
IBM DB2 Information Integrator
OmniFind Edition

Programming Guide and API Reference for

Enterprise Search

Version 8.2.2

SC18-9284-01

���

IBM DB2 Information Integrator
OmniFind Edition

Programming Guide and API Reference for

Enterprise Search

Version 8.2.2

SC18-9284-01

���

Before using this information and the product it supports, be sure to read the general information under ″Notices.″

This document contains proprietary information of IBM. It is provided under a license agreement and Copyright

law protects it. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative:

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order.

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at

www.ibm.com/planetwide.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Chapter 1. Enterprise search APIs . . . 1

Search API security 1

Compiling Java source code 2

SIAPI Javadoc documentation 2

Chapter 2. Search and Index API (SIAPI) 3

Structure of an SIAPI application 3

Controlling query behavior 5

Query syntax 8

SIAPI federators 19

Local federator 19

Remote federator 20

Chapter 3. Sample SIAPI applications 21

Compiling the sample SIAPI search applications . . 21

Simple and advanced sample search applications . . 22

Browse and navigation sample application 22

Retrieve all search results sample 22

Sample federated search application 24

Chapter 4. Data listener 25

Removing data with the data listener API 26

Adding data with the data listener API 27

Creating data listener client applications 28

DLResponse class 28

getCode method 29

getCodeName method 29

DLDataPusher class 30

Sample data listener client applications 34

Sample data listener client application: removing

URIs from a collection 34

Sample data listener client application: adding

URIs and content to a collection 36

Sample data listener client application: revisiting

URLs 38

Sample data listener client application: adding,

removing, and revisiting data in a collection . . 40

Chapter 5. Linguistic support 45

Chapter 6. Custom text analysis

integration 47

Unstructured information management architecture

(UIMA) 48

Workflow for custom analysis integration 49

Text analysis algorithms 49

Approaches for mapping XML document structures

to a common analysis structure 50

XML mapping configuration file 52

XML mapping sample and the output results . . 55

Approaches for indexing custom analysis results . . 59

Definition of a feature path 60

Writing the index build configuration file . . . 61

Types and features defined in enterprise search . . 66

Types and features defined in UIMA 69

Semantic search applications 72

Semantic search query 73

Chapter 7. Text analysis included in

enterprise search 75

Language identification 75

Linguistic support for nondictionary-based

segmentation 76

Linguistic support for dictionary-based

segmentation 76

Word segmentation in Japanese 78

Orthographic variants in Japanese 78

Stop word removal 79

Character normalization 79

DB2 Information Integrator

documentation 81

Documentation about event publishing function for

DB2 Universal Database on z/OS 81

Documentation about event publishing function for

IMS and VSAM on z/OS 82

Documentation about event publishing and

replication function on Linux, UNIX, and Windows . 82

Documentation about federated function on Linux,

UNIX, and Windows 83

Documentation about federated function on z/OS 84

Documentation about replication function on z/OS 85

Documentation about enterprise search function on

Linux, UNIX, and Windows 86

Release notes and installation requirements 86

Viewing release notes and installation requirements 87

Viewing and printing PDF documentation 88

Accessing DB2 Information Integrator

documentation 88

Accessibility 91

Keyboard input and navigation 91

Keyboard focus 91

Keyboard input 91

Keyboard navigation 91

Accessible display 91

Font settings 92

Non-dependence on color 92

Compatibility with assistive technologies 92

Accessible documentation 92

Contacting IBM 93

Obtaining product information 93

Providing comments on the documentation 93

Notices 95

Trademarks 97

© Copyright IBM Corp. 2004, 2005 iii

||

||
||
||

||

||
||
||
||
||
||
||
||
||
|
||
|
||
|
||
|
||

Index 99

iv DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Chapter 1. Enterprise search APIs

IBM® DB2® Information Integrator OmniFind Edition (DB2 II OmniFind Edition)

provides Java application programming interfaces (APIs) for enterprise search.

With these APIs, you can create search applications to process queries to the search

collections. You can also add documents and remove documents from search

collections with the data listener APIs.

IBM SIAPI

Use the IBM search and index API (SIAPI) to build custom search applications. The

enterprise search implementation of SIAPI allows for remote access to the search

server. The search server stores the collection data for the enterprise search system.

With these APIs, you create applications that submit search requests, process search

results, and browse taxonomy trees.

See Chapter 3, “Sample SIAPI applications,” on page 21 for sample search

applications that are provided with DB2 II OmniFind Edition.

Data listener API

The data listener is an enterprise search component that accepts requests from

client applications. The requests are to add or remove data from collections.

Typically, you create enterprise search collections by crawling for data, parsing and

indexing that data, then making that data available for search. With the data

listener client application, you can add pages to a collection, remove uniform

resource identifiers (URIs) from a collection without having to wait to crawl those

data sources, or instruct the Web crawler of a collection to visit or revisit uniform

resource locators (URLs).

See “Sample data listener client applications” on page 34 for sample data listener

client applications that are provided with DB2 II OmniFind Edition.

Search API security

The search and browse APIs communicate remotely to the ESSearchServer

Enterprise Application that is installed on each WebSphere® search node.

After global security is enabled, WebSphere Application Server will require that all

HTTP requests supply a valid user name and password. The user name and

password entered must be valid within the active user registry that is configured

through the WebSphere administration console. Any requests that do not contain

valid user credentials are rejected.

In an enterprise search application, the Properties object is passed in the call to the

getSearchService method or getBrowseService method. The Properties object

specifies property names called username and password for WebSphere.

Store the search application names and passwords in the same repository that is

used for WebSphere authentication.

Enterprise search supports HTTP BASIC authentication. There is no support for

HTTPS (SSL v2 or v3).

© Copyright IBM Corp. 2004, 2005 1

|
|
|

Compiling Java source code

The enterprise search ESSearchApplication sample and the data listener samples

should be compiled with IBM Software Developer’s Kit 1.4.x. The SIAPI samples

can be compiled with either 1.3.x or 1.4.x. IBM Software Developer’s Kit 1.5 is not

supported.

Before you can build your Java™ source code, you must install and configure

Apache ANT, a Java-based build tool. For more information about how to install

and configure Apache ANT, see http://ant.apache.org/.

The ESSearchApplication in the ES_INSTALL_ROOT/samples directory must be

compiled with IBM

SDK Version 1.4 and must execute in a JRE Version 1.4 environment. WebSphere

Application Server, Version 5.1 and WebSphere Portal, Version 5.1 both provide the

JRE Version 1.4.

To compile your Java source code:

1. From the command line, change to one of the following directories:

v For the SIAPI sample search applications: ES_INSTALL_ROOT/samples/siapi

(for example, on Linux™ and AIX®, /opt/IBM/es/samples/siapi, on

Windows®, Program Files\IBM\es\samples\siapi)

v For the data listener client applications:

ES_INSTALL_ROOT/samples//datalistener (for example, on Linux and AIX,

/opt/IBM/es/samples//datalistener, on Windows, Program

Files\IBM\es\samples\\datalistener)

v For the ESSearchApplication:

ES_INSTALL_ROOT/samples/ESSearchApplication (for example, on Linux

and AIX, opt/IBM/es/samples/ESSearchApplication, on Windows, Program

Files\IBM\es\samples\ESSearchApplication)

Each of these directories includes a build.xml file that ANT uses to build the

file.

2. Type ant and press Enter.

You will see the following message after the your Java source code compiles:

BUILD SUCCESSFUL

Total time: xx seconds

SIAPI Javadoc documentation

Use the SIAPI Javadoc documentation that is shipped with DB2 Information

Integrator OmniFind Edition to help you create custom search applications that

you can deploy for your enterprise search solution.

See the Javadoc documentation for a list of application programming interfaces

(APIs) that you can use to create search applications. This documentation does not

include APIs for the data listener client applications.

The Javadoc documentation is in the ES_INSTALL_ROOT/docs/api/siapi directory.

2 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|

|
|
|

|
|
|

|

http://ant.apache.org/

Chapter 2. Search and Index API (SIAPI)

The IBM search and index API (SIAPI) is a programming interface that enables you

to search and browse collections and taxonomies.

The SIAPI provides a unified programming interface that enables you to write one

program that searches different IBM back-end search products.

The SIAPI supports such tasks as:

v Searching indexes

v Customizing the information that is returned in search results sets

v Searching and browsing taxonomies

v Searching over several collections as if they were one collection (search

federation)

Structure of an SIAPI application

A SIAPI application sends queries to the search server and returns results for those

queries.

An SIAPI application consists of the following tasks:

v Obtains an SIAPI implementation factory object

v Obtains a SearchService object

v Obtains a Searchable object

v Issues queries

v Processes query results

Obtaining an SIAPI implementation factory object

An SIAPI-based search application begins by obtaining an implementation factory

object.

SearchFactory factory =

SiapiSearchImpl.createSearchFactory

 ("com.ibm.es.api.search.RemoteSearchFactory");

The SIAPI is a factory-based Java API. All of the objects that are used in your

search application are created by calling SIAPI object-factory methods or are

returned by calling methods of factory-generated objects. You can easily switch

between SIAPI implementations by loading different factories.

The enterprise search SIAPI implementation is provided by the

com.ibm.es.api.search.RemoteSearchFactory class.

Obtaining a SearchService object

Use the factory object to obtain a SearchService object. With the SearchService

object, you can access searchable collections.

© Copyright IBM Corp. 2004, 2005 3

If the enterprise search system was installed on multiple servers, you must

configure the SearchService object with the host name, port, and, if WebSphere

global security is enabled, a valid WebSphere user name and password for the

search server.

Configuration parameters are set in a java.util.Properties. The parameters are then

passed to the getSearchService factory method that generates the SearchService

object.

Properties configuration = new Properties();

configuration.setProperty("hostname", "es.mycompany.com");

configuration.setProperty("port", "80");

config.setProperty("username", "websphereUser");

config.setProperty("password", "webspherePassword");

SearchService searchService =

 factory.getSearchService(config);

Obtaining a Searchable object

Use the SearchService object to obtain a Searchable object. A Searchable object is

associated with a searchable collection. With a Searchable object, you can issue

queries and get information about the associated collection. Each enterprise search

collection has an ID.

When you request a Searchable object, you need to identify your application by

using an application ID. Contact your enterprise search administrator for the

appropriate application ID.

ApplicationInfo appInfo = factory.createApplicationInfo("my_application_id");

appInfo.setPassword("my_password");

Searchable searchable =

 searchService.getSearchable(appInfo, "some_collection_id");

Call the getAvailableSearchables method to obtain all of the Searchable objects that

are available for your application.

Searchable[] searchables =

 searchService.getAvailableSearchables(appInfo);

Issuing queries

After you obtain a Searchable object, you can issue a query to that Searchable

object. To issue a query to the Searchable object:

v Create a Query object.

v Customize the Query object.

v Submit the Query object to the Searchable object.

v Get the query results, which are specified in a ResultSet object.
String queryString = "big apple";

Query query = factory.createQuery(queryString);

query.setRequestedResultRange(0, 10);

ResultSet resultSet = searchable.search(query);

Processing query results

The ResultSet and Result interfaces enable you to access query results.

4 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|
|

|
|
|
|
|
|
|

Result[] results = resultSet.getResults();

for (int i = 0 ; i < results.length ; i++) {

 System.out.println

("Result " + i + ": " + results[i].getDocumentID()

 + " - " + results[i].getTitle());

}

The SIAPI has a variety of methods for interacting with the ResultSet interface and

individual Result interface objects.

Controlling query behavior

With the methods that belong to the Query interface, you can control all aspects of

query behavior, including how the query is processed and what metadata is

returned with each result.

See the Javadoc documentation for details about the each method.

 Table 1. Query behavior methods

Method Description

setLinguisticMode(int mode) Sets the linguistic mode for this query. You can set one

of the following modes:

v LINGUISTIC_MODE_EXACT_MATCH: Unmodified

terms will be matched as entered without

undergoing linguistic processing.

v LINGUISTIC_MODE_BASEFORM_MATCH:

Unmodified terms will be matched after undergoing

linguistic processing.

v LINGUISTIC_MODE_ENGINE_DEFINED:

Unmodified terms will be matched according to the

engine’s best-effort policy. This is the default mode.

setQueryLanguage(java.lang.String

lang)

Specifies to use a language other than the collection

default language on the search server. For example,

for English, the query language parameter is en-US.

For Chinese, use zh-CN for simplified Chinese and

zh-TW for traditional Chinese.

Chapter 2. Search and Index API (SIAPI) 5

Table 1. Query behavior methods (continued)

Method Description

setProperty(String name, String

value)

Sets the value of a searchable property. This method

has the following modes:

v HighlightingMode: Enables query terms to be

highlighted in several areas of the search result

details. Values are:

– DefaultHighlighting: Highlights query terms in

the summary only. This is the default if your

search application omits to set the

HighlightingMode property.

– ExtendedHighlighting: Extends the highlighting

of query terms to other areas of the search result,

for example, title, URL, and other fields.

v FuzzyNGramSearch: Fuzzy search enables

performing a non-strict search in n-gram collections.

This property is boolean and its values are:

– false: A strict search will be performed. This is

the default if your search application omits to set

the FuzzyNGramSearch property.

– true: Fuzzy search will be performed. When

FuzzyNGramSearch is set to true, you can set a

second related property: ProximityWindowSize.

When two query terms fall in a window of this

size, the document score is boosted by a

proximity boost. The value of this property is an

unsigned integer. The default value is 5.

ProximityWindowSize cannot be set if

FuzzyNGramSearch is set to false.

v AllowStopwordRemoval: Determines whether stop

words should be removed or not during query

parsing. If this property is not set, the engine

applies stop word removal according to its own

policy. This property is boolean and its values are:

– false: Stop words are not removed during query

parsing.

– true: Stop words are removed during query

parsing.

setRequestedResultRange(int

fromResult, int numberOfResult)

Controls the range of the returned results.

The fromResult value controls which ranked

document your result set starts from. For example, a

value of 0 means that you are requesting the first

document in the query results.

The numberOfResults value controls how many

results to return in the current page of results. The

maximum is 100.

setReturnedAttribute(int

attributeType, boolean isReturned)

Enables or disables any of the predefined result

attribute values that are returned with each Result

object.

By default, enterprise search returns all the predefined

result attribute values, except for the metadata fields

attribute (RETURN_RESULT_FIELDS).

6 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Table 1. Query behavior methods (continued)

Method Description

setReturnedFields(String[]

fieldNames)

Controls which metadata fields are returned in the

Result object.

By default, enterprise search does not return any

metadata fields.

setSiteCollapsingEnabled(boolean

value)

Specifies if the top results contain more than two

results from the same Web site or data source.

For example, if a particular query returned 100 results

from http://www.ibm.com and site collapsing was

enabled, the ResultSet will contain only two of those

results in the top results. The other results from that

site appear only after results from other sites are

listed.

To retrieve more results from that same site, use the

samegroupas:result URL query syntax or re-issue the

same query with the site http://www.ibm.com added

to the query string. See “Query syntax” on page 8 for

more information.

setSortKey(java.lang.String sortKey) Specifies the sort key. The following predefined sort

key values are defined in

com.ibm.siapi.search.BaseQuery:

v SORT_KEY_NONE

v SORT_KEY_DATE

v SORT_KEY_RELEVANCE

You can specify the sort key to be any other valid

numeric field name for the collection that is being

searched. The default sort key is

SORT_KEY_RELEVANCE.

setSortOrder(int sortOrder) Specifies the sort order as

SORT_ORDER_ASCENDING or

SORT_ORDER_DESCENDING.

The sort order is ignored if the sort key is

SORT_KEY_RELEVANCE or SORT_KEY_NONE.

setSortPoolSize(int sortPoolSize) Controls how many of the top relevant results will be

sorted and returned in the result set. Values range

from 1 to 500 (the default sort pool size is 500). Any

other values will cause a SiapiException to be thrown

by the search server.

The sort pool size is ignored if the sortKey is

SORT_KEY_RELEVANCE or SORT_KEY_NONE.

setPredefinedResultsEnabled

(boolean value)

Specifies whether query results contain predefined

links in addition to the regular results. Predefined

links are enabled by default.

setSpellCorrectionEnabled(boolean

enable)

Specifies whether query results contain suggestions

for spelling corrections for the query. Spell correction

is disabled by default.

setResultCategoriesDetailLevel

(int detailLevel)

Specifies the required category detail level for query

results. This method is used if the categories attribute

(RETURN_RESULT_CATEGORIES) is enabled. The

default value is RESULT_CATEGORIES_ALL.

Chapter 2. Search and Index API (SIAPI) 7

Table 1. Query behavior methods (continued)

Method Description

setSynonymExpansionMode

(int mode)

Sets synonym expansion mode for a query. Use one of

the following modes:

v SYNONYM_EXPANSION_OFF: Pass this constant

to the setSynonymExpansionMode method to

prevent synonyms from being expanded even if the

query contains the synonym operator.

v SYNONYM_EXPANSION_MANUAL: Pass this

constant to the setSynonymExpansionMode method

to expand synonyms only for the query terms that

are affected by the synonym operator.

v SYNONYM_EXPANSION_AUTOMATIC: Pass this

constant to the setSynonymExpansionMode method

to do a best effort to expand all applicable query

terms.

setACLConstraints(java.lang.String

aclConstraints)

Sets the access control constraints for this query for

secure searches.

Query syntax

You can refine search results by using specific characters in a query.

Simple query syntax characters

The following table describes the characters that you can use in search applications

to refine query results.

Free style query syntax

Free style query syntax is used to describe queries that do not have an

explicit interpretation. The queries usually contain terms that are not

preceded by a plus sign (+), a circumflex (^) or a minus sign (-), and for

which there is no default behavior defined.

 Query: computer software

 Result: This query returns documents that include the term computer or the

term software, both terms, or something else depending on the semantics of

the implementation.

~ (Postfix)

Follow a term with a tilde sign (~) to indicate that a match occurs anytime

a document contains a term that has the same linguistic base form as the

query term (also known as a lemma or stem).

 Query: apples~

 Result: This query finds documents that include the term apples or apple

because apple is the base form of apples.

+ Precede a term with a plus sign (+) to indicate that a document must

contain the term for a match to occur.

 Query: +computer +software

 Result: This query returns documents that include the term computer and

the term software.

8 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

� Precede a term with a minus sign (-) to indicate that the term must be

absent from a document for a match to occur.

 Query: computer -hardware

 Result: This query returns documents that include the term computer and

not the term hardware.

^ Precede a term with the circumflex (^) to indicate that a document must

contain the term and at least one more term that is not preceded by a

circumflex.

 Query: ^computer science software

 Result: This query returns documents that contain the term computer and

the terms science or software.

 Query: cats dogs ^$language::en ^$doctype::html

 Result: This query returns HTML documents in English that contain at

least one of the terms cats and dogs.

* Follow a term with a wildcard sign (*) to indicate that the document can

contain any word that is prefixed by this term.

 Query: app*

 Result: This query finds documents that include the term apple, application,

and so on, because these words all begin with app.

() Use parentheses () to indicate that a document must contain one or more

of the terms within the parentheses for a match to occur.

 Do not use plus signs (+), minus signs (-), or circumflex (^) within the

parentheses.

 Use OR or a vertical bar (|) to separate the terms in parentheses.

 Query: +computer (hardware OR software)

 Query: +computer (hardware | software)

 Result: Both of these queries find documents that include the term

computer and at least one of the terms hardware or software.

 An OR of terms can be either required (+), or required but insufficient (^),

but not forbidden (-). This does not restrict the power of the query

language: -(dogs OR cats) can be expressed by -dogs -cats.

 An OR of terms is designated as required (+) by default. Therefore, the

previous queries are equivalent to +computer +(hardware | software).

″ ″ Use double quotation marks (″) to indicate that a document must contain

the exact phrase within the double quotation marks for a match to occur.

 Query: "computer software programming"

 Result: This query finds documents that include the exact phrase computer

software programming.

 Phrases are designated as required by default. Hence the two queries

building "new york" and building +"new york" are equivalent. Phrases

can also be forbidden (-) and required but insufficient (^).

 Words inside phrases are never lemmatized.

Chapter 2. Search and Index API (SIAPI) 9

~ (Prefix)

Precede a term with a tilde sign (~) to indicate that a match occurs

anytime a document contains the word or one of its synonyms.

 Query: ~fort

 Result: This query finds documents that include the term fort or one of its

synonyms (such as garrison and stronghold).

= Precede a term with the equal sign (=) to indicate the document must

contain an exact match of the term for a match to occur (disable

lemmatization).

 Query: =apples

 Result: This query returns documents if and only if they include the plural

term apples.

site:text

If you search a collection that contains Web content, use the site keyword

to search a specific domain. For example, you can return all pages from a

particular Web site.

 Do not include the prefix http:// in a site query.

 Query: +laptop site:www.ibm.com

 Result: This query finds all documents on the www.ibm.com domain that

contain the word laptop.

url:text

If you search a collection that contains Web content, use the url keyword

to find documents that contain specific words anywhere in the URL.

 Query: url:support

 Result: This query finds documents with the value support anywhere in

the URL, such as http://www.ibm.com/support/fr/.

link:text

If you search a collection that contains Web content, use the link keyword

to find documents that contain at least one hypertext link to a specific Web

page.

 Query: link:http://www.ibm.com/us

 Result: This query finds all documents that include one or more links to

the page http://www.ibm.com/us .

field:text

If the documents in a collection include fields (or columns), and the

collection administrator made those fields searchable by field name, you

can query specific fields in the collection.

 Query: lastname:smith div:software

 Result: This query returns all documents about employees with the last

name Smith (lastname:smith) who work for the Software division

(div:software).

docid:documentid

Use the docid keyword to find documents that have a specific URI (or

document ID). Typically, there is at most one document in a collection that

matches a specific URI.

10 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Query: (docid:http://www.ibm.com/solutions/us/ OR

docid:http://www.ibm.com/products/us/)

 Result: This query finds all documents with the URI

http://www.ibm.com/solutions/us/ or the URI

http://www.ibm.com/products/us/.

samegroupas:URI

 By default, enterprise search treats the URLs with the same host name as

belonging to the same group, and treats the news articles from the same

thread as belonging to the same group. For URIs from all other data

sources, each URI forms its own group. However, with enterprise search,

you can group URIs that match specific prefixes into groups. For example,

you can configure the following group definition:

http://mycompany.server1.com/hr/ hr

http://mycompany.server2.com/hr/ hr

http://mycompany.server3.com/hr/ hr

http://mycompany.server1.com/finance/ finance

file:///myfileserver1.com/db2/sales/ sale

file:///myfileserver1.com/websphere/sales/ sale

file:///myfileserver2.com/db2/sales/ sale

file:///myfileserver2.com/websphere/sales/ sale

 In this example, all the URIs with the prefix

http://mycompany.server1.com/hr/ or

http://mycompany.server2.com/hr/ or

http://mycompany.server3.com/hr/ belong to one group: hr. All URIs

with the prefix http://mycompany.server1.com/finance/ belong to another

group: finance. And all the URIs with prefix

file:///myfileserver1.com/db2/sales/ or

file:///myfileserver1.com/websphere/sales/ or

file:///myfileserver2.com/db2/sales/ or

file:///myfileserver2.com/websphere/sales/ belong to yet another group:

sale. If file:///myfileserver2.com/websphere/sales/mypath/mydoc.txt is a

URI in the collection, a query with (this query should be on one line)

samegroupas:file:///myfileserver2.com/websphere/sales/mypath/mydoc.txt

as a search term will restrict the search to the URIs in the sale group. All

results for this query will have one of the following prefixes:

file:///myfileserver1.com/db2/sales/

file:///myfileserver1.com/websphere/sales/

file:///myfileserver2.com/db2/sales/

file:///myfileserver2.com/websphere/sales/

Query: samegroupas:http://www.ibm.com/solutions/us/

 Result: This query finds all documents with URIs, in this case URLs, that

belong to the same group as http://www.ibm.com/solutions/us/.

taxonomy_ID::category_ID

If you search a collection that contains categories created for enterprise

search, you can search for documents that belong to a specific category in a

specific taxonomy. Enterprise search supports two types of categorizers,

and each categorizer has its own taxonomy ID.

 To find the category ID, go to the following directory:

ES_NODE_ROOT/col_xyz.parserdriver/CategoryTree.xml. The file

CategoryTree.xml contains the category IDs.

Chapter 2. Search and Index API (SIAPI) 11

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

Taxonomy IDs

rulebased

Use this taxonomy ID to search for documents that belong to a

category that uses document content rules or document URI rules

to categorize documents. For information about configuring

rule-based categories, see DB2 Information Integrator OmniFind

Edition Administering Enterprise Search.

 Query:rulebased::c1

 Result: This query returns documents that belong to a rule-based

category ID named c1.

modelbased

Use this taxonomy ID to search for documents that belong to a

category defined in the WebSphere Portal taxonomy. For

information about migrating and using model-based categories or

taxonomies, see DB2 Information Integrator OmniFind Edition

Administering Enterprise Search.

 Query:modelbased::c3

 Result: This query returns documents that belong to a model-based

category ID named c3.

A taxonomy_ID::category_ID query term matches any documents that

belong to the specified category_ID or any of its subcategories. This can be

explicitly stated by preceding the taxonomy_ID with a tilda sign (~).

 If you want the query to return documents that belong to the specified

category but not return documents that belong to its subcategories, precede

the taxonomy_ID::category_ID term with an equal sign (=), for example:

=rulebased::c1.

scopes::scope_name

 Use the scope name to search for documents that belong to a

scope, which is a range of URIs in the index. For information about

configuring scopes, see DB2 Information Integrator OmniFind Edition

Administering Enterprise Search.

 Query:scopes::research ″computer science″

 Result: This query returns documents that belong to a scope

named research that contain the phrase computer science.

$source::source_type

Use the $source keyword to find documents that come from a specific data

source type. Source queries are useful in collections that contain documents

from multiple sources.

 To obtain a list of the available source types for a collection, call the

getAvailableAttributeValues(Searchable ATTRIBUTE_SOURCE) method of

that collection’s Searchable object.

 Query: $source::DB2 "computer science"

 Result: This query finds documents that were added to a collection by the

DB2 crawler that contain the phrase computer science.

$language::language_id

Use the $language keyword to find documents that were written in a

specific language.

12 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

To obtain a list of the available language IDs for a collection, call the

getAvailableAttributeValues(Searchable.ATTRIBUTE_LANGUAGE) method

of that collection’s Searchable object.

 Query: $language::en "computer science"

 Result: This query finds documents in English that contain the phrase

computer science.

$doctype::document_type

Use the $doctype keyword to find documents that have a specific

document format or MIME type.

 To obtain a list of the available document types for a collection, call the

getAvailableAttributeValues(Searchable.ATTRIBUTE_DOCTYPE) method of

that collection’s Searchable object.

 Query: $doctype::application/pdf "computer science"

 Result: This query finds Portable Document Format (PDF) documents that

contain the phrase computer science.

#field::=value

Use parametric constraint syntax to find documents that have a numeric

field with a value equal to the specified number.

 Query: #price::=1700 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value equal to 1700.

#field::>value

Use parametric constraint syntax to find documents that have a numeric

field with a value greater than the specified number.

 Query: #price::>1700 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700.

#field::<value

Use parametric constraint syntax to find documents that have a numeric

field with a value less than the specified number.

 Query: #price::<1700 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value less than 1700.

#field::>=value

Use parametric constraint syntax to find documents that have a numeric

field with a value greater than or equal to the specified number.

 Query: #price::>=1700 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700.

#field::<=value

Use parametric constraint syntax to find documents that have a numeric

field with a value less than or equal to the specified number.

 Query: #price::<=1700 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value less than or equal to 1700.

Chapter 2. Search and Index API (SIAPI) 13

#field::>value1<value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that falls between a range of specified numbers.

 Query: #price::>1700<3900 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700 and less than 3900.

#field::>=value1<=value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches or falls between a range of specified

numbers.

 Query: #price::>=1700<=3900 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700 and less than or

equal to 3900.

#field::>value1<=value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches the criteria in the specified range of

numbers.

 Query: #price::>1700<=3900 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700 and less than or equal to 3900.

#field::>=value1<value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches the criteria in the specified range of

numbers.

 Query: #price::>=1700<3900 laptop

 Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700 and less than 3900.

ACL constraints: (security_tokens)

or security, you cannot specify access control constraints in the query

string. Use the setACLConstraints(String aclConstraints) method of the

Query interface to specify access control constraints for the query. You can

specify parentheses, plus signs (+), minus signs (-) ,circumflexes (^), as

well as an XML security context string in ACL constraints string

(@SecurityContext::’securityContext’). For information on the

securityContext string syntax, see the Javadoc documentation that

describes the setACLContstraints method. The symbols have the same

meaning as described in the previous syntax descriptions.

 ACL constraints string in setACLConstraints method: michelle_c |

dev_group

 ACL constraints sting in setACLConstraints method: michelle_c

@SecurityContext::’securityContext’

 Query: thinkpad

 Result: This query finds documents that include the term thinkpad and the

security tokens michelle_c or dev_group in the first case, and michelle_c

and the specified security context constraints in the second case.

14 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Query syntax characters for opaque terms

With enterprise search, you can also create query syntax for two types of opaque

terms. With opaque terms, you can allow parts of the query to be expressed in

other languages, such as XML Fragment and XPath. XML Fragment and XPath are

two types of XML query languages. XML Fragment can also be used to query

UIMA structures. The sign for an opaque term is expressed with @xmlf2::. The

XML fragment is enclosed in single quotation marks (’ ’).

The expression xmlf2 is used for XML Fragments, and xmlxp is used for XPath

terms. An opaque term has the following syntax: @syntax_name::’value’. The

expression starts with the @ sign, followed by the syntax name (xmlf2 or xmlxp),

two colons (::), and a value enclosed in single quotation marks (’ ’). The ’value’ is

sometimes preceded with or +, �, or ^. If you need to use a single quotation mark

in the value section of the expression, escape the single quotation by using a

backslash (\), for example, \’.

@xmlf2::<tag1><.depth value=’$number’><tag2> ... </tag2></tag1> (or <.depth

value=″$number″>)

 This query syntax looks for occurrences of tag1 anywhere under tag2.

Depth is measured between a word w or a tag t to the tag t’ in the query

that is closest to w or t from above in the query.

 $number is a numerical value. You can use single quotation marks (’ ’) or

double quotation marks (″ ″) around the numerical value. This query

syntax is not applicable to UIMA.

 Query: @xmlf2::’<author>Albert Camus<.depth

value=’1’><publisher>Carey Press</publisher></author>’

 Result: This query finds documents of the publisher one level under the

author. A document with the following XML elements

<author>Albert Camus</author><ISBN>002-12345</ISBN>

<publisher>Carey Press</publisher>

will not be returned with the example query because the publisher

(<publisher>) element occurs two levels under the author (<author>)

element.

@xmlf2::’<tag1><@tag1> ... </@tag1></tag1>’

You can distinguish between elements and attributes. Attributes are either

written explicitly within the element or as subelements with a leading @

sign. This enables you to distinguish between elements and attributes that

might have the same name.

 You can define other tags, words, or phrases within these tags. These

words or phrases support the same features as the normal query’s terms.

 Query: @xmlf2::’<author country="USA"></author>’

 Query: @xmlf2::’<author><@country>USA</@country></author>’

 Result: This query finds documents where the author originates from the

USA.

 Query:

@xmlf2::’<author><@country>USA</@country>

<firstName>Michelle</firstName>

<lastName>Ropelatto</lastName></author>’

Chapter 2. Search and Index API (SIAPI) 15

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|

|

|

|
|

|

|
|
|

Result: This query finds documents where the author name is Michelle

Ropelatto and is from the USA.

@xmlf2::’+text1 ... +text2 -text3 ... -text4 text5’

Use a plus sign (+) or a minus sign (-) as prefixes to words or phrases

(always between quotation marks (″ ″)). At each query level (data under

elements creates a new nested query level) ″+″ means that the terms must

appear, ″-″ means that the terms should not appear and others are optional

and only contribute to ranking. If there are no ″+″ terms, then at least one

of the optional terms must appear.

 Query: @xmlf2::’+"Graph Theory" -network’

 Result: This query finds documents that contain the phrase Graph Theory,

and do not contain the term network.

@xmlf2::’<tag1> <.or> ... </.or> <.and> ... </.and> </tag1>’

Use full boolean to express AND (<.and>) and OR (<.or>) scope within a

fragment query.

 Query: @xmlf2::’<book><.or><author>Sylvia Plath</author><title>XML

-Microsoft</title></.or></book>’

 Result: This query finds documents that specify a book whose author is

Sylvia Plath or where the title of the book includes the word XML but not

Microsoft.

@xmlf2::’<annotation1+annotation2> ... </annotation1+annotation2>’

You can express the concatenation of consecutive annotations in a fragment

query by using the plus sign (+) between the start and end tags of the

element. The consecutive annotations must overlap by at least one word

(they must intersect). The concatenation of two or more overlapping

annotations is a new virtual annotation that spans the sum of the text

spanned by the annotations.

 Query: @xmlf2::’<Report+HoldsDuring> +Pakistan +March

+Reuters</Report+HoldsDuring>’

 Result: This query finds documents from Reuters about events in Pakistan

in March that are contained in the concatenated annotation formed by the

“Report” and “HoldsDuring” annotations.

@xmlf2::’<annotation1*annotation2> ... </annotation1*annotation2>’

You can express the intersection of annotations in a fragment query using

the asterisk sign (*) between the start and end tags of an element. The

intersection of two or more overlapping annotations is a new virtual

annotation that spans just the text that is covered by the intersection of the

overlapping annotations.

 Query: @xmlf2::’<Inhibits* Activates>Aspirin</Inhibits*Activates>’

 Result: This query finds documents in which Aspirin occurs in both the

’Inhibits’ and ’Activates’ annotations.

@xmlxp::’tag1/.../tagn’

 Use the @xmlxp:: prefix and enclose the query in single quotation marks to

indicate an XPath query as an SIAPI opaque term.

 If you include single quotation marks in opaque terms, they must be

preceded by backslash, for example, @xmlf2::’<T1 att1=\’value1\’></T1>.

 Query: @xmlxp::’books[booktitle ftcontains("Data Structures")]’

16 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

Result: This query finds documents that contain the phrase ″Data

Structures″ within the span of an indexed annotation called ″title.″

@xmlxp::’/tag1/@tag1’

You can distinguish between elements (XML start and end tags) and

attributes. Attributes are written explicitly with a leading @ sign. This

enables you to distinguish between elements and attributes that might

have the same name.

 Query: @xmlxp::’/author[@country="USA"]’

 Result: This query finds documents that specify that the author originates

from the USA.

@xmlxp::’/tag1[tag2 or tag3 and tag4]’

Use full Boolean to express AND and OR scope in an XPath query.

 Query: @xmlxp::’book[author ftcontains("Jose Perez") or title

ftcontains("XML -Microsoft")]’

 Result: This query finds documents that specify a book whose author is

Jose Perez or where the title of the book includes the word XML, but not

Microsoft.

@xmlxp::’tag1//tag2/tag3’

You can distinguish between descendent nodes (//) and child nodes (/).

 Query: @xmlxp::’/books//book/name’

 Result: This query finds documents that specify a book element as a

descendant of a books element and that specify a name element as a direct

child of the book.

@xmlf2::’text1 <tag1> ... </tag1>’

Use the @xmlf2:: prefix and enclose the query in single quotation marks to

indicate a fragment query as a new SIAPI opaque term.

 Query: @xmlf2::’<title>"Data Structures"</title>’

 Result: This query finds documents that contain the phrase Data Structures

within the span of an indexed annotation called title.

@xmlxp::’tag1/.../tagn’

Use the @xmlxp:: prefix and enclose the query in single quotation marks to

indicate an XPath query as an SIAPI opaque term.

 Query: @xmlxp::’books[booktitle ftcontains("Data Structures")]’

 Result: This query finds documents that contain the phrase ″Data

Structures″ within the span of an indexed annotation called ″title.″

@xmlxp::’/tag1/@tag1’

You can distinguish between elements (XML start and end tags) and

attributes. Attributes are written explicitly with a leading @ sign. This

enables you to distinguish between elements and attributes that might

have the same name.

 Query: @xmlxp::’/author[@country="USA"]’

 Result: This query finds documents that specify that the author originates

from the USA.

@xmlxp::’/tag1[tag2 or tag3 and tag4]’

Use full Boolean to express AND and OR scope in an XPath query.

Chapter 2. Search and Index API (SIAPI) 17

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

Query: @xmlxp::’book[author ftcontains("Jose Perez") or title

ftcontains("XML -Microsoft")]’

 Result: This query finds documents that specify a book whose author is

Jose Perez or where the title of the book includes the word XML, but not

Microsoft.

@xmlxp::’tag1//tag2/tag3’

You can distinguish between descendent nodes (//) and child nodes (/).

 Query: @xmlxp::’/books//book/name’

 Result: This query finds documents that specify a book element as a

descendant of a books element and that specify a name element as a direct

child of the book.

@xmlf2::’text1 <tag1> ... </tag1>’

Use the @xmlf2:: prefix and enclose the query in single quotation marks to

indicate a fragment query as an SIAPI opaque term.

 Query: @xmlf2::’<title>"Data Structures"</title>’

 Result: This query finds documents that contain the phrase ″Data

Structures″ within the span of an indexed annotation called ″title″.

@xmlf2::’<tag1><@tag1> ... </@tag1></tag1>’

You can distinguish between elements and attributes. Attributes are either

written explicitly within the element or as subelements with a leading @

sign. This enables you to distinguish between elements and attributes that

might have the same name.

 Query: @xmlf2::’<author country="USA"></author>’

 Query: @xmlf2::’<author><@country>USA</@country></author>’

 Result: This query finds documents where the author originates from the

USA.

@xmlf2::’+text1 ... +text2 -text3 ... -text4 text5’

Use a plus sign (+) or a minus sign (-) as prefixes to words or phrases

(always between quotation marks (″ ″)). At each query level (data under

elements creates a new nested query level) ″+″ means that the terms must

appear, ″-″ means that the terms should not appear and others are optional

and only contribute to ranking. If there are no ″+″ terms, then at least one

of the optional terms must appear.

 Query: @xmlf2::’+"Graph Theory" -network’

 Result: This query finds documents that contain the phrase Graph Theory,

and do not contain the term network.

@xmlf2::’<tag1><.or> ... <.and> ... </tag1>’

Use full boolean to express AND (<.and>) and OR (<.or>) scope within a

fragment query.

 Query: @xmlf2::’<book><.or><author>Jane Wong</author><title>XML

-Microsoft</title></.or></book>’

 Result: This query finds documents that specify a book whose author is

Jane Wong or where the title of the book includes the word XML but not

Microsoft.

@xmlf2::’ <annotation1+annotation2> ... </annotation1+annotation2>’

You can express the concatenation of consecutive annotations in a fragment

query by using the plus sign (+) between the start and end tags of the

18 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|

|
|
|

element. The consecutive annotations must overlap by at least one word

(they must intersect). The concatenation of two or more overlapping

annotations is a new virtual annotation that spans the sum of the text

spanned by the annotations.

 Query: @xmlf2::’<Report+HoldsDuring> +Pakistan +March

+Reuters</Report+HoldsDuring>’

 Result: This query finds documents from Reuters about events in Pakistan

in March that are contained in the concatenated annotation formed by the

“Report” and “HoldsDuring” annotations.

@xmlf2::’ <annotation1*annotation2> ... </annotation1*annotation2>’

You can express the intersection of annotations in a fragment query using

the asterisk sign (*) between the start and end tags of an element. The

intersection of two or more overlapping annotations is a new virtual

annotation that spans just the text that is covered by the intersection of the

overlapping annotations.

 Query: @xmlf2::’<Inhibits* Activates>Aspirin </Inhibits*Activates>’

 Result: This query finds documents in which Aspirin occurs in both the

’Inhibits’ and ’Activates’ annotations.

SIAPI federators

Use a federator to issue a federated search request across a set of heterogeneous

searchable collections and get a unified document result set.

Federators are intermediary components that exist between the requestors of

service and the agents that perform that service. They are special purpose resource

coordinators that are designed to manage the multitude of searches generated from

a single request.

Enterprise search provides two types of SIAPI federators:

v Local federator

v Remote federator

Local and remote federators are SIAPI searchable objects. Multiple-level federation

is allowed, but too many levels of federation will decrease search performance.

A local federator is created by using the createLocalFederator method from the

SIAPI SearchFactory class. The set of searchable collections on which the query is

to be run is specified when the federator is created. A subset of searchable objects

can also be specified during search calls.

A remote federator is run on the server and consumes server resources. A remote

federator requires an extra step in which input collection IDs are mapped to the

matching searchable object.

Local federator

A local federator is a client-side federator that federates over a set of searchables.

Before you can create a LocalFederator, you must create or retrieve SIAPI

searchable objects. This usually involves using a SIAPI SearchFactory. The SIAPI

searchable object that is passed to the LocalFederator must be ready for search

without any additional information. The local federator uses the searchable object

Chapter 2. Search and Index API (SIAPI) 19

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|

|

|
|

|
|
|
|

|

|

|

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|

to issue a federated search request. To complete this request, the local federator

environment must have all the necessary software components for using various

searchable objects.

The following code snippet shows how to create a LocalFederator and issue a

search request:

Searchable[] finalSearchables;

// create searchables

// create a query and set query options

Query query = searchFactory.createQuery(queryString);

query.setRequestedResultRange(0, 100),

query.setQueryLanguage("en_US");

query.setSpellCorrectionEnabled(true);

query.setPredefinedResultsEnabled(true);

// create the local federator and call search

LocalFederator federator =

 factory.createLocalFederator(finalSearchables);

ResultSet rs = federator.search(query);

Remote federator

A remote federator is a server-side federator that federates over a set of

searchables.

The RemoteFederator is created by using the SIAPI AdminService interface. During

the construction of the RemoteFederator, the set of collection IDs must be passed.

The collection IDs are mapped to SIAPI searchable objects internally by the

RemoteFederator. The remote federator environment does not require any

searchable related software components other than a small proxy that enables the

remote federator to be accessible.

Each search application will have its own federator, so the federator ID is the same

value as the ApplicationInfo ID value.

The following code snippet shows how to create a RemotelFederator and issue a

search request:

// get collection IDs

String[] collectionIDs;

// create a query object

Query query = searchFactory.createQuery(queryString);

query.setRequestedResultRange(0, 100),

query.setQueryLanguage("en_US");

query.setSpellCorrectionEnabled(true);

query.setPredefinedResultsEnabled(true);

// create a remote federator

RemoteFederator federator = getFederator(appinfo, appinfo.getID());

// search

ResultSet rs = federator.search(query);

20 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter 3. Sample SIAPI applications

The SIAPI includes several sample applications that show you how to create

simple or advanced search applications.

The following sample applications demonstrate how to do various search tasks:

Simple search

The SearchExample class provides a simple example of the minimum

requirements that are needed to submit a search to the search server.

Basic taxonomy browsing and navigation

The BrowseExample class provides an example of accessing a collection’s

taxonomy tree and displaying some of the basic navigation properties.

Retrieve all search results

This sample application (code snippet) shows how to set a query to return

unsorted results and loop over the query results.

Federated search

The FederatedSearchExample class provides a simple example of the

minimum tasks that are required to submit a federated search to the search

server.

Advanced search

The AdvancedSearchExample class is provides an example of using

advanced query settings and results processing options.

Compiling the sample SIAPI search applications

You compile the sample SIAPI search applications by running the ANT script.

To compile and run an SIAPI sample application:

1. Change to the following directory. (These are the default installation

directories):

Linux and AIX: /opt/IBM/es/samples/siapi

Windows: C:\Program Files\IBM\es\samples\siapi

2. Run the ANT script.

3. Run the application by issuing the following command:

On Linux and AIX:

java -classpath ES_INSTALL_ROOT/lib/esapi.jar:ES_INSTALL_ROOT>/lib/siapi.jar:.

SearchExample

On Windows:

java -classpath "ES_INSTALL_ROOT\lib\esapi.jar;ES_INSTALL_ROOT>\lib/siapi.jar;."

SearchExample

You can run the class by executing the following command from a command line.

On Linux and AIX:

java -classpath ES_INSTALL_ROOT/lib/esapi.jar:ES_INSTALL_ROOT>/lib/siapi.jar

SearchExample

On Windows:

© Copyright IBM Corp. 2004, 2005 21

|
|
|
|

|
|
|

java -classpath ES_INSTALL_ROOT\lib\esapi.jar;ES_INSTALL_ROOT>\lib\siapi.jar

SearchExample

Replace SearchExample with any of the other sample search applications that you

want to compile.

Simple and advanced sample search applications

The SearchExample class provides a simple example of the minimum required

application to submit a search query to the search server. The

AdvancedSearchExample class shows the same tasks as the simple example, but it

prints the full ResultSet instead of just a few values

The simple sample application demonstrates how to:

v Access the service

v Specify a collection

v Specify an application

v Submit a query

v Process the returned results

The advanced sample application does the same tasks as the simple sample except

that it processes the returned results differently than the simple sample.

The simple sample application (SearchExample.java) and the advanced sample

application (AdvancedSearchExample.java) are in the following default directories:

v Linux and AIX: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

Browse and navigation sample application

The BrowseExample class provides a sample application that accesses a collection’s

taxonomy tree and displaying some of the basic navigation properties.

This sample demonstrates how to:

v Obtain the browse factory

v Obtain a browse service

v Obtain a browser reference

v Get and display the root category

v Get the root’s first child category

v Display the child category and its path from root

The sample BrowseExample.java application is in the following directoies:

v Linux and AIX: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

Retrieve all search results sample

This sample code shows how to set a query to return unsorted results and loop

over the query results. You can obtain only a maximum of 500 sorted results for

your queries. However, you can obtain all unsorted results.

The following sample code shows you how to:

22 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|

|

v Obtain a SearchFactory and a Searchable

v Create a new Query object

v Set the query to return unsorted results

v Run the search

Obtain a SearchFactory and a Searchable

Obtain a SearchFactory and a Searchable object as explained in “Simple and

advanced sample search applications” on page 22 sample.

SearchFactory factory;

Searchable searchable;

... // obtain a SearchFactory and Searchable object

Create a new Query object

Query q = factory.createQuery("big apple");

Set the query to return unsorted results

q.setSortKey(Query.SORT_KEY_NONE);

Run the search

Run the query in a loop to obtain one page of results at a time. The maximum

result page size allowed in enterprise search is 100.

When you receive the results pages, you need to interpret the

getAvailableNumberOfResults method and getEstimatedNumberOfResults method

differently from the way you interpret them for sorted query results:

v The getEstimatedNumberOfResults method will always return 0 because

enterprise search does not provide a number-of-results estimate for unsorted

results.

v The getAvailableNumberOfResults method will return one of two values: 0 if

this is the last result page, and 1 if there are more results.

v You can use the length of the array returned by getResults mehtod to find out

how many results are within this result page.
int fromResult = 0;

int pageSize = 100;

boolean moreResults = true;

// loop over query results, pageSize results at a time

while (moreResults) {

 // set the result range for the next page of results

 q.setRequestedResultRange(fromResult, pageSize);

 // execute the search

 ResultSet resultPage = s.search(q);

 // loop over the results from the ResultSet

 Result[] results = resultPage.getResults();

 for (int i=0;i<results.length;i++) {

... // process result

 }

 // check if there are more available results

 moreResults = (resultPage.getAvailableNumberOfResults() == 1);

Chapter 3. Sample SIAPI applications 23

// modify the range for getting the next page of results

 fromResult += pageSize;

}

Sample federated search application

The FederatedSearchExample class provides a simple example of the minimum

tasks that are required to submit a federated search to the search server.

The FederatedSearchExample application shows how to:

v Obtain a RemoteFederator object with federator ID. This ID is the same as the

ApplicationInfo object ID.

v Create a new query object.

v Set the result range.

v Run the search by calling the RemoteFederator object’s default search method.

The FederatedSearchExample.java file is in the following directories:

v Linux and AIX: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

24 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|

|
|

|

|
|

|

|

|

|

|

|

Chapter 4. Data listener

Use the data listener application programming interfaces (APIs) to create a client

application that sends data to the data listener.

The data listener is an enterprise search component that accepts requests from

client applications. The requests are to add or remove data from collections.

Typically, you create one or more crawlers for a collection. These crawlers retrieve

data from a specific data source, such as the Web or a DB2 Content Manager

database. With the data listener client application, you can add pages to a

collection without creating crawlers. You can also remove uniform resource

identifiers (URIs) from a collection or instruct the Web crawler of a collection to

visit or revisit uniform resource locators (URLs).

Figure 1 shows an overview of the search behavior of the enterprise search system

without the influence of the data listener client application. Users submit queries to

the search component, and the index periodically refreshes the data in the search

component. (These components can be on one server or on multiple, connected

servers. The descriptions in this topic assume that you are using a multiple server

system).

 The data listener client application enables you to submit requests to the to the

data listener. Depending on the type of request, the data listener will send the

request to other enterprise search components for further processing.

When the client application connects to the data listener, the data listener verifies

that the password that you provide is valid for the client ID and password. The

data listener also verifies that the client application is authorized to add or remove

data to the specified collection.

Client

Search server Index server

Submit
search query

Return
results

Figure 1. How queries are sent to the enterprise system

© Copyright IBM Corp. 2004, 2005 25

|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

Figure 2 shows how the data listener client application sends a request to the

enterprise search system.

 The data listener APIs are packaged in the following JAR files:

v es.dl.client.jar

v es.oss.jar

These JAR files are in the following directories according to your operating system:

v Linux and AIX: INSTALL_ROOT/IBM/es/lib

v Windows: INSTALL_ROOT\IBM\es\lib

If you installed the JAR files in the default installation directory, add the following

value to your CLASSPATH variable:

v Linux and AIX: opt/IBM/es/lib/es.oss.jar:/opt/IBM/es/lib/es.dl.client.jar

v Windows: c:/Program Files/IBM/es/lib/es.oss.jar;c:/Program

Files/IBM/es/lib/es.dl.client.jar

If the JAR files are not installed in the default directory, add the appropriate

directory to your CLASSPATH.

Removing data with the data listener API

With the data listener, you can remove documents from a collection by removing

specific URIs or patterns of URIs.

If you remove specific URIs, those URIs disappear from the search component

immediately. If you remove URI patterns, the documents that match those patterns

will be removed the next time that the index is reorganized.

Search server Index server

Client

Submit
search query

Return
results

data
request

Enterprise Search system

Java search
application

Data listener

Crawler

Figure 2. How the data listener API works with the enterprise search system

26 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

Removing URIs from the search component and index

You can use the data listener API to remove a specific URI. The request is sent to

the data listener, and the URI is removed from the index server and search server

as shown in the figure below.

Use the removeURI method to delete the data from the specified collection.

Removing URI patterns from the index

You can use the data listener APIs to remove a URI pattern. For example, if you

submit a remove URI pattern request and specify http://www.ibm.com/*.html as

your URI, the index server will remove the following URLs:

v http://www.ibm.com/home.html

v http://www.ibm.com/family.html

v http://www.ibm.com/pics.html

Attention: Use a remove URI pattern request with caution. The removed content

cannot be recovered. The content must be added to the index again by the crawlers

or by the data listener client application.

Adding data with the data listener API

With the data listener, you can add, or push, data to search collections by adding

URIs with content or visiting or revisiting URLs.

Adding URIs with content

You can use the data listener API to add a URI and its content by including the

content parameter in the pushData method. This method sends the specified data

to the specified collection.

Search server Index server

Java search
application

Data listener

Remove specific URI

Figure 3. Removing a specific URI

Chapter 4. Data listener 27

|

|
|
|

|

|
|
|
|

|

|

|
|
|

|

|

|

|
|
|

|
|

|
|

|

|
|
|

The added URI and its content will be available for search after the index is

refreshed or is reorganized.

Visiting or revisiting URLs

You can use the data listener APIs to add specific URLs or URL patterns to the

Web crawler of a collection by using the revisitURLs method. This method is valid

only for Web content. The crawler will crawl the URLs and add that data (URL,

metadata, and content) to the collection. The URLs can be new (visiting) to the

crawler or the crawler has already discovered those URLs (revisiting). If you

specify a URL pattern, you are requesting that the crawler revisit URLs that were

already discovered that match the specified pattern.

Creating data listener client applications

To send requests to the data listener, you create a client application and provide

specific properties about the collection that the client application must provide in

the requests to the collection ID of the target collection and the authentication data.

The authentication data include a client ID and the password. The client ID must

have permission to update the collection.

Procedure

To create a data listener application, follow these steps:

1. Determine which collection you want to change.

2. Get the ID for that collection. A collection ID is created when you create a

collection in the enterprise search administration console. You can see the

collection ID from the Collections Settings page. In the enterprise search

administration console from the General page of the Collections view, click

View collection settings. You must either log in to the enterprise search

administration console or ask the search administrator for this ID.

3. Provide a client ID and password for the collection. The client is the data

listener application that will access the collection. You must give the data

listener application permission to access a collection by creating a client ID and

password for that collection. To specify a client ID and password, ask the

search administrator to do this for you, or follow these steps:

a. Log in to the enterprise search administration console.

b. Click System → Data Listener → Configure data listener.

c. Click Add Data Listener Client ID.

d. Type a data listener client ID, password, and select a collection. Click OK.

To add more client IDs and passwords for other collections, click Add Data

Listener Client ID and follow the previous steps.

DLResponse class

Defines the object that the client application receives from the data listener.

When the client application sends a request to the data listener, the data listener

returns the DLResponse object. The object contains information about the status of

the request. This class also defines possible return codes for the object.

 Type Value

Class public class DLResponse

28 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|

|||

||
|

The DLResponse class can return the following types of status from the data

listener:

 Value Description

public final static int SUCCESS = 0; The requested operation was successful.

public final static int

COMMUNICATION_ERROR = 1;

A communication error occurred.

public final static int BAD_REQUEST = 2; The data listener did not understand the

request.

public final static int PERMISSION_DENIED

= 3;

The client ID does not have permission to

update the collection.

public final static int FAIL_TO_SAVE = 4; The data listener failed to save the request.

public final static int

UNSUPPORTED_REQUEST_VERSION = 5;

The client version of DB2 II OmniFind

Edition does not match the server version.

public final static int

UNSUPPORTED_RESPONSE_VERSION = 6;

The client version of DB2 II OmniFind

Edition does not match the server version.

public final static int INVALID_PASSWD =

7;

The specified password is not valid for the

specified client ID.

public final static int

UNKNOWN_COLLECTION = 8;

The specified collection ID is not valid.

public final static int

FAIL_TO_ADD_TO_CRAWLER = 9;

The specified URL could not be saved.

public final static int

FAIL_TO_REMOVE_FROM_COLLECTION

= 10;

The request to remove data failed.

public final static int

UNKNOWN_URICODE = 11;

The data listener could not perform the

requested operation.

getCode method

Returns the status code from the data listener.

Syntax

public int getCode()

Returns

Returns a number that corresponds to a return code from the data listener. See

“DLResponse class” on page 28.

getCodeName method

Returns the message string for the return code.

Syntax

public String getCodeName()

Returns

Returns a string from one of the data listener return codes. See “DLResponse class”

on page 28.

Chapter 4. Data listener 29

|
|

|||

||

|
|
|

||
|

|
|
|
|

||

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

DLDataPusher class

This class provides APIs for adding data to and removing URIs from a collection.

It also provides APIs for requesting that the Web crawler of a collection to visit or

revisit URLs.

public class DLDataPusher

This is the main class for the data listener API.

To call these APIs, you must specify the host name and the port of the data listener

and provide the client ID and password for authentication. For information about

how to obtain the client ID, password, and collection ID, see “Creating data

listener client applications” on page 28.

removeURIs method

Removes URIs from the specified collection.

You can specify individual URIs to be removed or specify URI patterns to be

removed from a collection. When you use this method to remove individual URIs,

the URIs will not be available for search immediately. However, when you use this

method to remove URI patterns, the URIs that match the patterns will be removed

from the index at the next time it is reorganized. Until the index is reorganized, the

URIs might still be searchable.

Syntax

public static DLResponse removeURIs(String hostname,

 int port,

 String id,

 String pw,

 String uris,

 String col)

Parameters

hostname

The host name of the server where the data listener is running.

port

The port number of the data listener.

ID The client ID that you or the search administrator provided in the enterprise

search administration console for a specific collection.

pw The password for the client ID.

uris

The specific URI, URIs, or URI patterns that you want to remove from the

collection. Each URI or URI pattern must be separated by white space. Use a

wildcard character (*) at the end or the middle of a URI to specify a URI

pattern, for example, cm://enterprise/finance/* or cm://enterprise/*/sales.

col The ID of the collection that you want to modify. You can see the collection ID

in the enterprise search administration console.

revisitURLs method

Instructs the Web crawler for the specified collection to add or revisit the URLs.

30 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|

|
|
|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|
|

||
|

||

|
|
|
|
|

||
|

|
|

If you specify a URL pattern in this method, the Web crawler will try to revisit

immediately those URLs that it discovered that match the pattern. If you specify

individual URLs, the Web crawler will visit them immediately (or revisit them if

the crawler already discovered them).

You can use the revisitURLs method only for Web data sources (URLs).

Syntax

public static DLResponse revisitURLs(String hostname,

 int port,

 String id,

 String pw,

 String urls,

 String col)

Parameters

hostname

The host name of the data listener server.

port

The port number of the data listener.

id The client ID.

pw The client password.

urls

The URL or the URL patterns, separated by white space. Use a wildcard

character (*) at the end or the middle of a URI to specify a URI pattern, for

example, http://www.ibm.com/* or http://www.ibm.com/*/software.

col The ID of the collection.

pushData method

Pushes data to data listener.

Syntax

public static DLResponse pushData(String hostname,

 int port,

 String id,

 String pw,

 String uri,

 String col,

 DataSourceMetadata metadata,

 byte[] content)

Parameters

hostname

Th host name of the data listener server.

port

The port number of the data listener.

id The client ID.

pw The client password.

uri The URI of the data.

col The ID of the collection.

Chapter 4. Data listener 31

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|

|
|

||

||

|
|
|
|

||

|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|

||

||

||

||

metadata

An object that describes the metadata of the document.

content

The content of the document.

Creating the metadata object:

You must create a metadata object before you send the push data request.

Metadata contains information about the document and can include information

such as author, date modified, or date created.

 Use the createDataSourceMetadata API to create the metadata object with

predefined fields. Use the addMetaField API to add other fields that are specific to

a data source.

createDataSourceMetadata method:

Creates a metadata object.

 Syntax

public static

DataSourceMetadata createDataSourceMetadata(String ds,

 String cid,

 String dsName,

 int score,

 Date dt,

 String language,

 String securityACLs,

 String contentType,

 String charSet,

 byte[] content)

Parameters

ds Data source that this document is from.

cid The data listener application client ID.

dsName

The data source name, such as DB2 or Notes (string).

score

This parameter is not used.

dt A date object that indicates the currency of this document. It can be used to

influence the ranking of this document.

language

The language of the document, such as ″en″, ″en_US″, or ″zh.″. Enterprise

search will use this parameter if it fails to determine the language of the

document.

securityACLs

A string of comma separated security tokens. If the value is null, the document

will have no security restrictions and is accessible to anyone. For example, if a

document has tokens A, B, and C, then only those users with security tokens

A, B, or C can access the document.

contentType

The MIME type of this document.

32 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|
|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

||

||

|
|

|
|

||
|

|
|
|
|

|
|
|
|
|

|
|

charSet

The character set of the document, such as UTF-8.

content

The byte array of the document content.

addMetaField method:

Adds an element to a metadata object.

 Syntax

public static void addMetaField(DataSourceMetadata metadata,

 String fieldName,

 String fieldValue,

 boolean searchable,

 boolean partOfResult,

 boolean fieldSearchable,

 boolean parametricSearchable

 boolean isContent)

Parameters

metadata

The metadata object to which a new field is to be added.

fieldName

The name of the field.

fieldValue

The value of the field.

searchable

Whether this field is searchable.

partOfResult

Whether this field is part of search result.

fieldSearchable

Whether field search is supported for this field.

parametricSearchable

Whether parametric search is supported for this field.

isContent

Whether this field is considered as a part of content.

setKnownLanguageFor method:

Specifies the language of the document.

 If you do not specify a language with this method, enterprise search attempts to

determine the language of the document.

Syntax

static public void setKnownLanguageFor(DataSourceMetadata dsmd,

String knownLanguage);

Parameters

dsmd

The metadata object.

Chapter 4. Data listener 33

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|

|
|

knownLanguage

The name of the language ID, such as ″en″, ″en_US″, or ″zh.″

Sample data listener client applications

DB2 II OmniFind Edition provides sample client applications that show you how

to use the data listener APIs to add or remove data to or from enterprise search

collections.

The following sample client applications show you how to do the following tasks:

DLRemoveURIs.java

Remove URIs from a collection.

DLPushData.java

Add URIs and content to a collection.

DLRevisitURLs.java

Instruct the Web crawler to revisit URLs.

DLSampleClient.java

Combines all tasks in one application that removes URIs, adds URIs, and

revisits URLs.

Sample data listener client application: removing URIs from a

collection

The DLRemoveURIs class includes an example of client application APIs that

remove URIs or URI patterns for a collection.

The DLRemoveURIs class defines two static methods: main and

removeURIsExample.

The main method first prepares the host name, port, client ID, password, and

collection ID. Then, the main method calls the removeURIsExample method with

those parameters.

The removeURIsExample method takes the host name, port, client ID, password,

and collection ID as parameters, and it prepares the URIs or URI pattern strings.

After preparing the URIs or URI patterns, the removeURIsExample calls the

removeURIs method of the DLDataPusher class. Then, the removeURIsExample

method checks and prints the response from the data lister.

public class DLRemoveURIs {

 /**

 * To remove URIs or URI patterns from a collection, you

 * need to specify the host name and the port of the

 * data listener server. You also need to provide

 * the client ID and password for authentication.

 * You need to specify which collection the data is

 * applied to by providing the collection ID.

 *

 * This function shows how to use the data listener

 * APIs to remove URIs from a collection. In enterprise

 * search, you can remove specific URIs and URIs that

 * match patterns. If you remove specific URIs, those

 * URIs are removed from the index. If you remove URI patterns,

 * those URIs that match those patterns are not removed until

 * the next index reorganization, and those URIs are still

 * searchable. After the URIs are removed from a collection, those

34 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* URIs will not be searchable until the they are re-crawled by

 * the crawler or added through the data listener later.

 */

 static void removeURIsExample(String hostname, int port,

 String clientID, String passwd, String collectionID) {

 // In this example, you will remove some URIs from

 // one collection.

 // URIs can be either specific URIs or URIs that match patterns.

 StringBuffer sb = new StringBuffer();

 sb.append("uri1");

 sb.append("\n");

 sb.append("uri*pattern1");

 sb.append("\n");

 sb.append("uri2");

 sb.append("\n");

 sb.append("uri*pattern2");

 String uris = sb.toString();

 // Now, you call the data listener API to remove URIs

 // from the collection.

 // Note that you can specify multiple URIs and URI patterns

 // in a single call. The URIs or URI patterns are seperated

 // by a newline character. In your application, you need

 // to replace the URIs and URI patterns from the sample

 // application with the real URIs that make sense for a

 // real collection.

 DLResponse dlRes = DLDataPusher.removeURIs(hostname, port,

 clientID, passwd, uris, collectionID);

 // Check the result.

 // The DLResponse object contains a result code and

 // a message that indicates the result of the operation.

 // See the documentation for the DLResponse class for the

 // code values and their meanings.

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 public static void main (String [] argv) {

 if (argv.length > 0 && argv[0].equalsIgnoreCase("-h")) {

 System.out.println("usage: java DLRemoveURIs [hostname [port]]");

 return;

 }

 // First, you get the host name and the port number

 // for the data listener.

 // You need to ensure that the data listener is running on

 // the host server and listening to the port.

 // Otherwise, you might get a connection refused exception.

 String hostname = "localhost";

 if (argv.length > 0) hostname = argv[0];

 int port = 6668;

 if (argv.length > 1) {

 try {

 port = Integer.parseInt(argv[1]);

 }

 catch (Exception e) {

 port = 6668;

 }

 }

 // Assume that client_id_1 is a valid client id with password_1.

 // If not, you will get INVALID_PASSWD as the result code

 // Assume that client_id_1 has the authorization to update

Chapter 4. Data listener 35

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// collection with collection ID collection_id_1.

 // If not, you will get PERMISSION_DENIED as the result code.

 //

 // Assume that the collection with collection ID collection_id_1

 // is a valid collection. Otherwise, you will get

 // UNKNOWN_COLLECTION as the result code.

 //

 // You need to contact the enterprise search administrator

 // to find out what client ID, password, and collection ID

 // are valid and use those valid values here.

 //

 removeURIsExample(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 }

}

Sample data listener client application: adding URIs and

content to a collection

The DLPushData class includes an example of client application APIs that add, or

push, URIs and each URI’s content to a collection.

The DLPushData class defines two static methods: main and dataPushExample.

The main method first prepares the host name, port, client ID, password, and

collection ID. Then main method calls the dataPushExample method with those

parameters.

To add URIs and their content to a collection, you prepare the document URI, the

content, and the metadata. To prepare the URI and content, you add simple text

strings. To prepare the metadata of the document, you create the

DataSourceMetadata object from the DLDataPusher class. Then, add more fields to

the DataSourceMetadata object.

Call the pushData method and check the response from the data listener.

public class DLPushData {

 /**

 * To push data to a data listener, you need to specify the host name

 * and the port of the data listener server.

 * You also need to provide the client ID and password for authentication.

 * You need to specify which collection the data is applied to by providing the

 * collection ID.

 *

 * This function shows how to use the data listener APIs to push a document

 * to an enterprise search collection for indexing. A document consists of

 * three parts: the URI, the metadata and the content.

 * The content is the raw data of the document.

 * The metadata contains the attributes values of

 * the document.

 */

 static void dataPushExample(String hostname, int port, String clientID,

 String passwd, String collectionID) {

 // Prepare the data.

 // Suppose this is a very simple document with "almost empty" content

 String content = "almost empty";

 // Suppose the URI for the document is "myURI"

 String uri = "myURI";

 // Use data listener client APIs to prepare metadata.

 //

 // First, create a DataSourceMetadata object.

36 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//

 // The first argument indicates the data source type

 // of this document. The second argument specifies the client ID.

 // The third argument is a string that specifies the data source name.

 // The fourth argument is a number that indicates the quality of this

 // this document. This number is not currently used.

 // The fifth argument is a date that indicates

 // the currency (how up to date it is) of this document. It can be

 // used to influence the ranking of this document in the search results.

 // The sixth argument indicates language of the document.

 // Normally, enterprise search will detect the language ID of a

 // given document.

 // However, if the detection fails, the enterprise search system

 // will assume the document is in this specified language.

 // The seventh argument specifies security tokens.

 // If it is null, then this document is assumed to be available

 // to anyone. Otherwise, the document is accessible only by

 // a user with a security token that is specified here.

 // The eigthth argument specifies the MIME type of the document.

 // The ninth argument specifies the character set of the content.

 // Finally, the tenth argument is the content.

 DataSourceMetadata md =

 DLDataPusher.createDataSourceMetadata("CustomerDataSource",

 clientID,

 "CustomerDataSourceName",

 90,

 new Date(),

 "en",

 "securityToken",

 "text/plain",

 "iso-8859-1",

 content.getBytes());

 // Second, you add more fields to the metadata.

 // Each field is a name/value pair.

 // The fourth argument specifies whether the field value is searchable.

 // The fifth argument specifies whether the field value will

 // be part of the search result.

 // The sixth argument specifies whether to support field search.

 // The seventh argument specifies whether the field is

 // parametric searchable.

 // The eight argument specifies whether the field is part of the content.

 DLDataPusher.addMetaField(md,

 "fieldName1", "fieldValue1",

 true, false, true, false, true);

 DLDataPusher.addMetaField(md,

 "fieldName2", "fieldValue2",

 true, false, true, false, true);

 System.out.println("metadata:\n" + md.generateXML().toString());

 // Call the pushData method.

 DLResponse dlRes = DLDataPusher.pushData(hostname, port, clientID,

 passwd, uri, collectionID, md, content.getBytes());

 // Check the result from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 public static void main (String [] argv) {

 if (argv.length > 0 && argv[0].equalsIgnoreCase("-h")) {

 System.out.println("usage: java DLPushData [hostname [port]]");

 return;

 }

 // First, you get the host name and the port number for the data listener.

 // You need to ensure that the data listener is running on the host server

 // and listening to the port.

Chapter 4. Data listener 37

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// Otherwise, you might get a connection refused exception.

 String hostname = "localhost";

 if (argv.length > 0) hostname = argv[0];

 int port = 6668;

 if (argv.length > 1) {

 try {

 port = Integer.parseInt(argv[1]);

 }

 catch (Exception e) {

 port = 6668;

 }

 }

 // Assume that client_id_1 is a valid client ID with password_1.

 // Assume that client_id_1 has the authorization to update the

 // collection with collection ID collection_id_1.

 //

 // You need to contact the enterprise search administrator to find out what

 // client ID, password, and collection ID are valid and

 // use those valid values here.

 //

 dataPushExample(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 }

}

Sample data listener client application: revisiting URLs

The DLRevisitURLs class includes an example of client application APIs that

instruct the Web crawlers to revisit specific URLs or URL patterns.

The DLRevisitURLs class defines two static methods: main and

revisitURLsExample.

The main method first prepares the host name, port, client ID, password, and

collection ID. Then main method calls the revisitURLsExample method with those

parameters.

The revisitURLsExample method takes the host name, port, client ID, password,

and collection ID as parameters, and it prepares the URLs or URL pattern strings.

After preparing the URLs or URL patterns, the revisitURLsExample method calls

the revisitURLs method of the DLDataPusher class. Then, the revisitURLsExample

method checks and prints the response from the data lister.

public class DLRevisitURLs {

 /**

 * To revisit URLs, you need to specify the host name

 * and the port of the data listener server.

 * You also need to provide the client ID and password for

 * authentication.

 * You need to specify which collection the data is applied

 * to by providing the collection ID.

 *

 * This function shows you how to use the data listener APIs

 * to instruct the Web crawler of a collection to revisit

 * URLs or URLs that match patterns.

 */

 static void revisitURLsExample(String hostname, int port,

 String clientID, String passwd, String collectionID) {

 // You will revisit some URLs from one collection.

 // URLs can be either individual URLs or URLs that

 // match patterns.

38 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

StringBuffer sb = new StringBuffer();

 sb.append("uri1");

 sb.append("\n");

 sb.append("uri*pattern1");

 sb.append("\n");

 sb.append("uri2");

 sb.append("\n");

 sb.append("uri*pattern2");

 String uris = sb.toString();

 // Now, you call the data listener API to revisit URLs.

 // Note that you can specify multiple URLs and URL

 // patterns in a single call. The URLs (URL patterns)

 // are seperated by a newline character.

 DLResponse dlRes = DLDataPusher.revisitURLs(hostname, port,

 clientID, passwd, uris, collectionID);

 // Check the result from the data listener.

 // The DLResponse object contains a result code and a

 // message that indicates the result of the operation.

 // See the documentation for the DLResponse class for

 // the code values and their meanings.

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 public static void main (String [] argv) {

 if (argv.length > 0 && argv[0].equalsIgnoreCase("-h")) {

 System.out.println("usage: java DLRevisitURLs [hostname [port]]");

 return;

 }

 // First, you get the host name and the port number for

 // the data listener. You need to ensure that the data

 // listener is running on the host server and listening

 // to the port.

 // Otherwise, you might get a connection refused exception.

 String hostname = "localhost";

 if (argv.length > 0) hostname = argv[0];

 int port = 6668;

 if (argv.length > 1) {

 try {

 port = Integer.parseInt(argv[1]);

 }

 catch (Exception e) {

 port = 6668;

 }

 }

 // Assume that client_id_1 is a valid client ID with password_1.

 // If not, you will get INVALID_PASSWD as the result code.

 // Assume that client_id_1 has the authorization to update

 // collection with collection ID collection_id_1.

 // If not, you will get PERMISSION_DENIED as the result code

 //

 // Assume that the collection with collection id collection_id_1

 // is a valid collection. Otherwise, you will get

 // UNKNOWN_COLLECTION as the result code.

 //

 // You need to contact the enterprise search administrator

 // to find out what client ID, password, and collection ID

 // are valid and use those valid values here.

 //

Chapter 4. Data listener 39

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

revisitURLsExample(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 }

}

Sample data listener client application: adding, removing, and

revisiting data in a collection

The DLSampleClient class provides sample code that demonstrates how to add,

remove, and revisit data for one or more collections.

The DLSampleClient combines the sample client applications for adding URIs,

removing URLs, and revisiting URLs.

import java.io.*;

import java.net.*;

import java.util.Date;

import com.ibm.es.datalistener.client.*;

import com.ibm.es.datalistener.common.*;

import com.ibm.es.util.DataSourceMetadata;

/**

 * This class is sample code that shows you how to use the data listener APIs

 * to update collections.

 */

public class DLSampleClient {

 /**

 * This example shows how to use data listener APIs to revisit URLs of a

 * collection. You need to specify the host name

 * and the port of the data listener server.

 * You also need to provide the client ID and password for authentication.

 * You need to specify which collection this operation is applied to

 * by providing the collection ID.

 */

 static void dataPushExample_1(String hostname, int port, String clientID,

 String passwd, String collectionID) {

 // You will visit (add) and revisit several URLs of one collection.

 // You can revisit URLs or URLs that match patterns. URLs and

 // URL patterns are separated by a newline character. A URL pattern

 // is a string with a wildcard character (*).

 //

 StringBuffer sb = new StringBuffer();

 sb.append("url1");

 sb.append("\n");

 sb.append("url*pattern1");

 sb.append("\n");

 sb.append("url2");

 sb.append("\n");

 sb.append("url*pattern2");

 String urls = sb.toString();

 // Now, you call the revisitURLs method of DLDataPusher class.

 DLResponse dlRes = DLDataPusher.revisitURLs(hostname, port, clientID,

 passwd, urls, collectionID);

 // Check the response from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 /**

 * This example shows how to use data listener APIs to remove URIs of a

40 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* collection. You need to specify the host name

 * and the port of the data listener server.

 * You also need to provide the client ID and password for authentication.

 * You need to specify which collection this operation is applied to

 * by providing the collection ID.

 */

 static void dataPushExample_2(String hostname, int port, String clientID,

 String passwd, String collectionID) {

 // You now remove some URIs from a collection.

 // URIs are separated by a newline characters.

 // Those URIs will be removed immediately so that they do

 // not appear in the search result.

 StringBuffer sb = new StringBuffer();

 sb.append("url1");

 sb.append("\n");

 sb.append("url2");

 String urls = sb.toString();

 // Now, you call the removeURIs method of DLDataPusher class.

 DLResponse dlRes = DLDataPusher.removeURIs(hostname, port, clientID,

 passwd, urls, collectionID);

 // Check the response from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 // You can also remove URIs that match patterns.

 // URI patterns are separated by newline characters.

 // Those URIs that match these patterns will be removed

 // during the next index reorganization. Note that

 // these results might still appear in the search result until

 // the next index reorganization.

 sb = new StringBuffer();

 sb.append("url*pattern1");

 sb.append("\n");

 sb.append("url*pattern2");

 String url_patterns = sb.toString();

 // Now, you call the removeURIs method of DLDataPusher class.

 dlRes = DLDataPusher.removeURIs(hostname, port, clientID, passwd,

 url_patterns, collectionID);

 // Check the response from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 // You can even remove both individual URLs and URLs that match

 // patterns in the same request.

 sb = new StringBuffer();

 sb.append("url3");

 sb.append("\n");

 sb.append("url*pattern4");

 sb.append("\n");

 sb.append("url5");

 // Now, you call the removeURIs method of DLDataPusher class.

 dlRes = DLDataPusher.removeURIs(hostname, port, clientID, passwd,

 sb.toString(), collectionID);

 // Check the response from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 /**

 * This example shows how to use data listener APIs to push

 * documents to a collection. You need to specify the host name

 * and the port of the the data listener server.

 * You also need to provide the client ID and password for authentication

Chapter 4. Data listener 41

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* You need to specify which collection the data is applied to

 * by providing the collection ID.

 */

 static void dataPushExample_3(String hostname, int port, String clientID,

 String passwd, String collectionID) {

 // Prepare the content.

 String content = "Almost empty";

 // Prepare the URI.

 String uri = "myURI2";

 // Prepare the metadata.

 //

 // First, create a DataSourceMetadata object

 DataSourceMetadata md =

 DLDataPusher.createDataSourceMetadata("CustomerDataSource",

 clientID,

 "CustomerDataSourceName",

 90,

 new Date(),

 "en",

 "securityToken",

 "text/plain",

 "iso-8859-1",

 content.getBytes());

 // Second, add more fields to the metadata.

 // Each field is a name/value pair.

 // The fourth argument specifies whether the field value is

 // searchable.

 // The fifth argument specifies whether the field value will be part

 // of the search result.

 // The sixth argument specifies whether to support field search.

 // The seventh argument specifies whether the field is parametric

 // searchable.

 // The eight argument specifies whether the field is part of the

 // content.

 DLDataPusher.addMetaField(md,

 "fieldName1", "fieldValue1",

 true, false, true, false, false);

 DLDataPusher.addMetaField(md,

 "fieldName2", "fieldValue2",

 true, false, true, false, false);

 System.out.println("metadata:\n" + md.generateXML().toString());

 // Call the pushData method

 DLResponse dlRes = DLDataPusher.pushData(hostname, port, clientID,

 passwd, uri, collectionID, md, content.getBytes());

 // Check the response from the data listener.

 if (dlRes != null) System.out.println(dlRes.toString());

 // Push the same result again. This one will overwrite the previous one.

 dlRes = DLDataPusher.pushData(hostname, port, clientID, passwd, uri,

 collectionID, md, content.getBytes());

 if (dlRes != null) System.out.println(dlRes.toString());

 }

 public static void main (String [] argv) {

 if (argv.length > 0 && argv[0].equalsIgnoreCase("-h")) {

 System.out.println("usage: java DLSampleClient [hostname [port]]");

 return;

 }

 // First, you obtain the host name and the port number for the data

 // listener.

42 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// You need to ensure that the data listener is running on the

 // host server and listening to the port.

 // Otherwise, you might get a connection refused exception.

 String hostname = "localhost";

 if (argv.length > 0) hostname = argv[0];

 int port = 6668;

 if (argv.length > 1) {

 try {

 port = Integer.parseInt(argv[1]);

 }

 catch (Exception e) {

 port = 6668;

 }

 }

 // Assume that client_id_1 is a valid client ID with password_1.

 // Assume that client_id_1 has the authorization to update the

 // collection with collection ID collection_id_1.

 //

 // You need to contact the enterprise search administrator to find

 // out what client ID, password, and collection ID are valid and

 // use those valid values here.

 //

 dataPushExample_1(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 dataPushExample_2(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 // Assume that client_id_2 is a valid client ID with password_2.

 // Assume that client_id_2 has the authorization to update the

 // collection with collection ID collection_id_2.

 //

 dataPushExample_2(hostname, port, "client_id_2", "password_2",

 "collection_id_2");

 dataPushExample_3(hostname, port, "client_id_1", "password_1",

 "collection_id_1");

 }

}

Chapter 4. Data listener 43

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

44 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Chapter 5. Linguistic support

Enterprise search offers linguistic search support for text documents in most

Indo-European languages and Asian languages such as Japanese.

The purpose of linguistic support during search is to improve document search

results, that is, to arrive at the best possible collection of documents that match the

query.

Linguistic processing is performed during two stages: when a document is

processed to be added into the index, and when a user inputs a query during

search.

Enterprise search includes only granular linguistic functionality that is required for

determining the language of an input document and segmenting the document

input stream into words or tokens.

If you know that your search will be restricted primarily to basic keyword search

or native XML search using the document structure, the linguistic processing

included in enterprise search will adequately cover what you require for search.

However, this type of processing alone is not always satisfactory if you want to

search more specifically beyond the mere words in the document, for example:

v In collaboration cases, involving searching for information that is not always

explicitly marked, for example, searching for a particular address or phone

number

v In competitive intelligence, searching for documents that mention competitors

and the goods that they supply, or in recognizing that your competitor’s Web

site has shifted over the past three months from one product set to another

v In customer relationship management, searching for documents that mention

particular car brake problems in repair shops in the San Francisco area

v In research, searching for documents that talk about a particular protein and its

relation to at least one disease appearing in the same paragraph

In these scenarios, searching for what you need in the vast collections of

information sources that exist today presents new challenges requiring

sophisticated analysis that surpasses the segmentation level and dictionary-based

analysis that is offered in enterprise search. Most of the information that is of

interest is not explicitly tagged or marked in any way in the original document.

Instead, the information must be analyzed to recognize and locate concepts of

interest, for example, named entities like persons, organizations, locations, facilities

and products, and the possible relations between these concepts.

The IBM Unstructured Information Management Architecture (UIMA) is an

architecture and software framework that helps you build the advanced analysis

capabilities in enterprise search you require to detect and locate information of

interest in document collections.

 Related concepts

 Chapter 6, “Custom text analysis integration,” on page 47

Unstructured information management architecture (UIMA) is a software

© Copyright IBM Corp. 2004, 2005 45

architecture that supports creating, discovering, composing and deploying

analysis capabilities. Using UIMA, you can build your own custom text

analysis.

 “Unstructured information management architecture (UIMA)” on page 48

Unstructured information management architecture (UIMA) is an architecture

and software framework that helps you build the advanced analysis capabilities

that can find specific information in document collections.

46 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Chapter 6. Custom text analysis integration

Unstructured information management architecture (UIMA) is a software

architecture that supports creating, discovering, composing and deploying analysis

capabilities. Using UIMA, you can build your own custom text analysis.

UIMA is an open platform that identifies components for each conceptually

distinct analysis function, and it ensures that these components can be easily

reused and combined with one another.

A central concept of UIMA is the analysis engine, which is responsible for

discovering and representing analysis content in text documents. The analysis logic

component is called the annotator. An annotator focuses only on an analysis task

and is not concerned with any other processing. An analysis engine may contain a

single annotator or it may be a composition of many engines, each in turn

containing annotators.

The inferred information that is produced by an analysis engine is referred to as

the analysis results. Ideally, the analysis results correspond to the information you

want to search for.

Advanced linguistic analysis includes a combination of many differing analysis

tasks. The analysis begins with, for example, language detection and segmentation,

and continues with part-of-speech recognition, followed by deep grammatical

parsing. The last step includes the identification of, for example, the relation

between certain chemical substances and the appearance of particular symptoms.

Each step in the analysis process is required by the subsequent step.

UIMA provides the basic building blocks for you to create, test, and deploy your

own analysis engines; it does not provide you with any linguistic analysis

functionality in the form of pre-configured analysis engines that you can deploy in

your UIMA environment.

The UIMA Software Development Kit (SDK) includes a Java implementation of

the UIMA framework for the implementation, description, composition and

deployment of UIMA components. It also provides an Eclipse-based development

environment that includes a set of tools and utilities for using UIMA. For

information on Eclipse, see www.eclipse.org.

To work with UIMA, you must install the UIMA Software Development Kit. The

development kit is available on IBM developerWorks®. Visit the WebSphere

Information Integrator zone for information at

http://www.ibm.com/developerworks/db2/zones/db2ii/. Refer to the UIMA

documentation for instructions on how to install the UIMA Software Development

Kit in the Eclipse Interactive Development Environment.

 Related concepts

 Chapter 5, “Linguistic support,” on page 45

Enterprise search offers linguistic search support for text documents in most

Indo-European languages and Asian languages such as Japanese.

 “Unstructured information management architecture (UIMA)” on page 48

Unstructured information management architecture (UIMA) is an architecture

© Copyright IBM Corp. 2004, 2005 47

and software framework that helps you build the advanced analysis capabilities

that can find specific information in document collections.

Unstructured information management architecture (UIMA)

Unstructured information management architecture (UIMA) is an architecture and

software framework that helps you build the advanced analysis capabilities that

can find specific information in document collections.

A feature structure is the underlying data structure that represents the result of an

analysis. A feature structure is an attribute-value structure. Each feature structure is

of a type and every type has a specified set of valid features or attributes

(properties), much like a Java class. Features have a range type that indicates the

type of value that the feature must have, for example, String.

Most analysis programs, also referred to as annotators, produce their analysis

results in the form of annotations. Annotations are a special kind of feature

structure that is designated for linguistic analysis processing. A feature structure

spans or covers a piece of input text and is defined in terms of its beginning and

end positions in the input text.

For example, an annotator that recognizes monetary expressions would create, for

the text ″100.55 US Dollars″, an annotation of type monetaryExpression that covers

the text, with the feature currencySymbol set to ″$″.

All annotators in UIMA use feature structures to store or read information, in other

words, all data is modeled as feature structures.

The type system defines all possible feature structures in terms of types and

features, much like a class hierarchy in Java.

All feature structures are represented in a central data structure called the common

analysis structure. All data exchange is handled using the common analysis

structure.

The common analysis structure contains the following objects:

v The text document

v The type system description indicating the types, subtypes, and their features

v Analysis results describing the document or a region of the document

v An index repository that supports access to and iteration over the analysis

results
 Related concepts

 Chapter 5, “Linguistic support,” on page 45

Enterprise search offers linguistic search support for text documents in most

Indo-European languages and Asian languages such as Japanese.

 Chapter 6, “Custom text analysis integration,” on page 47

Unstructured information management architecture (UIMA) is a software

architecture that supports creating, discovering, composing and deploying

analysis capabilities. Using UIMA, you can build your own custom text

analysis.

48 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Workflow for custom analysis integration

Custom text analysis algorithms are created and tested using the UIMA Software

Development Kit, and then deployed and run on document collections in

enterprise search.

The main steps involved when developing your own analysis algorithms and

incorporating this functionality in enterprise search are the following:

1. Planning and design

a. Determine what information you want to search for. What are the

documents you want to retrieve?

b. Specify the kind of text analysis that you need to retrieve the information in

the documents that you want to search.

c. If your collection contains XML documents, decide if you want to exploit

the XML markup in your solution. In enterprise search, you can use XML

markup in one of two ways:

v If you can use the XML markup in your custom analysis (for example,

your documents contain <summary> or <topic> elements which can be

useful in a summarization or categorization annotator), define XML to

common analysis structure mappings.

v If you want to use the XML markup as it appears in the document in

your queries, enable native XML mapping.
d. Determine which text analysis result information stored in the common

analysis structure you want to be able to access using semantic search.

Define the common analysis structure to index mapping.
2. Development: UIMA Software Development Kit activities

a. Define the individual analysis steps.

b. Describe the type system for your mappings and analysis logic.

c. Develop the analysis logic (annotator) for each analysis step and embed the

annotators in analysis engines using the UIMA Software Development Kit.

You should build any custom analysis on top of the basic functionality

(language identification and tokenization) in the enterprise search text

analysis package when you develop your annotators.

d. After testing the analysis algorithms in UIMA, package the analysis engine

as a PEAR (Processing Engine Archive) file. The archive must only contain

your analysis algorithms, and not the basic enterprise search linguistic

functionality.
3. Deployment: Enterprise search activities

a. Upload the analysis engine archive (.pear) to enterprise search, giving the

analysis component a name by which you to refer to it in enterprise search.

b. Associate one or more document collections with your analysis engine.

c. For each collection, upload and select the XML to common analysis

structure mappings that you defined for your custom analysis.

d. For each collection, upload and select the common analysis structure to

index mapping that you defined for semantic search.

Text analysis algorithms

The UIMA Software Development Kit includes APIs and tools with which you can

create annotators (analysis algorithms including the type system description) and

embed these in analysis engines.

Chapter 6. Custom text analysis integration 49

The UIMA documentation includes a tutorial-style guide that helps you build these

components. The Software Development Kit includes utilities for testing and

viewing your results, and a small scale semantic search engine for indexing your

analysis results. You can also perform more advanced search against information

stored in the index.

The UIMA Software Development Kit does not provide any pre-configured

analysis engines. However, you can use the basic linguistic support that is offered

in enterprise search in a UIMA environment. Refer to the UIMA documentation on

how to include language detection and tokenization functionality before your text

analysis algorithms when developing these in your UIMA environment.

After you finish developing and testing your analysis engines using the UIMA

Software Development Kit, and want to run these algorithms on a document

collection in enterprise search, you must create a PEAR (Processing Engine

ARchive) file. This archive file includes all of the required resources for deploying

your custom analysis functionality as analysis engines in enterprise search. All of

the processing steps that are required for creating an archive are described in the

UIMA documentation provided in the Software Development Kit.

The archive must only contain your custom analysis, even if it is founded on the

basic linguistic functionality offered in enterprise search. The basic enterprise

search analysis steps always run before any custom analysis.

Approaches for mapping XML document structures to a common

analysis structure

You can map information in XML structures in a document directly to a common

analysis structure without you having to write a UIMA annotator.

Using a configuration file, you can determine which XML elements in your input

documents contain either content that forms the basis on which further analysis

can be performed, or which elements contain document metadata, for example, the

author or the date.

Sometimes, knowledge about the content and semantics of certain elements is

precise and you can map information directly to specific feature structures without

any further analysis. For example, the element <addressee> in documents on

billings usually contains customer names, and these names in combination with

price information automatically infer a person-price relation or transaction.

You can select to use more than one XML configuration for a document collection.

Which configuration is used for which XML document is determined by the

<identifier> element. The <identifier> element in the configuration file must

match the root element in the XML document. For example, if the root element of

your document is doc, the value of the <identifier> element in the configuration

file must also be ″doc″.

If no match is found, the program will search for a configuration file with the

<identifier> element set to ″Default″. If no default configuration is found, the

textual sections of the document (with no tag information) are mapped to the

document annotation in the common analysis structure.

There are basically two types of mapping:

Element-to-data type mapping

50 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

If you know that the documents in your collection share the same XML

structure (the same elements), you can map these XML elements directly to

UIMA feature structures. For example, the element <addressee> can be

mapped to feature structure of type customer, itself derived from the

feature structure of type person.

 You can also set the attributes of features structures. For example, if you

know that all of the documents in your collection mention customers who

have acquired a certain version of a product, you can set the attribute

product version to this value without having to do this explicitly during

an analysis process.

 Instead of setting values only at configuration time, you can set values

dependent on the content of a mapped element, for example, that the

content of an element must be a string value.

 You can also use the text covered by other elements within the element

you are mapping (referred to as nested elements) and set a feature value to

the text in the a nested element. For example, if the elements <firstName>,

<middleName>, and <lastName> are all contained within the element

<author>, you can set the value of a feature author to the whole text

covered by the nested elements.

 Additionally, you can specify conditions for mappings, for example that an

element occurs at a certain place in the document structure (extract the

content of all <addressee> elements in <body> regardless of whether they

appear within a <shipping> element), or that an element has a certain

attribute, possibly even with a certain value.

 If you want to extract information that is only contain in relevant parts of a

document, while ignoring irrelevant parts, simply specify which XML

elements in the documents contain relevant information. This is referred to

as content extraction. For example, you can extract the input specified in

the title and body elements, while ignoring the input in author, date, ID,

and publisher.

 Content extraction can improve analysis processing for the following types

of XML documents:

v Documents that contain large amounts of content not subject to analysis,

for example, binary attachments. Using content extraction reduces the

document size significantly, speeding up processing and avoiding

analysis errors that originate from unsuitable data.

v Documents in which document text is interspersed with irrelevant text,

for example, documents that contain editorial information within <note>

tags. Ignoring this information leads to better results when analyzing the

document content.

Native XML mapping

This process involves removing all of the XML tagging information from a

document and using the remaining document content for possible further

analysis.

 To keep the XML structuring information for the document, the name of

the elements, their attributes and values are saved in enterprise search

using the com.ibm.es.tt.MarkupTag type.

 This way, XML information is accessible for native XML search. Native

XML mapping does not require a mapping configuration file; you can

enable native XML mapping using the administration console for

enterprise search.

Chapter 6. Custom text analysis integration 51

The native XML mapping and content extraction options of the element-to-type

mapping contradict each other, as either all content, or only specified content can

be considered. If you specify the content extraction option, native XML mapping is

ignored. Without content extraction, it is possible to have both element-to-type

mapping and native XML mapping.

All of the types and features that you use in your XML mapping configuration file

must be described in the type system description of your custom analysis steps.

You can create a type system descriptor in your UIMA environment using the

Component Descriptor Editor Eclipse plug-in. This plug-in allows you to create a

descriptor file without having to worry about the required XML syntax.

After you have completed building and testing your custom analysis, use the

UIMA PEAR (Processing Engine ARchive) generation wizard to create an archive

containing your custom analysis files including your type system description.

Thereafter, you can upload the custom analysis archive and your XML mapping

configuration files into enterprise search using the administration console for

enterprise search.

 Related tasks

 “XML mapping configuration file”

In an XML mapping configuration file, you can employ the full range of

configuration options for mapping XML to a common analysis structure.
 Related reference

 “XML mapping sample and the output results” on page 55

Mapping XML document structures to the custom analysis structure is

illustrated based on a short sample document.

XML mapping configuration file

In an XML mapping configuration file, you can employ the full range of

configuration options for mapping XML to a common analysis structure.

The configuration file must be an XML file and must comply with a specific

schema. To avoid XML syntax errors, write the configuration file using an XML

editor.

The XML mapping schema is split up into two parametric sections:

v <contentElements>: Use this element if you want specific content extraction, for

example, to extract the content in the <Abstract> and <Body> sections of a

document. All other sections in the document will be ignored.

v <elementToTypeMappings>: Use this element to specify which individual XML

elements (specified in an <elementToTypeMapping> element) in the document to

map to which feature structures in the common analysis structure.

If you use the content extraction option, note that the XML elements specified in

the <elementToTypeMappings> section must be contained within the XML

elements specified in the <contentElements> section.

A sample configuration file is as follows:

<?xmlversion="1.0"?>

<xmlCasInitializerConfiguration

 xmlns="http://www.ibm.com/2005/uima/jedii_ci_xml">

 <identifier>Default</identifier>

 <description>Sample configuration</description>

52 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

<contentElements>

 <element>/doc/Title</element>

 <element>/doc/Abstract</element>

 <element>/doc/Body</element>

 </contentElement>

 <elementToTypeMappings>

 <elementToTypeMapping>

 <element>//Employees//IBMer</element>

 <type>example.Person</type>

 <featureValueAssignment>

 <feature>employer</feature>

 <basicValue>default="IBM"</basicValue>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>age</feature>

 <basicValue default="34"/>

 </featureValueAssignment>

 </elementToTypeMapping>

 </elementToTypeMappings>

</xmlCasInitializerConfiguration>

Each <elementToTypeMapping> must contain the following elements:

v An <element> element that is used to specify the path of an XML element and

follows XPath syntax: A leading ″/″ means that a full path is given, for example,

Title under the root element doc, ″//″ means any path subset, for example,

IBMer must occur within Employees, although other elements can occur between

these two.

v A <type> element, which specifies a type defined in the type system description.

v Zero or more <featureValueAssignment> elements.

In a <featureValueAssignment> element, a feature must be named in the <feature>

element and a value assigned in the <basicValue> element. The <basicValue>

element can have the following attributes. Note that the attributes

useAttributeValue and useContentValue are mutually exclusive:

v <basicValue useAttributeValue="date" default="UNKNOWN"> takes the value of

the attribute date for the defined feature. If the attribute does not exist, use the

default value UNKNOWN.

v <basicValue useContentValue="date" trim="yes" default="UNKNOWN"> takes the

content in the XML element date, trimmed of any blanks, as the value for the

defined feature. If there is no content in date, use the default value UNKNOWN.

v <basicValue default="UNKNOWN"> always takes the default value, in this case,

UNKNOWN.

Use useAttributeValue if you want to use the value of an attribute as the value for

a feature. For example, the following configuration snippet:

 <elementToTypeMapping>

 <element>/Doc//IBMer</element>

 <type>example.Person</type>

 <featureValueAssignment>

 <feature>age</feature>

 <basicValue useAttributeValue="age"/>

 </featureValueAssignment>

 </elementToTypeMapping>

results in the following:

v For each IBMer tag that occurs within a Doc tag, a feature structure of type

example.Person is created.

Chapter 6. Custom text analysis integration 53

v If the IBMer tag contains an attribute age, the feature age of the newly created

feature structure is set to the value of the attribute.

To add content as the value of a feature, use the attribute useElementContent. For

example, the text covered by the element author in book becomes the value of the

feature author and all leading and trailing blanks are removed:

 <elementToTypeMapping>

 <element>//book</element>

 <type>example.Book</type>

 <featureValueAssignment>

 <feature>author</feature>

 <basicValue useElementContent="author" trim="true"/>

 </featureValueAssignment>

 </elementToTypeMapping>

More than one value is specified between the <values> element for the following

cases:

v The feature is of type array. For example, 7 and 12 are the values in the feature

kidsAges of type integer array:

 <elementToTypeMapping>

 <element>/Doc/Body/Father</element>

 <type>example.Father</type>

 <featureValueAssignment>

 <feature>kidsAges</feature>

 <values>

 <basicValue default="7"/>

 <basicValue default="12"/>

 </values>

 </featureValueAssignment>

 </elementToTypeMapping>

v Many strings are concatenated to one string and therefore map to a feature of

type String. For example, the title Mr. is a constant, the first name is the value of

an attribute and the last name is covered by an XML element:

 <elementToTypeMapping>

 <element>//IBMer</element>

 <type>example.Person</type>

 <featureValueAssignment>

 <feature>fullName</feature>

 <values concatenate="true" delimiter=" ">

 <basicValue default="Mr."/>

 <basicValue useAttributeValue="firstName"/>

 <basicValue useElementContent="IBMer"/>

 </values>

 </featureValueAssignment>

 </elementToTypeMapping>

String feature values are extracted from the configuration file as is. The values

retain any leading or trailing blanks. However, names of types and features are

trimmed of any blanks.

You can also set conditions on attributes using the <condition> element. For

example, the feature structure of type example.IBMFather is created only if

Employee occurs in the document with attribute employer set to ibm, and has a

second attribute sonsName.

 <elementToTypeMapping>

 <element>//Employee</element>

 <type>example.IBMFather</type>

 <condition attribute="employee" value="ibm"/>

 <condition attribute="sonsName"/>

 </elementToTypeMapping>

54 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Related concepts

 “Approaches for mapping XML document structures to a common analysis

structure” on page 50

You can map information in XML structures in a document directly to a

common analysis structure without you having to write a UIMA annotator.
 Related reference

 “XML mapping sample and the output results”

Mapping XML document structures to the custom analysis structure is

illustrated based on a short sample document.

XML mapping sample and the output results

Mapping XML document structures to the custom analysis structure is illustrated

based on a short sample document.

The sample XML input document has the following structure:

<Doc>

By

 <Head>

 <Author><FirstName>Nina</FirstName><LastName>Eisenberg</LastName></Author>

and

 <Reviewer>Tanja Stahlhugel</Reviewer>

 <Date type="text">26 November 2004</Date>

 <GMT type="gmt">26 November 2004</GMT>

A publication of

 <Publisher>The San Diego Journal</Publisher>

 <Title>Chip, heal themself</Title>

 </Head>

 <Abstract>I.B.M. invents chips that reconfigure themselves.</Abstract>

 <Body>At I.B.M., researchers have designed chips with built-in fuses

that can do some self-repair jobs, said

 <IBMer>Subramanian S. Iyer</IBMer>, an inventor of the technology. Miss

 <OtherEmployee company="Siemens" firstName="Gundula"

 middleInitial="O." age="56">Baumgarten</OtherEmployee>

from Siemens congratulated. Another employee, Mister

 <OtherEmployee firstName="Titus">Jones</OtherEmployee> said ...

Mister

<Father lastName="Clark">Clark is father of <Child>Clara</Child></Father>

</Body>

</Doc>

The corresponding XML to common analysis structure sample configuration

mapping is as follows:

<?xmlversion="1.0"?>

<xmlCasInitializerConfiguration>

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="XMLCasInitSchema.xsd">

 <identifier>Doc</identifier>

 <description>Sample configuration</description>

 // content elements from which to extract the text. Abstract is ignored

 <contentElements>

 <element>/Doc/Title</element>

 <element>/Doc/Body</element>

 <element>/Doc/Head</element>

 </contentElement>

 // single constant feature values

 <elementToTypeMappings>

 <elementToTypeMapping>

Chapter 6. Custom text analysis integration 55

<element>/Doc//IBMer</element>

 <type>example.Person</type>

 <featureValueAssignment>

 <feature>employer</feature>

 <basicValue useAttributeValue="company" trim="true"

 default="IBM"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>age</feature>

 <basicValue useAttributeValue="age" default="-1"/>

 </featureValueAssignment>

 </elementToTypeMapping>

 <elementToTypeMapping>

 <element>/Doc//OtherEmployee</element>

 <type>example.Person</type>

 <featureValueAssignment>

 <feature>employer</feature>

 <basicValue useAttributeValue="company" trim="true"

 default="IBM"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>age</feature>

 <basicValue useAttributeValue="age" default="-1" />

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>fullName</feature>

 <values concatenate="true" delimiter=",">

 <basicValue useAttributeValue="firstName" />

 <basicValue useElementContent="OtherEmployees"

 default="UNKNOWN"/>

 </values>

 </featureValueAssignment>

 </elementToTypeMapping>

 // annotate nested elements

 <elementToTypeMapping>

 <element>//Head</element>

 <type>example.Book</type>

 <featureValueAssignment>

 // the feature author is set to the contents of the element Author

 <feature>author</feature>

 <basicValue useElementContent="Author"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>publisher</feature>

 <basicValue useElementContent="Publisher" trim="true"

 default="UNKNOWN"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>title</feature>

 <basicValue useElementContent="Title" />

 </featureValueAssignment>

 </elementToTypeMapping>

 <elementToTypeMapping>

 <element>/Doc//Father</element>

 <type>example.Father</type>

 <featureValueAssignment>

 <feature>kidsNames</feature>

 <values>

 <basicValue useElementContent="Child"/>

 <basicValue default="Sarah"/>

 </values>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>kidsAges</feature>

 <values>

 <basicValue default="5" />

 </values>

56 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

</featureValueAssignment>

 </elementToTypeMapping>

 // annotate the date if the attribute type=text is true

 <elementToTypeMapping>

 <element>/Doc//Date</element>

 <type>example.Date</type>

 <condition attribute="type" value="text" />

 <featureValueAssignment>

 <feature>date</feature>

 <basicValue useElementContent="Date"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>gmt</feature>

 <basicValue default="-1" />

 </featureValueAssignment>

 </elementToTypeMapping>

 // annotate the date if the attribute type=long is true.

 // In input text this condition is not true, so no annotation is

 // created.

 <elementToTypeMapping>

 <element>/Doc//GMT</element>

 <type>example.Date</type>

 <condition attribute="type" value="long" />

 <featureValueAssignment>

 <feature>gmt</feature>

 <basicValue useElementContent="GMT"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>date</feature>

 <basicValue default="UNKNOWN" />

 </featureValueAssignment>

 </elementToTypeMapping>

 </elementToTypeMappings>

</xmlCasInitializerConfiguration>

Based on the configuration file, the following annotations are produced in the

common analysis structure:

uima.tcas.DocumentAnnotation:

 begin=0

 end=479

 covered text:

" Nina Eisenberg

and

Tanja Stahlhugel

26 November 2004

26 November 2004

A publication of The San Diego Journal

Chip, heal themself

At I.B.M., researchers have designed chips with

built-in fuses that can do some self-repair jobs,

said Subramanian S. Iyer,

an inventor of the technology.

Miss Baumgarten from Siemens congratulated.

Another employee,

Mister Jones

said

Mister Clark is the father of Clara."

example.Book:

 begin=0

Chapter 6. Custom text analysis integration 57

end=166

 author= "Nina Eisenberg"

 publisher="The San Diego Journal"

 title="Chip, heal themself"

 covered text:

" Nina Eisenberg

and

Tanja Stahlhugel

26 November 2004

26 November 2004

A publication of The San Diego Journal

Chip, heal themself"

example.Date:

 begin=55

 end=71

 date="26 November 2004"

 gmt=-1

 covered text: "26 Novmber 2004"

example.Person:

 begin=277

 end=296

 employer = "IBM"

 fullName = null

 age = -1

 covered text: "Subramanian S. Iyer"

example.Person:

 begin=342

 end=352

 employer = "Siemens"

 fullName = "Gundula,Baumgarten"

 age = 56

 covered text: "Baumgarten"

example.Person:

 begin=414

 end=419

 employer = "IBM"

 fullName = "Titus,Jones"

 age = -1

 covered text: "Jones"

example.Father:

 begin=446

 end=477

 kidsNames = [Clara,Sarah]

 kidsAges = [5]

 covered text: " Clark is father of Clara. "

 Related concepts

 “Approaches for mapping XML document structures to a common analysis

structure” on page 50

You can map information in XML structures in a document directly to a

common analysis structure without you having to write a UIMA annotator.
 Related tasks

 “XML mapping configuration file” on page 52

In an XML mapping configuration file, you can employ the full range of

configuration options for mapping XML to a common analysis structure.

58 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Approaches for indexing custom analysis results

After you have run your custom analysis on a collection of documents, you can

use the search engine in enterprise search to build an index from the information

stored in the common analysis structure produced by the custom analysis

algorithms.

Mapping your analysis results to fields, spans of text and attributes in the

enterprise search index enables you to use this information in queries. Combining

custom analysis with enterprise search that is capable of indexing both words and

spans of text, enables semantic search.

Using an index build configuration file, you can determine which analysis results

in the common analysis structure you want to index.

There are different styles that you can use to map feature structures in the common

analysis structure to the enterprise search index.

Annotation

If you index feature structures in the common analysis structure using the

annotation style, all annotations of the specified types will be stored in the

index as searchable spans.

 For example, if a feature structure spanning a certain area of text is of type

person and is indexed using the annotation style, the following queries are

possible:

 Table 2. Sample queries

Required information Possible query

Give me all documents that contain

at least one person name <person/>

Give me all documents where boss

is contained within a person

annotation

<person>boss</person>

Give me all documents where Lang

is mentioned in the same sentence

as one of my competitors

<sentence><person>Lang</person>

<competitor/></sentence>

 Attributes of feature structures are also indexed as part of the span. For

example, consider an annotator that detects cars and stores the car make as

a feature make of the car annotation. This enables the following type of

query: ″Give me documents that mention cars of the make Chevrolet″.

Field Use this style if you want to make the content of feature structures

accessible during search using the field search capabilities in enterprise

search. In this way, the content of a feature structure can be displayed in

search results, or used in parametric search.

 For example, if you map drug dosages to a parametric field, you can query

as follows: ″Give me all documents that talk about a certain drug taken at

a dosage above 100 milligrams″.

Breaking

Use this style if you want a particular feature structure to be interpreted as

a clear delimiter, for example, sections or paragraphs. Enterprise search

detects sentences and paragraphs by default. Use this style only if your

Chapter 6. Custom text analysis integration 59

custom analysis detects additional structural elements in a document that

you want to have interpreted differently.

After you have written the index build configuration file, you can upload the index

build configuration file into enterprise search using the administration console for

enterprise search.

Definition of a feature path

The index build specification uses feature paths to specify feature structures in the

common analysis structures, similar to XPath statements used to access XML

elements in an XML document.

A feature path coded in the <feature> element in the index build specification

defines the path to a simple-valued feature in the common analysis structure, that

is, a feature of the type uima.cas.Float, uima.cas.Integer or uima.cas.String.

In its simplest form, a feature path is the name of a feature of a type mentioned in

the mapping element. If a type defines complex features, that is, features that have

feature structures as their value, the feature path can be used to access a simple

feature value in the common analysis structure.

For example, consider an annotator that identifies cars and their make. It creates

annotations of type car that have an attribute make. However, make does not

contain the actual company (for example, Chevrolet), but contains a feature

structure of type Company, which itself has a string-valued attribute companyname. To

enable a semantic query that combines car names and company names, a feature

path make/companyname is used to attach the value of companyname to the car span

that is generated for the car annotation. This enables the query, ″Give me

documents that contain cars made by Chevrolet″, using ’/car[@make=″Chevrolet″]’.

A feature path is a sequence of feature names (f1/.../fn) with the following

properties:

v The last feature fn in the path must be simple-valued, that is, of type

uima.cas.Float, uima.cas.Integer, or uima.cas.String

v All features within the path from f1 to fn-1 are not allowed to be simple-valued.

v Optionally, a feature can be typed. The fully qualified type name must be

prepended to the feature name, and be separated by a colon. For example,

f1/com.ibm.es.SomeType:f2/.../fn

This can be used to narrow the type scope of a particular feature. For example,

consider a feature additionalInfo of type uima.cas.TOP. If you know that the

value of your feature additionalInfo is actually EmployeeInfo, you could write

EmployeeInfo/additionalInfo:fn

Features that are array-valued have the following additional properties:

v The next element in the feature path must be typed. The type name is the type

of the elements within the array. For example, consider a feature structure of

type Info. This type has a feature named companies, whose range is an FSArray.

The elements of the array are of type Company. Company, in turn, has a feature

named profit. To obtain the profit of the third company, write (using fully

qualified type names) companies[3]/Company:profit

v One element of the array must be selected, using brackets ([]). An array starts at

zero (0). For example, to select the first element in the companies array, use

Company:companies[0] The special marker [last] can be used to select the last

entry in an array, irrespective of its size, for example, Company:companies[last]

60 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

v If the last feature fn of the path is array-valued, only the array types

uima.cas.FloatArray, uima.cas.IntegerArray, and uima.cas.StringArray are

allowed.

v Features in the path from f1 to fn-1 must not be of type uima.cas.FloatArray,

uima.cas.IntegerArray, or uima.cas.StringArray

v If the last feature fn of the path is array-valued, use empty brackets ([]) to

denote “all elements”. These elements will be concatenated, and written to the

index as a single, multi-term attribute. For example, if there is an array of

nameCandidates, each one specifying a likely name, all of the candidate names

are mapped to a certain attribute (or field).

Writing the index build configuration file

The index build configuration file must be an XML file and must comply with a

specific schema.

A sample index build configuration file is as follows:

<?xmlversion="1.0" encoding="UTF-8"?>

<indexBuildSpecification

xmlns:namespace="http://www.ibm.com/of/822/consumer/index/xml">

 <skipCondition>

 <type>com.ibm.uima.tt.DocumentAnnotation</type>

 <filter syntax="FeatureValue">toBeprocessed = 0</filter>

 </skipCondition>

 <indexBuildItem>

 <typeName>com.ibm.uima.tt.PersonAnnotation</typeName>

 <indexRule>

 <style name="Annotation">

 <attribute name="fixedName" value="Person"/>

 <attributeMappings>

 <mapping>

 <feature>title</feature>

 <indexName>title</indexName>

 </mapping>

 <mapping>

 <feature>firstName</feature>

 <indexName>name</indexName>

 </mapping>

 </attributeMappings>

 </style>

 <style name="Field">

 <attribute name="fixedName" value="People"/>

 <attribute name="parametric" value="false"/>

 <attribute name="fieldSearchable" value="true"/>

 <attribute name="returnable" value="true"/>

 </style>

 </indexRule>

 <filter syntax="FeatureValue">confidence = 0.7</filter>

 </indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.uima.tt.GeneralEntity</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="nameFeature" value="categoryName" />

 </style>

 <style name="Field">

 <attribute name="nameFeature" value="categoryName" />

 <attribute name="parametric" value="false" />

 <attribute name="fieldSearchable" value="true" />

 <attribute name="returnable" value="true" />

 </style>

 </indexRule>

Chapter 6. Custom text analysis integration 61

</indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.uima.tt.DrugDosage</name>

 <indexRule>

 <style name="Field">

 <attribute name="fixedName" value="dosage" />

 <attribute name="parametric" value="true" />

 <attribute name="fieldSearchable" value="true" />

 <attribute name="returnable" value="false" />

 </style>

 <style name="Field">

 <attribute name="fixedName" value="make" />

 <attribute name="valueFeature" value="make/companyname" />

 <attribute name="parametric" value="false" />

 <attribute name="fieldSearchable" value="true" />

 <attribute name="returnable" value="false" />

 </style>

 </indexRule>

 <filter syntax="FeatureValue">confidence >= 0.7</filter>

 </indexBuildItem>

</indexBuildSpecification>

The <skipCondition> element

The <skipCondition> element is optional and is used to prohibit certain documents

from being indexed, based on a certain feature value. In the example, documents

will not be indexed that contain a data structure of type

com.ibm.uima.tt.DocumentAnnotation with a feature named toBeProcessed set to

zero.

The <indexBuildItem> element

The index build specification configuration file contains one or more

<indexBuildItem> elements. Each element describes the mapping of one particular

feature structure in the common analysis structure to a structure in the index (a

span or field).

The <name> element contains the feature structure type. There are two ways to

specify a type:

v Using the full type name, for example, com.ibm.uima.tt.DrugDosage

v Using a wildcard, for example, com.ibm.uima.tt.* The wildcard character can

only be added at the end of the type specification.

If type A is a subtype of type B (“Person” as a subtype to “Entity”), and there are

<indexBuildItem> elements Ia and Ib defined for both types, processing is as

follows:

v Feature structures of type B will be processed according to Ib

v Feature structures of type A will be processed using a combination of Ia and Ib

v If Ia and Ib both define the same <attributemappings> element, an error will

occur. Ia must be defined as a “true” extension of Ib, dealing only with the

additional attributes introduced in A.

Only use subtypes of uima.tcas.Annotation as index build items. If a subtype of

uima.tcas.Annotation is a feature structure of subtype uima.cas.TOP (and not of

uima.tcas.Annotation), you can still access this feature structure using a feature

path.

62 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

The <filter> element is optional and is used to restrict the <indexBuildItem>

mapping only to feature structures that have a certain attribute value. This is

useful if you want an attribute to act as a switch for what to index. For example,

persons and organizations might be recorded in an annotation of type

EntityAnnotation. Its feature called type is set to either person or organization. To

extract only the persons, and not the organizations, you can add the following

filter:

 <filter syntax="FeatureValue">type = "person"</filter>

Moreover, you could choose to index persons and organizations under different

span names, for example, person and organization. To do this, define two

<indexBuildItem> elements of type EntityAnnotation and use two filters on the

type feature to trigger either the persons or the organizations.

Each filter expression takes the form:

<FeaturePath> <Operator> <Literal>

where:

v FeaturePath is a the name of a feature structure in the common analysis

structure

v Operator is =, !=, <, <=, > or >=. Note that < (and only <) has to be expressed as

<

v Literal is an integer, floating point number (no exponent syntax is supported) or

string literal enclosed in double quotes, with embedded quotes and backslashes

escaped by a backslash.

Note that <FeaturePath>, <Operator> and <Literal> must be separated by a blank

space.

These are examples of valid filters:

The feature foo contains the string hello world

<filter syntax="FeatureValue"> foo = "hello world" </filter>

The feature foo contains the integer value 42

<filter syntax="FeatureValue"> foo < 42 </filter>

The feature path make/company where the feature make contains

a feature structure which has a feature company with the

value Chevrolet

<filter syntax="FeatureValue"> make/company = "Chevrolet" </filter>

The feature bar7 contains the float value 0.5

<filter syntax="FeatureValue"> bar7 >= 0.5 </filter>

The <indexRule> element

Each <indexBuildItem> element contains one <indexRule> element. Each

<indexRule> element contains all the information needed to map a feature structure

in the common analysis structure to the index as a field, an annotation, or a

breaking style. The annotation and field styles support a number of attributes. You

cannot use the term style, which is supported in UIMA in enterprise search (Term

style is skipped).

For the annotation and field styles, the following alternatives exist when you

specify the annotation or field name in the index:

Chapter 6. Custom text analysis integration 63

v Use fixedName if each feature structure is accessible in the index under the same

name. In the following example, each feature structure of type PersonAnnotation

will be mapped to a span named ″Person″ in the index.

<indexBuildItem>

 <name>com.ibm.tt.PersonAnotation</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="fixedName" value="Person" />

 </style>

 </indexRule>

<indexBuildItem>

This enables queries like ″Give me documents where Boss is contained as a

person name″. The query is expressed as follows using XML fragments:

@xmlf2::’<person>Boss</person>’<attribute name="fixedName" value="Person"

/>

v Use nameFeature if the annotation stores different entities that you want to be

able to access using different spans depending on the value of a certain feature

of the annotation. In the following example, EntityAnnotation is indexed as a

person or organization span, depending on the value of the feature named type.

The feature can also be a feature path.

<indexBuildItem>

 <name>com.ibm.tt.EntityAnotation</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="nameFeature" value="type" />

 </style>

 </indexRule>

<indexBuildItem>

This enables queries like ″Give me documents about the WHO″ (as opposed to

the English term ″who″). The query is expressed as follows in limited XPath

syntax: @xmlp::’/organization[ftcontains="WHO"]’

v If none of the above attributes is used, the short name of the annotation type in

the <indexBuildItem> element is used. This is the default. For example:

<indexBuildItem>

 <name>com.ibm.uima.tutorial.RoomNumber</name>

 <indexRule>

 <style name="Annotation" />

 <style name="Field" />

 </indexRule>

 </indexBuildItem>

This <indexBuildItem> element results in annotations and fields named

RoomNumber populated with the text covered by

com.ibm.uima.tutorial.RoomNumber.

The <style name="Annotation" /> element

Annotation in the <style> element specifies how you can access span information

in enterprise search. Besides allowing the use of the fixedName and nameFeature

attributes, this style also supports the <attributemappings> element. Within this

element, it is possible to map the value of a feature structure to an attribute of the

resulting span in the index, which you can subsequently use in a search

expression.

Each mapping is done within a separate <mapping> element. The <feature>

element contains a feature path, and the <indexName> element contains the name of

the attribute that is used in the index to store the value of <feature>. For example,

64 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

<mapping>

 <feature>make/companyname</feature>

 <indexName>company</indexName>

</mapping>

This <mapping> element stores the value of the feature in the path

make/companyname directly in the index attribute company.

Mapping feature values to index attributes is especially useful if the type system

used during text analysis is complex, including many nested feature structures.

Using the <mapping> element, relevant attributes can be exposed, allowing you to

use them in queries without detailed knowledge of the original type system

structure.

The <style name="Field" /> element

Field in the <style> element specifies how you can access field information in

enterprise search. Besides the fixedName and nameFeature attributes, you can set

the following attributes. The default is false if the following attributes are not set.

parametric

If set to true, the field value can be searched using parametric search, for

example, #dosage:>100

fieldSearchable

If set to true, the field value can be used in search, for example,

make:Bayer

returnable

If set to true, the field and its values are returned in the search result

Field information is always content searchable, that is, field information is

accessible in normal keyword searches.

The optional attribute valueFeature defines which feature value to take as the field

value. If the feature structure is an annotation, and the attribute is not set, the

covered text of the annotation is used as the field value. In the example,

 <indexBuildItem>

 <name>com.ibm.uima.tt.DrugDosage</name>

 <indexRule>

 <style name="Field">

 <attribute name="fixedName" value="dosage" />

 <attribute name="parametric" value="true" />

 <attribute name="fieldSearchable" value="true" />

 <attribute name="returnable" value="false" />

 </style>

 <style name="Field">

 <attribute name="fixedName" value="make" />

 <attribute name="valueFeature" value="make/companyname" />

 <attribute name="parametric" value="false" />

 <attribute name="fieldSearchable" value="true" />

 <attribute name="returnable" value="false" />

 </style>

 </indexRule>

 </indexBuildItem>

two fields are generated for DrugDosage. One field named dosage contains the

covered text, for example, 100. In this case, you can query using ’#dosage::>100’.

Another field contains the value of the attribute companyname in the feature path

make/companyname. Here you can query using ’make:Bayer’.

Chapter 6. Custom text analysis integration 65

The <style name="Breaking" /> element

The value Breaking in the <style> element does not include any further elements.

Types and features defined in enterprise search

The type system defined in enterprise search covers document meta data handling

and basic linguistic analysis.

Basic linguistic analysis in the form of document language recognition and

segmentation always takes place when a document is indexed, irrespective of

whether custom analysis is selected or not. During basic document analysis, the

following information is added to the common analysis structure that you can use

in your custom analysis:

v Document meta data (of type com.ibm.es.tt.DocumentMetaData)

v Token, sentence, and paragraph annotations (of type uima.tt.TokenAnnotation,

uima.tt.SentenceAnnotation and uima.tt.ParagraphAnnotation). The token

annotation includes the feature lemma.

The type system defined in enterprise search does not include any sophisticated

types and features specific to text analysis. These are included in the UIMA type

system that you can use (and extend) when creating your custom analysis in your

UIMA environment.

Unlike the UIMA type system that you are likely to extend to include the new

types that are required by your custom analysis, you will probably not need to

extend the enterprise search type system.

The enterprise search type system is not defined in the UIMA Software

Development Kit (SDK). If you want to use any of those types when you write an

annotator in UIMA, for example, if you want to access document security

information, or access the crawler type or document type, you must define the

types again in the type system description of your analysis engine.

The following types and features are defined in enterprise search:

uima.tcas.Annotation

An annotation comprises the following types:

uima.tcas.DocumentAnnotation

The document annotation has the following feature:

esDocumentMetaData

Contains document meta data of the type

com.ibm.es.tt.DocumentMetaData

com.ibm.es.tt.ContentField

The content field annotation has the following feature:

parameters

The content field parameters are of type

com.ibm.es.tt.CommonFieldParameters

com.ibm.es.tt.Anchor

The anchor annotation for anchor text in HTML documents. It has

the following feature:

uri The target URI of the anchor text. The feature value is of

type uima.cas.String.

66 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

com.ibm.es.tt.MarkupTag

The markup information annotations, for example, of an XML tag.

The markup information is stored in the following features:

name The name for the markup tag. The feature value is of type

uima.cas.String.

depth The nesting depth. The feature value is of type

uima.cas.Integer.

attributeName

The name for the feature attribute. The feature value is of

type uima.cas.StringArray.

attributeValues

A string of values for the attribute. The feature value is of

type uima.cas.StringArray.

uima.CAS.TOP

The root of the type system. It has the following types:

com.ibm.es.tt.DocumentMetaData

Document meta data has the following features. The features are

connected to the document annotation feature esDocumentMetaData.

crawlerId

The crawler name. The feature value is of type

uima.cas.String.

dataSource

One of the following data source types:

v Web (for documents that originate from the Web

Crawler)

v NNTP (for documents that originate from the News

Group Crawler)

v DB2 (for documents that originate from the DB2

Crawler)

v Notes® (for documents that originate from the Notes

Crawler)

v CM (for documents that originate from the Content

Management Crawler)

v FS (for documents that originate from the UNIX® File

System Crawler)

v WinFS (for documents that originate from the Windows

File System Crawler)

v Exchange (for documents that originate from the

Exchange Crawler)

v VBR (for documents that originate from the VeniceBridge

Crawler)

The feature value is of type uima.cas.String.

dataSourceName

The name of the crawler (data source). The feature value is

of type uima.cas.String.

charset

Document code page. The feature value is of type

uima.cas.String.

Chapter 6. Custom text analysis integration 67

docType

One of the following document types:

v text/html

v application/postscript

v application/pdf

v application/x-mspowerpoint

v application/msword

v application/x-msexcel

v application/rtf

v application/vnd.lotus-wordpro

v application/x-lotus-123

v application/vnd.lotus-freelance

v text/xml

v text/plain

v application/x-js-taro (Ichitaro)

The feature value is of type uima.cas.String.

securityTokens

The document security tokens. The feature value is of type

uima.cas.StringArray.

date The document date. The feature value is of type

uima.cas.String.

baseUri

The base URI of the page. The feature value is of type

uima.cas.String.

metaDataFields

The feature value is of type uima.cas.FSArray. Each

element in this array is of type

com.ibm.es.tt.MetaDataField.

redirectUrl

The redirected URL. The feature value is of type

uima.cas.String.

contentLanguage

The language for content defined by the user using meta

data settings. The feature value is of type uima.cas.String.

hasSeparateContent

A flag indicating if the document has content and meta

data.

mimeType

Mime type, or document type, for example, XML. The

feature value is of type uima.cas.String.

metaLanguage

The language of the meta data. The feature value is of type

uima.cas.String.

url The document URL. The feature value is of type

uima.cas.String.

com.ibm.es.tt.CommonFieldParameters

Common field parameters include:

68 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

searchable

A flag indicating if the field is free-text searchable.

fieldSearchable

A flag indicating if the field is searchable as a field.

parametric

A flag indicating parametric search.

showInSearchResult

A flag indicating if annotated data is included in the search

result details.

resolveConflict

A flag for resolving meta data conflicts between

MetadataPreferred, ContentPreferred, and Coexist. The

feature value is of type uima.cas.String.

name The name of the field. You can search for this field using

the field name. The feature value is of type

uima.cas.String.

com.ibm.es.tt.MetaDataField

Meta data field data is not part of the document content but is

stored in the ″text″ feature:

parameters

Meta data field parameters of type

com.ibm.es.tt.CommonFieldParameters.

text The meta data text is stored in this feature of type

uima.cas.String.

Types and features defined in UIMA

UIMA Software Development Kit defines a few basic linguistic types and features

that might be discovered in a document during text analysis.

Each analysis engine has its own type system descriptor that describes the input

requirements and output types for the annotators contained in the analysis engine.

Type system descriptions are domain and application specific.

You can extend the UIMA type system to include your own types and features. In

the UIMA environment, there is an Eclipse plug-in that helps you edit type system

descriptors for annotators. Refer to the UIMA documentation for details on

installing and using the Component Descriptor Editor plug-in.

When you have completed developing and testing your analysis engine in the

UIMA environment, the archive file (.pear) that you create containing your analysis

engine files will also include your type system description.

The following sections list the types and features defined in UIMA:

uima.tcas.Annotation

An Annotation comprises the following types:

uima.tcas.DocumentAnnotation

uima.tt.TTAnnotation

uima.tcas.DocumentAnnotation

A document annotation includes the following features:

Chapter 6. Custom text analysis integration 69

categories

A list of category names or labels for the document. The feature

value is of type uima.cas.FSList.

languageCandidates

A list of document language references. The feature value is of type

uima.cas.FSList.

id A form of document identification, for example, a URL. The feature

value is of type uima.cas.String.

uima.tt.TTAnnotation

A TT annotation includes the following types:

uima.tt.DocStructureAnnotation

Structural information about the document. The document

structure annotation includes the following types:

uima.tt.SentenceAnnotation

A sentence including opening and closing punctuation. Its

features include:

sentenceNumber

The sequence number of the sentence in the

paragraph. Reset to 1 at the beginning of each

paragraph. The feature value is of type

uima.cas.Integer.

uima.tt.ParagraphAnnotation

A Paragraph. Its features include:

paragraphNumber

The sequence number of the paragraph. The

feature value is of type uima.cas.Integer.

uima.tt.LexicalAnnotation

Content information about the document. A lexical annotation

comprises the following types:

uima.tt.CompPartAnnotation

A part of a compound word. Compound words in many

Germanic languages are words written together without

any separating blanks. For example, the German word

″Abteilungsleiter″ (department manager) consists of the

parts ″Abteilung″ (department) and ″Leiter″ (manager).

uima.tt.TokenAnnotation

A token without surrounding white space. Its features

include:

lemma

A list of references to TCAS entries of type

uima.tt.Lemma. Each entry is a possible dictionary

entry for the token.

lemmaEntries

A list of references to TCAS entries of type

uima.tt.Lemma. Each entry is a possible dictionary

entry for the token.

tokenNumber

The sequence number of the token in the sentence.

70 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Reset to 1 at the beginning of each sentence. The

feature value is of type uima.cas.Integer.

tokenProperties

A token property, for example, uppercase,

numerics. The feature value is of type

uima.cas.Integer.

stopwordToken

A token that is marked as being a stop word. The

feature value is of type uima.cas.Integer.

synonymEntries

A list of references to entries of type

uima.tt.Synonym. Each entry is a possible synonym

entry for the token.

normalizedCoveredText

The normalized representation of the text covered

by the annotation. The feature value is of type

uima.cas.String.

uima.CAS.TOP

The root of the type system. It has the following types:

uima.tt.KeyStringEntry

A string with the following feature:

key The actual string.

uima.tt.Lemma

A dictionary entry with the following morphological

information:

partOfSpeech

An integral encoding of the part of speech of the

lemma.

morphID

An integral encoding of morphological

information.

uima.tt.Synonym

A synonym entry for a given word of type

uima.tt.keyStringEntry.

uima.tt.LanguageConfidencePair

A type with the following features that describes the document

language selection.

uima.tt.LanguageConfidencePair

languageConfidence

An indication (a float value between 0 and 1) of

how well the chosen language actually fits the

language of the document.

language

The language of the document (ISO value). The

value is of type uima.cas.String.

languageID

The language ID. The value is of type

uima.cas.Integer.

Chapter 6. Custom text analysis integration 71

uima.tt.CategoryConfidencePair

A type with the following features that describes the category

selection for the document.

uima.tt.CategoryConfidencePair

A category has the following features:

categoryString

The name of the category. The value is of type

uima.cas.String.

categoryConfidence

An indication of how well the category fits the

document. The value is of type float.

mostSpecific

A flag (of type uima.cas.Integer) indicating

whether the category is the most specific for the

document.

taxonomy

The name of the taxonomy to which the category

belongs. Documents can have categories from

differing taxonomies. The value is of type

uima.cas.String.

Semantic search applications

The are four types of document information stored in the enterprise search index

that you can query in search applications using the Search and Index API (SIAPI)

interface.

The four different types of information include:

v Text words found in a document, for example, computer software.

v Span names, for example, an XML document that includes

<author>James</author>, yields the span <author>.

v Attribute names, for example, an XML document that includes <author

countryOfBirth=USA>James</author>, yields the attribute ″countryOfBirth″.

v Attribute values, for example, USA is the value of the attribute ″countryOfBirth″.

The SIAPI query language has been extended to include the semantic search query

term. The term specifies a twig pattern. A twig is a little tree the leaves of which

are words of the four types mentioned above, and the internal nodes of the tree

specify how their occurrence in a document relate to one another. There are five

types of internal nodes specifying relationships:

v and

v or

v not

v in_the_span_of

v attribute_in_the_span_of

A document is said to satisfy a given semantic search term if it includes

occurrences of the leaves and the constraints specified by the internal nodes (the

defined relationships) are respected.

72 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

The semantic search query term helps retrieve better quality documents. You can

now not only search using boolean combinations of word and annotations, but also

retrieve documents where, for example, James appears in the span named author,

or where the terms ″ibm″ and ″search″ appear in the same sentence.

 Related concepts

 “Semantic search query”

The semantic search query term is communicated as an opaque term.

Semantic search query

The semantic search query term is communicated as an opaque term.

There are two forms of syntax to express an opaque term in the Search and Index

API (SIAPI):

v XML fragments

v Limited XPath

The XML fragment query term looks like a well-balanced fragment of an XML

document. An XML fragment query term is prefixed by the opaque term sign

@xmlf2:: followed by the XML fragment expression enclosed between single

quotes (’...’).

Limited XPath query terms, however, are prefixed by @xmlxp:: followed by the

XPath query enclosed between single quotation marks (’...’).

As with general query terms in the Search and Index API (SIAPI) interface, each

term can have an appearance modifier:

Plus sign (+)

Term must appear.

Prefix =

Term must be an exact match.

Prefix tilde (~)

Consider synonyms of the query term.

Postfix tilde (~)

Consider words that have the same lemma as the query term.

The following examples show XML fragment queries.

@xmlf2::’<title>″Data Structures″</title>’

Finds documents that include the span (annotation) title containing the

phrase ″Data Structures″

@xmlf2::’<author country=″USA″></author>’

Finds documents where the author originates from the USA.

@xmlf2::’<book><.or><author>John Smith</author><title>XML

-Microsoft</title></.or></book>’

Finds documents that specify a book whose author is John Smith or where

the title of the book includes the word XML but not Microsoft®.

The corresponding XPath queries have the following structure:

@xmlxp::’/booktitle[ftcontains(″Data Structures″)]’

Finds documents that include the span (annotation) booktitle containing

the phrase ″Data Structures″

Chapter 6. Custom text analysis integration 73

@xmlxp::’//author[@country=″USA″]’

Finds documents where the author originates from the USA.

@xmlxp::’/book[author[ftcontains(″Jane Smith″)] or title[ftcontains(″XML

-Microsoft″)]]’

Finds documents that specify a book whose author is Jane Smith or where

the title of the book includes the word XML but not Microsoft.
 Related concepts

 “Semantic search applications” on page 72

The are four types of document information stored in the enterprise search

index that you can query in search applications using the Search and Index API

(SIAPI) interface.

74 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Chapter 7. Text analysis included in enterprise search

The text analysis included in enterprise search comprises document language

detection and segmentation.

At document processing time, enterprise search determines the language of a

document and breaks up the stream of input text into distinct units or tokens.

At search time, the user, or an application default, must select the query language

manually. The query string is segmented, analyzed, and searched in the index.

Both document and query string analysis can be split up into:

v Basic nondictionary-based support. This includes white space and n-gram

segmentation.

v Dictionary-based linguistic support. This includes word and sentence

segmentation, and lemmatization.

Linguistic processing involves lexical analysis which is the process of creating

alternative representations of the input text that associates all available

dictionary data to the tokens recognized in the input text. Search quality is

greatly enhanced using advanced language processing.
 Related concepts

 “Language identification”

Before word and sentence segmentation, character normalization, or

lemmatization can occur, enterprise search must determine the language of the

source document.

 “Linguistic support for nondictionary-based segmentation” on page 76

For documents in languages that are not supported by language detection and

lexical analysis technology, enterprise search provides basic support in the form

of Unicode-based white space and n-gram segmentation.

Language identification

Before word and sentence segmentation, character normalization, or lemmatization

can occur, enterprise search must determine the language of the source document.

Enterprise search can automatically detect the following languages:

Arabic French Korean

Chinese (Traditional and Simplified) German Polish

Czech Greek Portuguese

Danish Hebrew Russian

Dutch Hungarian Spanish

English Italian Swedish

Finnish Japanese Turkish

The linguistic processes for enterprise search detect the language of a source

document during indexing, not during query processing.

Documents for which the language cannot be detected automatically are processed

with basic language-independent technology.

© Copyright IBM Corp. 2004, 2005 75

The enterprise search language detection technology is best suited for monolingual

documents. If a document is multilingual, an attempt is made to determine the

most dominant language used in the document. However, the analysis results are

not always satisfactory.

The language detection technology in enterprise search can be used to restrict your

search results to only documents that are in a particular language. For example, if

you search for documents about Jacques Chirac, you can specify that only

documents that are written in French are to be included in the search results.

 Related concepts

 Chapter 7, “Text analysis included in enterprise search,” on page 75

The text analysis included in enterprise search comprises document language

detection and segmentation.

 “Linguistic support for nondictionary-based segmentation”

For documents in languages that are not supported by language detection and

lexical analysis technology, enterprise search provides basic support in the form

of Unicode-based white space and n-gram segmentation.

Linguistic support for nondictionary-based segmentation

For documents in languages that are not supported by language detection and

lexical analysis technology, enterprise search provides basic support in the form of

Unicode-based white space and n-gram segmentation.

Unicode-based white space segmentation

This method of linguistic processing uses the white space (or blank space)

between words as a word delimiter.

N-gram segmentation

This method of linguistic processing treats overlapping sequences of n

characters as a single word. This simple method of segmentation is

sufficient for many retrieval tasks.

 These methods are independent of any language dictionary and do not include

sophisticated linguistic processing technology, such as base-form reduction.

N-gram segmentation is used for languages such as Thai that have no blank spaces

to use as delimiters. The same method applies to Hebrew and Arabic. Although

these two languages use white space delimiters, n-gram segmentation returns

better results than the basic form of Unicode-based white space segmentation does.

 Related concepts

 Chapter 7, “Text analysis included in enterprise search,” on page 75

The text analysis included in enterprise search comprises document language

detection and segmentation.

 “Language identification” on page 75

Before word and sentence segmentation, character normalization, or

lemmatization can occur, enterprise search must determine the language of the

source document.

Linguistic support for dictionary-based segmentation

If the language of a document is correctly detected, and language-specific

dictionaries are available, then appropriate linguistic processing is applied.

76 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Segmentation is the process by which input text is broken down into distinct

lexical units. This process comprises some of the following linguistic processing

activities:

Word segmentation

Word segmentation is used for languages that do not use white spaces (or

delimiters) between words, such as Japanese and Chinese.

Lemmatization

Lemmatization is a form of linguistic processing that determines the

lemma for each word form that occurs in text. The lemma of a word

encompasses its base form plus inflected forms that share the same part of

speech. For example, the lemma for go encompasses go, goes, went, gone,

and going. Lemmas for nouns group singular and plural forms (such as

calf and calves). Lemmas for adjectives group comparative and superlative

forms (such as good, better, and best). Lemmas for pronouns group

different cases of the same pronoun (such as I, me, my, and mine).

 Lemmatization requires a dictionary for both indexing and searching.

 Enterprise search indexes the lemmas and the inflected words, and

lemmatizes all inflected words in a query. Lemmatization enhances search

quality by finding documents that contain variants of an inflected word in

the query. For example, documents that contain the word mice are found

when a query includes the word mouse.

Contraction splitting

Search quality is improved by identifying contractions and splitting them

up into their component parts. For example:

wouldn‘t is split into would + not

Horse‘s is split into Horse + is or ’s (to account for query ambiguity)

Clitic identification

Clitics are a special form of contractions, and search quality is improved by

determining their component parts. A clitic is an element that behaves like

an affix and a word. However, clitics are difficult to identify because they

are also part of word formation. Unlike other morphological (word

structure) phenomena, clitics occur in a syntactic structure and their

attachment to words is not part of the word formation rules. For example:

reparti-lo-emos has the components repartir + lo + emos

l‘avenue has the components le + avenue

dell‘arte has the components dello + arte.

Nonalphabetic character recognition

The linguistic processes recognize nonalphabetic characters. Depending on

the internal language-dependent logic, some nonalphabetic characters are

returned as separate lexical units of different types, and some are grouped.

 For example, apostrophes or hyphens in the case of clitics are considered

word parts, and they are considered full stops (or periods) in the case of

unknown abbreviations. The linguistic processing can also recognize some

special sequences of characters as tokens, for example, URLs, e-mail

addresses, and dates.

Abbreviation recognition

The linguistic processes recognize abbreviations that are in the dictionary

as one lexical unit. If the abbreviation is not in the dictionary, then the

Chapter 7. Text analysis included in enterprise search 77

abbreviation is recognized as a lexical item, but the abbreviation will not

have any associated dictionary information.

 Recognizing abbreviations correctly is vital for sentence recognition. For

example, the period at the end of an abbreviation is not necessarily the end

of a sentence.

End-of-sentence marker recognition

The linguistic processes correctly identify end-of-sentence markers for

sentence segmentation.

Dictionary-based linguistic support is available for the following languages:

Chinese (Simplified and Traditional) Italian

Czech Japanese

Danish Korean

Dutch Norwegian (Bokmal and Nynorsk)

English Polish

Finnish Portuguese (National and Brazilian)

French (National and Canadian) Russian

German (National and Swiss) Spanish

Greek Swedish

 Related concepts

 “Word segmentation in Japanese”

If the text document or the query string is recognized as being in Japanese,

enterprise search performs relevant word segmentation by using morphological

analysis technology that is optimized for the Japanese language.

 “Orthographic variants in Japanese”

Japanese uses many orthographic variants. Katakana variants are the most

important because Katakana is often used to spell and pronounce foreign

words. Many Katakana variants are commonly used in Japanese.

Word segmentation in Japanese

If the text document or the query string is recognized as being in Japanese,

enterprise search performs relevant word segmentation by using morphological

analysis technology that is optimized for the Japanese language.

An example of this optimization is word decomposition. Japanese uses a large

number of compound words. These words are decomposed into tokens of optimal

size to achieve better search results. Inflected words and prepositions are also

decomposed to improve search performance.

 Related concepts

 “Linguistic support for dictionary-based segmentation” on page 76

If the language of a document is correctly detected, and language-specific

dictionaries are available, then appropriate linguistic processing is applied.

 “Orthographic variants in Japanese”

Japanese uses many orthographic variants. Katakana variants are the most

important because Katakana is often used to spell and pronounce foreign

words. Many Katakana variants are commonly used in Japanese.

Orthographic variants in Japanese

Japanese uses many orthographic variants. Katakana variants are the most

important because Katakana is often used to spell and pronounce foreign words.

Many Katakana variants are commonly used in Japanese.

78 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Enterprise search uses a variant dictionary to map typical Katakana variants to

their base forms (similar to a lemma) so that all documents, including those with

orthographic variants of the Katakana word in the query string, are found.

Enterprise search also supports typical Okurigana variants, which are Kanji word

endings that are written in Hiragana.

 Related concepts

 “Linguistic support for dictionary-based segmentation” on page 76

If the language of a document is correctly detected, and language-specific

dictionaries are available, then appropriate linguistic processing is applied.

 “Word segmentation in Japanese” on page 78

If the text document or the query string is recognized as being in Japanese,

enterprise search performs relevant word segmentation by using morphological

analysis technology that is optimized for the Japanese language.

Stop word removal

In enterprise search, all stop words, for example, common words like a and the, are

removed from multiple word queries to increase search performance.

Stop word recognition in Japanese is based on grammatical information. For

example, enterprise search recognizes whether the word is a noun or a verb,

whereas the other languages work with special lists.

 Related concepts

 “Character normalization”

Character normalization is a process that can improve recall. Improving recall

by character normalization means that more documents are retrieved even if

the documents do not exactly match the query.

Character normalization

Character normalization is a process that can improve recall. Improving recall by

character normalization means that more documents are retrieved even if the

documents do not exactly match the query.

Enterprise search uses Unicode compatibility normalization that includes the

normalization of Asian full-width and half-width characters.

For example, in Japanese, a full-width alphanumeric character is normalized to the

half-width character, a half-width Katakana character to the full-width character,

and so on. Enterprise search also removes Katakana middle dots, which are used

as compound word delimiters in Japanese.

Other forms of character normalization include:

Case normalization

For example, finding documents with USA when searching for usa.

Umlaut expansion

For example, finding documents containing schoen when searching for

schön.

Accent removal

For example, finding documents containing é when searching for e.

Other diacritics removal

For example, finding documents containing ç when searching for c.

Chapter 7. Text analysis included in enterprise search 79

Ligature expansion

For example, finding documents containing Æ when searching for ae.

All normalizations work both ways. You can find documents that contain usa when

you search for USA, documents that contain words with e when you search for é,

and so on. These normalizations can also be combined. For example, you can find

documents that contain météo when you search for METEO.

The normalizations are based on Unicode character properties and are not

language-dependent. For example, enterprise search supports diacritic removal for

Hebrew and ligature expansion for Arabic.

 Related concepts

 “Stop word removal” on page 79
In enterprise search, all stop words, for example, common words like a and the,

are removed from multiple word queries to increase search performance.

80 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

DB2 Information Integrator documentation

This topic provides information about the documentation that is available for DB2

Information Integrator.

The tables in the following topics provide the official document title, form number,

and location of each PDF book. To order a printed book, you must know either the

official book title or the document form number. Titles, file names, and the

locations of the DB2 Information Integrator release notes and installation

requirements are also provided in the following topics.

Documentation about event publishing function for DB2 Universal

Database on z/OS

Documentation about event publishing function for DB2 Universal Database on

z/OS

Purpose

Documentation about event publishing function for DB2 Universal Database on

z/OS.

 Table 3. DB2 Information Integrator documentation about event publishing function for DB2

Universal Database on z/OS

Name

Form

number Location

ASNCLP Program Reference for Replication

and Event Publishing

N/A DB2 Information Integrator

Support Web site

Introduction to Replication and Event

Publishing

GC18-7567 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Replication and Event Publishing Guide and

Reference

SC18-7568 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Tuning for Replication and Event Publishing

Performance

N/A DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Standard Edition, Advanced Edition,

and Replication for z/OS

N/A v In the DB2 Information

Center, Product Overviews >

Information Integration >

DB2 Information Integrator

overview > Problems,

workarounds, and

documentation updates

v DB2 Information Integrator

Installation launchpad

v DB2 Information Integrator

Support Web site

v The DB2 Information Integrator

product CD

© Copyright IBM Corp. 2004, 2005 81

Documentation about event publishing function for IMS and VSAM on

z/OS

Documentation about event publishing function for IMS and VSAM on z/OS

Purpose

Documentation about event publishing function for IMS and VSAM on z/OS.

 Table 4. DB2 Information Integrator documentation about event publishing function for IMS

and VSAM on z/OS

Name

Form

number Location

Client Guide for Classic Federation and Event

Publisher for z/OS

SC18-9160 DB2 Information Integrator

Support Web site

Data Mapper Guide for Classic Federation and

Event Publisher for z/OS

SC18-9163 DB2 Information Integrator

Support Web site

Getting Started with Event Publisher for z/OS GC18-9186 DB2 Information Integrator

Support Web site

Installation Guide for Classic Federation and

Event Publisher for z/OS

GC18-9301 DB2 Information Integrator

Support Web site

Operations Guide for Event Publisher for z/OS SC18-9157 DB2 Information Integrator

Support Web site

Planning Guide for Event Publisher for z/OS SC18-9158 DB2 Information Integrator

Support Web site

Reference for Classic Federation and Event

Publisher for z/OS

SC18-9156 DB2 Information Integrator

Support Web site

System Messages for Classic Federation and

Event Publisher for z/OS

SC18-9162 DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Event Publisher for IMS for z/OS

N/A DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Event Publisher for VSAM for z/OS

N/A DB2 Information Integrator

Support Web site

Documentation about event publishing and replication function on

Linux, UNIX, and Windows

Documentation about event publishing and replication function on Linux, UNIX,

and Windows

Purpose

Documentation about event publishing and replication function on Linux, UNIX,

and Windows.

 Table 5. DB2 Information Integrator documentation about event publishing and replication

function on Linux, UNIX, and Windows

Name Form number Location

ASNCLP Program Reference for Replication and

Event Publishing

N/A DB2 Information Integrator

Support Web site

82 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Table 5. DB2 Information Integrator documentation about event publishing and replication

function on Linux, UNIX, and Windows (continued)

Name Form number Location

Installation Guide for Linux, UNIX, and

Windows

GC18-7036 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Introduction to Replication and Event

Publishing

GC18-7567 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Migrating to SQL Replication N/A DB2 Information Integrator

Support Web site

Replication and Event Publishing Guide and

Reference

SC18-7568 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

SQL Replication Guide and Reference SC27-1121 DB2 Information Integrator

Support Web site

Tuning for Replication and Event Publishing

Performance

N/A DB2 Information Integrator

Support Web site

Tuning for SQL Replication Performance N/A DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Standard Edition, Advanced Edition,

and Replication for z/OS

N/A v In the DB2 Information

Center, Product Overviews

> Information Integration >

DB2 Information Integrator

overview > Problems,

workarounds, and

documentation updates

v DB2 Information Integrator

Installation launchpad

v DB2 Information Integrator

Support Web site

v The DB2 Information

Integrator product CD

Documentation about federated function on Linux, UNIX, and Windows

Documentation about federated function on Linux, UNIX, and Windows

Purpose

Documentation about federated function on Linux, UNIX, and Windows.

 Table 6. DB2 Information Integrator documentation about federated function on Linux, UNIX,

and Windows

Name

Form

number Location

Application Developer’s Guide SC18-7359 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

DB2 Information Integrator documentation 83

Table 6. DB2 Information Integrator documentation about federated function on Linux, UNIX,

and Windows (continued)

Name

Form

number Location

C++ API Reference for Developing Wrappers SC18-9172 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Data Source Configuration Guide N/A v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Federated Systems Guide SC18-7364 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Guide to Configuring the Content Connector for

VeniceBridge

N/A DB2 Information Integrator

Support Web site

Installation Guide for Linux, UNIX, and

Windows

GC18-7036 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Java API Reference for Developing Wrappers SC18-9173 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Migration Guide SC18-7360 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Wrapper Developer’s Guide SC18-9174 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Standard Edition, Advanced Edition,

and Replication for z/OS

N/A v In the DB2 Information

Center, Product Overviews

> Information Integration >

DB2 Information Integrator

overview > Problems,

workarounds, and

documentation updates

v DB2 Information Integrator

Installation launchpad

v DB2 Information Integrator

Support Web site

v The DB2 Information

Integrator product CD

Documentation about federated function on z/OS

Documentation about federated function on z/OS

84 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Purpose

Documentation about federated function on z/OS.

 Table 7. DB2 Information Integrator documentation about federated function on z/OS

Name Form number Location

Client Guide for Classic Federation and Event

Publisher for z/OS

SC18-9160 DB2 Information Integrator

Support Web site

Data Mapper Guide for Classic Federation and

Event Publisher for z/OS

SC18-9163 DB2 Information Integrator

Support Web site

Getting Started with Classic Federation for z/OS GC18-9155 DB2 Information Integrator

Support Web site

Installation Guide for Classic Federation and

Event Publisher for z/OS

GC18-9301 DB2 Information Integrator

Support Web site

Reference for Classic Federation and Event

Publisher for z/OS

SC18-9156 DB2 Information Integrator

Support Web site

System Messages for Classic Federation and

Event Publisher for z/OS

SC18-9162 DB2 Information Integrator

Support Web site

Transaction Services Guide for Classic

Federation for z/OS

SC18-9161 DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Classic Federation for z/OS

N/A DB2 Information Integrator

Support Web site

Documentation about replication function on z/OS

Documentation about replication function on z/OS

Purpose

Documentation about replication function on z/OS.

 Table 8. DB2 Information Integrator documentation about replication function on z/OS

Name

Form

number Location

ASNCLP Program Reference for Replication

and Event Publishing

N/A DB2 Information Integrator

Support Web site

Introduction to Replication and Event

Publishing

GC18-7567 DB2 Information Integrator

Support Web site

Migrating to SQL Replication N/A DB2 Information Integrator

Support Web site

Replication and Event Publishing Guide and

Reference

SC18-7568 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Replication Installation and Customization

Guide for z/OS

SC18-9127 DB2 Information Integrator

Support Web site

SQL Replication Guide and Reference SC27-1121 v DB2 PDF Documentation CD

v DB2 Information Integrator

Support Web site

Tuning for Replication and Event Publishing

Performance

N/A DB2 Information Integrator

Support Web site

DB2 Information Integrator documentation 85

Table 8. DB2 Information Integrator documentation about replication function on

z/OS (continued)

Name

Form

number Location

Tuning for SQL Replication Performance N/A DB2 Information Integrator

Support Web site

Release Notes for IBM DB2 Information

Integrator Standard Edition, Advanced Edition,

and Replication for z/OS

N/A v In the DB2 Information

Center, Product Overviews >

Information Integration >

DB2 Information Integrator

overview > Problems,

workarounds, and

documentation updates

v DB2 Information Integrator

Installation launchpad

v DB2 Information Integrator

Support Web site

v The DB2 Information Integrator

product CD

Documentation about enterprise search function on Linux, UNIX, and

Windows

Documentation about enterprise search function on Linux, UNIX, and Windows

Purpose

Documentation about enterprise search function on Linux, UNIX, and Windows.

 Table 9. DB2 Information Integrator documentation about enterprise search function on Linux,

UNIX, and Windows

Name Form number Location

Administering Enterprise Search SC18-9283 DB2 Information

Integrator Support Web

site

Installation Guide for Enterprise Search GC18-9282 DB2 Information

Integrator Support Web

site

Programming Guide and API Reference for

Enterprise Search

SC18-9284 DB2 Information

Integrator Support Web

site

Release Notes for Enterprise Search N/A DB2 Information

Integrator Support Web

site

Release notes and installation requirements

Release notes provide information that is specific to the release and fix pack level

for your product and include the latest corrections to the documentation for each

release. Installation requirements provide information that is specific to the release

of your product.

86 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Table 10. DB2 Information Integrator Release Notes and Installation Requirements

Name File name Location

Installation Requirements for IBM

DB2 Information Integrator Event

Publishing Edition, Replication

Edition, Standard Edition, Advanced

Edition, Advanced Edition Unlimited,

Developer Edition, and Replication for

z/OS

Prereqs v The DB2 Information Integrator

product CD

v DB2 Information Integrator

Installation Launchpad

Release Notes for IBM DB2

Information Integrator Standard

Edition, Advanced Edition, and

Replication for z/OS

ReleaseNotes v In the DB2 Information Center,

Product Overviews > Information

Integration > DB2 Information

Integrator overview > Problems,

workarounds, and documentation

updates

v DB2 Information Integrator

Installation launchpad

v DB2 Information Integrator Support

Web site

v The DB2 Information Integrator

product CD

Release Notes for IBM DB2

Information Integrator Event

Publisher for IMS for z/OS

N/A DB2 Information Integrator Support

Web site

Release Notes for IBM DB2

Information Integrator Event

Publisher for VSAM for z/OS

N/A DB2 Information Integrator Support

Web site

Release Notes for IBM DB2

Information Integrator Classic

Federation for z/OS

N/A DB2 Information Integrator Support

Web site

Release Notes for Enterprise Search N/A DB2 Information Integrator Support

Web site

Viewing release notes and installation requirements

Viewing release notes and installation requirements

Purpose

To view release notes and installation requirements from the CD on Windows

operating systems, enter:

x\doc\%L

Parameters

x The Windows CD drive letter

%L

The locale of the documentation that you want to use, for example, en_US.

Purpose

To view release notes and installation requirements from the CD on UNIX

operating systems, enter:

DB2 Information Integrator documentation 87

/cdrom/doc/%L

Parameters

cdrom

The UNIX mount point of the CD

%L

The locale of the documentation that you want to use, for example, en_US.

Viewing and printing PDF documentation

Viewing and printing PDF documentation

To view and print the DB2 Information Integrator PDF books from the DB2 PDF

Documentation CD

1. From the root directory of the DB2 PDF Documentation CD, open the index.htm

file.

2. Click the language that you want to use.

3. Click the link for the document that you want to view.

Accessing DB2 Information Integrator documentation

Accessing DB2 Information Integrator documentation

All DB2 Information Integrator books and release notes are available in PDF files

from the DB2 Information Integrator Support Web site at

www.ibm.com/software/data/integration/db2ii/support.html.

To access the latest DB2 Information Integrator product documentation, from the

DB2 Information Integrator Support Web site, click on the Product Information

link, as shown in Figure 4 on page 89.

88 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

http://www.ibm.com/software/data/integration/db2ii/support.html

You can access the latest DB2 Information Integrator documentation, in all

supported languages, from the Product Information link:

v DB2 Information Integrator product documentation in PDF files

v Fix pack product documentation, including release notes

v Instructions for downloading and installing the DB2 Information Center for

Linux, UNIX, and Windows

v Links to the DB2 Information Center online

The DB2 Information Integrator Support Web site also provides support

documentation, IBM Redbooks, white papers, product downloads, links to user

groups, and news about DB2 Information Integrator.

Figure 4. Product information link on the DB2 Information Integrator Support Web site

DB2 Information Integrator documentation 89

90 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Accessibility

Accessibility features help users with physical disabilities, such as restricted

mobility or limited vision, to use software products successfully. The following list

specifies the major accessibility features in DB2® Version 8 products:

v All DB2 functionality is available using the keyboard for navigation instead of

the mouse. For more information, see “Keyboard input and navigation.”

v You can customize the size and color of the fonts on DB2 user interfaces. For

more information, see “Accessible display.”

v DB2 products support accessibility applications that use the Java™ Accessibility

API. For more information, see “Compatibility with assistive technologies” on

page 92.

v DB2 documentation is provided in an accessible format. For more information,

see “Accessible documentation” on page 92.

Keyboard input and navigation

Keyboard focus

Keyboard focus

In UNIX® operating systems, the area of the active window where your keystrokes

will have an effect is highlighted.

Keyboard input

Keyboard input

You can operate the DB2 tools using only the keyboard. You can use keys or key

combinations to perform operations that can also be done using a mouse. Standard

operating system keystrokes are used for standard operating system operations.

For more information about using keys or key combinations to perform operations,

see Keyboard shortcuts and accelerators: Common GUI help.

Keyboard navigation

Keyboard navigation

You can navigate the DB2 tools user interface using keys or key combinations.

For more information about using keys or key combinations to navigate the DB2

Tools, see Keyboard shortcuts and accelerators: Common GUI help.

Accessible display

Accessible display

Purpose

Accessible display

© Copyright IBM Corp. 2004, 2005 91

Font settings

Font settings

You can select the color, size, and font for the text in menus and dialog windows,

using the Tools Settings notebook.

For more information about specifying font settings, see Changing the fonts for

menus and text: Common GUI help.

Non-dependence on color

Non-dependence on color

You do not need to distinguish between colors to use any of the functions in this

product.

Compatibility with assistive technologies

Compatibility with assistive technologies

The DB2 tools interfaces support the Java Accessibility API, which enables you to

use screen readers and other assistive technologies with DB2 products.

Accessible documentation

Accessible documentation

Documentation for DB2 is provided in XHTML 1.0 format, which is viewable in

most Web browsers. XHTML allows you to view documentation according to the

display preferences set in your browser. It also allows you to use screen readers

and other assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen-reader.

92 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Contacting IBM

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

To locate an IBM office in your country or region, see the IBM Directory of

Worldwide Contacts on the Web at www.ibm.com/planetwide.

Obtaining product information

Information about DB2 Information Integrator products is available by telephone

or on the Web.

Information about DB2 Information Integrator products is available by telephone

or on the Web. The phone numbers provided here are valid in the United States.

1. To order products or to obtain general information: 1-800-IBM-CALL

(1-800-426-2255)

2. To order publications: 1-800-879-2755

3. Visit the Web at www.ibm.com/software/data/integration/db2ii/support.html.

This site contains the latest information about:

v The technical library

v Ordering books

v Client downloads

v Newsgroups

v Fix packs

v News

v Links to Web resources

Providing comments on the documentation

Please send any comments that you have about this book or other DB2 Information

Integrator documentation.

Your feedback helps IBM to provide quality information. Please send any

comments that you have about this book or other DB2 Information Integrator

documentation.You can use any of the following methods to provide comments:

1. Send your comments using the online readers’ comment form at

www.ibm.com/software/data/rcf.

2. Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the book (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

© Copyright IBM Corp. 2004, 2005 93

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/integration/db2ii/support.html
http://www.ibm.com/software/data/rcf/

94 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to: IBM

Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:IBM World Trade Asia Corporation Licensing 2-31 Roppongi 3-chome,

Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

© Copyright IBM Corp. 2004, 2005 95

IBM Corporation J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs, in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

Outside In (®) Viewer Technology, ©1992-2004 Stellent, Chicago, IL., Inc. All Rights

Reserved.

96 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

IBM XSLT Processor Licensed Materials - Property of IBM ©Copyright IBM Corp.,

1999-2004. All Rights Reserved.

Trademarks

This topic lists IBM trademarks and certain non-IBM trademarks.

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

AIX

AIX 5L

DB2

DB2 Universal Database

Domino

Domino.doc

Informix

Lotus

Lotus Notes

Notes

OmniFind

POWER4

POWER5

Tivoli

WebSphere

Workplace

xSeries

z/OS

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation

in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 97

98 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

Index

A
addMetaField method 33

AdvancedSearchExample class 22

ANT script 21

API 1

B
BrowseExample class 22

C
character normalization 79

classes, API
AdvancedSearchExample 22

BrowseExample 22

FederatedSearchExample 24

SearchExample 22

clitics 77

compiling 2

createDataSourceMetadata method 32

custom analysis
approaches for indexing custom

analysis results 59

approaches for mapping XML

document structures to a common

analysis structure 50

text analysis algorithms 50

workflow 49

D
data listener API

adding data 27

API properties 28

client applications 28

client applications for the data

listener 28

removing data 26

revisiting URLs 27

visiting URLs 27

data listener API properties 28

data listener classes, API
DLDataPusher 30

DLResponse 28

data listener client API
sample application 34, 36, 38, 40

data listener methods, API
getCode 29

getCodeName 29

data listener overview 25

dictionary-based analysis 77

dictionary-based segmentation 77

DLDataPusher class 30

DLPushData sample client

application 36

DLRemoveURIs sample client

application 34

DLResponse class 28

DLRevisitURLs sample client

application 38

DLSampleClient sample client

application 40

E
enterprise search APIs 1

F
FederatedSearchExample class 24

free style query syntax 8

G
getCode method 29

getCodeName method 29

I
indexing custom analysis results

definition of a feature path 60

description 59

writing the configuration file 61

J
Java source code 2

Javadoc 2

L
language detection 75

lemmas 77

lemmatization 77

linguistic support
character normalization 79

clitics 77

description 45

dictionary-based segmentation 77

language detection 75

lemmas 77

lemmatization 77

n-gram segmentation 76

nondictionary-based segmentation 76

Okurigana variants 79

orthographic variants in Japanese 79

semantic search 72

stop word removal 79

supported languages 77

system included support 75

system-defined types and features 66

Unicode normalization 79

Unicode-based white space

segmentation 76

word segmentation in Japanese 78

local federators 19

M
mapping XML document structures to a

common analysis structure
description 50

sample 55

writing the configuration file 52

metadata object for the data listener 32

methods, API
addMetaField 33

createDataSourceMetadata 32

pushData 31

removeURIs 30

revisitURLs 31

N
n-gram segmentation 76

nondictionary-based analysis 76

nondictionary-based segmentation 76

O
Okurigana variants 79

opaque terms query syntax 8

orthographic variants in Japanese 79

P
pushData method 31

Q
query behavior 5

query syntax
free style 8

opaque terms 8

R
remote federator 20

removal of data with the data

listener 26

removeURIs method 30

revisitURLs method 31

S
sample client applications

adding URIs to a collection 36

adding, removing, and revisiting

data 40

DLPushData 36

DLPushData.java 34

DLRemoveURIs 34

DLRemoveURIs.java 34

DLRevisitURLs 38

DLRevisitURLs.java 34

DLSampleClient 34, 40

© Copyright IBM Corp. 2004, 2005 99

sample client applications (continued)
DLSampleClient application 34

removing URIs from a collection 34

revisiting URLs 38

sample search applications 21

advanced 22

browse and navigate 22

compiling 21, 22

federated search 24

minimum required 22

retrieve all search results 22

search applications 1

SearchExample class 22

security 1

segmentation
dictionary-based 77

nondictionary-based 76

Unicode-based white space 76

semantic search
description 72

semantic search query 73

SIAPI
federators 19

issuing queries 4

obtaining a search service 3

obtaining a searchable 4

obtaining an implementation 3

processing query results 4

sample search applications 21

search applications 3

SIAPI overview 3

stop word removal 79

stop words 79

supported languages
dictionary-based linguistic

processing 77

language detection 75

U
UIMA

basic concepts 48

custom text analysis support 47

defined types and features 69

description 47

Unicode normalization 79

Unicode-based white space

segmentation 76

W
word segmentation, Japanese 78

100 DB2 II OmniFind Edition: Programming Guide and API Reference for Enterprise Search

����

Printed in USA

SC18-9284-01

	Contents
	Chapter 1. Enterprise search APIs
	Search API security
	Compiling Java source code
	SIAPI Javadoc documentation

	Chapter 2. Search and Index API (SIAPI)
	Structure of an SIAPI application
	Controlling query behavior
	Query syntax
	SIAPI federators
	Local federator
	Remote federator

	Chapter 3. Sample SIAPI applications
	Compiling the sample SIAPI search applications
	Simple and advanced sample search applications
	Browse and navigation sample application
	Retrieve all search results sample
	Sample federated search application

	Chapter 4. Data listener
	Removing data with the data listener API
	Adding data with the data listener API
	Creating data listener client applications
	DLResponse class
	getCode method
	getCodeName method
	DLDataPusher class
	removeURIs method
	revisitURLs method
	pushData method

	Sample data listener client applications
	Sample data listener client application: removing URIs from a collection
	Sample data listener client application: adding URIs and content to a collection
	Sample data listener client application: revisiting URLs
	Sample data listener client application: adding, removing, and revisiting data in a collection

	Chapter 5. Linguistic support
	Chapter 6. Custom text analysis integration
	Unstructured information management architecture (UIMA)
	Workflow for custom analysis integration
	Text analysis algorithms
	Approaches for mapping XML document structures to a common analysis structure
	XML mapping configuration file
	XML mapping sample and the output results

	Approaches for indexing custom analysis results
	Definition of a feature path
	Writing the index build configuration file

	Types and features defined in enterprise search
	Types and features defined in UIMA
	Semantic search applications
	Semantic search query

	Chapter 7. Text analysis included in enterprise search
	Language identification
	Linguistic support for nondictionary-based segmentation
	Linguistic support for dictionary-based segmentation
	Word segmentation in Japanese
	Orthographic variants in Japanese

	Stop word removal
	Character normalization

	DB2 Information Integrator documentation
	Documentation about event publishing function for DB2 Universal Database on z/OS
	Documentation about event publishing function for IMS and VSAM on z/OS
	Documentation about event publishing and replication function on Linux, UNIX, and Windows
	Documentation about federated function on Linux, UNIX, and Windows
	Documentation about federated function on z/OS
	Documentation about replication function on z/OS
	Documentation about enterprise search function on Linux, UNIX, and Windows
	Release notes and installation requirements
	Viewing release notes and installation requirements
	Viewing and printing PDF documentation
	Accessing DB2 Information Integrator documentation

	Accessibility
	Keyboard input and navigation
	Keyboard focus
	Keyboard input
	Keyboard navigation

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Contacting IBM
	Obtaining product information
	Providing comments on the documentation

	Notices
	Trademarks

	Index

