
nickname in the same query. The first argument, column specification, must
be the primary key column for the parent nickname. The second argument,
query text, is an Entrez-format search term that includes search field
qualifiers. This text is passed unmodified, except for URI escapes as required
by the URI syntax, to Entrez.

The following example shows a query with a WHERE clause on a PubMed
nickname:
WHERE
ENTREZ.CONTAINS (authors, ’kaufmann OR ito AND NOT rakesh’)
AND
(ENTREZ.CONTAINS (title, ’drosophila’)

OR
ENTREZ.CONTAINS(alltext, ’drosophila OR "fruit fly"’))

268 Data Source Configuration Guide

In this example, the individual predicates are authors, title, and all text.

The individual predicates are modified so that the qualifier is added after
each search term . Then, the terms are grouped with parentheses to enforce
the DB2 Boolean operator precedence. Because of these modifications, the
authors predicate becomes:
((kaufmann[auth] OR ito[auth]) AND (NOT (rakesh[auth])))

The title predicate becomes:
(drosophila[titl])

And the all text predicate becomes:
(drosophila[all] OR "fruit fly"[all])

When the individual predicates are combined, parentheses are used to
maintain DB2 Boolean operator precedence. Excluding text transformations
that are necessary to express the string as part of a URI, the final search term
string submitted to Entrez is:
((kaufman[auth] OR ito[auth]) AND (NOT (rakesh[auth))) AND
((drosophila[titl]) OR (drosophila[all] OR "fruit fly"[all])

Related reference:

v “Custom function table - Entrez wrapper” on page 273

Relational predicates for the Entrez wrapper

The Entrez wrapper supports relational predicates, such as =, BETWEEN,
LIKE, and <>, on nickname columns. However, the Entrez search engine
processes only a few of these relational predicates. Relational predicates that
are not processed by the Entrez search engine are processed by DB2. The
Entrez search engine processes equality (=) and IN predicates on certain ID
columns for each schema. These predicates allow the Entrez wrapper to
bypass the search phase and execute the fetch phase directly. Examples of
valid predicates are:
WHERE pmid = ’1234567’

WHERE medlineid IN (’1234567’, ’9191919’)

Columns that can be used in this kind of predicate are identified by the F
column of the schema tables. The value of this option must be Y.

Related concepts:

v “Invalid WHERE clauses for the Entrez wrapper” on page 270

Related tasks:

Chapter 17. Configuring access to Entrez data sources 269

v “Entrez data source — Example queries” on page 271
v “Registering custom functions for the Entrez wrapper” on page 263

Invalid WHERE clauses for the Entrez wrapper

The Entrez wrapper rejects any query that will result in an unqualified scan of
the NCBI database. A valid WHERE clause must contain either an equality (or
IN) predicate on the primary ID for the schema, or a custom function. Queries
that do not meet these criteria are rejected with error code SQL0142N or
SQL30090N.

Related concepts:

v “Relational predicates for the Entrez wrapper” on page 269

Related tasks:

v “Entrez data source — Example queries” on page 271
v “Registering custom functions for the Entrez wrapper” on page 263

Schema data element simplification

Several data elements are converted to a canonical form when they are
presented through the SQL schema. These data elements include item lists,
names, and dates.

Item lists
Unless otherwise noted, lists of items that are denormalized into a single
column have individual items separated by a semicolon and a single space.
For example, if an entry contains the keywords dnaA gene, dnaN gene, and
orf187, the corresponding Keywords column will contain the value dnaA
gene; dnaN gene; orf187.

Names
Names in the NCBI schemas consist of a required last name and one of
several optional elements. Some of these optional elements can occur together
and others are exclusive of each other. To create a canonical form of a name,
assign a precedence to these elements. In order from highest to lowest, these
elements are:
v Forename
v First or middle name
v Initials

You can present names with or without affiliations. Without an affiliation, a
name is formatted as <last name>, <first>, where <first> is one of the optional
elements. If the <first> element is not found, then the comma is not used. An
affiliation can be added in the form (<affiliation>).

270 Data Source Configuration Guide

Separate names in denormalized lists with a semicolon and a space. An
example of the correct way to separate names is:
Parker, M. J.; Ranjan, K. A.

Dates
Dates, especially publication dates, come in a wide variety of formats in the
NCBI schemas. To accommodate these formats and allow for date
comparisons and date arithmetic where possible, dates in the SQL schema are
represented in two forms. First, a date can be a character string. Second, a
date can be a column of type DATE.

If only a month is present in a date value without reference to a day, the first
day of the month is the default day. If a season is present rather than a
month, or a month and day, the first day of the season is used.

Entrez data source — Example queries

This topic provides some sample queries to run on Entrez data sources.

Procedure:

To run queries, use the following examples as a guide.

On PubMed nicknames:

The following shows a query with a single fetch key on a PubMed nickname:
select PMID, ArticleTitle FROM pmarticles WHERE pmid = ’12345’;

The following shows a query with mixed fetch keys on a PubMed nickname:
select PMID, ArticleTitle FROM pmarticles
WHERE pmid = ’12345’ OR MedlineID = ’12346’;

The following shows a query with a CONTAINS function on a PubMed
nickname:
select PMID, ArticleTitle FROM pmarticles
WHERE entrez.contains (ArticleTitle, ’granulation’) = 1
AND entrez.contains (PubDate, ’1992’) = 1;

The following shows a query that searches for the specified AuthorList and
LanguageList on a PubMed nickname:
select PMID, ArticleTitle FROM pmarticles
WHERE entrez.contains (AuthorList, ’Albarrak’) = 1
AND entrez.contains (LanguageList, ’eng’)=1;

The following shows a query with a complex predicate on a PubMed
nickname:

Chapter 17. Configuring access to Entrez data sources 271

select PMID, ArticleTitle FROM pmarticles
WHERE entrez.contains (PublicationTypeList, ’Journal Article’) = 1
AND entrez.contains (MedlineTA, ’sun’)=1
OR entrez.contains (PersonalNameSubjectList, ’shine’)=1;

On Nucleotide nicknames:

The following shows a query with multiple fetch keys on a Nucleotide
nickname:
select PrimaryAccession, LocusName, SeqLength from gbseq
WHERE PrimaryAccession in (’NM_000890’, ’NC_003106’);

The following shows a query that searches all of the searchable fields on a
Nucleotide nickname:
select PrimaryAccession, substr(Definition,1,300), GI from gbseq
WHERE entrez.contains(AllText, ’abcde’)=1;

The following shows a query that searches all of the free text on a Nucleotide
nickname:
select * from gbseq WHERE entrez.contains(FreeText, ’abcde’)=1;

The following shows a query that searches for a definition on a Nucleotide
nickname:
select PrimaryAccession, substr(Definition,1,300), version, GI from gbseq
WHERE entrez.contains(Definition, ’Sulfolobus tokodaii

AND complete genome’) = 1;

The following shows a query that searches for a keyword on a Nucleotide
nickname:
select PrimaryAccession, substr(KeywordList,1,200), Segment from gbseq
WHERE entrez.contains(KeywordList, ’nkcc1 gene’) = 1;

Related concepts:

v “Relational predicates for the Entrez wrapper” on page 269
v “Invalid WHERE clauses for the Entrez wrapper” on page 270

Related tasks:

v “Registering custom functions for the Entrez wrapper” on page 263

272 Data Source Configuration Guide

Custom function table - Entrez wrapper

Table 45. Custom functions for the Entrez wrapper

Function name Description

CONTAINS (col VARCHAR(), term VARCHAR()),
CONTAINS (col INTEGER, term VARCHAR()),
CONTAINS (col SMALLINT, term VARCHAR()),
CONTAINS (col REAL, term VARCHAR()),
CONTAINS (col DOUBLE, term VARCHAR()),
CONTAINS (col DATE, term VARCHAR()),
CONTAINS (col TIME, term VARCHAR()),
CONTAINS (col CHAR(), term VARCHAR()),
CONTAINS (col TIMESTAMP(), term VARCHAR())

Searches a tagged column using
the given expression.

col Tagged column.

term Search term.

SEARCH_TERM (col VARCHAR(), term
VARCHAR())

Passes an Entrez search term
directly to the Entrez search
engine.

col Tagged column.

term Search term.

PubMed and Nucleotide schema tables

This topic provides tables for the PubMed and Nucleotide schemas.

PubMed schema

This schema defines the appearance of data from a PubMed type server. The
schema consists of several related nicknames. In the following tables, the Q
column is the field tag. For a list of valid searchable tags, see
http://www.ncbi.nlm.nih.gov/ entrez/query/static/help/
pmhelp.html#SearchFieldDescriptionsandTags. The F column indicates
whether the nickname column is a designated fetch key. Use of fetch keys
might expedite processing in some cases.

Table 46. PubMed PMArticles nickname

Column name Data type Description Q F

PMID VARCHAR(10) NOT
NULL

PubMed ID
PRIMARY_KEY Y

UID Y

MedlineID VARCHAR(10) Medline ID UID Y

Chapter 17. Configuring access to Entrez data sources 273

Table 46. PubMed PMArticles nickname (continued)

Column name Data type Description Q F

Owner VARCHAR(8) NOT
NULL

Owner of the
publication entry;
values are defined
by NCBI and
might be NLM,
NASA, PIP, KIE,
HSR, HMD, SIS,
NOTNLM. If not
present, then the
default is NLM.

Status VARCHAR(32) NOT
NULL

Publication status
as defined by
NCBI. Values
might include:
In-Process,
Completed,
Out-of-scope,
PubMed-
not_MEDLINE

DateCreated DATE NOT NULL

DateCompleted DATE

DateRevised DATE

ArticleTitle VARCHAR(250) NOT
NULL

TI

Pagination VARCHAR(32)

Abstract VARCHAR(32000) TIAB

Affiliation VARCHAR(250) Affiliation and
address of first
author

AD

AuthorList VARCHAR(3200) List of authors;
canonized

AU

LanguageList VARCHAR(250) NOT
NULL

Semicolon-
separated list

LA

PublicationTypeList VARCHAR(250) NOT
NULL

Semicolon-
separated list

PT

VernacularTitle VARCHAR(250)

DateOfElectronicPublication VARCHAR(32) The NCBI schema
specifies no
structure for this
column

274 Data Source Configuration Guide

Table 46. PubMed PMArticles nickname (continued)

Column name Data type Description Q F

Country VARCHAR(128)

MedlineTA VARCHAR(250) NOT
NULL

TA

NlmUniqueId VARCHAR(32) Contains
MedlineCode if
NlmUniqueID is
not present

GeneSymbolList VARCHAR(250) Semicolon-
separated list; not
used since 1996

NumberOfReferences INTEGER

PersonalNameSubjectList VARCHAR(250) Canonized as
semicolon-
separated list of
names

PS

KeywordList VARCHAR(3200) Semicolon-
separated list

SpaceFlightMissionList VARCHAR(250) Semicolon-
separated list

InvestigatorList VARCHAR(250) Canonized as
semicolon-
separated list of
names

PublicationStatus VARCHAR(32)

ProviderID VARCHAR(32)

CitationSubsetList VARCHAR(250) Semicolon-
separated list

SB

AllFields VARCHAR(1) Pseudo-column;
always returns
NULL

ALL

TextWords VARCHAR(1) Pseudo-column;
always returns
NULL

TW

PubDate DATE Includes journal
and book
publication date +
medline date

DP

Chapter 17. Configuring access to Entrez data sources 275

Table 46. PubMed PMArticles nickname (continued)

Column name Data type Description Q F

PubDateString VARCHAR(32) Includes journal
and book
publication date +
medline date

DP

Title VARCHAR(250) Book or journal
title

TA

Journal_ISSN CHAR(9) TA

Journal_Volume VARCHAR(10) VI

Journal_Issue VARCHAR(10) IP

Journal_Coden VARCHAR(32)

Journal_ISOAbbreviation VARCHAR(32)

Book_Publisher VARCHAR(128)

Book_Authors VARCHAR(250) Canonized as
other author lists

Book_CollectionTitle VARCHAR(128)

Book_Volume VARCHAR(10)

Table 47. PubMed PMAccession nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

DataBankName VARCHAR(250)
NOT NULL

SI

Accession VARCHAR(32) NOT
NULL

SI

Table 48. PubMed PMChemical nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

NameOfSubstance VARCHAR(128)
NOT NULL

NM

RegistryNumber VARCHAR(32) NOT
NULL

Might be CAS
or other
registry
number

RN

CASRegistry CHAR Y or N

276 Data Source Configuration Guide

Table 49. PubMed PMMeSHHeading nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

ID

DescriptorOrName VARCHAR(128) NOT
NULL

MH (If the
predicate
″DescriptorIsMajor
= Y″ is
included in the
query, then the
search term is
MAJR.)

DescriptorIsMajor CHAR NOT NULL Y if descriptor
is major

QualifierOrSubhead VARCHAR(128) SH

QSIsMajor CHAR Y if qualifier or
subhead is
major

Table 50. PubMed PMComments nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

RefSource VARCHAR(128) NOT
NULL

Type VARCHAR(32) NOT
NULL

CommentOn,
CommentIn, ErratumIn,
ErratumFor,
RepublishedFrom,
RepublishedIn,
RetractionOf,
RetractionIn, UpdateIn,
UpdateOf,
SummaryForPatents,
OriginalReportIn

Note VARCHAR(3200)

Table 51. PubMed PMArticleID nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

Chapter 17. Configuring access to Entrez data sources 277

Table 51. PubMed PMArticleID nickname (continued)

Column name Data type Description Q

ArticleID VARCHAR(32) NOT
NULL

IdType VARCHAR(8) NOT
NULL

doi, pii, pmcpid,
pmpid, sici,
pubmed, medline,
pmcid

Table 52. PubMed PMURL nickname

Column name Data type Description Q

PMID VARCHAR(10) NOT
NULL

FOREIGN_KEY
PMARTICLES

URL VARCHAR(250)
NOT NULL

Language CHAR(2) ISO Language code

Type CHAR(1) F for FullText, S for
Summary

Nucleotide schema

See http://www.ncbi.nlm.nih.gov/entrez/query/static/help/
Summary_Matrices.html#Search_Fields_and_Qualifiers.

Table 53. Nucleotide GBSeq nickname

Column name Data type Description Q F

PrimaryAccession VARCHAR(16) NOT
NULL

Primary
accession
number

PACC Y

SequenceKey VARCHAR(32) NOT
NULL

PRIMARY_KEY
Y

LocusName VARCHAR(16) NOT
NULL

ACCN

SeqLength INTEGER NOT NULL SLEN

Strandedness VARCHAR(32) not-set,
single-
stranded,
double-
stranded,
mixed-
stranded

278 Data Source Configuration Guide

Table 53. Nucleotide GBSeq nickname (continued)

Column name Data type Description Q F

MoleculeType VARCHAR(16) nucleic-acid,
dna, rna,
trna, rrna,
mrna, urna,
snrna,
snorna,
peptide

PROP

Topology VARCHAR(16) linear,
circular

Division CHAR(3) NOT NULL PROP

UpdateDate DATE NOT NULL MDAT

CreateDate DATE NOT NULL

Definition VARCHAR(7000) NOT
NULL

TITL

Version INTEGER

GI VARCHAR(16) FETCH_KEY
Y

UID

KeywordList VARCHAR(7000) Semicolon
separated list

KYWD

Segment VARCHAR(250)

Source VARCHAR(200) NOT
NULL

ORGN

Organism VARCHAR(7000) NOT
NULL

ORGN

Taxonomy VARCHAR(7000) NOT
NULL

Comment VARCHAR(7000)

Primary VARCHAR(7000)

SourceDB VARCHAR(250)

Sequence CLOB

AllText VARCHAR(1) Pseudo-
column,
always
returns
NULL

ALL

Chapter 17. Configuring access to Entrez data sources 279

Table 53. Nucleotide GBSeq nickname (continued)

Column name Data type Description Q F

FreeText VARCHAR(1) Pseudo-
column,
always
returns
NULL

WORD

Table 54. GBReference nickname

Column name Data type Description Q

SequenceKey VARCHAR(32) NOT
NULL

FOREIGN_KEY Y

ReferenceNum INTEGER NOT NULL Parsed from
GBReference_reference

RangeLow INTEGER NOT NULL Low base for
reference (parsed
from
GBReference_reference)

RangeHigh INTEGER NOT NULL High base for
reference (parsed
from
GBReference_reference)

Authors VARCHAR(3200) Semicolon-
separated list of
names in GenBank
form

AUTH

Consortium VARCHAR(250)

Title VARCHAR(250) WORD

Journal_Title VARCHAR(250) NOT
NULL

JOUR

MedlineID INTEGER

PubMedID INTEGER

Remarks VARCHAR(3200)

Table 55. Nucleotide GBFeatures nickname

Column name Data type Description Q

SequenceKey VARCHAR(32) NOT
NULL

FOREIGN_KEY
GBSEQ

FeatureJoinKey VARCHAR(32) NOT
NULL

PRIMARY_KEY Y

280 Data Source Configuration Guide

Table 55. Nucleotide GBFeatures nickname (continued)

Column name Data type Description Q

FeatureKey VARCHAR(20) NOT
NULL

FKEY

FeatureLocation VARCHAR(200)
NOT NULL

Table 56. Nucleotide GBIntervals nickname

Column Name Data type Description Q

FeatureJoinKey VARCHAR(32) NOT
NULL

FOREIGN_KEY
GBFEATURES

IntervalFrom INTEGER

IntervalTo INTEGER

IntervalPoint INTEGER

IntervalAccession VARCHAR(32) NOT
NULL

Table 57. Nucleotide GBQualifiers nickname

Column name Data type Description Q

FeatureJoinKey VARCHAR(32) NOT
NULL

FOREIGN_KEY
GBFEATURES

QualifierName VARCHAR(50)

QualifierValue VARCHAR(32000)

Messages for the Entrez wrapper

This topic describes messages that you might encounter when working with
the wrapper for Entrez. For messages that are not documented in this table,
the Message Reference: Volume 1, or the Message Reference: Volume 2, contact IBM
Software support.

Table 58. Messages issued by the wrapper for Entrez

Error Code Message Explanation

SQL0142N The SQL statement is not
supported.

An invalid query type was
passed to the wrapper.
Check to see if the issued
SQL statement is supported
by this wrapper.

Chapter 17. Configuring access to Entrez data sources 281

Table 58. Messages issued by the wrapper for Entrez (continued)

SQL0204N ″<name>″ is an undefined
name.

The specified name is not
valid. Check the CREATE
NICKNAME statement.

SQL0405N The numeric literal
″<literal>″ is not valid
because its value is out of
range.

A column in the retrieved
XML data or a predicate in
an SQL statement contains
a value that is out of the
possible range for that data
type. Check the data type
for this column and the
column in the data source,
or redefine the column to a
more appropriate type.

SQL0408N A value is not compatible
with the data type of its
assignment target. Target
name is ″<target_name>″.

A column in the XML data
contains characters that are
not valid for that data type.
Check the data type for this
column and the column in
the data source, or redefine
the column to a more
appropriate type.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Cannot
find database prototype.″)

This is an internal error.
Contact IBM Software
support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″No
data to unpack.″)

This is an internal error.
Contact IBM Software
support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Error
creating wrapper object.″)

This is an internal error.
Contact IBM Software
support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Bad
expression type.″)

This is an internal error.
Contact IBM Software
support.

282 Data Source Configuration Guide

Table 58. Messages issued by the wrapper for Entrez (continued)

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Cannot
find nickname.″)

This is an internal error.
Contact IBM Software
support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason
″Memory allocation error.″)

There is not sufficient
memory to process the
allocation request inside of
the wrapper.

SQL1816N Wrapper
″<wrapper_name>″ cannot
be used to access the
″version″ of data source
(″<server_type>″,
″<server_version>″) that
you are trying to define to
the federated server.

A value in the VERSION
clause of the CREATE
SERVER statement is not
valid.

SQL1816N Wrapper
″<wrapper_name>″ cannot
be used to access the ″type″
of data source
(″<server_type>″,
″<server_version>″) that
you are trying to define to
the federated server.

A value in the TYPE clause
of the CREATE SERVER
statement is not valid.

SQL1817N The CREATE SERVER
statement does not identify
the ″type″ of the data
source that you want to
define to the federated
database.

The TYPE clause of the
CREATE SERVER statement
is required but was not
specified.

SQL1822N Unexpected error code
″900″ received from data
source ″Entrez Wrapper.″
Associated text and tokens
are ″Parent nickname not
defined.″

This is an internal error.
Contact IBM Software
support.

SQL1823N No data type mapping
exists for data type
″<data_type>″ from server
″<server_name>.″

This is an internal error.
Contact IBM Software
support.

Chapter 17. Configuring access to Entrez data sources 283

Table 58. Messages issued by the wrapper for Entrez (continued)

SQL1881N ″<option_name>″ is not a
valid ″<option_type>″ for
″<option_name>.″

The specified option is not
a valid option. Check the
CREATE NICKNAME
statement.

SQL1882N The ″<option_type>″ option
″<option_name>″ cannot be
set to ″<option_value>″ for
″<option_name>.″

The specified value is not
valid for this option. Check
the CREATE NICKNAME
statement.

SQL1883N ″<option_name>″ is a
required ″<option_type>″
option for
″<option_name>.″

The specified option is
required for the object but
was not specified. Check
the CREATE NICKNAME
statement.

SQL1884N You specified
″FOREIGN_KEY″ (a
″COLUMN″ option) more
than once.

This is an internal error.
Contact IBM Software
support.

SQL1884N You specified
″PRIMARY_KEY″ (a
″COLUMN″ option) more
than once.

This is an internal error.
Contact IBM Software
support.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Cannot change server
version″.

The version of a server
cannot be changed by
issuing the ALTER SERVER
statement. A new server
must be created with the
new version.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Invalid PARENT
nickname″.

The referenced nickname in
a PARENT nickname option
is not valid for the current
nickname.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Invalid column name″.

A specified column name in
the CREATE NICKNAME
statement does not match
any of the possible columns
for the nickname.

284 Data Source Configuration Guide

Table 58. Messages issued by the wrapper for Entrez (continued)

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Cannot AND fetch
keys″.

Multiple references to a
fetch key, such as the PMID
column of the PMArticles
nickname, were made in a
conjunction. For example,
″PMID = 12346 AND PMID
= 12348″. Fetch key
predicates can be associated
only using OR.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Mixed SEARCH_TERM
and CONTAINS functions″.

The SEARCH_TERM and
CONTAINS functions
cannot be mixed in a query.
Only one SEARCH_TERM
function is allowed per
query.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Invalid first argument in
function″.

The first argument to a
SEARCH_TERM or
CONTAINS function was
not valid. This argument
must be a reference to a
column.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Invalid second argument
in function″.

The second argument to a
SEARCH_TERM or
CONTAINS function was
not valid. This argument
must be a string literal, a
host variable, or a column
reference.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Untagged column in
CONTAINS function″.

The first argument to the
CONTAINS function was
not valid. This argument
must be a reference to a
tagged column.

SQL30090N Operation invalid for
application execution
environment. Reason code
= ″Invalid function″.

This is an internal error.
Contact IBM Software
support.

Chapter 17. Configuring access to Entrez data sources 285

286 Data Source Configuration Guide

Chapter 18. Configuring access to Extended Search data
sources

This chapter explains what IBM Lotus Extended Search is, how to add
Extended Search data sources to your federated system, and how to use SQL
to search Extended Search data sources. It also lists error messages associated
with the Extended Search wrapper.

What is Extended Search?

The Extended Search product is a multi-tiered client/server system that
provides extensive search and retrieval capabilities. With Extended Search,
you can enter a single request and search potentially thousands of data
repositories and the Internet at the same time. These repositories, which can
be of varied content and structure, might be geographically dispersed
throughout the world.

Extended Search supports distributed, heterogeneous searching of structured
and unstructured data through a single point of access. It leverages your
current data management investment and completely handles the logistics
required to access many diverse sources simultaneously.

Extended Search uses its generalized query language (GQL) as a common
search syntax and internally translates each search request into the native
search languages of the data sources that you want to search. It also uses
methods that are native to those sources to find and retrieve information
without regard for where a source is located.

See the Extended Search product documentation for information about
installing an Extended Search server, configuring the search domain, and
using GQL. The following documents are available on the Resources page of
the IBM® Lotus® Extended Search Web site:
http://www.lotus.com/products/des.nsf/wdocuments/resources

Extended Search General Information
Describes the components in an Extended Search system and how
they interact with each other and the backend data systems.

Extended Search Installation
Defines the system prerequisites and provides instructions for
installing the product and verifying the installation process.

© Copyright IBM Corp. 1998 - 2003 287

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Extended Search Administration
Provides instructions for adding data sources to the search domain,
configuring searchable fields, and using sample search applications to
query Extended Search sources.

Extended Search Programming
Discusses the application development tools that you can use to
extend search support to data sources that are not supported in the
default configuration of the product. Includes a description of the
Extended Search generalized query language.

Extended Search data sources
With Extended Search, you can search the following types of data sources:
v Many popular Web search sites and news sites. If you need to search your

intranet’s search site, or other internal or external search sites, you can
easily add support for doing so.

v Mail systems, such as those that you manage with Lotus Notes® and
Microsoft® Exchange Server.

v Document management systems, such as DB2® Information Integrator for
Content databases.

v Relational databases, such as IBM DB2, Oracle, Microsoft SQL Server,
Microsoft Access, and other databases that comply with Open Database
Connectivity (ODBC) standards.

v Full text indexes, such as those that you create with IBM WebSphere®

Portal, Domino™ Domain Index, Microsoft Index Server, and Microsoft Site
Server.

v Lotus repositories, including Notes databases, Domino.Doc libraries and
cabinets, Lotus QuickPlace™ places, and Lotus Discovery Server knowledge
maps (K-maps).

v Instant messaging systems, such as Lotus Sametime. This feature enables
you to direct queries to knowledgeable persons, not just searchable data
repositories.

v Lightweight Directory Access Protocol (LDAP) directories, such as those
that you manage with IBM SecureWay, Domino LDAP Server, and
Exchange LDAP Server.

v File systems. You can search text files that are stored locally or on network
drives. You cannot search compressed or encrypted files.

With the Extended Search C++ and Java™ application programming interfaces
(APIs), you can extend support to other types of sources, such as proprietary
databases that are not mentioned here.

How the Extended Search wrapper works
In a structured relational database model, columns are named and represented
in a consistent format. This feature allows you to perform precise

288 Data Source Configuration Guide

computational operations and join data from different tables by comparing
specific column values. You can also do other types of analysis, such as listing
objects in one table that are missing from another table.

In contrast, unstructured data is often stored in a free text form. Typically,
there is little or no metadata that enables you to query for information by
column name. A search of unstructured data depends more on finding data
that matches user-specified keywords than on computational criteria.

The Extended Search wrapper combines these two search techniques. With the
wrapper, you can use structured query language to search unstructured
content in an Extended Search domain. You can then perform analytical or
relational operations on the search results.

You issue queries by entering SQL statements that refer to a special purpose
DB2 table (a nickname table). Extended Search performs the search according
to the SQL criteria and populates the nickname table with the result data.
Because the search results persist in a table, the data is available for
operations with other database tables, including other nickname tables.

When you submit a search request with the wrapper, you can retrieve data
from any Extended Search source that is mapped to a nickname table. You can
integrate this data with other data sources in your federated system without
moving the data out of the native data source. Search results appear as a
single result set regardless of how many sources provide responses to the
query.

The following figure shows how the Extended Search wrapper connects the
diverse data sources in an Extended Search domain to a federated database
system. The wrapper accesses and retrieves data from one or more remote
Extended Search servers. If the wrapper contacts an Extended Search server
that is connected to other Extended Search servers, search results can be
returned from multiple servers.

Chapter 18. Configuring access to Extended Search data sources 289

Related tasks:

v “Adding Extended Search data sources to a federated server” on page 295

Extended Search nicknames

In the Extended Search data model, one or more fields constitute a document.
A collection of documents constitutes a data source. You can combine any
number of data sources into a category, which enables you to search them and
administer them as a group.

To ensure that users access only the data sources for which they have a need,
a category must belong to at least one application. Think of applications as a
way of grouping users for purposes of controlling access and search
capabilities. For example, a personnel application might include the same data

Wrapper

Web sites

DB2
federated database

SQL

File systems

Instant messaging

Extended Search domain

DB2 client

Extended
Search
server

LOTUS Notes
Database
LDAP
directories

Relational
databases

Indexed
databases

Lotus Notes
databases

21 3
2
3
4

Figure 13. How the Extended Search wrapper works

290 Data Source Configuration Guide

sources as a financial application, but the users of each application would not
necessarily need access to the same fields in those data sources.

When you register nicknames, you identify the applications, categories, data
sources, and data source fields that you want to search. These entities must
exist in the Extended Search configuration database. To search an Extended
Search data source with the Extended Search wrapper, you must create a
nickname for the source.

The contents of the nickname table reflect the state of the Extended Search
configuration database at the time that you register the nickname. If an
Extended Search administrator updates the configuration (for example, by
adding or deleting sources or fields), those changes are not reflected in the
nickname table. If a nickname table refers to changed data, and you want to
stay current with the Extended Search configuration database, you must alter
the nickname or drop it and create a new nickname.

If you do not alter or recreate the nickname, you might receive errors and
reports of zero results when you attempt to search items that no longer exist
in the Extended Search domain.

Although a single nickname table can contain information about all the
sources that are configured in Extended Search, creating several nickname
tables might be more useful. To use the full power of DB2, create a separate
nickname for each type of data source that you plan to search with the
Extended Search wrapper.

For example, you might have one nickname for Web sources, one for Notes
databases, one for file systems, and so on. By having separate nickname
tables, you are better able to perform joins on the data that is returned to the
wrapper, relate diverse sources based on field values, and integrate the result
data with other data in your federated system.

Related concepts:

v “Extended Search vertical tables” on page 292

Related tasks:

v “Registering nicknames for Extended Search data sources” on page 297

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “CREATE NICKNAME statement syntax - Extended Search wrapper” on

page 343

Chapter 18. Configuring access to Extended Search data sources 291

Extended Search vertical tables

An Extended Search application can consist of many categories which, in turn,
can contain many data sources. Because each data source uses its own
conventions for field names, an intersection of fields might result in an empty
set. When you map data source fields to user-defined columns in nickname
tables, and present search results as a horizontal table, the table might contain
an unmanageable number of columns. If many rows contain only a few
columns with data, the table will appear sparsely populated. For example:

Column_1 Column_2 Column_3

Value_11

Value_22

Value_31 Value_33

Within Extended Search, you can control the presentation of results by
defining mapped fields. Mapped fields provide a way for you to combine
content that has a common purpose but that is named differently in different
sources. For example, you might create a mapped field named
EmployeeNumber to represent result data from fields that are named
EmpNum, EmpNo, and EmpID in various sources. Without this mapping
feature, you would need to define a nickname column for each unique field
name as opposed to a single column for the mapped field.

Mapping fields is useful when you know the names of the fields that you
need to relate. Some applications, however, need to relate a large number of
fields from many data sources. The relationships between the fields,
particularly for unstructured data, might not be known ahead of time. Thus, it
becomes difficult to define and structure meaningful nickname tables. To
support this type of application, the Extended Search wrapper allows you to
create a vertical nickname table.

When you create a nickname table for Extended Search, you can enable the
VERTICAL_TABLE option. This option returns all the fields that are
configured to be returnable in a data source, as defined in the Extended
Search configuration database. Use this option when you are not sure which
columns will be relevant in your search or which columns will be relevant
when you perform post-processing queries or joins on the result sets.

Each row in the vertical table contains information about a field that was
returned in the result set. For each row, Extended Search returns the name of
the source that the field came from, the field name, its value, and its data type
(date, integer, and so on). Unlike results that are scattered across columns in a
horizontal table, the vertical table is densely populated and contains many

292 Data Source Configuration Guide

rows of data. For example:

Field_Name Field_Value Field_Datatype

Column_1 Value_11 VARCHAR

Column_2 Value_22 DATE

Column_1 Value_31 VARCHAR

Column_3 Value_33 VARCHAR

You can perform SQL operations on this data when you query the table, and
you can query all column labels. For example:
Field_Value LIKE ’%IBM%’

Because the VERTICAL_TABLE option returns information about all
returnable fields in a data source, you might not need to query specific
user-defined columns. If you enable this option and then issue a SELECT
statement to search user-defined columns, you might receive duplicate
information in the search results. However, if you define user-defined
columns, you can use those columns in joins with other tables in your
federated system.

The following table summarizes the system-provided columns that Extended
Search returns for each row in a vertical nickname table.

Column Name Data Type Description

The wrapper always returns the following three fixed columns for each nickname.

DOC_ID VARCHAR(512) The document identifier, unique to each
item in a set of search results.

DOC_RANK INTEGER The relevance ranking of the document.

CLIENT_LOCALE VARCHAR(5) The client locale of the search request. If
the SQL query does not provide the client
locale, the query will use enUS as the
default client locale.

The wrapper creates the following fixed columns only if the VERTICAL_TABLE option is
enabled.

DATASOURCE_NAME VARCHAR(128) The name of the data source that
produced the search result.

FIELD_NAME VARCHAR(128) The name of a field that was returned in
the search result.

Chapter 18. Configuring access to Extended Search data sources 293

Column Name Data Type Description

FIELD_VALUE VARCHAR(4096) The value of a field that was returned in a
result set. If the field value is longer than
the maximum length of the nickname
column (the VARCHAR value), the field
value is truncated. The token
ES_TRUNCATE at the end of the column
indicates that the value is incomplete.

FIELD_DATATYPE SMALLINT An integer value that represents the actual
data type of the field value:
384 DATE
448 VARCHAR
484 DECIMAL
496 INTEGER

A vertical table, which stores result data as VARCHAR values, can be difficult
to query. For more precise searching, create mapped fields in the Extended
Search configuration database and then define them in the nickname table.
With mapped fields, you can create a concise horizontal table of search
results. You also optimize your ability to perform relational operations on the
results and combine them in queries that involve other tables in your
federated database system.

For information about defining mapped fields in Extended Search, see
Extended Search Administration, which is available on the Resources page of the
IBM® Lotus® Extended Search Web site:
http://www.lotus.com/products/des.nsf/wdocuments/resources

Related concepts:

v “Extended Search nicknames” on page 290

Related tasks:

v “Registering nicknames for Extended Search data sources” on page 297

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “CREATE NICKNAME statement syntax - Extended Search wrapper” on

page 343

294 Data Source Configuration Guide

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Adding Extended Search data sources to a federated server

You can install the Extended Search wrapper on Microsoft Windows NT,
Microsoft Windows 2000, and IBM AIX operating systems. You can use the
wrapper to search Extended Search servers that exist on Windows, AIX, Sun
Solaris, and Red Hat Linux for Intel operating systems.

Prerequisites:

Before you use the Extended Search wrapper, ensure that the sources that you
plan to search are configured in the Extended Search configuration database.
Submit a few queries through the Extended Search client to verify your ability
to search the sources before you attempt to search them with the Extended
Search wrapper.

Procedure:

To add Extended Search data sources to a federated system:
1. Register the Extended Search wrapper.
2. Register the Extended Search server that you want to use with the

wrapper.
3. Register nicknames for the Extended Search sources that you want to

search.
4. Register user mappings for DB2 users who need to search Extended Search

sources.
5. Register the Extended Search custom function for specifying search

options.

Related tasks:

v “Registering the Extended Search wrapper” on page 295
v “Registering the server for Extended Search data sources” on page 296
v “Registering nicknames for Extended Search data sources” on page 297
v “Registering user mappings for Extended Search data sources” on page 298
v “Registering the Extended Search custom function” on page 299

Registering the Extended Search wrapper

This task is part of the main task for adding Extended Search data sources to
a federated system. To search Extended Search data sources, you must first
register the Extended Search wrapper.

Procedure:

Chapter 18. Configuring access to Extended Search data sources 295

To register an Extended Search wrapper, issue a CREATE WRAPPER
statement from the DB2 Command Line Processor.

For example, to register a wrapper named NotesDBwrapper on a Windows
system, issue the following statement:
CREATE WRAPPER NotesDBwrapper LIBRARY ’db2uies.dll’

To register a wrapper named myESwrapper on an AIX system, issue the
following statement:
CREATE WRAPPER myESwrapper LIBRARY ’libdb2uies.a’

The next task in this sequence of tasks is registering the server for Extended
Search data sources.

Related tasks:

v “Registering the server for Extended Search data sources” on page 296

Related reference:

v “CREATE WRAPPER statement syntax - Extended Search wrapper” on
page 362

Registering the server for Extended Search data sources

This task is part of the main task for adding Extended Search data sources to
a federated system. After you register a wrapper, you must create a
corresponding server definition to identify the remote Extended Search server
that you are integrating with your federated system. This definition enables
the wrapper to connect to the Extended Search server.

Procedure:

To register the Extended Search server, issue a CREATE SERVER statement
from the DB2 Command Line Processor.

For example, to register a server named es1 for a wrapper named
myESwrapper, issue the following statement. The Extended Search server uses
the default port value.
CREATE SERVER es1 WRAPPER myESwrapper OPTIONS (ES_HOST ’my.server.com’)

To create this same server, enable tracing for all message levels (critical,
noncritical, warning, and information), and write the trace messages to a file
named es1wrapper.log in the wrapper directory, issue the following statement:

296 Data Source Configuration Guide

CREATE SERVER es1 WRAPPER myESwrapper OPTIONS (ES_HOST ’my.server.com’,
ES_TRACING ’ON’, ES_TRACELEVEL ’CNWI’,
ESTRACEFILENAME ’/wrapper/es1wrapper.log’)

The next task in this sequence of tasks is registering nicknames for Extended
Search data sources.

Related tasks:

v “Registering nicknames for Extended Search data sources” on page 297

Related reference:

v “CREATE SERVER statement syntax - Extended Search wrapper” on page
359

Registering nicknames for Extended Search data sources

This task is part of the main task for adding Extended Search data sources to
a federated system. After you register a server, you must register at least one
nickname. A nickname table is a virtual DB2 table that identifies one or more
searchable sources in an Extended Search domain. When you submit a query,
you specify the nickname for the sources that you want to search.

Prerequisites:

Make sure that the Extended Search server for which you are creating
nicknames is running. When you create a nickname, the system verifies that
information about the sources and fields that you plan to search exists in the
Extended Search configuration database.

Procedure:

To register an Extended Search nickname, issue a CREATE NICKNAME
statement from the DB2 Command Line Processor.

For example, issue the following statement to create a nickname table for
searching all data sources that belong to the Web category in the Demo
application that is hosted by the es1 Extended Search server. Return the
WebTitle and WebDescription fields and use the default search processing
options.
CREATE NICKNAME allweb (WebTitle VARCHAR(255), WebDescription VARCHAR(1000))

FOR SERVER es1 OPTIONS(APPLICATIONID ’Demo’, CATEGORY ’Web’)

Issue the following statement to create a nickname table for searching several
data sources in the Science application. Present the search results as a vertical
list of column names, set the timeout value to 60 seconds, allow each source

Chapter 18. Configuring access to Extended Search data sources 297

to return up to 100 result documents, expand the size of the result set to 1000
entries, and sort the results by author name.
CREATE NICKNAME stars (Title VARCHAR(80), Author VARCHAR(40),

Abstract VARCHAR(200))
FOR SERVER es1 OPTIONS (APPLICATIONID ’Science’,
DATASOURCES ’Astronomy;NASA Library;Astrophysics’, VERTICAL_TABLE ’yes’,
TIMEOUT ’60’, MAXHITS ’100’, TOTALMAXHITS ’1000’, SORTFIELD ’Author’)

The next task in this sequence of tasks is registering user mappings for the
Extended Search wrapper.

Related concepts:

v “Extended Search nicknames” on page 290
v “Extended Search vertical tables” on page 292

Related tasks:

v “Registering user mappings for Extended Search data sources” on page 298

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “CREATE NICKNAME statement syntax - Extended Search wrapper” on

page 343

Registering user mappings for Extended Search data sources

This task is an optional step in the main task for adding Extended Search data
sources to a federated system.

User mappings provide a way to authenticate the access of users who query
an Extended Search source with the Extended Search wrapper. If a user
submits an SQL query to a registered Extended Search nickname, and no user
mappings are defined for that user, the Extended Search wrapper will use a
default user ID and password in an attempt to retrieve data from the remote
Extended Search server. If a data source that is being queried requires
authentication, an empty result set might be returned.

To ensure that the correct user ID and password get passed to the Extended
Search server, create user mappings in your federated system for users who
are authorized to search Extended Search sources. When you create a user
mapping, the password is stored in an encrypted format in a DB2 catalog
table. The password remains in a secure format as it is passed from DB2
through Extended Search to the sources that are being searched.

298 Data Source Configuration Guide

Security settings in the Extended Search configuration database determine
whether the user ID and password are authorized to access the sources that
are being searched and whether any additional mapping of the user ID will
be performed.

Procedure:

To register Extended Search user mappings, issue a CREATE USER MAPPING
statement from the DB2 Command Line Processor.

The statement must identify the DB2 user ID that needs to be mapped, the
Extended Search server that hosts the target data sources, and the user ID and
password that enable the user to access those data sources.

For example, the following statement registers the user1 user ID so that it can
use the es1 Extended Search server to search remote databases.
CREATE USER MAPPING FOR user1 SERVER es1 OPTIONS

(REMOTE_AUTHID ’ESUserId’, REMOTE_PASSWORD ’abc123def’)

The next task in this sequence of tasks is registering the Extended Search
custom function template.

Related tasks:

v “Registering the Extended Search custom function” on page 299

Related reference:

v “CREATE USER MAPPING statement syntax - Extended Search wrapper”
on page 361

Registering the Extended Search custom function

This task is an optional step in the main task for adding Extended Search data
sources to a federated system.

Custom functions contain no executable code. After you register a function,
you can refer to it in queries to alter default search behavior. The custom
function for the Extended Search wrapper, ES_SEARCH, enables you to
specify precise search expressions and search content that is not defined as a
column in the nickname table.

Restrictions:

v You can call the ES_SEARCH function only with a WHERE clause.

Chapter 18. Configuring access to Extended Search data sources 299

v The WHERE clause must contain at least one predicate that serves as a
search predicate, either the ES_SEARCH function or a predicate of type
″column-name operator constant.″

v The ES_SEARCH function is a scalar function template. It must use the
EQUAL (=) operator and the comparison value must be one (1).

v The first parameter in the ES_SEARCH function serves as an anchor value
for identifying the nickname to which the function should be applied, such
as the document’s rank (DOC_RANK) in the search results. You must
specify an INTEGER field for this parameter. This parameter, which does
not get evaluated, is particularly important if the SQL query contains more
than one nickname or a combination of nicknames and tables. For example:
SELECT * FROM ES_N1, ES_N2
WHERE ESWRAPPER.ES_SEARCH(ES_N1.DOC_RANK, ’"IBM"’) = 1 AND

ESWRAPPER.ES_SEARCH(ES_N2.DOC_RANK, ’"IBM"’) = 1

Procedure:

To register the Extended Search custom function, issue the following CREATE
FUNCTION statement from the DB2 Command Line Processor:
CREATE FUNCTION ESWRAPPER.ES_SEARCH(INTEGER, VARCHAR(1024))

RETURNS INTEGER AS TEMPLATE

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “Extended Search wrapper - Generalized query language” on page 305
v “CREATE FUNCTION statement syntax - Extended Search wrapper” on

page 335
v “Extended Search wrapper - Query guidelines” on page 300

Extended Search wrapper - Query guidelines

The Extended Search wrapper expects queries to be in a specific format and
does not support queries that do not meet precise language criteria. This topic
provides guidelines for creating queries and gives examples of correct and
incorrect query syntax.

Querying Web sources in multiple languages

The third-party software that Extended Search uses to link to Web sources
supports languages that use the ISO–8859–1 code page (such as English,
French, German, Portuguese, and Swedish). Therefore, when you search Web
sources, you cannot search double-byte character set languages such as

300 Data Source Configuration Guide

Korean, bi-directional languages such as Hebrew, or other non-ISO–8859–1
languages. The parser that processes search results fails when it detects what
it regards as illegal character codes.

Specifying the CLIENT_LOCALE value

If you include the CLIENT_LOCALE column in a WHERE clause to set the
value of the client locale, you must use an AND predicate to specify the
search criteria. You cannot use an OR predicate with the CLIENT_LOCALE
column.

Examples — correct syntax

The following examples show the correct way to include the
CLIENT_LOCALE column in a WHERE clause:
WHERE CLIENT_LOCALE = ’enUS’ AND
ESWRAPPER.ES_SEARCH(DOC_RANK, ’"IBM"’)=1

WHERE ESWRAPPER.ES_SEARCH(DOC_RANK, ’"IBM"’)=1
AND CLIENT_LOCALE = ’enUS’

Examples — incorrect syntax

The following examples are incorrect because they attempt to use an OR
predicate with the CLIENT_LOCALE column:
WHERE CLIENT_LOCALE = ’enUS’ OR
ESWRAPPER.ES_SEARCH(DOC_RANK, ’"IBM"’)=1

WHERE ESWRAPPER.ES_SEARCH(DOC_RANK, ’"IBM"’)=1
OR CLIENT_LOCALE = ’enUS’

Specifying predicates on Extended Search fixed columns

An SQL statement that contains an Extended Search nickname must specify a
predicate for the nickname in the WHERE clause. However, a predicate on an
Extended Search fixed column does not count as a predicate.

Examples — incorrect syntax

The following example shows a query that is incorrect because it does not
contain a predicate:
SELECT * FROM ES_NICKNAME

The following example shows a query that is incorrect because the only
predicate is on a fixed column:
SELECT * FROM ES_NICKNAME WHERE DOC_RANK < 20

Chapter 18. Configuring access to Extended Search data sources 301

Specifying unbound predicates

A predicate on a user-defined column will be handled by the Extended Search
wrapper only if the predicate value is a constant. If the predicate value is
unbound, the predicate will be handled by the DB2 engine. If an unbound
predicate is the only predicate in an SQL statement, an error will result. An
Extended Search nickname requires a predicate that can be handled by the
Extended Search wrapper.

Examples — correct syntax

The WHERE statement in the following example shows a predicate that will
be handled by the Extended Search wrapper:
SELECT *
FROM ES_NICKNAME
WHERE Author = ’Ernest Hemingway’

Examples — incorrect syntax

The WHERE statement in the following example shows a predicate that will
be handled by DB2:
SELECT *
FROM ES_NICKNAME_1, ES_NICKNAME_2
WHERE ES_NICKNAME_1.Author = ES_NICKNAME_2.Author

Joining queries with an OR predicate

The Extended Search wrapper cannot search different nickname tables, or
nickname tables and database tables, that are joined by a simple OR predicate.
You can use an OR predicate only within the same nickname.

Examples — incorrect syntax
SELECT *
FROM ES_Nickname as N1, TABLE as T1
WHERE N1.Column1 = ’abc’ OR T1.Column1 = ’abc’

SELECT *
FROM ES_Nickname_1 as N1, ES_Nickname_2 as N2
WHERE N1.USerdefCol = ’abc’ OR N2.USerdefCol = ’cdf’

SELECT *
FROM ES_Nickname_1 as N1, ES_Nickname_2 as N2
WHERE ESWRAPPER.ES_SEARCH(N1.DOC_RANK, ’"IBM"’)=1 OR

ESWRAPPER.ES_SEARCH(N2.DOC_RANK, ’"LOTUS"’)=1

Related tasks:

v “Registering the Extended Search custom function” on page 299

302 Data Source Configuration Guide

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “Extended Search wrapper - Generalized query language” on page 305

Extended Search wrapper - Example queries

To run queries with the Extended Search wrapper, you specify a registered
nickname and nickname columns in your SQL statements the same way that
you specify a typical DB2 table name and table columns.

In this sample search scenario, a hospital team needs to search and compare
the latest medical research. To search a wide variety of sources, the hospital
uses an Extended Search server. The Extended Search domain includes an
application named MedResearch and several categories that are configured to
search document-based databases, mail servers, and the Web.

In addition to searching, the team needs to compare the results from various
searches. For example, they need to identify people who published articles
within a certain time frame, recently purchased herbs and vitamins, discussed
alternative medicine with colleagues through e-mail, and applied to renew a
medical license. The Extended Search wrapper, with its ability to integrate
unstructured Extended Search data into DB2 for structured retrieval, provides
the solution.

The hospital team decides to create the following three nicknames, one for
searching document repositories, one for searching e-mail systems, and one
for searching specific Web sources. The Owner and Date fields are defined as
mapped fields in the Extended Search configuration database, which enables
you to use them in joins regardless of how the fields are named in the native
data sources.

Document nickname:
CREATE NICKNAME MedDocs (Owner VARCHAR(80),

Date DATE,
Title VARCHAR(80),
Abstract VARCHAR(200))

FOR SERVER esServer OPTIONS (APPLICATIONID ’MedResearch’,
CATEGORY ’AMA Library;Medical Records;Pharmacy’,
VERTICAL_TABLE ’YES’,
TIMEOUT ’60’, MAXHITS ’100’,

TOTALMAXHITS ’1000’)

E-mail nickname:
CREATE NICKNAME MedMail (Owner VARCHAR(80),

To VARCHAR(80),
Date DATE,

Chapter 18. Configuring access to Extended Search data sources 303

Subject VARCHAR(80))
FOR SERVER esServer OPTIONS (APPLICATIONID ’MedResearch’,

CATEGORY ’Exchange Server;Lotus Notes’,
VERTICAL_TABLE ’YES’,)
TIMEOUT ’60’, MAXHITS ’100’,
TOTALMAXHITS ’1000’)

Web nickname:
CREATE NICKNAME MedWeb (WebTitle VARCHAR(255),

WebDescription VARCHAR(1000))
FOR SERVER esServer OPTIONS (APPLICATIONID ’MedResearch’,

DATASOURCES ’Google!;Alta Vista;CNN’,
TOTALMAXHITS ’500’)

The following query searches for documents that contain the phrase Artificial
Liver in the title and the abbreviation MARS in the document content. The
result set should exclude any documents that were published before the year
2001.
SELECT OWNER, DOC_CONTENT
FROM MedDocs
WHERE ESWRAPPER.ES_Search(DOC_RANK, ’((TOKEN:EXACT "MARS") AND

(("TITLE" IN "Artificial Liver") AND
("DATE" >= "01/01/2001"))) ’) = 1

The following query searches for e-mail that was written during the past few
months that discussed alternative medicine:
SELECT *
FROM MedMail
WHERE ESWRAPPER.ES_Search(DOC_RANK, ’(

("SUBJECT" IN "alternative medicine") AND
("DATE" BETWEENI "03/01/2002" AND
"09/30/2002")) ’) = 1

The following query searches Web sources that refer to complementary and
alternative medicine (CAM) therapy and its acceptance by the American
public:
SELECT WebTitle, WebDescription
FROM MedWeb
WHERE ESWRAPPER.ES_Search(DOC_RANK, ’(

TOKEN:EXACT "CAM therapy") AND
(TOKEN:FUZZY "United States") ’) = 1

The following query searches for recently licensed doctors who purchased
large quantities of herbs or vitamins from the hospital pharmacy. The query
then matches up the names of those doctors with persons who wrote e-mail
about alternative medicine.
SELECT N2.OWNER, N2.DATE
FROM MedDocs as N1,
MedMail as N2

304 Data Source Configuration Guide

WHERE ESWRAPPER.ES_SEARCH(N1.DOC_RANK, ’ (
("LICENSE_DATE" >= "01/01/2002") AND

((("PRODUCT" = "HERB") OR ("PRODUCT" = "VITAMIN")) AND
("QUANTITY" > "1000"))) ’) = 1

AND ESWRAPPER.ES_SEARCH(N2.DOC_RANK, ’ ("SUBJECT" IN
"alternative medicine") ’) = 1

AND N1.OWNER = N2.OWNER

Related concepts:

v “Extended Search nicknames” on page 290
v “Extended Search vertical tables” on page 292

Related tasks:

v “Registering nicknames for Extended Search data sources” on page 297
v “Registering the Extended Search custom function” on page 299

Related reference:

v “Extended Search wrapper - Generalized query language” on page 305
v “CREATE FUNCTION statement syntax - Extended Search wrapper” on

page 335
v “CREATE NICKNAME statement syntax - Extended Search wrapper” on

page 343
v “Extended Search wrapper - Query guidelines” on page 300

Extended Search wrapper - Generalized query language

Queries that you pass to an Extended Search server through the Extended
Search wrapper can contain search expressions in generalized query language
(GQL), the query language of Extended Search.

For example, assume a user wants to find all employees whose names start
with JO in a relational database that contains a table with employee
information. You might issue the following query in GQL:
(LIKE "EMPLOYEE_NAME" "JO")

You might issue the same query in SQL as follows:
SELECT * FROM EMP.TABLE WHERE EMPLOYEE_NAME LIKE JO%

Like SQL, the wrapper supports infix notation, a syntax that requires
operators to be between the field name and a comparison value. The native
Extended Search GQL grammar uses prefix notation, a syntax that requires
operators to precede the fields and values that you want to evaluate.

Chapter 18. Configuring access to Extended Search data sources 305

Compare the following query expressions that search for documents that
contain the word IBM in the TITLE field:

Infix GQL
("TITLE" IN "IBM")

Prefix GQL
(IN "TITLE" "IBM")

When you submit a query with the Extended Search wrapper, the API
converts the infix SQL statements to prefix GQL for processing by Extended
Search.

The following syntax description shows the Backus-Naur Form specification
for the Extended Search grammar that you can use in queries.

expr: pattern_expr
| bool_expr
| field_expr
| prox_expr

pattern_expr: STRING
| token_expr

token_expr: (TOKEN [:CASE] [:STEM] [:EXACT] [:WEIGHT "x"]
[:WILD] [:FUZZY] STRING)

bool_expr: (expr_list bool_operator [:WEIGHT "x"] expr)

bool_text_expr: (text_expr_list bool_operator [:WEIGHT "x"] text_expr)

text_expr: pattern_expr
| bool_text_expr
| prox_expr

text_expr_list: text_expr
| text_expr_list text_expr

expr_list: expr
| expr_list expr

field_expr: (field_name operator_1 [:WEIGHT "x"] text_expr)
| (field_name operator_2 [:WEIGHT "x"] value)
| (field_name operator_3 [:WEIGHT "x"] value_1 AND value_2)
| (field_name operator_4 value)

prox_expr: (prox_op [:COUNT "x"][:ORDER][:MATH "y"][:WEIGHT "x"]
expr_list expr)

prox_op: DOCUMENT
| PARAGRAPH
| SENTENCE
| WORD

306 Data Source Configuration Guide

| CHARACTER

operator1: START
| END
| IN
| =

operator_2: =
| >
| >=
| <
| <=
| EQ
| GT
| GTE
| LT
| LTE

operator_3: BETWEENI
| BETWEENE
| LIKE

bool_operator: AND
| OR
| NOT

For complete information about the GQL grammar, see Extended Search
Programming, which is available on the Resources page of the IBM Lotus
Extended Search Web site:
http://www.lotus.com/products/des.nsf/wdocuments/resources

Related tasks:

v “Registering the Extended Search custom function” on page 299

Related reference:

v “Extended Search wrapper - Example queries” on page 303
v “CREATE FUNCTION statement syntax - Extended Search wrapper” on

page 335
v “Extended Search wrapper - Query guidelines” on page 300

Messages for the Extended Search wrapper

This topic describes messages that you might encounter while you work with
the Extended Search wrapper.

Chapter 18. Configuring access to Extended Search data sources 307

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Table 59. Messages issued by the wrapper for Extended Search

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason:
INTERNAL Extended
Search WRAPPER ERROR -
RC: xxx.)

Record the reason code (a number from
901 to 999) and contact IBM Software
Support.

SQL0973N Not enough storage is
available in the Application
heap to process the
statement.

The Extended Search wrapper was not able
to allocate memory in the Application
heap. To resolve the problem, increase the
Application heap size and try the
statement again. For example:

db2 update db cfg
for db-name
using heap-name heap-size

If the error continues after you increase
this value, contact IBM Software Support.

SQL1822N Unexpected error code
″<error_code>″ received
from data source ″Extended
Search wrapper″. Associated
text and tokens are
″<tokens>″.

The remote Extended Search server
returned an error while processing a search
request. The error also returned a token
that indicates what caused the error on the
remote server. If tracing is enabled for the
Extended Search server, review the trace
log file for diagnostic help.

SQL1823N No data type mapping
exists for data type
″<data_type>″ from server
″<server_name>″.

A column in a CREATE NICKNAME
statement or ALTER NICKNAME
statement uses a data type that is not
supported by the Extended Search system.
This error can also occur during query
processing. To solve the problem if it
occurs while the query is being processed,
drop the nickname table and create a new
nickname.

SQL1825N This SQL statement cannot
be handled in a federated
environment.

The current SQL statement cannot be
handled by the Extended Search wrapper.
To solve the problem, see the Extended
Search wrapper documentation, change the
SQL statement as needed, and submit the
request again.

308 Data Source Configuration Guide

Table 59. Messages issued by the wrapper for Extended Search (continued)

Error Code Message Explanation

SQL1833N Connection to remote
Extended Search server
″<host_name>″ on port
″<port_number>″ could not
be established or was
terminated.

The Extended Search wrapper tried to
connect to the remote Extended Search
server at the specified port but the
connection could not be established or was
terminated by the remote server. Verify the
host name and port number of the remote
Extended Search server, make sure that the
Extended Search server is running, and try
again.

SQL1834N User-defined column
″<column_name>″ is
identical to a fixed column
for wrapper
″<wrapper_name>″ but uses
a different data type.

A CREATE NICKNAME statement or
ALTER NICKNAME statement contains a
user-defined column that has the same
name as a fixed column for the specified
Extended Search wrapper but uses a
different data type. You do not need to
specify fixed columns in the column
definition of a CREATE NICKNAME
statement. If you do, make sure that the
fixed column name, data type, and data
type length match the fixed column
definition. You cannot ALTER a fixed
column name or data type.

SQL1835N Extended Search object
″<object_name>″ of type
″<object_type>″ could not
be found on the remote
Extended Search server
″<host_name>″.

The specified Extended Search object could
not be found on the specified remote
Extended Search server. Verify that the
object name is defined on this Extended
Search server and that it is of the specified
object type. Also verify that the spelling of
this object is correct.

SQL1836N No column mapping exists
between user-defined
column ″<column_name>″
and a field name on the
remote Extended Search
server ″<host_name>″.

None of the data sources that are included
in a DATASOURCE or CATEGORY option
contain a field name the matches the
specified user-defined column name. Verify
that the column name is a field in at least
one of the data sources in the
DATASOURCE option, or in at least one of
the data sources that belongs to a category
in CATEGORY option, and submit the
statement again.

Chapter 18. Configuring access to Extended Search data sources 309

Table 59. Messages issued by the wrapper for Extended Search (continued)

Error Code Message Explanation

SQL1837N The required option
″<option_name>″ of type
″<object_type>″ on wrapper
″<wrapper_name>″ cannot
be dropped.

You cannot drop a required option. Change
the ALTER statement to use SET instead of
DROP. Correct the search statement and
submit the request again. Consult the DB2
SQL Reference for information about
creating valid SQL search statements. If the
search statement includes the ES_SEARCH
function, consult the Extended Search
wrapper documentation for information
about using Extended Search generalized
query language (GQL).

SQL1838N The search statement
″<option_name>″ is not a
valid Extended Search
query.

The Extended Search wrapper tried to
process the specified search statement but
the query failed because the statement
does not use proper query syntax. Consult
the DB2 SQL Reference for information
about creating valid SQL search
statements. If the search statement includes
the ES_SEARCH function, consult the
Extended Search wrapper documentation
for information about using Extended
Search generalized query language (GQL).

SQL1839N One or more search
parameters are not valid.

The Extended Search wrapper tried to use
the specified search parameters, but they
are not valid for Extended Search. Consult
the Extended Search wrapper
documentation, correct the invalid
parameters, and submit the request again.

SQL1881N ″<option_name>″ is not a
valid ″<option_type>″
option for ″<object_name>″.

The specified option is not valid for the
specified object (wrapper, server, nickname,
column, or user mapping). See the
Extended Search wrapper documentation,
remove or change the invalid option, and
submit the statement again.

SQL1882N The ″<option_type>″ option
″<option_name>″ cannot be
set to ″<option_value>″ for
″<object_name>″.

The specified option value is not valid for
the specified object (wrapper, server,
nickname, column, or user mapping). See
the Extended Search wrapper
documentation, change the invalid option
value, and submit the statement again.

310 Data Source Configuration Guide

Table 59. Messages issued by the wrapper for Extended Search (continued)

Error Code Message Explanation

SQL1883N ″<option_name>″ is a
required ″<option_type>″
option for ″<object_name>″.

A required option for the Extended Search
wrapper was missing from the statement
to create, alter, or initialize the specified
object (wrapper, server, nickname or user
mapping). See the Extended Search
wrapper documentation, add the required
option, and submit the statement again.

For more information about messages, see the DB2 Message Reference. You
might also want to consult the Extended Search product messages in Extended
Search Administration. If you receive errors about improper GQL query syntax,
see Extended Search Programming. The Extended Search documents are
available on the Resources page of the IBM Lotus Extended Search Web site:
http://www.lotus.com/products/des.nsf/wdocuments/resources

Related reference:

v “sql0900” in the Message Reference: Volume 2

v “sql1800” in the Message Reference: Volume 2

Chapter 18. Configuring access to Extended Search data sources 311

http://www.lotus.com/products/des.nsf/wdocuments/resources/

312 Data Source Configuration Guide

Chapter 19. Configuring access to HMMER data sources

This chapter explains what HMMER is, how to add HMMER data sources to
your federated system, and lists the error messages associated with the
HMMER wrapper.

What is HMMER?

HMMER is a tool that you can use to search gene sequence databases that use
statistical models or profile Hidden Markov Models (HMMs). You can
download HMMER at no charge from http://hmmer.wustl.edu/. HMMER
was first developed to improve BLAST search capabilities. This HMMER
wrapper version uses a gene sequence to search a database of models and
determine to which family the test gene sequence might belong.

An HMM is a statistical model of the primary structure consensus of a gene
sequence family. An HMM is based upon probability models. You can train an
HMM to recognize patterns from unaligned gene sequences if a trusted
alignment is not yet known. You need less skill and manual intervention to
train and use a successful HMM than to carefully construct a profile. You can
use a trained HMM to access libraries of hundreds of profile HMMs and
apply them on a very large scale to whole genome or Expressed Sequence Tag
(EST) analyses.

PFAM (Protein Families Database of Alignments and HMMs) is a database of
protein domain models. The HMMER software package is tightly tied to the
construction and use of the PFAM database. The HMMER wrapper supports
the use of the hmmpfam program, which searches a profile HMM database,
such as PFAM, with a particular gene sequence.

The HMMER wrapper starts the hmmpfam utility, which uses profile HMMs
to model the primary structure consensus of a family of protein or nucleic
acid sequences, as described in Table 60.

Table 60. HMMER utilities

HMMER utility Description

hmmpfam Calculates how well each model matches a specified
sequence and a database of models. The match is
expressed in terms of statistical significance.

hmmalign Aligns multiple gene sequences to a profile HMM.

© Copyright IBM Corp. 1998 - 2003 313

Table 60. HMMER utilities (continued)

HMMER utility Description

hmmbuild Builds a profile HMM from a multiple gene
sequence alignment.

hmmcalibrate Determines appropriate statistical significance
parameters for a profile HMM before a database
search is performed.

hmmconvert Converts HMMER profile HMMs to other formats
such as Genetics Computer Group (GCG) profiles.

hmmemit Generates gene sequences that use probability
models from a profile HMM.

hmmfetch Retrieves an HMM from an HMM database.

hmmindex Creates a binary server-side include (server-side
includes (SSI)) index for an HMM database.

hmmsearch Searches a gene sequence database with a profile
HMM and finds additional homologues of a
modeled family.

From a client, users or applications submit SQL statements with
HMMER-specific predicates that map to hmmpfam command-line options.
These SQL statements and predicates are sent to your federated database
server, which includes the HMMER wrapper.

The HMMER wrapper transforms the query into a format that the HMMER
application can interpret and starts the hmmpfam utility to run the query. The
server that runs hmmpfam can be a separate system from the system with the
federated database server. A special daemon program runs on your HMMER
server. This daemon, which uses information from a daemon configuration
file, receives the query request from the federated database server and sends it
to the HMMER application. The HMMER application then runs on a profile
database.

Figure 14 on page 315 shows how HMMER works with your federated system.

314 Data Source Configuration Guide

The daemon returns HMMER results to the HMMER wrapper. The wrapper
transforms the data into a relational table, and returns this table to the user or
application.

The following example shows how information is extracted from profile
databases, which are constructed by HMMER utilities, and displayed as a
relational table. The HMMER User’s Guide (http://hmmer.wustl.edu/)
provides examples of creating profile databases and a HMMER tutorial.

Figure 15 on page 316 shows a sample query that uses the 7LES_DROME gene
sequence. You specify sequences in the WHERE clause of the query.

db2runpfam.ksh

DB2
Federated
server

SQL
query

Result
table

W
ra

pp
er

HMMER
wrapper

db2hmmer_daemon hmmpfam
command db2h2x

HMMER
to XML
converter

Temp
XML file

Output
report

Data source

Figure 14. How the HMMER wrapper works

Chapter 19. Configuring access to HMMER data sources 315

The HMMER wrapper transforms the query results into the relational table
shown in Table 61.

Table 61. HMMER returns results in a relational table when the HMMER wrapper is
integrated with your federated system

Model ModelScore DomainNumber DomainScore

pkinase +3.04100000000000E+002 1 +3.04100000000000E+002

SELECT Model, ModelScore, DomainNumber, DomainScore
FROM myhmms
WHERE HmmQSeq = ’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTH
INQQAPGTSSSSSNSQNASPSKIVVRQQSSSFDLRQQLARLGRQLASGQDGHGGISTILIINLLLL
ILLSICCDVCRSHNYTVHQSPEPVSKDQMRLLRPKLDSDVVEKVAIWHKHAAAAPPSIVEGIAISS
RPQSTMAHHPDDRDRDRDPSEEQHGVDERMVLERVTRDCVQRCIVEEDLFLDEFGIQCEKADNGEK
CYKTRCTKGCAQWYRALKELESCQEACLSLQFYPYDMPCIGACEMAQRDYWHLQRLAISHLVERTQ
PQLERAPRADGQSTPLTIRWAMHFPEHYLASRPFNIQYQFVDHHGEELDLEQEDQDASGETGSSAW
FNLADYDCDEYYMCEILEALIPYTQYRFRFELPFGENRDEVLYSPATPAYQTPPEGAPISAPVIEH
LMGLDDSHLAVHWHPGRFTNGPIEGYRLRLSSSEGNATSEQLVPAGRGSYIFSQLQAGTNYTLALS
MINKQGEGPVAKGFVQTHSARNEKPAKDLTESVLLVGRRAVMWQSLEPAGENSMIYQSQEELADIA
WSKREQQLWLLNVHGELRSLKFESGQMVSPAQQLKLDLGNISSGRWVPRRLSFDWLHHRLYFAMES
PERNQSSFQIISTDLLGESAQKVGESFDLPVEQLEVDALNGWIFWRNEESLWRQDLHGRMIHRLLR
IRQPGWFLVQPQHFIIHLMLPQEGKFLEISYDGGFKHPLPLPPPSNGAGNGPASSHWQSFALLGRS
LLLPDSGQLILVEQQGQAASPSASWPLKNLPDCWAVILLVPESQPLTSAGGKPHSLKALLGAQAAK
ISWKEPERNPYQSADAARSWSYELEVLDVASQSAFSIRNIRGPIFGLQRLQPDNLYQLRVRAINVD
GEPGEWTEPLAARTWPLGPHRLRWASRQGSVIHTNELGEGLEVQQEQLERLPGPMTMVNESVGYYV
TGDGLLHCINLVHSQWGCPISEPLQHVGSVTYDWRGGRVYWTDLARNCVVRMDPWSGSRELLPVFE
ANFLALDPRQGHLYYATSSQLSRHGSTPDEAVTYYRVNGLEGSIASFVLDTQQDQLFWLVKGSGAL
RLYRAPLTAGGDSLQMIQQIKGVFQAVPDSLQLLRPLGALLWLERSGRRARLVRLAAPLDVMELPT
PDQASPASALQLLDPQPLPPRDEGVIPMTVLPDSVRLDDGHWDDFHVRWQPSTSGGNHSVSYRLLL
EFGQRLQTLDLSTPFARLTQLPQAQLQLKISITPRTAWRSGDTTRVQLTTPPVAPSQPRRLRVFVE
RLATALQEANVSAVLRWDAPEQGQEAPMQALEYHISCWVGSELHEELRLNQSALEARVEHLQPDQT
YHFQVEARVAATGAAAGAASHALHVAPEVQAVPRVLYANAEFIGELDLDTRNRRRLVHTASPVEHL
VGIEGEQRLLWVNEHVELLTHVPGSAPAKLARMRAEVLALAVDWIQRIVYWAELDATAPQAAIIYR
LDLCNFEGKILQGERVWSTPRGRLLKDLVALPQAQSLIWLEYEQGSPRNGSLRGRNLTDGSELEWA
TVQPLIRLHAGSLEPGSETLNLVDNQGKLCVYDVARQLCTASALRAQLNLLGEDSIAGQLAQDSGY
LYAVKNWSIRAYGRRRQQLEYTVELEPEEVRLLQAHNYQAYPPKNCLLLPSSGGSLLKATDCEEQR
CLLNLPMITASEDCPLPIPGVRYQLNLTLARGPGSEEHDHGVEPLGQWLLGAGESLNLTDLLPFTR
YRVSGILSSFYQKKLALPTLVLAPLELLTASATPSPPRNFSVRVLSPRELEVSWLPPEQLRSESVY
YTLHWQQELDGENVQDRREWEAHERRLETAGTHRLTGIKPGSGYSLWVQAHATPTKSNSSERLHVR
SFAELPELQLLELGPYSLSLTWAGTPDPLGSLQLECRSSAEQLRRNVAGNHTKMVVEPLQPRTRYQ
CRLLLGYAATPGAPLYHGTAEVYETLGDAPSQPGKPQLEHIAEEVFRVTWTAARGNGAPIALYNLE
ALQARSDIRRRRRRRRRNSGGSLEQLPWAEEPVVVEDQWLDFCNTTELSCIVKSLHSSRLLLFRVR
ARSLEHGWGPYSEESERVAEPFVSPEKRGSLVLAIIAPAAIVSSCVLALVLVRKVQKRRLRAKKLL
QQSRPSIWSNLSTLQTQQQLMAVRNRAFSTTLSDADIALLPQINWSQLKLLRFLGSGAFGEVYEGQ
LKTEDSEEPQRVAIKSLRKGASEFAELLQEAQLMSNFKHENIVRLVGICFDTESISLIMEHMEAGD
LLSYLRAARATSTQEPQPTAGLSLSELLAMCIDVANGCSYLEDMHFVHRDLACRNCLVTESTGSTD
RRRTVKIGDFGLARDIYKSDYYRKEGEGLLPVRWMSPESLVDGLFTTQSDVWAFGVLCWEILTLGQ
QPYAARNNFEVLAHVKEGGRLQQPPMCTEKLYSLLLLCWRTDPWERPSFRRCYNTLHAISTDLRRT
QMASATADTVVSCSRPEFKVRFDGQPLEEHREHNERPEDENLTLREVPLKDKQLYANEGVSRL’

Figure 15. Sample query run on 7LES_DROME data

316 Data Source Configuration Guide

Table 61. HMMER returns results in a relational table when the HMMER wrapper is
integrated with your federated system (continued)

Model ModelScore DomainNumber DomainScore

fn3 +1.76300000000000E+002 1 +4.90000000000000E+001

fn3 +1.76300000000000E+002 2 +1.36000000000000E+001

fn3 +1.76300000000000E+002 3 +1.62000000000000E+001

fn3 +1.76300000000000E+002 4 +6.35000000000000E+001

fn3 +1.76300000000000E+002 5 +1.46000000000000E+001

fn3 +1.76300000000000E+002 6 +1.94000000000000E+001

rrm -4.45000000000000E+001 1 -4.45000000000000E+001

The data is now in a fully relational form and can be joined with data from
other data sources.

Related concepts:

v “What are table-structured files?” on page 143
v “What is Documentum?” on page 157
v “What is Excel?” on page 191
v “What is BLAST?” on page 205
v “What is XML?” on page 231
v “What is Entrez?” on page 261
v “What is Extended Search?” on page 287

Adding HMMER to a federated system

Procedure:

To add the HMMER data source to a federated server:
1. Verify that you installed the correct version of the hmmpfam executable.
2. Configure the HMMER daemon.Configure the HMMER daemon.
3. Start the HMMER daemon.Start the HMMER daemon.
4. Register the wrapper by issuing the CREATE WRAPPER

statement.Register the wrapper by issuing the CREATE WRAPPER
statement.

5. Optional: Set the DB2_DJ_COMM environment variable to improve query
performance.

6. Register the server by issuing the CREATE SERVER statement.Register the
server by issuing the CREATE SERVER statement.

Chapter 19. Configuring access to HMMER data sources 317

7. Register nicknames by issuing the CREATE NICKNAME
statement.Register nicknames by issuing the CREATE NICKNAME
statement.

You can run the statements from the DB2 command-line processor. After you
add the HMMER wrapper to your federated system, you can run queries on
the HMMER data source.

Related tasks:

v “Verifying that the correct version of the hmmpfam executable is installed”
on page 318

Verifying that the correct version of the hmmpfam executable is installed

Verifying that the correct version of the hmmpfam executable is installed is
part of the larger task of adding HMMER to a federated system. Verify that
you have the latest version of the hmmpfam executable installed on your
HMMER server with the following procedure.

Procedure:

To check the version level of your hmmpfam executable:
1. Run the following from the command line and note the version number

located in the output file:
hmmpfam -h

2. If you do not have the latest version of the hmmpfam executable
(HMMER 2.2 or above), download the files from
http://hmmer.wustl.edu/.

The next task in this sequence of tasks is configuring the HMMER daemon.

Related tasks:

v “Configuring the HMMER daemon” on page 318

Configuring the HMMER daemon

Configuring the HMMER daemon is part of the larger task of adding
HMMER to a federated system. The HMMER wrapper requires that a
HMMER daemon runs on your AIX-based machine. You must also be able to
access the HMMER daemon through Transmission Control Protocol/Internet
Protocol (TCP/IP) from your federated server. The daemon runs separately
from the wrapper and DB2 Universal Database and listens for HMMER job
requests from the wrapper. The daemon-executable file, db2hmmer_daemon, can
reside in any directory on the HMMER server.

318 Data Source Configuration Guide

During DB2 Universal Database installation, the daemon executable is placed
on the same computer as the federated server. On the AIX platform, the
directory in which the daemon executable is placed is
/usr/opt/db2_08_01/bin. If you did not install HMMER and the federated
server on the same computer, you must copy the daemon executable to a
location of your choice on the computer where you installed HMMER. You
must also copy the configuration file HMMER_DAEMON.config, the supplied
conversion utility named db2h2x, and the shell script named db2runpfam.ksh.

Programs must be executable. If not, run the AIX command chmod a+x
db2hmmer_daemon db2h2x db2runpfam.ksh on the target system to make
programs executable.

The HMMER daemon must have:
v Execute access to the hmmpfam-executable file so that it can run HMMER

searches.
v Write access to a directory in which it can write temporary files.
v Read access to at least one profile database on which you can run HMMER

searches.

The HMMER daemon requires a configuration file. A sample daemon
configuration file, named HMMER_DAEMON.config, is placed in the directory
DB2PATH/samples/lifesci, where DB2PATH is the directory in which DB2
Universal Database is installed. HMMER_DAEMON.config is the default name for
the file.

Copy the configuration file to any location accessible to the daemon, rename it
if you want, and edit it to work with your data sources. By default, the
HMMER daemon looks for its configuration information in the working
directory from which it was started.

Procedure:

To configure the daemon, specify the following options in the configuration
file. For options that require paths, you can specify relative paths. Relative
paths are relative to the directory from which the daemon process was started.

DAEMON_PORT
This is the network port on which the daemon will listen for HMMER
job requests submitted by the wrapper.

MAX_PENDING_REQUESTS
This is the maximum number of HMMER job requests that can block
on the daemon at any one time. This number does not represent the
number of HMMER jobs that run concurrently, only the number of job
requests that can block at one time. It is recommended that you set

Chapter 19. Configuring access to HMMER data sources 319

this to a number greater than five. The HMMER daemon does not
restrict the number of HMMER jobs that can run concurrently.

DAEMON_LOGFILE_DIR
This is the directory in which the daemon will create its log file. This
file will contain useful status and error information generated by the
HMMER daemon.

Q_SEQ_DIR_PATH
This is the directory in which a temporary query sequence data file
will be created by the daemon. This temporary file is cleaned up once
the HMMER job completes.

HMMER_OUT_DIR_PATH
This is the directory in which the daemon will create the temporary
file to store the HMMER output data. Data will be read from this file
and passed back to the wrapper via the network connection, at which
point the daemon cleans up the temporary file.

RUNPFAM_PATH
This is the fully-qualified name of the db2runpfam.ksh shell script
provided.

HMMPFAM_PATH
This is the fully-qualified name of the hmmpfam executable file on the
machine that runs the daemon.

H2X_PATH
This is the fully-qualified name of the db2h2x (HMMER to XML)
conversion program provided with the daemon.

database specification entry
Specifies the location of a profile database. When you create a
nickname for the data source with the CREATE NICKNAME
statement, make note of the entry name that you use in the
DATASOURCE option of the configuration file. You must specify this
entry name for the daemon to function properly.

The configuration file must contain at least one database specification
entry in the following format:
entry_name = path to profile_database

For example, to specify the MYHMMS profile database, you would
add the following line to the daemon configuration file:
myhmms=/home/user_ID/myhmms

The configuration file must end with a new line character.

Example:

320 Data Source Configuration Guide

The following example shows the contents of a sample configuration file, with
the required options and profile database specification for PFAM.
=
DAEMON_PORT=4098
MAX_PENDING_REQUESTS=10
DAEMON_LOGFILE_DIR=./
Q_SEQ_DIR_PATH=./
HMMER_OUT_DIR_PATH=./
RUNPFAM_PATH=./db2runpfam.ksh
HMMPFAM_PATH=/home/user_id/hmmer/bin/hmmpfam
H2X_PATH=/home/user_id/sqllib/bin/db2h2x
myhmms=/home/user_id/hmmer/tutorial/myhmms
pfamls=/home/user_id/hmmer/pfam/Pfam_ls

1. Make sure that you start the first line with an equal sign or the daemon
will not start. You will get an error message unless you specify the
DAEMON_PORT.

2. Make sure that you end the last line in the configuration file with a new
line. Otherwise, you will get an error message when you run a HMMER
query that uses the data source listed on the last line.

The next task in this sequence of tasks is starting the HMMER daemon.

Related tasks:

v “Starting the HMMER daemon” on page 321

Starting the HMMER daemon

Starting the HMMER daemon is part of the larger task of adding HMMER to
a federated system. Before you can access HMMER data sources, you must
start the HMMER daemon.

Prerequisites:

Before you start the HMMER daemon, you must have write access to all paths
listed under the DAEMON_LOGFILE_DIR, HMMER_OUT_DIR_PATH, and
Q_SEQ_DIR_PATH entries in the configuration file.

Procedure:

If the following conditions are true:
v You are in the daemon installation directory.
v You did not change the name of the daemon configuration file.
v Put the configuration file in the same directory as the daemon executable

file.

Type the following at the command line to start the HMMER daemon:

Chapter 19. Configuring access to HMMER data sources 321

db2hmmer_daemon

The executable file starts a new process in which the HMMER daemon runs.

If you changed the configuration file name or directory location, use the -c
option on the wrapper daemon command to point the daemon executable to
the new name or location.

For example, the following command causes the wrapper daemon to look for
its configuration information in a file called HMMER_D.config in the
subdirectory cfg.
db2hmmer_daemon -c cfg/HMMER_D.config

The next task in this sequence of tasks is registering the HMMER wrapper.

Related tasks:

v “Registering the HMMER wrapper” on page 322

Registering the HMMER wrapper

Registering the HMMER wrapper is part of the larger task of adding HMMER
to a federated system. You must register the wrapper in order to access a data
source. Wrappers are mechanisms that federated servers use to communicate
with and retrieve data from data sources. Your computer installs wrappers as
library files.

Procedure:

To register the HMMER wrapper, issue the CREATE WRAPPER statement.

For example, to create a HMMER wrapper on AIX called my_hmmer from the
default library file, libdb2lshmmer.a, submit the following statement:
CREATE WRAPPER my_hmmer LIBRARY ’libdb2lshmmer.a’

OPTIONS(DB2_FENCED ’N’);

For Windows, use db2lshmmer.dll instead of libdb2lshmmer.a.

The next task in this sequence of tasks is setting the DB2_DJ_COMM
environment variable for the HMMER wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the HMMER
wrapper” on page 323

Related reference:

322 Data Source Configuration Guide

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM DB2 profile variable for the HMMER wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the HMMER wrapper is
an optional task of the larger task of adding HMMER to a federated system.
To improve performance when you access HMMER data sources, set the
DB2_DJ_COMM DB2 profile variable. This variable determines whether the
federated server loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, submit the db2set command
with the wrapper library that you specified in the associated CREATE
WRAPPER statement.

For example:
db2set DB2_DJ_COMM=libdb2lshmmer.a,libdb2lshmmerF.a,libdb2lshmmerU.a

Where libdb2lshmmer.a, libdb2lshmmerF.a, and libdb2lshmmerU.a refer to
main, fenced, and unfenced library names on an AIX platform.

Ensure that there are no spaces on either side of the equal sign (=).

To avoid unnecessary overhead when you load the wrapper libraries at
database startup, specify only libraries that you intend to access.

The next task in this sequence of tasks is registering the server for a HMMER
data source.

Related tasks:

v “Registering the server for a HMMER data source” on page 323

Registering the server for a HMMER data source

Registering the server for a HMMER data source is part of the larger task of
adding HMMER to a federated system. After you register the wrapper, you
must register a corresponding server.

Procedure:

To register the HMMER server to the federated system, use the CREATE
SERVER statement.

Chapter 19. Configuring access to HMMER data sources 323

You must register each server on which a HMMER search that uses the
hmmpfam executable and daemon instance runs.

For example, for a wrapper called my_hmmer that uses the CREATE
WRAPPER statement for hmmpfam searches, you would register the
hmmer_server1 server with the following statement:
CREATE SERVER hmmer_server1
TYPE pfam

VERSION 2.2
WRAPPER my_hmmer
OPTIONS (NODE ’someserver.someschool.edu’, DAEMON_PORT ’4098’)

Arguments

TYPE Required: Determines the type of search performed that uses the
specified server. In this release, the value must be set to PFAM.

VERSION
Required: Specifies the server version, which should match the
version of the hmmpfam executable version that you are running
(HMMER 2.2 or above).

WRAPPER
Required: Specifies the name of the wrapper that you registered when
you issued the CREATE WRAPPER statement.

Options
You must enclose server option values in single quotation marks.

NODE
Required: Specifies the host name of the server on which the HMMER
daemon process runs.

DAEMON_PORT
Optional: Specifies the port number on which the daemon listens for
HMMER job requests. The port number must be the same number
specified in the DAEMON_PORT option of the daemon configuration
file. The default is 4098.

PROCESSORS
Optional: Specifies the number of processors that the HMMER
program uses. This option is equivalent to the --cpu option of the
hmmpfam command. Example: PROCESSORS ’2’.

HMMPFAM_OPTIONS
Optional: Specifies hmmpfam options such as --null2, --pvm, and
--xnu that have no corresponding column name in a reference table
that maps options to column names. Example: HMMPFAM_OPTIONS
’--xnu --pvm’. In this example, instead of using hmmpfam options,
you would use the appropriate column name in the WHERE clause of
the SQL query.

324 Data Source Configuration Guide

The next task in this sequence of tasks is registering nicknames for HMMER
data sources.

Related tasks:

v “Registering nicknames for HMMER data sources” on page 325

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Registering nicknames for HMMER data sources

Registering nicknames for HMMER data sources is part of the larger task of
adding HMMER to a federated system. After you register a server, you must
register a corresponding nickname. When you refer to a HMMER data source
in a query, you use nicknames.

Procedure:

To register a HMMER nickname, use the CREATE NICKNAME statement.
You must define a separate nickname for each profile database that you want
to query.

The CREATE NICKNAME statement syntax for HMMER is:

�� CREATE NICKNAME nickname FOR SERVER server-name OPTIONS (�

� DATASOURCE ’data_source_name’
, TIMEOUT ’timeout_duration’

�

�
, HMMTYPE ’hmmer_type’

�

��) �

Example:
CREATE NICKNAME myhmms
FOR SERVER hmmer_server
OPTIONS(DATASOURCE ’myhmms’,TIMEOUT ’60’)

Nickname options
You must enclose nickname option values in single quotation marks.

DATASOURCE
Required: The name of the data source on which you run the
HMMER search. The exact string that is used here must be present in
the configuration file of the HMMER daemon.

Chapter 19. Configuring access to HMMER data sources 325

TIMEOUT
Optional: The maximum time, in minutes, that the HMMER wrapper
will wait for results from the daemon. The default value is 60.

HMMTYPE
Optional: The alphabet that is used in both models and gene
sequences. The value may be either NUCLEIC or PROTEIN and is not
case sensitive. The default value is PROTEIN.

Fixed columns
The CREATE NICKNAME statement automatically creates fixed columns. You
can reference these fixed columns in SQL queries as part of the nickname
definition. Fixed columns do not appear in the CREATE NICKNAME
statement. There are two types of fixed columns, input and output.

Input fixed columns
You use input-fixed columns as parameter-passing predicates in SQL queries.
They pass standard hmmpfam options to HMMER. HMMER then runs on the
specified data source that uses these hmmpfam options. You can also
reference input-fixed columns in the query-select list, which are returned as
part of the results table. Table 62 lists input-fixed columns.

Table 62. Input fixed columns

Name Data type Description Allowed
Operators

hmmpfam
Option

Returned
Value

HmmQSeq varchar(32000) Input gene
sequence
that is used
to search

= Same as
input; this
column is
required.

ModelEValue double Estimated
e-value

< -E n See
output.

ModelScore double Raw score > -T n See
output.

DBSize integer Calculate
e-values as
if the
database
had ’n’ gene
sequences

= -Z n Same as
input;
uses
hmmpfam
default if
not
specified.

CutMode char(2) Cutoff
mode; may
be ga, tc or
nc (case
sensitive)

= --cut_ga
--cut_tc
--cut_nc

Same as
input;
NULL if
not
specified.

326 Data Source Configuration Guide

Table 62. Input fixed columns (continued)

Name Data type Description Allowed
Operators

hmmpfam
Option

Returned
Value

DomainScore double Domain
score

> --domT n See
output.

DomainEValue double Domain
e-value

< --domE n See
output.

ForwardAlgorithmchar Use Forward
algorithm
rather than
Viterbi;
value may
be ’Y’ or ’N’

= --forward Same as
input; ’N’
is the
default.

Output fixed columns
You can use the output fixed columns that are returned in the query results
table as predicates. Table 63 lists output-fixed columns.

Table 63. Output fixed columns

Name Data type Description

Model varchar(32) Name of model.

ModelDescription varchar(64) Text description of model.

ModelScore double Raw score (″bit score″).

ModelEValue double Estimated e-value.

ModelHits integer Number of domains hit within the
model.

DomainNumber integer Specific domain (within one model).

SequenceFrom integer Starting point of gene sequence.

SequenceFromGlobal char ’Y’ if the alignment starts at the
beginning of the gene sequence.

HmmFrom integer Starting point of consensus model.

HmmFromGlobal char ’Y’ if the alignment starts at the
beginning of the consensus model.

HmmTo integer Ending point in consensus model.

HmmToGlobal char ’Y’ if the alignment ends at the end of
the consensus model.

DomainScore double Raw score (″bit score″) for the isolated
domain.

DomainEValue double Expected value for the isolated
domain.

Chapter 19. Configuring access to HMMER data sources 327

Table 63. Output fixed columns (continued)

Name Data type Description

AlignmentConsensus varchar(32000) The HMM consensus (the amino acid
shown for the consensus is the highest
probability amino acid at that position
according to the HMM, not necessarily
the highest scoring amino acid).

AlignmentExactMatch varchar(32000) Matches the highest probability
residue in the HMM.

AlignmentSubSequence varchar(32000) Shows the gene sequence itself.

There are no further tasks in this sequence of tasks.

Related reference:

v “HMMER data source – complete example” on page 328
v “CREATE NICKNAME statement - Example for HMMER wrapper” on

page 328

CREATE NICKNAME statement - Example for HMMER wrapper

The following CREATE NICKNAME statement defines the nickname
myhmms:
CREATE NICKNAME myhmms
FOR SERVER hmmer_server
OPTIONS(DATASOURCE ’myhmms’,TIMEOUT ’60’)

After you issue the CREATE NICKNAME statement, you can use the
nickname myhmms to query your federated system. You can also join the
myhmms nickname with other nicknames and tables in your federated
system.

There are no further tasks in this sequence of tasks.

HMMER data source – complete example

SQL statements for HMMER data sources must contain special input
predicates that are used to pass standard HMMER options to the
hmmpfam-executable file.

Restrictions:

To be valid, every query passed to the HMMER wrapper must contain at least
the HmmQSeq input predicate. All other predicates are optional.

328 Data Source Configuration Guide

Procedure:

To construct a HMMER query, use the input predicates in the WHERE clause
of your SQL statement.

The following complete example shows all the statements you need to create
and run a query that uses HmmQSeq as a search sequence:
CREATE WRAPPER hmmer_wrapper
LIBRARY ’libdb2lshmmer.a’
OPTIONS (DB2_FENCED ’N’);

CREATE SERVER hmmer_serv
TYPE pfam VERSION 2.2
WRAPPER hmmer_wrapper
OPTIONS(NODE ’HMMERserv.MyCompany.com’);

CREATE NICKNAME myhmms
FOR SERVER hmmer_serv
OPTIONS(DATASOURCE ’myhmms’, TIMEOUT ’1’);

-- Run the 7LES_DROME gene sequence on the myhmms nickname
SELECT Model, substr(ModelDescription,1,50) as ModelDescription,

ModelScore, ModelEValue, ModelHits, DomainNumber,
SequenceFrom, SequenceTo, SequenceFromGlobal, SequenceToGlobal,
HmmFrom, HmmTo, HmmFromGlobal, HmmToGlobal,
DomainScore, DomainEValue,
length(HmmQSeq) as "length(HmmQSeq)",
length(AlignmentConsensus) as "length(AConsensus)",
length(AlignmentMatch) as "length(AMatch)",
length(AlignmentSubSeq) as "length(ASubSeq)",
substr(HmmQSeq,1,64) as HmmQSeq,
substr(AlignmentConsensus,1,64) as AlignmentConsensus,
substr(AlignmentMatch, 1,64) as AlignmentMatch,
substr(AlignmentSubSeq, 1,64) as AlignmentSubSeq

FROM myhmms
WHERE HmmQSeq =

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQQAPGTSS...’;

Related tasks:

v “Registering nicknames for HMMER data sources” on page 325
v “Construct new HMMER queries with samples” on page 330

Chapter 19. Configuring access to HMMER data sources 329

Construct new HMMER queries with samples

The following sample HMMER queries illustrate how to construct queries for
HMMER data sources.

Procedure:

To run queries, use the following examples as a guide.

In these queries, the name that is used for each nickname describes the type
of HMMER search and data source. With descriptive names, one does not
need to list registration statements with each sample query. Also, some
examples illustrate HMMER wrapper behavior when joined with other data
sources.

Query 1.
SELECT Model, ModelScore, ModelEValue, DomainNumber, DomainScore, DomainEvalue
FROM myhmms
WHERE HmmQSeq = ’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’

When this SQL statement runs, the wrapper will perform an hmmpfam search
of myhmms that uses the indicated gene sequence. The wrapper will return
all of the available columns, including both the input parameter columns and
the HMMER result columns.

Query 2.
SELECT Model, ModelScore, ModelEValue
FROM myhmms
WHERE HmmQSeq = ’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’
AND ModelScore > 0

When this SQL statement runs, the wrapper will perform an hmmpfam search
of myhmms that uses the indicated gene sequence. In addition, the wrapper
passes the -T 0 option (see Table 62 on page 326) to the hmmpfam command.
The wrapper will return the three columns listed after SELECT.

Query 3.
SELECT Model, DomainNumber, DomainScore, DomainEValue
FROM myhmms
WHERE HmmQSeq = ’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’
AND ModelEValue < 1
ORDER BY DomainScore DESC

When this SQL statement runs, the wrapper will perform an hmmpfam search
of myhmms that uses the indicated gene sequence. In addition, the wrapper
passes the -E 1 option (see Table 62 on page 326) to the hmmpfam command.

330 Data Source Configuration Guide

The wrapper will return the four columns listed after SELECT and sort the
result by DomainScore from highest to lowest.

Related tasks:

v “Entrez data source — Example queries” on page 271

Related reference:

v “Documentum data source – Example queries” on page 179
v “Excel data source – Example queries” on page 195
v “Extended Search wrapper - Example queries” on page 303

Optimization tips for the HMMER wrapper

Running both the wrapper and the daemon on the same server can eliminate
potential network communication bottlenecks.

Related tasks:

v “Setting the DB2_DJ_COMM DB2 profile variable for the HMMER
wrapper” on page 323

Related reference:

v “Optimization tips and considerations for the table-structured file wrapper”
on page 151

v “Optimization tips for the BLAST wrapper” on page 228

Messages for the HMMER wrapper

For the HMMER wrapper to work, you must specify a query that contains a
predicate on the HmmQSeq column. When you query a fragment that lacks a
predicate on the HmmQSeq column, you get an error.

This section lists and describes messages that you might encounter when you
work with the HMMER wrapper.

Table 64. HMMER wrapper messages

Error Code Message Explanation

SQL0142N The SQL statement is not
supported.

The SQL query submitted to DB2 could not
be processed by the wrapper. Add the
required predicate and resubmit. Verify that
the operator used in a predicate is valid for
that column (see Table 62 on page 326).

Chapter 19. Configuring access to HMMER data sources 331

Table 64. HMMER wrapper messages (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Hmmer
wrapper″. Associated text
and tokens are ″Unable to
resolve NODE host name″.

The TCP/IP NODE name specified in
CREATE SERVER is invalid.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Hmmer
wrapper″. Associated text
and tokens are ″Unable to
connect to daemon″.

Either the hmmer_daemon program is not
currently running on the target node, or the
DAEMON_PORT specified in the CREATE
SERVER command does not match the
DAEMON_PORT value specified in
daemon configuration file
HMMER_DAEMON.config.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Hmmer
wrapper″. Associated text
and tokens are ″Unknown
error from the hmmer
daemon″.

The DATASOURCE name specifed in the
CREATE NICKNAME statement may not
match any of the profile database names
listed in the daemon configuration file
HMMER_DAEMON.config.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Hmmer
wrapper″. Associated text
and tokens are ″FATAL: No
such option ″--cut_TC″.

The CutMode predicate must be specified
in lower case. Example: WHERE CutMode
= ’tc’

Related reference:

v “Messages for the table-structured file wrapper” on page 152
v “Messages for the Documentum wrapper” on page 184
v “Messages for the Excel wrapper” on page 198
v “Messages for the BLAST wrapper” on page 228
v “Messages for the XML wrapper” on page 251
v “Messages for the Entrez wrapper” on page 281
v “Messages for the Extended Search wrapper” on page 307

332 Data Source Configuration Guide

Chapter 20. Altering nicknames

This chapter explains how to use the ALTER NICKNAME statement to alter
previously registered nicknames.

Altering nicknames

You can use the ALTER NICKNAME statement to modify the federated
database’s representation of a data source or view.

Restrictions:

The ALTER NICKNAME statement can not be used to alter column names for
the BLAST, Documentum, or EXCEL wrappers. The ALTER NICKNAME
statement can be used to alter column names for the table-structured file and
XML wrappers.

Procedure:

To alter nickname column values, you must use the ALTER NICKNAME
statement to:
v Change the local data types of these columns
v Add, change, or delete options for these columns

Related tasks:

v “Changing the data type” on page 333
v “Changing the nickname option” on page 334

Changing the data type

You can use the ALTER NICKNAME statement to change the data type of a
column.

Procedure:

To change the data type of a column, use the ALTER NICKNAME statement.

For example, the following ALTER NICKNAME statement changes the local
data type of the DRUG column to CHAR(30). The DRUG column was

© Copyright IBM Corp. 1998 - 2003 333

originally defined as a CHAR(20) using a CREATE NICKNAME statement.
The nickname DRUGDATA1 refers to a local table-structured file called
drugdata1.txt.
ALTER NICKNAME DRUGDATA1

ALTER COLUMN DRUG
LOCAL TYPE CHAR(30)

Related tasks:

v “Altering nicknames” on page 333
v “Changing the nickname option” on page 334

Changing the nickname option

You can use the ALTER NICKNAME statement to change a nickname option.

Procedure:

To change a nickname option, use the ALTER NICKNAME statement.

For example, the following ALTER NICKNAME statement changes the fully
qualified path for the table-structured file, drugdata1.txt. The path was
originally defined as ’/user/pat/drugdata1.txt’ using a CREATE NICKNAME
statement. The nickname DRUGDATA1 refers to a local table-structured file
called drugdata1.txt.
ALTER NICKNAME DRUGDATA1

OPTIONS (SET FILE_PATH ’/usr/kelly/data/drugdata1.txt’)

Related tasks:

v “Altering nicknames” on page 333
v “Changing the data type” on page 333

334 Data Source Configuration Guide

Chapter 21. DDL command reference

This chapter provides details of the syntax statements, arguments, and options
for the wrapper DDL commands covered in this book. The statements are
ordered alphabetically by statement, then wrapper.

CREATE FUNCTION statement syntax - Extended Search wrapper

�� CREATE FUNCTION ESWRAPPER.ES_SEARCH (INTEGER , VARCHAR(1024)) �

� RETURNS INTEGER AS TEMPLATE �

INTEGER
Defines the query reference parameter. In a query, this parameter must
specify the name of an INTEGER column that is defined in the nickname
table for which this custom function is being called. The value must be a
bind column of the nickname, not a constant (for example, DOC_RANK).

The reference parameter identifies the nickname to which the
ES_SEARCH function should be applied. The parameter itself is not
evaluated.

If a SELECT statement contains more than one table in the FROM clause,
and the WHERE clause contains an ES_SEARCH statement, the reference
parameter allows you to tell DB2 which table a particular search
statement belongs to. For example:
SELECT *
FROM ES_Nickname_1 as N1, ES_Nickname_2 as N2
WHERE ESWRAPPER.ES_SEARCH(N1.DOC_RANK, ’IBM’)=1 AND

ESWRAPPER.ES_SEARCH(N2.DOC_RANK, ’LOTUS’)=1

VARCHAR(1024)
Defines the query expression. In a query, this parameter must specify a
string that uses Extended Search generalized query language.

Related tasks:

v “Registering the Extended Search custom function” on page 299

Related reference:

v “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

v “Extended Search wrapper - Example queries” on page 303
v “Extended Search wrapper - Generalized query language” on page 305

© Copyright IBM Corp. 1998 - 2003 335

CREATE NICKNAME statement syntax - BLAST wrapper

�� CREATE NICKNAME nickname �

,

(column-name column-information) �

� FOR SERVER server-name OPTIONS (DATASOURCE ’data_source_name’ �

�
, PROCESSORS ’processor_number’ , TIMEOUT ’timeout_duration’

) �

column-information:

data-type column-option nickname-column-options

data-type:

INTEGER
INT
FLOAT

(integer)
PRECISION

DOUBLE
CHARACTER
CHAR (integer)

VARCHAR (integer)

column-option:

NOT NULL

nickname-column-options:

OPTIONS (INDEX ’index_number’ , DELIMITER ’delimiter’ �

�
DEFAULT ’new_default_value’

)

Nickname column options:

Nickname column option values must be enclosed in single quotation marks.

336 Data Source Configuration Guide

INDEX
The ordinal number of the column on which this option appears in
the group of definition line columns. This option is required.

DELIMITER
The delimiter characters that should be used to determine the end
point of the definition line information for the column on which this
option appears. If more than one character appears in this option’s
value, then the first occurrence of any one of the characters will signal
the end of this field’s information. The default is end of line. This
option is required, except for the last column specified if you want
that column to contain the remainder of the definition line.

DEFAULT
Specifies a new default value for the following input fixed columns:
v E_value
v QueryStrands
v GapAlign
v NMisMatchPenalty
v NMatchReward
v Matrix
v FilterSequence
v NumberOfAlignments
v GapCost
v ExtendedGapCost
v WordSize
v ThresholdEx

This new value overrides the pre-set default values. The new default
value must be of the same type as the value indicated for a given
column. This option is optional.

Nickname options:

Nickname option values must be enclosed in single quotation marks.

DATASOURCE
The name of the data source on which the BLAST search will be run.
The exact string used here must be present in the configuration file of
the BLAST daemon. This option is required.

PROCESSORS
Specifies the number of processors to be used when evaluating a
BLAST query. It corresponds to BLAST’s blastall -a option. This
option is optional. The default value is 1.

Chapter 21. DDL command reference 337

TIMEOUT
The maximum time, in minutes, that the BLAST wrapper will wait for
results from the daemon. The default is 60. This option is optional.

Related tasks:

v “Configuring the BLAST daemon” on page 211
v “Registering nicknames for BLAST data sources” on page 217

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for BLAST wrapper” on page
223

CREATE NICKNAME statement syntax - Documentum wrapper

The syntax for the CREATE NICKNAME statement for Documentum is:

�� CREATE NICKNAME nickname �

,

(column-name column-information) �

� FOR SERVER server-name OPTIONS (
ALL_VERSIONS ’Y’ ,

’N’

�

�
FOLDERS ’folder_string’ , IS_REG_TABLE ’Y’ ,

’N’

�

� REMOTE_OBJECT ’remote_object_type’) �

column-information:

data-type column-option
nickname-column-options

data-type:

338 Data Source Configuration Guide

SMALLINT
INTEGER
INT

DOUBLE
PRECISION

CHARACTER
CHAR (integer)

VARCHAR (integer)
DATE
TIMESTAMP

column-option:

NOT NULL

nickname-column-options:

OPTIONS (
REMOTE_NAME ’attribute_name’ , DELIMITER ’delimiter’ ,

�

�
IS_REPEATING ’Y’ ,

’N’
ALL_VALUES ’Y’

’N’

Column options associated with the CREATE NICKNAME statement for
Documentum are:

NOT NULL
All single-valued columns except those defined as TIMESTAMP and
DATE must be defined as NOT NULL. Repeating attributes must not
be defined as NOT NULL in nicknames.

Nickname column options associated with the CREATE NICKNAME
statement for Documentum are:

Nickname column option values must be enclosed in single quotation marks.

ALL_VALUES
Specifies that all values of a repeating attribute will be returned,
separated by the specified delimiter. If this option is missing or is ’N’,
then only the last value of a repeating attribute will be returned. As
noted under DELIMITER, ALL_VALUES may only be specified for
VARCHAR columns for which the IS_REPEATING option is ’Y’ (and
is invalid when IS_REG_TABLE = ’Y’).

DELIMITER
Specifies the delimiter string to be used when concatenating multiple
values of a repeating attribute. The delimiter can be one or more

Chapter 21. DDL command reference 339

characters. The default delimiter is a comma. This option is only valid
for attributes of objects with data type VARCHAR where the
IS_REPEATING option is set to ’Y’. This option is optional.

IS_REPEATING
Indicates if the column is multi-valued. Valid values are ’Y’ and ’N’.
The default is ’N’. This option is optional.

Only the last value is returned for
v non-VARCHAR repeating attributes
v VARCHAR columns when ALL_VALUES ’N’ is specified

To overcome this limitation, you can create a dual definition for the
repeating attribute column.

REMOTE_NAME
Specifies the name of the corresponding Documentum attribute or
column. This option maps remote attribute or column names to local
DB2 column names. It defaults to the DB2 column name. This option
is optional.

Nickname column options associated with the CREATE NICKNAME
statement for Documentum are:

Nickname option values must be enclosed in single quotation marks.

ALL_VERSIONS
Specifies whether all object versions will be searched. The valid values
are ’y’, ’Y’, ’n’, and ’N’. The default value of ’N’ means that only the
current object versions are included in query processing. This option
is invalid when IS_REG_TABLE = ’Y’. This option is optional.

FOLDERS
Specifies a string that contains one or more logically-combined and
syntactically-correct Documentum FOLDER predicates. Specifying
FOLDER predicates restricts the set of documents represented by this
nickname to those in the designated folders.

When you specify this option, enclose the entire value of the
FOLDERS option in single quotes and use double quotes in place of
the single quotes within the string.

For example, if you want to insert:
FOLDER(’/Tools’,DESCEND) OR FOLDER(’/Cars’)

Specify the following FOLDERS option:
FOLDERS ’FOLDER("/Tools",DESCEND) OR FOLDER("/Cars")’

340 Data Source Configuration Guide

This option is invalid when IS_REG_TABLE = ’Y’. This option is
optional.

IS_REG_TABLE
Specifies whether the object specified by the REMOTE_OBJECT option
is a Documentum registered table. The valid values are ’y’, ’Y’, ’n’,
and ’N’. The default value is ’N’. This option is optional.

You cannot change a nickname from a Documentum object to a
registered table (or back) by changing this option with the ALTER
NICKNAME statement. Instead, you must DROP and re-CREATE the
nickname.

REMOTE_OBJECT
Specifies the name of the Documentum object type associated with the
nickname. The name can be any Documentum object type or
registered table. In the case of a registered table, it should be prefixed
by the table owner’s name. If the registered table belongs to the
Docbase owner, dm_dbo can be used for the owner name. This option
is required.

Using ALTER NICKNAME to change the value of the
REMOTE_OBJECT option will result in errors if the structure of the
new object is not similar to that of the original object.

Related tasks:

v “Registering nicknames for Documentum data sources” on page 165

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Example for Documentum wrapper” on
page 170

CREATE NICKNAME statement syntax - Excel wrapper

�� CREATE NICKNAME nickname (�

,

column-name data-type column-option �

�) FOR SERVER server-name OPTIONS (FILE_PATH ’path’
, RANGE ’range’

�

�) �

Chapter 21. DDL command reference 341

data-type:

INTEGER
INT

FLOAT
(integer)

VARCHAR (integer)
DATE

column-option:

NOT NULL

Where:

FOR SERVER
Identifies the server that you registered in the associated CREATE
SERVER statement. This server is used to access the Excel spreadsheet.
Specify the server name.

The following list describes the CREATE NICKNAME options for Excel:

FILE_PATH
Specifies the fully qualified directory path and file name of the Excel
spreadsheet that you want to access.

Data types must be consistent within each column and the column
data types must be described correctly during the register nickname
process.

The Excel wrappers can only access the primary spreadsheet within
an Excel workbook.

Blank cells in the spreadsheet are interpreted as NULL.

Up to 10 consecutive blank rows can exist in the spreadsheet and be
included in the data set. More than 10 consecutive blank rows are
interpreted as the end of the data set.

Blank columns can exist in the spreadsheet. However, these columns
must be registered and described as valid fields even if they will not
be used.

The database codepage must match the file’s character set; otherwise,
you could get unexpected results.

RANGE
Specifies a range of cells to be used in the data source. This option is
not required.

342 Data Source Configuration Guide

Any syntax or semantic error in the range option value results in an
SQL1882E message. Errors might include:
v The top left and bottom right indicators are not oriented correctly.

An incorrect orientation is one in which the top-left cell indicator is
either below or to the right of the bottom-right cell indicator.

v The number of columns designated by the range value does not
correspond to the number of columns specified in the CREATE
NICKNAME statement.

v A nonvalid character or other syntax error has been found.

Here is an example of the RANGE nickname option:
CREATE NICKNAME excel2
(c1 VARCHAR (10),
c2 VARCHAR (10),
c3 VARCHAR (10),
c4 VARCHAR (10)
) FOR SERVER excel_server
OPTIONS (FILE_PATH ’C:\My Documents\test2.xls’,
RANGE ’B2:E5’);

In this example, B2 represents the top left of a cell range, and E5
represents the bottom right of the cell range. The letter B in the B2
designation is the column designation. The number 2 in the B2
representation is the row number.

The bottom right designation can be omitted from the range. In this
case, the bottom right valid row is used. If the top left value is
omitted, then the value is taken as A1. If the range specifies more
rows than are actually in the spreadsheet, then the actual number of
rows is used.

Related tasks:

v “Registering nicknames for Excel data sources” on page 194

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

CREATE NICKNAME statement syntax - Extended Search wrapper

�� CREATE NICKNAME nickname (�

,

column-name data-type
) �

Chapter 21. DDL command reference 343

� FOR SERVER server-name OPTIONS (APPLICATIONID ’application-id’ , �

�

�

;

CATEGORY ’ category-name ’ ,

�

�

�

;

DATASOURCE ’ source-name ’ ,

’NO’
VERTICAL_TABLE ,

’YES’

�

�
’30’

TIMEOUT ,
’timeout’

’50’
MAXHITS ,

’results’

�

�
’50’

TOTALMAXHITS ,
’total-results’

’A’
SORTORDER ,

’D’

�

�
’DOC_RANK’

SORTFIELD
’field-name’

) �

data-type:

SMALLINT
INTEGER
INT

DOUBLE
PRECISION

VARCHAR (integer)
DECIMAL (integer)
DATE

NICKNAME
Specifies a unique name for this Extended Search nickname table. This

344 Data Source Configuration Guide

name must be distinct from all other nicknames in the schema for which
it is being defined. This parameter is required.

column-name
Specifies one or more user-defined column names. The column name must
match the name of a native or mapped field that is defined in the
Extended Search configuration database. This parameter is optional.

data-type
Specifies the SQL data type of the named column. This data type must
correspond to the data type that is defined for this field in the Extended
Search configuration database. For example, to search a field in an
Extended Search data source that has a String data type, define a
VARCHAR column for this field in the nickname table. If you specify a
column-name, this parameter is required.

FOR SERVER
Specifies the name of a previously registered server definition that was
created for the Extended Search server that you want to search. This
parameter is required.

APPLICATIONID
Specifies the name of the Extended Search application that you want to
search. This name must exist in the Extended Search configuration
database. This parameter is required.

CATEGORY
Specifies one or more Extended Search categories that you want to search.
If you omit this option, you must specify at least one data source name.
To specify multiple categories, delimit the category names with a
semicolon. For example:
CATEGORY ’LotusNotes;MSAccess;LDAP’

DATASOURCE
Specifies one or more Extended Search data sources that you want to
search. If you omit this option, you must specify at least one category
name. To specify multiple data sources, delimit the data source names
with a semicolon. For example:
DATASOURCE ’AltaVista;Google!;CNN’

VERTICAL_TABLE
Specifies the presentation format for search results. If you specify YES,
Extended Search returns all fields that are configured as returnable, not
just the user-defined columns. The wrapper stores the results in the
nickname table as a vertical list of column names. The default value is NO.

TIMEOUT
An INTEGER that specifies the number of seconds to wait for a response
from a server before the request times out. This option is optional. The
default value is 30.

Chapter 21. DDL command reference 345

MAXHITS
An INTEGER that specifies the maximum number of results that can be
returned from each source that is being searched. This option is optional.
The default value is 50.

TOTALMAXHITS
An INTEGER that specifies the maximum number of results that can be
returned from all the sources that are being searched. The wrapper
combines these results into a single result set. This option is optional. The
default value is 50.

SORTORDER
Specifies a sort order for the return of search results, either ascending (A)
or descending (D). The default value is A.

SORTFIELD
Specifies the name of a field on which search results should be sorted. The
default value, DOC_RANK, is a field that Extended Search uses to weigh the
relevancy of a result document. If you specify a different field name, be
sure that name exists in the sources that you search.

Related concepts:

v “Extended Search nicknames” on page 290
v “Extended Search vertical tables” on page 292

Related tasks:

v “Registering nicknames for Extended Search data sources” on page 297

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “Extended Search wrapper - Example queries” on page 303

CREATE NICKNAME statement options - Entrez wrapper

The following list describes the CREATE NICKNAME options for Entrez:

REMOTE_OBJECT
Specifies the name of the Entrez object type associated with the
nickname. This name determines the schema and NCBI database for
the nickname and its relationship to other nicknames. This name is
case-insensitive.

PARENT
Specified only for a child nickname whose parent has been renamed
through the REMOTE_OBJECT option. The PARENT option associates
a child with a parent when multiple nickname families are defined
within a DB2 schema. This name is case-sensitive.

346 Data Source Configuration Guide

Related tasks:

v “Registering nicknames for Entrez data sources” on page 266

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

CREATE NICKNAME statement syntax - Table-structured file wrapper

The syntax for the CREATE NICKNAME statement is:

�� CREATE NICKNAME nickname (�

,

column-name column–information) �

� FOR SERVER server-name OPTIONS (
FILE_PATH ’path’

�

�
, COLUMN_DELIMITER ’delimiter’ , SORTED ’Y’

’N’

�

�
(1)

, KEY_COLUMN ’key-column-name’

�

�
(1)

, VALIDATE_DATA_FILE ’Y’
’N’

) �

column–information:

data-type column-option nickname–column–options

data-type:

Chapter 21. DDL command reference 347

SMALLINT
INTEGER
INT

FLOAT
(integer)

REAL
DOUBLE

PRECISION
DECIMAL
DEC (integer)
NUMERIC , integer
NUM
CHARACTER
CHAR (integer)

VARCHAR (integer)

column-option:

NOT NULL

nickname–column–options:

OPTIONS (DOCUMENT ’FILE’)

Notes:

1 Not allowed for unsorted files. Optional for sorted files.

nickname
A unique nickname for the table-structured file to be accessed. It must
be distinct from all other nicknames, tables, and views in the schema
in which it is being registered.

column-name
A unique name given to each field in the table-structured file. Follow
each column name with its data type. Only columns of type CHAR,
VARCHAR, SMALLINT, INTEGER, FLOAT, DOUBLE, REAL, and
DECIMAL are supported.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

FLOAT(integer)
For a single or double precision floating-point number, depending on
the value of integer. The value of integer must be in the range 1
through 53. The values 1 through 24 indicate single precision and the
values 25 through 53 indicate double precision.

348 Data Source Configuration Guide

REAL For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point.

FLOAT
For double precision floating-point.

DECIMAL(precision-integer, scale-integer) or DEC(precision-integer, scale-integer)
For a decimal number.

The first integer is the precision of the number; that is, the total
number of digits. This value can range from 1 to 31.

The second integer is the scale of the number; that is, the number of
digits to the right of the decimal point. This value can range from 0 to
the precision of the number.

If precision and scale are not specified, the default values of 5,0 are
used.

The words NUMERIC and NUM can be used as synonyms for
DECIMAL and DEC.

CHARACTER(integer) or CHAR(integer) or CHARACTER or CHAR
For a fixed-length character string of length integer, which can range
from 1 to 254. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer)
For a varying-length character string of maximum length integer,
which can range from 1 to 32672.

NOT NULL
Prevents the column from containing null values.

The wrapper does not enforce the NOT NULL constraint, but DB2
does. If you create a nickname and attach a NOT NULL constraint on
a column and then select a row containing a null value for the
column, DB2 will issue a SQL0407N error stating that you can’t assign
a NULL value to a NOT NULL column.

The exception to this rule is for sorted nicknames. The key column for
sorted nicknames cannot be NULL. If a NULL key column is found
for a sorted nickname, the SQL1822N error is issued, stating that the
key column is missing.

FOR SERVER
Identifies the server you registered using the CREATE SERVER
statement. This server will be used to access the table-structured file.

FILE_PATH
The fully qualified path to the table-structured file to be accessed,

Chapter 21. DDL command reference 349

enclosed in single quotation marks. The data file must be a standard
file or a symbolic link, rather then a pipe or another non-standard file
type. Either the FILE_PATH or the DOCUMENT nickname column
option should be specified. If the FILE_PATH nickname option is
specified then no DOCUMENT nickname column option can be
specified.

SORTED
Specifies whether the data source file is sorted or unsorted. This
option accepts either ’Y’, ’y’, ’n’, or ’N’. It has a default value of ’N’.

Sorted data sources must be sorted in ascending order according to
the collation sequence for the current locale, as defined by the settings
in the LC_COLLATE National Language Support category.

If you specify that the data source is sorted, it is recommended you
set VALIDATE_DATA_FILE to ’Y’.

COLUMN_DELIMITER
The delimiter used to separate columns of the table-structured file,
enclosed in single quotation marks. Only single character delimiters
are allowed. If no column delimiter is defined, the column delimiter
defaults to the comma. A single quote cannot be used as a delimiter.
The column delimiter must be consistent throughout the file. A null
value is represented by two delimiters next to each other or a
delimiter followed by a line terminator, if the NULL field is the last
one on the line. The column delimiter cannot exist as valid data for a
column. For example, a column delimiter of a comma cannot be used
if one of the columns contains data with embedded commas.

KEY_COLUMN
The name of the column in the file that forms the key on which the
file is sorted, enclosed in single quotation marks. Use this option for
sorted files only. A column that is designated with the DOCUMENT
nickname column option must not be specified as the key column.

Only single-column keys are supported. Multi-column keys are not
allowed. The value must be the name of a column defined in the
CREATE NICKNAME statement. The column must be sorted in
ascending order. If the value is not specified for a sorted nickname, it
defaults to the first column in the nicknamed file. It is recommended
that the key column be designated not nullable by adding the NOT
NULL option to its definition in the nickname statement.

This option is case-sensitive. However, DB2 folds column names to
upper case unless the column is defined with double quotes.

VALIDATE_DATA_FILE
For sorted files, this option specifies whether the wrapper verifies that
the key column is sorted in ascending order and checks for NULL

350 Data Source Configuration Guide

keys. The only valid values for this option are ’Y’ or ’N’, enclosed in
single quotation marks. The check is done once at registration time. If
this option is not specified, then no validation takes place. This option
is not allowed if the DOCUMENT nickname column option is used
for the file path.

DOCUMENT
Specifies the kind of table-structured file. Currently, this wrapper only
supports FILE for this option. Only one column can be specified with
the DOCUMENT option per nickname. The column associated with
the DOCUMENT option has to be of data type VARCHAR or CHAR.

Using the DOCUMENT nickname column option, instead of the
FILE_PATH nickname option, implies that the file corresponding to
this nickname will be supplied during query execution. If the
DOCUMENT option has the ″FILE″ value, it means that what will be
supplied during query execution is the full path of the file whose
schema matches the nickname definition for this nickname. The
following CREATE NICKNAME example illustrates the use of the
DOCUMENT nickname column option.
CREATE NICKNAME customers
(
doc VARCHAR(100) OPTIONS(DOCUMENT ’FILE’),
name VARCHAR(16),
address VARCHAR(30),
id VARCHAR(16)
)
FOR SERVER file_server

The following query, specifying the location of the table-structured file
in the WHERE clause, can now be run against the customers
nickname:
SELECT name, address, id FROM customers
WHERE doc=’/home/db2user/Customers.txt’

Related tasks:

v “Registering the server for table-structured files” on page 148

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for table-structured file
wrapper” on page 150

CREATE NICKNAME statement syntax - XML wrapper

Chapter 21. DDL command reference 351

�� CREATE NICKNAME nickname (column-name Column structure) �

� FOR SERVER server-name OPTIONS (
FILE_PATH ’path’ ,
DIRECTORY_PATH ’path’ ,

�

� XPATH ’xpath_expression’ Nickname parameters) �

Column structure:

Data type options
NOT NULL

Nickname column options

Data type options:

SMALLINT
INTEGER
INT

REAL
DOUBLE

PRECISION
DECIMAL
DEC (integer)
NUMERIC , integer
NUM
CHARACTER
CHAR (integer)

VARCHAR (integer)
DATE

Nickname column options:

OPTIONS (DOCUMENT ’FILE’
’DIRECTORY’
’URI’
’COLUMN’

XPATH ’xpath_expression’
PRIMARY_KEY ’YES’
FOREIGN_KEY ’parent_nickname’

)

Nickname parameters:

’NO’
STREAMING ’YES’ ,

’NO’
VALIDATE ’YES’ ,

�

�
INSTANCE_PARSE_TIME ’value’ , XPATH_EVAL_TIME ’value’ ,

�

352 Data Source Configuration Guide

�
NEXT_TIME ’value’

Nickname parameters and options:

FILE_PATH
Specifies the file path of the XML document. If you specify this
nickname option, do not specify a DOCUMENT column. This
FILE_PATH option is accepted only for the root nickname (the
nickname that identifies the elements at the top level of the XML
document).

DIRECTORY_PATH
Specifies the path name of a directory that contains one or more XML
files. Use this option to create a single nickname over multiple XML
source files. The XML wrapper uses only those files with a .xml
extension that are located in the directory that you specify. The XML
wrapper ignores all other files in this directory. If you specify this
nickname option, do not specify a DOCUMENT column. This
DIRECTORY_PATH option is accepted only for the root nickname (the
nickname that identifies the elements at the top level of the XML
document).

XPATH
Specifies an XPath expression that identifies the XML elements that
represent individual tuples. The XPATH nickname option for a child
nickname is evaluated in the context of the path that is specified by
the XPATH nickname option of its parent. This XPath expression is
used as a context for evaluating column values that are identified by
the XPATH nickname column options.

Do not specify a namespace prefix in an XPath expression. The XML
wrapper does not support namespaces.

Nickname column options:

DOCUMENT
Specifies that this column is a DOCUMENT column. The value of the
DOCUMENT column indicates the type of XML source data that is
supplied to the nickname when the query runs. This option is
accepted only for columns of the root nickname (the nickname that
identifies the elements at the top level of the XML document). Only
one column can be specified with the DOCUMENT option per
nickname. The column that is associated with the DOCUMENT option
must be a VARCHAR data type.

If you use a DOCUMENT column option, instead of the FILE_PATH
or DIRECTORY_PATH nickname option, the document that
corresponds to this nickname is supplied when the query runs.

Chapter 21. DDL command reference 353

The valid values for the DOCUMENT option are:

FILE Specifies that the value of the nickname column is bound to
the path name of a file that contains an XML document. The
data from this file is supplied when the query runs.

DIRECTORY
Specifies that the value of the nickname column is bound to
the path name of a directory that contains multiple XML data
files. The XML data from multiple files is supplied when the
query runs. The data is located in XML files that reside under
the specified directory path. The XML wrapper uses only
those files with a .xml extension that are located in the
directory that you specify. The XML wrapper ignores all other
files in this directory.

URI Specifies that the value of the nickname column is bound to
the path name of a remote XML file to which a URI refers.
The URI address indicates the remote location of this XML file
on the Web.

COLUMN
Specifies that the XML document is stored in a relational
column.

XPATH
Specifies the XPath expression in the XML document that contains the
data that corresponds to this column. The XML wrapper evaluates the
XPath expression after the CREATE NICKNAME statement applies
this XPath expression from this XPATH nickname option.

If you run a query on a column name that has an incorrectly
configured XPATH tag reference such as incorrect case, your query
returns null values in this column for all returned rows.

Do not specify a namespace prefix in an XPath expression. The XML
wrapper does not support namespaces.

PRIMARY_KEY
Indicates that this nickname is a parent nickname. The column data
type must be VARCHAR(16). A nickname can have at most one
PRIMARY_KEY column option. ’YES’ is the only valid value. The
column that is designated with this option holds a key that is
generated by the wrapper. The column’s value cannot be retrieved in
a SELECT query, and the XPATH option must not be specified for this
column. The column can be used only to join parent nicknames and
child nicknames.

FOREIGN_KEY
Indicates that this nickname is a child nickname and specifies the

354 Data Source Configuration Guide

name of the corresponding parent nickname. A nickname can have at
most one FOREIGN_KEY column option. The value for this option is
case sensitive. The column that is designated with this option holds a
key that is generated by the wrapper. The column’s value cannot be
retrieved in a SELECT query, and the XPATH option must not be
specified for this column. The column can be used only to join parent
nicknames and child nicknames.

A CREATE NICKNAME statement with a FOREIGN_KEY option will
fail if the parent nickname has a different schema name.

Unless the nickname that is referred to in a FOREIGN_KEY clause
was explicitly defined to be lowercase or mixed case by enclosing it in
quotation marks under the corresponding CREATE NICKNAME
statement, then when you refer to this nickname in the
FOREIGN_KEY clause, you must specify the nickname in uppercase.

Nickname parameters:

STREAMING
Specifies whether the XML source document is separated into logical
fragments that correspond to the node that matches the XPath
expression of the nickname. The XML wrapper then parses and
processes the XML source data fragment by fragment, reducing total
memory use. You can specify streaming for any XML source
document (FILE, DIRECTORY, URI, or COLUMN). This option is accepted
only for columns of the root nickname (the nickname that identifies
the elements at the top level of the XML document). The default
streaming value is NO.

Do not set the STREAMING parameter to YES if you set the
VALIDATE parameter to YES. If you set both parameters to YES, you
will receive an error message.

VALIDATE
Specifies whether the XML source document is validated before the
XML data is extracted. If this option is set to YES, the nickname
option verifies that the structure of the source document conforms to
an XML schema or to a document type definition (DTD). This option
is accepted only for columns of the root nickname (the nickname that
identifies the elements at the top level of the XML document). The
default value is NO.

The XML source document is not validated if the XML wrapper
cannot locate the XML schema file or DTD file (.xsd or .dtd). DB2
does not issue an error message if the validation does not occur.
Therefore, ensure that the XML schema file or DTD file exists in the
location that is specified in the XML source document.

Chapter 21. DDL command reference 355

Do not set the VALIDATE parameter to YES if you set the
STREAMING parameter to YES. If you set both parameters to YES,
you will receive an error message.

INSTANCE_PARSE_TIME
Specifies the time (in milliseconds) to parse the data in one row of the
XML source document. You can modify the INSTANCE_PARSE_TIME,
XPATH_EVAL_TIME, and NEXT_TIME options to optimize queries of
large or complex XML source structures. This option is accepted only
for columns of the root nickname (the nickname that identifies the
elements at the top level of the XML document). The number that you
specify can be an integer or a decimal value. The default value is 7
milliseconds.

XPATH_EVAL_TIME
Specifies the time (in milliseconds) to evaluate the XPath expression of
the nickname and to locate the first element. You can modify the
XPATH_EVAL_TIME, INSTANCE_PARSE_TIME, and NEXT_TIME
options to optimize queries of large or complex XML source
structures. This option is accepted for root nicknames and nonroot
nicknames. The number that you specify can be an integer or a
decimal value. The default value is 1 millisecond.

NEXT_TIME
Specifies the time (in milliseconds) that is required to locate
subsequent source elements from the XPath expression. You can
modify the NEXT_TIME, XPATH_EVAL_TIME, and
INSTANCE_PARSE_TIME options to optimize queries of large or
complex XML source structures. This option is accepted for root
nicknames and nonroot nicknames. The default value is 1 millisecond.

Usage notes:

If you use the DATE data type option, the dates in your XML source
document must have the following format: CCYY-MM-DD. For example, if the
date is 17 November 2002, the date must be specified as 2002-11-17 in the
XML source document. If a date has any other format, you will receive an
error message.

Do not set both the STREAMING parameter and the VALIDATE parameter to
YES. The XML wrapper validates an entire XML source document and does
not validate source document fragments. If you set both parameters to YES,
you will receive an error message.

Related tasks:

v “Registering nicknames for XML data sources” on page 243

356 Data Source Configuration Guide

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for XML wrapper” on page
244

CREATE SERVER statement arguments - BLAST wrapper

Arguments:

TYPE Determines the type of BLAST search performed using the given
server. This argument is required. It must be set to one of the
following values: blastn, blastp, blastx, tblastn, tblastx.

VERSION
Specifies the version of the server that you are using. It should be set
to the version of blastall that you are running. This argument is
required.

WRAPPER
Specifies the name of the wrapper that you registered using the
CREATE WRAPPER statement. This argument is required.

Options:

NODE
Specifies the host name of the system on which the BLAST daemon
process is running. This option is required.

DAEMON_PORT
Specifies the port number on which the daemon will listen for BLAST
job requests. The port number must be the same number specified in
the daemon_port option of the daemon configuration file. The default
is 4007. This option is optional.

Related tasks:

v “Registering the server for a BLAST data source” on page 217

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

CREATE SERVER statement arguments and options - Documentum wrapper

Arguments associated with the CREATE SERVER statement for Documentum
are:

TYPE Specifies the type of the data source. For Documentum, the type is
DCTM. This argument is required.

Chapter 21. DDL command reference 357

VERSION
Specifies the version of the data source. For EDMS98, the value is ’3’.
For 4i, the value is ’4’. This argument is required.

WRAPPER
Specifies the name of the wrapper associated with this server. This
argument is required.

Options associated with the CREATE SERVER statement for Documentum are:

CONTENT_DIR
Specifies the name of the locally-accessible root directory for storing
content files retrieved by the GET_FILE, GET_FILE_DEL,
GET_RENDITION, and GET_RENDITION_DEL pseudo columns. It
must be writable by all users who can use these pseudo columns. Its
default value is /tmp. This option is optional.

NODE
Specifies the actual name of the Documentum Docbase. This option is
required.

OS_TYPE
Specifies the Docbase server’s operating system. Valid values are AIX,
SOLARIS, and WINDOWS. This option is required.

RDBMS_TYPE
Specifies the RDBMS used by the Docbase. Valid values are DB2,
INFORMIX, ORACLE, SQLSERVER or SYBASE. This option is
required.

TRANSACTIONS
Specifies the server transaction mode. The valid values are:
v NONE — no transactions are enabled.
v QUERY — transactions are enabled only for Dctm_Query methods.
v ALL — transactions are enabled for the Dctm_Query method. ALL

has the same function as QUERY in this release.

The default is QUERY. This option is optional.

Related tasks:

v “Registering the server for Documentum data sources” on page 164

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

CREATE SERVER statement arguments - Entrez wrapper

Arguments for the CREATE SERVER statement for Entrez are:

358 Data Source Configuration Guide

TYPE Specifies the type of the data source. The acceptable values for server
type are PubMed and Nucleotide. These are case-insensitive.

VERSION
Specifies the version of the NCBI XML schema that you are using.
This argument is optional. If the version of the server is not specified,
the default is 1.0.

WRAPPER
Specifies the name of the wrapper that you registered by using the
CREATE WRAPPER statement.

Related tasks:

v “Registering the server for an Entrez data source” on page 265

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

CREATE SERVER statement arguments - Excel wrapper

Arguments associated with the CREATE SERVER statement for Excel are:

WRAPPER
Specifies the name of the wrapper that you registered in the
associated CREATE WRAPPER statement. This argument is required.

Related tasks:

v “Registering the server for an Excel data source” on page 194

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

CREATE SERVER statement syntax - Extended Search wrapper

�� CREATE SERVER server-name WRAPPER wrapper-name OPTIONS (�

� ES_HOST ’host-name’ ,
ES_PORT ’port-number’ ,

�

�
’OFF’

ES_TRACING ,
’ON’ �

C
ES_TRACELEVEL ’ ’ ,

N
W
I

�

Chapter 21. DDL command reference 359

�
’%DB2TEMPDIR%\ESWrapper.log’

ES_TRACEFILENAME
’path’

) �

SERVER
Specifies a unique name for this server definition. This parameter is
required.

WRAPPER
Specifies the name of a previously registered Extended Search wrapper
that you want to use with this server definition. This parameter is
required.

ES_HOST
Specifies the fully qualified host name or IP address of the Extended
Search server that you want to search. This option is required.

ES_PORT
Specifies the port number where this Extended Search server listens for
requests. If you omit this option, the default value is 6001.

ES_TRACING
Specifies whether tracing should be enabled for error messages, warning
messages, and informational messages that are produced by the remote
Extended Search server. The default value, OFF, means that no trace
messages will be logged.

ES_TRACELEVEL
If tracing is enabled, this option specifies the types of messages that will
be written to the log file. The default value, C, logs only critical messages.
You can enable and disable the following trace levels independently:

C — Critical error messages
N — Noncritical messages
W — Warning messages
I — Informational messages

For example:
ES_TRACELEVEL ’W’
ES_TRACELEVEL ’CN’
ES_TRACELEVEL ’CNWI’

ES_TRACEFILENAME
If tracing is enabled, this option specifies the name of a directory and file
where messages will be written. If you omit this option, the default value
is the ESWrapper.log file in your DB2 temp directory
(%DB2TEMPDIR%\ESWrapper.log or %DB2TEMPDIR%/ESWrapper.log).

360 Data Source Configuration Guide

Related tasks:

v “Registering the server for Extended Search data sources” on page 296

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

CREATE USER MAPPING statement options - Documentum wrapper

Option definitions:

REMOTE_AUTHID
Authorization identifier for you at the remote server.

REMOTE_PASSWORD
Password for you at the remote server.

REMOTE_DOMAIN
Windows networking domain for you at the remote server. Valid only
for Windows platforms.

Related tasks:

v “Mapping users (Documentum wrapper)” on page 164

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

CREATE USER MAPPING statement syntax - Extended Search wrapper

�� CREATE USER MAPPING FOR authorization-name SERVER server-name OPTIONS �

� (REMOTE_AUTHID ’user-id’ , REMOTE_PASSWORD ’password’) �

FOR
Specifies the user ID of a DB2 user that you want to authorize to access
Extended Search data sources. This parameter is required.

SERVER
Specifies the name of a previously registered server definition that was
created for the Extended Search server that the user wants to search. This
parameter is required.

REMOTE_AUTHID
Specifies a user ID that allows this DB2 user to access Extended Search
data sources. This remote ID must be in the format that is expected by the
data source that is being searched. This option is required.

REMOTE_PASSWORD
Specifies the password for this remote ID. This option is required.

Chapter 21. DDL command reference 361

Related tasks:

v “Registering user mappings for Extended Search data sources” on page 298

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

CREATE WRAPPER statement syntax - Extended Search wrapper

�� CREATE WRAPPER wrapper-name LIBRARY ’library-name’ �

WRAPPER
Specifies a unique name for this Extended Search wrapper.

LIBRARY
Specifies one of the following platform-dependent library names:
v Windows: db2uies.dll
v AIX: libdb2uies.a

Related tasks:

v “Registering the Extended Search wrapper” on page 295

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

362 Data Source Configuration Guide

Appendix A. Views in the global catalog table containing
federated information

Most of the catalog views in a federated database are the same as the catalog
views in any other DB2 for Linux, UNIX, and Windows database. There are
several unique views which contain information pertinent to a federated
system, such as the SYSCAT.WRAPPERS view.

As noted in the DB2 for Linux, UNIX, and Windows Version 6 and Version 7
SQL Reference manuals, the DB2 Version 8 SYSCAT views are now read-only.
If you issue an UPDATE or INSERT operation on a view in the SYSCAT
schema, it will fail. Using the SYSSTAT views is the recommended way to
update the system catalog. Change applications that reference the SYSCAT
view to reference the updatable SYSSTAT view instead.

The following table lists the SYSCAT views which contain federated
information. These are read-only views.

Table 65. Catalog views typically used with a federated system

Catalog views Description

SYSCAT.COLUMNS Contains column information about the
data source objects (tables and views) that
you have created nicknames for.

SYSCAT.COLOPTIONS Contains information about column option
values that you have set for a nickname.

SYSCAT.DATATYPES Contains data type information about local
built-in and user-defined DB2 data types.

SYSCAT.DBAUTH Contains the database authorities held by
individual users and groups.

SYSCAT.FUNCMAPOPTIONS Contains information about option values
that you have set for a function mapping.

SYSCAT.FUNCMAPPINGS Contains the function mappings between
the federated database and the data source
objects.

SYSCAT.ROUTINES Contains local DB2 user-defined functions,
or function templates. Function templates
are used to map to a data source function.

SYSCAT.INDEXES Contains index specifications for data
source objects.

© Copyright IBM Corp. 1998 - 2003 363

Table 65. Catalog views typically used with a federated system (continued)

Catalog views Description

SYSCAT.REVTYPEMAPPINGS Contains reverse data type mappings. The
mapping is from local DB2 data types to
data source data types. These mappings
are only used with remote (transparent)
tables.

SYSCAT.SERVEROPTIONS Contains information about server option
values that you set with a server
definition.

SYSCAT.SERVERS Contains server definitions that you create
for data source servers.

SYSCAT.TABLES Contains information about each local DB2
table, federated view, and nickname that
you create.

SYSCAT.TYPEMAPPINGS Contains forward data type mappings.
The mapping is to local DB2 data types
from data source data types. These
mappings are used when you query a
data source using a DB2 SQL statement.

SYSCAT.USEROPTIONS Contains user authorization information
that you set when you create user
mappings between the federated database
and the data source servers.

SYSCAT.VIEWS Contains information about local federated
views that you create.

SYSCAT.WRAPOPTIONS Contains information about option values
that you have set for a wrapper.

SYSCAT.WRAPPERS Contains the name of the wrapper and
library file for each data source that you
create a wrapper for.

The following table lists the SYSSTAT views which contain federated
information. These are read-write views that contain statistics you can update.

Table 66. Federated updatable global catalog views

Catalog views Description

SYSSTAT.COLUMNS Contains statistical information about each
column in the data source objects (tables
and views) that you have created
nicknames for. Statistics are not recorded
for inherited columns of typed tables.

364 Data Source Configuration Guide

Table 66. Federated updatable global catalog views (continued)

Catalog views Description

SYSSTAT.FUNCTIONS Contains statistical information about each
user-defined function. Does not include
built-in functions. Statistics are not
recorded for inherited columns of typed
tables.

SYSSTAT.INDEXES Contains statistical information about each
index specification for data source objects.

SYSSTAT.TABLES Contains information about each base
table. View, synonym, and alias
information is not included in this view.
For typed tables, only the root table of a
table hierarchy is included in the view.
Statistics are not recorded for inherited
columns of typed tables.

Appendix A. Views in the global catalog table containing federated information 365

366 Data Source Configuration Guide

Appendix B. Server options for federated systems

Server options are used with the CREATE SERVER statement to describe a
data source server. Server options specify data integrity, location, security, and
performance information. Some server options are available for all data
sources, and other server options are data source specific.

Nonrelational wrappers have additional, very specific server options that are
documented in the data source configuration information.

The common federated server options for relational data sources are:
v Compatibility options. COLLATING_SEQUENCE, IGNORE_UDT
v Data integrity options. IUD_APP_SVPT_ENFORCE
v Data and time options. DATEFORMAT, TIMEFORMAT,

TIMESTAMPFORMAT
v Location options. CONNECTSTRING, DBNAME, IFILE
v Security options. FOLD_ID, FOLD_PW, INFORMIX_LOCK_MODE
v Performance options. COMM_RATE, CPU_RATIO,

DB2_MAXIMAL_PUSHDOWN, IO_RATIO, LOGIN_TIMEOUT,
PACKET_SIZE, PLAN_HINTS, PUSHDOWN, TIMEOUT,
VARCHAR_NO_TRAILING_BLANKS

The following table lists the server definition server options applicable for
each relational data source.

© Copyright IBM Corp. 1998 - 2003 367

Table 67. Available server options

D
at

a
S

ou
rc

e

C
O

L
L

A
T

IN
G

_S
E

Q
U

E
N

C
E

C
O

M
M

_R
A

T
E

C
O

N
N

E
C

T
S

T
R

IN
G

C
P

U
_R

A
T

IO

D
A

T
E

FO
R

M
A

T

D
B

2_
M

A
X

IM
A

L
_P

U
S

H
D

O
W

N

D
B

N
A

M
E

FO
L

D
_I

D

FO
L

D
_P

W

IF
IL

E

IG
N

O
R

E
_U

D
T

IN
FO

R
M

IX
_L

O
C

K
_M

O
D

E

IO
_R

A
T

IO

IU
D

_A
P

P
_S

V
P

T
_E

N
FO

R
C

E

L
O

G
IN

_T
IM

E
O

U
T

N
O

D
E

PA
C

K
E

T
_S

IZ
E

PA
S

S
W

O
R

D

P
L

A
N

_H
IN

T
S

P
U

S
H

D
O

W
N

T
IM

E
O

U
T

T
IM

E
FO

R
M

A
T

T
IM

E
S

TA
M

P
FO

R
M

A
T

V
A

R
C

H
A

R
_N

O
_T

R
A

IL
IN

G
_B

L
A

N
K

S

DB2 for
iSeries

X X X X X X X X X X X X

DB2 for
z/OS and
OS/390

X X X X X X X X X X X X

DB2 for
VM and
VSE

X X X X X X X X X X X X

DB2 for
Linux,
UNIX, and
Windows

X X X X X X X X X X X X

Informix X X X X X X X X X X X X X

Microsoft
SQL Server

X X X X X X X X X X X X

ODBC X X X X X X X X X X X X X X X

OLE DB X X X

Oracle X X X X X X X X X X X X X

Sybase X X X X X X X X X X X X X X X X X

Teradata X X X X X X X X

The following table describes each server option and lists the valid and
default settings.

368 Data Source Configuration Guide

Table 68. Server options and their settings

Option Description and valid settings Default
setting

COLLATING_
SEQUENCE

Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
NLS code set and the country/region information.

’Y’ The data source has the same collating sequence as
the DB2 federated database.

’N’ The data source has a different collating sequence
than the DB2 federated database collating sequence.

’I’ The data source has a different collating sequence
than the DB2 federated database collating sequence,
and the data source collating sequence is insensitive
to case (for example, ’STEWART’ and ’StewART’ are
considered equal).

’N’

COMM_RATE Specifies the communication rate between the federated
server and the data source server. Expressed in megabytes per
second.

Valid values are greater than 0 and less than 1x1023. Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

Values may be expressed as whole numbers or floating point
numbers.

’2’

CONNECTSTRING Specifies initialization properties needed to connect to an OLE
DB provider.

None

CPU_RATIO Indicates how much faster or slower a data source CPU runs
than the federated server CPU.

Valid values are greater than 0 and less than 1x1023. Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

Values may be expressed as whole numbers or floating point
numbers.

A setting of 1 indicates that the DB2 federated CPU speed
and the data source CPU speed have the same CPU speed, a
1:1 ratio. A setting of .5 indicates that the DB2 federated CPU
speed is 50% slower than the data source CPUO speed. A
setting of 2 indicates that the DB2 federated CPU speed is
twice as fast as the data source CPU speed.

’1.0’

Appendix B. Server options for federated systems 369

Table 68. Server options and their settings (continued)

Option Description and valid settings Default
setting

DATEFORMAT

(See note 5 at the end of
this table)

The date format used by the data source. Enter the format
using ’DD’, ’MM’, and ’YY’ or ’YYYY’ to represent the
numeric form of the date. You should also specify the
delimiter such as a space or comma. For example, to
represent the date format for ’2003-01-01’, use
’YYYY-MM-DD’. This field is nullable.

None

DB2_MAXIMAL_
PUSHDOWN

Specifies the primary criteria that the query optimizer uses
when choosing an access plan. The query optimizer can
choose access plans based on cost or based on the user
requirement that as much query processing as possible be
performed by the remote data sources.

’Y’ The query optimizer chooses an access plan that
pushes down more query operations to the data
source than other plans. When several access plans
provide the same amount of pushdown, the query
optimizer then chooses the plan with the lowest cost.

If a materialized query table (MQT) on the federated
server can process part or all of the query, then an
access plan that includes the materialized query table
is might be used. Queries that result in a Cartesian
product will be processed by the federated database,
and will not be pushed down.

’N’ The query optimizer chooses an access plan based on
cost.

’N’

DBNAME Name of the data source database that you want the
federated server to access. For DB2, this value corresponds to
a specific database within an instance or, with DB2 for z/OS
or OS/390, the database LOCATION value. Does not apply to
Oracle data sources because Oracle instances contain only one
database.

None.

370 Data Source Configuration Guide

Table 68. Server options and their settings (continued)

Option Description and valid settings Default
setting

FOLD_ID

(See notes 1 and 4 at the
end of this table.)

Applies to user IDs that the federated server sends to the
data source server for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 family and Oracle data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

FOLD_PW

(See notes 1, 3 and 4 at
the end of this table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to
uppercase before sending it to the data source. This
is a logical choice for DB2 family and Oracle data
sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

IFILE Specifies the path and name of the Sybase Open Client
interfaces file. On Windows NT federated servers, the default
is %DB2PATH%\interfaces. On UNIX federated servers, the
default path and name value is
$DB2INSTANCE/sqllib/interfaces.

None.

IGNORE_UDT Specifies whether user-defined types (UDTs) on data sources
accessed using the CTLIB or DBLIB wrapper should be used
by the federated server. Valid values are:

’Y’ Ignore user-defined specifications of UDTs.

’N’ Do not ignore user-defined specifications of UDTs.

’N’

Appendix B. Server options for federated systems 371

Table 68. Server options and their settings (continued)

Option Description and valid settings Default
setting

INFORMIX_LOCK_MODE Specifies the lock mode to be set for an Informix data source.
The Informix wrapper issues the ’SET LOCK MODE’
command immediately after establishing the connection to an
Informix data source. Valid values are:

’W’ Sets the Informix lock mode to WAIT. If the wrapper
tries to access a locked table or row, Informix waits
until the lock is released.

’N’ Sets the Informix lock mode to NOWAIT. If the
wrapper tries to access a locked table or row,
Informix returns an error.

’n’ Sets the Informix lock mode to WAIT n seconds. If
the wrapper tries to access a locked table or row and
the lock is not released within the specified number
of seconds, Informix returns an error.

’W’

IO_RATIO Denotes how much faster or slower a data source I/O system
runs than the federated server I/O system.

Valid values are greater than 0 and less than 1x1023 . Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

A setting of 1 indicates that the DB2 federated I/O speed and
the data source I/O speed have the same I/O speed, a 1:1
ratio. A setting of .5 indicates that the DB2 federated I/O
speed is 50% slower than the data source I/O speed. A
setting of 2 indicates that the DB2 federated I/O speed is
twice as fast as the data source I/O speed.

’1.0’

IUD_APP_SVPT_
ENFORCE

Specifies whether the DB2 federated system should enforce
detecting or building of application savepoint statements.
When set using the SET SERVER OPTION statement, this
server option will have no effect with static SQL statements.

’Y’ The federated server will roll back insert, update, or
delete transactions if an error occurs and the data
source does not enforce application savepoint
statements. SQL error code (SQL1476) is returned.

’N’ The federated server will not roll back transactions
when an error is encountered. Your application must
handle the error recovery.

’Y’

LOGIN_TIMEOUT Specifies the number of seconds for the DB2 federated server
to wait for a response from Sybase Open Client to the login
request. The default values are the same as for TIMEOUT.

’0’

372 Data Source Configuration Guide

Table 68. Server options and their settings (continued)

Option Description and valid settings Default
setting

NODE Name by which a data source is defined as an instance to its
RDBMS.

None.

PACKET_SIZE Specifies the packet size of the Sybase interfaces file in bytes.
If the data source does not support the specified packet size,
the connection will fail. Increasing the packet size when each
record is very large (for example, when inserting rows into
large tables) significantly increases performance. The byte size
is a numeric value.

PLAN_HINTS Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

This option is only available for Oracle and Sybase data
sources.

’N’

PUSHDOWN
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will send the data source SQL statements that
include only SELECT with column names. Predicates
(such as WHERE=) column and scalar functions
(such as MAX and MIN), sorts (such as ORDER BY
or GROUP BY), and joins will not be included in any
SQL sent to the data source.

’Y’

TIMEFORMAT

(See note 5 at the end of
this table)

The time format used by the data source. Enter the format
using ’hh12’, ’hh24’, ’mm’, ’ss’, ’AM’, or ’A.M’. For example,
to represent the time format of ’16:00:00’, use ’hh24:mm:ss’. To
represent the time format of ’8:00:00 AM’, use ’hh12:mm:ss
AM’. This field is nullable.

None

TIMESTAMPFORMAT

(See note 5 at the end of
this table)

The timestamp format used by the data source. The format
follows that for date and time, plus ’n’ for tenth of a second,
’nn’ for hundredth of a second, ’nnn’ for milliseconds, and so
on, up to ’nnnnnn’ for microseconds. For example, to
represent the timestamp format of ’2003-01-01-
24:00:00.000000’, use ’YYYY-MM-DD-hh24:mm:ss.nnnnnn’.
This field is nullable.

None

Appendix B. Server options for federated systems 373

Table 68. Server options and their settings (continued)

Option Description and valid settings Default
setting

TIMEOUT Specifies the number of seconds the DB2 federated server will
wait for a response from Sybase Open Client for any SQL
statement. The value of seconds is a positive whole number in
DB2 Universal Database’s integer range. The timeout value
that you specify depends on which wrapper you are using.
The default behavior of the TIMEOUT option for the Sybase
wrappers is 0, which causes DB2 to wait indefinitely for a
response.

’0’

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have variable
character data types that do not pad the length with trailing
blanks.

Some data sources, such as Oracle, do not have blank-padded
character comparison semantics that return the same results
as the DB2 for Linux, UNIX, and Windows comparison
semantics. Set this option when you want it to apply to all
the VARCHAR and VARCHAR2 columns in the data source
objects that will be accessed from the designated server. This
includes views.

The only valid setting for DB2 family data sources is ’Y’.

’Y’ Yes, trailing blanks are absent from these VARCHAR
columns.

This data source has blank-padded character
comparison semantics that are different than the
federated server. Character comparison operations
will be processed on the federated server and will
not pushed down to the data source.

’N’ No, trailing blanks are present in these VARCHAR
columns.

This data source has blank-padded character
comparison semantics that are similar to the
semantics on the federated server. Character
comparison operations can be pushed down to the
data source for processing.

’N’

Notes on this table:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for FOLD_PW has no effect when the setting for password is

‘N’. Because no password is sent, case cannot be a factor.

374 Data Source Configuration Guide

4. Avoid null settings for either of these options. A null setting may seem
attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

5. This option is used only when the value of SERVER_TYPE is GENERIC.
This option is ignored for all other values of SERVER_TYPE

Related concepts:

v “Server characteristics affecting pushdown opportunities” in the Federated
Systems Guide

v “Server characteristics affecting global optimization” in the Federated Systems
Guide

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Appendix B. Server options for federated systems 375

376 Data Source Configuration Guide

Appendix C. User mapping options for federated systems

User mapping options provide authorization and accounting string
information for user mappings between the federated server and a data
source. These options can be used with any data source that supports user ID
and password authorization.

These options are used with the CREATE USER MAPPING statement.

Table 69. User mapping options and their settings

Option Valid settings Default setting

ACCOUNTING_STRINGUsed to specify a DRDA accounting string. Valid
settings include any string of length 255 or less. This
option is required only if accounting information
needs to be passed. See the DB2 Connect Users
Guide for more information.

None

REMOTE_AUTHID Indicates the authorization ID used at the data
source. Valid settings include any string of length 255
or less.

The ID used to
connect to the
federated database

REMOTE_DOMAIN Indicates the Windows NT domain used to
authenticate users connecting to a Documentum data
source. Valid settings include any valid Windows NT
domain name. If this option is not specified, the
Documentum data source will authenticate using the
default authentication domain for that database.

None

REMOTE_PASSWORD Indicates the authorization password used at the data
source. Valid settings include any string of length 32
or less.

If this option is not specified, then no password is
used to connect to the data source server. If the
server requires a password to connect, then the
connection will fail.

None

Related concepts:

v “DB2 Connect and DRDA” in the DB2 Connect User’s Guide

v “DRDA and data access” in the DB2 Connect User’s Guide

© Copyright IBM Corp. 1998 - 2003 377

378 Data Source Configuration Guide

Appendix D. Column options for federated systems

You can specify column information in the CREATE NICKNAME or ALTER
NICKNAME statements using parameters called column options.

The primary purpose of column options is to provide information about
nickname columns to the SQL Compiler. Setting column options for one or
more columns to ’Y’ allows the SQL Compiler to consider additional
pushdown possibilities for predicates that perform evaluation operation. This
assists the Compiler in reaching global optimization. You can specify any of
these values in either uppercase or lowercase characters.

Attention: Nonrelational wrappers allow additional column options.

Table 70. Column options and their settings

Option Valid settings Default
setting

NUMERIC_STRING
‘Y’ Yes, this column contains strings of numeric characters

’0’, ’1’, ’2’, ’9’. It does not contain blanks.
IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is either not a numeric string column
or is a numeric string column that contains blanks.

By setting NUMERIC_STRING to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from remote evaluation because of a different
collating sequence.

‘N’

© Copyright IBM Corp. 1998 - 2003 379

Table 70. Column options and their settings (continued)

Option Valid settings Default
setting

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have variable
character data types that do not pad the length with trailing
blanks.

Some data sources, such as Oracle, do not have blank-padded
character comparison semantics that return the same results as
the DB2 for Linux, UNIX, and Windows comparison semantics.
Set this option when you want it to apply only to a specific
VARCHAR or VARCHAR2 column in a data source object.

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

This data source has blank-padded character
comparison semantics that are different than the
federated server. Character comparison operations will
be processed on the federated server and will not
pushed down to the data source.

‘N’ No, trailing blanks are present in this VARCHAR
column.

This data source has blank-padded character
comparison semantics that are similar to the semantics
on the federated server. Character comparison
operations can be pushed down to the data source for
processing.

‘N‘

Related concepts:

v “Pushdown analysis” in the Federated Systems Guide

Related tasks:

v “Global optimization” in the Federated Systems Guide

380 Data Source Configuration Guide

Appendix E. Function mapping options for federated
systems

DB2 supplies default mappings between existing built-in data source functions
and built-in DB2 functions. For most data sources, the default function
mappings are in the wrappers. To use a data source function that the
federated server does not recognize, you must create a function mapping
between a data source function and a counterpart function at the federated
database.

The primary purpose of function mapping options, is to provide information
about the potential cost of executing a data source function at the data source.
Pushdown analysis determines if a function at the data source is able to
execute a function in a query. The query optimizer decides if pushing down
the function processing to the data source is the least cost alternative.

The statistical information provided in the function mapping definition helps
the query optimizer compare the estimated cost of executing the data source
function with the estimated cost of executing the DB2 function.

Table 71. Function mapping options and their settings

Option Valid settings Default
setting

DISABLE Disable a default function mapping. Valid values are
‘Y’ and ‘N’.

‘N’

INITIAL_INSTS Estimated number of instructions processed the first
and last time that the data source function is
invoked.

‘0’

INITIAL_IOS Estimated number of I/Os performed the first and
last time that the data source function is invoked.

‘0’

IOS_PER_ARGBYTE Estimated number of I/Os expended for each byte of
the argument set that’s passed to the data source
function.

‘0’

IOS_PER_INVOC Estimated number of I/Os per invocation of a data
source function.

‘0’

INSTS_PER_ARGBYTE Estimated number of instructions processed for each
byte of the argument set that’s passed to the data
source function.

‘0’

INSTS_PER_INVOC Estimated number of instructions processed per
invocation of the data source function.

‘450’

© Copyright IBM Corp. 1998 - 2003 381

Table 71. Function mapping options and their settings (continued)

Option Valid settings Default
setting

PERCENT_ARGBYTES Estimated average percent of input argument bytes
that the data source function will actually read.

‘100’

REMOTE_NAME Name of the data source function. local
name

382 Data Source Configuration Guide

Appendix F. Valid server types in SQL statements

Server types indicate what kind of data source the server will represent.
Server types vary by vendor, purpose, and operating system. Supported
values depend on the wrapper being used.

You need to specify a valid server type in the CREATE SERVER statement.

CTLIB wrapper

Sybase data sources supported by Sybase CTLIB client software.

Server Type Data Source

SYBASE Sybase

DBLIB wrapper

Sybase or Microsoft SQL Server data sources supported by DBLIB client
software.

Server Type Data Source

SYBASE Sybase

DJXMSSQL3 wrapper

Microsoft SQL Server data sources supported by ODBC 3.0 (or higher) driver.

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

DRDA wrapper

DB2 Family

Table 72. DB2 for Linux, UNIX, and Windows

Server Type Data Source

DB2/UDB IBM DB2 Universal Database

DB2/6000 IBM DB2 for AIX

© Copyright IBM Corp. 1998 - 2003 383

Table 72. DB2 for Linux, UNIX, and Windows (continued)

Server Type Data Source

DB2/AIX IBM DB2 for AIX

DB2/HPUX IBM DB2 for HP-UX V1.2

DB2/HP IBM DB2 for HP-UX

DB2/NT IBM DB2 for Windows NT

DB2/EEE IBM DB2 Enterprise-Extended Edition

DB2/CS IBM DB2 for Common Server

DB2/SUN IBM DB2 for Solaris V1 and V1.2

DB2/PE IBM DB2 for Personal Edition

DB2/2 IBM DB2 for OS/2

DB2/LINUX IBM DB2 for Linux

DB2/PTX IBM DB2 for NUMA-Q

DB2/SCO IBM DB2 for SCO Unixware

Table 73. DB2 for iSeries (and AS/400)

Server Type Data Source

DB2/400 IBM DB2 for iSeries and AS/400

Table 74. DB2 for z/OS and OS/390

Server Type Data Source

DB2/ZOS IBM DB2 for z/OS

DB2/390 IBM DB2 for OS/390

DB2/MVS IBM DB2 for MVS

Table 75. DB2 Server for VM and VSE

Server Type Data Source

DB2/VM IBM DB2 for VM

DB2/VSE IBM DB2 for VSE

SQL/DS IBM SQL/DS

384 Data Source Configuration Guide

Informix wrapper

Informix data sources supported by Informix Client SDK software.

Server Type Data Source

INFORMIX Informix

MSSQLODBC3 wrapper

Microsoft SQL Server data sources supported by DataDirect Connect ODBC
3.6 driver.

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

NET8 wrapper

Oracle data sources supported by Oracle NET8 client software.

Server Type Data Source

ORACLE Oracle Version 8.0. or later

ODBC wrapper

ODBC data sources supported by the ODBC 3.x driver.

Server Type Data Source

ODBC ODBC

OLE DB wrapper

OLE DB providers compliant with Microsoft OLE DB 2.0 or later.

Server Type Data Source

none required Any OLE DB provider

Appendix F. Valid server types in SQL statements 385

SQLNET wrapper

Oracle data sources supported by Oracle SQL*Net V1 or V2 client software.

Server Type Data Source

ORACLE Oracle V7.3. or later

Teradata wrapper

Teradata data sources supported by the Teradata V2R3 and V2R4 client
software.

Server Type Data Source

TERADATA Teradata

386 Data Source Configuration Guide

Appendix G. Default forward data type mappings

When a nickname is created for a data source object, DB2 for Linux, UNIX,
and Windows populates the global catalog with information about the table.

This information includes the remote data type for each column, and the
corresponding DB2 for Linux, UNIX, and Windows data type. The DB2 for
Linux, UNIX, and Windows data type is referred to as the local data type.

The federated database uses data type mappings to determine which DB2 for
Linux, UNIX, and Windows data type should be defined for the column of a
data source object.

The data types at the data source must map to corresponding DB2 for Linux,
UNIX, and Windows data types so that the federated server can retrieve data
from data sources. For most data sources, the default type mappings are in
the wrappers. The default type mappings for DB2 family data sources are in
the DRDA wrapper. The default type mappings for Informix are in the
INFORMIX wrapper, and so forth.

DB2 for Linux, UNIX, and Windows federated servers do not support
mappings for these local data types:
v DATALINK
v user-defined types

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type.

You can override a default type mapping, or create a new type mapping with
the CREATE TYPE MAPPING statement.

The following tables show the default forward mappings between DB2 for
Linux, UNIX, and Windows data types and data source data types.

These mappings are valid with all the supported versions, unless otherwise
noted.

Important: For all default forward data types mapping from a data source to
DB2 for Linux, UNIX, and Windows, the DB2 federated schema is SYSIBM.

© Copyright IBM Corp. 1998 - 2003 387

DB2 for z/OS and OS/390 data sources

Table 76. DB2 for z/OS and OS/390 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

ROWID - - - - Y - VARCHAR 40 - Y

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

388 Data Source Configuration Guide

DB2 for iSeries data sources

Table 77. DB2 for iSeries forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E
FE

D
E

R
A

T
E

D
_B

IT
_D

A
TA

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

GRAPHIC 128 16336 - - - - VARGRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

NUMERIC - - - - - - DECIMAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

Appendix G. Default forward data type mappings 389

DB2 Server for VM and VSE data sources

Table 78. DB2 Server for VM and VSE forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBAHW - - - - - - SMALLINT - 0 -

DBAINT - - - - - - INTEGER - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPH 1 16336 - - - - VARGRAPHIC - 0 N

390 Data Source Configuration Guide

DB2 for Linux, UNIX, and Windows data sources

Table 79. DB2 for Linux, UNIX, and Windows forward default data type mappings (Not all columns
shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BIGINT - - - - - - BIGINT - 0 -

BLOB - - - - - - BLOB - - -

CHAR - - - - - - CHAR - 0 N

CHAR - - - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

LONGVAR - - - - N - CLOB - - -

LONGVAR - - - - Y - BLOB - - -

LONGVARG - - - - - - DBCLOB - - -

REAL - - - - - - REAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR - - - - - - VARCHAR - 0 N

VARCHAR - - - - Y - VARCHAR - 0 Y

Appendix G. Default forward data type mappings 391

Table
79.

D
B

2
for

Linux,
U

N
IX

,
and

W
indow

s
forw

ard
default

data
type

m
appings

(N
ot

allcolum
ns

show
n)

(continued)

REMOTE_TYPENAME

REMOTE_LOWER_LEN

REMOTE_UPPER_LEN
REMOTE_LOWER_SCALE

REMOTE_UPPER_SCALE

REMOTE_BIT_DATA

REMOTE_DATA_OPERATORS

FEDERATED_TYPENAME

FEDERATED_LENGTH
FEDERATED_SCALE

FEDERATED_BIT_DATA

V
A

R
G

R
A

PH
-

-
-

-
-

-
V

A
R

G
R

A
PH

IC
-

0
N

V
A

R
G

R
A

PH
IC

-
-

-
-

-
-

V
A

R
G

R
A

PH
IC

-
0

N

392
D

ata
Source

C
onfiguration

G
uid

e

Informix data sources

Table 80. Informix forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB - - - - - - BLOB 2147483647 - -

BOOLEAN - - - - - - CHARACTER 1 - -

BYTE - - - - - - BLOB 2147483647 - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CLOB - - - - - - CLOB 2147483647 - -

DATE - - - - - - DATE 4 - -

DATETIME 0 4 0 4 - - DATE 4 - -

DATETIME 6 10 6 10 - - TIME 3 - -

DATETIME 0 4 6 15 - - TIMESTAMP 10 - -

DATETIME 6 10 11 15 - - TIMESTAMP 10 - -

DECIMAL 1 31 0 31 - - DECIMAL - - -

DECIMAL 32 32 - - - - DOUBLE 8 - -

FLOAT - - - - - - DOUBLE 8 - -

INTEGER - - - - - - INTEGER 4 - -

INTERVAL - - - - - - VARCHAR 25 - -

INT8 - - - - - - BIGINT 19 0 -

LVARCHAR 1 32672 - - - - VARCHAR - - -

MONEY 1 31 0 31 - - DECIMAL - - -

MONEY 32 32 - - - - DOUBLE 8 - -

NCHAR 1 254 - - - - CHARACTER - - -

NCHAR 255 32672 - - - - VARCHAR - - -

NVARCHAR 1 32672 - - - - VARCHAR - - -

Appendix G. Default forward data type mappings 393

Table 80. Informix forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

REAL - - - - - - REAL 4 - -

SERIAL - - - - - - INTEGER 4 - -

SERIAL8 - - - - - - BIGINT - - -

SMALLFLOAT - - - - - - REAL 4 - -

SMALLINT - - - - - - SMALLINT 2 - -

TEXT - - - - - - CLOB 2147483647 - -

VARCHAR 1 32672 - - - - VARCHAR - - -

Notes:

v For the Informix DATETIME data type, the DB2 UNIX and Windows federated server uses the
Informix high-level qualifer as the REMOTE_LENGTH and the Informix low-level qualifier as the
REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file.
The contstants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

394 Data Source Configuration Guide

Microsoft SQL Server data sources

Table 81. Microsoft SQL Server forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA
R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

binary 1 254 - - - - CHARACTER - - Y

binary 255 8000 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT 2 - -

char 1 254 - - - - CHAR - - N

char 255 8000 - - - - VARCHAR - - N

datetime - - - - - - TIMESTAMP 10 - -

datetimen - - - - - - TIMESTAMP 10 - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

DUMMY65 1 1 38 -84 127 - - DOUBLE - - -

DUMMY2000 3 1 38 -84 127 - - DOUBLE - - -

float - 8 - - - - DOUBLE 8 - -

floatn - 8 - - - - DOUBLE 8 - -

float - 4 - - - - REAL 4 - -

floatn - 4 - - - - REAL 4 - -

image - - - - - - BLOB 2147483647 - Y

int - - - - - - INTEGER 4 - -

intn - - - - - - INTEGER 4 - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

nchar 1 127 - - - - CHAR - - N

Appendix G. Default forward data type mappings 395

Table 81. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA
R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

nchar 128 4000 - - - - VARCHAR - - N

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE 8 - -

numericn 32 38 0 38 - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

ntext 2 - - - - - - CLOB 2147483647 - Y

nvarchar 1 4000 - - - - VARCHAR - - N

real - - - - - - REAL 4 - -

smallint - - - - - - SMALLINT 2 - -

smalldatetime - - - - - - TIMESTAMP 10 - -

smallmoney - - - - - - DECIMAL 10 4 -

smallmoneyn - - - - - - DECIMAL 10 4 -

SQL_BIGINT - - - - - - DECIMAL - - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 8000 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 8000 - - - - VARCHAR - - N

SQL_DATE - - - - - - DATE 4 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DECIMAL 32 32 0 31 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

396 Data Source Configuration Guide

Table 81. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA
R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_GUID 2 1 4000 - - Y - VARCHAR 16 - Y

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY - - - - - - BLOB - - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TIME - - - - - - TIME 3 - -

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 8000 - - - - VARCHAR - - Y

SQL_VARCHAR 1 8000 - - - - VARCHAR - - N

sysname - - - - - - VARCHAR 30 Y

sysname 1 254 - - - - CHAR - - N

text - - - - - - CLOB - - N

timestamp - - - - - - VARCHAR 8 Y

tinyint - - - - - - SMALLINT 2 - -

uniqueidentifier 2 1 4000 - - Y - VARCHAR 16 - Y

varbinary 1 8000 - - - - VARCHAR - - Y

varchar 1 8000 - - - - VARCHAR - - N

Notes:

1. This type mapping is valid only with Microsoft SQL Server Version 6.5.

2. This type mapping is valid only with Microsoft SQL Server Version 7 and Version 2000.

3. This type mapping is valid only with Windows 2000 operating systems.

Appendix G. Default forward data type mappings 397

ODBC data sources

Table 82. ODBC forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E
FE

D
E

R
A

T
E

D
_B

IT
_D

A
TA

SQL_BIGINT - - - - - - BIGINT 8 - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 32672 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 32672 - - - - VARCHAR - - N

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY - - - - - - BLOB - - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 32 0 31 - - DOUBLE 8 - -

SQL_REAL - - - - - - REAL 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TYPE_DATE - - - - - - DATE 4 - -

SQL_TYPE_TIME - - - - - - TIME 3 - -

SQL_TYPE_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 32672 - - - - VARCHAR - - Y

SQL_VARCHAR 1 32672 - - - - VARCHAR - - N

398 Data Source Configuration Guide

Table 82. ODBC forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E
FE

D
E

R
A

T
E

D
_B

IT
_D

A
TA

SQL_WCHAR 1 127 - - - - CHAR - - N

SQL_WCHAR 128 16336 - - - - VARCHAR - - N

SQL_WVARCHAR 1 16336 - - - - VARCHAR - - N

SQL_WLONGVARCHAR - 1073741823 - - - - CLOB 2147483647 - N

Appendix G. Default forward data type mappings 399

Oracle NET8 data sources

Table 83. Oracle NET8 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB 0 0 0 0 - \0 BLOB 2147483647 0 Y

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

CLOB 0 0 0 0 - \0 CLOB 2147483647 0 N

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

400 Data Source Configuration Guide

Oracle SQLNET data sources

Table 84. Oracle SQLNET forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

LONG 0 0 0 0 - \0 CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - \0 BLOB 2147483647 0 Y

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

Appendix G. Default forward data type mappings 401

Sybase data sources

Table 85. Sybase CTLIB and DBLIB forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

binary 1 254 - - - - CHAR - - Y

binary 255 16384 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT - - -

char 1 254 - - - - CHAR - - N

char 255 16384 - - - - VARCHAR - - N

datetime - - - - - - TIMESTAMP - - -

datetimn - - - - - - TIMESTAMP - - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

float - 4 - - - - REAL - - -

float - 8 - - - - DOUBLE - - -

floatn - 4 - - - - REAL - - -

floatn - 8 - - - - DOUBLE - - -

image - - - - - - BLOB - - -

int - - - - - - INTEGER - - -

intn - - - - - - INTEGER - - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

nchar 1 254 - - - - CHAR - - N

nchar 255 16384 - - - - VARCHAR - - N

numeric 1 31 0 31 - - DECIMAL - - -

402 Data Source Configuration Guide

Table 85. Sybase CTLIB and DBLIB forward default data type mappings (Not all columns
shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

numeric 32 38 0 38 - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 38 0 38 - - DOUBLE - - -

nvarchar 1 16384 - - - - VARCHAR - - N

real - - - - - - REAL - - -

smalldatetime - - - - - - TIMESTAMP - - -

smallint - - - - - - SMALLINT - - -

smallmoney - - - - - - DECIMAL 10 4 -

sysname 1 254 - - - - CHAR - - N

text - - - - - - CLOB - - -

timestamp - - - - - - VARCHAR 8 - Y

tinyint - - - - - - SMALLINT - - -

varbinary 1 16384 - - - - VARCHAR - - Y

varchar 1 16384 - - - - VARCHAR - - N

Appendix G. Default forward data type mappings 403

Teradata data sources

Table 86. Teradata forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BYTE 1 254 - - - - CHAR - - Y

BYTE 255 32672 - - - - VARCHAR - - Y

BYTE 32673 64000 - - - - BLOB - - -

BYTEINT - - - - - - SMALLINT - - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CHAR 32673 64000 - - - - CLOB - - -

DATE - - - - - - DATE - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DOUBLE
PRECISION

- - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - - -

GRAPHIC 128 16336 - - - - VARGRAPHIC - - -

GRAPHIC 16337 32000 - - - - DBCLOB - - -

INTEGER - - - - - - INTEGER - - -

INTERVAL - - - - - - CHAR - - -

NUMERIC 1 18 0 18 - - DECIMAL - - -

REAL - - - - - - DOUBLE - - -

SMALLINT - - - - - - SMALLINT - - -

TIMESTAMP - - - - - - TIMESTAMP - - -

VARBYTE 1 32762 - - - - VARCHAR - - Y

VARBYTE 32763 64000 - - - - BLOB - - -

404 Data Source Configuration Guide

Table 86. Teradata forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

VARCHAR 1 32672 - - - - VARCHAR - - -

VARCHAR 32673 64000 - - - - CLOB - - -

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - - -

VARGRAPHIC 16337 32000 - - - - DBCLOB - - -

Related concepts:

v “Forward and reverse data type mappings” in the Federated Systems Guide

Appendix G. Default forward data type mappings 405

406 Data Source Configuration Guide

Appendix H. Default reverse data type mappings

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. The other type of mapping is a reverse type mapping,
which is used with transparent DDL to create or modify remote tables.

For most data sources, the default type mappings are in the wrappers. The
default type mappings for DB2 family data sources are in the DRDA wrapper.
The default type mappings for Informix are in the INFORMIX wrapper, and
so forth.

When you define a remote table or view to the DB2 federated database, the
definition includes a reverse type mapping. The mapping is from a local DB2
for Linux, UNIX, and Windows data type for each column, and the
corresponding remote data type. For example, there is a default reverse type
mapping in which the local type REAL points to the Informix type
SMALLFLOAT.

DB2 for Linux, UNIX, and Windows federated servers do not support
mappings for these local data types: LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, and user-defined types.

When you use the CREATE TABLE statement to create a remote table, you
specify the local data types you want to include in the remote table. These
default reverse type mappings will assign corresponding remote types to
these columns. For example, suppose that you use the CREATE TABLE
statement to define an Informix table with a column C2. You specify BIGINT
as the data type for C2 in the statement. The default reverse type mapping of
BIGINT depends on which version of Informix you are creating the table on.
The mapping for C2 in the Informix table will be to DECIMAL in Informix
Version 7 and to INT8 in Informix Version 8.

You can override a default reverse type mapping, or create a new reverse type
mapping with the CREATE TYPE MAPPING statement.

The following tables show the default reverse mappings between DB2 for
Linux, UNIX, and Windows local data types and remote data source data
types.

These mappings are valid with all the supported versions, unless otherwise
noted.

© Copyright IBM Corp. 1998 - 2003 407

DB2 for z/OS and OS/390 data sources

Table 87. DB2 for z/OS and OS/390 reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - –

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARGRAPHIC - - N

408 Data Source Configuration Guide

DB2 for iSeries data sources

Table 88. DB2 for iSeries reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHARACTER - - N

CHARACTER - - - - Y - CHARACTER - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - NUMERIC - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - FLOAT - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARG - - N

Appendix H. Default reverse data type mappings 409

DB2 for VM and VSE data sources

Table 89. DB2 for VM and VSE reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - -

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPH - - N

410 Data Source Configuration Guide

DB2 for Linux, UNIX, and Windows data sources

Table 90. DB2 for Linux, UNIX, and Windows reverse default data type mappings (Not all columns
shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BIGINT - 8 - - - - BIGINT - - -

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - -

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - - - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPHIC - - N

VARGRAPHIC - - - - - - VARGRAPHIC - - -

Appendix H. Default reverse data type mappings 411

Informix data sources

Table 91. Informix reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT 1 - - - - - - DECIMAL 19 - -

BIGINT 2 - - - - - - INT8 - - -

BLOB 1 2147483647 - - - - BYTE - - -

CHARACTER - - - - N - CHAR - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 1 2147483647 - - - - TEXT - - -

DATE - 4 - - - - DATE - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

INTEGER - 4 - - - - INTEGER - - -

LONG VARCHAR - 32700 - - N - TEXT - - -

LONG VARCHAR - 32700 - - Y - BYTE - - -

REAL - 4 - - - - SMALLFLOAT - - -

SMALLINT - 2 - - - - INTEGER - - -

TIME - 3 - - - - DATETIME 6 10 -

TIMESTAMP - 10 - - - - DATETIME 0 15 -

VARCHAR 1 254 - - N - VARCHAR - - -

VARCHAR 255 32672 - - N - TEXT - - -

VARCHAR - - - - Y - BYTE - - -

VARCHAR 2 255 2048 - - N - LVARCHAR - - -

VARCHAR 2 2049 32672 - - N - TEXT - - -

412 Data Source Configuration Guide

Table 91. Informix reverse default data type mappings (Not all columns shown) (continued)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

Notes:

1. This type mapping is valid only with Informix server Version 7 (or lower).

2. This type mapping is valid only with Informix server Version 8 (or higher).

For the Informix DATETIME data type, the DB2 UNIX and Windows federated server uses the Informix
high-level qualifer as the REMOTE_LENGTH and the Informix low-level qualifier as the
REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file. The
contstants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

Appendix H. Default reverse data type mappings 413

Microsoft SQL Server data sources

Table 92. Microsoft SQL Server reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB - - - - - - image - - -

CHARACTER - - - - Y - binary - - -

CHARACTER - - - - N - char - - -

CLOB - - - - - - text - - -

DATE - 4 - - - - datetime - - -

DECIMAL - - - - - - decimal - - -

DOUBLE - 8 - - - - float - - -

INTEGER - - - - - - int - - -

SMALLINT - - - - - - smallint - - -

REAL - 4 - - - - real - - -

TIME - 3 - - - - datetime - - -

TIMESTAMP - 10 - - - - datetime - - -

VARCHAR 1 8000 - - N - varchar - - -

VARCHAR 8001 32672 - - N - text - - -

VARCHAR 1 8000 - - Y - varbinary - - -

VARCHAR 8001 32672 - - Y - image - - -

414 Data Source Configuration Guide

Oracle SQLNET data sources

Table 93. Oracle SQLNET reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB 0 2147483647 0 0 Y \0 LONG RAW 0 0 Y

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

CLOB 0 2147483647 0 0 N \0 LONG 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

Note: The DB2 for Linux, UNIX, and Windows BIGINT data type is not available for transparent DDL.
You cannot specify the BIGINT data type in a CREATE TABLE statement when creating a remote Oracle
table.

Appendix H. Default reverse data type mappings 415

Oracle NET8 data sources

Table 94. Oracle NET8 reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB 0 2147483647 0 0 Y \0 BLOB 0 0 Y

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

CLOB 0 2147483647 0 0 N \0 CLOB 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

Note: The DB2 for Linux, UNIX, and Windows BIGINT data type is not available for transparent DDL.
You cannot specify the BIGINT data type in a CREATE TABLE statement when creating a remote Oracle
table.

416 Data Source Configuration Guide

Sybase data sources

Table 95. Sybase CTLIB ans DBLIB reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT - - - - - - decimal 19 0 -

BLOB - - - - - - image - - -

CHARACTER - - - - N - char - - -

CHARACTER - - - - Y - binary - - -

CLOB - - - - - - text - - -

DATE - - - - - - datetime - - -

DECIMAL - - - - - - decimal - - -

DOUBLE - - - - - - float - - -

INTEGER - - - - - - integer - - -

REAL - - - - - - real - - -

SMALLINT - - - - - - smallint - - -

TIME - - - - - - datetime - - -

TIMESTAMP - - - - - - datetime - - -

VARCHAR 1 255 - - N - varchar - - -

VARCHAR 256 32672 - - N - text - - -

VARCHAR 1 255 - - Y - varbinary - - -

VARCHAR 256 32672 - - Y - image - - -

Appendix H. Default reverse data type mappings 417

Teradata data sources

Table 96. Teradata reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB 1 1 64000 - - - - VARBYTE - - -

CHARACTER - - - - - - CHARACTER - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 2 1 64000 - - - VARCHAR - - -

DATE - - - - - - DATE - - -

DBCLOB 3 1 32000 - - - - VARGRAPHIC - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DECIMAL 19 31 0 31 - - FLOAT - - -

DOUBLE - - - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - -

INTEGER - - - - - - INTEGER - - -

REAL - - - - - - FLOAT - - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME - - -

TIMESTAMP - - - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARBYTE - - -

VARGRAPHIC - - - - - - VARGRAPHIC - - -

418 Data Source Configuration Guide

Table 96. Teradata reverse default data type mappings (Not all columns shown) (continued)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

Notes:

1. The Teradata VARBYTE data type can contain only the specified length (1 to 64000) of a DB2 BLOB
data type.

2. The Teradata VARCHAR data type can contain only the specified length (1 to 64000) of a DB2 CLOB
data type.

3. The Teradata VARGRAPHIC data type can contain only the specified length (1 to 32000) of a DB2
DBCLOB data type.

Related concepts:

v “Forward and reverse data type mappings” in the Federated Systems Guide

Appendix H. Default reverse data type mappings 419

420 Data Source Configuration Guide

DB2 Information Integrator technical documentation

The following topics describe how to:
v Access books and release information, including printing and ordering

books
v Access topics by using the DB2 Information Integrator Information Center

or the DB2 HTML Documentation CD

Accessing books and release information

DB2 Information Integrator technical information is available in the following
formats:
v Books (PDF and printed). A description of each book in the DB2

Information Integrator library is available from the IBM Publications Center
at www.ibm.com/shop/publications/order.

v An Information Center (HTML format).
v Help for DB2 Tools (HTML format).

DB2 Information Integrator books
The DB2 Information Integrator PDF Documentation CD contains PDF files of
the books in the DB2 Information Integrator library and the DB2 Universal
Database library. The structure of the DB2 Information Integrator PDF
Documentation CD is:
v On Windows operating systems: x:\doc\%L

v On UNIX operating systems: /cdrom/doc/%L/

where:
v x represents the Windows CD-ROM drive letter
v cdrom refers to the UNIX mount point of the CD-ROM
v %L is the locale of the documentation that you want to use, for example,

en_US

Language Locale Identifier Language Locale Identifier
Arabic ar_AA w Japanese ja_JP j
Brazilian Portuguese pt_BR b Korean ko_KR k
Bulgarian bg_BG u Norwegian no_NO n
Croatian hr_HR 9 Polish pl_PL p
Czech cs_CZ x Portuguese pt_PT v
Danish da_DK d Romanian ro_RO 8
Dutch nl_NL q Russian ru_RU r
English en_US e Simplified Chinese zh_CN c

© Copyright IBM Corp. 1998 - 2003 421

http://www.ibm.com/shop/publications/order

Finnish fi_FI y Slovakian sk_SK 7
French fr_FR f Slovenian sl_SI l
German de_DE g Spanish es_ES z
Greek el_GR a Swedish sv_SE s
Hungarian hu_HU h Traditional Chinese zh_TW t
Italian it_IT i Turkish tr_TR m

The character in the sixth position of each PDF file name indicates the
language version of a book (see the following table). For example, the file
name iiyige80 identifies the English version of the IBM DB2 Information
Integrator Installation Guide, and the file name iiyigg80 identifies the German
version of the same book.

The books in the following table are available for DB2 Information Integrator.

Table 97. DB2 Information Integrator documentation

Name Form number Install category PDF file name

IBM DB2 Information
Integrator Solutions
Guide

SC18-7037 getting_started iiyisx80

IBM DB2 Information
Integrator Installation
Guide

GC18-7036 getting_started iiyigx80

IBM DB2 Information
Integrator Migration
Guide

SC18-7360 getting_started iiymgx80

IBM DB2 Information
Integrator Federated
Systems Guide

SC18-7364 admin iiyfpx80

IBM DB2 Information
Integrator Data Source
Configuration Guide

Available online
only

optional iiylsx80

IBM DB2 Information
Integrator Developer’s
Guide

SC18-7359 ad iiyfsx80

Printing books from PDF files
You can print DB2 Information Integrator books from the PDF files on the
DB2 Information Integrator PDF Documentation CD. You can use Adobe
Acrobat Reader to print the entire book, a range of pages, or specific pages.

Prerequisites:

422 Data Source Configuration Guide

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at www.adobe.com.

Procedure:

To print a DB2 Information Integrator book from a PDF file:
1. Insert the DB2 Information Integrator PDF Documentation CD. On UNIX

operating systems, mount the CD.
2. Start the Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:

v On Windows operating systems: x:\doc\%L

v On UNIX operating systems: /cdrom/doc/%L/

where:
v x represents the Windows CD-ROM drive letter
v cdrom refers to the UNIX mount point of the CD-ROM
v %L is the locale of the documentation that you want to print, for

example, en_US
4. Click File –> Print.
5. In the Print window, specify whether to print all of the pages, the current

pages, or a range of pages.
6. Click OK.

Ordering printed books
You can get printed manuals by ordering the documentation package (doc
pack) for your DB2 Information Integrator product from your IBM reseller.
The doc packs are a subset of the manuals from the DB2 Information
Integrator library. These doc packs are designed to help you to get started
using the DB2 Information Integrator product that you purchased.

The manuals in the doc packs are the same as those on the DB2 Information
Integrator PDF Documentation CD that was provided with your DB2
Information Integrator product.

You can also use one of the following methods to order individual books:
v Contact your IBM marketing representative or authorized dealer. To find a

local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com/planetwide.

v Phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.
v Go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

DB2 Information Integrator technical documentation 423

http://www.adobe.com/
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

Release notes
The release notes provide additional information that is specific to your
product’s release and fix pack level. They also provide summaries of the
documentation updates that are incorporated in each release and fix pack.

The release notes are available on the product CD-ROM:
v On Windows operating systems: x:\doc\%L

v On UNIX operating systems: /cdrom/doc/%L/

where:
v x represents the Windows CD-ROM drive letter
v cdrom refers to the UNIX mount point of the CD-ROM
v %L is the locale of the documentation that you want to use; for example,

en_US

Table 98. Release notes

Name Location File name

DB2 Information Integrator
Release Notes

Available from the product
CD-ROM in the following
formats:

v Text

v HTML

Also available in the DB2
Information Integrator
Information Center

v ReleaseNotes.txt

v ReleaseNotes.html

DB2 Information Integrator
Installation Requirements

Available on product
CD-ROM in the following
formats:

v Text

v HTML

Also available from the
DB2 Information
Integration Installation
Launchpad

v Prereqs.txt

v Prereqs.html

To view the ASCII file on UNIX-based systems, see the Release.Notes file. This
file is in the DB2DIR/Readme/%L directory, where %L represents the locale
name, and DB2DIR represents:
v /usr/opt/db2_08_01 on AIX
v /opt/IBM/db2/V8.1 on all other UNIX operating systems

424 Data Source Configuration Guide

FixPaks for DB2 Information Integrator documentation
IBM might periodically make documentation fix packs available. You can use
documentation fix packs to update the information that you installed from the
DB2 HTML Documentation CD when new information becomes available.

Documentation FixPaks are cumulative. For example, if you install the
documentation for Version 8.1 and then apply FixPak 2, you will get
documentation updates for FixPak 1 and FixPak 2.

When you install documentation fix packs, your HTML documentation will be
more up-to-date than either the printed or online PDF manuals for your
product.

Accessing topics using the DB2 Information Integrator Information Center or the
DB2 HTML Documentation CD

The DB2 Information Integrator Information Center gives you access to the
information that you need to take advantage of DB2 Information Integrator in
your business.

Features of the DB2 Information Integrator Information Center
The DB2 Information Integrator Information Center has the following features:

Integrated navigation tree
Locate any topic in the DB2 Information Integrator library from a
single navigation tree. The DB2 Information Integrator library includes
the following types of information:

Tasks Key tasks you can perform using DB2 Information Integrator.
Tasks provide step-by-step instructions on how to complete a
goal.

Concepts
Key concepts for DB2 Information Integrator. Concepts
provide an overview of a subject.

Reference
Reference topics provide detailed information about a subject,
including statement syntax, command syntax, message help,
requirements, keywords, commands, and APIs.

Search
Search all of the topics on your workstation by clicking Search in the
navigation toolbar.

Master index
Access the information in topics and tools help from one master
index. The index contains entries from the entire DB2 library.

DB2 Information Integrator technical documentation 425

Master glossary
The master glossary defines terms that are used in the DB2
Information Integrator library.

Regularly updated documentation
Keep your topics up to date by downloading updated HTML topics.

Finding topics in the DB2 Information Integrator Information Center
The following major elements comprise the DB2 Information Integrator
Information Center:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topic links, the
glossary, and the master index in the DB2 Information Integrator
Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. Use the pushbuttons in the navigation toolbar to search the
DB2 Information Integrator Information Center, hide the navigation
tree, and find the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. When you click a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index, the content frame displays the appropriate topic.

Prerequisites:

To access the DB2 Information Integrator Information Center from a browser,
you must use one of the following browsers:
v Microsoft Explorer Version 5 or later
v Netscape Navigator Version 6.1 or later

Restrictions:

The DB2 Information Integrator Information Center contains only those sets of
topics that you chose to install from the DB2 HTML Documentation CD. If
your Web browser returns a File not found error when you follow a link to a
topic, install one or more additional sets of topics from the DB2 HTML
Documentation CD.

Procedure:

To find a topic by searching with keywords:

426 Data Source Configuration Guide

1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest, then click Search. The Results field
displays a list of topics. The topics that most closely match your search
string are at the top of the list.
Enter more terms to increase the precision of your query and reduce the
number of topics that are returned from your query.

3. In the Results field, click the title of the topic that you want to read. The
topic is displayed in the content frame.

To find a topic in the navigation tree:
1. In the navigation tree, click the book icon next to the category of topics in

which you are interested. A list of subcategories is displayed under the
icon.

2. Continue to click the book icons until you find the category that contains
the topics in which you are interested. Categories that link to topics show
the category title as a link when you move the cursor over the category
title. A page icon is used in the navigation tree to identify topics.

3. Click the topic link. The topic is displayed in the content frame.

To find a topic by using the master index:
1. In the navigation tree, click Index. The index expands to display a list of

links arranged in alphabetical order.
2. In the navigation tree, click the first character of the subject that you are

looking for. A list of entries with that initial character is displayed in the
content frame.

3. If a book icon is displayed, there are multiple index entries for a subject.
Click the book icon that corresponds to the subject in which you are
interested. A list of topics is displayed below the term that you clicked.

4. Click on the title of the topic that meets your needs. The topic is displayed
in the content frame.

Using the DB2 HTML Documentation
This topic describes how to install, view, and copy the documentation on the
DB2 HTML Documentation CD, and how to update the documentation after
you install it.

Installing the DB2 HTML documentation
The installation directory for the DB2 HTML Documentation CD differs for
each category of information:
htmlcdpath/doc/htmlcd/%L/category

htmlcdpath
The directory where the DB2 HTML Documentation CD is installed.

DB2 Information Integrator technical documentation 427

%L The locale of the documentation that you want to use, for example,
en_US.

category
The category identifier, for example, getting_started for the installation
information.

Viewing technical documentation directly from the DB2 HTML
Documentation CD
All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without installing it.

Restrictions:

You must install the DB2 product to view the online help and release notes.

Procedure:

To view the HTML documentation from the DB2 HTML Documentation CD:
v For Windows operating systems:

1. Insert the DB2 HTML Documentation CD.
2. Start your Web browser and open the following file:

x:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where x represents the CD drive, and %L is the locale of the
documentation that you want to use, for example, en_US for English.

v For UNIX operating systems:
1. Mount the DB2 HTML Documentation CD.
2. Start your Web browser and open the following file:

/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where cdrom represents where the CD is mounted, and %L is the locale
of the documentation that you want to use, for example, en_US for
English.

Copying files from the DB2 HTML Documentation CD to a Web Server
The entire DB2 information library is available on the DB2 HTML
Documentation CD, so you can copy the library on a Web server for easier
access.

Procedure:

Copy files from the DB2 HTML Documentation CD to the appropriate path on
your Web server (the default path is shown):

428 Data Source Configuration Guide

v For Windows operating systems: x:\Program
Files\IBM\sqllib\doc\htmlcd\%L*.*

v For UNIX operating systems: /cdrom/Program
Files/IBM/sqllib/doc/htmlcd/%L

where:
v x represents the Windows CD-ROM drive letter
v cdrom refers to UNIX mount point of the CD-ROM
v %L is the locale of the documentation that you want to use, for example,

en_US

Updating the HTML documentation on your computer
When IBM makes updates available, you can update the HTML files that you
installed from the DB2 HTML Documentation CD by either:
v Using the Information Center (if you have the DB2 administration graphical

user interface tools installed)
v Downloading and applying a DB2 HTML Documentation FixPak

This procedure does not update the DB2 code.

Documentation FixPaks are cumulative. For example, if you install the
documentation for Version 8.1 and then apply FixPak 2, you will get
documentation updates for FixPak 1 and FixPak 2.

Prerequisites:

Ensure that your computer has access to the Internet, because the updater
downloads the latest documentation fix pack from the IBM server, if required.
To connect to the Internet, you might need to supply your proxy information.

Procedure:

To use the Information Center to update your local HTML documentation:
1. Start the DB2 Information Center:

v From the graphical administration tools, click the Information Center
icon in the toolbar.

v At the command line, enter db2ic.
2. Click Information Center –> Update Local Documentation to start the

update.
If a documentation update is available, it is downloaded and applied.

To manually download and apply the documentation update:
1. Open the DB2 support page in your Web browser at

www.ibm.com/software/data/db2/udb/winos2unix/support

DB2 Information Integrator technical documentation 429

2. Click DB2 Version 8 and find the documentation fix pack link for your
operating system.

3. Determine if your local DB2 documentation is out of date by comparing
the documentation fix pack level to the documentation level that you have
installed.

4. If a more recent version of the documentation is available, then download
the fix pack for your operating system. There is one fix pack for all
Windows operating systems, and one fix pack for all UNIX operating
systems.

5. Apply the fix pack:
v For Windows operating systems: The documentation fix pack is a

self-extracting zip file. Download the documentation fix pack to an
empty directory and unzip it. Run the setup command in that directory
to install the documentation fix pack.

v For UNIX operating systems: The documentation fix pack is a
compressed tar.Z file. Uncompress and untar the file to create a
directory named delta_install. Run the script installdocfix inside that
directory to install the documentation fix pack.

Searching the DB2 documentation
To search the DB2 documentation, use Netscape Version 6.1 (or later) or
Microsoft Internet Explorer Version 5 (or later). Ensure that your browser’s
Java support is enabled.

A search window opens when you click the search icon in the navigation
toolbar of the DB2 Information Integrator Information Center in a browser. If
you are using the search function for the first time, it might take a minute or
so for the search window to load.

Restrictions:

The following restrictions apply when you use the documentation search:
v Boolean searches are not supported. The Boolean search qualifiers and and

or are ignored in a search. For example, the following searches produce the
same results:
– servlets and beans
– servlets or beans

v Wildcard searches are not supported. A search on java* will look for the
literal string java* and will not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

430 Data Source Configuration Guide

To search the DB2 documentation:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest, then click Search. The Results field
displays a list of topics that are ranked by accuracy.
Enter more terms to increase the precision of your query and reduce the
number of topics that are returned by your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

When you perform a search, the first result is automatically loaded into your
browser frame. To view the contents of other search results, click on the result
in results lists.

Troubleshooting DB2 documentation search with Netscape 4.x
Most search problems are related to the Java support provided by Web
browsers. This task describes possible solutions.

Procedure:

A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following solution, especially if you see the following
line in the browser’s Java console:
Cannot find class java/security/InvalidParameterException

Copy the following file from the DB2 HTML Documentation CD to the
java\classes\java\security\ directory within the directory where your
Netscape browser is installed. You might have to create the java\security\
subdirectory structure.
v On Windows operating systems:

x:Program Files\sqllib\doc\htmlcd\%L\InvalidParameterException.class

v On UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L
/InvalidParameterException.class

where:
v x represents the Windows CD-ROM drive letter
v cdrom refers to the UNIX mount point of the CD-ROM
v %L is the locale of the documentation that you want to use, for example,

en_US

If your Netscape browser still fails to display the search input window, try the
following actions:

DB2 Information Integrator technical documentation 431

v Stop all instances of Netscape browsers to ensure that there is no Netscape
code running on the computer. Then open a new instance of the Netscape
browser and start the search again.

v Purge the browser’s cache.
v Try a different version of Netscape, or a different browser.

432 Data Source Configuration Guide

Accessibility

Users with physical disabilities, such as restricted mobility or limited vision,
can use software products successfully by using accessibility features. These
are the major accessibility features in DB2 Information Integrator Version 8:
v You can operate all features by using the keyboard instead of the mouse.
v You can customize the size and color of your fonts.
v You can receive either visual or audio alert cues.
v DB2 supports accessibility applications that use the Java™ Accessibility API.
v DB2 documentation is provided in an accessible format.

Keyboard input and navigation

You can operate the DB2 Tools by using only the keyboard. You can use keys
or key combinations instead of a mouse to perform most operations.

In UNIX-based systems, the position of the keyboard focus is highlighted.
This highlighting indicates which area of the window is active and where
your keystrokes will have an effect.

Accessible display

The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font settings
For the DB2 Tools, you can use the Tools Settings notebook to select the color,
size, and font for the text in menus and dialog windows.

Nondependence on color
You do not need to distinguish between colors to use any of the functions in
this product.

Alternative alert cues

You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

© Copyright IBM Corp. 1998 - 2003 433

Compatibility with assistive technologies

The DB2 Tools interface supports the Java Accessibility API, enabling the use
of screen readers and other assistive technologies that are used by people with
disabilities.

Accessible documentation

Documentation for the DB2 family of products is available in HTML format.
You can view documentation according to the display preferences set in your
browser. You can use screen readers and other assistive technologies.

434 Data Source Configuration Guide

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1998 - 2003 435

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

436 Data Source Configuration Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX
DB2
Domino
IBM
Informix
Lotus
Lotus Notes
QuickPlace
WebSphere

The following terms are trademarks or registered trademarks of other
companies:

Notices 437

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service
marks of others.

438 Data Source Configuration Guide

Index

A
ACCOUNTING_STRING user option

valid settings 377
adding

HMMER, federated 317

B
BLAST

adding to a federated system
BLAST configuration file 211
CREATE NICKNAME

statement 217
CREATE SERVER

statement 217
CREATE WRAPPER

statement 215
registering nicknames 217
registering the server 217
registering the wrapper 215
setting up and configuring the

BLAST daemon 211
starting the BLAST

daemon 214
verifying that the correct

blastall executable is
installed 211

verifying that the correct
matrix files are
installed 211

description 205
messages 228
nicknames, valid objects for 13
supported versions 2

C
case sensitivity

preserving case-sensitive
values 20

catalog
See global catalog 363

COLLATING_SEQUENCE server
option

valid settings 367
column options

description 14
examples 4
valid settings 379

COMM_RATE server option
valid settings 367

Command Center
configuring data sources 1

configurations
federated data sources

overview 7
configuring

HMMER daemon 318
CONNECTSTRING server option

valid settings 367
Control Center

configuring data sources 1
CPU_RATIO server option

valid settings 367
CREATE FUNCTION statement

Documentum 172
Extended Search 299, 335

CREATE NICKNAME statement
BLAST 217
DB2 family data sources 41, 42
Documentum 165
examples 4
Excel files 194
Extended Search 297, 343
Informix 55, 56
Microsoft SQL Server 99, 101
ODBC 116, 117
Oracle 69, 70
Sybase 84, 85
table-structured files 149
Teradata 132, 133
XML 243, 244, 351

CREATE SERVER statement
BLAST 217
DB2 family data sources 37
Documentum 164
Excel files 194
Extended Search 296, 359
Informix 50
Microsoft SQL Server 94
ODBC 111
OLE DB 140
Oracle 65
Sybase 78
table-structured files 148
Teradata 126, 127
XML 237

CREATE USER MAPPING statement
DB2 family data sources 38, 39
Documentum 164

CREATE USER MAPPING
statement (continued)

Extended Search 298, 361
Informix 52
Microsoft SQL Server 96, 97
ODBC 112, 113
OLE DB 141
Oracle 66, 67
Sybase 80
Teradata 128, 129

CREATE WRAPPER statement
BLAST 215
Documentum 162
Excel files 193
Extended Search 295, 362
ODBC 109
table-structured files 146
XML 236

CreateNicknameFile utility,
Documentum

configuring 181
description 180
installing 181
mapping the DM_ID object

type 182
custom functions

Extended Search 299

D
data source objects

description 12
local 4
remote 4
valid object types 13

data sources
configuring 1
optional configuration steps 7
valid server types 383

data type mappings
description 15
forward 387
planning 22
reverse 407

data types
unsupported 15

DATALINK data type
unsupported 15

DATEFORMAT server option
valid settings 367

© Copyright IBM Corp. 1998 - 2003 439

DB2 family data sources
adding to a federated system 31

CREATE NICKNAME
statement 42

CREATE SERVER
statement 37

CREATE USER MAPPING
statement 39

creating user mappings 38
registering nicknames 41
testing connections 40

cataloging node entries 32
cataloging remote databases 33
configuring access to 31
registering server definitions 35
registering wrappers 34
tuning 43

DB2 for iSeries
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
supported versions 2
valid server types 383

DB2 for Linux, UNIX and Windows
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
supported versions 2
valid server types 383

DB2 for VM and VSE
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
supported versions 2
valid server types 383

DB2 for z/OS and OS/390
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
supported versions 2
valid server types 383

DB2_DJ_COMM environment
variable 147, 163, 216, 236

DB2 family data sources,
tuning 43

Informix, tuning 57

DB2_DJ_COMM environment
variable (continued)

Microsoft SQL Server,
tuning 101

ODBC, tuning 118
Oracle, tuning 71
Sybase, tuning 85
Teradata, tuning 134

DB2_MAXIMAL_PUSHDOWN
server option

valid settings 367
DBNAME server option

valid settings 367
DISABLE function mapping option

valid settings 381
Documentum

adding to a federated system
CREATE FUNCTION

statement 172
CREATE NICKNAME

statement 165
CREATE SERVER

statement 164
CREATE USER MAPPING

statement 164
CREATE WRAPPER

statement 162
CreateNicknameFile

utility 180
making Documentum client

libraries available to DB2
(AIX and Solaris Operating
Environment only) 160

mapping users 164
pointing to Documentum's

client dmcl.ini file 161
registering custom

functions 172
registering nicknames 165
registering the server 164
registering the wrapper 162

CreateNicknameFile utility 180
description 157
dual defining repeating

attributes 183
example 157
messages 184
nicknames, valid objects for 13
supported versions 2
user access to documents 184

E
Entrez

nicknames, valid objects for 13
supported versions 2

environment variables
HMMER wrapper 323

Excel files
adding to a federated system

CREATE NICKNAME
statement 194

CREATE SERVER
statement 194

registering nicknames 194
registering the server 194
registering the wrapper 193

description 191
file access control model 198
messages 198
nicknames, valid objects for 13
sample user scenario 196
supported versions 2

Extended Search
adding to a federated system

CREATE FUNCTION
statement 299, 335

CREATE NICKNAME
statement 297, 343

CREATE SERVER
statement 296, 359

CREATE USER MAPPING
statement 298, 361

CREATE WRAPPER
statement 295, 362

mapping users 298
registering function

templates 299
registering nicknames 297
registering the server 296
registering the wrapper 295
registering user

mappings 298
summary of steps 295

creating multiple nicknames 290
customizing queries 299
description 287
generalized query language 305
mapped fields 292
messages 307
nicknames, valid objects for 13
query guidelines 300
sample queries 303
searchable sources 287
supported versions 2
vertical tables 292

F
flat-files

See table-structured files 2

440 Data Source Configuration Guide

FOLD_ID server option
case-sensitive values 20
setting on Informix data

sources 57
valid settings 367

FOLD_PW server option
case-sensitive values 20
setting on Informix data

sources 57
valid settings 367

forward type mappings
default mappings 387

function mapping options
valid settings 381

function mappings
description 16
planning 24

function templates
Extended Search 299

G
generalized query language

Extended Search 305
global catalog

views containing federated
information 363

H
HMMER

nicknames, valid objects for 13
queries

construct 330
supported versions 2
wrapper 313

I
IFILE server option

valid settings 367
IGNORE_UDT server option

valid settings 367
index specifications

description 16
Informix

adding to a federated system 45
CREATE NICKNAME

statement 56
CREATE SERVER

statement 50
CREATE USER MAPPING

statement 53
creating user mappings 52
registering nicknames 55
testing connections 54

configuring access to 45
default forward type

mappings 387

Informix (continued)
default reverse type

mappings 407
nicknames, valid objects for 13
registering server definitions 49
registering wrappers 48
setting up client configuration

files 46
supported versions 2
testing client configuration

files 46
tuning 57
valid server types 383

INFORMIX_LOCK_MODE server
option

valid settings 367
INITIAL_INSTS function mapping

option
valid settings 381

INITIAL_IOS function mapping
option

valid settings 381
INSTS_PER_ARGBYTE function

mapping option
valid settings 381

INSTS_PER_INVOC function
mapping option

valid settings 381
IO_RATIO server option

valid settings 367
IOS_PER_ARGBYTE function

mapping option
valid settings 381

IOS_PER_INVOC function mapping
option

valid settings 381
IUD_APP_SVPT_ENFORCE server

option
valid settings 367

L
local objects

description 4
LOGIN_TIMEOUT server option

valid settings 367

M
mapped fields

Extended Search 292
mapping users

Extended Search 298, 361
messages

BLAST wrapper 228
Documentum wrapper 184
Excel wrapper 198

messages (continued)
Extended Search wrapper 307
HMMER wrapper 331
table-structured file

wrapper 152
XML wrapper 228

Microsoft Excel
See Excel files 2

Microsoft SQL Server
adding to a federated system

CREATE NICKNAME
statement 101

CREATE SERVER
statement 94

CREATE USER MAPPING
statement 97

creating user mappings 96
overview 89
registering nicknames 99
testing connections 98

configuring access to 89
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
preparing federated servers 90
registering server definitions 93
registering wrappers 92
supported versions 2
troubleshooting 101
tuning 101
valid server types 383

N
naming rules

for federated database
objects 19

nicknames
altering 333
changing a data type 333
changing a nickname option 334
column options, examples 4
DB2 family data sources, creating

for 41
description 12
Informix, creating for 55
Microsoft SQL Server, creating

for 99
ODBC, creating for 116
on nicknames 4
on summary tables 4
Oracle, creating for 69
overview of creating 4
Sybase, creating for 84

Index 441

nicknames (continued)
Teradata, creating for 132
valid data source objects 13
XML, creating for 243

NODE server option
valid settings 367

nonrelational data sources
data type mappings,

specifying 15
NUMERIC_STRING column option

valid settings 379

O
objects

naming 19
ODBC

adding to a federated system
CREATE NICKNAME

statement 117
CREATE SERVER

statement 111
CREATE USER MAPPING

statement 113
creating user mappings 112
overview 105
registering nicknames 116
testing connections 114

configuring access to 105
default forward type

mappings 387
nicknames, valid objects for 13
preparing federated servers 107
registering server

definitions 110
registering wrappers 108
supported versions 2
troubleshooting 118
tuning 118
valid server types 383

OLE DB
adding to a federated system

CREATE SERVER
statement 140

CREATE USER MAPPING
statement 141

creating user mappings 141
overview 137

configuring access to 137
registering server

definitions 139
registering wrappers 138
supported versions 2
valid server types 383

optimization
BLAST 228

optimization (continued)
HMMER

wrapper 331
table-structured files 151

Oracle
adding to a federated system

CREATE NICKNAME
statement 70

CREATE SERVER
statement 65

CREATE USER MAPPING
statement 67

creating user mappings 66
overview 59
registering nicknames 69
testing connections 68

configuring access to 59
default forward type

mappings 387
default reverse type

mappings 407
nicknames, valid objects for 13
registering server definitions 64
registering wrappers 61
setting up client configuration

files 60
testing client configuration

files 60
troubleshooting 71
tuning 71

P
PACKET_SIZE server option

valid settings 367
PASSWORD server option

valid settings 367
passwords

case-sensitive values 20
PERCENT_ARGBYTES function

mapping option
valid settings 381

PLAN_HINTS server option
valid settings 367

PUSHDOWN server option
valid settings 367

R
register

HMMER
wrapper 322

server
HMMER data source 323

register nicknames
HMMER

data sources 325

remote objects
description 4

REMOTE_AUTHID user option
valid settings 377

REMOTE_DOMAIN user option
valid settings 377

REMOTE_NAME function mapping
option

valid settings 381
REMOTE_PASSWORD user option

valid settings 377
reverse type mappings

default mappings 407

S
sample

HMMER
queries 328

samples
queries

BLAST 217, 225, 226
Documentum 179
Excel 195
Extended Search 300, 303
XML 250

server definitions
description 10

server options
description 10
temporary 10
valid settings 367

server types
valid federated types 383

SET SERVER OPTION statement
setting an option temporarily 10

start
HMMER

daemon 321
statistics

updating data source 22
summary tables

creating nicknames 4
Sybase

adding to a federated system
CREATE NICKNAME

statement 85
CREATE SERVER

statement 78
creating user mappings 80
overview 73
registering nicknames 84
testing connections 82

configuring access to 73
default forward type

mappings 387

442 Data Source Configuration Guide

Sybase (continued)
default reverse type

mappings 407
nicknames, valid objects for 13
registering server definitions 77
registering wrappers 76
setting up client configuration

files 74
supported versions 2
testing client configuration

files 74
troubleshooting 85
tuning 85
valid server types 383

SYSCAT catalog views 363
SYSSTAT catalog views 363

T
table-structured files

accessing with DB2 Information
Integrator 144

adding to a federated system
registering nicknames 149
registering the server 148
registering the wrapper 146

example 143
file access control model 151
messages 152
nicknames, valid objects for 13
optimization 151
overview 143
supported versions 2
types 143

Teradata
access logging 134
adding to a federated system

CREATE NICKNAME
statement 133

CREATE SERVER
statement 127

CREATE USER MAPPING
statement 129

creating user mappings 128
overview 121
registering nicknames 132
registering server

definitions 126
registering wrappers 125
testing connections 123, 130
verifying run-time linking

(AIX) 124
configuring access to 121
default forward type

mappings 387

Teradata (continued)
default reverse type

mappings 407
nicknames on federated servers,

overview 132
nicknames, valid objects for 13
run-time linking, enabling

(AIX) 124, 134
troubleshooting 134
tuning 134
valid server types 383

TIMEFORMAT server option
valid settings 367

TIMEOUT server option
valid settings 367

TIMESTAMPFORMAT server option
valid settings 367

troubleshooting
Microsoft SQL Server

configurations 101
ODBC configurations 118
Oracle configurations 71
Sybase configurations 85
Teradata configurations 134

tuning
data source configuration

DB2 family data sources 43
Informix 57
Microsoft SQL Server 101
ODBC 118
Oracle 71
Sybase 85
Teradata 134

U
UDTs (user-defined types)

unsupported 15
updating statistics,planning 22
user IDs

case-sensitive values 20
user mapping options

description 11
valid settings 377

user mappings
description 11
Extended Search 298, 361
planning 25

user-defined types (UDTs)
unsupported data types 15

V
VARCHAR_NO_TRAILING_

BLANKS column option
valid settings 379

VARCHAR_NO_TRAILING_
BLANKS server option

valid settings 367
vertical tables

Extended Search 292

W
wrappers

description 9
planning 25
Teradata, creating for 125
XML, creating for 236

X
XML

adding to a federated system
CREATE NICKNAME

statement 243, 244, 351
CREATE SERVER

statement 237
CREATE WRAPPER

statement 236
creating federated views for

nonroot nicknames 249
overview 235
registering nicknames 238,

243
registering the server 237
registering the wrapper 236
running queries 250
setting DB2_DJ_COMM

environment variables 236
cost model facility 240, 241
description 231
messages 251
nicknames, valid objects for 13
source documents and

nicknames 238
supported versions 2

Index 443

444 Data Source Configuration Guide

Contacting IBM

To contact IBM in the United States or Canada, call one of the following
numbers:
v For customer service: 1-800-IBM-SERV (1-800-426-7378)
v For DB2 marketing and sales: 1-800-IBM-4YOU (1-800-426-4968)

To learn about available service options, call one of the following numbers:
v In the United States: 1-888-426-4343
v In Canada: 1-800-465-9600

To locate an IBM office in your country or region, see the IBM Directory of
Worldwide Contacts on the Web at www.ibm.com/planetwide.

Product information

Information about DB2 Information Integrator is available by telephone or on
the Web.

If you live in the United States, you can call one of the following numbers:
v To order products or to obtain general information: 1-800-IBM-CALL

(1-800-426-2255)
v To order publications: 1-800-879-2755

On the Web, go to www.ibm.com/software/data/integration/solution. This
site contains the latest information on the technical library, ordering books,
client downloads, newsgroups, fix packs, news, and links to Web resources.

To locate an IBM office in your country or region, see the IBM Directory of
Worldwide Contacts on the Web at www.ibm.com/planetwide.

Comments on the documentation

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 Information Integrator
documentation. You can use any of the following methods to provide
comments:
v Send your comments using the online readers’ comment form at

www.ibm.com/software/data/rcf.
v Send your comments by electronic mail (e-mail) to

comments@vnet.ibm.com. Be sure to include the name of the product, the

© Copyright IBM Corp. 1998 - 2003 445

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

version number of the product, and the name and part number of the book
(if applicable). If you are commenting on specific text, please include the
location of the text (for example, a title, a table number, or a page number).

446 Data Source Configuration Guide

����

Printed in U.S.A.

Spine information:

���
IBM DB2 Information
Integrator Data Source Configuration Guide Version 8

	Contents
	About this book
	Who should read this book
	Conventions
	How to read the syntax diagrams

	Chapter 1. Overview of configuring access to data sources
	Fast track to configuring your data sources
	Supported data sources
	Create nicknames for each data source object
	Including column options when you create a nickname
	Creating a nickname on a nickname

	Optional configuration steps

	Chapter 2. Overview of a federated system
	Wrappers and wrapper modules
	Server definitions and server options
	Collating sequences and data source configuration
	User mappings
	Nicknames and data source objects
	Valid data source objects
	Column options
	Data type mappings
	Function mappings
	Index specifications

	Chapter 3. Planning for federated data source configuration
	Federated object naming rules
	Preserving case-sensitive values in a federated system
	Update data source statistics
	Plan the data type mappings
	Plan the function mappings
	Plan the user mappings
	Choose the correct wrapper
	Checklist for planning your federated system configuration
	Checklist: Federated object naming rules
	Checklist: Preserving case-sensitive values
	Checklist: Data source statistics
	Checklist: Data type mappings
	Checklist: User mappings
	Checklist: Wrappers

	Chapter 4. Configuring access to DB2 family data sources
	Adding DB2 family data sources to federated servers
	Cataloging a node entry in the federated node directory
	Cataloging the remote database in the federated system database directory
	Registering the DB2 wrapper
	Registering the server definitions for a DB2 data source
	CREATE SERVER statement - Examples for DB2 wrapper
	Creating the user mapping for a DB2 data source
	CREATE USER MAPPING statement - Examples for DB2 wrapper
	Testing the connection to the DB2 data source server
	Registering nicknames for DB2 tables and views
	CREATE NICKNAME statement - Examples for DB2 wrapper
	Tuning and troubleshooting the configuration to DB2 family data sources
	Improving performance by setting the DB2_DJ_COMM variable (UNIX)

	Chapter 5. Configuring access to Informix data sources
	Adding Informix data sources to federated servers
	Setting up and testing the Informix client configuration file
	Registering the Informix wrapper
	Registering the server definitions for an Informix data source
	CREATE SERVER statement - Examples for Informix wrapper
	Creating the user mapping for an Informix data source
	CREATE USER MAPPING statement - Examples for Informix wrapper
	Testing the connection to the Informix server
	Registering nicknames for Informix tables, views, and synonyms
	CREATE NICKNAME statement - Examples for Informix wrapper
	Tuning and troubleshooting the configuration to Informix data sources
	Improving performance by setting the FOLD_ID and FOLD_PW server options
	Improving performance by setting the DB2_DJ_COMM variable (UNIX)

	Chapter 6. Configuring access to Oracle data sources
	Adding Oracle data sources to federated servers
	Setting up and testing the Oracle client configuration file
	Registering the Oracle wrapper
	Oracle wrappers and library names
	Registering the server definitions for an Oracle data source
	CREATE SERVER statement - Examples for Oracle wrapper
	Creating the user mappings for an Oracle data source
	CREATE USER MAPPING statement - Examples for Oracle wrapper
	Testing the connection to the Oracle server
	Registering nicknames for Oracle tables and views
	CREATE NICKNAME statement - Examples for Oracle wrapper
	Tuning and troubleshooting the configuration to Oracle data sources
	Improving performance by setting the DB2_DJ_COMM variable (UNIX)
	Connectivity problems

	Chapter 7. Configuring access to Sybase data sources
	Adding Sybase data sources to federated servers
	Setting up and testing the Sybase client configuration file
	Registering the Sybase wrapper
	Registering the server definitions for a Sybase data source
	CREATE SERVER statement - Examples for Sybase wrapper
	Creating a user mapping for a Sybase data source
	CREATE USER MAPPING statement - Examples for Sybase wrapper
	Testing the connection to the Sybase server
	Registering nicknames for Sybase tables and views
	CREATE NICKNAME statement - Examples for Sybase wrapper
	Tuning and troubleshooting the configuration to Sybase data sources
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)
	Using CTLIB instead of DBLIB
	Resolving the sp_helpindex error

	Chapter 8. Configuring access to Microsoft SQL Server data sources
	Adding Microsoft SQL Server data sources to federated servers
	Preparing the federated server and database to access Microsoft SQL Server data sources
	Registering the Microsoft SQL Server wrapper
	Registering the server definitions for a Microsoft SQL Server data source
	CREATE SERVER statement - Examples for Microsoft SQL Server wrapper
	Creating a user mapping for a Microsoft SQL Server data source
	CREATE USER MAPPING statement - Examples for Microsoft SQL Server wrapper
	Testing the connection to the Microsoft SQL Server remote server
	Registering nicknames for Microsoft SQL Server tables and views
	CREATE NICKNAME statement - Examples for Microsoft SQL Server wrapper
	Tuning and troubleshooting the configuration to Microsoft SQL Server data sources
	Improving performance by setting the DB2_DJ_COMM variable (UNIX)
	Obtaining ODBC traces

	Chapter 9. Configuring access to ODBC data sources
	Adding ODBC data sources to federated servers
	Preparing the federated server and database to access data sources through ODBC
	Registering the ODBC wrapper
	CREATE WRAPPER statement - Examples for ODBC wrapper
	Registering the server definitions for an ODBC data source
	CREATE SERVER statement - Examples of ODBC wrapper
	Creating a user mapping for an ODBC data source
	CREATE USER MAPPING statement - Examples for ODBC wrapper
	Testing the connection to the ODBC data source server
	Registering nicknames for ODBC data source tables and views
	CREATE NICKNAME statement - Examples for ODBC wrapper
	Tuning and troubleshooting the configuration to ODBC data sources
	Improving performance by setting the DB2_DJ_COMM variable
	Obtaining ODBC traces

	Chapter 10. Configuring access to Teradata data sources
	Adding Teradata data sources to federated servers
	Testing the connection to the Teradata server
	Verifying that the Teradata library is enabled for run-time linking (AIX)
	Registering the Teradata wrapper
	Registering the server definitions for a Teradata data source
	CREATE SERVER statement - Examples for Teradata wrapper
	Creating the user mapping for a Teradata data source
	CREATE USER MAPPING statement - Examples for Teradata wrapper
	Testing the connection from the federated server to the Teradata server
	Teradata nicknames on federated servers
	Registering nicknames for Teradata tables and views
	CREATE NICKNAME statement - Examples for Teradata wrapper
	Tuning and troubleshooting the configuration to Teradata data sources
	Improving access to the Teradata server by setting the DB2_DJ_COMM variable
	Tuning and disabling Teradata access logging
	Enabling run-time linking for libcliv2.so (AIX)

	Chapter 11. Configuring access to OLE DB data sources
	Adding OLE DB data sources to federated servers
	Registering the OLE DB wrapper
	Registering the server definitions for an OLE DB data source
	CREATE SERVER statement - Examples for OLE DB wrapper
	Creating a user mapping for an OLE DB data source
	CREATE USER MAPPING statement - Examples for OLE DB wrapper

	Chapter 12. Configuring access to Table-structured file data sources
	What are table-structured files?
	Types of table-structured files
	Sorted files
	Unsorted files

	How DB2 Information Integrator works with table-structured files
	Adding table-structured files to a federated system
	Registering the table-structured file wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the table-structured file wrapper
	Registering the server for table-structured files
	Registering nicknames for table-structured files
	CREATE NICKNAME statement - Examples for table-structured file wrapper
	File access control model for the table-structured file wrapper
	Optimization tips and considerations for the table-structured file wrapper
	Messages for the table-structured file wrapper

	Chapter 13. Configuring access to Documentum data sources
	What is Documentum?
	Adding Documentum to a federated system
	Making the Documentum client library available to DB2 (AIX and Solaris Operating Environment only)
	Pointing to Documentum's client dmcl.ini file
	Registering the Documentum wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the Documentum wrapper
	Registering the server for Documentum data sources
	Mapping users (Documentum wrapper)
	Registering nicknames for Documentum data sources
	Understanding pseudo columns

	CREATE NICKNAME statement - Example for Documentum wrapper
	Registering custom functions for Documentum data sources
	Custom function string argument rules
	Using custom functions in queries
	Custom function table

	Documentum data source – Example queries
	What is the CreateNicknameFile utility for the Documentum wrapper?
	Installing the CreateNicknameFile utility (Documentum wrapper)
	Configuring the CreateNicknameFile utility (Documentum wrapper)
	Mapping the DM_ID object type in Documentum registered tables
	Dual defining repeating attributes (Documentum wrapper)
	Access control for the Documentum wrapper
	Messages for the Documentum wrapper

	Chapter 14. Configuring access to Excel data sources
	What is Excel?
	Adding Excel to a federated system
	Registering the Excel wrapper
	Registering the server for an Excel data source
	Registering nicknames for Excel data sources
	Excel data source – Example queries
	Excel data source – Sample scenario
	File access control model for the Excel wrapper
	Messages for the Excel wrapper

	Chapter 15. Configuring access to BLAST data sources
	What is BLAST?
	Adding BLAST to a federated system
	Verifying that the correct version of the blastall executable and matrix files are installed
	Configuring the BLAST daemon
	Starting the BLAST daemon
	Registering the BLAST wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the BLAST wrapper
	Registering the server for a BLAST data source
	Registering nicknames for BLAST data sources
	Definition line parsing
	Fixed columns
	Input fixed columns
	Output fixed columns

	CREATE NICKNAME statement - Examples for BLAST wrapper
	Setting up TurboBlast to work with the BLAST wrapper
	Constructing BLAST SQL queries
	BLAST data source – Example queries
	Optimization tips for the BLAST wrapper
	Messages for the BLAST wrapper

	Chapter 16. Configuring access to XML data sources
	What is XML?
	Adding XML to a federated system
	Registering the XML wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the XML wrapper
	Registering the server for an XML data source
	Data associations between nicknames and XML documents
	The cost model facility for the XML wrapper
	Optimization tips for the XML cost model facility
	Registering nicknames for XML data sources
	CREATE NICKNAME statement - Examples for XML wrapper
	Creating federated views for nonroot nicknames (XML wrapper)
	XML data source - Example queries
	Messages for the XML wrapper

	Chapter 17. Configuring access to Entrez data sources
	What is Entrez?
	Adding Entrez to a federated system
	Registering custom functions for the Entrez wrapper
	Registering the Entrez wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the Entrez wrapper
	Registering the server for an Entrez data source
	Registering nicknames for Entrez data sources
	Custom functions and Entrez queries
	Relational predicates for the Entrez wrapper
	Invalid WHERE clauses for the Entrez wrapper
	Schema data element simplification
	Item lists
	Names
	Dates

	Entrez data source — Example queries
	Custom function table - Entrez wrapper
	PubMed and Nucleotide schema tables
	Messages for the Entrez wrapper

	Chapter 18. Configuring access to Extended Search data sources
	What is Extended Search?
	Extended Search data sources
	How the Extended Search wrapper works

	Extended Search nicknames
	Extended Search vertical tables
	Adding Extended Search data sources to a federated server
	Registering the Extended Search wrapper
	Registering the server for Extended Search data sources
	Registering nicknames for Extended Search data sources
	Registering user mappings for Extended Search data sources
	Registering the Extended Search custom function
	Extended Search wrapper - Query guidelines
	Extended Search wrapper - Example queries
	Extended Search wrapper - Generalized query language
	Messages for the Extended Search wrapper

	Chapter 19. Configuring access to HMMER data sources
	What is HMMER?
	Adding HMMER to a federated system
	Verifying that the correct version of the hmmpfam executable is installed
	Configuring the HMMER daemon
	Starting the HMMER daemon
	Registering the HMMER wrapper
	Setting the DB2_DJ_COMM DB2 profile variable for the HMMER wrapper
	Registering the server for a HMMER data source
	Arguments
	Options

	Registering nicknames for HMMER data sources
	Nickname options
	Fixed columns
	Input fixed columns
	Output fixed columns

	CREATE NICKNAME statement - Example for HMMER wrapper
	HMMER data source – complete example
	Construct new HMMER queries with samples
	Optimization tips for the HMMER wrapper
	Messages for the HMMER wrapper

	Chapter 20. Altering nicknames
	Altering nicknames
	Changing the data type
	Changing the nickname option

	Chapter 21. DDL command reference
	CREATE FUNCTION statement syntax - Extended Search wrapper
	CREATE NICKNAME statement syntax - BLAST wrapper
	CREATE NICKNAME statement syntax - Documentum wrapper
	CREATE NICKNAME statement syntax - Excel wrapper
	CREATE NICKNAME statement syntax - Extended Search wrapper
	CREATE NICKNAME statement options - Entrez wrapper
	CREATE NICKNAME statement syntax - Table-structured file wrapper
	CREATE NICKNAME statement syntax - XML wrapper
	CREATE SERVER statement arguments - BLAST wrapper
	CREATE SERVER statement arguments and options - Documentum wrapper
	CREATE SERVER statement arguments - Entrez wrapper
	CREATE SERVER statement arguments - Excel wrapper
	CREATE SERVER statement syntax - Extended Search wrapper
	CREATE USER MAPPING statement options - Documentum wrapper
	CREATE USER MAPPING statement syntax - Extended Search wrapper
	CREATE WRAPPER statement syntax - Extended Search wrapper

	Appendix A. Views in the global catalog table containing federated information
	Appendix B. Server options for federated systems
	Appendix C. User mapping options for federated systems
	Appendix D. Column options for federated systems
	Appendix E. Function mapping options for federated systems
	Appendix F. Valid server types in SQL statements
	CTLIB wrapper
	DBLIB wrapper
	DJXMSSQL3 wrapper
	DRDA wrapper
	Informix wrapper
	MSSQLODBC3 wrapper
	NET8 wrapper
	ODBC wrapper
	OLE DB wrapper
	SQLNET wrapper
	Teradata wrapper

	Appendix G. Default forward data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for Linux, UNIX, and Windows data sources
	Informix data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Oracle NET8 data sources
	Oracle SQLNET data sources
	Sybase data sources
	Teradata data sources

	Appendix H. Default reverse data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 for VM and VSE data sources
	DB2 for Linux, UNIX, and Windows data sources
	Informix data sources
	Microsoft SQL Server data sources
	Oracle SQLNET data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	DB2 Information Integrator technical documentation
	Accessing books and release information
	DB2 Information Integrator books
	Printing books from PDF files
	Ordering printed books

	Release notes
	FixPaks for DB2 Information Integrator documentation

	Accessing topics using the DB2 Information Integrator Information Center or the DB2 HTML Documentation CD
	Features of the DB2 Information Integrator Information Center
	Finding topics in the DB2 Information Integrator Information Center
	Using the DB2 HTML Documentation
	Installing the DB2 HTML documentation
	Viewing technical documentation directly from the DB2 HTML Documentation CD
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Updating the HTML documentation on your computer

	Searching the DB2 documentation
	Troubleshooting DB2 documentation search with Netscape 4.x

	Accessibility
	Keyboard input and navigation
	Accessible display
	Font settings
	Nondependence on color

	Alternative alert cues
	Compatibility with assistive technologies
	Accessible documentation

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information
	Comments on the documentation

