
DB2® Universal Database for z/OS

ODBC

Guide

and

Reference

Version

8

SC18-7423-00

���

DB2® Universal Database for z/OS

ODBC

Guide

and

Reference

Version

8

SC18-7423-00

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

559.

First

Edition

(March

2004)

This

edition

applies

to

Version

8

of

IBM

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS),

product

number

5625-DB2,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Specific

changes

are

indicated

by

a

vertical

bar

to

the

left

of

a

change.

A

vertical

bar

to

the

left

of

a

figure

caption

indicates

that

the

figure

has

changed.

Editorial

changes

that

have

no

technical

significance

are

not

noted.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

use

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Terminology

and

citations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

How

to

send

your

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Summary

of

changes

to

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Chapter

1.

Introduction

to

DB2

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

DB2

ODBC

background

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Differences

between

DB2

ODBC

and

ODBC

version

3.0

.

.

.

.

.

.

.

.

. 1

ODBC

features

supported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Differences

between

DB2

ODBC

and

embedded

SQL

.

.

.

.

.

.

.

.

.

.

. 3

Advantages

of

using

DB2

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Choosing

between

SQL

and

DB2

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Static

and

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Use

both

interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Write

a

mixed

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Additional

DB2

ODBC

resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Chapter

2.

Writing

a

DB2

ODBC

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Initialization

and

termination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

ODBC

connection

model

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Specifying

the

connection

type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Connecting

to

one

or

more

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Transaction

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Allocating

statement

handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Preparation

and

execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Processing

results

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Commit

or

rollback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Freeing

statement

handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Diagnostics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Function

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

SQLSTATEs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

SQLCA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Data

types

and

data

conversion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

C

and

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Other

C

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Data

conversion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Working

with

string

arguments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Length

of

string

arguments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Nul-termination

of

strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

String

truncation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Interpretation

of

strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Querying

environment

and

data

source

information

.

.

.

.

.

.

.

.

.

.

. 36

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

.

.

. 39

Installing

DB2

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

The

DB2

ODBC

run-time

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Connectivity

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Setting

up

the

DB2

ODBC

run-time

environment

.

.

.

.

.

.

.

.

.

.

.

. 41

Bind

DBRMs

to

create

packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

©

Copyright

IBM

Corp.

1997,

2004

iii

Bind

packages

at

remote

sites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Bind

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Bind

the

application

plan

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Setting

up

the

z/OS

UNIX

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Preparing

and

executing

a

DB2

ODBC

application

.

.

.

.

.

.

.

.

.

.

.

. 44

DB2

ODBC

application

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Application

preparation

and

execution

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 46

DB2

ODBC

initialization

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Using

the

initialization

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Initialization

keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

DB2

ODBC

migration

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Chapter

4.

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Function

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

SQLAllocConnect()

-

Allocate

a

connection

handle

.

.

.

.

.

.

.

.

.

.

.

. 70

SQLAllocEnv()

-

Allocate

an

environment

handle

.

.

.

.

.

.

.

.

.

.

.

. 71

SQLAllocHandle()

-

Allocate

a

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

SQLAllocStmt()

-

Allocate

a

statement

handle

.

.

.

.

.

.

.

.

.

.

.

.

. 77

SQLBindCol()

-

Bind

a

column

to

an

application

variable

.

.

.

.

.

.

.

.

. 78

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

.

.

. 85

SQLCancel()

-

Cancel

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results

.

.

.

.

.

.

. 99

SQLColAttribute()

-

Get

column

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

SQLColAttributes()

-

Get

column

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

SQLColumnPrivileges()

-

Get

column

privileges

.

.

.

.

.

.

.

.

.

.

.

. 110

SQLColumns()

-

Get

column

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

SQLConnect()

-

Connect

to

a

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

SQLDataSources()

-

Get

a

list

of

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

. 127

SQLDescribeCol()

-

Describe

column

attributes

.

.

.

.

.

.

.

.

.

.

.

. 131

SQLDescribeParam()

-

Describe

parameter

marker

.

.

.

.

.

.

.

.

.

.

. 138

SQLDisconnect()

-

Disconnect

from

a

data

source

.

.

.

.

.

.

.

.

.

.

. 140

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

142

SQLEndTran()

-

End

transaction

of

a

connection

.

.

.

.

.

.

.

.

.

.

.

. 149

SQLError()

-

Retrieve

error

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

SQLExecDirect()

-

Execute

a

statement

directly

.

.

.

.

.

.

.

.

.

.

.

. 154

SQLExecute()

-

Execute

a

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

SQLExtendedFetch()

-

Fetch

an

array

of

rows

.

.

.

.

.

.

.

.

.

.

.

.

. 163

SQLFetch()

-

Fetch

the

next

row

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

.

.

.

.

.

.

.

.

.

. 178

SQLFreeConnect()

-

Free

a

connection

handle

.

.

.

.

.

.

.

.

.

.

.

.

. 188

SQLFreeEnv()

-

Free

an

environment

handle

.

.

.

.

.

.

.

.

.

.

.

.

. 189

SQLFreeHandle()

-

Free

a

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle

.

.

.

.

.

.

.

.

.

.

. 193

SQLGetConnectAttr()

-

Get

current

attribute

setting

.

.

.

.

.

.

.

.

.

.

. 196

SQLGetConnectOption()

-

Return

current

setting

of

a

connect

option

.

.

.

. 199

SQLGetCursorName()

-

Get

cursor

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

SQLGetData()

-

Get

data

from

a

column

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record

.

.

.

.

. 221

SQLGetEnvAttr()

-

Return

current

setting

of

an

environment

attribute

.

.

.

. 224

SQLGetFunctions()

-

Get

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

SQLGetInfo()

-

Get

general

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

SQLGetLength()

-

Retrieve

length

of

a

string

value

.

.

.

.

.

.

.

.

.

.

. 258

SQLGetPosition()

-

Find

the

starting

position

of

a

string

.

.

.

.

.

.

.

.

. 261

SQLGetSQLCA()

-

Get

SQLCA

data

structure

.

.

.

.

.

.

.

.

.

.

.

.

. 265

SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute

.

.

.

.

.

.

. 272

SQLGetStmtOption()

-

Return

current

setting

of

a

statement

option

.

.

.

.

. 275

iv

ODBC

Guide

and

Reference

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

.

.

.

.

.

.

.

.

.

. 276

SQLGetTypeInfo()

-

Get

data

type

information

.

.

.

.

.

.

.

.

.

.

.

.

. 280

SQLMoreResults()

-

Check

for

more

result

sets

.

.

.

.

.

.

.

.

.

.

.

. 289

SQLNativeSql()

-

Get

native

SQL

text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

SQLNumParams()

-

Get

number

of

parameters

in

a

SQL

statement

.

.

.

.

. 297

SQLNumResultCols()

-

Get

number

of

result

columns

.

.

.

.

.

.

.

.

.

. 299

SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed

301

SQLParamOptions()

-

Specify

an

input

array

for

a

parameter

.

.

.

.

.

.

. 304

SQLPrepare()

-

Prepare

a

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

.

.

.

.

.

.

.

.

. 314

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

320

SQLProcedures()

-

Get

a

list

of

procedure

names

.

.

.

.

.

.

.

.

.

.

. 331

SQLPutData()

-

Pass

a

data

value

for

a

parameter

.

.

.

.

.

.

.

.

.

.

. 335

SQLRowCount()

-

Get

row

count

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

SQLSetColAttributes()

-

Set

column

attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 341

SQLSetConnectAttr()

-

Set

connection

attributes

.

.

.

.

.

.

.

.

.

.

.

. 346

SQLSetConnection()

-

Set

connection

handle

.

.

.

.

.

.

.

.

.

.

.

.

. 354

SQLSetConnectOption()

-

Set

connection

option

.

.

.

.

.

.

.

.

.

.

.

. 356

SQLSetCursorName()

-

Set

cursor

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

SQLSetEnvAttr()

-

Set

environment

attribute

.

.

.

.

.

.

.

.

.

.

.

.

. 360

SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer

.

.

.

.

.

.

.

.

.

. 364

SQLSetStmtAttr()

-

Set

statement

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

SQLSetStmtOption()

-

Set

statement

attribute

.

.

.

.

.

.

.

.

.

.

.

.

. 375

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

.

.

.

.

.

.

.

. 376

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

.

.

.

. 381

SQLTablePrivileges()

-

Get

table

privileges

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

SQLTables()

-

Get

table

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

SQLTransact()

-

Transaction

management

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

Chapter

5.

Using

advanced

features

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

Setting

and

retrieving

environment,

connection,

and

statement

attributes

.

.

. 397

Setting

and

retrieving

environment

attributes

.

.

.

.

.

.

.

.

.

.

.

. 398

Setting

and

retrieving

connection

attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Setting

and

retrieving

statement

attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Using

a

distributed

unit

of

work

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Establishing

a

distributed

unit

of

work

connection

.

.

.

.

.

.

.

.

.

.

. 400

Setting

attributes

that

govern

distributed

unit-of-work

semantics

.

.

.

.

. 402

Using

global

transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Querying

catalog

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Using

the

catalog

query

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

Directing

catalog

queries

to

the

DB2

ODBC

shadow

catalog

.

.

.

.

.

.

. 410

Sending

or

retrieving

long

data

values

in

pieces

.

.

.

.

.

.

.

.

.

.

.

. 412

Specifying

parameter

values

at

execution

time

.

.

.

.

.

.

.

.

.

.

.

. 413

Fetching

data

in

pieces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Using

arrays

to

pass

parameter

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Retrieving

a

result

set

into

an

array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Returning

array

data

for

column-wise

bound

data

.

.

.

.

.

.

.

.

.

.

. 418

Returning

array

data

for

row-wise

bound

data

.

.

.

.

.

.

.

.

.

.

.

. 419

Column-wise

and

row-wise

binding

example

.

.

.

.

.

.

.

.

.

.

.

. 421

Using

large

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

Using

LOB

locators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LOB

and

LOB

locator

example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

Using

distinct

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

Using

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Advantages

of

using

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Catalog

table

for

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Contents

v

Calling

stored

procedures

from

a

DB2

ODBC

application

.

.

.

.

.

.

.

. 430

Writing

a

DB2

ODBC

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

. 430

Returning

result

sets

from

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

. 431

Writing

multithreaded

and

multiple-context

applications

.

.

.

.

.

.

.

.

.

. 433

DB2

ODBC

support

for

multiple

Language

Environment

threads

.

.

.

.

. 433

When

to

use

multiple

Language

Environment

threads

.

.

.

.

.

.

.

.

. 435

DB2

ODBC

support

of

multiple

contexts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

External

contexts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

Application

deadlocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Handling

application

encoding

schemes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Background

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Application

programming

guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Suffix-W

API

function

syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

Examples

of

handling

the

application

encoding

scheme

.

.

.

.

.

.

.

. 449

Mixing

embedded

SQL

with

DB2

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

Using

vendor

escape

clauses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

Determining

ODBC

vendor

escape

clause

support

.

.

.

.

.

.

.

.

.

. 466

Escape

clause

syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

ODBC-defined

SQL

extensions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 467

Programming

hints

and

tips

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

Avoiding

common

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

Improving

application

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

Reducing

network

flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

Maximizing

application

portability

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

Chapter

6.

Problem

diagnosis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Application

trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Diagnostic

trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Stored

procedure

trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

Debugging

DB2

ODBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

Abnormal

termination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

Internal

error

code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

Appendix

A.

DB2

ODBC

and

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

DB2

ODBC

and

ODBC

drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

ODBC

APIs

and

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

Isolation

levels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

Appendix

B.

Extended

scalar

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

String

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

Date

and

time

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

System

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

Appendix

C.

SQLSTATE

cross

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

Appendix

D.

Data

conversion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

SQL

data

type

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Precision

of

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Scale

of

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 510

Length

of

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 510

Display

size

of

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

Converting

data

from

SQL

to

C

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 512

Converting

character

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

Converting

graphic

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

Converting

numeric

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

vi

ODBC

Guide

and

Reference

||

Converting

binary

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

Converting

date

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

Converting

time

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

Converting

timestamp

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Converting

row

ID

SQL

data

to

C

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

SQL

to

C

data

conversion

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

Converting

data

from

C

to

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Converting

character

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Converting

numeric

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 520

Converting

binary

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Converting

double-byte

character

C

data

to

SQL

data

.

.

.

.

.

.

.

.

. 521

Converting

date

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

Converting

time

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

Converting

timestamp

C

data

to

SQL

data

.

.

.

.

.

.

.

.

.

.

.

.

. 522

C

to

SQL

data

conversion

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

Appendix

E.

Deprecated

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Mapping

deprecated

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Changes

to

SQLGetInfo()

information

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Changes

to

SQLSetConnectAttr()

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Changes

to

SQLSetEnvAttr()

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Changes

to

SQLSetStmtAttr()

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

ODBC

3.0

driver

behavior

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

SQLSTATE

mappings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

Changes

to

datetime

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Appendix

F.

Example

DB2

ODBC

code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

DSN8O3VP

sample

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

Client

application

calling

a

DB2

ODBC

stored

procedure

.

.

.

.

.

.

.

.

. 537

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 559

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 560

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 561

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 597

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 605

Contents

vii

viii

ODBC

Guide

and

Reference

About

this

book

This

book

provides

the

information

necessary

to

write

applications

using

DB2®

ODBC

to

access

IBM

DB2

servers,

as

well

as

any

database

that

supports

DRDA®

level

1

or

DRDA

level

2

protocols.

This

book

should

also

be

used

as

a

supplement

when

writing

portable

ODBC

applications

that

can

be

executed

in

a

native

DB2

UDB

for

z/OS

environment

using

DB2

ODBC.

Important

In

this

version

of

DB2

UDB

for

z/OS,

the

DB2

Utilities

Suite

is

available

as

an

optional

product.

You

must

separately

order

and

purchase

a

license

to

such

utilities,

and

discussion

of

those

utility

functions

in

this

publication

is

not

intended

to

otherwise

imply

that

you

have

a

license

to

them.

See

Part

1

of

DB2

Utility

Guide

and

Reference

for

packaging

details.

Who

should

use

this

book

This

book

is

intended

for

the

following

audiences:

v

DB2

application

programmers

with

a

knowledge

of

SQL

and

the

C

programming

language.

v

ODBC

application

programmers

with

a

knowledge

of

SQL

and

the

C

programming

language.

Terminology

and

citations

In

this

information,

DB2

Universal

Database™

for

z/OS™

is

referred

to

as

"DB2

UDB

for

z/OS."

In

cases

where

the

context

makes

the

meaning

clear,

DB2

UDB

for

z/OS

is

referred

to

as

"DB2."

When

this

information

refers

to

titles

of

books

in

this

library,

a

short

title

is

used.

(For

example,

"See

DB2

SQL

Reference"

is

a

citation

to

IBM®

DB2

Universal

Database

for

z/OS

SQL

Reference.)

When

referring

to

a

DB2

product

other

than

DB2

UDB

for

z/OS,

this

information

uses

the

product’s

full

name

to

avoid

ambiguity.

The

following

terms

are

used

as

indicated:

DB2

Represents

either

the

DB2

licensed

program

or

a

particular

DB2

subsystem.

DB2

PM

Refers

to

the

DB2

Performance

Monitor

tool,

which

can

be

used

on

its

own

or

as

part

of

the

DB2

Performance

Expert

for

z/OS

product.

C,

C++,

and

C

language

Represent

the

C

or

C++

programming

language.

CICS®

Represents

CICS

Transaction

Server

for

z/OS

or

CICS

Transaction

Server

for

OS/390®.

IMS™

Represents

the

IMS

Database

Manager

or

IMS

Transaction

Manager.

MVS™

Represents

the

MVS

element

of

the

z/OS

operating

system,

which

is

equivalent

to

the

Base

Control

Program

(BCP)

component

of

the

z/OS

operating

system.

©

Copyright

IBM

Corp.

1997,

2004

ix

RACF®

Represents

the

functions

that

are

provided

by

the

RACF

component

of

the

z/OS

Security

Server.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

DB2

UDB

for

z/OS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

reader

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

by

using

only

a

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Assistive

technology

products,

such

as

screen

readers,

function

with

the

DB2

UDB

for

z/OS

user

interfaces.

Consult

the

documentation

for

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Online

documentation

for

Version

8

of

DB2

UDB

for

z/OS

is

available

in

the

DB2

Information

Center,

which

is

an

accessible

format

when

used

with

assistive

technologies

such

as

screen

reader

or

screen

magnifier

software.

The

DB2

Information

Center

for

z/OS

solutions

is

available

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

How

to

send

your

comments

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

UDB

for

z/OS

documentation.

You

can

use

the

following

methods

to

provide

comments:

v

Send

your

comments

by

e-mail

to

db2pubs@vnet.ibm.com

and

include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

number

of

the

book.

If

you

are

commenting

on

specific

text,

please

list

the

location

of

the

text

(for

example,

a

chapter

and

section

title,

page

number,

or

a

help

topic

title).

v

You

can

also

send

comments

from

the

Web.

Visit

the

library

Web

site

at:

www.ibm.com/software/db2zos/library.html

This

Web

site

has

a

feedback

page

that

you

can

use

to

send

comments.

v

Print

and

fill

out

the

reader

comment

form

located

at

the

back

of

this

book.

You

can

give

the

completed

form

to

your

local

IBM

branch

office

or

IBM

representative,

or

you

can

send

it

to

the

address

printed

on

the

reader

comment

form.

x

ODBC

Guide

and

Reference

Summary

of

changes

to

this

book

The

major

changes

to

this

edition

of

the

book

are:

v

Support

for

the

Unicode

UTF-8

encoding

format

and

support

for

ASCII.

“Handling

application

encoding

schemes”

on

page

443

describes

Unicode

and

ASCII

support.

v

A

new

keyword,

CURRENTAPPENSCH,

that

specifies

the

application

encoding

scheme

in

the

initialization

file.

See

“Initialization

keywords”

on

page

51.

v

Additional

SQLGetInfo()

attributes

to

query

the

CCSID

settings

of

the

DB2

subsystem

in

each

encoding

scheme.

See

“SQLGetInfo()

-

Get

general

information”

on

page

234.

©

Copyright

IBM

Corp.

1997,

2004

xi

|

|
|
|

|
|

|
|
|

xii

ODBC

Guide

and

Reference

Chapter

1.

Introduction

to

DB2

ODBC

DB2

Open

Database

Connectivity

(ODBC)

is

the

IBM

callable

SQL

interface

by

the

DB2

family

of

products.

It

is

a

C

and

C++

language

application

programming

interface

for

relational

database

access,

and

it

uses

function

calls

to

pass

dynamic

SQL

statements

as

function

arguments.

It

is

an

alternative

to

embedded

dynamic

SQL,

but

unlike

embedded

SQL,

it

does

not

require

a

precompiler.

DB2

ODBC

is

based

on

the

Windows®

Open

Database

Connectivity

(ODBC)

specification,

and

the

X/Open

Call

Level

Interface

specification.

These

specifications

were

chosen

as

the

basis

for

the

DB2

ODBC

in

an

effort

to

follow

industry

standards

and

to

provide

a

shorter

learning

curve

for

those

application

programmers

familiar

with

either

of

these

data

source

interfaces.

In

addition,

some

DB2

specific

extensions

were

added

to

help

the

DB2

application

programmer

specifically

exploit

DB2

features.

DB2

ODBC

background

information

To

understand

DB2

ODBC

or

any

callable

SQL

interface,

it

is

helpful

to

understand

what

it

is

based

on,

and

to

compare

it

with

existing

interfaces.

The

X/Open

Company

and

the

SQL

Access

Group

jointly

developed

a

specification

for

a

callable

SQL

interface

referred

to

as

the

X/Open

Call

Level

Interface.

The

goal

of

this

interface

is

to

increase

the

portability

of

applications

by

enabling

them

to

become

independent

of

any

one

database

product

vendor’s

programming

interface.

Most

of

the

X/Open

Call

Level

Interface

specification

was

accepted

as

part

of

the

ISO

Call

Level

Interface

Draft

International

Standard

(ISO

CLI

DIS).

Microsoft®

developed

a

callable

SQL

interface

called

Open

Database

Connectivity

(ODBC)

for

Microsoft

operating

systems

based

on

a

preliminary

draft

of

X/Open

CLI.

The

Call

Level

Interface

specifications

in

ISO,

X/Open,

ODBC,

and

DB2

ODBC

continue

to

evolve

in

a

cooperative

manner

to

provide

functions

with

additional

capabilities.

The

ODBC

specification

also

includes

an

operating

environment

where

data

source

specific

ODBC

drivers

are

dynamically

loaded

at

run

time

by

a

driver

manager

based

on

the

data

source

name

provided

on

the

connect

request.

The

application

is

linked

directly

to

a

single

driver

manager

library

rather

than

to

each

DBMS's

library.

The

driver

manager

mediates

the

application's

function

calls

at

run

time

and

ensures

they

are

directed

to

the

appropriate

DBMS

specific

ODBC

driver.

The

ODBC

driver

manager

only

knows

about

the

ODBC-specific

functions,

that

is,

those

functions

supported

by

the

DBMS

for

which

no

API

is

specified.

Therefore,

DBMS-specific

functions

cannot

be

directly

accessed

in

an

ODBC

environment.

However,

DBMS-specific

dynamic

SQL

statements

are

indirectly

supported

using

a

mechanism

called

the

vendor

escape

clause.

See

“Using

vendor

escape

clauses”

on

page

465

for

detailed

information.

ODBC

is

not

limited

to

Microsoft

operating

systems.

Other

implementations

are

available,

such

as

DB2

ODBC,

or

are

emerging

on

various

platforms.

Differences

between

DB2

ODBC

and

ODBC

version

3.0

DB2

ODBC

is

derived

from

the

ISO

Call

Level

Interface

Draft

International

Standard

(ISO

CLI

DIS)

and

ODBC

Version

3.0.

©

Copyright

IBM

Corp.

1997,

2004

1

|

If

you

port

existing

ODBC

applications

to

DB2

UDB

for

z/OS

or

write

a

new

application

according

to

the

ODBC

specifications,

you

must

comply

with

the

specifications

defined

in

this

publication.

However,

before

you

write

to

any

API,

validate

that

the

API

is

supported

by

DB2

ODBC

and

that

the

syntax

and

semantics

are

identical.

For

any

differences,

you

must

code

to

the

APIs

documented

in

this

publication.

On

the

DB2

UDB

for

z/OS

platform,

no

ODBC

driver

manager

exists.

Consequently,

DB2

ODBC

support

is

implemented

as

a

CLI/ODBC

driver/driver

manager

that

is

loaded

at

run

time

into

the

application

address

space.

See

“DB2

ODBC

and

ODBC

drivers”

on

page

489

for

details

about

the

difference

between

ODBC

drivers

with

and

without

a

driver

manager.

For

details

about

the

DB2

ODBC

run-time

environment,

see

“The

DB2

ODBC

run-time

environment”

on

page

39.

The

DB2

UDB

for

Linux,

UNIX

and

Windows

support

for

CLI

executes

on

Windows

and

AIX®

as

an

ODBC

driver,

loaded

by

the

Windows

driver

manager

(Windows

environment)

or

the

Visigenic

driver

manager

(UNIX®

platforms).

In

this

context,

DB2

ODBC

support

is

limited

to

the

ODBC

specifications.

Alternatively,

an

application

can

directly

invoke

the

CLI

application

programming

interfaces

(APIs)

including

those

not

supported

by

ODBC.

In

this

context,

the

set

of

APIs

supported

by

DB2

UDB

is

referred

to

as

the

″Call

Level

Interface.″

See

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volumes

1

and

2.

The

use

of

DB2

ODBC

in

this

publication

refers

to

DB2

UDB

for

z/OS

support

of

DB2

ODBC

unless

otherwise

noted.

General

information

about

DB2

UDB

for

z/OS

is

available

from

the

DB2

UDB

for

z/OS

web

page:

www.ibm.com/software/data/db2/zos/.

ODBC

features

supported

DB2

ODBC

support

should

be

viewed

as

consisting

of

most

of

ODBC

Version

3.0

as

well

as

IBM

extensions.

Where

differences

exist,

applications

should

be

written

to

the

specifications

defined

in

this

publication.

DB2

ODBC

supports

the

following

ODBC

functionality:

v

ODBC

core

conformance

with

the

following

exceptions:

–

Manipulating

fields

of

descriptors

is

not

supported.

DB2

ODBC

does

not

support

SQLCopyDesc(),

SQLGetDescField(),

SQLGetDescRec(),

SQLSetDescField(),

or

SQLSetDescRec().

–

Driver

management

is

not

supported.

The

ODBC

driver

manager

and

support

for

SQLDrivers()

is

not

applicable

in

the

DB2

UDB

for

z/OS

ODBC

environment.

v

ODBC

level

1

conformance

with

the

following

exceptions:

–

Asynchronous

execution

of

ODBC

functions

for

individual

connections

is

not

supported.

–

SQLSetPos()

is

not

supported.

SQLSetPos()

positions

a

cursor,

updates

rows,

and

deletes

rows

in

a

row

set.

–

SQLFetchScroll(),

which

provides

ODBC

scrollable

cursors,

is

not

supported;

access

to

result

sets

is

limited

to

forward-only.

–

Connecting

interactively

to

data

sources

is

not

supported.

DB2

ODBC

does

not

support

SQLBrowseConnect()

and

supports

SQLDriverConnect()

with

SQL_DRIVER_NOPROMPT

only.

v

ODBC

level

2

conformance

with

the

following

exceptions:

2

ODBC

Guide

and

Reference

|

|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|

www.ibm.com/software/data/db2/zos/library.html

–

Asynchronous

execution

of

ODBC

functions

for

individual

statements

is

not

supported.

–

Bookmarks

are

not

supported.

DB2

ODBC

does

not

support

SQLFetchScroll()

with

SQL_FETCH_BOOKMARK;

SQLBulkOperations()

with

SQL_UPDATE_BY_BOOKMARK,

SQL_DELETE_BY_BOOKMARK,

or

SQL_FETCH_BY_BOOKMARK;

or

retrieving

bookmarks

on

column

0

with

SQLDescribeColumn()

and

SQLColAttribute().

–

SQLBulkOperations()

with

SQL_ADD,

and

SQLSetPos()

with

SQL_DELETE

and

SQL_UPDATE

are

not

supported.

–

The

SQL_ATTR_LOGIN_TIMEOUT

connection

attribute,

which

times

out

login

requests,

and

the

SQL_ATTR_QUERY_TIMEOUT

statement

attribute,

which

times

out

SQL

queries,

are

not

supported.

v

Some

X/Open

CLI

functions

v

Some

DB2

specific

functions

For

a

complete

list

of

supported

functions,

see

“Function

overview”

on

page

64.

The

following

DB2

features

are

available

to

both

ODBC

and

DB2

ODBC

applications:

v

The

double-byte

(graphic)

data

types

(see

“GRAPHIC

keyword”

on

page

56)

v

Stored

procedures

(see

429)

v

Distributed

unit

of

work

(DUW)

as

defined

by

DRDA,

two-phase

commit

(see

399)

v

Distinct

types

(see

426)

v

User-defined

functions

(see

426)

v

Unicode

and

ASCII

support

(see

443)

DB2

ODBC

contains

extensions

to

access

DB2

features

that

can

not

be

accessed

by

ODBC

applications:

v

SQLCA

access

for

detailed

DB2

specific

diagnostic

information

(see

265)

v

Control

over

nul-termination

of

output

strings

(see

34)

v

Support

for

large

objects

(LOBs)

and

LOB

locators

(see

423)

For

more

information

about

the

relationship

between

DB2

ODBC

and

ODBC,

see

Appendix

A,

“DB2

ODBC

and

ODBC,”

on

page

489.

Differences

between

DB2

ODBC

and

embedded

SQL

An

application

that

uses

an

embedded

SQL

interface

requires

a

precompiler

to

convert

the

SQL

statements

into

code,

which

is

then

compiled,

bound

to

the

data

source,

and

executed.

In

contrast,

a

DB2

ODBC

application

does

not

have

to

be

precompiled

or

bound,

but

instead

uses

a

standard

set

of

functions

to

execute

SQL

statements

and

related

services

at

run

time.

This

difference

is

important

because,

traditionally,

precompilers

have

been

specific

to

each

database

product,

which

effectively

ties

your

applications

to

that

product.

DB2

ODBC

enables

you

to

write

portable

applications

that

are

independent

of

any

particular

database

product.

Because

you

do

not

precompile

ODBC

applications,

the

DB2

ODBC

driver

imposes

a

fixed

set

of

precompiler

options

on

statements

that

you

execute

through

ODBC.

These

options

are

intended

for

general

ODBC

applications.

Chapter

1.

Introduction

to

DB2

ODBC

3

|
|

|
|
|
|
|

|
|

|
|
|

|

This

independence

means

DB2

ODBC

applications

do

not

have

to

be

recompiled

or

rebound

to

access

different

DB2

or

DRDA

data

sources,

but

rather

just

connect

to

the

appropriate

data

source

at

run

time.

DB2

ODBC

and

embedded

SQL

also

differ

in

the

following

ways:

v

DB2

ODBC

does

not

require

the

explicit

declaration

of

cursors.

They

are

generated

by

DB2

ODBC

as

needed.

The

application

can

then

use

the

generated

cursor

in

the

normal

cursor

fetch

model

for

multiple

row

SELECT

statements

and

positioned

UPDATE

and

DELETE

statements.

v

The

OPEN

statement

is

not

used

in

DB2

ODBC.

Instead,

the

execution

of

a

SELECT

automatically

causes

a

cursor

to

be

opened.

v

Unlike

embedded

SQL,

DB2

ODBC

allows

the

use

of

parameter

markers

on

the

equivalent

of

the

EXECUTE

IMMEDIATE

statement

(the

SQLExecDirect()

function).

v

A

COMMIT

or

ROLLBACK

in

DB2

ODBC

is

issued

using

the

SQLEndTran()

function

call

rather

than

by

passing

it

as

an

SQL

statement.

v

DB2

ODBC

manages

statement

related

information

on

behalf

of

the

application,

and

provides

a

statement

handle

to

refer

to

it

as

an

abstract

object.

This

handle

eliminates

the

need

for

the

application

to

use

product

specific

data

structures.

v

Similar

to

the

statement

handle,

the

environment

handle

and

connection

handle

provide

a

means

to

refer

to

all

global

variables

and

connection

specific

information.

v

DB2

ODBC

uses

the

SQLSTATE

values

defined

by

the

X/Open

SQL

CAE

specification.

Although

the

format

and

most

of

the

values

are

consistent

with

values

used

by

the

IBM

relational

database

products,

differences

do

exist

(some

ODBC

SQLSTATEs

and

X/Open

defined

SQLSTATEs

also

differ).

Refer

to

Table

233

on

page

497

for

a

cross

reference

of

all

DB2

ODBC

SQLSTATEs.

Despite

these

differences,

embedded

SQL

and

DB2

ODBC

share

the

following

concept

in

common:

DB2

ODBC

can

execute

any

SQL

statement

that

can

be

prepared

dynamically

in

embedded

SQL.

Table

1

lists

each

DB2

UDB

for

z/OS

SQL

statement

and

indicates

whether

you

can

execute

that

statement

with

DB2

ODBC.

Each

DBMS

might

have

additional

statements

that

can

be

dynamically

prepared,

in

which

case

DB2

ODBC

passes

them

to

the

DBMS.

Exception:

COMMIT

and

ROLLBACK

can

be

dynamically

prepared

by

some

DBMSs

but

are

not

passed.

The

SQLEndTran()

function

should

be

used

instead

to

specify

either

COMMIT

or

ROLLBACK.

Table

1.

SQL

statements

SQL

statement

Dynamic1

DB2

ODBC2

ALTER

TABLE

Yes

Yes

ALTER

DATABASE

Yes

Yes

ALTER

INDEX

Yes

Yes

ALTER

STOGROUP

Yes

Yes

ALTER

TABLESPACE

Yes

Yes

BEGIN

DECLARE

SECTION3

No

No

CALL

No

Yes4

4

ODBC

Guide

and

Reference

Table

1.

SQL

statements

(continued)

SQL

statement

Dynamic1

DB2

ODBC2

CLOSE

No

SQLFreeHandle()

COMMENT

ON

Yes

Yes

COMMIT

Yes

SQLEndTran()

CONNECT

(type

1)

No

SQLConnect(),

SQLDriverConnect()

CONNECT

(type

2)

No

SQLConnect(),

SQLDriverConnect()

CREATE

{

ALIAS,

DATABASE,

INDEX,

STOGROUP,

SYNONYM,

TABLE,

TABLESPACE,

VIEW,

DISTINCT

TYPE

}

Yes

Yes

DECLARE

CURSOR3

No

SQLAllocHandle()

DECLARE

STATEMENT

No

No

DECLARE

TABLE

No

No

DECLARE

VARIABLE

No

No

DELETE

Yes

Yes

DESCRIBE

No

SQLDescribeCol(),

SQLColAttribute()

DROP

Yes

Yes

END

DECLARE

SECTION3

No

No

EXECUTE

No

SQLExecute()

EXECUTE

IMMEDIATE

No

SQLExecDirect()

EXPLAIN

Yes

Yes

FETCH

No

SQLFetch(),

SQLExtendedFetch()

FREE

LOCATOR4

No

Yes

GET

DIAGNOSTICS

No

No

GRANT

Yes

Yes

HOLD

LOCATOR4

No

Yes

INCLUDE3

No

No

INSERT

Yes

Yes

LABEL

ON

Yes

Yes

LOCK

TABLE

Yes

Yes

OPEN

No

SQLExecute(),

SQLExecDirect()

PREPARE

No

SQLPrepare()

RELEASE

No

No

REVOKE

Yes

Yes

ROLLBACK

Yes

SQLEndTran()

select-statement

Yes

Yes

SELECT

INTO

No

No

SET

CONNECTION

No

SQLSetConnection()

SET

host_variable

No

No

SET

CURRENT

APPLICATION

ENCODING

SCHEME

No

No

SET

CURRENT

DEGREE

Yes

Yes

Chapter

1.

Introduction

to

DB2

ODBC

5

|

|

|
|

Table

1.

SQL

statements

(continued)

SQL

statement

Dynamic1

DB2

ODBC2

SET

CURRENT

PACKAGESET

No

No

SET

CURRENT

PATH

Yes

Yes

SET

CURRENT

SQLID

Yes

Yes

UPDATE

Yes

Yes

WHENEVER3

No

No

Notes:

1.

All

statements

in

this

list

can

be

coded

as

static

SQL,

but

only

those

marked

with

X

can

be

coded

as

dynamic

SQL.

2.

An

X

indicates

that

this

statement

can

be

executed

using

either

SQLExecDirect(),

or

SQLPrepare()

and

SQLExecute().

Equivalent

DB2

ODBC

functions

are

listed.

3.

This

statement

is

not

executable.

4.

Although

this

statement

is

not

dynamic,

DB2

ODBC

allows

the

statement

to

be

specified

when

calling

either

SQLExecDirect()

or

SQLPrepare()

and

SQLExecute().

Advantages

of

using

DB2

ODBC

DB2

ODBC

provides

a

number

of

key

features

that

offer

advantages

in

contrast

to

embedded

SQL.

DB2

ODBC:

v

Ideally

suits

the

client-server

environment

in

which

the

target

data

source

is

unknown

when

the

application

is

built.

It

provides

a

consistent

interface

for

executing

SQL

statements,

regardless

of

which

database

server

the

application

connects

to.

v

Lets

you

write

portable

applications

that

are

independent

of

any

particular

database

product.

DB2

ODBC

applications

do

not

have

to

be

recompiled

or

rebound

to

access

different

DB2

or

DRDA

data

sources.

Instead

they

connect

to

the

appropriate

data

source

at

run

time.

v

Reduces

the

amount

of

management

required

for

an

application

while

in

general

use.

Individual

DB2

ODBC

applications

do

not

need

to

be

bound

to

each

data

source.

Bind

files

provided

with

DB2

ODBC

need

to

be

bound

only

once

for

all

DB2

ODBC

applications.

v

Lets

applications

connect

to

multiple

data

sources

from

the

same

application.

v

Allocates

and

controls

data

structures,

and

provides

a

handle

for

the

application

to

refer

to

them.

Applications

do

not

have

to

control

complex

global

data

areas

such

as

the

SQLDA

and

SQLCA.

v

Provides

enhanced

parameter

input

and

fetching

capability.

You

can

specify

arrays

of

data

on

input

to

retrieve

multiple

rows

of

a

result

set

directly

into

an

array.

You

can

execute

statements

that

generate

multiple

result

sets.

v

Lets

you

retrieve

multiple

rows

and

result

sets

generated

from

a

call

to

a

stored

procedure.

v

Provides

a

consistent

interface

to

query

catalog

information

that

is

contained

in

various

DBMS

catalog

tables.

The

result

sets

that

are

returned

are

consistent

across

DBMSs.

Application

programmers

can

avoid

writing

version-specific

and

server-specific

catalog

queries.

v

Provides

extended

data

conversion

which

requires

less

application

code

when

converting

information

between

various

SQL

and

C

data

types.

v

Aligns

with

the

emerging

ISO

CLI

standard

in

addition

to

using

the

accepted

industry

specifications

of

ODBC

and

X/Open

CLI.

6

ODBC

Guide

and

Reference

v

Allows

application

developers

to

apply

their

knowledge

of

industry

standards

directly

to

DB2

ODBC.

The

interface

is

intuitive

for

programmers

who

are

familiar

with

function

libraries

but

know

little

about

product

specific

methods

of

embedding

SQL

statements

into

a

host

language.

Choosing

between

SQL

and

DB2

ODBC

DB2

ODBC

is

ideally

suited

for

query-based

applications

that

require

portability.

Use

the

following

guidelines

to

help

you

decide

which

interface

meets

your

needs.

Static

and

dynamic

SQL

Only

embedded

SQL

applications

can

use

static

SQL.

Both

static

and

dynamic

SQL

have

advantages.

Consider

these

factors:

v

Performance

Dynamic

SQL

is

prepared

at

run

time.

Static

SQL

is

prepared

at

bind

time.

The

preparation

step

for

dynamic

SQL

requires

more

processing

and

might

incur

additional

network

traffic.

However,

static

SQL

does

not

always

perform

better

than

dynamic

SQL.

Dynamic

SQL

can

make

use

of

changes

to

the

data

source,

such

as

new

indexes,

and

can

use

current

catalog

statistics

to

choose

the

optimal

access

plan.

v

Encapsulation

and

security

In

static

SQL,

authorization

to

objects

is

associated

with

a

package

and

validated

at

package

bind

time.

Database

administrators

can

grant

execute

authority

on

a

particular

package

to

a

set

of

users

rather

than

grant

explicit

access

to

each

database

object.

In

dynamic

SQL,

authorization

is

validated

at

run

time

on

a

per

statement

basis;

therefore,

users

must

be

granted

explicit

access

to

each

database

object.

Use

both

interfaces

An

application

can

take

advantage

of

both

static

and

dynamic

interfaces.

An

application

programmer

can

create

a

stored

procedure

that

contains

static

SQL.

The

stored

procedure

is

called

from

within

a

DB2

ODBC

application

and

executed

on

the

server.

After

the

stored

procedure

is

created,

any

DB2

ODBC

or

ODBC

application

can

call

it.

Write

a

mixed

application

You

can

write

a

mixed

application

that

uses

both

DB2

ODBC

and

embedded

SQL.

In

this

scenario,

DB2

ODBC

provides

the

base

application,

and

you

write

key

modules

using

static

SQL

for

performance

or

security.

Choose

this

option

only

if

stored

procedures

do

not

meet

your

applications

requirements.

DB2

ODBC

does

not

support

embedded

SQL

statements

in

a

multiple

context

environment.

See

“DB2

ODBC

support

of

multiple

contexts”

on

page

435

and

“Mixing

embedded

SQL

with

DB2

ODBC”

on

page

463

for

more

information.

Additional

DB2

ODBC

resources

Application

developers

should

refer

to

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer's

Reference

as

a

supplement

to

this

publication.

When

writing

DB2

ODBC

applications,

you

also

might

need

to

reference

information

for

the

database

servers

that

are

being

accessed,

in

order

to

understand

any

connectivity

issues,

environment

issues,

SQL

language

support

issues,

and

other

Chapter

1.

Introduction

to

DB2

ODBC

7

server-specific

information.

For

DB2

UDB

for

z/OS

versions,

see

DB2

SQL

Reference

and

DB2

Application

Programming

and

SQL

Guide.

If

you

are

writing

applications

that

access

other

DB2

server

products,

see

IBM

SQL

Reference

for

information

that

is

common

to

all

products,

including

any

differences.

8

ODBC

Guide

and

Reference

Chapter

2.

Writing

a

DB2

ODBC

application

This

chapter

introduces

a

conceptual

view

of

a

typical

DB2

ODBC

application.

You

can

consider

a

DB2

ODBC

application

as

a

set

of

tasks.

Some

of

these

tasks

consist

of

discrete

steps,

while

others

might

apply

throughout

the

application.

One

or

more

DB2

ODBC

functions

carry

out

each

of

these

core

tasks.

This

section

describes

the

basic

tasks

that

apply

to

all

DB2

ODBC

applications.

Chapter

5,

“Using

advanced

features,”

on

page

397

describes

more

advanced

tasks,

such

as

using

array

insert.

Every

DB2

ODBC

application

performs

three

core

tasks:

initialization,

transaction

processing,

and

termination.

Figure

1

illustrates

an

ODBC

application

in

terms

of

these

tasks.

Initialization

This

task

allocates

and

initializes

some

resources

in

preparation

for

the

transaction

processing

task.

See

“Initialization

and

termination”

on

page

10

for

details.

Transaction

processing

This

task

provides

functionality

to

the

application.

It

passes

SQL

statements

to

DB2

ODBC

that

query

and

modify

data.

See

“Transaction

processing”

on

page

15

for

details.

Termination

This

task

frees

allocated

resources.

The

resources

generally

consist

of

data

areas

identified

by

unique

handles.

See

“Initialization

and

termination”

on

page

10

for

details.

In

addition

to

the

three

tasks

listed

above,

general

tasks,

such

as

handling

diagnostic

messages,

occur

throughout

an

application.

Examples

in

this

chapter

illustrate

the

use

of

functions

in

DB2

ODBC

applications.

See

Chapter

4,

“Functions,”

on

page

63

for

a

complete

description

and

usage

information

for

each

function

that

appears

in

these

examples.

Initialization

Termination

Transaction
processing

Figure

1.

Conceptual

view

of

a

DB2

ODBC

application

©

Copyright

IBM

Corp.

1997,

2004

9

Initialization

and

termination

Figure

2

shows

the

function

call

sequences

for

both

the

initialization

and

termination

tasks.

Figure

4

on

page

15

details

the

transaction

processing

task

in

the

middle

of

the

diagram,

which

is

not

a

topic

in

this

section.

In

the

initialization

task,

an

application

allocates

handles

and

connects

to

data

sources.

In

the

termination

task,

an

application

frees

handles

and

disconnects

from

data

sources.

Use

handles

and

the

ODBC

connection

model

to

initialize

and

terminate

an

application.

Handles

A

handle

is

a

variable

that

refers

to

a

data

object

controlled

by

DB2

ODBC.

Using

handles

relieves

the

application

from

having

to

allocate

and

manage

global

variables

or

data

structures,

such

as

the

SQLDA

or

SQLCA,

that

the

IBM

embedded

SQL

interfaces

use.

DB2

ODBC

defines

the

three

following

handles:

Environment

handle

The

environment

handle

refers

to

the

data

object

that

contains

information

regarding

the

global

state

of

the

application,

such

as

attributes

and

connections.

This

handle

is

allocated

by

calling

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_ENV),

and

freed

by

calling

Allocate environment

Connect

Free connection

Disconnect

Free environment

SQLAllocHandle()

SQLConnect()
or

SQLDriverConnect()

SQLAlloc ()Handle

SQLFree ()Handle

SQLDisconnect()

Allocate connection

Initialization

Termination

Transaction
processing

SQLFree ()Handle

Figure

2.

Conceptual

view

of

initialization

and

termination

tasks

10

ODBC

Guide

and

Reference

SQLFreeHandle()

(with

HandleType

set

to

SQL_HANDLE_ENV).

An

environment

handle

must

be

allocated

before

a

connection

handle

can

be

allocated.

Connection

handle

A

connection

handle

refers

to

a

data

object

that

contains

information

associated

with

a

connection

to

a

particular

data

source.

This

includes

connection

attributes,

general

status

information,

transaction

status,

and

diagnostic

information.

Each

connection

handle

is

allocated

by

calling

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_DBC)

and

freed

by

calling

SQLFreeHandle()

(with

HandleType

set

to

SQL_HANDLE_DBC).

An

application

can

be

connected

to

several

database

servers

at

the

same

time.

An

application

requires

a

connection

handle

for

each

concurrent

connection

to

a

database

server.

For

information

about

multiple

connections,

see

“Connecting

to

one

or

more

data

sources”

on

page

12.

Call

SQLGetInfo()

to

determine

if

a

user-imposed

limit

on

the

number

of

connection

handles

has

been

set.

Statement

handles

Statement

handles

are

discussed

in

the

next

section,

“Transaction

processing”

on

page

15.

The

initialization

task

consists

of

the

allocation

and

initialization

of

environment

and

connection

handles.

The

termination

task

later

frees

these

handles.

An

application

then

passes

the

appropriate

handle

when

it

calls

other

DB2

ODBC

functions.

ODBC

connection

model

The

ODBC

specifications

support

any

number

of

concurrent

connections,

each

of

which

is

an

independent

transaction.

That

is,

an

application

can

issue

SQLConnect()

to

X,

perform

some

work,

issue

SQLConnect()

to

Y,

perform

some

work,

and

then

commit

the

work

at

X.

ODBC

supports

multiple

concurrent

and

independent

transactions,

one

per

connection.

DB2

ODBC

restrictions

on

the

ODBC

connection

model

If

the

initialization

file

does

not

specify

MULTICONTEXT=1,

DB2

ODBC

does

not

fully

support

the

ODBC

connection

model.

In

this

case,

to

obtain

simulated

support

of

the

ODBC

connection

model,

an

application

must

specify

CONNECTTYPE=1

either

through

the

initialization

file

or

the

SQLSetConnectAttr()

API.

For

details,

see

“Initialization

keywords”

on

page

51

and

“Specifying

the

connection

type”

on

page

12.

An

application

that

uses

DB2

ODBC

to

simulate

support

of

the

ODBC

model

can

logically

connect

to

any

number

of

data

sources.

However,

the

DB2

ODBC

driver

maintains

only

one

physical

connection.

This

single

connection

is

to

the

data

source

to

which

the

application

last

successfully

connected

or

issued

an

SQL

statement.

An

application

that

operates

with

simulated

support

of

the

ODBC

connection

model,

regardless

of

the

commit

mode,

behaves

as

follows:

v

When

the

application

accesses

multiple

data

sources,

it

allocates

a

connection

handle

to

each

data

source.

Because

this

application

can

make

only

one

physical

connection

at

a

time,

the

DB2

ODBC

driver

commits

the

work

on

the

current

data

source

and

terminates

the

current

connection

before

the

application

connects

to

a

new

data

source.

Therefore,

an

application

that

operates

with

simulated

support

of

the

ODBC

connection

model

cannot

open

cursors

concurrently

at

two

data

sources

(including

cursors

WITH

HOLD).

Chapter

2.

Writing

a

DB2

ODBC

application

11

v

When

the

application

does

not

explicitly

commit

or

rollback

work

on

the

current

connection

before

it

calls

a

function

on

another

connection,

the

DB2

ODBC

driver

implicitly

performs

the

following

actions:

1.

Commits

work

on

the

current

connection

2.

Disconnects

from

the

current

data

source

3.

Connects

to

the

new

data

source

4.

Executes

the

function

When

you

enable

multiple-context

support

(MULTICONTEXT=1),

DB2

ODBC

fully

supports

the

ODBC

connection

model.

See

“DB2

ODBC

support

of

multiple

contexts”

on

page

435

for

details.

Specifying

the

connection

type

Every

IBM

RDBMS

supports

both

type

1

and

type

2

connection

type

semantics.

In

both

cases,

only

one

transaction

is

active

at

any

time.

In

SQL,

CONNECT

(type

1)

lets

the

application

connect

to

only

a

single

database

at

any

time

so

a

single

transaction

is

active

on

the

current

connection.

This

connection

type

models

DRDA

remote

unit

of

work

processing.

Conversely,

CONNECT

(type

2),

in

SQL,

lets

the

application

connect

concurrently

to

any

number

of

database

servers,

all

of

which

participate

in

a

single

transaction.

This

connection

type

models

DRDA

distributed

unit

of

work

processing.

DB2

ODBC

supports

both

these

connection

types,

but

all

connections

in

your

application

must

use

only

one

connection

type

at

a

given

time.

You

must

free

all

current

connection

handles

before

you

change

the

connection

type.

Important:

Establish

a

connection

type

before

you

issue

SQLConnect().

You

can

establish

the

connection

type

with

either

of

the

following

methods:

v

Specify

CONNECTTYPE=1

(for

CONNECT

(type

1))

or

CONNECTTYPE=2

(for

CONNECT

(type

2))

in

the

common

section

of

the

initialization

file.

“DB2

ODBC

initialization

file”

on

page

49

describes

the

initialization

file.

v

Invoke

SQLSetConnectAttr()

with

the

Attribute

argument

set

to

SQL_ATTR_CONNECTTYPE

andValuePtr

set

to

SQL_CONCURRENT_TRANS

(for

CONNECT

(type

1))

or

SQL_COORDINATED_TRANS

(for

CONNECT

(type

2)).

Connecting

to

one

or

more

data

sources

DB2

ODBC

supports

connections

to

remote

data

sources

through

DRDA.

If

an

application

is

CONNECT

(type

1)

and

specifies

MULTICONTEXT=0,

DB2

ODBC

allows

the

application

to

logically

connect

to

multiple

data

sources.

However,

DB2

ODBC

allows

the

application

only

one

outstanding

transaction

(a

transaction

the

application

has

not

yet

committed

or

rolled

back)

on

the

active

connection.

If

the

application

is

CONNECT

(type

2),

then

the

transaction

is

a

distributed

unit

of

work

and

all

data

sources

participate

in

the

disposition

of

the

transaction

(commit

or

rollback).

To

connect

concurrently

to

one

or

more

data

sources,

call

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_DBC)

once

for

each

connection.

Use

the

connection

handle

that

this

statement

yields

in

an

SQLConnect()

call

to

request

a

12

ODBC

Guide

and

Reference

data

source

connection.

Use

the

same

connection

handle

in

an

SQLAllocHandle()

call

(with

HandleType

set

to

SQL_HANDLE_STMT)

to

allocate

statement

handles

to

use

within

that

connection.

An

extended

connect

function,

SQLDriverConnect(),

allows

you

to

set

additional

connection

attributes.

Unlike

the

distributed

unit

of

work

connections

that

are

described

in

“Using

a

distributed

unit

of

work”

on

page

399,

statements

that

execute

on

different

connections

do

not

coordinate.

Example:

Figure

3

illustrates

an

application

that

connects,

allocates

handles,

frees

handles,

and

disconnects.

This

application

connects

to

multiple

data

sources

but

does

not

explicitly

set

a

connection

type

or

specify

multiple-context

support.

The

CONNECTTYPE

and

MULTICONTEXT

keywords

in

the

initialization

file

declare

these

settings.

/*

...

*/

/***

**

-

Demonstrate

basic

connection

to

two

data

sources.

**

-

Error

handling

mostly

ignored

for

simplicity

**

**

Functions

used:

**

**

SQLAllocHandle

SQLDisconnect

**

SQLConnect

SQLFreeHandle

**

Local

Functions:

**

DBconnect

**

**/

#include

<stdio.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

int

DBconnect(SQLHENV

henv,

SQLHDBC

*

hdbc,

char

*

server);

#define

MAX_UID_LENGTH

18

#define

MAX_PWD_LENGTH

30

#define

MAX_CONNECTIONS

2

int

main(

)

{

SQLHENV

henv;

SQLHDBC

hdbc[MAX_CONNECTIONS];

char

*

svr[MAX_CONNECTIONS]

=

{

"KARACHI"

,

"DAMASCUS"

}

/*

Allocate

an

environment

handle

*/

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Connect

to

first

data

source

*/

DBconnect(henv,

&hdbc[0],

svr[0]);

/*

Connect

to

second

data

source

*/

DBconnect(henv,

&hdbc[1],

svr[1]);

Figure

3.

ODBC

application

that

connects

to

two

data

sources.

(Part

1

of

2)

Chapter

2.

Writing

a

DB2

ODBC

application

13

/*********

Start

processing

step

*************************/

/*

Allocate

statement

handle,

execute

statement,

and

so

on

*/

/*********

End

processing

step

***************************/

/**/

/*

Commit

work

on

connection

1.

*/

/**/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[0],

SQL_COMMIT);

/**/

/*

Commit

work

on

connection

2.

This

has

NO

effect

on

the

*/

/*

transaction

active

on

connection

1.

*/

/**/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[1],

SQL_COMMIT);

printf("\nDisconnecting

.....\n");

SQLDisconnect(hdbc[0]);

/*

disconnect

first

connection

*/

SQLDisconnect(hdbc[1]);

/*

disconnect

second

connection

*/

SQLFreeHandle

(SQL_HANDLE_DBC,

hdbc[0]);

/*

free

first

connection

handle

*/

SQLFreeHandle

(SQL_HANDLE_DBC,

hdbc[1]);

/*

free

second

connection

handle

*/

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

/*

free

environment

handle

*/

return

(SQL_SUCCESS);

}

/**

**

Server

is

passed

as

a

parameter.

Note

that

NULL

values

are

**

**

passed

for

USERID

and

PASSWORD.

**

**/

int

DBconnect(SQLHENV

henv,

SQLHDBC

*

hdbc,

char

*

server)

{

SQLRETURN

rc;

SQLCHAR

buffer[255];

SQLSMALLINT

outlen;

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc);

/*

allocate

connection

handle

*/

rc

=

SQLConnect(*hdbc,

server,

SQL_NTS,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---

Error

while

connecting

to

database:

%s

-------\n",

server);

return

(SQL_ERROR);

}

else

{

printf(">Connected

to

%s\n",

server);

return

(SQL_SUCCESS);

}

}

/*

...

*/

Figure

3.

ODBC

application

that

connects

to

two

data

sources.

(Part

2

of

2)

14

ODBC

Guide

and

Reference

Transaction

processing

Figure

4

shows

the

typical

order

of

function

calls

in

a

DB2

ODBC

application.

It

does

not

show

all

functions

or

possible

paths.

Figure

4

shows

the

steps

and

the

DB2

ODBC

functions

in

the

transaction

processing

task.

This

task

contains

five

general

steps:

1.

Allocating

statement

handles

2.

Preparing

and

executing

SQL

statements

3.

Processing

results

4.

Committing

or

rolling

back

Prepare a statement

Execute a statement

Directly execute
a statement

Commit or Rollback

Free statement

If statement is not executed again:

Allocate a statement

Receive query results Update data Other

(SELECT, VALUES) (UPDATE, DELETE,
INSERT)

(ALTER, CREATE,
DROP, GRANT,
REVOKE, SET)

SQLExecute()

SQLAllocHandle()

SQLEndTran()

SQLFreeHandle()
(statement)

SQLFetch()

SQLExecDirect()

SQLGetData()

SQLRowCount() (no functions
required)

SQLBindCol()

SQLColAttribute()
or

SQLBindParameter()SQLBindParameter()

SQLDescribeCol()

SQLNumResultsCols()

SQLPrepare()

Figure

4.

Transaction

processing

Chapter

2.

Writing

a

DB2

ODBC

application

15

5.

Optionally,

freeing

statement

handles

if

the

statement

is

unlikely

to

be

executed

again

Allocating

statement

handles

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_STMT)

allocates

a

statement

handle.

A

statement

handle

refers

to

the

data

object

that

describes,

and

that

tracks

the

execution

of,

an

SQL

statement.

The

description

of

an

SQL

statement

includes

information

such

as

statement

attributes,

SQL

statement

text,

dynamic

parameters,

cursor

information,

bindings

for

dynamic

arguments

and

columns,

result

values,

and

status

information

(these

are

discussed

later).

Each

statement

handle

associates

the

statement

it

describes

with

a

connection.

You

must

allocate

a

statement

handle

before

you

can

execute

a

statement.

By

default,

the

maximum

number

of

statement

handles

you

can

allocate

at

any

one

time

is

limited

by

the

application

heap

size.

The

maximum

number

of

statement

handles

you

can

actually

use,

however,

is

defined

by

DB2

ODBC.

Table

2

lists

the

number

of

statement

handles

DB2

ODBC

allows

for

each

isolation

level.

If

an

application

exceeds

these

limits,

SQLPrepare()

and

SQLExecDirect()

return

SQLSTATE

HY014.

Table

2.

Maximum

number

of

statement

handles

allocated

at

one

time

Isolation

level

Without

hold

With

hold

Total

Cursor

stability

296

254

550

No

commit

296

254

550

Repeatable

read

296

254

550

Read

stability

296

254

550

Uncommitted

read

296

254

550

Preparation

and

execution

After

you

allocate

a

statement

handle,

you

can

specify

and

execute

SQL

statements

with

either

of

the

two

following

methods:

v

Prepare

then

execute,

which

consists

of

the

following

steps:

1.

Call

SQLPrepare()

with

an

SQL

statement

as

an

argument.

2.

Call

SQLBindParameter()

if

the

SQL

statement

contains

parameter

markers.

3.

Call

SQLExecute().

v

Execute

direct,

which

consists

of

the

following

steps:

1.

Call

SQLBindParameter()

if

the

SQL

statement

contains

parameter

markers.

2.

Call

SQLExecDirect()

with

an

SQL

statement

as

an

argument.

The

first

method,

prepare

then

execute,

splits

the

preparation

of

the

statement

from

the

execution.

Use

this

method

when

either

of

the

following

conditions

is

true:

v

You

execute

a

statement

repeatedly

(usually

with

different

parameter

values).

This

method

allows

you

to

prepare

the

same

statement

only

once.

Subsequent

executions

of

that

statement

make

use

of

the

access

plan

the

prepare

generated.

v

You

require

information

about

the

columns

in

the

result

set,

before

it

executes

the

statement.

The

second

method

combines

the

prepare

step

and

the

execute

step

into

one.

Use

this

method

when

both

of

the

following

conditions

are

true:

v

You

execute

the

statement

only

once.

This

method

allows

you

to

call

one

function

instead

of

two

to

execute

an

SQL

statement.

16

ODBC

Guide

and

Reference

v

You

do

not

require

information

about

the

columns

in

the

result

set

before

you

actually

execute

the

statement.

DB2

UDB

for

z/OS

and

DB2

UDB

provide

dynamic

statement

caching

at

the

database

server.

In

DB2

ODBC

terms,

dynamic

statement

caching

means

that

for

a

given

statement

handle,

once

the

database

prepares

a

statement,

it

does

not

need

to

prepare

it

again

(even

after

commits

or

rollbacks),

as

long

as

you

do

not

free

the

statement

handle.

Applications

that

repeatedly

execute

the

same

SQL

statement

across

multiple

transactions,

can

save

a

significant

amount

of

processing

time

and

network

traffic

by:

1.

Associating

each

such

statement

with

its

own

statement

handle,

and

2.

Preparing

these

statements

once

at

the

beginning

of

the

application,

then

3.

Executing

the

statements

as

many

times

as

is

needed

throughout

the

application.

Binding

parameters

in

SQL

statements

Both

SQLPrepare()

followed

by

SQLExecute(),

or

SQLExecDirect()

enable

you

to

execute

an

SQL

statement

that

uses

parameter

markers

in

place

of

expressions

or

host

variables

(for

embedded

SQL).

Parameter

markers

are

question

mark

characters

(?)

that

you

place

in

SQL

statements.

When

you

execute

a

statement

that

contains

parameter

markers,

these

markers

are

replaced

with

the

contents

of

host

variables.

Binding

associates

an

application

variable

to

a

parameter

marker.

Your

application

must

bind

an

application

variable

to

each

parameter

marker

in

an

SQL

statement

before

it

can

execute

that

statement.

To

bind

a

parameter,

call

SQLBindParameter()

with

the

appropriate

arguments

to

indicate

the

numerical

position

of

the

parameter,

the

SQL

type

of

the

parameter,

the

data

type

of

the

variable,

a

pointer

to

the

application

variable,

and

length

of

the

variable.

You

refer

to

parameter

markers

in

an

SQL

statement

sequentially,

from

left

to

right,

starting

at

1,

in

ODBC

function

calls.

You

can

call

SQLNumParams()

to

determine

the

number

of

parameters

in

a

statement.

For

more

information

about

binding

parameters

in

an

SQL

statement,

see

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85.

The

bound

application

variable

and

its

associated

length

are

called

deferred

input

arguments.

These

arguments

are

called

deferred

because

only

pointers

are

passed

when

the

parameter

is

bound;

no

data

is

read

from

the

variable

until

the

statement

is

executed.

Deferred

arguments

enable

you

to

modify

the

contents

of

bound

parameter

variables

and

execute

SQL

statements

that

use

the

most

recent

value

with

another

call

to

SQLExecute().

Information

for

each

parameter

remains

in

effect

until

the

application

overrides

or

unbinds

the

parameter,

or

drops

the

statement

handle.

If

the

application

executes

the

SQL

statement

repeatedly

without

changing

the

parameter

binding,

DB2

ODBC

uses

the

same

pointers

to

locate

the

data

on

each

execution.

The

application

can

also

change

the

parameter

binding

to

a

different

set

of

deferred

variables.

The

application

must

not

deallocate

or

discard

deferred

input

fields

between

the

time

it

binds

the

fields

to

parameter

markers

and

the

time

DB2

ODBC

accesses

them

at

execution

time.

You

can

bind

parameters

to

a

variable

with

a

different

data

type

than

the

SQL

statement

requires.

Your

application

must

indicate

the

C

data

type

of

the

source,

Chapter

2.

Writing

a

DB2

ODBC

application

17

and

the

SQL

type

of

the

parameter

marker.

DB2

ODBC

converts

the

contents

of

the

variable

to

match

the

SQL

data

type

you

specified.

For

example,

the

SQL

statement

might

require

an

integer

value,

but

your

application

has

a

string

representation

of

an

integer.

You

can

bind

the

string

to

the

parameter,

and

DB2

ODBC

will

convert

the

string

to

the

corresponding

integer

value

when

you

execute

the

statement.

Not

every

C

data

type

can

be

bound

to

a

parameter

marker.

Use

SQLDescribeParam()

to

determine

the

data

type

of

a

parameter

marker.

If

the

application

indicates

an

incorrect

data

type

for

the

parameter

marker,

an

extra

conversion

by

the

DBMS

or

an

error

can

occur.

See

“Data

types

and

data

conversion”

on

page

24

for

more

information

about

data

conversion.

When

you

use

an

SQL

predicate

that

compares

a

distinct

type

to

a

parameter

marker,

you

must

either

cast

the

parameter

marker

to

the

distinct

type

or

cast

the

distinct

type

to

a

source

type.

Otherwise,

an

error

occurs.

For

an

example

of

casting

distinct

types,

see

“Distinct

types”

on

page

471.

For

information

about

more

advanced

methods

of

binding

application

storage

to

parameter

markers,

see

“Using

arrays

to

pass

parameter

values”

on

page

414

and

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

Processing

results

After

an

application

executes

an

SQL

statement,

it

must

process

the

results

that

statement

produced.

The

type

of

processing

an

application

must

employ

depends

on

the

type

of

SQL

statement

that

it

initially

issued.

Processing

query

(SELECT,

VALUES)

statements

If

an

application

issues

a

query

statement,

it

can

retrieve

each

row

of

the

result

set

with

the

following

steps:

1.

Establish

(describe)

the

structure

of

the

result

set,

the

number

of

columns,

the

column

types,

and

the

column

lengths

2.

(Optionally)

bind

application

variables

to

columns

in

order

to

receive

the

data

3.

Repeatedly

fetch

the

next

row

of

data,

and

receive

it

into

the

bound

application

variables

4.

(Optionally)

retrieve

columns

that

were

not

previously

bound,

by

calling

SQLGetData()

after

each

successful

fetch

Each

of

the

above

steps

requires

some

diagnostic

checks.

Chapter

5,

“Using

advanced

features,”

on

page

397

discusses

advanced

techniques

of

using

SQLExtendedFetch()

to

fetch

multiple

rows

at

a

time.

Step

1

Analyze

the

executed

or

prepared

statement.

If

the

SQL

statement

was

generated

by

the

application,

then

this

step

might

not

be

necessary

because

the

application

might

know

the

structure

of

the

result

set

and

the

data

types

of

each

column.

If

you

know

the

structure

of

the

entire

result

set,

especially

if

the

result

set

contains

a

very

large

number

of

columns,

you

might

want

to

supply

DB2

ODBC

with

the

descriptor

information.

This

can

reduce

network

traffic

because

DB2

ODBC

does

not

have

to

retrieve

the

information

from

the

server.

18

ODBC

Guide

and

Reference

If

the

SQL

statement

was

generated

at

run

time

(for

example,

entered

by

a

user),

then

the

application

has

to

query

the

number

of

columns,

the

type

of

each

column,

and

perhaps

the

names

of

each

column

in

the

result

set.

This

information

can

be

obtained

by

calling

SQLNumResultCols()

and

SQLDescribeCol(),

or

by

calling

SQLColAttribute(),

after

preparing

or

after

executing

the

statement.

Step

2

The

application

retrieves

column

data

directly

into

an

application

variable

on

the

next

call

to

SQLFetch().

For

each

column

to

be

retrieved,

the

application

calls

SQLBindCol()

to

bind

an

application

variable

to

a

column

in

the

result

set.

The

application

can

use

the

information

obtained

from

Step

1

to

determine

the

C

data

type

of

the

application

variable

and

to

allocate

the

maximum

storage

the

column

value

could

occupy.

Similar

to

variables

bound

to

parameter

markers

using

SQLBindParameter(),

columns

are

bound

to

deferred

arguments.

This

time

the

variables

are

deferred

output

arguments,

as

data

is

written

to

these

storage

locations

when

SQLFetch()

is

called.

If

the

application

does

not

bind

any

columns,

as

in

the

case

when

it

needs

to

retrieve

columns

of

long

data

in

pieces,

it

can

use

SQLGetData().

Both

the

SQLBindCol()

and

SQLGetData()

techniques

can

be

combined

if

some

columns

are

bound

and

some

are

unbound.

The

application

must

not

deallocate

or

discard

variables

used

for

deferred

output

fields

between

the

time

it

binds

them

to

columns

of

the

result

set

and

the

time

DB2

ODBC

writes

the

data

to

these

fields.

Step

3

Call

SQLFetch()

to

fetch

the

first

or

next

row

of

the

result

set.

If

any

columns

are

bound,

the

application

variable

is

updated.

You

can

also

write

an

application

that

fetches

multiple

rows

of

the

result

set

into

an

array.

See

“Retrieving

a

result

set

into

an

array”

on

page

417

for

more

information.

If

data

conversion

was

indicated

by

the

data

types

specified

on

the

call

to

SQLBindCol(),

the

conversion

occurs

when

SQLFetch()

is

called.

See

“Data

types

and

data

conversion”

on

page

24

for

an

explanation.

Step

4

(optional)

Call

SQLGetData()

to

retrieve

any

unbound

columns.

All

columns

can

be

retrieved

this

way,

provided

they

were

not

bound.

SQLGetData()

can

also

be

called

repeatedly

to

retrieve

large

columns

in

smaller

pieces,

which

cannot

be

done

with

bound

columns.

Data

conversion

can

also

be

indicated

here,

as

in

SQLBindCol(),

by

specifying

the

desired

target

C

data

type

of

the

application

variable.

See

“Data

types

and

data

conversion”

on

page

24

for

more

information.

To

unbind

a

particular

column

of

the

result

set,

use

SQLBindCol()

with

a

null

pointer

for

the

application

variable

argument

(rgbValue).

To

unbind

all

of

the

columns

at

one

time,

call

SQLFreeHandle()

on

the

statement

handle.

Applications

generally

perform

better

if

columns

are

bound

rather

than

retrieved

using

SQLGetData().

However,

an

application

can

be

constrained

in

the

amount

of

long

data

that

it

can

retrieve

and

handle

at

one

time.

If

this

is

a

concern,

then

SQLGetData()

might

be

the

better

choice.

For

information

about

more

advanced

methods

for

binding

application

storage

to

result

set

columns,

see

“Retrieving

a

result

set

into

an

array”

on

page

417

and

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

Chapter

2.

Writing

a

DB2

ODBC

application

19

Processing

UPDATE,

DELETE

and

INSERT

statements

If

a

statement

modifies

data

(UPDATE,

DELETE

or

INSERT

statements),

no

action

is

required,

other

than

the

normal

check

for

diagnostic

messages.

In

this

case,

use

SQLRowCount()

to

obtain

the

number

of

rows

the

SQL

statement

affects.

If

the

SQL

statement

is

a

positioned

UPDATE

or

DELETE,

you

need

to

use

a

cursor.

A

cursor

is

a

moveable

pointer

to

a

row

in

the

result

table

of

an

active

query

statement.

(This

query

statement

must

contain

the

FOR

UPDATE

OF

clause

to

ensure

that

the

query

is

not

opened

as

read-only.)

In

embedded

SQL,

the

names

of

cursors

are

used

to

retrieve,

update

or

delete

rows.

In

DB2

ODBC,

a

cursor

name

is

needed

only

for

positioned

UPDATE

or

DELETE

SQL

statements

as

they

reference

the

cursor

by

name.

To

perform

a

positioned

update

or

delete

in

your

application,

use

the

following

procedure:

1.

Issue

a

SELECT

statement

to

generate

a

result

set.

2.

Call

SQLGetCursorName()

to

retrieve

the

name

of

the

cursor

on

the

result

set

that

you

generate

in

step

1.

You

use

this

cursor

name

in

the

UPDATE

or

DELETE

statement.

Tip:

Use

the

name

that

DB2

automatically

generates.

Although

you

can

define

your

own

cursor

names

by

using

SQLSetCursorName(),

use

the

name

that

DB2

generates.

All

error

messages

reference

the

DB2

generated

name,

not

the

name

that

you

define

with

SQLSetCursorName().

3.

Allocate

a

second

statement

handle

to

execute

the

positioned

update

or

delete.

To

update

or

delete

a

row

that

has

been

fetched,

you

use

two

statement

handles:

one

handle

for

the

fetch

and

one

handle

for

the

update

of

the

delete.

You

cannot

reuse

the

fetch

statement

handle

to

execute

a

positioned

update

or

delete

because

this

handle

holds

the

cursor

while

the

positioned

update

or

delete

executes.

4.

Call

SQLFetch()

to

position

the

cursor

on

a

row

in

the

result

set.

5.

Create

the

UPDATE

or

DELETE

SQL

statement

with

the

WHERE

CURRENT

of

clause

and

specify

the

cursor

name

that

you

obtained

in

step

2.

Example:

sprintf((char

*)stmtPositionedUpdate,

"UPDATE

org

SET

location

=

’San

Jose’

WHERE

CURRENT

of

%s",

cursorName);

6.

Execute

the

positioned

update

or

delete

statement.

Processing

other

statements

If

the

statement

neither

queries

nor

modifies

data,

take

no

further

action

other

than

a

normal

check

for

diagnostic

messages.

Commit

or

rollback

A

transaction

is

a

recoverable

unit

of

work,

or

a

group

of

SQL

statements

that

can

be

treated

as

one

atomic

operation.

This

means

that

all

the

operations

within

the

group

are

guaranteed

to

be

completed

(committed)

or

undone

(rolled

back),

as

if

they

were

a

single

operation.

A

transaction

can

also

be

referred

to

as

a

unit

of

work

or

a

logical

unit

of

work.

When

the

transaction

spans

multiple

connections,

it

is

referred

to

as

a

distributed

unit

of

work.

DB2

ODBC

supports

two

commit

modes:

autocommit

and

manual-commit.

20

ODBC

Guide

and

Reference

In

autocommit

mode,

every

SQL

statement

is

a

complete

transaction,

which

is

automatically

committed.

For

a

non-query

statement,

the

commit

is

issued

at

the

end

of

statement

execution.

For

a

query

statement,

the

commit

is

issued

after

the

cursor

is

closed.

Given

a

single

statement

handle,

the

application

must

not

start

a

second

query

before

the

cursor

of

the

first

query

is

closed.

In

manual-commit

mode,

transactions

are

started

implicitly

with

the

first

access

to

the

data

source

using

SQLPrepare(),

SQLExecDirect(),

SQLGetTypeInfo(),

or

any

function

that

returns

a

result

set,

such

as

those

described

in

“Querying

catalog

information”

on

page

407.

At

this

point

a

transaction

begins,

even

if

the

call

failed.

The

transaction

ends

when

you

use

SQLEndTran()

to

either

rollback

or

commit

the

transaction.

This

means

that

any

statements

executed

(on

the

same

connection)

between

these

are

treated

as

one

transaction.

The

default

commit

mode

is

autocommit

(except

when

participating

in

a

coordinated

transaction,

see

“Using

a

distributed

unit

of

work”

on

page

399).

An

application

can

switch

between

manual-commit

and

autocommit

modes

by

calling

SQLSetConnectAttr().

Typically,

a

query-only

application

might

wish

to

stay

in

autocommit

mode.

Applications

that

need

to

perform

updates

to

the

data

source

should

turn

off

autocommit

as

soon

as

the

data

source

connection

is

established.

When

multiple

connections

exist,

each

connection

has

its

own

transaction

(unless

CONNECT

(type

2)

is

specified).

Special

care

must

be

taken

to

call

SQLEndTran()

with

the

correct

connection

handle

to

ensure

that

only

the

intended

connection

and

related

transaction

is

affected.

Unlike

distributed

unit

of

work

connections

(described

in

“Using

a

distributed

unit

of

work”

on

page

399),

transactions

on

each

connection

do

not

coordinate.

When

to

call

SQLEndTran()

If

the

application

is

in

autocommit

mode,

it

never

needs

to

call

SQLEndTran(),

a

commit

is

issued

implicitly

at

the

end

of

each

statement

execution.

In

manual-commit

mode,

SQLEndTran()

must

be

called

before

calling

SQLDisconnect().

If

distributed

unit

of

work

is

involved,

additional

rules

can

apply.

See

“Using

a

distributed

unit

of

work”

on

page

399

for

details.

Recommendation:

If

your

application

performs

updates,

do

not

wait

until

the

application

disconnects

before

you

commit

or

roll

back

transactions.

The

other

extreme

is

to

operate

in

autocommit

mode,

which

is

also

not

recommended

as

this

adds

extra

processing.

The

application

can

modify

the

autocommit

mode

by

invoking

the

SQLSetConnectAttr()

function.

See

“Setting

and

retrieving

environment,

connection,

and

statement

attributes”

on

page

397

and

the

SQLSetConnectAttr()

function

for

information

about

switching

between

autocommit

and

manual-commit.

Consider

the

following

behaviors

to

decide

where

in

the

application

to

end

a

transaction:

v

If

using

CONNECT

(type

1)

with

MULTICONTEXT=0,

only

the

current

connection

can

have

an

outstanding

transaction.

If

using

CONNECT

(type

2),

all

connections

participate

in

a

single

transaction.

v

If

using

MULTICONTEXT=1,

each

connection

can

have

an

outstanding

transaction.

v

Various

resources

can

be

held

while

you

have

an

outstanding

transaction.

Ending

the

transaction

releases

the

resources

for

use

by

other

users.

Chapter

2.

Writing

a

DB2

ODBC

application

21

v

When

a

transaction

is

successfully

committed

or

rolled

back,

it

is

fully

recoverable

from

the

system

logs.

Open

transactions

are

not

recoverable.

Effects

of

calling

SQLEndTran()

When

a

transaction

ends,

an

application

behaves

with

the

following

characteristics:

v

All

locks

on

DBMS

objects

are

released,

except

those

that

are

associated

with

a

held

cursor.

v

Prepared

statements

are

preserved

from

one

transaction

to

the

next

if

the

data

source

supports

statement

caching

(DB2

UDB

for

z/OS

does).

After

a

statement

is

prepared

on

a

specific

statement

handle,

it

does

not

need

to

be

prepared

again

even

after

a

commit

or

rollback,

provided

the

statement

continues

to

be

associated

with

the

same

statement

handle.

v

Cursor

names,

bound

parameters,

and

column

bindings

are

maintained

from

one

transaction

to

the

next.

v

By

default,

cursors

are

preserved

after

a

commit

(but

not

a

rollback).

All

cursors

are

defined

using

the

WITH

HOLD

clause

(except

when

connected

to

DB2

Server

for

VSE

&

VM,

which

does

not

support

the

WITH

HOLD

clause).

For

information

about

changing

the

default

behavior,

see

“SQLSetStmtOption()

-

Set

statement

attribute”

on

page

375.

For

more

information

and

an

example

see

“SQLTransact()

-

Transaction

management”

on

page

396.

Freeing

statement

handles

Call

SQLFreeHandle()

(with

HandleType

set

to

SQL_HANDLE_STMT)

to

end

processing

for

a

particular

statement

handle.

This

function

also

performs

the

following

tasks:

v

Unbinds

all

columns

of

the

result

set

v

Unbinds

all

parameter

markers

v

Closes

any

cursors

and

discard

any

pending

results

v

Drops

the

statement

handle,

and

release

all

associated

resources

The

statement

handle

can

be

reused

for

other

statements

provided

it

is

not

dropped.

If

a

statement

handle

is

reused

for

another

SQL

statement

string,

any

cached

access

plan

for

the

original

statement

is

discarded.

The

columns

and

parameters

should

always

be

unbound

before

using

the

handle

to

process

a

statement

with

a

different

number

or

type

of

parameters

or

a

different

result

set;

otherwise

application

programming

errors

might

occur.

Diagnostics

Diagnostics

refers

to

dealing

with

warning

or

error

conditions

generated

within

an

application.

DB2

ODBC

functions

generate

the

following

two

levels

of

diagnostics:

v

Return

codes

v

Detailed

diagnostics

(SQLSTATEs,

messages,

SQLCA)

Each

DB2

ODBC

function

returns

the

function

return

code

as

a

basic

diagnostic.

The

SQLGetDiagRec()

function

provides

more

detailed

diagnostic

information.

The

SQLGetSQLCA()

function

provides

access

to

the

SQLCA,

if

the

diagnostic

is

reported

by

the

data

source.

This

arrangement

lets

applications

handle

the

basic

flow

control,

and

the

SQLSTATEs

allow

determination

of

the

specific

causes

of

failure.

22

ODBC

Guide

and

Reference

The

SQLGetDiagRec()

function

returns

the

following

three

pieces

of

information:

v

SQLSTATE

v

Native

error:

if

the

diagnostic

is

detected

by

the

data

source,

this

is

the

SQLCODE;

otherwise,

this

is

set

to

-99999.

v

Message

text:

this

is

the

message

text

associated

with

the

SQLSTATE.

For

the

detailed

function

information

and

an

example,

see

“SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record”

on

page

221.

For

diagnostic

information

about

DB2

ODBC

traces

and

debugging,

see

Chapter

6,

“Problem

diagnosis,”

on

page

477.

Function

return

codes

Table

3

lists

all

possible

return

codes

for

DB2

ODBC

functions.

Table

3.

DB2

ODBC

function

return

codes

Return

code

Explanation

SQL_SUCCESS

The

function

completed

successfully,

no

additional

SQLSTATE

information

is

available.

SQL_SUCCESS_WITH_INFO

The

function

completed

successfully,

with

a

warning

or

other

information.

Call

SQLGetDiagRec()

to

receive

the

SQLSTATE

and

any

other

informational

messages

or

warnings.

The

SQLSTATE

class

is

’01’.

See

Table

233

on

page

497.

SQL_NO_DATA_FOUND

The

function

returned

successfully,

but

no

relevant

data

was

found.

When

this

is

returned

after

the

execution

of

an

SQL

statement,

additional

information

might

be

available

which

can

be

obtained

by

calling

SQLGetDiagRec().

SQL_NEED_DATA

The

application

tried

to

execute

an

SQL

statement

but

DB2

ODBC

lacks

parameter

data

that

the

application

had

indicated

would

be

passed

at

execute

time.

For

more

information,

see

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

SQL_ERROR

The

function

failed.

Call

SQLGetDiagRec()

to

receive

the

SQLSTATE

and

any

other

error

information.

SQL_INVALID_HANDLE

The

function

failed

due

to

an

invalid

input

handle

(environment,

connection,

or

statement

handle).

This

is

a

programming

error.

No

further

information

is

available.

SQLSTATEs

Because

different

database

servers

often

have

different

diagnostic

message

codes,

DB2

ODBC

provides

a

standard

set

of

codes,

which

are

called

SQLSTATEs.

SQLSTATEs

are

defined

by

the

X/Open

SQL

CAE

specification.

This

allows

consistent

message

handling

across

different

database

servers.

SQLSTATEs

are

alphanumeric

strings

of

five

characters

(bytes)

with

a

format

of

ccsss,

where

cc

indicates

class

and

sss

indicates

subclass.

All

SQLSTATEs

use

one

of

the

following

classes:

v

’01’,

which

is

a

warning

v

’S1’,

which

is

generated

by

the

DB2

ODBC

driver

for

ODBC

2.0

applications

v

’HY’,

which

is

generated

by

the

DB2

ODBC

driver

for

ODBC

3.0

applications

Chapter

2.

Writing

a

DB2

ODBC

application

23

Important:

In

ODBC

3.0,

’HY’

classes

map

to

’S1’

classes.

’HY’

is

a

reserved

X/Open

class

for

ODBC/CLI

implementations.

This

class

replaces

the

’S1’

class

in

ODBC

3.0

to

follow

the

X/Open

and/or

ISO

CLI

standard.

See

“SQLSTATE

mappings”

on

page

528

for

more

information.

For

some

error

conditions,

DB2

ODBC

returns

SQLSTATEs

that

differ

from

those

states

listed

in

the

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer's

Reference.

This

inconsistency

is

a

result

of

DB2

ODBC

following

the

X/Open

SQL

CAE

and

SQL92

specifications.

DB2

ODBC

SQLSTATEs

include

both

additional

IBM-defined

SQLSTATEs

that

are

returned

by

the

database

server,

and

DB2

ODBC-defined

SQLSTATEs

for

conditions

that

are

not

defined

in

the

X/Open

specification.

This

allows

for

the

maximum

amount

of

diagnostic

information

to

be

returned.

Follow

these

guidelines

for

using

SQLSTATEs

within

your

application:

v

Always

check

the

function

return

code

before

calling

SQLGetDiagRec()

to

determine

if

diagnostic

information

is

available.

v

Use

the

SQLSTATEs

rather

than

the

native

error

code.

v

To

increase

your

application’s

portability,

only

build

dependencies

on

the

subset

of

DB2

ODBC

SQLSTATEs

that

are

defined

by

the

X/Open

specification,

and

return

the

additional

ones

as

information

only.

(Dependencies

refers

to

the

application

making

logic

flow

decisions

based

on

specific

SQLSTATEs.)

Tip:

Consider

building

dependencies

on

the

class

(the

first

two

characters)

of

the

SQLSTATEs.

v

For

maximum

diagnostic

information,

return

the

text

message

along

with

the

SQLSTATE

(if

applicable,

the

text

message

also

includes

the

IBM-defined

SQLSTATE).

It

is

also

useful

for

the

application

to

print

out

the

name

of

the

function

that

returned

the

error.

See

Table

233

on

page

497

for

a

listing

and

description

of

the

SQLSTATEs

explicitly

returned

by

DB2

ODBC.

SQLCA

Embedded

applications

rely

on

the

SQLCA

for

all

diagnostic

information.

Although

DB2

ODBC

applications

can

retrieve

much

of

the

same

information

by

using

SQLGetDiagRec(),

the

application

might

still

need

to

access

the

SQLCA

that

is

related

to

the

processing

of

a

statement.

(For

example,

after

preparing

a

statement,

the

SQLCA

contains

the

relative

cost

of

executing

the

statement.)

The

SQLCA

contains

meaningful

information

only

after

interaction

with

the

data

source

on

the

previous

request

(for

example:

connect,

prepare,

execute,

fetch,

disconnect).

The

SQLGetSQLCA()

function

is

used

to

retrieve

this

structure.

See

“SQLGetSQLCA()

-

Get

SQLCA

data

structure”

on

page

265

for

more

information.

Data

types

and

data

conversion

When

you

write

a

DB2

ODBC

application,

you

must

work

with

both

SQL

data

types

and

C

data

types.

Using

both

of

these

data

types

is

unavoidable

because

the

DBMS

uses

SQL

data

types,

and

the

application

uses

C

data

types.

This

means

the

application

must

match

C

data

types

to

SQL

data

types

when

transferring

data

between

the

DBMS

and

the

application

(when

calling

DB2

ODBC

functions).

24

ODBC

Guide

and

Reference

To

help

address

this,

DB2

ODBC

provides

symbolic

names

for

the

various

data

types,

and

manages

the

transfer

of

data

between

the

DBMS

and

the

application.

It

also

performs

data

conversion

(from

a

C

character

string

to

an

SQL

INTEGER

type,

for

example)

if

required.

To

accomplish

this,

DB2

ODBC

needs

to

know

both

the

source

and

target

data

type.

This

requires

the

application

to

identify

both

data

types

using

symbolic

names.

C

and

SQL

data

types

These

data

types

represent

the

combination

of

the

ODBC

3.0

minimum,

core,

and

extended

data

types.

DB2

ODBC

supports

the

following

additional

data

types:

v

SQL_GRAPHIC

v

SQL_VARGRAPHIC

v

SQL_LONGVARGRAPHIC

Table

4

lists

each

of

the

SQL

data

types,

with

its

corresponding

symbolic

name,

and

the

default

C

symbolic

name.

The

table

contains

the

following

columns:

SQL

data

type

This

column

contains

the

SQL

data

types

as

they

would

appear

in

an

SQL

CREATE

DDL

statement.

The

SQL

data

types

are

dependent

on

the

DBMS.

Symbolic

SQL

data

type

This

column

contains

SQL

symbolic

names

that

are

defined

(in

sqlcli1.h)

as

an

integer

value.

These

values

are

used

by

various

functions

to

identify

the

SQL

data

types

listed

in

the

first

column.

See

“Example”

on

page

133

for

an

example

using

these

values.

Default

C

symbolic

data

type

This

column

contains

C

symbolic

names,

also

defined

as

integer

values.

These

values

are

used

in

various

function

arguments

to

identify

the

C

data

type

as

shown

in

Table

5

on

page

27.

The

symbolic

names

are

used

by

various

functions

(such

as

SQLBindParameter(),

SQLGetData(),

and

SQLBindCol()

calls)

to

indicate

the

C

data

types

of

the

application

variables.

Instead

of

explicitly

identifying

the

C

data

type

when

calling

these

functions,

SQL_C_DEFAULT

can

be

specified

instead,

and

DB2

ODBC

assumes

a

default

C

data

type

based

on

the

SQL

data

type

of

the

parameter

or

column,

as

shown

by

this

table.

For

example,

the

default

C

data

type

of

SQL_DECIMAL

is

SQL_C_CHAR.

Table

4.

SQL

symbolic

and

default

data

types

SQL

data

type

Symbolic

SQL

data

type

Default

symbolic

C

data

type

BLOB

SQL_BLOB

SQL_C_BINARY

BLOB

LOCATOR1

SQL_BLOB_LOCATOR

SQL_C_BLOB_LOCATOR

CHAR

SQL_CHAR

SQL_C_CHAR

CHAR

FOR

BIT

DATA

SQL_BINARY

SQL_C_BINARY

CLOB

SQL_CLOB

SQL_C_CHAR

CLOB

LOCATOR

SQL_CLOB_LOCATOR

SQL_C_CLOB_LOCATOR

DATE

SQL_TYPE_DATE2

SQL_C_TYPE_DATE2

DBCLOB

SQL_DBCLOB

SQL_C_DBCHAR

DBCLOB

LOCATOR1

SQL_DBCLOB_LOCATOR

SQL_C_DBCLOB_LOCATOR

DECIMAL

SQL_DECIMAL

SQL_C_CHAR

DOUBLE

SQL_DOUBLE

SQL_C_DOUBLE

FLOAT

SQL_FLOAT

SQL_C_DOUBLE

GRAPHIC

SQL_GRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR3

Chapter

2.

Writing

a

DB2

ODBC

application

25

Table

4.

SQL

symbolic

and

default

data

types

(continued)

SQL

data

type

Symbolic

SQL

data

type

Default

symbolic

C

data

type

INTEGER

SQL_INTEGER

SQL_C_LONG

LONG

VARCHAR4

SQL_LONGVARCHAR

SQL_C_CHAR

LONG

VARCHAR

FOR

BIT

DATA4

SQL_LONGVARBINARY

SQL_C_BINARY

LONG

VARGRAPHIC4

SQL_LONGVARGRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR3

NUMERIC5

SQL_NUMERIC5

SQL_C_CHAR

REAL6

SQL_REAL

SQL_C_FLOAT

ROWID

SQL_ROWID

SQL_C_CHAR

SMALLINT

SQL_SMALLINT

SQL_C_SHORT

TIME

SQL_TYPE_TIME2

SQL_C_TYPE_TIME2

TIMESTAMP

SQL_TYPE_TIMESTAMP2

SQL_C_TYPE_TIMESTAMP2

VARCHAR

SQL_VARCHAR

SQL_C_CHAR

VARCHAR

FOR

BIT

DATA4

SQL_VARBINARY

SQL_C_BINARY

VARGRAPHIC

SQL_VARGRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR3

Notes:

1.

LOB

locator

types

are

not

persistent

SQL

data

types

(columns

cannot

be

defined

by

a

locator

type;

instead,

it

describes

parameter

markers,

or

represents

a

LOB

value).

See

“Using

large

objects”

on

page

423

for

more

information.

2.

See

“Changes

to

datetime

data

types”

on

page

529

for

information

about

data

types

used

in

previous

releases.

3.

The

default

C

data

type

conversion

for

this

SQL

data

type

depends

upon

the

encoding

scheme

your

application

uses.

If

your

application

uses

UCS-2

Unicode

encoding,

the

default

conversion

is

to

SQL_C_WCHAR.

For

all

other

encoding

schemes

the

default

conversion

is

to

SQL_C_DBCHAR.

See

“Handling

application

encoding

schemes”

on

page

443

for

more

information.

4.

Whenever

possible,

replace

long

data

types

and

FOR

BIT

DATA

data

types

with

appropriate

LOB

types.

5.

NUMERIC

is

a

synonym

for

DECIMAL

on

DB2

UDB

for

z/OS,

DB2

for

VSE

&

VM

and

DB2

UDB.

6.

REAL

is

not

valid

for

DB2

UDB

or

DB2

UDB

for

z/OS.

Additional

information:

v

DB2

ODBC

for

z/OS

does

not

support

the

extended

SQL

data

type

SQL_BIGINT

because

DB2

UDB

for

z/OS

does

not

support

the

data

type

BIGINT.

On

other

DB2

platforms,

which

support

the

BIGINT

data

type,

DB2

ODBC

supports

SQL_BIGINT.

v

The

data

types,

DATE,

DECIMAL,

NUMERIC,

TIME,

and

TIMESTAMP

cannot

be

transferred

to

their

default

C

buffer

types

without

a

conversion.

Table

5

on

page

27

shows

the

generic

C

type

definitions

for

each

symbolic

C

type.

The

table

contains

the

following

columns:

C

symbolic

data

type

This

column

contains

C

symbolic

names,

defined

as

integer

values.

These

values

are

used

in

various

function

arguments

to

identify

the

C

data

type

shown

in

the

last

column.

See

“Example”

on

page

84

for

an

example

using

these

values.

C

type

This

column

contains

C-defined

types,

which

are

defined

in

sqlcli1.h

using

a

C

typedef

statement.

The

values

in

this

column

should

be

used

to

declare

all

DB2

ODBC

related

variables

and

arguments,

in

order

to

make

the

application

more

portable.

See

Table

7

on

page

28

for

a

list

of

additional

symbolic

data

types

used

for

function

arguments.

Base

C

type

This

column

is

shown

for

reference

only.

All

variables

and

arguments

should

be

defined

using

the

symbolic

types

in

the

previous

column.

Some

of

the

values

are

C

structures

that

are

described

in

Table

6

on

page

27.

26

ODBC

Guide

and

Reference

Table

5.

C

data

types

C

symbolic

data

type

C

type

Base

C

type

SQL_C_CHAR

SQLCHAR

Unsigned

char

SQL_C_BIT

SQLCHAR

Unsigned

char

or

char

(Value

1

or

0)

SQL_C_TINYINT

SQLSCHAR

Signed

char

(Range

-128

to

127)

SQL_C_SHORT

SQLSMALLINT

Short

int

SQL_C_LONG

SQLINTEGER

Long

int

SQL_C_DOUBLE

SQLDOUBLE

Double

SQL_C_FLOAT

SQLREAL

Float

SQL_C_TYPE_DATE1

DATE_STRUCT

See

Table

6

SQL_C_TYPE_TIME1

TIME_STRUCT

See

Table

6

SQL_C_TYPE_TIMESTAMP1

TIMESTAMP_STRUCT

See

Table

6

SQL_C_CLOB_LOCATOR

SQLINTEGER

Long

int

SQL_C_BINARY

SQLCHAR

Unsigned

char

SQL_C_BLOB_LOCATOR

SQLINTEGER

Long

int

SQL_C_DBCHAR

SQLDBCHAR

Unsigned

short

SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Long

int

SQL_C_WCHAR

SQLWCHAR

wchar_t

Note:

1.

See

“Changes

to

datetime

data

types”

on

page

529

for

information

about

data

types

used

in

previous

releases.

Table

6

lists

the

C

data

types

with

their

associated

structures

for

date,

time

and

timestamp.

Table

6.

C

date,

time,

and

timestamp

structures

C

type

Generic

structure

DATE_STRUCT

typedef

struct

DATE_STRUCT

{

SQLSMALLINT

year;

SQLUSMALLINT

month;

SQLUSMALLINT

day;

}

DATE_STRUCT;

TIME_STRUCT

typedef

struct

TIME_STRUCT

{

SQLUSMALLINT

hour;

SQLUSMALLINT

minute;

SQLUSMALLINT

second;

}

TIME_STRUCT;

Chapter

2.

Writing

a

DB2

ODBC

application

27

|

Table

6.

C

date,

time,

and

timestamp

structures

(continued)

C

type

Generic

structure

TIMESTAMP_STRUCT

typedef

struct

TIMESTAMP_STRUCT

{

SQLUSMALLINT

year;

SQLUSMALLINT

month;

SQLUSMALLINT

day;

SQLUSMALLINT

hour;

SQLUSMALLINT

minute;

SQLUSMALLINT

second;

SQLINTEGER

fraction;

}

TIMESTAMP_STRUCT;

See

Table

7

for

more

information

about

the

SQLUSMALLINT

C

data

type.

Other

C

data

types

In

addition

to

the

data

types

that

map

to

SQL

data

types,

other

C

symbolic

types

are

used

for

other

function

arguments,

such

as

pointers

and

handles.

Table

7

shows

both

generic

and

ODBC

data

types

used

for

these

arguments.

Table

7.

C

data

types

and

base

C

data

types

Defined

C

type

Base

C

type

Typical

usage

SQLPOINTER

void

*

Pointers

to

storage

for

data

and

parameters.

SQLHENV

long

int

Handle

referencing

environment

information.

SQLHDBC

long

int

Handle

referencing

data

source

connection

information.

SQLHSTMT

long

int

Handle

referencing

statement

information.

SQLUSMALLINT

unsigned

short

int

Function

input

argument

for

unsigned

short

integer

values.

SQLUINTEGER

unsigned

long

int

Function

input

argument

for

unsigned

long

integer

values.

SQLRETURN

short

int

Return

code

from

DB2

ODBC

functions.

SQLWCHAR

wchar_t

Data

type

for

a

Unicode

UCS-2

character.

SQLWCHAR

*

wchar_t

*

Pointer

to

storage

for

Unicode

UCS-2

data.

Data

conversion

DB2

ODBC

manages

the

transfer

and

any

required

conversion

of

data

between

the

application

and

the

DBMS.

Before

the

data

transfer

actually

takes

place,

the

source,

target

or

both

data

types

are

indicated

when

calling

SQLBindParameter(),

SQLBindCol(),

or

SQLGetData().

These

functions

use

the

symbolic

type

names

shown

in

Table

4

on

page

25,

to

identify

the

data

types

involved

in

the

data

transfer.

Example:

The

following

SQLBindParameter()

call

binds

a

parameter

marker

that

corresponds

to

an

SQL

data

type

of

DECIMAL(5,3)

to

an

application’s

C

buffer

type

of

double:

SQLBindParameter

(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_DOUBLE,

SQL_DECIMAL,

5,

3,

double_ptr,

NULL);

28

ODBC

Guide

and

Reference

|

Table

4

shows

only

the

default

data

conversions.

The

functions

mentioned

in

the

previous

paragraph

can

be

used

to

convert

data

to

other

types,

but

not

all

data

conversions

are

supported

or

make

sense.

Table

8

shows

all

the

conversions

that

DB2

ODBC

supports.

Table

8

and

Table

9

on

page

32

list

the

data

conversions

DB2

ODBC

supports.

Table

8

lists

the

conversions

by

SQL

type.

The

first

column

of

this

table

contains

these

SQL

types.

The

second

column

of

this

table

contains

the

default

C

type

that

the

SQL

type

is

converted

to

when

you

specify

SQL_C_DEFAULT

as

the

target

type.

The

last

column

lists

all

other

C

types

that

you

can

specify

as

a

target

in

a

conversion

from

SQL

data

types

to

C

data

types.

Table

8.

Supported

data

conversions

by

SQL

data

type

SQL

symbolic

data

type

Default

C

symbolic

data

type

Additional

C

symbolic

data

types

SQL_BLOB

SQL_C_BINARY

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_BLOB_LOCATOR3

SQL_CHAR

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_TYPE_TIMESTAMP

SQL_C_BINARY

SQL_C_BIT

SQL_C_BLOB_LOCATOR3

SQL_CLOB

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_BINARY

SQL_C_CLOB_LOCATOR3

SQL_DBCLOB

SQL_C_DBCHAR

SQL_C_BINARY

SQL_C_DBCLOB_LOCATOR3

SQL_DECIMAL

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_BINARY

SQL_C_BIT

SQL_DOUBLE

SQL_C_DOUBLE

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_BIT

Chapter

2.

Writing

a

DB2

ODBC

application

29

|

|

|

|

|

|

Table

8.

Supported

data

conversions

by

SQL

data

type

(continued)

SQL

symbolic

data

type

Default

C

symbolic

data

type

Additional

C

symbolic

data

types

SQL_FLOAT

SQL_C_DOUBLE

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_BIT

SQL_GRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR4

SQL_C_CHAR1

SQL_INTEGER

SQL_C_LONG

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_BIT

SQL_LONGVARCHAR

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_DATE

SQL_C_TYPE_TIMESTAMP

SQL_C_BINARY

SQL_LONGVARGRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR4

SQL_C_CHAR1

SQL_C_BINARY

SQL_NUMERIC5

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_BIT

SQL_REAL6

SQL_C_FLOAT

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_DOUBLE

SQL_C_BIT

SQL_ROWID

SQL_C_CHAR

SQL_C_WCHAR

SQL_SMALLINT

SQL_C_SHORT

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_TYPE_TIMESTAMP

SQL_C_BINARY

SQL_C_BIT

SQL_C_DBCHAR

SQL_C_CLOB_LOCATOR3

SQL_C_BLOB_LOCATOR3

SQL_C_DBCLOB_LOCATOR3

30

ODBC

Guide

and

Reference

|

|

|

|

|

|

|

|

Table

8.

Supported

data

conversions

by

SQL

data

type

(continued)

SQL

symbolic

data

type

Default

C

symbolic

data

type

Additional

C

symbolic

data

types

SQL_TYPE_DATE

SQL_C_TYPE_DATE

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_TIMESTAMP

SQL_TYPE_TIME

SQL_C_TYPE_TIME

SQL_C_CHAR1

SQL_C_WCHAR

SQL_C_TYPE_TIMESTAMP

SQL_TYPE_TIMESTAMP

SQL_C_TYPE_TIMESTAMP

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_VARCHAR

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG

SQL_C_SHORT

SQL_C_TINYINT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_BINARY

SQL_C_BIT

SQL_C_TYPE_TIMESTAMP

SQL_VARGRAPHIC

SQL_C_DBCHAR

or

SQL_C_WCHAR4

SQL_C_CHAR1

Notes:

1.

You

must

bind

data

to

the

SQL_C_CHAR

data

type

for

Unicode

UTF-8

data

2.

You

must

bind

data

with

the

SQL_C_WCHAR

data

type

for

Unicode

UCS-2

data.

3.

Data

is

not

converted

to

LOB

locator

types;

locators

represent

a

data

value.

4.

The

default

C

data

type

conversion

for

this

SQL

data

type

depends

upon

the

encoding

scheme

your

application

uses.

If

your

application

uses

UCS-2

Unicode

encoding,

the

default

conversion

is

to

SQL_C_WCHAR.

For

all

other

encoding

schemes

the

default

conversion

is

to

SQL_C_DBCHAR.

See

“Handling

application

encoding

schemes”

on

page

443

for

more

information.

5.

NUMERIC

is

a

synonym

for

DECIMAL

on

DB2

UDB

for

z/OS,

DB2

for

VSE

&

VM,

and

DB2

UDB.

6.

REAL

is

not

supported

by

DB2

UDB

except

in

the

z/OS

environment.

Table

9

on

page

32

lists

the

conversions

by

C

type.

The

first

column

of

this

table

contains

these

C

types.

The

second

column

of

this

table

contains

the

SQL

types

that

use

the

C

type

in

the

first

column

for

default

conversions.

The

last

column

are

all

other

SQL

types

you

can

specify

in

a

conversion

from

C

data

types

to

SQL

data

types.

Chapter

2.

Writing

a

DB2

ODBC

application

31

|

|

|

|

|

Table

9.

Supported

data

conversions

by

C

data

type

Symbolic

C

data

type

Symbolic

SQL

data

types

that

use

this

C

data

type

as

a

default

Additional

symbolic

SQL

data

types

SQL_C_CHAR1

SQL_CHAR

SQL_CLOB

SQL_DECIMAL

SQL_LONGVARCHAR

SQL_NUMERIC2

SQL_VARCHAR

SQL_BLOB

SQL_DOUBLE

SQL_FLOAT

SQL_GRAPHIC

SQL_INTEGER

SQL_LONGVARGRAPHIC

SQL_REAL3

SQL_ROWID

SQL_SMALLINT

SQL_TYPE_DATE

SQL_TYPE_TIME

SQL_TYPE_TIMESTAMP

SQL_VARGRAPHIC

SQL_C_WCHAR4

SQL_GRAPHIC6

SQL_LONGVARGRAPHIC6

SQL_VARGRAPHIC6

SQL_BLOB

SQL_CHAR

SQL_CLOB

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARCHAR

SQL_NUMERIC2

SQL_REAL3

SQL_ROWID

SQL_SMALLINT

SQL_TYPE_DATE

SQL_TYPE_TIME

SQL_TYPE_TIMESTAMP

SQL_VARCHAR

SQL_C_LONG

SQL_INTEGER

SQL_CHAR

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_NUMERIC2

SQL_REAL3

SQL_SMALLINT

SQL_VARCHAR

SQL_C_SHORT

SQL_SMALLINT

SQL_CHAR

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_NUMERIC3

SQL_REAL4

SQL_VARCHAR

SQL_C_TINYINT

No

SQL

data

types

use

SQL_C_TINYINT

in

a

default

conversion.

SQL_CHAR

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_NUMERIC2

SQL_REAL3

SQL_SMALLINT

SQL_VARCHAR

32

ODBC

Guide

and

Reference

|

|

|

|

Table

9.

Supported

data

conversions

by

C

data

type

(continued)

Symbolic

C

data

type

Symbolic

SQL

data

types

that

use

this

C

data

type

as

a

default

Additional

symbolic

SQL

data

types

SQL_C_FLOAT

SQL_REAL3

SQL_CHAR

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_NUMERIC2

SQL_SMALLINT

SQL_VARCHAR

SQL_C_DOUBLE

SQL_DOUBLE

SQL_FLOAT

SQL_CHAR

SQL_DECIMAL

SQL_INTEGER

SQL_NUMERIC2

SQL_REAL3

SQL_SMALLINT

SQL_VARCHAR

SQL_C_TYPE_DATE

SQL_TYPE_DATE

SQL_CHAR

SQL_LONGVARCHAR

SQL_TYPE_TIMESTAMP

SQL_VARCHAR

SQL_C_TYPE_TIME

SQL_TYPE_TIME

SQL_CHAR

SQL_TYPE_TIMESTAMP

SQL_VARCHAR

SQL_C_TYPE_TIMESTAMP

SQL_TYPE_TIMESTAMP

SQL_CHAR

SQL_LONGVARCHAR

SQL_TYPE_DATE

SQL_TYPE_TIME

SQL_VARCHAR

SQL_C_BINARY

SQL_BLOB

SQL_CHAR

SQL_CLOB

SQL_DBCLOB

SQL_DECIMAL

SQL_LONGVARCHAR

SQL_LONGVARGRAPHIC

SQL_VARCHAR

SQL_C_BIT

No

SQL

types

use

SQL_C_BIT

in

a

default

conversion.

SQL_CHAR

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_NUMERIC2

SQL_REAL3

SQL_SMALLINT

SQL_VARCHAR

SQL_C_DBCHAR

SQL_DBCLOB

SQL_GRAPHIC6

SQL_LONGVARGRAPHIC6

SQL_VARGRAPHIC6

No

additional

SQL

data

types

can

use

SQL_C_DBCHAR.

SQL_C_CLOB_LOCATOR

No

SQL

data

types

use

SQL_C_CLOB_LOCATOR

in

a

default

conversion.

SQL_CLOB

Chapter

2.

Writing

a

DB2

ODBC

application

33

|

|

|

|

|

|

|

|

Table

9.

Supported

data

conversions

by

C

data

type

(continued)

Symbolic

C

data

type

Symbolic

SQL

data

types

that

use

this

C

data

type

as

a

default

Additional

symbolic

SQL

data

types

SQL_C_BLOB_LOCATOR

No

SQL

data

types

use

SQL_C_BLOB_LOCATOR

in

a

default

conversion.

SQL_BLOB

SQL_C_DBCLOB_LOCATOR

No

SQL

data

types

use

SQL_C_DBCLOB_LOCATOR

in

a

default

conversion.

SQL_DBCLOB

Notes:

1.

You

must

bind

data

to

the

SQL_C_CHAR

data

type

for

Unicode

UTF-8

data

2.

NUMERIC

is

a

synonym

for

DECIMAL

on

DB2

UDB

for

z/OS,

DB2

for

VSE

&

VM,

and

DB2

UDB.

3.

REAL

is

not

supported

by

DB2

UDB.

4.

You

must

bind

data

with

the

SQL_C_WCHAR

data

type

for

Unicode

UCS-2

data.

5.

Data

is

not

converted

to

LOB

locator

types;

locators

represent

a

data

value.

6.

The

default

C

data

type

conversion

for

this

SQL

data

type

depends

upon

the

encoding

scheme

your

application

uses.

If

your

application

uses

UCS-2

Unicode

encoding,

the

default

conversion

is

to

SQL_C_WCHAR.

For

all

other

encoding

schemes

the

default

conversion

is

to

SQL_C_DBCHAR.

See

“Handling

application

encoding

schemes”

on

page

443

for

more

information.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

information

about

required

formats

and

the

results

of

converting

between

data

types.

Limits

on

precision,

and

scale,

as

well

as

truncation

and

rounding

rules

for

type

conversions

follow

rules

specified

in

the

IBM

SQL

Reference

with

the

following

exception;

truncation

of

values

to

the

right

of

the

decimal

point

for

numeric

values

returns

a

truncation

warning,

whereas

truncation

to

the

left

of

the

decimal

point

returns

an

error.

In

cases

of

error,

the

application

should

call

SQLGetDiagRec()

to

obtain

the

SQLSTATE

and

additional

information

about

the

failure.

When

moving

and

converting

floating

point

data

values

between

the

application

and

DB2

ODBC,

no

correspondence

is

guaranteed

to

be

exact

as

the

values

can

change

in

precision

and

scale.

Working

with

string

arguments

The

following

conventions

deal

with

the

various

aspects

of

working

with

string

arguments

in

DB2

ODBC

functions.

Length

of

string

arguments

Input

string

arguments

have

an

associated

length

argument.

This

argument

passes

DB2

ODBC

one

of

the

following

types

of

information:

v

The

exact

length

of

the

string

(not

including

the

nul-terminator)

v

The

special

value

SQL_NTS

to

indicate

a

nul-terminated

string

v

SQL_NULL_DATA

to

pass

a

null

value

If

the

length

is

set

to

SQL_NTS,

DB2

ODBC

determines

the

length

of

the

string

by

locating

the

nul-terminator.

All

length

arguments

for

input/output

strings

are

passed

as

a

count

of

characters.

Length

arguments

that

can

refer

to

both

string

and

non-string

data

are

passed

as

a

count

of

bytes.

Output

string

arguments

have

two

associated

length

arguments,

an

input

length

argument

to

specify

the

length

of

the

allocated

output

buffer,

and

an

output

length

34

ODBC

Guide

and

Reference

|

|

argument

to

return

the

actual

length

of

the

string

returned

by

DB2

ODBC.

The

returned

length

value

is

the

total

length

of

the

string

available

for

return,

regardless

of

whether

it

fits

in

the

buffer

or

not.

For

SQL

column

data,

if

the

output

is

a

null

value,

SQL_NULL_DATA

is

returned

in

the

length

argument

and

the

output

buffer

is

untouched.

If

a

function

is

called

with

a

null

pointer

for

an

output

length

argument,

DB2

ODBC

does

not

return

a

length,

and

assumes

that

the

data

buffer

is

large

enough

to

hold

the

data.

When

the

output

data

is

a

null

value,

DB2

ODBC

can

not

indicate

that

the

value

is

null.

If

it

is

possible

that

a

column

in

a

result

set

can

contain

a

null

value,

a

valid

pointer

to

the

output

length

argument

must

always

be

provided.

Recommendation:

Always

use

a

valid

output

length

argument.

If

the

length

argument

(pcbValue)

and

the

output

buffer

(rgbValue)

are

contiguous

in

memory,

DB2

ODBC

can

return

both

values

more

efficiently,

improving

application

performance.

For

example,

if

the

following

structure

is

defined

and

&buffer.pcbValue

and

buffer.rgbValue

are

passed

to

SQLBindCol(),

DB2

ODBC

updates

both

values

in

one

operation.

struct

{

SQLINTEGER

pcbValue;

SQLCHAR

rgbValue

[BUFFER_SIZE];

}

buffer;

Nul-termination

of

strings

By

default,

every

character

string

that

DB2

ODBC

returns

is

terminated

with

a

nul-terminator

(hex

00),

except

for

strings

returned

from

the

graphic

and

DBCLOB

data

types

into

SQL_C_CHAR

application

variables.

Graphic

and

DBCLOB

data

types

that

are

retrieved

into

SQL_C_DBCHAR

and

SQL_C_WCHAR

application

variables

are

nul-terminated

with

a

double-byte

nul-terminator

(hex

0000).

This

requires

that

all

buffers

allocate

enough

space

for

the

maximum

number

of

bytes

expected,

plus

the

nul-terminator.

You

can

also

use

SQLSetEnvAttr()

and

set

an

environment

attribute

to

disable

nul-termination

of

varying-length

output

(character

string)

data.

In

this

case,

the

application

allocates

a

buffer

exactly

as

long

as

the

longest

string

it

expects.

The

application

must

provide

a

valid

pointer

to

storage

for

the

output

length

argument

so

that

DB2

ODBC

can

indicate

the

actual

length

of

data

returned;

otherwise,

the

application

has

no

means

to

determine

this.

The

DB2

ODBC

default

is

to

always

write

the

nul-terminator.

String

truncation

If

an

output

string

does

not

fit

into

a

buffer,

DB2

ODBC

truncates

the

string

to

the

size

of

the

buffer,

and

writes

the

nul-terminator.

If

truncation

occurs,

the

function

returns

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01004,

which

indicates

data

truncation.

The

application

can

then

compare

the

buffer

length

to

the

output

length

to

determine

which

string

was

truncated.

For

example,

if

SQLFetch()

returns

SQL_SUCCESS_WITH_INFO,

and

an

SQLSTATE

of

01004,

at

least

one

of

the

buffers

bound

to

a

column

is

too

small

to

hold

the

data.

For

each

buffer

that

is

bound

to

a

column,

the

application

can

compare

the

buffer

length

with

the

output

length

and

determine

which

column

was

truncated.

Chapter

2.

Writing

a

DB2

ODBC

application

35

ODBC

specifies

that

string

data

can

be

truncated

on

input

or

output

with

the

appropriate

SQLSTATE.

As

the

data

source,

DB2

does

not

truncate

data

on

input,

but

might

truncate

data

on

output

to

maintain

data

integrity.

On

input,

DB2

rejects

string

truncation

with

a

negative

SQLCODE

(-302)

and

SQLSTATE

22001.

On

output,

DB2

truncates

the

data

and

issues

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01004.

Interpretation

of

strings

Normally,

DB2

ODBC

interprets

string

arguments

in

a

case-sensitive

manner

and

does

not

trim

any

spaces

from

the

values.

The

one

exception

is

the

cursor

name

input

argument

on

the

SQLSetCursorName()

function.

In

this

case,

if

the

cursor

name

is

not

delimited

(enclosed

by

double

quotes)

the

leading

and

trailing

blanks

are

removed

and

case

is

preserved.

Querying

environment

and

data

source

information

Many

situations

require

an

application

retrieve

information

about

the

characteristics

and

capabilities

of

the

current

DB2

ODBC

driver

or

the

data

source

to

which

it

is

connected.

One

of

the

most

common

situations

involves

displaying

information

for

the

user.

Information

such

as

the

data

source

name

and

version,

or

the

version

of

the

DB2

ODBC

driver

might

be

displayed

at

connect

time,

or

as

part

of

the

error

reporting

process.

These

functions

are

also

useful

to

generic

applications

that

are

written

to

adapt

and

take

advantage

of

facilities

that

might

be

available

from

some,

but

not

all

database

servers.

The

following

DB2

ODBC

functions

provide

data

source

specific

information:

v

“SQLDataSources()

-

Get

a

list

of

data

sources”

on

page

127

v

“SQLGetFunctions()

-

Get

functions”

on

page

226

v

“SQLGetInfo()

-

Get

general

information”

on

page

234

v

“SQLGetTypeInfo()

-

Get

data

type

information”

on

page

280

Example:

Figure

5

on

page

37

shows

an

application

that

queries

an

ODBC

environment

for

a

data

source,

all

supported

functions,

and

a

supported

data

type.

36

ODBC

Guide

and

Reference

/***/

/*

Querying

environment

and

data

source

information

*/

/***/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlcli1.h>

void

main()

{

SQLHENV

hEnv;

/*

Environment

handle

*/

SQLHDBC

hDbc;

/*

Connection

handle

*/

SQLRETURN

rc;

/*

Return

code

for

API

calls

*/

SQLHSTMT

hStmt;

/*

Statement

handle

*/

SQLCHAR

dsname[30];

/*

Data

source

name

*/

SQLCHAR

dsdescr[255];

/*

Data

source

description

*/

SQLSMALLINT

dslen;

/*

Length

of

data

source

*/

SQLSMALLINT

desclen;

/*

Length

of

dsdescr

*/

BOOL

found

=

FALSE;

SQLSMALLINT

funcs[100];

SQLINTEGER

rgbValue;

/*

*

Initialize

environment

-

allocate

environment

handle.

*/

rc

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv

);

rc

=

SQLAllocHandle(

SQL_HANDLE_DBC,

hEnv,

&hDbc

);

/*

*

Use

SQLDataSources

to

verify

MVSDB2

does

exist.

*/

while(

(

rc

=

SQLDataSources(

hEnv,

SQL_FETCH_NEXT,

dsname,

SQL_MAX_DSN_LENGTH+1,

&dslen,

dsdescr,

&desclen

)

)

!=

SQL_NO_DATA_FOUND

)

{

if(

!strcmp(

dsname,

"MVSDB2"

)

)

/*

data

source

exist

*/

{

found

=

TRUE;

break;

}

}

Figure

5.

An

application

that

queries

environment

information.

(Part

1

of

2)

Chapter

2.

Writing

a

DB2

ODBC

application

37

if(

!found

)

{

fprintf(stdout,

"Data

source

%s

does

not

exist...\n",

dsname

);

fprintf(stdout,

"program

aborted.\n");

exit(1);

}

if(

(

rc

=

SQLConnect(

hDbc,

dsname,

SQL_NTS,

"myid",

SQL_NTS,

"mypd",

SQL_NTS

)

)

==

SQL_SUCCESS

)

{

fprintf(

stdout,

"Connect

to

%s\n",

dsname

);

}

SQLAllocHandle(

SQL_HANDLE_STMT,

hDbc,

&hStmt

);

/*

*

Use

SQLGetFunctions

to

store

all

APIs

status.

*/

rc

=

SQLGetFunctions(

hDbc,

SQL_API_ALL_FUNCTIONS,

funcs

);

/*

*

Check

whether

SQLGetInfo

is

supported

in

this

driver.

If

so,

*

verify

whether

DATE

is

supported

for

this

data

source.

*/

if(

funcs[SQL_API_SQLGETINFO]

==

1

)

{

SQLGetInfo(

hDbc,

SQL_CONVERT_DATE,

(SQLPOINTER)&rgbValue,

255,

&desclen

);

if(

rgbValue

&

SQL_CVT_DATE

)

{

SQLGetTypeInfo(

hStmt,

SQL_DATE

);

/*

use

SQLBindCol

and

SQLFetch

to

retrieve

data

....*/

}

}

}

Figure

5.

An

application

that

queries

environment

information.

(Part

2

of

2)

38

ODBC

Guide

and

Reference

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

This

chapter

provides

information

about

installing

DB2

ODBC,

the

DB2

ODBC

run-time

environment,

and

the

preparation

steps

needed

to

run

a

DB2

ODBC

application.

v

“Installing

DB2

ODBC”

v

“The

DB2

ODBC

run-time

environment”

v

“Setting

up

the

DB2

ODBC

run-time

environment”

on

page

41

v

“Preparing

and

executing

a

DB2

ODBC

application”

on

page

44

v

“DB2

ODBC

initialization

file”

on

page

49

v

“DB2

ODBC

migration

considerations”

on

page

62

Installing

DB2

ODBC

You

must

edit

and

run

SMP/E

jobs

to

install

DB2

ODBC.

Section

2

of

DB2

Installation

Guide

has

information

about

the

SMP/E

jobs

to

receive,

apply,

and

accept

the

FMIDs

for

DB2

ODBC.

These

jobs

are

run

as

part

of

the

DB2

installation

process.

1.

Copy

and

edit

the

SMP/E

jobs.

For

sample

JCL

to

invoke

the

z/OS

utility

IEBCOPY

to

copy

the

SMP/E

jobs

to

disk,

see

the

DB2

Program

Directory.

2.

Run

the

receive

job:

DSNRECV3.

3.

Run

the

apply

job:

DSNAPPLY.

4.

Run

the

accept

job:

DSNACCEP.

Customize

these

jobs

to

specify

data

set

names

for

your

DB2

installation

and

SMP/E

data

sets.

See

the

header

notes

in

each

job

for

details.

The

DB2

ODBC

run-time

environment

DB2

ODBC

does

not

support

an

ODBC

driver

manager.

All

API

calls

are

routed

through

the

single

ODBC

driver

that

is

loaded

at

run

time

into

the

application

address

space.

DB2

ODBC

support

is

implemented

as

an

IBM

C/C++

Dynamic

Load

Library

(DLL).

By

providing

DB2

ODBC

support

using

a

DLL,

DB2

ODBC

applications

do

not

need

to

link-edit

any

DB2

ODBC

driver

code

with

the

application

load

module.

Instead,

the

linkage

to

the

DB2

ODBC

APIs

is

resolved

dynamically

at

run

time

by

the

IBM

Language

Environment®

run-time

support.

The

DB2

ODBC

driver

can

use

either

the

call

attachment

facility

(CAF)

or

the

Resource

Recovery

Services

attachment

facility

(RRSAF)

to

connect

to

the

DB2

UDB

for

z/OS

address

space.

v

If

the

DB2

ODBC

application

is

not

running

as

a

DB2

UDB

for

z/OS

stored

procedure,

the

MVSATTACHTYPE

keyword

in

the

DB2

ODBC

initialization

file

determines

the

attachment

facility

that

DB2

ODBC

uses.

v

If

the

DB2

ODBC

application

is

running

as

a

DB2

UDB

for

z/OS

stored

procedure,

then

DB2

ODBC

uses

the

attachment

facility

that

was

specified

for

stored

procedures.

When

the

DB2

ODBC

application

invokes

the

first

ODBC

function,

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_ENV),

the

DB2

ODBC

driver

DLL

is

loaded.

©

Copyright

IBM

Corp.

1997,

2004

39

DB2

ODBC

supports

access

to

the

local

DB2

UDB

for

z/OS

subsystems

and

any

remote

data

source

that

is

accessible

using

DB2

UDB

for

z/OS

Version

8.

This

includes:

v

Remote

DB2

subsystems

using

specification

of

an

alias

or

three-part

name

v

Remote

DRDA-1

and

DRDA-2

servers

using

LU

6.2

or

TCP/IP.

The

relationship

between

the

application,

the

DB2

UDB

for

z/OS

Version

8

ODBC

driver

and

the

DB2

UDB

for

z/OS

subsystem

are

illustrated

in

Figure

6.

Connectivity

requirements

DB2

UDB

for

z/OS

Version

8

ODBC

has

the

following

connectivity

requirements:

v

DB2

ODBC

applications

must

execute

on

a

machine

on

which

Version

8

of

DB2

UDB

for

z/OS

is

installed.

v

If

the

application

is

executing

with

MULTICONTEXT=1,

it

can

make

multiple

physical

connections.

Each

connection

corresponds

to

an

independent

transaction

and

DB2

thread.

v

If

the

application

is

executing

CONNECT

(type

1)

(described

in

“Specifying

the

connection

type”

on

page

12)

and

MULTICONTEXT=0,

only

one

current

physical

connection

and

one

transaction

on

that

connection

occurs.

All

transactions

on

logical

connections

(that

is,

with

a

valid

connection

handle)

are

rolled

back

by

the

application

or

committed

by

DB2

ODBC.

This

is

a

deviation

from

the

ODBC

connection

model.

LU 6.2 or
TCP/IP

Call Attach (CAF)
or

RRS Attach (RRSAF)

DRDA
application

server

Initilization
file

Trace
file

DSNAOINI DSNAOTRC

DB2 UDB for z/OS
ODBC application

DB2 UDB for z/OS
ODBC driver DLL

Local table, alias or
three-part name if
connected locally

DB2 UDB for z/OS

Figure

6.

Relationship

between

DB2

UDB

for

z/OS

Version

8

ODBC

components

40

ODBC

Guide

and

Reference

Setting

up

the

DB2

ODBC

run-time

environment

This

section

describes

the

general

setup

required

to

enable

DB2

ODBC

applications.

The

steps

in

this

section

only

need

to

be

performed

once,

and

are

usually

performed

as

part

of

the

installation

process

for

DB2

UDB

for

z/OS.

The

DB2

ODBC

bind

files

must

be

bound

to

the

data

source.

The

following

two

bind

steps

are

required:

v

Create

packages

at

every

data

source

v

Create

at

least

one

plan

to

name

those

packages

These

bind

steps

are

described

in

the

following

sections:

v

“Bind

DBRMs

to

create

packages”

v

“Bind

the

application

plan”

on

page

43

The

online

bind

sample

is

available

in

DSN810.SDSNSAMP(DSNTIJCL).

It

is

strongly

recommended

that

you

use

this

bind

sample

as

a

guide

for

binding

DBRMs

to

packages

and

binding

an

application

plan.

Special

considerations

for

the

z/OS

UNIX

environment

are

described

in

“Setting

up

the

z/OS

UNIX

environment”

on

page

44

Bind

DBRMs

to

create

packages

This

section

explains

how

to

bind

database

request

modules

(DBRMs)

to

create

packages.

Use

the

online

bind

sample,

DSN810.SDSNSAMP(DSNTIJCL),

for

guidance.

For

an

application

to

access

a

data

sources

using

DB2

ODBC,

you

must

bind

all

required

IBM

DBRMs

(which

are

shipped

in

DSN810.SDSNDBRM)

to

all

data

sources.

These

data

sources

include

the

local

DB2

UDB

for

z/OS

subsystem

and

all

remote

(DRDA)

data

sources.

You

can

use

the

SQLConnect()

argument

szDSN

to

identify

the

data

sources

your

DB2

ODBC

applications

access.

The

szDSN

argument

returns

only

data

source

names

that

appear

in

the

DB2

SYSIBM.LOCATION

catalog

table.

You

do

not

need

to

bind

an

application

that

runs

under

DB2

ODBC

and

accesses

remote

data

sources

into

the

DB2

ODBC

plan.

You

can

bind

applications

as

a

package

at

the

remote

site.

Failure

to

bind

the

package

at

the

remote

site

results

in

SQLCODE

-805.

v

Bind

the

following

DBRMs

to

all

data

sources

using

the

isolation

levels

that

are

indicated:

–

DSNCLICS

with

ISOLATION(CS)

–

DSNCLIRR

with

ISOLATION(RR)

–

DSNCLIRS

with

ISOLATION(RS)

–

DSNCLIUR

with

ISOLATION(UR)

–

DSNCLINC

with

ISOLATION(NC)

v

Bind

the

following

DBRMs

with

default

options

to

all

OS/390

and

z/OS

servers:

–

DSNCLIC1

–

DSNCLIC2

–

DSNCLIMS

–

DSNCLIF4

v

Bind

DSNCLIVM

with

default

options

to

DB2

for

VSE

&

VM

servers

v

Bind

DSNCLIAS

with

default

options

to

DB2

UDB

for

iSeries

servers

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

41

v

Bind

DSNCLIV1

and

DSNCLIV2

with

default

options

to

all

DB2

UDB

for

Linux,

UNIX

and

Windows

severs

v

Bind

DSNCLIQR

to

any

site

that

supports

DRDA

query

result

sets

To

call

stored

procedures

that

run

under

DB2

ODBC,

bind

each

of

these

procedures

to

the

data

sources

that

use

them.

You

do

not

need

to

bind

a

stored

procedure

that

runs

under

DB2

ODBC

into

the

DB2

ODBC

plan.

You

can

bind

a

stored

procedure

as

a

package.

For

more

information

about

DB2

ODBC

stored

procedures,

see

“Using

stored

procedures”

on

page

429.

Package

bind

options

For

packages

listed

above

that

use

the

ISOLATION

keyword,

the

impact

of

package

bind

options

in

conjunction

with

the

DB2

ODBC

initialization

file

keywords

is

as

follows:

v

ISOLATION

Packages

must

be

bound

with

the

isolation

specified.

v

DYNAMICRULES(BIND)

Binding

the

packages

with

this

option

offers

encapsulation

and

security

similar

to

that

of

static

SQL.

The

recommendations

and

consequences

for

using

this

option

are

as

follows:

1.

Bind

DB2

ODBC

packages

or

plan

with

DYNAMICRULES(BIND)

from

a

'driver'

authorization

ID

with

table

privileges.

2.

Issue

GRANT

EXECUTE

on

each

collection

or

plan

name

to

individual

users.

Packages

are

differentiated

by

collection;

plans

are

differentiated

by

plan

name.

3.

Select

a

plan

or

package

by

using

the

PLANNAME

or

COLLECTIONID

keywords

in

the

DB2

ODBC

initialization

file.

4.

When

dynamic

SQL

is

issued,

the

statement

is

processed

with

the

’driver’

authorization

ID.

Users

need

execute

privileges;

table

privileges

are

not

required.

5.

The

CURRENTSQLID

keyword

cannot

be

used

in

the

DB2

ODBC

initialization

file.

Use

of

this

keyword

results

in

an

error

at

SQLConnect().

v

ENCODING

The

ENCODING

bind

option

controls

the

application

encoding

scheme

for

all

static

SQL

statements

in

a

plan

or

package.

Important:

You

must

specify

ENCODING(EBCDIC)

when

you

bind

packages

to

the

local

DB2

UDB

for

z/OS

subsystem.

v

SQLERROR(CONTINUE)

Use

this

keyword

to

bind

DB2

ODBC

to

Version

5

of

DB2

for

OS/390.

The

symptoms

of

binding

to

a

down-level

server

are:

–

Binding

DSNCLIMS

results

in

SQLCODE

-199

on

the

VALUES

INTO

statement.

Bind

with

the

SQLERROR(CONTINUE)

keyword

to

bypass

this

error.

–

Binding

DSNCLIMS

results

in

SQLCODE

-199

on

the

DESCRIBE

INPUT

statement.

Apply

APAR

PQ24584

and

retry

the

bind

to

bypass

this

error.

Alternatively,

you

can

bind

with

the

SQLERROR(CONTINUE)

keyword,

however,

the

SQLDescribeParam()

API

will

be

unavailable

to

you

at

that

DB2

for

OS/390

Version

5

server.

–

Binding

DSNCLIMS

on

any

DB2

subsystem

that

supports

MIXED

DATA

results

in

SQLCODE

-130.

Bind

with

SQLERROR(CONTINUE)

keyword

to

bypass

this

error.

42

ODBC

Guide

and

Reference

|
|
|
|
|

|

|
|

|
|

|
|
|

Bind

return

codes

A

bind

to

DB2

UDB

for

z/OS

receives

several

expected

warnings:

v

For

all

packages:

WARNING,

ONLY

IBM-SUPPLIED

COLLECTION-IDS

SHOULD

BEGIN

WITH

"DSN"

v

For

bind

of

DSNCLINC

package

to

DB2

UDB

for

z/OS:

BIND

WARNING

-

ISOLATION

NC

NOT

SUPPORTED

CHANGED

TO

ISOLATION

UR

v

For

bind

of

DSNCLIF4

package

to

DB2

UDB

for

z/OS

for

SYSIBM.LOCATIONS

due

to

differences

in

catalog

table

names

between

releases.

For

example,

when

bound

to

a

Version

6

system

you

receive

this

warning

message:

SYSIBM.SYSLOCATIONS

IS

NOT

DEFINED

Bind

packages

at

remote

sites

For

an

application

to

access

a

data

source

using

DB2

ODBC,

bind

the

DBRMs

listed

above

to

all

data

sources,

including

the

local

DB2

UDB

for

z/OS

subsystem

and

all

remote

(DRDA)

data

sources.

The

SQLConnect()

argument

szDSN

identifies

the

data

source.

The

data

source

is

the

location

in

the

DB2

SYSIBM.LOCATION

catalog

table.

An

application

running

under

DB2

ODBC

to

a

remote

DB2

UDB

for

z/OS,

or

another

DBMS,

does

not

need

to

be

bound

into

the

DB2

ODBC

plan;

rather

it

can

be

bound

as

a

package

at

the

remote

site.

Failure

to

bind

the

package

at

the

remote

site

results

in

SQLCODE

-805.

Bind

stored

procedures

A

stored

procedure

running

under

DB2

ODBC

to

a

remote

DB2

UDB

for

z/OS,

or

another

DBMS,

does

not

need

to

be

bound

into

the

DB2

ODBC

plan;

rather

it

can

be

bound

as

a

package

at

the

remote

site.

For

example,

DB2

ODBC

must

always

be

bound

in

a

plan

to

a

DB2

UDB

for

z/OS

subsystem

to

which

DB2

ODBC

first

establishes

an

affinity

on

the

SQLAllocHandle()

call

(with

HandleType

set

to

SQL_HANDLE_ENV).

This

is

the

local

DB2.

The

scenario

in

this

example

is

equivalent

to

specifying

the

MVSDEFAULTSSID

keyword

in

the

initialization

file.

Bind

the

application

plan

This

section

explains

how

to

bind

an

application

plan.

Use

the

online

bind

sample,

DSN810.SDSNSAMP(DSNTIJCL),

for

guidance.

A

DB2

plan

must

be

created

using

the

PKLIST

keyword

to

name

all

packages

listed

in

“Bind

DBRMs

to

create

packages”

on

page

41.

Any

name

can

be

selected

for

the

plan;

the

default

name

is

DSNACLI.

If

a

name

other

than

the

default

is

selected,

that

name

must

be

specified

within

the

initialization

file

by

using

the

PLANNAME

keyword.

Plan

bind

options

Do

not

specify

PLAN

bind

options

when

you

bind

the

application

plan.

The

bind

options

are

used

as

follows:

v

DISCONNECT(EXPLICIT)

All

DB2

ODBC

plans

are

created

using

this

option.

DISCONNECT(EXPLICIT)

is

the

default

value;

do

not

change

it.

v

CURRENTSERVER

Do

not

specify

this

keyword

when

binding

plans.

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

43

Setting

up

the

z/OS

UNIX

environment

To

use

DB2

ODBC

in

the

z/OS

UNIX

environment,

the

DB2

ODBC

definition

side-deck

must

be

available

to

z/OS

UNIX

users.

The

z/OS

UNIX

environment

compiler

determines

the

contents

of

an

input

file

based

on

the

file

extension.

In

the

case

of

a

file

residing

in

a

partitioned

data

set

(PDS),

the

last

qualifier

in

the

PDS

name

is

treated

as

the

file

extension.

The

z/OS

UNIX

environment

compiler

recognizes

the

DB2

ODBC

definition

side-deck

by

these

criteria:

v

It

must

reside

in

a

PDS

v

The

last

qualifier

in

the

PDS

name

must

be

.EXP

Therefore,

to

make

the

DB2

ODBC

definition

side-deck

available

to

z/OS

UNIX

environment

users,

you

should

define

a

data

set

alias

that

uses

.EXP

as

the

last

qualifier

in

the

name.

This

alias

should

relate

to

the

SDSNMACS

data

set

which

is

where

the

DB2

ODBC

definition

side-deck

is

installed.

For

example,

assume

that

DB2

is

installed

using

DSN810

as

the

high

level

data

set

qualifier.

You

can

define

the

alias

using

the

following

command:

DEFINE

ALIAS(NAME(’DSN810.SDSNC.EXP’)

RELATE(’DSN810.SDSNMACS’))

This

alias

allows

z/OS

UNIX

environment

users

to

directly

reference

the

DB2

ODBC

definition

side-deck

by

specifying

the

following

input

files

as

input

to

the

z/OS

UNIX

environment

c89

command:

"//’DSN810.SDSNC.EXP(DSNAOCLI)’"

As

an

alternative

to

defining

a

system

alias

for

the

ODBC

side-deck,

use

the

_XSUFFIX_HOST

environmental

variable

that

specifies

the

z/OS

data

set

suffix.

The

default

value

is

EXP.

For

example,

changing

the

default

from

EXP

to

SDSNMACS

allows

the

link

to

work

without

a

Define

Alias.

For

the

c89

compiler,

issue:

export

_C89_XSUFFIX_HOST="SDSNMACS"

For

the

cxx

compiler,

issue:

export

_CXX_XSUFFIX_HOST="SDSNMACS"

Preparing

and

executing

a

DB2

ODBC

application

This

section

provides

an

overview

of

the

DB2

ODBC

components

and

explains

the

steps

you

follow

to

prepare

and

execute

a

DB2

ODBC

application.

Figure

7

on

page

45

shows

the

DB2

ODBC

components

that

are

used

to

build

DB2

ODBC

DLL.

The

shaded

areas

identify

the

components

that

are

shipped.

44

ODBC

Guide

and

Reference

The

following

sections

describe

the

requirements

and

steps

that

are

necessary

to

run

a

DB2

ODBC

application.

v

“DB2

ODBC

application

requirements”

v

“Application

preparation

and

execution

steps”

on

page

46

DB2

ODBC

application

requirements

To

successfully

build

a

DLL

application,

you

must

ensure

that

the

correct

compile,

pre-link,

and

link-edit

options

are

used.

In

particular,

your

application

must

generate

the

appropriate

DLL

linkage

for

the

exported

DB2

ODBC

DLL

functions.

The

C++

compiler

always

generates

DLL

linkage.

However,

the

C

compiler

only

generates

DLL

linkage

if

the

DLL

compile

option

is

used.

Failure

to

generate

the

DB2 ODBC base code

DB2 precompiler DB2 ODBC source code
compile
object decks (.obj)

prelink

Nonexecutable ODBC load module

DB2 ODBC include file
(DSN810.SDSNC.H)

Definition sidedeck
(DSN810.SDSNMACS(DSNAOCLI))

Definition sidedeck
(DSN810.SDSNMACS(DSNAOCLI))

Install

DB2 install-BIND
DB2 install-linkedit

DB2 ODBC application preparation

User ODBC source code(.c)

Compile

object decks(.obj)

prelink

linkedit

User DLL application
(executable load module)

DB2 ODBC include files
(in DSN810.SDSNC.H)

SQL
SQLCA
SQLCLI
SQLCLI1
SQLEXT
SQLSYSTM
SQLWCLI

DB2 ODBCI DLL-
(executable load module
DSN810.SDSNLOAD.DSNAOCLI)

DB2 packages (14)
(DSNCLI)

DB2 PLAN(DSNACLI)

xx

DBRMs
(DS 10.SDSNDBRM
(DSNCLI))xxx

N8

Figure

7.

DB2

ODBC

driver

installation

and

application

preparation

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

45

necessary

DLL

linkage

can

cause

the

prelinker

and

linkage

editor

to

issue

warning

messages

for

unresolved

references

to

DB2

ODBC

functions.

The

minimum

requirements

for

a

DB2

UDB

for

z/OS

Version

8

ODBC

application

are

as

follows:

v

z/OS

Version

1

Release

3

Application

Enablement

optional

feature

for

C/C++.

If

the

C

compiler

is

used,

then

the

DLL

compiler

option

must

be

specified.

v

z/OS

Version

1

Release

3

Language

Environment

Application

Enablement

base

feature.

v

The

DB2

ODBC

application

must

be

written

and

link-edited

to

execute

with

a

31-bit

addressing

mode,

AMODE(31).

Important:

If

you

build

a

DB2

ODBC

application

in

z/OS

UNIX,

you

can

use

the

c89

or

cxx

compile

commands

to

compile

your

application.

Although

you

compile

your

application

in

the

z/OS

UNIX

environment,

you

can

directly

reference

the

non-HFS

DB2

ODBC

data

sets

in

the

c89

or

cxx

commands.

You

do

not

need

to

copy

the

DB2

ODBC

product

files

to

HFS.

Application

preparation

and

execution

steps

The

following

steps

describe

application

preparation

and

execution:

v

“Step

1.

Compile

the

application”

v

“Step

2.

Pre-link

and

link-edit

the

application”

on

page

47

v

“Step

3.

Execute

the

application”

on

page

48

DB2

ODBC

provides

online

samples

for

installation

verification:

DSN8O3VP

A

sample

C

application.

You

can

use

this

sample

to

verify

that

your

DB2

ODBC

3.0

installation

is

correct.

See

“DSN8O3VP

sample

application”

on

page

531.

DSN8OIVP

A

sample

C

application.

You

can

use

this

sample

to

verify

that

your

DB2

ODBC

2.0

installation

is

correct.

DSNTEJ8

Sample

JCL.

You

can

use

this

sample

to

compile,

pre-link,

link-edit,

and

execute

the

sample

application

DSN8O3VP.

The

DSN8O3VP,

DSN8OIVP,

and

DSNTEJ8

online

samples

are

available

in

DSN810.SDSNSAMP.

Using

these

samples

for

guidance

is

highly

recommended

if

you

prepare

and

execute

an

application.

Using

ODBC

samples

in

the

z/OS

UNIX

environment:

To

use

the

ODBC

samples

DSN8O3VP

and

DSN8OIVP

in

the

z/OS

UNIX

environment,

copy

DSN8O3VP

or

DSN8OIVP

from

the

sample

data

set

to

HFS.

The

following

example

copies

DSN8O3VP

to

HFS

in

the

directory

user/db2,

which

is

considered

to

be

the

user’s

directory:

oput

’dsn810.sdsnsamp(dsn8o3vp)’

’/usr/db2/dsn8o3vp.c’

TEXT

Step

1.

Compile

the

application

Include

the

following

directive

in

the

header

of

your

DB2

ODBC

application:

#include

<sqlcli1.h>

The

sqlcli1.h

file

includes

all

information

that

is

required

for

compiling

your

DB2

ODBC

application.

All

DB2

ODBC

header

files,

including

sqlcli1.h,

that

define

the

46

ODBC

Guide

and

Reference

function

prototypes,

constants,

and

data

structures

that

are

needed

for

a

DB2

ODBC

application

are

shipped

in

the

DSN810.SDSNC.H

data

set.

Therefore,

you

must

add

this

data

set

to

your

SYSPATH

concatenation

when

you

compile

your

DB2

ODBC

application.

For

an

example

of

a

compile

job,

use

the

DSNTEJ8

online

sample

in

DSN810.SDSNSAMP.

To

compile

an

ODBC

C

application

in

the

z/OS

UNIX

environment,

use

the

c89

compile

command

with

the

-W

l

specification

and

specify

the

’dll’

option.

(The

’dll’

option

enables

the

use

of

the

DB2

ODBC

driver

for

C

applications.)

Example:

To

compile

a

C

application

named

dsn8o3vp.c

that

resides

in

the

current

working

directory,

use

the

following

c89

compile

command:

c89

-c

-W

’c,dll,long,source,list’

-

-I"//’DSN810.SDSNC.H’"

\

dsn8o3vp.c

To

compile

an

ODBC

C++

application

in

the

z/OS

UNIX

environment,

use

the

cxx

compile

command

with

the

-W

l

specification.

and

specify

the

’dll’

option.

(You

must

specify

the

’dll’

option

to

enable

the

use

of

the

DB2

ODBC

driver

if

you

use

the

cxx

compile

command

to

compile

any

C

parts.)

Example:

To

compile

a

C++

application

named

dsn8o3vp.c

that

resides

in

the

current

working

directory,

use

the

following

cxx

compile

command:

cxx

-c

-W

’c,long,source,list’

-

-I"//’DSN810.SDSNC.H’"

\

dsn8o3vp.c

Step

2.

Pre-link

and

link-edit

the

application

Before

you

can

link-edit

your

DB2

ODBC

application,

you

must

pre-link

your

application

with

a

DB2

ODBC

definition

side-deck

that

is

provided

with

Version

8

of

DB2

UDB

for

z/OS.

To

make

the

DB2

ODBC

definition

side-decks

available

in

the

UNIX

environment,

see

“Setting

up

the

z/OS

UNIX

environment”

on

page

44.

For

more

information

about

DLL,

see

z/OS

C/C++

Programming

Guide.

The

definition

side-deck

defines

all

of

the

exported

functions

in

the

DB2

ODBC

dynamic

load

library,

DSNAOCLI.

DSNAOCLI

resides

in

the

DSN810.SDSNMACS

data

set.

To

compile

an

application,

you

must

include

the

DSNAOCLI

member

as

input

to

the

prelinker

by

specifying

DSNAOCLI

in

the

pre-link

SYSIN

data

definition

statement

concatenation.

For

an

example

of

a

z/OS

pre-link

and

link-edit

job,

use

the

DSNTEJ8

online

sample

in

DSN810.SDSNSAMP.

If

you

build

a

DB2

ODBC

application

in

the

z/OS

UNIX

environment,

you

can

use

the

c89

command

to

pre-link

and

link-edit

your

application.

You

need

to

include

the

DB2

ODBC

definition

side-deck

as

one

of

the

input

data

sets

to

the

c89

or

cxx

command.

If

you

are

compiling

C

code,

specify

’dll’

as

one

of

the

link-edit

options.

Before

you

can

use

a

DB2

ODBC

definition

side-deck

for

input

to

the

c89

or

cxx

command,

you

must

either

specify

an

alias

that

uses

.EXP

for

the

last

qualifier,

or

change

the

value

of

the

_XSUFFIX_HOST

z/OS

environmental

variable.

Example:

Assume

that

you

have

compiled

an

application

named

myapp.c

to

create

a

myapp.o

file

in

the

current

working

directory.

Assume

that

you

also

specified

an

alias

that

uses

.EXP

as

the

last

qualifier

for

the

DB2

ODBC

definition

side-deck.

You

use

the

following

c89

command

to

pre-link

and

link-edit

the

C

application:

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

47

c89

-W

l,p,map,noer

-W

l,dll,AMODE=31,map

\

-o

dsn8o3vp

dsn8o3vp.o

"//’DSN810.SDSNC.EXP(DSNAOCLI)’"

You

use

the

following

cxx

command

to

pre-link

and

link-edit

the

C++

application:

cxx

-W

l,p,map,noer

-W

l,dll,AMODE=31,map

\

-o

dsn8o3vp

dsn8o3vp.o

"//’DSN810.SDSNC.EXP(DSNAOCLI)’"

Example:

Assume

that

you

have

compiled

an

application

named

myapp.c

to

create

a

myapp.o

file

in

the

current

working

directory.

Assume

that

you

also

changed

the

value

of

the

_XSUFFIX_HOST

environmental

variable

to

SDSNMACS.

You

use

the

following

c89

command

to

pre-link

and

link-edit

the

C

application:

c89

-W

l,p,map,noer

-W

l,dll,AMODE=31,map

-o

dsn8o3vp

dsn8o3vp.o

"//’DSN810.SDSNMACS(DSNAOCLI)’"

You

use

the

following

cxx

command

to

pre-link

and

link-edit

the

C++

application:

cxx

-W

l,p,map,noer

-W

l,dll,AMODE=31,map

-o

dsn8o3vp

dsn8o3vp.o

"//’DSN810.SDSNMACS(DSNAOCLI)’"

Step

3.

Execute

the

application

DB2

ODBC

applications

must

access

the

DSN810.SDSNLOAD

data

set

at

execution

time.

The

SDSNLOAD

data

set

contains

both

the

DB2

ODBC

dynamic

load

library

and

the

attachment

facility,

which

is

used

to

communicate

with

DB2.

In

addition,

the

DB2

ODBC

driver

accesses

the

DB2

UDB

for

z/OS

load

module

DSNHDECP.

DSNHDECP

contains

the

coded

character

set

ID

(CCSID)

information

that

DB2

UDB

for

z/OS

uses.

A

default

DSNHDECP

is

shipped

with

DB2

UDB

for

z/OS

in

the

DSN810.SDSNLOAD

data

set.

However,

if

the

values

provided

in

the

default

DSNHDECP

are

not

appropriate

for

your

site,

you

can

create

a

new

DSNHDECP

during

installation

of

DB2

UDB

for

z/OS.

If

you

create

a

site-specific

DSNHDECP

during

installation,

you

concatenate

the

data

set

that

contains

the

new

DSNHDECP

before

the

DSN810.SDSNLOAD

data

set

in

your

STEPLIB

or

JOBLIB

data

definition

statement.

For

an

example

of

an

execution

job,

see

the

DSNTEJ8

online

sample

in

DSN810.SDSNSAMP.

To

execute

a

DB2

ODBC

application

in

the

z/OS

UNIX

environment,

you

need

to

include

the

DSN810.SDSNEXIT

and

DSN810.SDSNLOAD

data

sets

in

the

data

set

concatenation

of

your

STEPLIB

environmental

variable.

The

STEPLIB

environmental

variable

can

be

set

in

your

.profile

file

with

the

following

statement:

export

STEPLIB=DSN810.SDSNEXIT:DSN810.SDSNLOAD

Defining

a

subsystem

You

can

define

a

DB2

subsystem

to

DB2

ODBC

in

two

different

ways.

You

can

identify

the

DB2

subsystem

by

specifying

the

MVSDEFAULTSSID

keyword

in

the

common

section

of

initialization

file.

If

the

MVSDEFAULTSSID

keyword

does

not

exist

in

the

initialization

file,

DB2

ODBC

uses

the

default

subsystem

name

specified

in

the

DSNHDECP

load

module

that

was

created

when

DB2

was

installed.

Therefore,

you

should

ensure

that

DB2

ODBC

can

find

the

intended

DSNHDECP

when

your

application

issues

the

SQLAllocHandle()

call

(with

HandleType

set

to

SQL_HANDLE_ENV).

The

DSNHDECP

load

module

is

usually

link-edited

into

the

DSN810.SDSNEXIT

data

set.

In

this

case,

your

STEPLIB

data

definition

statement

includes:

48

ODBC

Guide

and

Reference

//STEPLIB

DD

DSN=DSN810.SDSNEXIT,DISP=SHR

//

DD

DSN=DSN810.SDSNLOAD,DISP=SHR

...

DB2

ODBC

initialization

file

A

set

of

optional

keywords

can

be

specified

in

a

DB2

ODBC

initialization

file,

an

EBCDIC

file

that

stores

default

values

for

various

DB2

ODBC

configuration

options.

Because

the

initialization

file

has

EBCDIC

text,

it

can

be

updated

using

a

file

editor,

such

as

the

TSO

editor.

For

most

applications,

use

of

the

DB2

ODBC

initialization

file

is

not

necessary.

However,

to

make

better

use

of

IBM

RDBMS

features,

the

keywords

can

be

specified

to:

v

Help

improve

the

performance

or

usability

of

an

application.

v

Provide

support

for

applications

written

for

a

previous

version

of

DB2

ODBC.

v

Provide

specific

workarounds

for

existing

ODBC

applications.

The

following

sections

describe

how

to

create

the

initialization

file

and

define

the

keywords:

v

“Using

the

initialization

file”

v

“Initialization

keywords”

on

page

51

Using

the

initialization

file

The

DB2

ODBC

initialization

file

is

read

at

application

run

time.

The

file

can

be

specified

by

either

a

DSNAOINI

data

definition

statement

or

by

defining

a

DSNAOINI

z/OS

UNIX

environmental

variable.

DB2

ODBC

opens

the

DSNAOINI

data

set

allocated

in

your

JCL

first.

If

a

DSNAOINI

data

set

is

not

allocated,

then

DB2

ODBC

opens

the

environmental

variable

data

set.

The

initialization

file

specified

can

be

either

a

traditional

z/OS

data

set

or

an

HFS

file

under

the

z/OS

UNIX

environment.

For

z/OS

data

sets,

the

record

format

of

the

initialization

file

can

be

either

fixed

or

variable

length.

The

following

examples

use

a

DSNAOINI

JCL

data

definition

statement

to

specify

the

DB2

ODBC

initialization

file

types

supported:

Sequential

data

set

USER1.DB2ODBC.ODBCINI:

//DSNAOINI

DD

DSN=USER1.DB2ODBC.ODBCINI,DISP=SHR

Partitioned

data

set

USER1.DB2ODBC.DATA,

member

ODBCINI:

//DSNAOINI

DD

DSN=USER1.DB2ODBC.DATA(ODBCINI),DISP=SHR

Inline

JCL

DSNAOINI

DD

specification:

//DSNAOINI

DD

*

[COMMON]

MVSDEFAULTSSID=V61A

/*

HFS

file

/u/user1/db2odbc/odbcini:

//DSNAOINI

DD

PATH=’/u/user1/db2odbc/odbcini’

The

following

examples

of

z/OS

UNIX

export

statements

define

the

DB2

ODBC

DSNAOINI

z/OS

UNIX

environmental

variable

for

the

DB2

ODBC

initialization

file

types

supported:

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

49

HFS

fully

qualified

file

/u/user1/db2odbc/odbcini:

export

DSNAOINI="/u/user1/db2odbc/odbcini"

HFS

file

./db2odbc/odbcini,

relative

to

the

present

working

directory

of

the

application:

export

DSNAOINI="./db2odbc/odbcini"

Sequential

data

set

USER1.ODBCINI:

export

DSNAOINI="USER1.ODBCINI"

Redirecting

to

use

a

file

that

is

specified

by

another

previously

allocated

DD

statement,

MYDD:

export

DSNAOINI="//DD:MYDD"

Partitioned

data

set

USER1.DB2ODBC.DATA,

member

ODBCINI:

export

DSNAOINI="USER1.DB2ODBC.DATA(ODBCINI)"

When

specifying

an

HFS

file,

the

value

of

the

DSNAOINI

environmental

variable

must

begin

with

either

a

single

forward

slash

(/),

or

a

period

followed

by

a

single

forward

slash

(./).

If

a

setting

starts

with

any

other

characters,

DB2

ODBC

assumes

that

a

z/OS

data

set

name

is

specified.

Allocation

precedence:

DB2

ODBC

opens

the

DSNAOINI

data

set

allocated

in

your

JCL

first.

If

a

DSNAOINI

data

set

is

not

allocated,

then

DB2

ODBC

opens

the

environmental

variable

data

set.

Initialization

file

structure

The

initialization

file

consists

of

the

following

three

sections,

or

stanzas:

Common

section

Contains

parameters

that

are

global

to

all

applications

using

this

initialization

file.

Subsystem

section

Contains

parameter

values

unique

to

that

subsystem.

Data

source

sections

Contain

parameter

values

to

be

used

only

when

connected

to

that

data

source.

You

can

specify

zero

or

more

data

source

sections.

Each

section

is

identified

by

a

syntactic

identifier

enclosed

in

square

brackets.

Specific

guidelines

for

coding

square

brackets

are

described

in

the

list

item

below

marked

’Attention’.

The

syntactic

identifier

is

either

the

literal

'common',

the

subsystem

ID

or

the

data

source

(location

name).

For

example:

[data-source-name]

This

is

the

section

header.

The

parameters

are

set

by

specifying

a

keyword

with

its

associated

keyword

value

in

the

form:

KeywordName

=keywordValue

v

All

the

keywords

and

their

associated

values

for

each

data

source

must

be

located

below

the

data

source

section

header.

50

ODBC

Guide

and

Reference

v

The

keyword

settings

in

each

section

apply

only

to

the

data

source

name

in

that

section

header.

v

The

keywords

are

not

case

sensitive;

however,

their

values

can

be

if

the

values

are

character

based.

v

For

the

syntax

associated

with

each

keyword,

see

“Initialization

keywords.”

v

If

a

data

source

name

is

not

found

in

the

DB2

ODBC

initialization

file,

the

default

values

for

these

keywords

are

in

effect.

v

Comment

lines

are

introduced

by

having

a

semicolon

in

the

first

position

of

a

new

line.

v

Blank

lines

are

also

permitted.

If

duplicate

entries

for

a

keyword

exist,

the

first

entry

is

used

(and

no

warning

is

given).

Important:

You

can

avoid

common

errors

by

ensuring

that

the

following

contents

of

the

initialization

file

are

accurate:

v

Square

brackets:

The

square

brackets

in

the

initialization

file

must

consist

of

the

correct

EBCDIC

characters.

The

open

square

bracket

must

use

the

hexadecimal

characters

X'AD'.

The

close

square

bracket

must

use

the

hexadecimal

characters

X'BD'.

DB2

ODBC

does

not

recognize

brackets

if

coded

differently.

v

Sequence

numbers:

The

initialization

file

cannot

accept

sequence

numbers.

All

sequence

numbers

must

be

removed.

The

following

sample

is

a

DB2

ODBC

initialization

file

with

a

common

stanza,

a

subsystem

stanza,

and

two

data

source

stanzas.

;

This

is

a

comment

line...

;

Example

COMMON

stanza

[COMMON]

MVSDEFAULTSSID=V81A

;

Example

SUBSYSTEM

stanza

for

V81A

subsystem

[V81A]

MVSATTACHTYPE=CAF

PLANNAME=DSNACLI

;

Example

DATA

SOURCE

stanza

for

STLEC1

data

source

[STLEC1]

AUTOCOMMIT=0

CONNECTTYPE=2

;

Example

DATA

SOURCE

stanza

for

STLEC1B

data

source

[STLEC1B]

CONNECTTYPE=2

CURSORHOLD=0

Initialization

keywords

The

initialization

keywords

are

described

in

this

section.

The

section

(common,

subsystem,

or

data

source)

in

the

initialization

file

where

each

keyword

must

be

defined

is

identified.

APPLTRACE

=

0

|

1

This

keyword

is

placed

in

the

common

section.

The

APPLTRACE

keyword

controls

whether

the

DB2

ODBC

application

trace

is

enabled.

The

application

trace

is

designed

for

diagnosis

of

application

errors.

If

enabled,

every

call

to

any

DB2

ODBC

API

from

the

application

is

traced,

including

input

parameters.

The

trace

is

written

to

the

file

specified

on

the

APPLTRACEFILENAME

keyword.

0:

Disabled

(default)

1:

Enabled

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

51

For

more

information

about

using

the

APPLTRACE

keyword,

see

“Application

trace”

on

page

477.

Important:

This

keyword

was

renamed

in

Version

7.

DB2

ignores

the

Version

6

keyword

CLITRACE.

APPLTRACEFILENAME

=

dataset_name

This

keyword

is

placed

in

the

common

section.

APPLTRACEFILENAME

is

only

used

if

a

trace

is

started

by

the

APPLTRACE

keyword.

When

APPLTRACE

is

set

to

1,

use

the

APPLTRACEFILENAME

keyword

to

identify

a

z/OS

data

set

name

or

z/OS

UNIX

environment

HFS

file

name

that

records

the

DB2

ODBC

application

trace.

“Diagnostic

trace”

on

page

479

provides

detailed

information

about

specifying

file

name

formats.

Important:

This

keyword

was

renamed.

DB2

ignores

the

Version

6

keyword

TRACEFILENAME.

AUTOCOMMIT

=

1

|

0

This

keyword

is

placed

in

the

data

source

section.

To

be

consistent

with

ODBC,

DB2

ODBC

defaults

with

AUTOCOMMIT

on,

which

means

each

statement

is

treated

as

a

single,

complete

transaction.

This

keyword

can

provide

an

alternative

default,

but

is

only

used

if

the

application

does

not

specify

a

value

for

AUTOCOMMIT

as

part

of

the

program.

1:

on

(default)

0:

off

Most

ODBC

applications

assume

the

default

of

AUTOCOMMIT

is

on.

Extreme

care

must

be

used

when

overriding

this

default

during

run

time

as

the

application

might

depend

on

this

default

to

operate

properly.

Although

you

can

specify

only

two

different

values

for

this

keyword,

you

can

also

specify

whether

AUTOCOMMIT

is

enabled

in

a

distributed

unit

of

work

(DUW)

environment.

If

a

connection

is

part

of

a

coordinated

DUW,

and

AUTOCOMMIT

is

not

set,

the

default

does

not

apply;

implicit

commits

arising

from

autocommit

processing

are

suppressed.

If

AUTOCOMMIT

is

set

to

1,

and

the

connection

is

part

of

a

coordinated

DUW,

the

implicit

commits

are

processed.

This

can

result

in

severe

performance

degradations,

and

possibly

other

unexpected

results

elsewhere

in

the

DUW

system.

However,

some

applications

might

not

work

at

all

unless

this

is

enabled.

A

thorough

understanding

of

the

transaction

processing

of

an

application

is

necessary,

especially

applications

written

by

a

third

party,

before

applying

it

to

a

DUW

environment.

To

enable

global

transaction

processing

in

an

application,

specify

AUTOCOMMIT=0,

MULTICONTEXT=0,

and

MVSATTACHTYPE=RRSAF.

See

“Using

global

transactions”

on

page

405

for

more

information.

BITDATA

=

1

|

0

This

keyword

is

placed

in

the

data

source

section.

The

BITDATA

keyword

allows

you

to

specify

whether

ODBC

binary

data

types,

SQL_BINARY,

SQL_VARBINARY,

and

SQL_LONGVARBINARY,

and

SQL_BLOB

are

reported

as

binary

type

data.

IBM

DBMSs

support

columns

with

binary

data

types

by

defining

CHAR,

VARCHAR

and

LONG

VARCHAR

columns

with

the

FOR

BIT

DATA

attribute.

52

ODBC

Guide

and

Reference

Only

set

BITDATA

=

0

if

you

are

sure

that

all

columns

defined

as

FOR

BIT

DATA

or

BLOB

contain

only

character

data,

and

the

application

is

incapable

of

displaying

binary

data

columns.

1:

Report

FOR

BIT

DATA

and

BLOB

data

types

as

binary

data

types.

This

is

the

default.

0:

Disabled.

CLISCHEMA

=

schema_name

This

keyword

is

placed

in

the

data

source

section.

The

CLISCHEMA

keyword

lets

you

indicate

the

schema

of

the

DB2

ODBC

shadow

catalog

tables

or

views

to

search

when

you

issue

an

ODBC

catalog

function

call.

The

character

string

that

you

use

for

schema_name

must

not

exceed

128

bytes.

For

example,

if

you

specify

CLISCHEMA=PAYROLL,

the

ODBC

catalog

functions

that

normally

reference

DB2

catalog

tables

(SYSIBM

schema),

will

reference

the

following

views

of

the

DB2

ODBC

shadow

catalog

tables:

v

PAYROLL.COLUMNS

v

PAYROLL.TABLES

v

PAYROLL.COLUMNPRIVILEGES

v

PAYROLL.TABLEPRIVILEGES

v

PAYROLL.SPECIALCOLUMNS

v

PAYROLL.PRIMARYKEYS

v

PAYROLL.FOREIGNKEYS

v

PAYROLL.TSTATISTICS

v

PAYROLL.PROCEDURES

You

must

build

the

DB2

ODBC

shadow

catalog

tables

and

optional

views

before

using

the

CLISCHEMA

keyword.

If

this

keyword

is

not

specified,

the

ODBC

catalog

query

APIs

reference

the

DB2

(SYSIBM)

system

tables

by

default.

COLLECTIONID

=

collection_id

This

keyword

is

placed

in

the

data

source

section.

The

COLLECTIONID

keyword

allows

you

to

specify

the

collection

identifier

that

is

used

to

resolve

the

name

of

the

package

allocated

at

the

server.

This

package

supports

the

execution

of

subsequent

SQL

statements.

The

value

is

a

character

string

and

must

not

exceed

128

characters.

It

can

be

overridden

by

executing

the

SET

CURRENT

PACKAGESET

statement.

CONNECTTYPE

=

1

|

2

This

keyword

is

placed

in

the

common

section.

The

CONNECTTYPE

keyword

allows

you

to

specify

the

default

connection

type

for

all

connections

to

data

sources.

1:

Multiple

concurrent

connections,

each

with

its

own

commit

scope.

If

MULTICONTEXT=0

is

specified,

a

new

connection

might

not

be

added

unless

the

current

transaction

on

the

current

connection

is

on

a

transaction

boundary

(either

committed

or

rolled

back).

This

is

the

default.

2:

Coordinated

connections

where

multiple

data

sources

participate

under

the

same

distributed

unit

of

work.

CONNECTTYPE=2

is

ignored

if

MULTICONTEXT=1

is

specified.

CURRENTAPPENSCH

=

EBCDIC

|

UNICODE

|

ASCII

This

keyword

is

placed

in

the

common

section.

Use

the

CURRENTAPPENSCH

keyword

to

specify

which

encoding

scheme

(UNICODE,

EBCDIC,

or

ASCII)

the

ODBC

driver

uses

for

input

and

output

host

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

53

|
|

|

variable

data,

SQL

statements,

and

input

and

output

ODBC

API

character

string

arguments.

When

this

keyword

is

specified

in

the

initialization

file,

a

SET

CURRENT

APPLICATION

ENCODING

SCHEME

statement

is

sent

to

the

data

source

following

a

successful

connect.

If

this

keyword

is

not

present,

then

the

driver

will

assume

EBCDIC

as

the

default

application

encoding

scheme.

CURRENTFUNCTIONPATH

=

″’schema1’,

’schema2’

,...″

This

keyword

is

placed

in

the

data

source

section.

Use

the

CURRENTFUNCTIONPATH

keyword

to

define

the

path

that

resolves

unqualified

user-defined

functions,

distinct

types,

and

stored

procedure

references

that

are

used

in

dynamic

SQL

statements.

It

contains

a

list

of

one

or

more

schema

names,

which

are

used

to

set

the

CURRENT

PATH

special

register

using

the

SET

CURRENT

PATH

SQL

statement

upon

connection

to

the

data

source.

Each

schema

name

in

the

keyword

string

must

be

delimited

with

single

quotes

and

separated

by

commas.

The

entire

keyword

string

must

be

enclosed

in

double

quotes

and

must

not

exceed

2048

characters.

The

default

value

of

the

CURRENT

PATH

special

register

is:

"SYSIBM",

"SYSFUN",

"SYSPROC",

X

X

is

the

value

of

the

USER

special

register

as

a

delimited

identifier.

The

schemas

SYSIBM,

SYSFUN,

and

SYSPROC

do

not

need

to

be

specified.

If

any

of

these

schemas

is

not

included

in

the

current

path,

DB2

implicitly

assumes

each

schema

name

begins

the

path,

in

the

order

shown

above.

The

order

of

the

schema

names

in

the

path

determines

the

order

in

which

the

names

are

resolved.

For

more

detailed

information

about

schema

name

resolution,

see

DB2

SQL

Reference.

Unqualified

user-defined

functions,

distinct

types,

and

stored

procedures

are

searched

from

the

list

of

schemas

specified

in

the

CURRENTFUNCTIONPATH

setting

in

the

order

specified.

If

the

user-defined

function,

distinct

type,

or

stored

procedures

is

not

found

in

a

specified

schema,

the

search

continues

in

the

schema

specified

next

in

the

list.

For

example:

CURRENTFUNCTIONPATH="’USER01’,

’PAYROLL’,

’SYSIBM’,

’SYSFUN’,

’SYSPROC’"

This

example

of

CURRENTFUNCTIONPATH

settings

searches

schema

″USER01″,

followed

by

schema

″PAYROLL″,

followed

by

schema

″SYSIBM″,

and

so

on.

Although

the

SQL

statement

CALL

is

a

static

statement,

the

CURRENTFUNCTIONPATH

setting

affects

a

CALL

statement

if

the

stored

procedure

name

is

specified

with

a

host

variable

(making

the

CALL

statement

a

pseudo-dynamic

SQL

statement).

This

is

always

the

case

for

a

CALL

statement

processed

by

DB2

ODBC.

CURRENTSQLID

=

current_sqlid

This

keyword

is

placed

in

the

data

source

section.

The

CURRENTSQLID

keyword

is

valid

only

for

those

DB2

DBMSs

that

support

SET

CURRENT

SQLID

(such

as

DB2

UDB

for

z/OS).

If

this

keyword

is

present,

then

a

SET

CURRENT

SQLID

statement

is

sent

to

the

DBMS

after

a

successful

connect.

This

allows

users

and

the

application

to

name

SQL

objects

without

having

to

qualify

by

schema

name.

The

value

that

you

specify

for

current_sqlid

must

be

no

more

than

128

bytes.

Do

not

specify

this

keyword

if

you

are

binding

the

DB2

ODBC

packages

with

DYNAMICRULES(BIND).

54

ODBC

Guide

and

Reference

|
|

CURSORHOLD

=

1

|

0

This

keyword

is

placed

in

the

data

source

section.

The

CURSORHOLD

keyword

controls

the

effect

of

a

transaction

completion

on

open

cursors.

1:

Cursor

hold.

The

cursors

are

not

destroyed

when

the

transaction

is

committed.

This

is

the

default.

0:

Cursor

no

hold.

The

cursors

are

destroyed

when

the

transaction

is

committed.

Cursors

are

always

destroyed

when

transactions

are

rolled

back.

Specify

zero

for

this

keyword

to

improve

application

performance

when

both

the

following

conditions

are

true:

v

The

application

does

not

behave

dependently

on

SQL_CURSOR_COMMIT_BEHAVIOR

or

SQL_CURSOR_ROLLBACK_BEHAVIOR

information

that

SQLGetInfo()

returns.

v

The

application

does

not

require

cursors

to

be

preserved

from

one

transaction

to

the

next.

The

DBMS

operates

more

efficiently

as

resources

no

longer

need

to

be

maintained

after

the

end

of

a

transaction.

DBNAME

=

dbname

This

keyword

is

placed

in

the

data

source

section.

The

DBNAME

keyword

is

only

used

when

connecting

to

DB2

UDB

for

z/OS,

and

only

if

(base)

table

catalog

information

is

requested

by

the

application.

If

a

large

number

of

tables

exist

in

the

DB2

UDB

for

z/OS

subsystem,

a

dbname

can

be

specified

to

reduce

the

time

it

takes

for

the

database

to

process

the

catalog

query

for

table

information,

and

reduce

the

number

of

tables

returned

to

the

application.

The

value

of

the

dbname

keyword

maps

to

the

DBNAME

column

in

the

DB2

UDB

for

z/OS

catalog

tables.

If

no

value

is

specified,

or

if

views,

synonyms,

system

tables,

or

aliases

are

also

specified

using

TABLETYPE,

only

table

information

is

restricted;

views,

aliases,

and

synonyms

are

not

restricted

with

DBNAME.

This

keyword

can

be

used

in

conjunction

with

SCHEMALIST

and

TABLETYPE

to

further

limit

the

number

of

tables

for

which

information

is

returned.

DIAGTRACE

=

0

|

1

This

keyword

is

placed

in

the

common

section.

The

DIAGTRACE

keyword

lets

you

enable

the

DB2

ODBC

diagnostic

trace.

0:

The

DB2

ODBC

diagnostic

trace

is

not

enabled.

No

diagnostic

data

is

captured.

This

is

the

default.

You

can

enable

the

diagnostic

trace

using

the

DSNAOTRC

command

when

the

DIAGTRACE

keyword

is

set

to

0.

1:

The

DB2

ODBC

diagnostic

trace

is

enabled.

Diagnostic

data

is

recorded

in

the

application

address

space.

If

you

include

a

DSNAOTRC

data

definition

statement

in

your

job

or

TSO

logon

procedure

that

identifies

a

z/OS

data

set

or

a

z/OS

UNIX

environment

HFS

file

name,

the

trace

is

externalized

at

normal

program

termination.

You

can

format

the

trace

by

using

the

DSNAOTRC

trace

formatting

command.

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

55

|

For

more

information

about

using

the

DIAGTRACE

keyword

and

the

DSNAOTRC

command,

see

“Diagnostic

trace”

on

page

479.

Important:

This

keyword

was

renamed.

DB2

ignores

the

Version

6

keyword

TRACE.

DIAGTRACE_BUFFER_SIZE

=

buffer

size

This

keyword

is

placed

in

the

common

section.

The

DIAGTRACE_BUFFER_SIZE

keyword

controls

the

size

of

the

DB2

ODBC

diagnostic

trace

buffer.

This

keyword

is

only

used

if

a

trace

is

started

by

using

the

DIAGTRACE

keyword.

buffer

size

is

an

integer

value

that

represents

the

number

of

bytes

to

allocate

for

the

trace

buffer.

The

buffer

size

is

rounded

down

to

a

multiple

of

65536

(64K).

If

the

value

specified

is

less

than

65536,

then

65536

is

used.

The

default

value

for

the

trace

buffer

size

is

65536.

If

a

trace

is

active,

this

keyword

is

ignored.

Important:

DB2

ignores

the

Version

6

keyword

TRACE_BUFFER_SIZE.

DIAGTRACE_NO_WRAP

=

0

|

1

This

keyword

is

placed

in

the

common

section.

The

DIAGTRACE_NO_WRAP

keyword

controls

the

behavior

of

the

DB2

ODBC

diagnostic

trace

when

the

DB2

ODBC

diagnostic

trace

buffer

fills

up.

This

keyword

is

only

used

if

a

trace

is

started

by

the

DIAGTRACE

keyword.

0:

The

trace

table

is

a

wraparound

trace.

In

this

case,

the

trace

remains

active

to

capture

the

most

current

trace

records.

This

is

the

default.

1:

The

trace

stops

capturing

records

when

the

trace

buffer

fills.

The

trace

captures

the

initial

trace

records

that

were

written.

If

a

trace

is

active,

this

keyword

is

ignored.

Important:

This

keyword

was

renamed.

DB2

ignores

the

Version

6

keyword

name

TRACE_NO_WRAP.

GRAPHIC

=0

|

1

|

2

|

3

This

keyword

is

placed

in

the

data

source

section.

The

GRAPHIC

keyword

controls

whether

DB2

ODBC

reports

IBM

GRAPHIC

(double-byte

character

support)

as

one

of

the

supported

data

types

when

SQLGetTypeInfo()

is

called.

SQLGetTypeInfo()

lists

the

data

types

supported

by

the

data

source

for

the

current

connection.

These

are

not

native

ODBC

types

but

have

been

added

to

expose

these

types

to

an

application

connected

to

a

DB2

family

product.

0:

disabled

(default)

1:

enabled

2:

report

the

length

of

graphic

columns

returned

by

DESCRIBE

in

number

of

bytes

rather

than

DBCS

characters.

This

applies

to

all

DB2

ODBC

and

ODBC

functions

that

return

length

or

precision

either

on

the

output

argument

or

as

part

of

the

result

set.

3:

settings

1

and

2

combined;

that

is,

GRAPHIC=3

achieves

the

combined

effect

of

1

and

2.

The

default

is

that

GRAPHIC

is

not

returned

because

many

applications

do

not

recognize

this

data

type

and

cannot

provide

proper

handling.

MAXCONN

=

0

|

positive

number

This

keyword

is

placed

in

the

common

section.

56

ODBC

Guide

and

Reference

The

MAXCONN

keyword

is

used

to

specify

the

maximum

number

of

connections

allowed

for

each

DB2

ODBC

application

program.

This

can

be

used

by

an

administrator

as

a

governor

for

the

maximum

number

of

connections

established

by

each

application.

0:

can

be

used

to

represent

no

limit;

that

is,

an

application

is

allowed

to

open

up

as

many

connections

as

permitted

by

the

system

resources.

This

is

the

default.

positive

number:

set

the

keyword

to

any

positive

number

to

specify

the

maximum

number

of

connections

each

application

can

open.

This

parameter

limits

the

number

of

SQLConnect()

statements

that

the

application

can

successfully

issue.

In

addition,

if

the

application

is

executing

with

CONNECT

(type

1)

semantics,

then

this

value

specifies

the

number

of

logical

connections.

Only

one

physical

connection

to

either

the

local

DB2

subsystem

or

a

remote

DB2

subsystem

or

remote

DRDA-1

or

DRDA-2

server

is

made

at

one

time.

MULTICONTEXT

=

0

|

1

This

keyword

is

placed

in

the

common

section.

The

MULTICONTEXT

keyword

controls

whether

each

connection

in

an

application

can

be

treated

as

a

separate

unit

of

work

with

its

own

commit

scope

that

is

independent

of

other

connections.

0:

The

DB2

ODBC

code

does

not

create

an

independent

context

for

a

data

source

connection.

Connection

switching

among

multiple

data

sources

governed

by

the

CONNECTTYPE=1

rules

is

not

allowed

unless

the

current

transaction

on

the

current

connection

is

on

a

transaction

boundary

(either

committed

or

rolled

back).

This

is

the

default.

Specify

MULTICONTEXT=0

and

MVSATTACHTYPE=RRSAF

to

allow

an

ODBC

application

to

create

and

manage

its

own

contexts

using

the

z/OS

Context

Services.

With

these

services,

an

application

can

manage

its

own

contexts

outside

of

ODBC

with

each

context

operating

as

an

independent

unit

of

work.

DB2

ODBC

support

for

external

contexts

is

disabled

if

the

application

is

running

as

DB2

ODBC

stored

procedure.

See

“External

contexts”

on

page

440

for

more

information.

To

enable

global

transaction

processing

in

an

application,

specify

AUTOCOMMIT=0,

MULTICONTEXT=0,

and

MVSATTACHTYPE=RRSAF.

See

“Using

global

transactions”

on

page

405

for

more

information.

1:

The

DB2

ODBC

code

creates

an

independent

context

for

a

data

source

connection

at

the

connection

handle

level

when

SQLAllocHandle()

is

issued.

Each

connection

to

multiple

data

sources

is

governed

by

CONNECTTYPE=1

rules

and

is

associated

with

an

independent

DB2

thread.

Connection

switching

among

multiple

data

sources

is

not

prevented

due

to

the

commit

status

of

the

transaction;

an

application

can

use

multiple

connection

handles

without

having

to

perform

a

commit

or

rollback

on

a

connection

before

switching

to

another

connection

handle.

The

application

can

use

SQLGetInfo()

with

InfoType

set

to

SQL_MULTIPLE_ACTIVE_TXN

to

determine

whether

MULTICONTEXT=1

is

supported.

MULTICONTEXT=1

is

ignored

if

any

of

these

conditions

are

true:

v

The

application

created

a

DB2

thread

before

invoking

DB2

ODBC.

This

is

always

the

case

for

a

stored

procedure

using

DB2

ODBC.

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

57

|
|

v

The

application

created

and

switched

to

a

private

context

using

z/OS

Context

Services

before

invoking

DB2

ODBC.

v

The

application

started

a

unit

of

recovery

with

any

RRS

resource

manager

(for

example,

IMS)

before

invoking

DB2

ODBC.

v

MVSATTACHTYPE=CAF

is

specified

in

the

initialization

file.

v

The

operating

system

level

does

not

support

Unauthorized

Context

Services.

See

“DB2

ODBC

support

of

multiple

contexts”

on

page

435

for

more

details.

MVSATTACHTYPE

=

CAF

|

RRSAF

This

keyword

is

placed

in

the

subsystem

section.

The

MVSATTACHTYPE

keyword

is

used

to

specify

the

DB2

UDB

for

z/OS

attachment

type

that

DB2

ODBC

uses

to

connect

to

the

DB2

UDB

for

z/OS

address

space.

This

parameter

is

ignored

if

the

DB2

ODBC

application

is

running

as

a

DB2

UDB

for

z/OS

stored

procedure.

In

that

case,

DB2

ODBC

uses

the

attachment

type

that

was

defined

for

the

stored

procedure.

CAF:

DB2

ODBC

uses

the

DB2

UDB

for

z/OS

call

attachment

facility

(CAF).

This

is

the

default.

RRSAF:

DB2

ODBC

uses

the

DB2

UDB

for

z/OS

Resource

Recovery

Services

attachment

facility

(RRSAF).

Specify

MVSATTACHTYPE=RRSAF

and

MULTICONTEXT=0

to

allow

an

ODBC

application

to

create

and

manage

its

own

contexts

using

the

z/OS

Context

Services.

See

MULTICONTEXT=0

for

more

information.

For

transactions

on

a

global

connection,

specify

AUTOCOMMIT=0,

MULTICONTEXT=0,

and

MVSATTACHTYPE=RRSAF

to

complete

global

transaction

processing.

To

enable

global

transaction

processing

in

an

application,

specify

MVSATTACHTYPE=RRSAF,

AUTOCOMMIT=0,

and

MULTICONTEXT=0.

See

“Using

global

transactions”

on

page

405

for

more

information.

MVSDEFAULTSSID

=

ssid

This

keyword

is

placed

in

the

common

section.

The

MVSDEFAULTSSID

keyword

specifies

the

default

DB2

subsystem

to

which

the

application

is

connected

when

invoking

the

SQLAllocHandle()

function

(with

HandleType

set

to

SQL_HANDLE_ENV).

Specify

the

DB2

subsystem

name

or

group

attachment

name

(if

used

in

a

data

sharing

group)

to

which

connections

will

be

made.

The

default

subsystem

is

'DSN'.

OPTIMIZEFORNROWS

=

integer

This

keyword

is

placed

in

the

data

source

section.

The

OPTIMIZEFORNROWS

keyword

appends

the

″OPTIMIZE

FOR

n

ROWS″

clause

to

every

select

statement,

where

n

is

an

integer

larger

than

0.

The

default

action

is

not

to

append

this

clause.

For

more

information

about

the

effect

of

the

OPTIMIZE

FOR

n

ROWS

clause,

see

DB2

SQL

Reference.

PATCH2

=

patch

number

This

keyword

is

placed

in

the

data

source

section.

The

PATCH2

keyword

specifies

a

workaround

for

known

problems

with

ODBC

applications.

To

set

multiple

PATCH2

values,

list

the

values

sequentially,

58

ODBC

Guide

and

Reference

separated

by

commas.

For

example,

if

you

want

patches

300,

301,

and

302,

specify

PATCH2=

"300,301,302"

in

the

initialization

file.

The

valid

values

for

the

PATCH2

keyword

are:

0:

No

workaround

(default).

300

PATCH2=300

behavior:

SQLExecute()

and

SQLExecDirect()

will

return

SQL_NO_DATA_FOUND

instead

of

SQL_SUCCESS

when

SQLCODE=100.

In

this

case,

a

delete

or

update

affected

no

rows,

or

the

result

of

the

subselect

of

an

insert

statement

is

empty.

Table

10

explains

how

PATCH2

settings

affect

return

codes.

Table

10.

PATCH2

settings

and

SQL

return

codes

SQL

statement

SQLExecute()

and

SQLExecDirect()

return

value

A

searched

update

or

searched

delete

and

no

rows

satisfy

the

search

condition

v

SQL_SUCCESS

without

a

patch

(PATCH2=0)

v

SQL_NO_DATA_FOUND

with

a

patch

(PATCH2=300)

A

mass

delete

or

update

and

no

rows

satisfy

the

search

condition

v

SQL_SUCCESS_WITH_INFO

without

a

patch

(PATCH2=0)

v

SQL_NO_DATA_FOUND

with

a

patch

(PATCH2=300)

A

mass

delete

or

update

and

one

or

more

rows

satisfy

the

search

condition

SQL_SUCCESS_WITH_INFO

without

a

patch

(PATCH2=0)

or

with

a

patch

(PATCH2=300)

In

ODBC

3.0,

applications

do

not

need

to

set

the

patch

on.

ODBC

3.0

behavior

is

equivalent

to

setting

PATCH2=300.

PLANNAME

=

planname

This

keyword

is

placed

in

the

subsystem

section.

The

PLANNAME

keyword

specifies

the

name

of

the

DB2

UDB

for

z/OS

PLAN

that

was

created

during

installation.

A

PLAN

name

is

required

when

initializing

the

application

connection

to

the

DB2

UDB

for

z/OS

subsystem

which

occurs

during

the

processing

of

the

SQLAllocHandle()

call

(with

HandleType

set

to

SQL_HANDLE_ENV).

If

no

PLANNAME

is

specified,

the

default

value

DSNACLI

is

used.

SCHEMALIST

=

″’schema1’,

’schema2’

,...″

This

keyword

is

placed

in

the

data

source

section.

The

SCHEMALIST

keyword

specifies

a

list

of

schemas

in

the

data

source.

If

a

database

contains

a

large

number

of

tables,

you

can

specify

a

schema

list

to

reduce

the

time

it

takes

for

the

application

to

query

table

information

and

the

number

of

tables

listed

by

the

application.

Each

schema

name

is

case

sensitive,

must

be

delimited

with

single

quotes

and

separated

by

commas.

The

entire

string

must

also

be

enclosed

in

double

quotes,

for

example:

SCHEMALIST="’USER1’,’USER2’,USER3’"

For

DB2

UDB

for

z/OS,

CURRENT

SQLID

can

also

be

included

in

this

list,

but

without

the

single

quotes,

for

example:

SCHEMALIST="’USER1’,CURRENT

SQLID,’USER3’"

The

maximum

length

of

the

keyword

string

is

2048

bytes.

This

keyword

can

be

used

in

conjunction

with

DBNAME

and

TABLETYPE

to

further

limit

the

number

of

tables

for

which

information

is

returned.

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

59

|

SCHEMALIST

is

used

to

provide

a

more

restrictive

default

in

the

case

of

those

applications

that

always

give

a

list

of

every

table

in

the

DBMS.

This

improves

performance

of

the

table

list

retrieval

in

cases

where

the

user

is

only

interested

in

seeing

the

tables

in

a

few

schemas.

SYSSCHEMA

=

sysschema

This

keyword

is

placed

in

the

data

source

section.

This

keyword

is

placed

in

the

data

source

section.

The

value

that

you

specify

for

sysschema

must

be

no

longer

than

128

bytes.

The

SYSSCHEMA

keyword

indicates

an

alternative

schema

to

be

searched

in

place

of

the

SYSIBM

(or

SYSTEM,

QSYS2)

schemas

when

the

DB2

ODBC

and

ODBC

catalog

function

calls

are

issued

to

obtain

catalog

information.

Using

this

schema

name,

the

system

administrator

can

define

a

set

of

views

consisting

of

a

subset

of

the

rows

for

each

of

the

following

DB2

catalog

tables:

v

SYSCOLAUTH

v

SYSCOLUMNS

v

SYSDATABASE

v

SYSFOREIGNKEYS

v

SYSINDEXES

v

SYSKEYS

v

SYSPARMS

v

SYSRELS

v

SYSROUTINES

v

SYSSYNONYMS

v

SYSTABAUTH

v

SYSTABLES

For

example,

if

the

set

of

views

for

the

catalog

tables

are

in

the

ACME

schema,

the

view

for

SYSIBM.SYSTABLES

is

ACME.SYSTABLES,

and

SYSSCHEMA

should

then

be

set

to

ACME.

Defining

and

using

limited

views

of

the

catalog

tables

reduces

the

number

of

tables

listed

by

the

application,

which

reduces

the

time

it

takes

for

the

application

to

query

table

information.

If

no

value

is

specified,

the

default

is:

v

SYSIBM

on

DB2

UDB

for

z/OS

v

SYSTEM

on

DB2

for

VSE

&

VM

v

QSYS2

on

DB2

UDB

for

iSeries

This

keyword

can

be

used

in

conjunction

with

SCHEMALIST,

TABLETYPE

(and

DBNAME

on

DB2

UDB

for

z/OS)

to

further

limit

the

number

of

tables

for

which

information

is

returned.

TABLETYPE=″’TABLE’

|

,’ALIAS’

|

,’VIEW’

|

,

’SYSTEM

TABLE’

|

,’SYNONYM’″

This

keyword

is

placed

in

the

data

source

section.

The

TABLETYPE

keyword

specifies

a

list

of

one

or

more

table

types.

If

a

large

number

of

tables

are

defined

in

the

data

source,

you

can

specify

a

table

type

string

to

reduce

the

time

it

takes

for

the

application

to

query

table

information

and

the

number

of

tables

the

application

lists.

Any

number

of

the

values

can

be

specified,

but

each

type

must

be

delimited

with

single

quotes,

separated

by

commas,

and

in

upper

case.

The

entire

string

must

also

be

enclosed

in

double

quotes,

for

example:

TABLETYPE="’TABLE’,’VIEW’"

60

ODBC

Guide

and

Reference

|
|

This

keyword

can

be

used

in

conjunction

with

DBNAME

and

SCHEMALIST

to

further

limit

the

number

of

tables

for

which

information

is

returned.

TABLETYPE

is

used

to

provide

a

default

for

the

SQLTables()

call,

which

retrieves

a

list

of

tables,

views,

aliases,

and

synonyms

in

a

data

source.

If

the

application

does

not

specify

a

table

type

on

the

function

call,

and

this

keyword

is

not

used,

information

about

all

table

types

is

returned.

If

the

application

does

supply

a

value

for

the

szTableType

argument

on

the

function

call,

that

argument

value

overrides

this

keyword

value.

If

TABLETYPE

includes

any

value

other

than

TABLE,

then

the

DBNAME

keyword

setting

cannot

be

used

to

restrict

information

to

a

particular

DB2

UDB

for

z/OS

subsystem.

THREADSAFE=

1

|

0

This

keyword

is

placed

in

the

common

section.

The

THREADSAFE

keyword

controls

whether

DB2

ODBC

uses

POSIX

mutexes

to

make

the

DB2

ODBC

code

threadsafe

for

multiple

concurrent

or

parallel

Language

Environment

threads.

1:

The

DB2

ODBC

code

is

threadsafe

if

the

application

is

executing

in

a

POSIX(ON)

environment.

Multiple

Language

Environment

threads

in

the

process

can

use

DB2

ODBC.

The

threadsafe

capability

cannot

be

provided

in

a

POSIX(OFF)

environment.

This

is

the

default.

0:

The

DB2

ODBC

code

is

not

threadsafe.

This

reduces

the

overhead

of

serialization

code

in

DB2

ODBC

for

applications

that

are

not

multithreaded,

but

provides

no

protection

for

concurrent

Language

Environment

threads

in

applications

that

are

multithreaded.

TXNISOLATION

=

1

|

2

|

4

|

8

|

32

This

keyword

is

placed

in

the

data

source

section.

The

TXNISOLATION

keyword

sets

the

isolation

level

to:

1:

Read

uncommitted

(uncommitted

read)

2:

Read

committed

(cursor

stability)

(default)

4:

Repeatable

read

(read

stability)

8:

Serializable

(repeatable

read)

32:

(No

commit,

DB2

UDB

for

iSeries

only)

The

words

in

round

brackets

are

the

DB2

equivalents

for

SQL92

isolation

levels.

Note

that

″no

commit″

is

not

an

SQL92

isolation

level

and

is

supported

only

on

DB2

UDB

for

iSeries.

See

DB2

Application

Programming

and

SQL

Guide

for

more

information

about

isolation

levels.

UNDERSCORE

=

1

|

0

This

keyword

is

placed

in

the

data

source

section.

The

UNDERSCORE

keyword

specifies

whether

the

underscore

character

(_)

is

to

be

used

as

a

wildcard

character

(matching

any

one

character,

including

no

character),

or

to

be

used

as

itself.

This

parameter

only

affects

catalog

function

calls

that

accept

search

pattern

strings.

You

can

set

the

UNDERSCORE

keyword

to

the

following

settings:

1:

The

underscore

character

(_)

acts

as

a

wildcard

(default).

The

underscore

is

treated

as

a

wildcard

matching

any

one

character

or

none.

For

example,

two

tables

are

defined

as

follows:

CREATE

TABLE

"OWNER"."KEY_WORDS"

(COL1

INT)

CREATE

TABLE

"OWNER"."KEYWORDS"

(COL1

INT)

Chapter

3.

Configuring

DB2

ODBC

and

running

sample

applications

61

|

|

In

the

example

above,

SQLTables()

(the

DB2

ODBC

catalog

function

call

that

returns

table

information)

returns

both

the

″KEY_WORDS″

and

″KEYWORDS″

entries

if

″KEY_WORDS″

is

specified

in

the

table

name

search

pattern

argument.

0:

The

underscore

character

(_)

acts

as

itself.

The

underscore

is

treated

literally

as

an

underscore

character.

If

two

tables

are

defined

as

shown

in

the

example

above,

SQLTables()

returns

only

the

″KEY_WORDS″

entry

if

″KEY_WORDS″

is

specified

in

the

table

name

search

pattern

argument.

Setting

this

keyword

to

0

can

result

in

performance

improvement

in

those

cases

where

object

names

(owner,

table,

column)

in

the

data

source

contain

underscores.

DB2

ODBC

migration

considerations

When

you

migrate

from

the

DB2

UDB

for

z/OS

Version

7

ODBC

driver

to

the

DB2

UDB

for

z/OS

Version

8

ODBC

driver,

you

must

set

up

the

DB2

ODBC

run-time

environment

as

“Setting

up

the

DB2

ODBC

run-time

environment”

on

page

41

describes.

You

must

bind

the

Version

8

DB2

ODBC

DBRMs

to

each

data

source

you

want

to

migrate

to

the

DB2

UDB

for

z/OS

Version

8

ODBC

driver.

The

following

steps

summarize

the

migration

process:

1.

Bind

the

DBRMs

in

DSN810.SDSNDBRM

to

all

data

sources

to

which

your

ODBC

applications

connect.

Unlike

DB2

UDB

for

z/OS

Version

7

ODBC,

you

must

specify

ENCODING(EBCDIC)

when

you

bind

Version

8

ODBC

DBRMs

to

the

local

DB2

UDB

for

z/OS

subsystem.

“Bind

DBRMs

to

create

packages”

on

page

41

list

the

specific

DBRMs

you

must

bind

to

each

type

of

DB2

server.

2.

Create

at

least

one

DB2

plan.

Use

the

PKLIST

keyword

to

specify

all

the

packages

that

you

create

from

the

DBRMs

that

“Bind

DBRMs

to

create

packages”

on

page

41

lists.

The

online

bind

sample

is

available

in

DSN810.SDSNSAMP(DSNTIJCL).

It

is

strongly

recommended

that

you

use

this

bind

sample

as

a

guide

for

binding

DBRMs

to

packages

and

binding

an

application

plan.

“Setting

up

the

z/OS

UNIX

environment”

on

page

44

describes

special

considerations

for

the

z/OS

UNIX

environment.

62

ODBC

Guide

and

Reference

Chapter

4.

Functions

This

chapter

provides

a

description

of

each

DB2

ODBC

function.

Each

of

these

descriptions

include

the

following

sections.

v

Purpose

v

Syntax

v

Function

arguments

v

Usage

v

Return

codes

v

Diagnostics

v

Restrictions

v

References

Each

section

of

the

function

descriptions

is

described

below.

DB2

ODBC

deprecated

functions

(which

are

functions

that

new

DB2

ODBC

functions

replace)

include

only

the

purpose,

syntax,

and

function

arguments

sections.

For

more

information

about

deprecated

functions,

see

Appendix

E,

“Deprecated

functions,”

on

page

525.

Purpose

This

section

provides

a

brief

overview

of

the

function.

It

also

indicates

any

additional

functions

that

you

should

call

before

or

after

you

use

the

function

that

the

section

describes.1

This

section

also

contains

a

table

that

indicates

the

specifications

and

standards

to

which

the

function

conforms.

The

first

column

indicates

whether

the

function

is

included

in

the

ODBC

specification

and

identifies

the

first

ODBC

version

(1.0,

2.0,

or

3.0)

that

includes

the

specification

for

the

function.

The

second

column

indicates

whether

the

function

is

included

in

the

X/Open

CLI

CAE

specification,

and

the

third

column

indicates

if

the

function

is

included

in

the

ISO

CLI

standard.

Table

11

is

an

example

of

the

specifications

table

for

an

ODBC

3.0

function

that

is

included

in

both

the

X/Open

CLI

CAE

specification

and

the

ISO

CLI

standard.

Table

11.

Sample

function

specification

table

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

Some

functions

use

a

set

of

attributes

that

do

not

apply

to

all

specifications

or

standards.

The

restrictions

section

identifies

any

significant

differences

between

these

specifications

and

the

DB2

ODBC

implementation.

Syntax

This

section

contains

the

generic

C

language

prototype

for

the

function.

If

the

function

is

defined

by

ODBC

3.0,

the

prototype

is

identical

to

that

specified

in

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer's

Reference.

All

function

arguments

that

are

pointers

are

defined

using

the

FAR

macro.

This

macro

is

defined

out

(set

to

a

blank).

This

is

consistent

with

the

ODBC

specification.

Function

arguments

This

section

lists

each

function

argument,

along

with

its

data

type,

a

description

and

a

indication

of

whether

it

is

an

input

or

output

argument.

1. For

functions

that

are

deprecated

in

DB2

ODBC,

the

purpose

section

directs

you

to

the

current

DB2

ODBC

function.

©

Copyright

IBM

Corp.

1997,

2004

63

Only

SQLGetInfo()

and

SQLBindParameter()

use

parameters

for

both

input

and

output.

Some

functions

use

input

or

output

arguments

that

are

known

as

deferred

or

bound

arguments.

These

arguments

are

pointers

to

buffers

that

you

allocate

in

your

application

and

associate

with

(or

bind

to)

either

a

parameter

in

an

SQL

statement

or

a

column

in

a

result

set.

DB2

ODBC

accesses

these

buffers

when

you

execute

the

SQL

statement

or

retrieve

the

result

set

to

which

the

deferred

arguments

are

bound.

Important:

For

input

arguments,

ensure

that

deferred

data

areas

contain

valid

data

when

you

execute

a

statement

that

requires

these

values.

For

output

arguments,

ensure

that

deferred

data

areas

remain

allocated

until

you

finish

retrieving

results.

Usage

This

section

provides

information

about

how

to

use

the

function

and

any

special

considerations.

Possible

error

conditions

are

not

discussed

here;

this

information

is

listed

in

the

diagnostics

section.

Return

codes

This

section

lists

all

the

possible

function

return

codes.

When

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO

is

returned,

you

can

obtain

error

information

by

calling

SQLGetDiagRec().2

See

“Diagnostics”

on

page

22

for

more

information

about

return

codes.

Diagnostics

This

section

contains

a

table

that

lists

the

SQLSTATEs

that

are

explicitly

returned

by

DB2

ODBC

and

indicates

the

cause

of

the

error.

(DB2

ODBC

can

also

return

SQLSTATEs

that

the

DBMS

generates.)

To

obtain

these

SQLSTATEs,

call

SQLGetDiagRec()

on

a

function

that

returns

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO.2

See

“Diagnostics”

on

page

22

for

more

information

about

diagnostics.

Restrictions

This

section

indicates

any

differences

or

limitations

between

DB2

ODBC

and

ODBC

that

can

affect

an

application.2

Example

This

section

contains

a

code

fragment

that

demonstrates

the

use

of

the

function,

using

the

generic

data

type

definitions.2

See

Chapter

3,

“Configuring

DB2

ODBC

and

running

sample

applications,”

on

page

39

for

more

information

about

setting

up

the

DB2

ODBC

environment

and

accessing

the

sample

applications.

Related

functions

This

section

lists

DB2

ODBC

functions

that

are

related

to

calls

to

the

function

that

is

described.2

Function

overview

Table

12

provides

a

complete

list

of

functions,

which

are

divided

by

task,

that

DB2

ODBC

and

Microsoft

ODBC

3.0

support.

For

each

function,

the

table

indicates

the

ODBC

3.0

conformance

level,

DB2

ODBC

support,

and

a

brief

description.

The

ODBC

3.0

column

contains

the

following

values:

2. This

section

does

not

appear

in

the

descriptions

of

functions

that

are

deprecated

in

DB2

ODBC.

64

ODBC

Guide

and

Reference

No

Indicates

that

the

function

is

not

supported

by

ODBC

3.0.

Depr

Indicates

that

the

function

is

supported

but

deprecated

in

ODBC

3.0.

Core

Indicates

that

the

function

is

part

of

the

ODBC

3.0

Core

conformance

level.

Lvl

1

Indicates

that

the

function

is

part

of

the

ODBC

3.0

Level

1

conformance

level.

Lvl

2

Indicates

that

the

function

is

part

of

the

ODBC

3.0

Level

2

conformance

level.

The

DB2

ODBC

support

column

contains

the

following

values:

No

Indicates

that

the

function

is

not

supported

by

DB2

ODBC.

Depr

Indicates

that

the

function

is

supported

but

deprecated

in

DB2

ODBC.

Current

Indicates

that

the

function

is

current

for

DB2

ODBC.

A

current

function

is

supported

by

DB2

ODBC

and

is

not

deprecated

by

another

DB2

ODBC

function.

A

function

that

is

deprecated

in

ODBC

3.0

is

not

necessarily

deprecated

in

DB2

ODBC.

See

Appendix

E,

“Deprecated

functions,”

on

page

525

for

more

information

about

deprecated

functions.

Table

12.

Function

list

by

category

Function

name

divided

by

task

ODBC

3.0

DB2

ODBC

Purpose

Connecting

to

a

data

source

SQLAllocConnect()

Depr

Depr

Obtains

a

connection

handle.

SQLAllocEnv()

Depr

Depr

Obtains

an

environment

handle.

One

environment

handle

is

used

for

one

or

more

connections.

SQLAllocHandle()

Core

Current

Obtains

a

handle.

SQLBrowseConnect()

Lvl

1

No

Returns

successive

levels

of

connection

attributes

and

valid

attribute

values.

When

a

value

is

specified

for

each

connection

attribute,

this

function

connects

to

the

data

source.

SQLConnect()

Core

Current

Connects

a

to

specific

driver

by

data

source

name,

user

ID,

and

password.

SQLDriverConnect()

Core

Current

Connects

to

a

specific

driver

with

a

connection

string.

IBM

specific:

This

function

is

also

extended

with

the

additional

IBM

keywords

that

are

supported

in

the

ODBC.INI

file

in

the

DB2

UDB

CLI

environment.

Within

the

DB2

UDB

for

z/OS

ODBC

environment,

the

ODBC.INI

file

has

no

equivalent.

SQLSetConnection()

No

Current

Connects

to

a

specific

data

source

by

connection

string.

Obtaining

information

about

a

driver

and

data

source

SQLDataSources()

Core

Current

Returns

the

list

of

available

data

sources.

Chapter

4.

Functions

65

|

|

|

Table

12.

Function

list

by

category

(continued)

Function

name

divided

by

task

ODBC

3.0

DB2

ODBC

Purpose

SQLDrivers()

Core

No

Returns

the

list

of

installed

drivers

and

their

attributes

(ODBC

2.0).

This

function

is

implemented

within

the

ODBC

driver

manager

and

is

therefore

not

applicable

within

the

DB2

UDB

for

z/OS

ODBC

environment.

SQLGetFunctions()

Core

Current

Returns

supported

driver

functions.

SQLGetInfo()

Core

Current

Returns

information

about

a

specific

driver

and

data

source.

SQLGetTypeInfo()

Core

Current

Returns

information

about

supported

data

types.

Setting

and

retrieving

driver

attributes

SQLGetConnectAttr()

Core

Current

Returns

the

value

of

a

connection

attribute.

SQLGetConnectOption()

Depr

Depr

Returns

the

value

of

a

connection

attribute.

SQLGetEnvAttr()

Core

Current

Returns

the

value

of

an

environment

attribute.

SQLGetStmtAttr()

Core

Current

Returns

the

value

of

a

statement

attribute.

SQLGetStmtOption()

Depr

Depr

Returns

the

value

of

a

statement

attribute.

SQLSetConnectAttr()

Core

Current

Sets

a

connection

attribute.

SQLSetConnectOption()

Depr

Depr

Sets

a

connection

attribute.

SQLSetEnvAttr()

Core

Current

Sets

an

environment

attribute.

SQLSetStmtAttr()

Core

Current

Sets

a

statement

attribute.

SQLSetStmtOption()

Depr

Depr

Sets

a

statement

attribute.

Setting

and

retrieving

descriptor

fields

SQLCopyDesc()

Core

No

Copies

descriptor

fields.

SQLGetDescField()

Core

No

Returns

the

value

or

current

setting

of

a

single

descriptor

field.

SQLGetDescRec()

Core

No

Returns

the

values

or

current

settings

of

multiple

descriptor

fields.

SQLSetDescField()

Core

No

Sets

the

value

or

setting

for

a

single

descriptor

field.

SQLSetDescRec()

Core

No

Sets

the

values

or

settings

for

multiple

descriptor

fields.

Preparing

SQL

requests

SQLAllocStmt()

Depr

Depr

Allocates

a

statement

handle.

SQLBindParameter()

Core

Current

Assigns

storage

for

a

parameter

in

an

SQL

statement

(ODBC

2.0).

SQLGetCursorName()

Core

Current

Returns

the

cursor

name

that

is

associated

with

a

statement

handle.

SQLParamOptions()

Depr

Current

Specifies

the

use

of

multiple

values

for

parameters.

In

ODBC

3.0,

SQLSetStmtAttr()

replaces

this

function.

SQLPrepare()

Core

Current

Prepares

an

SQL

statement

for

subsequent

execution.

SQLSetCursorName()

Core

Current

Specifies

a

cursor

name.

SQLSetParam()

Depr

Depr

Assigns

storage

for

a

parameter

in

an

SQL

statement

(ODBC

2.0).

In

ODBC

3.0,

SQLBindParameter()

replaces

this

function.

66

ODBC

Guide

and

Reference

|

|

|

|

|

|

|

|

||||
|

|

|

|

|

|
|
|

|

Table

12.

Function

list

by

category

(continued)

Function

name

divided

by

task

ODBC

3.0

DB2

ODBC

Purpose

SQLSetScrollOptions()

Depr

No

Sets

attributes

that

control

cursor

behavior.

In

ODBC

3.0,

SQLGetInfo()

and

SQLSetStmtAttr()

replace

this

function.

Submitting

requests

SQLDescribeParam()

1

Core

Current

Returns

the

description

for

a

specific

input

parameter

in

a

statement.

SQLExecDirect()

Core

Current

Executes

a

statement.

SQLExecute()

Core

Current

Executes

a

prepared

statement.

SQLNativeSql()

Core

Current

Returns

the

text

of

an

SQL

statement

as

translated

by

the

driver.

SQLNumParams()

Core

Current

Returns

the

number

of

parameters

in

a

statement.

SQLParamData()

Core

Current

Used

in

conjunction

with

SQLPutData()

supplies

parameter

data

at

execution

time.

(Useful

for

long

data

values.)

SQLPutData()

Core

Current

Sends

part

or

all

of

a

data

value

for

a

parameter.

(This

function

is

useful

for

long

data

values.)

Retrieving

results

and

information

about

results

SQLBindCol()

Core

Current

Assigns

storage

for

a

result

column

and

specifies

the

data

type.

SQLBulkOperations()

Lvl

1

No

Performs

bulk

inserts

and

bookmark

operations.

SQLColAttribute()

Core

Current

Describes

attributes

of

a

column

in

the

result

set.

SQLColAttributes()

Depr

Depr

Describes

attributes

of

a

column

in

the

result

set.

SQLDescribeCol()

Core

Current

Describes

a

column

in

the

result

set.

SQLError()

Depr

Depr

Returns

additional

error

or

status

information.

SQLExtendedFetch()

Depr

Current

Returns

multiple

result

rows.

SQLFetch()

Core

Current

Returns

a

result

row.

SQLFetchScroll()

Core

No

Returns

row

sets

that

are

specified

by

absolute

or

relative

position

or

by

bookmark.

SQLGetData()

Core

Current

Returns

part

or

all

of

one

column

of

one

row

of

a

result

set.

(This

function

is

useful

for

long

data

values.)

SQLGetDiagRec()

Core

Current

Returns

additional

diagnostic

information.

SQLGetSQLCA()

No

Current

Returns

the

SQLCA

that

is

associated

with

a

statement

handle.

SQLMoreResults()

Lvl

1

Current

Determines

whether

more

result

sets

are

available

and,

if

so,

initializes

processing

for

the

next

result

set.

SQLNumResultCols()

Core

Current

Returns

the

number

of

columns

in

the

result

set.

SQLRowCount()

Core

Current

Returns

the

number

of

rows

that

are

affected

by

an

insert,

update,

or

delete

request.

SQLSetColAttributes()

No

Current

Sets

attributes

of

a

column

in

the

result

set.

SQLSetPos()

Lvl

1

No

Positions

a

cursor

within

a

fetched

block

of

data.

Handling

large

objects

Chapter

4.

Functions

67

||
|
|

|

|

|

|

|

|

|

|

|

|

|

|

Table

12.

Function

list

by

category

(continued)

Function

name

divided

by

task

ODBC

3.0

DB2

ODBC

Purpose

SQLGetLength()

No

Current

Gets

the

length,

in

bytes,

of

a

string

that

is

referenced

by

a

LOB

locator.

SQLGetPosition()

No

Current

Gets

the

position

of

a

string

within

a

source

string

that

is

referenced

by

a

LOB

locator.

SQLGetSubString()

No

Current

Creates

a

new

LOB

locator

that

references

a

substring

within

a

source

string.

(The

source

string

is

also

represented

by

a

LOB

locator.)

Obtaining

information

from

the

catalog

SQLColumnPrivileges()

Lvl

2

Current

Returns

a

list

of

columns

and

associated

privileges

for

a

table.

SQLColumns()

Core

Current

Returns

the

list

of

column

names

in

specified

tables.

SQLForeignKeys()

Lvl

2

Current

Returns

a

list

of

column

names

that

comprise

foreign

keys,

if

they

exist,

for

a

specified

table.

SQLPrimaryKeys()

Lvl

1

Current

Returns

the

list

of

column

names

that

comprise

the

primary

key

for

a

table.

SQLProcedureColumns()

Lvl

1

Current

Returns

the

list

of

input

and

output

parameters,

as

well

as

the

columns

that

make

up

the

result

set

for

the

specified

procedures.

SQLProcedures()

Lvl

1

Current

Returns

the

list

of

procedure

names

that

are

stored

in

a

specific

data

source.

SQLSpecialColumns()

Core

Current

Returns

information

about

the

optimal

set

of

columns

that

uniquely

identifies

a

row

in

a

specified

table,

or

identifies

the

columns

that

are

automatically

updated

when

any

value

in

the

row

is

updated

by

a

transaction.

SQLStatistics()

Core

Current

Returns

statistics

about

a

single

table

and

the

list

of

indexes

that

are

associated

with

the

table.

SQLTablePrivileges()

Lvl

2

Current

Returns

a

list

of

tables

and

the

privileges

that

are

associated

with

each

table.

SQLTables()

Core

Current

Returns

the

list

of

table

names

that

are

stored

in

a

specific

data

source.

Terminating

a

statement

SQLCancel()

Core

Current

Cancels

an

SQL

statement.

SQLCloseCursor()

Core

Current

Closes

a

cursor

that

has

been

opened

on

a

statement

handle.

SQLEndTran()

Core

Current

Commits

or

rolls

back

a

transaction.

SQLFreeStmt()

Core

Current

Ends

statement

processing,

closes

the

associated

cursor,

discards

pending

results,

and,

optionally,

frees

all

resources

that

are

associated

with

the

statement

handle.

SQLTransact()

Depr

Depr

Commits

or

rolls

back

a

transaction.

Terminating

a

connection

SQLDisconnect()

Core

Current

Closes

the

connection.

SQLFreeConnect()

Depr

Depr

Releases

the

connection

handle.

SQLFreeEnv()

Depr

Depr

Releases

the

environment

handle.

68

ODBC

Guide

and

Reference

|

|

|

|

|

|

|

Table

12.

Function

list

by

category

(continued)

Function

name

divided

by

task

ODBC

3.0

DB2

ODBC

Purpose

SQLFreeHandle()

Core

Current

Releases

an

environment,

connection,

statement,

or

descriptor

handle.

The

following

ODBC

3.0

functions

are

not

supported

by

DB2

ODBC:

v

SQLBrowseConnect().

v

SQLBulkOperations().

v

SQLCopyDesc().

DB2

ODBC

does

not

support

descriptor

fields.

v

SQLDrivers().

This

function

is

implemented

by

the

ODBC

driver

manager

which

does

not

apply

to

DB2

ODBC.

v

SQLFetchScroll().

DB2

ODBC

does

not

support

scrollable

cursors.

SQLExtendedFetch()

retrieves

multiple

result

sets

in

DB2

ODBC.

v

SQLGetDescField().

DB2

ODBC

does

not

support

descriptor

fields.

v

SQLGetDescRec().

DB2

ODBC

does

not

support

descriptor

fields.

v

SQLSetDescField().

DB2

ODBC

does

not

support

descriptor

fields.

v

SQLSetDescRec().

DB2

ODBC

does

not

support

descriptor

fields.

v

SQLSetPos().

v

SQLSetScrollOptions().

It

is

superseded

by

the

SQL_ATTR_CURSOR_TYPE,

SQL_ATTR_CONCURRENCY,

SQL_KEYSET_SIZE,

and

SQL_ATTR_ROWSET_SIZE

statement

attributes.

Chapter

4.

Functions

69

|

|
|

|

SQLAllocConnect()

-

Allocate

a

connection

handle

Purpose

Table

13.

SQLAllocConnect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLAllocHandle()

replaces

SQLAllocConnect().

See

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

for

more

information.

Although

DB2

ODBC

supports

SQLAllocConnect()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLAllocConnect()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLAllocConnect

(SQLHENV

henv,

SQLHDBC

FAR

*phdbc);

Function

arguments

Table

14

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

14.

SQLAllocConnect()

arguments

Data

type

Argument

Use

Description

SQLHENV

henv

input

Environment

handle

SQLHDBC

*

phdbc

output

Pointer

to

a

connection

handle

SQLAllocConnect()

-

Allocate

a

connection

handle

70

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

SQLAllocEnv()

-

Allocate

an

environment

handle

Purpose

Table

15.

SQLAllocEnv()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLAllocHandle()

replaces

SQLAllocEnv().

See

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

for

more

information.

Although

DB2

ODBC

supports

SQLAllocEnv()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLAllocEnv()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLAllocEnv

(SQLHENV

FAR

*phenv);

Function

arguments

Table

16

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

16.

SQLAllocEnv()

arguments

Data

type

Argument

Use

Description

SQLHENV

*

phenv

output

Points

to

the

environment

handle

that

you

allocate.

SQLAllocEnv()

-

Allocate

an

environment

handle

Chapter

4.

Functions

71

www.ibm.com/software/data/db2/zos/library.html

SQLAllocHandle()

-

Allocate

a

handle

Purpose

Table

17.

SQLAllocHandle()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLAllocHandle()

allocates

an

environment

handle,

a

connection

handle,

or

a

statement

handle.

Syntax

SQLRETURN

SQLAllocHandle

(SQLSMALLINT

HandleType,

SQLHANDLE

InputHandle,

SQLHANDLE

*OutputHandlePtr);

Function

arguments

Table

18

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

18.

SQLAllocHandle()

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Specifies

the

type

of

handle

that

you

want

to

allocate.

Set

this

argument

to

one

of

the

following

values:

v

SQL_HANDLE_ENV

for

an

environment

handle

v

SQL_HANDLE_DBC

for

a

connection

handle

v

SQL_HANDLE_STMT

for

a

statement

handle

SQLHANDLE

InputHandle

input

Specifies

the

handle

from

which

you

allocate

the

new

handle.

You

set

a

different

value

for

this

argument

depending

on

what

type

of

handle

you

allocate.

Set

the

InputHandle

argument

to

one

of

the

following

values:

v

SQL_NULL_HANDLE

(or

ignore

this

argument)

if

you

are

allocating

an

environment

handle

v

To

the

environment

handle

if

you

are

allocating

a

connection

handle

v

To

a

connection

handle

if

you

are

allocating

a

statement

handle

SQLHANDLE

*

OutputHandlePtr

output

Points

to

the

buffer

in

which

SQLAllocHandle()

returns

the

newly

allocated

handle.

Usage

Use

SQLAllocHandle()

to

allocate

an

environment

handle,

connection

handles,

and

statement

handles.

v

Allocating

an

environment

handle

An

environment

handle

provides

access

to

global

information.

To

request

an

environment

handle

in

your

application,

call

SQLAllocHandle()

with

the

HandleType

argument

set

to

SQL_HANDLE_ENV

and

the

InputHandle

argument

set

to

SQL_NULL_HANDLE.

(InputHandle

is

ignored

when

you

allocate

an

environment

handle.)

DB2

ODBC

allocates

the

environment

handle

and

passes

SQLAllocHandle()

-

Allocate

a

handle

72

ODBC

Guide

and

Reference

the

value

of

the

associated

handle

to

the

*OutputHandlePtr

argument.

Your

application

passes

the

*OutputHandle

value

in

all

subsequent

calls

that

require

an

environment

handle

argument.

When

you

call

SQLAllocHandle()

to

request

an

environment

handle,

the

DB2

ODBC

3.0

driver

implicitly

sets

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC3.

See

“ODBC

3.0

driver

behavior”

on

page

527

for

more

information

about

the

SQL_ATTR_ODBC_VERSION

environment

attribute.

When

you

allocate

an

environment

handle,

the

DB2

ODBC

3.0

driver

checks

the

trace

keywords

in

the

common

section

of

the

DB2

ODBC

initialization

file.

If

these

keywords

are

set,

DB2

ODBC

enables

tracing.

DB2

ODBC

ends

tracing

when

you

free

the

environment

handle.

See

“DB2

ODBC

initialization

file”

on

page

49

and

Chapter

6,

“Problem

diagnosis,”

on

page

477

for

more

information.

The

DB2

ODBC

3.0

driver

does

not

support

multiple

environments.

See

“Restrictions”

on

page

75.

v

Allocating

a

connection

handle

A

connection

handle

provides

access

to

information

such

as

the

valid

statement

handles

on

the

connection

and

an

indication

of

whether

a

transaction

is

currently

open.

To

request

a

connection

handle,

call

SQLAllocHandle()

with

the

HandleType

argument

set

to

SQL_HANDLE_DBC.

Set

the

InputHandle

argument

to

the

current

environment

handle.

DB2

ODBC

allocates

the

connection

handle

and

returns

the

value

of

the

associated

handle

in

*OutputHandlePtr.

Pass

the

*OutputHandlePtr

in

all

subsequent

function

calls

that

require

this

connection

handle

as

an

argument.

You

can

allocate

multiple

connection

handles

from

the

context

of

a

single

environment

handle.

v

Allocating

a

statement

handle

A

statement

handle

provides

access

to

statement

information,

such

as

messages,

the

cursor

name,

and

status

information

about

SQL

statement

processing.

To

request

a

statement

handle,

connect

to

a

data

source

and

then

call

SQLAllocHandle().

You

must

allocate

a

statement

handle

before

you

submit

SQL

statements.

In

this

call,

set

the

HandleType

argument

to

SQL_HANDLE_STMT.

Set

the

InputHandle

argument

to

the

connection

handle

that

is

associated

with

the

connection

on

which

you

want

to

execute

SQL.

DB2

ODBC

allocates

the

statement

handle,

associates

the

statement

handle

with

the

connection

specified,

and

returns

the

value

of

the

associated

handle

in

*OutputHandlePtr.

Pass

the

*OutputHandlePtr

value

in

all

subsequent

function

calls

that

require

this

statement

handle

as

an

argument.

You

can

allocate

multiple

statement

handles

from

the

context

of

a

single

connection

handle.

v

Managing

handles

Your

DB2

ODBC

applications

can

allocate

multiple

connection

handles

and

multiple

statement

handles

at

the

same

time.

You

can

allocate

multiple

connection

handles

and

make

multiple

connections

only

when

one

or

more

of

the

following

conditions

are

true:

–

The

connection

type

is

set

to

coordinated

–

Multiple

contexts

are

enabled

–

You

use

multiple

Language

Environment

threads

If

you

attempt

to

allocate

multiple

connection

handles

when

none

of

these

conditions

are

true,

the

DB2

ODBC

driver

will

return

SQLSTATE

08001.

DB2

ODBC

3.0

driver

applications

can

also

use

the

same

environment

handle,

connection

handle,

or

statement

handle

on

multiple

threads.

DB2

ODBC

provides

SQLAllocHandle()

-

Allocate

a

handle

Chapter

4.

Functions

73

threadsafe

access

for

all

handles

and

function

calls.

Each

connection

within

a

single

Language

Environment

thread

maintains

its

own

unit

of

recovery.

For

applications

that

use

more

than

one

Language

Environment

thread,

you

must

coordinate

units

of

recovery

and

manage

DB2

ODBC

resources

among

Language

Environment

threads.

Your

application

might

behave

unpredictably

if

your

application

does

not

perform

this

task.

For

example,

if

you

call

ODBC

functions

on

different

threads

for

the

same

connection

simultaneously,

the

order

in

which

these

functions

are

executed

at

the

database

is

unpredictable.

See

“Writing

multithreaded

and

multiple-context

applications”

on

page

433

for

more

information.

Attention:

If

you

call

SQLAllocHandle()

with

*OutputHandlePtr

set

to

a

connection

or

statement

handle

that

you

previously

allocated,

DB2

ODBC

overwrites

all

information

that

is

associated

with

that

handle.

DB2

ODBC

does

not

check

whether

the

handle

that

is

entered

in

*OutputHandlePtr

is

in

use,

nor

does

DB2

ODBC

check

the

previous

contents

of

a

handle

before

it

overwrites

the

contents

of

that

handle.

Return

codes

After

you

call

SQLAllocHandle(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

each

return

code

value,

see

“Function

return

codes”

on

page

23.

Diagnostics

The

way

that

you

retrieve

diagnostic

information

from

SQLAllocHandle()

depends

on

what

type

of

handle

you

allocate.

To

retrieve

diagnostic

information

from

SQLAllocHandle(),

you

need

to

consider

the

following

types

of

errors

when

you

attempt

to

allocate

a

handle:

Environment

handle

allocation

errors:

When

you

receive

an

error

while

allocating

an

environment

handle,

the

value

to

which

the

OutputHandlePtr

argument

points

determines

if

you

can

use

SQLGetDiagRec()

to

retrieve

diagnostic

information.

One

of

the

following

cases

occurs

when

you

fail

to

allocate

an

environment

handle:

v

The

OutputHandlePtr

argument

points

to

SQL_NULL_HENV

when

SQLAllocHandle()

returns

SQL_ERROR.

In

this

case,

you

cannot

call

SQLGetDiagRec()

to

retrieve

information

about

this

error.

Because

no

handle

is

associated

with

the

error,

you

cannot

retrieve

information

about

that

error.

v

The

OutputHandlePtr

argument

points

to

a

value

other

than

SQL_NULL_HENV

when

SQLAllocHandle()

returns

SQL_ERROR.

In

this

case,

the

value

to

which

the

OutputHandlePtr

argument

points

becomes

a

restricted

environment

handle.

You

can

use

a

handle

in

this

restricted

state

only

to

call

SQLGetDiagRec()

to

obtain

more

error

information

or

to

call

SQLFreeHandle()

to

free

the

restricted

handle.

Connection

or

statement

handle

allocation

errors:

When

you

allocate

a

connection

or

statement

handle,

you

can

retrieve

the

following

types

of

information:

v

When

SQLAllocHandle()

returns

SQL_ERROR,

it

sets

OutputHandlePtr

to

SQL_NULL_HDBC

for

connection

handles

or

SQL_NULL_HSTMT

for

statement

handles

(unless

the

output

argument

is

a

null

pointer).

Call

SQLGetDiagRec()

on

the

environment

handle

to

obtain

information

about

a

failed

connection

handle

SQLAllocHandle()

-

Allocate

a

handle

74

ODBC

Guide

and

Reference

allocation.

Call

SQLGetDiagRec()

on

a

connection

handle

to

obtain

information

about

a

failed

statement

handle

allocation.

v

When

SQLAllocHandle()

returns

SQL_SUCCESS_WITH_INFO,

it

returns

the

allocated

handle

to

OutputHandlePtr.

To

obtain

additional

information

about

the

allocation,

call

SQLGetDiagRec()

on

the

handle

that

you

specified

in

the

InputHandle

argument

of

SQLAllocHandle().

Table

19

lists

each

SQLSTATE

that

this

function

generates

with

a

description

and

explanation

for

each

value.

Table

19.

SQLAllocHandle()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLAllocHandle()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

HandleType

argument

specifies

SQL_HANDLE_STMT,

but

the

connection

that

is

specified

in

the

InputHandle

argument

is

not

open.

The

connection

process

must

be

completed

successfully

(and

the

connection

must

be

open)

for

DB2

ODBC

to

allocate

a

statement

handle.

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

This

could

be

a

failure

to

establish

the

association

with

the

DB2

UDB

for

z/OS

subsystem

or

any

other

system-related

error.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

that

SQLGetDiagRec()

returns

in

the

buffer

that

the

MessageText

argument

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

unable

to

allocate

memory

for

the

specified

handle.

HY009

Invalid

use

of

a

null

pointer.

The

OutputHandlePtr

argument

specifies

a

null

pointer

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

specifies

SQL_HANDLE_DBC

or

SQL_HANDLE_STMT,

and

the

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low-memory

conditions.

HY014

No

more

handles.

The

limit

for

the

number

of

handles

that

can

be

allocated

for

the

type

of

handle

that

is

indicated

by

the

HandleType

argument

has

been

reached.

HY092

Option

type

out

of

range.

The

HandleType

argument

does

not

specify

one

of

the

following

values:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

Restrictions

The

DB2

ODBC

3.0

driver

does

not

support

multiple

environments;

you

can

allocate

only

one

active

environment

at

any

time.

If

you

call

SQLAllocHandle()

to

allocate

more

environment

handles,

this

function

returns

the

original

environment

handle

and

SQL_SUCCESS.

The

DB2

ODBC

driver

keeps

an

internal

count

of

these

environment

requests.

You

must

call

SQLFreeHandle()

on

the

environment

handle

for

each

time

that

you

successfully

request

an

environment

handle.

The

last

successful

SQLFreeHandle()

call

that

you

make

on

the

environment

handle

frees

the

DB2

ODBC

3.0

driver

environment.

This

behavior

ensures

that

an

ODBC

application

does

not

prematurely

deallocate

the

driver

environment.

The

DB2

ODBC

2.0

driver

and

DB2

ODBC

3.0

driver

behave

consistently

in

this

situation.

SQLAllocHandle()

-

Allocate

a

handle

Chapter

4.

Functions

75

|

|

Example

Refer

to

“DSN8O3VP

sample

application”

on

page

531

or

DSN8O3VP

in

the

DSN810.SDSNSAMP

data

set.

Related

functions

The

following

functions

relate

to

SQLAllocHandle()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLAllocHandle()

in

your

applications.

v

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

v

“SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record”

on

page

221

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

v

“SQLSetEnvAttr()

-

Set

environment

attribute”

on

page

360

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLAllocHandle()

-

Allocate

a

handle

76

ODBC

Guide

and

Reference

SQLAllocStmt()

-

Allocate

a

statement

handle

Purpose

Table

20.

SQLAllocStmt()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLAllocHandle()

replaces

SQLAllocStmt().

See

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

for

more

information.

Although

DB2

ODBC

supports

SQLAllocStmt()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLAllocStmt()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLAllocStmt

(SQLHDBC

hdbc,

SQLHSTMT

FAR

*phstmt);

Function

arguments

Table

21

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

21.

SQLAllocStmt()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

the

connection

handle

SQLHSTMT

*

phstmt

output

Points

to

the

newly

allocated

statement

handle

SQLAllocStmt()

-

Allocate

a

statement

handle

Chapter

4.

Functions

77

www.ibm.com/software/data/db2/zos/library.html

SQLBindCol()

-

Bind

a

column

to

an

application

variable

Purpose

Table

22.

SQLBindCol()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

Use

SQLBindCol()

to

associate,

or

bind,

columns

in

a

result

set

with

the

following

elements

of

your

application:

v

Application

variables

or

arrays

of

application

variables

(storage

buffers)

for

all

C

data

types.

When

you

bind

columns

to

application

variables,

data

is

transferred

from

the

DBMS

to

the

application

when

you

call

SQLFetch()

or

SQLExtendedFetch().

This

transfer

converts

data

from

an

SQL

type

to

any

supported

C

type

variable

that

you

specify

in

the

SQLBindCol()

call.

For

more

information

about

data

conversion,

see

“Data

types

and

data

conversion”

on

page

24.

v

A

LOB

locator,

for

LOB

columns.

When

you

bind

to

LOB

locators,

the

locator,

not

the

data

itself,

is

transferred

from

the

DBMS

to

the

application

when

you

call

SQLFetch().

A

LOB

locator

can

represent

the

entire

data

or

a

portion

of

the

data.

Call

SQLBindCol()

once

for

each

column

in

the

result

set

that

your

application

must

retrieve.

Usually

you

call

SQLPrepare(),

SQLExecDirect(),

or

a

schema

function

before

you

call

SQLBindCol().

After

you

call

SQLBindCol(),

you

usually

call

SQLFetch()

or

SQLExtendedFetch().

You

might

need

to

obtain

column

attributes

before

you

call

SQLBindCol().

To

obtain

these

attributes,

call

SQLDescribeCol()

or

SQLColAttribute().

Syntax

SQLRETURN

SQLBindCol

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLSMALLINT

fCType,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValueMax,

SQLINTEGER

FAR

*pcbValue);

Function

arguments

Table

23

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

23.

SQLBindCol()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

results

are

returned.

SQLUSMALLINT

icol

input

Specifies

the

number

that

identifies

the

column

you

bind.

Columns

are

numbered

sequentially,

from

left

to

right,

starting

at

1.

SQLBindCol()

-

Bind

a

column

to

an

application

variable

78

ODBC

Guide

and

Reference

Table

23.

SQLBindCol()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fCType

input

The

C

data

type

for

column

number

icol

in

the

result

set.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_WCHAR

The

supported

data

types

are

based

on

the

data

source

to

which

you

are

connected.

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

to

its

default

C

data

type.

See

Table

4

on

page

25

for

more

information.

SQLPOINTER

rgbValue

output

(deferred)

Points

to

a

buffer

(or

an

array

of

buffers

when

you

use

the

SQLExtendedFetch()

function)

where

DB2

ODBC

stores

the

column

data

or

the

LOB

locator

when

you

fetch

data

from

the

bound

column.

If

the

rgbValue

argument

is

null,

the

column

is

unbound.

SQLINTEGER

cbValueMax

input

Specifies

the

size

of

the

rgbValue

buffer

in

bytes

that

are

available

to

store

the

column

data

or

the

LOB

locator.

If

the

fCType

argument

denotes

a

binary

or

character

string

(either

single-byte

or

double-byte)

or

is

SQL_C_DEFAULT,

cbValueMax

must

be

greater

than

0,

or

an

error

occurs.

If

the

fCType

argument

denotes

other

data

types,

the

cbValueMax

argument

is

ignored.

SQLINTEGER

*

pcbValue

output

(deferred)

Pointer

to

a

value

(or

array

of

values)

that

indicates

the

number

of

bytes

that

DB2

ODBC

has

available

to

return

in

the

rgbValue

buffer.

If

fCType

is

a

LOB

locator,

the

size

of

the

locator,

not

the

size

of

the

LOB

data,

is

returned.

SQLFetch()

returns

SQL_NULL_DATA

in

this

argument

if

the

data

value

of

the

column

is

null.

This

pointer

value

can

be

null.

If

this

pointer

is

not

null,

it

must

be

unique

for

each

bound

column.

SQL_NO_LENGTH

can

also

be

returned.

See

“Usage”

on

page

80

for

more

information.

Important:

You

must

ensure

the

locations

that

the

pointers

rgbValue

and

pcbValue

reference

are

valid

until

you

call

SQLFetch()

or

SQLExtendedFetch().

For

SQLBindCol(),

the

pointers

rgbValue

and

pcbValue

are

deferred

outputs,

which

means

that

the

storage

locations

to

which

they

point

are

not

updated

until

you

fetch

a

row

from

the

result

set.

For

example,

if

you

call

SQLBindCol()

within

a

local

SQLBindCol()

-

Bind

a

column

to

an

application

variable

Chapter

4.

Functions

79

function,

you

must

call

SQLFetch()

from

within

the

same

scope

of

the

function,

or

you

must

allocate

the

rgbValue

buffer

as

static

or

global.

Tip:

Place

the

buffer

that

the

rgbValue

argument

specifies

consecutively

in

memory

after

the

buffer

that

the

pcbValue

argument

specifies

for

better

DB2

ODBC

performance

for

all

varying-length

data

types.

See

“Usage”

for

more

details.

Usage

Call

SQLBindCol()

once

for

each

column

in

a

result

set

from

which

you

want

to

retrieve

data

or

LOB

locators.

You

generate

result

sets

when

you

call

SQLPrepare(),

SQLExecDirect(),

SQLGetTypeInfo(),

or

one

of

the

catalog

functions.

After

you

bind

columns

to

a

result

set,

call

SQLFetch()

to

place

data

from

these

columns

into

application

storage

locations

(the

locations

to

which

the

rgbValue

and

cbValue

arguments

point).

If

the

fCType

argument

specifies

a

LOB

locator,

a

locator

value

(not

the

LOB

data

itself)

is

placed

in

these

locations.

This

locator

value

references

the

entire

data

value

in

the

LOB

column

at

the

server.

You

can

use

SQLExtendedFetch()

in

place

of

SQLFetch()

to

retrieve

multiple

rows

from

the

result

set

into

an

array.

In

this

case,

the

rgbValue

argument

references

an

array.

For

more

information,

see

“Retrieving

a

result

set

into

an

array”

on

page

417

and

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163.

You

cannot

mix

calls

to

SQLExtendedFetch()

with

calls

to

SQLFetch()

on

the

same

result

set.

Obtaining

information

about

the

result

set:

Columns

are

identified

by

a

number,

assigned

sequentially

from

left

to

right,

starting

at

1.

To

determine

the

number

of

columns

in

a

result

set,

call

SQLNumResultCols(),

or

call

SQLColAttribute()

with

the

FieldIdentifier

argument

set

to

SQL_DESC_COUNT.

Call

SQLDescribeCol()

or

SQLColAttribute()

to

query

the

attributes

(such

as

data

type

and

length)

of

a

column.

(As

an

alternative,

see

“Programming

hints

and

tips”

on

page

470

for

information

about

using

SQLSetColAttributes()

when

you

know

the

format

of

the

result

set.)

You

can

then

use

this

information

to

allocate

a

storage

location

with

a

C

data

type

and

length

that

match

the

SQL

data

type

an

length

of

the

result

set

column.

In

the

case

of

LOB

data

types,

you

can

retrieve

a

locator

instead

of

the

entire

LOB

value.

See

“Data

types

and

data

conversion”

on

page

24

for

more

information

about

default

types

and

supported

conversions.

You

can

choose

which,

if

any,

columns

that

you

want

to

bind

from

a

result

set.

For

unbound

columns,

use

SQLGetData()

instead

of,

or

in

conjunction

with,

SQLBindCol()

to

retrieve

data.

Generally,

SQLBindCol()

is

more

efficient

than

SQLGetData().

For

a

discussion

of

when

to

use

SQLGetData()

instead

of

SQLBindCol(),

refer

to

“Retrieving

data

efficiently”

on

page

473.

During

subsequent

fetches,

you

can

use

SQLBindCol()

to

change

which

columns

are

bound

to

application

variables

or

to

bind

previously

unbound

columns.

New

binds

do

not

apply

to

data

that

you

have

fetched;

these

binds

are

used

for

the

next

fetch.

To

unbind

a

single

column,

call

SQLBindCol()

with

the

rgbValue

pointer

set

to

NULL.

To

unbind

all

the

columns,

call

SQLFreeStmt()

with

the

fOption

input

set

to

SQL_UNBIND.

Allocating

buffers:

Ensure

that

you

allocate

enough

storage

to

hold

the

data

that

you

retrieve.

When

you

allocate

a

buffer

to

hold

varying-length

data,

allocate

an

amount

of

storage

that

is

equal

to

the

maximum

length

of

data

that

the

column

that

is

bound

to

this

buffer

can

produce.

If

you

allocate

less

storage

than

this

maximum,

SQLBindCol()

-

Bind

a

column

to

an

application

variable

80

ODBC

Guide

and

Reference

SQLFetch()

or

SQLExtendedFetch()

truncates

any

data

that

is

larger

than

the

space

that

you

allocated.

When

you

allocate

a

buffer

that

holds

fixed-length

data,

DB2

ODBC

assumes

that

the

size

of

the

buffer

is

the

length

of

the

C

data

type.

If

you

specify

data

conversion,

the

amount

of

space

that

the

data

requires

might

change;

see

“Data

types

and

data

conversion”

on

page

24

for

more

information.

When

you

bind

a

column

that

is

defined

as

SQL_GRAPHIC,

SQL_VARGRAPHIC,

or

SQL_LONGVARGRAPHIC,

you

can

set

the

fCType

argument

to

SQL_C_DBCHAR,

SQL_C_WCHAR,

or

SQL_C_CHAR.

If

you

set

the

fCType

argument

to

SQL_C_DBCHAR

or

SQL_C_WCHAR,

the

data

that

you

fetch

into

the

rgbValue

buffer

is

nul-terminated

by

a

double-byte

nul-terminator.

If

you

set

the

fCType

argument

to

SQL_C_CHAR,

the

data

that

you

fetch

is

not

always

nul-terminated.

In

both

cases,

the

length

of

the

rgbValue

buffer

(cbValueMax)

is

in

units

of

bytes,

and

the

value

is

always

a

multiple

of

2.

When

you

bind

a

varying-length

column,

DB2

ODBC

can

write

to

both

of

the

buffers

that

specified

by

the

pcbValue

and

rgbValue

arguments

in

one

operation

if

you

allocate

these

buffers

contiguously.

The

following

example

illustrates

how

to

allocate

these

buffers

contiguously:

struct

{

SQLINTEGER

pcbValue;

SQLCHAR

rgbValue[MAX_BUFFER];

}

column;

When

the

pcbValue

and

rgbValue

arguments

are

contiguous,

SQL_NO_TOTAL

is

returned

in

the

pcbValue

argument

if

your

bind

meets

all

of

the

following

conditions:

v

The

SQL

type

is

a

varying-length

type.

v

The

column

type

is

NOT

NULLABLE.

v

String

truncation

occurred.

Handling

data

truncation:

If

SQLFetch()

or

SQLExtendedFetch()

truncates

data,

it

returns

SQL_SUCCESS_WITH_INFO

and

set

the

pcbValue

argument

to

a

value

that

represents

the

amount

of

space

(in

bytes)

that

the

full

data

requires.

Truncation

is

also

affected

by

the

SQL_ATTR_MAX_LENGTH

statement

attribute

(which

is

used

to

limit

the

amount

of

data

that

your

application

returns).

You

can

disable

truncation

warnings

with

the

following

procedure:

1.

Call

SQLSetStmtAttr().

v

Set

the

Attribute

argument

to

SQL_ATTR_MAX_LENGTH.

v

Point

the

ValuePtr

argument

to

a

buffer

that

contains

the

value

for

the

maximum

length,

in

bytes,

of

varying-length

columns

that

you

want

to

receive.

2.

Allocate

the

rgbValue

argument

on

your

SQLBindCol()

call

as

a

buffer

that

is

the

same

size

(plus

the

nul-terminator)

as

you

set

for

the

value

of

the

SQL_ATTR_MAX_LENGTH

statement

attribute.

If

the

column

data

is

larger

than

the

maximum

length

that

you

specified,

the

maximum

length,

not

the

actual

length,

is

returned

in

the

buffer

to

which

the

pcbValue

argument

points.

If

data

is

truncated

because

it

exceeds

the

maximum

length

that

the

SQL_ATTR_MAX_LENGTH

statement

attribute

specifies,

you

receive

no

warning

of

this

truncation.

SQLFetch()

and

SQLExtendedFetch()

return

SQL_SUCCESS

for

data

that

is

truncated

in

this

way.

When

you

bind

a

column

that

holds

SQL_ROWID

data,

you

can

set

the

fCType

argument

to

SQL_C_CHAR

or

SQL_C_DEFAULT.

The

data

that

you

fetch

into

the

buffer

that

the

rgbValue

argument

specifies

is

nul-terminated.

The

maximum

length

SQLBindCol()

-

Bind

a

column

to

an

application

variable

Chapter

4.

Functions

81

of

a

ROWID

column

in

the

DBMS

is

40

bytes.

Therefore,

to

retrieve

this

type

of

data

without

truncation,

you

must

allocate

an

rgbValue

buffer

of

at

least

40

bytes

in

your

application.

Handling

encoding

schemes:

The

DB2

ODBC

driver

determines

one

of

the

following

encoding

schemes

for

character

and

graphic

data

through

the

settings

of

the

CURRENTAPPENSCH

keyword

(which

appears

in

the

initialization

file)

and

the

fCType

argument

(which

you

specify

in

SQLBindCol()

calls).

v

The

ODBC

driver

places

EBCDIC

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

EBCDIC

is

specified

in

the

initialization

file,

or

the

CURRENTAPPENSCH

keyword

is

not

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLBindCol()

call.

v

The

ODBC

driver

places

Unicode

UCS-2

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_WCHAR

in

the

SQLBindCol()

call.

v

The

ODBC

driver

places

Unicode

UTF-8

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

in

the

SQLBindCol()

call.

v

The

ODBC

driver

places

ASCII

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

ASCII

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLBindCol()

call.

For

more

information

about

encoding

schemes,

see

“Handling

application

encoding

schemes”

on

page

443.

Retrieved

UTF-8

data

is

terminated

by

a

single-byte

nul-terminator,

where

as

retrieved

UCS-2

data

is

terminated

by

a

double-byte

nul-terminator.

Binding

LOB

columns:

You

generally

treat

LOB

locators

like

any

other

data

type,

but

when

you

use

LOB

locators

the

following

differences

apply:

v

The

server

generates

locator

values

when

you

fetch

from

a

column

that

is

bound

to

the

LOB

locator

C

data

type

and

passes

only

the

locator,

not

the

data,

to

the

application.

v

When

you

call

SQLGetSubString()

to

define

a

locator

on

a

portion

of

another

LOB,

the

sever

generates

a

new

locator

and

transfers

only

the

locator

to

the

application.

v

The

value

of

a

locator

is

valid

only

within

the

current

transaction.

You

cannot

store

a

locator

value

and

use

it

beyond

the

current

transaction,

even

if

you

specify

the

WITH

HOLD

attribute

when

you

define

the

cursor

that

you

use

to

fetch

the

locator.

v

You

can

use

the

FREE

LOCATOR

statement

to

free

a

locator

before

the

end

of

a

transaction.

v

When

your

application

receives

a

locator,

you

can

use

SQLGetSubString()

to

either

receive

a

portion

of

the

LOB

value

or

to

generate

another

locator

that

represents

a

portion

of

the

LOB

value.

You

can

also

use

locator

values

as

input

for

a

parameter

marker

(with

the

SQLBindParameter()

function).

SQLBindCol()

-

Bind

a

column

to

an

application

variable

82

ODBC

Guide

and

Reference

|
|
|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|

|
|

|
|

A

LOB

locator

is

not

a

pointer

to

a

database

position;

rather,

it

is

a

reference

to

a

LOB

value,

a

snapshot

of

that

LOB

value.

The

current

position

of

the

cursor

and

the

row

from

which

the

LOB

value

is

extracted

are

not

associated.

Therefore,

even

after

the

cursor

moves

to

a

different

row,

the

LOB

locator

(and

thus

the

value

that

it

represents)

can

still

be

referenced.

v

With

locators,

you

can

use

SQLGetPosition()

and

SQLGetLength()

with

SQLGetSubString()

to

define

a

substring

of

a

LOB

value.

You

can

bind

a

LOB

column

to

one

of

the

following

data

types:

v

A

storage

buffer

(to

hold

the

entire

LOB

data

value)

v

A

LOB

locator

(to

hold

the

locator

value

only)

The

most

recent

bind

column

function

call

determines

the

type

of

binding

that

is

in

effect.

Return

codes

After

you

call

SQLBindCol(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

24

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

24.

SQLBindCol()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY002

Invalid

column

number.

The

specified

value

for

the

icol

argument

is

less

than

0

or

greater

than

the

number

of

columns

in

the

result

set.

HY003

Program

type

out

of

range.

The

fCType

argument

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

specified

value

for

the

cbValueMax

argument

is

less

than

0.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

the

value

that

the

fCType

argument

specifies.

Important:

Additional

diagnostic

messages

that

relate

to

the

bound

columns

might

be

reported

at

fetch

time.

SQLBindCol()

-

Bind

a

column

to

an

application

variable

Chapter

4.

Functions

83

|

Restrictions

None.

Example

See

Figure

15

on

page

168

and

“Binding

result

set

columns

to

retrieve

UCS-2

data”

on

page

449.

Related

functions

The

following

functions

relate

to

SQLBindCol()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLBindCol()

in

your

applications.

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

SQLBindCol()

-

Bind

a

column

to

an

application

variable

84

ODBC

Guide

and

Reference

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Purpose

Table

25.

SQLBindParameter()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

2.0

No

No

SQLBindParameter()

associates,

or

binds,

parameter

markers

in

an

SQL

statement

to

the

following

objects:

v

All

C

type

application

variables

or

arrays

of

C

type

application

variables

(storage

buffers).

For

application

variables,

data

is

transferred

from

your

application

to

the

DBMS

when

you

call

SQLExecute()

or

SQLExecDirect().

This

transfer

converts

data

from

the

C

type

of

the

application

variable

to

the

SQL

type

that

you

specify

in

the

SQLBindParameter()

call.

For

more

information

about

data

conversion,

see

“Data

types

and

data

conversion”

on

page

24.

v

SQL

LOB

type

LOB

locators.

For

LOB

data

types,

you

transfer

a

LOB

locator

value

(not

the

LOB

data

itself)

to

the

server

when

you

execute

an

SQL

statement.

SQLBindParameter()

also

binds

application

storage

to

a

parameter

in

a

stored

procedure

CALL

statement.

In

this

type

of

bind,

parameters

can

be

input,

output,

or

both

input

and

output

parameters.

Syntax

SQLRETURN

SQL_API

SQLBindParameter(

SQLHSTMT

hstmt,

SQLUSMALLINT

ipar,

SQLSMALLINT

fParamType,

SQLSMALLINT

fCType,

SQLSMALLINT

fSqlType,

SQLUINTEGER

cbColDef,

SQLSMALLINT

ibScale,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValueMax,

SQLINTEGER

FAR

*pcbValue);

Function

arguments

Table

26

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

26.

SQLBindParameter()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

of

the

statement

you

bind.

SQLUSMALLINT

ipar

input

Specifies

the

parameter

marker

number,

which

are

ordered

sequentially

left

to

right,

starting

at

1.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

85

Table

26.

SQLBindParameter()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fParamType

input

Specifies

the

type

of

parameter.

You

can

specify

the

following

types

of

parameters:

v

SQL_PARAM_INPUT:

The

parameter

marker

is

associated

with

an

SQL

statement

that

is

not

a

stored

procedure

CALL;

or,

it

marks

an

input

parameter

of

the

CALLed

stored

procedure.

When

the

statement

is

executed,

actual

data

value

for

the

parameter

is

sent

to

the

server:

the

rgbValue

buffer

must

contain

valid

input

data

values;

the

pcbValue

buffer

must

contain

the

corresponding

length

value,

in

bytes,

or

SQL_NTS,

SQL_NULL_DATA,

or

(if

the

value

should

be

sent

using

the

SQLParamData()

and

SQLPutData()

functions)

SQL_DATA_AT_EXEC.

v

SQL_PARAM_INPUT_OUTPUT:

The

parameter

marker

is

associated

with

an

input/output

parameter

of

the

CALLed

stored

procedure.

When

the

statement

is

executed,

actual

data

value

for

the

parameter

is

sent

to

the

server:

the

rgbValue

buffer

must

contain

valid

input

data

values;

the

pcbValue

buffer

must

contain

the

corresponding

length

value,

in

bytes,

or

SQL_NTS,

SQL_NULL_DATA,

or,

if

the

value

should

be

sent

using

SQLParamData()

and

SQLPutData(),

SQL_DATA_AT_EXEC.

v

SQL_PARAM_OUTPUT:

The

parameter

marker

is

associated

with

an

output

parameter

of

the

CALLed

stored

procedure

or

the

return

value

of

the

stored

procedure.

After

the

statement

is

executed,

data

for

the

output

parameter

is

returned

to

the

application

buffer

specified

by

rgbValue

and

pcbValue,

unless

both

are

null

pointers,

in

which

case

the

output

data

is

discarded.

SQLSMALLINT

fCType

input

Specifies

the

C

data

type

of

the

parameter.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_WCHAR

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

from

its

default

C

data

type

to

the

type

indicated

in

fSqlType.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

86

ODBC

Guide

and

Reference

Table

26.

SQLBindParameter()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fSqlType

input

Specifies

the

SQL

data

type

of

the

parameter.

The

supported

types

are:

v

SQL_BINARY

v

SQL_BLOB

v

SQL_BLOB_LOCATOR

v

SQL_CHAR

v

SQL_CLOB

v

SQL_CLOB_LOCATOR

v

SQL_DBCLOB

v

SQL_DBCLOB_LOCATOR

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_ROWID

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

Restriction:

SQL_BLOB_LOCATOR,

SQL_CLOB_LOCATOR,

and

SQL_DBCLOB_LOCATOR

are

application

related

concepts

and

do

not

map

to

a

data

type

for

column

definition

during

a

CREATE

TABLE.

SQLUINTEGER

cbColDef

input

Specifies

the

precision

of

the

corresponding

parameter

marker.

The

meaning

of

this

precision

depends

on

what

data

type

the

fSqlType

argument

denotes:

v

For

a

binary

or

single-byte

character

string

(for

example,

SQL_CHAR,

SQL_BINARY),

this

is

the

maximum

length

in

bytes

for

this

parameter

marker.

v

For

a

double-byte

character

string

(for

example,

SQL_GRAPHIC),

this

is

the

maximum

length

in

double-byte

characters

for

this

parameter.

v

For

SQL_DECIMAL,

SQL_NUMERIC,

this

is

the

maximum

decimal

precision.

v

For

SQL_ROWID,

this

must

be

set

to

40,

the

maximum

length

in

bytes

for

this

data

type.

Otherwise,

an

error

is

returned.

v

Otherwise,

this

argument

is

ignored.

SQLSMALLINT

ibScale

input

Specifies

the

scale

of

the

corresponding

parameter

if

the

fSqlType

argument

is

SQL_DECIMAL

or

SQL_NUMERIC.

If

the

fSqlType

argument

specifies

SQL_TYPE_TIMESTAMP,

this

is

the

number

of

digits

to

the

right

of

the

decimal

point

in

the

character

representation

of

a

timestamp

(for

example,

the

scale

of

yyyy-mm-dd

hh:mm:ss.fff

is

3).

Other

than

the

values

for

the

fSqlType

argument

that

are

mentioned

here,

the

ibScale

argument

is

ignored.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

87

Table

26.

SQLBindParameter()

arguments

(continued)

Data

type

Argument

Use

Description

SQLPOINTER

rgbValue

input

(deferred),

output

(deferred),

or

input

(deferred)

and

output

(deferred)

The

following

characteristics

apply

to

the

rgbValue

argument

depending

on

whether

it

is

an

input

argument,

an

output

argument,

or

both:

v

As

an

input

argument

(when

the

fParamType

argument

specifies

SQL_PARAM_INPUT,

or

SQL_PARAM_INPUT_OUTPUT),

rgbValue

exhibits

the

following

behavior:

At

execution

time,

if

the

pcbValue

argument

does

not

contain

SQL_NULL_DATA

or

SQL_DATA_AT_EXEC,

then

rgbValue

points

to

a

buffer

that

contains

the

actual

data

for

the

parameter.

If

thepcbValue

argument

contains

SQL_DATA_AT_EXEC,

rgbValue

is

an

application-defined

32-bit

value

that

is

associated

with

this

parameter.

This

32-bit

value

is

returned

to

the

application

using

a

subsequent

SQLParamData()

call.

If

SQLParamOptions()

is

called

to

specify

multiple

values

for

the

parameter,

then

rgbValue

is

a

pointer

to

an

input

buffer

array

of

cbValueMax

bytes.

v

As

an

output

argument

(when

the

fParamType

argument

specifies

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT),

the

rgbValue

argument

points

to

the

buffer

where

the

output

parameter

value

of

the

stored

procedure

is

stored.

If

the

fParamType

argument

is

set

to

SQL_PARAM_OUTPUT,

and

both

the

rgbValue

argument

and

the

pcbValue

argument

specify

null

pointers,

then

the

output

parameter

value

or

the

return

value

from

the

stored

procedure

call

is

discarded.

SQLINTEGER

cbValueMax

input

For

character

and

binary

data,

the

cbValueMax

argument

specifies

the

size,

in

bytes,

of

the

buffer

that

the

rgbValue

argument

indicates.

If

this

buffer

is

a

single

element,

this

value

specifies

the

size

of

that

element.

If

this

buffer

is

an

array,

the

value

specifies

the

size

of

each

element

in

that

array.

(Call

SQLParamOptions()

to

specify

multiple

values

for

each

parameter.)

For

non-character

and

non-binary

data,

this

argument

is

ignored.

This

length

is

assumed

to

be

the

length

that

is

associated

with

the

C

data

type

in

these

cases.

For

output

parameters,

the

cbValueMax

argument

is

used

to

determine

whether

to

truncate

character

or

binary

output

data.

Data

is

truncated

in

the

following

manner:

v

For

character

data,

if

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

the

value

that

the

cbValueMax

argument

specifies,

the

data

in

the

buffer

to

which

the

rgbValue

argument

points

is

truncated.

This

data

is

truncated

to

a

length,

in

bytes,

that

is

equivalent

to

the

value

that

the

cbValueMax

argument

specifies

minus

one

byte.

Truncated

character

data

is

nul-terminated

(unless

nul-termination

has

been

turned

off).

v

For

binary

data,

if

the

number

of

bytes

available

to

return

is

greater

than

the

value

that

the

cbValueMax

argument

specifies,

the

data

to

which

the

rgbValue

argument

points

is

truncated.

This

data

is

truncated

to

a

length,

in

bytes,

that

is

equivalent

to

the

value

that

the

cbValueMax

argument

specifies.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

88

ODBC

Guide

and

Reference

Table

26.

SQLBindParameter()

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

pcbValue

input

(deferred),

output

(deferred),

or

input

(deferred)

and

output

(deferred)

The

following

characteristics

apply

to

the

pcbValue

argument

depending

on

whether

it

is

an

input

argument,

an

output

argument,

or

both:

v

As

an

input

argument

(when

the

fParamType

argument

specifies

SQL_PARAM_INPUT,

or

SQL_PARAM_INPUT_OUTPUT),

the

pcbValue

argument

points

to

the

buffer

that

contains

the

length,

in

bytes,

of

the

parameter

marker

value

(when

the

statement

is

executed)

to

which

the

rgbValue

argument

points.

To

specify

a

null

value

for

a

parameter

marker,

this

storage

location

must

contain

SQL_NULL_DATA.

If

the

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_WCHAR,

the

buffer

to

which

the

pcbValue

argument

points

must

contain

either

the

exact

length

(in

bytes)

of

the

data

or

SQL_NTS

for

nul-terminated

strings.

If

the

fCType

argument

indicates

character

data

(explicitly,

or

implicitly

with

SQL_C_DEFAULT),

and

the

pcbValue

argument

is

set

to

NULL,

it

is

assumed

that

the

application

always

provides

a

nul-terminated

string

in

the

buffer

to

which

the

rgbValue

argument

points.

This

null

setting

also

implies

that

the

parameter

marker

never

uses

null

values.

If

the

fSqlType

argument

indicates

a

graphic

data

type

and

the

fCType

argument

is

set

to

SQL_C_CHAR,

you

cannot

set

the

pcbValue

argument

to

NULL

or

point

the

pcbValue

argument

to

a

buffer

that

holds

the

value

SQL_NTS.

In

general,

for

graphic

data

types,

the

value

this

buffer

holds

is

the

number

of

bytes

that

the

double-byte

data

occupies.

Always

specify

a

multiple

of

2

for

the

length

of

double-byte

data.

If

you

specify

a

value

that

is

odd,

an

error

occurs

when

the

statement

is

executed.

When

SQLExecute()

or

SQLExecDirect()

is

called,

and

the

pcbValue

argument

points

to

a

value

of

SQL_DATA_AT_EXEC,

the

data

for

the

parameter

is

sent

with

SQLPutData().

This

parameter

is

referred

to

as

a

data-at-execution

parameter.

If

you

use

SQLParamOptions()

to

specify

multiple

values

for

each

parameter,

the

pcbValue

argument

points

to

an

array

of

SQLINTEGER

values.

Each

element

in

this

array

specifies

the

number

of

bytes

(excluding

the

nul-terminator)

that

correspond

to

elements

in

the

array

that

the

rgbValue

specifies,

or

the

value

SQL_NULL_DATA.

v

As

an

output

argument

(when

the

fParamType

argument

is

set

to

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT),

the

pcbValue

argument

points

to

one

of

the

following

values,

after

the

execution

of

the

stored

procedure:

–

number

of

bytes

available

to

return

in

rgbValue,

excluding

the

nul-termination

character.

–

SQL_NULL_DATA

–

SQL_NO_TOTAL

if

the

number

of

bytes

available

to

return

cannot

be

determined.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

89

Usage

Call

SQLBindParameter()

to

bind

parameter

markers

to

application

variables.

Parameter

markers

are

question

mark

characters

(?)

that

you

place

in

an

SQL

statement.

When

you

execute

a

statement

that

contains

parameter

markers,

each

of

these

markers

is

replaced

with

the

contents

of

a

host

variable.

SQLBindParameter()

essentially

extends

the

capability

of

the

SQLSetParam()

function

by

providing

the

following

functionality:

v

Can

specify

whether

a

parameter

is

input,

output,

or

both

input

and

output,

which

is

necessary

to

handle

parameters

for

stored

procedures

properly.

v

Can

specify

an

array

of

input

parameter

values

when

SQLParamOptions()

is

used

in

conjunction

with

SQLBindParameter().

SQLSetParam()

can

still

be

used

to

bind

single

element

application

variables

to

parameter

markers

that

are

not

part

of

a

stored

procedure

CALL

statement.

See

“SQLParamOptions()

-

Specify

an

input

array

for

a

parameter”

on

page

304

and

“Using

arrays

to

pass

parameter

values”

on

page

414

for

more

information

about

using

arrays.

Use

SQLBindParameter()

to

bind

a

parameter

marker

to

one

of

the

following

sources:

v

An

application

variable.

v

A

LOB

value

from

the

database

server

(by

specifying

a

LOB

locator).

Binding

a

parameter

marker

to

an

application

variable:

You

must

bind

a

variable

to

each

parameter

marker

in

an

SQL

statement

before

you

execute

that

statement.

In

SQLBindParameter(),

the

rgbValue

argument

and

the

pcbValue

argument

are

deferred

arguments.

The

storage

locations

you

provide

for

these

arguments

must

be

valid

and

contain

input

data

values

when

you

execute

the

bound

statement.

This

requirement

means

that

you

must

follow

one

of

the

following

guidelines:

v

Keep

calls

to

SQLExecDirect()

or

SQLExecute()

in

the

same

procedure

scope

as

calls

to

SQLBindParameter().

v

Dynamically

allocate

storage

locations

that

you

use

for

input

or

output

parameters.

v

Statically

declare

storage

locations

that

you

use

for

input

or

output

parameters.

v

Globally

declare

storage

locations

that

you

use

for

input

or

output

parameters.

Binding

a

parameter

marker

to

a

LOB

locator:

When

you

bind

LOB

locators

to

parameter

markers

the

database

server

supplies

the

LOB

value.

Your

application

transfers

only

the

LOB

locator

value

across

the

network.

With

LOB

locators,

you

can

use

SQLGetSubString(),

SQLGetPosition(),

or

SQLGetLength().

SQLGetSubString()

can

return

either

another

locator

or

the

data

itself.

All

locators

remain

valid

until

the

end

of

the

transaction

in

which

you

create

them

(even

when

the

cursor

moves

to

another

row),

or

until

you

issue

the

FREE

LOCATOR

statement.

Obtaining

information

about

the

result

set:

You

can

call

SQLBindParameter()

before

SQLPrepare()

if

you

know

what

columns

appear

in

the

result

set.

Otherwise,

if

you

do

not

know

what

columns

appear

in

the

result

set,

you

must

obtain

column

attributes

after

you

prepare

your

query

statement.

You

reference

parameter

markers

by

number,

which

the

ipar

argument

in

SQLBindParameter()

represents.

Parameter

markers

are

numbered

sequentially

from

left

to

right,

starting

at

1.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

90

ODBC

Guide

and

Reference

Specifying

the

parameter

type:

The

fParamType

argument

specifies

the

type

of

the

parameter.

All

parameters

in

the

SQL

statements

that

do

not

call

procedures

are

input

parameters.

Parameters

in

stored

procedure

calls

can

be

input,

input/output,

or

output

parameters.

Even

though

the

DB2

stored

procedure

argument

convention

typically

implies

that

all

procedure

arguments

are

input/output,

the

application

programmer

can

still

choose

to

specify

the

nature

of

input

or

output

more

exactly

on

the

SQLBindParameter()

to

follow

a

more

rigorous

coding

style.

When

you

set

the

fParamType

argument,

consider

the

following

DB2

ODBC

behaviors:

v

If

an

application

cannot

determine

the

type

of

a

parameter

in

a

procedure

call,

set

the

fParamType

argument

to

SQL_PARAM_INPUT;

if

the

data

source

returns

a

value

for

the

parameter,

DB2

ODBC

discards

it.

v

If

an

application

has

marked

a

parameter

as

SQL_PARAM_INPUT_OUTPUT

or

SQL_PARAM_OUTPUT

and

the

data

source

does

not

return

a

value,

DB2

ODBC

sets

the

buffer

that

the

pcbValue

argument

specifies

to

SQL_NULL_DATA.

v

If

an

application

marks

a

parameter

as

SQL_PARAM_OUTPUT,

data

for

the

parameter

is

returned

to

the

application

after

the

CALL

statement

is

processed.

If

the

rgbValue

and

pcbValue

arguments

are

both

null

pointers,

DB2

ODBC

discards

the

output

value.

If

the

data

source

does

not

return

a

value

for

an

output

parameter,

DB2

ODBC

sets

the

pcbValue

buffer

to

SQL_NULL_DATA.

v

When

the

fParamType

argument

is

set

to

SQL_PARAM_INPUT

or

SQL_PARAM_INPUT_OUTPUT,

the

storage

locations

must

be

valid

and

contain

input

data

values

when

the

statement

is

executed.

Because

the

rgbValue

and

pcbValue

arguments

are

deferred

arguments,

you

must

keep

either

the

SQLExecDirect()

or

the

SQLExecute()

call

in

the

same

procedure

scope

as

the

SQLBindParameter()

calls,

or

the

argument

values

for

rgbValue

and

pcbValue

must

be

dynamically

allocated

or

statically

or

globally

declared.

Similarly,

if

the

fParamType

argument

is

set

to

SQL_PARAM_OUTPUT

or

SQL_PARAM_INPUT_OUTPUT,

the

buffers

that

the

rgbValue

and

pcbValue

arguments

specify

must

remain

valid

until

the

CALL

statement

is

executed.

Unbinding

parameter

markers:

All

parameters

that

SQLBindParameter()

binds

remain

bound

until

you

perform

one

of

the

following

actions:

v

Call

SQLFreeHandle()

with

the

HandleType

argument

set

to

SQL_HANDLE_STMT.

v

Call

SQLFreeStmt()

with

the

fOption

argument

set

to

SQL_RESET_PARAMS.

v

Call

SQLBindParameter()

again

for

the

same

parameter

ipar

number.

After

an

SQL

statement

is

executed,

and

the

results

processed,

you

might

want

to

reuse

the

statement

handle

to

execute

a

different

SQL

statement.

If

the

parameter

marker

specifications

are

different

(number

of

parameters,

length,

or

type),

you

should

call

SQLFreeStmt()

with

SQL_RESET_PARAMS

to

reset

or

clear

the

parameter

bindings.

The

C

buffer

data

type

given

by

fCType

must

be

compatible

with

the

SQL

data

type

indicated

by

fSqlType,

or

an

error

occurs.

Specifying

data-at-execution

parameters:

An

application

can

pass

the

value

for

a

parameter

either

in

the

rgbValue

buffer

or

with

one

or

more

calls

to

SQLPutData().

In

calls

to

SQLPutData(),

these

parameters

are

data-at-execution

parameters.

The

application

informs

DB2

ODBC

of

a

data-at-execution

parameter

by

placing

the

SQL_DATA_AT_EXEC

value

in

the

pcbValue

buffer.

It

sets

the

rgbValue

input

argument

to

a

32-bit

value

which

is

returned

on

a

subsequent

SQLParamData()

call

and

can

be

used

to

identify

the

parameter

position.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

91

Because

the

data

in

the

variables

referenced

by

rgbValue

and

pcbValue

is

not

verified

until

the

statement

is

executed,

data

content

or

format

errors

are

not

detected

or

reported

until

SQLExecute()

or

SQLExecDirect()

is

called.

Allocating

buffers:

For

character

and

binary

C

data,

the

cbValueMax

argument

specifies

the

length

(in

bytes)

of

the

rgbValue

buffer

if

it

is

a

single

element;

or,

if

the

application

calls

SQLParamOptions()

to

specify

multiple

values

for

each

parameter,

the

cbValueMax

argument

specifies

the

length

(in

bytes)

of

each

element

in

the

rgbValue

array,

including

the

nul-terminator.

If

the

application

specifies

multiple

values,

cbValueMax

is

used

to

determine

the

location

of

values

in

the

rgbValue

array.

For

all

other

types

of

C

data,

the

cbValueMax

argument

is

ignored.

You

can

pass

the

value

for

a

parameter

with

either

the

buffer

that

the

rgbValue

argument

specifies

or

one

or

more

calls

to

SQLPutData().

In

calls

to

SQLPutData(),

these

parameters

are

data-at-execution

parameters.

The

application

informs

DB2

ODBC

of

a

data-at-execution

parameter

by

placing

the

SQL_DATA_AT_EXEC

value

in

the

pcbValue

buffer.

It

sets

the

rgbValue

input

argument

to

a

32-bit

value

which

is

returned

on

a

subsequent

SQLParamData()

call

and

can

be

used

to

identify

the

parameter

position.

If

the

fSqlType

argument

is

SQL_ROWID,

the

value

for

the

cbColDef

argument

must

be

set

to

40,

which

is

the

maximum

length

(in

bytes)

for

a

ROWID

data

type.

If

the

cbColDef

argument

is

not

set

to

40,

you

will

receive

one

of

the

following

SQLSTATEs:

v

SQLSTATE

22001

when

the

cbColDef

argument

is

less

than

40

v

SQLSTATE

HY104

when

the

cbColDef

argument

is

greater

than

40

Handling

encoding

schemes:

When

SQLBindParameter()

is

used

to

bind

an

application

variable

to

an

output

parameter

for

a

stored

procedure,

DB2

ODBC

can

provide

some

performance

enhancement

if

the

rgbValue

buffer

is

placed

consecutively

in

memory

after

the

pcbValue

buffer.

For

example:

struct

{

SQLINTEGER

pcbValue;

SQLCHAR

rgbValue[MAX_BUFFER];

}

column;

The

DB2

ODBC

driver

determines

one

of

the

following

encoding

schemes

for

character

and

graphic

data

through

the

settings

of

the

CURRENTAPPENSCH

keyword

(which

appears

in

the

initialization

file)

and

the

fCType

argument

(which

you

specify

in

SQLBindParameter()

calls):

v

The

ODBC

driver

places

EBCDIC

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

EBCDIC

is

specified

in

the

initialization

file,

or

the

CURRENTAPPENSCH

keyword

is

not

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLBindParameter()

call.

v

The

ODBC

driver

places

Unicode

UCS-2

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_WCHAR

in

the

SQLBindParameter()

call.

v

The

ODBC

driver

places

Unicode

UTF-8

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

92

ODBC

Guide

and

Reference

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

–

The

fCType

argument

specifies

SQL_C_CHAR

in

the

SQLBindParameter()

call.

v

The

ODBC

driver

places

ASCII

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

ASCII

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLBindParameter()

call.

For

more

information

about

encoding

schemes,

see

“Handling

application

encoding

schemes”

on

page

443.

Return

codes

After

you

call

SQLBindParameter(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

27

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

27.

SQLBindParameter()

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

conversion

from

the

data

value

identified

by

the

fCType

argument

to

the

data

type

that

is

identified

by

the

fSqlType

argument,

is

not

a

meaningful

conversion.

(For

example,

a

conversion

from

SQL_C_TYPE_DATE

to

SQL_DOUBLE

is

not

meaningful.)

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

An

unrecoverable

system

error

occurs.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY003

Program

type

out

of

range.

The

fCType

argument

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY004

Invalid

SQL

data

type.

The

specified

value

for

the

fSqlType

argument

is

not

a

valid

SQL

data

type.

HY009

Invalid

use

of

a

null

pointer.

The

argument

OutputHandlePtr

is

a

null

pointer.

HY010

Function

sequence

error.

The

function

is

called

after

SQLExecute()

or

SQLExecDirect()

return

SQL_NEED_DATA,

but

data

is

not

sent

for

all

data-at-execution

parameters.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

specified

value

for

the

cbValueMax

argument

is

less

than

0.

HY093

Invalid

parameter

number.

The

specified

value

for

the

ipar

argument

is

less

than

1.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

93

|
|

|
|

|

|
|

|
|

|

Table

27.

SQLBindParameter()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY104

Invalid

precision

or

scale

value.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

specified

value

for

the

fSqlType

argument

is

either

SQL_DECIMAL

or

SQL_NUMERIC,

and

the

specified

value

for

the

cbColDef

argument

is

less

than

1.

v

The

specified

value

for

the

fCType

argument

is

SQL_C_TYPE_TIMESTAMP,

the

value

for

the

fSqlType

argument

is

either

SQL_CHAR

or

SQL_VARCHAR,

and

the

value

for

the

ibScale

argument

is

less

than

0

or

greater

than

6.

HY105

Invalid

parameter

type.

The

fParamType

argument

does

not

specify

one

of

the

following

values:

v

SQL_PARAM_INPUT

v

SQL_PARAM_OUTPUT

v

SQL_PARAM_INPUT_OUTPUT

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

or

the

data

source

does

not

support

the

conversion

that

is

specified

by

the

combination

of

the

specified

value

for

the

fCType

argument

and

the

specified

value

for

the

fSqlType

argument.

v

The

specified

value

for

the

fSqlType

argument

is

not

supported

by

either

DB2

ODBC

or

the

data

source.

Restrictions

A

new

value

for

the

pcbValue

argument,

SQL_DEFAULT_PARAM,

was

introduced

in

ODBC

2.0

to

indicate

that

the

procedure

should

use

the

default

value

of

a

parameter,

rather

than

a

value

sent

from

the

application.

Because

DB2

stored

procedure

arguments

do

not

use

default

values,

specification

of

SQL_DEFAULT_PARAM

for

the

pcbValue

argument

results

in

an

error

when

the

CALL

statement

is

executed.

This

error

occurs

because

the

SQL_DEFAULT_PARAM

value

is

considered

an

invalid

length.

ODBC

2.0

also

introduced

the

SQL_LEN_DATA_AT_EXEC(length)

macro

to

be

used

with

the

pcbValue

argument.

The

macro

specifies

the

sum

total

length

of

all

character

C

data

or

all

binary

C

data

that

is

sent

with

the

subsequent

SQLPutData()

calls.

Because

the

DB2

ODBC

driver

does

not

need

this

information,

the

macro

is

not

needed.

To

check

if

the

driver

needs

this

information,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_NEED_LONG_DATA_LEN.

The

DB2

ODBC

driver

returns

’N’

to

indicate

that

this

information

is

not

needed

by

SQLPutData().

Example

Figure

8

on

page

95

shows

an

application

that

binds

a

variety

of

data

types

to

a

set

of

parameters.

For

additional

examples

see

Appendix

F,

“Example

DB2

ODBC

code,”

on

page

531

and

Figure

57

on

page

450.

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

94

ODBC

Guide

and

Reference

/*

...

*/

SQLCHAR

stmt[]

=

"INSERT

INTO

PRODUCT

VALUES

(?,

?,

?,

?,

?)";

SQLINTEGER

Prod_Num[NUM_PRODS]

=

{

100110,

100120,

100210,

100220,

100510,

100520,

200110,

200120,

200210,

200220,

200510,

200610,

990110,

990120,

500110,

500210,

300100

};

SQLCHAR

Description[NUM_PRODS][257]

=

{

"Aquarium-Glass-25

litres",

"Aquarium-Glass-50

litres",

"Aquarium-Acrylic-25

litres",

"Aquarium-Acrylic-50

litres",

"Aquarium-Stand-Small",

"Aquarium-Stand-Large",

"Pump-Basic-25

litre",

"Pump-Basic-50

litre",

"Pump-Deluxe-25

litre",

"Pump-Deluxe-50

litre",

"Pump-Filter-(for

Basic

Pump)",

"Pump-Filter-(for

Deluxe

Pump)",

"Aquarium-Kit-Small",

"Aquarium-Kit-Large",

"Gravel-Colored",

"Fish-Food-Deluxe-Bulk",

"Plastic-Tubing"

};

SQLDOUBLE

UPrice[NUM_PRODS]

=

{

110.00,

190.00,

100.00,

150.00,

60.00,

90.00,

30.00,

45.00,

55.00,

75.00,

4.75,

5.25,

160.00,

240.00,

2.50,

35.00,

5.50

};

SQLCHAR

Units[NUM_PRODS][3]

=

{

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"

",

"kg",

"kg",

"m"

};

SQLCHAR

Combo[NUM_PRODS][2]

=

{

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"N",

"Y",

"Y",

"N",

"N",

"N"

};

SQLUINTEGER

pirow

=

0;

/*

...

*/

Figure

8.

An

application

that

binds

data

types

to

parameters

(Part

1

of

2)

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Chapter

4.

Functions

95

Related

functions

The

following

functions

relate

to

SQLBindParameter()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLBindParameter()

in

your

applications.

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

301

v

“SQLParamOptions()

-

Specify

an

input

array

for

a

parameter”

on

page

304

v

“SQLPutData()

-

Pass

a

data

value

for

a

parameter”

on

page

335

/*

Prepare

the

statement

*/

rc

=

SQLPrepare(hstmt,

stmt,

SQL_NTS);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SLONG,

SQL_INTEGER,

0,

0,

Prod_Num,

0,

NULL);

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_VARCHAR,

257,

0,

Description,

257,

NULL);

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_DOUBLE,

SQL_DECIMAL,

10,

2,

UPrice,

0,

NULL);

rc

=

SQLBindParameter(hstmt,

4,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

3,

0,

Units,

3,

NULL);

rc

=

SQLBindParameter(hstmt,

5,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

2,

0,

Combo,

2,

NULL);

rc

=

SQLParamOptions(hstmt,

NUM_PRODS,

&pirow);

rc

=

SQLExecute(hstmt);

printf("Inserted

%ld

Rows\n",

pirow);

/*

...

*/

Figure

8.

An

application

that

binds

data

types

to

parameters

(Part

2

of

2)

SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

96

ODBC

Guide

and

Reference

SQLCancel()

-

Cancel

statement

Purpose

Table

28.

SQLCancel()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

Use

SQLCancel()

to

prematurely

terminate

a

data-at-execution

sequence,

which

is

described

in

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

Syntax

SQLRETURN

SQLCancel

(SQLHSTMT

hstmt);

Function

arguments

Table

29

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

29.

SQLCancel()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle

Usage

After

SQLExecDirect()

or

SQLExecute()

returns

SQL_NEED_DATA

to

solicit

values

for

data-at-execution

parameters,

you

can

use

SQLCancel()

to

cancel

the

data-at-execution

sequence.

You

can

call

SQLCancel()

any

time

before

the

final

SQLParamData()

in

the

sequence.

After

you

cancel

this

sequence,

you

can

call

SQLExecute()

or

SQLExecDirect()

to

re-initiate

the

data-at-execution

sequence.

If

you

call

SQLCancel()

on

an

statement

handle

that

is

not

associated

with

a

data-at-execution

sequence,

SQLCancel()

has

the

same

effect

as

SQLFreeHandle()

with

the

HandleType

set

to

SQL_HANDLE_STMT.

You

should

not

call

SQLCancel()

to

close

a

cursor;

rather,

use

SQLCloseCursor()

to

close

cursors.

Return

codes

After

you

call

SQLCancel(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

30

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

30.

SQLCancel()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

SQLCancel()

-

Cancel

statement

Chapter

4.

Functions

97

Table

30.

SQLCancel()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

DB2

ODBC

does

not

support

asynchronous

statement

execution.

Related

functions

The

following

functions

relate

to

SQLCancel()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLCancel()

in

your

applications.

v

“SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

301

v

“SQLPutData()

-

Pass

a

data

value

for

a

parameter”

on

page

335

SQLCancel()

-

Cancel

statement

98

ODBC

Guide

and

Reference

SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results

Purpose

Table

31.

SQLCloseCursor()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLCloseCursor()

closes

a

cursor

that

has

been

opened

on

a

statement

and

discards

pending

results.

Syntax

SQLRETURN

SQLCloseCursor

(SQLHSTMT

StatementHandle);

Function

arguments

Table

32

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

32.

SQLCloseCursor()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

Usage

SQLCloseCursor()

closes

a

cursor

that

has

been

opened

on

a

statement

and

discards

pending

results.

After

an

application

calls

SQLCloseCursor(),

the

application

can

reopen

the

cursor

by

executing

a

SELECT

statement

again

with

the

same

or

different

parameter

values.

When

the

cursor

is

reopened,

the

application

uses

the

same

statement

handle.

SQLCloseCursor()

returns

SQLSTATE

24000

(invalid

cursor

state)

if

no

cursor

is

open.

Calling

SQLCloseCursor()

is

equivalent

to

calling

the

ODBC

2.0

function

SQLFreeStmt()

with

fOption

argument

set

to

SQL_CLOSE.

An

exception

is

that

SQLFreeStmt()

with

SQL_CLOSE

has

no

effect

on

the

application

if

no

cursor

is

open

on

the

statement,

whereas

SQLCloseCursor()

returns

SQLSTATE

24000

(invalid

cursor

state).

Return

codes

After

you

call

SQLCloseCursor(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

33

on

page

100

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results

Chapter

4.

Functions

99

Table

33.

SQLCloseCursor()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLCloseCursor()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

24000

Invalid

cursor

state.

No

cursor

is

open

on

the

statement

handle.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

applies.

The

error

message

that

SQLGetDiagRec()

returns

in

the

buffer

that

the

MessageText

argument

specifies,

describes

this

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

unable

to

allocate

memory

that

is

required

execute

or

complete

the

function.

HY010

Function

sequence

error.

SQLExecute()

or

SQLExecDirect()

are

called

on

the

statement

handle

and

return

SQL_NEED_DATA.

SQLCloseCursor()

is

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

Invoke

SQLCancel()

to

cancel

the

data-at-execution

condition.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

unable

to

access

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

The

following

lines

of

code

close

the

cursor

on

statement

handle

hstmt:

rc=SQLCloseCursor(hstmt);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

Related

functions

The

following

functions

relate

to

SQLCloseCursor()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLCloseCursor()

in

your

applications.

v

“SQLGetConnectAttr()

-

Get

current

attribute

setting”

on

page

196

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results

100

ODBC

Guide

and

Reference

SQLColAttribute()

-

Get

column

attributes

Purpose

Table

34.

SQLColAttribute()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLColAttribute()

returns

descriptor

information

about

a

column

in

a

result

set.

Descriptor

information

is

returned

as

a

character

string,

a

32-bit

descriptor-dependent

value,

or

an

integer

value.

Syntax

SQLRETURN

SQLColAttribute

(SQLHSTMT

StatementHandle,

SQLSMALLINT

ColumnNumber,

SQLSMALLINT

FieldIdentifier,

SQLPOINTER

CharacterAttributePtr,

SQLSMALLINT

BufferLength,

SQLSMALLINT

*StringLengthPtr,

SQLPOINTER

NumericAttributePtr);

Function

arguments

Table

35

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

35.

SQLColAttribute()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ColumnNumber

input

Number

of

the

column

you

want

to

be

described.

Columns

are

numbered

sequentially

from

left

to

right,

starting

at

1.

Column

zero

might

not

be

defined.

The

DB2

ODBC

3.0

driver

does

not

support

bookmarks.

See

“Restrictions”

on

page

108.

SQLSMALLINT

FieldIdentifier

input

The

field

in

row

ColumnNumber

that

is

to

be

returned.

See

Table

36

on

page

102.

SQLPOINTER

CharacterAttributePtr

output

Pointer

to

a

buffer

in

which

to

return

the

value

in

the

FieldIdentifier

field

of

the

ColumnNumber

row

if

the

field

is

a

character

string.

Otherwise,

this

field

is

ignored.

SQLSMALLINT

BufferLength

input

The

length,

in

bytes,

of

the

buffer

you

specified

for

the

*CharacterAttributePtr

argument,

if

the

field

is

a

character

string.

Otherwise,

this

field

is

ignored.

SQLSMALLINT

*

StringLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

nul-termination

character)

that

are

available

to

return

in

*CharacterAttributePtr.

For

character

data,

if

the

number

of

bytes

that

are

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

descriptor

information

in

*CharacterAttributePtr

is

truncated

to

BufferLength

minus

the

length

(in

bytes)

of

a

nul-termination

character.

DB2

ODBC

then

nul-terminates

the

value.

For

all

other

types

of

data,

the

value

of

BufferLength

is

ignored,

and

DB2

ODBC

assumes

that

the

size

of

*CharacterAttributePtr

is

32

bits.

SQLColAttribute()

-

Get

column

attributes

Chapter

4.

Functions

101

Table

35.

SQLColAttribute()

arguments

(continued)

Data

type

Argument

Use

Description

SQLPOINTER

NumericAttributePtr

output

Pointer

to

an

integer

buffer

in

which

to

return

the

value

in

the

FieldIdentifier

field

of

the

ColumnNumber

row,

if

the

field

is

a

numeric

descriptor

type,

such

as

SQL_DESC_LENGTH.

Otherwise,

this

field

is

ignored.

Usage

SQLColAttribute()

returns

information

in

either

*NumericAttributePtr

or

*CharacterAttributePtr.

Integer

information

is

returned

in

*NumericAttributePtr

as

a

32-bit,

signed

value;

all

other

formats

of

information

are

returned

in

*CharacterAttributePtr.

When

information

is

returned

in

*NumericAttributePtr,

DB2

ODBC

ignores

CharacterAttributePtr,

BufferLength,

and

StringLengthPtr.

When

information

is

returned

in

*CharacterAttributePtr,

DB2

ODBC

ignores

NumericAttributePtr.

SQLColAttribute()

allows

access

to

the

more

extensive

set

of

descriptor

information

that

is

available

in

ANSI

SQL92

and

DBMS

vendor

extensions.

SQLColAttribute()

is

a

more

extensible

alternative

to

the

SQLDescribeCol()

function,

but

that

function

can

return

only

one

attribute

per

call.

DB2

ODBC

must

return

a

value

for

each

of

the

descriptor

types.

If

a

descriptor

type

does

not

apply

to

a

data

source,

DB2

ODBC

returns

0

in

*StringLengthPtr

or

an

empty

string

in

*CharacterAttributePtr

unless

otherwise

stated.

Table

36

lists

the

descriptor

types

that

are

returned

by

ODBC

3.0

SQLColAttribute(),

along

with

the

ODBC

2.0

SQLColAttributes()

attribute

values

(in

parentheses)

that

were

replaced

or

renamed.

Table

36.

SQLColAttribute()

field

identifiers

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_AUTO_UNIQUE_VALUE

(SQL_COLUMN_AUTO_INCREMENT)1

NumericAttributePtr

Indicates

whether

the

column

data

type

automatically

increments.

SQL_FALSE

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

SQL_DESC_BASE_COLUMN_NAME

CharacterAttributePtr

The

base

column

name

for

the

set

column.

If

a

base

column

name

does

not

exist

(for

example,

columns

that

are

expressions),

this

variable

contains

an

empty

string.

SQL_DESC_BASE_TABLE_NAME

CharacterAttributePtr

The

name

of

the

base

table

that

contains

the

column.

If

the

base

table

name

cannot

be

defined

or

is

not

applicable,

this

variable

contains

an

empty

string.

SQL_DESC_CASE_SENSITIVE

(SQL_COLUMN_CASE_SENSITIVE1

NumericAttributePtr

Indicates

if

the

column

data

type

is

case

sensitive.

Either

SQL_TRUE

or

SQL_FALSE

is

returned

in

NumericAttributePtr,

depending

on

the

data

type.

Case

sensitivity

does

not

apply

to

graphic

data

types.

SQL_FALSE

is

returned

for

non-character

data

types.

SQL_DESC_CATALOG_NAME

(SQL_COLUMN_CATALOG_NAME)1

(SQL_COLUMN_QUALIFIER_NAME)1

CharacterAttributePtr

The

name

of

the

catalog

table

that

contains

the

column.

An

empty

string

is

returned

because

DB2

ODBC

supports

two-part

naming

for

a

table.

SQLColAttribute()

-

Get

column

attributes

102

ODBC

Guide

and

Reference

Table

36.

SQLColAttribute()

field

identifiers

(continued)

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_CONCISE_TYPE

CharacterAttributePtr

The

concise

data

type.

For

datetime

data

types,

this

field

returns

the

concise

data

type,

such

as

SQL_TYPE_TIME.

SQL_DESC_COUNT

(SQL_COLUMN_COUNT)1

NumericAttributePtr

The

number

of

columns

in

the

result

set.

SQL_DESC_DISPLAY_SIZE

(SQL_COLUMN_DISPLAY_SIZE)1

NumericAttributePtr

The

maximum

number

of

bytes

that

are

needed

to

display

the

data

in

character

form.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

details

about

the

display

size

of

each

of

the

column

data

types.

SQL_DESC_DISTINCT_TYPE

(SQL_COLUMN_DISTINCT_TYPE)1

CharacterAttributePtr

The

distinct

type

name

that

is

used

for

a

column.

If

the

column

is

a

built-in

SQL

type

and

not

a

distinct

type,

an

empty

string

is

returned.

IBM

specific:

This

is

an

IBM-defined

extension

to

the

list

of

descriptor

attributes

as

defined

by

ODBC.

SQL_DESC_FIXED_PREC_SCALE

(SQL_COLUMN_MONEY)1

NumericAttributePtr

SQL_TRUE

if

the

column

has

a

fixed

precision

and

nonzero

scale

that

are

data-source-specific.

This

value

is

SQL_FALSE

if

the

column

does

not

have

a

fixed

precision

and

nonzero

scale

that

are

data-source-specific.

SQL_FALSE

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

SQL_DESC_LABEL

(SQL_COLUMN_LABEL)1

CharacterAttributePtr

The

column

label.

If

the

column

does

not

have

a

label,

the

column

name

or

the

column

expression

is

returned.

If

the

column

is

not

labeled

or

named,

an

empty

string

is

returned.

SQL_DESC_LENGTH

NumericAttributePtr

A

numeric

value

that

is

either

the

maximum

or

actual

length,

in

bytes,

of

a

character

string

or

binary

data

type.

This

value

is

the

maximum

length

for

a

fixed-length

data

type,

or

the

actual

length

for

a

varying-length

data

type.

This

value

always

excludes

the

nul-termination

character

that

ends

the

character

string.

SQL_DESC_LITERAL_PREFIX

CharacterAttributePtr

A

VARCHAR(128)

record

field

that

contains

the

character

or

characters

that

DB2

ODBC

recognizes

as

a

prefix

for

a

literal

of

this

data

type.

This

field

contains

an

empty

string

if

a

literal

prefix

is

not

applicable

to

this

data

type.

SQL_DESC_LITERAL_SUFFIX

CharacterAttributePtr

A

VARCHAR(128)

record

field

that

contains

the

character

or

characters

that

DB2

ODBC

recognizes

as

a

suffix

for

a

literal

of

this

data

type.

This

field

contains

an

empty

string

if

a

literal

prefix

is

not

applicable

to

this

data

type.

SQLColAttribute()

-

Get

column

attributes

Chapter

4.

Functions

103

Table

36.

SQLColAttribute()

field

identifiers

(continued)

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_LOCAL_TYPE_NAME

CharacterAttributePtr

A

VARCHAR(128)

record

field

that

contains

any

localized

(native

language)

name

for

the

data

type

that

might

be

different

from

the

regular

name

of

the

data

type.

If

a

localized

name

does

not

exist,

an

empty

string

is

returned.

This

field

is

for

display

purposes

only.

The

character

set

of

the

string

is

location

dependent;

it

is

typically

the

default

character

set

of

the

server.

SQL_DESC_NAME

(SQL_COLUMN_NAME)1

CharacterAttributePtr

The

name

of

the

column

specified

with

ColumnNumber.

If

the

column

is

an

expression,

the

column

number

is

returned.

In

either

case,

SQL_DESC_UNNAMED

is

set

to

SQL_NAMED.

If

the

column

is

unnamed

or

has

no

alias,

an

empty

string

is

returned

and

SQL_DESC_UNNAMED

is

set

to

SQL_UNNAMED.

SQL_DESC_NULLABLE

(SQL_COLUMN_NULLABLE)1

NumericAttributePtr

If

the

column

that

is

identified

by

ColumnNumber

can

contain

null

values,

SQL_NULLABLE

is

returned.

If

the

column

cannot

accept

null

values,

SQL_NO_NULLS

is

returned.

SQL_DESC_NUM_PREX_RADIX

NumericAttributePtr

The

precision

of

each

digit

in

a

numeric

value.

The

following

values

are

commonly

returned:

v

If

the

data

type

in

the

SQL_DESC_TYPE

field

is

an

approximate

data

type,

this

SQLINTEGER

field

contains

a

value

of

2

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

bits.

v

If

the

data

type

in

the

SQL_DESC_TYPE

field

is

an

exact

numeric

data

type,

this

field

contains

a

value

of

10

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

decimal

digits.

v

This

field

is

set

to

0

for

all

nonnumeric

data

types.

SQLColAttribute()

-

Get

column

attributes

104

ODBC

Guide

and

Reference

Table

36.

SQLColAttribute()

field

identifiers

(continued)

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_OCTET_LENGTH

(SQL_COLUMN_LENGTH)1

NumericAttributePtr

The

number

of

bytes

of

data

that

is

associated

with

the

column.

This

is

the

length

in

bytes

of

data

that

is

transferred

on

the

fetch

or

SQLGetData()

for

this

column

if

SQL_C_DEFAULT

is

specified

as

the

C

data

type.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

details

about

the

length

of

each

of

the

SQL

data

types.

If

the

column

that

is

identified

in

ColumnNumber

is

a

fixed-length

character

or

binary

string,

(for

example,

SQL_CHAR

or

SQL_BINARY),

the

actual

length

is

returned.

If

the

column

that

is

identified

in

ColumnNumber

is

a

varying-length

character

or

binary

string,

(for

example,

SQL_VARCHAR

or

SQL_BLOB),

the

maximum

length

is

returned.

SQL_DESC_PRECISION

(SQL_COLUMN_PRECISION)1

NumericAttributePtr

The

precision

in

units

of

digits

if

the

column

is:

v

SQL_DECIMAL

v

SQL_NUMERIC

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_INTEGER

v

SQL_REAL

v

SQL_SMALLINT

If

the

column

is

a

character

SQL

data

type,

the

precision

that

is

returned

indicates

the

maximum

number

of

characters

that

the

column

can

hold.

If

the

column

is

a

graphic

SQL

data

type,

the

precision

indicates

the

maximum

number

of

double-byte

characters

that

the

column

can

hold.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

information

about

the

precision

of

each

of

the

SQL

data

types.

SQL_DESC_SCALE

(SQL_COLUMN_SCALE)1

NumericAttributePtr

The

scale

attribute

of

the

column.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

information

about

the

precision

of

each

of

the

SQL

data

types.

SQL_DESC_SCHEMA_NAME

(SQL_COLUMN_OWNER_NAME)1

CharacterAttributePtr

The

schema

of

the

table

that

contains

the

column.

An

empty

string

is

returned;

DB2

is

not

able

to

determine

this

attribute.

SQLColAttribute()

-

Get

column

attributes

Chapter

4.

Functions

105

Table

36.

SQLColAttribute()

field

identifiers

(continued)

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_SEARCHABLE

(SQL_COLUMN_SEARCHABLE)1

NumericAttributePtr

Indicates

if

the

column

data

type

is

searchable:

v

SQL_PRED_NONE

(SQL_UNSEARCHABLE

in

ODBC

2.0)

if

the

column

cannot

be

used

in

a

WHERE

clause.

v

SQL_PRED_CHAR

(SQL_LIKE_ONLY

in

ODBC

2.0)

if

the

column

can

be

used

in

a

WHERE

clause

only

with

the

LIKE

predicate.

v

SQL_PRED_BASIC

(SQL_ALL_EXCEPT_LIKE

in

ODBC

2.0)

if

the

column

can

be

used

in

a

WHERE

clause

with

all

comparison

operators

except

LIKE.

v

SQL_SEARCHABLE

if

the

column

can

be

used

in

a

WHERE

clause

with

any

comparison

operator.

SQL_DESC_TABLE_NAME

(SQL_COLUMN_TABLE_NAME)1

CharacterAttributePtr

The

name

of

the

table

that

contains

the

column.

An

empty

string

is

returned;

DB2

ODBC

cannot

determine

this

attribute.

SQL_DESC_TYPE

(SQL_COLUMN_TYPE)1

NumericAttributePtr

The

SQL

data

type

of

the

column.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

a

list

of

possible

data

type

values

that

can

be

returned.

For

the

datetime

data

types,

this

field

returns

the

verbose

data

type,

such

as

SQL_DATETIME.

SQL_DESC_TYPE_NAME

(SQL_COLUMN_TYPE_NAME)1

CharacterAttributePtr

The

type

of

the

column

(specified

in

an

SQL

statement).

See

Appendix

D,

“Data

conversion,”

on

page

509

for

information

about

each

data

type.

SQL_DESC_UNNAMED

NumericAttributePtr

Returns

SQL_NAMED

or

SQL_UNNAMED.

If

the

SQL_DESC_NAME

contains

a

column

name,

SQL_NAMED

is

returned.

If

the

column

is

unnamed,

SQL_UNNAMED

is

returned.

SQL_DESC_UNSIGNED

(SQL_COLUMN_UNSIGNED)1

NumericAttributePtr

Indicates

if

the

column

data

type

is

an

unsigned

type.

SQL_TRUE

is

returned

in

NumericAttributePtr

for

all

nonnumeric

data

types.

SQL_FALSE

is

returned

for

all

numeric

data

types.

SQLColAttribute()

-

Get

column

attributes

106

ODBC

Guide

and

Reference

Table

36.

SQLColAttribute()

field

identifiers

(continued)

Field

identifier

Information

returned

in

arguments

Description

SQL_DESC_UPDATABLE

(SQL_COLUMN_UPDATABLE)1

NumericAttributePtr

Indicates

if

the

column

data

type

is

a

data

type

that

can

be

updated:

v

SQL_ATTR_READWRITE_UNKNOWN

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

v

SQL_ATTR_READONLY

is

returned

if

the

column

is

obtained

from

a

catalog

function

call.

ODBC

also

defines

the

following

values,

however

DB2

ODBC

does

not

return

these

values:

–

SQL_DESC_UPDATABLE

–

SQL_UPDT_WRITE

Note:

1.

These

descriptor

values

(values

for

argument

fDescType)

are

for

the

deprecated

ODBC

2.0

SQLColAttributes()

API.

Both

SQLColAttribute()

and

SQLColAttributes()

support

these

values.

Return

codes

After

you

call

SQLColAttribute(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

37

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

37.

SQLColAttribute()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLColAttribute()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01004

Data

truncated.

The

buffer

to

which

the

CharacterAttributePtr

argument

points

is

not

large

enough

to

return

the

entire

string

value,

so

the

string

value

was

truncated.

The

length,

in

bytes,

of

the

untruncated

string

value

is

returned

in

the

buffer

to

which

the

StringLengthPtr

argument

points.

(SQLColumnAttribute()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

07005

The

statement

did

not

return

a

result

set.

The

statement

that

is

associated

with

the

StatementHandle

argument

did

not

return

a

result

set.

There

are

no

columns

to

describe.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

that

is

returned

by

SQLGetDiagRec()

in

the

buffer

to

which

the

MessageText

argument

points,

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

that

is

required

to

support

execution

or

completion

of

the

function.

SQLColAttribute()

-

Get

column

attributes

Chapter

4.

Functions

107

Table

37.

SQLColAttribute()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY002

Invalid

column

number.

The

value

that

is

specified

for

the

ColumnNumber

argument

is

less

than

0,

or

greater

than

the

number

of

columns

in

the

result

set.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

function

is

called

prior

to

SQLPrepare()

or

SQLExecDirect()

for

the

statement

handle

that

the

StatementHandle

argument

specifies.

v

SQLExecute()

or

SQLExecDirect()

is

called

for

the

statement

handle

that

the

StatementHandle

argument

specifies

and

returns

SQL_NEED_DATA.

SQLColAttribute()

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

HY090

Invalid

string

or

buffer

length.

The

value

that

is

specified

for

the

BufferLength

argument

is

less

than

0.

HY091

Descriptor

type

out

of

range.

The

value

that

is

specified

for

the

FieldIdentifier

argument

is

neither

one

of

the

defined

values

nor

an

implementation-defined

value.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

the

specified

value

for

the

FieldIdentifier

argument.

Restrictions

ColumnNumber

zero

might

not

be

defined.

The

DB2

ODBC

3.0

driver

does

not

support

bookmarks.

Example

See

Figure

13

on

page

134.

In

this

example,

SQLColAttribute()

retrieves

the

display

length

for

a

column.

Related

functions

The

following

functions

relate

to

SQLColAttribute()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLColAttribute()

in

your

applications.

v

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

v

“SQLDescribeCol()

-

Describe

column

attributes”

on

page

131

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

SQLColAttribute()

-

Get

column

attributes

108

ODBC

Guide

and

Reference

|

SQLColAttributes()

-

Get

column

attributes

Purpose

Table

38.

SQLColAttributes()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

No

No

In

the

current

version

of

DB2

ODBC,

SQLColAttribute()

replaces

SQLColAttributes().

See

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

for

more

information.

Although

DB2

ODBC

supports

SQLColAttributes()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLColAttributes()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLColAttributes

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLUSMALLINT

fDescType,

SQLPOINTER

rgbDesc,

SQLSMALLINT

cbDescMax,

SQLSMALLINT

FAR

*pcbDesc,

SQLINTEGER

FAR

*pfDesc);

Function

arguments

Table

39

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

39.

SQLColAttributes()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLUSMALLINT

icol

input

Column

number

in

the

result

set

(must

be

between

1

and

the

number

of

columns

in

the

result

set,

inclusive).

This

argument

is

ignored

when

SQL_COLUMN_COUNT

is

specified.

SQLUSMALLINT

fDescType

input

The

supported

values

are

described

in

Table

36

on

page

102.

SQLCHAR

*

rgbDesc

output

Pointer

to

buffer

for

string

column

attributes.

SQLSMALLINT

cbDescMax

input

Specifies

the

length,

in

bytes,

of

rgbDesc

descriptor

buffer.

SQLSMALLINT

*

pcbDesc

output

Actual

number

of

bytes

that

are

returned

in

rgbDesc

buffer.

If

this

argument

contains

a

value

equal

to

or

greater

than

the

length

that

is

specified

in

cbDescMax,

truncation

occurred.

The

column

attribute

value

is

then

truncated

to

cbDescMax

bytes,

minus

the

size

of

the

nul-terminator

(or

to

cbDescMax

bytes

if

nul-termination

is

off).

SQLINTEGER

*

pfDesc

output

Pointer

to

an

integer

that

holds

the

value

of

numeric

column

attributes.

SQLColAttributes()

-

Get

column

attributes

Chapter

4.

Functions

109

www.ibm.com/software/data/db2/zos/library.html

SQLColumnPrivileges()

-

Get

column

privileges

Purpose

Table

40.

SQLColumnPrivileges()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLColumnPrivileges()

returns

a

list

of

columns

and

associated

privileges

for

the

specified

table.

The

information

is

returned

in

an

SQL

result

set,

which

you

can

retrieve

by

using

the

same

functions

that

you

use

to

process

a

result

set

that

a

query

generates.

Syntax

SQLRETURN

SQLColumnPrivileges

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

FAR

*szColumnName,

SQLSMALLINT

cbColumnName);

Function

arguments

Table

41

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

41.

SQLColumnPrivileges()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szCatalogName

input

Catalog

qualifier

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero-length

string.

SQLSMALLINT

cbCatalogName

input

Specifies

the

length,

in

bytes,

of

szCatalogName.

This

must

be

set

to

0.

SQLCHAR

*

szSchemaName

input

Schema

qualifier

of

table

name.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

szTableName.

SQLCHAR

*

szColumnName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

column

name.

SQLSMALLINT

cbColumnName

input

The

length,

in

bytes,

of

szColumnName.

Usage

The

results

are

returned

as

a

standard

result

set

that

contains

the

columns

listed

in

Table

42

on

page

111.

The

result

set

is

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

COLUMN_NAME,

and

PRIVILEGE.

If

multiple

privileges

are

associated

with

any

given

column,

each

privilege

is

returned

as

a

separate

row.

Typically,

you

call

this

function

after

a

call

to

SQLColumns()

to

determine

column

privilege

information.

The

application

should

use

the

character

strings

that

are

SQLColumnPrivileges()

-

Get

column

privileges

110

ODBC

Guide

and

Reference

returned

in

the

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

of

the

SQLColumns()

result

set

as

input

arguments

to

this

function.

Because

calls

to

SQLColumnPrivileges()

frequently

result

in

a

complex

and

thus

expensive

query

to

the

catalog,

used

these

calls

sparingly,

and

save

the

results

rather

than

repeat

the

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

(which

is

consistent

with

SQL92

limits).

Because

DB2

names

are

shorter

than

128

characters,

the

application

can

choose

to

always

set

aside

128

characters

(plus

the

nul-terminator)

for

the

output

buffer.

You

can

alternatively

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Note

that

the

szColumnName

argument

accepts

a

search

pattern.

For

more

information

about

valid

search

patterns,

see

“Input

arguments

on

catalog

functions”

on

page

408.

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

might

change

in

future

releases,

the

position

of

the

current

columns

will

remain

unchanged.

Table

42

lists

the

columns

in

the

result

set

that

SQLColumnPrivileges()

currently

returns.

Table

42.

Columns

returned

by

SQLColumnPrivileges()

Column

number

Column

name

Data

type

Description

1

TABLE_CAT

VARCHAR(128)

Always

null.

2

TABLE_SCHEM

VARCHAR(128)

Indicates

the

name

of

the

schema

that

contains

TABLE_NAME.

3

TABLE_NAME

VARCHAR(128)

not

NULL

Indicates

the

name

of

the

table

or

view.

4

COLUMN_NAME

VARCHAR(128)

not

NULL

Indicates

the

name

of

the

column

of

the

specified

table

or

view.

5

GRANTOR

VARCHAR(128)

Indicates

the

authorization

ID

of

the

user

who

granted

the

privilege.

6

GRANTEE

VARCHAR(128)

Indicates

the

authorization

ID

of

the

user

to

whom

the

privilege

is

granted.

SQLColumnPrivileges()

-

Get

column

privileges

Chapter

4.

Functions

111

Table

42.

Columns

returned

by

SQLColumnPrivileges()

(continued)

Column

number

Column

name

Data

type

Description

7

PRIVILEGE

VARCHAR(128)

Indicates

the

column

privilege.

This

can

be:

v

ALTER

v

CONTROL

v

DELETE

v

INDEX

v

INSERT

v

REFERENCES

v

SELECT

v

UPDATE

Supported

privileges

are

based

on

the

data

source

to

which

you

are

connected.

Most

IBM

RDBMSs

do

not

offer

column-level

privileges

at

the

column

level.

DB2

UDB

for

z/OS

and

DB2

for

VSE

&

VM

support

the

UPDATE

column

privilege;

each

updatable

column

is

receives

one

row

in

this

result

set.

For

all

other

privileges

for

DB2

UDB

for

z/OS

and

DB2

for

VSE

&

VM,

and

for

all

privileges

for

other

IBM

RDBMSs,

if

a

privilege

has

been

granted

at

the

table

level,

a

row

is

present

in

this

result

set.

8

IS_GRANTABLE

VARCHAR(3)

Indicates

whether

the

grantee

is

permitted

to

grant

the

privilege

to

other

users.

Either

″YES″

or

″NO″.

The

column

names

that

DB2

ODBC

uses

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents,

and

order

are

identical

to

those

that

are

defined

for

the

SQLColumnPrivileges()

result

set

in

ODBC.

If

more

than

one

privilege

is

associated

with

a

column,

each

privilege

is

returned

as

a

separate

row

in

the

result

set.

Return

codes

After

you

call

SQLColumnPrivileges(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

43

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

43.

SQLColumnPrivileges()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

SQLColumnPrivileges()

-

Get

column

privileges

112

ODBC

Guide

and

Reference

Table

43.

SQLColumnPrivileges()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

szTableName

argument

is

null.

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0

and

not

equal

to

SQL_NTS.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

″catalog″

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

9

on

page

114

shows

an

application

that

prints

a

list

of

column

privileges

for

a

table.

SQLColumnPrivileges()

-

Get

column

privileges

Chapter

4.

Functions

113

Related

functions

The

following

functions

relate

to

SQLColumnPrivileges()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLColumnPrivileges()

in

your

applications.

v

“SQLColumns()

-

Get

column

information”

on

page

115

v

“SQLTables()

-

Get

table

information”

on

page

391

/*

...

*/

SQLRETURN

list_column_privileges(SQLHDBC

hdbc,

SQLCHAR

*schema,

SQLCHAR

*tablename

)

{

/*

...

*/

rc

=

SQLColumnPrivileges(hstmt,

NULL,

0,

schema,

SQL_NTS,

tablename,

SQL_NTS,

columnname.s,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

columnname.s,

129,

&columnname.ind);

rc

=

SQLBindCol(hstmt,

5,

SQL_C_CHAR,

(SQLPOINTER)

grantor.s,

129,

&grantor.ind);

rc

=

SQLBindCol(hstmt,

6,

SQL_C_CHAR,

(SQLPOINTER)

grantee.s,

129,

&grantee.ind);

rc

=

SQLBindCol(hstmt,

7,

SQL_C_CHAR,

(SQLPOINTER)

privilege.s,

129,

&privilege.ind);

rc

=

SQLBindCol(hstmt,

8,

SQL_C_CHAR,

(SQLPOINTER)

is_grantable.s,

4,

&is_grantable.ind);

printf("Column

Privileges

for

%s.%s\n",

schema,

tablename);

/*

Fetch

each

row,

and

display

*/

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

sprintf(cur_name,

"

Column:

%s\n",

columnname.s);

if

(strcmp(cur_name,

pre_name)

!=

0)

{

printf("\n%s\n",

cur_name);

printf("

Grantor

Grantee

Privilege

Grantable\n");

printf("

---\n");

}

strcpy(pre_name,

cur_name);

printf("

%-15s",

grantor.s);

printf("

%-15s",

grantee.s);

printf("

%-10s",

privilege.s);

printf("

%-3s\n",

is_grantable.s);

}

/*

endwhile

*/

/*

...

*/

Figure

9.

An

application

that

retrieves

user

privileges

on

table

columns

SQLColumnPrivileges()

-

Get

column

privileges

114

ODBC

Guide

and

Reference

SQLColumns()

-

Get

column

information

Purpose

Table

44.

SQLColumns()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

No

SQLColumns()

returns

a

list

of

columns

in

the

specified

tables.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

fetch

a

result

set

that

a

query

generates.

Syntax

SQLRETURN

SQLColumns

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

FAR

*szColumnName,

SQLSMALLINT

cbColumnName);

Function

arguments

Table

45

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

45.

SQLColumns()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Identifies

the

statement

handle.

SQLCHAR

*

szCatalogName

input

Identifies

the

buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set.

Catalog

is

the

first

part

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbCatalogName

input

Specifies

the

length,

in

bytes,

of

szCatalogName.

This

must

be

set

to

0.

SQLCHAR

*

szSchemaName

input

Identifies

the

buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

cbSchemaName

input

Specifies

the

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Identifies

the

buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

cbTableName

input

Specifies

the

length,

in

bytes,

of

szTableName.

SQLCHAR

*

szColumnName

input

Identifies

the

buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

column

name.

SQLSMALLINT

cbColumnName

input

Specifies

the

length,

in

bytes,

of

szColumnName.

Usage

This

function

retrieves

information

about

the

columns

of

a

table

or

a

set

of

tables.

Typically,

you

call

this

function

after

you

call

SQLTables()

to

determine

the

columns

SQLColumns()

-

Get

column

information

Chapter

4.

Functions

115

of

a

table.

Use

the

character

strings

that

are

returned

in

the

TABLE_SCHEM

and

TABLE_NAME

columns

of

the

SQLTables()

result

set

as

input

to

this

function.

SQLColumns()

returns

a

standard

result

set,

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

ORDINAL_POSITION.

Table

46

lists

the

columns

in

the

result

set.

The

szSchemaName,

szTableName,

and

szColumnName

arguments

accept

search

patterns.

For

more

information

about

valid

search

patterns,

see

“Input

arguments

on

catalog

functions”

on

page

408.

Because

calls

to

SQLColumns()

frequently

result

in

a

complex

and

expensive

query

to

the

catalog,

use

these

calls

sparingly,

and

save

the

results

rather

than

repeat

the

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

(which

is

consistent

with

SQL92

limits).

Because

DB2

names

are

less

than

128

characters,

the

application

can

choose

to

always

set

aside

128

characters

(plus

the

nul-terminator)

for

the

output

buffer.

You

can

alternatively

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

might

change

in

future

releases,

the

position

of

the

current

columns

will

remain

unchanged.

Table

46

lists

the

columns

in

the

result

set

that

SQLColumns()

currently

returns.

Table

46.

Columns

returned

by

SQLColumns()

Column

number

Column

name

Data

type

Description

1

TABLE_CAT

VARCHAR(128)

Always

null.

2

TABLE_SCHEM

VARCHAR(128)

Identifies

the

name

of

the

schema

that

contains

TABLE_NAME.

3

TABLE_NAME

VARCHAR(128)

NOT

NULL

Identifies

the

name

of

the

table,

view,

alias,

or

synonym.

4

COLUMN_NAME

VARCHAR(128)

NOT

NULL

Identifies

the

column

that

is

described.

This

column

contains

the

name

of

the

column

of

the

specified

table,

view,

alias,

or

synonym.

5

DATA_TYPE

SMALLINT

NOT

NULL

Identifies

the

SQL

data

type

of

the

column

that

COLUMN_NAME

indicates.

This

is

one

of

the

values

in

the

Symbolic

SQL

Data

Type

column

in

Table

4

on

page

25.

6

TYPE_NAME

VARCHAR(128)

NOT

NULL

Identifies

the

character

string

that

represents

the

name

of

the

data

type

that

corresponds

to

the

DATA_TYPE

result

set

column.

SQLColumns()

-

Get

column

information

116

ODBC

Guide

and

Reference

Table

46.

Columns

returned

by

SQLColumns()

(continued)

Column

number

Column

name

Data

type

Description

7

COLUMN_SIZE

INTEGER

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

this

column

contains

the

maximum

length

in

characters

for

the

column.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

characters

that

are

required

to

display

the

value

when

it

is

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

that

are

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

See

also,

Table

234

on

page

509.

8

BUFFER_LENGTH

INTEGER

Indicates

the

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

column

if

SQL_C_DEFAULT

is

specified

on

the

SQLBindCol(),

SQLGetData(),

and

SQLBindParameter()

calls.

This

length

does

not

include

any

nul-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

also

Table

236

on

page

511.

9

DECIMAL_DIGITS

SMALLINT

Indicates

the

scale

of

the

column.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

also

Table

235

on

page

510.

10

NUM_PREC_RADIX

SMALLINT

Specifies

10,

2,

or

NULL.

If

DATA_TYPE

is

an

approximate

numeric

data

type,

this

column

contains

the

value

2,

and

the

COLUMN_SIZE

column

contains

the

number

of

bits

that

are

allowed

in

the

column.

If

DATA_TYPE

is

an

exact

numeric

data

type,

this

column

contains

the

value

10,

and

the

COLUMN_SIZE

contains

the

number

of

decimal

digits

that

are

allowed

for

the

column.

For

numeric

data

types,

the

DBMS

can

return

a

NUM_PREC_RADIX

value

of

either

10

or

2.

NULL

is

returned

for

data

types

where

the

NUM_PREC_RADIX

column

does

not

apply.

11

NULLABLE

SMALLINT

NOT

NULL

Contains

SQL_NO_NULLS

if

the

column

does

not

accept

null

values.

Contains

SQL_NULLABLE

if

the

column

accepts

null

values.

12

REMARKS

VARCHAR(762)

Contains

any

descriptive

information

about

the

column.

SQLColumns()

-

Get

column

information

Chapter

4.

Functions

117

|

Table

46.

Columns

returned

by

SQLColumns()

(continued)

Column

number

Column

name

Data

type

Description

13

COLUMN_DEF

VARCHAR(254)

Identifies

the

default

value

for

the

column.

If

the

default

value

is

a

numeric

literal,

this

column

contains

the

character

representation

of

the

numeric

literal

with

no

enclosing

single

quotes.

If

the

default

value

is

a

character

string,

this

column

is

that

string,

enclosed

in

single

quotes.

If

the

default

value

is

a

pseudo-literal,

such

as

for

DATE,

TIME,

and

TIMESTAMP

columns,

this

column

contains

the

keyword

of

the

pseudo-literal

(for

example,

CURRENT

DATE)

with

no

enclosing

quotes.

If

NULL

was

specified

as

the

default

value,

this

column

returns

the

word

NULL,

with

no

enclosing

single

quotes.

If

the

default

value

cannot

be

represented

without

truncation,

this

column

contains

the

value

TRUNCATED

with

no

enclosing

single

quotes.

If

no

default

value

was

specified,

this

column

is

null.

14

SQL_DATA_TYPE

SMALLINT

NOT

NULL

Indicates

the

SQL

data

type.

This

column

is

the

same

as

the

DATA_TYPE

column.

For

datetime

data

types,

the

SQL_DATA_TYPE

field

in

the

result

set

is

SQL_DATETIME,

and

the

SQL_DATETIME_SUB

field

returns

the

subcode

for

the

specific

datetime

data

type

(SQL_CODE_DATE,

SQL_CODE_TIME,

or

SQL_CODE_TIMESTAMP).

15

SQL_DATATIME_SUB

SMALLINT

The

subtype

code

for

datetime

data

types

can

be

one

of

the

following

values:

v

SQL_CODE_DATE

v

SQL_CODE_TIME

v

SQL_CODE_TIMESTAMP

For

all

other

data

types,

this

column

returns

NULL.

16

CHAR_OCTET_LENGTH

INTEGER

Contains

the

maximum

length

in

bytes

for

a

character

data

type

column.

For

single-byte

character

sets,

this

is

the

same

as

COLUMN_SIZE.

For

non-character

data

types,

it

is

null.

17

ORDINAL_POSITION

INTEGER

NOT

NULL

The

ordinal

position

of

the

column

in

the

table.

The

first

column

in

the

table

is

number

1.

18

IS_NULLABLE

VARCHAR(254)

Contains

the

string

’NO’

if

the

column

is

known

to

be

not

nullable;

and

’YES’

otherwise.

SQLColumns()

-

Get

column

information

118

ODBC

Guide

and

Reference

|

The

result

set

that

Table

46

on

page

116

describes

is

identical

to

the

X/Open

CLI

Columns()

result

set

specification,

which

is

an

extended

version

of

the

SQLColumns()

result

set

that

ODBC

2.0

specifies.

The

ODBC

SQLColumns()

result

set

includes

every

column

in

the

same

position

up

to

the

REMARKS

column.

DB2

ODBC

applications

that

issue

SQLColumns()

against

a

DB2

UDB

for

z/OS

server,

Version

5

or

later,

should

expect

the

result

set

columns

that

are

listed

in

Table

46

on

page

116.

Return

codes

After

you

call

SQLColumns(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

47

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

47.

SQLColumns()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

argument

is

less

than

0

and

not

equal

to

SQL_NTS.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

″catalog″

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

10

on

page

120

shows

an

application

that

queries

the

system

catalog

for

information

about

columns

in

a

table.

SQLColumns()

-

Get

column

information

Chapter

4.

Functions

119

Related

functions

The

following

functions

relate

to

SQLColumns()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLColumns()

in

your

applications.

v

“SQLColumnPrivileges()

-

Get

column

privileges”

on

page

110

v

“SQLSpecialColumns()

-

Get

special

(row

identifier)

columns”

on

page

376

v

“SQLTables()

-

Get

table

information”

on

page

391

/*

...

*/

SQLRETURN

list_columns(SQLHDBC

hdbc,

SQLCHAR

*schema,

SQLCHAR

*tablename

)

{

/*

...

*/

rc

=

SQLColumns(hstmt,

NULL,

0,

schema,

SQL_NTS,

tablename,

SQL_NTS,

"%",

SQL_NTS);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

column_name.s,

129,

&column_name.ind);

rc

=

SQLBindCol(hstmt,

6,

SQL_C_CHAR,

(SQLPOINTER)

type_name.s,

129,

&type_name.ind);

rc

=

SQLBindCol(hstmt,

7,

SQL_C_LONG,

(SQLPOINTER)

&length,

sizeof(length),

&length_ind);

rc

=

SQLBindCol(hstmt,

9,

SQL_C_SHORT,

(SQLPOINTER)

&scale,

sizeof(scale),

&scale_ind);

rc

=

SQLBindCol(hstmt,

12,

SQL_C_CHAR,

(SQLPOINTER)

remarks.s,

129,

&remarks.ind);

rc

=

SQLBindCol(hstmt,

11,

SQL_C_SHORT,

(SQLPOINTER)

&

nullable,

sizeof(nullable),

&nullable_ind);

printf("Schema:

%s

Table

Name:

%s\n",

schema,

tablename);

/*

Fetch

each

row,

and

display

*/

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

printf("

%s",

column_name.s);

if

(nullable

==

SQL_NULLABLE)

{

printf(",

NULLABLE");

}

else

{

printf(",

NOT

NULLABLE");

}

printf(",

%s",

type_name.s);

if

(length_ind

!=

SQL_NULL_DATA)

{

printf("

(%ld",

length);

}

else

{

printf("(\n");

}

if

(scale_ind

!=

SQL_NULL_DATA)

{

printf(",

%d)\n",

scale);

}

else

{

printf(")\n");

}

}

/*

endwhile

*/

/*

...

*/

Figure

10.

An

application

that

returns

information

about

table

columns

SQLColumns()

-

Get

column

information

120

ODBC

Guide

and

Reference

SQLConnect()

-

Connect

to

a

data

source

Purpose

Table

48.

SQLConnect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLConnect()

establishes

a

connection

to

the

target

database.

The

application

must

supply

a

target

SQL

database.

You

must

use

SQLAllocHandle()

to

allocate

a

connection

handle

before

you

call

SQLConnect().

You

must

call

SQLConnect()

before

you

allocate

a

statement

handle.

Syntax

SQLRETURN

SQLConnect

(SQLHDBC

hdbc,

SQLCHAR

FAR

*szDSN,

SQLSMALLINT

cbDSN,

SQLCHAR

FAR

*szUID,

SQLSMALLINT

cbUID,

SQLCHAR

FAR

*szAuthStr,

SQLSMALLINT

cbAuthStr);

Function

arguments

Table

49

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

49.

SQLConnect()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

the

connection

handle

for

the

connection.

SQLCHAR

*

szDSN

input

Specifies

the

data

source:

the

name

or

alias

name

of

the

database

to

which

you

are

connecting.

SQLSMALLINT

cbDSN

input

Specifies

the

length

,

in

bytes,

of

the

contents

of

the

szDSN

argument.

SQLCHAR

*

szUID

input

Specifies

an

authorization

name

(user

identifier).

This

parameter

is

validated

and

authenticated.

SQLSMALLINT

cbUID

input

Specifies

the

length,

in

bytes,

of

the

contents

of

the

szUID

argument.

This

parameter

is

validated

and

authenticated.

SQLCHAR

*

szAuthStr

input

Specifies

an

authentication

string

(password).

This

parameter

is

validated

and

authenticated.

SQLSMALLINT

cbAuthStr

input

Specifies

the

length,

in

bytes,

of

the

contents

of

the

szAuthStr

argument.

This

parameter

is

validated

and

authenticated.

Usage

The

target

database

(also

known

as

a

data

source)

for

IBM

RDBMSs

is

the

location

name

that

is

defined

in

SYSIBM.LOCATIONS

when

DDF

is

configured

in

the

DB2

subsystem.

Call

SQLDataSources()

to

obtain

a

list

of

databases

that

are

available

for

connections.

SQLConnect()

-

Connect

to

a

data

source

Chapter

4.

Functions

121

In

many

applications,

a

local

database

is

accessed

(DDF

is

not

being

used).

In

these

cases,

the

local

database

name

is

the

name

that

was

set

during

DB2

installation

as

’DB2

LOCATION

NAME’

on

the

DSNTIPR

installation

panel

for

the

DB2

subsystem.

Your

local

DB2

administration

staff

can

provide

you

with

this

name,

or

you

can

use

a

null

connect.

A

connection

that

is

established

by

SQLConnect()

recognizes

externally

created

contexts

and

allows

multiple

connections

to

the

same

data

source

from

different

contexts.

Specifying

a

null

connect:

With

a

null

connect,

you

connect

to

the

default

local

database

without

supplying

a

database

name.

For

a

null

SQLConnect(),

the

default

connection

type

is

the

value

of

the

CONNECTTYPE

keyword,

which

is

specified

in

the

common

section

of

the

initialization

file.

To

override

this

default

value,

specify

the

SQL_ATTR_CONNECTTYPE

attribute

by

using

one

of

the

following

functions

before

you

issue

the

null

SQLConnect():

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

Use

the

szDSN

argument

for

SQLConnect()

as

follows:

v

If

the

szDSN

argument

pointer

is

null

or

the

cbDSN

argument

value

is

0,

you

perform

a

null

connect.

A

null

connect,

like

any

connection,

requires

you

to

allocate

both

an

environment

handle

and

a

connection

handle

before

you

make

the

connection.

The

reasons

you

might

code

a

null

connect

include:

–

Your

DB2

ODBC

application

needs

to

connect

to

the

default

data

source.

(The

default

data

source

is

the

DB2

subsystem

that

is

specified

by

the

MVSDEFAULTSSID

initialization

file

setting.)

–

Your

DB2

ODBC

application

is

mixing

embedded

SQL

and

DB2

ODBC

calls,

and

the

application

connected

to

a

data

source

before

invoking

DB2

ODBC.

–

Your

DB2

ODBC

application

runs

as

a

stored

procedure.

DB2

ODBC

applications

that

run

as

stored

procedures

must

issue

a

null

connect.

v

If

the

szDSN

argument

pointer

is

not

null

and

the

cbDSN

argument

value

is

not

0,

DB2

ODBC

issues

a

CONNECT

statement

to

the

data

source.

Specifying

length

arguments:

You

can

set

the

input

length

arguments

of

SQLConnect()

(cbDSN,

cbUID,

cbAuthStr)

either

to

the

actual

length

(in

bytes)

of

their

associated

data

(which

does

not

include

nul-terminating

characters),

or

to

SQL_NTS

to

indicate

that

the

associated

data

is

nul-terminated.

Authenticating

a

user:

To

authenticate

a

user,

you

must

pass

SQLConnect()

both

a

user

ID

(which

you

specify

in

the

szUID

argument)

and

a

password

(which

you

specify

in

the

szAuthStr

argument).

If

you

specify

a

null

or

empty

user

ID

for

the

szUID

argument,

SQLConnect()

ignores

the

szAuthStr

argument

and

uses

the

primary

authorization

ID

that

is

associated

with

the

application

for

authentication.

SQLConnect()

does

not

accept

the

space

character

in

either

the

szUID

or

szAuthStr

arguments.

Using

SQLDriverConnect():

Use

the

more

extensible

SQLDriverConnect()

function

to

connect

when

the

application

needs

to

override

any

or

all

of

the

keyword

values

specified

for

this

data

source

in

the

initialization

file.

SQLConnect()

-

Connect

to

a

data

source

122

ODBC

Guide

and

Reference

Users

can

specify

various

connection

characteristics

(attributes)

in

the

section

of

the

initialization

file

associated

with

the

szDSN

data

source

argument.

Your

application

should

set

connection

attributes

with

SQLSetConnectAttr().

To

set

additional

attributes,

call

the

extended

connect

function,

SQLDriverConnect().

You

can

also

perform

a

null

connect

with

SQLDriverConnect().

Return

codes

After

you

call

SQLConnect(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

50

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

50.

SQLConnect()

SQLSTATEs

SQLSTATE

Description

Explanation

08001

Unable

to

connect

to

data

source.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

is

not

able

to

establish

a

connection

with

the

data

source.

v

The

connection

request

is

rejected

because

a

connection

that

was

established

with

embedded

SQL

already

exists.

08002

Connection

in

use.

The

specified

connection

handle

is

being

used

to

establish

a

connection

with

a

data

source,

and

that

connection

is

still

open.

08004

The

application

server

rejected

establishment

of

the

connection.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

data

source

rejects

the

establishment

of

the

connection.

v

The

number

of

connections

that

are

specified

by

the

MAXCONN

keyword

has

been

reached.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY024

Invalid

argument

value.

A

nonmatching

double

quotation

mark

(″)

is

found

in

the

szDSN,

szUID,

or

szAuthStr

arguments.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

specified

value

for

the

cbDSN

argument

is

less

than

0

and

is

not

equal

to

SQL_NTS,

and

the

szDSN

argument

is

not

a

null

pointer.

v

The

specified

value

for

the

cbUID

argument

is

less

than

0

and

is

not

equal

to

SQL_NTS,

and

the

szUID

argument

is

not

a

null

pointer.

v

The

specified

value

for

the

cbAuthStr

argument

is

less

than

0

and

is

not

equal

to

SQL_NTS,

and

the

szAuthStr

argument

is

not

a

null

pointer.

SQLConnect()

-

Connect

to

a

data

source

Chapter

4.

Functions

123

Table

50.

SQLConnect()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY501

Invalid

data

source

name.

An

invalid

data

source

name

is

specified

in

the

szDSN

argument.

Restrictions

The

implicit

connection

(or

default

database)

option

for

IBM

RDBMSs

is

not

supported.

SQLConnect()

must

be

called

before

any

SQL

statements

can

be

executed.

Example

Figure

11

on

page

125

shows

an

application

that

makes

a

connection

to

a

data

source

with

SQLConnect().

SQLConnect()

-

Connect

to

a

data

source

124

ODBC

Guide

and

Reference

/*

...

*/

/*

Global

variables

for

user

id

and

password,

defined

in

main

module.

To

keep

samples

simple,

not

a

recommended

practice.

The

INIT_UID_PWD

macro

is

used

to

initialize

these

variables.

*/

extern

SQLCHAR

server[SQL_MAX_DSN_LENGTH

+

1];

/**/

SQLRETURN

DBconnect(SQLHENV

henv,

SQLHDBC

*

hdbc)

{

SQLRETURN

rc;

SQLSMALLINT

outlen;

/*

Allocate

a

connection

handle

*/

if

(SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc)

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

allocating

a

connection

handle-----\n");

return

(SQL_ERROR);

}

/*

Set

AUTOCOMMIT

OFF

*/

rc

=

SQLSetConnectAttr(*hdbc,

SQL_ATTR_AUTOCOMMIT,(void*)

SQL_AUTOCOMMIT_OFF,SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

setting

AUTOCOMMIT

OFF

------------\n");

return

(SQL_ERROR);

}

rc

=

SQLConnect(*hdbc,

server,

SQL_NTS,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---

Error

while

connecting

to

database:

%s

-------\n",

server);

SQLDisconnect(*hdbc);

SQLFreeHandle

(SQL_HANDLE_DBC,

*hdbc);

return

(SQL_ERROR);

}

else

{

/*

Print

connection

information

*/

printf(">Connected

to

%s\n",

server);

}

return

(SQL_SUCCESS);

}

/**/

/*

DBconnect2

-

Connect

with

connection

type

*/

/*

Valid

connection

types

SQL_CONCURRENT_TRANS,

SQL_COORDINATED_TRANS

*/

/**/

SQLRETURN

DBconnect2(SQLHENV

henv,

SQLHDBC

*

hdbc,

SQLINTEGER

contype)

SQLHDBC

*

hdbc,

SQLINTEGER

contype,

SQLINTEGER

conphase)

{

SQLRETURN

rc;

SQLSMALLINT

outlen;

/*

Allocate

a

connection

handle

*/

if

(SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc)

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

allocating

a

connection

handle-----\n");

return

(SQL_ERROR);

}

/*

Set

AUTOCOMMIT

OFF

*/

rc

=

SQLSetConnectAttr(*hdbc,

SQL_ATTR_AUTOCOMMIT,(void*)

SQL_AUTOCOMMIT_OFF,SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

setting

AUTOCOMMIT

OFF

------------\n");

return

(SQL_ERROR);

}

Figure

11.

An

application

that

connects

to

a

data

source

(Part

1

of

2)

SQLConnect()

-

Connect

to

a

data

source

Chapter

4.

Functions

125

Related

functions

The

following

functions

relate

to

SQLConnect()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLConnect()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLDataSources()

-

Get

a

list

of

data

sources”

on

page

127

v

“SQLDisconnect()

-

Disconnect

from

a

data

source”

on

page

140

v

“SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source”

on

page

142

v

“SQLGetConnectOption()

-

Return

current

setting

of

a

connect

option”

on

page

199

v

“SQLSetConnectOption()

-

Set

connection

option”

on

page

356

rc

=

SQLSetConnectAttr(hdbc[0],

SQL_ATTR_CONNECTTYPE,(void*)contype,SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

setting

Connect

Type

-------------\n");

return

(SQL_ERROR);

}

if

(contype

==

SQL_COORDINATED_TRANS

)

{

rc=SQLSetConnectAttr(hdbc[0],SQL_ATTR_SYNC_POINT,(void*)conphase,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

setting

Syncpoint

Phase

--------\n");

return

(SQL_ERROR);

}

}

rc

=

SQLConnect(*hdbc,

server,

SQL_NTS,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---

Error

while

connecting

to

database:

%s

-------\n",

server);

SQLDisconnect(*hdbc);

SQLFreeHandle(SQL_HANDLE_DBC,

*hdbc);

return

(SQL_ERROR);

}

else

{

/*

Print

connection

information

*/

printf(">Connected

to

%s\n",

server);

}

return

(SQL_SUCCESS);

}

/*

...

*/

Figure

11.

An

application

that

connects

to

a

data

source

(Part

2

of

2)

SQLConnect()

-

Connect

to

a

data

source

126

ODBC

Guide

and

Reference

SQLDataSources()

-

Get

a

list

of

data

sources

Purpose

Table

51.

SQLDataSources()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLDataSources()

returns

a

list

of

available

target

databases,

one

at

a

time.

Before

you

make

a

connection,

you

usually

call

SQLDataSources()

to

determine

which

databases

are

available.

Syntax

SQLRETURN

SQLDataSources

(SQLHENV

henv,

SQLUSMALLINT

fDirection,

SQLCHAR

FAR

*szDSN,

SQLSMALLINT

cbDSNMax,

SQLSMALLINT

FAR

*pcbDSN,

SQLCHAR

FAR

*szDescription,

SQLSMALLINT

cbDescriptionMax,

SQLSMALLINT

FAR

*pcbDescription);

Function

arguments

Table

52

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

52.

SQLDataSources()

arguments

Data

Type

Argument

Use

Description

SQLHENV

henv

input

Specifies

the

environment

handle.

SQLUSMALLINT

fDirection

input

Requests

either

the

first

data

source

name

in

the

list

or

the

next

data

source

name

in

the

list.

fDirection

can

contain

only

the

following

values:

v

SQL_FETCH_FIRST

v

SQL_FETCH_NEXT

SQLCHAR

*

szDSN

output

Specifies

the

pointer

to

the

buffer

that

holds

the

retrieved

data

source

name.

SQLSMALLINT

cbDSNMax

input

Specifies

the

maximum

length,

in

bytes,

of

the

buffer

to

which

the

szDSN

argument

points.

This

should

be

less

than

or

equal

to

SQL_MAX_DSN_LENGTH

+

1.

SQLSMALLINT

*

pcbDSN

output

Specifies

the

pointer

to

the

location

where

the

value

of

the

maximum

number

of

bytes

that

are

available

to

return

in

the

szDSN

is

stored.

SQLCHAR

*

szDescription

output

Specifies

the

pointer

to

the

buffer

where

the

description

of

the

data

source

is

returned.

DB2

ODBC

returns

the

comment

field

that

is

associated

with

the

database

cataloged

to

the

DBMS.

IBM

specific:

IBM

RDBMSs

always

return

a

blank

description

that

is

padded

to

30

bytes.

SQLSMALLINT

cbDescriptionMax

input

Specifies

the

maximum

length,

in

bytes,

of

the

szDescription

buffer.

IBM

specific:

DB2

UDB

for

z/OS

always

returns

NULL.

SQLDataSources()

-

Get

a

list

of

data

sources

Chapter

4.

Functions

127

Table

52.

SQLDataSources()

arguments

(continued)

Data

Type

Argument

Use

Description

SQLSMALLINT

*

pcbDescription

output

Specifies

the

pointer

to

the

location

where

this

function

returns

the

actual

number

of

bytes

that

the

full

description

of

the

data

source

requires.

IBM

specific:

DB2

UDB

for

z/OS

always

returns

zero.

Usage

You

can

call

this

function

any

time

with

the

fDirection

argument

set

to

either

SQL_FETCH_FIRST

or

SQL_FETCH_NEXT.

If

you

specify

SQL_FETCH_FIRST,

the

first

database

in

the

list

is

always

returned.

If

you

specify

SQL_FETCH_NEXT,

the

database

that

is

returned

depends

on

when

you

call

SQLDataSources().

At

the

following

points

in

your

application,

SQLDataSources()

returns

a

different

database

name:

v

Directly

following

a

SQL_FETCH_FIRST

call,

the

second

database

in

the

list

is

returned.

v

Before

any

other

SQLDataSources()

call,

the

first

database

in

the

list

is

returned.

v

When

no

more

databases

are

in

the

list,

SQL_NO_DATA_FOUND

is

returned.

If

the

function

is

called

again,

the

first

database

is

returned.

v

Any

other

time,

the

next

database

in

the

list

is

returned.

Return

codes

After

you

call

SQLDataSources(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

53

on

page

129

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLDataSources()

-

Get

a

list

of

data

sources

128

ODBC

Guide

and

Reference

Table

53.

SQLDataSources()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

data

source

name

that

is

returned

in

the

argument

szDSN

is

longer

than

the

specified

value

in

the

cbDSNMax

argument.

The

pcbDSN

argument

contains

the

length,

in

bytes,

of

the

full

data

source

name.

v

The

data

source

name

that

is

returned

in

the

argument

szDescription

is

longer

than

the

value

specified

in

the

cbDescriptionMax

argument.

The

pcbDescription

argument

contains

the

length,

in

bytes,

of

the

full

data

source

description.

(SQLDataSources()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

is

defined.

The

error

message

that

is

returned

by

SQLGetDiagRec()

in

the

MessageText

argument

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

specified

value

for

either

the

cbDSNMaxargument

or

the

cbDescriptionMax

argument

is

less

than

0.

HY103

Direction

option

out

of

range.

The

fDirection

argument

is

not

set

to

SQL_FETCH_FIRST

or

SQL_FETCH_NEXT.

Restrictions

None.

Example

Figure

12

on

page

130

shows

an

application

that

prints

a

list

of

available

data

sources

with

SQLDataSources().

SQLDataSources()

-

Get

a

list

of

data

sources

Chapter

4.

Functions

129

Related

functions

No

functions

directly

relate

to

SQLDataSources().

/*

...

*/

/***

**

-

Demonstrate

SQLDataSource

function

**

-

List

available

servers

**

(error

checking

has

been

ignored

for

simplicity)

**

**

Functions

used:

**

**

SQLAllocHandle

SQLFreeHandle

**

SQLDataSources

**/

#include

<stdio.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

int

main()

{

SQLRETURN

rc;

SQLHENV

henv;

SQLCHAR

source[SQL_MAX_DSN_LENGTH

+

1],

description[255];

SQLSMALLINT

buffl,

desl;

/*

Allocate

an

environment

handle

*/

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

List

the

available

data

sources

(servers)

*/

printf("The

following

data

sources

are

available:\n");

printf("ALIAS

NAME

Comment(Description)\n");

printf("--\n");

while

((rc

=

SQLDataSources(henv,

SQL_FETCH_NEXT,

source,

SQL_MAX_DSN_LENGTH

+

1,

&buffl,

description,

255,

&desl))

!=

SQL_NO_DATA_FOUND)

{

printf("%-30s

%s\n",

source,

description);

}

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

return

(SQL_SUCCESS);

}

/*

...

*/

Figure

12.

An

application

that

lists

available

data

sources

SQLDataSources()

-

Get

a

list

of

data

sources

130

ODBC

Guide

and

Reference

SQLDescribeCol()

-

Describe

column

attributes

Purpose

Table

54.

SQLDescribeCol()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLDescribeCol()

returns

commonly

used

descriptor

information

(column

name,

type,

precision,

scale,

nullability)

about

a

column

in

a

result

set

that

a

query

generates.

If

you

need

only

one

attribute

of

the

descriptor

information,

or

you

need

an

attribute

that

SQLDescribeCol()

does

not

return,

use

SQLColAttribute()

in

place

of

SQLDescribeCol().

See

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

for

more

information.

Before

you

call

this

function,

you

must

call

either

SQLPrepare()

or

SQLExecDirect().

Usually,

you

call

this

function

(or

the

SQLColAttribute()

function)

before

you

bind

a

column

to

an

application

variable.

See

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

for

more

information

about

binding

a

column

to

an

application

variable.

Syntax

SQLRETURN

SQLDescribeCol

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLCHAR

FAR

*szColName,

SQLSMALLINT

cbColNameMax,

SQLSMALLINT

FAR

*pcbColName,

SQLSMALLINT

FAR

*pfSqlType,

SQLUINTEGER

FAR

*pcbColDef,

SQLSMALLINT

FAR

*pibScale,

SQLSMALLINT

FAR

*pfNullable);

Function

arguments

Table

55

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

55.

SQLDescribeCol()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLUSMALLINT

icol

input

Specifies

the

column

number

to

be

described.

Columns

are

numbered

sequentially

from

left

to

right,

starting

at

1.

SQLCHAR

*

szColName

output

Specifies

the

pointer

to

the

buffer

that

is

to

hold

the

name

of

the

column.

Set

this

to

a

null

pointer

if

you

do

not

need

to

receive

the

name

of

the

column.

SQLSMALLINT

cbColNameMax

input

Specifies

the

size

of

the

buffer

to

which

the

szColName

argument

points.

SQLSMALLINT

*

pcbColName

output

Returns

the

number

of

bytes

that

the

complete

column

name

requires.

Truncation

of

column

name

(szColName)

to

cbColNameMax

-

1

bytes

occurs

if

pcbColName

is

greater

than

or

equal

to

cbColNameMax.

SQLDescribeCol()

-

Describe

column

attributes

Chapter

4.

Functions

131

Table

55.

SQLDescribeCol()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

pfSqlType

output

Returns

the

base

SQL

data

type

of

column.

To

determine

if

a

distinct

type

is

associated

with

the

column,

call

SQLColAttribute()

with

fDescType

set

to

SQL_COLUMN_DISTINCT_TYPE.

See

the

symbolic

SQL

data

type

column

of

Table

4

on

page

25

for

the

data

types

that

are

supported.

SQLUINTEGER

*

pcbColDef

output

Returns

the

precision

of

the

column

as

defined

in

the

database.

If

fSqlType

denotes

a

graphic

or

DBCLOB

SQL

data

type,

then

this

variable

indicates

the

maximum

number

of

double-byte

characters

that

the

column

can

hold.

SQLSMALLINT

*

pibScale

output

Scale

of

column

as

defined

in

the

database

(applies

only

to

SQL_DECIMAL,

SQL_NUMERIC,

and

SQL_TYPE_TIMESTAMP).

See

Table

235

on

page

510

for

the

scale

of

each

of

the

SQL

data

types.

SQLSMALLINT

*

pfNullable

output

Indicates

whether

null

values

are

allowed

for

the

column

with

the

following

values:

v

SQL_NO_NULLS

v

SQL_NULLABLE

Usage

Columns

are

identified

by

a

number,

are

numbered

sequentially

from

left

to

right

starting

with

1,

and

can

be

described

in

any

order.

If

a

null

pointer

is

specified

for

any

of

the

pointer

arguments,

DB2

ODBC

assumes

that

the

information

is

not

needed

by

the

application,

and

nothing

is

returned.

If

the

column

is

a

distinct

type,

SQLDescribeCol()

returns

only

the

built-in

type

in

the

pfSqlType

argument.

Call

SQLColAttribute()

with

the

fDescType

argument

set

to

SQL_COLUMN_DISTINCT_TYPE

to

obtain

the

distinct

type.

Return

codes

After

you

call

SQLDescribeCol(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

If

SQLDescribeCol()

returns

either

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO,

you

can

call

SQLGetDiagRec()

to

obtain

one

of

the

SQLSTATEs

that

are

listed

in

Table

56

on

page

133.

SQLDescribeCol()

-

Describe

column

attributes

132

ODBC

Guide

and

Reference

Table

56.

SQLDescribeCol()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

column

name

that

is

returned

in

the

szColName

argument

is

longer

than

the

specified

value

in

the

cbColNameMax

argument.

The

argument

pcbColName

contains

the

length,

in

bytes,

of

the

full

column

name.

(SQLDescribeCol()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE)

07005

The

statement

did

not

return

a

result

set.

The

statement

that

is

associated

with

the

statement

handle

did

not

return

a

result

set.

No

columns

exist

to

describe.

(Call

SQLNumResultCols()

first

to

determine

if

any

rows

are

in

the

result

set.)

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

function

is

called

prior

to

SQLPrepare()

or

SQLExecDirect()

on

the

statement

handle.

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

length

that

is

specified

in

the

cbColNameMax

argument

is

less

than

1.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

recognize

the

SQL

data

type

of

column

that

the

icol

argument

specifies.

HY002

Invalid

column

number.

The

value

that

the

icol

argument

specifies

is

less

than

1,

or

it

is

greater

than

the

number

of

columns

in

the

result

set.

Restrictions

The

ODBC-defined

data

type

SQL_BIGINT

is

not

supported.

Example

Figure

13

on

page

134

shows

an

application

that

uses

SQLDescribeCol()

to

retrieve

descriptor

information

about

table

columns.

SQLDescribeCol()

-

Describe

column

attributes

Chapter

4.

Functions

133

|

/*

...

*/

/***

**

process_stmt

**

-

allocates

a

statement

handle

**

-

executes

the

statement

**

-

determines

the

type

of

statement

**

-

if

no

result

columns

exist,

therefore

non-select

statement

**

-

if

rowcount

>

0,

assume

statement

was

UPDATE,

INSERT,

DELETE

**

else

**

-

assume

a

DDL,

or

Grant/Revoke

statement

**

else

**

-

must

be

a

select

statement.

**

-

display

results

**

-

frees

the

statement

handle

***/

int

process_stmt(SQLHENV

henv,

SQLHDBC

hdbc,

SQLCHAR

*

sqlstr)

{

SQLHSTMT

hstmt;

SQLSMALLINT

nresultcols;

SQLINTEGER

rowcount;

SQLRETURN

rc;

/*

Allocate

a

statement

handle

*/

SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

Figure

13.

An

application

that

retrieves

column

descriptor

information

(Part

1

of

3)

SQLDescribeCol()

-

Describe

column

attributes

134

ODBC

Guide

and

Reference

/*

Execute

the

SQL

statement

in

"sqlstr"

*/

rc

=

SQLExecDirect(hstmt,

sqlstr,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

if

(rc

==

SQL_NO_DATA_FOUND)

{

printf("\nStatement

executed

without

error,

however,\n");

printf("no

data

was

found

or

modified\n");

return

(SQL_SUCCESS);

}

else

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc);

rc

=

SQLNumResultCols(hstmt,

&nresultcols);

/*

Determine

statement

type

*/

if

(nresultcols

==

0)

{

/*

statement

is

not

a

select

statement

*/

rc

=

SQLRowCount(hstmt,

&rowcount);

if

(rowcount

>

0)

{

/*

assume

statement

is

UPDATE,

INSERT,

DELETE

*/

printf("Statement

executed,

%ld

rows

affected\n",

rowcount);

}

else

{

/*

assume

statement

is

GRANT,

REVOKE

or

a

DLL

*

statement

*/

printf("Statement

completed

successful\n");

}

}

else

{

/*

display

the

result

set

*/

display_results(hstmt,

nresultcols);

}

/*

end

determine

statement

type

*/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

/*

Free

statement

handle

*/

return

(0);

}

/*

end

process_stmt

*/

/***

**

display_results

**

-

for

each

column

**

-

get

column

name

**

-

bind

column

**

-

display

column

headings

**

-

fetch

each

row

**

-

if

value

truncated,

build

error

message

**

-

if

column

null,

set

value

to

"NULL"

**

-

display

row

**

-

print

truncation

message

**

-

free

local

storage

***/

display_results(SQLHSTMT

hstmt,

SQLSMALLINT

nresultcols)

{

SQLCHAR

colname[32];

SQLSMALLINT

coltype;

SQLSMALLINT

colnamelen;

SQLSMALLINT

nullable;

SQLINTEGER

collen[MAXCOLS];

SQLUINTEGER

precision;

SQLSMALLINT

scale;

SQLINTEGER

outlen[MAXCOLS];

SQLCHAR

*data[MAXCOLS];

SQLCHAR

errmsg[256];

SQLRETURN

rc;

SQLINTEGER

i;

SQLINTEGER

x;

SQLINTEGER

displaysize;

Figure

13.

An

application

that

retrieves

column

descriptor

information

(Part

2

of

3)

SQLDescribeCol()

-

Describe

column

attributes

Chapter

4.

Functions

135

Related

functions

The

following

functions

relate

to

SQLDescribeCol()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLDescribeCol()

in

your

applications.

v

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

for

(i

=

0;

i

<

nresultcols;

i++)

{

SQLDescribeCol(hstmt,

i

+

1,

colname,

sizeof(colname),

&colnamelen,

&coltype,

&precision,

&scale,

NULL);

collen[i]

=

precision;

/*

Note,

assignment

of

unsigned

int

to

signed

*/

/*

Get

display

length

for

column

*/

SQLColAttribute(hstmt,

i

+

1,

SQL_COLUMN_DISPLAY_SIZE,

NULL,

0,

NULL,

&displaysize);

/*

*

Set

column

length

to

max

of

display

length,

and

column

name

*

length.

Plus

one

byte

for

null

terminator

*/

collen[i]

=

max(displaysize,

strlen((char

*)

colname))

+

1;

printf("%-*.*s",

collen[i],

collen[i],

colname);

/*

Allocate

memory

to

bind

column

*/

data[i]

=

(SQLCHAR

*)

malloc(collen[i]);

/*

Bind

columns

to

program

vars,

converting

all

types

to

CHAR

*/

rc

=

SQLBindCol(hstmt,

i

+

1,

SQL_C_CHAR,

data[i],

collen[i],

&outlen[i]);

}

printf("\n");

/*

Display

result

rows

*/

while

((rc

=

SQLFetch(hstmt))

!=

SQL_NO_DATA_FOUND)

{

errmsg[0]

=

’\0’;

for

(i

=

0;

i

<

nresultcols;

i++)

{

/*

Build

a

truncation

message

for

any

columns

truncated

*/

if

(outlen[i]

>=

collen[i])

{

sprintf((char

*)

errmsg

+

strlen((char

*)

errmsg),

"%ld

chars

truncated,

col

%d\n",

outlen[i]

-

collen[i]

+

1,

i

+

1);

sprintf((char

*)

errmsg

+

strlen((char

*)

errmsg),

"Bytes

to

return

=

%ld

sixe

of

buffer\n",

outlen[i],

collen[i]);

}

if

(outlen[i]

==

SQL_NULL_DATA)

printf("%-*.*s",

collen[i],

collen[i],

"NULL");

else

printf("%-*.*s",

collen[i],

collen[i],

data[i]);

}

/*

for

all

columns

in

this

row

*/

printf("\n%s",

errmsg);

/*

print

any

truncation

messages

*/

}

/*

while

rows

to

fetch

*/

/*

Free

data

buffers

*/

for

(i

=

0;

i

<

nresultcols;

i++)

{

free(data[i]);

}

}

/*

end

display_results

*/

/*

...

*/

Figure

13.

An

application

that

retrieves

column

descriptor

information

(Part

3

of

3)

SQLDescribeCol()

-

Describe

column

attributes

136

ODBC

Guide

and

Reference

v

“SQLNumResultCols()

-

Get

number

of

result

columns”

on

page

299

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

SQLDescribeCol()

-

Describe

column

attributes

Chapter

4.

Functions

137

SQLDescribeParam()

-

Describe

parameter

marker

Purpose

Table

57.

SQLDescribeParam()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLDescribeParam()

retrieves

the

description

of

a

parameter

marker

that

is

associated

with

a

prepared

statement.

Before

you

call

this

function,

you

must

call

either

SQLPrepare()

or

SQLExecDirect().

Syntax

SQLRETURN

SQLDescribeParam

(SQLHSTMT

hstmt,

SQLUSMALLINT

ipar,

SQLSMALLINT

FAR

*pfSqlType,

SQLUINTEGER

FAR

*pcbColDef,

SQLSMALLINT

FAR

*pibScale,

SQLSMALLINT

FAR

*pfNullable);

Function

arguments

Table

58

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

58.

SQLDescribeParam()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLUSMALLINT

ipar

input

Specifies

the

parameter

marker

number.

(Parameters

are

ordered

sequentially

from

left

to

right

in

a

prepared

SQL

statement,

starting

at

1.)

SQLSMALLINT

*

pfSqlType

output

Specifies

the

base

SQL

data

type.

SQLUINTEGER

*

pcbColDef

output

Returns

the

precision

of

the

parameter

marker.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

more

details

on

precision,

scale,

length,

and

display

size.

SQLSMALLINT

*

pibScale

output

Returns

the

scale

of

the

parameter

marker.

See

Appendix

D,

“Data

conversion,”

on

page

509

for

more

details

on

precision,

scale,

length,

and

display

size.

SQLSMALLINT

*

pfNullable

output

Indicates

whether

the

parameter

allows

null

values.

This

argument

returns

one

of

the

following

values:

v

SQL_NO_NULLS:

The

parameter

does

not

allow

null

values;

this

is

the

default.

v

SQL_NULLABLE:

The

parameter

allows

null

values.

v

SQL_NULLABLE_UNKNOWN:

The

driver

cannot

determine

whether

the

parameter

allows

null

values.

Usage

For

distinct

types,

SQLDescribeParam()

returns

both

base

data

types

for

the

input

parameter.

SQLDescribeParam()

-

Describe

parameter

marker

138

ODBC

Guide

and

Reference

For

information

about

a

parameter

marker

that

is

associated

with

the

SQL

CALL

statement,

use

the

SQLProcedureColumns()

function.

Return

codes

After

you

call

SQLDescribeParam(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

59

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

59.

SQLDescribeParam()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message

that

indicates

an

internal

commit

is

issued

on

behalf

of

the

application

as

part

of

the

processing

that

sets

the

specified

connection

attribute.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

is

defined.

The

error

message

that

is

returned

by

SQLGetDiagRec()

in

the

argument

MessageText

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY093

Invalid

parameter

number.

The

specified

value

for

the

ipar

argument

is

less

than

1

or

it

is

greater

than

the

number

of

parameters

that

the

associated

SQL

statement

requires.

HYC00

Driver

not

capable.

The

data

source

does

not

support

the

description

of

input

parameters.

Restrictions

None.

Related

functions

The

following

functions

relate

to

SQLDescribeParam()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLDescribeParam()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLCancel()

-

Cancel

statement”

on

page

97

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

SQLDescribeParam()

-

Describe

parameter

marker

Chapter

4.

Functions

139

|

SQLDisconnect()

-

Disconnect

from

a

data

source

Purpose

Table

60.

SQLDisconnect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLDisconnect()

closes

the

connection

that

is

associated

with

the

database

connection

handle.

Before

you

call

SQLDisconnect(),

you

must

call

SQLEndTran()

if

an

outstanding

transaction

exists

on

this

connection.

After

you

call

this

function,

either

call

SQLConnect()

to

connect

to

another

database,

or

call

SQLFreeHandle().

Syntax

SQLRETURN

SQLDisconnect

(SQLHDBC

hdbc);

Function

arguments

Table

61

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

61.

SQLDisconnect()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

the

connection

handle

of

the

connection

to

close.

Usage

If

you

call

SQLDisconnect()

before

you

free

all

the

statement

handles

associated

with

the

connection,

DB2

ODBC

frees

them

after

it

successfully

disconnects

from

the

database.

If

SQL_SUCCESS_WITH_INFO

is

returned,

it

implies

that

even

though

the

disconnect

from

the

database

is

successful,

additional

error

or

implementation-specific

information

is

available.

For

example,

if

a

problem

was

encountered

during

the

cleanup

processing,

subsequent

to

the

disconnect,

or

if

an

event

occurred

independently

of

the

application

(such

as

communication

failure)

that

caused

the

current

connection

to

be

lost,

SQLDisconnect()

issues

SQL_SUCCESS_WITH_INFO.

After

a

successful

SQLDisconnect()

call,

you

can

reuse

the

connection

handle

you

specified

in

the

hdbc

argument

to

make

another

SQLConnect()

or

SQLDriverConnect()

request.

Return

codes

After

you

call

SQLDisconnect(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLDisconnect()

-

Disconnect

from

a

data

source

140

ODBC

Guide

and

Reference

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

62

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

62.

SQLDisconnect()

SQLSTATEs

SQLSTATE

Description

Explanation

01002

Disconnect

error.

An

error

occurs

during

the

disconnect.

However,

the

disconnect

succeeds.

SQLDisconnect

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

specified

connection

in

the

hdbc

argument

is

not

open.

25000

or

25501

Invalid

transaction

state.

A

transaction

is

in

process

for

the

connection

that

the

hdbc

argument

specifies.

The

transaction

remains

active,

and

the

connection

cannot

be

disconnected.

This

error

does

not

apply

to

stored

procedures

that

are

written

in

DB2

ODBC.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

See

Figure

14

on

page

146.

Related

functions

The

following

functions

relate

to

SQLDisconnect()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLDisconnect()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLConnect()

-

Connect

to

a

data

source”

on

page

121

v

“SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source”

on

page

142

v

“SQLTransact()

-

Transaction

management”

on

page

396

SQLDisconnect()

-

Disconnect

from

a

data

source

Chapter

4.

Functions

141

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

Purpose

Table

63.

SQLDriverConnect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLDriverConnect()

is

an

alternative

to

SQLConnect().

Both

functions

establish

a

connection

to

the

target

database,

but

SQLDriverConnect()

supports

additional

connection

parameters.

Use

SQLDriverConnect()

when

you

want

to

specify

any

or

all

keyword

values

that

are

defined

in

the

DB2

ODBC

initialization

file

when

you

connect

to

a

data

source.

When

a

connection

is

established,

the

complete

connection

string

is

returned.

Applications

can

store

this

string

for

future

connection

requests,

which

allows

you

to

override

any

or

all

keyword

values

in

the

DB2

ODBC

initialization

file.

Syntax

Generic

SQLRETURN

SQLDriverConnect

(SQLHDBC

hdbc,

SQLHWND

hwnd,

SQLCHAR

FAR

*szConnStrIn,

SQLSMALLINT

cbConnStrIn,

SQLCHAR

FAR

*szConnStrOut,

SQLSMALLINT

cbConnStrOutMax,

SQLSMALLINT

FAR

*pcbConnStrOut,

SQLUSMALLINT

fDriverCompletion);

Function

arguments

Table

64

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

64.

SQLDriverConnect()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

the

connection

handle

to

use

for

the

connection.

SQLHWND

hwindow

input

Always

specify

the

value

NULL.

This

argument

is

not

used.

SQLCHAR

*

szConnStrIn

input

A

complete,

partial,

or

empty

(null

pointer)

connection

string.

See

“Usage”

on

page

143

for

a

description

and

the

syntax

of

this

string.

SQLSMALLINT

cbConnStrIn

input

Specifies

the

length,

in

bytes,

of

the

connection

string

to

which

the

szConnStrIn

argument

points.

SQLCHAR

*

szConnStrOut

output

Points

to

a

buffer

where

the

complete

connection

string

is

returned.

If

the

connection

is

established

successfully,

this

buffer

contains

the

completed

connection

string.

Applications

should

allocate

at

least

SQL_MAX_OPTION_STRING_LENGTH

bytes

for

this

buffer.

SQLSMALLINT

cbConnStrOutMax

input

Specifies

the

maximum

size,

in

bytes,

of

the

buffer

to

which

the

szConnStrOut

argument

points.

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

142

ODBC

Guide

and

Reference

Table

64.

SQLDriverConnect()

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

pcbConnStrOut

output

Points

to

a

buffer

where

the

number

of

bytes

that

the

complete

connection

string

(which

is

returned

in

the

szConnStrOut

buffer)

requires.

If

the

value

of

pcbConnStrOut

is

greater

than

or

equal

to

cbConnStrOutMax,

the

completed

connection

string

in

szConnStrOut

is

truncated

to

cbConnStrOutMax

-

1

bytes.

SQLUSMALLINT

fDriverCompletion

input

Indicates

when

DB2

ODBC

should

prompt

the

user

for

more

information.

IBM

specific:

DB2

UDB

for

z/OS

supports

only

the

value

of

SQL_DRIVER_NOPROMPT

for

this

argument.

The

following

values

are

not

supported:

v

SQL_DRIVER_PROMPT

v

SQL_DRIVER_COMPLETE

v

SQL_DRIVER_COMPLETE_REQUIRED

Usage

Use

the

connection

string

to

pass

one

or

more

values

that

are

needed

to

complete

a

connection.

You

must

write

the

connection

string

to

which

the

szConnStrln

argument

points

with

the

following

syntax:

Connection

string

syntax

��

�

;

DSN

=

attribute

UID

PWD

DB2

ODBC-defined-keyword

��

The

connection

string

contains

the

following

keywords:

DSN

Data

source

name.

The

name

or

alias

name

of

the

database.

IBM

specific:

This

is

a

required

value

because

DB2

UDB

for

z/OS

supports

only

SQL_DRIVER_NOPROMPT

for

the

fDriverCompletion

argument.

UID

Authorization

name

(user

identifier).

This

value

is

validated

and

authenticated.

IBM

specific:

DB2

UDB

for

z/OS

supports

only

SQL_DRIVER_NOPROMPT

for

the

fDriverCompletion

argument.

If

you

do

not

specify

a

value

for

UID,

DB2

uses

the

primary

authorization

ID

of

your

application

and

the

PWD

keyword

is

ignored

if

it

is

specified.

PWD

The

password

corresponding

to

the

authorization

name.

If

the

user

ID

has

no

password,

pass

an

empty

string

(PWD=;).

This

value

is

validated

and

authenticated.

IBM

specific:

DB2

UDB

for

z/OS

supports

only

SQL_DRIVER_NOPROMPT

for

the

fDriverCompletion

argument.

The

value

you

specify

for

PWD

is

ignored

if

you

do

not

specify

UID

in

the

connection

string.

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

Chapter

4.

Functions

143

The

list

of

DB2

ODBC

defined

keywords

and

their

associated

attribute

values

are

discussed

in

“Initialization

keywords”

on

page

51.

Any

one

of

the

keywords

in

that

section

can

be

specified

on

the

connection

string.

If

any

keywords

are

repeated

in

the

connection

string,

the

value

that

is

associated

with

the

first

occurrence

of

the

keyword

is

used.

If

any

keywords

exist

in

the

DB2

ODBC

initialization

file,

the

keywords

and

their

respective

values

are

used

to

augment

the

information

that

is

passed

to

DB2

ODBC

in

the

connection

string.

If

the

information

in

the

DB2

ODBC

initialization

file

contradicts

information

in

the

connection

string,

the

values

in

the

connection

string

take

precedence.

The

application

receives

an

error

on

any

value

of

fDriverCompletion

as

follows:

SQL_DRIVER_PROMPT:

DB2

ODBC

returns

SQL_ERROR.

SQL_DRIVER_COMPLETE:

DB2

ODBC

returns

SQL_ERROR.

SQL_DRIVER_COMPLETE_REQUIRED:

DB2

ODBC

returns

SQL_ERROR.

SQL_DRIVER_NOPROMPT:

The

user

is

not

prompted

for

any

information.

A

connection

is

attempted

with

the

information

that

the

connection

string

contains.

If

this

information

is

inadequate

to

make

a

connection,

SQL_ERROR

is

returned.

When

a

connection

is

established,

the

complete

connection

string

is

returned.

Return

codes

After

you

call

SQLDriverConnect(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA_FOUND

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

This

functions

can

generate

all

of

the

diagnostics

listed

for

SQLConnect()

in

“Diagnostics”

on

page

123.

Table

65

shows

the

additional

SQLSTATEs

that

SQLDriverConnect()

returns.

Table

65.

SQLDriverConnect()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

buffer

that

theszConnstrOut

argument

specifies

is

not

large

enough

to

hold

the

complete

connection

string.

The

pcbConnStrOut

argument

contains

the

actual

length,

in

bytes,

of

the

connection

string

that

is

available

for

return.

(SQLDriverConnect()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

144

ODBC

Guide

and

Reference

Table

65.

SQLDriverConnect()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

01S00

Invalid

connection

string

attribute.

An

invalid

keyword

or

attribute

value

is

specified

in

the

input

connection

string,

but

the

connection

to

the

data

source

is

successful

because

one

of

the

following

events

occur:

v

The

unrecognized

keyword

is

ignored.

v

The

invalid

attribute

value

is

ignored

and

the

default

value

is

used

instead.

(SQLDriverConnect()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01S02

Option

value

changed.

SQL_CONNECTTYPE

changes

to

SQL_CONCURRENT_TRANS

while

MULTICONTEXT=1

is

in

use.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

specified

value

for

the

cbConnStrIn

argument

is

less

than

0

and

not

equal

to

SQL_NTS.

v

The

specified

value

for

the

cbConnStrOutMax

argument

is

less

than

0.

HY110

Invalid

driver

completion.

The

specified

value

for

the

fDriverCompletion

argument

is

not

equal

to

a

valid

value.

Restrictions

DB2

ODBC

does

not

support

the

hwindow

argument.

Window

handles

do

not

apply

in

the

z/OS

environment.

DB2

ODBC

does

not

support

the

following

ODBC-defined

values

for

the

fDriverCompletion

argument:

v

SQL_DRIVER_PROMPT

v

SQL_DRIVER_COMPLETE

v

SQL_DRIVER_COMPLETE_REQUIRED

Example

Figure

14

on

page

146

shows

an

application

that

uses

SQLDriverConnect()

instead

of

SQLConnect()

to

pass

keyword

values

to

the

connection.

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

Chapter

4.

Functions

145

/**/

/*

Issue

SQLDriverConnect

to

pass

a

string

of

initialization

*/

/*

parameters

to

compliment

the

connection

to

the

data

source.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

/**/

/*

SQLDriverConnect

*/

/**/

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

*ConnStrIn

=

"dsn=STLEC1;connecttype=2;bitdata=2;optimizefornrows=30";

char

ConnStrOut

[200];

SQLSMALLINT

cbConnStrOut;

int

i;

char

*token;

(void)

printf

("****

Entering

CLIP10.\n\n");

/***/

/*

CONNECT

to

DB2

*/

/***/

rc

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(

SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

goto

dberror;

Figure

14.

An

application

that

passes

keyword

values

as

it

connects

(Part

1

of

3)

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

146

ODBC

Guide

and

Reference

/***/

/*

Invoke

SQLDriverConnect

*/

/***/

RETCODE

=

SQLDriverConnect

(hDbc

,

NULL

,

(SQLCHAR

*)ConnStrIn

,

strlen(ConnStrIn)

,

(SQLCHAR

*)ConnStrOut,

sizeof(ConnStrOut)

,

&cbConnStrOut

,

SQL_DRIVER_NOPROMPT);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

{

(void)

printf

("****

Driver

Connect

Failed.

rc

=

%d.\n",

RETCODE);

goto

dberror;

}

/***/

/*

Enumerate

keywords

and

values

returned

from

SQLDriverConnect

*/

/***/

(void)

printf

("****

ConnStrOut

=

%s.\n",

ConnStrOut);

for

(i

=

1,

token

=

strtok

(ConnStrOut,

";");

(token

!=

NULL);

token

=

strtok

(NULL,

";"),

i++)

(void)

printf

("****

Keyword

#

%d

is:

%s.\n",

i,

token);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle

(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

Figure

14.

An

application

that

passes

keyword

values

as

it

connects

(Part

2

of

3)

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

Chapter

4.

Functions

147

Related

functions

The

following

functions

relate

to

SQLDriverConnect()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLDriverConnect()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLConnect()

-

Connect

to

a

data

source”

on

page

121

/***/

/*

Disconnect

from

data

sources

in

connection

table

*/

/***/

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

/*

Free

environment

handle

*/

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP10.\n\n");

return(RETCODE);

}

Figure

14.

An

application

that

passes

keyword

values

as

it

connects

(Part

3

of

3)

SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source

148

ODBC

Guide

and

Reference

SQLEndTran()

-

End

transaction

of

a

connection

Purpose

Table

66.

SQLEndTran()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLEndTran()

requests

a

commit

or

rollback

operation

for

all

active

transactions

on

all

statements

that

are

associated

with

a

connection.

SQLEndTran()

can

also

request

that

a

commit

or

rollback

operation

be

performed

for

all

connections

that

are

associated

with

an

environment.

Syntax

SQLRETURN

SQLEndTran

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle,

SQLSMALLINT

CompletionType);

Function

arguments

Table

67

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

67.

SQLEndTran()

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Identifies

the

handle

type.

Contains

either

SQL_HANDLE_ENV

if

Handle

is

an

environment

handle

or

SQL_HANDLE_DBC

if

Handle

is

a

connection

handle.

SQLHANDLE

Handle

input

Specifies

the

handle,

of

the

type

indicated

by

HandleType,

that

indicates

the

scope

of

the

transaction.

See

“Usage”

for

more

information.

SQLSMALLINT

CompletionType

input

Specifies

whether

to

perform

a

commit

or

a

rollback.

Use

one

of

the

following

values:

v

SQL_COMMIT

v

SQL_ROLLBACK

Usage

A

new

transaction

is

implicitly

started

when

an

SQL

statement

that

can

be

contained

within

a

transaction

is

executed

against

the

current

data

source.

The

application

might

need

to

commit

or

roll

back

based

on

execution

status.

If

you

set

the

HandleType

argument

to

SQL_HANDLE_ENV

and

set

the

Handle

argument

to

a

valid

environment

handle,

DB2

ODBC

attempts

to

commit

or

roll

back

transactions

one

at

a

time

on

all

connections

that

are

in

a

connected

state.

Transactions

are

committed

or

rolled

back

depending

on

the

value

of

the

CompletionType

argument.

If

you

set

the

CompletionType

argument

to

SQL_COMMIT,

SQLEndTran()

issues

a

commit

request

for

all

statements

on

the

connection.

If

CompletionType

is

SQL_ROLLBACK,

SQLEndTran()

issues

a

rollback

request

for

all

statements

on

the

connection.

SQLEndTran()

-

End

transaction

of

a

connection

Chapter

4.

Functions

149

SQLEndTran()

returns

SQL_SUCCESS

if

it

receives

SQL_SUCCESS

for

each

connection.

If

it

receives

SQL_ERROR

on

one

or

more

connections,

SQLEndTran()

returns

SQL_ERROR

to

the

application,

and

the

diagnostic

information

is

placed

in

the

diagnostic

data

structure

of

the

environment.

To

determine

which

connections

failed

during

the

commit

or

rollback

operation,

call

SQLGetDiagRec()

for

each

connection.

Important:

You

must

set

the

connection

attribute

SQL_ATTR_CONNECTTYPE

to

SQL_COORDINATED_TRANS

(to

indicate

coordinated

distributed

transactions),

for

DB2

ODBC

to

provide

coordinated

global

transactions

with

one-phase

or

two-phase

commit

protocols

is

made.

Completing

a

transaction

has

the

following

effects:

v

Prepared

SQL

statements

(which

SQLPrepare()

creates)

survive

transactions;

they

can

be

executed

again

without

first

calling

SQLPrepare().

v

Cursor

positions

are

maintained

after

a

commit

unless

one

or

more

of

the

following

conditions

are

true:

–

The

server

is

DB2

Server

for

VSE

and

VM.

–

The

SQL_ATTR_CURSOR_HOLD

statement

attribute

for

this

handle

is

set

to

SQL_CURSOR_HOLD_OFF.

–

The

CURSORHOLD

keyword

in

the

DB2

ODBC

initialization

file

is

set

so

that

cursor

with

hold

is

not

in

effect

and

this

setting

has

not

been

overridden

by

resetting

the

SQL_ATTR_CURSOR_HOLD

statement

attribute.

–

The

CURSORHOLD

keyword

is

present

in

the

SQLDriverConnect()

connection

string

specifying

that

cursor-with-hold

behavior

is

not

in

effect.

Also

you

must

not

override

this

setting

by

resetting

the

SQL_ATTR_CURSOR_HOLD

statement

attribute.

If

the

cursor

position

is

not

maintained

due

to

any

one

of

the

above

circumstances,

the

cursor

is

closed

and

all

pending

results

are

discarded.

If

the

cursor

position

is

maintained

after

a

commit,

the

application

must

fetch

to

reposition

the

cursor

(to

the

next

row)

before

continuing

to

process

the

remaining

result

set.

To

determine

how

transaction

operations

affect

cursors,

call

SQLGetInfo()

with

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

and

SQL_CURSOR_COMMIT_BEHAVIOR

attributes.

v

Cursors

are

closed

after

a

rollback,

and

all

pending

results

are

discarded.

v

Statement

handles

are

still

valid

after

a

call

to

SQLEndTran(),

and

they

can

be

reused

for

subsequent

SQL

statements

or

deallocated

by

calling

SQLFreeStmt()

or

SQLFreeHandle()

with

HandleType

set

to

SQL_HANDLE_STMT.

v

Cursor

names,

bound

parameters,

and

column

bindings

survive

transactions.

Regardless

of

whether

DB2

ODBC

is

in

autocommit

mode

or

manual-commit

mode,

SQLEndTran()

always

sends

the

request

to

the

database

for

execution.

For

more

information,

see

“When

to

call

SQLEndTran()”

on

page

21.

Return

codes

After

you

call

SQLGetDiagRec(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

SQLEndTran()

-

End

transaction

of

a

connection

150

ODBC

Guide

and

Reference

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

68

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

68.

SQLEndTran()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

An

informational

message

was

generated.

(SQLEndTran()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

connection

handle

is

not

in

a

connected

state.

08007

Connection

failure

during

transaction.

The

connection

that

is

associated

with

the

Handle

argument

failed

during

the

execution

of

the

function.

No

indication

of

whether

the

requested

commit

or

rollback

occurred

before

the

failure

is

issued.

40001

Transaction

rollback.

The

transaction

is

rolled

back

due

to

a

resource

deadlock

with

another

transaction.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

exists.

The

error

message

that

is

returned

by

SQLGetDiagRec()

in

the

buffer

that

the

MessageText

argument

specifies,

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

memory

that

is

required

to

support

the

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

SQLExecute()

or

SQLExecDirect()

is

called

for

the

statement

handle

and

return

SQL_NEED_DATA.

This

function

is

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

Invoke

SQLCancel()

to

cancel

the

data-at-execution

condition.

HY012

Invalid

transaction

code.

The

specified

value

for

the

CompletionType

argument

was

neither

SQL_COMMIT

nor

SQL_ROLLBACK.

HY092

Option

type

out

of

range.

The

specified

value

for

the

HandleType

argument

was

neither

SQL_HANDLE_ENV

nor

SQL_HANDLE_DBC.

Restrictions

SQLEndTran()

cannot

be

used

if

the

ODBC

application

is

executing

as

a

stored

procedure.

Example

Refer

to

the

sample

program

DSN8O3VP

online

in

the

DSN810.SDSNSAMP

data

set

or

to

“DSN8O3VP

sample

application”

on

page

531.

Related

functions

The

following

functions

relate

to

SQLEndTran()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLEndTran()

in

your

applications.

v

“SQLGetInfo()

-

Get

general

information”

on

page

234

v

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

v

“SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle”

on

page

193

SQLEndTran()

-

End

transaction

of

a

connection

Chapter

4.

Functions

151

SQLError()

-

Retrieve

error

information

Purpose

Table

69.

SQLError()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLGetDiagRec()

replaces

SQLError().

See

“SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record”

on

page

221

for

more

information.

Although

DB2

ODBC

supports

SQLError()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLError()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLError

(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLCHAR

FAR

*szSqlState,

SQLINTEGER

FAR

*pfNativeError,

SQLCHAR

FAR

*szErrorMsg,

SQLSMALLINT

cbErrorMsgMax,

SQLSMALLINT

FAR

*pcbErrorMsg);

Function

arguments

Table

70

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

70.

SQLError()

arguments

Data

type

Argument

Use

Description

SQLHENV

henv

input

Environment

handle.

To

obtain

diagnostic

information

associated

with

an

environment,

pass

a

valid

environment

handle.

Set

hdbc

and

hstmt

to

SQL_NULL_HDBC

and

SQL_NULL_HSTMT

respectively.

SQLHDBC

hdbc

input

Database

connection

handle.

To

obtain

diagnostic

information

associated

with

a

connection,

pass

a

valid

database

connection

handle,

and

set

hstmt

to

SQL_NULL_HSTMT.

The

henv

argument

is

ignored.

SQLHSTMT

hstmt

input

Statement

handle.

To

obtain

diagnostic

information

associated

with

a

statement,

pass

a

valid

statement

handle.

The

henv

and

hdbc

arguments

are

ignored.

SQLCHAR

*

szSqlState

output

SQLSTATE

as

a

string

of

5

characters

terminated

by

a

null

character.

The

first

2

characters

indicate

error

class;

the

next

3

indicate

subclass.

The

values

correspond

directly

to

SQLSTATE

values

defined

in

the

X/Open

SQL

CAE

specification

and

the

ODBC

specification,

augmented

with

IBM

specific

and

product

specific

SQLSTATE

values.

SQLError()

-

Retrieve

error

information

152

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

Table

70.

SQLError()

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

pfNativeError

output

Native

error

code.

In

DB2

ODBC,

the

pfNativeError

argument

contains

the

SQLCODE

value

returned

by

the

DBMS.

If

the

error

is

generated

by

DB2

ODBC

and

not

the

DBMS,

then

this

field

is

set

to

-99999.

SQLCHAR

*

szErrorMsg

output

Pointer

to

buffer

to

contain

the

implementation

defined

message

text.

If

the

error

is

detected

by

DB2

ODBC,

then

the

error

message

is

prefaced

by:

[DB2

UDB

for

z/OS][CLI

Driver]

This

preface

indicates

that

DB2

ODBC

detected

the

error

and

a

connection

to

a

database

has

not

yet

been

made.

The

error

location,

ERRLOC

x:y:z,

keyword

value

is

embedded

in

the

buffer

also.

This

is

an

internal

error

code

for

diagnostics.

If

the

error

is

detected

during

a

database

connection,

then

the

error

message

returned

from

the

DBMS

is

prefaced

by:

[DB2

UDB

for

z/OS][CLI

Driver][DBMS-name]

DBMS-name

is

the

name

that

is

returned

by

SQLGetInfo()

with

SQL_DBMS_NAME

information

type.

For

example,

DB2

DB2/6000

Vendor

Vendor

indicates

a

non-IBM

DRDA

DBMS.

If

the

error

is

generated

by

the

DBMS,

the

IBM-defined

SQLSTATE

is

appended

to

the

text

string.

SQLSMALLINT

cbErrorMsgMax

input

The

maximum

(that

is,

the

allocated)

length,

in

bytes,

of

the

buffer

szErrorMsg.

The

recommended

length

to

allocate

is

SQL_MAX_MESSAGE_LENGTH

+

1.

SQLSMALLINT

*

pcbErrorMsg

output

Pointer

to

total

number

of

bytes

available

to

return

to

the

szErrorMsg

buffer.

This

does

not

include

the

nul-terminator.

SQLError()

-

Retrieve

error

information

Chapter

4.

Functions

153

SQLExecDirect()

-

Execute

a

statement

directly

Purpose

Table

71.

SQLExecDirect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLExecDirect()

directly

executes

an

SQL

statement.

SQLExecDirect()

prepares

and

executes

the

SQL

statement

in

one

step.

If

you

plan

to

execute

an

SQL

statement

more

than

once,

or

if

you

need

to

obtain

information

about

columns

in

the

result

set

before

you

execute

a

query,

use

SQLPrepare()

and

SQLExecute()

instead

of

SQLExecDirect().

For

more

information,

see

“SQLPrepare()

-

Prepare

a

statement”

on

page

306,

and

“SQLExecute()

-

Execute

a

statement”

on

page

160.

To

use

SQLExecDirect(),

the

connected

database

server

must

be

able

to

dynamically

prepare

statement.

(For

more

information

about

supported

SQL

statements

see

Table

1

on

page

4.)

Syntax

SQLRETURN

SQLExecDirect

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szSqlStr,

SQLINTEGER

cbSqlStr);

Function

arguments

Table

72

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

72.

SQLExecDirect()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

you

execute

the

SQL

statement.

No

open

cursor

can

be

associated

with

the

statement

handle

you

use

for

this

argument;

see

“SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle”

on

page

193

for

more

information.

SQLCHAR

*

szSqlStr

input

Specifies

the

string

that

contains

the

SQL

statement.

The

connected

database

server

must

be

able

to

prepare

the

statement;

see

Table

1

on

page

4

for

more

information.

SQLINTEGER

cbSqlStr

input

Specifies

the

length,

in

bytes,

of

the

contents

of

the

szSqlStr

argument.

The

length

must

be

set

to

either

the

exact

length

of

the

statement,

or

if

the

statement

is

nul-terminated,

set

to

SQL_NTS.

Usage

If

the

SQL

statement

text

contains

vendor

escape

clause

sequences,

DB2

ODBC

first

modifies

the

SQL

statement

text

to

the

appropriate

DB2-specific

format

before

submitting

it

for

preparation

and

execution.

If

your

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clause

sequences

(as

described

in

“Using

vendor

escape

clauses”

on

page

465),

you

should

set

the

SQLExecDirect()

-

Execute

a

statement

directly

154

ODBC

Guide

and

Reference

SQL_ATTR_NOSCAN

statement

attribute

to

SQL_NOSCAN_ON

at

the

connection

level.

When

you

set

this

attribute

to

SQL_NOSCAN_ON,

you

avoid

the

performance

impact

that

statement

scanning

causes.

The

SQL

statement

cannot

be

COMMIT

or

ROLLBACK.

Instead,

You

must

call

SQLEndTran()

to

issue

COMMIT

or

ROLLBACK

statements.

For

more

information

about

supported

SQL

statements,

see

Table

1

on

page

4.

The

SQL

statement

string

can

contain

parameter

markers.

A

parameter

marker

is

represented

by

a

question

mark

(?)

character,

and

it

is

used

to

indicate

a

position

in

the

statement

where

an

application-supplied

value

is

to

be

substituted

when

SQLExecDirect()

is

called.

You

can

obtain

values

for

parameter

markers

from

the

following

sources:

v

An

application

variable.

SQLBindParameter()

is

used

to

bind

the

application

storage

area

to

the

parameter

marker.

v

A

LOB

value

residing

at

the

server

that

is

referenced

by

a

LOB

locator.

SQLBindParameter()

is

used

to

bind

a

LOB

locator

to

a

parameter

marker.

The

actual

value

of

the

LOB

is

kept

at

the

server

and

does

not

need

to

be

transferred

to

the

application

before

being

used

as

the

input

parameter

value

for

another

SQL

statement.

You

must

bind

all

parameters

before

you

call

SQLExecDirect().

If

the

SQL

statement

is

a

query,

SQLExecDirect()

generates

a

cursor

name

and

opens

a

cursor.

If

the

application

has

used

SQLSetCursorName()

to

associate

a

cursor

name

with

the

statement

handle,

DB2

ODBC

associates

the

application-generated

cursor

name

with

the

internally

generated

one.

If

a

result

set

is

generated,

SQLFetch()

or

SQLExtendedFetch()

retrieves

the

next

row

or

rows

of

data

into

bound

variables.

Data

can

also

be

retrieved

by

calling

SQLGetData()

for

any

column

that

was

not

bound.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

the

cursor

referenced

by

the

statement

must

be

positioned

on

a

row

and

must

be

defined

on

a

separate

statement

handle

under

the

same

connection

handle.

No

open

cursor

can

exist

on

the

statement

handle

before

you

execute

an

SQL

statement

on

that

handle.

If

you

call

SQLParamOptions()

to

specify

that

an

array

of

input

parameter

values

is

bound

to

each

parameter

marker,

you

need

to

call

SQLExecDirect()

only

once

to

process

the

entire

array

of

input

parameter

values.

Return

codes

After

you

call

SQLExecDirect(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLExecDirect()

-

Execute

a

statement

directly

Chapter

4.

Functions

155

SQL_NEED_DATA

is

returned

when

the

application

requests

data-at-execution

parameter

values.

You

call

SQLParamData()

and

SQLPutData()

to

supply

these

values

to

SQLExecDirect().

SQL_SUCCESS

is

returned

if

the

SQL

statement

is

a

searched

UPDATE

or

searched

DELETE

and

no

rows

satisfy

the

search

condition.

Use

SQLRowCount()

to

determine

the

number

of

rows

in

a

table

that

were

affected

by

an

UPDATE,

INSERT,

or

DELETE

statement

that

was

executed

on

the

table,

or

on

a

view

of

the

table.

Diagnostics

Table

73

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

73.

SQLExecDirect()

SQLSTATEs

SQLSTATE

Description

Explanation

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

The

szSqlStr

argument

contains

an

UPDATE

or

DELETE

statement

but

no

WHERE

clause.

(The

function

returns

SQL_SUCCESS_WITH_INFO

or

SQL_NO_DATA_FOUND

if

no

rows

are

in

the

table.)

07001

Wrong

number

of

parameters.

The

number

of

parameters

that

are

bound

to

application

variables

with

SQLBindParameter()

is

less

than

the

number

of

parameter

markers

in

the

SQL

statement

that

the

szSqlStr

argument

specifies.

07006

Invalid

conversion.

Transfer

of

data

between

DB2

ODBC

and

the

application

variables

would

result

in

incompatible

data

conversion.

21S01

Insert

value

list

does

not

match

column

list.

The

szSqlStr

argument

contains

an

INSERT

statement

and

the

number

of

values

that

are

to

be

inserted

do

not

match

the

degree

of

the

derived

table.

21S02

Degrees

of

derived

table

does

not

match

column

list.

The

szSqlStr

argument

contains

a

CREATE

VIEW

statement,

and

the

number

of

specified

names

is

not

the

same

degree

as

the

derived

table

that

is

defined

by

the

query

specification.

22001

String

data

right

truncation.

A

character

string

that

is

assigned

to

a

character

type

column

exceeds

the

maximum

length

of

the

column.

22008

Invalid

datetime

format

or

datetime

field

overflow.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

szSqlStr

argument

contains

an

SQL

statement

with

an

invalid

datetime

format.

(That

is,

an

invalid

string

representation

or

value

is

specified,

or

the

value

is

an

invalid

date.)

v

Datetime

field

overflow

occurred.

Example:

An

arithmetic

operation

on

a

date

or

timestamp

has

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

22012

Division

by

zero

is

invalid.

The

szSqlStr

argument

contains

an

SQL

statement

with

an

arithmetic

expression

that

caused

division

by

zero.

SQLExecDirect()

-

Execute

a

statement

directly

156

ODBC

Guide

and

Reference

Table

73.

SQLExecDirect()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22018

Error

in

assignment.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

szSqlStr

argument

contains

an

SQL

statement

with

a

parameter

or

literal,

and

the

value

or

LOB

locator

was

incompatible

with

the

data

type

of

the

associated

table

column.

v

The

length

that

is

associated

with

a

parameter

value

(the

contents

of

the

pcbValue

buffer

that

is

specified

with

the

SQLBindParameter()

function)

is

not

valid.

v

The

fSqlType

argument

that

is

used

in

SQLBindParameter()

denoted

an

SQL

graphic

data

type,

but

the

deferred

length

argument

(pcbValue)

contains

an

odd

length

value.

The

length

value

must

be

even

for

graphic

data

types.

23000

Integrity

constraint

violation.

The

execution

of

the

SQL

statement

is

not

permitted

because

the

execution

would

cause

an

integrity

constraint

violation

in

the

DBMS.

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

24504

The

cursor

identified

in

the

UPDATE,

DELETE,

SET,

or

GET

statement

is

not

positioned

on

a

row.

Results

are

pending

on

the

statement

handle

from

a

previous

query,

or

a

cursor

that

is

associated

with

the

statement

handle

had

not

been

closed.

34000

Invalid

cursor

name.

The

szSqlStr

argument

contains

a

positioned

DELETE

or

a

positioned

UPDATE

statement,

and

the

cursor

that

the

statement

references

is

not

open.

37xxx1

Invalid

SQL

syntax.

The

szSqlStr

argument

contains

one

or

more

of

the

following

statement

types:

v

A

COMMIT

v

A

ROLLBACK

v

An

SQL

statement

that

the

connected

database

server

could

not

prepare

v

A

statement

containing

a

syntax

error

40001

Transaction

rollback.

The

transaction

to

which

the

SQL

statement

belongs

is

rolled

back

due

to

a

deadlock

or

timeout.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

42xxx1

Syntax

error

or

access

rule

violation

These

SQLSTATEs

indicate

one

of

the

following

errors:

v

For

425xx,

the

authorization

ID

does

not

have

permission

to

execute

the

SQL

statement

that

the

szSqlStr

argument

contains.

v

For

42xxx,

a

variety

of

syntax

or

access

problems

with

the

statement

occur.

42895

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

cannot

be

used

because

of

its

data

type

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

LOB

locator

type

that

is

specified

on

the

bind

parameter

function

call

does

not

match

the

LOB

data

type

of

the

parameter

marker.

v

The

fSqlType

argument,

which

is

used

on

the

bind

parameter

function,

specifies

a

LOB

locator

type,

but

the

corresponding

parameter

marker

is

not

a

LOB.

42S01

Database

object

already

exists.

The

szSqlStr

argument

contains

a

CREATE

TABLE

or

CREATE

VIEW

statement,

and

the

specified

table

name

or

view

name

already

exists.

42S02

Database

object

does

not

exist.

The

szSqlStr

argument

contains

an

SQL

statement

that

references

a

table

name

or

view

name

that

does

not

exist.

SQLExecDirect()

-

Execute

a

statement

directly

Chapter

4.

Functions

157

Table

73.

SQLExecDirect()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

42S11

Index

already

exists.

The

szSqlStr

argument

contains

a

CREATE

INDEX

statement,

and

the

specified

index

name

already

exists.

42S12

Index

not

found.

The

szSqlStr

argument

contains

a

DROP

INDEX

statement,

and

the

specified

index

name

does

not

exist.

42S21

Column

already

exists.

The

szSqlStr

argument

contains

an

ALTER

TABLE

statement,

and

the

column

that

is

specified

in

the

ADD

clause

is

not

unique

or

identifies

an

existing

column

in

the

base

table.

42S22

Column

not

found.

The

szSqlStr

argument

contains

an

SQL

statement

that

references

a

column

name

that

does

not

exist.

44000

Integrity

constraint

violation.

When

the

szSqlStr

argument

contains

an

SQL

statement

with

a

parameter

or

literal,

one

of

the

following

violations

occur:

v

The

parameter

value

is

NULL

for

a

column

that

is

defined

as

NOT

NULL

in

the

associated

table

column.

v

A

duplicate

value

is

supplied

for

a

column

that

is

constrained

to

contain

only

unique

values.

v

An

integrity

constraint

is

violated.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

szSqlStr

argument

specifies

a

null

pointer.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY019

Numeric

value

out

of

range.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

numeric

value

that

is

assigned

to

a

numeric

type

column

caused

truncation

of

the

whole

part

of

the

number,

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

v

The

szSqlStr

argument

contains

an

SQL

statement

with

an

arithmetic

expression

that

causes

division

by

zero.

HY090

Invalid

string

or

buffer

length.

The

argument

cbSqlStr

is

less

than

1

but

not

equal

to

SQL_NTS.

Note:

1.

xxx

refers

to

any

SQLSTATE

with

that

class

code.

For

example,

37xxx

refers

to

any

SQLSTATE

with

class

code

’37’.

Restrictions

None.

Example

See

Figure

16

on

page

176.

Related

functions

The

following

functions

relate

to

SQLExecDirect()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLExecDirect()

in

your

applications.

SQLExecDirect()

-

Execute

a

statement

directly

158

ODBC

Guide

and

Reference

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

301

v

“SQLPutData()

-

Pass

a

data

value

for

a

parameter”

on

page

335

v

“SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer”

on

page

364

SQLExecDirect()

-

Execute

a

statement

directly

Chapter

4.

Functions

159

SQLExecute()

-

Execute

a

statement

Purpose

Table

74.

SQLExecute()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLExecute()

executes

a

statement,

which

you

successfully

prepared

with

SQLPrepare(),

once

or

multiple

times.

When

you

execute

a

statement

with

SQLExecute(),

the

current

value

of

any

application

variables

that

are

bound

to

parameter

markers

in

that

statement

are

used.

Syntax

SQLRETURN

SQLExecute

(SQLHSTMT

hstmt);

Function

arguments

Table

75

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

75.

SQLExecute()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

No

open

cursor

can

be

associated

with

the

statement

handle;

see

“SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle”

on

page

193

for

more

information.

Usage

Use

SQLExecute()

to

execute

an

SQL

statement

that

you

prepared

with

SQLPrepare().

You

can

include

parameter

markers

in

this

SQL

statement.

Parameter

markers

are

question

mark

characters

(?)

that

you

place

in

the

SQL

statement

string.

When

you

call

SQLExecute()

to

execute

a

statement

that

contains

parameter

markers,

each

of

these

markers

is

replaced

with

the

contents

of

a

host

variable.

You

must

use

SQLBindParameter()

to

associate

all

parameter

markers

in

the

statement

string

to

an

application-supplied

values

before

you

call

SQLExecute().

This

value

can

be

obtained

from

one

of

the

following

sources:

v

An

application

variable.

SQLBindParameter()

is

used

to

bind

the

application

storage

area

to

the

parameter

marker.

v

A

LOB

value

residing

at

the

server

that

is

referenced

by

a

LOB

locator.

SQLBindParameter()

is

used

to

bind

a

LOB

locator

to

a

parameter

marker.

The

actual

value

of

the

LOB

is

kept

at

the

server

and

does

not

need

to

be

transferred

to

the

application

before

being

used

as

the

input

parameter

value

for

another

SQL

statement.

You

must

bind

all

parameters

before

you

call

SQLExecute().

After

the

application

processes

the

results

from

the

SQLExecute()

call,

it

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

SQLExecute()

-

Execute

a

statement

160

ODBC

Guide

and

Reference

A

statement

that

is

executed

by

SQLExecDirect()

cannot

be

re-executed

by

calling

SQLExecute();

you

must

call

SQLPrepare()

before

executing

a

statement

with

SQLExecute().

If

the

prepared

SQL

statement

is

a

query,

SQLExecute()

generates

a

cursor

name,

and

opens

the

cursor.

If

the

application

uses

SQLSetCursorName()

to

associate

a

cursor

name

with

the

statement

handle,

DB2

ODBC

associates

the

application-generated

cursor

name

with

the

internally

generated

one.

To

execute

a

query

more

than

once,

you

must

close

the

cursor

by

calling

SQLFreeStmt()

with

thefOption

argument

set

to

SQL_CLOSE.

No

open

cursor

can

exist

on

the

statement

handle

when

calling

SQLExecute().

If

a

result

set

is

generated,

SQLFetch()

or

SQLExtendedFetch()

retrieves

the

next

row

or

rows

of

data

into

bound

variables

or

LOB

locators.

You

can

also

retrieve

data

by

calling

SQLGetData()

for

any

column

that

was

not

bound.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

you

must

position

the

cursor

that

the

statement

references

on

a

row

at

the

time

SQLExecute()

is

called,

and

define

the

cursor

on

a

separate

statement

handle

under

the

same

connection

handle.

If

you

call

SQLParamOptions()

to

specify

that

an

array

of

input

parameter

values

is

bound

to

each

parameter

marker,

you

need

to

call

SQLExecDirect()

only

once

to

process

the

entire

array

of

input

parameter

values.

If

the

executed

statement

returns

multiple

result

sets

(one

for

each

set

of

input

parameters),

call

SQLMoreResults()

to

advance

to

the

next

result

set

when

processing

on

the

current

result

set

is

complete.

See

“SQLMoreResults()

-

Check

for

more

result

sets”

on

page

289

for

more

information.

Return

codes

After

you

call

SQLExecute(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

SQL_NEED_DATA

is

returned

when

the

application

requests

data-at-execution

parameter

values.

You

call

SQLParamData()

and

SQLPutData()

to

supply

these

values

to

SQLExecute().

SQL_SUCCESS

is

returned

if

the

SQL

statement

is

a

searched

UPDATE

or

searched

DELETE

and

no

rows

satisfy

the

search

condition.

Use

SQLRowCount()

to

determine

the

number

of

rows

in

a

table

that

were

affected

by

an

UPDATE,

INSERT,

or

DELETE

statement

executed

on

the

table,

or

on

a

view

of

the

table.

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLExecute()

-

Execute

a

statement

Chapter

4.

Functions

161

Diagnostics

The

SQLSTATEs

that

SQLExecute()

returns

include

all

the

SQLSTATEs

that

SQLExecDirect()

can

generate,

except

for

HY009,

HY014,

and

HY090,

and

with

the

addition

of

HY010.

SQLSTATEs

for

SQLExecDirect()

are

listed

in

Table

73

on

page

156.

Table

76

lists

and

describes

the

additional

SQLSTATE

that

SQLExecute()

can

return.

Table

76.

SQLExecute()

SQLSTATEs

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

SQLExecute()

is

called

on

a

statement

prior

to

SQLPrepare().

Restrictions

None.

Example

See

Figure

26

on

page

309.

Related

functions

The

following

functions

relate

to

SQLExecute()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLExecute()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLParamOptions()

-

Specify

an

input

array

for

a

parameter”

on

page

304

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

v

“SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer”

on

page

364

SQLExecute()

-

Execute

a

statement

162

ODBC

Guide

and

Reference

SQLExtendedFetch()

-

Fetch

an

array

of

rows

Purpose

Table

77.

SQLExtendedFetch()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

No

No

SQLExtendedFetch()

extends

the

function

of

SQLFetch()

by

returning

a

block

of

data

containing

multiple

rows

(called

a

row

set),

in

the

form

of

an

array,

for

each

bound

column.

The

value

the

SQL_ATTR_ROWSET_SIZE

statement

attribute

determines

the

size

of

the

row

set

that

SQLExtendedFetch()

returns.

To

fetch

one

row

of

data

at

a

time,

call

SQLFetch()

instead

of

SQLExtendedFetch().

For

more

information

about

block

or

array

retrieval,

see

“Retrieving

a

result

set

into

an

array”

on

page

417.

Syntax

SQLRETURN

SQLExtendedFetch

(SQLHSTMT

hstmt,

SQLUSMALLINT

fFetchType,

SQLINTEGER

irow,

SQLUINTEGER

FAR

*pcrow,

SQLUSMALLINT

FAR

*rgfRowStatus);

Function

arguments

Table

78

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

78.

SQLExtendedFetch()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

from

which

you

retrieve

an

array

data.

SQLUSMALLINT

fFetchType

input

Specifies

the

direction

and

type

of

fetch.

DB2

ODBC

supports

only

the

fetch

direction

SQL_FETCH_NEXT

(that

is,

forward-only

cursor

direction).

The

next

array

(row

set)

of

data

is

always

retrieved.

SQLINTEGER

irow

input

Reserved

for

future

use.

Use

any

integer

for

this

argument.

SQLUINTEGER

*

pcrow

output

Returns

the

number

of

the

rows

that

are

actually

fetched.

If

an

error

occurs

during

processing,

the

pcrow

argument

points

to

the

ordinal

position

of

the

row

(in

the

row

set)

that

precedes

the

row

where

the

error

occurred.

If

an

error

occurs

retrieving

the

first

row,

the

pcrow

argument

points

to

the

value

0.

SQLExtendedFetch()

-

Fetch

an

array

of

rows

Chapter

4.

Functions

163

Table

78.

SQLExtendedFetch()

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

*

rgfRowStatus

output

Returns

an

array

of

status

values.

The

number

of

elements

must

equal

the

number

of

rows

in

the

row

set

(as

defined

by

the

SQL_ATTR_ROWSET_SIZE

attribute).

A

status

value

for

each

row

that

is

fetched

is

returned:

v

SQL_ROW_SUCCESS

If

the

number

of

rows

fetched

is

less

than

the

number

of

elements

in

the

status

array

(that

is,

less

than

the

row

set

size),

the

remaining

status

elements

are

set

to

SQL_ROW_NOROW.

DB2

ODBC

cannot

detect

whether

a

row

has

been

updated

or

deleted

since

the

start

of

the

fetch.

Therefore,

the

following

ODBC-defined

status

values

are

not

reported:

v

SQL_ROW_DELETED

v

SQL_ROW_UPDATED

Usage

SQLExtendedFetch()

performs

an

array

fetch

of

a

set

of

rows.

An

application

specifies

the

size

of

the

array

by

calling

SQLSetStmtAttr()

with

the

SQL_ROWSET_SIZE

attribute.

You

cannot

mix

SQLExtendedFetch()

with

SQLFetch()

when

you

retrieve

results.

Before

SQLExtendedFetch()

is

called

the

first

time,

the

cursor

is

positioned

before

the

first

row.

After

SQLExtendedFetch()

is

called,

the

cursor

is

positioned

on

the

row

in

the

result

set

corresponding

to

the

last

row

element

in

the

row

set

that

was

just

retrieved.

The

number

of

elements

in

the

rgfRowStatus

array

output

buffer

must

equal

the

number

of

rows

in

the

row

set

(as

defined

by

the

SQL_ROWSET_SIZE

statement

attribute).

If

the

number

of

rows

fetched

is

less

than

the

number

of

elements

in

the

status

array,

the

remaining

status

elements

are

set

to

SQL_ROW_NOROW.

For

any

columns

in

the

result

set

that

are

bound

using

the

SQLBindCol()

function,

DB2

ODBC

converts

the

data

for

the

bound

columns

as

necessary

and

stores

it

in

the

locations

that

are

bound

to

these

columns.

As

mentioned

in

“Retrieving

a

result

set

into

an

array”

on

page

417,

the

result

set

can

be

bound

in

a

column-wise

or

row-wise

fashion.

Binding

column-wise:

To

bind

a

result

set

in

column-wise

fashion,

an

application

specifies

SQL_BIND_BY_COLUMN

for

the

SQL_BIND_TYPE

statement

attribute.

(This

is

the

default

value.)

Then

the

application

calls

the

SQLBindCol()

function.

When

you

call

SQLExtendedFetch(),

data

for

the

first

row

is

stored

at

the

start

of

the

buffer.

Each

subsequent

row

of

data

is

stored

at

an

offset

of

the

number

of

bytes

that

you

specify

with

the

cbValueMax

argument

in

the

SQLBindCol()

call.

If,

however,

the

associated

C

buffer

type

is

fixed-width

(such

as

SQL_C_LONG),

the

data

is

stored

at

an

offset

corresponding

to

that

fixed-length

from

the

data

for

the

previous

row.

For

each

bound

column,

the

number

of

bytes

that

are

available

to

return

for

each

element

is

stored

in

the

array

buffer

that

the

pcbValue

argument

on

SQLBindCol()

SQLExtendedFetch()

-

Fetch

an

array

of

rows

164

ODBC

Guide

and

Reference

specifies.

The

number

of

bytes

that

are

available

to

return

for

the

first

row

of

that

column

is

stored

at

the

start

of

the

buffer.

The

number

of

bytes

available

to

return

for

each

subsequent

row

is

stored

at

an

offset

equal

to

the

value

that

the

following

C

function

returns:

sizeof(SQLINTEGER)

If

the

data

in

the

column

is

null

for

a

particular

row,

the

associated

element

in

the

array

that

the

pcbValue

argument

in

SQLBindCol()

array

is

set

to

SQL_NULL_DATA.

Binding

row-wise:

The

application

needs

to

first

call

SQLSetStmtAttr()

with

the

SQL_BIND_TYPE

attribute,

with

the

vParam

argument

set

to

the

size

of

the

structure

capable

of

holding

a

single

row

of

retrieved

data

and

the

associated

data

lengths

for

each

column

data

value.

For

each

bound

column,

the

first

row

of

data

is

stored

at

the

address

given

by

the

rgbValue

argument

in

SQLBindCol().

Each

subsequent

row

of

data

is

separated

by

an

offset

equal

to

the

number

of

bytes

that

you

specify

in

the

vParam

argument

in

SQLSetStmtAttr()

from

the

data

for

the

previous

row.

For

each

bound

column,

the

number

of

bytes

that

are

available

to

return

for

the

first

row

is

stored

at

the

address

given

by

the

pcbValue

argument

in

SQLBindCol().

Each

subsequent

value

is

separated

by

an

offset

equal

to

the

number

of

bytes

you

specify

in

the

vParam

argument

in

SQLBindCol().

Handling

errors:

If

SQLExtendedFetch()

returns

an

error

that

applies

to

the

entire

row

set,

the

SQL_ERROR

function

return

code

is

reported

with

the

appropriate

SQLSTATE.

The

contents

of

the

row

set

buffer

are

undefined

and

the

cursor

position

is

unchanged.

If

an

error

occurs

that

applies

to

a

single

row:

v

The

corresponding

element

in

the

rgfRowStatus

array

for

the

row

is

set

to

SQL_ROW_ERROR

v

An

SQLSTATE

of

01S01

is

added

to

the

list

of

errors

that

you

can

obtain

with

SQLGetDiagRec()

v

Zero

or

more

additional

SQLSTATEs

that

describe

the

error

for

the

current

row

are

added

to

the

list

of

errors

that

you

can

obtain

with

SQLGetDiagRec()

When

the

value

SQL_ROW_ERROR

appears

in

the

array

that

the

rgfRowStatus

argument

specifies,

this

value

indicates

that

an

error

occurred

with

the

corresponding

element.

This

array

does

not

indicate

how

many

SQLSTATEs

were

generated.

Therefore,

SQLSTATE

01S01

is

used

as

a

separator

between

the

resulting

SQLSTATEs

for

each

row.

DB2

ODBC

continues

to

fetch

the

remaining

rows

in

the

row

set

and

returns

SQL_SUCCESS_WITH_INFO

as

the

function

return

code.

Each

row

that

encounters

an

error

receives

an

SQLSTATE

of

01S01

and

zero

or

more

additional

SQLSTATEs

that

indicate

the

errors

in

the

row.

Retrieve

this

information

with

SQLGetDiagRec().

Individual

errors

that

apply

to

specific

rows

do

not

affect

the

cursor,

which

continues

to

advance.

Handling

encoding

schemes:

The

CURRENTAPPENSCH

keyword

in

the

initialization

file

and

the

fCType

argument

in

SQLBindCol()

or

SQLGetData()

determine

the

encoding

scheme

of

any

character

or

graphic

data

in

the

result

set.

See

“CURRENTAPPENSCH”

on

page

53

for

additional

information

about

the

CURRENTAPPENSCH

keyword.

See

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

and

“SQLGetData()

-

Get

data

from

a

column”

on

page

207

for

additional

information

about

the

fCType

argument.

SQLExtendedFetch()

-

Fetch

an

array

of

rows

Chapter

4.

Functions

165

Return

codes

After

you

call

SQLExtendedFetch(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

79

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

79.

SQLExtendedFetch()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

that

is

returned

for

one

or

more

columns

is

truncated.

(SQLExtendedFetch()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01S01

Error

in

row.

An

error

occurs

while

fetching

one

or

more

rows.

(SQLExtendedFetch()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

07002

Too

many

columns.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

column

number

that

is

specified

in

the

bind

of

one

or

more

columns

is

greater

than

the

number

of

columns

that

are

in

the

result

set.

v

The

application

uses

SQLSetColAttributes()

to

inform

DB2

ODBC

of

the

descriptor

information

of

the

result

set,

but

it

does

not

provide

this

information

for

every

column

that

is

in

the

result

set.

07006

Invalid

conversion.

The

data

value

can

not

be

converted

in

a

meaningful

manner

to

the

data

type

that

the

fCType

argument

in

SQLBindCol()

specifies.

22002

Invalid

output

or

indicator

buffer

specified.

The

pcbValue

argument

in

SQLBindCol()

specifies

a

null

pointer

and

the

value

of

the

corresponding

column

is

null.

The

function

can

not

report

SQL_NULL_DATA.

22008

Invalid

datetime

format

or

datetime

field

overflow.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

Conversion

from

character

string

to

datetime

format

is

indicated,

but

an

invalid

string

representation

or

value

is

specified,

or

the

value

is

an

invalid

date.

v

The

value

of

a

date,

time,

or

timestamp

does

not

conform

to

the

syntax

for

the

data

type

that

is

specified.

v

Datetime

field

overflow

occurred.

Example:

An

arithmetic

operation

on

a

date

or

timestamp

produces

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

22012

Division

by

zero

is

invalid.

A

value

from

an

arithmetic

expression

is

returned

that

results

in

division

by

zero.

SQLExtendedFetch()

-

Fetch

an

array

of

rows

166

ODBC

Guide

and

Reference

Table

79.

SQLExtendedFetch()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22018

Error

in

assignment.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

returned

value

is

incompatible

with

the

data

type

of

the

bound

column.

v

A

returned

LOB

locator

was

incompatible

with

the

data

type

of

the

bound

column.

24000

Invalid

cursor

state.

The

SQL

statement

that

is

executed

on

the

statement

handle

is

not

a

query.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

SQLExtendedFetch()

is

called

on

a

statement

handle

after

a

SQLFetch()

call,

and

before

the

SQLFreeStmt()

(with

the

fOption

argument

set

to

SQL_CLOSE)

call.

v

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

on

the

statement

handle.

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY019

Numeric

value

out

of

range.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

numeric

value

(as

numeric

or

string)

that

is

returned

for

one

or

more

columns

causes

the

whole

part

of

a

number

to

be

truncated

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

v

A

value

from

an

arithmetic

expression

is

returned

that

results

in

division

by

zero.

HY106

Fetch

type

out

of

range.

The

value

that

thefFetchType

argument

specifies

is

not

recognized.

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

or

the

data

source

does

not

support

the

conversion

that

the

fCTypeargument

in

SQLBindCol()

and

the

SQL

data

type

of

the

corresponding

column

require.

v

A

call

to

SQLBindCol()

is

made

for

a

column

data

type

that

DB2

ODBC

does

not

support.

v

The

specified

fetch

type

is

recognized,

but

it

is

not

supported.

Restrictions

Although

this

function

is

deprecated

in

ODBC

3.0,

this

function

is

not

deprecated

in

DB2

ODBC.

DB2

ODBC

does

not

support

SQLFetchScroll(),

which

replaces

SQLExtendedFetch()

in

ODBC

3.0.

SQLExtendedFetch()

-

Fetch

an

array

of

rows

Chapter

4.

Functions

167

Example

Figure

15

shows

an

application

that

uses

SQLExtendedFetch()

to

perform

an

array

fetch.

/*

...

*/

"SELECT

deptnumb,

deptname,

id,

name

FROM

staff,

org

\

WHERE

dept=deptnumb

AND

job

=

’Mgr’";

/*

Column-wise

*/

SQLINTEGER

deptnumb[ROWSET_SIZE];

SQLCHAR

deptname[ROWSET_SIZE][15];

SQLINTEGER

deptname_l[ROWSET_SIZE];

SQLSMALLINT

id[ROWSET_SIZE];

SQLCHAR

name[ROWSET_SIZE][10];

SQLINTEGER

name_l[ROWSET_SIZE];

/*

Row-wise

(Includes

buffer

for

both

column

data

and

length)

*/

struct

{

SQLINTEGER

deptnumb_l;

/*

length

*/

SQLINTEGER

deptnumb;

/*

value

*/

SQLINTEGER

deptname_l;

SQLCHAR

deptname[15];

SQLINTEGER

id_l;

SQLSMALLINT

id;

SQLINTEGER

name_l;

SQLCHAR

name[10];

}

R[ROWSET_SIZE];

SQLUSMALLINT

Row_Stat[ROWSET_SIZE];

SQLUINTEGER

pcrow;

int

i;

/*

...

*/

Figure

15.

An

application

that

performs

an

array

fetch

(Part

1

of

3)

SQLExtendedFetch()

-

Fetch

an

array

of

rows

168

ODBC

Guide

and

Reference

/***/

/*

Column-wise

binding

*/

/***/

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWSET_SIZE,

(void*)

ROWSET_SIZE,

0);

rc

=

SQLExecDirect(hstmt,

stmt,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

deptnumb,

0,

NULL);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

deptname,

15,

deptname_l);

rc

=

SQLBindCol(hstmt,

3,

SQL_C_SSHORT,

(SQLPOINTER)

id,

0,

NULL);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

name,

10,

name_l);

/*

Fetch

ROWSET_SIZE

rows

ast

a

time,

and

display

*/

printf("\nDEPTNUMB

DEPTNAME

ID

NAME\n");

printf("--------

---------\n");

while

((rc

=

SQLExtendedFetch(hstmt,

SQL_FETCH_NEXT,

0,

&pcrow,

Row_Stat))

==

SQL_SUCCESS)

{

for

(i

=

0;

i

<

pcrow;

i++)

{

printf("%8ld

%-14s

%8ld

%-9s\n",

deptnumb[i],

deptname[i],

id[i],

name[i]);

}

if

(pcrow

<

ROWSET_SIZE)

break;

}

/*

endwhile

*/

if

(rc

!=

SQL_NO_DATA_FOUND

&&

rc

!=

SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT,

hstmt,

rc);

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

Figure

15.

An

application

that

performs

an

array

fetch

(Part

2

of

3)

SQLExtendedFetch()

-

Fetch

an

array

of

rows

Chapter

4.

Functions

169

Related

functions

The

following

functions

relate

to

SQLExtendedFetch()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLExtendedFetch()

in

your

applications.

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

/***/

/*

Row-wise

binding

*/

/***/

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

CHECK_HANDLE(SQL_HANDLE_STMT,

hstmt,

rc);

/*

Set

maximum

number

of

rows

to

receive

with

each

extended

fetch

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWSET_SIZE,

(void*)

ROWSET_SIZE,

0);

CHECK_HANDLE(SQL_HANDLE_STMT,

hstmt,

rc);

/*

*

Set

vparam

to

size

of

one

row,

used

as

offset

for

each

bindcol

*

rgbValue

*/

/*

ie.

&(R[0].deptnumb)

+

vparam

=

&(R[1].deptnum)

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_BIND_TYPE,

(void*)

(sizeof(R)

/

ROWSET_SIZE),

0);

rc

=

SQLExecDirect(hstmt,

stmt,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

&R[0].deptnumb,

0,

&R[0].deptnumb_l);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

R[0].deptname,

15,

&R[0].deptname_l);

rc

=

SQLBindCol(hstmt,

3,

SQL_C_SSHORT,

(SQLPOINTER)

&R[0].id,

0,

&R[0].id_l);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

R[0].name,

10,

&R[0].name_l);

/*

Fetch

ROWSET_SIZE

rows

at

a

time,

and

display

*/

printf("\nDEPTNUMB

DEPTNAME

ID

NAME\n");

printf("--------

---------\n");

while

((rc

=

SQLExtendedFetch(hstmt,

SQL_FETCH_NEXT,

0,

&pcrow,

Row_Stat))

==

SQL_SUCCESS)

{

for

(i

=

0;

i

<

pcrow;

i++)

{

printf("%8ld

%-14s

%8ld

%-9s\n",

R[i].deptnumb,

R[i].deptname,

R[i].id,

R[i].name);

}

if

(pcrow

<

ROWSET_SIZE)

break;

}

/*

endwhile

*/

if

(rc

!=

SQL_NO_DATA_FOUND

&&

rc

!=

SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT,

hstmt,

rc);

/*

Free

handles,

commit,

exit

*/

/*

...

*/

Figure

15.

An

application

that

performs

an

array

fetch

(Part

3

of

3)

SQLExtendedFetch()

-

Fetch

an

array

of

rows

170

ODBC

Guide

and

Reference

SQLFetch()

-

Fetch

the

next

row

Purpose

Table

80.

SQLFetch()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLFetch()

advances

the

cursor

to

the

next

row

of

the

result

set,

and

retrieves

any

bound

columns.

Columns

can

be

bound

to

the

following

locations:

v

Application

storage

v

LOB

locators

When

you

call

SQLFetch(),

DB2

ODBC

performs

the

appropriate

data

transfer,

along

with

any

data

conversion

that

was

indicated

when

you

bound

the

column.

You

can

call

SQLGetData()

to

retrieve

the

columns

individually

after

the

fetch.

You

can

call

SQLFetch()

only

after

you

generate

a

result

set.

Any

of

the

following

actions

generate

a

result

set:

v

Executing

a

query

v

Calling

SQLGetTypeInfo()

v

Calling

a

catalog

function

To

retrieve

multiple

rows

at

a

time,

use

SQLExtendedFetch().

Syntax

SQLRETURN

SQLFetch

(SQLHSTMT

hstmt);

Function

arguments

Table

81

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

81.

SQLFetch()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

from

which

to

fetch

data.

Usage

Call

SQLFetch()

to

retrieve

results

into

bound

application

variables

and

to

advance

the

position

of

the

cursor

in

a

result

set.

You

can

call

SQLFetch()

only

after

a

result

set

is

generated

on

the

statement

handle.

Before

you

call

SQLFetch()

for

the

first

time,

the

cursor

is

positioned

before

the

start

of

the

result

set.

The

number

of

application

variables

bound

with

SQLBindCol()

must

not

exceed

the

number

of

columns

in

the

result

set

or

SQLFetch()

fails.

When

you

retrieve

all

the

rows

from

the

result

set,

or

do

not

need

the

remaining

rows,

call

SQLFreeStmt()

or

SQLCloseCursor()

to

close

the

cursor

and

discard

the

remaining

data

and

associated

resources.

SQLFetch()

-

Fetch

the

next

row

Chapter

4.

Functions

171

If

SQLBindCol()

has

not

been

called

to

bind

any

columns,

then

SQLFetch()

does

not

return

data

to

the

application,

but

just

advances

the

cursor.

In

this

case,

SQLGetData()

can

be

called

to

obtain

all

of

the

columns

individually.

Data

in

unbound

columns

is

discarded

when

SQLFetch()

advances

the

cursor

to

the

next

row.

For

fixed-length

data

types,

or

small

varying-length

data

types,

binding

columns

provides

better

performance

than

using

SQLGetData().

Columns

can

be

bound

to

application

storage

or

you

can

use

LOB

locators.

Fetching

into

application

storage:

SQLBindCol()

binds

application

storage

to

the

column.

You

transfer

data

from

the

server

to

the

application

when

you

call

SQLFetch().

The

length

of

the

data

that

is

available

to

return

is

also

set.

If

LOB

values

are

too

large

to

retrieve

in

one

fetch,

retrieve

these

values

in

pieces

either

by

using

SQLGetData()

(which

can

be

used

for

any

column

type),

or

by

binding

a

LOB

locator

and

using

SQLGetSubString().

Fetching

into

LOB

locators:

SQLBindCol()

is

used

to

bind

LOB

locators

to

the

column.

Only

the

LOB

locator

(4

bytes)

is

transferred

from

the

server

to

the

application

at

fetch

time.

When

your

application

receives

a

locator,

it

can

use

the

locator

in

SQLGetSubString(),

SQLGetPosition(),

SQLGetLength(),

or

as

the

value

of

a

parameter

marker

in

another

SQL

statement.

SQLGetSubString()

can

either

return

another

locator,

or

the

data

itself.

All

locators

remain

valid

until

the

end

of

the

transaction

in

which

they

are

created

(even

when

the

cursor

moves

to

another

row),

or

until

they

are

freed

using

the

FREE

LOCATOR

statement.

Handling

data

truncation:

If

any

bound

storage

buffers

are

not

large

enough

to

hold

the

data

returned

by

SQLFetch(),

the

data

is

truncated.

If

character

data

is

truncated,

SQL_SUCCESS_WITH_INFO

is

returned,

and

an

SQLSTATE

is

generated

indicating

truncation.

The

SQLBindCol()

deferred

output

argument

pcbValue

contains

the

actual

length,

in

bytes,

of

the

column

data

retrieved

from

the

server.

The

application

should

compare

the

actual

output

length

to

the

input

buffer

length

(pcbValue

and

cbValueMax

arguments

from

SQLBindCol())

to

determine

which

character

columns

are

truncated.

Truncation

of

numeric

data

types

is

reported

as

a

warning

if

the

truncation

involves

digits

to

the

right

of

the

decimal

point.

If

truncation

occurs

to

the

left

of

the

decimal

point,

an

error

is

returned

(see

“Diagnostics”

on

page

173).

Truncation

of

graphic

data

types

is

treated

the

same

as

character

data

types,

except

that

the

buffer

you

specify

in

the

rgbValue

argument

for

SQLBindCol().

This

buffer

is

filled

to

the

nearest

multiple

of

two

bytes

that

is

less

than

or

equal

to

the

value

you

specify

in

the

cbValueMax

argument

for

SQLBindCol().

Graphic

(DBCS)

data

transferred

between

DB2

ODBC

and

the

application

is

not

nul-terminated

if

the

C

buffer

type

is

SQL_C_CHAR.

If

the

buffer

type

is

SQL_C_DBCHAR,

then

nul-termination

of

graphic

data

does

occur.

To

eliminate

warnings

when

data

is

truncated,

call

SQLSetStmtAttr()

with

the

SQL_ATTR_MAX_LENGTH

attribute

set

to

a

maximum

length

value.

Then

allocate

a

buffer

for

the

rgbValue

argument

that

is

the

same

number

of

bytes

(plus

the

nul-terminator)

as

the

value

you

specified

for

SQL_ATTR_MAX_LENGTH.

If

the

column

data

is

larger

than

the

maximum

length

that

you

specified

for

SQLFetch()

-

Fetch

the

next

row

172

ODBC

Guide

and

Reference

SQL_ATTR_MAX_LENGTH,

SQL_SUCCESS

is

returned.

When

you

specify

a

maximum

length,

the

length

you

specify,

not

the

actual

length,

is

returned

in

the

pcbValue

argument.

To

retrieve

multiple

rows

at

a

time,

use

SQLExtendedFetch().

You

cannot

mix

SQLFetch()

calls

with

SQLExtendedFetch()

calls

on

the

same

statement

handle.

Return

codes

After

you

call

SQLFetch(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND

is

returned

if

no

rows

are

in

the

result

set,

or

previous

SQLFetch()

calls

have

fetched

all

the

rows

from

the

result

set.

If

all

the

rows

are

fetched,

the

cursor

is

positioned

after

the

end

of

the

result

set.

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

82

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

82.

SQLFetch()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

that

is

returned

for

one

or

more

columns

is

truncated.

String

values

or

numeric

values

are

truncated

on

the

right.

(SQLFetch()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

07002

Too

many

columns.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

column

number

that

is

specified

in

the

bind

for

one

or

more

columns

is

greater

than

the

number

of

columns

in

the

result

set.

v

The

application

uses

SQLSetColAttributes()

to

inform

DB2

ODBC

of

the

descriptor

information

of

the

result

set,

but

does

not

provide

this

information

for

every

column

in

the

result

set.

07006

Invalid

conversion.

The

data

value

cannot

be

converted

in

a

meaningful

manner

to

the

data

type

that

the

fCType

argument

in

SQLBindCol()

specifies.

22002

Invalid

output

or

indicator

buffer

specified.

The

pcbValue

argument

in

SQLBindCol()

specifies

a

null

pointer,

and

the

value

of

the

corresponding

column

is

null.

The

function

can

not

report

SQL_NULL_DATA.

SQLFetch()

-

Fetch

the

next

row

Chapter

4.

Functions

173

Table

82.

SQLFetch()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22008

Invalid

datetime

format

or

datetime

field

overflow.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

Conversion

from

character

string

to

datetime

format

is

indicated,

but

an

invalid

string

representation

or

value

is

specified,

or

the

value

is

an

invalid

date.

v

The

value

of

a

date,

time,

or

timestamp

does

not

conform

to

the

syntax

for

the

specified

data

type.

v

Datetime

field

overflow

occurred.

Example:

An

arithmetic

operation

on

a

date

or

timestamp

has

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

22012

Division

by

zero

is

invalid.

A

value

from

an

arithmetic

expression

is

returned

that

results

in

division

by

zero.

22018

Error

in

assignment.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

A

returned

value

is

incompatible

with

the

data

type

of

binding.

v

A

returned

LOB

locator

is

incompatible

with

the

data

type

of

the

bound

column.

24000

Invalid

cursor

state.

The

previous

SQL

statement

that

is

executed

on

the

statement

handle

is

not

a

query.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

54028

Maximum

LOB

locator

assigned.

The

maximum

number

of

concurrent

LOB

locators

has

been

reached.

A

new

locator

can

not

be

assigned.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY002

Invalid

column

number.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

specified

column

is

less

than

0

or

greater

than

the

number

of

result

columns.

v

The

specified

column

is

0,

but

DB2

ODBC

does

not

support

ODBC

bookmarks

(icol

=

0).

v

SQLExtendedFetch()

is

called

for

this

result

set.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

SQLFetch()

is

called

for

a

statement

handle

after

SQLExtendedFetch()

and

before

SQLCloseCursor().

v

The

function

is

called

prior

to

SQLPrepare()

or

SQLExecDirect().

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

SQLFetch()

-

Fetch

the

next

row

174

ODBC

Guide

and

Reference

|

Table

82.

SQLFetch()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY019

Numeric

value

out

of

range.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

Returning

the

numeric

value

(as

numeric

or

string)

for

one

or

more

columns

causes

the

whole

part

of

the

number

to

be

truncated

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

v

A

value

from

an

arithmetic

expression

is

returned

that

results

in

division

by

zero.

Important:

The

associated

cursor

is

undefined

if

this

error

is

detected

by

DB2

UDB

for

z/OS.

If

the

error

is

detected

by

DB2

UDB

or

by

other

IBM

RDBMSs,

the

cursor

remains

open

and

continues

to

advance

on

subsequent

fetch

calls.

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

or

the

data

source

does

not

support

the

conversion

that

the

fCType

argument

in

SQLBindCol()

and

the

SQL

data

type

of

the

corresponding

column

require.

v

A

call

to

SQLBindCol()

was

made

for

a

column

data

type

that

is

not

supported

by

DB2

ODBC.

Restrictions

None.

Example

Figure

16

on

page

176

shows

an

application

that

uses

SQLFetch()

to

retrieve

data

from

bound

columns

of

a

result

set.

SQLFetch()

-

Fetch

the

next

row

Chapter

4.

Functions

175

/*

...

*/

/***

**

main

***/

int

main(

int

argc,

char

*

argv[]

)

{

SQLHENV

henv;

SQLHDBC

hdbc;

SQLHSTMT

hstmt;

SQLRETURN

rc;

SQLCHAR

sqlstmt[]

=

"SELECT

deptname,

location

from

org

where

division

=

’Eastern’";

struct

{

SQLINTEGER

ind;

SQLCHAR

s[15];

}

deptname,

location;

/*

Macro

to

initalize

server,

uid

and

pwd

*/

INIT_UID_PWD;

/*

Allocate

an

environment

handle

*/

rc

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

if

(rc

!=

SQL_SUCCESS)

return

(terminate(henv,

rc));

rc

=

DBconnect(henv,

&hdbc);/*

allocate

a

connect

handle,

and

connect

*/

if

(rc

!=

SQL_SUCCESS)

return

(terminate(henv,

rc));

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

rc

=

SQLExecDirect(hstmt,

sqlstmt,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

1,

SQL_C_CHAR,

(SQLPOINTER)

deptname.s,

15,

&deptname.ind);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

location.s,

15,

&location.ind);

printf("Departments

in

Eastern

division:\n");

printf("DEPTNAME

Location\n");

printf("--------------

-------------\n");

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

printf("%-14.14s

%-14.14s

\n",

deptname.s,

location.s);

}

if

(rc

!=

SQL_NO_DATA_FOUND)

CHECK_HANDLE

(SQL_HANDLE_STMT,

hstmt,

RETCODE);

rc

=

SQLFreeHandle

(SQL_HANDLE_STMT,

hstmt);

rc

=

SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

printf("Disconnecting

.....\n");

rc

=

SQLDisconnect(hdbc);

rc

=

SQLFreeHandle

(SQL_HANDLE_DBC,

hdbc);

rc

=

SQLFreeHandle

(SQL_HANDLE_DBC,

henv);

if

(rc

!=

SQL_SUCCESS)

return

(terminate(henv,

rc));

}

/*

end

main

*/

/*

...

*/

Figure

16.

An

application

that

retrieves

data

from

bound

columns

SQLFetch()

-

Fetch

the

next

row

176

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLFetch()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLFetch()

in

your

applications.

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLGetData()

-

Get

data

from

a

column”

on

page

207

SQLFetch()

-

Fetch

the

next

row

Chapter

4.

Functions

177

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Purpose

Table

83.

SQLForeignKeys()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLForeignKeys()

returns

information

about

foreign

keys

for

the

specified

table.

The

information

is

returned

in

an

SQL

result

set

which

can

be

processed

using

the

same

functions

that

are

used

to

retrieve

a

result

generated

by

a

query.

Syntax

SQLRETURN

SQLForeignKeys

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szPkCatalogName,

SQLSMALLINT

cbPkCatalogName,

SQLCHAR

FAR

*szPkSchemaName,

SQLSMALLINT

cbPkSchemaName,

SQLCHAR

FAR

*szPkTableName,

SQLSMALLINT

cbPkTableName,

SQLCHAR

FAR

*szFkCatalogName,

SQLSMALLINT

cbFkCatalogName,

SQLCHAR

FAR

*szFkSchemaName,

SQLSMALLINT

cbFkSchemaName,

SQLCHAR

FAR

*szFkTableName,

SQLSMALLINT

cbFkTableName);

Function

arguments

Table

84

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

84.

SQLForeignKeys()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

to

return

results.

SQLCHAR

*

szPkCatalogName

input

Specifies

the

catalog

qualifier

of

the

primary

key

table.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbPkCatalogName

input

Specifies

the

length,

in

bytes,

of

the

szPkCatalogName

argument.

This

must

be

set

to

0.

SQLCHAR

*

szPkSchemaName

input

Specifies

the

schema

qualifier

of

the

primary

key

table.

SQLSMALLINT

cbPkSchemaName

input

Specifies

the

length,

in

bytes,

of

the

szPkSchemaName

argument.

SQLCHAR

*

szPkTableName

input

Specifies

the

name

of

the

table

that

contains

the

primary

key.

SQLSMALLINT

cbPkTableName

input

Specifies

the

length,

in

bytes,

of

the

szPkTableName

argument.

SQLCHAR

*

szFkCatalogName

input

Specifies

the

catalog

qualifier

of

the

table

that

contains

the

foreign

key.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbFkCatalogName

input

Specifies

the

length,

in

bytes,

of

the

szFkCatalogName

argument.

This

must

be

set

to

0.

SQLCHAR

*

szFkSchemaName

input

Specifies

the

schema

qualifier

of

the

table

that

contains

the

foreign

key.

SQLSMALLINT

cbFkSchemaName

input

Specifies

the

length,

in

bytes,

of

the

szFkSchemaName

argument.

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

178

ODBC

Guide

and

Reference

Table

84.

SQLForeignKeys()

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

szFkTableName

input

Specifies

the

name

of

the

table

that

contains

the

foreign

key.

SQLSMALLINT

cbFkTableName

input

Specifies

the

length,

in

bytes,

of

the

szFkTableName

argument.

Usage

If

the

szPkTableName

argument

contains

a

table

name

and

the

szFkTableName

argument

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

containing

the

primary

key

of

the

specified

table

and

all

of

the

foreign

keys

(in

other

tables)

that

refer

to

it.

If

the

szFkTableName

argument

contains

a

table

name

and

the

szPkTableName

argument

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

that

contains

all

of

the

foreign

keys

in

the

table

that

you

specify

in

the

szFkTableName

argument

and

the

all

the

primary

keys

(on

other

tables)

to

which

they

refer.

If

both

of

the

szPkTableName

argument

and

the

szFkTableName

argument

contain

table

names,

SQLForeignKeys()

returns

foreign

keys

that

refer

to

the

primary

key

of

the

table

that

you

specify

in

the

szPkTableName

argument

from

the

table

that

you

specify

in

the

szFkTableName

argument.

All

foreign

keys

that

this

type

of

SQLForeignKeys()

call

returns

refer

to

a

single

primary

key.

If

you

do

not

specify

a

schema

qualifier

argument

that

is

associated

with

a

table

name,

DB2

ODBC

uses

the

schema

name

that

is

currently

in

effect

for

the

current

connection.

Table

85

lists

each

column

in

the

result

set

that

SQLForeignKeys()

currently

returns.

Table

85.

Columns

returned

by

SQLForeignKeys()

Column

number

Column

name

Data

type

Description

1

PKTABLE_CAT

VARCHAR(128)

This

is

always

NULL.

2

PKTABLE_SCHEM

VARCHAR(128)

Contains

the

name

of

the

schema

to

which

the

table

in

PKTABLE_NAME

belongs.

3

PKTABLE_NAME

VARCHAR(128)

NOT

NULL

Contains

the

name

of

the

table

on

which

the

primary

key

is

defined.

4

PKCOLUMN_NAME

VARCHAR(128)

NOT

NULL

Contains

the

name

of

the

column

on

which

the

primary

key

is

defined.

5

FKTABLE_CAT

VARCHAR(128)

This

is

always

NULL.

6

FKTABLE_SCHEM

VARCHAR(128)

Contains

the

name

of

the

schema

to

which

the

table

in

FKTABLE_NAME

belongs.

7

FKTABLE_NAME

VARCHAR(128)

NOT

NULL

Contains

the

name

of

the

table

that

on

which

the

foreign

key

is

defined.

8

FKCOLUMN_NAME

VARCHAR(128)

NOT

NULL

Contains

the

name

of

the

column

on

which

the

foreign

key

is

defined.

9

KEY_SEQ

SMALLINT

NOT

NULL

Contains

the

ordinal

position

of

the

column

in

the

key.

The

first

position

is

1.

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Chapter

4.

Functions

179

Table

85.

Columns

returned

by

SQLForeignKeys()

(continued)

Column

number

Column

name

Data

type

Description

10

UPDATE_RULE

SMALLINT

Identifies

the

action

that

is

applied

to

the

foreign

key

when

the

SQL

operation

is

UPDATE.

IBM

DB2

DBMSs

always

return

one

of

the

following

values:

v

SQL_RESTRICT

v

SQL_NO_ACTION

Both

of

these

values

indicate

that

an

update

is

rejected

if

it

removes

a

primary

key

row

that

a

foreign

key

references,

or

adds

a

value

in

a

foreign

key

that

is

not

present

in

the

primary

key.

You

might

encounter

the

following

UPDATE_RULE

values

when

connected

to

non-IBM

RDBMSs:

v

SQL_CASCADE

v

SQL_SET_NULL

11

DELETE_RULE

SMALLINT

Identifies

the

action

that

is

applied

to

the

foreign

key

when

the

SQL

operation

is

DELETE.

The

following

values

indicate

the

action

that

is

applied:

v

SQL_CASCADE:

when

a

primary

key

value

is

deleted,

that

value

in

related

foreign

keys

is

also

deleted.

v

SQL_NO_ACTION:

the

delete

is

rejected

if

it

removes

values

from

a

primary

key

that

a

foreign

key

references.

v

SQL_RESTRICT:

the

delete

is

rejected

if

it

removes

values

from

a

primary

key

that

a

foreign

key

references.

v

SQL_SET_DEFAULT:

when

a

primary

key

value

is

deleted,

that

value

is

replaced

with

a

default

value

in

related

foreign

keys.

v

SQL_SET_NULL:

when

a

primary

key

value

is

deleted,

that

value

is

replaced

with

a

null

value

in

related

foreign

keys.

12

FK_NAME

VARCHAR(128)

Contains

the

name

of

the

foreign

key.

This

column

contains

a

null

value

if

it

is

not

applicable

to

the

data

source.

13

PK_NAME

VARCHAR(128)

Contains

the

name

of

the

primary

key.

This

column

contains

a

null

value

if

it

is

not

applicable

to

the

data

source.

14

DEFERRABILITY

SMALLINT

DB2

ODBC

always

returns

a

value

of

NULL.

Other

DBMSs

support

the

following

values:

v

SQL_INITIALLY_DEFERRED

v

SQL_INITIALLY_IMMEDIATE

v

SQL_NOT_DEFERRABLE

If

you

request

foreign

keys

that

are

associated

with

a

primary

key,

the

returned

rows

in

the

result

set

are

sorted

by

the

values

that

the

following

columns

contain:

1.

FKTABLE_CAT

2.

FKTABLE_SCHEM

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

180

ODBC

Guide

and

Reference

3.

FKTABLE_NAME

4.

KEY_SEQ

If

you

request

the

primary

keys

that

are

associated

with

a

foreign

key,

the

returned

rows

in

the

result

set

are

sorted

by

the

values

that

the

following

columns

contain:

1.

PKTABLE_CAT

2.

PKTABLE_SCHEM

3.

PKTABLE_NAME

4.

KEY_SEQ

The

column

names

used

by

DB2

ODBC

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLForeignKeys()

result

set

in

ODBC.

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

remain

unchanged.

DB2

ODBC

applications

that

issue

SQLForeignKeys()

against

a

DB2

UDB

for

z/OS

server

should

expect

the

result

set

columns

listed

in

Table

85

on

page

179.

For

consistency

with

SQL92

limits,

the

VARCHAR

columns

of

the

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes.

Because

DB2

names

are

smaller

than

128

characters,

you

can

always

use

a

128-character

(plus

the

nul-terminator)

output

buffer

to

handle

table

names.

Call

SQLGetInfo()

with

each

of

the

following

attributes

to

determine

the

actual

amount

of

space

that

you

need

to

allocate

when

you

connect

to

another

DBMS:

v

SQL_MAX_CATALOG_NAME_LEN

to

determine

the

length

that

the

PKTABLE_CAT

and

FKTABLE_CAT

columns

support

v

SQL_MAX_SCHEMA_NAME_LEN

to

determine

the

length

that

the

PKTABLE_SCHEM

and

FKTABLE_SCHEM

columns

support

v

SQL_MAX_TABLE_NAME_LEN

to

determine

the

length

that

the

PKTABLE_NAME

and

FKTABLE_NAME

columns

support

v

SQL_MAX_COLUMN_NAME_LEN

to

determine

the

length

that

the

PKCOLUMN_NAME

and

FKCOLUMN_NAME

columns

support

Return

codes

After

you

call

SQLForeignKeys(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

86

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

86.

SQLForeignKeys()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Chapter

4.

Functions

181

Table

86.

SQLForeignKeys()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

arguments

szPkTableName

and

szFkTableName

are

both

null

pointers.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

of

one

of

the

name

length

arguments

is

less

than

0

and

not

equal

SQL_NTS.

v

The

length

of

the

table

or

owner

name

is

greater

than

the

maximum

length

that

is

supported

by

the

server.

See

“SQLGetInfo()

-

Get

general

information”

on

page

234.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

″catalog″

as

a

qualifier

for

table

name.

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

Restrictions

None.

Example

Figure

17

on

page

183

shows

an

application

that

uses

SQLForeignKeys()

to

retrieve

foreign

key

information

about

a

table.

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

182

ODBC

Guide

and

Reference

/**/

/*

Invoke

SQLForeignKeys

against

PARENT

Table.

Find

all

*/

/*

tables

that

contain

foreign

keys

on

PARENT.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"cli.h"

#include

"sqlcli1.h"

#include

"sqlcli1.h"

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

pTable

[200];

char

*pDSN

=

"STLEC1";

SQLSMALLINT

update_rule;

SQLSMALLINT

delete_rule;

SQLINTEGER

update_rule_ind;

SQLINTEGER

delete_rule_ind;

char

update

[25];

char

delet

[25];

typedef

struct

varchar

//

define

VARCHAR

type

{

SQLSMALLINT

length;

SQLCHAR

name

[128];

SQLINTEGER

ind;

}

VARCHAR;

VARCHAR

pktable_schem;

VARCHAR

pktable_name;

VARCHAR

pkcolumn_name;

VARCHAR

fktable_schem;

VARCHAR

fktable_name;

VARCHAR

fkcolumn_name;

(void)

printf

("****

Entering

CLIP02.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(

SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

connect

handle

goto

dberror;

Figure

17.

An

application

that

retrieves

foreign

key

information

about

a

table

(Part

1

of

5)

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Chapter

4.

Functions

183

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handle

*/

/***/

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

Invoke

SQLForeignKeys

against

PARENT

Table,

specifying

NULL

*/

/*

for

table

with

foreign

key.

*/

/***/

rc

=

SQLForeignKeys

(hStmt,

NULL,

0,

(SQLCHAR

*)

"ADMF001",

SQL_NTS,

(SQLCHAR

*)

"PARENT",

SQL_NTS,

NULL,

0,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

SQLForeignKeys

Failed.\n");

goto

dberror;

}

Figure

17.

An

application

that

retrieves

foreign

key

information

about

a

table

(Part

2

of

5)

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

184

ODBC

Guide

and

Reference

/***/

/*

Bind

following

columns

of

answer

set:

*/

/*

*/

/*

2)

pktable_schem

*/

/*

3)

pktable_name

*/

/*

4)

pkcolumn_name

*/

/*

6)

fktable_schem

*/

/*

7)

fktable_name

*/

/*

8)

fkcolumn_name

*/

/*

10)

update_rule

*/

/*

11)

delete_rule

*/

/*

*/

/***/

rc

=

SQLBindCol

(hStmt,

//

bind

pktable_schem

2,

SQL_C_CHAR,

(SQLPOINTER)

pktable_schem.name,

128,

&pktable_schem.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

pktable_name

3,

SQL_C_CHAR,

(SQLPOINTER)

pktable_name.name,

128,

&pktable_name.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

pkcolumn_name

4,

SQL_C_CHAR,

(SQLPOINTER)

pkcolumn_name.name,

128,

&pkcolumn_name.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

fktable_schem

6,

SQL_C_CHAR,

(SQLPOINTER)

fktable_schem.name,

128,

&fktable_schem.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

fktable_name

7,

SQL_C_CHAR,

(SQLPOINTER)

fktable_name.name,

128,

&fktable_name.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

fkcolumn_name

8,

SQL_C_CHAR,

(SQLPOINTER)

fkcolumn_name.name,

128,

&fkcolumn_name.ind);

rc

=

SQLBindCol

(hStmt,

//

bind

update_rule

10,

SQL_C_SHORT,

(SQLPOINTER)

&update_rule;

0,

&update_rule_ind);

Figure

17.

An

application

that

retrieves

foreign

key

information

about

a

table

(Part

3

of

5)

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Chapter

4.

Functions

185

rc

=

SQLBindCol

(hStmt,

//

bind

delete_rule

11,

SQL_C_SHORT,

(SQLPOINTER)

&delete_rule,

0,

&delete_rule_ind);

/***/

/*

Retrieve

all

tables

with

foreign

keys

defined

on

PARENT

*/

/***/

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Primary

Table

Schema

is

%s.

Primary

Table

Name

is

%s.\n",

pktable_schem.name,

pktable_name.name);

(void)

printf

("****

Primary

Table

Key

Column

is

%s.\n",

pkcolumn_name.name);

(void)

printf

("****

Foreign

Table

Schema

is

%s.

Foreign

Table

Name

is

%s.\n",

fktable_schem.name,

fktable_name.name);

(void)

printf

("****

Foreign

Table

Key

Column

is

%s.\n",

fkcolumn_name.name);

if

(update_rule

==

SQL_RESTRICT)

//

isolate

update

rule

strcpy

(update,

"RESTRICT");

else

if

(update_rule

==

SQL_CASCADE)

strcpy

(update,

"CASCADE");

else

strcpy

(update,

"SET

NULL");

if

(delete_rule

==

SQL_RESTRICT)

//

isolate

delete

rule

strcpy

(delet,

"RESTRICT");

else

if

(delete_rule

==

SQL_CASCADE)

strcpy

(delet,

"CASCADE");

else

if

(delete_rule

==

SQL_NO_ACTION)

strcpy

(delet,

"NO

ACTION");

else

strcpy

(delet,

"SET

NULL");

(void)

printf

("****

Update

Rule

is

%s.

Delete

Rule

is

%s.\n",

update,

delet);

}

/***/

/*

Deallocate

statement

handle

*/

/***/

rc

=

SQLFreeHandle

(SQL_HANDLE_STMT,

hStmt);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

Figure

17.

An

application

that

retrieves

foreign

key

information

about

a

table

(Part

4

of

5)

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

186

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLForeignKeys()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLForeignKeys()

in

your

applications.

v

“SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table”

on

page

314

v

“SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table”

on

page

381

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle

(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

environment

handle

*/

/***/

RETCODE

=

SQLFreeHandle

(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP02.\n\n");

return

RETCODE;

}

Figure

17.

An

application

that

retrieves

foreign

key

information

about

a

table

(Part

5

of

5)

SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns

Chapter

4.

Functions

187

SQLFreeConnect()

-

Free

a

connection

handle

Purpose

Table

87.

SQLFreeConnect()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLFreeHandle()

replaces

SQLFreeConnect().

See

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

for

more

information.

Although

DB2

ODBC

supports

SQLFreeConnect()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLFreeConnect()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLFreeConnect

(SQLHDBC

hdbc);

Function

arguments

Table

88

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

88.

SQLFreeConnect()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Connection

handle

SQLFreeConnect()

-

Free

a

connection

handle

188

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

SQLFreeEnv()

-

Free

an

environment

handle

Purpose

Table

89.

SQLFreeEnv()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLFreeHandle()

replaces

SQLFreeEnv().

See

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

for

more

information.

Although

DB2

ODBC

supports

SQLFreeEnv()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLFreeEnv()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLFreeEnv

(SQLHENV

henv);

Function

arguments

Table

90

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

90.

SQLFreeEnv

arguments

Data

type

Argument

Use

Description

SQLHENV

henv

input

Environment

handle

SQLFreeEnv()

-

Free

an

environment

handle

Chapter

4.

Functions

189

www.ibm.com/software/data/db2/zos/library.html

SQLFreeHandle()

-

Free

a

handle

Purpose

Table

91.

SQLFreeHandle()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLFreeHandle()

frees

an

environment

handle,

a

connection

handle,

or

a

statement

handle.

Syntax

SQLRETURN

SQLFreeHandle

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle);

Function

arguments

Table

92

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

92.

SQLFreeHandle()

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Specifies

the

type

of

handle

to

be

freed

by

SQLFreeHandle().

You

must

specify

one

of

the

following

values:

v

SQL_HANDLE_ENV

to

free

the

environment

handle

v

SQL_HANDLE_DBC

to

free

a

connection

handle

v

SQL_HANDLE_STMT

to

free

a

statement

handle

SQLHANDLE

Handle

input

Specifies

the

name

of

the

handle

to

be

freed.

Usage

Use

SQLFreeHandle()

to

free

handles

for

environments,

connections,

and

statements.

After

you

free

a

handle,

you

no

longer

use

that

handle

in

your

application.

v

Freeing

an

environment

handle

You

must

free

all

connection

handles

before

you

free

the

environment

handle.

If

you

attempt

to

free

the

environment

handle

while

connection

handles

remain,

SQLFreeHandle()

returns

SQL_ERROR

and

the

environment

and

any

active

connection

remains

valid.

v

Freeing

a

connection

handle

You

must

both

free

all

statement

handles

and

call

SQLDisconnect()

on

a

connection

before

you

free

the

handle

for

that

connection.

If

you

attempt

to

free

a

connection

handle

while

statement

handles

remain

for

that

connection,

SQLFreeHandle()

returns

SQL_ERROR

and

the

connection

remains

valid.

v

Freeing

a

statement

handle

When

you

call

SQLFreeHandle()

to

free

a

statement

handle,

all

resources

that

a

call

to

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

allocates

are

freed.

When

you

call

SQLFreeHandle()

to

free

a

statement

with

pending

results,

those

results

are

deleted.

SQLDisconnect()

automatically

drops

any

statements

open

on

the

connection.

SQLFreeHandle()

-

Free

a

handle

190

ODBC

Guide

and

Reference

Return

codes

After

you

call

SQLFreeHandle(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_INVALID_HANDLE

v

SQL_ERROR

If

the

HandleType

is

not

a

valid

type,

SQLFreeHandle()

returns

SQL_INVALID_HANDLE.

If

SQLFreeHandle()

returns

SQL_ERROR,

the

handle

is

still

valid.

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

93

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

93.

SQLFreeHandle()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLFreeHandle()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

HandleType

argument

specifies

SQL_HANDLE_DBC,

but

the

communication

link

between

DB2

ODBC

and

the

data

source

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

exists.

The

error

message

that

is

returned

by

SQLGetDiagRec()

in

the

buffer

that

the

MessageText

argument

specifies,

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

If

the

HandleType

argument

is

SQL_HANDLE_ENV,

and

at

least

one

connection

is

in

an

allocated

or

connected

state,

you

must

call

SQLDisconnect()

and

SQLFreeHandle()

to

disconnect

and

free

each

connection

before

you

can

free

the

environment

handle.

If

the

HandleType

argument

is

SQL_HANDLE_DBC

you

must

free

all

statement

handles

on

the

connection,

and

disconnect

before

you

can

free

the

connection

handle.

v

If

the

HandleType

argument

specifies

SQL_HANDLE_STMT,

SQLExecute()

or

SQLExecDirect()

is

called

with

the

statement

handle,

and

return

SQL_NEED_DATA.

This

function

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

You

must

issue

SQLCancel()

to

free

the

statement

handle.

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

is

SQL_HANDLE_STMT

and

the

function

call

can

not

be

processed

because

the

underlying

memory

objects

can

not

be

accessed.

This

error

can

result

from

low

memory

conditions.

HY506

Error

closing

a

file.

An

error

is

encountered

when

trying

to

close

a

temporary

file.

Restrictions

None.

SQLFreeHandle()

-

Free

a

handle

Chapter

4.

Functions

191

Example

Refer

to

the

online

sample

program

DSN8O3VP

in

the

DSN810.SDSNSAMP

data

set

or

to

the

“DSN8O3VP

sample

application”

on

page

531.

Related

functions

The

following

functions

relate

to

SQLFreeHandle()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLFreeHandle()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLCancel()

-

Cancel

statement”

on

page

97

v

“SQLDisconnect()

-

Disconnect

from

a

data

source”

on

page

140

v

“SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record”

on

page

221

SQLFreeHandle()

-

Free

a

handle

192

ODBC

Guide

and

Reference

SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle

Purpose

Table

94.

SQLFreeStmt()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLFreeStmt()

ends

processing

for

a

statement,

to

which

a

statement

handle

refers.

You

use

this

function

to

perform

the

following

tasks:

v

Close

a

cursor

v

Drop

the

statement

handle

and

free

the

DB2

ODBC

resources

that

are

associated

with

the

statement

handle.

Call

SQLFreeStmt()

after

you

execute

an

SQL

statement

and

process

the

results.

Syntax

SQLRETURN

SQLFreeStmt

(SQLHSTMT

hstmt,

SQLUSMALLINT

fOption);

Function

arguments

Table

95

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

95.

SQLFreeStmt()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

that

refers

to

the

statement

to

be

stopped.

SQLUSMALLINT

fOption

input

The

following

values

specify

the

manner

in

which

you

free

the

statement

handle:

v

SQL_UNBIND

v

SQL_RESET_PARAMS

v

SQL_CLOSE

v

SQL_DROP

(Deprecated)

See

“Usage”

for

details

about

these

values.

Usage

When

you

call

SQLFreeStmt(),

you

set

the

fOption

argument

to

one

of

the

following

options.

SQLFreeStmt()

performs

different

actions

based

upon

which

one

of

these

options

you

specify.

SQL_UNBIND

All

the

columns

that

are

bound

by

previous

SQLBindCol()

calls

on

this

statement

handle

are

released

(the

association

between

application

variables

or

file

references

and

result

set

columns

is

broken).

SQL_RESET_PARAMS

All

the

parameters

that

are

set

by

previous

SQLBindParameter()

calls

on

this

statement

handle

are

released.

(The

association

between

application

variables,

or

file

references,

and

parameter

markers

in

the

SQL

statement

for

the

statement

handle

is

broken.)

SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle

Chapter

4.

Functions

193

SQL_CLOSE

The

cursor

(if

any)

that

is

associated

with

the

statement

handle

is

closed

and

all

pending

results

are

discarded.

You

can

reopen

the

cursor

by

calling

SQLExecute()

or

SQLExecDirect()

with

the

same

or

different

values

in

the

application

variables

(if

any)

that

are

bound

to

the

statement

handle.

The

cursor

name

is

retained

until

the

statement

handle

is

dropped

or

the

next

successful

SQLSetCursorName()

call.

If

a

cursor

is

not

associated

with

the

statement

handle,

this

option

has

no

effect.

(In

the

case

where

no

cursors

exist,

a

warning

or

an

error

is

not

generated.)

You

can

also

call

the

ODBC

3.0

API

SQLCloseCursor()

to

close

the

cursor.

See

“SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results”

on

page

99

for

more

information.

SQL_DROP

(Deprecated)

In

ODBC

3.0,

SQLFreeHandle()

with

HandleType

set

to

SQL_HANDLE_STMT

replaces

the

SQL_DROP

option

of

SQLFreeStmt().

See

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

for

more

information.

Although

DB2

ODBC

supports

the

SQL_DROP

option

for

backward

compatibility,

you

should

use

current

ODBC

3.0

functions

in

your

applications.

SQLFreeStmt()

does

not

affect

LOB

locators.

To

free

a

locator,

call

SQLExecDirect()

with

the

FREE

LOCATOR

statement.

See

“Using

large

objects”

on

page

423

for

more

information

about

LOBs.

After

you

execute

a

statement

on

a

statement

handle,

you

can

reuse

that

handle

to

execute

a

different

statement.

The

following

situations

require

you

to

take

additional

action

before

you

reuse

a

statement

handle:

v

When

the

statement

handle

that

you

want

to

reuse

is

associated

with

a

catalog

function

or

SQLGetTypeInfo(),

you

must

close

the

cursor

on

that

handle.

v

When

you

want

to

reuse

a

statement

handle

for

a

different

number

or

different

types

of

parameters

than

you

originally

bound,

you

must

reset

the

parameters

on

that

handle.

v

When

you

want

to

reuse

a

statement

handle

for

a

different

number

or

different

types

of

columns

than

you

originally

bound,

you

must

unbind

the

original

columns.

Alternatively,

you

can

drop

the

statement

handle

and

allocate

a

new

one.

Return

codes

After

you

call

SQLFreeStmt(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO

is

not

returned

if

fOption

is

set

to

SQL_DROP,

because

no

statement

handle

is

available

to

use

when

SQLGetDiagRec()

is

called.

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle

194

ODBC

Guide

and

Reference

Diagnostics

Table

96

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

96.

SQLFreeStmt()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY092

Option

type

out

of

range.

The

specified

value

for

the

fOption

argument

is

not

one

of

the

following

values:

v

SQL_CLOSE

v

SQL_DROP

v

SQL_UNBIND

v

SQL_RESET_PARAMS

Restrictions

None.

Example

See

Figure

16

on

page

176.

Related

functions

The

following

functions

relate

to

SQLFreeStmt()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLFreeStmt()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer”

on

page

364

SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle

Chapter

4.

Functions

195

SQLGetConnectAttr()

-

Get

current

attribute

setting

Purpose

Table

97.

SQLGetConnectAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLGetConnectAttr()

returns

the

current

setting

of

a

connection

attribute.

To

set

these

attributes

use

SQLSetConnectAttr().

Syntax

SQLRETURN

SQLGetConnectAttr

(SQLHDBC

ConnectionHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments

Table

98

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

98.

SQLGetConnectAttr()

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Specifies

the

connection

handle

from

which

you

retrieve

the

attribute

value.

SQLINTEGER

Attribute

input

Specifies

the

connection

attribute

to

retrieve.

Refer

to

Table

187

on

page

347

for

a

complete

list

of

attributes.

SQLPOINTER

ValuePtr

input

Specifies

the

pointer

to

the

memory

in

which

to

return

the

current

value

of

the

attribute

that

the

Attribute

argument

indicates.

*ValuePtr

will

be

a

32-bit

unsigned

integer

value

or

point

to

a

nul-terminated

character

string.

If

the

Attribute

argument

is

a

driver-specific

value,

the

value

in

*ValuePtr

might

be

a

signed

integer.

SQLINTEGER

BufferLength

input

Specifies

the

size,

in

bytes,

of

the

buffer

to

which

the

*ValuePtr

argument

points.

This

argument

behaves

differently

according

to

the

following

types

of

attributes:

v

For

ODBC-defined

attributes:

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

v

For

driver-defined

attributes

(IBM

extension):

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length,

in

bytes,

of

*ValuePtr

or

SQL_NTS.

If

SQL_NTS,

the

driver

assumes

that

the

length

of

*ValuePtr

is

SQL_MAX_OPTIONS_STRING_LENGTH

bytes

(excluding

the

nul-terminator).

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

SQLGetConnectAttr()

-

Get

current

attribute

setting

196

ODBC

Guide

and

Reference

Table

98.

SQLGetConnectAttr()

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StringLengthPtr

output

Specifies

a

pointer

to

the

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

nul-termination

character)

that

the

ValuePtr

argument

requires.

The

following

conditions

apply

to

the

StringLengthPtr

argument:

v

If

ValuePtr

is

a

null

pointer,

no

length

is

returned.

v

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

the

value

that

is

specified

for

the

BufferLength

argument,

the

data

in

ValuePtr

is

truncated

to

that

specified

value

minus

the

length

of

a

nul-termination

character.

DB2

ODBC

nul-terminates

the

truncated

data.

v

If

the

Attribute

argument

does

not

denote

a

string,

DB2

ODBC

ignores

the

BufferLength

argument,

and

it

does

not

return

a

value

into

the

buffer

to

which

the

StringLengthPtr

argument

points.

Usage

Use

SQLGetConnectAttr()

to

retrieve

the

value

of

a

connection

attribute

that

is

set

on

a

connection

handle.

Although

you

can

use

SQLSetConnectAttr()

to

set

attribute

values

for

a

statement

handle,

you

cannot

use

SQLGetConnectAttr()

to

retrieve

current

attribute

values

for

a

statement

handle.

To

retrieve

statement

attribute

values,

call

SQLGetStmtAttr().

For

a

list

of

valid

connection

attributes,

refer

to

Table

187

on

page

347.

Return

codes

After

you

call

SQLGetConnectAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

99

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

99.

SQLGetConnectAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

An

informational

message.

(SQLGetConnectAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01004

Data

truncated.

The

data

that

is

returned

in

the

buffer

that

the

ValuePtr

argument

specifies

is

truncated.

The

length

to

which

the

data

is

truncated

is

equal

to

the

value

that

is

specified

in

the

BufferLength

argument,

minus

the

length

of

a

nul-termination

character.

The

StringLengthPtr

argument

specifies

a

buffer

that

receives

the

size

of

the

non-truncated

string.

(SQLGetConnectAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

SQLGetConnectAttr()

-

Get

current

attribute

setting

Chapter

4.

Functions

197

Table

99.

SQLGetConnectAttr()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08003

Connection

is

closed.

The

Attribute

argument

specifies

a

value

that

requires

an

open

connection,

but

the

connection

handle

was

not

in

a

connected

state.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

exists.

The

error

message

that

SQLGetDiagRec()

returns

in

the

buffer

that

the

MessageText

argument

specifies,

describes

this

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

BufferLength

argument

is

less

than

0.

HY092

Option

type

out

of

range.

The

specified

value

for

the

Attribute

argument

is

not

valid

for

this

version

of

DB2

ODBC.

HYC00

Driver

not

capable.

The

specified

value

for

the

Attribute

argument

is

a

valid

connection

or

statement

attribute

for

this

version

of

the

DB2

ODBC

driver,

but

it

is

not

supported

by

the

data

source.

Restrictions

None.

Example

The

following

example

prints

the

current

setting

of

a

connection

attribute.

SQLGetConnectAttr()

retrieves

the

current

value

of

the

SQL_ATTR_AUTOCOMMIT

statement

attribute.

SQLINTEGER

output_nts,autocommit;

rc

=

SQLGetConnectAttr(

hdbc,

SQL_AUTOCOMMIT,

&autocommit,

0,

NULL

)

;

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

)

;

printf(

"\nAutocommit

is:

"

)

;

if

(

autocommit

==

SQL_AUTOCOMMIT_ON

)

printf(

"ON\n"

)

;

else

printf(

"OFF\n"

)

;

Related

functions

The

following

functions

relate

to

SQLGetConnectAttr()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetConnectAttr()

in

your

applications.

v

“SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute”

on

page

272

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLGetConnectAttr()

-

Get

current

attribute

setting

198

ODBC

Guide

and

Reference

SQLGetConnectOption()

-

Return

current

setting

of

a

connect

option

Purpose

Table

100.

SQLGetConnectOption()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

No

In

the

current

version

of

DB2

ODBC,

SQLGetConnectAttr()

replaces

SQLGetConnectOption().

See

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

for

more

information.

Although

DB2

ODBC

supports

SQLGetConnectOption()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLGetConnectOption()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLGetConnectOption

(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam);

Function

arguments

Table

101

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

101.

SQLGetConnectOption()

arguments

Data

type

Argument

Use

Description

HDBC

hdbc

input

Connection

handle.

SQLUSMALLINT

fOption

input

Attribute

to

set.

See

Table

187

on

page

347

for

the

complete

list

of

connection

attributes

and

their

descriptions.

SQLPOINTER

pvParam

input,

output,

or

input

and

output

Value

that

is

associated

with

the

fOption

argument.

Depending

on

the

value

of

the

fOption

argument,

this

can

be

a

32-bit

integer

value,

or

a

pointer

to

a

nul-terminated

character

string.

The

maximum

length

of

any

character

string

returned

is

SQL_MAX_OPTION_STRING_LENGTH

bytes

(which

excludes

the

nul-terminator).

SQLGetConnectOption()

-

Return

current

setting

of

a

connect

option

Chapter

4.

Functions

199

www.ibm.com/software/data/db2/zos/library.html

SQLGetCursorName()

-

Get

cursor

name

Purpose

Table

102.

SQLGetCursorName()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLGetCursorName()

returns

the

name

of

the

cursor

that

is

associated

with

a

statement

handle.

If

you

explicitly

set

a

cursor

name

with

SQLSetCursorName(),

the

name

that

you

specified

in

a

call

to

SQLSetCursorName()

is

returned.

If

you

do

not

explicitly

set

a

name,

SQLGetCursorName()

returns

the

implicitly

generated

name

for

that

cursor.

Syntax

SQLRETURN

SQLGetCursorName

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCursor,

SQLSMALLINT

cbCursorMax,

SQLSMALLINT

FAR

*pcbCursor);

Function

arguments

Table

103

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

103.

SQLGetCursorName()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

the

cursor

you

want

to

identify

is

open.

SQLCHAR

*

szCursor

output

Specifies

the

buffer

in

which

the

cursor

name

is

returned.

SQLSMALLINT

cbCursorMax

input

Specifies

the

size

of

the

buffer

to

which

the

szCursor

argument

points.

SQLSMALLINT

*

pcbCursor

output

Points

to

the

buffer

that

receives

the

number

of

bytes

that

the

cursor

name

requires.

Usage

SQLGetCursorName()

returns

the

name

that

you

set

explicitly

on

a

cursor

with

SQLSetCursorName().

If

you

do

not

set

a

name

for

a

cursor,

you

can

use

this

function

to

retrieve

the

name

that

DB2

ODBC

internally

generates.

SQLGetCursorName()

returns

the

same

cursor

name

(which

can

be

explicit

or

implicit)

on

a

statement

until

you

drop

that

statement,

or

until

you

set

another

explicit

name

for

that

cursor.

Cursor

names

are

always

18

characters

or

less,

and

are

always

unique

within

a

connection.

Cursor

names

that

DB2

ODBC

generates

internally

always

begin

with

SQLCUR

or

SQL_CUR.

For

query

result

sets,

DB2

ODBC

also

reserves

SQLCURQRS

as

a

cursor

name

prefix.

(See

“Restrictions”

on

page

201

for

more

details

about

this

naming

convention.)

SQLGetCursorName()

-

Get

cursor

name

200

ODBC

Guide

and

Reference

Return

codes

After

you

call

SQLGetCursorName(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

104

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

104.

SQLGetCursorName()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

cursor

name

that

is

returned

in

the

buffer

that

the

szCursor

argument

specifies

is

longer

than

the

value

in

the

cbCursorMax

argument.

Data

in

this

buffer

is

truncated

to

the

one

byte

less

than

the

value

that

the

cbCursorMax

argument

specifies.

The

pcbCursor

argument

contains

the

length,

in

bytes,

that

the

full

cursor

name

requires.

(SQLGetCursorName()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY015

No

cursor

name

available.

No

cursor

is

open

on

the

statement

handle

that

the

hstmt

argument

specifies,

and

no

cursor

name

is

set

with

SQLSetCursorName().

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

cbCursorMaxargument

is

less

than

0.

HY092

Option

type

out

of

range.

The

statement

handle

specified

for

the

hstmt

argument

is

not

valid.

Restrictions

ODBC

generates

cursor

names

that

begin

with

SQL_CUR.

X/Open

CLI

generates

cursor

names

that

begin

with

either

SQLCUR

or

SQL_CUR.

DB2

ODBC

is

inconsistent

with

the

ODBC

specification

for

naming

cursors.

DB2

ODBC

generates

cursor

names

that

begin

with

SQLCUR

or

SQL_CUR,

which

is

consistent

with

the

X/Open

CLI

standard.

Example

Figure

18

on

page

202

shows

an

application

that

uses

SQLGetCursorName()

to

extract

the

name

of

a

cursor

needed

that

the

proceeding

update

statement

requires.

SQLGetCursorName()

-

Get

cursor

name

Chapter

4.

Functions

201

/**/

/*

Perform

a

positioned

update

on

a

column

of

a

cursor.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT,

hStmt2

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS,

rc2

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

*pDSN

=

"STLEC1";

SWORD

cbCursor;

SDWORD

cbValue1;

SDWORD

cbValue2;

char

employee

[30];

int

salary

=

0;

char

cursor_name

[20];

char

update

[200];

char

*stmt

=

"SELECT

NAME,

SALARY

FROM

EMPLOYEE

WHERE

SALARY

>

100000

FOR

UPDATE

OF

SALARY";

Figure

18.

An

application

that

extracts

a

cursor

name

(Part

1

of

5)

SQLGetCursorName()

-

Get

cursor

name

202

ODBC

Guide

and

Reference

(void)

printf

("****

Entering

CLIP04.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(

SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

goto

dberror;

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

Figure

18.

An

application

that

extracts

a

cursor

name

(Part

2

of

5)

SQLGetCursorName()

-

Get

cursor

name

Chapter

4.

Functions

203

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hDbc,

&hStmt2);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

Execute

query

to

retrieve

employee

names

*/

/***/

rc

=

SQLExecDirect

(hStmt,

(SQLCHAR

*)

stmt,

strlen(stmt));

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

EMPLOYEE

QUERY

FAILED.\n");

goto

dberror;

}

/***/

/*

Extract

cursor

name

--

required

to

build

UPDATE

statement.

*/

/***/

rc

=

SQLGetCursorName

(hStmt,

(SQLCHAR

*)

cursor_name,

sizeof(cursor_name),

&cbCursor);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

GET

CURSOR

NAME

FAILED.\n");

goto

dberror;

}

(void)

printf

("****

Cursor

name

is

%s.\n");

rc

=

SQLBindCol

(hStmt,

//

bind

employee

name

1,

SQL_C_CHAR,

employee,

sizeof(employee),

&cbValue1);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

BIND

OF

NAME

FAILED.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

employee

salary

2,

SQL_C_LONG,

&salary,

0,

&cbValue2);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

BIND

OF

SALARY

FAILED.\n");

goto

dberror;

}

Figure

18.

An

application

that

extracts

a

cursor

name

(Part

3

of

5)

SQLGetCursorName()

-

Get

cursor

name

204

ODBC

Guide

and

Reference

/***/

/*

Answer

set

is

available

--

Fetch

rows

and

update

salary

*/

/***/

while

(((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

&&;

(rc2

==

SQL_SUCCESS))

{

int

new_salary

=

salary*1.1;

(void)

printf

("****

Employee

Name

%s

with

salary

%d.

New

salary

=

%d.\n",

employee,

salary,

new_salary);

sprintf

(update,

"UPDATE

EMPLOYEE

SET

SALARY

=

%d

WHERE

CURRENT

OF

%s",

new_salary,

cursor_name);

(void)

printf

("*****

Update

statement

is

:

%s\n",

update);

rc2

=

SQLExecDirect

(hStmt2,

(SQLCHAR

*)

update,

SQL_NTS);

}

if

(rc2

!=

SQL_SUCCESS)

{

(void)

printf

("****

EMPLOYEE

UPDATE

FAILED.\n");

goto

dberror;

}

/***/

/*

Reexecute

query

to

validate

that

salary

was

updated

*/

/***/

rc

=

SQLCloseCursor(hStmt);

rc

=

SQLExecDirect

(hStmt,

(SQLCHAR

*)

stmt,

strlen(stmt));

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

EMPLOYEE

QUERY

FAILED.\n");

goto

dberror;

}

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Employee

Name

%s

has

salary

%d.\n",

employee,

salary);

}

Figure

18.

An

application

that

extracts

a

cursor

name

(Part

4

of

5)

SQLGetCursorName()

-

Get

cursor

name

Chapter

4.

Functions

205

Related

functions

The

following

functions

relate

to

SQLGetCursorName()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetCursorName()

in

your

applications.

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

v

“SQLSetCursorName()

-

Set

cursor

name”

on

page

357

/***/

/*

Deallocate

statement

handles

*/

/***/

rc

=

SQLFreeHandle

(SQL_HANDLE_STMT,

hStmt);

rc

=

SQLFreeHandle

(SQL_HANDLE_STMT,

hStmt2);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle

(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

environment

handle

*/

/***/

RETCODE

=

SQLFreeHandle

(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP04.\n\n");

return

RETCODE;

}

Figure

18.

An

application

that

extracts

a

cursor

name

(Part

5

of

5)

SQLGetCursorName()

-

Get

cursor

name

206

ODBC

Guide

and

Reference

SQLGetData()

-

Get

data

from

a

column

Purpose

Table

105.

SQLGetData()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLGetData()

retrieves

data

for

a

single

column

in

the

current

row

of

the

result

set.

Using

this

function

is

an

alternative

to

using

SQLBindCol(),

which

transfers

data

directly

into

application

variables

or

LOB

locators

on

each

SQLFetch()

or

SQLExtendedFetch()

call.

You

can

also

use

SQLGetData()

to

retrieve

large

data

values

in

pieces.

You

must

call

SQLFetch()

before

SQLGetData().

After

you

call

SQLGetData()

for

each

column,

call

SQLFetch()

or

SQLExtendedFetch()

for

each

row

you

want

to

retrieve.

Syntax

SQLRETURN

SQLGetData

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLSMALLINT

fCType,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValueMax,

SQLINTEGER

FAR

*pcbValue);

Function

arguments

Table

106

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

106.

SQLGetData()

arguments

Data

Type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

the

result

set

is

generated.

SQLUSMALLINT

icol

input

Specifies

the

column

number

of

the

result

set

for

which

the

data

retrieval

is

requested.

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

207

Table

106.

SQLGetData()

arguments

(continued)

Data

Type

Argument

Use

Description

SQLSMALLINT

fCType

input

Specifies

the

C

data

type

of

the

column

that

icol

indicates.

You

can

specify

the

following

types

for

the

fCType

argument:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_WCHAR

When

you

specify

SQL_C_DEFAULT,

data

is

converted

to

its

default

C

data

type;

see

Table

4

on

page

25

for

more

information.

SQLPOINTER

rgbValue1

output

Points

to

a

buffer

where

the

retrieved

column

data

is

stored.

SQLINTEGER

cbValueMax

input

Specifies

the

maximum

size

of

the

buffer

to

which

the

rgbValue

argument

points.

SQLINTEGER

*

pcbValue1

output

Points

to

the

value

that

indicates

the

amount

of

space

that

the

data

you

are

retrieving

requires.

If

the

data

is

retrieved

in

pieces,

this

contains

the

number

of

bytes

still

remaining.

The

value

is

SQL_NULL_DATA

if

the

data

value

of

the

column

is

null.

If

this

pointer

is

null

and

SQLFetch()

has

obtained

a

column

containing

null

data,

this

function

fails

because

it

has

no

way

to

report

that

the

data

is

null.

If

SQLFetch()

fetches

a

column

that

contains

binary

data,

then

the

pointer

that

the

pcbValue

argument

specifies

must

not

be

null.

SQLGetData()

fails

in

this

case

because

it

cannot

inform

the

application

about

the

length

of

the

data

that

is

returned

to

the

buffer

that

the

rgbValue

argument

specifies.

Note:

1.

DB2

ODBC

provides

some

performance

enhancement

if

the

buffer

that

the

rgbValue

argument

specifies

is

placed

consecutively

in

memory

after

the

value

to

which

the

pcbValue.

argument

points.

Usage

You

can

use

SQLGetData()

in

combination

with

SQLBindCol()

on

the

same

result

set,

if

you

use

SQLFetch().

Do

not

use

SQLExtendedFetch().

Use

the

following

procedure

to

retrieve

data

with

SQLGetData():

1.

Call

SQLFetch(),

which

advances

cursor

to

first

row,

retrieves

first

row,

and

transfers

data

for

bound

columns.

2.

Call

SQLGetData(),

which

transfers

data

for

the

specified

column.

3.

Repeat

step

2

for

each

column

needed.

4.

Call

SQLFetch(),

which

advances

the

cursor

to

the

next

row,

retrieves

the

next

row,

and

transfers

data

for

bound

columns.

SQLGetData()

-

Get

data

from

a

column

208

ODBC

Guide

and

Reference

5.

Repeat

steps

2,

3

and

4

for

each

row

that

is

in

the

result

set,

or

until

the

result

set

is

no

longer

needed.

You

can

also

use

SQLGetData()

to

retrieve

long

columns

if

the

C

data

type

(which

you

specify

with

the

fCType

argument)

is

SQL_C_CHAR,

SQL_C_BINARY,

SQL_C_DBCHAR,

or

if

fCType

is

SQL_C_DEFAULT

and

the

column

type

denotes

a

binary

or

character

string.

Handling

encoding

schemes:

The

CURRENTAPPENSCH

keyword

in

the

DB2

ODBC

initialization

file

and

the

fCType

argument

in

SQLGetData()

determines

which

one

of

the

following

encoding

schemes

is

used

for

character

and

graphic

data.

v

The

ODBC

driver

places

EBCDIC

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

EBCDIC

is

specified

in

the

initialization

file,

or

the

CURRENTAPPENSCH

keyword

is

not

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLGetData()

call.

v

The

ODBC

driver

places

Unicode

UCS-2

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_WCHAR

in

the

SQLGetData()

call.

v

The

ODBC

driver

places

Unicode

UTF-8

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

UNICODE

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

in

the

SQLGetData()

call.

v

The

ODBC

driver

places

ASCII

data

into

application

variables

when

both

of

the

following

conditions

are

true:

–

CURRENTAPPENSCH

=

ASCII

is

specified

in

the

initialization

file.

–

The

fCType

argument

specifies

SQL_C_CHAR

or

SQL_C_DBCHAR

in

the

SQLGetData()

call.

For

more

information

about

encoding

schemes,

see

“Handling

application

encoding

schemes”

on

page

443.

Handling

data

truncation:

After

each

SQLGetData()

call,

if

the

data

available

for

return

is

greater

than

or

equal

to

cbValueMax,

the

data

is

truncated.

Truncation

is

indicated

by

a

function

return

code

of

SQL_SUCCESS_WITH_INFO

coupled

with

a

SQLSTATE

denoting

data

truncation.

You

can

call

SQLGetData()

again,

on

the

same

column,

to

subsequently

retrieve

the

truncated

data.

To

obtain

the

entire

column,

repeat

these

calls

until

SQLGetData()

returns

SQL_SUCCESS.

If

you

call

SQLGetData()

after

it

returns

SQL_SUCCESS,

it

returns

SQL_NO_DATA_FOUND.

When

DB2

ODBC

truncates

digits

to

the

right

of

the

decimal

point

from

numeric

data

types,

DB2

ODBC

issues

a

warning.

When

DB2

ODBC

truncates

digits

to

the

left

of

the

decimal

point,

however,

DB2

ODBC

returns

an

error.

(See

“Diagnostics”

on

page

211

for

more

information.)

To

eliminate

warnings

when

data

is

truncated,

call

SQLSetStmtAttr()

with

the

SQL_ATTR_MAX_LENGTH

attribute

set

to

a

maximum

length

value.

Then

allocate

a

buffer

for

the

rgbValue

argument

that

is

the

same

size

(plus

the

nul-terminator)

as

the

value

that

you

specified

for

SQL_ATTR_MAX_LENGTH.

If

the

column

data

is

larger

than

the

maximum

number

of

bytes

that

you

specified

for

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

209

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|

|
|

|
|

SQL_ATTR_MAX_LENGTH,

SQL_SUCCESS

is

returned.

When

you

specify

a

maximum

length,

DB2

ODBC

returns

the

length

you

specify,

not

the

actual

length,

for

the

pcbValue

argument.

Using

LOB

locators:

Although

you

can

use

SQLGetData()

to

retrieve

LOB

column

data

sequentially,

use

the

DB2

ODBC

LOB

functions

when

you

need

a

only

portion

or

a

few

sections

of

LOB

data.

Use

the

following

procedure

instead

of

SQLGetData()

if

you

want

to

retrieve

portions

of

LOB

values:

1.

Bind

the

column

to

a

LOB

locator.

2.

Fetch

the

row.

3.

Use

the

locator

in

a

SQLGetSubString()

call

to

retrieve

the

data

in

pieces.

(SQLGetLength()

and

SQLGetPosition()

might

also

be

required

for

determining

the

values

of

some

of

the

arguments).

4.

Repeat

step

2

and

3

for

each

row

in

the

result

set.

Discarding

data

from

an

active

retrieval:

To

discard

data

from

a

retrieval

that

is

currently

active,

call

SQLGetData()

with

the

icol

argument

set

to

the

next

column

position

from

which

you

want

to

retrieve

data.

To

discard

data

that

you

have

not

retrieved,

call

SQLFetch()

to

advance

the

cursor

to

the

next

row.

Call

SQLFreeStmt()

or

SQLCloseCursor()

if

you

have

finished

retrieving

data

from

the

result

set.

Allocating

buffers:

The

fCType

input

argument

determines

the

type

of

data

conversion

(if

any)

that

occurs

before

the

column

data

is

placed

into

the

buffer

to

which

the

rgbValue

argument

points.

For

SQL

graphic

column

data,

the

following

conditions

apply:

v

The

size

of

the

buffer

that

the

rgbValue

argument

specifies

must

be

a

multiple

of

2

bytes.

(The

cbValueMax

value

must

specify

this

value

as

a

multiple

of

2

bytes

also.)

Before

you

call

SQLGetData(),

call

SQLDescribeCol()

or

SQLColAttribute

to

determine

the

SQL

data

type

and

the

length,

in

bytes,

of

data

in

the

result

set.

v

The

pcbValue

argument

must

not

specify

a

null

pointer.

DB2

ODBC

stores

the

number

of

octets

that

are

stored

in

the

buffer

to

which

the

rgbValue

argument

points.

v

If

you

retrieve

data

in

pieces,

DB2

ODBC

attempts

to

fill

rgbValue

to

the

nearest

multiple

of

two

octets

that

is

less

than

or

equal

to

the

value

the

cbValueMax

argument

specifies.

If

cbValueMax

is

not

a

multiple

of

two,

the

last

byte

in

that

buffer

is

never

used.

DB2

ODBC

does

not

split

a

double-byte

character.

The

buffer

that

the

rgbValue

argument

specifies

contains

nul-terminated

values,

unless

you

retrieve

binary

data,

or

the

SQL

data

type

of

the

column

is

graphic

(DBCS)

and

the

C

buffer

type

is

SQL_C_CHAR.

If

you

retrieve

data

in

pieces,

you

must

perform

the

proper

adjustments

to

the

nul-terminator

when

you

reassemble

these

pieces.

(That

is,

you

must

remove

nul-terminators

before

concatenating

the

pieces

of

data.)

Return

codes

After

you

call

SQLGetData(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQLGetData()

-

Get

data

from

a

column

210

ODBC

Guide

and

Reference

SQL_SUCCESS

is

returned

if

SQLGetData()

retrieves

a

zero-length

string.

For

zero-length

strings,

pcbValue

contains

0,

and

rgbValue

contains

a

nul-terminator.

SQL_NO_DATA_FOUND

is

returned

when

the

preceding

SQLGetData()

call

has

retrieved

all

of

the

data

for

this

column.

For

a

description

of

each

return

code

value,

see

“Function

return

codes”

on

page

23.

If

the

preceding

call

to

SQLFetch()

failed,

do

not

call

SQLGetData().

In

this

case,

SQLGetData()

retrieves

undefined

data.

Diagnostics

Table

107

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

107.

SQLGetData()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

Data

that

is

returned

for

the

column

that

the

icol

argument

specifies

is

truncated.

String

or

numeric

values

are

right

truncated.

(SQLGetData()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

07006

Invalid

conversion.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

data

value

cannot

be

converted

to

the

C

data

type

specified

by

the

fCType

argument.

v

The

function

is

called

with

a

value

for

the

icol

argument

that

was

specified

in

a

previous

SQLGetData()

call,

but

the

value

for

the

fCType

argument

differs

in

each

of

these

calls.

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

that

is

specified

in

the

pcbValue

argument

is

a

null

pointer,

and

the

value

of

the

column

is

also

null.

The

function

cannot

report

SQL_NULL_DATA.

22008

Invalid

datetime

format

or

datetime

field

overflow.

Datetime

field

overflow

occurred.

Example:

An

arithmetic

operation

on

a

date

or

timestamp

results

in

a

value

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

the

variable

is

too

small.

22018

Error

in

assignment.

A

returned

value

is

incompatible

with

the

data

type

that

the

fCType

argument

denotes.

24000

Invalid

cursor

state.

The

previous

SQLFetch()

resulted

in

SQL_ERROR

or

SQL_NO_DATA

found;

as

a

result,

the

cursor

is

not

positioned

on

a

row.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

211

Table

107.

SQLGetData()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY002

Invalid

column

number.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

specified

column

is

less

than

0

or

greater

than

the

number

of

result

columns.

v

The

specified

column

is

0

(the

icol

argument

is

set

to

0),

but

DB2

ODBC

does

not

support

ODBC

bookmarks.

v

SQLExtendedFetch()

is

called

for

this

result

set.

HY003

Program

type

out

of

range.

The

fCTypeargument

specifies

an

invalid

data

type

or

SQL_C_DEFAULT.

HY009

Invalid

use

of

a

null

pointer.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

rgbValue

argument

specifies

a

null

pointer.

v

The

pcbValue

argument

specifies

a

null

pointer

but

the

SQL

data

type

of

the

column

is

graphic

(DBCS).

v

The

pcbValue

argument

specifies

a

null

pointer

but

the

fCType

argument

specifies

SQL_C_CHAR.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

statement

handle

does

not

contain

a

cursor

in

a

positioned

state.

SQLGetData()

is

called

without

first

calling

SQLFetch().

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY019

Numeric

value

out

of

range.

When

the

numeric

value

(as

numeric

or

string)

for

the

column

is

returned,

the

whole

part

of

the

number

is

truncated.

HY090

Invalid

string

or

buffer

length.

The

value

of

the

cbValueMax

argument

is

less

than

0

and

thefCType

argument

specifies

one

of

the

following

values:

v

SQL_C_CHAR

v

SQL_C_BINARY

v

SQL_C_DBCHAR

v

SQL_C_DEFAULT

(for

the

default

types

of

SQL_C_CHAR,

SQL_C_BINARY,

or

SQL_C_DBCHAR)

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

SQL

data

type

for

the

specified

data

type

is

recognized

but

DB2

ODBC

does

not

support

this

data

type.

v

DB2

ODBC

cannot

perform

the

conversion

between

the

SQL

data

type

and

application

data

type

that

is

specified

in

the

fCType

argument.

v

SQLExtendedFetch()

is

called

on

the

statement

handle

that

is

specified

in

the

hstmt

argument.

Restrictions

ODBC

has

defined

column

0

for

bookmarks.

DB2

ODBC

does

not

support

bookmarks.

SQLGetData()

-

Get

data

from

a

column

212

ODBC

Guide

and

Reference

|

Example

Figure

19

shows

an

application

that

uses

SQLGetData()

to

retrieve

data.

See

“Example”

on

page

175

for

a

comparison

to

use

bound

columns

instead

of

SQLGetData().

/**/

/*

Populate

BIOGRAPHY

table

from

flat

file

text.

Insert

*/

/*

VITAE

in

80-byte

pieces

via

SQLPutData.

Also

retrieve

*/

/*

NAME,

UNIT

and

VITAE

for

all

members.

VITAE

is

retrieved*/

/*

via

SQLGetData.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

#define

TEXT_SIZE

80

int

insert_bio

(SQLHSTMT

hStmt,

//

insert_bio

prototype

char

*bio,

int

bcount);

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT,

hStmt2

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

FILE

*fp;

SQLINTEGER

RETCODE

=

0;

char

pTable

[200];

char

*pDSN

=

"STLEC1";

UDWORD

pirow;

SDWORD

cbValue;

char

*i_stmt

=

"INSERT

INTO

BIOGRAPHY

VALUES

(?,

?,

?)";

char

*query

=

"SELECT

NAME,

UNIT,

VITAE

FROM

BIOGRAPHY";

char

text

[TEXT_SIZE];

//

file

text

char

vitae

[3200];

//

biography

text

char

Narrative

[TEXT_SIZE];

SQLINTEGER

vitae_ind

=

SQL_DATA_AT_EXEC;

//

bio

data

is

//

passed

at

execute

time

//

via

SQLPutData

SQLINTEGER

vitae_cbValue

=

TEXT_SIZE;

char

*t

=

NULL;

char

*c

=

NULL;

char

name

[21];

SQLINTEGER

name_ind

=

SQL_NTS;

SQLINTEGER

name_cbValue

=

sizeof(name);

char

unit

[31];

SQLINTEGER

unit_ind

=

SQL_NTS;

SQLINTEGER

unit_cbValue

=

sizeof(unit);

char

tmp

[80];

char

*token

=

NULL,

*pbio

=

vitae;

char

insert

=

SQL_FALSE;

int

i,

bcount

=

0;

(void)

printf

("****

Entering

CLIP09.\n\n");

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

1

of

8)

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

213

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

hEnv,

&hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

goto

dberror;

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Allocate

statement

handle

failed.\n");

goto

dberror;

}

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

&hStmt2);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Allocate

statement

handle

failed.\n");

goto

dberror;

}

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

2

of

8)

SQLGetData()

-

Get

data

from

a

column

214

ODBC

Guide

and

Reference

/***/

/*

Prepare

INSERT

statement.

*/

/***/

rc

=

SQLPrepare

(hStmt,

(SQLCHAR

*)

i_stmt,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Prepare

of

INSERT

failed.\n");

goto

dberror;

}

/***/

/*

Bind

NAME

and

UNIT.

Bind

VITAE

so

that

data

can

be

passed

*/

/*

via

SQLPutData.

*/

/***/

rc

=

SQLBindParameter

(hStmt,

//

bind

NAME

1,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

sizeof(name),

0,

name,

sizeof(name),

&name_ind);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

NAME

failed.\n");

goto

dberror;

}

rc

=

SQLBindParameter

(hStmt,

//

bind

Branch

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

sizeof(unit),

0,

unit,

sizeof(unit),

&unit_ind);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

UNIT

failed.\n");

goto

dberror;

}

rc

=

SQLBindParameter

(hStmt,

//

bind

Rank

3,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_LONGVARCHAR,

3200,

0,

(SQLPOINTER)

3,

0,

&vitae_ind);

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

3

of

8)

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

215

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

VITAE

failed.\n");

goto

dberror;

}

/***/

/*

Read

biographical

text

from

flat

file

*/

/***/

if

((fp

=

fopen

("DD:BIOGRAF",

"r"))

==

NULL)

//

open

command

file

{

rc

=

SQL_ERROR;

//

open

failed

goto

exit;

}

/***/

/*

Process

file

and

insert

biographical

text

*/

/***/

while

(((t

=

fgets

(text,

sizeof(text),

fp))

!=

NULL)

&&;

(rc

==

SQL_SUCCESS))

{

if

(text[0]

==

#’)

//

if

commander

data

{

if

(insert)

//

if

BIO

data

to

be

inserted

{

rc

=

insert_bio

(hStmt,

vitae,

bcount);

//

insert

row

into

BIOGRAPHY

Table

bcount

=

0;

//

reset

text

line

count

pbio

=

vitae;

//

reset

text

pointer

}

token

=

strtok

(text+1,

",");

//

get

member

NAME

(void)

strcpy

(name,

token);

token

=

strtok

(NULL,

"#");

//

extract

UNIT

(void)

strcpy

(unit,

token);

//

copy

to

local

variable

//

SQLPutData

insert

=

SQL_TRUE;

//

have

row

to

insert

}

else

{

memset

(pbio,

’

’,

sizeof(text));

strcpy

(pbio,

text);

//

populate

text

i

=

strlen

(pbio);

//

remove

’\n’

and

’\0’

pbio

[i--]

=’

’;

pbio

[i]

=’

’;

pbio

+=

sizeof

(text);

//

advance

pbio

bcount++;

//

one

more

text

line

}

}

if

(insert)

//

if

BIO

data

to

be

inserted

{

rc

=

insert_bio

(hStmt,

vitae,

bcount);

//

insert

row

into

BIOGRAPHY

Table

}

fclose

(fp);

//

close

text

flat

file

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

4

of

8)

SQLGetData()

-

Get

data

from

a

column

216

ODBC

Guide

and

Reference

/***/

/*

Commit

insert

of

rows

*/

/***/

rc

=SQLEndTran(SQL_HANDLE_DBC,

hDbc,

SQL_COMMIT);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

COMMIT

FAILED.\n");

goto

dberror;

}

/***/

/*

Open

query

to

retrieve

NAME,

UNIT

and

VITAE.

Bind

NAME

and

*/

/*

UNIT

but

leave

VITAE

unbound.

Retrieved

using

SQLGetData.

*/

/***/

RETCODE

=

SQLPrepare

(hStmt2,

(SQLCHAR

*)query,

strlen(query));

if

(RETCODE

!=

SQL_SUCCESS)

{

(void)

printf

("****

Prepare

of

Query

Failed.\n");

goto

dberror;

}

RETCODE

=

SQLExecute

(hStmt2);

if

(RETCODE

!=

SQL_SUCCESS)

{

(void)

printf

("****

Query

Failed.\n");

goto

dberror;

}

RETCODE

=

SQLBindCol

(hStmt2,

//

bind

NAME

1,

SQL_C_DEFAULT,

name,

sizeof(name),

&name_cbValue);

if

(RETCODE

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

NAME

Failed.\n");

goto

dberror;

}

RETCODE

=

SQLBindCol

(hStmt2,

//

bind

UNIT

2,

SQL_C_DEFAULT,

unit,

sizeof(unit),

&unit_cbValue);

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

5

of

8)

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

217

if

(RETCODE

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

UNIT

Failed.\n");

goto

dberror;

}

while

((RETCODE

=

SQLFetch

(hStmt2))

!=

SQL_NO_DATA_FOUND)

{

(void)

printf

("****

Name

is

%s.

Unit

is

%s.\n\n",

name,

unit);

(void)

printf

("****

Vitae

follows:\n\n");

for

(i

=

0;

(i

<

3200

&&

RETCODE

!=

SQL_NO_DATA_FOUND);

i

+=

TEXT_SIZE)

{

RETCODE

=

SQLGetData

(hStmt2,

3,

SQL_C_CHAR,

Narrative,

sizeof(Narrative)

+

1,

&vitae_cbValue);

if

(RETCODE

!=

SQL_NO_DATA_FOUND)

(void)

printf

("%s\n",

Narrative);

}

}

/***/

/*

Deallocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

hStmt);

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

hStmt2);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

6

of

8)

SQLGetData()

-

Get

data

from

a

column

218

ODBC

Guide

and

Reference

/***/

/*

Free

environment

handle

*/

/***/

rc

=

SQLFreeHandle

(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP09.\n\n");

return

RETCODE;

}

/***/

/*

Function

insert_bio

is

invoked

to

insert

one

row

into

the

*/

/*

BIOGRAPHY

Table.

The

biography

text

is

inserted

in

sets

of

*/

/*

80

bytes

via

SQLPutData.

*/

/***/

int

insert_bio

(SQLHSTMT

hStmt,

char

*vitae,

int

bcount)

{

SQLINTEGER

rc

=

SQL_SUCCESS;

SQLPOINTER

prgbValue;

int

i;

char

*text;

/***/

/*

NAME

and

UNIT

are

bound...

VITAE

is

provided

after

execution

*/

/*

of

the

INSERT

using

SQLPutData.

*/

/***/

rc

=

SQLExecute

(hStmt);

if

(rc

!=

SQL_NEED_DATA)

//

expect

SQL_NEED_DATA

{

rc

=

12;

(void)

printf

("****

NEED

DATA

not

returned.\n");

goto

exit;

}

/***/

/*

Invoke

SQLParamData

to

position

ODBC

driver

on

input

parameter*/

/***/

if

((rc

=

SQLParamData

(hStmt,

&prgbValue))

!=

SQL_NEED_DATA)

{

rc

=

12;

(void)

printf

("****

NEED

DATA

not

returned.\n");

goto

exit;

}

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

7

of

8)

SQLGetData()

-

Get

data

from

a

column

Chapter

4.

Functions

219

Related

functions

The

following

functions

relate

to

SQLGetData()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetData()

in

your

applications.

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

/***/

/*

Iterate

through

VITAE

in

80

byte

increments....

pass

to

*/

/*

ODBC

Driver

via

SQLPutData.

*/

/***/

for

(i

=

0,

text

=

vitae,

rc

=

SQL_SUCCESS;

(i

<

bcount)

&&

(rc

==

SQL_SUCCESS);

i++,

text

+=

TEXT_SIZE)

{

rc

=

SQLPutData

(hStmt,

text,

TEXT_SIZE);

}

/***/

/*

Invoke

SQLParamData

to

trigger

ODBC

driver

to

execute

the

*/

/*

statement.

*/

/***/

if

((rc

=

SQLParamData

(hStmt,

&prgbValue))

!=

SQL_SUCCESS)

{

rc

=

12;

(void)

printf

("****

INSERT

Failed.\n");

}

exit:

return

(rc);

}

Figure

19.

An

application

that

retrieves

data

with

SQLGetData()

(Part

8

of

8)

SQLGetData()

-

Get

data

from

a

column

220

ODBC

Guide

and

Reference

SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record

Purpose

Table

108.

SQLGetDiagRec()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLGetDiagRec()

returns

the

current

values

of

multiple

fields

of

a

diagnostic

record

that

contains

error,

warning,

and

status

information.

SQLGetDiagRec()

returns

several

commonly

used

fields

of

a

diagnostic

record,

including

the

SQLSTATE,

the

native

error

code,

and

the

error

message

text.

Syntax

SQLRETURN

SQLGetDiagRec

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle,

SQLSMALLINT

RecNumber,

SQLCHAR

*SQLState,

SQLINTEGER

*NativeErrorPtr,

SQLCHAR

*MessageText,

SQLSMALLINT

BufferLength,

SQLSMALLINT

*TextLengthPtr);

Function

arguments

Table

109

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

109.

SQLGetDiagRec()

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Specifies

a

handle

type

identifier

that

describes

the

type

of

handle

that

you

diagnose.

This

argument

must

specify

one

of

the

following

values:

v

SQL_HANDLE_ENV

for

environment

handles

v

SQL_HANDLE_DBC

for

connection

handles

v

SQL_HANDLE_STMT

for

statement

handles

SQLHANDLE

Handle

input

Specifies

a

handle

for

the

diagnostic

data

structure.

This

handle

must

be

the

type

of

handle

that

the

HandleType

argument

indicates.

SQLSMALLINT

RecNumber

input

Indicates

the

status

record

from

which

the

application

seeks

information.

Status

records

are

numbered

from

1.

SQLCHAR

*

SQLState

output

Points

to

a

buffer

in

which

the

five-character

SQLSTATE,

which

corresponds

to

the

diagnostic

record

that

is

specified

in

the

RecNumber

argument,

is

returned.

The

first

two

characters

of

this

SQLSTATE

indicate

the

class;

the

next

three

characters

indicate

the

subclass.

SQLINTEGER

*

NativeErrorPtr

output

Points

to

a

buffer

in

the

native

error

code,

which

is

specific

to

the

data

source,

is

returned.

SQLCHAR

*

MessageText

output

Points

to

a

buffer

in

which

the

error

message

text

is

returned.

The

fields

returned

by

SQLGetDiagRec()

are

contained

in

a

text

string.

SQLSMALLINT

BufferLength

input

Length

(in

bytes)

of

the

buffer

that

the

MessageText

argument

specifies.

SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record

Chapter

4.

Functions

221

Table

109.

SQLGetDiagRec()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

TextLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

number

of

bytes

required

for

the

nul-termination

character)

available

to

return

in

the

buffer

that

the

MessageText

argument

specifies.

If

the

number

of

bytes

available

to

return

is

greater

than

the

value

that

the

BufferLength

argument

specifies,

the

error

message

text

in

the

buffer

is

truncated

to

the

value

specified

for

the

BufferLength

argument

minus

the

length

of

a

nul-termination

character.

Usage

An

application

typically

calls

SQLGetDiagRec()

when

a

previous

call

to

a

DB2

ODBC

function

has

returned

anything

other

than

SQL_SUCCESS.

However,

because

any

function

can

post

zero

or

more

errors

each

time

it

is

called,

an

application

can

call

SQLGetDiagRec()

after

any

function

call.

An

application

can

call

SQLGetDiagRec()

multiple

times

to

return

some

or

all

of

the

records

in

the

diagnostic

data

structure.

SQLGetDiagRec()

retrieves

only

the

diagnostic

information

most

recently

associated

with

the

handle

specified

in

the

Handle

argument.

If

the

application

calls

any

other

function,

except

SQLGetDiagRec()

(or

the

ODBC

2.0

SQLGetDiagRec()

function),

any

diagnostic

information

from

the

previous

calls

on

the

same

handle

is

lost.

An

application

can

scan

all

diagnostic

records

by

looping

while

it

increments

RecNumber

as

long

as

SQLGetDiagRec()

returns

SQL_SUCCESS.

Calls

to

SQLGetDiagRec()

are

nondestructive

to

the

diagnostic

record

fields.

The

application

can

call

SQLGetDiagRec()

again

at

a

later

time

to

retrieve

a

field

from

a

record,

as

long

as

no

other

function,

except

SQLGetDiagRec()

(or

the

ODBC

2.0

SQLGetDiagRec()

function),

has

been

called

in

the

interim.

Return

codes

After

you

call

SQLGetDiagRec(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

the

“Diagnostics.”

Diagnostics

SQLGetDiagRec()

does

not

post

error

values.

It

uses

the

function

return

codes

to

report

diagnostic

information.

When

you

call

SQLGetDiagRec(),

these

return

codes

represent

the

diagnostic

information:

v

SQL_SUCCESS:

The

function

successfully

returned

diagnostic

information.

v

SQL_SUCCESS_WITH_INFO:

The

buffer

that

to

which

the

MessageText

argument

points

is

too

small

to

hold

the

requested

diagnostic

message.

No

diagnostic

records

are

generated.

To

determine

whether

truncation

occurred,

compare

the

value

specified

for

the

BufferLength

argument

to

the

actual

number

of

bytes

available,

which

is

written

to

the

buffer

to

which

the

TextLengthPtr

argument

points.

SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record

222

ODBC

Guide

and

Reference

v

SQL_INVALID_HANDLE:

The

handle

indicated

by

HandleType

and

Handle

is

not

a

valid

handle.

v

SQL_ERROR:

One

of

the

following

occurred:

–

The

RecNumber

argument

is

negative

or

0.

–

The

BufferLength

argument

is

less

than

zero.

v

SQL_NO_DATA:

The

RecNumber

argument

is

greater

than

the

number

of

diagnostic

records

that

exist

for

the

handle

that

is

specified

in

the

Handle

argument.

The

function

also

returns

SQL_NO_DATA

for

any

positive

value

for

the

RecNumber

argument

if

no

diagnostic

records

are

produced

for

the

handle

that

theHandle

argument

specifies.

Restrictions

None.

Example

Refer

to

the

sample

program

DSN8O3VP

online

in

the

data

set

DSN810.SDSNSAMP

or

to

“DSN8O3VP

sample

application”

on

page

531.

Related

functions

The

following

functions

relate

to

SQLGetDiagRec()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetDiagRec()

in

your

applications.

v

“SQLFreeHandle()

-

Free

a

handle”

on

page

190

v

“SQLFreeStmt()

-

Free

(or

reset)

a

statement

handle”

on

page

193

v

“SQLGetInfo()

-

Get

general

information”

on

page

234

SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record

Chapter

4.

Functions

223

SQLGetEnvAttr()

-

Return

current

setting

of

an

environment

attribute

Purpose

Table

110.

SQLGetEnvAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLGetEnvAttr()

returns

the

current

setting

for

an

environment

attribute.

You

use

the

SQLSetEnvAttr()

function

to

set

these

attributes.

Syntax

SQLRETURN

SQLGetEnvAttr

(SQLHENV

EnvironmentHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments

Table

111

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

111.

SQLGetEnvAttr()

arguments

Data

type

Argument

Use

Description

SQLHENV

EnvironmentHandle

input

Specifies

the

environment

handle.

SQLINTEGER

Attribute

input

Specifies

the

attribute

to

retrieve.

See

Table

199

on

page

361

for

the

list

of

environment

attributes

and

their

descriptions.

SQLPOINTER

ValuePtr

output

Points

to

the

buffer

in

which

the

current

value

associated

with

the

Attribute

argument

is

returned.

The

type

of

value

that

is

returned

depends

on

what

the

Attribute

argument

specifies.

SQLINTEGER

BufferLength

input

Specifies

the

maximum

size

of

buffer

to

which

the

ValuePtr

argument

points.

The

following

conditions

apply

to

this

argument:

v

If

ValuePtr

points

to

a

character

string,

this

argument

should

specify

the

length,

in

bytes,

of

the

buffer

or

the

value

SQL_NTS

for

nul-terminated

strings.

If

you

specify

SQL_NTS,

the

driver

assumes

that

the

length

of

the

string

that

is

returned

is

SQL_MAX_OPTIONS_STRING_LENGTH

bytes

(excluding

the

nul-terminator).

v

If

ValuePtr

points

to

an

integer,

the

BufferLength

argument

is

ignored.

SQLINTEGER

*

StringLengthPtr

output

Points

to

a

buffer

in

which

the

total

number

of

bytes

(excluding

the

number

of

bytes

returned

for

the

nul-termination

character)

that

are

associated

with

the

ValuePtr

argument.

If

ValuePtr

is

a

null

pointer,

no

length

is

returned.

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

a

nul-termination

character.

DB2

ODBC

then

nul-terminates

this

value.

If

the

Attribute

argument

does

not

denote

a

string,

then

DB2

ODBC

ignores

the

BufferLength

argument

and

does

not

set

a

value

in

the

buffer

to

which

StringLengthPtr

points.

SQLGetEnvAttr()

-

Return

current

setting

of

an

environment

attribute

224

ODBC

Guide

and

Reference

Usage

SQLGetEnvAttr()

can

be

called

at

any

time

between

the

allocation

and

freeing

of

the

environment

handle.

It

obtains

the

current

value

of

the

environment

attribute.

For

a

list

of

valid

environment

attributes,

see

Table

199

on

page

361.

Return

codes

After

you

call

SQLGetEnvAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

112

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

112.

SQLGetEnvAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY092

Option

type

out

of

range.

An

invalid

value

for

the

Attribute

argument

is

specified.

Restrictions

None.

Example

The

following

example

prints

the

current

value

of

an

environment

attribute.

SQLGetEnvAttr()

retrieves

the

current

value

of

the

attribute

SQL_ATTR_OUTPUT_NTS.

SQLINTEGER

output_nts,autocommit;

rc

=

SQLGetEnvAttr(henv,

SQL_ATTR_OUTPUT_NTS,

&output_nts,

0,

0);

CHECK_HANDLE(

SQL_HANDLE_ENV,

henv,

rc

);

printf("\nNull

Termination

of

Output

strings

is:

");

if

(output_nts

==

SQL_TRUE)

printf("True\n");

else

printf("False\n");

Related

functions

The

following

functions

relate

to

SQLGetEnvAttr()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetEnvAttr()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLSetEnvAttr()

-

Set

environment

attribute”

on

page

360

SQLGetEnvAttr()

-

Return

current

setting

of

an

environment

attribute

Chapter

4.

Functions

225

SQLGetFunctions()

-

Get

functions

Purpose

Table

113.

SQLGetFunctions()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLGetFunctions()

to

query

whether

a

specific

function

is

supported.

This

allows

applications

to

adapt

to

varying

levels

of

support

when

connecting

to

different

database

servers.

A

connection

to

a

database

server

must

exist

before

calling

this

function.

Syntax

SQLRETURN

SQLGetFunctions

(SQLHDBC

hdbc,

SQLUSMALLINT

fFunction,

SQLUSMALLINT

FAR

*pfExists);

Function

arguments

Table

114

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

114.

SQLGetFunctions()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

a

database

connection

handle.

SQLUSMALLINT

fFunction

input

Specifies

which

function

is

queried.

Table

115

shows

valid

fFunction

values.

SQLUSMALLINT

*

pfExists

output

Points

to

the

buffer

where

this

function

returns

SQL_TRUE

or

SQL_FALSE.

If

the

function

that

is

queried

is

supported,

SQL_TRUE

is

returned

into

the

buffer.

If

the

function

is

not

supported,

SQL_FALSE

is

returned

into

the

buffer.

Usage

Table

115

shows

the

valid

values

for

the

fFunction

argument

and

whether

the

corresponding

function

is

supported.

If

the

fFunction

argument

is

set

to

SQL_API_ALL_FUNCTIONS,

then

the

pfExists

argument

must

point

to

an

SQLSMALLINT

array

of

100

elements.

The

array

is

indexed

by

the

values

in

the

fFunction

argument

that

are

used

to

identify

many

of

the

functions.

Some

elements

of

the

array

are

unused

and

reserved.

Because

some

values

for

the

fFunction

argument

are

greater

than

100,

the

array

method

can

not

be

used

to

obtain

a

list

of

all

functions.

The

SQLGetFunctions()

call

must

be

explicitly

issued

for

all

values

equal

to

or

above

100

for

the

fFunction

argument.

The

complete

set

of

fFunction

values

is

defined

in

sqlcli1.h.

Table

115.

SQLGetFunctions()

functions

and

values

fFunction

Value

DB2

ODBC

returns

SQL_API_SQLALLOCCONNECT

SQL_TRUE

SQL_API_SQLALLOCENV

SQL_TRUE

SQLGetFunctions()

-

Get

functions

226

ODBC

Guide

and

Reference

Table

115.

SQLGetFunctions()

functions

and

values

(continued)

fFunction

Value

DB2

ODBC

returns

SQL_API_SQLALLOCHANDLE

SQL_TRUE

SQL_API_SQLALLOCSTMT

SQL_TRUE

SQL_API_SQLBINDCOL

SQL_TRUE

SQL_API_SQLBINDFILETOCOL

SQL_FALSE

SQL_API_SQLBINDFILETOPARAM

SQL_FALSE

SQL_API_SQLBINDPARAMETER

SQL_TRUE

SQL_API_SQLBROWSECONNECT

SQL_FALSE

SQL_API_SQLCANCEL

SQL_TRUE

SQL_API_SQLCLOSECURSOR

SQL_TRUE

SQL_API_SQLCOLATTRIBUTE

SQL_TRUE

SQL_API_SQLCOLATTRIBUTES

SQL_TRUE

SQL_API_SQLCOLUMNPRIVILEGES

SQL_TRUE

SQL_API_SQLCOLUMNS

SQL_TRUE

SQL_API_SQLCONNECT

SQL_TRUE

SQL_API_SQLDATASOURCES

SQL_TRUE

SQL_API_SQLDESCRIBECOL

SQL_TRUE

SQL_API_SQLDESCRIBEPARAM

SQL_TRUE

SQL_API_SQLDISCONNECT

SQL_TRUE

SQL_API_SQLDRIVERCONNECT

SQL_TRUE

SQL_API_SQLENDTRAN

SQL_TRUE

SQL_API_SQLERROR

SQL_TRUE

SQL_API_SQLEXECDIRECT

SQL_TRUE

SQL_API_SQLEXECUTE

SQL_TRUE

SQL_API_SQLEXTENDEDFETCH

SQL_TRUE

SQL_API_SQLFETCH

SQL_TRUE

SQL_API_SQLFOREIGNKEYS

SQL_TRUE

SQL_API_SQLFREECONNECT

SQL_TRUE

SQL_API_SQLFREEENV

SQL_TRUE

SQL_API_SQLFREEHANDLE

SQL_TRUE

SQL_API_SQLFREESTMT

SQL_TRUE

SQL_API_SQLGETCONNECTATTR

SQL_TRUE

SQL_API_SQLGETCONNECTOPTION

SQL_TRUE

SQL_API_SQLGETCURSORNAME

SQL_TRUE

SQL_API_SQLGETDATA

SQL_TRUE

SQL_API_SQLGETDIAGREC

SQL_TRUE

SQL_API_SQLGETENVATTR

SQL_TRUE

SQL_API_SQLGETFUNCTIONS

SQL_TRUE

SQL_API_SQLGETINFO

SQL_TRUE

SQL_API_SQLGETLENGTH

SQL_TRUE

SQL_API_SQLGETPOSITION

SQL_TRUE

SQLGetFunctions()

-

Get

functions

Chapter

4.

Functions

227

Table

115.

SQLGetFunctions()

functions

and

values

(continued)

fFunction

Value

DB2

ODBC

returns

SQL_API_SQLGETSQLCA

SQL_TRUE

SQL_API_SQLGETSTMTATTR

SQL_TRUE

SQL_API_SQLGETSTMTOPTION

SQL_TRUE

SQL_API_SQLGETSUBSTRING

SQL_TRUE

SQL_API_SQLGETTYPEINFO

SQL_TRUE

SQL_API_SQLMORERESULTS

SQL_TRUE

SQL_API_SQLNATIVESQL

SQL_TRUE

SQL_API_SQLNUMPARAMS

SQL_TRUE

SQL_API_SQLNUMRESULTCOLS

SQL_TRUE

SQL_API_SQLPARAMDATA

SQL_TRUE

SQL_API_SQLPARAMOPTIONS

SQL_TRUE

SQL_API_SQLPREPARE

SQL_TRUE

SQL_API_SQLPRIMARYKEYS

SQL_TRUE

SQL_API_SQLPROCEDURECOLUMNS

SQL_TRUE

SQL_API_SQLPROCEDURES

SQL_TRUE

SQL_API_SQLPUTDATA

SQL_TRUE

SQL_API_SQLROWCOUNT

SQL_TRUE

SQL_API_SQLSETCOLATTRIBUTES

SQL_TRUE

SQL_API_SQLSETCONNECTATTR

SQL_TRUE

SQL_API_SQLSETCONNECTION

SQL_TRUE

SQL_API_SQLSETCONNECTOPTION

SQL_TRUE

SQL_API_SQLSETCURSORNAME

SQL_TRUE

SQL_API_SQLSETENVATTR

SQL_TRUE

SQL_API_SQLSETPARAM

SQL_TRUE

SQL_API_SQLSETPOS

SQL_FALSE

SQL_API_SQLSETSCROLLOPTIONS

SQL_FALSE

SQL_API_SQLSETSTMTATTR

SQL_TRUE

SQL_API_SQLSETSTMTOPTION

SQL_TRUE

SQL_API_SQLSPECIALCOLUMNS

SQL_TRUE

SQL_API_SQLSTATISTICS

SQL_TRUE

SQL_API_SQLTABLEPRIVILEGES

SQL_TRUE

SQL_API_SQLTABLES

SQL_TRUE

SQL_API_SQLTRANSACT

SQL_TRUE

Return

codes

After

you

call

SQLGetFunctions(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLGetFunctions()

-

Get

functions

228

ODBC

Guide

and

Reference

Diagnostics

Table

116

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

116.

SQLGetFunctions()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

argument

pfExists

specifies

a

null

pointer.

HY010

Function

sequence

error.

SQLGetFunctions()

is

called

before

a

database

connection

is

established.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

Figure

20

on

page

230

shows

an

application

that

connects

to

a

database

server

and

checks

for

API

support

using

SQLGetFunctions().

SQLGetFunctions()

-

Get

functions

Chapter

4.

Functions

229

/**/

/*

Execute

SQLGetFunctions

to

verify

that

APIs

required

*/

/*

by

application

are

supported.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

typedef

struct

odbc_api

{

SQLUSMALLINT

api;

char

api_name

_40];

}

ODBC_API;

/**/

/*

CLI

APIs

required

by

application

*/

/**/

ODBC_API

o_api

[7]

=

{

{

SQL_API_SQLBINDPARAMETER,

"SQLBindParameter"

}

,

{

SQL_API_SQLDISCONNECT

,

"SQLDisconnect"

}

,

{

SQL_API_SQLGETTYPEINFO

,

"SQLGetTypeInfo"

}

,

{

SQL_API_SQLFETCH

,

"SQLFetch"

}

,

{

SQL_API_SQLTRANSACT

,

"SQLTransact"

}

,

{

SQL_API_SQLBINDCOL

,

"SQLBindCol"

}

,

{

SQL_API_SQLEXECDIRECT

,

"SQLExecDirect"

}

}

;

Figure

20.

An

application

that

checks

the

database

server

for

API

support

(Part

1

of

3)

SQLGetFunctions()

-

Get

functions

230

ODBC

Guide

and

Reference

/**/

/*

Validate

that

required

APIs

are

supported.

*/

/**/

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

int

i;

//

SQLGetFunctions

parameters

SQLUSMALLINT

fExists

=

SQL_TRUE;

SQLUSMALLINT

*pfExists

=

&fExists;

(void)

printf

("****

Entering

CLIP05.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

connect

handle

goto

dberror;

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

"STLEC1",

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

Figure

20.

An

application

that

checks

the

database

server

for

API

support

(Part

2

of

3)

SQLGetFunctions()

-

Get

functions

Chapter

4.

Functions

231

/***/

/*

See

if

DSN

supports

required

ODBC

APIs

*/

/***/

for

(i

=

0,

(*pfExists

=

SQL_TRUE);

(i

<

(sizeof(o_api)/sizeof(ODBC_API))

&&

(*pfExists)

==

SQL_TRUE);

i++)

{

RETCODE

=

SQLGetFunctions

(hDbc,

o_api[i].api,

pfExists);

if

(*pfExists

==

SQL_TRUE)

//

if

api

is

supported

then

print

{

(void)

printf

("****

ODBC

api

%s

IS

supported.\n",

o_api[i].api_name);

}

}

if

(*pfExists

==

SQL_FALSE)

//

a

required

api

is

not

supported

{

(void)

printf

("****

ODBC

api

%s

not

supported.\n",

o_api[i].api_name);

}

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

environment

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf("\n\n****

Exiting

CLIP05.\n\n

");

return(RETCODE);

}

Figure

20.

An

application

that

checks

the

database

server

for

API

support

(Part

3

of

3)

SQLGetFunctions()

-

Get

functions

232

ODBC

Guide

and

Reference

Related

functions

No

functions

directly

relate

to

SQLGetFunctions().

SQLGetFunctions()

-

Get

functions

Chapter

4.

Functions

233

SQLGetInfo()

-

Get

general

information

Purpose

Table

117.

SQLGetInfo()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLGetInfo()

returns

general

information

(including

supported

data

conversions)

about

the

DBMS

to

which

the

application

is

currently

connected.

Syntax

SQLRETURN

SQLGetInfo

(SQLHDBC

ConnectionHandle,

SQLUSMALLINT

InfoType,

SQLPOINTER

InfoValuePtr,

SQLSMALLINT

BufferLength,

SQLSMALLINT

*FAR

StringLengthPtr);

Function

arguments

Table

118

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

118.

SQLGetInfo()

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Specifies

a

connection

handle

SQLUSMALLINT

InfoType

input

Specifies

the

type

of

information

to

request.

This

argument

must

be

one

of

the

values

in

the

first

column

of

Table

119

on

page

235.

SQLPOINTER

InfoValuePtr

output

(and

input)

Points

to

a

buffer

where

this

function

stores

the

retrieved

information.

Depending

on

the

type

of

information

that

is

retrieved,

one

of

the

following

5

types

of

information

is

returned:

v

16-bit

integer

value

v

32-bit

integer

value

v

32-bit

binary

value

v

32-bit

mask

v

Nul-terminated

character

string

SQLSMALLINT

BufferLength

input

Specifies

the

maximum

length,

in

bytes,

of

the

buffer

to

which

the

InfoValuePtr

argument

points.

SQLSMALLINT

*

StringLengthPtr

output

Points

to

the

buffer

where

this

function

returns

the

number

of

bytes

that

are

required

to

avoid

truncation

of

the

output

information.

In

the

case

of

string

output,

this

size

does

not

include

the

nul-terminator.

If

the

value

in

the

location

pointed

to

by

StringLengthPtr

is

greater

than

the

size

of

the

InfoValuePtr

buffer

as

specified

in

BufferLength,

the

string

output

information

is

truncated

to

BufferLength

-

1

bytes

and

the

function

returns

with

SQL_SUCCESS_WITH_INFO.

SQLGetInfo()

-

Get

general

information

234

ODBC

Guide

and

Reference

Usage

Table

119

lists

the

possible

values

for

the

InfoType

argument

and

a

description

of

the

information

that

SQLGetInfo()

returns

for

each

value.

(This

table

indicates

which

InfoType

argument

values

were

renamed

in

ODBC

3.0.

For

those

InfoType

argument

values

that

were

renamed,

Table

120

on

page

255

lists

the

ODBC

2.0

and

3.0

names.)

Important:

If

the

value

that

is

specified

for

the

InfoType

argument

does

not

apply

or

is

not

supported,

the

result

is

dependent

on

the

return

type.

The

following

values

are

returned

for

each

type

of

unsupported

value

in

the

InfoType

argument:

v

Character

string

containing

’Y’

or

’N’,

’N’

is

returned.

v

Character

string

containing

a

value

other

than

just

’Y’

or

’N’,

an

empty

string

is

returned.

v

16-bit

integer,

0

(zero).

v

32-bit

integer,

0

(zero).

v

32-bit

mask,

0

(zero).

Table

119

specifies

each

value

that

you

can

specify

for

the

InfoType

argument

and

describes

the

information

that

each

of

these

values

will

return.

Table

119.

Information

returned

by

SQLGetInfo()

InfoType

Format

Description

and

notes

SQL_ACCESSIBLE_PROCEDURES

string

A

character

string

of

’Y’

indicates

that

the

user

can

execute

all

procedures

returned

by

the

function

SQLProcedures().

’N’

indicates

that

procedures

can

be

returned

that

the

user

cannot

execute.

SQL_ACCESSIBLE_TABLES

string

A

character

string

of

’Y’

indicates

that

the

user

is

guaranteed

SELECT

privilege

to

all

tables

returned

by

the

function

SQLTables().

’N’

indicates

that

tables

can

be

returned

that

the

user

cannot

access.

SQL_ACTIVE_ENVIRONMENTS

16-bit

integer

The

maximum

number

of

active

environments

that

the

DB2

ODBC

driver

can

support.

If

the

limit

is

unspecified

or

unknown,

this

value

is

set

to

zero.

SQL_AGGREGATE_FUNCTIONS

32-bit

mask

A

bit

mask

enumerating

support

for

aggregation

functions:

v

SQL_AF_ALL

v

SQL_AF_AVG

v

SQL_AF_COUNT

v

SQL_AF_DISTINCT

v

SQL_AF_MAX

v

SQL_AF_MIN

v

SQL_AF_SUM

SQL_ALTER_DOMAIN

32-bit

mask

DB2

ODBC

returns

0

indicating

that

the

ALTER

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_AD_ADD_CONSTRAINT_DEFERRABLE

v

SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

v

SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_AD_ADD_DOMAIN_CONSTRAINT

v

SQL_AD_ADD_DOMAIN_DEFAULT

v

SQL_AD_CONSTRAINT_NAME_DEFINITION

v

SQL_AD_DROP_DOMAIN_CONSTRAINT

v

SQL_AD_DROP_DOMAIN_DEFAULT

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

235

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_ALTER_TABLE

32-bit

mask

Indicates

which

clauses

in

ALTER

TABLE

are

supported

by

the

DBMS.

v

SQL_AT_ADD_COLUMN

v

SQL_AT_DROP_COLUMN

SQL_ASCII_GCCSID

32-bit

integer

Specifies

the

ASCII

GCCSID

value

currently

set

in

the

AGCCSID

field

of

DB2

DSNHDECP.

SQL_ASCII_MCCSID

32-bit

integer

Specifies

the

ASCII

MCCSID

value

currently

set

in

the

AMCCSID

field

of

DB2

DSNHDECP.

SQL_ASCII_SCCSID

32-bit

integer

Specifies

the

ASCII

SCCSID

value

currently

set

in

the

ASCCSID

field

of

DB2

DSNHDECP.

SQL_BATCH_ROW_COUNT

32-bit

mask

Indicates

the

availability

of

row

counts.

DB2

ODBC

always

returns

SQL_BRC_ROLLED_UP

indicating

that

row

counts

for

consecutive

INSERT,

DELETE,

or

UPDATE

statements

are

rolled

up

into

one.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_BRC_PROCEDURES

v

SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT

32-bit

mask

Indicates

which

level

of

batches

are

supported:

v

SQL_BS_SELECT_EXPLICIT,

supports

explicit

batches

that

can

have

result-set

generating

statements.

v

SQL_BS_ROW_COUNT_EXPLICIT,

supports

explicit

batches

that

can

have

row-count

generating

statements.

v

SQL_BS_SELECT_PROC,

supports

explicit

procedures

that

can

have

result-set

generating

statements.

v

SQL_BS_ROW_COUNT_PROC,

supports

explicit

procedures

that

can

have

row-count

generating

statements.

SQL_BOOKMARK_PERSISTENCE

32-bit

mask

Reserved

attribute,

zero

is

returned

for

the

bit-mask.

SQL_CATALOG_LOCATION

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_QUALIFIER_LOCATION.)

16-bit

integer

A

16-bit

integer

value

indicated

the

position

of

the

qualifier

in

a

qualified

table

name.

Zero

indicates

that

qualified

names

are

not

supported.

SQL_CATALOG_NAME

string

A

character

string

of

’Y’

indicates

that

the

server

supports

catalog

names.

’N’

indicates

that

catalog

names

are

not

supported.

SQL_CATALOG_NAME_SEPARATOR

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_QUALIFIER_NAME_SEPARATOR.)

string

The

characters

used

as

a

separator

between

a

catalog

name

and

the

qualified

name

element

that

follows

it.

SQL_CATALOG_TERM

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_QUALIFIER_TERM.)

string

The

database

vendor’s

terminology

for

a

qualifier.

The

name

that

the

vendor

uses

for

the

high

order

part

of

a

three

part

name.

Because

DB2

ODBC

does

not

support

three

part

names,

a

zero-length

string

is

returned.

For

non-ODBC

applications,

the

SQL_CATALOG_TERM

symbolic

name

should

be

used

instead

of

SQL_QUALIFIER_NAME.

SQL_CATALOG_USAGE

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_QUALIFIER_USAGE.)

32-bit

mask

This

is

similar

to

SQL_OWNER_USAGE

except

that

this

is

used

for

catalog.

SQLGetInfo()

-

Get

general

information

236

ODBC

Guide

and

Reference

|

|

|

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_COLLATION_SEQ

string

The

name

of

the

collation

sequence.

This

is

a

character

string

that

indicates

the

name

of

the

default

collation

for

the

default

character

set

for

this

server

(for

example,

EBCDIC).

If

this

is

unknown,

an

empty

string

is

returned.

SQL_COLUMN_ALIAS

string

Returns

’Y’

if

column

aliases

are

supported,

or

’N’

if

they

are

not.

SQL_CONCAT_NULL_BEHAVIOR

16-bit

integer

Indicates

how

the

concatenation

of

null

valued

character

data

type

columns

with

non-null

valued

character

data

type

columns

is

handled.

v

SQL_CB_NULL

-

indicates

the

result

is

a

null

value

(this

is

the

case

for

IBM

RDBMS).

v

SQL_CB_NON_NULL

-

indicates

the

result

is

a

concatenation

of

non-null

column

values.

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_INTERVAL_DAY_TIME

SQL_CONVERT_INTERVAL_YEAR_MONTH

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_ROWID

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

32-bit

mask

Indicates

the

conversions

supported

by

the

data

source

with

the

CONVERT

scalar

function

for

data

of

the

type

named

in

the

InfoType.

If

the

bit

mask

equals

zero,

the

data

source

does

not

support

any

conversions

for

the

data

of

the

named

type,

including

conversions

to

the

same

data

type.

For

example,

to

find

out

if

a

data

source

supports

the

conversion

of

SQL_INTEGER

data

to

the

SQL_DECIMAL

data

type,

an

application

calls

SQLGetInfo()

with

InfoType

of

SQL_CONVERT_INTEGER.

The

application

then

ANDs

the

returned

bit

mask

with

SQL_CVT_DECIMAL.

If

the

resulting

value

is

nonzero

then

the

conversion

is

supported.

The

following

bit

masks

are

used

to

determine

which

conversions

are

supported:

v

SQL_CVT_BIGINT

v

SQL_CVT_BINARY

v

SQL_CVT_BIT

v

SQL_CVT_CHAR

v

SQL_CVT_DATE

v

SQL_CVT_DECIMAL

v

SQL_CVT_DOUBLE

v

SQL_CVT_FLOAT

v

SQL_CVT_INTEGER

v

SQL_CVT_LONGVARBINARY

v

SQL_CVT_LONGVARCHAR

v

SQL_CVT_NUMERIC

v

SQL_CVT_REAL

v

SQL_CVT_ROWID

v

SQL_CVT_SMALLINT

v

SQL_CVT_TIME

v

SQL_CVT_TIMESTAMP

v

SQL_CVT_TINYINT

v

SQL_CVT_VARBINARY

v

SQL_CVT_VARCHAR

SQL_CONVERT_FUNCTIONS

32-bit

mask

Indicates

the

scalar

conversion

functions

supported

by

the

driver

and

associated

data

source.

v

SQL_FN_CVT_CONVERT

-

used

to

determine

which

conversion

functions

are

supported.

v

SQL_FN_CVT_CAST

-

used

to

determine

which

cast

functions

are

supported.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

237

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_CORRELATION_NAME

16-bit

integer

Indicates

the

degree

of

correlation

name

support

by

the

server:

v

SQL_CN_ANY,

supported

and

can

be

any

valid

user-defined

name.

v

SQL_CN_NONE,

correlation

name

not

supported.

v

SQL_CN_DIFFERENT,

correlation

name

supported

but

it

must

be

different

than

the

name

of

the

table

that

it

represents.

SQL_CLOSE_BEHAVIOR

32-bit

integer

Indicates

whether

locks

are

released

when

the

cursor

is

closed.

The

possible

values

are:

v

SQL_CC_NO_RELEASE:

locks

are

not

released

when

the

cursor

on

this

statement

handle

is

closed.

This

is

the

default.

v

SQL_CC_RELEASE:

locks

are

released

when

the

cursor

on

this

statement

handle

is

closed.

Typically

cursors

are

explicitly

closed

when

the

function

SQLFreeStmt()

is

called

with

fOption

set

to

SQL_CLOSE

or

the

statement

handle

is

freed

with

SQLFreeHandle().

In

addition,

the

end

of

the

transaction

(when

a

commit

or

rollback

is

issued)

can

also

cause

the

closing

of

the

cursor

(depending

on

the

WITH

HOLD

attribute

currently

in

use).

SQL_CREATE_ASSERTION

32-bit

mask

Indicates

which

clauses

in

the

CREATE

ASSERTION

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

CREATE

ASSERTION

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_CA_CREATE_ASSERTION

v

SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CA_CONSTRAINT_DEFERRABLE

v

SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET

32-bit

mask

Indicates

which

clauses

in

the

CREATE

CHARACTER

SET

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

CREATE

CHARACTER

SET

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_CCS_CREATE_CHARACTER_SET

v

SQL_CCS_COLLATE_CLAUSE

v

SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION

32-bit

mask

Indicates

which

clauses

in

the

CREATE

COLLATION

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

CREATE

COLLATION

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN

32-bit

mask

Indicates

which

clauses

in

the

CREATE

DOMAIN

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

CREATE

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_CDO_CREATE_DOMAIN

v

SQL_CDO_CONSTRAINT_NAME_DEFINITION

v

SQL_CDO_DEFAULT

v

SQL_CDO_CONSTRAINT

v

SQL_CDO_COLLATION

v

SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CDO_CONSTRAINT_DEFERRABLE

v

SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQLGetInfo()

-

Get

general

information

238

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_CREATE_SCHEMA

32-bit

mask

Indicates

which

clauses

in

the

CREATE

SCHEMA

statement

are

supported

by

the

DBMS:

v

SQL_CS_CREATE_SCHEMA

v

SQL_CS_AUTHORIZATION

v

SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE

32-bit

mask

Indicates

which

clauses

in

the

CREATE

TABLE

statement

are

supported

by

the

DBMS.

The

following

bit

masks

are

used

to

determine

which

clauses

are

supported:

v

SQL_CT_CREATE_TABLE

v

SQL_CT_TABLE_CONSTRAINT

v

SQL_CT_CONSTRAINT_NAME_DEFINITION

The

following

bits

specify

the

ability

to

create

temporary

tables:

v

SQL_CT_COMMIT_PRESERVE,

deleted

rows

are

preserved

on

commit.

v

SQL_CT_COMMIT_DELETE,

deleted

rows

are

deleted

on

commit.

v

SQL_CT_GLOBAL_TEMPORARY,

global

temporary

tables

can

be

created.

v

SQL_CT_LOCAL_TEMPORARY,

local

temporary

tables

can

be

created.

The

following

bits

specify

the

ability

to

create

column

constraints:

v

SQL_CT_COLUMN_CONSTRAINT,

specifying

column

constraints

is

supported.

v

SQL_CT_COLUMN_DEFAULT,

specifying

column

defaults

is

supported.

v

SQL_CT_COLUMN_COLLATION,

specifying

column

collation

is

supported.

The

following

bits

specify

the

supported

constraint

attributes

if

specifying

column

or

table

constraints

is

supported:

v

SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CT_CONSTRAINT_DEFERRABLE

v

SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION

32-bit

mask

Indicates

which

clauses

in

the

CREATE

TRANSLATION

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

CREATE

TRANSLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

DB2

ODBC

does

not

return:

v

SQL_CTR_CREATE_TRANSLATION

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

239

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_CURSOR_COMMIT_BEHAVIOR

16-bit

integer

Indicates

how

a

COMMIT

operation

affects

cursors.

A

value

of:

v

SQL_CB_DELETE,

destroys

cursors

and

drops

access

plans

for

dynamic

SQL

statements.

v

SQL_CB_CLOSE,

destroys

cursors,

but

retains

access

plans

for

dynamic

SQL

statements

(including

non-query

statements)

v

SQL_CB_PRESERVE,

retains

cursors

and

access

plans

for

dynamic

statements

(including

non-query

statements).

Applications

can

continue

to

fetch

data,

or

close

the

cursor

and

re-execute

the

query

without

re-preparing

the

statement.

After

COMMIT,

a

FETCH

must

be

issued

to

reposition

the

cursor

before

actions

such

as

positioned

updates

or

deletes

can

be

taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR

16-bit

integer

Indicates

how

a

ROLLBACK

operation

affects

cursors.

A

value

of:

v

SQL_CB_DELETE,

destroys

cursors

and

drops

access

plans

for

dynamic

SQL

statements.

v

SQL_CB_CLOSE,

destroys

cursors,

but

retains

access

plans

for

dynamic

SQL

statements

(including

non-query

statements)

v

SQL_CB_PRESERVE,

retains

cursors

and

access

plans

for

dynamic

statements

(including

non-query

statements).

Applications

can

continue

to

fetch

data,

or

close

the

cursor

and

re-execute

the

query

without

re-preparing

the

statement.

DB2

servers

do

not

have

the

SQL_CB_PRESERVE

property.

SQL_CURSOR_SENSITIVITY

32-bit

unsigned

integer

Indicates

support

for

cursor

sensitivity:

v

SQL_INSENSITIVE,

all

cursors

on

the

statement

handle

show

the

result

set

without

reflecting

any

changes

made

to

it

by

any

other

cursor

within

the

same

transaction.

v

SQL_UNSPECIFIED,

it

is

unspecified

whether

cursors

on

the

statement

handle

make

visible

the

changes

made

to

a

result

set

by

another

cursor

within

the

same

transaction.

Cursors

on

the

statement

handle

may

make

visible

none,

some,

or

all

such

changes.

v

SQL_SENSITIVE,

cursors

are

sensitive

to

changes

made

by

other

cursors

within

the

same

transaction.

SQL_DATA_SOURCE_NAME

string

The

name

used

as

data

source

on

the

input

to

SQLConnect(),

or

the

DSN

keyword

value

in

the

SQLDriverConnect()

connection

string.

SQL_DATA_SOURCE_READ_ONLY

string

A

character

string

of

″Y″

indicates

that

the

database

is

set

to

READ

ONLY

mode;

an

″N″

indicates

that

it

is

not

set

to

READ

ONLY

mode.

SQL_DATABASE_NAME

string

The

name

of

the

current

database

in

use.

Also,

this

information

returned

by

SELECT

CURRENT

SERVER

on

IBM

DBMSs.

SQL_DBMS_NAME

string

The

name

of

the

DBMS

product

being

accessed.

For

example:

v

″DB2/6000″

v

″DB2/2″

SQLGetInfo()

-

Get

general

information

240

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_DBMS_VER

string

The

version

of

the

DBMS

product

being

accessed.

A

string

of

the

form

’mm.vv.rrrr’

where

mm

is

the

major

version,

vv

is

the

minor

version

and

rrrr

is

the

release.

For

example,

″02.01.0000″

translates

to

major

version

2,

minor

version

1,

release

0.

SQL_DDL_INDEX

32-bit

unsigned

integer

Indicates

support

for

the

creation

and

dropping

of

indexes:

v

SQL_DI_CREATE_INDEX

v

SQL_DI_DROP_INDEX

SQL_DEFAULT_TXN_ISOLATION

32-bit

mask

The

default

transaction

isolation

level

supported.

One

of

the

following

masks

are

returned:

v

SQL_TXN_READ_UNCOMMITTED

=

Changes

are

immediately

perceived

by

all

transactions

(dirty

read,

non-repeatable

read,

and

phantoms

are

possible).

This

is

equivalent

to

the

IBM

UR

level.

v

SQL_TXN_READ_COMMITTED

=

Row

read

by

transaction

1

can

be

altered

and

committed

by

transaction

2

(non-repeatable

read

and

phantoms

are

possible)

This

is

equivalent

to

the

IBM

CS

level.

v

SQL_TXN_REPEATABLE_READ

=

A

transaction

can

add

or

remove

rows

matching

the

search

condition

or

a

pending

transaction

(repeatable

read,

but

phantoms

are

possible)

This

is

equivalent

to

the

IBM

RS

level.

v

SQL_TXN_SERIALIZABLE

=

Data

affected

by

pending

transaction

is

not

available

to

other

transactions

(repeatable

read,

phantoms

are

not

possible)

This

is

equivalent

to

the

IBM

RR

level.

v

SQL_TXN_VERSIONING

=

Not

applicable

to

IBM

DBMSs.

v

SQL_TXN_NOCOMMIT

=

Any

changes

are

effectively

committed

at

the

end

of

a

successful

operation;

no

explicit

commit

or

rollback

is

allowed.

This

is

a

DB2

UDB

for

iSeries

isolation

level.

In

IBM

terminology,

v

SQL_TXN_READ_UNCOMMITTED

is

uncommitted

read;

v

SQL_TXN_READ_COMMITTED

is

cursor

stability;

v

SQL_TXN_REPEATABLE_READ

is

read

stability;

v

SQL_TXN_SERIALIZABLE

is

repeatable

read.

SQL_DESCRIBE_PARAMETER

STRING

’Y’

if

parameters

can

be

described;

’N’

if

not.

SQL_DRIVER_HDBC

32

bits

DB2

ODBC’s

current

database

handle.

SQL_DRIVER_HENV

32

bits

DB2

ODBC’s

environment

handle.

SQL_DRIVER_HLIB

32

bits

Reserved.

SQL_DRIVER_HSTMT

32

bits

DB2

ODBC’s

current

statement

handle

for

the

current

connection.

SQL_DRIVER_NAME

string

The

file

name

of

the

DB2

ODBC

implementation.

DB2

ODBC

returns

NULL.

SQL_DRIVER_ODBC_VER

string

The

version

number

of

ODBC

that

the

driver

supports.

DB2

ODBC

returns

″3.00″.

SQL_DRIVER_VER

string

The

version

of

the

CLI

driver.

A

string

of

the

form

’mm.vv.rrrr’

where

mm

is

the

major

version,

vv

is

the

minor

version

and

rrrr

is

the

release.

For

example,

″03.01.0000″

translates

to

major

version

3,

minor

version

1,

release

0.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

241

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_DROP_ASSERTION

32-bit

mask

Indicates

which

clause

in

the

DROP

ASSERTION

statement

is

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

DROP

ASSERTION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

DB2

ODBC

does

not

return:

v

SQL_DA_DROP_ASSERTION

SQL_DROP_CHARACTER_SET

32-bit

mask

Indicates

which

clause

in

the

DROP

CHARACTER

SET

statement

is

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

DROP

CHARACTER

SET

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

DB2

ODBC

does

not

return.

v

SQL_DCS_DROP_CHARACTER_SET

SQL_DROP_COLLATION

32-bit

mask

Indicates

which

clause

in

the

DROP

COLLATION

statement

is

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

DROP

COLLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

DB2

ODBC

does

not

return:

v

SQL_DC_DROP_COLLATION

SQL_DROP_DOMAIN

32-bit

mask

Indicates

which

clauses

in

the

DROP

DOMAIN

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

DROP

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_DD_DROP_DOMAIN

v

SQL_DD_CASCADE

v

SQL_DD_RESTRICT

SQL_DROP_SCHEMA

32-bit

mask

Indicates

which

clauses

in

the

DROP

SCHEMA

statement

are

supported

by

the

DBMS.

v

SQL_DS_DROP_SCHEMA

v

SQL_DS_CASCADE

v

SQL_DS_RESTRICT

SQL_DROP_TABLE

32-bit

mask

Indicates

which

clauses

in

the

DROP

TABLE

statement

are

supported

by

the

DBMS:

v

SQL_DT_DROP_TABLE

v

SQL_DT_CASCADE

v

SQL_DT_RESTRICT

SQL_DROP_TRANSLATION

32-bit

mask

Indicates

which

clauses

in

the

DROP

TRANSLATION

statement

are

supported

by

the

DBMS.

DB2

ODBC

always

returns

zero;

the

DROP

TRANSLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

DB2

ODBC

does

not

return:

v

SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW

32-bit

mask

Indicates

which

clauses

in

the

DROP

VIEW

statement

are

supported

by

the

DBMS.

v

SQL_DV_DROP_VIEW

v

SQL_DV_CASCADE

v

SQL_DV_RESTRICT

SQLGetInfo()

-

Get

general

information

242

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_DYNAMIC_CURSOR_ATTRIBUTES1

32-bit

mask

Indicates

the

attributes

of

a

dynamic

cursor

that

DB2

ODBC

supports

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_ABSOLUTE

v

SQL_CA1_RELATIVE

v

SQL_CA1_BOOKMARK

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

32-bit

mask

Indicates

the

attributes

of

a

dynamic

cursor

that

DB2

ODBC

supports

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_EBCDIC_GCCSID

32-bit

integer

Specifies

the

EBCDIC

GCCSID

value

currently

set

in

the

AGCCSID

field

of

DB2

DSNHDECP.

SQL_EBCDIC_MCCSID

32-bit

integer

Specifies

the

EBCDIC

MCCSID

value

currently

set

in

the

AMCCSID

field

of

DB2

DSNHDECP.

SQL_EBCDIC_SCCSID

32-bit

integer

Specifies

the

EBCDIC

SCCSID

value

currently

set

in

the

ASCCSID

field

of

DB2

DSNHDECP.

SQL_EXPRESSIONS_IN_ORDERBY

string

The

character

string

’Y’

indicates

the

database

server

supports

the

DIRECT

specification

of

expressions

in

the

ORDER

BY

list,

’N’

indicates

that

is

does

not.

SQL_FETCH_DIRECTION

32-bit

mask

The

supported

fetch

directions.

The

following

bit-masks

are

used

in

conjunction

with

the

flag

to

determine

which

attribute

values

are

supported.

v

SQL_FD_FETCH_NEXT

v

SQL_FD_FETCH_FIRST

v

SQL_FD_FETCH_LAST

v

SQL_FD_FETCH_PREV

v

SQL_FD_FETCH_ABSOLUTE

v

SQL_FD_FETCH_RELATIVE

v

SQL_FD_FETCH_RESUME

SQL_FILE_USAGE

16-bit

integer

Reserved.

Zero

is

returned.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

243

|||
|

|

|

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

32-bit

mask

Indicates

the

attributes

of

a

forward-only

cursor

that

DB2

ODBC

supports

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

32-bit

mask

Indicates

the

attributes

of

a

forward-only

cursor

that

DB2

ODBC

supports

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS

32-bit

mask

Indicates

whether

extensions

to

the

SQLGetData()

function

are

supported.

The

following

extensions

are

currently

identified

and

supported

by

DB2

ODBC:

v

SQL_GD_ANY_COLUMN,

SQLGetData()

can

be

called

for

unbound

columns

that

precede

the

last

bound

column.

v

SQL_GD_ANY_ORDER,

SQLGetData()

can

be

called

for

columns

in

any

order.

ODBC

also

defines

SQL_GD_BLOCK

and

SQL_GD_BOUND;

these

bits

are

not

returned

by

DB2

ODBC.

SQL_GROUP_BY

16-bit

integer

Indicates

the

degree

of

support

for

the

GROUP

BY

clause

by

the

server:

v

SQL_GB_NO_RELATION,

the

columns

in

the

GROUP

BY

and

in

the

SELECT

list

are

not

related

v

SQL_GB_NOT_SUPPORTED,

GROUP

BY

not

supported

v

SQL_GB_GROUP_BY_EQUALS_SELECT,

GROUP

BY

must

include

all

non-aggregated

columns

in

the

select

list

v

SQL_GB_GROUP_BY_CONTAINS_SELECT,

the

GROUP

BY

clause

must

contain

all

non-aggregated

columns

in

the

SELECT

list

SQLGetInfo()

-

Get

general

information

244

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_IDENTIFIER_CASE

16-bit

integer

Indicates

case

sensitivity

of

object

names

(such

as

table-name).

A

value

of:

v

SQL_IC_UPPER

=

identifier

names

are

stored

in

upper

case

in

the

system

catalog.

v

SQL_IC_LOWER

=

identifier

names

are

stored

in

lower

case

in

the

system

catalog.

v

SQL_IC_SENSITIVE

=

identifier

names

are

case

sensitive,

and

are

stored

in

mixed

case

in

the

system

catalog.

v

SQL_IC_MIXED

=

identifier

names

are

not

case

sensitive,

and

are

stored

in

mixed

case

in

the

system

catalog.

IBM

specific:

Identifier

names

in

IBM

DBMSs

are

not

case

sensitive.

SQL_IDENTIFIER_QUOTE_CHAR

string

Indicates

the

character

used

to

surround

a

delimited

identifier.

SQL_INFO_SCHEMA_VIEWS

32-bit

mask

Indicates

the

views

in

the

INFORMATIONAL_SCHEMA

that

are

supported.

DB2

ODBC

always

returns

zero;

no

views

in

the

INFORMATIONAL_SCHEMA

are

supported.

ODBC

also

defines

the

following

values

that

DB2

ODBC

does

not

return:

v

SQL_ISV_ASSERTIONS

v

SQL_ISV_CHARACTER_SETS

v

SQL_ISV_CHECK_CONSTRAINTS

v

SQL_ISV_COLLATIONS

v

SQL_ISV_COLUMN_DOMAIN_USAGE

v

SQL_ISV_COLUMN_PRIVILEGES

v

SQL_ISV_COLUMNS

v

SQL_ISV_CONSTRAINT_COLUMN_USAGE

v

SQL_ISV_CONSTRAINT_TABLE_USAGE

v

SQL_ISV_DOMAIN_CONSTRAINTS

v

SQL_ISV_DOMAINS

v

SQL_ISV_KEY_COLUMN_USAGE

v

SQL_ISV_REFERENTIAL_CONSTRAINTS

v

SQL_ISV_SCHEMATA

v

SQL_ISV_SQL_LANGUAGES

v

SQL_ISV_TABLE_CONSTRAINTS

v

SQL_ISV_TABLE_PRIVILEGES

v

SQL_ISV_TABLES

v

SQL_ISV_TRANSLATIONS

v

SQL_ISV_USAGE_PRIVILEGES

v

SQL_ISV_VIEW_COLUMN_USAGE

v

SQL_ISV_VIEW_TABLE_USAGE

v

SQL_ISV_VIEWS

SQL_INSERT_STATEMENT

32-bit

mask

Indicates

support

for

INSERT

statements:

v

SQL_IS_INSERT_LITERALS

v

SQL_IS_INSERT_SEARCHED

v

SQL_IS_SELECT_INTO

SQL_INTEGRITY

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_ODBC_SQL_OPT_IEF.)

string

A

’Y’

indicates

that

the

data

source

supports

Integrity

Enhanced

Facility

(IEF)

in

SQL89

and

in

X/Open

XPG4

Embedded

SQL;

an

’N’

indicates

that

it

does

not.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

245

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_KEYSET_CURSOR_ATTRIBUTES1

32-bit

mask

Indicates

the

attributes

of

a

keyset

cursor

that

DB2

ODBC

supports

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_ABSOLUTE

v

SQL_CA1_RELATIVE

v

SQL_CA1_BOOKMARK

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2

32-bit

mask

Indicates

the

attributes

of

a

keyset

cursor

that

DB2

ODBC

supports

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS

sting

A

string

of

all

the

keywords

at

the

DBMS

that

are

not

in

the

ODBC’s

list

of

reserved

words.

SQL_LIKE_ESCAPE_CLAUSE

string

A

character

string

that

indicates

if

an

escape

character

is

supported

for

the

metacharacters

percent

and

underscore

in

a

LIKE

predicate.

SQL_LOCK_TYPES

32-bit

mask

Reserved

attribute,

zero

is

returned

for

the

bit

mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

32-bit

unsigned

integer

The

maximum

number

of

active

concurrent

statements

in

asynchronous

mode

that

DB2

ODBC

can

support

on

a

given

connection.

This

value

is

zero

if

this

number

has

no

specific

limit,

or

the

limit

is

unknown.

SQL_MAX_BINARY_LITERAL_LEN

32-bit

integer

A

32-bit

integer

value

specifying

the

maximum

length

of

a

hexadecimal

literal

in

a

SQL

statement.

SQL_MAX_CATALOG_NAME_LEN

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_MAX_QUALIFIER_NAME_LEN.)

16-bit

integer

The

maximum

length

of

a

catalog

qualifier

name;

first

part

of

a

three-part

table

name

(in

bytes).

SQL_MAX_CHAR_LITERAL_LEN

32-bit

integer

The

maximum

length

of

a

character

literal

in

an

SQL

statement

(in

bytes).

SQL_MAX_COLUMN_NAME_LEN

16-bit

integer

The

maximum

length

of

a

column

name

(in

bytes).

SQL_MAX_COLUMNS_IN_GROUP_BY

16-bit

integer

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

GROUP

BY

clause.

Zero

if

no

limit.

SQLGetInfo()

-

Get

general

information

246

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_MAX_COLUMNS_IN_INDEX

16-bit

integer

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

index.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_ORDER_BY

16-bit

integer

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

ORDER

BY

clause.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_SELECT

16-bit

integer

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

select

list.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_TABLE

16-bit

integer

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

base

table.

Zero

if

no

limit.

SQL_MAX_CONCURRENT_ACTIVITIES

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_ACTIVE_STATEMENTS.)

16-bit

integer

The

maximum

number

of

active

statements

per

connection.

Zero

is

returned,

indicating

that

the

limit

is

dependent

on

database

system

and

DB2

ODBC

resources,

and

limits.

SQL_MAX_CURSOR_NAME_LEN

16-bit

integer

The

maximum

length

of

a

cursor

name

(in

bytes).

SQL_MAX_DRIVER_CONNECTIONS

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_ACTIVE_CONNECTIONS.)

16-bit

integer

The

maximum

number

of

active

connections

supported

per

application.

Zero

is

returned,

indicating

that

the

limit

is

dependent

on

system

resources.

The

MAXCONN

keyword

in

the

initialization

file

or

the

SQL_MAX_CONNECTIONS

environment

and

connection

attribute

can

be

used

to

impose

a

limit

on

the

number

of

connections.

This

limit

is

returned

if

it

is

set

to

any

value

other

than

zero.

SQL_MAX_IDENTIFIER_LEN

16-bit

integer

The

maximum

size

(in

characters)

that

the

data

source

supports

for

user-defined

names.

SQL_MAX_INDEX_SIZE

32-bit

integer

Indicates

the

maximum

size

in

bytes

that

the

server

supports

for

the

combined

columns

in

an

index.

Zero

if

no

limit.

SQL_MAX_PROCEDURE_NAME_LEN

16-bit

integer

The

maximum

length

of

a

procedure

name

(in

bytes).

SQL_MAX_ROW_SIZE

32-bit

integer

Specifies

the

maximum

length,

in

bytes,

that

the

server

supports

in

single

row

of

a

base

table.

Zero

if

no

limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG

string

Returns

’Y’

if

SQLGetInfo()

with

InfoType

set

to

SQL_MAX_ROW_SIZE

includes

the

length

of

product-specific

long

string

data

types.

Otherwise,

returns

’N’.

SQL_MAX_SCHEMA_NAME_LEN

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_MAX_OWNER_NAME_LEN.)

16-bit

integer

The

maximum

length

of

a

schema

qualifier

name

(in

bytes).

SQL_MAX_STATEMENT_LEN

32-bit

integer

Indicates

the

maximum

length,

in

bytes,

of

an

SQL

statement

string,

which

includes

the

number

of

white

spaces

in

the

statement.

SQL_MAX_TABLE_NAME_LEN

16-bit

integer

The

maximum

length

of

a

table

name

(in

bytes).

SQL_MAX_TABLES_IN_SELECT

16-bit

integer

Indicates

the

maximum

number

of

table

names

allowed

in

a

FROM

clause

in

a

<query

specification>.

SQL_MAX_USER_NAME_LEN

16-bit

integer

Indicates

the

maximum

size

allowed

for

a

<user

identifier>

(in

bytes).

SQL_MULT_RESULT_SETS

string

The

character

string

’Y’

indicates

that

the

database

supports

multiple

result

sets,

’N’

indicates

that

it

does

not.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

247

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_MULTIPLE_ACTIVE_TXN

string

The

character

string

’Y’

indicates

that

active

transactions

on

multiple

connections

are

allowed.

’N’

indicates

that

only

one

connection

at

a

time

can

have

an

active

transaction.

SQL_NEED_LONG_DATA_LEN

string

A

character

string

reserved

for

the

use

of

ODBC.

’N’

is

always

returned.

SQL_NON_NULLABLE_COLUMNS

16-bit

integer

Indicates

whether

non-nullable

columns

are

supported:

v

SQL_NNC_NON_NULL,

columns

can

be

defined

as

NOT

NULL.

v

SQL_NNC_NULL,

columns

can

not

be

defined

as

NOT

NULL.

SQL_NULL_COLLATION

16-bit

integer

Indicates

where

null

values

are

sorted

in

a

list:

v

SQL_NC_HIGH,

null

values

sort

high

v

SQL_NC_LOW,

to

indicate

that

null

values

sort

low

SQL_NUMERIC_FUNCTIONS

32-bit

mask

Indicates

the

ODBC

scalar

numeric

functions

supported.

These

functions

are

intended

to

be

used

with

the

ODBC

vendor

escape

sequence

described

in

“Using

vendor

escape

clauses”

on

page

465.

The

following

bit

masks

are

used

to

determine

which

numeric

functions

are

supported:

v

SQL_FN_NUM_ABS

v

SQL_FN_NUM_ACOS

v

SQL_FN_NUM_ASIN

v

SQL_FN_NUM_ATAN

v

SQL_FN_NUM_ATAN2

v

SQL_FN_NUM_CEILING

v

SQL_FN_NUM_COS

v

SQL_FN_NUM_COT

v

SQL_FN_NUM_DEGREES

v

SQL_FN_NUM_EXP

v

SQL_FN_NUM_FLOOR

v

SQL_FN_NUM_LOG

v

SQL_FN_NUM_LOG10

v

SQL_FN_NUM_MOD

v

SQL_FN_NUM_PI

v

SQL_FN_NUM_POWER

v

SQL_FN_NUM_RADIANS

v

SQL_FN_NUM_RAND

v

SQL_FN_NUM_ROUND

v

SQL_FN_NUM_SIGN

v

SQL_FN_NUM_SIN

v

SQL_FN_NUM_SQRT

v

SQL_FN_NUM_TAN

v

SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE

16-bit

integer

The

level

of

ODBC

conformance.

v

SQL_OAC_NONE

v

SQL_OAC_LEVEL1

v

SQL_OAC_LEVEL2

SQL_ODBC_SAG_CLI_CONFORMANCE

16-bit

integer

The

compliance

to

the

functions

of

the

SQL

Access

Group

(SAG)

CLI

specification.

A

value

of:

v

SQL_OSCC_NOT_COMPLIANT

-

the

driver

is

not

SAG-compliant.

v

SQL_OSCC_COMPLIANT

-

the

driver

is

SAG-compliant.

SQLGetInfo()

-

Get

general

information

248

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_ODBC_SQL_CONFORMANCE

16-bit

integer

A

value

of:

v

SQL_OSC_MINIMUM

-

means

that

the

current

DBMS

supports

minimum

ODBC

SQL

grammar.

Minimum

SQL

grammar

must

include

the

following

elements:

–

CREATE

TABLE

and

DROP

TABLE

data

definitions

–

Simple

SELECT,

INSERT,

UPDATE,

and

DELETE

data

manipulation

–

Simple

expressions

–

CHAR,

VARCHAR,

and

LONG

VARCHAR

data

types
v

SQL_OSC_CORE

-

means

that

the

current

DBMS

supports

ODBC

SQL

core

grammar.

Core

ODBC

SQL

grammar

must

include

the

following

elements:

–

Minimum

ODBC

SQL

grammar

–

ALTER

TABLE,

CREATE

INDEX,

DROP

INDEX,

CREATE

VIEW,

DROP

VIEW,

GRANT,

and

REVOKE

data

definitions

–

Full

SELECT

data

manipulation

–

Subquery

and

function

expressions

–

DECIMAL,

NUMERIC,

SMALLINT,

INTEGER,

REAL,

FLOAT,

DOUBLE

PRECISION

data

types
v

SQL_OSC_EXTENDED

-

means

the

current

DBMS

supports

extended

ODBC

SQL

grammar.

Extended

ODBC

SQL

must

grammar

include

the

following

elements:

–

Core

ODBC

SQL

grammar

–

Positioned

UPDATE,

positioned

DELETE,

SELECT

FOR

UPDATE,

and

UNION

data

definitions

–

Scalar

functions,

literal

date,

literal

time,

and

literal

timestamp

expressions

–

BIT,

TINYINT,

BIGINT,

BINARY,

VARBINARY,

LONG

VARBINARY,

DATE,

TIME,

TIMESTAMP

data

types

–

Batch

SQL

statements

–

Procedure

calls

SQL_ODBC_VER

string

The

version

number

of

ODBC

that

the

driver

manager

supports.

DB2

ODBC

returns

the

string

″03.01.0000″.

SQL_OJ_CAPABILITIES

32-bit

mask

A

32-bit

bit

mask

enumerating

the

types

of

outer

join

supported.

The

bit

masks

are:

v

SQL_OJ_LEFT:

Left

outer

join

is

supported.

v

SQL_OJ_RIGHT:

Right

outer

join

is

supported.

v

SQL_OJ_FULL:

Full

outer

join

is

supported.

v

SQL_OJ_NESTED:

Nested

outer

join

is

supported.

v

SQL_OJ_NOT_ORDERED:

The

order

of

the

tables

underlying

the

columns

in

the

outer

join

ON

clause

need

not

be

in

the

same

order

as

the

tables

in

the

JOIN

clause.

v

SQL_OJ_INNER:

The

inner

table

of

an

outer

join

can

also

be

an

inner

join.

v

SQL_OJ_ALL_COMPARISONS_OPS:

Any

predicate

can

be

used

in

the

outer

join

ON

clause.

If

this

bit

is

not

set,

the

equality

(=)

operator

is

the

only

valid

comparison

operator

in

the

ON

clause.

SQL_ORDER_BY_COLUMNS_IN_SELECT

string

Set

to

’Y’

if

columns

in

the

ORDER

BY

clauses

must

be

in

the

select

list;

otherwise

set

to

’N’.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

249

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_OUTER_JOINS

string

The

character

string:

v

’Y’

indicates

that

outer

joins

are

supported,

and

DB2

ODBC

supports

the

ODBC

outer

join

request

syntax.

v

’N’

indicates

that

it

is

not

supported.

(See

“Using

vendor

escape

clauses”

on

page

465)

SQL_OWNER_TERM

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_SCHEMA_TERM.)

string

The

database

vendor’s

(owner’s)

terminology

for

a

schema

SQL_PARAM_ARRAY_ROW_COUNTS

32-bit

unsigned

integer

Indicates

the

availability

of

row

counts

in

a

parameterized

execution:

v

SQL_PARC_BATCH:

Individual

row

counts

are

available

for

each

set

of

parameters.

This

is

conceptually

equivalent

to

the

driver

generating

a

batch

of

SQL

statements,

one

for

each

parameter

set

in

the

array.

Extended

error

information

can

be

retrieved

by

using

the

SQL_PARAM_STATUS_PTR

descriptor

field.

v

SQL_PARC_NO_BATCH:

Only

one

row

count

is

available,

which

is

the

cumulative

row

count

resulting

from

the

execution

of

the

statement

for

the

entire

array

of

parameters.

This

is

conceptually

equivalent

to

treating

the

statement

along

with

the

entire

parameter

array

as

one

atomic

unit.

Errors

are

handled

the

same

as

if

one

statement

were

executed.

SQL_PARAM_ARRAY_SELECTS

32-bit

unsigned

integer

Indicates

the

availability

of

result

sets

in

a

parameterized

execution:

v

SQL_PAS_BATCH:

One

result

set

is

available

per

set

of

parameters.

This

is

conceptually

equivalent

to

the

driver

generating

a

batch

of

SQL

statements,

one

for

each

parameter

set

in

the

array.

v

SQL_PAS_NO_BATCH:

Only

one

result

set

is

available,

which

represents

the

cumulative

result

set

resulting

from

the

execution

of

the

statement

for

the

entire

array

of

parameters.

This

is

conceptually

equivalent

to

treating

the

statement

along

with

the

entire

parameter

array

as

one

atomic

unit.

v

SQL_PAS_NO_SELECT:

A

driver

does

not

allow

a

result-set

generating

statement

to

be

executed

with

an

array

of

parameters.

SQL_POS_OPERATIONS

32-bit

mask

Reserved

attribute,

zero

is

returned

for

the

bit

mask.

SQL_POSITIONED_STATEMENTS

32-bit

mask

Indicates

the

degree

of

support

for

positioned

UPDATE

and

positioned

DELETE

statements:

v

SQL_PS_POSITIONED_DELETE

v

SQL_PS_POSITIONED_UPDATE

v

SQL_PS_SELECT_FOR_UPDATE,

indicates

whether

the

server

requires

the

FOR

UPDATE

clause

to

be

specified

on

a

<query

expression>

in

order

for

a

column

to

be

updatable

using

the

cursor.

SQL_PROCEDURE_TERM

string

The

name

a

database

vendor

uses

for

a

procedure

SQL_PROCEDURES

string

’Y’

indicates

that

the

data

source

supports

procedures

and

DB2

ODBC

supports

the

ODBC

procedure

invocation

syntax

specified

in

“Using

stored

procedures”

on

page

429.

’N’

indicates

that

it

does

not.

SQLGetInfo()

-

Get

general

information

250

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_QUOTED_IDENTIFIER_CASE

16-bit

integer

Returns:

v

SQL_IC_UPPER

-

quoted

identifiers

in

SQL

are

case

insensitive

and

stored

in

upper

case

in

the

system

catalog.

v

SQL_IC_LOWER

-

quoted

identifiers

in

SQL

are

case

insensitive

and

are

stored

in

lower

case

in

the

system

catalog.

v

SQL_IC_SENSITIVE

-

quoted

identifiers

(delimited

identifiers)

in

SQL

are

case

sensitive

and

are

stored

in

mixed

case

in

the

system

catalog.

v

SQL_IC_MIXED

-

quoted

identifiers

in

SQL

are

case

insensitive

and

are

stored

in

mixed

case

in

the

system

catalog.

This

should

be

contrasted

with

the

SQL_IDENTIFIER_CASE

InfoType,

which

is

used

to

determine

how

(unquoted)

identifiers

are

stored

in

the

system

catalog.

SQL_ROW_UPDATES

string

’Y’

indicates

that

changes

are

detected

in

rows

between

multiple

fetches

of

the

same

rows.

’N’

indicates

that

changes

are

not

detected.

SQL_SCHEMA_USAGE

(In

previous

versions

of

DB2

ODBC,

this

InfoType

is

SQL_OWNER_USAGE.)

32-bit

mask

Indicates

the

type

of

SQL

statements

that

have

schema

(owners)

associated

with

them

when

these

statements

are

executed.

Schema

qualifiers

(owners)

are:

v

SQL_OU_DML_STATEMENTS

-

supported

in

all

DML

statements.

v

SQL_OU_PROCEDURE_INVOCATION

-

supported

in

the

procedure

invocation

statement.

v

SQL_OU_TABLE_DEFINITION

-

supported

in

all

table

definition

statements.

v

SQL_OU_INDEX_DEFINITION

-

supported

in

all

index

definition

statements.

v

SQL_OU_PRIVILEGE_DEFINITION

-

supported

in

all

privilege

definition

statements

(for

example,

grant

and

revoke

statements).

SQL_SCROLL_CONCURRENCY

32-bit

mask

Indicates

the

concurrency

attribute

values

supported

for

the

cursor.

The

following

bit-masks

are

used

in

conjunction

with

the

flag

to

determine

which

attribute

values

are

supported:

v

SQL_SCCO_READ_ONLY

v

SQL_SCCO_LOCK

v

SQL_SCCO_OPT_TIMESTAMP

v

SQL_SCCO_OPT_VALUES

DB2

ODBC

returns

SQL_SCCO_LOCK,

indicating

that

the

lowest

level

of

locking

that

is

sufficient

to

ensure

that

the

row

can

be

updated

is

used.

SQL_SCROLL_OPTIONS

32-bit

mask

The

scroll

attribute

values

supported

for

scrollable

cursors.

The

following

bit

masks

are

used

in

conjunction

with

the

flag

to

determine

which

attribute

values

are

supported:

v

SQL_SO_FORWARD_ONLY

v

SQL_SO_KEYSET_DRIVEN

v

SQL_SO_STATIC

v

SQL_SO_DYNAMIC

v

SQL_SO_MIXED

DB2

ODBC

returns

SQL_SO_FORWARD_ONLY,

indicating

that

the

cursor

scrolls

forward

only.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

251

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_SEARCH_PATTERN_ESCAPE

string

Used

to

specify

what

the

driver

supports

as

an

escape

character

for

catalog

functions

such

as

(SQLTables(),

SQLColumns()).

SQL_SERVER_NAME

string

The

name

of

the

DB2

subsystem

to

which

the

application

is

connected.

SQL_SPECIAL_CHARACTERS

string

Contains

all

the

characters

that

the

server

allows

in

non-delimited

identifiers.

This

includes

a...z,

A...Z,

0...9,

and

_.

SQL_SQL92_PREDICATES

32-bit

mask

Indicates

those

predicates

that

are

defined

by

SQL92

and

that

are

supported

in

a

SELECT

statement.

v

SQL_SP_BETWEEN

v

SQL_SP_COMPARISON

v

SQL_SP_EXISTS

v

SQL_SP_IN

v

SQL_SP_ISNOTNULL

v

SQL_SP_ISNULL

v

SQL_SP_LIKE

v

SQL_SP_MATCH_FULL

v

SQL_SP_MATCH_PARTIAL

v

SQL_SP_MATCH_UNIQUE_FULL

v

SQL_SP_MATCH_UNIQUE_PARTIAL

v

SQL_SP_OVERLAPS

v

SQL_SP_QUANTIFIED_COMPARISON

v

SQL_SP_UNIQUE

SQL_SQL92_VALUE_EXPRESSIONS

32-bit

mask

Indicates

those

value

expressions

that

are

defined

by

SQL92

and

that

are

supported.

v

SQL_SVE_CASE

v

SQL_SVE_CAST

v

SQL_SVE_COALESCE

v

SQL_SVE_NULLIF

SQL_STATIC_SENSITIVITY

32-bit

mask

Indicates

whether

changes

made

by

an

application

with

a

positioned

UPDATE

or

DELETE

statement

can

be

detected

by

that

application:

v

SQL_SS_ADDITIONS:

Added

rows

are

visible

to

the

cursor;

the

cursor

can

scroll

to

these

rows.

All

DB2

servers

see

added

rows.

v

SQL_SS_DELETIONS:

Deleted

rows

are

no

longer

available

to

the

cursor

and

do

not

leave

a

hole

in

the

result

set;

after

the

cursor

scrolls

from

a

deleted

row,

it

cannot

return

to

that

row.

v

SQL_SS_UPDATES:

Updates

to

rows

are

visible

to

the

cursor;

if

the

cursor

scrolls

from

and

returns

to

an

updated

row,

the

data

returned

by

the

cursor

is

the

updated

data,

not

the

original

data.

SQLGetInfo()

-

Get

general

information

252

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_STRING_FUNCTIONS

32-bit

mask

Indicates

which

string

functions

are

supported.

The

following

bit

masks

are

used

to

determine

which

string

functions

are

supported:

v

SQL_FN_STR_ASCII

v

SQL_FN_STR_CHAR

v

SQL_FN_STR_CONCAT

v

SQL_FN_STR_DIFFERENCE

v

SQL_FN_STR_INSERT

v

SQL_FN_STR_LCASE

v

SQL_FN_STR_LEFT

v

SQL_FN_STR_LENGTH

v

SQL_FN_STR_LOCATE

v

SQL_FN_STR_LOCATE_2

v

SQL_FN_STR_LTRIM

v

SQL_FN_STR_REPEAT

v

SQL_FN_STR_REPLACE

v

SQL_FN_STR_RIGHT

v

SQL_FN_STR_RTRIM

v

SQL_FN_STR_SOUNDEX

v

SQL_FN_STR_SPACE

v

SQL_FN_STR_SUBSTRING

v

SQL_FN_STR_UCASE

If

an

application

can

call

the

LOCATE

scalar

function

with

the

string1,

string2,

and

start

arguments,

the

SQL_FN_STR_LOCATE

bit

mask

is

returned.

If

an

application

can

only

call

the

LOCATE

scalar

function

with

the

string1

and

string2,

the

SQL_FN_STR_LOCATE_2

bit

mask

is

returned.

If

the

LOCATE

scalar

function

is

fully

supported,

both

bit

masks

are

returned.

SQL_SUBQUERIES

32-bit

mask

Indicates

which

predicates

support

subqueries:

v

SQL_SQ_COMPARISON

-

the

comparison

predicate

v

SQL_SQ_CORRELATE_SUBQUERIES

-

all

predicates

v

SQL_SQ_EXISTS

-

the

exists

predicate

v

SQL_SQ_IN

-

the

in

predicate

v

SQL_SQ_QUANTIFIED

-

the

predicates

containing

a

quantification

scalar

function.

SQL_SYSTEM_FUNCTIONS

32-bit

mask

Indicates

which

scalar

system

functions

are

supported.

The

following

bit

masks

are

used

to

determine

which

scalar

system

functions

are

supported:

v

SQL_FN_SYS_DBNAME

v

SQL_FN_SYS_IFNULL

v

SQL_FN_SYS_USERNAME

Tip:

These

functions

are

intended

to

be

used

with

the

escape

sequence

in

ODBC.

SQL_TABLE_TERM

string

The

database

vendor’s

terminology

for

a

table.

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

253

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_TIMEDATE_ADD_INTERVALS

32-bit

mask

Indicates

whether

the

special

ODBC

system

function

TIMESTAMPADD

is

supported,

and,

if

it

is,

which

intervals

are

supported.

The

following

bit

masks

are

used

to

determine

which

intervals

are

supported:

v

SQL_FN_TSI_FRAC_SECOND

v

SQL_FN_TSI_SECOND

v

SQL_FN_TSI_MINUTE

v

SQL_FN_TSI_HOUR

v

SQL_FN_TSI_DAY

v

SQL_FN_TSI_WEEK

v

SQL_FN_TSI_MONTH

v

SQL_FN_TSI_QUARTER

v

SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS

32-bit

mask

Indicates

whether

the

special

ODBC

system

function

TIMESTAMPDIFF

is

supported,

and,

if

it

is,

which

intervals

are

supported.

The

following

bit

masks

are

used

to

determine

which

intervals

are

supported:

v

SQL_FN_TSI_FRAC_SECOND

v

SQL_FN_TSI_SECOND

v

SQL_FN_TSI_MINUTE

v

SQL_FN_TSI_HOUR

v

SQL_FN_TSI_DAY

v

SQL_FN_TSI_WEEK

v

SQL_FN_TSI_MONTH

v

SQL_FN_TSI_QUARTER

v

SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS

32-bit

mask

Indicates

which

time

and

date

functions

are

supported.

The

following

bit

masks

are

used

to

determine

which

date

functions

are

supported:

v

SQL_FN_TD_CURDATE

v

SQL_FN_TD_CURTIME

v

SQL_FN_TD_DAYNAME

v

SQL_FN_TD_DAYOFMONTH

v

SQL_FN_TD_DAYOFWEEK

v

SQL_FN_TD_DAYOFYEAR

v

SQL_FN_TD_HOUR

v

SQL_FN_TD_JULIAN_DAY

v

SQL_FN_TD_MINUTE

v

SQL_FN_TD_MONTH

v

SQL_FN_TD_MONTHNAME

v

SQL_FN_TD_NOW

v

SQL_FN_TD_QUARTER

v

SQL_FN_TD_SECOND

v

SQL_FN_TD_SECONDS_SINCE_MIDNIGHT

v

SQL_FN_TD_TIMESTAMPADD

v

SQL_FN_TD_TIMESTAMPDIFF

v

SQL_FN_TD_WEEK

v

SQL_FN_TD_YEAR

Tip:

These

functions

are

intended

to

be

used

with

the

escape

sequence

in

ODBC.

SQLGetInfo()

-

Get

general

information

254

ODBC

Guide

and

Reference

Table

119.

Information

returned

by

SQLGetInfo()

(continued)

InfoType

Format

Description

and

notes

SQL_TXN_CAPABLE

16-bit

integer

Indicates

whether

transactions

can

contain

DDL

or

DML

or

both.

v

SQL_TC_NONE

-

transactions

not

supported.

v

SQL_TC_DML

-

transactions

can

only

contain

DML

statements

(SELECT,

INSERT,

UPDATE,

DELETE,

and

so

on)

DDL

statements

(CREATE

TABLE,

DROP

INDEX,

and

so

on)

encountered

in

a

transaction

cause

an

error.

v

SQL_TC_DDL_COMMIT

-

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

cause

the

transaction

to

be

committed.

v

SQL_TC_DDL_IGNORE

-

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

are

ignored.

v

SQL_TC_ALL

-

transactions

can

contain

DDL

and

DML

statements

in

any

order.

SQL_TXN_ISOLATION_OPTION

32-bit

mask

The

transaction

isolation

levels

available

at

the

currently

connected

database

server.

The

following

bit

masks

are

used

in

conjunction

with

the

flag

to

determine

which

attribute

values

are

supported:

v

SQL_TXN_READ_UNCOMMITTED

v

SQL_TXN_READ_COMMITTED

v

SQL_TXN_REPEATABLE_READ

v

SQL_TXN_SERIALIZABLE

v

SQL_TXN_NOCOMMIT

v

SQL_TXN_VERSIONING

For

descriptions

of

each

level,

see

SQL_DEFAULT_TXN_ISOLATION.

SQL_UNICODE_GCCSID

32-bit

integer

Specifies

the

UNICODE

GCCSID

value

currently

set

in

the

UGCCSID

field

of

DB2

DSNHDECP.

SQL_UNICODE_MCCSID

32-bit

integer

Specifies

the

UNICODE

MCCSID

value

currently

set

in

the

UMCCSID

field

of

DB2

DSNHDECP.

SQL_UNICODE_SCCSID

32-bit

integer

Specifies

the

UNICODE

SCCSID

value

currently

set

in

the

USCCSID

field

of

DB2

DSNHDECP.

SQL_UNION

32-bit

mask

Indicates

whether

the

server

supports

the

UNION

operator:

v

SQL_U_UNION

-

supports

the

UNION

clause

v

SQL_U_UNION_ALL

-

supports

the

ALL

keyword

in

the

UNION

clause

If

SQL_U_UNION_ALL

is

set,

SQL_U_UNION

is

set

as

well.

SQL_USER_NAME

string

The

user

name

that

is

used

in

a

particular

database.

This

is

the

identifier

specified

on

the

SQLConnect()

call.

SQL_XOPEN_CLI_YEAR

string

Indicates

the

year

of

publication

of

the

X/Open

specification

with

which

the

version

of

the

driver

fully

complies.

Table

120

lists

ODBC

2.0

InfoType

values

that

are

renamed

in

the

ODBC

3.0

specification.

Table

120.

Renamed

SQLGetInfo()

InfoTypes

ODBC

2.0

InfoType

ODBC

3.0

InfoType

SQL_ACTIVE_CONNECTIONS

SQL_MAX_DRIVER_CONNECTIONS

SQL_ACTIVE_STATEMENTS

SQL_MAX_CONCURRENT_ACTIVITIES

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

255

|

|

|

Table

120.

Renamed

SQLGetInfo()

InfoTypes

(continued)

ODBC

2.0

InfoType

ODBC

3.0

InfoType

SQL_MAX_OWNER_NAME_LEN

SQL_MAX_SCHEMA_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN

SQL_MAX_CATALOG_NAME_LEN

SQL_ODBC_SQL_OPT_IEF

SQL_INTEGRITY

SQL_SCHEMA_TERM

SQL_OWNER_TERM

SQL_OWNER_USAGE

SQL_SCHEMA_USAGE

SQL_QUALIFIER_LOCATION

SQL_CATALOG_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR

SQL_CATALOG_NAME_SEPARATOR

SQL_QUALIFIER_TERM

SQL_CATALOG_TERM

SQL_QUALIFIER_USAGE

SQL_CATALOG_USAGE

Return

codes

After

you

call

SQLGetInfo(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

121

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

121.

SQLGetInfo()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

requested

information

is

returned

as

a

string

and

its

length

exceeds

the

length

of

the

application

buffer

as

specified

in

the

BufferLength

argument.

The

StringLengthPtr

argument

contains

the

actual

(not

truncated)

length,

in

bytes,

of

the

requested

information.

(SQLGetInfo()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

type

of

information

that

the

InfoType

argument

requests

requires

an

open

connection.

Only

the

value

SQL_ODBC_VER

does

not

require

an

open

connection.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

0.

HY096

Invalid

information

type.

An

invalid

value

is

specified

for

the

InfoType

argument.

HYC00

Driver

not

capable.

The

value

specified

in

the

argument

InfoType

is

not

supported

by

DB2

ODBC

or

is

not

supported

by

the

data

source.

SQLGetInfo()

-

Get

general

information

256

ODBC

Guide

and

Reference

Restrictions

None.

Example

The

following

lines

of

code

use

SQLGetInfo()

to

retrieve

the

current

data

source

name:

SQLCHAR

buffer[255];

SQLSMALLINT

outlen;

rc

=

SQLGetInfo(hdbc,

SQL_DATA_SOURCE_NAME,

buffer,

255,

&outlen);

printf("\nServer

Name:

%s\n",

buffer);

Related

functions

The

following

functions

relate

to

SQLGetInfo()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetInfo()

in

your

applications.

v

“SQLGetConnectAttr()

-

Get

current

attribute

setting”

on

page

196

v

“SQLGetTypeInfo()

-

Get

data

type

information”

on

page

280

SQLGetInfo()

-

Get

general

information

Chapter

4.

Functions

257

SQLGetLength()

-

Retrieve

length

of

a

string

value

Purpose

Table

122.

SQLGetLength()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

SQLGetLength()

retrieves

the

length

(in

bytes)

of

a

large

object

value

that

is

referenced

by

a

large

object

locator

that

the

server

returns

(as

a

result

of

a

fetch,

or

an

SQLGetSubString()

call)

during

the

current

transaction.

Syntax

SQLRETURN

SQLGetLength

(SQLHSTMT

hstmt,

SQLSMALLINT

LocatorCType,

SQLINTEGER

Locator,

SQLINTEGER

FAR

*StringLength,

SQLINTEGER

FAR

*IndicatorValue);

Function

arguments

Table

123

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

123.

SQLGetLength()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

This

can

be

any

statement

handle

that

is

allocated

but

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLSMALLINT

LocatorCType

input

Specifies

the

C

type

of

the

source

LOB

locator.

This

must

be

one

of

the

following

values:

v

SQL_C_BLOB_LOCATOR

for

BLOB

data

v

SQL_C_CLOB_LOCATOR

for

CLOB

data

v

SQL_C_DBCLOB_LOCATOR

for

DBCLOB

data

SQLINTEGER

Locator

input

Specifies

the

LOB

locator

value.

This

argument

specifies

a

LOB

locator

value

not

the

LOB

value

itself.

SQLINTEGER

*

StringLength

output

Points

to

a

buffer

that

receives

the

length

(in

bytes1)

of

the

LOB

to

which

the

locator

argument

refers.

SQLINTEGER

*

IndicatorValue

output

This

argument

is

always

returns

zero.

Note:

1.

This

is

in

bytes

even

for

DBCLOB

data.

Usage

SQLGetLength()

can

determine

the

length

of

the

data

value

represented

by

a

LOB

locator.

Applications

use

it

to

determine

the

overall

length

of

the

referenced

LOB

value

so

that

the

appropriate

strategy

for

obtaining

some

or

all

of

that

value

can

be

chosen.

The

Locator

argument

can

contain

any

valid

LOB

locator

that

is

not

explicitly

freed

using

a

FREE

LOCATOR

statement

or

that

is

implicitly

freed

because

the

transaction

during

which

it

was

created

has

terminated.

SQLGetLength()

-

Retrieve

length

of

a

string

value

258

ODBC

Guide

and

Reference

The

statement

handle

must

not

be

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes

After

you

call

SQLGetLength(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

124

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

124.

SQLGetLength()

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

combination

of

the

values

that

the

LocatorCType

and

Locator

arguments

specify

is

not

valid.

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

The

value

that

the

Locator

argument

specifies

is

not

associated

with

a

LOB

locator.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY003

Program

type

out

of

range.

The

LocatorCType

argument

does

not

specify

one

of

the

following

values:

v

SQL_C_CLOB_LOCATOR

v

SQL_C_BLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

HY009

Invalid

use

of

a

null

pointer.

The

StringLength

argument

specifies

a

null

pointer.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

Restrictions

This

function

is

not

available

when

you

connect

to

a

DB2

server

that

does

not

support

large

objects.

Call

SQLGetFunctions()

with

the

fFunction

argument

set

to

SQL_API_SQLGETLENGTH

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example

See

Figure

21

on

page

264.

SQLGetLength()

-

Retrieve

length

of

a

string

value

Chapter

4.

Functions

259

Related

functions

The

following

functions

relate

to

SQLGetLength()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetLength()

in

your

applications.

v

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLGetPosition()

-

Find

the

starting

position

of

a

string”

on

page

261

v

“SQLGetSubString()

-

Retrieve

portion

of

a

string

value”

on

page

276

SQLGetLength()

-

Retrieve

length

of

a

string

value

260

ODBC

Guide

and

Reference

SQLGetPosition()

-

Find

the

starting

position

of

a

string

Purpose

Table

125.

SQLGetPosition()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

SQLGetPosition()

returns

the

starting

position

of

one

string

within

a

LOB

value

(the

source).

The

source

value

must

be

a

LOB

locator;

the

search

string

can

be

a

LOB

locator

or

a

literal

string.

The

source

and

search

LOB

locators

can

be

any

value

that

is

returned

from

the

database

from

a

fetch

or

a

SQLGetSubString()

call

during

the

current

transaction.

Syntax

SQLRETURN

SQLGetPosition

(SQLHSTMT

hstmt,

SQLSMALLINT

LocatorCType,

SQLINTEGER

SourceLocator,

SQLINTEGER

SearchLocator,

SQLCHAR

FAR

*SearchLiteral,

SQLINTEGER

SearchLiteralLength,

SQLUINTEGER

FromPosition,

SQLUINTEGER

FAR

*LocatedAt,

SQLINTEGER

FAR

*IndicatorValue);

Function

arguments

Table

126

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

126.

SQLGetPosition()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

This

can

be

any

statement

handle

that

is

allocated

but

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLSMALLINT

LocatorCType

input

Specifies

the

C

type

of

the

source

LOB

locator.

This

argument

must

specify

one

of

the

following

values:

v

SQL_C_BLOB_LOCATOR

for

BLOB

data

v

SQL_C_CLOB_LOCATOR

for

CLOB

data

v

SQL_C_DBCLOB_LOCATOR

for

DBCLOB

data

SQLINTEGER

Locator

input

Specifies

the

source

LOB

locator.

SQLINTEGER

SearchLocator

input

Specifies

a

LOB

locator

that

refers

to

a

search

string.

This

argument

is

ignored

unless

both

the

following

conditions

are

met:

v

The

SearchLiteral

argument

specifies

a

null

pointer.

v

The

SearchLiteralLength

argument

is

set

to

0.

SQLCHAR

*

SearchLiteral

input

This

argument

points

to

the

area

of

storage

that

contains

the

search

string

literal.

If

SearchLiteralLength

is

0,

this

pointer

must

be

null.

SQLGetPosition()

-

Find

the

starting

position

of

a

string

Chapter

4.

Functions

261

Table

126.

SQLGetPosition()

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

SearchLiteralLength

input

The

length

of

the

string

in

SearchLiteral

(in

bytes).1

If

this

argument

value

is

0,

you

specify

the

search

string

with

a

LOB

locator.

(The

SearchLocator

argument

specifies

the

search

string

when

it

is

represented

by

a

LOB

locator.)

SQLUINTEGER

FromPosition

input

For

BLOBs

and

CLOBs,

this

argument

specifies

the

position

of

the

byte

within

the

source

string

at

which

the

search

is

to

start.

For

DBCLOBs,

this

argument

specifies

the

character

at

which

the

search

is

to

start.

The

start-byte

or

start-character

is

numbered

1.

SQLUINTEGER

*

LocatedAt

output

Specifies

the

position

at

which

the

search

string

was

located.

For

BLOBs

and

CLOBs,

this

location

is

the

byte

position.

For

DBCLOBs,

this

location

is

the

character

position.

If

the

search

string

is

not

located

this

argument

returns

zero.

If

the

length

of

the

source

string

is

zero,

the

value

1

is

returned.

SQLINTEGER

*

IndicatorValue

output

Always

set

to

zero.

Note:

1.

This

is

in

bytes

even

for

DBCLOB

data.

Usage

Use

SQLGetPosition()

in

conjunction

with

SQLGetSubString()

to

obtain

a

portion

of

a

string

in

a

random

manner.

To

use

SQLGetSubString(),

you

must

know

the

location

of

the

substring

within

the

overall

string

in

advance.

In

situations

in

which

you

want

to

use

a

search

string

to

find

the

start

of

a

substring,

use

SQLGetPosition().

The

Locator

and

SearchLocator

arguments

(if

they

are

used)

can

contain

any

valid

LOB

locator

that

is

not

explicitly

freed

using

a

FREE

LOCATOR

statement

or

that

is

not

implicitly

freed

because

the

transaction

during

which

it

was

created

has

terminated.

The

Locator

and

SearchLocator

arguments

must

specify

LOB

locators

of

the

same

type.

The

statement

handle

must

not

be

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes

After

you

call

SQLGetPosition(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLGetPosition()

-

Find

the

starting

position

of

a

string

262

ODBC

Guide

and

Reference

Diagnostics

Table

127

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

127.

SQLGetPosition()

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

combination

of

the

value

that

the

LocatorCType

argument

specifies

with

either

of

the

LOB

locator

values

is

not

valid.

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

A

value

specified

for

the

Locator

or

SearchLocator

arguments

is

currently

not

a

LOB

locator.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

42818

The

operands

of

an

operator

or

function

are

not

compatible.

The

length

of

the

search

pattern

is

longer

than

4000

bytes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

pointer

that

the

LocatedAt

argument

specifies

is

null.

v

The

argument

value

for

the

FromPosition

argument

is

not

greater

than

0.

v

The

LocatorCType

argument

is

not

one

of

the

following

values:

–

SQL_C_CLOB_LOCATOR

–

SQL_C_BLOB_LOCATOR

–

SQL_C_DBCLOB_LOCATOR

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

of

SearchLiteralLength

is

less

than

1,

and

not

SQL_NTS.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

Restrictions

This

function

is

available

only

when

you

connect

to

a

DB2

server

that

supports

large

objects.

Call

SQLGetFunctions()

with

the

fFunction

argument

set

to

SQL_API_SQLGETPOSITION

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example

Figure

21

on

page

264

shows

an

application

that

retrieves

a

substring

from

a

large

object.

To

find

the

where

in

a

large

object

this

substring

begins,

the

application

calls

SQLGetPosition().

SQLGetPosition()

-

Find

the

starting

position

of

a

string

Chapter

4.

Functions

263

Related

functions

The

following

functions

relate

to

SQLGetPosition()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetPosition()

in

your

applications.

v

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLGetFunctions()

-

Get

functions”

on

page

226

v

“SQLGetLength()

-

Retrieve

length

of

a

string

value”

on

page

258

v

“SQLGetSubString()

-

Retrieve

portion

of

a

string

value”

on

page

276

/*

...

*/

SQLCHAR

stmt2[]

=

"SELECT

resume

FROM

emp_resume

"

"WHERE

empno

=

?

AND

resume_format

=

’ascii’";

/*

...

*/

/**

**

Get

CLOB

locator

to

selected

resume

**

***/

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

7,

0,

Empno.s,

sizeof(Empno.s),

&Empno.ind);

printf("\n>Enter

an

employee

number:\n");

gets(Empno.s);

rc

=

SQLExecDirect(hstmt,

stmt2,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

1,

SQL_C_CLOB_LOCATOR,

&ClobLoc1,

0,

&pcbValue);

rc

=

SQLFetch(hstmt);

Figure

21.

An

application

that

retrieves

a

substring

from

a

large

object

(Part

1

of

2)

/**

Search

CLOB

locator

to

find

"Interests"

Get

substring

of

resume

(from

position

of

interests

to

end)

***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&lhstmt);

/*

Get

total

length

*/

rc

=

SQLGetLength(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

&SLength,

&Ind);

/*

Get

Starting

postion

*/

rc

=

SQLGetPosition(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

0,

"Interests",

9,

1,

&Pos1,

&Ind);

buffer

=

(SQLCHAR

*)malloc(SLength

-

Pos1

+

1);

/*

Get

just

the

"Interests"

section

of

the

Resume

CLOB

*/

/*

(From

Pos1

to

end

of

CLOB)

*/

rc

=

SQLGetSubString(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

Pos1,

SLength

-

Pos1,

SQL_C_CHAR,

buffer,

SLength

-

Pos1

+1,

&OutLength,

&Ind);

/*

Print

Interest

section

of

Employee’s

resume

*/

printf("\nEmployee

#:

%s\n

%s\n",

Empno.s,

buffer);

/*

...

*/

Figure

21.

An

application

that

retrieves

a

substring

from

a

large

object

(Part

2

of

2)

SQLGetPosition()

-

Find

the

starting

position

of

a

string

264

ODBC

Guide

and

Reference

SQLGetSQLCA()

-

Get

SQLCA

data

structure

Purpose

Table

128.

SQLGetSQLCA

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

SQLGetSQLCA()

is

used

to

return

the

SQLCA

(SQL

communication

area)

associated

with

preparing

and

executing

an

SQL

statement,

fetching

data,

or

closing

a

cursor.

The

SQLCA

can

return

information

that

supplements

the

information

obtained

by

using

SQLGetDiagRec().

For

a

detailed

description

of

the

SQLCA

structure,

see

Appendix

C

of

DB2

SQL

Reference.

An

SQLCA

is

not

available

if

a

function

is

processed

strictly

on

the

application

side,

such

as

allocating

a

statement

handle.

In

this

case,

an

empty

SQLCA

is

returned

with

all

values

set

to

zero.

Syntax

SQLRETURN

SQLGetSQLCA

(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

struct

sqlca

FAR

*pSqlca);

Function

arguments

Table

129

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

129.

SQLGetSQLCA()

arguments

Data

type

Argument

Use

Description

SQLHENV

henv

input

Specifies

the

environment

handle.

SQLHDBC

hdbc

input

Specifies

a

connection

handle.

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLCA

*

pqlCA

output

Points

to

a

buffer

to

receive

the

SQL

communication

area.

Usage

The

handles

are

used

in

the

same

way

as

for

the

SQLGetDiagRec()

function.

To

obtain

the

SQLCA

associated

with

different

handle

types,

use

the

following

argument

values:

v

For

an

environment

handle:

specify

a

valid

environment

handle,

set

hdbc

to

SQL_NULL_HDBC

and

set

hstmt

and

SQL_NULL_HSTMT.

v

For

a

connection

handle:

specify

a

valid

database

connection

handle

and

set

hstmt

to

SQL_NULL_HSTMT.

The

henv

argument

is

ignored.

v

For

a

statement

handle:

specify

a

valid

statement

handle.

The

henv

and

hdbc

arguments

are

ignored.

SQLGetSQLCA()

-

Get

SQLCA

data

structure

Chapter

4.

Functions

265

If

diagnostic

information

that

one

DB2

ODBC

function

generates

is

not

retrieved

before

a

function

other

than

SQLGetDiagRec()

is

called

on

the

same

handle,

the

diagnostic

information

for

the

previous

function

call

is

lost.

This

information

is

lost

regardless

of

whether

the

second

DB2

ODBC

function

call

generates

diagnostic

information.

If

a

DB2

ODBC

function

is

called

that

does

not

result

in

interaction

with

the

DBMS,

then

the

SQLCA

contains

all

zeroes.

Meaningful

information

is

returned

in

the

SQLCA

for

the

following

functions:

v

SQLCancel()

v

SQLConnect(),

SQLDisconnect()

v

SQLExecDirect(),

SQLExecute()

v

SQLFetch()

v

SQLPrepare()

v

SQLEndTran()

v

SQLColumns()

v

SQLConnect()

v

SQLGetData

(if

a

LOB

column

is

involved)

v

SQLSetConnectAttr()

(for

SQL_ATTR_AUTOCOMMIT)

v

SQLStatistics()

v

SQLTables()

v

SQLColumnPrivileges()

v

SQLExtendedFetch()

v

SQLForeignKeys()

v

SQLMoreResults()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLTablePrivileges()

Return

codes

After

you

call

SQLGetSQLCA(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

None.

Restrictions

None.

Example

Figure

22

on

page

267

shows

an

application

that

uses

SQLGetSQLCA()

to

retrieve

diagnostic

information

from

the

SQLCA.

SQLGetSQLCA()

-

Get

SQLCA

data

structure

266

ODBC

Guide

and

Reference

/**/

/*

Prepare

a

query

and

execute

that

query

against

a

non-existent

*/

/*

table.

Then

invoke

SQLGetSQLCA

to

extract

*/

/*

native

SQLCA

data

structure.

Note

that

this

API

is

NOT

*/

/*

defined

within

ODBC;

it

is

unique

to

IBM

CLI.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

void

print_sqlca

(SQLHENV,

//

prototype

for

print_sqlca

SQLHDBC,

SQLHSTMT);

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

*pDSN

=

"STLEC1";

SWORD

cbCursor;

SDWORD

cbValue1;

SDWORD

cbValue2;

char

employee

[30];

int

salary

=

0;

int

param_salary

=

30000;

char

*stmt

=

"SELECT

NAME,

SALARY

FROM

EMPLOYEES

WHERE

SALARY

>

?";

(void)

printf

("****

Entering

CLIP11.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

goto

dberror;

Figure

22.

An

application

that

retrieves

diagnostic

information

(Part

1

of

5)

SQLGetSQLCA()

-

Get

SQLCA

data

structure

Chapter

4.

Functions

267

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

SQL_NULL_HANDLE,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

Prepare

the

query

for

multiple

execution

within

current

*/

/*

transaction.

Note

that

query

is

collapsed

when

transaction

*/

/*

is

committed

or

rolled

back.

*/

/***/

rc

=

SQLPrepare

(hStmt,

(SQLCHAR

*)

stmt,

strlen(stmt));

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

PREPARE

OF

QUERY

FAILED.\n");

(void)

print_sqlca

(hStmt,

hDbc,

hEnv);

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

employee

name

1,

SQL_C_CHAR,

employee,

sizeof(employee),

&cbValue1);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

BIND

OF

NAME

FAILED.\n");

goto

dberror;

}

Figure

22.

An

application

that

retrieves

diagnostic

information

(Part

2

of

5)

SQLGetSQLCA()

-

Get

SQLCA

data

structure

268

ODBC

Guide

and

Reference

rc

=

SQLBindCol

(hStmt,

//

bind

employee

salary

2,

SQL_C_LONG,

&salary,

0,

&cbValue2);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

BIND

OF

SALARY

FAILED.\n");

goto

dberror;

}

/***/

/*

Bind

parameter

to

replace

’?’

in

query.

This

has

an

initial

*/

/*

value

of

30000.

*/

/***/

rc

=

SQLBindParameter

(hStmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

¶m_salary,

0,

NULL);

/***/

/*

Execute

prepared

statement

to

generate

answer

set.

*/

/***/

rc

=

SQLExecute

(hStmt);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

EXECUTE

OF

QUERY

FAILED.\n");

(void)

print_sqlca

(hStmt,

hDbc,

hEnv);

goto

dberror;

}

/***/

/*

Answer

set

is

available

--

Fetch

rows

and

print

employees

*/

/*

and

salary.

*/

/***/

(void)

printf

("****

Employees

whose

salary

exceeds

%d

follow.\n\n",

param_salary);

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Employee

Name

%s

with

salary

%d.\n",

employee,

salary);

}

Figure

22.

An

application

that

retrieves

diagnostic

information

(Part

3

of

5)

SQLGetSQLCA()

-

Get

SQLCA

data

structure

Chapter

4.

Functions

269

/***/

/*

Deallocate

statement

handles

--

statement

is

no

longer

in

a

*/

/*

Prepared

state.

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hStmt);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

environment

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP11.\n\n");

return

RETCODE;

}

/***/

/*

print_sqlca

invokes

SQLGetSQLCA

and

prints

the

native

SQLCA.

*/

/***/

void

print_sqlca

(SQLHENV

hEnv

,

SQLHDBC

hDbc

,

SQLHSTMT

hStmt)

{

SQLRETURN

rc

=

SQL_SUCCESS;

struct

sqlca

sqlca;

struct

sqlca

*pSQLCA

=

&sqlca;

int

code

;

char

state

[6];

char

errp

[9];

char

tok

[40];

int

count,

len,

start,

end,

i;

Figure

22.

An

application

that

retrieves

diagnostic

information

(Part

4

of

5)

SQLGetSQLCA()

-

Get

SQLCA

data

structure

270

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLGetSQLCA()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetSQLCA()

in

your

applications.

v

“SQLGetDiagRec()

-

Get

multiple

field

settings

of

diagnostic

record”

on

page

221

if

((rc

=

SQLGetSQLCA

(hEnv

,

hDbc

,

hStmt,

pSQLCA))

!=

SQL_SUCCESS)

{

(void)

printf

("****

SQLGetSQLCA

failed

Return

Code

=

%d.\n",

rc);

goto

exit;

}

code

=

(int)

pSQLCA->sqlcode;

memcpy

(state,

pSQLCA->sqlstate,

5);

state

[5]

=

’\0’;

(void)

printf

("****

sqlcode

=

%d,

sqlstate

=

%s.\n",

code,

state);

memcpy

(errp,

pSQLCA->sqlerrp,

8);

errp

[8]

=

’\0’;

(void)

printf

("****

sqlerrp

=

%s.\n",

errp);

if

(pSQLCA->sqlerrml

==

0)

(void)

printf

("****

No

tokens.\n");

else

{

for

(len

=

0,

count

=

0;

len

<

pSQLCA->sqlerrml;

len

=

++end)

{

start

=

end

=

len;

while

((pSQLCA->sqlerrmc

[end]

!=

0XFF)

&&;

(end

<

pSQLCA->sqlerrml))

end++;

if

(start

!=

end)

{

memcpy

(tok,

&pSQLCA->sqlerrmc[start],

(end-start));

tok

[end-start+1]

=

’\0’;

(void)

printf

("****

Token

#

%d

=

%s.\n",

count++,

tok);

}

}

}

for

(i

=

0;

i

<=

5;

i++)

(void)

printf

("****

sqlerrd

#

%d

=

%d.\n",

i+1,

pSQLCA->sqlerrd_i]);

for

(i

=

0;

i

<=

10;

i++)

(void)

printf

("****

sqwarn

#

%d

=

%c.\n",

i+1,

pSQLCA->sqlwarn_i]);

exit:

return;

}

Figure

22.

An

application

that

retrieves

diagnostic

information

(Part

5

of

5)

SQLGetSQLCA()

-

Get

SQLCA

data

structure

Chapter

4.

Functions

271

SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute

Purpose

Table

130.

SQLGetStmtAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLGetStmtAttr()

returns

the

current

setting

of

a

statement

attribute.

To

set

statement

attributes,

use

SQLSetStmtAttr().

Syntax

SQLRETURN

SQLGetStmtAttr

(SQLHSTMT

StatementHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments

Table

131

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

131.

SQLGetStmtAttr()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Specifies

a

connection

handle.

SQLINTEGER

Attribute

input

Specifies

the

statement

attribute

to

retrieve.

Refer

to

Table

205

on

page

368

for

a

complete

list

of

these

attributes.

SQLPOINTER

ValuePtr

output

Points

to

a

buffer

in

which

to

return

the

current

value

of

the

attribute

specified

by

the

Attribute

argument.

The

value

that

is

returned

into

this

buffer

is

a

32-bit

unsigned

integer

value

or

a

nul-terminated

character

string.

If

the

a

driver-specific

value

is

specified

for

the

Attribute

argument,

a

signed

integer

might

be

returned.

SQLINTEGER

BufferLength

input

The

value

that

you

specify

for

this

argument

depends

which

of

the

following

types

of

attributes

you

query:

v

For

ODBC-defined

attributes:

–

If

the

ValuePtr

argument

points

to

a

character

string,

the

BufferLength

argument

specifies

the

length

(in

bytes)

of

the

buffer

to

which

the

ValuePtr

argument

points.

–

If

the

ValuePtr

argument

points

to

an

integer,

the

BufferLength

argument

is

ignored.

v

For

driver-defined

attributes

(IBM

extension):

–

If

the

ValuePtr

argument

points

to

a

character

string,

the

BufferLength

argument

specifies

the

length

(in

bytes)

of

the

buffer

to

which

the

ValuePtr

argument

points,

or

specifies

SQL_NTS

for

nul-terminated

strings.

If

SQL_NTS

is

specified,

the

driver

assumes

the

length

of

buffer

to

which

the

ValuePtr

argument

points

to

be

SQL_MAX_OPTIONS_STRING_LENGTH

bytes

(which

excludes

the

nul-terminator).

–

If

the

ValuePtr

argument

points

to

an

integer,

the

BufferLength

argument

is

ignored.

SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute

272

ODBC

Guide

and

Reference

Table

131.

SQLGetStmtAttr()

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StringLengthPtr

output

Points

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

number

of

bytes

returned

for

the

nul-termination

character)

available

to

return

in

the

buffer

to

which

the

ValuePtr

argument

points.

v

If

the

ValuePtr

argument

specifies

a

null

pointer,

no

length

is

returned.

v

If

the

value

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

a

nul-termination

character

and

is

nul-terminated

by

DB2

ODBC.

v

If

the

Attribute

argument

does

not

denote

a

string,

DB2

ODBC

ignores

the

BufferLength

argument

and

does

not

return

a

value

in

the

buffer

to

which

the

StringLengthPtr

argument

points.

Usage

SQLGetStmtAttr()

returns

the

current

setting

of

a

statement

attribute.

You

set

these

attributes

using

the

SQLSetStmtAttr()

function.

For

a

list

of

valid

statement

attributes,

refer

to

Table

205

on

page

368.

For

information

about

overriding

DB2

CCSIDs

from

DSNHDECP,

see

“Usage”

on

page

367.

Return

codes

After

you

call

SQLGetStmtAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

132

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

132.

SQLGetStmtAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLGetStmtAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01004

Data

truncated.

The

data

that

is

returned

in

the

buffer

to

which

the

ValuePtr

argument

points

is

truncated

to

be

the

length

(in

bytes)

of

the

value

that

the

BufferLength

argument

specifies,

minus

the

length

of

a

nul-terminator.

The

length

(in

bytes)

of

the

untruncated

string

value

is

returned

in

the

buffer

to

which

the

StringLengthPtr

argument

points.

(SQLGetStmtAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute

Chapter

4.

Functions

273

Table

132.

SQLGetStmtAttr()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

exists.

The

error

message

that

SQLGetDiagRec()

returns

describes

the

specific

error

and

the

cause

of

that

error.

HY001

Memory

allocation

failure.

DB2

ODBC

can

not

allocate

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

SQLExecute()

or

SQLExecDirect()

is

called

on

the

statement

handle

and

returns

SQL_NEED_DATA.

This

function

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

Invoke

SQLCancel()

to

cancel

the

data-at-execution

condition.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

BufferLength

argument

is

less

than

0.

HY092

Option

type

out

of

range.

The

value

specified

for

the

Attribute

argument

is

not

valid

for

this

version

of

DB2

ODBC.

HYC00

Driver

not

capable.

The

value

specified

for

the

Attribute

argument

is

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

ODBC

driver,

but

is

not

supported

by

the

data

source.

Restrictions

None.

Example

The

following

example

uses

SQLGetStmtAttr()

to

retrieve

the

current

value

of

a

statement

attribute:

SQLINTEGER

cursor_hold;

rc

=

SQLGetStmtAttr(

hstmt,

SQL_ATTR_CURSOR_HOLD,

&cursor_hold,

0,

NULL

)

;

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

)

;

printf(

"\nCursor

With

Hold

is:

"

)

;

if

(

cursor_hold

==

SQL_CURSOR_HOLD_ON

)

printf(

"ON\n"

)

;

else

printf(

"OFF\n"

)

;

Related

functions

The

following

functions

relate

to

SQLGetStmtAttr()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetStmtAttr()

in

your

applications.

v

“SQLGetConnectAttr()

-

Get

current

attribute

setting”

on

page

196

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute

274

ODBC

Guide

and

Reference

SQLGetStmtOption()

-

Return

current

setting

of

a

statement

option

Purpose

Table

133.

SQLGetStmtOption()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

No

In

the

current

version

of

DB2

ODBC,

SQLGetStmtAttr()

replaces

SQLGetStmtOption().

See

“SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute”

on

page

272

for

more

information.

Although

DB2

ODBC

supports

SQLGetStmtOption()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLGetStmtOption()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLGetStmtOption

(SQLHSTMT

hstmt,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam);

Function

arguments

Table

134

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

134.

SQLGetStmtOption()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLUSMALLINT

fOption

input

Specifies

the

attribute

to

set.

SQLPOINTER

pvParam

output

Specifies

the

value

of

the

attribute.

Depending

on

the

value

of

fOption

this

can

be

a

32-bit

integer

value,

or

a

pointer

to

a

nul-terminated

character

string.

The

maximum

length

of

any

character

string

returned

is

SQL_MAX_OPTION_STRING_LENGTH

bytes

(which

excludes

the

nul-terminator).

SQLGetStmtOption()

-

Return

current

setting

of

a

statement

option

Chapter

4.

Functions

275

www.ibm.com/software/data/db2/zos/library.html

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

Purpose

Table

135.

SQLGetSubString()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

SQLGetSubString()

retrieves

a

portion

of

a

large

object

value,

referenced

by

a

LOB

locator

that

the

server

returns

(returned

by

a

fetch

or

a

previous

SQLGetSubString()

call)

during

the

current

transaction.

Syntax

SQLRETURN

SQLGetSubString

(SQLHSTMT

hstmt,

SQLSMALLINT

LocatorCType,

SQLINTEGER

SourceLocator,

SQLUINTEGER

FromPosition,

SQLUINTEGER

ForLength,

SQLSMALLINT

TargetCType,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValueMax,

SQLINTEGER

FAR

*StringLength,

SQLINTEGER

FAR

*IndicatorValue);

Function

arguments

Table

136

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

136.

SQLGetSubString()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

This

can

be

any

statement

handle

that

is

allocated

but

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLSMALLINT

LocatorCType

input

Specifies

the

C

type

of

the

source

LOB

locator

with

one

of

the

following

values:

v

SQL_C_BLOB_LOCATOR

for

BLOB

data

v

SQL_C_CLOB_LOCATOR

for

CLOB

data

v

SQL_C_DBCLOB_LOCATOR

for

DBCLOB

data

SQLINTEGER

Locator

input

Specifies

the

source

LOB

locator

value.

SQLUINTEGER

FromPosition

input

Specifies

the

position

at

which

the

string

that

is

retrieved

begins.

For

BLOBs

and

CLOBs,

this

is

the

position

of

the

first

byte

the

function

returns.

For

DBCLOBs,

this

is

the

first

character.

The

start-byte

or

start-character

is

numbered

1.

SQLUINTEGER

ForLength

input

Specifies

the

length

of

the

string

that

SQLGetSubString()

retrieves.

For

BLOBs

and

CLOBs,

this

is

the

length

in

bytes.

For

DBCLOBs,

this

is

the

length

in

characters.

If

the

value

that

the

FromPosition

argument

specifies

is

less

than

the

length

of

the

source

string,

but

FromPosition

+

ForLength

-1

extends

beyond

the

position

of

the

end

of

the

source

string,

the

result

is

padded

on

the

right

with

the

necessary

number

of

characters

(X'00'

for

BLOBs,

single-byte

blank

character

for

CLOBs,

and

double-byte

blank

character

for

DBCLOBs).

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

276

ODBC

Guide

and

Reference

Table

136.

SQLGetSubString()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

TargetCType

input

Specifies

the

target

C

data

type

for

the

string

that

is

retrieved

into

the

buffer

to

which

the

rgbValue

argument

points.

This

target

can

be

a

LOB

locator

C

buffer

of

one

of

the

following

types:

v

SQL_C_CLOB_LOCATOR

v

SQL_C_BLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

Or,

the

target

can

be

a

C

string

variable

of

one

of

the

following

types:

v

SQL_C_CHAR

for

CLOB

data

v

SQL_C_BINARY

for

BLOB

data

v

SQL_C_DBCHAR

for

DBCLOB

data

SQLPOINTER

rgbValue

output

Pointer

to

the

buffer

where

the

retrieved

string

value

or

a

LOB

locator

is

stored.

SQLINTEGER

cbValueMax

input

Specifies

the

maximum

size

(in

bytes)

of

the

buffer

to

which

the

rgbValue

argument

points.

SQLINTEGER

*

StringLength

output

If

the

target

C

buffer

type

is

intended

for

a

binary

or

character

string

variable,

not

a

locator

value,

this

argument

points

to

the

length

(in

bytes1)

of

the

substring

that

is

retrieved.

If

a

null

pointer

is

specified,

no

value

is

returned.

SQLINTEGER

*

IndicatorValue

output

Always

returns

zero.

Note:

1.

This

is

in

bytes

even

for

DBCLOB

data.

Usage

Use

SQLGetSubString()

to

obtain

any

portion

of

the

string

that

a

LOB

locator

represents.

The

target

for

this

substring

can

be

one

of

the

following

objects:

v

An

appropriate

C

string

variable.

v

A

new

LOB

value

that

is

created

on

the

server.

The

LOB

locator

for

this

value

can

be

assigned

to

a

target

application

variable

on

the

client.

You

can

use

SQLGetSubString()

as

an

alternative

to

SQLGetData()

for

retrieving

data

in

pieces.

To

use

SQLGetSubString()

to

retrieve

data

in

pieces,

you

first

bind

a

column

to

a

LOB

locator.

You

then

use

this

LOB

locator

to

fetch

the

LOB

value

as

a

whole

or

in

pieces.

The

Locator

argument

can

contain

any

valid

LOB

locator

that

you

do

not

explicitly

free

using

the

FREE

LOCATOR

statement

or

is

not

implicitly

freed

because

the

transaction

during

which

it

was

created

has

completed.

The

statement

handle

must

not

be

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes

After

you

call

SQLGetSubString(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

Chapter

4.

Functions

277

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

137

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

137.

SQLGetSubString()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

amount

of

returned

data

is

longer

than

cbValueMax.

Actual

length,

in

bytes,

that

is

available

for

return

is

stored

in

StringLength.

07006

Invalid

conversion.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

specified

for

TargetCType

is

not

SQL_C_CHAR,

SQL_C_BINARY,

SQL_C_DBCHAR

or

a

LOB

locator.

v

The

value

specified

for

TargetCType

is

inappropriate

for

the

source

(for

example

SQL_C_DBCHAR

for

a

BLOB

column).

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

The

value

specified

for

Locator

or

SearchLocator

is

not

currently

a

LOB

locator.

22011

A

substring

error

occurred.

FromPosition

is

greater

than

the

length

of

the

source

string.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY003

Program

type

out

of

range.

LocatorCType

is

not

one

of

the

following:

v

SQL_C_CLOB_LOCATOR

v

SQL_C_BLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY024

Invalid

argument

value.

The

value

specified

for

FromPosition

or

for

ForLength

is

not

a

positive

integer.

HY090

Invalid

string

or

buffer

length.

The

value

of

cbValueMax

is

less

than

0.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

Restrictions

This

function

is

not

available

when

connected

to

a

DB2

server

that

does

not

support

large

objects.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLGETSUBSTRING,

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example

See

Figure

21

on

page

264.

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

278

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLGetSubString()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetSubString()

in

your

applications.

v

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLFetch()

-

Fetch

the

next

row”

on

page

171

v

“SQLGetLength()

-

Retrieve

length

of

a

string

value”

on

page

258

v

“SQLGetSubString()

-

Retrieve

portion

of

a

string

value”

on

page

276

SQLGetSubString()

-

Retrieve

portion

of

a

string

value

Chapter

4.

Functions

279

SQLGetTypeInfo()

-

Get

data

type

information

Purpose

Table

138.

SQLGetTypeInfo()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLGetTypeInfo()

returns

information

about

the

data

types

that

are

supported

by

the

DBMSs

that

are

associated

with

DB2

ODBC.

This

information

is

returned

in

an

SQL

result

set.

The

columns

of

this

result

set

can

be

received

using

the

same

functions

that

you

use

to

process

a

query.

Syntax

SQLRETURN

SQLGetTypeInfo

(SQLHSTMT

hstmt,

SQLSMALLINT

fSqlType);

Function

arguments

Table

139

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

139.

SQLGetTypeInfo()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLGetTypeInfo()

-

Get

data

type

information

280

ODBC

Guide

and

Reference

Table

139.

SQLGetTypeInfo()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fSqlType

input

Specifies

the

SQL

data

type

that

is

queried.

The

following

values

that

specify

data

types

are

supported:

v

SQL_ALL_TYPES

v

SQL_BINARY

v

SQL_BLOB

v

SQL_CHAR

v

SQL_CLOB

v

SQL_DBCLOB

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_ROWID

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

If

the

value

SQL_ALL_TYPES

is

specified,

information

about

all

supported

data

types

is

returned

in

ascending

order

by

TYPE_NAME.

All

unsupported

data

types

are

absent

from

the

result

set.

Usage

Because

SQLGetTypeInfo()

generates

a

result

set

it

is

essentially

equivalent

to

executing

a

query.

Like

a

query,

calling

SQLGetTypeInfo()

generates

a

cursor

and

begins

a

transaction.

To

prepare

and

execute

another

statement

on

this

statement

handle,

the

cursor

must

be

closed.

If

you

call

SQLGetTypeInfo()

with

an

invalid

value

in

the

fSqlType

argument,

an

empty

result

set

is

returned.

Table

140

on

page

282

describes

each

column

in

the

result

set

that

this

function

generates.

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

might

be

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

The

data

types

that

are

returned

are

those

that

can

be

used

in

a

CREATE

TABLE

or

ALTER

TABLE,

statement.

Nonpersistent

data

types

such

as

the

locator

data

types

are

not

part

of

the

returned

result

set.

User-defined

data

types

are

not

returned

either.

SQLGetTypeInfo()

-

Get

data

type

information

Chapter

4.

Functions

281

Table

140.

Columns

returned

by

SQLGetTypeInfo()

Position

Column

name

Data

type

Description

1

TYPE_NAME

VARCHAR(128)

NOT

NULL

Contains

a

character

representation

of

the

SQL

DDL

data

type

name.

For

example,

VARCHAR,

BLOB,

DATE,

INTEGER.

2

DATA_TYPE

SMALLINT

NOT

NULL

Contains

the

SQL

data

type

definition

values.

For

example,

SQL_VARCHAR,

SQL_BLOB,

SQL_TYPE_DATE,

SQL_INTEGER.

3

COLUMN_SIZE

INTEGER

If

the

data

type

is

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

bytes.

If

this

data

type

is

a

graphic

(DBCS)

string,

this

column

contains

the

number

of

double-byte

characters

for

the

column.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

characters

required

to

display

the

value

when

converted

to

characters.

For

numeric

data

types,

this

column

contains

the

total

number

of

digits.

4

LITERAL_PREFIX

VARCHAR(128)

Contains

the

character

that

DB2

recognizes

as

a

prefix

for

a

literal

of

this

data

type.

This

column

is

null

for

data

types

where

a

literal

prefix

is

not

applicable.

5

LITERAL_SUFFIX

VARCHAR(128)

Contains

the

character

that

DB2

recognizes

as

a

suffix

for

a

literal

of

this

data

type.

This

column

is

null

for

data

types

where

a

literal

prefix

is

not

applicable.

6

CREATE_PARAMS

VARCHAR(128)

Contains

a

list

of

values,

that

are

separated

by

commas.

These

values

correspond

to

each

parameter

that

you

can

specify

for

a

data

type

in

a

CREATE

TABLE

or

an

ALTER

TABLE

SQL

statement.

One

or

more

of

the

following

values

appear

in

this

result-set

column:

v

LENGTH,

which

indicates

you

can

specify

a

length

for

the

data

type

in

the

TYPE_NAME

column

v

PRECISION,

which

indicates

you

can

specify

the

precision

for

the

data

type

in

the

TYPE_NAME

column

v

SCALE,

which

indicates

you

can

specify

a

scale

for

the

data

type

in

the

TYPE_NAME

column

v

A

null

indicator,

which

indicates

you

cannot

specify

any

parameters

for

the

data

type

in

the

TYPE_NAME

column

Tip:

The

CREATE_PARAMS

column

enables

you

to

customize

the

interface

of

DDL

builders

in

your

applications.

A

DDL

builder

is

a

piece

of

your

application

that

creates

database

objects,

such

as

tables.

Use

the

CREATE_PARAMS

to

determine

the

number

of

arguments

that

are

required

to

define

a

data

type,

then

use

localized

text

to

label

the

controls

on

the

DDL

builder.

SQLGetTypeInfo()

-

Get

data

type

information

282

ODBC

Guide

and

Reference

Table

140.

Columns

returned

by

SQLGetTypeInfo()

(continued)

Position

Column

name

Data

type

Description

7

NULLABLE

SMALLINT

NOT

NULL

Indicates

whether

the

data

type

accepts

a

null

value.

This

column

contains

one

of

the

following

values:

v

SQL_NO_NULLS,

which

indicates

that

null

values

are

disallowed

v

SQL_NULLABLE,

which

indicates

that

null

values

are

allowed

8

CASE_SENSITIVE

SMALLINT

NOT

NULL

Indicates

whether

the

data

type

can

be

treated

as

case

sensitive

for

collation

purposes.

This

column

contains

one

of

the

following

values:

v

SQL_TRUE,

which

indicates

case

sensitivity

v

SQL_FALSE,

which

indicates

no

case

sensitivity

9

SEARCHABLE

SMALLINT

NOT

NULL

Indicates

how

the

data

type

is

used

in

a

WHERE

clause.

This

column

contains

one

of

the

following

values:

v

SQL_UNSEARCHABLE,

which

indicates

that

you

cannot

use

the

data

type

in

a

WHERE

clause

v

SQL_LIKE_ONLY,

which

indicates

that

you

can

use

the

data

type

in

a

WHERE

clause,

but

only

with

the

LIKE

predicate.

v

SQL_ALL_EXCEPT_LIKE,

which

indicates

that

you

can

use

the

data

type

in

a

WHERE

clause

with

all

comparison

operators

except

LIKE.

v

SQL_SEARCHABLE,

which

indicates

that

you

can

use

the

data

type

in

a

WHERE

clause

with

any

comparison

operator.

10

UNSIGNED_ATTRIBUTE

SMALLINT

Indicates

whether

the

data

type

is

unsigned.

This

column

contains

one

of

the

following

values:

v

SQL_TRUE,

which

indicates

that

the

data

type

is

unsigned

v

SQL_FALSE,

which

indicates

the

data

type

is

signed

v

NULL,

which

indicates

this

attribute

does

not

apply

to

the

data

type

11

FIXED_PREC_SCALE

SMALLINT

NOT

NULL

Contains

the

value

SQL_TRUE

if

the

data

type

is

exact

numeric

and

always

has

the

same

precision

and

scale;

otherwise,

it

contains

SQL_FALSE.

12

AUTO_INCREMENT

SMALLINT

Contains

SQL_TRUE

if

a

column

of

this

data

type

is

automatically

set

to

a

unique

value

when

a

row

is

inserted;

otherwise,

contains

SQL_FALSE.

13

LOCAL_TYPE_NAME

VARCHAR(128)

Contains

any

localized

(native

language)

name

for

the

data

type

that

is

different

from

the

regular

name

of

the

data

type.

If

there

is

no

localized

name,

this

column

contains

a

null

indicator.

This

column

is

intended

for

display

only.

The

character

set

of

the

string

is

locale-dependent

and

is

typically

the

default

character

set

of

the

database.

14

MINIMUM_SCALE

SMALLINT

Contains

the

minimum

scale

of

the

SQL

data

type.

If

a

data

type

has

a

fixed

scale,

the

MINIMUM_SCALE

and

MAXIMUM_SCALE

columns

both

contain

the

same

value.

NULL

is

returned

where

scale

is

not

applicable.

SQLGetTypeInfo()

-

Get

data

type

information

Chapter

4.

Functions

283

Table

140.

Columns

returned

by

SQLGetTypeInfo()

(continued)

Position

Column

name

Data

type

Description

15

MAXIMUM_SCALE

SMALLINT

Contains

the

maximum

scale

of

the

SQL

data

type.

NULL

is

returned

where

scale

is

not

applicable.

If

the

maximum

scale

is

not

defined

separately

in

the

DBMS,

but

is

defined

instead

to

be

the

same

as

the

maximum

length

of

the

column,

then

this

column

contains

the

same

value

as

the

COLUMN_SIZE

column.

Return

codes

After

you

call

SQLGetTypeInfo(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

141

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

141.

SQLGetTypeInfo()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY004

Invalid

SQL

data

type.

An

invalid

value

for

the

fSqlType

argument

is

specified.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

Restrictions

The

following

ODBC

specified

SQL

data

types

(and

their

corresponding

fSqlType

define

values)

are

not

supported

by

any

IBM

RDBMS:

Data

type

fSqlType

TINY

INT

SQL_TINYINT

BIG

INT

SQL_BIGINT

BIT

SQL_BIT

Example

Figure

23

on

page

285

shows

an

application

that

uses

SQLGetTypeInfo()

to

check

which

ODBC

data

types

the

DBMS

supports.

SQLGetTypeInfo()

-

Get

data

type

information

284

ODBC

Guide

and

Reference

/**/

/*

Invoke

SQLGetTypeInfo

to

retrieve

SQL

data

types

supported.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

/**/

/*

Invoke

SQLGetTypeInfo

to

retrieve

all

SQL

data

types

supported

*/

/*

by

data

source.

*/

/**/

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

(void)

printf

("****

Entering

CLIP06.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

Connect

Handle

goto

dberror;

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

"STLEC1",

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

Figure

23.

An

application

that

checks

data

types

the

current

server

supports

(Part

1

of

4)

SQLGetTypeInfo()

-

Get

data

type

information

Chapter

4.

Functions

285

/***/

/*

Retrieve

SQL

data

types

from

DSN

*/

/***/

//

local

variables

to

Bind

to

retrieve

TYPE_NAME,

DATA_TYPE,

//

COLUMN_SIZE

and

NULLABLE

struct

//

TYPE_NAME

is

VARCHAR(128)

{

SQLSMALLINT

length;

SQLCHAR

name

[128];

SQLINTEGER

ind;

}

typename;

SQLSMALLINT

data_type;

//

DATA_TYPE

is

SMALLINT

SQLINTEGER

data_type_ind;

SQLINTEGER

column_size;

//

COLUMN_SIZE

is

integer

SQLINTEGER

column_size_ind;

SQLSMALLINT

nullable;

//

NULLABLE

is

SMALLINT

SQLINTEGER

nullable_ind;

/***/

/*

Allocate

statement

handle

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

*/

/*

Retrieve

native

SQL

types

from

DSN

------------>

*/

/*

*/

/*

The

result

set

consists

of

15

columns.

We

only

bind

*/

/*

TYPE_NAME,

DATA_TYPE,

COLUMN_SIZE

and

NULLABLE.

Note:

Need

*/

/*

not

bind

all

columns

of

result

set

--

only

those

required.

*/

/*

*/

/***/

rc

=

SQLGetTypeInfo

(hStmt,

SQL_ALL_TYPES);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

rc

=

SQLBindCol

(hStmt,

//

bind

TYPE_NAME

1,

SQL_CHAR,

(SQLPOINTER)

typename.name,

128,

&typename.ind);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

rc

=

SQLBindCol

(hStmt,

//

bind

DATA_NAME

2,

SQL_C_DEFAULT,

(SQLPOINTER)

&data_type,

sizeof(data_type),

&data_type_ind);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

Figure

23.

An

application

that

checks

data

types

the

current

server

supports

(Part

2

of

4)

SQLGetTypeInfo()

-

Get

data

type

information

286

ODBC

Guide

and

Reference

rc

=

SQLBindCol

(hStmt,

//

bind

COLUMN_SIZE

3,

SQL_C_DEFAULT,

(SQLPOINTER)

&column_size,

sizeof(column_size),

&column_size_ind);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

rc

=

SQLBindCol

(hStmt,

//

bind

NULLABLE

7,

SQL_C_DEFAULT,

(SQLPOINTER)

&nullable,

sizeof(nullable),

&nullable_ind);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

Fetch

all

native

DSN

SQL

Types

and

print

Type

Name,

Type,

*/

/*

Precision

and

nullability.

*/

/***/

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Type

Name

is

%s.

Type

is

%d.

Precision

is

%d.",

typename.name,

data_type,

column_size);

if

(nullable

==

SQL_NULLABLE)

(void)

printf

("

Type

is

nullable.\n");

else

(void)

printf

("

Type

is

not

nullable.\n");

}

if

(rc

==

SQL_NO_DATA_FOUND)

//

if

result

set

exhausted

reset

rc

=

SQL_SUCCESS;

//

rc

to

OK

/***/

/*

Free

statement

handle

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hStmt);

if

(RETCODE

!=

SQL_SUCCESS)

//

An

advertised

API

failed

goto

dberror;

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

Figure

23.

An

application

that

checks

data

types

the

current

server

supports

(Part

3

of

4)

SQLGetTypeInfo()

-

Get

data

type

information

Chapter

4.

Functions

287

Related

functions

The

following

functions

relate

to

SQLGetTypeInfo()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLGetTypeInfo()

in

your

applications.

v

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

v

“SQLExtendedFetch()

-

Fetch

an

array

of

rows”

on

page

163

v

“SQLGetInfo()

-

Get

general

information”

on

page

234

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

environment

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP06.\n\n");

return(RETCODE);

}

Figure

23.

An

application

that

checks

data

types

the

current

server

supports

(Part

4

of

4)

SQLGetTypeInfo()

-

Get

data

type

information

288

ODBC

Guide

and

Reference

SQLMoreResults()

-

Check

for

more

result

sets

Purpose

Table

142.

SQLMoreResults()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLMoreResults()

determines

whether

there

is

more

information

available

on

a

statement

handle

which

has

been

associated

with

one

of

the

following

actions:

v

Array

input

of

parameter

values

for

a

query

v

A

stored

procedure

that

is

returning

result

sets

Syntax

SQLRETURN

SQLMoreResults

(SQLHSTMT

hstmt);

Function

arguments

Table

143

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

143.

SQLMoreResults()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle

on

which

results

are

returned.

Usage

Use

this

function

to

return

a

sequence

of

result

sets

after

you

execute

of

one

of

the

following

actions:

v

A

parameterized

query

with

an

array

of

input

parameter

values

that

SQLParamOptions()

and

SQLBindParameter()

specify

v

A

stored

procedure

that

contains

SQL

queries

that

leaves

open

cursors

on

the

result

sets

that

it

generates

(result

sets

are

accessible

when

a

stored

procedure

has

finished

execution

if

cursors

on

these

result

sets

remain

open)

See

“Using

arrays

to

pass

parameter

values”

on

page

414

and

“Returning

result

sets

from

stored

procedures”

on

page

431

for

more

information.

After

you

completely

process

a

result

set,

call

SQLMoreResults()

to

determine

if

another

result

set

is

available.

When

you

call

SQLMoreResults(),

this

function

discards

rows

that

were

not

fetched

in

the

current

result

set

by

closing

the

cursor.

If

another

result

set

is

available

SQLMoreResults()

returns

SQL_SUCCESS.

If

all

the

result

sets

have

been

processed,

SQLMoreResults()

returns

SQL_NO_DATA_FOUND.

If

you

call

SQLFreeStmt()

with

the

fOption

argument

set

to

SQL_CLOSE

or

you

call

SQLFreeHandle()

is

called

with

the

HandleType

argument

set

to

SQL_HANDLE_STMT,

these

functions

discard

all

pending

result

sets

for

the

statement

handle

on

which

they

are

called.

SQLMoreResults()

-

Check

for

more

result

sets

Chapter

4.

Functions

289

Return

codes

After

you

call

SQLMoreResults(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

144

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

144.

SQLMoreResults()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Additionally,

SQLMoreResults()

can

return

all

SQLSTATEs

that

are

associated

with

SQLExecDirect()

except

for

HY009,

HY014,

and

HY090.

See

Table

73

on

page

156.

for

these

additional

SQLSTATEs.

Restrictions

The

ODBC

specification

of

SQLMoreResults()

allows

row-counts

associated

with

the

execution

of

parameterized

INSERT,

UPDATE,

and

DELETE

statements

with

arrays

of

input

parameter

values

to

be

returned.

However,

DB2

ODBC

does

not

support

the

return

of

this

count

information.

Example

Figure

24

on

page

291

shows

an

application

that

uses

SQLMoreResults()

to

check

for

additional

result

sets.

SQLMoreResults()

-

Check

for

more

result

sets

290

ODBC

Guide

and

Reference

/*

...

*/

#define

NUM_CUSTOMERS

25

SQLCHAR

stmt[]

=

{

"WITH

"

/*

Common

Table

expression

(or

Define

Inline

View)

*/

"order

(ord_num,

cust_num,

prod_num,

quantity,

amount)

AS

"

"(

"

"SELECT

c.ord_num,

c.cust_num,

l.prod_num,

l.quantity,

"

"price(char(p.price,

’.’),

p.units,

char(l.quantity,

’.’))

"

"FROM

ord_cust

c,

ord_line

l,

product

p

"

"WHERE

c.ord_num

=

l.ord_num

AND

l.prod_num

=

p.prod_num

"

"AND

cust_num

=

CNUM(cast

(?

as

integer))

"

"),

"

"totals

(ord_num,

total)

AS

"

"(

"

"SELECT

ord_num,

sum(decimal(amount,

10,

2))

"

"FROM

order

GROUP

BY

ord_num

"

")

"

/*

The

’actual’

SELECT

from

the

inline

view

*/

"SELECT

order.ord_num,

cust_num,

prod_num,

quantity,

"

"DECIMAL(amount,10,2)

amount,

total

"

"FROM

order,

totals

"

"WHERE

order.ord_num

=

totals.ord_num

"

};

/*

Array

of

customers

to

get

list

of

all

orders

for

*/

SQLINTEGER

Cust[]=

{

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

110,

120,

130,

140,

150,

160,

170,

180,

190,

200,

210,

220,

230,

240,

250

};

#define

NUM_CUSTOMERS

sizeof(Cust)/sizeof(SQLINTEGER)

/*

Row-wise

(Includes

buffer

for

both

column

data

and

length)

*/

struct

{

SQLINTEGER

Ord_Num_L;

SQLINTEGER

Ord_Num;

SQLINTEGER

Cust_Num_L;

SQLINTEGER

Cust_Num;

SQLINTEGER

Prod_Num_L;

SQLINTEGER

Prod_Num;

SQLINTEGER

Quant_L;

SQLDOUBLE

Quant;

SQLINTEGER

Amount_L;

SQLDOUBLE

Amount;

SQLINTEGER

Total_L;

SQLDOUBLE

Total;

}

Ord[ROWSET_SIZE];

SQLUINTEGER

pirow

=

0;

SQLUINTEGER

pcrow;

SQLINTEGER

i;

SQLINTEGER

j;

/*

...

*/

Figure

24.

An

application

that

checks

for

additional

result

sets

(Part

1

of

2)

SQLMoreResults()

-

Check

for

more

result

sets

Chapter

4.

Functions

291

Related

functions

The

following

functions

relate

to

SQLMoreResults()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLMoreResults()

in

your

applications.

v

“SQLCloseCursor()

-

Close

a

cursor

and

discard

pending

results”

on

page

99

/*

Get

details

and

total

for

each

order

row-wise

*/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

rc

=

SQLParamOptions(hstmt,

NUM_CUSTOMERS,

&pirow);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

Cust,

0,

NULL);

rc

=

SQLExecDirect(hstmt,

stmt,

SQL_NTS);

/*

SQL_ROWSET_SIZE

sets

the

max

number

of

result

rows

to

fetch

each

time

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWSET_SIZE,

ROWSET_SIZE,

0);

/*

Set

size

of

one

row,

used

for

row-wise

binding

only

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_BIND_TYPE,

(void*)sizeof(Ord)/ROW_SIZE,

0);

/*

Bind

column

1

to

the

Ord_num

Field

of

the

first

row

in

the

array*/

rc

=

SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

&Ord[0].Ord_Num,

0,

&Ord[0].Ord_Num_L);

/*

Bind

remaining

columns

...

*/

/*

...

*/

/*

NOTE:

This

sample

assumes

that

an

order

never

has

more

rows

than

ROWSET_SIZE.

A

check

should

be

added

below

to

call

SQLExtendedFetch

multiple

times

for

each

result

set.

*/

do

/*

for

each

result

set

....

*/

{

rc

=

SQLExtendedFetch(hstmt,

SQL_FETCH_NEXT,

0,

&pcrow,

NULL);

if

(pcrow

>

0)

/*

if

1

or

more

rows

in

the

result

set

*/

{

i

=

j

=

0;

printf("**************************************\n");

printf("Orders

for

Customer:

%ld\n",

Ord[0].Cust_Num);

printf("**************************************\n");

while

(i

<

pcrow)

{

printf("\nOrder

#:

%ld\n",

Ord[i].Ord_Num);

printf("

Product

Quantity

Price\n");

printf("

------------\n");

j

=

i;

while

(Ord[j].Ord_Num

==

Ord[i].Ord_Num)

{

printf("

%8ld

%16.7lf

%12.2lf\n",

Ord[i].Prod_Num,

Ord[i].Quant,

Ord[i].Amount);

i++;

}

printf("

============\n");

printf("

%12.2lf\n",

Ord[j].Total);

}

/*

end

while

*/

}

/*

end

if

*/

}

while

(

SQLMoreResults(hstmt)

==

SQL_SUCCESS);

/*

...

*/

Figure

24.

An

application

that

checks

for

additional

result

sets

(Part

2

of

2)

SQLMoreResults()

-

Check

for

more

result

sets

292

ODBC

Guide

and

Reference

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLParamOptions()

-

Specify

an

input

array

for

a

parameter”

on

page

304

SQLMoreResults()

-

Check

for

more

result

sets

Chapter

4.

Functions

293

SQLNativeSql()

-

Get

native

SQL

text

Purpose

Table

145.

SQLNativeSql()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLNativeSql()

is

used

to

show

how

DB2

ODBC

interprets

vendor

escape

clauses.

If

the

original

SQL

string

passed

in

by

the

application

contains

vendor

escape

clause

sequences,

DB2

ODBC

passes

a

transformed

SQL

string

to

the

data

source

(with

vendor

escape

clauses

either

converted

or

discarded,

as

appropriate).

Syntax

SQLRETURN

SQLNativeSql

(SQLHDBC

hdbc,

SQLCHAR

FAR

*szSqlStrIn,

SQLINTEGER

cbSqlStrIn,

SQLCHAR

FAR

*szSqlStr,

SQLINTEGER

cbSqlStrMax,

SQLINTEGER

FAR

*pcbSqlStr);

Function

arguments

Table

146

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

146.

SQLNativeSql()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

Specifies

the

connection

handle.

SQLCHAR

*

szSqlStrIn

input

Points

to

a

buffer

that

contains

the

input

SQL

string.

SQLINTEGER

cbSqlStrIn

input

Specifies

the

length,

in

bytes,

of

the

buffer

to

which

the

szSqlStrIn

argument

points.

SQLCHAR

*

szSqlStr

output

Points

to

buffer

that

returns

the

transformed

output

string.

SQLINTEGER

cbSqlStrMax

input

Specifies

the

size

of

the

buffer

to

which

the

szSqlStr

argument

points.

SQLINTEGER

*

pcbSqlStr

output

Points

to

a

buffer

that

returns

the

total

number

of

bytes

(excluding

the

nul-terminator)

that

the

complete

output

string

requires.

If

this

string

requires

a

number

of

bytes

that

is

greater

than

or

equal

to

the

value

in

the

cbSqlStrMax

argument,

the

output

string

is

truncated

to

cbSqlStrMax

-

1

bytes.

Usage

Call

this

function

when

you

want

to

examine

or

display

a

transformed

SQL

string

that

is

passed

to

the

data

source

by

DB2

ODBC.

Translation

(mapping)

only

occurs

if

the

input

SQL

statement

string

contains

vendor

escape

clause

sequences.

For

more

information

on

vendor

escape

clause

sequences,

see

“Using

vendor

escape

clauses”

on

page

465

DB2

ODBC

can

only

detect

vendor

escape

clause

syntax

errors;

because

DB2

ODBC

does

not

pass

the

transformed

SQL

string

to

the

data

source

for

preparation,

SQLNativeSql()

-

Get

native

SQL

text

294

ODBC

Guide

and

Reference

syntax

errors

that

are

detected

by

the

DBMS

are

not

generated

for

the

input

SQL

string

at

this

time.

(The

statement

is

not

passed

to

the

data

source

for

preparation

because

the

preparation

can

potentially

cause

the

initiation

of

a

transaction.)

Return

codes

After

you

call

SQLNativeSql(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

147

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

147.

SQLNativeSql()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

output

string

is

truncated

because

the

buffer

to

which

the

szSqlStr

argument

points

is

not

large

enough

to

contain

the

entire

SQL

string.

The

argument

pcbSqlStr

contains

the

total

length,

in

bytes,

of

the

untruncated

SQL

string.

(SQLNativeSql()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08003

Connection

is

closed.

The

hdbc

argument

does

not

reference

an

open

database

connection.

37000

Invalid

SQL

syntax.

The

input

SQL

string

that

the

szSqlStrIn

argument

specifies

contains

a

syntax

error

in

the

escape

sequence.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

argument

szSqlStrIn

is

a

null

pointer.

v

The

argument

szSqlStr

is

a

null

pointer.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

argument

cbSqlStrIn

specifies

a

value

that

is

less

than

0

and

not

equal

to

SQL_NTS.

v

The

argument

cbSqlStrMax

specifies

a

value

that

is

less

than

0.

Restrictions

None.

Example

Figure

25

on

page

296

shows

an

application

that

uses

SQLNativeSql()

to

print

the

final

version

of

an

SQL

statement

that

contains

vendor

escape

clauses.

SQLNativeSql()

-

Get

native

SQL

text

Chapter

4.

Functions

295

Related

functions

No

functions

directly

relate

to

SQLNativeSql().

/*

...

*/

SQLCHAR

in_stmt[1024];

SQLCHAR

out_stmt[1024];

SQLSMALLINT

pcPar;

SQLINTEGER

indicator;

/*

...

*/

/*

Prompt

for

a

statement

to

prepare

*/

printf("Enter

an

SQL

statement:

\n");

gets(in_stmt);

/*

prepare

the

statement

*/

rc

=

SQLPrepare(hstmt,

in_stmt,

SQL_NTS);

SQLNumParams(hstmt,

&pcPar);

SQLNativeSql(hstmt,

in_stmt,

SQL_NTS,

out_stmt,

1024,

&indicator);

if

(indicator

==

SQL_NULL_DATA)

{

printf("Invalid

statement\n");

}

else

{

printf("

Input

Statement:

\n

%s

\n",

in_stmt);

printf("Output

Statement:

\n

%s

\n",

out_stmt);

printf("Number

of

Parameter

Markers

=

%ld\n",

pcPar);

}

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

/*

...

*/

Figure

25.

An

application

that

prints

a

translated

vendor

escape

clause

SQLNativeSql()

-

Get

native

SQL

text

296

ODBC

Guide

and

Reference

SQLNumParams()

-

Get

number

of

parameters

in

a

SQL

statement

Purpose

Table

148.

SQLNumParams()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLNumParams()

returns

the

number

of

parameter

markers

that

are

in

a

SQL

statement.

Syntax

SQLRETURN

SQLNumParams

(SQLHSTMT

hstmt,

SQLSMALLINT

FAR

*pcpar);

Function

arguments

Table

149

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

149.

SQLNumParams()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLSMALLINT

*

pcpar

output

Points

to

a

buffer

that

returns

the

number

of

parameters

in

the

statement.

Usage

You

call

this

function

to

determine

how

many

SQLBindParameter()

calls

are

necessary

for

the

SQL

statement

that

is

associated

with

a

statement

handle.

You

can

call

this

function

only

after

you

prepare

the

statement

associated

with

the

hstmt

argument.

If

the

statement

does

not

contain

any

parameter

markers,

the

buffer

to

which

the

pcpar

argument

points

is

set

to

0.

Return

codes

After

you

call

SQLNumParams(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

150

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

150.

SQLNumParams()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

SQLNumParams()

-

Get

number

of

parameters

in

a

SQL

statement

Chapter

4.

Functions

297

Table

150.

SQLNumParams()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

pcpar

argument

specifies

a

null

pointer.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

SQLNumParams()

is

called

before

SQLPrepare()

for

the

statement

to

which

the

hstmt

argument

refers.

v

SQLNumParams()

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

See

Figure

25

on

page

296.

Related

functions

The

following

functions

relate

to

SQLNumParams()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLNumParams()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

SQLNumParams()

-

Get

number

of

parameters

in

a

SQL

statement

298

ODBC

Guide

and

Reference

SQLNumResultCols()

-

Get

number

of

result

columns

Purpose

Table

151.

SQLNumResultCols()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLNumResultCols()

returns

the

number

of

columns

in

the

result

set

that

is

associated

with

the

input

statement

handle.

SQLPrepare()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

After

calling

this

function,

you

can

call

SQLColAttribute(),

or

one

of

the

bind

column

functions.

Syntax

SQLRETURN

SQLNumResultCols

(SQLHSTMT

hstmt,

SQLSMALLINT

FAR

*pccol);

Function

arguments

Table

152

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

152.

SQLNumResultCols()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLSMALLINT

*

pccol

output

Points

to

a

buffer

that

returns

the

number

of

columns

in

the

result

set.

Usage

You

call

this

function

to

determine

how

many

SQLBindCol()

or

SQLGetData()

calls

are

necessary

for

the

SQL

result

set

that

is

associated

with

a

statement

handle.

The

function

sets

the

output

argument

to

zero

if

the

last

statement

or

function

executed

on

the

input

statement

handle

did

not

generate

a

result

set.

Return

codes

After

you

call

SQLNumResultCols(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

153

on

page

300

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLNumResultCols()

-

Get

number

of

result

columns

Chapter

4.

Functions

299

Table

153.

SQLNumResultCols()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

pcccol

is

a

null

pointer.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

hstmt.

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

See

Figure

13

on

page

134.

Related

functions

The

following

functions

relate

to

SQLNumResultCols()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLNumResultCols()

in

your

applications.

v

“SQLBindCol()

-

Bind

a

column

to

an

application

variable”

on

page

78

v

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

v

“SQLDescribeCol()

-

Describe

column

attributes”

on

page

131

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLGetData()

-

Get

data

from

a

column”

on

page

207

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

SQLNumResultCols()

-

Get

number

of

result

columns

300

ODBC

Guide

and

Reference

SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed

Purpose

Table

154.

SQLParamData()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLParamData()

is

used

in

conjunction

with

SQLPutData()

to

send

long

data

in

pieces.

You

can

also

use

this

function

to

send

fixed-length

data.

For

a

description

of

the

exact

sequence

of

this

input

method,

see

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

Syntax

SQLRETURN

SQLParamData

(SQLHSTMT

hstmt,

SQLPOINTER

FAR

*prgbValue);

Function

arguments

Table

155

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

155.

SQLParamData()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

the

statement

handle.

SQLPOINTER

*

prgbValue

output

Points

to

the

buffer

that

the

rgbValue

argument

in

the

SQLBindParameter()

call

indicates.

Usage

SQLParamData()

returns

SQL_NEED_DATA

if

there

is

at

least

one

SQL_DATA_AT_EXEC

parameter

for

which

data

is

not

assigned.

This

function

returns

an

application

provided

value

in

prgbValue,

which

a

previous

SQLBindParameter()

call

supplies.

When

you

send

long

data

in

pieces,

you

call

SQLPutData()

one

or

more

times.

After

the

SQLPutData()

calls,

you

call

SQLParamData()

to

signal

all

data

for

the

current

parameter

is

sent

and

to

advance

to

the

next

SQL_DATA_AT_EXEC

parameter.

SQLParamData()

returns

SQL_SUCCESS

when

all

the

parameters

have

been

assigned

data

values

and

the

associated

statement

has

been

executed

successfully.

If

any

errors

occur

during

or

before

actual

statement

execution,

SQLParamData()

returns

SQL_ERROR.

SQLParamData()

returns

SQL_NEED_DATA

when

you

advance

to

the

next

SQL_DATA_AT_EXEC

parameter.

You

can

call

only

SQLPutData()

or

SQLCancel()

at

this

point

in

the

transaction;

all

other

function

calls

that

use

the

same

statement

handle

that

the

hstmt

argument

specifies

will

fail.

Additionally,

all

functions

that

reference

the

parent

connection

handle

of

the

statement

that

the

hstmt

argument

references

fail

if

they

change

any

attribute

or

state

of

that

connection.

Because

functions

that

reference

the

parent

connection

handle

fail,

do

not

use

the

following

functions

on

the

parent

connection

handle

during

an

SQL_NEED_DATA

sequence:

v

SQLAllocHandle()

v

SQLSetConnectAttr()

SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed

Chapter

4.

Functions

301

v

SQLNativeSql()

v

SQLEndTran()

These

functions

return

SQL_ERROR

with

SQLSTATE

HY010

and

the

processing

of

the

SQL_DATA_AT_EXEC

parameters

is

not

affected

if

these

functions

are

called

during

an

SQL_NEED_DATA

sequence.

Return

codes

After

you

call

SQLParamData(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

SQLParamData()

can

return

any

SQLSTATE

that

SQLExecDirect()

and

SQLExecute()

generate.

Table

156

lists

the

additional

SQLSTATEs

SQLParamData()

can

generate

with

a

description

and

explanation

for

each

value.

Table

156.

SQLParamData()

SQLSTATEs

SQLSTATE

Description

Explanation

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belongs

is

rolled

back

due

to

a

deadlock

or

timeout.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

SQLParamData()

is

called

out

of

sequence.

This

call

is

only

valid

after

an

SQLExecDirect()

or

an

SQLExecute(),

or

after

an

SQLPutData()

call.

v

SQLParamData()

is

called

after

an

SQLExecDirect()

or

an

SQLExecute()

call,

but

no

SQL_DATA_AT_EXEC

parameters

require

processing.

Restrictions

None.

Example

See

Figure

19

on

page

213.

Related

functions

The

following

functions

relate

to

SQLParamData()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLParamData()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLCancel()

-

Cancel

statement”

on

page

97

SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed

302

ODBC

Guide

and

Reference

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLPutData()

-

Pass

a

data

value

for

a

parameter”

on

page

335

v

“SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer”

on

page

364

SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed

Chapter

4.

Functions

303

SQLParamOptions()

-

Specify

an

input

array

for

a

parameter

Purpose

Table

157.

SQLParamOptions()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

No

No

SQLParamOptions()

enables

you

to

set

multiple

values

at

one

time

for

each

bound

parameter.

This

function

allows

the

application

to

perform

batch

processing

of

the

same

SQL

statement

with

one

set

of

SQLPrepare(),

SQLExecute(),

and

SQLBindParameter()

calls.

Syntax

SQLRETURN

SQLParamOptions

(SQLHSTMT

hstmt,

SQLUINTEGER

crow,

SQLUINTEGER

FAR

*pirow);

Function

arguments

Table

158

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

158.

SQLParamOptions()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Specifies

a

statement

handle.

SQLUINTEGER

crow

input

Specifies

the

number

of

values

for

each

parameter.

If

this

value

is

greater

than

1,

then

the

rgbValue

argument

in

SQLBindParameter()

points

to

an

array

of

parameter

values,

and

the

pcbValue

argument

points

to

an

array

of

lengths.

SQLUINTEGER

*

pirow

output

(deferred)

Points

to

a

buffer

for

the

current

parameter

array

index.

As

each

set

of

parameter

values

is

processed,

this

argument

is

set

to

the

array

index

of

that

set.

If

a

statement

fails,

this

value

can

be

used

to

determine

how

many

statements

were

successfully

processed.

No

value

is

returned

if

the

pirow

argument

specifies

a

null

pointer.

Usage

Use

SQLParamOptions()

to

prepare

a

statement,

and

to

execute

that

statement

repeatedly

for

an

array

of

parameter

markers.

As

a

statement

executes,

the

buffer

to

which

the

pirow

argument

points

is

set

to

the

index

of

the

current

array

of

parameter

values.

If

an

error

occurs

during

execution

for

a

particular

element

in

the

array,

execution

halts

and

SQLExecute(),

SQLExecDirect(),

or

SQLParamData()

return

SQL_ERROR.

The

output

argument

pirow

points

to

a

buffer

that

returns

how

many

sets

of

parameters

were

successfully

processed.

If

the

statement

that

is

processed

is

a

query,

pirow

points

to

a

buffer

that

returns

the

array

index

that

is

associated

with

the

current

result

set,

which

returned

by

SQLMoreResults().

This

value

increments

each

time

SQLMoreResults()

is

called.

SQLParamOptions()

-

Specify

an

input

array

for

a

parameter

304

ODBC

Guide

and

Reference

Use

the

value

in

the

buffer

to

which

the

pirow

argument

points

for

the

following

cases:

v

When

SQLParamData()

returns

SQL_NEED_DATA,

use

the

value

to

determine

which

set

of

parameters

need

data.

v

When

SQLExecute()

or

SQLExecDirect()

returns

an

error,

use

the

value

to

determine

which

element

in

the

parameter

value

array

failed.

v

When

SQLExecute(),

SQLExecDirect(),

SQLParamData(),

or

SQLPutData()

succeeds,

the

value

is

set

to

the

value

that

the

crow

argument

specifies

to

indicate

that

all

elements

of

the

array

have

been

processed

successfully.

Return

codes

After

you

call

SQLParamOptions(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

159

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

159.

SQLParamOptions()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY107

Row

value

out

of

range.

The

value

in

the

crow

argument

is

less

than

1.

Restrictions

Although

this

function

is

deprecated

in

ODBC

3.0,

this

function

is

not

deprecated

in

DB2

ODBC.

DB2

ODBC

does

not

support

the

statement

attributes

that

replace

SQLParamOptions()

in

ODBC

3.0.

Example

See

Figure

44

on

page

417.

Related

functions

The

following

functions

relate

to

SQLParamOptions()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLParamOptions()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLMoreResults()

-

Check

for

more

result

sets”

on

page

289

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLParamOptions()

-

Specify

an

input

array

for

a

parameter

Chapter

4.

Functions

305

SQLPrepare()

-

Prepare

a

statement

Purpose

Table

160.

SQLPrepare()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLPrepare()

associates

an

SQL

statement

with

the

input

statement

handle

and

sends

the

statement

to

the

DBMS

to

be

prepared.

The

application

can

reference

this

prepared

statement

by

passing

the

statement

handle

to

other

functions.

If

the

statement

handle

has

been

previously

used

with

a

query

statement

(or

any

function

that

returns

a

result

set),

SQLCloseCursor()

must

be

called

to

close

the

cursor,

before

calling

SQLPrepare().

Syntax

SQLRETURN

SQLPrepare

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szSqlStr,

SQLINTEGER

cbSqlStr);

Function

arguments

Table

161

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

161.

SQLPrepare()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

There

must

not

be

an

open

cursor

associated

with

hstmt.

SQLCHAR

*

szSqlStr

input

SQL

statement

string.

SQLINTEGER

cbSqlStr

input

The

length,

in

bytes,

of

the

contents

of

the

szSqlStr

argument.

This

must

be

set

to

either

the

exact

length

of

the

SQL

statement

in

szSqlstr,

or

to

SQL_NTS

if

the

statement

text

is

nul-terminated.

Usage

If

the

SQL

statement

text

contains

vendor

escape

clause

sequences,

DB2

ODBC

first

modifies

the

SQL

statement

text

to

the

appropriate

DB2

specific

format

before

submitting

it

to

the

database

for

preparation.

If

the

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clause

sequences

(see

“Using

vendor

escape

clauses”

on

page

465);

then

the

SQL_NOSCAN

statement

attribute

should

be

set

to

SQL_NOSCAN_ON

at

the

statement

level

so

that

DB2

ODBC

does

not

perform

a

scan

for

any

vendor

escape

clauses.

When

a

statement

is

prepared

using

SQLPrepare(),

the

application

can

request

information

about

the

format

of

the

result

set

(if

the

statement

is

a

query)

by

calling:

v

SQLNumResultCols()

v

SQLDescribeCol()

v

SQLColAttribute()

SQLPrepare()

-

Prepare

a

statement

306

ODBC

Guide

and

Reference

The

SQL

statement

string

can

contain

parameter

markers

and

SQLNumParams()

can

be

called

to

determine

the

number

of

parameter

markers

in

the

statement.

A

parameter

marker

is

represented

by

a

question

mark

character

(?)

that

indicates

a

position

in

the

statement

where

an

application

supplied

value

is

to

be

substituted

when

SQLExecute()

is

called.

The

bind

parameter

functions,

SQLBindParameter()

is

used

to

bind

(associate)

application

values

with

each

parameter

marker

and

to

indicate

if

any

data

conversion

should

be

performed

at

the

time

the

data

is

transferred.

All

parameters

must

be

bound

before

calling

SQLExecute().

For

more

information

see

“SQLExecute()

-

Execute

a

statement”

on

page

160.

After

the

application

processes

the

results

from

the

SQLExecute()

call,

it

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

The

SQL

statement

cannot

be

a

COMMIT

or

ROLLBACK.

SQLEndTran()

must

be

called

to

issue

COMMIT

or

ROLLBACK.

For

more

information

about

SQL

statements,

that

DB2

UDB

for

z/OS

supports,

see

Table

1

on

page

4.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

the

cursor

referenced

by

the

statement

must

be

defined

on

a

separate

statement

handle

under

the

same

connection

handle

and

same

isolation

level.

Return

codes

After

you

call

SQLPrepare(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

162

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

162.

SQLPrepare()

SQLSTATEs

SQLSTATE

Description

Explanation

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

szSqlStr

contains

an

UPDATE

or

DELETE

statement

which

did

not

contain

a

WHERE

clause.

21S01

Insert

value

list

does

not

match

column

list.

szSqlStr

contains

an

INSERT

statement

and

the

number

of

values

to

be

inserted

did

not

match

the

degree

of

the

derived

table.

21S02

Degrees

of

derived

table

does

not

match

column

list.

szSqlStr

contains

a

CREATE

VIEW

statement

and

the

number

of

names

specified

is

not

the

same

degree

as

the

derived

table

defined

by

the

query

specification.

24000

Invalid

cursor

state.

A

cursor

is

already

opened

on

the

statement

handle.

34000

Invalid

cursor

name.

szSqlStr

contains

a

positioned

DELETE

or

a

positioned

UPDATE

and

the

cursor

referenced

by

the

statement

being

executed

is

not

open.

SQLPrepare()

-

Prepare

a

statement

Chapter

4.

Functions

307

Table

162.

SQLPrepare()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

37xxx1

Invalid

SQL

syntax.

szSqlStr

contains

one

or

more

of

the

following:

v

A

COMMIT

v

A

ROLLBACK

v

An

SQL

statement

that

the

connected

database

server

cannot

prepare

v

A

statement

containing

a

syntax

error

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belongs

is

rolled

back

due

to

deadlock

or

timeout.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

42xxx

1

Syntax

error

or

access

rule

violation

These

SQLSTATEs

indicate

one

of

the

following

errors:

v

For

425xx,

the

authorization

ID

does

not

have

permission

to

execute

the

SQL

statement

that

the

szSqlStr

argument

contains.

v

For

42xxx,

a

variety

of

syntax

or

access

problems

with

the

statement

occur.

42S01

Database

object

already

exists.

szSqlStr

contains

a

CREATE

TABLE

or

CREATE

VIEW

statement

and

the

table

name

or

view

name

specified

already

exists.

42S02

Database

object

does

not

exist.

szSqlStr

contains

an

SQL

statement

that

references

a

table

name

or

a

view

name

that

does

not

exist.

42S11

Index

already

exists.

szSqlStr

contains

a

CREATE

INDEX

statement

and

the

specified

index

name

already

exists.

42S12

Index

not

found.

szSqlStr

contains

a

DROP

INDEX

statement

and

the

specified

index

name

does

not

exist.

42S21

Column

already

exists.

szSqlStr

contains

an

ALTER

TABLE

statement

and

the

column

specified

in

the

ADD

clause

is

not

unique

or

identifies

an

existing

column

in

the

base

table.

42S22

Column

not

found.

szSqlStr

contains

an

SQL

statement

that

references

a

column

name

that

does

not

exist.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

szSqlStr

is

a

null

pointer.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

argument

cbSqlStr

is

less

than

1,

but

not

equal

to

SQL_NTS.

Note:

1.

xxx

refers

to

any

SQLSTATE

with

that

class

code.

For

example,

37xxx

refers

to

any

SQLSTATE

with

a

class

code

of

’37’.

Not

all

DBMSs

report

all

of

the

above

diagnostic

messages

at

prepare

time.

Therefore,

an

application

must

also

be

able

to

handle

these

conditions

when

calling

SQLExecute().

SQLPrepare()

-

Prepare

a

statement

308

ODBC

Guide

and

Reference

Restrictions

None.

Example

Figure

26

shows

an

application

that

uses

SQLPrepare()

to

prepare

an

SQL

statement.

This

same

SQL

statement

is

then

executed

twice,

each

time

with

different

parameter

values.

/**/

/*

Prepare

a

query

and

execute

that

query

twice

*/

/*

specifying

a

unique

value

for

the

parameter

marker.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

*pDSN

=

"STLEC1";

SWORD

cbCursor;

SDWORD

cbValue1;

SDWORD

cbValue2;

char

employee

[30];

int

salary

=

0;

int

param_salary

=

30000;

char

*stmt

=

"SELECT

NAME,

SALARY

FROM

EMPLOYEE

WHERE

SALARY

>

?";

(void)

printf

("****

Entering

CLIP07.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(rc

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if

(rc

!=

SQL_SUCCESS

)

//

Could

not

get

a

connect

handle

goto

dberror;

Figure

26.

An

application

that

prepares

an

SQL

statement

before

execution

(Part

1

of

5)

SQLPrepare()

-

Prepare

a

statement

Chapter

4.

Functions

309

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

rc

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if

(rc

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle

(SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Prepare

the

query

for

multiple

execution

within

current

*/

/*

transaction.

Note

that

query

is

collapsed

when

transaction

*/

/*

is

committed

or

rolled

back.

*/

/***/

rc

=

SQLPrepare

(hStmt,

(SQLCHAR

*)

stmt,

strlen(stmt));

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

PREPARE

OF

QUERY

FAILED.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

employee

name

1,

SQL_C_CHAR,

employee,

sizeof(employee),

&cbValue1);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

BIND

OF

NAME

FAILED.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

employee

salary

2,

SQL_C_LONG,

&salary,

0,

&cbValue2);

if

(rc

!=

SQL_SUCCESS)

Figure

26.

An

application

that

prepares

an

SQL

statement

before

execution

(Part

2

of

5)

SQLPrepare()

-

Prepare

a

statement

310

ODBC

Guide

and

Reference

{

(void)

printf

("****

BIND

OF

SALARY

FAILED.\n");

goto

dberror;

}

/***/

/*

Bind

parameter

to

replace

’?’

in

query.

This

has

an

initial

*/

/*

value

of

30000.

*/

/***/

rc

=

SQLBindParameter

(hStmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

¶m_salary,

0,

NULL);

/***/

/*

Execute

prepared

statement

to

generate

answer

set.

*/

/***/

rc

=

SQLExecute

(hStmt);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

EXECUTE

OF

QUERY

FAILED.\n");

goto

dberror;

}

/***/

/*

Answer

set

is

available

--

Fetch

rows

and

print

employees

*/

/*

and

salary.

*/

/***/

(void)

printf

("****

Employees

whose

salary

exceeds

%d

follow.\n\n",

param_salary);

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Employee

Name

%s

with

salary

%d.\n",

employee,

salary);

}

/***/

/*

Close

query

note

that

query

is

still

prepared.

Then

change*/

/*

bound

parameter

value

to

100000.

Then

re-execute

query.

*/

/***/

rc

=

SQLCloseCursor(hStmt);

param_salary

=

100000;

rc

=

SQLExecute

(hStmt);

if

(rc

!=

SQL_SUCCESS)

Figure

26.

An

application

that

prepares

an

SQL

statement

before

execution

(Part

3

of

5)

SQLPrepare()

-

Prepare

a

statement

Chapter

4.

Functions

311

{

(void)

printf

("****

EXECUTE

OF

QUERY

FAILED.\n");

goto

dberror;

}

/***/

/*

Answer

set

is

available

--

Fetch

rows

and

print

employees

*/

/*

and

salary.

*/

/***/

(void)

printf

("****

Employees

whose

salary

exceeds

%d

follow.\n\n",

param_salary);

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Employee

Name

%s

with

salary

%d.\n",

employee,

salary);

}

/***/

/*

Deallocate

statement

handles

--

statement

is

no

longer

in

a

*/

/*

prepared

state.

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hStmt);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

rc

=

SQLDisconnect(hDbc);

if

(rc

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Deallocate

connection

handle

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(rc

!=

SQL_SUCCESS)

goto

dberror;

Figure

26.

An

application

that

prepares

an

SQL

statement

before

execution

(Part

4

of

5)

SQLPrepare()

-

Prepare

a

statement

312

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLPrepare()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLPrepare()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

v

“SQLDescribeCol()

-

Describe

column

attributes”

on

page

131

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLNumParams()

-

Get

number

of

parameters

in

a

SQL

statement”

on

page

297

v

“SQLNumResultCols()

-

Get

number

of

result

columns”

on

page

299

v

“SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer”

on

page

364

/***/

/*

Free

environment

handle

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

if

(rc

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP07.\n\n");

return

RETCODE;

}

Figure

26.

An

application

that

prepares

an

SQL

statement

before

execution

(Part

5

of

5)

SQLPrepare()

-

Prepare

a

statement

Chapter

4.

Functions

313

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

Purpose

Table

163.

SQLPrimaryKeys()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLPrimaryKeys()

returns

a

list

of

column

names

that

comprise

the

primary

key

for

a

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax

SQLRETURN

SQLPrimaryKeys

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName);

Function

arguments

Table

164

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

164.

SQLPrimaryKeys()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szCatalogName

input

Catalog

qualifier

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbCatalogName

input

The

length,

in

bytes,

of

szCatalogName.

SQLCHAR

*

szSchemaName

input

Schema

qualifier

of

table

name.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

szTableName.

Usage

SQLPrimaryKeys()

returns

the

primary

key

columns

from

a

single

table.

Search

patterns

cannot

be

used

to

specify

the

schema

qualifier

or

the

table

name.

The

result

set

contains

the

columns

listed

in

Table

165

on

page

315,

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME

and

ORDINAL_POSITION.

Because

calls

to

SQLPrimaryKeys()

in

many

cases

map

to

a

complex

and,

thus,

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

314

ODBC

Guide

and

Reference

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

DB2

names

are

less

than

128,

you

can

always

choose

to

set

aside

128

characters

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

Table

165

lists

each

column

in

the

result

set

this

function

generates.

Table

165.

Columns

returned

by

SQLPrimaryKeys()

Column

number/name

Data

type

Description

1

TABLE_CAT

VARCHAR(128)

This

is

always

null.

2

TABLE_SCHEM

VARCHAR(128)

The

name

of

the

schema

containing

TABLE_NAME.

3

TABLE_NAME

VARCHAR(128)

NOT

NULL

Name

of

the

specified

table.

4

COLUMN_NAME

VARCHAR(128)

NOT

NULL

Primary

key

column

name.

5

KEY_SEQ

SMALLINT

NOT

NULL

Column

sequence

number

in

the

primary

key,

starting

with

1.

6

PK_NAME

VARCHAR(128)

Primary

key

identifier.

Contains

a

null

value

if

not

applicable

to

the

data

source.

The

column

names

used

by

DB2

ODBC

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLPrimaryKeys()

result

set

in

ODBC.

If

the

specified

table

does

not

contain

a

primary

key,

an

empty

result

set

is

returned.

Return

codes

After

you

call

SQLPrimaryKeys(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

166

on

page

316

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

Chapter

4.

Functions

315

Table

166.

SQLPrimaryKeys()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

already

open

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

SQL_NTS.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

27

on

page

317

shows

an

application

that

uses

SQLPrimaryKeys()

to

locate

a

primary

key

for

a

table,

and

calls

SQLColAttribute()

to

find

the

data

type

of

the

key.

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

316

ODBC

Guide

and

Reference

/*

...

*/

#include

<sqlcli1.h>

void

main()

{

SQLCHAR

rgbDesc_20];

SQLCHAR

szTableName_20];

SQLCHAR

szSchemaName_20];

SQLCHAR

rgbValue_20];

SQLINTEGER

pcbValue;

SQLHENV

henv;

SQLHDBC

hdbc;

SQLHSTMT

hstmt;

SQLSMALLINT

pscDesc;

SQLINTEGER

pdDesc;

SQLRETURN

rc;

/***/

/*

Initialization...

*/

/***/

if(

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv)!=

SQL_SUCCESS

)

{

fprintf(

stdout,

"Error

in

SQLAllocHandle\n"

);

exit(1);

}

if(

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc)!=

SQL_SUCCESS

)

{

fprintf(

stdout,

"Error

in

SQLAllocHandle\n"

);

exit(1);

}

if(

SQLConnect(

hdbc,

NULL,

SQL_NTS,

NULL,

SQL_NTS,

NULL,

SQL_NTS

)

!=

SQL_SUCCESS

)

{

fprintf(

stdout,

"Error

in

SQLConnect\n"

);

exit(1);

}

if(

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt)!=

SQL_SUCCESS

)

{

fprintf(

stdout,

"Error

in

SQLAllocHandle\n"

);

exit(1);

}

Figure

27.

An

application

that

locates

a

table’s

primary

key

(Part

1

of

3)

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

Chapter

4.

Functions

317

/***/

/*

Get

primary

key

for

table

’myTable’

by

using

SQLPrimaryKeys

*/

/***/

rc

=

SQLPrimaryKeys(

hstmt,

NULL,

SQL_NTS,

(SQLCHAR*)szSchemaName,

SQL_NTS,

(SQLCHAR*)szTableName,

SQL_NTS

);

if(

rc

!=

SQL_SUCCESS

)

{

goto

exit;

}

/*

*

Because

all

we

need

is

the

ordinal

position,

we’ll

bind

column

5

from

*

the

result

set.

*/

rc

=

SQLBindCol(

hstmt,

5,

SQL_C_CHAR,

(SQLPOINTER)rgbValue,

20,

&pcbValue

);

if(

rc

!=

SQL_SUCCESS

)

{

goto

exit;

}

/*

*

Fetch

data...

*/

if(

SQLFetch(

hstmt

)

!=

SQL_SUCCESS

)

{

goto

exit;

}

/***/

/*

Get

data

type

for

that

column

by

calling

SQLColAttribute().

*/

/***/

rc

=

SQLColAttribute(

hstmt,

pcbValue,

SQL_COLUMN_TYPE,

rgbDesc,

20,

&pcbDesc,

&pfDesc

);

if(

rc

!=

SQL_SUCCESS

)

{

goto

exit;

}

/*

*

Display

the

data

type.

*/

fprintf(

stdout,

"Data

type

==>

%s\n",

rgbDesc

);

Figure

27.

An

application

that

locates

a

table’s

primary

key

(Part

2

of

3)

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

318

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLPrimaryKeys()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLPrimaryKeys()

in

your

applications.

v

“SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns”

on

page

178

v

“SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table”

on

page

381

exit:

/***/

/*

Clean

up

the

environment...

*/

/***/

SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_ROLLBACK);

SQLDisconnect(

hdbc

);

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

}

Figure

27.

An

application

that

locates

a

table’s

primary

key

(Part

3

of

3)

SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table

Chapter

4.

Functions

319

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Purpose

Table

167.

SQLProcedureColumns()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLProcedureColumns()

returns

a

list

of

input

and

output

parameters

associated

with

a

procedure.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax

SQLRETURN

SQLProcedureColumns

(

SQLHSTMT

hstmt,

SQLCHAR

FAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLCHAR

FAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLCHAR

FAR

*szProcName,

SQLSMALLINT

cbProcName,

SQLCHAR

FAR

*szColumnName,

SQLSMALLINT

cbColumnName);

Function

arguments

Table

168

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

168.

SQLProcedureColumns()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szProcCatalog

input

Catalog

qualifier

of

a

three-part

procedure

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbProcCatalog

input

The

length,

in

bytes,

of

szProcCatalog.

This

must

be

set

to

0.

SQLCHAR

*

szProcSchema

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

If

you

do

not

want

to

qualify

the

result

set

by

schema

name,

use

a

null

pointer

or

a

zero

length

string

for

this

argument.

SQLSMALLINT

cbProcSchema

input

The

length,

in

bytes,

of

szProcSchema.

SQLCHAR

*

szProcName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

procedure

name.

If

you

do

not

want

to

qualify

the

result

set

by

procedure

name,

use

a

null

pointer

or

a

zero

length

string

for

this

argument.

SQLSMALLINT

cbProcName

input

The

length,

in

bytes,

of

szProcName.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

320

ODBC

Guide

and

Reference

Table

168.

SQLProcedureColumns()

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

szColumnName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

parameter

name.

This

argument

is

to

be

used

to

further

qualify

the

result

set

already

restricted

by

specifying

a

non-empty

value

for

szProcName

and/or

szProcSchema.

If

you

do

not

want

to

qualify

the

result

set

by

parameter

name,

use

a

null

pointer

or

a

zero

length

string

for

this

argument.

SQLSMALLINT

cbColumnName

input

The

length,

in

bytes,

of

szColumnName.

For

more

information

about

valid

search

patterns,

see

“Querying

catalog

information”

on

page

407.

Usage

Registered

stored

procedures

are

defined

in

the

SYSIBM.SYSROUTINES

catalog

table.

For

servers

that

do

not

provide

facilities

for

a

stored

procedure

catalog,

this

function

returns

an

empty

result

set.

DB2

ODBC

returns

information

on

the

input,

input/output,

and

output

parameters

associated

with

the

stored

procedure,

but

cannot

return

information

on

the

descriptor

information

for

any

result

sets

returned.

SQLProcedureColumns()

returns

the

information

in

a

result

set,

ordered

by

PROCEDURE_CAT,

PROCEDURE_SCHEM,

PROCEDURE_NAME,

and

COLUMN_TYPE.

Table

169

on

page

322

lists

the

columns

in

the

result

set.

Because

calls

to

SQLProcedureColumns()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

DB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Applications

should

be

aware

that

columns

beyond

the

last

column

might

be

defined

in

future

releases.

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

Table

169

on

page

322

lists

these

columns.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Chapter

4.

Functions

321

|
|
|

Table

169.

Columns

returned

by

SQLProcedureColumns()

Column

number/name

Data

type

Description

1

PROCEDURE_CAT

VARCHAR(128)

The

is

always

null.

2

PROCEDURE_SCHEM

VARCHAR(128)

The

name

of

the

schema

containing

PROCEDURE_NAME.

(This

is

also

NULL

for

DB2

UDB

for

z/OS

SQLProcedureColumns()

result

sets.)

3

PROCEDURE_NAME

VARCHAR(128)

Name

of

the

procedure.

4

COLUMN_NAME

VARCHAR(128)

Name

of

the

parameter.

5

COLUMN_TYPE

SMALLINT

NOT

NULL

Identifies

the

type

information

associated

with

this

row.

The

values

can

be:

v

SQL_PARAM_TYPE_UNKNOWN:

the

parameter

type

is

unknown.1

v

SQL_PARAM_INPUT:

this

parameter

is

an

input

parameter.

v

SQL_PARAM_INPUT_OUTPUT:

this

parameter

is

an

input/output

parameter.

v

SQL_PARAM_OUTPUT:

this

parameter

is

an

output

parameter.

v

SQL_RETURN_VALUE:

the

procedure

column

is

the

return

value

of

the

procedure.1

v

SQL_RESULT_COL:

this

parameter

is

actually

a

column

in

the

result

set.1

Requirement:

For

SQL_PARAM_OUTPUT

and

SQL_RETURN_VALUE

support,

you

must

have

ODBC

2.0

or

higher.

Note:

1.

These

values

are

not

returned.

6

DATA_TYPE

SMALLINT

NOT

NULL

SQL

data

type.

7

TYPE_NAME

VARCHAR(128)

NOT

NULL

Character

string

representing

the

name

of

the

data

type

corresponding

to

DATA_TYPE.

8

COLUMN_SIZE

INTEGER

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

bytes;

if

it

is

a

graphic

(DBCS)

string,

this

is

the

number

of

double-byte

characters

for

the

parameter.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

bytes

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

See

Table

234

on

page

509.

9

BUFFER_LENGTH

INTEGER

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

parameter

if

SQL_C_DEFAULT

is

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

excludes

any

nul-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

Table

236

on

page

511.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

322

ODBC

Guide

and

Reference

Table

169.

Columns

returned

by

SQLProcedureColumns()

(continued)

Column

number/name

Data

type

Description

10

DECIMAL_DIGITS

SMALLINT

The

scale

of

the

parameter.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

Table

235

on

page

510.

11

NUM_PREC_RADIX

SMALLINT

Either

10

or

2

or

NULL.

If

DATA_TYPE

is

an

approximate

numeric

data

type,

this

column

contains

the

value

2,

then

the

COLUMN_SIZE

column

contains

the

number

of

bits

allowed

in

the

parameter.

If

DATA_TYPE

is

an

exact

numeric

data

type,

this

column

contains

the

value

10

and

the

COLUMN_SIZE

and

DECIMAL_DIGITS

columns

contain

the

number

of

decimal

digits

allowed

for

the

parameter.

For

numeric

data

types,

the

DBMS

can

return

a

NUM_PREC_RADIX

of

either

10

or

2.

NULL

is

returned

for

data

types

where

radix

is

not

applicable.

12

NULLABLE

SMALLINT

NOT

NULL

SQL_NO_NULLS

if

the

parameter

does

not

accept

NULL

values.

SQL_NULLABLE

if

the

parameter

accepts

NULL

values.

13

REMARKS

VARCHAR(254)

Might

contain

descriptive

information

about

the

parameter.

14

COLUMN_DEF

VARCHAR(254)

The

column’s

default

value.

If

the

default

value

is:

v

A

numeric

literal,

this

column

contains

the

character

representation

of

the

numeric

literal

with

no

enclosing

single

quotes.

v

A

character

string,

this

column

is

that

string

enclosed

in

single

quotes.

v

A

pseudo-literal,

such

as

for

DATE,

TIME,

and

TIMESTAMP

columns,

this

column

contains

the

keyword

of

the

pseudo-literal

(for

example,

CURRENT

DATE)

with

no

enclosing

single

quotes.

v

NULL,

this

column

returns

the

word

NULL,

with

no

enclosing

single

quotes.

If

the

default

value

cannot

be

represented

without

truncation,

this

column

contains

TRUNCATED

with

no

enclosing

single

quotes.

If

no

default

value

is

specified,

this

column

is

NULL.

15

SQL_DATA_TYPE

SMALLINT

NOT

NULL

The

SQL

data

type.

This

columns

is

the

same

as

the

DATA_TYPE

column.

For

datetime

data

types,

the

SQL_DATA_TYPE

field

in

the

result

set

is

SQL_DATETIME,

and

the

SQL_DATETIME_SUB

field

returns

the

subcode

for

the

specific

datetime

data

type

(SQL_CODE_DATE,

SQL_CODE_TIME

or

SQL_CODE_TIMESTAMP).

16

SQL_DATETIME_SUB

SMALLINT

The

subtype

code

for

datetime

data

types:

v

SQL_CODE_DATE

v

SQL_CODE_TIME

v

SQL_CODE_TIMESTAMP

For

all

other

data

types,

this

column

returns

a

null

value.

17

CHAR_OCTET_LENGTH

INTEGER

The

maximum

length

in

bytes

of

a

character

data

type

column.

For

all

other

data

types,

this

column

returns

a

null

value.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Chapter

4.

Functions

323

Table

169.

Columns

returned

by

SQLProcedureColumns()

(continued)

Column

number/name

Data

type

Description

18

ORDINAL_POSITION

INTEGER

NOT

NULL

Contains

the

ordinal

position

of

the

parameter

given

by

COLUMN_NAME

in

this

result

set.

This

is

the

ordinal

position

of

the

argument

provided

on

the

CALL

statement.

The

leftmost

argument

has

an

ordinal

position

of

1.

19

IS_NULLABLE

VARCHAR(128)

One

of

the

following:

v

″NO″,

if

the

column

does

not

include

null

values

v

″YES″,

if

the

column

can

include

null

values

v

Zero-length

string

if

nullability

is

unknown.

The

value

returned

for

this

column

is

different

than

the

value

returned

for

the

NULLABLE

column.

(See

the

description

of

the

NULLABLE

column.)

The

column

names

used

by

DB2

ODBC

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedureColumns()

result

set

in

ODBC.

Return

codes

After

you

call

SQLProcedureColumns(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

170

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

170.

SQLProcedureColumns()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

opened

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

42601

PARMLIST

syntax

error.

The

PARMLIST

value

in

the

stored

procedures

catalog

table

contains

a

syntax

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

SQL_NTS.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

324

ODBC

Guide

and

Reference

Table

170.

SQLProcedureColumns()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

procedure

name.

v

The

connected

server

does

not

support

schema

as

a

qualifier

for

procedure

name.

Restrictions

SQLProcedureColumns()

does

not

return

information

about

the

attributes

of

result

sets

that

stored

procedures

can

return.

If

an

application

is

connected

to

a

DB2

server

that

does

not

provide

support

for

stored

procedures,

or

for

a

stored

procedure

catalog,

SQLProcedureColumns()

returns

an

empty

result

set.

Example

Figure

28

on

page

326

shows

an

application

that

retrieves

input,

input/output,

and

output

parameters

associated

with

a

procedure.

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Chapter

4.

Functions

325

/**/

/*

Invoke

SQLProcedureColumns

and

enumerate

all

rows

retrieved.

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<sqlca.h>

#include

"sqlcli1.h"

int

main(

)

{

SQLHENV

hEnv

=

SQL_NULL_HENV;

SQLHDBC

hDbc

=

SQL_NULL_HDBC;

SQLHSTMT

hStmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

RETCODE

=

0;

char

*pDSN

=

"STLEC1";

char

procedure_name

[20];

char

parameter_name

[20];

char

ptype

[20];

SQLSMALLINT

parameter_type

=

0;

SQLSMALLINT

data_type

=

0;

char

type_name

[20];

SWORD

cbCursor;

SDWORD

cbValue3;

SDWORD

cbValue4;

SDWORD

cbValue5;

SDWORD

cbValue6;

SDWORD

cbValue7;

char

ProcCatalog

[20]

=

{0};

char

ProcSchema

[20]

=

{0};

char

ProcName

[20]

=

{"DOIT%"};

char

ColumnName

[20]

=

{"P%"};

SQLSMALLINT

cbProcCatalog

=

0;

SQLSMALLINT

cbProcSchema

=

0;

SQLSMALLINT

cbProcName

=

strlen(ProcName);

SQLSMALLINT

cbColumnName

=

strlen(ColumnName);

Figure

28.

An

application

that

retrieves

parameters

associated

with

a

procedure

(Part

1

of

5)

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

326

ODBC

Guide

and

Reference

(void)

printf

("****

Entering

CLIP12.\n\n");

/***/

/*

Allocate

environment

handle

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&hEnv);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Allocate

connection

handle

to

DSN

*/

/***/

RETCODE

=

SQLAllocHandle(SQL_HANDLE_DBC,

hEnv,

&hDbc);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Could

not

get

a

connect

handle

goto

dberror;

/***/

/*

CONNECT

TO

data

source

(STLEC1)

*/

/***/

RETCODE

=

SQLConnect(hDbc,

//

Connect

handle

(SQLCHAR

*)

pDSN,

//

DSN

SQL_NTS,

//

DSN

is

nul-terminated

NULL,

//

Null

UID

0

,

NULL,

//

Null

Auth

string

0);

if(

RETCODE

!=

SQL_SUCCESS

)

//

Connect

failed

goto

dberror;

/***/

/*

Allocate

statement

handles

*/

/***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hDbc,

&hStmt);

if

(rc

!=

SQL_SUCCESS)

goto

exit;

/***/

/*

Invoke

SQLProcedureColumns

and

retrieve

all

rows

within

*/

/*

answer

set.

*/

/***/

rc

=

SQLProcedureColumns

(hStmt

,

(SQLCHAR

*)

ProcCatalog,

cbProcCatalog

,

(SQLCHAR

*)

ProcSchema

,

cbProcSchema

,

(SQLCHAR

*)

ProcName

,

cbProcName

,

(SQLCHAR

*)

ColumnName

,

cbColumnName);

Figure

28.

An

application

that

retrieves

parameters

associated

with

a

procedure

(Part

2

of

5)

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Chapter

4.

Functions

327

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

SQLProcedureColumns

Failed.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

procedure_name

3,

SQL_C_CHAR,

procedure_name,

sizeof(procedure_name),

&cbValue3);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

procedure_name

Failed.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

parameter_name

4,

SQL_C_CHAR,

parameter_name,

sizeof(parameter_name),

&cbValue4);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

parameter_name

Failed.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

parameter_type

5,

SQL_C_SHORT,

¶meter_type,

0,

&cbValue5);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

parameter_type

Failed.\n");

goto

dberror;

}

rc

=

SQLBindCol

(hStmt,

//

bind

SQL

data

type

6,

SQL_C_SHORT,

&data_type,

0,

&cbValue6);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

data_type

Failed.\n");

goto

dberror;

}

Figure

28.

An

application

that

retrieves

parameters

associated

with

a

procedure

(Part

3

of

5)

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

328

ODBC

Guide

and

Reference

rc

=

SQLBindCol

(hStmt,

//

bind

type_name

7,

SQL_C_CHAR,

type_name,

sizeof(type_name),

&cbValue7);

if

(rc

!=

SQL_SUCCESS)

{

(void)

printf

("****

Bind

of

type_name

Failed.\n");

goto

dberror;

}

/***/

/*

Answer

set

is

available

-

Fetch

rows

and

print

parameters

for

*/

/*

all

procedures.

*/

/***/

while

((rc

=

SQLFetch

(hStmt))

==

SQL_SUCCESS)

{

(void)

printf

("****

Procedure

Name

=

%s.

Parameter

%s",

procedure_name,

parameter_name);

switch

(parameter_type)

{

case

SQL_PARAM_INPUT

:

(void)

strcpy

(ptype,

"INPUT");

break;

case

SQL_PARAM_OUTPUT

:

(void)

strcpy

(ptype,

"OUTPUT");

break;

case

SQL_PARAM_INPUT_OUTPUT

:

(void)

strcpy

(ptype,

"INPUT/OUTPUT");

break;

default

:

(void)

strcpy

(ptype,

"UNKNOWN");

break;

}

(void)

printf

("

is

%s.

Data

Type

is

%d.

Type

Name

is

%s.\n",

ptype

,

data_type

,

type_name);

}

/***/

/*

Deallocate

statement

handles

--

statement

is

no

longer

in

a

*/

/*

prepared

state.

*/

/***/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hStmt);

/***/

/*

DISCONNECT

from

data

source

*/

/***/

RETCODE

=

SQLDisconnect(hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

Figure

28.

An

application

that

retrieves

parameters

associated

with

a

procedure

(Part

4

of

5)

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

Chapter

4.

Functions

329

Related

functions

The

following

functions

relate

to

SQLProcedureColumns()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLProcedureColumns()

in

your

applications.

v

“SQLProcedures()

-

Get

a

list

of

procedure

names”

on

page

331

/***/

/*

Deallocate

connection

handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_DBC,

hDbc);

if

(RETCODE

!=

SQL_SUCCESS)

goto

dberror;

/***/

/*

Free

Environment

Handle

*/

/***/

RETCODE

=

SQLFreeHandle(SQL_HANDLE_ENV,

hEnv);

if

(RETCODE

==

SQL_SUCCESS)

goto

exit;

dberror:

RETCODE=12;

exit:

(void)

printf

("****

Exiting

CLIP12.\n\n");

return

RETCODE;

}

Figure

28.

An

application

that

retrieves

parameters

associated

with

a

procedure

(Part

5

of

5)

SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information

330

ODBC

Guide

and

Reference

SQLProcedures()

-

Get

a

list

of

procedure

names

Purpose

Table

171.

SQLProcedures()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLProcedures()

returns

a

list

of

procedure

names

that

have

been

registered

at

the

server,

and

that

match

the

specified

search

pattern.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax

SQLRETURN

SQLProcedures

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLCHAR

FAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLCHAR

FAR

*szProcName,

SQLSMALLINT

cbProcName);

Function

arguments

Table

172

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

172.

SQLProcedures()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szProcCatalog

input

Catalog

qualifier

of

a

three-part

procedure

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbProcCatalog

input

The

length,

in

bytes,

of

szProcCatalog.

This

must

be

set

to

0.

SQLCHAR

*

szProcSchema

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

If

you

do

not

want

to

qualify

the

result

set

by

schema

name,

use

a

null

pointer

or

a

zero

length

string

for

this

argument.

SQLSMALLINT

cbProcSchema

input

The

length,

in

bytes,

of

szProcSchema.

SQLCHAR

*

szProcName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

If

you

do

not

want

to

qualify

the

result

set

by

table

name,

use

a

null

pointer

or

a

zero

length

string

for

this

argument.

SQLSMALLINT

cbProcName

input

The

length,

in

bytes,

of

szProcName.

For

more

information

about

valid

search

patterns,

see

“Querying

catalog

information”

on

page

407.

SQLProcedures()

-

Get

a

list

of

procedure

names

Chapter

4.

Functions

331

Usage

Registered

stored

procedures

are

defined

in

the

SYSIBM.SYSROUTINES

catalog

table.

For

servers

that

do

not

provide

facilities

for

a

stored

procedure

catalog,

this

function

returns

an

empty

result

set.

The

result

set

returned

by

SQLProcedures()

contains

the

columns

that

are

listed

in

Table

173

in

the

order

given.

The

rows

are

ordered

by

PROCEDURE_CAT,

PROCEDURE_SCHEM,

and

PROCEDURE_NAME.

Because

calls

to

SQLProcedures()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

DB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

Table

174

on

page

333

lists

these

columns.

Table

173.

Columns

returned

by

SQLProcedures()

Column

number

Column

name

Data

type

Description

1

PROCEDURE_CAT

VARCHAR(128)

This

is

always

null.

2

PROCEDURE_SCHEM

VARCHAR(128)

The

name

of

the

schema

containing

PROCEDURE_NAME.

3

PROCEDURE_NAME

VARCHAR(128)

NOT

NULL

The

name

of

the

procedure.

4

NUM_INPUT_PARAMS

INTEGER

not

NULL

Number

of

input

parameters.

5

NUM_OUTPUT_PARAMS

INTEGER

not

NULL

Number

of

output

parameters.

6

NUM_RESULT_SETS

INTEGER

not

NULL

Number

of

result

sets

returned

by

the

procedure.

7

REMARKS

VARCHAR(254)

Contains

the

descriptive

information

about

the

procedure.

SQLProcedures()

-

Get

a

list

of

procedure

names

332

ODBC

Guide

and

Reference

|
|
|

Table

173.

Columns

returned

by

SQLProcedures()

(continued)

Column

number

Column

name

Data

type

Description

8

PROCEDURE_TYPE

SMALLINT

Defines

the

procedure

type:

v

SQL_PT_UNKNOWN:

It

cannot

be

determined

whether

the

procedure

returns

a

value.

v

SQL_PT_PROCEDURE:

The

returned

object

is

a

procedure;

that

is,

it

does

not

have

a

return

value.

v

SQL_PT_FUNCTION:

The

returned

object

is

a

function;

that

is,

it

has

a

return

value.

DB2

ODBC

always

returns

SQL_PT_PROCEDURE.

The

column

names

used

by

DB2

ODBC

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedures()

result

set

in

ODBC.

Return

codes

After

you

call

SQLProcedures(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

174

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

174.

SQLProcedures()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

opened

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

to

SQL_NTS.

HYC00

Driver

not

capable.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

procedure

name.

v

The

connected

server

does

not

supported

schema

as

a

qualifier

for

procedure

name.

SQLProcedures()

-

Get

a

list

of

procedure

names

Chapter

4.

Functions

333

Restrictions

If

an

application

is

connected

to

a

DB2

server

that

does

not

provide

support

for

stored

procedures,

or

for

a

stored

procedure

catalog,

SQLProcedureColumns()

returns

an

empty

result

set.

Example

Figure

29

shows

an

application

that

prints

a

list

of

procedures

registered

at

the

server.

The

application

uses

SQLProcedures()

retrieve

these

procedures

and

to

establish

a

search

pattern.

Related

functions

The

following

functions

relate

to

SQLProcedures()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLProcedures()

in

your

applications.

v

“SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information”

on

page

320

/*

...

*/

printf("Enter

Procedure

Schema

Name

Search

Pattern:\n");

gets(proc_schem.s);

rc

=

SQLProcedures(hstmt,

NULL,

0,

proc_schem.s,

SQL_NTS,

"%",

SQL_NTS);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

proc_schem.s,

129,

&proc_schem.ind);

rc

=

SQLBindCol(hstmt,

3,

SQL_C_CHAR,

(SQLPOINTER)

proc_name.s,

129,

&proc_name.ind);

rc

=

SQLBindCol(hstmt,

7,

SQL_C_CHAR,

(SQLPOINTER)

remarks.s,

255,

&remarks.ind);

printf("PROCEDURE

SCHEMA

PROCEDURE

NAME

\n");

printf("-------------------------

\n");

/*

Fetch

each

row,

and

display

*/

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

printf("%-25s

%-25s\n",

proc_schem.s,

proc_name.s);

if

(remarks.ind

!=

SQL_NULL_DATA)

{

printf("

(Remarks)

%s\n",

remarks.s);

}

}

/*

endwhile

*/

/*

...

*/

Figure

29.

An

application

that

prints

a

list

of

registered

procedures

SQLProcedures()

-

Get

a

list

of

procedure

names

334

ODBC

Guide

and

Reference

SQLPutData()

-

Pass

a

data

value

for

a

parameter

Purpose

Table

175.

SQLPutData()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLPutData()

is

called

following

an

SQLParamData()

call

returning

SQL_NEED_DATA

to

supply

a

parameter

data

value.

This

function

can

be

used

to

send

large

parameter

values

in

pieces.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax

SQLRETURN

SQLPutData

(SQLHSTMT

hstmt,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValue);

Function

arguments

Table

176

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

176.

SQLPutData()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLPOINTER

rgbValue

input

Pointer

to

the

actual

data,

or

portion

of

data,

for

a

parameter.

The

data

must

be

in

the

form

specified

in

the

SQLBindParameter()

call

that

the

application

used

when

specifying

the

parameter.

SQLINTEGER

cbValue

input

The

length,

in

bytes,

of

rgbValue.

Specifies

the

amount

of

data

sent

in

a

call

to

SQLPutData().

The

amount

of

data

can

vary

with

each

call

for

a

given

parameter.

The

application

can

also

specify

SQL_NTS

or

SQL_NULL_DATA

for

cbValue.

cbValue

is

ignored

for

all

fixed-length

C

buffer

types,

such

as

date,

time,

timestamp,

and

all

numeric

C

buffer

types.

For

cases

where

the

C

buffer

type

is

SQL_C_CHAR

or

SQL_C_BINARY,

or

if

SQL_C_DEFAULT

is

specified

as

the

C

buffer

type

and

the

C

buffer

type

default

is

SQL_C_CHAR

or

SQL_C_BINARY,

this

is

the

number

of

bytes

of

data

in

the

rgbValue

buffer.

Usage

For

a

description

on

the

SQLParamData()

and

SQLPutData()

sequence,

see

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412.

SQLPutData()

-

Pass

a

data

value

for

a

parameter

Chapter

4.

Functions

335

The

application

calls

SQLPutData()

after

calling

SQLParamData()

on

a

statement

in

the

SQL_NEED_DATA

state

to

supply

the

data

values

for

an

SQL_DATA_AT_EXEC

parameter.

Long

data

can

be

sent

in

pieces

using

repeated

calls

to

SQLPutData().

After

all

the

pieces

of

data

for

the

parameter

have

been

sent,

the

application

calls

SQLParamData()

again

to

proceed

to

the

next

SQL_DATA_AT_EXEC

parameter,

or,

if

all

parameters

have

data

values,

to

execute

the

statement.

SQLPutData()

cannot

be

called

more

than

once

for

a

fixed-length

C

buffer

type,

such

as

SQL_C_LONG.

After

an

SQLPutData()

call,

the

only

legal

function

calls

are

SQLParamData(),

SQLCancel(),

or

another

SQLPutData()

if

the

input

data

is

character

or

binary

data.

As

with

SQLParamData(),

all

other

function

calls

using

this

statement

handle

fail.

In

addition,

all

function

calls

referencing

the

parent

hdbc

of

hstmt

fail

if

they

involve

changing

any

attribute

or

state

of

that

connection;

that

is,

the

following

function

calls

on

the

parent

hdbc

are

also

not

permitted:

v

SQLAllocHandle()

v

SQLSetConnectAttr()

v

SQLNativeSql()

v

SQLEndTran()

If

they

are

invoked

during

an

SQL_NEED_DATA

sequence,

these

functions

return

SQL_ERROR

with

SQLSTATE

of

HY010

and

the

processing

of

the

SQL_DATA_AT_EXEC

parameters

is

not

affected.

If

one

or

more

calls

to

SQLPutData()

for

a

single

parameter

results

in

SQL_SUCCESS,

attempting

to

call

SQLPutData()

with

cbValue

set

to

SQL_NULL_DATA

for

the

same

parameter

results

in

an

error

with

SQLSTATE

of

22005.

This

error

does

not

result

in

a

change

of

state;

the

statement

handle

is

still

in

a

Need

Data

state

and

the

application

can

continue

sending

parameter

data.

Return

codes

After

you

call

SQLPutData(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Some

of

the

following

diagnostic

conditions

are

also

reported

on

the

final

SQLParamData()

call

rather

than

at

the

time

the

SQLPutData()

is

called.

Table

177

lists

each

SQLSTATE

with

a

description

and

explanation

for

each

value.

Table

177.

SQLPutData()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

data

sent

for

a

numeric

parameter

is

truncated

without

the

loss

of

significant

digits.

v

Timestamp

data

sent

for

a

date

or

time

column

is

truncated.

(SQLPutData()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

SQLPutData()

-

Pass

a

data

value

for

a

parameter

336

ODBC

Guide

and

Reference

Table

177.

SQLPutData()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22001

String

data

right

truncation.

More

data

is

sent

for

a

binary

or

char

data

than

the

data

source

can

support

for

that

column.

22008

Invalid

datetime

format

or

datetime

field

overflow.

The

data

value

sent

for

a

date,

time,

or

timestamp

parameters

is

invalid.

22018

Error

in

assignment.

The

data

sent

for

a

parameter

is

incompatible

with

the

data

type

of

the

associated

table

column.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

The

argument

rgbValue

is

a

NULL

pointer,

and

the

argument

cbValue

is

neither

0

nor

SQL_NULL_DATA.

HY010

Function

sequence

error.

The

statement

handle

hstmt

must

be

in

a

need

data

state

and

must

have

been

positioned

on

an

SQL_DATA_AT_EXEC

parameter

using

a

previous

SQLParamData()

call.

HY019

Numeric

value

out

of

range.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

data

sent

for

a

numeric

parameter

causes

the

whole

part

of

the

number

to

be

truncated

when

it

is

assigned

to

the

associated

column.

v

SQLPutData()

is

called

more

than

once

for

a

fixed-length

parameter.

HY090

Invalid

string

or

buffer

length.

The

argument

rgbValue

is

not

a

null

pointer,

and

the

argument

cbValue

is

less

than

0,

but

not

equal

to

SQL_NTS

or

SQL_NULL_DATA.

Restrictions

A

new

value

for

pcbValue,

SQL_DEFAULT_PARAM,

was

introduced

in

ODBC

2.0,

to

indicate

that

the

procedure

is

to

use

the

default

value

of

a

parameter,

rather

than

a

value

sent

from

the

application.

Because

the

concept

of

default

values

does

not

apply

to

DB2

stored

procedure

arguments,

specification

of

this

value

for

the

pcbValue

argument

results

in

an

error

when

the

CALL

statement

is

executed

because

the

SQL_DEFAULT_PARAM

value

is

considered

an

invalid

length.

ODBC

2.0

also

introduced

the

SQL_LEN_DATA_AT_EXEC(length)

macro

to

be

used

with

the

pcbValue

argument.

The

macro

is

used

to

specify

the

sum

total

length,

in

bytes,

of

the

entire

data

that

would

be

sent

for

character

or

binary

C

data

using

the

subsequent

SQLPutData()

calls.

Because

the

DB2

ODBC

driver

does

not

need

this

information,

the

macro

is

not

needed.

To

check

if

the

driver

needs

this

information,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_NEED_LONG_DATA_LEN.

The

DB2

ODBC

driver

returns

’N’

to

indicate

that

this

information

is

not

needed

by

SQLPutData().

Example

See

Figure

19

on

page

213.

SQLPutData()

-

Pass

a

data

value

for

a

parameter

Chapter

4.

Functions

337

Related

functions

The

following

functions

relate

to

SQLPutData()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLPutData()

in

your

applications.

v

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

v

“SQLCancel()

-

Cancel

statement”

on

page

97

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLParamData()

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

301

SQLPutData()

-

Pass

a

data

value

for

a

parameter

338

ODBC

Guide

and

Reference

SQLRowCount()

-

Get

row

count

Purpose

Table

178.

SQLRowCount()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLRowCount()

returns

the

number

of

rows

in

a

table

that

were

affected

by

an

UPDATE,

INSERT,

or

DELETE

statement

executed

against

the

table,

or

a

view

based

on

the

table.

SQLExecute()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

Syntax

SQLRETURN

SQLRowCount

(SQLHSTMT

hstmt,

SQLINTEGER

FAR

*pcrow);

Function

arguments

Table

179

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

179.

SQLRowCount()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle

SQLINTEGER

*

pcrow

output

Pointer

to

location

where

the

number

of

rows

affected

is

stored.

Usage

If

the

last

executed

statement

referenced

by

the

input

statement

handle

is

not

an

UPDATE,

INSERT,

or

DELETE

statement,

or

if

it

did

not

execute

successfully,

then

the

function

sets

the

contents

of

pcrow

to

-1.

If

SQLRowCount()

is

executed

after

the

SQLExecDirect()

or

SQLExecute()

of

an

SQL

statement

other

than

INSERT,

UPDATE,

or

DELETE,

it

results

in

return

code

0

and

pcrow

is

set

to

-1.

Any

rows

in

other

tables

that

might

be

affected

by

the

statement

(for

example,

cascading

deletes)

are

not

included

in

the

count.

If

SQLRowCount()

is

executed

after

a

built-in

function

(for

example,

SQLTables()),

it

results

in

return

code

-1

and

SQLSTATE

HY010.

Return

codes

After

you

call

SQLRowCount(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

SQLRowCount()

-

Get

row

count

Chapter

4.

Functions

339

Diagnostics

Table

180

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

180.

SQLRowCount()

SQLSTATEs

SQLSTATE

Description

Explanation

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLExecute()

or

SQLExecDirect()

for

the

hstmt.

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

Restrictions

None.

Example

See

Figure

13

on

page

134.

Related

functions

The

following

functions

relate

to

SQLRowCount()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLRowCount()

in

your

applications.

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLNumResultCols()

-

Get

number

of

result

columns”

on

page

299

SQLRowCount()

-

Get

row

count

340

ODBC

Guide

and

Reference

SQLSetColAttributes()

-

Set

column

attributes

Purpose

Table

181.

SQLSetColAttributes()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

SQLSetColAttributes()

sets

the

data

source

result

descriptor

(column

name,

type,

precision,

scale

and

nullability)

for

one

column

in

the

result

set

so

that

the

DB2

ODBC

implementation

does

not

need

to

obtain

the

descriptor

information

from

the

DBMS

server.

Syntax

SQLRETURN

SQLSetColAttributes

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLCHAR

FAR

*pszColName,

SQLSMALLINT

cbColName,

SQLSMALLINT

fSqlType,

SQLUINTEGER

cbColDef,

SQLSMALLINT

ibScale,

SQLSMALLINT

fNullable);

Function

arguments

Table

182

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

182.

SQLSetColAttributes()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLUSMALLINT

icol

input

Column

number

of

result

data,

ordered

sequentially

left

to

right,

starting

at

1.

SQLCHAR

*

szColName

input

Pointer

to

the

column

name.

If

the

column

is

unnamed

or

is

an

expression,

this

pointer

can

be

set

to

NULL,

or

an

empty

string

can

be

used.

SQLSMALLINT

cbColName

input

The

length,

in

bytes,

of

szColName

buffer.

SQLSetColAttributes()

-

Set

column

attributes

Chapter

4.

Functions

341

Table

182.

SQLSetColAttributes()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fSqlType

input

The

SQL

data

type

of

the

column.

The

following

values

are

recognized:

v

SQL_BINARY

v

SQL_BLOB

v

SQL_CHAR

v

SQL_CLOB

v

SQL_DBCLOB

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_ROWID

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

SQLUINTEGER

cbColDef

input

The

precision

of

the

column

on

the

data

source.

SQLSMALLINT

ibScale

input

The

scale

of

the

column

on

the

data

source.

This

is

ignored

for

all

data

types

except

SQL_DECIMAL,

SQL_NUMERIC,

SQL_TYPE_TIMESTAMP.

SQLSMALLINT

fNullable

input

Indicates

whether

the

column

allows

null

values.

This

must

of

one

of

the

following

values:

v

SQL_NO_NULLS

-

the

column

does

not

allow

null

values.

v

SQL_NULLABLE

-

the

column

allows

null

values.

Usage

This

function

is

designed

to

help

reduce

the

amount

of

network

traffic

that

can

result

when

an

application

is

fetching

result

sets

that

contain

an

extremely

large

number

of

columns.

If

the

application

has

advanced

knowledge

of

the

characteristics

of

the

descriptor

information

of

a

result

set

(that

is,

the

exact

number

of

columns,

column

name,

data

type,

nullability,

precision,

or

scale),

then

it

can

inform

DB2

ODBC

rather

than

having

DB2

ODBC

obtain

this

information

from

the

database,

thus

reducing

the

quantity

of

network

traffic.

An

application

typically

calls

SQLSetColAttributes()

after

a

call

to

SQLPrepare()

and

before

the

associated

call

to

SQLExecute().

An

application

can

also

call

SQLSetColAttributes()

before

a

call

to

SQLExecDirect().

This

function

is

valid

only

after

the

statement

attribute

SQL_NODESCRIBE

has

been

set

to

SQL_NODESCRIBE_ON

for

this

statement

handle.

SQLSetColAttributes()

informs

DB2

ODBC

of

the

column

name,

type,

and

length

that

would

be

generated

by

the

subsequent

execution

of

the

query.

This

information

allows

DB2

ODBC

to

determine

whether

any

data

conversion

is

necessary

when

the

result

is

returned

to

the

application.

SQLSetColAttributes()

-

Set

column

attributes

342

ODBC

Guide

and

Reference

Recommendation:

Use

this

function

only

if

you

know

the

exact

nature

of

the

result

set.

The

application

must

provide

the

result

descriptor

information

for

every

column

in

the

result

set

or

an

error

occurs

on

the

subsequent

fetch

(SQLSTATE

07002).

Using

this

function

only

benefits

those

applications

that

handle

an

extremely

large

number

(hundreds)

of

columns

in

a

result

set,

otherwise

the

effect

is

minimal.

Return

codes

After

you

call

SQLSetColAttributes(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

183

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

183.

SQLSetColAttributes()

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

szColName

argument

contains

a

column

name

that

is

too

long.

To

obtain

the

maximum

length

of

the

column

name,

call

SQLGetInfo

with

the

InfoType

SQL_MAX_COLUMN_NAME_LEN.

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE

and

for

which

no

implementation

defined

SQLSTATE

is

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

argument

szErrorMsg

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY004

Invalid

SQL

data

type.

The

value

specified

for

the

argument

fSqlType

is

not

a

valid

SQL

data

type.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

cbColName

is

less

than

0

and

not

equal

to

SQL_NTS.

HY099

Nullable

type

out

of

range.

The

value

specified

for

fNullable

is

invalid.

SQLSetColAttributes()

-

Set

column

attributes

Chapter

4.

Functions

343

Table

183.

SQLSetColAttributes()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY104

Invalid

precision

or

scale

value.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

specified

for

fSqlType

is

either

SQL_DECIMAL

or

SQL_NUMERIC

and

the

value

specified

for

cbColDef

is

less

than

1,

or

the

value

specified

for

ibScale

is

less

than

0

or

greater

than

the

value

for

the

argument

cbColDef

(precision).

v

The

value

specified

for

fSqlType

is

SQL_TYPE_TIMESTAMP

and

the

value

for

ibScale

is

less

than

0

or

greater

than

6.

HY002

Invalid

column

number.

The

value

specified

for

the

argument

icol

is

less

than

1

or

greater

than

the

maximum

number

of

columns

supported

by

the

server.

Restrictions

None.

Example

Figure

30

on

page

345

shows

an

application

that

uses

SQLSetColAttributes()

to

set

the

data

source

results

descriptor.

SQLSetColAttributes()

-

Set

column

attributes

344

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLSetColAttributes()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSetColAttributes()

in

your

applications.

v

“SQLColAttribute()

-

Get

column

attributes”

on

page

101

v

“SQLDescribeCol()

-

Describe

column

attributes”

on

page

131

v

“SQLExecute()

-

Execute

a

statement”

on

page

160

v

“SQLExecDirect()

-

Execute

a

statement

directly”

on

page

154

v

“SQLPrepare()

-

Prepare

a

statement”

on

page

306

/*

...

*/

SQLCHAR

stmt[]

=

{

"Select

id,

name

from

staff"

};

/*

...

*/

/*

Tell

DB2

ODBC

not

to

get

column

attribute

from

the

server

for

this

hstmt

*/

rc

=

SQLSetStmtAttr(hstmt,SQL_ATTR,NODESCRIBE,(void

*)SQL_NODESCRIBE_ON,

0);

rc

=

SQLPrepare(hstmt,

stmt,

SQL_NTS);

/*

Provide

the

columns

attributes

to

DB2

ODBC

for

this

hstmt

*/

rc

=

SQLSetColAttributes(hstmt,

1,

"-ID-",

SQL_NTS,

SQL_SMALLINT,

5,

0,

SQL_NO_NULLS);

rc

=

SQLSetColAttributes(hstmt,

2,

"-NAME-",

SQL_NTS,

SQL_CHAR,

9,

0,

SQL_NULLABLE);

rc

=

SQLExecute(hstmt);

print_results(hstmt);

/*

Call

sample

function

to

print

column

attributes

and

fetch

and

print

rows.

*/

rc

=

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

rc

=

SQLEndTran(SQL_HANDLE,

DBC,

hdbc,

SQL_COMMIT);

printf("Disconnecting

.....\n");

rc

=

SQLDisconnect(hdbc);

rc

=

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

if

(rc

!=

SQL_SUCCESS)

return

(terminate(henv,

rc));

rc

=

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

if

(rc

!=

SQL_SUCCESS)

return

(terminate(henv,

rc));

return

(SQL_SUCCESS);

}

/*

end

main

*/

Figure

30.

An

application

that

sets

the

data

source

results

descriptor

SQLSetColAttributes()

-

Set

column

attributes

Chapter

4.

Functions

345

SQLSetConnectAttr()

-

Set

connection

attributes

Purpose

Table

184.

SQLSetConnectAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLSetConnectAttr()

sets

attributes

that

govern

aspects

of

connections.

Syntax

SQLRETURN

SQLSetConnectAttr

(SQLHDBC

ConnectionHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

StringLength);

Function

arguments

Table

185

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

185.

SQLSetConnectAttr()

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLINTEGER

Attribute

input

Connection

attribute

to

set.

Refer

to

Table

187

on

page

347

for

a

complete

list

of

attributes.

SQLPOINTER

ValuePtr

input

Pointer

to

the

value

to

be

associated

with

Attribute.

Depending

on

the

value

of

Attribute,

*ValuePtr

will

be

a

32-bit

unsigned

integer

value

or

point

to

a

nul-terminated

character

string.

If

the

Attribute

argument

is

a

driver-specific

value,

the

value

in

*ValuePtr

might

be

a

signed

integer.

SQLINTEGER

StringLength

input

Information

about

the

*ValuePtr

argument.

v

For

ODBC-defined

attributes:

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

v

For

driver-defined

attributes

(IBM

extension):

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr

or

SQL_NTS

if

it

is

a

nul-terminated

string.

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

Usage

SQLSetConnectAttr()

sets

attributes

that

govern

aspects

of

connections.

An

application

can

call

SQLSetConnectAttr()

at

any

time

between

the

time

the

connection

is

allocated

or

freed.

All

connection

and

statement

attributes

successfully

set

by

the

application

for

the

connection

persist

until

SQLFreeHandle()

is

called

on

the

connection.

SQLSetConnectAttr()

-

Set

connection

attributes

346

ODBC

Guide

and

Reference

Some

connection

attributes

can

be

set

only

before

or

after

a

connection

is

made.

Other

attributes

cannot

be

set

after

a

statement

is

allocated.

Table

186

indicates

when

each

of

the

connection

attributes

can

be

set.

Table

186.

When

connection

attributes

can

be

set

Attribute

Before

connection

After

connection

After

statements

allocated

SQL_ATTR_ACCESS_MODE

Yes

Yes

Yes1

SQL_ATTR_AUTOCOMMIT

Yes

Yes

Yes2

SQL_ATTR_CONNECTTYPE

Yes

No

No

SQL_ATTR_CURRENT_SCHEMA

Yes

Yes

Yes

SQL_ATTR_MAXCONN

Yes

No

No

SQL_ATTR_SYNC_POINT

Yes

No

No

SQL_ATTR_TXN_ISOLATION

No

Yes

Yes

Notes:

1.

Attribute

only

affects

subsequently

allocated

statements.

2.

Attribute

can

be

set

only

if

all

transactions

on

the

connections

are

closed.

Table

187

lists

the

SQLSetConnectAttr()

Attribute

values.

Values

shown

in

bold

are

default

values

unless

they

are

otherwise

specified

in

the

ODBC

initialization

file.

DB2

ODBC

supports

all

of

the

ODBC

2.0

Attribute

values

that

are

renamed

in

ODBC

3.0.

For

a

summary

of

the

Attribute

values

renamed

in

ODBC

3.0,

see

Table

256

on

page

526.

ODBC

applications

that

need

to

set

statement

attributes

should

use

SQLSetStmtAttr().

The

ability

to

set

statement

attributes

on

the

connect

level

is

supported,

but

it

is

not

recommended.

Table

187.

Connection

attributes

Attribute

ValuePtr

SQL_ATTR_ACCESS_MODE

A

32-bit

integer

value

which

can

be

either:

v

SQL_MODE_READ_ONLY:

Indicates

that

the

application

is

not

performing

any

updates

on

data

from

this

point

on.

Therefore,

a

less

restrictive

isolation

level

and

locking

can

be

used

on

transactions;

that

is,

uncommitted

read

(SQL_TXN_READ_UNCOMMITTED).

DB2

ODBC

does

not

ensure

that

requests

to

the

database

are

read-only.

If

an

update

request

is

issued,

DB2

ODBC

processes

it

using

the

transaction

isolation

level

it

selected

as

a

result

of

the

SQL_MODE_READ_ONLY

setting.

v

SQL_MODE_READ_WRITE:

Indicates

that

the

application

is

making

updates

on

data

from

this

point

on.

DB2

ODBC

goes

back

to

using

the

default

transaction

isolation

level

for

this

connection.

SQL_MODE_READ_WRITE

is

the

default.

This

connection

must

have

no

outstanding

transactions.

SQLSetConnectAttr()

-

Set

connection

attributes

Chapter

4.

Functions

347

Table

187.

Connection

attributes

(continued)

Attribute

ValuePtr

SQL_ATTR_AUTOCOMMIT1

A

32-bit

integer

value

that

specifies

whether

to

use

autocommit

or

manual

commit

mode:

v

SQL_AUTOCOMMIT_OFF:

The

application

must

manually,

explicitly

commit

or

rollback

transactions

with

SQLEndTran()

calls.

v

SQL_AUTOCOMMIT_ON:

DB2

ODBC

operates

in

autocommit

mode.

Each

statement

is

implicitly

committed.

Each

statement,

that

is

not

a

query,

is

committed

immediately

after

it

has

been

executed.

Each

query

is

committed

immediately

after

the

associated

cursor

is

closed.

This

is

the

default

value.

Exception:

If

the

connection

is

a

coordinated

distributed

unit

of

work

connection,

the

default

is

SQL_AUTOCOMMIT_OFF.

When

specifying

autocommit,

the

application

can

have

only

one

outstanding

statement

per

connection.

For

example,

two

cursors

cannot

be

open,

otherwise

unpredictable

results

can

occur.

An

open

cursor

must

be

closed

before

another

query

is

executed.

Because

in

many

DB2

environments

the

execution

of

the

SQL

statements

and

the

commit

can

be

flowed

separately

to

the

database

server,

autocommit

can

be

expensive.

The

application

developer

should

take

this

into

consideration

when

selecting

the

autocommit

mode.

Changing

from

manual-commit

to

autocommit

mode

commits

any

open

transaction

on

the

connection.

For

information

about

setting

this

attribute

see

“Disabling

autocommit”

on

page

475.

SQLSetConnectAttr()

-

Set

connection

attributes

348

ODBC

Guide

and

Reference

Table

187.

Connection

attributes

(continued)

Attribute

ValuePtr

SQL_ATTR_CONNECTTYPE2

A

32-bit

integer

value

that

specifies

whether

this

application

is

to

operate

in

a

coordinated

or

uncoordinated

distributed

environment.

If

the

processing

needs

to

be

coordinated,

then

this

attribute

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

attribute.

The

possible

values

are:

v

SQL_CONCURRENT_TRANS:

The

application

can

have

concurrent

multiple

connections

to

any

one

database

or

to

multiple

databases.

This

attribute

value

corresponds

to

the

specification

of

the

type

1

CONNECT

in

embedded

SQL.

Each

connection

has

its

own

commit

scope.

No

effort

is

made

to

enforce

coordination

of

transaction.

The

current

setting

of

the

SQL_ATTR_SYNC_POINT

attribute

is

ignored.

This

is

the

default.

v

SQL_COORDINATED_TRANS:

The

application

wishes

to

have

commit

and

rollbacks

coordinated

among

multiple

database

connections.

This

attribute

value

corresponds

to

the

specification

of

the

type

2

CONNECT

in

embedded

SQL

and

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

attribute.

In

contrast

to

the

SQL_CONCURRENT_TRANS

setting

described

above,

the

application

is

permitted

only

one

open

connection

per

database.

Important:

This

connection

type

results

in

the

default

for

SQL_ATTR_AUTOCOMMIT

connection

attribute

to

be

SQL_AUTOCOMMIT_OFF.

This

attribute

must

be

set

before

making

a

connect

request;

otherwise,

the

SQLSetConnectAttr()

call

is

rejected.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

The

first

connection

determines

the

acceptable

attributes

for

the

subsequent

connections.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

Recommendation:

Have

the

application

set

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

for

each

connection

as

SQLSetEnvAttr()

is

not

supported

in

ODBC.

SQL_ATTR_CURRENT_SCHEMA

A

nul-terminated

character

string

containing

the

name

of

the

schema

to

be

used

by

DB2

ODBC

for

the

SQLColumns()

call

if

the

szSchemaName

pointer

is

set

to

null.

To

reset

this

attribute,

specify

this

attribute

with

a

zero

length

or

a

null

pointer

for

the

vParam

argument.

This

attribute

is

useful

when

the

application

developer

has

coded

a

generic

call

to

SQLColumns()

that

does

not

restrict

the

result

set

by

schema

name,

but

needs

to

constrain

the

result

set

at

isolated

places

in

the

code.

This

attribute

can

be

set

at

any

time

and

is

effective

on

the

next

SQLColumns()

call

where

the

szSchemaName

pointer

is

null.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

SQLSetConnectAttr()

-

Set

connection

attributes

Chapter

4.

Functions

349

Table

187.

Connection

attributes

(continued)

Attribute

ValuePtr

SQL_ATTR_MAXCONN3

A

32-bit

integer

value

corresponding

to

the

number

of

maximum

concurrent

connections

that

an

application

wants

to

set

up.

The

default

value

is

0,

which

means

no

maximum

-

the

application

is

allowed

to

set

up

as

many

connections

as

the

system

resources

permit.

The

integer

value

must

be

0

or

a

positive

number.

This

can

be

used

as

a

governor

for

the

maximum

number

of

connections

on

a

per

application

basis.

The

value

that

is

in

effect

when

the

first

connection

is

established

is

the

value

that

is

used.

When

the

first

connection

is

established,

attempts

to

change

this

value

are

rejected.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

Recommendation:

Have

the

application

set

SQL_ATTR_MAXCONN

at

the

environment

level

rather

then

on

a

connection

basis.

ODBC

applications

must

set

this

attribute

at

the

connection

level

because

SQLSetEnvAttr()

is

not

supported

in

ODBC.

SQL_ATTR_PARAMOPT_ATOMIC

If

specified,

DB2

ODBC

returns

HYC00

on

SQLSetConnectAttr()

and

HY011

on

SQLGetConnectAttr().

SQL_ATTR_SYNC_POINT

A

32-bit

integer

value

that

allows

the

application

to

choose

between

one-phase

coordinated

transactions

and

two-phase

coordinated

transactions.

The

possible

values

are:

v

SQL_ONEPHASE:

The

DB2

ODBC

3.0

driver

does

not

support

SQL_ONEPHASE.

v

SQL_TWOPHASE:

Two-phase

commit

is

used

to

commit

the

work

done

by

each

database

in

a

multiple

database

transaction.

This

requires

the

use

of

a

transaction

manager

to

coordinate

two-phase

commits

among

the

databases

that

support

this

protocol.

Multiple

readers

and

multiple

updaters

are

allowed

within

a

transaction.

This

attribute

is

only

utilized

when

SQL_ATTR_CONNECTTYPE

attribute

is

SQL_COORDINATED_TRANS.

Then

SQL_TWOPHASE

is

the

default.

This

attribute

is

ignored

when

SQL_ATTR_CONNECTTYPE

is

set

to

SQL_CONCURRENT_TRANS.

See

DB2

SQL

Reference

for

more

information

about

distributed

unit

of

work

transactions.

This

attribute

must

be

set

before

a

connect

request.

Otherwise

the

attribute

set

request

is

rejected.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

The

first

connection

determines

the

acceptable

attributes

for

the

subsequent

connections.

Recommendation:

Insure

that

your

application

sets

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

at

a

connection

level.

SQLSetConnectAttr()

-

Set

connection

attributes

350

ODBC

Guide

and

Reference

Table

187.

Connection

attributes

(continued)

Attribute

ValuePtr

SQL_ATTR_TXN_ISOLATION4

A

32-bit

bit

mask

that

sets

the

transaction

isolation

level

for

the

current

connection

referenced

by

hdbc.

The

valid

values

for

vParam

can

be

determined

at

run

time

by

calling

SQLGetInfo()

with

InfoType

set

to

SQL_TXN_ISOLATION_OPTION.

The

following

values

are

accepted

by

DB2

ODBC,

but

each

server

might

only

support

a

subset

of

these

isolation

levels:

v

SQL_TXN_READ_UNCOMMITTED

-

Dirty

reads,

reads

that

cannot

be

repeated,

and

phantoms

are

possible.

v

SQL_TXN_READ_COMMITTED

-

Dirty

reads

are

not

possible.

Reads

that

cannot

be

repeated,

and

phantoms

are

possible.

This

is

the

default.

v

SQL_TXN_REPEATABLE_READ

-

Dirty

reads

and

reads

that

cannot

be

repeated

are

not

possible.

Phantoms

are

possible.

v

SQL_TXN_SERIALIZABLE

-

Transactions

can

be

serialized.

Dirty

reads,

non-repeatable

reads,

and

phantoms

are

not

possible.

v

SQL_TXN_NOCOMMIT

-

Any

changes

are

effectively

committed

at

the

end

of

a

successful

operation;

no

explicit

commit

or

rollback

is

allowed.

This

is

analogous

to

autocommit.

This

is

not

an

SQL92

isolation

level,

but

an

IBM

defined

extension,

supported

only

by

DB2

UDB

for

iSeries.

In

IBM

terminology,

v

SQL_TXN_READ_UNCOMMITTED

is

uncommitted

read;

v

SQL_TXN_READ_COMMITTED

is

cursor

stability;

v

SQL_TXN_REPEATABLE_READ

is

read

stability;

v

SQL_TXN_SERIALIZABLE

is

repeatable

read.

For

a

detailed

explanation

of

isolation

levels,

see

IBM

SQL

Reference.

This

attribute

cannot

be

specified

while

there

is

an

open

cursor

on

any

statement

handle,

or

an

outstanding

transaction

for

this

connection;

otherwise,

SQL_ERROR

is

returned

on

the

function

call

(SQLSTATE

HY011).

For

more

information

about

setting

this

attribute,

see

“Setting

isolation

levels”

on

page

472.

Tip:

An

IBM

extension

enables

you

to

set

transaction

isolation

levels

on

each

individual

statement

handle.

See

the

SQL_ATTR_STMTTXN_ISOLATION

attribute

in

the

function

description

for

SQLSetStmtAttr().

Notes:

1.

You

can

change

the

default

value

for

this

attribute

with

the

AUTOCOMMIT

keyword

in

the

ODBC

initialization

file.

See

“AUTOCOMMIT”

on

page

52

for

more

information.

2.

You

can

change

the

default

value

for

this

attribute

with

the

CONNECTTYPE

keyword

in

the

ODBC

initialization

file.

See

“CONNECTTYPE”

on

page

53

for

more

information.

3.

You

can

change

the

default

value

for

this

attribute

with

the

MAXCONN

keyword

in

the

ODBC

initialization

file.

See

“MAXCONN”

on

page

56

for

more

information.

4.

You

can

change

the

default

value

for

this

attribute

with

the

TXNISOLATION

keyword

in

the

ODBC

initialization

file.

See

“TXNISOLATION”

on

page

61

for

more

information.

Return

codes

After

you

call

SQLSetConnectAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_INVALID_HANDLE

v

SQL_ERROR

SQLSetConnectAttr()

-

Set

connection

attributes

Chapter

4.

Functions

351

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

188

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

188.

SQLSetConnectAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLSetConnectAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

01S02

Option

value

changed.

SQL_ATTR_SYNC_POINT

changed

to

SQL_TWOPHASE.

SQL_ONEPHASE

is

not

supported.

08S01

Unable

to

connect

to

data

source.

The

communication

link

between

the

application

and

the

data

source

failed

before

the

function

completed.

08003

Connection

is

closed.

An

Attribute

value

is

specified

that

requires

an

open

connection,

but

the

ConnectionHandle

is

not

in

a

connected

state.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

for

the

specified

handle.

HY009

Invalid

use

of

a

null

pointer.

A

null

pointer

is

passed

for

ValuePtr

and

the

value

in

*ValuePtr

is

a

string

value.

HY010

Function

sequence

error.

SQLExecute()

or

SQLExecDirect()

is

called

with

the

statement

handle,

and

returned

SQL_NEED_DATA.

This

function

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

Invoke

SQLCancel()

to

cancel

the

data-at-execution

condition.

HY011

Operation

invalid

at

this

time.

The

argument

Attribute

is

SQL_ATTR_TXN_ISOLATION

and

a

transaction

is

open.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

is

specified

in

*ValuePtr.

HY090

Invalid

string

or

buffer

length.

The

StringLength

argument

is

less

than

0,

but

is

not

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

is

not

valid

for

this

version

of

DB2

ODBC.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

is

a

valid

connection

or

statement

attribute

for

this

version

of

the

DB2

ODBC

driver,

but

is

not

supported

by

the

data

source.

Restrictions

None.

Example

The

following

example

uses

SQLConnectAttr()

to

set

statement

attribute

values:

rc=SQLSetConnectAttr(

hdbc,SQL_ATTR_AUTOCOMMIT,

(void*)

SQL_AUTOCOMMIT_OFF,

SQL_NTS);

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

)

;

Related

functions

The

following

functions

relate

to

SQLSetConnectAttr()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSetConnectAttr()

in

your

applications.

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLGetConnectAttr()

-

Get

current

attribute

setting”

on

page

196

SQLSetConnectAttr()

-

Set

connection

attributes

352

ODBC

Guide

and

Reference

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLSetConnectAttr()

-

Set

connection

attributes

Chapter

4.

Functions

353

SQLSetConnection()

-

Set

connection

handle

Purpose

Table

189.

SQLSetConnection()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

No

No

This

function

is

needed

if

the

application

needs

to

deterministically

switch

to

a

particular

connection

before

continuing

execution.

Use

this

function

only

when

your

application

mixes

DB2

ODBC

function

calls

with

embedded

SQL

function

calls

and

makes

multiple

database

connections.

Syntax

SQLRETURN

SQLSetConnection

(SQLHDBC

hdbc);

Function

arguments

Table

190

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

190.

SQLSetConnection()

arguments

Data

type

Argument

Use

Description

SQLHDBC

hdbc

input

The

connection

handle

associated

with

the

connection

to

which

the

application

wishes

to

switch.

Usage

ODBC

allows

multiple

concurrent

connections.

It

is

not

clear

which

connection

an

embedded

SQL

routine

uses

when

invoked.

In

practice,

the

embedded

routine

uses

the

connection

associated

with

the

most

recent

network

activity.

However,

from

the

application’s

perspective,

this

is

not

always

easy

to

determine

and

it

is

difficult

to

keep

track

of

this

information.

SQLSetConnection()

is

used

to

allow

the

application

to

explicitly

specify

which

connection

is

active.

The

application

can

then

call

the

embedded

SQL

routine.

SQLSetConnection()

is

not

needed

at

all

if

the

application

makes

purely

DB2

ODBC

calls.

This

is

because

each

statement

handle

is

implicitly

associated

with

a

connection

handle

and

there

is

never

any

confusion

as

to

which

connection

a

particular

DB2

ODBC

function

applies.

Important:

To

mix

DB2

ODBC

with

embedded

SQL,

you

must

not

enable

DB2

ODBC

support

for

multiple

contexts.

The

initialization

file

for

mixed

applications

must

specify

MULTICONTEXT=0

or

exclude

MULTICONTEXT

keyword.

For

more

information

on

using

embedded

SQL

within

DB2

ODBC

applications

see

“Mixing

embedded

SQL

with

DB2

ODBC”

on

page

463.

Return

codes

After

you

call

SQLSetConnection(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

SQLSetConnection()

-

Set

connection

handle

354

ODBC

Guide

and

Reference

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

191

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

191.

SQLSetConnection()

SQLSTATEs

SQLSTATE

Description

Explanation

08003

Connection

is

closed.

The

connection

handle

provided

is

not

currently

associated

with

an

open

connection

to

a

database

server.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE

and

for

which

the

implementation

does

not

define

an

SQLSTATE.

SQLGetDiagRec()

returns

an

error

message

in

the

argument

szErrorMsg

that

describes

the

error

and

its

cause.

Restrictions

None.

Example

See

Figure

44

on

page

417.

Related

functions

The

following

functions

relate

to

SQLSetConnection()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSetConnection()

in

your

applications.

v

“SQLConnect()

-

Connect

to

a

data

source”

on

page

121

v

“SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source”

on

page

142

SQLSetConnection()

-

Set

connection

handle

Chapter

4.

Functions

355

SQLSetConnectOption()

-

Set

connection

option

Purpose

Table

192.

SQLSetConnectOption()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

No

In

the

current

version

of

DB2

ODBC,

SQLSetConnectAttr()

replaces

SQLSetConnectOption().

See

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

for

more

information.

Although

DB2

ODBC

supports

SQLSetConnectOption()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLSetConnectOption()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLSetConnectOption(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLUINTEGER

vParam);

Function

arguments

Table

193

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

193.

SQLSetConnectOption

arguments

Data

Type

Argument

Use

Description

HDBC

hdbc

input

Connection

handle.

SQLUSMALLINT

fOption

input

Connect

attribute

to

set.

SQLUINTEGER

vParam

input

Value

associated

with

fOption.

Depending

on

the

attribute,

this

can

be

a

32-bit

integer

value,

or

a

pointer

to

a

nul-terminated

string.

SQLSetConnectOption()

-

Set

connection

option

356

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

SQLSetCursorName()

-

Set

cursor

name

Purpose

Table

194.

SQLSetCursorName()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

Yes

SQLSetCursorName()

associates

a

cursor

name

with

the

statement

handle.

This

function

is

optional

because

DB2

ODBC

implicitly

generates

a

cursor

name

when

each

statement

handle

is

allocated.

Syntax

SQLRETURN

SQLSetCursorName

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCursor,

SQLSMALLINT

cbCursor);

Function

arguments

Table

195

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

195.

SQLSetCursorName()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle

SQLCHAR

*

szCursor

input

Cursor

name

SQLSMALLINT

cbCursor

input

The

length,

in

bytes,

of

contents

of

szCursor

argument

Usage

DB2

ODBC

always

generates

and

uses

an

internally

generated

cursor

name

when

a

query

is

prepared

or

executed

directly.

SQLSetCursorName()

allows

an

application

defined

cursor

name

to

be

used

in

an

SQL

statement

(a

positioned

UPDATE

or

DELETE).

DB2

ODBC

maps

this

name

to

the

internal

name.

The

name

remains

associated

with

the

statement

handle,

until

the

handle

is

dropped,

or

another

SQLSetCursorName()

is

called

on

this

statement

handle.

Although

SQLGetCursorName()

returns

the

name

set

by

the

application

(if

one

is

set),

error

messages

that

are

associated

with

positioned

UPDATE

and

DELETE

statements

refer

to

the

internal

name.

Recommendation:

Do

not

use

SQLSetCursorName().

Instead,

use

the

internal

name,

which

you

can

obtain

by

calling

SQLGetCursorName().

Cursor

names

must

follow

these

rules:

v

All

cursor

names

within

the

connection

must

be

unique.

v

Each

cursor

name

must

be

less

than

or

equal

to

18

bytes

in

length.

Any

attempt

to

set

a

cursor

name

longer

than

18

bytes

results

in

truncation

of

that

cursor

name

to

18

bytes.

(No

warning

is

generated.)

v

Because

internally

generated

names

begin

with

SQLCUR,

SQL_CUR,

or

SQLCURQRS,

the

application

must

not

input

a

cursor

name

starting

with

either

SQLCUR

or

SQL_CUR

in

order

to

avoid

conflicts

with

internal

names.

SQLSetCursorName()

-

Set

cursor

name

Chapter

4.

Functions

357

v

Because

a

cursor

name

is

considered

an

identifier

in

SQL,

it

must

begin

with

an

English

letter

(a-z,

A-Z)

followed

by

any

combination

of

digits

(0-9),

English

letters

or

the

underscore

character

(_).

v

To

permit

cursor

names

containing

characters

other

than

those

listed

above

(such

as

National

Language

Set

or

Double-Byte

Character

Set

characters),

the

application

must

enclose

the

cursor

name

in

double

quotes

(″).

v

Unless

the

input

cursor

name

is

enclosed

in

double

quotes,

all

leading

and

trailing

blanks

from

the

input

cursor

name

string

are

removed.

For

efficient

processing,

applications

should

not

include

any

leading

or

trailing

spaces

in

the

szCursor

buffer.

If

the

szCursor

buffer

contains

a

delimited

identifier,

applications

should

position

the

first

double

quote

as

the

first

character

in

the

szCursor

buffer.

Return

codes

After

you

call

SQLSetCursorName(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

196

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

196.

SQLSetCursorName()

SQLSTATEs

SQLSTATE

Description

Explanation

34000

Invalid

cursor

name.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

cursor

name

specified

by

the

argument

szCursor

is

invalid.

The

cursor

name

either

begins

with

SQLCUR,

SQL_CUR,

or

SQLCURQRS

or

violates

the

cursor

naming

rules

(Must

begin

with

a-z

or

A-Z

followed

by

any

combination

of

English

letters,

digits,

or

the

’_’

character.

v

The

cursor

name

specified

by

the

argument

szCursor

already

exists.

v

The

cursor

name

length

is

greater

than

the

value

returned

by

SQLGetInfo()

with

the

SQL_MAX_CURSOR_NAME_LEN

argument.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY009

Invalid

use

of

a

null

pointer.

szCursor

is

a

null

pointer.

HY010

Function

sequence

error.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

There

is

an

open

or

positioned

cursor

on

the

statement

handle.

v

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

SQLSetCursorName()

-

Set

cursor

name

358

ODBC

Guide

and

Reference

Table

196.

SQLSetCursorName()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY013

Unexpected

memory

handling

error.

DB2

ODBC

is

not

able

to

access

the

memory

that

is

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

argument

cbCursor

is

less

than

0,

but

not

equal

to

SQL_NTS.

Restrictions

None.

Example

Figure

31

shows

an

application

that

uses

SQLSetCursorName()

to

set

a

cursor

name.

Related

functions

The

following

functions

relate

to

SQLSetCursorName()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSetCursorName()

in

your

applications.

v

“SQLGetCursorName()

-

Get

cursor

name”

on

page

200

/*

...

*/

SQLCHAR

sqlstmt[]

=

"SELECT

name,

job

FROM

staff

"

"WHERE

job=’Clerk’

FOR

UPDATE

OF

job";

/*

...

*/

/*

Allocate

second

statement

handle

for

update

statement

*/

rc2

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt2);

/*

Set

Cursor

for

the

SELECT

statement’s

handle

*/

rc

=

SQLSetCursorName(hstmt1,

"JOBCURS",

SQL_NTS);

rc

=

SQLExecDirect(hstmt1,

sqlstmt,

SQL_NTS);

/*

bind

name

to

first

column

in

the

result

set

*/

rc

=

SQLBindCol(hstmt1,

1,

SQL_C_CHAR,

(SQLPOINTER)

name.s,

10,

&name.ind);

/*

bind

job

to

second

column

in

the

result

set

*/

rc

=

SQLBindCol(hstmt1,

2,

SQL_C_CHAR,

(SQLPOINTER)

job.s,

6,

&job.ind);

printf("Job

change

for

all

clerks\n");

while

((rc

=

SQLFetch(hstmt1))

==

SQL_SUCCESS)

{

printf("Name:

%-9.9s

Job:

%-5.5s

\n",

name.s,

job.s);

printf("Enter

new

job

or

return

to

continue\n");

gets(newjob);

if

(newjob[0]

!=

’\0’)

{

sprintf(updstmt,

"UPDATE

staff

set

job

=

’%s’

where

current

of

JOBCURS",

newjob);

rc2

=

SQLExecDirect(hstmt2,

updstmt,

SQL_NTS);

}

}

if

(rc

!=

SQL_NO_DATA_FOUND)

check_error(henv,

hdbc,

hstmt1,

rc,

__LINE__,

__FILE__);

/*

...

*/

Figure

31.

An

application

that

sets

a

cursor

name

SQLSetCursorName()

-

Set

cursor

name

Chapter

4.

Functions

359

SQLSetEnvAttr()

-

Set

environment

attribute

Purpose

Table

197.

SQLSetEnvAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

No

Yes

Yes

SQLSetEnvAttr()

sets

attributes

that

govern

aspects

of

environments.

Syntax

SQLRETURN

SQLSetEnvAttr

(SQLHENV

EnvironmentHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

StringLength);

Function

arguments

Table

198

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

198.

SQLSetEnvAttr()

arguments

Data

type

Argument

Use

Description

SQLHENV

EnvironmentHandle

input

Environment

handle.

SQLINTEGER

Attribute

input

Environment

attribute

to

set.

See

Table

199

on

page

361

for

the

list

of

attributes

and

their

descriptions.

SQLPOINTER

ValuePtr

input

The

desired

value

for

Attribute.

SQLINTEGER

StringLength

input

The

length

of

ValuePtr

in

bytes

if

the

attribute

value

is

a

character

string.

If

Attribute

does

not

denote

a

string,

DB2

ODBC

ignores

StringLength.

Usage

When

set,

the

attributes

value

affects

all

connections

in

this

environment.

The

application

can

obtain

the

current

attribute

value

by

calling

SQLGetEnvAttr().

Table

199

on

page

361

lists

the

SQLSetEnvAttr()

Attribute

values.

The

values

that

are

shown

in

bold

are

default

values.

Attribute

values

were

renamed

in

ODBC

3.0.

For

a

summary

of

the

Attributes

renamed

in

ODBC

3.0,

see

Table

257

on

page

526.

SQLSetEnvAttr()

-

Set

environment

attribute

360

ODBC

Guide

and

Reference

Table

199.

Environment

attributes

Attribute

Contents

SQL_ATTR_ODBC_VERSION

A

32-bit

integer

that

determines

whether

certain

functionality

exhibits

ODBC

2.0

behavior

or

ODBC

3.0

behavior.

This

value

cannot

be

changed

while

any

connection

handles

are

allocated.

The

following

values

are

used

to

set

the

value

of

this

attribute:

v

SQL_OV_ODBC3:

Causes

the

following

ODBC

3.0

behavior:

–

DB2

ODBC

returns

and

expects

ODBC

3.0

data

type

codes

for

date,

time,

and

timestamp.

–

DB2

ODBC

returns

ODBC

3.0

SQLSTATE

codes

when

SQLGetDiagRec()

is

called.

–

The

CatalogName

argument

in

a

call

to

SQLTables()

accepts

a

search

pattern.

v

SQL_OV_ODBC2

causes

the

following

ODBC

2.x

behavior:

–

DB2

ODBC

returns

and

expects

ODBC

2.x

data

type

codes

for

date,

time,

and

timestamp.

–

DB2

ODBC

returns

ODBC

2.0

SQLSTATE

codes

when

SQLGetDiagRec()

or

SQLError()

are

called.

–

The

CatalogName

argument

in

a

call

to

SQLTables()

does

not

accept

a

search

pattern.

SQL_ATTR_OUTPUT_NTS

A

32-bit

integer

value

which

controls

the

use

of

nul-termination

in

output

arguments.

The

possible

values

are:

v

SQL_TRUE:

DB2

ODBC

uses

nul-termination

to

indicate

the

length

of

output

character

strings.

This

is

the

default.

v

SQL_FALSE:

DB2

ODBC

does

not

use

nul-termination

in

output

character

strings.

The

CLI

functions

affected

by

this

attribute

are

all

functions

called

for

the

environment

(and

for

any

connections

and

statements

allocated

under

the

environment)

that

have

character

string

parameters.

This

attribute

can

only

be

set

when

no

connection

handles

are

allocated

under

the

environment

handle.

SQLSetEnvAttr()

-

Set

environment

attribute

Chapter

4.

Functions

361

|

|

Table

199.

Environment

attributes

(continued)

Attribute

Contents

SQL_ATTR_CONNECTTYPE1

A

32-bit

integer

value

that

specifies

whether

this

application

is

to

operate

in

a

coordinated

or

uncoordinated

distributed

environment.

The

possible

values

are:

v

SQL_CONCURRENT_TRANS:

Each

connection

has

its

own

commit

scope.

No

effort

is

made

to

enforce

coordination

of

transaction.

If

an

application

issues

a

commit

using

the

environment

handle

on

SQLEndTran()

and

not

all

of

the

connections

commit

successfully,

the

application

is

responsible

for

recovery.

This

corresponds

to

CONNECT

(type

1)

semantics

subject

to

the

restrictions

described

in

“DB2

ODBC

restrictions

on

the

ODBC

connection

model”

on

page

11.

This

is

the

default.

v

SQL_COORDINATED_TRANS:

The

application

wishes

to

have

commit

and

rollbacks

coordinated

among

multiple

database

connections.

In

contrast

to

the

SQL_CONCURRENT_TRANS

setting

described

above,

the

application

is

permitted

only

one

open

connection

per

database.

This

attribute

must

be

set

before

allocating

any

connection

handles,

otherwise,

the

SQLSetEnvAttr()

call

is

rejected.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

This

attribute

can

also

be

set

using

the

SQLSetConnectAttr()

function.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

Recommendation:

Have

the

application

set

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

for

each

connection

using

SQLSetConnectAttr()

as

SQLSetEnvAttr()

is

not

supported

in

ODBC.

SQL_ATTR_MAXCONN2

A

32-bit

integer

value

corresponding

to

the

number

that

maximum

concurrent

connections

that

an

application

wants

to

set

up.

The

default

value

is

0,

which

means

no

maximum

-

the

application

is

allowed

to

set

up

as

many

connections

as

the

system

resources

permit.

The

integer

value

must

be

0

or

a

positive

number.

This

can

be

used

as

a

governor

for

the

maximum

number

of

connections

on

a

per

application

basis.

The

value

that

is

in

effect

when

the

first

connection

is

established

is

the

value

that

is

used.

When

the

first

connection

is

established,

attempts

to

change

this

value

are

rejected.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

Recommendation:

Have

the

application

set

SQL_ATTR_MAXCONN

at

the

environment

level

rather

then

on

a

connection

basis.

ODBC

applications

must

set

this

attribute

at

the

connection

level

because

this

attribute

is

not

supported

in

ODBC.

Notes:

1.

You

can

change

the

default

value

for

this

attribute

with

the

CONNECTTYPE

keyword

in

the

ODBC

initialization

file.

See

“CONNECTTYPE”

on

page

53

for

more

information.

2.

You

can

change

the

default

value

for

this

attribute

with

the

MAXCONN

keyword

in

the

ODBC

initialization

file.

See

“MAXCONN”

on

page

56

for

more

information.

SQLSetEnvAttr()

-

Set

environment

attribute

362

ODBC

Guide

and

Reference

Return

codes

After

you

call

SQLSetEnvAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

200

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

200.

SQLSetEnvAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

HY009

Invalid

use

of

a

null

pointer.

A

null

pointer

is

passed

for

ValuePtr

and

the

value

in

*ValuePtr

is

a

string

value.

HY011

Operation

invalid

at

this

time.

Applications

cannot

set

environment

attributes

while

connection

handles

are

allocated

on

the

environment

handle.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

is

specified

in

*ValuePtr.

HY090

Invalid

string

or

buffer

length.

The

StringLength

argument

is

less

than

0,

but

is

not

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

is

not

valid

for

this

version

of

DB2

ODBC.

HYC00

Driver

not

capable.

The

specified

Attribute

is

not

supported

by

DB2

ODBC.

Given

specified

Attribute

value,

the

value

specified

for

the

argument

ValuePtr

is

not

supported.

Restrictions

None.

Example

The

following

example

uses

SQLSetEnvAttr()

to

set

an

environment

attribute.

Also,

see

Figure

37

on

page

401.

SQLINTEGER

output_nts,autocommit;

rc

=

SQLSetEnvAttr(

henv,

SQL_ATTR_OUTPUT_NTS,

(

SQLPOINTER

)

output_nts,

0

)

;

CHECK_HANDLE(

SQL_HANDLE_ENV,

henv,

rc

);

Related

functions

v

“SQLAllocHandle()

-

Allocate

a

handle”

on

page

72

v

“SQLGetEnvAttr()

-

Return

current

setting

of

an

environment

attribute”

on

page

224

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

SQLSetEnvAttr()

-

Set

environment

attribute

Chapter

4.

Functions

363

SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer

Purpose

Table

201.

SQLSetParam()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

No

In

the

current

version

of

DB2

ODBC,

SQLBindParameter()

replaces

SQLSetParam().

See

“SQLBindParameter()

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

85

for

more

information.

Although

DB2

ODBC

supports

SQLSetParam()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLSetParam()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLSetParam

(SQLHSTMT

hstmt,

SQLUSMALLINT

ipar,

SQLSMALLINT

fCType,

SQLSMALLINT

fSqlType,

SQLUINTEGER

cbParamDef,

SQLSMALLINT

ibScale,

SQLPOINTER

rgbValue,

SQLINTEGER

FAR

*pcbValue);

Function

arguments

Table

202

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

202.

SQLSetParam()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLUSMALLINT

ipar

input

Parameter

marker

number,

ordered

sequentially

left

to

right,

starting

at

1.

SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer

364

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

Table

202.

SQLSetParam()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

fCType

input

C

data

type

of

argument.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_WCHAR

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

from

its

default

C

data

type

for

the

type

indicated

in

fSqlType.

See

Table

4

on

page

25

for

more

information.

SQLSMALLINT

fSqlType

input

SQL

data

type

of

column.

The

supported

types

are:

v

SQL_BINARY

v

SQL_BLOB

v

SQL_BLOB_LOCATOR

v

SQL_CHAR

v

SQL_CLOB

v

SQL_CLOB_LOCATOR

v

SQL_DBCLOB

v

SQL_DBCLOB_LOCATOR

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_ROWID

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

Exceptions:

SQL_BLOB_LOCATOR,

SQL_CLOB_LOCATOR,

and

SQL_DBCLOB_LOCATOR

are

application

related

concepts

and

do

not

map

to

a

data

type

for

column

definition

during

a

CREATE

TABLE.

SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer

Chapter

4.

Functions

365

Table

202.

SQLSetParam()

arguments

(continued)

Data

type

Argument

Use

Description

SQLUINTEGER

cbParamDef

input

Precision

of

the

corresponding

parameter

marker.

If

fSqlType

denotes:

v

A

binary

or

single-byte

character

string

(for

example,

SQL_CHAR,

SQL_BINARY),

this

is

the

maximum

length

in

bytes

for

this

parameter

marker.

v

A

double-byte

character

string

(for

example,

SQL_GRAPHIC),

this

is

the

maximum

length

in

double-byte

characters

for

this

parameter.

v

SQL_DECIMAL,

SQL_NUMERIC,

this

is

the

maximum

decimal

precision.

v

SQL_ROWID,

this

must

be

set

to

40,

the

maximum

length

in

bytes

for

this

data

type.

Otherwise,

an

error

is

returned.

v

Otherwise,

this

argument

is

ignored.

SQLSMALLINT

ibScale

input

Scale

of

the

corresponding

parameter

marker

if

fSqlType

is

SQL_DECIMAL

or

SQL_NUMERIC.

If

fSqlType

is

SQL_TYPE_TIMESTAMP,

this

is

the

number

of

digits

to

the

right

of

the

decimal

point

in

the

character

representation

of

a

timestamp

(for

example,

the

scale

of

yyyy-mm-dd

hh:mm:ss.fff

is

3).

Other

than

for

the

fSqlType

values

mentioned

here,

ibScale

is

ignored.

SQLPOINTER

rgbValue

input

(deferred)

Pointer

to

the

location

which

contains

(when

the

statement

is

executed)

the

actual

values

for

the

associated

parameter

marker.

SQLINTEGER

*

pcbValue

input

(deferred)

Pointer

to

the

location

which

contains

(when

the

statement

is

executed)

the

length,

in

bytes,

of

the

parameter

marker

value

stored

at

rgbValue.

To

specify

a

null

value

for

a

parameter

marker,

this

storage

location

must

contain

SQL_NULL_DATA.

If

fCType

is

SQL_C_CHAR,

this

storage

location

must

contain

either

the

exact

length

(in

bytes)

of

the

data

stored

at

rgbValue,

or

SQL_NTS

if

the

contents

at

rgbValue

are

nul-terminated.

If

fCType

indicates

character

data

(explicitly,

or

implicitly

using

SQL_C_DEFAULT),

and

this

pointer

is

set

to

NULL,

it

is

assumed

that

the

application

always

provides

a

nul-terminated

string

in

rgbValue.

This

also

implies

that

this

parameter

marker

never

contains

a

null

value.

If

fSqlType

indicates

a

graphic

data

type,

and

the

fCType

is

SQL_C_CHAR,

the

pointer

to

pcbValue

can

never

be

null

and

the

contents

of

pcbValue

can

never

hold

SQL_NTS.

In

general

for

graphic

data

types,

this

length

should

be

the

number

of

bytes

that

the

double-byte

data

occupies;

therefore,

the

length

must

always

be

a

multiple

of

2.

If

this

length

is

an

odd

number

of

bytes,

then

an

error

occurs

when

the

statement

is

executed.

SQLSetParam()

-

Bind

a

parameter

marker

to

a

buffer

366

ODBC

Guide

and

Reference

SQLSetStmtAttr()

-

Set

statement

attributes

Purpose

Table

203.

SQLSetStmtAttr()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

3.0

Yes

Yes

SQLSetStmtAttr()

sets

attributes

related

to

a

statement.

To

set

an

attribute

for

all

statements

associated

with

a

specific

connection,

an

application

can

call

SQLSetConnectAttr().

Syntax

SQLRETURN

SQLSetStmtAttr

(SQLHSTMT

StatementHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

StringLength);

Function

arguments

Table

204

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

204.

SQLSetStmtAttr()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

Attribute

input

Statement

attribute

to

set.

Refer

to

Table

205

on

page

368

for

a

complete

list

of

attributes.

SQLPOINTER

ValuePtr

input

Pointer

to

the

value

to

be

associated

with

Attribute.

Depending

on

the

value

of

Attribute,

ValuePtr

will

be

a

32-bit

unsigned

integer

value

or

point

to

a

nul-terminated

character

string.

If

the

Attribute

argument

is

a

driver-specific

value,

the

value

in

ValuePtr

might

be

a

signed

integer.

SQLINTEGER

StringLength

input

Information

about

the

*ValuePtr

argument.

v

For

ODBC-defined

attributes:

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

v

For

driver-defined

attributes

(IBM

extension):

–

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr

or

SQL_NTS

if

it

is

a

nul-terminated

string.

–

If

ValuePtr

points

to

an

integer,

BufferLength

is

ignored.

Usage

Statement

attributes

for

a

statement

remain

in

effect

until

they

are

changed

by

another

call

to

SQLSetStmtAttr()

or

until

the

statement

is

dropped

by

calling

SQLFreeHandle().

Calling

SQLFreeStmt()

with

the

SQL_CLOSE,

SQL_UNBIND

or

the

SQL_RESET_PARAMS

attribute

does

not

reset

statement

attributes.

SQLSetStmtAttr()

-

Set

statement

attributes

Chapter

4.

Functions

367

Some

statement

attributes

support

substitution

of

a

similar

value

if

the

data

source

does

not

support

the

value

specified

in

*ValuePtr.

In

such

cases,

DB2

ODBC

returns

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01S02

(attribute

value

changed).

To

determine

the

substituted

value,

an

application

calls

SQLGetStmtAttr().

The

format

of

the

information

set

with

ValuePtr

depends

on

the

specified

Attribute.

SQLSetStmtAttr()

accepts

attribute

information

either

in

the

format

of

a

nul-terminated

character

string

or

a

32-bit

integer

value.

The

format

of

each

ValuePtr

value

is

noted

in

the

attributes

description

shown

in

Table

205.

This

format

applies

to

the

information

returned

for

each

attribute

in

SQLGetStmtAttr().

Character

strings

that

the

ValuePtr

argument

of

SQLSetStmtAttr()

point

to

have

a

length

of

StringLength.

DB2

ODBC

supports

all

of

the

ODBC

2.0

Attribute

values

that

are

renamed

in

ODBC

3.0.

For

a

summary

of

the

Attribute

values

renamed

in

ODBC

3.0,

see

Table

258

on

page

526.

Overriding

DB2

CCSIDs

from

DSNHDECP:

DB2

ODBC

extensions

to

SQLSetStmtAttr()

allow

an

application

to

override

the

Unicode,

EBCDIC,

or

ASCII

CCSID

settings

of

the

DB2

subsystem

to

which

they

are

currently

attached.

This

extension

is

intended

for

applications

that

are

attempting

to

send

and

receive

data

to

and

from

DB2

in

a

CCSID

that

differs

from

the

default

settings

in

the

DB2

DSNHDECP.

The

CCSID

override

applies

only

to

input

data

bound

to

parameter

markers

through

SQLBindParameter()

and

output

data

bound

to

columns

through

SQLBindCol().

The

CCSID

override

applies

on

a

statement

level

only.

DB2

will

continue

to

use

the

default

CCSID

settings

in

the

DB2

DSNHECP

after

the

statement

is

dropped

or

if

SQL_CCSID_DEFAULT

is

specified.

You

can

use

SQLGetStmtAttr()

to

query

the

settings

of

the

current

statement

handle

CCSID

override.

Table

205

lists

each

Attribute

value

SQLSetStmtAttr()

can

set.

Values

shown

in

bold

are

default

values.

Table

205.

Statement

attributes

Attribute

ValuePtr

contents

SQL_ATTR_BIND_TYPE

or

SQL_ATTR_ROW_BIND_TYPE

A

32-bit

integer

value

that

sets

the

binding

orientation

to

be

used

when

SQLExtendedFetch()

is

called

with

this

statement

handle.

Column-wise

binding

is

selected

by

supplying

the

value

SQL_BIND_BY_COLUMN

for

the

argument

vParam.

Row-wise

binding

is

selected

by

supplying

a

value

for

vParam

specifying

the

length

(in

bytes)

of

the

structure

or

an

instance

of

a

buffer

into

which

result

columns

are

bound.

For

row-wise

binding,

the

length

(in

bytes)

specified

in

vParam

must

include

space

for

all

of

the

bound

columns

and

any

padding

of

the

structure

or

buffer

to

ensure

that

when

the

address

of

a

bound

column

is

incriminated

with

the

specified

length,

the

result

points

to

the

beginning

of

the

same

column

in

the

next

row.

(When

using

the

sizeof

operator

with

structures

or

unions

in

ANSI

C,

this

behavior

is

guaranteed.)

SQLSetStmtAttr()

-

Set

statement

attributes

368

ODBC

Guide

and

Reference

|
|

Table

205.

Statement

attributes

(continued)

Attribute

ValuePtr

contents

SQL_ATTR_CCSID_CHAR

A

32-bit

integer

value

that

specifies

the

Unicode,

EBCDIC,

or

ASCII

CCSID

of

input/output

data,

to

or

from

a

column

of

the

following

SQL

data

types:

v

SQL_CHAR

v

SQL_VARCHAR

v

SQL_LONGVARCHAR

This

CCSID

will

override

the

default

CCSID

setting

from

DB2

DSNHECP.

The

input

data

should

be

bound

to

parameter

markers

through

SQLBindParameter().

The

output

data

should

be

bound

to

columns

through

SQLBindCol().

SQL_CCSID_DEFAULT

is

the

default

value

of

this

statement

attribute,

therefore

the

CCSIDs

from

the

DB2

DSNHECP

are

used.

SQL_ATTR_CCSID_GRAPHIC

A

32-bit

integer

value

that

specifies

the

Unicode,

EBCDIC,

or

ASCII

CCSID

of

input/output

data,

to

or

from

a

column

of

the

following

SQL

data

types:

v

SQL_GRAPHIC

v

SQL_VARGRAPHIC

v

SQL_LONGVARGRAPHIC

This

CCSID

overrides

the

default

CCSID

setting

from

DB2

DSNHECP.

The

input

data

should

be

bound

to

parameter

markers

through

SQLBindParameter().

The

output

data

should

be

bound

to

columns

through

SQLBindCol().

SQL_CCSID_DEFAULT

is

the

default

value

of

this

statement

attribute,

therefore,

the

CCSIDs

from

the

DB2

DSNHECP

will

be

used.

IBM

specific:

DB2

UDB

for

z/OS

ODBC

extensions

to

SQLSetStmtAttr()

allow

an

application

to

override

the

CCSID

settings

of

the

DB2

subsystem

to

which

they

are

currently

attached.

This

extension

is

intended

for

applications

that

are

attempting

to

send

and

receive

data

to

and

from

DB2

in

a

CCSID

that

differs

from

the

default

settings

in

the

DB2

DSNHDECP.

The

CCSID

override

applies

only

to

input

data

bound

to

parameter

markers

through

SQLBindParameter()

and

output

data

bound

to

columns

through

SQLBindCol().

The

CCSID

override

applies

on

a

statement

level

only.

DB2

will

continue

to

use

the

default

CCSID

settings

in

the

DB2

DSNHECP

after

the

statement

is

dropped

or

if

SQL_CCSID_DEFAULT

is

specified.

You

can

use

SQLGetStmtAttr()

to

query

the

settings

of

the

current

statement

handle

CCSID

override.

SQL_ATTR_CLOSE_BEHAVIOR

A

32-bit

integer

that

forces

the

release

of

locks

upon

an

underlying

CLOSE

CURSOR

operation.

The

possible

values

are:

v

SQL_CC_NO_RELEASE:

locks

are

not

released

when

the

cursor

on

this

statement

handle

is

closed.

v

SQL_CC_RELEASE:

locks

are

released

when

the

cursor

on

this

statement

handle

is

closed.

Typically

cursors

are

explicitly

closed

when

the

function

SQLFreeStmt()

is

called

with

the

fOption

argument

set

to

SQL_CLOSE

or

SQLCloseCursor()

is

called.

In

addition,

the

end

of

the

transaction

(when

a

commit

or

rollback

is

issued)

can

also

close

the

cursor

(depending

on

the

WITH

HOLD

attribute

currently

in

use).

SQLSetStmtAttr()

-

Set

statement

attributes

Chapter

4.

Functions

369

|

|

|

Table

205.

Statement

attributes

(continued)

Attribute

ValuePtr

contents

SQL_ATTR_CONCURRENCY

A

32-bit

integer

value

that

specifies

the

cursor

concurrency:

v

SQL_CONCUR_READ_ONLY

-

Cursor

is

read-only.

No

updates

are

allowed.

v

SQL_CONCUR_LOCK

-

Cursor

uses

the

lowest

level

of

locking

sufficient

to

ensure

that

the

row

can

be

updated.

You

cannot

set

this

attribute

if

a

cursor

is

open

on

the

associated

statement

handle.

Unsupported

attribute

values:

ODBC

architecture

defines

the

following

values,

which

are

not

supported

by

DB2

ODBC:

v

SQL_CONCUR_VALUES

-

Cursor

uses

optimistic

concurrency

control,

comparing

values.

v

SQL_CONCUR_ROWVER

-

Cursor

uses

optimistic

concurrency

control.

If

one

of

these

values

is

used,

SQL_SUCCESS_WITH_INFO

(SQLSTATE

01S02)

is

returned

and

the

value

remains

unchanged.

SQL_ATTR_CURSOR_HOLD1

A

32-bit

integer

which

specifies

whether

the

cursor

associated

with

this

statement

handle

is

preserved

in

the

same

position

as

before

the

COMMIT

operation,

and

whether

the

application

can

fetch

without

executing

the

statement

again.

v

SQL_CURSOR_HOLD_ON

v

SQL_CURSOR_HOLD_OFF

The

default

value

when

a

statement

handle

is

first

allocated

is

SQL_CURSOR_HOLD_ON.

This

attribute

cannot

be

specified

while

there

is

an

open

cursor

on

this

statement

handle.

For

more

information

about

setting

this

attribute,

see

“Disabling

cursor

hold

behavior”

on

page

472.

SQL_ATTR_CURSOR_TYPE

A

32-bit

integer

value

that

specifies

the

cursor

type.

The

currently

supported

value

is:

v

SQL_CURSOR_FORWARD_ONLY

-

Cursor

behaves

as

a

forward

only

scrolling

cursor.

This

attribute

cannot

be

set

if

there

is

an

open

cursor

on

the

associated

statement

handle.

Unsupported

attribute

values:

ODBC

architecture

defines

the

following

values,

which

are

not

supported

by

DB2

ODBC:

v

SQL_CURSOR_STATIC

-

The

data

in

the

result

set

appears

to

be

static.

v

SQL_CURSOR_KEYSET_DRIVEN

-

The

keys

for

the

number

of

rows

specified

in

the

SQL_KEYSET_SIZE

attribute

is

stored.

DB2

ODBC

does

not

support

this

attribute

value.

v

SQL_CURSOR_DYNAMIC

-

The

keys

for

the

rows

in

the

row

set

are

saved.

DB2

ODBC

does

not

support

this

attribute

value.

If

one

of

these

values

is

used,

SQL_SUCCESS_WITH_INFO

(SQLSTATE

01S02)

is

returned

and

the

value

remains

unchanged.

SQLSetStmtAttr()

-

Set

statement

attributes

370

ODBC

Guide

and

Reference

Table

205.

Statement

attributes

(continued)

Attribute

ValuePtr

contents

SQL_ATTR_MAX_LENGTH

A

32-bit

integer

value

corresponding

to

the

maximum

amount

of

data

that

can

be

retrieved

from

a

single

character

or

binary

column.

If

data

is

truncated

because

the

value

specified

for

SQL_ATTR_MAX_LENGTH

is

less

than

the

amount

of

data

available,

an

SQLGetData()

call

or

fetch

returns

SQL_SUCCESS

instead

of

returning

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01004

(data

truncated).

The

default

value

for

vParam

is

0;

0

means

that

DB2

ODBC

attempts

to

return

all

available

data

for

character

or

binary

type

data.

SQL_ATTR_MAX_ROWS

A

32-bit

integer

value

corresponding

to

the

maximum

number

of

rows

to

return

to

the

application

from

a

query.

The

default

value

for

vParam

is

0;

0

means

all

rows

are

returned.

For

more

information

about

setting

this

attribute,

see

“Result

sets

that

are

too

large”

on

page

471.

SQL_ATTR_NODESCRIBE

A

32-bit

integer

which

specifies

whether

DB2

ODBC

should

automatically

describe

the

column

attributes

of

the

result

set

or

wait

to

be

informed

by

the

application

using

SQLSetColAttributes().

v

SQL_NODESCRIBE_OFF

v

SQL_NODESCRIBE_ON

This

attribute

cannot

be

specified

while

there

is

an

open

cursor

on

this

statement

handle.

This

attribute

is

used

in

conjunction

with

the

function

SQLSetColAttributes()

by

an

application

which

has

prior

knowledge

of

the

exact

nature

of

the

result

set

to

be

returned

and

which

does

not

wish

to

incur

the

extra

network

traffic

associated

with

the

descriptor

information

needed

by

DB2

ODBC

to

provide

client

side

processing.

IBM

specific:

This

attribute

is

an

IBM-defined

extension.

SQL_ATTR_NOSCAN

A

32-bit

integer

value

that

specifies

whether

DB2

ODBC

will

scan

SQL

strings

for

escape

clauses.

The

two

permitted

values

are:

v

SQL_NOSCAN_OFF

-

SQL

strings

are

scanned

for

escape

clause

sequences.

v

SQL_NOSCAN_ON

-

SQL

strings

are

not

scanned

for

escape

clauses.

Everything

is

sent

directly

to

the

server

for

processing.

This

application

can

choose

to

turn

off

the

scanning

if

it

never

uses

vendor

escape

sequences

in

the

SQL

strings

that

it

sends.

This

eliminates

some

of

the

overhead

processing

associated

with

scanning.

SQL_ATTR_RETRIEVE_DATA

A

32-bit

integer

value

indicating

whether

DB2

ODBC

should

actually

retrieve

data

from

the

database

when

SQLExtendedFetch()

is

called.

The

possible

values

are:

v

SQL_RD_ON:

SQLExtendedFetch()

does

retrieve

data.

v

SQL_RD_OFF:

SQLExtendedFetch()

does

not

retrieve

data.

This

is

useful

for

verifying

whether

rows

exist

without

incurring

the

overhead

of

sending

long

data

from

the

database

server.

DB2

ODBC

internally

retrieves

all

the

fixed-length

columns,

such

as

INTEGER

and

SMALLINT;

so

there

is

still

some

overhead.

This

attribute

cannot

be

set

if

the

cursor

is

open.

SQL_ATTR_ROW_ARRAY_SIZE

A

32-bit

integer

value

that

specifies

the

number

of

rows

in

the

row

set.

This

is

the

number

of

rows

returned

by

each

call

to

SQLExtendedFetch().

The

default

value

is

1

which

is

equivalent

to

making

a

single

SQLFetch()

call.

This

attribute

can

be

specified

for

an

open

cursor

and

becomes

effective

on

the

next

SQLExtendedFetch()

call.

SQLSetStmtAttr()

-

Set

statement

attributes

Chapter

4.

Functions

371

Table

205.

Statement

attributes

(continued)

Attribute

ValuePtr

contents

SQL_ATTR_ROWSET_SIZE

A

32-bit

integer

value

that

specifies

the

number

of

rows

in

the

row

set.

A

row

set

is

the

array

of

rows

returned

by

each

call

to

SQLExtendedFetch().

The

default

value

is

1,

which

is

equivalent

to

making

a

single

SQLFetch().

This

attribute

can

be

specified

even

when

the

cursor

is

open

and

becomes

effective

on

the

next

SQLExtendedFetch()

call.

SQL_ATTR_STMTTXN_ISOLATION

or

SQL_ATTR_TXN_ISOLATION2

A

32-bit

integer

value

that

sets

the

transaction

isolation

level

for

the

current

statement

handle.

This

overrides

the

default

value

set

at

the

connection

level

(refer

also

to

“SQLSetConnectOption()

-

Set

connection

option”

on

page

356

for

the

permitted

values).

This

attribute

cannot

be

set

if

there

is

an

open

cursor

on

this

statement

handle

(SQLSTATE

24000).

IBM

specific:

The

value

SQL_ATTR_STMTTXN_ISOLATION

is

synonymous

with

SQL_ATTR_TXN_ISOLATION.

SQL_ATTR_STMTTXN_ISOLATION

is

an

IBM

extension

to

allow

setting

this

attribute

at

the

statement

level.

For

more

information

about

setting

this

attribute,

see

“Setting

isolation

levels”

on

page

472.

SQL_ATTR_CCSID_CHAR

A

32-bit

integer

value

that

specifies

the

Unicode,

EBCDIC,

or

ASCII

CCSID

of

input/output

data,

to

or

from

a

column

of

the

following

SQL

data

types:

v

SQL_CHAR

v

SQL_VARCHAR

v

SQL_LONGVARCHAR

This

CCSID

will

override

the

default

CCSID

setting

from

DB2

DSNHECP.

The

input

data

should

be

bound

to

parameter

markers

through

SQLBindParameter().

The

output

data

should

be

bound

to

columns

through

SQLBindCol().

SQL_CCSID_DEFAULT

is

the

default

value

of

this

statement

attribute,

therefore

the

CCSIDs

from

the

DB2

DSNHECP

are

used.

SQLSetStmtAttr()

-

Set

statement

attributes

372

ODBC

Guide

and

Reference

|

|

Table

205.

Statement

attributes

(continued)

Attribute

ValuePtr

contents

SQL_ATTR_CCSID_GRAPHIC

A

32-bit

integer

value

that

specifies

the

Unicode,

EBCDIC,

or

ASCII

CCSID

of

input/output

data,

to

or

from

a

column

of

the

following

SQL

data

types:

v

SQL_GRAPHIC

v

SQL_VARGRAPHIC

v

SQL_LONGVARGRAPHIC

This

CCSID

overrides

the

default

CCSID

setting

from

DB2

DSNHECP.

The

input

data

should

be

bound

to

parameter

markers

through

SQLBindParameter().

The

output

data

should

be

bound

to

columns

through

SQLBindCol().

SQL_CCSID_DEFAULT

is

the

default

value

of

this

statement

attribute,

therefore,

the

CCSIDs

from

the

DB2

DSNHECP

will

be

used.

IBM

specific:

DB2

UDB

for

z/OS

ODBC

extensions

to

SQLSetStmtAttr()

allow

an

application

to

override

the

CCSID

settings

of

the

DB2

subsystem

to

which

they

are

currently

attached.

This

extension

is

intended

for

applications

that

are

attempting

to

send

and

receive

data

to

and

from

DB2

in

a

CCSID

that

differs

from

the

default

settings

in

the

DB2

DSNHDECP.

The

CCSID

override

applies

only

to

input

data

bound

to

parameter

markers

through

SQLBindParameter()

and

output

data

bound

to

columns

through

SQLBindCol().

The

CCSID

override

applies

on

a

statement

level

only.

DB2

will

continue

to

use

the

default

CCSID

settings

in

the

DB2

DSNHECP

after

the

statement

is

dropped

or

if

SQL_CCSID_DEFAULT

is

specified.

You

can

use

SQLGetStmtAttr()

to

query

the

settings

of

the

current

statement

handle

CCSID

override.

Notes:

1.

You

can

change

the

default

value

for

this

attribute

with

the

CURSORHOLD

keyword

in

the

ODBC

initialization

file.

See

“CURSORHOLD”

on

page

54

for

more

information.

2.

You

can

change

the

default

value

for

this

attribute

with

the

TXNISOLATION

keyword

in

the

ODBC

initialization

file.

See

“TXNISOLATION”

on

page

61

for

more

information.

Return

codes

After

you

call

SQLSetStmtAttr(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

206

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

206.

SQLSetStmtAttr()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(SQLSetStmtAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

SQLSetStmtAttr()

-

Set

statement

attributes

Chapter

4.

Functions

373

|

Table

206.

SQLSetStmtAttr()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

01S02

Option

value

changed.

DB2

did

not

support

the

value

specified

in

*ValuePtr,

or

the

value

specified

in

*ValuePtr

is

invalid

due

to

SQL

constraints

or

requirements.

Therefore,

DB2

ODBC

substituted

a

similar

value.

(SQLSetStmtAttr()

returns

SQL_SUCCESS_WITH_INFO

for

this

SQLSTATE.)

08S01

Unable

to

connect

to

data

source.

The

communication

link

between

the

application

and

the

data

source

failed

before

the

function

completed.

24000

Invalid

cursor

state.

The

Attribute

is

SQL_ATTR_CONCURRENCY

and

the

cursor

is

open.

HY000

General

error.

An

error

occurred

for

which

no

specific

SQLSTATE

exists.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

memory

for

the

specified

handle.

HY009

Invalid

use

of

a

null

pointer.

A

null

pointer

is

passed

for

ValuePtr

and

the

value

in

*ValuePtr

is

a

string

value.

HY010

Function

sequence

error.

SQLExecute()

or

SQLExecDirect()

is

called

with

the

statement

handle,

and

returns

SQL_NEED_DATA.

This

function

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

Invoke

SQLCancel()

to

cancel

the

data-at-execution

condition.

HY011

Operation

invalid

at

this

time.

The

Attribute

is

SQL_ATTR_CONCURRENCY

and

the

statement

is

prepared.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

is

specified

in

*ValuePtr.

HY090

Invalid

string

or

buffer

length.

The

StringLength

argument

is

less

than

0,

but

is

not

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

is

not

valid

for

this

version

of

DB2

ODBC.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

is

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

ODBC

driver,

but

is

not

supported

by

the

data

source.

Restrictions

None.

Example

The

following

example

uses

SQLSetStmtAttr()

to

set

statement

attributes:

rc

=

SQLSetStmtAttr(

hstmt,

SQL_ATTR_CURSOR_HOLD,

(

void

*

)

SQL_CURSOR_HOLD_OFF,

0

)

;

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

)

;

Related

functions

The

following

functions

relate

to

SQLSetStmtAttr()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSetStmtAttr()

in

your

applications.

v

“SQLCancel()

-

Cancel

statement”

on

page

97

v

“SQLGetConnectAttr()

-

Get

current

attribute

setting”

on

page

196

v

“SQLGetStmtAttr()

-

Get

current

setting

of

a

statement

attribute”

on

page

272

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

SQLSetStmtAttr()

-

Set

statement

attributes

374

ODBC

Guide

and

Reference

SQLSetStmtOption()

-

Set

statement

attribute

Purpose

Table

207.

SQLSetStmtOption()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

No

In

the

current

version

of

DB2

ODBC,

SQLSetStmtAttr()

replaces

SQLSetStmtOption().

See

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

for

more

information.

Although

DB2

ODBC

supports

SQLSetStmtAttr()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLSetStmtAttr()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at:

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLSetStmtOption

(SQLHSTMT

hstmt,

SQLUSMALLINT

fOption,

SQLUINTEGER

vParam);

Function

arguments

Table

208

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

208.

SQLSetStmtOption()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLUSMALLINT

fOption

input

Attribute

to

set.

SQLUINTEGER

vParam

input

Value

that

is

associated

with

fOption.

vParam

can

be

a

32-bit

integer

value

or

a

pointer

to

a

nul-terminated

string.

SQLSetStmtOption()

-

Set

statement

attribute

Chapter

4.

Functions

375

www.ibm.com/software/data/db2/zos/library.html

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

Purpose

Table

209.

SQLSpecialColumns()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

No

SQLSpecialColumns()

returns

unique

row

identifier

information

(primary

key

or

unique

index)

for

a

table.

The

information

is

returned

in

an

SQL

result

set,

which

you

can

retrieve

by

using

the

same

functions

that

are

used

to

process

a

result

set

that

is

generated

by

a

query.

Syntax

SQLRETURN

SQLSpecialColumns(SQLHSTMT

hstmt,

SQLUSMALLINT

fColType,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fScope,

SQLUSMALLINT

fNullable);

Function

arguments

Table

210

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

210.

SQLSpecialColumns()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLUSMALLINT

fColType

input

Type

of

unique

row

identifier

to

return.

Only

the

following

type

is

supported:

v

SQL_BEST_ROWID,

which

returns

the

optimal

set

of

columns

that

can

uniquely

identify

any

row

in

the

specified

table.

Exception:

For

compatibility

with

ODBC

applications,

SQL_ROWVER

is

also

recognized,

but

not

supported;

therefore,

if

SQL_ROWVER

is

specified,

an

empty

result

is

returned.

SQLCHAR

*

szCatalogName

input

Catalog

qualifier

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero-length

string.

SQLSMALLINT

cbCatalogName

input

The

length,

in

bytes,

of

szCatalogName.

This

must

be

a

set

to

0.

SQLCHAR

*

szSchemaName

input

Schema

qualifier

of

the

specified

table.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

cbTableName.

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

376

ODBC

Guide

and

Reference

Table

210.

SQLSpecialColumns()

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

fScope

input

Minimum

required

duration

for

which

the

unique

row

identifier

is

valid.

fScope

must

be

one

of

the

following:

v

SQL_SCOPE_CURROW:

The

row

identifier

is

guaranteed

to

be

valid

only

while

positioned

on

that

row.

A

later

re-select

using

the

same

row

identifier

values

might

not

return

a

row

if

the

row

is

updated

or

deleted

by

another

transaction.

v

SQL_SCOPE_TRANSACTION:

The

row

identifier

is

guaranteed

to

be

valid

for

the

duration

of

the

current

transaction.

This

attribute

is

only

valid

if

SQL_TXN_SERIALIZABLE

and

SQL_TXN_REPEATABLE_READ

isolation

attributes

are

set.

v

SQL_SCOPE_SESSION:

The

row

identifier

is

guaranteed

to

be

valid

for

the

duration

of

the

connection.

Important:

This

attribute

is

not

supported

by

DB2

UDB

for

z/OS.

The

duration

over

which

a

row

identifier

value

is

guaranteed

to

be

valid

depends

on

the

current

transaction

isolation

level.

For

information

and

scenarios

involving

isolation

levels,

see

DB2

SQL

Reference.

SQLUSMALLINT

fNullable

input

Determines

whether

to

return

special

columns

that

can

have

a

null

value.

Must

be

one

of

the

following:

v

SQL_NO_NULLS

-

The

row

identifier

column

set

returned

cannot

have

any

null

values.

v

SQL_NULLABLE

-

The

row

identifier

column

set

returned

can

include

columns

where

null

values

are

permitted.

Usage

If

multiple

ways

exist

to

uniquely

identify

any

row

in

a

table

(that

is,

if

the

specified

table

is

indexed

with

multiple

unique

indexes),

DB2

ODBC

returns

the

best

set

of

row

identifier

column

sets

based

on

its

internal

criterion.

If

no

column

set

allows

any

row

in

the

table

to

be

uniquely

identified,

an

empty

result

set

is

returned.

The

unique

row

identifier

information

is

returned

in

the

form

of

a

result

set

where

each

column

of

the

row

identifier

is

represented

by

one

row

in

the

result

set.

Table

211

on

page

378

shows

the

order

of

the

columns

in

the

result

set

returned

by

SQLSpecialColumns(),

sorted

by

SCOPE.

Because

calls

to

SQLSpecialColumns()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

DB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_COLUMN_NAME_LEN

to

determine

the

actual

length

of

the

COLUMN_NAME

column

supported

by

the

connected

DBMS.

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

Chapter

4.

Functions

377

Although

new

columns

might

be

added

and

the

names

of

the

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

Table

211

lists

these

columns.

Table

211.

Columns

returned

by

SQLSpecialColumns()

Column

number

Column

name

Data

type

Description

1

SCOPE

SMALLINT

The

duration

for

which

the

name

in

COLUMN_NAME

is

guaranteed

to

point

to

the

same

row.

Valid

values

are

the

same

as

for

the

fScope

argument:

Actual

scope

of

the

row

identifier.

Contains

one

of

the

following

values:

v

SQL_SCOPE_CURROW

v

SQL_SCOPE_TRANSACTION

v

SQL_SCOPE_SESSION

See

fScope

in

Table

210

on

page

376

for

a

description

of

each

value.

2

COLUMN_NAME

VARCHAR(128)

NOT

NULL

Name

of

the

column

that

is

(or

part

of)

the

table’s

primary

key.

3

DATA_TYPE

SMALLINT

NOT

NULL

SQL

data

type

of

the

column.

One

of

the

values

in

the

Symbolic

SQL

Data

Type

column

in

Table

4

on

page

25.

4

TYPE_NAME

VARCHAR(128)

NOT

NULL

DBMS

character

string

represented

of

the

name

associated

with

DATA_TYPE

column

value.

5

COLUMN_SIZE

INTEGER

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

bytes;

if

it

is

a

graphic

(DBCS)

string,

this

is

the

number

of

double-byte

characters

for

the

parameter.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

bytes

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

See

Table

234

on

page

509.

6

BUFFER_LENGTH

INTEGER

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

column

if

SQL_C_DEFAULT

is

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

does

not

include

any

nul-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

Table

236

on

page

511.

7

DECIMAL_DIGITS

SMALLINT

The

scale

of

the

column.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

Table

235

on

page

510.

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

378

ODBC

Guide

and

Reference

Table

211.

Columns

returned

by

SQLSpecialColumns()

(continued)

Column

number

Column

name

Data

type

Description

8

PSEUDO_COLUMN

SMALLINT

Indicates

whether

the

column

is

a

pseudo-column.

DB2

ODBC

only

returns:

v

SQL_PC_NOT_PSEUDO

DB2

DBMSs

do

not

support

pseudo

columns.

ODBC

applications

can

receive

the

following

values

from

other

non-IBM

RDBMS

servers:

v

SQL_PC_UNKNOWN

v

SQL_PC_PSEUDO

Return

codes

After

you

call

SQLSpecialColumns(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

212

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

212.

SQLSpecialColumns()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

opened

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

of

one

of

the

length

arguments

is

less

than

0,

but

not

equal

to

SQL_NTS.

v

The

value

of

one

of

the

length

arguments

exceeded

the

maximum

length

supported

by

the

DBMS

for

that

qualifier

or

name.

HY097

Column

type

out

of

range.

An

invalid

fColType

value

is

specified.

HY098

Scope

type

out

of

range.

An

invalid

fScope

value

is

specified.

HY099

Nullable

type

out

of

range.

An

invalid

fNullable

values

is

specified.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

table

name.

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

Chapter

4.

Functions

379

Restrictions

None.

Example

Figure

32

shows

an

application

that

prints

a

list

of

columns

that

uniquely

define

rows

in

a

table.

This

application

uses

SQLSpecialColumns()

to

find

these

columns.

Related

functions

The

following

functions

relate

to

SQLSpecialColumns()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLSpecialColumns()

in

your

applications.

v

“SQLColumns()

-

Get

column

information”

on

page

115

v

“SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table”

on

page

381

v

“SQLTables()

-

Get

table

information”

on

page

391

/*

...

*/

SQLRETURN

list_index_columns(SQLHDBC

hdbc,

SQLCHAR

*schema,

SQLCHAR

*tablename

)

{

/*

...

*/

rc

=

SQLSpecialColumns(hstmt,

SQL_BEST_ROWID,

NULL,

0,

schema,

SQL_NTS,

tablename,

SQL_NTS,

SQL_SCOPE_CURROW,

SQL_NULLABLE);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

column_name.s,

129,

&column_name.ind);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

type_name.s,

129,

&type_name.ind);

rc

=

SQLBindCol(hstmt,

5,

SQL_C_LONG,

(SQLPOINTER)

&

precision,

sizeof(precision),

&precision_ind);

rc

=

SQLBindCol(hstmt,

7,

SQL_C_SHORT,

(SQLPOINTER)

&

scale,

sizeof(scale),

&scale_ind);

printf("Primary

key

or

unique

index

for

%s.%s\n",

schema,

tablename);

/*

Fetch

each

row,

and

display

*/

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

printf("

%s,

%s

",

column_name.s,

type_name.s);

if

(precision_ind

!=

SQL_NULL_DATA)

{

printf("

(%ld",

precision);

}

else

{

printf("(\n");

}

if

(scale_ind

!=

SQL_NULL_DATA)

{

printf(",

%d)\n",

scale);

}

else

{

printf(")\n");

}

}

/*

...

*/

Figure

32.

An

application

that

prints

the

column

set

for

a

unique

index

of

a

table

SQLSpecialColumns()

-

Get

special

(row

identifier)

columns

380

ODBC

Guide

and

Reference

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

Purpose

Table

213.

SQLStatistics()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

No

SQLStatistics()

retrieves

index

information

for

a

given

table.

It

also

returns

the

cardinality

and

the

number

of

pages

associated

with

the

table

and

the

indexes

on

the

table.

The

information

is

returned

in

a

result

set,

which

you

can

retrieve

by

using

the

same

functions

that

you

use

to

process

a

result

set

that

is

generated

by

a

query.

Syntax

SQLRETURN

SQLStatistics

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fUnique,

SQLUSMALLINT

fAccuracy);

Function

arguments

Table

214

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

214.

SQLStatistics()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szCatalogName

input

Catalog

qualifier

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbCatalogName

input

The

length,

in

bytes,

of

cbCatalogName.

This

must

be

set

to

0.

SQLCHAR

*

szSchemaName

input

Schema

qualifier

of

the

specified

table.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

cbTableName.

SQLUSMALLINT

fUnique

input

Type

of

index

information

to

return:

v

SQL_INDEX_UNIQUE

Only

unique

indexes

are

returned.

v

SQL_INDEX_ALL

All

indexes

are

returned.

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

Chapter

4.

Functions

381

Table

214.

SQLStatistics()

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

fAccuracy

input

Indicate

whether

the

CARDINALITY

and

PAGES

columns

in

the

result

set

contain

the

most

current

information:

v

SQL_ENSURE

:

This

value

is

reserved

for

future

use,

when

the

application

requests

the

most

up

to

date

statistics

information.

Existing

applications

that

specify

this

value

receive

the

same

results

as

SQL_QUICK.

Recommendation:

Do

not

use

this

value

with

new

applications.

v

SQL_QUICK:

Statistics

which

are

readily

available

at

the

server

are

returned.

The

values

might

not

be

current,

and

no

attempt

is

made

to

ensure

that

they

be

up

to

date.

Usage

SQLStatistics()

returns

two

types

of

information:

v

Statistics

information

for

the

table

(if

statistics

are

available):

–

When

the

TYPE

column

in

the

table

below

is

set

to

SQL_TABLE_STAT,

the

number

of

rows

in

the

table

and

the

number

of

pages

used

to

store

the

table.

–

When

the

TYPE

column

indicates

an

index,

the

number

of

unique

values

in

the

index,

and

the

number

of

pages

used

to

store

the

indexes.

v

Information

about

each

index,

where

each

index

column

is

represented

by

one

row

of

the

result

set.

The

result

set

columns

are

given

in

Table

215

in

the

order

shown;

the

rows

in

the

result

set

are

ordered

by

NON_UNIQUE,

TYPE,

INDEX_QUALIFIER,

INDEX_NAME

and

ORDINAL_POSITION.

Because

calls

to

SQLStatistics()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

the

length

of

DB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

Table

215

lists

the

columns

in

the

result

set

SQLStatistics()

currently

returns.

Table

215.

Columns

returned

by

SQLStatistics()

Column

number

Column

name

Data

type

Description

1

TABLE_CAT

VARCHAR(128)

The

is

always

null.

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

382

ODBC

Guide

and

Reference

Table

215.

Columns

returned

by

SQLStatistics()

(continued)

Column

number

Column

name

Data

type

Description

2

TABLE_SCHEM

VARCHAR(128)

The

name

of

the

schema

containing

TABLE_NAME.

3

TABLE_NAME

VARCHAR(128)

NOT

NULL

Name

of

the

table.

4

NON_UNIQUE

SMALLINT

Indicates

whether

the

index

prohibits

duplicate

values:

v

SQL_TRUE

if

the

index

allows

duplicate

values.

v

SQL_FALSE

if

the

index

values

must

be

unique.

v

NULL

is

returned

if

the

TYPE

column

indicates

that

this

row

is

SQL_TABLE_STAT

(statistics

information

on

the

table

itself).

5

INDEX_QUALIFIER

VARCHAR(128)

The

string

is

used

to

qualify

the

index

name

in

the

DROP

INDEX

statement.

Appending

a

period

(.)

plus

the

INDEX_NAME

results

in

a

full

specification

of

the

index.

6

INDEX_NAME

VARCHAR(128)

The

name

of

the

index.

If

the

TYPE

column

has

the

value

SQL_TABLE_STAT,

this

column

has

the

value

NULL.

7

TYPE

SMALLINT

NOT

NULL

Indicates

the

type

of

information

contained

in

this

row

of

the

result

set:

v

SQL_TABLE_STAT

-

Indicates

this

row

contains

statistics

information

on

the

table

itself.

v

SQL_INDEX_CLUSTERED

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

a

clustered

index.

v

SQL_INDEX_HASHED

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

a

hashed

index.

v

SQL_INDEX_OTHER

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

other

than

clustered

or

hashed.

8

ORDINAL_POSITION

SMALLINT

Ordinal

position

of

the

column

within

the

index

whose

name

is

given

in

the

INDEX_NAME

column.

A

null

value

is

returned

for

this

column

if

the

TYPE

column

has

the

value

of

SQL_TABLE_STAT.

9

COLUMN_NAME

VARCHAR(128)

Name

of

the

column

in

the

index.

A

null

value

is

returned

for

this

column

if

the

TYPE

column

has

the

value

of

SQL_TABLE_STAT.

10

ASC_OR_DESC

CHAR(1)

Sort

sequence

for

the

column;

A

for

ascending,

D

for

descending.

A

null

value

is

returned

if

the

value

in

the

TYPE

column

is

SQL_TABLE_STAT.

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

Chapter

4.

Functions

383

Table

215.

Columns

returned

by

SQLStatistics()

(continued)

Column

number

Column

name

Data

type

Description

11

CARDINALITY

INTEGER

v

If

the

TYPE

column

contains

the

value

SQL_TABLE_STAT,

this

column

contains

the

number

of

rows

in

the

table.

v

If

the

TYPE

column

value

is

not

SQL_TABLE_STAT,

this

column

contains

the

number

of

unique

values

in

the

index.

v

A

null

value

is

returned

if

information

is

not

available

from

the

DBMS.

12

PAGES

INTEGER

v

If

the

TYPE

column

contains

the

value

SQL_TABLE_STAT,

this

column

contains

the

number

of

pages

used

to

store

the

table.

v

If

the

TYPE

column

value

is

not

SQL_TABLE_STAT,

this

column

contains

the

number

of

pages

used

to

store

the

indexes.

v

A

null

value

is

returned

if

information

is

not

available

from

the

DBMS.

13

FILTER_CONDITION

VARCHAR(128)

If

the

index

is

a

filtered

index,

this

is

the

filter

condition.

Because

DB2

servers

do

not

support

filtered

indexes,

NULL

is

always

returned.

NULL

is

also

returned

if

TYPE

is

SQL_TABLE_STAT.

For

the

row

in

the

result

set

that

contains

table

statistics

(TYPE

is

set

to

SQL_TABLE_STAT),

the

columns

values

of

NON_UNIQUE,

INDEX_QUALIFIER,

INDEX_NAME,

ORDINAL_POSITION,

COLUMN_NAME,

and

ASC_OR_DESC

are

set

to

NULL.

If

the

CARDINALITY

or

PAGES

information

cannot

be

determined,

then

NULL

is

returned

for

those

columns.

Important:

The

accuracy

of

the

information

returned

in

the

SQLERRD(3)

and

SQLERRD(4)

fields

is

dependent

on

many

factors

such

as

the

use

of

parameter

markers

and

expressions

within

the

statement.

The

main

factor

which

can

be

controlled

is

the

accuracy

of

the

database

statistics.

That

is,

when

the

statistics

were

last

updated,

(for

example,

for

DB2

UDB

for

z/OS,

the

last

time

the

RUNSTATS

utility

was

run.)

Return

codes

After

you

call

SQLStatistics(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

216

on

page

385

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

384

ODBC

Guide

and

Reference

Table

216.

SQLStatistics()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

opened

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

to

SQL_NTS.

v

The

valid

of

one

of

the

name

length

arguments

exceeds

the

maximum

value

supported

for

that

data

source.

You

can

obtain

this

maximum

value

with

SQLGetInfo().

HY100

Uniqueness

option

type

out

of

range.

An

invalid

fUnique

value

is

specified.

HY101

Accuracy

option

type

out

of

range.

An

invalid

fAccuracy

value

is

specified.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

33

on

page

386

shows

an

application

that

prints

the

cardinality

and

the

number

of

pages

associated

with

a

table.

This

application

retrieves

this

information

with

SQLStatistics().

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

Chapter

4.

Functions

385

Related

functions

The

following

functions

relate

to

SQLStatistics()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLStatistics()

in

your

applications.

v

“SQLColumns()

-

Get

column

information”

on

page

115

v

“SQLSpecialColumns()

-

Get

special

(row

identifier)

columns”

on

page

376

/*

...

*/

SQLRETURN

list_stats(SQLHDBC

hdbc,

SQLCHAR

*schema,

SQLCHAR

*tablename

)

{

/*

...

*/

rc

=

SQLStatistics(hstmt,

NULL,

0,

schema,

SQL_NTS,

tablename,

SQL_NTS,

SQL_INDEX_UNIQUE,

SQL_QUICK);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_SHORT,

&non_unique,

2,

&non_unique_ind);

rc

=

SQLBindCol(hstmt,

6,

SQL_C_CHAR,

index_name.s,

129,

&index_name.ind);

rc

=

SQLBindCol(hstmt,

7,

SQL_C_SHORT,

&type,

2,

&type_ind);

rc

=

SQLBindCol(hstmt,

9,

SQL_C_CHAR,

column_name.s,

129,

&column_name.ind);

rc

=

SQLBindCol(hstmt,

11,

SQL_C_LONG,

&cardinality,

4,

&card_ind);

rc

=

SQLBindCol(hstmt,

12,

SQL_C_LONG,

&pages,

4,

&pages_ind);

printf("Statistics

for

%s.%s\n",

schema,

tablename);

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

if

(type

!=

SQL_TABLE_STAT)

{

printf("

Column:

%-18s

Index

Name:

%-18s\n",

column_name.s,

index_name.s);

}

else

{

printf("

Table

Statistics:\n");

}

if

(card_ind

!=

SQL_NULL_DATA)

printf("

Cardinality

=

%13ld",

cardinality);

else

printf("

Cardinality

=

(Unavailable)");

if

(pages_ind

!=

SQL_NULL_DATA)

printf("

Pages

=

%13ld\n",

pages);

else

printf("

Pages

=

(Unavailable)\n");

}

/*

...

*/

Figure

33.

An

application

that

prints

page

and

cardinality

information

about

a

table

SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table

386

ODBC

Guide

and

Reference

SQLTablePrivileges()

-

Get

table

privileges

Purpose

Table

217.

SQLTablePrivileges()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

No

No

SQLTablePrivileges()

returns

a

list

of

tables

and

associated

privileges

for

each

table.

The

information

is

returned

in

an

SQL

result

set,

which

you

can

retrieve

by

using

the

same

functions

that

you

use

to

process

a

result

set

that

is

generated

by

a

query.

Syntax

SQLRETURN

SQLTablePrivileges

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName);

Function

arguments

Table

218

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

218.

SQLTablePrivileges()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szTableQualifier

input

Catalog

qualifier

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbTableQualifier

input

The

length,

in

bytes,

of

szCatalogName.

This

must

be

set

to

0.

SQLCHAR

*

szSchemaName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

szTableName.

The

szSchemaName

and

szTableName

arguments

accept

search

pattern.

For

more

information

about

valid

search

patterns,

see

“Input

arguments

on

catalog

functions”

on

page

408.

Usage

The

results

are

returned

as

a

standard

result

set

containing

the

columns

listed

in

the

following

table.

The

result

set

is

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

PRIVILEGE.

If

multiple

privileges

are

associated

with

any

given

table,

each

privilege

is

returned

as

a

separate

row.

SQLTablePrivileges()

-

Get

table

privileges

Chapter

4.

Functions

387

Because

calls

to

SQLTablePrivileges()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

Because

DB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

remains

unchanged.

Table

219

lists

the

columns

in

the

result

set

SQLTablePrivileges()

currently

returns.

Table

219.

Columns

returned

by

SQLTablePrivileges()

Column

number

Column

name

Data

type

Description

1

TABLE_CAT

VARCHAR(128)

The

is

always

null.

2

TABLE_SCHEM

VARCHAR(128)

The

name

of

the

schema

contain

TABLE_NAME.

3

TABLE_NAME

VARCHAR(128)

NOT

NULL

The

name

of

the

table.

4

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privilege.

5

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

to

whom

the

privilege

is

granted.

6

PRIVILEGE

VARCHAR(128)

The

table

privilege.

This

can

be

one

of

the

following

strings:

v

ALTER

v

CONTROL

v

DELETE

v

INDEX

v

INSERT

v

REFERENCES

v

SELECT

v

UPDATE

7

IS_GRANTABLE

VARCHAR(3)

Indicates

whether

the

grantee

is

permitted

to

grant

the

privilege

to

other

users.

This

can

be

″YES″,

″NO″

or

NULL.

The

column

names

used

by

DB2

ODBC

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedures()

result

set

in

ODBC.

SQLTablePrivileges()

-

Get

table

privileges

388

ODBC

Guide

and

Reference

Return

codes

After

you

call

SQLTablePrivileges(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

220

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

Table

220.

SQLTablePrivileges()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

opened

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

to

SQL_NTS.

v

The

value

of

one

of

the

name

length

arguments

exceeded

the

maximum

value

supported

for

that

data

source.

The

maximum

supported

value

can

be

obtained

by

calling

the

SQLGetInfo()

function.

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

34

on

page

390

shows

an

application

that

uses

SQLTablePrivileges()

to

generate

a

result

set

of

privileges

on

tables.

SQLTablePrivileges()

-

Get

table

privileges

Chapter

4.

Functions

389

Related

functions

The

following

functions

relate

to

SQLTablePrivileges()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLTablePrivileges()

in

your

applications.

v

“SQLTables()

-

Get

table

information”

on

page

391

/*

...

*/

SQLRETURN

list_table_privileges(SQLHDBC

hdbc,

SQLCHAR

*schema,

SQLCHAR

*tablename

)

{

SQLHSTMT

hstmt;

SQLRETURN

rc;

struct

{

SQLINTEGER

ind;

/*

Length

&

Indicator

variable

*/

SQLCHAR

s[129];

/*

String

variable

*/

}

grantor,

grantee,

privilege;

struct

{

SQLINTEGER

ind;

SQLCHAR

s[4];

}is_grantable;

SQLCHAR

cur_name[512]

=

"";

/*

Used

when

printing

the

*/

SQLCHAR

pre_name[512]

=

"";

/*

Result

set

*/

/*

Allocate

a

statement

handle

to

reference

the

result

set

*/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

/*

Create

table

privilges

result

set

*/

rc

=

SQLTablePrivileges(hstmt,

NULL,

0,

schema,

SQL_NTS,

tablename,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

grantor.s,

129,

&grantor.ind);

/*

Continue

Binding,

then

fetch

and

display

result

set

*/

/*

...

*/

Figure

34.

An

application

that

generates

a

result

set

containing

privileges

on

tables

SQLTablePrivileges()

-

Get

table

privileges

390

ODBC

Guide

and

Reference

SQLTables()

-

Get

table

information

Purpose

Table

221.

SQLTables()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

Yes

No

SQLTables()

returns

a

list

of

table

names

and

associated

information

stored

in

the

system

catalog

of

the

connected

data

source.

The

list

of

table

names

is

returned

as

a

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax

SQLRETURN

SQLTables

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

FAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

FAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

FAR

*szTableType,

SQLSMALLINT

cbTableType);

Function

arguments

Table

222

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

222.

SQLTables()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

hstmt

input

Statement

handle.

SQLCHAR

*

szCatalogName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set.

Catalog

is

the

first

part

of

a

three-part

table

name.

This

must

be

a

null

pointer

or

a

zero

length

string.

SQLSMALLINT

cbCatalogName

input

The

length,

in

bytes,

of

szCatalogName.

This

must

be

set

to

0.

SQLCHAR

*

szSchemaName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

cbSchemaName

input

The

length,

in

bytes,

of

szSchemaName.

SQLCHAR

*

szTableName

input

Buffer

that

can

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

cbTableName

input

The

length,

in

bytes,

of

szTableName.

SQLTables()

-

Get

table

information

Chapter

4.

Functions

391

Table

222.

SQLTables()

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

szTableType

input

Buffer

that

can

contain

a

value

list

to

qualify

the

result

set

by

table

type.

The

value

list

is

a

list

of

uppercase

comma-separated

single

quoted

values

for

the

table

types

of

interest.

Valid

table

type

identifiers

can

include:

TABLE,

VIEW,

SYSTEM

TABLE,

ALIAS,

SYNONYM.

If

szTableType

argument

is

a

null

pointer

or

a

zero-length

string,

then

this

is

equivalent

to

specifying

all

of

the

possibilities

for

the

table

type

identifier.

If

SYSTEM

TABLE

is

specified,

then

both

system

tables

and

system

views

(if

any)

are

returned.

SQLSMALLINT

cbTableType

input

Size

of

szTableType

Note

that

the

szCatalogName,

szSchemaName,

and

szTableName

arguments

accept

search

patterns.

For

more

information

about

valid

search

patterns,

see

“Input

arguments

on

catalog

functions”

on

page

408.

Usage

Table

information

is

returned

in

a

result

set

where

each

table

is

represented

by

one

row

of

the

result

set.

To

determine

the

type

of

access

permitted

on

any

given

table

in

the

list,

the

application

can

call

SQLTablePrivileges().

Otherwise,

the

application

must

be

able

to

handle

a

situation

where

the

user

selects

a

table

for

which

SELECT

privileges

are

not

granted.

To

support

obtaining

just

a

list

of

schemas,

the

following

special

semantics

for

the

szSchemaName

argument

can

be

applied:

if

szSchemaName

is

a

string

containing

a

single

percent

(%)

character,

and

szCatalogName

and

szTableName

are

empty

strings,

then

the

result

set

contains

a

list

of

valid

schemas

in

the

data

source.

If

szTableType

is

a

single

percent

character

(%)

and

szCatalogName,

szSchemaName,

and

szTableName

are

empty

strings,

then

the

result

set

contains

a

list

of

valid

table

types

for

the

data

source.

(All

columns

except

the

TABLE_TYPE

column

contain

null

values.)

If

szTableType

is

not

an

empty

string,

it

must

contain

a

list

of

uppercase,

comma-separated

values

for

the

types

of

interest;

each

value

can

be

enclosed

in

single

quotes

or

without

single

quotes.

For

example,

″’TABLE’,’VIEW’″

or

″TABLE,VIEW″.

If

the

data

source

does

not

support

or

does

not

recognize

a

specified

table

type,

nothing

is

returned

for

that

type.

Sometimes,

an

application

calls

SQLTables()

with

null

pointers

for

some

or

all

of

the

szSchemaName,

szTableName,

and

szTableType

arguments

so

that

no

attempt

is

made

to

restrict

the

result

set

returned.

For

some

data

sources

that

contain

a

large

quantity

of

tables,

views,

or

aliases,

this

scenario

maps

to

an

extremely

large

result

set

and

very

long

retrieval

times.

Three

mechanisms

are

introduced

to

help

the

end

user

reduce

the

long

retrieval

times:

three

keywords

(SCHEMALIST,

SYSSCHEMA,

TABLETYPE)

can

be

specified

in

the

DB2

ODBC

initialization

file

to

help

restrict

the

result

set

when

the

application

has

supplied

null

pointers

for

either

or

both

of

szSchemaName

and

szTableType.

These

keywords

and

their

usage

are

discussed

in

detail

in

“Initialization

keywords”

on

page

51.

If

the

application

did

not

specify

a

null

pointer

for

szSchemaName

or

szTableType

then

the

associated

keyword

specification

in

the

DB2

ODBC

initialization

file

is

ignored.

SQLTables()

-

Get

table

information

392

ODBC

Guide

and

Reference

|

The

result

set

returned

by

SQLTables()

contains

the

columns

listed

in

Table

223

in

the

order

given.

The

rows

are

ordered

by

TABLE_TYPE,

TABLE_CAT,

TABLE_SCHEM,

and

TABLE_NAME.

Because

calls

to

SQLTables()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

bytes

to

be

consistent

with

SQL92

limits.

BecauseDB2

names

are

less

than

128

bytes,

the

application

can

choose

to

always

set

aside

128

bytes

(plus

the

nul-terminator)

for

the

output

buffer.

Alternatively,

you

can

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_MAX_CATALOG_NAME_LEN,

to

determine

the

length

of

TABLE_CAT

columns

that

the

connected

DBMS

supports

v

SQL_MAX_SCHEMA_NAME_LEN,

to

determine

the

length

of

TABLE_SCHEM

columns

that

the

connected

DBMS

supports

v

SQL_MAX_TABLE_NAME_LEN,

to

determine

the

length

of

TABLE_NAME

columns

that

the

connected

DBMS

supports

v

SQL_MAX_COLUMN_NAME_LEN,

to

determine

the

length

of

COLUMN_NAME

columns

that

the

connected

DBMS

supports

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

remains

unchanged.

Table

223

lists

the

columns

in

the

result

set

SQLTables()

currently

returns.

Table

223.

Columns

returned

by

SQLTables()

Column

Name

Data

type

Description

TABLE_CAT

VARCHAR(128)

The

name

of

the

catalog

containing

TABLE_SCHEM.

This

column

contains

a

null

value.

TABLE_SCHEM

VARCHAR(128)

The

name

of

the

schema

containing

TABLE_NAME.

TABLE_NAME

VARCHAR(128)

The

name

of

the

table,

or

view,

or

alias,

or

synonym.

TABLE_TYPE

VARCHAR(128)

Identifies

the

type

given

by

the

name

in

the

TABLE_NAME

column.

It

can

have

the

string

values

’TABLE’,

’VIEW’,

’INOPERATIVE

VIEW’,

’SYSTEM

TABLE’,

’ALIAS’,

or

’SYNONYM’.

REMARKS

VARCHAR(762)

Contains

the

descriptive

information

about

the

table.

Return

codes

After

you

call

SQLTables(),

it

returns

one

of

the

following

values:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

For

a

description

of

each

of

these

return

code

values,

see

“Function

return

codes”

on

page

23.

Diagnostics

Table

224

on

page

394

lists

each

SQLSTATE

that

this

function

generates,

with

a

description

and

explanation

for

each

value.

SQLTables()

-

Get

table

information

Chapter

4.

Functions

393

|

Table

224.

SQLTables()

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

open

on

the

statement

handle.

40003

or

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

fails

before

the

function

completes.

HY001

Memory

allocation

failure.

DB2

ODBC

is

not

able

to

allocate

the

required

memory

to

support

the

execution

or

the

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

during

a

data-at-execute

operation.

(That

is,

the

function

is

called

during

a

procedure

that

uses

the

SQLParamData()

or

SQLPutData()

functions.)

HY014

No

more

handles.

DB2

ODBC

is

not

able

to

allocate

a

handle

due

to

low

internal

resources.

HY090

Invalid

string

or

buffer

length.

This

SQLSTATE

is

returned

for

one

or

more

of

the

following

reasons:

v

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

to

SQL_NTS.

v

The

value

of

one

of

the

name

length

arguments

exceeds

the

maximum

value

supported

for

that

data

source.

You

can

obtain

this

maximum

value

with

SQLGetInfo().

HYC00

Driver

not

capable.

DB2

ODBC

does

not

support

catalog

as

a

qualifier

for

table

name.

Restrictions

None.

Example

Figure

35

on

page

395

shows

an

application

that

uses

SQLTables()

to

generate

a

result

set

of

table

name

information

that

matches

a

search

pattern.

For

another

example,

see

“Querying

environment

and

data

source

information”

on

page

36.

SQLTables()

-

Get

table

information

394

ODBC

Guide

and

Reference

Related

functions

The

following

functions

relate

to

SQLTables()

calls.

Refer

to

the

descriptions

of

these

functions

for

more

information

about

how

you

can

use

SQLTables()

in

your

applications.

v

“SQLColumns()

-

Get

column

information”

on

page

115

v

“SQLTablePrivileges()

-

Get

table

privileges”

on

page

387

/*

...

*/

SQLRETURN

init_tables(SQLHDBC

hdbc

)

{

SQLHSTMT

hstmt;

SQLRETURN

rc;

SQLUSMALLINT

rowstat[MAX_TABLES];

SQLUINTEGER

pcrow;

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

/*

SQL_ROWSET_SIZE

sets

the

max

number

of

result

rows

to

fetch

each

time

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWSET_SIZE,

(void*)MAX_TABLES,

0);

/*

Set

size

of

one

row,

used

for

row-wise

binding

only

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_BIND_TYPE,

(void

*)sizeof(table)

/

MAX_TABLES,

0);

printf("Enter

Search

Pattern

for

Table

Schema

Name:\n");

gets(table->schem);

printf("Enter

Search

Pattern

for

Table

Name:\n");

gets(table->name);

rc

=

SQLTables(hstmt,

NULL,

0,

table->schem,

SQL_NTS,

table->name,

SQL_NTS,

NULL,

0);

rc

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

(SQLPOINTER)

&table->schem,

129,

&table->schem_l);

rc

=

SQLBindCol(hstmt,

3,

SQL_C_CHAR,

(SQLPOINTER)

&table->name,

129,

&table->name_l);

rc

=

SQLBindCol(hstmt,

4,

SQL_C_CHAR,

(SQLPOINTER)

&table->type,

129,

&table->type_l);

rc

=

SQLBindCol(hstmt,

5,

SQL_C_CHAR,

(SQLPOINTER)

&table->remarks,

255,

&table->remarks_l);

/*

Now

fetch

the

result

set

*/

/*

...

*/

Figure

35.

An

application

that

returns

a

result

set

of

table

name

information

SQLTables()

-

Get

table

information

Chapter

4.

Functions

395

SQLTransact()

-

Transaction

management

Purpose

Table

225.

SQLTransact()

specifications

ODBC

X/OPEN

CLI

ISO

CLI

1.0

(Deprecated)

Yes

Yes

In

the

current

version

of

DB2

ODBC,

SQLEndTran()

replaces

SQLTransact().

See

“SQLEndTran()

-

End

transaction

of

a

connection”

on

page

149

for

more

information.

Although

DB2

ODBC

supports

SQLTransact()

for

backward

compatibility,

you

should

use

current

DB2

ODBC

functions

in

your

applications.

A

complete

description

of

SQLTransact()

is

available

in

the

documentation

for

previous

DB2

versions,

which

you

can

find

at

www.ibm.com/software/data/db2/zos/library.html.

Syntax

SQLRETURN

SQLTransact

(SQLHENV

henv,

SQLHDBC

hdbc,

SQLUSMALLINT

fType);

Function

arguments

Table

226

lists

the

data

type,

use,

and

description

for

each

argument

in

this

function.

Table

226.

SQLTransact()

arguments

Data

type

Argument

Use

Description

SQLHENV

henv

input

Environment

handle.

If

hdbc

is

a

valid

connection

handle,

henv

is

ignored.

SQLHDBC

hdbc

input

Database

connection

handle.

If

hdbc

is

set

to

SQL_NULL_HDBC,

then

henv

must

contain

the

environment

handle

that

the

connection

is

associated

with.

SQLUSMALLINT

fType

input

The

desired

action

for

the

transaction.

The

value

for

this

argument

must

be

one

of:

v

SQL_COMMIT

v

SQL_ROLLBACK

SQLTransact()

-

Transaction

management

396

ODBC

Guide

and

Reference

www.ibm.com/software/data/db2/zos/library.html

Chapter

5.

Using

advanced

features

This

chapter

covers

the

following

advanced

tasks:

v

“Setting

and

retrieving

environment,

connection,

and

statement

attributes”

v

“Using

a

distributed

unit

of

work”

on

page

399

v

“Using

global

transactions”

on

page

405

v

“Querying

catalog

information”

on

page

407

v

“Sending

or

retrieving

long

data

values

in

pieces”

on

page

412

v

“Using

arrays

to

pass

parameter

values”

on

page

414

v

“Retrieving

a

result

set

into

an

array”

on

page

417

v

“Using

large

objects”

on

page

423

v

“Using

distinct

types”

on

page

426

v

“Using

stored

procedures”

on

page

429

v

“Writing

multithreaded

and

multiple-context

applications”

on

page

433

v

“Handling

application

encoding

schemes”

on

page

443

v

“Mixing

embedded

SQL

with

DB2

ODBC”

on

page

463

v

“Using

vendor

escape

clauses”

on

page

465

v

“Programming

hints

and

tips”

on

page

470

Setting

and

retrieving

environment,

connection,

and

statement

attributes

Environments,

connections,

and

statements

each

have

a

defined

set

of

attributes

(or

options).

You

can

query

all

these

attributes,

but

you

can

change

only

some

of

these

attributes

from

their

default

values.

When

you

change

attribute

values,

you

change

the

behavior

of

DB2

ODBC.

The

attributes

that

you

can

change

are

listed

in

the

detailed

descriptions

of

the

set-attribute

functions.

For

more

information

about

these

functions,

see

the

following

descriptions:

v

“SQLSetEnvAttr()

-

Set

environment

attribute”

on

page

360

v

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

v

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367

v

“SQLSetColAttributes()

-

Set

column

attributes”

on

page

341

Read-only

attributes

(if

any

exist)

are

listed

with

the

detailed

function

descriptions

of

the

get-attribute

functions.

For

information

about

some

commonly

used

attributes,

see

“Programming

hints

and

tips”

on

page

470.

Usually

you

write

applications

that

use

default

attribute

settings;

however,

these

defaults

are

not

always

suitable

for

particular

users

of

your

application.

DB2

ODBC

provides

two

points

at

which

users

of

your

application

can

change

default

values

of

attributes

at

run

time.

Users

specify

attribute

values

either

from

an

interface

that

uses

the

SQLDriverConnect()

connection

string

or

they

can

specify

values

in

the

DB2

ODBC

initialization

file.

The

DB2

ODBC

initialization

file

specifies

the

default

attribute

values

for

all

DB2

ODBC

applications.

If

an

application

does

not

provide

users

with

an

interface

to

the

SQLDriverConnect()

connection

string,

users

can

change

default

attribute

values

through

the

initialization

file

only.

Attribute

values

that

are

specified

with

SQLDriverConnect()

override

the

values

that

are

set

in

the

DB2

ODBC

initialization

file

for

any

particular

connection.

For

information

about

the

connection

string,

see

“SQLDriverConnect()

-

Use

a

connection

string

to

connect

to

a

data

source”

on

©

Copyright

IBM

Corp.

1997,

2004

397

page

142.

For

information

about

how

the

users

of

your

applications

can

use

the

DB2

ODBC

initialization

file,

as

well

as

for

a

list

of

changeable

defaults,

see

“DB2

ODBC

initialization

file”

on

page

49.

Important:

The

initialization

file

and

connection

string

are

intended

for

user

tuning.

Application

developers

should

use

the

appropriate

set-attribute

functions

to

change

attribute

values.

When

you

use

set-attribute

functions

to

set

attribute

values,

the

value

that

you

specify

overrides

the

initialization

file

value

and

the

SQLDriverConnect()

connection

string

value

for

that

attribute.

Figure

36

shows

how

you

set

and

retrieve

attribute

values

within

a

basic

connect

scenario.

Setting

and

retrieving

environment

attributes

Attributes

on

an

environment

handle

affect

the

behavior

of

all

DB2

ODBC

functions

within

that

environment.

You

must

set

environment

attributes

before

you

allocate

a

SQLAllocHandle()
(statement)

SQLDriverConnect()SQLConnect()

Some attributes can
be set only after the
connection is establishled.

Optionally set
keyword values

Environment attributes can be set only
before a connection handle is allocated.

SQLAllocHandle()
(connection)

SQLAllocHandle()
(environment)

SQLGetStmtAttr()
(optional)

SQLSetStmtAttr()

Default
statement
attributes

SQLSetConnectAttr()

SQLGetConnectAttr()
(optional)

SQLGetEnvAttr()
(optional)

SQLSetConnectAttr()

SQLSetEnvAttr()

Figure

36.

Setting

and

retrieving

attributes

398

ODBC

Guide

and

Reference

connection

handle.

Because

DB2

ODBC

allows

you

to

allocate

only

one

environment

handle,

environment

attributes

affect

all

DB2

ODBC

functions

that

your

application

calls.

To

specify

a

new

value

for

an

environment

attribute,

call

SQLSetEnvAttr().

To

obtain

the

current

value

of

an

environment

attribute,

call

SQLGetEnvAttr().

Setting

and

retrieving

connection

attributes

Attributes

on

a

connection

handle

affect

the

behavior

of

all

DB2

ODBC

functions

for

that

connection.

To

change

the

value

of

a

connection

attribute,

call

SQLSetConnectAttr().

You

can

set

a

connection

attribute

only

within

one

of

the

following

periods

of

time.

This

period

differs

for

each

specific

connection

attribute.

v

Any

time

after

the

connection

handle

is

allocated

v

Only

before

the

actual

connection

is

established

v

Only

after

the

connection

is

established

v

After

the

connection

is

established

only

if

that

connection

has

no

outstanding

transactions

or

open

cursors

For

details

about

when

you

can

set

a

specific

connection

attribute,

see

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346.

To

obtain

the

current

value

of

a

connection

attribute,

call

SQLGetConnectAttr().

Setting

and

retrieving

statement

attributes

Attributes

on

a

statement

handle

affect

the

behavior

of

ODBC

functions

for

that

statement.

To

change

the

value

of

a

statement

attribute,

call

SQLSetStmtAttr().

You

can

set

a

statement

attribute

only

after

you

have

allocated

a

statement

handle.

Statement

attributes

are

one

of

the

following

types:

v

Attributes

that

you

can

set,

but

currently

only

to

one

specific

value

v

Attributes

that

you

can

set

any

time

after

the

statement

handle

is

allocated

v

Attributes

that

you

can

set

only

if

no

cursor

is

open

on

the

statement

handle

For

details

about

each

specific

statement

attribute,

see

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367.

Although

you

can

use

the

SQLSetConnectAttr()

function

to

set

ODBC

2.0

statement

attributes,

setting

statement

attributes

at

the

connection

level

is

not

recommended.

SQLGetConnectAttr()

retrieves

only

connection

attribute

values;

to

retrieve

the

current

value

of

a

statement

attribute

you

must

call

SQLGetStmtAttr().

Using

a

distributed

unit

of

work

The

transaction

scenario

that

appears

in

“Connecting

to

one

or

more

data

sources”

on

page

12,

portrays

an

application

that

can

interact

with

only

one

data

source

in

a

transaction

and

perform

only

one

transaction

at

a

given

time.

With

a

distributed

unit

of

work

(which

is

also

called

a

coordinated

distributed

transaction),

your

application

can

access

multiple

database

servers

from

within

the

Chapter

5.

Using

advanced

features

399

same

coordinated

transaction.

This

section

describes

how

you

can

write

DB2

ODBC

applications

to

use

a

distributed

unit

of

work.

The

environment

and

connection

attribute

SQL_ATTR_CONNECTTYPE

controls

whether

your

application

operates

in

a

coordinated

or

uncoordinated

distributed

environment.

To

change

the

distributed

environment

in

which

your

application

operates,

you

set

this

attribute

to

one

of

the

following

values:

v

SQL_CONCURRENT_TRANS

With

this

attribute

value,

the

distributed

environment

is

uncoordinated.

Your

application

uses

the

semantics

for

a

single

data

source

per

transaction,

as

described

in

Chapter

2,

“Writing

a

DB2

ODBC

application,”

on

page

9.

This

value

permits

multiple

(logical)

concurrent

connections

to

different

data

sources.

SQL_CONCURRENT_TRANS

is

the

default

value

for

the

SQL_ATTR_CONNECTTYPE

environment

attribute.

v

SQL_COORDINATED_TRANS

With

this

attribute

value,

the

distributed

environment

is

coordinated.

Your

application

uses

semantics

for

multiple

data

sources

per

transaction,

as

this

section

describes.

To

use

distributed

units

of

work

in

your

application,

call

SQLSetEnvAttr()

or

SQLSetConnectAttr()

with

the

attribute

SQL_ATTR_CONNECTTYPE

set

to

SQL_COORDINATED_TRANS.

You

must

set

this

attribute

before

you

make

a

connection

request.

All

connections

within

an

application

must

use

the

same

connection

type.

You

can

set

the

connection

type

by

using

SQLSetEnvAttr(),

SQLSetConnectAttr(),

or

the

CONNECTTYPE

keyword

in

the

DB2

ODBC

initialization

file.

For

more

information

about

the

CONNECTTYPE

keyword

see

“CONNECTTYPE”

on

page

53.

Recommendation:

Set

this

environment

attribute

as

soon

as

you

successfully

allocate

an

environment

handle.

Establishing

a

distributed

unit

of

work

connection

You

establish

distributed

unit

of

work

connections

when

you

call

SQLSetEnvAttr()

or

SQLSetConnectAttr()

with

SQL_ATTR_CONNECTTYPE

set

to

SQL_COORDINATED_TRANS.

Also,

you

cannot

specify

MULTICONTEXT=1

in

the

initialization

file

if

you

want

to

use

coordinated

distributed

transactions.

Users

of

your

application

can

specify

CONNECTTYPE=2

in

the

DB2

ODBC

initialization

file

or

in

the

SQLDriverConnect()

connection

string

to

enable

coordinated

transactions.

For

information

about

the

CONNECTTYPE

keyword,

see

“DB2

ODBC

initialization

file”

on

page

49.

You

cannot

mix

concurrent

connections

with

coordinated

connections

in

your

application.

The

connection

type

that

you

specify

for

the

first

connection

determines

the

connection

type

of

all

subsequent

connections.

SQLSetEnvAttr()

and

SQLSetConnectAttr()

return

an

error

if

your

application

attempts

to

change

the

connection

type

while

any

connection

is

active.

After

you

establish

a

connection

type,

it

persists

until

you

free

all

connection

handles

and

change

the

value

of

the

CONNECTTYPE

keyword

or

the

SQL_ATTR_CONNECTTYPE

attribute.

Figure

37

on

page

401

shows

an

example

of

an

application

that

sets

SQL_ATTR_CONNECTTYPE

to

SQL_COORDINATED_TRANS

and

performs

a

coordinated

transaction

on

two

data

sources

within

the

distributed

environment.

400

ODBC

Guide

and

Reference

/*

...

*/

#define

MAX_CONNECTIONS

2

int

DBconnect(SQLHENV

henv,

SQLHDBC

*

hdbc,

char

*

server);

int

main()

{

SQLHENV

henv;

SQLHDBC

hdbc[MAX_CONNECTIONS];

SQLRETURN

rc;

char

*

svr[MAX_CONNECTIONS]

=

{

"KARACHI"

,

"DAMASCUS"

}

/*

Allocate

an

environment

handle

*/

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Before

allocating

any

connection

handles,

set

Environment

wide

Connect

Attributes

*/

/*

Set

to

CONNECT(type

2)*/

rc

=

SQLSetEnvAttr(henv,

SQL_CONNECTTYPE,

(SQLPOINTER)

SQL_COORDINATED_TRANS,

0);

/*

...

*/

/*

Connect

to

first

data

source

*/

/*

Allocate

a

connection

handle

*/

if

(SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc[0])

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

allocating

a

connection

handle-----\n");

return

(SQL_ERROR);

}

/*

Connect

to

first

data

source

(Type-II)

*/

DBconnect

(henv,

&hdbc[0],

svr[0]);

/*

Allocate

a

second

connection

handle

*/

if

(SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc[1])

!=

SQL_SUCCESS)

{

printf(">---ERROR

while

allocating

a

connection

handle-----\n");

return

(SQL_ERROR);

}

/*

Connect

to

second

data

source

(Type-II)

*/

DBconnect

(henv,

&hdbc[1],

svr[1]);

Figure

37.

An

application

that

connects

to

two

data

sources

for

a

coordinated

transaction

(Part

1

of

2)

Chapter

5.

Using

advanced

features

401

Setting

attributes

that

govern

distributed

unit-of-work

semantics

In

distributed

units

of

work,

commits

and

rollbacks

among

multiple

data

source

connections

are

coordinated.

To

establish

coordinated

connections,

set

the

SQL_ATTR_CONNECTTYPE

attribute

to

SQL_COORDINATED_TRANS

or

set

the

CONNECTTYPE

keyword

to

2.

Coordinated

connections

are

equivalent

to

connections

that

are

established

as

CONNECT

(type

2)

in

IBM

embedded

SQL.

All

the

connections

within

an

application

must

have

the

same

connection

type,

so

in

distributed

unit

of

work,

you

must

establish

all

connections

as

coordinated.

The

default

commit

mode

for

coordinated

connections

is

manual-commit

mode.

(For

a

discussion

about

autocommit

mode,

see

“Commit

or

rollback”

on

page

20.)

Figure

38

on

page

403

shows

the

logical

flow

of

an

application

that

executes

statements

on

two

SQL_CONCURRENT_TRANS

connections

('A'

and

'B')

and

indicates

the

scope

of

the

transactions.

(Figure

39

on

page

405

shows

the

logical

/*********

Start

processing

step

*************************/

/*

Allocate

statement

handle,

execute

statement,

and

so

on

*/

/*

Note

that

both

connections

participate

in

the

disposition*/

/*

of

the

transaction.

Note

that

a

NULL

connection

handle

*/

/*

is

passed

as

all

work

is

committed

on

all

connections.

*/

/*********

End

processing

step

***************************/

(void)SQLEndTran(SQL_HANDLE_HENV,

henv,

SQL_COMMIT);

/*

Disconnect,

free

handles

and

exit

*/

}

/**

**

Server

is

passed

as

a

parameter.

Note

that

USERID

and

PASSWORD**

**

are

always

NULL.

**

**/

int

DBconnect(SQLHENV

henv,

SQLHDBC

*

hdbc,

char

*

server)

{

SQLRETURN

rc;

SQLCHAR

buffer[255];

SQLSMALLINT

outlen;

/*

Allocate

a

connection

handle

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc);

rc

=

SQLConnect(*hdbc,

server,

SQL_NTS,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

if

(rc

!=

SQL_SUCCESS)

{

printf(">---

Error

while

connecting

to

database:

%s

-------\n",

server);

return

(SQL_ERROR);

}

else

{

printf(">Connected

to

%s\n",

server);

return

(SQL_SUCCESS);

}

}

/*

...

*/

Figure

37.

An

application

that

connects

to

two

data

sources

for

a

coordinated

transaction

(Part

2

of

2)

402

ODBC

Guide

and

Reference

flow

and

transaction

scope

of

an

application

that

executes

the

same

statements

on

two

SQL_COORDINATED_TRANS

connections.)

In

Figure

38,

the

third

and

fourth

transactions

are

interleaved

on

multiple

concurrent

connections.

If

an

application

specifies

SQL_CONCURRENT_TRANS,

the

ODBC

model

supports

one

transaction

for

each

active

connection.

In

Figure

38,

the

third

transaction

and

the

fourth

transaction

are

managed

and

committed

independently.

(The

third

transaction

consists

of

statements

A1

and

A2

at

data

source

A

and

the

fourth

transaction

consists

of

statements

B2,

B2

again,

and

B1

at

data

source

B.)

The

transactions

at

A

and

B

are

independent

and

exist

concurrently.

If

you

set

the

SQL_ATTR_CONNECTTYPE

attribute

to

SQL_CONCURRENT_TRANS

and

specify

MULTICONTEXT=0

in

the

initialization

file,

you

can

allocate

any

number

of

concurrent

connection

handles.

However,

only

one

physical

connection

to

DB2

can

exist

at

any

given

time

with

these

settings.

This

behavior

precludes

support

for

the

ODBC

connection

model.

Consequently,

applications

that

specify

MULTICONTEXT=0

differ

substantially

from

the

ODBC

execution

model

was

previously

described.

If

an

application

specifies

MULTICONTEXT=0

in

the

concurrent

environment

that

Figure

38

portrays,

the

DB2

ODBC

driver

executes

the

third

transaction

as

three

separate

implicit

transactions.

The

DB2

ODBC

driver

performs

these

three

implicit

transactions

with

the

following

actions.

(You

do

not

issue

these

actions

explicitly

in

your

application).

v

First

transaction

1.

Executes

statement

B2

2.

Commits1

v

Second

transaction

Allocate connection " "
Connect " "
Allocate statement " "
Allocate statement " "

Allocate connection " "
Connect " "
Allocate statement " "
Allocate statement "

A
A

A1
A2

B

B

B1

B2

Execute statement " "
Execute statement " "
Commit " "

A1
A2

A

Execute statement " "
Execute statement " "
Commit " "

B2

B1

B

Transaction 1

Initialize two connections.
Allocate two statement handles
for each connection.

Transaction 2

Execute statement " "A1

Execute statement " "
Commit " "

A2
A

Transaction 4
Execute statement " "B2

Execute statement " "B2

Execute statement " "
Commit "

B1

B"

Transaction 3

Figure

38.

Multiple

connections

with

concurrent

transactions

Chapter

5.

Using

advanced

features

403

1.

Reconnects

to

data

source

B

(after

committing

a

transaction

on

data

source

A)

2.

Executes

statement

B2

3.

Commits1

v

Third

transaction

1.

Reconnects

to

data

source

B

(after

committing

a

transaction

on

data

source

A)

2.

Executes

statement

B1

3.

Commits1

Note:

1.

In

applications

that

run

with

MULTICONTEXT=0,

you

must

always

commit

before

changing

data

sources.

You

can

specify

AUTOCOMMIT=1

in

the

initialization

file

or

call

SQLSetConnectAttr()

with

SQL_ATTR_AUTOCOMMIT

set

to

SQL_AUTOCOMMIT_ON

to

include

these

commit

statements

implicitly

in

your

application.

You

can

also

explicitly

include

commits

by

using

SQLEndTran()

calls

or

SQL

commit

statements

in

your

application.

From

an

application

point

of

view,

the

transaction

at

data

source

B,

which

consists

of

statements

B2,

B2,

and

B1,

becomes

three

independent

transactions.

The

statements

B2,

B2,

and

B1

are

each

executed

as

independent

transactions.

Similarly,

the

fourth

transaction

at

data

source

A,

which

consists

of

statements

A1

and

A2

becomes

two

independent

transactions:

A1

and

A2.

For

more

information

about

multiple

active

transaction

support,

see

“DB2

ODBC

support

of

multiple

contexts”

on

page

435.

Figure

39

on

page

405

shows

how

the

statements

that

Figure

38

on

page

403

depicts

are

executed

in

a

coordinated

distributed

environment.

This

figure

shows

statements

on

two

SQL_COORDINATED_TRANS

connections

(’A’

and

’B’)

and

the

scope

of

a

coordinated

distributed

transaction.

404

ODBC

Guide

and

Reference

Using

global

transactions

A

global

transaction

is

a

recoverable

unit

of

work,

or

transaction,

that

is

made

up

of

changes

to

a

collection

of

resources.

All

resources

that

participate

in

a

global

transaction

are

guaranteed

to

be

committed

or

rolled

back

as

an

atomic

unit.

z/OS

Transaction

Management

and

Resource

Recovery

Services

(RRS)

coordinates

the

updates

that

occur

within

a

global

transaction

by

using

a

two-phase

commit

protocol.

You

include

global

transactions

in

your

application

to

access

multiple

recoverable

resources

in

the

context

of

a

single

transaction.

Global

transactions

enable

you

to

write

applications

that

participate

in

two-phase

commit

processing.

To

enable

global

transactions,

specify

the

keywords

AUTOCOMMIT=0,

MULTICONTEXT=0,

and

MVSATTACHTYPE=RRSAF

in

the

initialization

file.

To

use

global

transactions,

perform

the

following

actions,

which

include

RRS

APIs,

in

your

application:

1.

Call

ATRSENV()

to

provide

environmental

settings

for

RRS

before

you

allocate

connection

handles.

Coordinated
transaction 1

Coordinated
transaction 2

Allocate environment
Set environment attributes
(SQL_ATTR_CONNECTTYPE)

Allocate connection " "
Connect " "
(SQL_CONCURRENT_TRANS)

Allocate statement " "
Allocate statement " "

Allocate connection " "
Connect " "
(SQL_CONCURRENT_TRANS)

Allocate statement " "
Allocate statement " "

A
A

A1
A2

B

B

B1

B2

Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "

A1
A2
B2

B1

Commit

Commit

Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "

B2

B2

B1

A1

A2

Initialize two connections.
Allocate two statement handles
for each connection.

Figure

39.

Multiple

connections

with

coordinated

transactions

Chapter

5.

Using

advanced

features

405

2.

Call

ATRBEG()

to

mark

the

beginning

of

the

global

transaction.

3.

Update

the

resources

that

are

part

of

the

global

transaction.

4.

Call

SRRCMIT(),

SRRBACK(),

or

the

RRS

service

ATREND()

to

mark

the

end

of

the

global

transaction.

5.

Repeat

steps

2

and

4

for

each

global

transaction

that

you

include

in

your

application.

SQLEndTran()

is

disabled

within

each

global

transaction,

but

you

can

still

use

this

function

to

commit

or

rollback

local

transactions

that

are

outside

of

the

boundaries

of

the

global

transactions.

DB2

ODBC

does

not

support

global

transaction

processing

for

applications

that

run

under

a

stored

procedure.

For

a

complete

description

of

RRS

callable

services,

see

z/OS

MVS

Programming:

Assembler

Services

Guide

or

z/OS

MVS

Programming:

Resource

Recovery.

Figure

40

shows

an

application

that

uses

global

transaction

processing.

This

application

uses

both

ODBC

and

RRS

APIs

to

make

global

transactions

on

two

resources.

/*

Provide

environmental

settings

for

RRS

*/

ATRSENV();

/*

Get

an

environment

handle

(henv)

*/

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Get

a

connection

handle

(hdbc1)

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc1);

/*

Get

a

connection

handle

(hdbc2)

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc2);

/*

Start

a

global

transaction

*/

ATRBEG(

...

,

ATR_GLOBAL_MODE

,

...

);

/*

Connect

to

STLEC1

*/

SQLConnect(

hdbc1,

"STLEC1",

...

);

/*

Execute

some

SQL

with

hdbc1

*/

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc1,

&hstmt1);

SQLExecDirect(

hstmt1,

...

);

SQLExecDirect(

hstmt1,

...

);

.

.

/*

Connect

to

STLEC1B

*/

SQLConnect(

hdbc2,

"STLEC1B",

...

);

/*

Execute

some

SQL

with

hdbc2

*/

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc2,

&hstmt2);

SQLExecDirect(

hstmt2,

...

);

SQLExecDirect(

hstmt2,

...

);

.

.

Figure

40.

An

application

that

performs

ODBC

global

transactions

(Part

1

of

2)

406

ODBC

Guide

and

Reference

Querying

catalog

information

Often,

an

application

must

obtain

information

from

the

catalog

of

the

database

management

system.

For

example,

many

applications

use

catalog

information

to

display

a

list

of

current

tables

for

users

to

choose

and

manipulate.

Although

you

can

write

your

application

to

obtain

this

information

with

direct

queries

to

the

database

management

catalog,

this

approach

is

not

advised.

Recommendation:

Use

DB2

ODBC

catalog

query

functions

and

direct

catalog

queries

to

the

DB2

ODBC

shadow

catalog

to

obtain

catalog

information.

When

you

use

catalog

query

functions

in

your

application,

queries

to

the

catalog

are

independent

of

the

way

that

any

single

DBMS

implements

catalogs.

As

a

result

of

this

independence,

applications

that

use

these

functions

are

more

portable

and

require

less

maintenance.

You

can

also

direct

catalog

query

functions

to

the

DB2

ODBC

shadow

catalog

for

improved

performance.

The

following

sections

describe

the

methods

that

you

use

to

efficiently

query

the

catalog:

v

“Using

the

catalog

query

functions”

on

page

408

v

“Directing

catalog

queries

to

the

DB2

ODBC

shadow

catalog”

on

page

410

/*

Free

statement

handles

*/

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt1);

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt2);

/*

Commit

global

transaction

*/

SRRCMIT();

/*

Start

a

global

transaction

*/

ATRBEG(

...

,

ATR_GLOBAL_MODE

,

...

);

/*

Execute

some

SQL

with

hdbc1

*/

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc1,

&hstmt1);

SQLExecDirect(

hstmt1,

...

);

SQLExecDirect(

hstmt1,

...

);

.

.

/*

Execute

some

SQL

with

hdbc2

*/

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc2,

&hstmt2);

SQLExecDirect(

hstmt2,

...

);

SQLExecDirect(

hstmt2,

...

);

.

.

/*

Commit

global

transaction

*/

ATREND(

ATR_COMMIT_ACTION

);

/*

Disconnect

hdbc1

and

hdbc2

*/

SQLDisconnect(

hdbc1

);

SQLDisconnect(

hdbc2

);

Figure

40.

An

application

that

performs

ODBC

global

transactions

(Part

2

of

2)

Chapter

5.

Using

advanced

features

407

Using

the

catalog

query

functions

Catalog

functions

provide

a

generic

interface

to

issue

queries

and

return

consistent

result

sets

across

the

DB2

UDB

family

of

servers.

In

most

cases,

this

consistency

allows

you

to

avoid

server-specific

and

release-specific

catalog

queries

in

your

applications.

A

catalog

function

is

conceptually

equivalent

to

an

SQLExecDirect()

function

that

executes

a

SELECT

statement

against

a

catalog

table.

Catalog

functions

return

standard

result

sets

through

the

statement

handle

on

which

you

call

them.

Use

SQLFetch()

to

retrieve

individual

rows

from

this

result

set

as

you

would

with

any

standard

result

set.

The

following

sections

describe

each

DB2

ODBC

function

that

queries

the

catalog

and

the

result

set

that

the

function

returns:

v

“SQLColumnPrivileges()

-

Get

column

privileges”

on

page

110

v

“SQLColumns()

-

Get

column

information”

on

page

115

v

“SQLForeignKeys()

-

Get

a

list

of

foreign

key

columns”

on

page

178

v

“SQLPrimaryKeys()

-

Get

primary

key

columns

of

a

table”

on

page

314

v

“SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information”

on

page

320

v

“SQLProcedures()

-

Get

a

list

of

procedure

names”

on

page

331

v

“SQLSpecialColumns()

-

Get

special

(row

identifier)

columns”

on

page

376

v

“SQLStatistics()

-

Get

index

and

statistics

information

for

a

base

table”

on

page

381

v

“SQLTablePrivileges()

-

Get

table

privileges”

on

page

387

v

“SQLTables()

-

Get

table

information”

on

page

391

Each

of

these

functions

return

a

result

set

with

columns

that

are

positioned

in

a

specific

order.

Unlike

column

names,

which

can

change

as

X/Open

and

ISO

standards

evolve,

the

position

of

these

columns

is

static

among

ODBC

drivers.

When,

in

future

releases,

columns

are

added

to

these

result

sets,

they

will

be

added

at

the

end

position.

To

make

your

application

more

portable,

refer

to

columns

by

position

when

you

handle

result

sets

that

catalog

functions

generate.

Also,

write

your

applications

in

such

a

way

that

additional

columns

do

not

adversely

affect

your

application.

The

CURRENTAPPENSCH

keyword

in

the

DB2

ODBC

initialization

file

determines

the

encoding

scheme

for

character

data

from

catalog

queries,

as

it

does

with

all

other

result

sets.

See

“CURRENTAPPENSCH”

on

page

53

and

“Handling

application

encoding

schemes”

on

page

443

for

more

details.

Some

catalog

functions

execute

fairly

complex

queries.

For

this

reason,

call

these

functions

only

when

you

need

catalog

information.

Saving

this

information

is

better

than

making

repeated

queries

to

the

catalog.

Input

arguments

on

catalog

functions

All

of

the

catalog

functions

include

the

input

arguments

CatalogName

and

SchemaName

(and

their

associated

lengths).

Catalog

functions

can

also

include

the

input

arguments

TableName,

ProcedureName,

and

ColumnName

(and

their

associated

lengths).

These

input

arguments

either

identify

or

constrain

the

amount

of

information

that

a

catalog

function

returns.

CatalogName,

however,

must

always

be

a

null

pointer

(with

its

length

set

to

0)

because

DB2

ODBC

does

not

support

three-part

naming.

408

ODBC

Guide

and

Reference

In

the

″Function

arguments″

section

for

these

catalog

functions,

which

appear

in

Chapter

4,

“Functions,”

on

page

63,

each

input

argument

is

described

either

as

a

pattern-value

argument

or

an

ordinary

argument.

Argument

descriptions

vary

between

catalog

functions.

For

example,

SQLColumnPrivileges()

treats

SchemaName

and

TableName

as

ordinary

arguments,

whereas

SQLTables()

treats

these

arguments

as

pattern-value

arguments.

Ordinary

arguments

are

inputs

that

are

taken

literally.

These

arguments

are

case-sensitive.

Ordinary

arguments

do

not

qualify

a

query,

but

rather

they

explicitly

identify

the

input

information.

If

you

pass

a

null

pointer

to

this

type

of

argument,

the

results

are

unpredictable.

Pattern-value

arguments

constrain

the

size

of

the

result

set

as

though

the

underlying

query

were

qualified

by

a

WHERE

clause.

If

you

pass

a

null

pointer

to

a

pattern-value

input,

that

argument

is

not

used

to

restrict

the

result

set

(that

is,

no

WHERE

clause

restricts

the

query).

If

a

catalog

function

has

more

than

one

pattern-value

input

argument,

these

arguments

are

treated

as

though

the

WHERE

clauses

in

the

underlying

query

were

joined

by

AND.

A

row

appears

in

the

result

set

only

if

it

meets

the

conditions

of

all

pattern-value

arguments

that

the

catalog

function

specifies.

Each

pattern-value

argument

can

contain:

v

The

underscore

(_)

character,

which

stands

for

any

single

character.

v

The

percent

(%)

character,

which

stands

for

any

sequence

of

zero

or

more

characters.

v

Characters

that

stand

for

themselves.

The

case

of

a

letter

is

significant.

These

argument

values

are

used

on

conceptual

LIKE

predicates

in

the

WHERE

clause.

To

treat

metadata

characters

(_

and

%)

literally,

you

must

include

an

escape

character

immediately

before

the

_

or

%

character.

To

use

the

escape

character

itself

as

a

literal

part

of

a

pattern-value

argument,

include

the

escape

character

twice

in

succession.

You

can

determine

the

escape

character

that

an

ODBC

driver

uses

by

calling

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_SEARCH_PATTERN_ESCAPE.

You

can

use

catalog

functions

with

EBCDIC,

Unicode,

and

ASCII

encoding

schemes.

The

CURRENTAPPENSCH

keyword

in

the

initialization

file

determines

which

one

of

these

encoding

schemes

you

use.

For

EBCDIC,

Unicode

UTF-8,

and

ASCII

input

strings

use

generic

catalog

functions.

For

UCS-2

input

strings,

use

suffix-W

catalog

functions.

For

each

generic

catalog

function,

a

corresponding

suffix-W

API

provides

UCS-2

support.

For

more

information,

see

“Choosing

an

API

entry

point”

on

page

444.

Catalog

functions

example

The

sample

output

in

Figure

41

on

page

410

shows

the

following

information:

v

A

list

of

all

tables

for

the

specified

schema

(qualifier)

name

or

search

pattern

v

Column,

special

column,

foreign

key,

and

statistics

information

for

a

selected

table

In

Chapter

4,

“Functions,”

on

page

63,

each

catalog

function

description

includes

a

relevant

section

of

the

code

that

generated

this

output.

Chapter

5.

Using

advanced

features

409

|
|
|
|
|
|
|

Directing

catalog

queries

to

the

DB2

ODBC

shadow

catalog

You

use

the

DB2

ODBC

shadow

catalog

for

increased

performance

when

you

need

information

from

the

catalog.

To

increase

the

performance

of

an

application

that

must

frequently

query

the

catalog,

implement

the

DB2

ODBC

shadow

catalog

and

redirect

catalog

functions

to

the

shadow

catalog

instead

of

using

the

native

DB2

catalog.

The

shadow

catalog

consists

of

a

set

of

pseudo-catalog

tables

that

contain

rows

that

represent

objects

that

are

defined

in

the

DB2

catalog.

These

tables

are

pre-joined

and

indexed

to

provide

faster

catalog

access

for

ODBC

applications.

Tables

in

the

shadow

catalog

contain

only

the

columns

that

are

necessary

for

supporting

ODBC

operations.

CLISCHEM

is

the

default

schema

name

for

tables

that

make

up

the

DB2

ODBC

shadow

catalog.

To

redirect

catalog

functions

to

access

these

base

DB2

ODBC

Enter

Search

Pattern

for

Table

Schema

Name:

STUDENT

Enter

Search

Pattern

for

Table

Name:

%

###

TABLE

SCHEMA

TABLE_NAME

TABLE_TYPE

1

STUDENT

CUSTOMER

TABLE

2

STUDENT

DEPARTMENT

TABLE

3

STUDENT

EMP_ACT

TABLE

4

STUDENT

EMP_PHOTO

TABLE

5

STUDENT

EMP_RESUME

TABLE

6

STUDENT

EMPLOYEE

TABLE

7

STUDENT

NAMEID

TABLE

8

STUDENT

ORD_CUST

TABLE

9

STUDENT

ORD_LINE

TABLE

10

STUDENT

ORG

TABLE

11

STUDENT

PROD_PARTS

TABLE

12

STUDENT

PRODUCT

TABLE

13

STUDENT

PROJECT

TABLE

14

STUDENT

STAFF

TABLE

Enter

a

table

Number

and

an

action:(n

[Q

|

C

|

P

|

I

|

F

|

T

|O

|

L])

|Q=Quit

C=cols

P=Primary

Key

I=Index

F=Foreign

Key

|

|T=Tab

Priv

O=Col

Priv

S=Stats

L=List

Tables

|

1c

Schema:

STUDENT

Table

Name:

CUSTOMER

CUST_NUM,

NOT

NULLABLE,

INTeger

(10)

FIRST_NAME,

NOT

NULLABLE,

CHARacter

(30)

LAST_NAME,

NOT

NULLABLE,

CHARacter

(30)

STREET,

NULLABLE,

CHARacter

(128)

CITY,

NULLABLE,

CHARacter

(30)

PROV_STATE,

NULLABLE,

CHARacter

(30)

PZ_CODE,

NULLABLE,

CHARacter

(9)

COUNTRY,

NULLABLE,

CHARacter

(30)

PHONE_NUM,

NULLABLE,

CHARacter

(20)

>>

Hit

Enter

to

Continue<<

1p

Primary

Keys

for

STUDENT.CUSTOMER

1

Column:

CUST_NUM

Primary

Key

Name:

=

NULL

>>

Hit

Enter

to

Continue<<

1f

Primary

Key

and

Foreign

Keys

for

STUDENT.CUSTOMER

CUST_NUM

STUDENT.ORD_CUST.CUST_NUM

Update

Rule

SET

NULL

,

Delete

Rule:

NO

ACTION

>>

Hit

Enter

to

Continue<<

Figure

41.

Sample

output

from

an

application

that

uses

catalog

functions

410

ODBC

Guide

and

Reference

|
|
|
|
|

shadow

catalog

tables,

add

the

entry

CLISCHEMA=CLISCHEM

to

the

data

source

section

of

the

DB2

ODBC

initialization

file

as

follows:

[DATASOURCE]

MVSDEFAULTSSID=V61A

CLISCHEMA=CLISCHEM

Optionally,

you

can

create

views

for

the

DB2

ODBC

shadow

catalog

tables

that

are

qualified

with

your

own

schema

name,

and

redirect

the

ODBC

catalog

functions

to

access

these

views

instead

of

the

base

DB2

ODBC

shadow

catalog

tables.

To

redirect

the

catalog

functions

to

access

your

own

set

of

views,

add

the

entry

CLISCHEMA=myschema

(where

myschema

is

the

schema

name

of

the

set

of

views

that

you

create)

to

the

data

source

section

of

the

DB2

ODBC

initialization

file

as

follows:

[DATASOURCE]

MVSDEFAULTSSID=V61A

CLISCHEMA=PAYROLL

APPLTRACE=1

APPLTRACEFILENAME="DD:APPLTRC"

You

can

use

the

CREATE

VIEW

SQL

statement

to

create

views

of

the

DB2

ODBC

shadow

catalog

tables.

To

use

your

own

set

of

views,

you

must

create

a

view

for

each

DB2

ODBC

shadow

catalog

table.

Example:

Execute

the

following

SQL

statement

to

create

a

view,

where

table_name

is

the

name

of

a

DB2

ODBC

shadow

catalog

table:

CREATE

VIEW

PAYROLL.table_name

AS

SELECT

*

FROM

PAYROLL.table_name

WHERE

TABLE_SCHEM=’USER01’;

Table

227

lists

the

base

DB2

ODBC

shadow

catalog

tables

and

the

catalog

functions

that

access

these

tables.

Table

227.

Shadow

catalog

tables

and

DB2

ODBC

APIs

Shadow

catalog

table

DB2

ODBC

catalog

function

CLISCHEM.COLUMNPRIVILEGES

SQLColumnPrivileges()

CLISCHEM.COLUMNS

SQLColumns()

CLISCHEM.FOREIGNKEYS

SQLForeignKeys()

CLISCHEM.PRIMARYKEYS

SQLPrimaryKeys()

CLISCHEM.PROCEDURECOLUMNS

SQLProcedureColumns()

CLISCHEM.PROCEDURES

SQLProcedures()

CLISCHEM.SPECIALCOLUMNS

SQLSpecialColumns()

CLISCHEM.TSTATISTICS

SQLStatistics()

CLISCHEM.TABLEPRIVILEGES

SQLTablePrivileges()

CLISCHEM.TABLE

SQLTables()

Creating

and

maintaining

the

DB2

ODBC

shadow

catalog

IBM

DB2

DataPropagator

for

z/OS

populates

and

maintains

the

DB2

ODBC

shadow

catalog.

DB2

UDB

for

z/OS

supports

the

DATA

CAPTURE

CHANGE

clause

of

the

ALTER

TABLE

SQL

statement

for

DB2

catalog

tables.

This

support

allows

DB2

to

mark

log

records

that

are

associated

with

any

statements

that

change

the

DB2

catalog

(for

example,

CREATE

and

DROP).

In

addition,

the

DB2

DataPropagator

Capture

and

Apply

process

identifies

and

propagates

the

DB2

catalog

changes

to

the

DB2

ODBC

shadow,

based

on

marked

log

records.

Chapter

5.

Using

advanced

features

411

For

detailed

information

about

setting

up

the

DB2

ODBC

shadow

catalog

and

running

IBM

DB2

DataPropagator

for

z/OS,

see

DB2

Universal

Database

Replication

Guide

and

Reference.

Shadow

catalog

example

If

you

specify

CLISCHEMA=PAYROLL

in

the

data

source

section

of

the

DB2

ODBC

initialization

file,

the

ODBC

catalog

functions

that

normally

query

the

DB2

catalog

tables

(SYSIBM

schema)

reference

the

following

set

of

views

of

the

ODBC

shadow

catalog

base

tables:

v

PAYROLL.COLUMNS

v

PAYROLL.TABLES

v

PAYROLL.COLUMNPRIVILEGES

v

PAYROLL.TABLEPRIVILEGES

v

PAYROLL.SPECIALCOLUMNS

v

PAYROLL.PRIMARYKEYS

v

PAYROLL.FOREIGNKEYS

v

PAYROLL.TSTATISTICS

v

PAYROLL.PROCEDURES

v

PAYROLL.PROCEDURECOLUMNS

Sending

or

retrieving

long

data

values

in

pieces

When

an

application

must

manipulate

long

data

values,

loading

these

entire

values

into

storage

can

become

unfeasible.

For

this

reason,

DB2

ODBC

provides

a

technique

that

enables

you

to

handle

long

data

values

in

pieces.

This

technique,

called

specifying

parameter

values

at

execute

time,

is

the

same

method

that

you

can

use

to

specify

values

for

fixed-size

non-character

data

types,

such

as

integers.

Figure

42

on

page

413

depicts

both

the

processes

of

sending

data

in

pieces

and

retrieving

data

in

pieces.

The

right

side

of

the

figure

shows

the

process

that

you

use

to

send

data

in

pieces;

the

left

side

of

the

figure

shows

the

process

that

you

use

to

retrieve

data

in

pieces.

412

ODBC

Guide

and

Reference

Specifying

parameter

values

at

execution

time

A

data-at-execute

parameter

is

a

bound

parameter

for

which

a

value

is

prompted

at

execution

time.

Normally,

you

store

a

value

in

memory

to

use

for

a

parameter

before

you

call

SQLExecute()

or

SQLExecDirect().

To

create

data-at-execute

parameters,

call

SQLBindParameter()

and

specify

both

of

the

following

arguments

for

each

data-at-execute

parameter

you

want

to

create:

v

Set

the

pcbValue

argument

to

SQL_DATA_AT_EXEC.

v

Set

the

rgbValue

argument

to

a

value

you

can

use

to

uniquely

identify

the

parameter

for

which

you

need

to

supply

data.

This

value

names

that

parameter

so

that

you

can

refer

to

it

later.

SQLExecDirect()

and

SQLExecute()

return

SQL_NEED_DATA

for

statements

that

contain

data-at-execute

parameters

to

prompt

you

to

supply

a

value.

When

SQLExecDirect()

or

SQLExecute()

returns

SQL_NEED_DATA,

you

must

perform

the

following

steps

in

your

application:

SQLParamData()

SQLParamData()

SQLBindParameter()

SQLAllocHandle()
(statement)

SQLPrepare() &
SQLExecute()

or
SQLExecDirect()

SQLPrepare() &
SQLExecute()

or
SQLExecDirect()

SQLPutData

SQLGetData()

SQLFreeHandle()
(statement)

SQLFetch()

SQL_DATA_AT_EXEC

SQL_NEED_DATA ?

SQL_NEED_DATA ?
Next parameter

more data ?

SQL_SUCCESS_WITH_INFO ?

SQL_SUCCESS

If statement is not executed again:

()

Figure

42.

Input

and

retrieval

of

data

in

pieces

Chapter

5.

Using

advanced

features

413

1.

Call

SQLParamData()

to

conceptually

advance

to

the

first

such

parameter.

SQLParamData()

returns

SQL_NEED_DATA

and

provides

the

value

of

the

input

rgbValue

buffer

that

you

specified

in

the

SQLBindParameter()

call.

This

value

helps

you

identify

the

information

that

you

need

to

supply.

2.

Call

SQLPutData()

to

pass

the

actual

data

for

the

parameter.

You

call

SQLPutData()

repeatedly

to

send

long

data

in

pieces.

3.

Call

SQLParamData()

after

you

provide

the

entire

data

for

this

data-at-execute

parameter.

If

additional

data-at-execute

parameters

need

data,

SQLParamData()

returns

SQL_NEED_DATA.

Repeat

steps

2

and

3

until

SQLParamData()

returns

SQL_SUCCESS.

When

all

data-at-execute

parameters

are

assigned

values,

SQLParamData()

completes

execution

of

the

SQL

statement.

SQLParamData()

also

produces

a

return

value

and

diagnostics

as

the

original

SQLExecDirect()

or

SQLExecute()

would

have

produced.

The

right

side

of

Figure

42

on

page

413

illustrates

this

flow.

While

the

data-at-execution

flow

is

in

progress,

you

can

call

only

the

following

DB2

ODBC

functions:

v

SQLParamData()

and

SQLPutData(),

as

the

previous

procedure

to

specify

parameter

values

at

execute

time

describes.

v

SQLCancel(),

which

is

used

to

cancel

the

flow

and

force

an

exit

from

the

loops

on

the

right

side

of

Figure

42

on

page

413

without

executing

the

SQL

statement.

v

SQLGetDiagRec()

You

cannot

terminate

the

transaction

nor

set

connection

attributes

in

a

data-at-execution

flow.

Fetching

data

in

pieces

Typically

to

retrieve

data,

you

allocate

application

variables

to

hold

the

data

you

retrieve,

and

you

call

SQLBindCol()

to

associate

these

application

variables

with

a

column

in

a

result

set.

Based

on

the

size

of

the

values

that

a

column

contains,

you

choose

the

amount

of

memory

that

values

from

this

column

can

occupy

in

your

application.

(To

determine

the

size

of

the

largest

value

in

a

specific

result

column,

call

SQLDescribeCol().

The

output

argument

pcbColDef

returns

this

information.)

In

the

case

of

character

and

binary

data,

columns

can

contain

large

values.

If

the

size

of

a

column

value

exceeds

the

size

of

the

buffer

that

you

allocate,

you

can

call

SQLGetData()

repeatedly

to

obtain

this

value

in

a

sequence

of

pieces

that

are

more

manageable

in

size.

As

the

left

side

Figure

42

on

page

413

depicts,

SQLGetData()

returns

SQL_SUCCESS_WITH_INFO

(with

SQLSTATE

01004)

to

indicate

that

more

data

exists

for

this

column.

Call

SQLGetData()

repeatedly

to

retrieve

the

remaining

pieces

of

data.

When

you

retrieve

the

final

piece

of

data,

SQLGetData()

returns

SQL_SUCCESS.

Using

arrays

to

pass

parameter

values

In

data

entry

and

update

applications,

users

might

often

insert,

delete,

or

alter

many

cells

in

a

data

entry

form

before

they

send

these

changes

to

the

database.

For

these

situations,

DB2

ODBC

provides

an

array

input

method

that

eliminates

the

need

for

you

to

call

SQLExecute()

repeatedly

on

the

same

INSERT,

DELETE,

or

UPDATE

statement.

In

addition,

the

use

of

arrays

to

pass

parameter

values

can

reduce

network

flows.

414

ODBC

Guide

and

Reference

You

pass

arrays

to

parameter

markers

with

the

following

method:

1.

Call

SQLBindParameter()

for

each

parameter

marker

that

you

bind

to

an

input

array

in

memory.

Use

the

following

argument

values

in

this

function

call:

v

Set

the

fParamType

argument

value

to

SQL_PARAM_INPUT.

v

Point

the

rgbValue

argument

to

the

array

that

contains

input

data

for

the

parameter

marker.

v

For

character

and

binary

input

data,

specify

the

length,

in

bytes,

of

each

element

in

the

input

array

with

the

input

argument

cbValueMax.

(For

other

input

data

types,

this

argument

is

ignored.)

v

Optionally,

point

the

pcbValue

argument

to

an

array

that

contains

the

lengths,

in

bytes,

of

each

value

in

the

input

array.

Specify

each

length

value

in

the

pcbValue

array

to

be

the

length

of

the

corresponding

value

in

the

rgbValue

array.

2.

Call

SQLParamOptions()

and

specify,

in

the

crow

argument,

the

number

of

rows

that

the

input

array

contains.

This

value

indicates

the

number

of

different

values

for

each

parameter.

3.

Call

SQLExecute()

to

send

all

the

parameter

values

to

the

database.

When

you

insert

and

update

rows

with

arrays,

use

SQLRowCount()

to

verify

the

number

of

rows

you

changed.

Queries

with

parameter

markers

that

are

bound

to

arrays

on

the

WHERE

clause

generate

multiple

sequential

result

sets.

You

process

each

result

set

that

such

a

query

returns

individually.

After

you

process

the

initial

result

set,

call

SQLMoreResults()

to

retrieve

each

additional

result

set.

See

“SQLMoreResults()

-

Check

for

more

result

sets”

on

page

289

for

more

information.

Example:

Consider

an

application

that

performs

an

array

insert,

as

the

right

side

of

Figure

43

on

page

416

illustrates.

Suppose

that

this

application

enables

users

to

change

values

in

the

OVERTIME_WORKED

and

OVERTIME_PAID

columns

of

a

time

sheet

data

entry

form.

Also,

suppose

that

the

primary

key

of

the

underlying

EMPLOYEE

table

is

EMPLOY_ID.

This

application

can

then

request

to

prepare

the

following

SQL

statement:

UPDATE

EMPLOYEE

SET

OVERTIME_WORKED=

?

and

OVERTIME_PAID=

?

WHERE

EMPLOY_ID=?

Because

this

statement

contains

three

parameter

markers,

the

application

uses

three

arrays

to

store

input

data.

When

the

user

makes

changes

to

n

rows,

the

application

places

n

values

in

each

array.

When

the

user

decides

to

send

these

changes

to

the

database,

the

application

binds

the

parameter

markers

in

the

prepared

SQL

statement

to

the

arrays.

The

application

then

calls

SQLParamOptions()

with

the

crow

argument

set

to

n.

This

value

specifies

the

number

of

elements

in

each

array.

Figure

43

on

page

416

shows

the

two

methods

of

executing

a

statement

with

m

parameters

n

times.

Both

methods

must

call

SQLBindParameter()

once

for

each

parameter.

Chapter

5.

Using

advanced

features

415

The

left

side

of

Figure

43

illustrates

a

method

of

bulk

operations

that

does

not

use

arrays

to

pass

parameter

values.

SQLBindParameter()

binds

each

parameter

marker

to

a

host

variable

that

contains

a

single

value.

Because

this

method

does

not

perform

array

inserts,

SQLExecute()

is

called

repeatedly.

Before

each

SQLExecute()

call,

the

application

updates

the

variables

that

are

bound

to

the

input

parameters.

This

method

calls

SQLExecute()

to

execute

every

operation.

The

right

side

of

Figure

43

illustrates

a

method

of

bulk

operations

that

uses

arrays

to

pass

parameter

values.

SQLExecute()

is

called

only

once

for

any

number

of

bulk

operations.

The

array

method

calls

SQLParamOptions()

to

specify

the

number

of

rows

(n),

and

then

it

calls

SQLExecute().

Figure

44

on

page

417

shows

an

array

INSERT

statement.

For

an

example

of

an

array

SELECT

statement,

see

“SQLMoreResults()

-

Check

for

more

result

sets”

on

page

289.

SQLFreeHandle()
(statement)

If statement is not executed again:

SQLPrepare()

SQLAllocHandle()
(statement)

SQLBindParameter() SQLBindParameter()

SQLParamOptions()

SQLExecute()

SQLExecute()

n

n iterations

1
2

n

1 2 3 m
...
...

...

...

1 2 3 m
...

{

Figure

43.

Array

insert

416

ODBC

Guide

and

Reference

Retrieving

a

result

set

into

an

array

One

of

the

most

common

tasks

that

an

application

performs

is

to

issue

a

query

statement

and

then

fetch

rows

from

the

result

set

that

the

query

generates.

To

fetch

rows,

you

typically

bind

application

variables

to

columns

in

the

result

set

with

SQLBindCol().

Then

you

individually

fetch

each

row

into

these

application

variables.

If

you

want

to

store

more

than

one

row

from

the

result

set

in

your

application,

you

/*

...

*/

SQLUINTEGER

pirow

=

0;

SQLCHAR

stmt[]

=

"INSERT

INTO

CUSTOMER

(

Cust_Num,

First_Name,

Last_Name)

"

"VALUES

(?,

?,

?)";

SQLINTEGER

Cust_Num[25]

=

{

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

110,

120,

130,

140,

150,

160,

170,

180,

190,

200,

210,

220,

230,

240,

250

};

SQLCHAR

First_Name[25][31]

=

{

"EVA",

"EILEEN",

"THEODORE",

"VINCENZO",

"SEAN",

"DOLORES",

"HEATHER",

"BRUCE",

"ELIZABETH",

"MASATOSHI",

"MARILYN",

"JAMES",

"DAVID",

"WILLIAM",

"JENNIFER",

"JAMES",

"SALVATORE",

"DANIEL",

"SYBIL",

"MARIA",

"ETHEL",

"JOHN",

"PHILIP",

"MAUDE",

"BILL"

};

Figure

44.

An

application

that

performs

an

array

insert

(Part

1

of

2)

SQLCHAR

Last_Name[25][31]

=

{

"SPENSER",

"LUCCHESI",

"O’CONNELL",

"QUINTANA",

"NICHOLLS",

"ADAMSON",

"PIANKA",

"YOSHIMURA",

"SCOUTTEN",

"WALKER",

"BROWN",

"JONES",

"LUTZ",

"JEFFERSON",

"MARINO",

"SMITH",

"JOHNSON",

"PEREZ",

"SCHNEIDER",

"PARKER",

"SMITH",

"SETRIGHT",

"MEHTA",

"LEE",

"GOUNOT"

};

/*

...

*/

/*

Prepare

the

statement

*/

rc

=

SQLPrepare(hstmt,

stmt,

SQL_NTS);

rc

=

SQLParamOptions(hstmt,

25,

&pirow);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SLONG,

SQL_INTEGER,

0,

0,

Cust_Num,

0,

NULL);

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

31,

0,

First_Name,

31,

NULL);

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

31,

0,

Last_Name,

31,

NULL);

rc

=

SQLExecute(hstmt);

printf("Inserted

%ld

Rows\n",

pirow);

/*

...

*/

Figure

44.

An

application

that

performs

an

array

insert

(Part

2

of

2)

Chapter

5.

Using

advanced

features

417

can

follow

each

fetch

with

an

additional

operation.

You

can

save

previously

fetched

values

in

your

application

by

using

one

of

the

following

operations

before

you

fetch

additional

data:

v

Copy

fetched

values

to

application

variables

that

are

not

bound

to

a

result

set

v

Call

a

new

set

of

SQLBindCol()

functions

to

assign

new

application

variables

to

the

next

fetch

If

you

do

not

use

one

of

these

operations,

each

fetch

replaces

the

values

that

you

previously

retrieved.

Alternatively,

you

can

retrieve

multiple

rows

of

data

(called

a

row

set)

simultaneously

into

an

array.

This

method

eliminates

the

overhead

of

extra

data

copies

or

SQLBindCol()

calls.

SQLBindCol()

can

bind

an

array

of

application

variables.

By

default,

SQLBindCol()

binds

rows

in

column-wise

fashion:

this

type

of

bind

is

similar

to

using

SQLBindParameter()

to

bind

arrays

of

input

parameter

values,

as

described

in

the

previous

section.

You

can

also

bind

data

in

a

row-wise

fashion

to

retrieve

data

into

an

array.

Returning

array

data

for

column-wise

bound

data

Figure

45

is

a

logical

view

of

column-wise

binding.

The

right

side

of

Figure

47

on

page

420

shows

the

function

flows

for

column-wise

retrieval.

To

perform

column-wise

array

retrieval,

include

the

following

procedure

in

your

application:

1.

Call

SQLSetStmtAttr()

with

the

SQL_ATTR_ROWSET_SIZE

attribute

set

to

the

number

of

rows

that

you

want

to

retrieve

with

each

fetch.

When

the

value

of

the

SQL_ATTR_ROWSET_SIZE

attribute

is

greater

than

1

on

a

statement

handle,

DB2

ODBC

treats

deferred

output

data

pointers

and

length

pointers

of

that

handle

as

pointers

to

arrays.

2.

Call

SQLBindCol()

for

each

column

in

the

result

set.

In

this

call,

include

the

following

argument

values:

v

Point

the

rgbValue

argument

to

an

array

that

is

to

receive

data

from

the

column

that

you

specify

with

the

icol

argument.

v

For

character

and

binary

input

data,

specify

the

maximum

size

of

the

elements

in

the

array

with

the

input

argument

cbValueMax.

(For

other

input

data

types,

this

argument

is

ignored.)

SQLCHAR B[][4]n
SQLINTEGER Lb[]n

SQLCHAR C[][11]n
SQLINTEGER Lc[]n

SQLINTEGER A[]n
SQLINTEGER La[]n

Column
Length

A
Data

Column
Length

B
Data

Column
Length

C
Data

..
.

Result set

Extended fetch, column-wise binding

Column:
A
B
C

Data type:
INTEGER
CHAR(3)
CHAR(10) ..

.

..
.

..
.

..
.

..
.

..
.

1

2

3

10 XYZ Abcde

n
1

2

3

10 4

n

1

2

3

XYZ 3

n

1

2

3

Abcde 5

n

..
.

..
.

..
.

..
.

A B C

..
.

..
.

Figure

45.

Column-wise

binding

418

ODBC

Guide

and

Reference

v

Optionally,

you

can

retrieve

the

number

of

bytes

that

each

complete

value

requires

in

the

array

that

is

to

receive

the

column

data.

To

retrieve

length

data,

point

the

pcbValue

argument

to

an

array

that

is

to

hold

the

number

of

bytes

that

DB2

ODBC

will

return

for

each

retrieved

value.

Otherwise,

you

must

set

this

value

to

NULL.

3.

Call

SQLExtendedFetch()

to

retrieve

the

result

data

into

the

array.

If

the

number

of

rows

in

the

result

set

is

greater

than

the

SQL_ATTR_ROWSET_SIZE

attribute

value,

you

must

call

SQLExtendedFetch()

multiple

times

to

retrieve

all

the

rows.

DB2

ODBC

uses

the

value

of

the

maximum

buffer

size

argument

to

determine

where

to

store

each

successive

result

value

in

the

array.

You

specify

this

value

in

the

cbValueMax

argument

in

SQLBindCol().

DB2

ODBC

optionally

stores

the

number

of

bytes

that

each

element

contains

in

a

deferred

length

array.

You

specify

this

deferred

array

in

the

pcbValue

argument

in

SQLBindCol().

Returning

array

data

for

row-wise

bound

data

Row-wise

binding

associates

an

entire

row

of

the

result

set

with

a

structure.

You

retrieve

a

row

set

that

is

bound

in

this

manner

into

an

array

of

structures.

Each

structure

holds

the

data

and

associated

length

fields

from

an

entire

row.

You

use

row-wise

binding

to

retrieve

data

only,

not

to

send

it.

Figure

46

gives

a

pictorial

view

of

row-wise

binding.

To

perform

row-wise

array

retrieval,

include

the

following

procedure

in

your

application:

1.

Call

SQLSetStmtAttr()

with

the

SQL_ATTR_ROWSET_SIZE

attribute

to

indicate

how

many

rows

to

retrieve

at

a

time.

2.

Call

SQLSetStmtAttr()

again

with

the

SQL_ATTR_BIND_TYPE

attribute

value

set

to

the

size

of

the

structure

to

which

the

result

columns

are

bound.

When

DB2

ODBC

returns

data,

it

uses

the

value

of

the

SQL_ATTR_BIND_TYPE

attribute

to

determine

where

to

store

successive

rows

in

the

array

of

structures.

3.

Call

SQLBindCol()

to

bind

the

array

of

structures

to

the

result

set.

In

this

call,

include

the

following

argument

values:

..
.

Result set

Extended fetch, row-wise binding

Column:
A
B
C

Data type:
INTEGER
CHAR(3)
CHAR(10)

Column
A

struct { SQLINTEGER A,
SQLINTEGER Lb, SQLCHAR B[4],
SQLINTEGER Lc, SQLCHAR C[11];

} buffer[];

SQLINTEGER La,

n

Column
B

Column
C

..
.

..
.

..
.

..
.

1

2

3

10 XYZ Abcde

n
1

2

3

4 10 3 XYZ 5 Abcde

n

..
.

..
.

..
.

..
.

A B C

..
.

..
.

Figure

46.

Row-wise

binding

Chapter

5.

Using

advanced

features

419

v

Point

the

rgbValue

argument

to

the

address

of

the

element

of

the

first

structure

in

an

array

that

is

to

receive

data

from

the

column

that

you

specify

with

the

icol

argument.

v

For

character

and

binary

input

data,

specify

the

length,

in

bytes,

of

each

element

in

the

array

that

receives

data

in

the

input

argument

cbValueMax.

(For

other

input

data

types,

this

argument

is

ignored.)

v

Optionally,

point

the

pcbValue

argument

to

the

address

of

the

element

of

the

first

structure

in

an

array

that

is

to

receive

the

number

of

bytes

that

the

column

value

for

this

bind

occupies.

Otherwise,

set

this

value

to

NULL.

4.

Call

SQLExtendedFetch()

to

retrieve

the

data.

If

the

number

of

rows

in

the

result

set

is

greater

than

the

SQL_ATTR_ROWSET_SIZE

attribute

value,

you

must

call

SQLExtendedFetch()

multiple

times

to

retrieve

all

the

rows.

Figure

47

shows

the

required

functions

to

return

column-wise

and

row-wise

bound

data.

In

this

figure,

n

is

the

value

of

the

SQL_ATTR_ROWSET_SIZE

attribute

and

m

is

the

number

of

columns

in

the

result

set.

The

left

side

of

the

figure

shows

how

n

rows

are

selected

and

retrieved

one

row

at

a

time

into

m

application

variables

where

The

right

side

of

the

figure

shows

how

the

same

n

rows

are

selected

and

retrieved

directly

into

an

array.

Consider

the

following

points

when

you

perform

array

retrieval:

v

If

you

specify

the

value

n

for

SQL_ATTR_ROWSET_SIZE,

you

must

retrieve

the

result

set

into

an

array

of

at

least

n

elements.

Otherwise

memory

overlay

might

occur.

v

To

bind

m

columns

to

application

variables

or

an

array,

you

must

always

make

m

calls

to

SQLBindCol().

v

If

the

result

set

contains

more

rows

than

SQL_ATTR_ROWSET_SIZE

specifies,

you

need

to

make

multiple

calls

to

SQLExtendedFetch()

to

retrieve

all

the

rows

in

the

result

set.

When

you

make

multiple

calls

to

SQLExtendedFetch(),

you

must

SQLFreeHandle()
(statement)

SQLBindCol()SQLBindCol()

SQLExtendedFetch()

If statement is not executed again:

SQLFetch()
1 1
2 2

n n

Select
columns
rows

m
n

Select
columns
rows

m
n

n iterations
1 2 3 m

...

1 1

1

2 2

2

3 3

3

m m

m

...

...

...

...

...

...

...

...

.........

...

SQLSetStmtAttr()

struct {

} R[];n

SQLAllocHandle()
(statement)

Column-wise binding Row-wise binding

SQLPrepare() &

or
SQLExecDirect()

SQLExecute()
SQLPrepare() &

or
SQLExecDirect()

SQLExecute()

SQL_ATTR_BIND_TYPE =
SQL_BIND_BY_COLUMN

SQL_ATTR_BIND_TYPE =
size of(struct R)

m iterationsm iterations

SQL_ATTR_ROWSET_SIZE = n SQL_ATTR_ROWSET_SIZE = n

Figure

47.

Array

retrieval

420

ODBC

Guide

and

Reference

perform

an

operation

between

these

calls

to

save

the

previously

fetched

data.

These

operations

are

listed

in

“Retrieving

a

result

set

into

an

array”

on

page

418.

Column-wise

and

row-wise

binding

example

Figure

48

shows

an

application

that

binds

rows

and

columns

of

a

result

set

to

a

structure.

/*

...

*/

#define

NUM_CUSTOMERS

25

SQLCHAR

stmt[]

=

{

"WITH

"

/*

Common

Table

expression

(or

Define

Inline

View)

*/

"order

(ord_num,

cust_num,

prod_num,

quantity,

amount)

AS

"

"(

"

"SELECT

c.ord_num,

c.cust_num,

l.prod_num,

l.quantity,

"

"price(char(p.price,

’.’),

p.units,

char(l.quantity,

’.’))

"

"FROM

ord_cust

c,

ord_line

l,

product

p

"

"WHERE

c.ord_num

=

l.ord_num

AND

l.prod_num

=

p.prod_num

"

"AND

cust_num

=

CNUM(cast

(?

as

integer))

"

"),

"

"totals

(ord_num,

total)

AS

"

"(

"

"SELECT

ord_num,

sum(decimal(amount,

10,

2))

"

"FROM

order

GROUP

BY

ord_num

"

")

"

/*

The

’actual’

SELECT

from

the

inline

view

*/

"SELECT

order.ord_num,

cust_num,

prod_num,

quantity,

"

"DECIMAL(amount,10,2)

amount,

total

"

"FROM

order,

totals

"

"WHERE

order.ord_num

=

totals.ord_num

"

};

Figure

48.

An

application

that

retrieves

data

into

an

array

by

column

and

by

row

(Part

1

of

3)

Chapter

5.

Using

advanced

features

421

/*

Array

of

customers

to

get

list

of

all

orders

for

*/

SQLINTEGER

Cust[]=

{

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

110,

120,

130,

140,

150,

160,

170,

180,

190,

200,

210,

220,

230,

240,

250

};

#define

NUM_CUSTOMERS

sizeof(Cust)/sizeof(SQLINTEGER)

/*

Row-wise

(Includes

buffer

for

both

column

data

and

length)

*/

struct

{

SQLINTEGER

Ord_Num_L;

SQLINTEGER

Ord_Num;

SQLINTEGER

Cust_Num_L;

SQLINTEGER

Cust_Num;

SQLINTEGER

Prod_Num_L;

SQLINTEGER

Prod_Num;

SQLINTEGER

Quant_L;

SQLDOUBLE

Quant;

SQLINTEGER

Amount_L;

SQLDOUBLE

Amount;

SQLINTEGER

Total_L;

SQLDOUBLE

Total;

}

Ord[ROWSET_SIZE];

SQLUINTEGER

pirow

=

0;

SQLUINTEGER

pcrow;

SQLINTEGER

i;

SQLINTEGER

j;

/*

...

*/

/*

Get

details

and

total

for

each

order

row-wise

*/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

rc

=

SQLParamOptions(hstmt,

NUM_CUSTOMERS,

&pirow);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

Cust,

0,

NULL);

rc

=

SQLExecDirect(hstmt,

stmt,

SQL_NTS);

/*

SQL_ROWSET_SIZE

sets

the

max

number

*/

/*

of

result

rows

to

fetch

each

time

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWSET_SIZE,

(void

*)ROWSET_SIZE,

0);

/*

Set

size

of

one

row,

used

for

row-wise

binding

only

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_BIND_TYPE,

(void

*)sizeof(Ord)

/

ROWSET_SIZE,

0);

Figure

48.

An

application

that

retrieves

data

into

an

array

by

column

and

by

row

(Part

2

of

3)

422

ODBC

Guide

and

Reference

Using

large

objects

The

term

large

object

and

the

generic

acronym

LOB

refer

to

any

type

of

large

object.

DB2

supports

the

following

three

LOB

data

types:

v

Binary

large

object

(BLOB)

v

Character

large

object

(CLOB)

v

Double-byte

character

large

object

(DBCLOB)

These

LOB

data

types

are

represented

symbolically

as

SQL_BLOB,

SQL_CLOB,

SQL_DBCLOB

respectively.

All

DB2

ODBC

functions

that

accept

or

return

SQL

data

type

arguments

(for

example,

the

SQLBindParameter()

and

SQLDescribeCol()

functions)

can

accept

or

return

LOB

symbolic

constants.

See

Table

4

on

page

25

for

a

complete

list

of

symbolic

and

default

C

symbolic

names

for

SQL

data

types.

An

application

can

retrieve

and

manipulate

LOB

values

in

the

application

address

space.

However,

your

application

might

not

require

you

to

transfer

the

entire

LOB

from

the

database

server

into

application

memory.

In

many

cases,

you

can

select

a

/*

Bind

column

1

to

the

Ord_num

Field

of

the

first

row

in

the

array*/

rc

=

SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

&Ord[0].Ord_Num,

0,

&Ord[0].Ord_Num_L);

/*

Bind

remaining

columns

...

*/

/*

...

*/

/*

NOTE:

This

sample

assumes

that

an

order

never

has

more

rows

than

ROWSET_SIZE.

A

check

should

be

added

below

to

call

SQLExtendedFetch

multiple

times

for

each

result

set.

*/

do

/*

for

each

result

set

....

*/

{

rc

=

SQLExtendedFetch(hstmt,

SQL_FETCH_NEXT,

0,

&pcrow,

NULL);

if

(pcrow

>

0)

/*

if

1

or

more

rows

in

the

result

set

*/

{

i

=

j

=

0;

printf("**************************************\n");

printf("Orders

for

Customer:

%ld\n",

Ord[0].Cust_Num);

printf("**************************************\n");

while

(i

<

pcrow)

{

printf("\nOrder

#:

%ld\n",

Ord[i].Ord_Num);

printf("

Product

Quantity

Price\n");

printf("

------------\n");

j

=

i;

while

(Ord[j].Ord_Num

==

Ord[i].Ord_Num)

{

printf("

%8ld

%16.7lf

%12.2lf\n",

Ord[i].Prod_Num,

Ord[i].Quant,

Ord[i].Amount);

i++;

}

printf("

============\n");

printf("

%12.2lf\n",

Ord[j].Total);

}

/*

end

while

*/

}

/*

end

if

*/

}

while

(

SQLMoreResults(hstmt)

==

SQL_SUCCESS);

/*

...

*/

Figure

48.

An

application

that

retrieves

data

into

an

array

by

column

and

by

row

(Part

3

of

3)

Chapter

5.

Using

advanced

features

423

LOB

value

and

operate

on

pieces

of

it.

The

ODBC

model

can

transfer

LOB

data

using

the

piecewise

sequential

method

with

SQLGetData()

and

SQLPutData().

This

method

might

prove

inefficient.

You

can

more

efficiently

retrieve

and

manipulate

an

individual

LOB

value

by

using

a

LOB

locator.

Using

LOB

locators

LOB

locators

enable

you

to

identify

and

manipulate

LOB

values

at

the

database

server.

They

also

enable

you

to

retrieve

only

pieces

of

a

LOB

value

into

application

memory.

Locators

are

a

run-time

concept:

they

are

not

a

persistent

type,

nor

are

they

stored

in

the

database.

Conceptually,

LOB

locators

are

simple

token

values

(much

like

a

pointer)

that

you

use

to

refer

to

much

larger

LOB

values

in

the

database.

LOB

locator

values

do

not

persist

beyond

the

transaction

in

which

they

are

created

(unless

you

specify

otherwise).

A

locator

references

a

LOB

value,

not

the

physical

location

(or

address)

at

which

a

LOB

value

resides.

The

LOB

value

that

a

locator

references

does

not

change

if

the

original

LOB

value

in

the

table

is

altered.

When

you

perform

operations

on

a

locator,

these

operations

similarly

do

not

alter

the

original

LOB

value

that

the

table

contains.

To

materialize

operations

that

you

perform

on

LOB

locators,

you

must

store

the

result

of

these

operations

in

a

location

on

the

database

server,

or

in

a

variable

within

your

application.

In

DB2

ODBC

functions,

you

specify

LOB

locators

with

one

of

the

following

symbolic

C

data

types:

v

SQL_C_BLOB_LOCATOR

for

BLOB

data

v

SQL_C_CLOB_LOCATOR

for

CLOB

data

v

SQL_C_DBCLOB_LOCATOR

for

DBCLOB

data

Choose

a

C

type

that

corresponds

to

the

LOB

data

to

which

you

refer

with

the

locator.

Through

these

C

data

types,

you

can

transfer

a

small

token

value

to

and

from

the

database

server

instead

of

an

entire

LOB

value.

Call

SQLBindCol()

and

SQLFetch(),

or

SQLGetData()

to

retrieve

a

LOB

locator

that

is

associated

with

a

LOB

value

into

an

application

variable.

You

can

then

apply

the

following

DB2

ODBC

functions

to

that

locator:

v

SQLGetLength(),

which

returns

the

length

of

the

string

that

a

LOB

locator

represents.

v

SQLGetPosition(),

which

returns

the

position

of

a

search

string

within

a

source

string

that

a

LOB

locator

represents.

LOB

locators

can

represent

both

search

strings

and

source

strings.

The

following

actions

implicitly

allocate

LOB

locators:

v

Fetching

a

bound

LOB

column

to

the

appropriate

C

locator

type.

v

Calling

SQLGetSubString()

and

specifying

that

the

substring

be

retrieved

as

a

locator.

v

Calling

SQLGetData()

on

an

unbound

LOB

column

and

specifying

the

appropriate

C

locator

type.

The

C

locator

type

must

match

the

LOB

column

type;

otherwise

an

error

occurs.

You

can

also

use

LOB

locators

to

move

LOB

data

at

the

server

without

pulling

data

into

application

memory

and

then

sending

it

back

to

the

server.

424

ODBC

Guide

and

Reference

Example:

The

following

INSERT

SQL

statement

concatenates

two

LOB

values

with

LOB

locators

(which

are

represented

by

the

parameter

markers)

and

inserts

the

result

into

a

table:

INSERT

INTO

TABLE4A

VALUES(1,CAST(?

AS

CLOB(2K))

CONCAT

CAST(?

AS

CLOB(3K)))

You

can

explicitly

free

a

locator

before

the

end

of

a

transaction

with

the

FREE

LOCATOR

statement.

You

can

explicitly

retain

a

locator

beyond

a

unit

of

work

with

the

HOLD

LOCATOR

statement.

You

execute

these

statements

with

the

following

syntax:

��

FREE

LOCATOR

�

,

host_variable

��

��

HOLD

LOCATOR

�

,

host_variable

��

Although

you

cannot

prepare

the

FREE

LOCATOR

SQL

statement

or

the

HOLD

LOCATOR

SQL

statement

dynamically,

DB2

ODBC

accepts

these

statements

in

SQLPrepare()

and

SQLExecDirect().

Use

parameter

markers

in

these

statements

so

that

you

can

convert

application

variables

that

contain

LOB

locator

values

to

host

variables

that

these

SQL

statements

can

access.

Before

you

call

SQLPrepare()

or

SQLExecDirect(),

call

SQLBindParameter()

with

the

data

type

arguments

set

to

the

appropriate

SQL

and

C

symbolic

data

types.

(See

Table

4

on

page

25

for

a

list

of

these

data

types.)

This

call

to

SQLBindParameter()

passes

an

application

variable

that

contains

the

locator

value

into

the

parameter

markers

as

a

host

variable.

LOB

locators

and

functions

that

are

associated

with

locators

(such

as

the

SQLGetSubString(),

SQLGetPosition(),

and

SQLGetLength()

functions)

are

not

available

when

you

connect

to

a

DB2

server

that

does

not

support

large

objects.

To

determine

if

a

connection

supports

LOBs,

call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLGETSUBSTRING.

If

the

pfExists

output

argument

returns

SQL_TRUE,

the

current

connection

supports

LOBs.

If

the

pfExists

output

argument

returns

SQL_FALSE,

the

current

connection

does

not

support

LOBs.

LOB

and

LOB

locator

example

Figure

49

on

page

426

shows

an

example

application

that

extracts

the

’Interests’

section

from

the

RESUME

CLOB

column

of

the

EMP_RESUME

table.

This

application

transfers

only

a

substring

into

memory.

Chapter

5.

Using

advanced

features

425

Using

distinct

types

In

addition

to

the

built-in

SQL

data

types,

you

can

define

your

own

SQL

data

type,

which

are

called

distinct

types.

When

you

create

a

distinct

type,

you

base

it

on

an

existing

SQL

built-in

type.

This

SQL

built-in

type

is

called

the

source

type.

Internally,

a

distinct

type

and

the

source

type

are

equivalent,

but

for

most

programming

operations

a

distinct

type

is

incompatible

with

the

source

type.

You

create

distinct

types

with

the

CREATE

DISTINCT

TYPE

SQL

statement.

See

DB2

SQL

Reference

for

more

information

about

this

statement.

Distinct

types

help

provide

the

strong

typing

control

that

an

object-oriented

program

requires.

When

you

use

distinct

types,

you

ensure

that

only

functions

and

operators

that

are

explicitly

defined

on

a

distinct

type

can

be

applied

to

instances

of

that

type.

/*

...

*/

SQLCHAR

stmt2[]

=

"SELECT

resume

FROM

emp_resume

"

"WHERE

empno

=

?

AND

resume_format

=

’ascii’";

/*

...

*/

/**

**

Get

CLOB

locator

to

selected

Resume

**

***/

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

7,

0,

Empno.s,

sizeof(Empno.s),

&Empno.ind);

printf("\n>Enter

an

employee

number:\n");

gets(Empno.s);

rc

=

SQLExecDirect(hstmt,

stmt2,

SQL_NTS);

rc

=

SQLBindCol(hstmt,

1,

SQL_C_CLOB_LOCATOR,

&ClobLoc1,

0,

&pcbValue);

rc

=

SQLFetch(hstmt);

/**

Search

CLOB

locator

to

find

"Interests"

Get

substring

of

resume

(from

position

of

interests

to

end)

***/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&lhstmt);

/*

Get

total

length

*/

rc

=

SQLGetLength(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

&SLength,

&Ind);

/*

Get

starting

postion

*/

rc

=

SQLGetPosition(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

0,

"Interests",

9,

1,

&Pos1,

&Ind);

buffer

=

(SQLCHAR

*)malloc(SLength

-

Pos1

+

1);

/*

Get

just

the

"Interests"

section

of

the

Resume

CLOB

*/

/*

(From

Pos1

to

end

of

CLOB)

*/

rc

=

SQLGetSubString(lhstmt,

SQL_C_CLOB_LOCATOR,

ClobLoc1,

Pos1,

SLength

-

Pos1,

SQL_C_CHAR,

buffer,

SLength

-

Pos1

+1,

&OutLength,

&Ind);

/*

Print

Interest

section

of

Employee’s

resume

*/

printf("\nEmployee

#:

%s\n

%s\n",

Empno.s,

buffer);

/*

...

*/

Figure

49.

An

application

that

uses

LOB

locators

426

ODBC

Guide

and

Reference

When

you

use

distinct

types,

applications

continue

to

work

with

C

data

types

for

application

variables.

You

need

to

consider

only

the

distinct

types

when

you

construct

SQL

statements.

The

following

guidelines

apply

to

distinct

types:

v

All

SQL-to-C

data

type

conversion

rules

that

apply

to

the

source

type

also

apply

to

the

distinct

type.

v

The

distinct

type

has

the

same

default

C

type

as

the

source

type.

v

SQLDescribeCol()

returns

the

source

type

for

distinct

type

columns.

Call

SQLColAttribute()

with

the

input

descriptor

type

set

to

SQL_DESC_DISTINCT_TYPE

to

obtain

distinct

type

names.

v

When

you

use

an

SQL

predicate

that

compares

a

distinct

type

to

a

parameter

marker,

you

must

either

cast

the

parameter

marker

to

the

distinct

type

or

cast

the

distinct

type

to

a

source

type.

This

casting

is

required

because

distinct

types

are

not

compatible

with

other

data

types

in

comparison

operations.

Applications

use

only

C

data

types

that

represent

SQL

built-in

types.

This

difference

between

C

types

and

SQL

types

requires

you

to

cast

from

the

C

built-in

type

to

the

SQL

distinct

type

within

the

SQL

statement.

Alternatively

you

can

cast

the

distinct

type

to

a

source

type,

which

C

types

support.

If

you

do

not

make

one

of

these

conversions,

an

error

occurs

when

you

prepare

the

statement.

For

more

information

about

casting

distinct

types,

see

“Distinct

types”

on

page

471.

Figure

50

shows

an

application

that

creates

distinct

types,

user-defined

functions,

and

tables

with

distinct

type

columns.

For

an

example

that

inserts

rows

into

a

table

with

distinct

type

columns,

see

Figure

44

on

page

417.

/*

...

*/

/*

Initialize

SQL

statement

strings

*/

SQLCHAR

stmt[][MAX_STMT_LEN]

=

{

"CREATE

DISTINCT

TYPE

CNUM

AS

INTEGER

WITH

COMPARISONS",

"CREATE

DISTINCT

TYPE

PUNIT

AS

CHAR(2)

WITH

COMPARISONS",

"CREATE

DISTINCT

TYPE

UPRICE

AS

DECIMAL(10,

2)

\

WITH

COMPARISONS",

"CREATE

DISTINCT

TYPE

PRICE

AS

DECIMAL(10,

2)

\

WITH

COMPARISONS",

"CREATE

FUNCTION

PRICE

(CHAR(12),

PUNIT,

char(16)

)

\

returns

char(12)

\

NOT

FENCED

EXTERNAL

NAME

’order!price’

\

NOT

VARIANT

NO

SQL

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

\

NO

EXTERNAL

ACTION",

"CREATE

DISTINCT

TYPE

PNUM

AS

INTEGER

WITH

COMPARISONS",

"CREATE

FUNCTION

\"+\"

(PNUM,

INTEGER)

RETURNS

PNUM

\

source

sysibm.\"+\"(integer,

integer)",

"CREATE

FUNCTION

MAX

(PNUM)

RETURNS

PNUM

\

source

max(integer)",

Figure

50.

An

application

that

creates

distinct

types

(Part

1

of

2)

Chapter

5.

Using

advanced

features

427

"CREATE

DISTINCT

TYPE

ONUM

AS

INTEGER

WITH

COMPARISONS",

"CREATE

TABLE

CUSTOMER

(

\

Cust_Num

CNUM

NOT

NULL,

\

First_Name

CHAR(30)

NOT

NULL,

\

Last_Name

CHAR(30)

NOT

NULL,

\

Street

CHAR(128)

WITH

DEFAULT,

\

City

CHAR(30)

WITH

DEFAULT,

\

Prov_State

CHAR(30)

WITH

DEFAULT,

\

PZ_Code

CHAR(9)

WITH

DEFAULT,

\

Country

CHAR(30)

WITH

DEFAULT,

\

Phone_Num

CHAR(20)

WITH

DEFAULT,

\

PRIMARY

KEY

(Cust_Num)

)",

"CREATE

TABLE

PRODUCT

(

\

Prod_Num

PNUM

NOT

NULL,

\

Description

VARCHAR(256)

NOT

NULL,

\

Price

DECIMAL(10,2)

WITH

DEFAULT

,

\

Units

PUNIT

NOT

NULL,

\

Combo

CHAR(1)

WITH

DEFAULT,

\

PRIMARY

KEY

(Prod_Num),

\

CHECK

(Units

in

(PUNIT(’m’),

PUNIT(’l’),

PUNIT(’g’),

PUNIT(’kg’),

\

PUNIT(’

’)))

)",

"CREATE

TABLE

PROD_PARTS

(

\

Prod_Num

PNUM

NOT

NULL,

\

Part_Num

PNUM

NOT

NULL,

\

Quantity

DECIMAL(14,7),

\

PRIMARY

KEY

(Prod_Num,

Part_Num),

\

FOREIGN

KEY

(Prod_Num)

REFERENCES

Product,

\

FOREIGN

KEY

(Part_Num)

REFERENCES

Product,

\

CHECK

(Prod_Num

<>

Part_Num)

)",

"CREATE

TABLE

ORD_CUST(

\

Ord_Num

ONUM

NOT

NULL,

\

Cust_Num

CNUM

NOT

NULL,

\

Ord_Date

DATE

NOT

NULL,

\

PRIMARY

KEY

(Ord_Num),

\

FOREIGN

KEY

(Cust_Num)

REFERENCES

Customer

)",

"CREATE

TABLE

ORD_LINE(

\

Ord_Num

ONUM

NOT

NULL,

\

Prod_Num

PNUM

NOT

NULL,

\

Quantity

DECIMAL(14,7),

\

PRIMARY

KEY

(Ord_Num,

Prod_Num),

\

FOREIGN

KEY

(Prod_Num)

REFERENCES

Product,

\

FOREIGN

KEY

(Ord_Num)

REFERENCES

Ord_Cust

)"

};

/*

...

*/

num_stmts

=

sizeof(stmt)

/

MAX_STMT_LEN;

printf(">Executing

%ld

Statements\n",

num_stmts);

/*

Execute

Direct

statements

*/

for

(i

=

0;

i

<

num_stmts;

i++)

{

rc

=

SQLExecDirect(hstmt,

stmt[i],

SQL_NTS);

}

/*

...

*/

Figure

50.

An

application

that

creates

distinct

types

(Part

2

of

2)

428

ODBC

Guide

and

Reference

Using

stored

procedures

You

can

design

an

application

to

run

in

two

parts:

one

part

on

the

client

and

one

part

on

the

server.

Stored

procedures

are

server

applications

that

run

at

the

database,

within

the

same

transaction

as

a

client

application.

You

can

write

stored

procedures

with

either

embedded

SQL

or

DB2

ODBC

functions.

(See

“Writing

a

DB2

ODBC

stored

procedure”

on

page

430

for

more

information

about

stored

procedures.)

Both

the

main

application

that

calls

a

stored

procedure

and

a

stored

procedure

itself

can

be

either

a

DB2

ODBC

application

or

a

standard

DB2

precompiled

application.

You

can

use

any

combination

of

embedded

SQL

and

DB2

ODBC

applications.

Figure

51

illustrates

this

concept.

Advantages

of

using

stored

procedures

In

general,

stored

procedures

provide

the

following

advantages:

v

You

avoid

network

transfer

of

large

amounts

of

data

obtained

as

part

of

intermediate

results

in

a

long

sequence

of

queries.

v

You

deploy

client

database

applications

into

client/server

pieces.

Stored

procedures

written

in

embedded

static

SQL

have

the

following

additional

advantages:

v

Performance:

Static

SQL

is

prepared

at

precompile

time

and

has

no

run

time

overhead

of

access

plan

(package)

generation.

v

Encapsulation

(information

hiding):

Users

do

not

need

to

know

the

details

about

database

objects

in

order

to

access

them.

Static

SQL

can

help

enforce

this

encapsulation.

v

Security:

Users’

access

privileges

are

encapsulated

within

the

packages

associated

with

the

stored

procedures,

so

you

do

not

need

to

grant

explicit

access

to

each

database

object.

For

example,

you

can

grant

a

user

run

access

for

a

stored

procedure

that

selects

data

from

tables

for

which

the

user

does

not

have

select

privilege.

Catalog

table

for

stored

procedures

Registered

stored

procedures

are

defined

in

the

SYSIBM.SYSROUTINES

catalog

table.

Call

SQLProcedureColumns()

to

determine

the

input

and

output

parameters

that

are

associated

with

a

procedure

call.

For

more

information

about

this

function,

see

“SQLProcedureColumns()

-

Get

procedure

input/output

parameter

information”

on

page

320.

ODBC client:
Application address space

SP1
SQLPrepare("SELECT * FROM T1")

SQLPrepare("CALL SP1")
SQLExecute()

DB2 UDB for z/OS:
Stored procedures address space

Figure

51.

Running

stored

procedures

Chapter

5.

Using

advanced

features

429

Calling

stored

procedures

from

a

DB2

ODBC

application

To

invoke

stored

procedures

from

a

DB2

ODBC

application,

pass

a

CALL

statement

with

the

following

syntax

to

SQLExecDirect(),

or

to

SQLPrepare()

followed

by

SQLExecute().

��

CALL

procedure-name

�

,

(

)

?

��

procedure-name

The

name

of

the

stored

procedure

to

execute.

Call

SQLProcedures()

to

obtain

a

list

of

stored

procedures

that

are

available

at

the

database.

Although

the

CALL

statement

cannot

be

prepared

dynamically,

DB2

ODBC

accepts

the

CALL

statement

as

if

it

can

be

dynamically

prepared.

You

can

also

call

stored

procedures

with

the

ODBC

vendor

escape

sequence.

For

more

information

about

calling

a

stored

procedure

with

an

ODBC

vendor

escape

sequence,

see

“Stored

procedure

CALL”

on

page

469.

The

question

mark

(?)

in

the

CALL

statement

syntax

diagram

denotes

parameter

markers

that

correspond

to

the

arguments

for

a

stored

procedure.

You

must

pass

all

arguments

to

a

stored

procedure

with

parameter

markers.

Literals,

the

NULL

keyword,

and

special

registers

are

not

allowed.

However,

you

can

use

literals

if

you

include

a

vendor

escape

clause

in

your

CALL

statement.

See

“Using

vendor

escape

clauses”

on

page

465

for

more

information

about

including

literals

in

a

CALL

statement.

You

bind

the

parameter

markers

in

a

CALL

statement

to

application

variables

with

SQLBindParameter().

Although

you

can

use

stored

procedure

arguments

that

are

both

input

and

output

arguments,

you

should

avoid

sending

unnecessary

data

between

the

client

and

the

server.

Specify

either

SQL_PARAM_INPUT

for

input

arguments

or

SQL_PARAM_OUTPUT

for

output

arguments

when

you

call

SQLBindParameter().

Specify

SQL_PARAM_INPUT_OUTPUT

only

if

the

stored

procedure

uses

arguments

that

are

both

input

and

output

arguments.

Literals

are

considered

type

SQL_PARAM_INPUT

only.

For

more

information

about

the

use

of

the

CALL

statement

and

stored

procedures,

see

DB2

SQL

Reference

and

DB2

Application

Programming

and

SQL

Guide.

Writing

a

DB2

ODBC

stored

procedure

Although

stored

procedures

that

are

written

in

embedded

SQL

provide

more

advantages

than

stored

procedures

that

are

written

in

ODBC,

you

might

want

components

of

DB2

ODBC

applications

to

run

on

servers.

You

can

write

stored

procedures

in

DB2

ODBC

to

minimize

the

required

changes

to

the

code

and

logic

of

those

components.

You

write

ODBC

stored

procedures

as

ordinary

ODBC

applications,

with

the

following

exceptions:

v

You

must

turn

off

AUTOCOMMIT.

Set

the

SQL_ATTR_AUTOCOMMIT

attribute

to

SQL_AUTOCOMMIT_OFF

with

SQLSetConnectAttr().

You

can

also

specify

AUTOCOMMIT=0

in

the

DB2

ODBC

initialization

file

to

disable

AUTOCOMMIT.

430

ODBC

Guide

and

Reference

v

You

must

make

a

null

database

connection

with

SQLConnect().

A

stored

procedure

runs

under

the

same

connection

and

transaction

as

the

client

application.

A

null

SQLConnect()

call

associates

a

connection

handle

in

the

stored

procedure

with

the

underlying

connection

of

the

client

application.

To

make

a

null

SQLConnect()

call,

set

the

szDSN,

szUID,

and

szAuthStr

argument

pointers

to

NULL,

and

set

their

respective

length

arguments

to

0.

v

If

your

stored

procedure

contains

any

LOB

data

types

or

distinct

types

in

its

parameter

list,

specify

MVSATTACHTYPE=RRSAF

in

the

DB2

ODBC

initialization

file.

DB2

UDB

for

z/OS

requires

that

stored

procedures

containing

any

LOBs

or

distinct

types

must

run

in

a

WLM-established

stored

procedure

address

space.

When

you

define

a

DB2

ODBC

stored

procedure

to

DB2,

specify

the

COMMIT

ON

RETURN

NO

clause

in

the

CREATE

PROCEDURE

SQL

statement.

For

stored

procedures

that

are

written

in

DB2

ODBC,

the

COMMIT

ON

RETURN

clause

has

no

effect

on

DB2

ODBC

rules.

However,

COMMIT

ON

RETURN

NO

overrides

the

manual-commit

mode

that

is

set

in

the

client

application.

For

more

information

about

setting

up

the

stored

procedures

environment,

see

Part

6

of

DB2

Application

Programming

and

SQL

Guide.

Returning

result

sets

from

stored

procedures

In

DB2

ODBC

applications,

you

use

open

cursors

to

retrieve

result

sets

from

stored

procedure

calls.

Stored

procedures

that

return

result

sets

to

DB2

ODBC

open

one

or

more

cursors

that

are

each

associated

with

a

query,

and

keep

these

cursors

open

when

the

stored

procedure

exits.

When

a

stored

procedure

leaves

more

than

one

cursor

open

after

it

exits,

it

returns

multiple

result

sets.

When

you

define

a

stored

procedure

that

returns

result

sets,

you

must

specify

the

maximum

number

of

result

sets

that

the

procedure

is

to

return.

You

specify

this

value

in

the

DYNAMIC

RESULT

SETS

clause

in

the

CREATE

PROCEDURE

SQL

statement.

This

value

appears

in

the

RESULT_SETS

column

of

the

SYSIBM.SYSROUTINES

table

for

all

stored

procedures.

A

zero

in

this

column

indicates

that

open

cursors

return

no

result

sets.

Zero

is

the

default

value.

Programming

stored

procedures

to

return

result

sets

In

general,

you

write

a

stored

procedure

that

returns

result

sets

to

a

DB2

ODBC

application

to

perform

the

following

actions:

v

For

each

result

set

the

stored

procedure

returns,

declare

a

cursor

with

the

WITH

RETURN

option,

open

the

cursor

on

the

result

set

(that

is,

execute

a

query),

and

leave

the

cursor

open

after

you

exit

the

procedure.

v

Return

a

result

set

for

every

cursor

that

is

left

open

after

exit,

in

the

order

in

which

the

procedure

opened

the

corresponding

cursors.

v

Pass

only

unread

rows

back

to

the

DB2

ODBC

client

application.

For

example,

if

the

result

set

of

a

cursor

has

500

rows,

but

the

stored

procedure

reads

150

of

those

rows

before

it

terminates,

the

stored

procedure

returns

only

rows

151

through

500.

You

can

use

this

behavior

to

filter

out

initial

rows

in

the

result

set

before

you

return

them

to

the

client

application.

More

specifically,

to

write

a

DB2

ODBC

stored

procedure

that

returns

result

sets,

you

must

include

the

following

procedure

in

your

application:

1.

Issue

SQLExecute()

or

SQLExecDirect()

to

perform

a

query

that

opens

a

cursor.

In

stored

procedures,

DB2

ODBC

declares

cursors

with

the

WITH

RETURN

option.

2.

Optionally,

issue

SQLFetch()

to

read

rows

that

you

want

to

filter

from

the

result

set.

Chapter

5.

Using

advanced

features

431

3.

Issue

SQLDisconnect(),

SQLFreeHandle()

with

HandleType

set

to

SQL_HANDLE_DBC,

and

SQLFreeHandle()

with

HandleType

set

to

SQL_HANDLE_ENV

to

exit

the

stored

procedure.

This

exit

leaves

the

statement

handle,

and

the

corresponding

cursor,

in

a

valid

state.

Do

not

issue

SQLFreeHandle()

with

HandleType

set

to

SQL_HANDLE_STMT

or

SQLCloseCursor().

When

you

do

not

free

the

statement

handle

or

explicitly

close

the

cursor

on

that

handle,

the

cursor

remains

open

to

return

result

sets.

If

you

close

a

cursor

before

the

stored

procedure

exit,

it

is

a

local

cursor.

If

you

keep

a

cursor

open

after

you

exit

the

stored

procedure,

it

returns

a

query

result

set

(also

called

a

multiple

result

set)

to

the

client

application.

Appendix

F,

“Example

DB2

ODBC

code,”

on

page

531

provides

an

example;

see

case

2

of

step

4.

Restrictions

on

stored

procedures

returning

result

sets

In

general,

when

you

call

a

stored

procedure

that

returns

a

result

set,

it

is

equivalent

to

executing

a

query

statement.

The

following

restrictions

apply

to

this

equivalency:

v

SQLDescribeCol()

or

SQLColAttribute()

do

not

return

column

names

for

static

query

statements.

In

this

case

of

static

statements,

these

functions

return

the

ordinal

position

of

columns

instead.

v

All

result

sets

are

read-only.

v

You

cannot

use

schema

functions

(such

as

the

SQLTables()

function)

to

return

a

result

set.

If

you

use

schema

functions

within

a

stored

procedure,

you

must

close

all

cursors

that

are

associated

with

the

statement

handles

of

those

functions.

If

you

do

not

close

these

cursors,

your

stored

procedure

might

return

extraneous

result

sets.

v

When

you

prepare

a

stored

procedure,

you

cannot

access

the

column

information

for

the

result

set

until

after

you

issue

the

CALL

statement.

Normally,

you

can

access

result

set

column

information

immediately

after

you

prepare

a

query.

Programming

DB2

ODBC

client

applications

to

receive

result

sets

After

you

execute

a

stored

procedure

from

a

client

application,

you

receive

the

result

sets

from

that

stored

procedure

in

the

way

that

you

receive

result

sets

from

a

query.

To

write

a

DB2

ODBC

client

application

that

receives

result

sets

from

a

stored

procedure,

perform

the

following

actions

in

your

application:

1.

Ensure

that

no

open

cursors

are

associated

with

the

statement

handle

on

which

you

plan

to

issue

the

CALL

SQL

statement.

2.

Call

SQLPrepare()

and

SQLExecute(),

or

call

SQLExecDirect()

to

issue

the

CALL

SQL

statement

for

the

stored

procedure

that

you

want

to

invoke.

This

execution

of

the

CALL

SQL

statement

effectively

causes

the

cursors

that

are

associated

with

the

result

sets

to

open.

3.

Examine

output

parameters

that

the

stored

procedure

returns.

For

example,

the

procedure

might

be

designed

with

an

output

parameter

that

indicates

exactly

how

many

result

sets

are

generated.

You

could

then

use

this

information

to

receive

those

result

sets

more

efficiently.

4.

If

you

do

not

know

the

nature

of

the

result

set,

or

the

number

of

columns

that

the

result

set

is

to

contain,

call

SQLNumResultCols(),

SQLDescribeCol(),

or

SQLColAttribute().

5.

Use

any

permitted

combination

of

SQLBindCol(),

SQLFetch(),

and

SQLGetData()

to

obtain

the

data

set

from

the

current

cursor.

You

must

process

result

sets

serially.

You

receive

each

result

set

one

at

a

time

in

the

order

that

the

stored

procedure

opens

the

corresponding

cursors.

432

ODBC

Guide

and

Reference

6.

When

you

finish

processing

the

current

result

set,

call

SQLMoreResults()

to

check

for

more

result

sets

to

receive.

If

an

additional

result

set

exists,

SQLMoreResults()

returns

SQL_SUCCESS,

closes

the

current

cursor,

and

advances

processing

to

the

next

open

cursor.

Otherwise,

SQLMoreResults()

returns

SQL_NO_DATA_FOUND.

Repeat

steps

3

on

page

432

through

6

until

you

receive

all

result

sets

that

the

stored

procedure

returned.

Stored

procedure

example

with

query

result

set

A

detailed

stored

procedure

example

is

provided

in

Appendix

F,

“Example

DB2

ODBC

code,”

on

page

531.

Writing

multithreaded

and

multiple-context

applications

This

section

explains

DB2

ODBC

multithread

and

multiple

context

support,

and

it

provides

guidelines

about

how

you

use

contexts

and

threads

together

in

an

application.

DB2

ODBC

support

for

multiple

Language

Environment

threads

A

Language

Environment

thread

represents

an

independent

instance

of

a

routine

within

an

application.

When

you

execute

a

DB2

ODBC

application,

it

begins

with

an

initial

Language

Environment

thread,

or

parent

thread.

To

make

your

application

multithreaded,

call

the

POSIX

Pthread

function

pthread_create()

within

your

application.

This

function

creates

additional

Language

Environment

threads,

or

child

threads,

which

work

concurrently

with

the

parent

thread.

You

must

run

multithreaded

DB2

ODBC

applications

in

one

of

the

following

environments:

v

The

z/OS

UNIX

environment.

v

For

applications

that

are

HFS-resident,

TSO

or

batch

environments

that

use

the

IBM-supplied

BPXBATCH

program.

See

z/OS

UNIX

System

Services

Command

Reference

for

more

information

about

BPXBATCH.

v

For

applications

that

are

not

HFS-resident,

TSO

or

batch

environments

that

use

the

Language

Environment

run-time

option

POSIX(ON).

See

z/OS

Language

Environment

Programming

Guide

for

more

information

about

running

POSIX-enabled

programs.

Example:

To

run

the

multithreaded,

non-HFS,

DB2

ODBC

application

APP1

in

the

data

set

USER.RUNLIB.LOAD,

you

could

use

one

of

the

following

approaches:

–

Use

TSO

to

enter

the

command:

CALL

’USER.RUNLIB.LOAD(APP1)’

’POSIX(ON)/’

–

Use

batch

JCL

to

submit

the

job:

//STEP1

EXEC

PGM=APP1,PARM=’POSIX(ON)/’

//STEPLIB

DD

DSN=USER.RUNLIB.LOAD,DISP=SHR

//

DD

...other

libraries

needed

at

run

time...

The

collection

of

all

the

Language

Environment

threads

in

an

application

make

an

independent

set

of

routines

called

a

Language

Environment

enclave.

All

Language

Environment

threads

within

an

enclave

share

the

same

reentrant

copy

of

the

DB2

ODBC

driver

code.

DB2

ODBC

must

also

protect

shared

storage

when

multiple

Language

Environment

threads

run

concurrently

in

the

same

enclave.

Reentrant

code

that

correctly

handles

shared

storage

is

referred

to

as

threadsafe.

Multithreaded

ODBC

applications

require

a

threadsafe

driver.

Chapter

5.

Using

advanced

features

433

The

DB2

ODBC

driver

is

threadsafe.

DB2

ODBC

supports

the

concurrent

execution

of

Language

Environment

threads.

Your

DB2

ODBC

applications

will

support

multiple

Language

Environment

threads,

only

if

the

following

conditions

are

true:

v

DB2

ODBC

can

access

the

z/OS

UNIX

environment.

DB2

ODBC

uses

Pthread

mutex

functions,

which

the

z/OS

UNIX

environment

provides,

to

serialize

critical

sections

of

DB2

ODBC

code.

With

these

Pthread

mutex

functions,

all

DB2

ODBC

functions

are

threadsafe.

For

more

information

about

the

z/OS

UNIX

environment

in

relation

to

DB2

ODBC,

see

“Setting

up

the

z/OS

UNIX

environment”

on

page

44,

and

“Preparing

and

executing

a

DB2

ODBC

application”

on

page

44.

v

THREADSAFE=0

is

not

specified

in

the

initialization

file.

You

can

use

the

THREADSAFE

keyword

to

specify

whether

the

DB2

ODBC

driver

uses

Pthread

mutex

functions

to

make

your

applications

threadsafe.

See

“Initialization

keywords”

on

page

51

for

a

description

of

the

THREADSAFE

keyword.

Multithreaded

applications

use

threads

to

perform

work

in

parallel.

Figure

52

depicts

an

application

that

performs

parallel

operations

on

two

different

connections

and

manages

a

shared

application

buffer.

SQLAllocHandle()
(environment)

Initialize shared buffer, set More_Data flag = true

pthread_create

pthread_create

pthread_join

pthread_join

SQLFree ()
(environment)

Parent LE thread

Handle
SQLAllocHandle()

SQLConnect()
Connect to database A

SQLAllocHandle()
(statement)

SQLExecDirect()

SQLBindCol()

Do while More_Data ==true

SQLFetch()
Place row into shared buffer
If SQL_NO_DATA_FOUND, set More_Data = false

pthread_mutex_lock(&mutex)

pthread_cond_signal(&cond2)

If More_Data ==true
pthread_cond_wait(&cond1 , &mutex)

Else
pthread_unlock(&mutex)

SQLDisconnect(), free handles, and pthread_exit

Child LE thread 1

(connection)
SQLAllocHandle()

SQLConnect()
Connect to database B

SQLAllocHandle()
(statement)

SQLBindParameter()

SQLPrepare()

pthread_mutex_lock(&mutex)

pthread_cond_wait(&cond2 , &mutex)

Do while More_Data == true

SQLExecute()
Insert row from shared buffer into table

pthread_mutex_lock(&mutex)

pthread_cond_signal(&cond1)

pthread_cond_wait(&cond2 , &mutex)

SQLDisconnect(), free handles, and pthread_exit

Child LE thread 2

(connection)

Figure

52.

Multithreaded

application

434

ODBC

Guide

and

Reference

The

application

that

Figure

52

on

page

434

portrays

an

application

that

performs

the

following

steps

to

make

a

parallel

database-to-database

copy:

1.

Creates

two

child

Language

Environment

threads

from

an

initial

parent

thread.

The

parent

thread

remains

active

for

the

duration

of

the

child

threads.

DB2

ODBC

requires

that

the

thread

that

establishes

the

environment

handle

must

persist

for

the

duration

of

the

application.

The

persistence

of

this

thread

keeps

DB2

language

interface

routines

resident

in

the

Language

Environment

enclave.

2.

Connects

to

database

A

with

child

Language

Environment

thread

1

and

uses

SQLFetch()

to

read

data

from

this

connection

into

a

shared

application

buffer.

3.

Connects

to

database

B

with

child

Language

Environment

thread

2.

Child

Language

Environment

thread

2

concurrently

reads

data

from

the

shared

application

buffer

and

inserts

this

data

into

database

B.

4.

Calls

Pthread

functions

to

synchronize

the

use

of

the

shared

application

buffer

within

each

of

the

child

threads.

See

z/OS

C/C++

Run-Time

Library

Reference

for

a

description

of

the

Pthread

functions.

When

to

use

multiple

Language

Environment

threads

A

detailed

discussion

about

when

to

use

multithreading

in

your

application

is

beyond

the

scope

of

this

book.

However,

some

general

application

types

are

well-suited

to

multithreading.

For

example,

applications

that

handle

asynchronous

work

requests

make

good

candidates

for

multithreading.

An

application

that

handles

asynchronous

work

requests

can

take

the

form

of

a

parent-child

threading

model

in

which

the

parent

Language

Environment

thread

creates

child

Language

Environment

threads

to

handle

incoming

work.

The

parent

thread

can

then

dispatch

these

work

requests,

as

they

arrive,

to

child

threads

that

are

not

currently

busy

handling

other

work.

For

more

information

about

when

to

use

threads

in

your

DB2

ODBC

applications,

see

z/OS

C/C++

Programming

Guide.

DB2

ODBC

support

of

multiple

contexts

A

context

is

the

DB2

ODBC

equivalent

of

a

DB2

thread.

Contexts

are

the

structures

that

describe

the

logical

connections

that

an

application

makes

to

data

sources

and

the

internal

DB2

ODBC

connection

information

that

allows

applications

to

direct

operations

to

a

data

source.

You

establish

a

context

when

you

allocate

a

connection

handle

when

multiple

contexts

are

enabled.

DB2

ODBC

always

creates

a

context

for

the

first

connection

handle

that

you

create

on

a

Language

Environment

thread.

If

you

do

not

enable

DB2

ODBC

support

for

multiple

contexts,

only

these

SQLAllocHandle()

calls

establish

a

context.

If

you

enable

support

for

multiple

contexts,

DB2

ODBC

establishes

a

separate

context

(and

DB2

thread)

each

time

that

you

issue

SQLAllocHandle()

to

allocate

a

connection

handle.

To

enable

or

explicitly

disable

DB2

ODBC

support

for

multiple

contexts,

use

the

MULTICONTEXT

keyword

in

the

DB2

ODBC

initialization

file.

Before

you

enable

multiple

contexts,

each

Language

Environment

thread

that

you

create

can

use

only

a

single

context.

With

only

one

context

for

each

Language

Environment

thread,

your

application

runs

with

only

simulated

support

for

the

ODBC

connection

model.

Multiple

contexts

are

disabled

by

default.

To

explicitly

disable

Chapter

5.

Using

advanced

features

435

multiple

contexts,

specify

MULTICONTEXT=0

in

the

initialization

file.

For

more

information

about

the

ODBC

connection

model,

see

“DB2

ODBC

restrictions

on

the

ODBC

connection

model”

on

page

11.

When

you

specify

MULTICONTEXT=1

in

the

initialization

file,

a

distinct

context

is

established

for

each

connection

handle,

which

you

establish

with

SQLAllocHandle().

With

a

context

for

each

connection,

DB2

ODBC

is

consistent

with,

and

provides

full

support

for,

the

ODBC

connection

model.

To

use

multiple

contexts,

you

must

specify

MVSATTACHTYPE=RRSAF

in

the

initialization

file.

Specifying

MULTICONTEXT=1

implies

CONNECTTYPE=1.

Implicitly

concurrent

connection

types

are

consistent

with

the

ODBC

connection

model.

SQLEndTran()

handles

all

connections

independently

for

both

commit

and

rollback.

See

“Initialization

keywords”

on

page

51

for

more

information

about

CONNECTTYPE

and

MULTICONTEXT.

In

a

multiple-context

environment,

you

establish

contexts

with

SQLAllocHandle()

and

delete

contexts

with

SQLFreeHandle()

(with

the

HandleType

argument

on

both

functions

set

to

SQL_HANDLE_DBC).

All

SQLConnect()

and

SQLDisconnect()

operations

that

use

the

same

connection

handle

belong

to

the

same

context.

Although

you

can

make

only

one

active

connection

to

a

data

source

within

a

single

context,

you

can

call

SQLDisconnect()

and

then

call

SQLConnect()

to

change

the

target

data

source.

When

you

change

data

sources

in

a

multiple-context

environment,

this

change

is

also

subject

to

the

rules

of

CONNECTTYPE=1.

When

you

specify

MULTICONTEXT=1,

DB2

ODBC

automatically

uses

z/OS

Unauthorized

Context

Services

to

create

and

manage

contexts

for

the

application.

However,

DB2

ODBC

does

not

perform

context

management

for

the

application

if

any

of

the

following

conditions

are

true:

v

Your

DB2

ODBC

application

creates

a

DB2

thread

before

it

invokes

DB2

ODBC.

This

condition

always

applies

for

any

stored

procedure

that

uses

DB2

ODBC.

v

Your

DB2

ODBC

application

creates

and

switches

to

a

private

context

before

it

invokes

DB2

ODBC.

For

example,

an

application

that

explicitly

uses

z/OS

Unauthorized

Context

Services

and

that

issues

ctxswch()

to

switch

to

a

private

context

prior

to

invoking

DB2

ODBC

cannot

take

advantage

of

MULTICONTEXT=1.

v

Your

DB2

ODBC

application

starts

a

unit

of

recovery

with

any

RRS

resource

manager

before

it

invokes

DB2

ODBC.

v

You

specify

MVSATTACHTYPE=CAF

in

the

initialization

file.

v

The

operating

system

level

does

not

support

Unauthorized

Context

Services.

To

determine

if

MULTICONTEXT=1

is

active

for

the

DB2

ODBC

application,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_MULTIPLE_ACTIVE_TXN.

See

“SQLGetInfo()

-

Get

general

information”

on

page

234

for

a

full

description

of

SQLGetInfo().

Table

228

on

page

437

shows

the

connection

characteristics

that

different

combinations

of

MULTICONTEXT

and

CONNECTTYPE

produce.

436

ODBC

Guide

and

Reference

Table

228.

Connection

characteristics

Settings

Results

MULTICONTEXT

CONNECTTYPE

Language

Environment

threads

can

have

more

than

one

ODBC

connection

with

an

outstanding

unit

of

work

Language

Environment

threads

can

commit

or

rollback

an

ODBC

connection

independently

Number

of

DB2

threads

that

DB2

ODBC

creates

on

behalf

of

application

0

2

Y

N

1

per

Language

Environment

thread

0

1

N

Y

1

per

Language

Environment

thread

11

1

or

22

Y

Y

1

per

ODBC

connection

handle

Notes:

1.

MULTICONTEXT=1

requires

MVSATTACHTYPE=RRSAF

2.

MULTICONTEXT=1

implies

CONNECTTYPE=1

characteristics.

If

you

specify

MULTICONTEXT=1

and

CONNECTTYPE=2

in

the

initialization

file,

DB2

ODBC

ignores

CONNECTTYPE=2.

When

you

specify

MULTICONTEXT=1,

any

attempt

to

set

CONNECTTYPE=2

with

SQLSetEnvAttr(),

SQLSetConnectAttr(),

or

SQLDriverConnect()

is

rejected

with

SQLSTATE

01S02.

v

All

connections

in

a

DB2

ODBC

application

have

the

same

CONNECTTYPE

and

MULTICONTEXT

characteristics.

The

connection

type

of

an

application

(which

is

specified

with

the

CONNECTTYPE

keyword)

is

established

at

the

first

SQLConnect()

call.

Multiple-context

support

(which

is

specified

with

the

MULTICONTEXT

keyword)

is

established

when

you

allocate

an

environment

handle.

v

For

CONNECTTYPE=1

or

MULTICONTEXT=1,

the

AUTOCOMMIT

default

value

is

ON.

For

CONNECTTYPE=2

or

MULTICONTEXT=0,

the

AUTOCOMMIT

default

value

is

OFF.

Multiple

contexts,

one

Language

Environment

thread

When

you

specify

the

initialization

file

setting

MULTICONTEXT=1,

a

DB2

ODBC

application

can

create

multiple

independent

connections

for

each

Language

Environment

thread.

Figure

53

on

page

438

is

an

example

of

an

application

that

uses

multiple

contexts

on

one

Language

Environment

thread.

Chapter

5.

Using

advanced

features

437

Multiple

contexts,

multiple

Language

Environment

threads

When

you

combine

the

initialization

file

setting

MULTICONTEXT=1

with

the

default

setting

THREADSAFE=1,

your

application

can

create

multiple

independent

connections

under

multiple

Language

Environment

threads.

With

this

capability,

you

can

use

a

fixed

number

of

Language

Environment

threads

to

implement

complex

DB2

ODBC

server

applications

that

handle

multiple

incoming

work

requests.

Applications

that

use

both

multiple

contexts

and

multiple

Language

Environment

threads

require

you

to

manage

application

resources.

Use

the

Pthread

functions

or

another

internal

mechanism

to

prevent

different

threads

from

using

the

same

connection

handles

or

statement

handles.

Figure

54

on

page

439

shows

how

an

application

can

fail

without

a

mechanism

to

serialize

use

of

handles.

/*

Get

an

environment

handle

(henv).

*/

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_HANDLE_NULL,

&henv

);

/*

*

Get

two

connection

handles,

hdbc1

and

hdbc2,

which

*

represent

two

independent

DB2

threads.

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc1

);

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc2

);

/*

Set

autocommit

off

for

both

connections.

*/

/*

This

is

done

only

to

emphasize

the

*/

/*

independence

of

the

connections

for

purposes

*/

/*

of

this

example,

and

is

not

intended

as

*/

/*

a

general

recommendation.

*/

SQLSetConnectAttr(hdbc1,

SQL_ATTR_AUTOCOMMIT,

(void

*)SQL_AUTOCOMMIT_OFF,

0

);

SQLSetConnectAttr(hdbc2,

SQL_ATTR_AUTOCOMMIT,

(void*)SQL_AUTOCOMMIT_OFF,

0

);

/*

Perform

SQL

under

DB2

thread

1

at

STLEC1.

*/

SQLConnect(

hdbc1,

(SQLCHAR

*)

"STLEC1",

...

);

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc1,

&hstmt1);

SQLExecDirect

...

.

.

/*

Perform

SQL

under

DB2

thread

2

at

STLEC1.

*/

SQLConnect(

hdbc2,

(SQLCHAR

*)

"STLEC1",

...

);

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc2,

&hstmt2);

SQLExecDirect

...

.

.

/*

Commit

changes

on

connection

1.

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc1,

SQL_COMMIT);

/*

Rollback

changes

on

connection

2.

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc2,

SQL_ROLLBACK);

.

.

Figure

53.

An

application

that

makes

independent

connections

on

a

single

Language

Environment

thread

438

ODBC

Guide

and

Reference

Figure

55

shows

a

design

that

establishes

a

pool

of

connections.

From

this

connection

pool,

you

can

map

a

Language

Environment

thread

to

each

connection.

This

design

prevents

two

Language

Environment

threads

from

using

the

same

connection

(or

an

associated

statement

handle)

at

the

same

time,

but

it

allows

these

threads

to

share

resources.

.

.

.

.

.

.

.
SQLFreeHandle(hstmt1 , SQL_DROP);

.

.

.

LE_Thread_2
.
.
.
.
.

rc = SQLExecDirect(hstmt1 , ...);
.
.
.
.
.
.

SQLExecDirect() returns SQL_INVALID_HANDLE
because LE_Thread_2 frees hstmt1 before LE_Thread_1
is finished using that statement handle.

LE_Thread_1

Figure

54.

Example

of

improper

serialization

SQLAlloc ()
(environment)

Parent Language Environment thread

Handle

hdbc hdbc
hdbc
1 2

n
SQLConnect()

Connect to database A

SQLAlloc ()
(statement)

SQLExecDirect()

SQLEndTran()

SQLDisconnect()

Signal parent that hdbc
is now available

Wait for more work

Child Language Environment thread 1

Handle

Connection pool

pthread_create
pthread_create

pthread_create

1
2

m

SQLAlloc ()
SQLAlloc ()

SQLAlloc ()
(connection)

1
2

Handle
Handle

Handle n

Mark a connection as in use
Pass handle to child thread

Return connection to pool
Mark connection free

When ready to shutdown:
SQLFree ()
Signal child threads to end
pthread_join

Handle 1 through

1 through

n

m

.

.

.

.

.

.

Figure

55.

Model

for

multithreading

with

connection

pooling

(MULTICONTEXT=1)

Chapter

5.

Using

advanced

features

439

To

establish

a

pool

of

connections

(as

Figure

55

on

page

439

depicts),

include

the

following

steps

in

your

application:

1.

Designate

a

parent

Language

Environment

thread.

In

DB2

ODBC,

you

designate

a

parent

thread

when

you

establish

the

environment

with

SQLAllocHandle().

This

Language

Environment

thread

that

establishes

the

environment

must

persist

for

the

duration

of

the

application,

so

that

DB2

language

interface

routines

can

remain

resident

in

the

Language

Environment

enclave.

2.

From

the

parent

Language

Environment

thread,

allocate:

v

m

child

threads,

one

for

each

application

task

v

n

connection

handles.

This

is

the

connection

pool.

3.

Execute

each

task

on

a

separate

child

thread.

Use

the

parent

thread

to

dispatch

these

tasks

to

each

child

thread.

4.

When

a

child

thread

requires

access

to

a

database,

use

the

parent

thread

to

allocate

one

of

the

n

connections

from

the

connection

pool

to

the

child

thread.

Remove

this

connection

handle

from

the

pool

by

marking

it

as

used.

5.

When

you

finish

operating

on

a

connection

under

a

child

thread,

signal

the

parent

thread

to

return

this

connection

to

the

pool

by

marking

it

as

free.

6.

To

terminate

your

application,

free

all

connection

handles

with

SQLFreeHandle()

and

terminate

all

child

threads

with

pthread_join()

from

the

parent

thread.

Connections

move

from

one

application

thread

to

another

as

the

connections

in

the

pool

are

assigned

to

child

threads,

returned

to

the

pool,

and

assigned

again.

With

this

design,

you

can

create

more

Language

Environment

threads

than

connections,

if

threads

are

also

used

to

perform

non-SQL

related

tasks.

You

can

also

create

more

connections

than

threads,

if

you

want

to

maintain

a

pool

of

active

connections

but

limit

the

number

of

active

tasks

that

your

application

performs.

DB2

ODBC

does

not

control

access

to

other

application

resources

such

as

bound

columns,

parameter

buffers,

and

files.

If

Language

Environment

threads

need

to

share

resources

in

your

application,

you

must

implement

a

mechanism

to

synchronize

this

access.

Figure

52

on

page

434

depicts

an

application

that

uses

the

Pthread

functions

to

synchronize

Language

Environment

threads

that

share

a

buffer.

External

contexts

Typically,

the

DB2

ODBC

driver

manages

contexts

in

an

ODBC

application.

With

external

contexts,

you

can

write

applications

that

manage

contexts

outside

of

DB2

ODBC.

You

use

external

contexts

in

combination

with

Language

Environment

threads

in

the

same

way

you

use

multiple

contexts

in

combination

with

Language

Environment

threads.

When

you

combine

external

contexts

with

Language

Environment

threads,

you

must

manage

both

the

external

contexts

and

the

Language

Environment

threads

within

your

application.

To

write

an

application

that

uses

external

contexts,

specify

the

following

values

in

the

initialization

file:

v

MULTICONTEXT=0

v

MVSATTACHTYPE=RRSAF

Call

the

following

APIs

in

your

application

to

manage

contexts

using

Resource

Recovery

Services

(RRS)

instead

of

the

DB2

ODBC

driver:

v

CRGGRM()

to

register

your

application

as

a

resource

manager

v

CRGSEIF()

to

set

exit

routines

for

your

application

440

ODBC

Guide

and

Reference

v

CTXBEGC()

to

create

a

private

external

context

v

CTXSWCH()

to

switch

between

contexts

v

CTXENDC()

to

end

a

private

external

context

When

an

application

attempts

to

establish

multiple

active

connections

to

the

same

data

source

from

a

single

context,

the

ODBC

driver

rejects

the

connection

request.

You

cannot

define

different

connection

types

for

each

external

context.

The

following

specifications

set

the

connection

type

of

all

connections

for

every

external

context

that

your

DB2

ODBC

application

creates:

v

The

CONNECTTYPE

keyword

in

the

initialization

file

v

The

SQL_ATTR_CONNECTTYPE

attribute

in

the

functions

SQLSetEnvAttr()

and

SQLSetConnectAttr()

See

“CONNECTTYPE”

on

page

53

for

more

information

about

the

CONNECTTYPE

keyword.

DB2

ODBC

does

not

support

external

contexts

in

applications

that

run

as

a

stored

procedure.

Because

RRS

is

not

part

of

DB2

ODBC,

detailed

information

about

RRS

and

RRS

APIs

is

outside

the

scope

of

this

book.

For

a

complete

description

of

RRS

callable

services,

see

z/OS

MVS

Programming:

Assembler

Services

Guide

or

z/OS

MVS

Programming:

Resource

Recovery.

Figure

56

on

page

442

shows

an

application

that

manages

contexts

outside

of

ODBC.

This

application

uses

RRS

APIs

to

register

as

a

context

manager,

set

exit

routines,

create

an

external

context,

and

switch

between

contexts.

Chapter

5.

Using

advanced

features

441

/*

Register

as

an

unauthorized

resource

manager

*/

CRGGRM();

/*

Set

exit

information

*/

CRGSEIF();

/*

Get

an

environment

handle

(henv)

*/

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Get

a

connection

handle,

hdbc1,

and

connect

to

STLEC1

under

the

native

context.

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc1);

SQLConnect(

hdbc1,

"STLEC1",

...

);

/*

Execute

SQL

under

the

native

context

at

STLEC1*/

SQLAllocHandle(SQL_HANDLE_STMT,

...);

SQLExecDirect

...

.

.

/*

Create

a

private

context

*/

CTXBEGC(

ctxtoken1

);

/*

Switch

to

private

*/

CTXSWCH(

ctxtoken1

);

An

application

that

manages

external

contexts

/*

Get

a

connection

handle,

hdbc2,

and

connect

to

STLEC1

under

the

private

context.

*/

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc2);

SQLConnect(

hdbc2,

"STLEC1",

...

);

/*

Execute

SQL

under

the

private

context

at

STLEC1

*/

SQLAllocHandle(SQL_HANDLE_STMT,

...);

SQLExecDirect

...

.

.

/*

Commit

changes

on

hdbc2

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc2,

SQL_COMMIT);

/*

Switch

back

to

native

*/

CTXSWCH(

0

);

/*

Execute

some

more

SQL

under

the

native

context

at

STLEC1

*/

SQLAllocHandle(SQL_HANDLE_STMT,

...);

SQLExecDirect

...

.

.

/*

Rollback

changes

on

hdbc1

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc1,

SQL_ROLLBACK);

Figure

56.

An

application

that

manages

external

contexts

442

ODBC

Guide

and

Reference

Application

deadlocks

When

you

use

multiple

connections

to

access

the

same

database

resources

concurrently,

you

create

general

contention

for

database

resources.

Timeouts

and

deadlocks

can

result

from

this

contention.

The

DB2

subsystem

detects

deadlocks

and

performs

rollbacks

on

the

necessary

connections

to

resolve

these

deadlocks.

However,

the

DB2

subsystem

cannot

detect

a

deadlock

if

the

contention

that

created

that

deadlock

involves

application

resources.

An

application

that

creates

multiple

connections

with

multithreading

or

multiple-context

support

can

potentially

create

deadlocks

if

the

following

sequence

occurs:

1.

Two

Language

Environment

threads

connect

to

the

same

data

source

using

two

DB2

threads.

2.

One

Language

Environment

thread

holds

an

internal

application

resource

(such

as

a

mutex)

while

its

DB2

thread

waits

for

access

to

a

database

resource.

3.

The

other

Language

Environment

thread

has

a

lock

on

a

database

resource

while

waiting

for

the

internal

application

resource.

When

this

sequence

of

events

occurs,

the

DB2

subsystem

does

not

detect

a

deadlock

because

the

DB2

subsystem

cannot

monitor

the

internal

resources

of

the

application.

Although

the

DB2

subsystem

cannot

detect

the

deadlock

itself,

it

does

detect

and

handle

any

DB2

thread

timeouts

that

result

from

that

deadlock.

Handling

application

encoding

schemes

This

section

describes

DB2

ODBC

support

for

EBCDIC,

Unicode,

and

ASCII

applications.

Unicode

and

ASCII

are

alternatives

to

the

EBCDIC

character

encoding

scheme.

The

DB2

ODBC

driver

supports

input

and

output

character

string

arguments

to

ODBC

Apes

and

input

and

output

host

variable

data

in

each

of

these

encoding

schemes.

With

this

support,

you

can

manipulate

data,

SQL

statements,

and

API

string

arguments

in

EBCDIC,

Unicode,

or

ASCII.

Background

Different

encoding

schemes

can

represent

character

data.

The

EBCDIC

and

ASCII

encoding

scheme

include

multiple

code

pages;

each

code

page

represents

256

characters

for

one

specific

geography

or

one

generic

geography.

The

Unicode

encoding

scheme

does

not

require

the

use

of

code

pages,

because

it

represents

over

65

000

characters.

Unicode

can

accommodate

many

different

languages

and

geographies.

Extensive

information

about

the

Unicode

standard

is

available

at

www.unicode.org.

The

Unicode

standard

defines

several

implementations

including

UTF-8,

UCS-2,

UTF-16,

and

UCS-4.

ODBC

DB2

supports

Unicode

in

the

following

formats:

v

UTF-8

(variable

length,

1-byte

to

6-byte

characters)

v

UCS-2

(2-byte

characters)

Application

programming

guidelines

The

DB2

ODBC

driver

determines

whether

an

application

is

an

EBCDIC,

Unicode,

or

ASCII

application

by

evaluating

the

setting

of

the

CURRENTAPPENSCH

keyword

in

the

initialization

file.

You

must

compile

your

application

with

a

compiler

option

that

corresponds

to

this

setting.

Specify

corresponding

encoding

schemes

for

the

DB2

ODBC

driver

and

your

application,

by

performing

the

following

actions:

Chapter

5.

Using

advanced

features

443

|

|
|
|
|

|
|

www.unicode.org

1.

Set

the

CURRENTAPPENSCH

keyword

to

EBCDIC,

UNICODE,

or

ASCII.

EBCDIC

is

the

default.

2.

Compile

the

application

in

EBCDIC,

Unicode

(with

either

the

UTF-8

or

UCS-2

compiler

option),

or

ASCII.

You

should

specify

the

same

encoding

scheme

with

both

of

these

actions.

When

you

write

ODBC

applications,

you

also

need

to

choose

API

entry

points

and

bind

host

variables

to

C

types

that

are

appropriate

for

the

encoding

scheme

of

your

application.

Choosing

an

API

entry

point

A

DB2

ODBC

entry

point

is

a

function

that

provides

support

for

one

or

more

application

encoding

schemes.

DB2

ODBC

supports

two

entry

points

for

each

function

that

passes

and

accepts

character

string

arguments:

a

generic

API

and

a

wide

(suffix-W)

API.

The

entry

point

that

you

use

depends

on

the

current

encoding

scheme

of

your

application.

Use

the

following

guidelines

to

choose

the

correct

entry

points

for

your

application:

v

Use

generic

APIs

for

EBCDIC,

ASCII,

and

Unicode

UTF-8

string

arguments.

Example:

To

specify

a

Unicode

UTF-8

argument,

call

a

generic

API:

SQLExecDirect(

(SQLHSTMT)

hstmt,

(SQLCHAR

*)

UTF8STR,

(SQLINTEGER)

SQL_NTS

);

v

Use

wide

(suffix-W)

APIs

only

for

Unicode

UCS-2

string

arguments.

Wide

APIs

require

that

the

CURRENTAPPENSCH

keyword

is

set

to

UNICODE.

Example:

To

specify

a

Unicode

UCS-2

argument,

call

a

suffix-W

API:

SQLExecDirectW(

(SQLHSTMT)

hstmt,

(SQLWCHAR

*)

UCS2STR,

(SQLINTEGER)

SQL_NTS

);

Table

230

on

page

445

provides

a

detailed

comparison

of

generic

API

and

wide

API

syntax.

Binding

host

variables

to

C

types

You

use

the

generic

APIs

SQLBindCol(),

SQLBindParameter(),

and

SQLGetData()

as

the

entry

points

to

bind

application

variables

in

all

encoding

schemes.

DB2

ODBC

requires

only

a

single

entry

point

to

functions

that

bind

application

variables.

The

DB2

ODBC

driver

uses

the

following

specifications

to

determine

the

encoding

scheme

of

the

character

data

in

these

functions:

v

The

fCType

argument

value

in

SQLBindCol(),

SQLBindParameter(),

and

SQLGetData()

v

The

setting

of

the

CURRENTAPPENSCH

keyword

in

the

DB2

ODBC

initialization

file

Table

229

summarizes

how

to

set

the

CURRENTAPPENSCH

keyword,

declare

application

variables,

and

declare

the

fCType

argument

to

bind

application

variables

in

each

encoding

scheme.

Table

229.

Required

values

to

bind

application

variables

in

each

encoding

scheme

DB2

ODBC

elements

EBCDIC

Unicode

UCS-2

Unicode

UTF-8

ASCII

CURRENTAPPENSCH

keyword

setting

EBCDIC

(default)

UNICODE

UNICODE

ASCII

Application

variable

C

type

definition

SQLCHAR

or

SQLDBCHAR

SQLWCHAR

SQLCHAR

SQLCHAR

or

SQLDBCHAR

444

ODBC

Guide

and

Reference

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

||

|||||

|
|
||||

|
|
|
|
|||
|

Table

229.

Required

values

to

bind

application

variables

in

each

encoding

scheme

(continued)

DB2

ODBC

elements

EBCDIC

Unicode

UCS-2

Unicode

UTF-8

ASCII

fCType

on

SQLBindParameter(),

SQLBindCol(),

or

SQLGetData()

SQL_C_CHAR

or

SQL_C_DBCHAR

SQL_C_WCHAR

SQL_C_CHAR

SQL_C_CHAR

or

SQL_C_DBCHAR

Requirement:

You

must

use

the

symbolic

C

data

type

for

the

fCType

argument

that

corresponds

to

the

data

type

you

use

for

application

variables.

For

example,

when

you

bind

SQLCHAR

application

variables,

you

must

specify

the

symbolic

C

data

type

SQL_C_CHAR

for

the

fCType

argument

in

your

bind

function

call.

Suffix-W

API

function

syntax

Table

230

compares

the

function

prototypes

for

suffix-W

APIs

that

DB2

UDB

for

z/OS

supports

with

the

function

prototypes

of

their

generic

counterparts.

The

differences

of

the

suffix-W

function

prototypes

from

the

generic

function

prototypes

are

highlighted

in

bold.

Table

230.

Comparison

of

suffix-W

APIs

to

equivalent

generic

APIs

Generic

APIs

Suffix-W

APIs

SQLRETURN

SQLColAttributes

(

SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLUSMALLINT

fDescType,

SQLPOINTER

rgbDesc,

SQLSMALLINT

cbDescMax,

SQLSMALLINT

*pcbDesc,

SQLINTEGER

*pfDesc

);

SQLRETURN

SQLColAttributesW

(

SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLUSMALLINT

fDescType,

SQLPOINTER

rgbDesc,

SQLSMALLINT

cbDescMax,

SQLSMALLINT

*pcbDesc,

SQLINTEGER

*pfDesc

);

SQLRETURN

SQLColumns

(

SQLHSTMT

hstmt

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

*szColumnsName,

SQLSMALLINT

cbColumnName

)

SQLRETURN

SQLColumnsW

(

SQLHSTMT

hstmt

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLWCHAR

*szColumnsName,

SQLSMALLINT

cbColumnName

);

SQLRETURN

SQLColumnPrivileges

(

SQLHSTMT

hstmt,

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

*szColumnsName,

SQLSMALLINT

cbColumnName

);

SQLRETURN

SQLColumnPrivilegesW

(

SQLHSTMT

hstmt

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLWCHAR

*szColumnsName,

SQLSMALLINT

cbColumnName

);

SQLRETURN

SQLConnect

(

SQLHDBC

hdbc,

SQLCHAR

*szDSN,

SQLSMALLINT

cbDSN,

SQLCHAR

*szUID,

SQLSMALLINT

cbUID,

SQLCHAR

*szAuthStr,

SQLSMALLINT

cbAuthStr

);

SQLRETURN

SQLConnectW

(

SQLHDBC

hdbc,

SQLWCHAR

*szDSN,

SQLSMALLINT

cbDSN,

SQLWCHAR

*szUID,

SQLSMALLINT

cbUID,

SQLWCHAR

*szAuthStr,

SQLSMALLINT

cbAuthStr

);

Chapter

5.

Using

advanced

features

445

|

|||||

|
|
|
|

|
|
|||
|

|

|
|
|
|

Table

230.

Comparison

of

suffix-W

APIs

to

equivalent

generic

APIs

(continued)

Generic

APIs

Suffix-W

APIs

SQLRETURN

SQLDataSources

(

SQLHENV

henv,

SQLUSMALLINT

fDirection,

SQLCHAR

*szDSN,

SQLSMALLINT

cbDSNMax,

SQLSMALLINT

*pcbDSN,

SQLCHAR

*szDescription,

SQLSMALLINT

cbDescriptionMax,

SQLSMALLINT

*pcbDescription

);

SQLRETURN

SQLDataSourcesW

(

SQLHENV

henv,

SQLUSMALLINT

fDirection,

SQLWCHAR

*szDSN,

SQLSMALLINT

cbDSNMax,

SQLSMALLINT

*pcbDSN,

SQLWCHAR

*szDescription,

SQLSMALLINT

cbDescriptionMax,

SQLSMALLINT

*pcbDescription

);

SQLRETURN

SQLDescribeCol

(

SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLCHAR

*szColName,

SQLSMALLINT

cbColNameMax,

SQLSMALLINT

*pcbColName,

SQLSMALLINT

*pfSqlType,

SQLUINTEGER

*pcbColDef,

SQLSMALLINT

*pibScale,

SQLSMALLINT

*pfNullable

);

SQLRETURN

SQLDescribeColW

(

SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLWCHAR

*szColName,

SQLSMALLINT

cbColNameMax,

SQLSMALLINT

*pcbColName,

SQLSMALLINT

*pfSqlType,

SQLUINTEGER

*pcbColDef,

SQLSMALLINT

*pibScale,

SQLSMALLINT

*pfNullable

);

SQLRETURN

SQLDriverConnect

(

SQLHDBC

hdbc,

SQLHWND

hwnd,

SQLCHAR

*szConnStrIn,

SQLSMALLINT

cbConnStrIn,

SQLCHAR

*szConnStrOut,

SQLSMALLINT

cbConnStrOutMax,

SQLSMALLINT

pcbConnStrOut,

SQLUSMALLINT

fDriverCompletion

);

SQLRETURN

SQLDriverConnectW

(

SQLHDBC

hdbc,

SQLHWND

hwnd,

SQLWCHAR

*szConnStrIn,

SQLSMALLINT

cbConnStrIn,

SQLWCHAR

*szConnStrOut,

SQLSMALLINT

cbConnStrOutMax,

SQLSMALLINT

pcbConnStrOut,

SQLUSMALLINT

fDriverCompletion

);

SQLRETURN

SQLError

(

SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLCHAR

*szSqlState,

SQLINTEGER

*pfNativeError,

SQLCHAR

*szErrorMsg,

SQLSMALLINT

cbErrorMsgMax,

SQLSMALLINT

*pcbErrorMsg

);

SQLRETURN

SQLErrorW

(

SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLWCHAR

*szSqlState,

SQLINTEGER

*pfNativeError,

SQLWCHAR

*szErrorMsg,

SQLSMALLINT

cbErrorMsgMax,

SQLSMALLINT

*pcbErrorMsg

);

SQLRETURN

SQLExecDirect

(

SQLHSTMT

hstmt,

SQLCHAR

*szSqlStr,

SQLINTEGER

cbSqlStr

);

SQLRETURN

SQLExecDirectW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szSqlStr,

SQLINTEGER

cbSqlStr

);

SQLRETURN

SQLForeignKeys

(

SQLHSTMT

hstmt,|

SQLCHAR

*szPkCatalogName,

SQLSMALLINT

:cbPkCatalogName,

SQLCHAR

*szPkSchemaName,

SQLSMALLINT

:cbPkSchemaName,

SQLCHAR

*szPkTableName,

SQLSMALLINT

:cbPkTableName,

SQLCHAR

*szFkCatalogName,

SQLSMALLINT

:cbFkCatalogName,

SQLCHAR

*szFkSchemaName,

SQLSMALLINT

:cbFkSchemaName,

SQLCHAR

*szFkTableName,

SQLSMALLINT

:cbFkTableName

);

SQLRETURN

SQLForeignKeysW

(

SQLHSTMT

hstmt,|

SQLWCHAR

*szPkCatalogName,

SQLSMALLINT

:cbPkCatalogName,

SQLWCHAR

*szPkSchemaName,

SQLSMALLINT

:cbPkSchemaName,

SQLWCHAR

*szPkTableName,

SQLSMALLINT

:cbPkTableName,

SQLWCHAR

*szFkCatalogName,

SQLSMALLINT

:cbFkCatalogName,

SQLWCHAR

*szFkSchemaName,

SQLSMALLINT

:cbFkSchemaName,

SQLWCHAR

*szFkTableName,

SQLSMALLINT

:cbFkTableName

);

446

ODBC

Guide

and

Reference

Table

230.

Comparison

of

suffix-W

APIs

to

equivalent

generic

APIs

(continued)

Generic

APIs

Suffix-W

APIs

SQLRETURN

SQLGetConnectOption

(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLUINTEGER

pvParam

);

SQLRETURN

SQLGetConnectOptionW

(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLUINTEGER

pvParam

);

SQLRETURN

SQLGetCursorName

(

SQLHSTMT

hstmt,

SQLCHAR

*szCursor,

SQLSMALLINT

cbCursorMax,

SQLSMALLINT

*pcbCursor

);

SQLRETURN

SQLGetCursorNameW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szCursor,

SQLSMALLINT

cbCursorMax,

SQLSMALLINT

*pcbCursor

);

SQLRETURN

SQLGetInfo

(

SQLHDBC

hdbc,

SQLUSMALLINT

fInfoType,

SQLPOINTER

rgbInfoValue,

SQLSMALLINT

cbInfoValueMax,

SQLSMALLINT

*pcbInfoValue

);

SQLRETURN

SQLGetInfoW

(

SQLHDBC

hdbc,

SQLUSMALLINT

fInfoType,

SQLPOINTER

rgbInfoValue,

SQLSMALLINT

cbInfoValueMax,

SQLSMALLINT

*pcbInfoValue

);

SQLRETURN

SQLGetStmtOption(

SQLHSTMT

hstmt,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam

);

SQLRETURN

SQLGetStmtOptionW(

SQLHSTMT

hstmt,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam

);

SQLRETURN

SQLGetTypeInfo

(

SQLHSTMT

hstmt,

SQLSMALLINT

fSqlType

);

SQLRETURN

SQLGetTypeInfoW

(

SQLHSTMT

hstmt,

SQLSMALLINT

fSqlType

);

SQLRETURN

SQLNativeSql

(

SQLHDBC

hdbc,

SQLCHAR

*szSqlStrIn,

SQLINTEGER

cbSqlStrIn,

SQLCHAR

*szSqlStr,

SQLINTEGER

cbSqlStrMax,

SQLINTEGER

*pcbSqlStr

);

SQLRETURN

SQLNativeSqlW

(

SQLHDBC

hdbc,

SQLWCHAR

*szSqlStrIn,

SQLINTEGER

cbSqlStrIn,

SQLWCHAR

*szSqlStr,

SQLINTEGER

cbSqlStrMax,

SQLINTEGER

*pcbSqlStr

);

SQLRETURN

SQLPrepare

(

SQLHSTMT

hstmt,

SQLCHAR

*szSqlStr,

SQLINTEGER

cbSqlStr

);

SQLRETURN

SQLPrepareW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szSqlStr,

SQLINTEGER

cbSqlStr

);

SQLRETURN

SQLPrimaryKeys

(

SQLHSTMT

hstmt,

SQLCHAR

*szCatalogName,

SQLSMALLINT

:cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

:cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

:cbTableName

);

SQLRETURN

SQLPrimaryKeysW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szCatalogName,

SQLSMALLINT

:cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

:cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

:cbTableName

);

SQLRETURN

SQLProcedureColumns

(

SQLHSTMT

hstmt,

SQLCHAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLCHAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLCHAR

*szProcName,

SQLSMALLINT

cbProcName,

SQLCHAR

*szColumnName,

SQLSMALLINT

cbColumnName

);

SQLRETURN

SQLProcedureColumnsW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLWCHAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLWCHAR

*szProcName,

SQLSMALLINT

cbProcName,

SQLWCHAR

*szColumnName,

SQLSMALLINT

cbColumnName

);

Chapter

5.

Using

advanced

features

447

||

Table

230.

Comparison

of

suffix-W

APIs

to

equivalent

generic

APIs

(continued)

Generic

APIs

Suffix-W

APIs

SQLRETURN

SQLProcedures

(

SQLHSTMT

hstmt,

SQLCHAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLCHAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLCHAR

*szProcName,

SQLSMALLINT

cbProcName

);

SQLRETURN

SQLProceduresW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szProcCatalog,

SQLSMALLINT

cbProcCatalog,

SQLWCHAR

*szProcSchema,

SQLSMALLINT

cbProcSchema,

SQLWCHAR

*szProcName,

SQLSMALLINT

cbProcName

);

SQLRETURN

SQLSetConnectOption

(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam

);

SQLRETURN

SQLSetConnectOptionW

(

SQLHDBC

hdbc,

SQLUSMALLINT

fOption,

SQLPOINTER

pvParam

);

SQLRETURN

SQLSetCursorName

(

SQLHSTMT

hstmt,

SQLCHAR

*szCursor,

SQLSMALLINT

cbCursor

);

SQLRETURN

SQLSetCursorNameW

(

SQLHSTMT

hstmt,

SQLWCHAR

*szCursor,

SQLSMALLINT

cbCursor

);

SQLRETURN

SQLSetStmtOption

(

SQLHSTMT

hstmt,

SQLUSMALLINT

fOption

SQLUINTEGER

pvParam

);

SQLRETURN

SQLSetStmtOptionW

(

SQLHSTMT

hstmt,

SQLUSMALLINT

fOption

SQLUINTEGER

pvParam

);

SQLRETURN

SQLSpecialColumns

(

SQLHSTMT

hstmt

SQLUSMALLINT

fColType,

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fScope,

SQLUSMALLINT

fNullable

);

SQLRETURN

SQLSpecialColumnsW

(

SQLHSTMT

hstmt

SQLUSMALLINT

fColType,

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fScope,

SQLUSMALLINT

fNullable

);

SQLRETURN

SQLStatistics(

SQLHSTMT

hstmt

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fUnique,

SQLUSMALLINT

fAccuracy

);

SQLRETURN

SQLStatisticsW

(

SQLHSTMT

hstmt

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLUSMALLINT

fUnique,

SQLUSMALLINT

fAccuracy

);

SQLRETURN

SQLTablePrivileges

(

SQLHSTMT

hstmt

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName

);

SQLRETURN

SQLTablePrivilegesW

(

SQLHSTMT

hstmt

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName

);

448

ODBC

Guide

and

Reference

Table

230.

Comparison

of

suffix-W

APIs

to

equivalent

generic

APIs

(continued)

Generic

APIs

Suffix-W

APIs

SQLRETURN

SQLTables

(

SQLHSTMT

hstmt

SQLCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLCHAR

*szTableType,

SQLSMALLINT

cbTableType

);

SQLRETURN

SQLTablesW

(

SQLHSTMT

hstmt

SQLWCHAR

*szCatalogName,

SQLSMALLINT

cbCatalogName,

SQLWCHAR

*szSchemaName,

SQLSMALLINT

cbSchemaName,

SQLWCHAR

*szTableName,

SQLSMALLINT

cbTableName,

SQLWCHAR

*szTableType,

SQLSMALLINT

cbTableType

);

Examples

of

handling

the

application

encoding

scheme

The

following

examples

demonstrate

how

to

declare

variables,

specify

data

types,

and

use

suffix-W

APIs

appropriately

for

a

particular

encoding

scheme.

These

examples

demonstrate

binding

a

UCS-2

result

set

column,

binding

UTF-8

data

to

parameter

markers,

retrieving

UTF-8

data

into

application

variables,

and

using

suffix-W

APIs.

Binding

result

set

columns

to

retrieve

UCS-2

data

The

following

code

uses

SQLBindCol()

to

bind

the

first

column

of

a

result

set

to

a

Unicode

UCS-2

application

buffer.

/*

Declare

variable

to

bind

Unicode

UCS-2

data

*/

SQLWCHAR

UCSWSTR

[50];

/*

Assume

CURRENTAPPENSCH=UNICODE

is

set

*/

SQLBindCol(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

1,

(SQLSMALLINT)

SQL_C_WCHAR,

(SQLPOINTER)

UCSWSTR,

(SQLINTEGER)

sizeof(UCSWSTR),

(SQLINTEGER*)&LEN_UCSWSTR);

Binding

UTF-8

data

to

parameter

markers

In

Figure

57

on

page

450,

SQLBindParameter()

binds

three

input

application

variables

that

contain

UTF-8

data

to

INTEGER,

CHAR,

and

GRAPHIC

parameter

markers.

Chapter

5.

Using

advanced

features

449

Retrieving

UTF-8

data

into

application

variables

In

Figure

58

on

page

451,

SQLGetData()

retrieves

UTF-8

data

from

three

columns

(DECIMAL,

VARCHAR,

and

VARGRAPHIC)

in

the

current

row

of

the

result

set.

/*

Declare

variables

for

Unicode

UTF-8

data

*/

SQLCHAR

HV1INT

[50];

SQLCHAR

HV1CHAR

[50];

SQLCHAR

HV1GRAPHIC[50];

SQLINTEGER

LEN_HV1INT;

SQLINTEGER

LEN_HV1CHAR;

SQLINTEGER

LEN_HV1GRAPHIC;

...

/*

Assume

CURRENTAPPENSCH=UNICODE

is

set

*/

/*

Bind

to

DB2

INTEGER

*/

SQLBindParameter(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

1,

(SQLSMALLINT)

SQL_PARAM_INPUT,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLSMALLINT)

SQL_INTEGER,

(SQLUINTEGER)

0,

(SQLSMALLINT)

0,

(SQLPOINTER)

HV1INT,

(SQLINTEGER)

sizeof(HV1INT),

(SQLINTEGER

*)

&LEN_HV1INT

),

/*

Bind

to

DB2

CHAR(10)

*/

SQLBindParameter(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

2,

(SQLSMALLINT)

SQL_PARAM_INPUT,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLSMALLINT)

SQL_CHAR,

(SQLUINTEGER)

10,

(SQLSMALLINT)

0,

(SQLPOINTER)

HV1CHAR,

(SQLINTEGER)

sizeof(HV1CHAR),

(SQLINTEGER

*)

&LEN_HV1CHAR

),

/*

Bind

to

DB2

GRAPHIC(20)

*/

SQLBindParameter(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

3,

(SQLSMALLINT)

SQL_PARAM_INPUT,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLSMALLINT)

SQL_GRAPHIC,

(SQLUINTEGER)

20,

(SQLSMALLINT)

0,

(SQLPOINTER)

HV1GRAPHIC,

(SQLINTEGER)

sizeof(HV1GRAPHIC),

(SQLINTEGER

*)

&LEN_HV1GRAPHIC

);

Figure

57.

An

application

that

binds

application

variables

to

parameter

markers

450

ODBC

Guide

and

Reference

Using

suffix-W

APIs

Figure

59

on

page

452

shows

an

example

ODBC

application

that

uses

three

suffix-W

APIs

to

handle

a

Unicode

UCS-2

application

encoding

scheme.

/*

Declare

variables

for

Unicode

UTF-8

data

*/

SQLCHAR

HV1DECIMAL

[50];

SQLCHAR

HV1VARCHAR

[100];

SQLCHAR

HV1VARGRAPHIC[200];

SQLINTEGER

LEN_HV1DECIMAL;

SQLINTEGER

LEN_HV1VARCHAR;

SQLINTEGER

LEN_HV1VARGRAPHIC;

...

/*

Assume

CURRENTAPPENSCH=UNICODE

is

set

*/

/*

Bind

DECIMAL(10,2)

column

*/

SQLGetData(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

1,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLPOINTER)

HV1DECIMAL,

(SQLINTEGER)

sizeof(HV1DECIMAL),

(SQLINTEGER

*)

&LEN_HV1DECIMAL

),

/*

Bind

VARCHAR(20)

column

*/

SQLGetData(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

2,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLPOINTER)

HV1VARCHAR,

(SQLINTEGER)

sizeof(HV1VARCHAR),

(SQLINTEGER

*)

&LEN_HV1VARCHAR

),

/*

Bind

VARGRAPHIC(30)

column

*/

SQLGetData(

(SQLHSTMT)

hstmt,

(SQLUSMALLINT)

3,

(SQLSMALLINT)

SQL_C_CHAR,

(SQLPOINTER)

HV1VARGRAPHIC,

(SQLINTEGER)

sizeof(HV1VARGRAPHIC),

(SQLINTEGER

*)

&LEN_HV1VARGRAPHIC

);

Figure

58.

An

application

that

retrieves

result

set

data

into

application

variables

Chapter

5.

Using

advanced

features

451

/**/

/*

Main

program

*/

/*

-

CREATE

MYTABLE

*/

/*

-

INSERT

INTO

MYTABLE

using

literals

*/

/*

-

INSERT

INTO

MYTABLE

using

parameter

markers

*/

/*

-

SELECT

FROM

MYTABLE

with

WHERE

clause

*/

/*

*/

/*

suffix-W

APIS

used:

*/

/*

-

SQLConnectW

*/

/*

-

SQLPrepareW

*/

/*

-

SQLExecDirectW

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

<wstr.h>

#include

"sqlcli1.h"

#include

<stlca.h>

#include

<errno.h>

#include

<sys/_messag.h>

#pragma

convlit(suspend)

SQLHENV

henv

=

SQL_NULL_HENV;

SQLHDBC

hdbc

=

SQL_NULL_HDBC;

SQLHSTMT

hstmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

id;

SQLSMALLINT

scale;

SQLCHAR

server[18]

SQLCHAR

uid[30]

SQLCHAR

pwd[30]

SQLSMALLINT

pcpar=0;

SQLSMALLINT

pccol=0;

SQLCHAR

sqlstmt[200]

SQLINTEGER

sqlstmtlen;

SQLWCHAR

H1INT4

[50]

SQLWCHAR

H1SMINT

[50]

SQLWCHAR

H1CHR10

[50]

SQLWCHAR

H1CHR10MIX

[50]

SQLWCHAR

H1VCHR20

[50]

SQLWCHAR

H1VCHR20MIX

[50]

SQLWCHAR

H1GRA10

[50]

SQLWCHAR

H1VGRA20

[50]

SQLWCHAR

H1TTIME

[50]

SQLWCHAR

H1DDATE

[50]

SQLWCHAR

H1TSTMP

[50]

SQLWCHAR

H2INT4

[50]

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

1

of

12)

452

ODBC

Guide

and

Reference

SQLWCHAR

H2SMINT

[50]

SQLWCHAR

H2CHR10

[50]

SQLWCHAR

H2CHR10MIX

[50]

SQLWCHAR

H2VCHR20

[50]

SQLWCHAR

H2VCHR20MIX

[50]

SQLWCHAR

H2GRA10

[50]

SQLWCHAR

H2VGRA20

[50]

SQLWCHAR

H2TTIME

[50]

SQLWCHAR

H2DDATE

[50]

SQLWCHAR

H2TSTMP

[50]

SQLINTEGER

LEN_H1INT4;

SQLINTEGER

LEN_H1SMINT;

SQLINTEGER

LEN_H1CHR10;

SQLINTEGER

LEN_H1CHR10MIX;

SQLINTEGER

LEN_H1VCHR20;

SQLINTEGER

LEN_H1VCHR20MIX;

SQLINTEGER

LEN_H1GRA10;

SQLINTEGER

LEN_H1VGRA20;

SQLINTEGER

LEN_H1TTIME;

SQLINTEGER

LEN_H1DDATE;

SQLINTEGER

LEN_H1TSTMP;

SQLINTEGER

LEN_H2INT4;

SQLINTEGER

LEN_H2SMINT;

SQLINTEGER

LEN_H2CHR10;

SQLINTEGER

LEN_H2CHR10MIX;

SQLINTEGER

LEN_H2VCHR20;

SQLINTEGER

LEN_H2VCHR20MIX;

SQLINTEGER

LEN_H2GRA10;

SQLINTEGER

LEN_H2VGRA20;

SQLINTEGER

LEN_H2TTIME;

SQLINTEGER

LEN_H2DDATE;

SQLINTEGER

LEN_H2TSTMP;

SQLWCHAR

DROPW1

[100]

SQLWCHAR

DELETEW1[100]

SQLWCHAR

SELECTW1[100]

SQLWCHAR

CREATEW1[500]

SQLWCHAR

INSERTW1[500]

SQLWCHAR

DROPW2

[100]

SQLWCHAR

DELETEW2[100]

SQLWCHAR

SELECTW2[100]

SQLWCHAR

CREATEW2[500]

SQLWCHAR

INSERTW2[500]

SQLINTEGER

LEN_H1INT4;

SQLINTEGER

LEN_DROPW1;

SQLINTEGER

LEN_DELETEW1;

SQLINTEGER

LEN_INSERTW1;

SQLINTEGER

LEN_CREATEW1;

SQLINTEGER

LEN_SELECTW1;

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

2

of

12)

Chapter

5.

Using

advanced

features

453

SQLINTEGER

LEN_DROPW2;

SQLINTEGER

LEN_DELETEW2;

SQLINTEGER

LEN_INSERTW2;

SQLINTEGER

LEN_CREATEW2;

SQLINTEGER

LEN_SELECTW2;

struct

{

short

LEN;

char

DATA&lbracket;200&rbracket;;

}

STMTSQL;

long

SPCODE;

int

result;

int

ix,

locix;

/**/

int

main()

{

henv=0;

rc=SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

hdbc=0;

rc=SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

Setup

application

host

variables

(UCS-2

character

strings)

*/

/***/

#pragma

convlit(resume)

wcscpy(uid,

(wchar_t

*)"jgold");

wcscpy(pwd,

(wchar_t

*)"general");

wcscpy(server,

(wchar_t

*)"STLEC1");

wcscpy(DROPW1,

(wchar_t

*)

"DROP

TABLE

MYTABLE");

LEN_DROPW1=wcslen((wchar_t

*)DROPW1);

wcscpy(SELECTW1,

(wchar_t

*)

"SELECT

*

FROM

MYTABLE

WHERE

INT4=200");

LEN_SELECTW1=wcslen((wchar_t

*)SELECTW1);

wcscpy(CREATEW1,

(wchar_t

*)

"CREATE

TABLE

MYTABLE

(

");

wcscat(CREATEW1,

(wchar_t

*)

"INT4

INTEGER,

SMINT

SMALLINT,

");

wcscat(CREATEW1,

(wchar_t

*)

"CHR10

CHAR(10),

CHR10MIX

CHAR(10)

FOR

MIXED

DATA,

");

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

3

of

12)

454

ODBC

Guide

and

Reference

wcscat(CREATEW1,

(wchar_t

*)

"VCHR20

VARCHAR(20),

VCHR20MIX

VARCHAR(20)

FOR

MIXED

DATA,

");

wcscat(CREATEW1,

(wchar_t

*)

"GRA10

GRAPHIC(10),

VGRA20

VARGRAPHIC(20),

");

wcscat(CREATEW1,

(wchar_t

*)

"TTIME

TIME,

DDATE

DATE,

TSTMP

TIMESTAMP

)"

);

LEN_CREATEW1=wcslen((wchar_t

*)CREATEW1);

wcscpy(DELETEW1,

(wchar_t

*)

"DELETE

FROM

MYTABLE

WHERE

INT4

IS

NULL

OR

INT4

IS

NOT

NULL");

LEN_DELETEW1=wcslen((wchar_t

*)DELETEW1);

wcscpy(INSERTW1,

(wchar_t

*)

"INSERT

INTO

MYTABLE

VALUES

(

");

wcscat(INSERTW1,

(wchar_t

*)

"(

100,1,’CHAR10’,’CHAR10MIX’,’VARCHAR20’,’VARCHAR20MIX’,

");

wcscat(INSERTW1,

(wchar_t

*)

"G’

A

B

C’,

VARGRAPHIC(’ABC’),

");

wcscat(INSERTW1,

(wchar_t

*)

"’3:45

PM’,

’06/12/1999’,

");

wcscat(INSERTW1,

(wchar_t

*)

"’1999-09-09-09.09.09.090909’

)"

);

LEN_INSERTW1=wcslen((wchar_t

*)INSERTW1);

wcscpy(INSERTW2,

(wchar_t

*)

"INSERT

INTO

MYTABLE

VALUES

(?,?,?,?,?,?,?,?,?,?,?)");

LEN_INSERTW2=wcslen((wchar_t

*)INSERTW2);

wcscpy(H1INT4

,

(wchar_t

*)"200");

wcscpy(H1SMINT

,

(wchar_t

*)"5");

wcscpy(H1CHR10

,

(wchar_t

*)"CHAR10");

wcscpy(H1CHR10MIX

,

(wchar_t

*)"CHAR10MIX");

wcscpy(H1VCHR20

,

(wchar_t

*)"VARCHAR20");

wcscpy(H1VCHR20MIX,

(wchar_t

*)"VARCHAR20MIX");

wcscpy(H1TTIME

,

(wchar_t

*)"3:45

PM");

wcscpy(H1DDATE

,

(wchar_t

*)"06/12/1999");

wcscpy(H1TSTMP

,

(wchar_t

*)"1999-09-09-09.09.09.090909");

#pragma

convlit(suspend)

/*

0xFF21,0xFF22,0xFF23,0x0000

*/

wcscpy(H1GRA10

,

(wchar_t

*)"

");

/*

0x0041,0xFF21,0x0000

*/

wcscpy(H1VGRA20

,

(wchar_t

*)"

");

LEN_H1INT4

=

SQL_NTS;

LEN_H1SMINT

=

SQL_NTS;

LEN_H1CHR10

=

SQL_NTS;

LEN_H1CHR10MIX

=

SQL_NTS;

LEN_H1VCHR20

=

SQL_NTS;

LEN_H1VCHR20MIX

=

SQL_NTS;

LEN_H1GRA10

=

SQL_NTS;

LEN_H1VGRA20

=

SQL_NTS;

LEN_H1TTIME

=

SQL_NTS;

LEN_H1DDATE

=

SQL_NTS;

LEN_H1TSTMP

=

SQL_NTS;

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

4

of

12)

Chapter

5.

Using

advanced

features

455

/***/

/*

SQLConnectW

*/

/***/

rc=SQLConnectW(hdbc,

NULL,

0,

NULL,

0,

NULL,

0);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

DROP

TABLE

-

SQLExecuteDirectW

*/

/***/

hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLExecDirectW(hstmt,DROPW1,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

CREATE

TABLE

MYTABLE

-

SQLPrepareW

*/

/***/

hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLPrepareW(hstmt,CREATEW1,SQL_NTS);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

INSERT

INTO

MYTABLE

with

literals

-

SQLExecDirectW

*/

/***/

hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLExecDirectW(hstmt,DROPW1,SQL_NTS);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

rc=SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

5

of

12)

456

ODBC

Guide

and

Reference

/***/

/*

INSERT

INTO

MYTABLE

with

parameter

markers

*/

/*

-

SQLPrepareW

*/

/*

-

SQLBindParameter

with

SQL_C_WCHAR

symbolic

C

data

type

*/

/***/

hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

INSERT

INTO

MYTABLE

VALUES

(?,?,?,?,?,?,?,?,?,?,?)

*/

rc=SQLPrepareW(hstmt,INSERTW2,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLNumParams(hstmt,

&pcpar);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

printf("\nAPDV1

number=

19");

if(

pcpar

!=

11

)

goto

dberror;

/*

Bind

INTEGER

parameter

*/

rc=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_INTEGER,

10,

0,

(SQLPOINTER)H1INT4,

sizeof(H1INT4

),

(SQLINTEGER

*)&LEN_H1INT4

);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

/*

Bind

SMALLINT

parameter

*/

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_SMALLINT,

5,

0,

(SQLPOINTER)H1SMINT,

sizeof(H1SMINT),

(SQLINTEGER*)&LEN_H1SMINT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

CHAR(10)

parameter

*/

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_CHAR,

10,

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

6

of

12)

Chapter

5.

Using

advanced

features

457

0,

(SQLPOINTER)H1CHR10,

sizeof(H1CHR10),

(SQLINTEGER

*)&LEN_H1CHR10);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

CHAR(10)

parameter

*/

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_CHAR,

10,

0,

(SQLPOINTER)H1CHR10,

sizeof(H1CHR10),

(SQLINTEGER

*)&LEN_H1CHR10);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

CHAR(10)

FOR

MIXED

parameter

*/

rc

=

SQLBindParameter(hstmt,

4,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_CHAR,

10,

0,

(SQLPOINTER)H1CHR10MIX,

sizeof(H1CHR10MIX),

(SQLINTEGER

*)&LEN_H1CHR10MIX);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARCHAR(20)

parameter

*/

rc

=

SQLBindParameter(hstmt,

5,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_VARCHAR,

20,

0,

(SQLPOINTER)H1VCHR20,

sizeof(H1VCHR20),

(SQLINTEGER

*)&LEN_H1VCHR20);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARCHAR(20)

FOR

MIXED

parameter

*/

rc

=

SQLBindParameter(hstmt,

6,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_VARCHAR,

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

7

of

12)

458

ODBC

Guide

and

Reference

20,

0,

(SQLPOINTER)H1VCHR20MIX,

sizeof(H1VCHR20MIX),

(SQLINTEGER

*)&LEN_H1VCHR20MIX);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

GRAPHIC(10)

parameter

*/

rc

=

SQLBindParameter(hstmt,

7,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_GRAPHIC,

10,

0,

(SQLPOINTER)H1GRA10,

sizeof(H1GRA10),

(SQLINTEGER

*)&LEN_H1GRA10);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARGRAPHIC(20)

parameter*/

rc

=

SQLBindParameter(hstmt,

8,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_VARGRAPHIC,

20,

0,

(SQLPOINTER)H1VGRA20,

sizeof(H1VGRA20),

(SQLINTEGER

*)&LEN_H1VGRA20);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

TIME

parameter

*/

rc=

SQLBindParameter(hstmt,

9,

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_TIME,

8,

0,

(SQLPOINTER)H1TTIME,

sizeof(H1TTIME),

(SQLINTEGER

*)&LEN_H1TTIME);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

/*

Bind

DATE

parameter

*/

rc

=

SQLBindParameter(hstmt,

10,

SQL_PARAM_INPUT,

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

8

of

12)

Chapter

5.

Using

advanced

features

459

SQL_C_WCHAR,

SQL_DATE,

10,

0,

(SQLPOINTER)H1DDATE,

sizeof(H1DDATE),

(SQLINTEGER

*)&LEN_H1DDATE);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

TIMESTAMP

parameter

*/

rc

=

SQLBindParameter(hstmt,

11

SQL_PARAM_INPUT,

SQL_C_WCHAR,

SQL_DATE,

26,

0,

(SQLPOINTER)H1TSTMP,

sizeof(H1TSTMP),

(SQLINTEGER

*)&LEN_H1TSTMP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPDV1

SQLExecute

number=

25");

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

printf("\nAPDV1

SQLEndTran

number=26");

rc=SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPDV1

SQLFreeHandle(SQL_HANDLE_STMT,

...)

number=

27");

rc=SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

SELECT

FROM

MYTABLE

WHERE

INT4=200

*/

/*

-

SQLBindCol

with

SQL_C_WCHAR

symbolic

C

data

type

*/

/*

-

SQLExecDirectW

*/

/***/

hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

INTEGER

column

*/

rc

=

SQLBindCol(hstmt,

1,

SQL_C_WCHAR,

(SQLPOINTER)H2INT4,

sizeof(H2INT4

),

(SQLINTEGER

*)&LEN_H2INT4

);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

9

of

12)

460

ODBC

Guide

and

Reference

/*

Bind

SMALLINT

column

*/

rc

=

SQLBindCol(hstmt,

2,

SQL_C_WCHAR,

(SQLPOINTER)H2SMINT,

sizeof(H2SMINT),

(SQLINTEGER

*)&LEN_H2SMINT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

CHAR(10)

column

*/

rc

=

SQLBindCol(hstmt,

3,

SQL_C_WCHAR,

(SQLPOINTER)H2CHR10,

sizeof(H2CHR10),

(SQLINTEGER

*)&LEN_H2CHR10);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

CHAR(10)

FOR

MIXED

column

*/

rc

=

SQLBindCol(hstmt,

4,

SQL_C_WCHAR,

(SQLPOINTER)H2CHR10MIX,

sizeof(H2CHR10MIX),

(SQLINTEGER

*)&LEN_H2CHR10MIX);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARCHAR(20)

column

*/

rc

=

SQLBindCol(hstmt,

5,

SQL_C_WCHAR,

(SQLPOINTER)H2VCHR20,

sizeof(H2VCHR20,

(SQLINTEGER

*)&LEN_H2VCHR20);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARCHAR(20)

FOR

MIXED

column

*/

rc

=

SQLBindCol(hstmt,

6,

SQL_C_WCHAR,

(SQLPOINTER)H2VCHR20MIX,

sizeof(H2VCHR20MIX),

(SQLINTEGER

*)&LEN_H2VCHR20MIX);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

10

of

12)

Chapter

5.

Using

advanced

features

461

/*

Bind

GRAPHIC(10)

column

*/

rc

=

SQLBindCol(hstmt,

7,

SQL_C_WCHAR,

(SQLPOINTER)H2GRA10,

sizeof(H2GRA10),

(SQLINTEGER

*)&LEN_H2GRA10);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

VARGRAPHIC(20)

column

*/

rc

=

SQLBindCol(hstmt,

8,

SQL_C_WCHAR,

(SQLPOINTER)H2VGRA20,

sizeof(H2VGRA20),

(SQLINTEGER

*)&LEN_H2VGRA20);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

TIME

column

*/

rc

=

SQLBindCol(hstmt,

9,

SQL_C_WCHAR,

(SQLPOINTER)H2TTIME,

sizeof(H2TTIME),

(SQLINTEGER

*)&LEN_H2TTIME);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

DATE

column

*/

rc

=

SQLBindCol(hstmt,

10,

SQL_C_WCHAR,

(SQLPOINTER)H2DDATE,

sizeof(H2DDATE),

(SQLINTEGER

*)&LEN_H2DDATE);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

Bind

TIMESTAMP

column

*/

rc

=

SQLBindCol(hstmt,

11,

SQL_C_WCHAR,

(SQLPOINTER)H2TSTMP,

sizeof(H2TSTMP),

(SQLINTEGER

*)&LEN_H2TSTMP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*

*

SELECT

*

FROM

MYTABLE

WHERE

INT4=200

*/

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

11

of

12)

462

ODBC

Guide

and

Reference

Mixing

embedded

SQL

with

DB2

ODBC

You

can

combine

embedded

static

SQL

with

DB2

ODBC

to

write

a

mixed

application.

With

a

mixed

application,

you

can

take

advantage

of

both

the

ease

of

use

that

DB2

ODBC

functions

provide

and

the

performance

enhancement

that

embedded

SQL

offers.

Important:

To

mix

DB2

ODBC

with

embedded

SQL,

you

must

not

enable

DB2

ODBC

support

for

multiple

contexts.

The

initialization

file

for

mixed

applications

must

specify

MULTICONTEXT=0

or

exclude

MULTICONTEXT

keyword.

To

mix

DB2

ODBC

and

embedded

SQL

in

an

application,

you

must

limit

how

you

combine

these

interfaces:

v

Handle

all

connection

management

and

transaction

management

with

either

DB2

ODBC

or

embedded

SQL

exclusively.

You

must

perform

all

connections,

commits,

and

rollbacks

with

the

same

interface.

v

Use

only

one

interface

(DB2

ODBC

or

embedded

SQL)

for

each

query

statement.

For

example,

an

application

cannot

open

a

cursor

in

an

embedded

SQL

routine,

and

then

call

the

DB2

ODBC

SQLFetch()

function

to

retrieve

row

data.

Because

DB2

ODBC

permits

multiple

connections,

you

must

call

SQLSetConnection()

before

you

call

a

routine

that

is

written

in

embedded

SQL.

SQLSetConnection()

allows

you

to

explicitly

specify

the

connection

on

which

you

want

the

embedded

SQL

routine

to

run.

If

your

application

makes

only

a

single

connection,

or

if

you

write

your

application

entirely

in

DB2

ODBC,

you

do

not

need

to

include

a

SQLSetConnection()

call.

Tip:

When

you

write

a

mixed

application,

divide

this

application

into

a

main

program

that

makes

separate

function

calls.

Structure

the

mixed

application

as

a

DB2

ODBC

application

that

calls

functions

that

are

written

with

embedded

SQL,

or

as

an

embedded

SQL

application

that

calls

functions

that

are

written

with

DB2

ODBC.

With

this

kind

of

structure,

you

can

perform

transaction

management

separately

in

the

main

program,

while

you

make

query

statements

in

individual

functions

written

rc=SQLExecDirectW(hstmt,SELECTW1,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFetch(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

rc=SQLDisconnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

rc=SQLFreeHandle(SQL_HANDLE_ENV,

henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

dberror:

rc

=

SQL_ERROR;

return(rc);

}

/*END

MAIN*/

Figure

59.

An

application

that

uses

suffix-W

APIs

(Part

12

of

12)

Chapter

5.

Using

advanced

features

463

in

a

single

interface.

Functions

that

are

written

with

DB2

ODBC

must

use

null

connections.

See

“Writing

a

DB2

ODBC

stored

procedure”

on

page

430

for

details

about

null

connections.

Figure

60

shows

an

application

that

connects

to

two

data

sources

and

executes

both

embedded

SQL

and

dynamic

SQL

using

DB2

ODBC.

/*

...

*/

/*

Allocate

an

environment

handle

*/

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Connect

to

first

data

source

*/

DBconnect(henv,

&hdbc[0]);

/*

Connect

to

second

data

source

*/

DBconnect(henv,

&hdbc[1]);

/*********

Start

processing

step

*************************/

/*

NOTE:

at

this

point

two

connections

are

active

*/

/*

Set

current

connection

to

the

first

database

*/

if

(

(rc

=

SQLSetConnection(hdbc[0]))

!=

SQL_SUCCESS

)

printf("Error

setting

connection

1\n");

/*

Call

function

that

contains

embedded

SQL

*/

if

((rc

=

Create_Tab()

)

!=

0)

printf("Error

Creating

Table

on

1st

connection,

RC=%ld\n",

rc);

/*

Commit

transaction

on

connection

1

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[0],

SQL_COMMIT);

/*

set

current

connection

to

the

second

database

*/

if

(

(rc

=

SQLSetConnection(hdbc[1]))

!=

SQL_SUCCESS

)

printf("Error

setting

connection

2\n");

/*

call

function

that

contains

embedded

SQL

*/

if

((rc

=

Create_Tab()

)

!=

0)

printf("Error

Creating

Table

on

2nd

connection,

RC=%ld\n",

rc);

/*

Commit

transaction

on

connection

2

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[1],

SQL_COMMIT);

/*

Pause

to

allow

the

existance

of

the

tables

to

be

verified.

*/

printf("Tables

created,

hit

Return

to

continue\n");

getchar();

SQLSetConnection(hdbc[0]);

if

((

rc

=

Drop_Tab()

)

!=

0)

printf("Error

dropping

Table

on

1st

connection,

RC=%ld\n",

rc);

Figure

60.

An

application

that

mixes

embedded

and

dynamic

SQL

(Part

1

of

2)

464

ODBC

Guide

and

Reference

Using

vendor

escape

clauses

If

your

application

accesses

only

DB2

data

sources,

you

have

no

reason

to

use

vendor

escape

clauses.

If

your

application

accesses

multiple

data

sources

from

different

vendors,

vendor

escape

clauses

increase

the

portability

of

your

application.

The

X/Open

SQL

CAE

specification

defines

an

escape

clause

as:

“a

syntactic

mechanism

for

vendor-specific

SQL

extensions

to

be

implemented

in

the

framework

of

standardized

SQL.”

Both

DB2

ODBC

and

ODBC

support

vendor

escape

clauses

that

conform

to

this

X/Open

specification.

Data

sources

are

not

necessarily

consistent

in

how

they

implement

SQL

extensions.

Use

vendor

escape

clauses

to

implement

common

SQL

extensions

in

a

consistent,

portable

format.

Common

SQL

extensions

are

listed

in

“ODBC-defined

SQL

extensions”

on

page

467.

/*

Commit

transaction

on

connection

1

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[0],

SQL_COMMIT);

SQLSetConnection(hdbc[1]);

if

((

rc

=

Drop_Tab()

)

!=

0)

printf("Error

dropping

Table

on

2nd

connection,

RC=%ld\n",

rc);

/*

Commit

transaction

on

connection

2

*/

SQLEndTran(SQL_HANDLE_DBC,

hdbc[1],

SQL_COMMIT);

printf("Tables

dropped\n");

/*********

End

processing

step

***************************/

/*

...

*/

/*************

Embedded

SQL

functions

**

This

would

normally

be

a

separate

file

to

avoid

having

to

*

**

keep

precompiling

the

embedded

file

in

order

to

compile

the

DB2

CLI

*

**

section50

*

**/

EXEC

SQL

INCLUDE

SQLCA;

int

Create_Tab(

)

{

EXEC

SQL

CREATE

TABLE

mixedup

(ID

INTEGER,

NAME

CHAR(10));

return(

SQLCODE);

}

int

Drop_Tab(

)

{

EXEC

SQL

DROP

TABLE

mixedup;

return(

SQLCODE);

}

/*

...

*/

Figure

60.

An

application

that

mixes

embedded

and

dynamic

SQL

(Part

2

of

2)

Chapter

5.

Using

advanced

features

465

DB2

ODBC

translates

the

SQL

extensions

that

ODBC

defines

to

native

DB2

SQL

syntax.

To

display

the

DB2-specific

syntax

that

results

from

this

translation,

call

SQLNativeSql()

on

an

SQL

string

that

contains

ODBC

vendor

escape

clauses.

Determining

ODBC

vendor

escape

clause

support

Data

sources

do

not

necessarily

support

the

same

SQL

extensions.

The

ODBC

drivers

for

these

data

sources

therefore

might

not

support

all

ODBC

vendor

escape

clauses.

To

determine

if

a

data

source

supports

vendor

escape

clauses,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_ODBC_SQL_CONFORMANCE.

If

SQLGetInfo

returns

a

value

of

SQL_OSC_EXTENDED,

that

data

source

supports

all

ODBC

vendor

escape

clauses.

For

information

about

how

to

determine

if

a

data

source

supports

a

specific

ODBC

vendor

escape

clause,

refer

to

the

descriptions

of

each

individual

escape

clause

in

“ODBC-defined

SQL

extensions”

on

page

467.

For

SQL

extensions

that

ODBC

does

not

define,

you

must

use

the

SQL

syntax

that

is

specific

to

each

particular

data

source.

This

SQL

syntax

might

not

be

consistent

among

the

data

sources

that

your

application

uses.

Escape

clause

syntax

Because

ODBC

vendor

escape

clauses

are

implemented

identically

across

all

products

and

vendors,

ODBC

defines

a

short-form

escape

clause

that

includes

only

the

extended

SQL

text.

DB2

ODBC

supports

the

following

short-form

escape

clause:

{

extended

SQL

text

}

extended

SQL

text

In

ODBC,

the

string

of

extended

SQL

that

the

ODBC

driver

translates

to

data

source

specific

SQL.

“ODBC-defined

SQL

extensions”

on

page

467

specifies

the

syntax

of

the

SQL

strings

that

you

can

use

for

this

parameter.

This

short-form

escape

clause

that

does

not

conform

to

X/Open

specifications,

but

it

is

widely

used

among

ODBC

drivers.

In

ODBC

3.0,

the

short

ODBC

format

replaces

the

deprecated

long

X/Open

format.

DB2

ODBC

supports

the

SQL

escape

clause

X/Open

defines

with

the

following

long-form

syntax:

--(*vendor(vendor-identifier),

product(product-identifier)

extended

SQL

text*)--

vendor-identifier

Vendor

identification

that

is

consistent

across

all

of

that

vendor's

SQL

products.

(For

DB2

ODBC,

this

identifier

can

be

set

to

either

IBM

or

Microsoft.)

product-identifier

Identifier

for

an

SQL

product.

(For

DB2

ODBC,

this

identifier

is

always

set

to

ODBC.)

extended

SQL

text

The

same

text

that

the

short-form

escape

clause

uses.

Long-form

vendor

escape

clauses

are

considered

deprecated

in

ODBC

3.0.

Although

DB2

ODBC

supports

both

long

and

short

formats,

you

should

use

the

current,

short-form

escape

clauses

in

your

applications.

466

ODBC

Guide

and

Reference

ODBC-defined

SQL

extensions

ODBC

defines

the

following

SQL

extensions

(which

are

not

defined

by

X/Open):

v

Extended

date,

time,

and

timestamp

data

v

Outer

join

v

LIKE

predicate

v

Call

stored

procedure

v

Extended

scalar

functions

–

Numeric

functions

–

String

functions

–

System

functions

The

following

sections

describe

ODBC-defined

syntax

that

you

use

for

the

extended

SQL

text

parameter

in

each

ODBC

vendor

escape

clause.

DB2

ODBC

accepts

these

SQL

extensions

as

both

long-form

and

short-form

vendor

escape

clauses.

ODBC

date,

time,

and

timestamp

data

In

ODBC,

the

following

extended

SQL

syntax

defines

date,

time,

and

timestamp

data

respectively.

You

use

this

syntax

in

a

vendor

escape

clause

to

make

these

definitions

portable

in

your

SQL

statements.

��

d

t

ts

‘

value

‘

��

d

Indicates

that

value

is

a

date

in

the

yyyy-mm-dd

format.

t

Indicates

that

value

is

a

time

in

the

hh:mm:ss

format.

ts

Indicates

that

value

is

a

timestamp

in

the

yyyy-mm-dd

hh:mm:ss.ffffff

format.

value

Specifies

your

user

data.

Example:

You

can

use

either

of

the

following

forms

of

the

escape

clause

to

issue

a

query

on

the

EMPLOYEE

table.

In

this

example,

a

vendor

escape

clause

specifies

the

data

for

the

predicate

in

each

query.

v

Short-form

syntax:

SELECT

*

FROM

EMPLOYEE

WHERE

HIREDATE={d

’2004-03-29’}

v

Long-form

syntax:

SELECT

*

FROM

EMPLOYEE

WHERE

HIREDATE=--(*vendor(Microsoft),product(ODBC)

d

’2004-03-29’

*)--

You

can

use

the

ODBC

vendor

escape

clauses

for

date,

time,

and

timestamp

literals

in

input

parameters

with

a

C

data

type

of

SQL_C_CHAR.

To

determine

if

a

data

source

supports

date,

time,

or

timestamp

data,

call

SQLGetTypeInfo().

If

a

data

source

supports

any

of

these

data

types,

the

ODBC

driver

for

that

data

source

supports

a

corresponding

vendor

escape

clause.

Chapter

5.

Using

advanced

features

467

ODBC

outer

join

syntax

In

ODBC,

the

following

extended

SQL

syntax

specifies

an

outer

join.

Use

this

syntax

in

a

vendor

escape

clause

to

make

outer

joins

portable

in

your

SQL

statements.

��

oj

table-name

LEFT

RIGHT

FULL

OUTER

JOIN

table-name

outer-join

�

�

ON

search-condition

��

table-name

Specifies

the

name

of

the

table

that

you

want

to

join.

LEFT

Performs

a

left

outer

join.

RIGHT

Performs

a

right

outer

join.

FULL

Performs

a

full

outer

join.

table-name

Specifies

the

name

of

the

table

that

you

want

to

join

with

the

previous

table.

outer-join

Specifies

the

result

of

an

outer

join

that

you

want

to

join

with

the

previous

table.

(Use

the

syntax

above

without

the

leading

keyword

oj.)

search-condition

Specifies

the

condition

on

which

rows

are

joined.

Example:

You

can

use

either

of

the

following

forms

of

the

escape

clause

to

perform

an

outer

join.

In

this

example,

a

vendor

escape

clause

specifies

the

outer

join

in

each

SQL

statement.

v

Short-form

syntax:

SELECT

*

FROM

{oj

T1

LEFT

OUTER

JOIN

T2

ON

T1.C1=T2.C3}

WHERE

T1.C2>20

v

Long-form

syntax:

SELECT

*

FROM

--(*vendor(Microsoft),product(ODBC)

oj

T1

LEFT

OUTER

JOIN

T2

ON

T1.C1=T2.C3*)--

WHERE

T1.C2>20

Important:

Not

all

servers

support

outer

join.

To

determine

if

the

current

server

supports

outer

joins,

call

SQLGetInfo()

twice,

first

with

the

InfoType

argument

set

to

SQL_OUTER_JOINS,

and

then

with

the

InfoType

argument

set

to

SQL_OJ_CAPABILITIES.

Like

predicate

escape

clause

In

an

SQL

LIKE

predicate,

the

percent

metacharacter

(%)

matches

a

string

of

zero

or

more

characters,

and

the

underscore

metacharacter

(_)

matches

any

single

character.

With

the

predicate

escape

clause,

you

can

define

patterns

that

contain

the

actual

percent

and

underscore

characters.

To

specify

that

you

want

these

characters

to

represent

literal

values,

you

precede

them

with

an

escape

character.

468

ODBC

Guide

and

Reference

You

define

the

LIKE

predicate

escape

character

with

the

following

syntax

in

a

vendor

escape

clause:

��

escape

‘

escape-character

‘

��

escape-character

Specifies

any

character

that

is

supported

by

the

DB2

rules

and

that

governs

the

use

of

the

ESCAPE

clause.

Example:

You

can

use

either

of

the

following

forms

of

the

escape

clause

to

include

metacharacters

as

literals

in

the

LIKE

predicate.

In

this

example,

both

statements

search

for

a

string

that

ends

with

the

percent

character

.

v

Short-form

syntax:

SELECT

*

FROM

EMPLOYEE

WHERE

COMMISSION

LIKE

{escape

’!’}

’%!%’

v

Long-form

syntax:

SELECT

*

FROM

EMPLOYEE

WHERE

COMMISSION

LIKE

--(*vendor(Microsoft),product(ODBC)

escape

’!’*)--

’%!%’

To

determine

if

a

particular

data

source

supports

LIKE

predicate

escape

characters,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_LIKE_ESCAPE_CLAUSE.

Stored

procedure

CALL

In

ODBC,

the

following

extended

SQL

syntax

calls

a

stored

procedure.

You

use

this

syntax

in

a

vendor

escape

clause

to

make

stored

procedure

calls

portable

in

your

SQL

statements.

��

?=

call

procedure-name

�

,

(

parameter

)

��

?=

Specifies

that

you

want

DB2

ODBC

to

return

the

SQLCODE

of

the

stored

procedure

call

in

the

first

parameter

that

you

specify

in

SQLBindParameter().

If

?=

is

not

present,

you

can

retrieve

the

SQLCA

with

SQLGetSQLCA()

.

procedure-name

Specifies

the

name

of

a

procedure

that

is

stored

at

the

data

source.

parameter

Specifies

a

procedure

parameter.

A

procedure

can

have

zero

or

more

parameters.

Important:

Unlike

ODBC,

DB2

ODBC

does

not

support

literals

as

procedure

arguments.

You

must

use

parameter

markers

to

specify

a

procedure

parameter.

For

more

information

about

stored

procedures,

see

“Using

stored

procedures”

on

page

429

or

DB2

Application

Programming

and

SQL

Guide.

Chapter

5.

Using

advanced

features

469

Example:

You

can

use

either

of

the

following

forms

of

the

escape

clause

to

call

a

stored

procedure.

In

this

example,

the

statements

call

the

procedure

NETB94,

which

uses

three

parameters.

v

Short-form

syntax:

{CALL

NETB94(?,?,?)}

v

Long-form

syntax:

--(*vendor(Microsoft),product(ODBC)

CALL

NEBT94(?,?,?)*)--

To

determine

if

a

particular

data

source

supports

stored

procedure

calls,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

SQL_PROCEDURES.

ODBC

scalar

functions

You

can

use

scalar

functions

such

as

string

length,

substring,

or

trim

on

columns

of

result

sets,

or

on

columns

that

restrict

rows

of

a

result

set.

ODBC

defines

the

following

extended

SQL

syntax

to

call

scalar

functions.

Use

this

syntax

in

a

vendor

escape

clause

to

make

portable

scalar

function

calls

in

your

SQL

statements.

��

fn

scalar-function

��

scalar-function

Specifies

any

function

listed

in

Appendix

B,

“Extended

scalar

functions,”

on

page

493.

Example:

You

can

use

either

of

the

following

forms

of

the

escape

clause

to

call

a

scalar

function.

Both

statements

in

this

example

use

a

vendor

escape

clause

in

the

select

list

of

a

query.

v

Short-form

syntax:

SELECT

{fn

CONCAT(FIRSTNAME,LASTNAME)}

FROM

EMPLOYEE

v

Long-form

syntax:

SELECT

--(*vendor(Microsoft),product(ODBC)

fn

CONCAT(FIRSTNAME,LASTNAME)

*)--

FROM

EMPLOYEE

To

determine

which

scalar

functions

are

supported

by

the

current

server

that

is

referenced

by

a

specific

connection

handle,

call

SQLGetInfo()

with

the

InfoType

argument

set

to

each

of

the

following

values:

v

SQL_NUMERIC_FUNCTIONS

v

SQL_STRING_FUNCTIONS

v

SQL_SYSTEM_FUNCTIONS

v

SQL_TIMEDATE_FUNCTIONS

Programming

hints

and

tips

This

section

provides

some

hints

and

tips

to

help

you

avoid

common

problems,

improve

performance,

reduce

network

flow,

and

maximize

portability

when

you

program

a

DB2

ODBC

application.

Avoiding

common

problems

The

following

items

present

common

problems

in

DB2

ODBC

applications:

v

The

DB2

ODBC

initialization

file

v

Result

sets

that

are

too

large

v

Distinct

types

470

ODBC

Guide

and

Reference

To

avoid

common

problems,

adhere

to

the

following

guidelines

for

each

DB2

ODBC

item.

The

DB2

ODBC

initialization

file

When

you

alter

the

DB2

ODBC

initialization

file,

take

the

following

actions:

v

Check

the

coding

of

square

brackets.

The

square

brackets

in

the

initialization

file

must

consist

of

the

correct

EBCDIC

characters.

The

open

square

bracket

must

use

the

hexadecimal

characters

X'AD'.

The

close

square

bracket

must

use

the

hexadecimal

characters

X'BD'.

DB2

ODBC

does

not

recognize

brackets

if

you

code

them

differently.

v

Eliminate

sequence

numbers.

DB2

ODBC

does

not

accept

sequence

numbers

in

the

initialization

file.

You

must

remove

all

sequence

numbers.

Result

sets

that

are

too

large

To

limit

the

number

of

rows

that

your

application

can

fetch,

set

the

SQL_ATTR_MAX_ROWS

attribute

with

SQLSetStmtAttr().

You

can

use

this

attribute

to

ensure

that

a

very

large

result

set

does

not

overwhelm

your

application.

This

kind

of

protection

is

especially

important

for

applications

that

run

on

clients

with

limited

memory

resources.

Important:

The

server

generates

a

full

result

set

regardless

of

the

SQL_ATTR_MAX_ROWS

attribute

value.

DB2

ODBC

limits

only

the

fetch

to

SQL_ATTR_MAX_ROWS.

Distinct

types

When

you

use

a

distinct-type

parameter

in

the

predicate

of

a

query

statement,

you

must

use

a

CAST

function.

With

the

cast

function,

cast

either

the

parameter

marker

to

a

distinct

type,

or

cast

the

distinct

type

to

a

source

type.

Example:

Assume

that

you

define

the

following

distinct

type

and

table:

CREATE

DISTINCT

TYPE

CNUM

AS

INTEGER

WITH

COMPARISONS

CREATE

TABLE

CUSTOMER

(

Cust_Num

CNUM

NOT

NULL,

First_Name

CHAR(30)

NOT

NULL,

Last_Name

CHAR(30)

NOT

NULL,

Phone_Num

CHAR(20)

WITH

DEFAULT,

PRIMARY

KEY

(Cust_Num)

)

Then

you

issue

the

following

query

statement:

SELECT

first_name,

last_name,

phone_num

FROM

customer

where

cust_num

=

?

This

query

fails

because

the

comparison

includes

incompatible

types;

the

parameter

marker

cannot

be

type

CNUM.

To

successfully

execute

the

statement,

issue

a

query

that

casts

the

parameter

marker

to

the

distinct

type

CNUM:

SELECT

first_name,

last_name,

phone_num

FROM

customer

where

cust_num

=

cast(

?

as

cnum

)

Alternatively,

issue

a

query

that

casts

the

data

type

of

the

column

to

the

source

type

INTEGER:

SELECT

first_name,

last_name,

phone_num

FROM

customer

where

cast(

cust_num

as

integer

)

=

?

Chapter

5.

Using

advanced

features

471

|

See

DB2

SQL

Reference

for

more

information

about

parameter

markers

(PREPARE

statement)

and

casting

(CAST

function).

Improving

application

performance

To

improve

the

performance

of

your

DB2

ODBC

applications,

consider

taking

the

following

actions:

v

Set

isolation

levels.

v

Disable

cursor

hold

behavior.

v

Retrieve

result

sets

efficiently.

v

Limit

the

use

of

catalog

functions.

v

Use

dynamic

statement

caching.

v

Turn

off

statement

scanning.

Setting

isolation

levels

You

determine

the

level

of

locking

that

is

required

to

execute

a

statement,

and

therefore

the

level

of

concurrency

that

is

possible,

in

your

application

with

isolation

levels.

You

need

to

choose

isolation

levels

for

your

application

that

maximize

concurrency,

and

that

also

ensure

data

consistency.

Set

the

minimum

isolation

level

that

is

possible

to

maximize

concurrency.

You

can

set

isolation

levels

either

by

statement

or

by

connection:

v

SQLSetConnectAttr()

with

the

SQL_ATTR_TXN_ISOLATION

attribute

specified

sets

the

isolation

level

at

which

all

statements

on

a

connection

handle

operate.

This

isolation

level

determines

the

level

of

concurrency

that

is

possible,

and

the

level

of

locking

that

is

required

to

execute

any

statement

on

a

connection

handle.

v

SQLSetStmtAttr()

with

the

SQL_ATTR_STMTTXN_ISOLATION

attribute

sets

the

isolation

level

at

which

an

individual

statement

handle

operates.

(Although

you

can

set

the

isolation

level

on

a

statement

handle,

setting

the

isolation

level

on

the

connection

handle

is

recommended.)

This

isolation

level

determines

the

level

of

concurrency

that

is

possible,

and

the

level

of

locking

that

is

required

to

execute

the

statement.

For

more

information

about

setting

isolation

levels,

see

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346,

“SQLSetStmtAttr()

-

Set

statement

attributes”

on

page

367,

and

“TXNISOLATION”

on

page

61.

DB2

ODBC

uses

resources

that

are

associated

with

statement

handles

more

efficiently

if

you

set

an

appropriate

isolation

level,

rather

than

leaving

all

statements

at

the

default

isolation

level.

This

should

be

attempted

only

with

a

thorough

understanding

of

the

locking

and

isolation

levels

of

the

connected

DBMS.

See

DB2

SQL

Reference

and

Part

4

of

DB2

Application

Programming

and

SQL

Guide

for

a

complete

discussion

of

isolation

levels

and

their

effect.

Disabling

cursor

hold

behavior

DB2

ODBC

can

more

efficiently

use

resources

associated

with

statement

handles

if

you

disable

cursor-hold

behavior

for

statements

that

do

not

require

it.

To

disable

cursor-hold

behavior

on

a

statement

handle,

call

SQLSetStmtAttr()

with

the

SQL_ATTR_CURSOR_HOLD

attribute

set

to

SQL_CURSOR_HOLD_OFF.

You

can

also

set

the

cursor-hold

behavior

for

an

entire

data

source

through

the

initialization

file.

See

“CURSORHOLD”

on

page

54

for

more

information.

The

SQL_ATTR_CURSOR_HOLD

statement

attribute

is

the

DB2

ODBC

equivalent

to

the

CURSOR

WITH

HOLD

clause

in

SQL.

DB2

ODBC

cursors

exhibit

cursor-hold

behavior

by

default.

472

ODBC

Guide

and

Reference

|

Important:

Many

ODBC

applications

expect

a

default

behavior

in

which

the

cursor

position

is

maintained

after

a

commit.

Consider

such

applications

before

you

disable

any

cursor-hold

behavior.

Retrieving

data

efficiently

Two

actions

make

your

application

retrieve

data

sets

more

efficiently:

v

Define

the

pcbValue

and

rgbValue

arguments

of

SQLBindCol()

or

SQLGetData()

contiguously

in

memory.

(This

allows

DB2

ODBC

to

fetch

both

values

with

one

copy

operation.)

To

define

the

pcbValue

and

rgbValue

arguments

contiguously

in

memory,

create

a

structure

that

contains

both

values.

For

example,

the

following

code

creates

such

a

structure:

struct

{

SQLINTEGER

pcbValue;

SQLCHAR

rgbValue[MAX_BUFFER];

}

column;

v

Choose

an

appropriate

function

with

which

to

retrieve

results.

Generally

the

most

efficient

approach

is

to

bind

application

variables

to

result

sets

with

SQLBindCol().

However,

in

some

cases

calling

SQLGetData()

to

retrieve

results

is

more

efficient.

When

the

data

value

is

large

and

is

variable-length,

use

SQLGetData()

for

the

following

situations:

–

You

must

retrieve

the

data

in

pieces.

–

You

might

not

need

to

retrieve

the

data.

(That

is,

retrieval

is

dependent

on

another

application

action.)

Limiting

use

of

catalog

functions

In

general,

try

to

limit

the

number

of

times

that

you

call

catalog

functions

in

your

application,

limit

the

number

of

rows

that

these

functions

return,

and

close

all

open

cursors

on

catalog

result

sets.

Call

each

catalog

function

once

and

store

the

information

that

the

function

returns

in

your

application

to

reduce

the

number

of

catalog

functions

that

you

call.

Specify

the

following

parameters

to

limit

the

number

of

rows

that

a

catalog

function

returns:

v

Schema

name

or

pattern

for

all

catalog

functions

v

Table

name

or

pattern

for

all

catalog

functions

other

than

SQLTables()

v

Column

name

or

pattern

for

catalog

functions

that

return

detailed

column

information

Close

any

open

cursors

(call

the

SQLCloseCursor()

function)

for

statement

handles

that

are

used

for

catalog

queries

to

release

any

locks

against

the

catalog

tables.

Outstanding

locks

on

the

catalog

tables

can

prevent

CREATE,

DROP,

or

ALTER

statements

from

executing.

Recommendation:

Plan

ahead.

Although

you

might

develop

and

test

an

application

on

a

data

source

with

hundreds

of

tables,

the

final

application

might

sometime

need

to

run

on

a

production

database

with

thousands

of

tables.

Using

dynamic

SQL

statement

caching

To

reduce

function

call

overhead,

you

can

prepare

a

statement

once

and

execute

it

repeatedly

throughout

the

application.

DB2

servers

cache

prepared

versions

of

dynamic

SQL

statements.

This

dynamic

caching

allows

the

DB2

server

to

reuse

previously

prepared

statements.

Chapter

5.

Using

advanced

features

473

To

take

advantage

of

dynamic

caching,

use

the

same

statement

handle

to

execute

identical

SQL

statements.

Free

this

handle

only

when

you

no

longer

need

to

execute

that

statement

repeatedly.

For

example,

if

your

application

routinely

uses

a

set

of

10

SQL

statements,

you

should

allocate

10

statement

handles

that

are

associated

with

each

of

those

statements.

Do

not

free

these

statement

handles

until

you

can

no

longer

execute

the

statements

that

are

associated

with

them.

You

can

roll

back

and

commit

the

transaction

without

affecting

prepared

statements.

Your

application

can

continue

to

prepare

and

execute

the

statements

in

a

normal

manner.

The

DB2

server

determines

if

a

prepare

is

actually

needed.

Turning

off

statement

scanning

To

increase

performance,

allow

DB2

ODBC

to

scan

for

vendor

escape

clauses

only

on

handles

where

escape

clauses

appear.

By

default,

DB2

ODBC

scans

each

SQL

statement

for

vendor

escape

clauses.

If

your

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clauses,

turn

off

statement

scanning.

(For

more

information

about

vendor

escape

clauses

see

“Using

vendor

escape

clauses”

on

page

465.)

To

turn

off

statement

scanning,

set

the

SQL_ATTR_NOSCAN

statement

attribute

to

SQL_NOSCAN_ON.

You

can

set

this

attribute

with

either

of

the

following

functions:

SQLSetStmtAttr()

When

you

set

the

SQL_ATTR_NOSCAN

statement

attribute

to

SQL_NOSCAN_ON

with

SQLSetStmtAttr(),

you

turn

off

statement

scanning

for

all

SQL

statements

that

are

issued

on

a

statement

handle.

SQLSetConnectAttr()

When

you

set

the

SQL_ATTR_NOSCAN

statement

attribute

to

SQL_NOSCAN_ON

with

SQLSetConnectAttr(),

you

turn

off

statement

scanning

for

all

SQL

statements

that

are

issued

on

a

connection

handle.

Reducing

network

flow

To

reduce

the

network

flow

that

your

DB2

ODBC

applications

generate,

consider

the

following

actions:

v

Use

SQLSetColAttributes()

to

reduce

network

flow.

v

Disable

autocommit.

v

Use

arrays

to

send

and

retrieve

data.

v

Manipulate

large

data

values

at

the

server.

Using

SQLSetColAttributes()

to

reduce

network

flow

Each

time

that

you

prepare

or

execute

a

query

statement

directly,

DB2

ODBC

retrieves

information

about

the

SQL

data

type

and

the

size

of

the

data

from

the

data

source.

If

you

use

SQLSetColAttributes()

to

provide

DB2

ODBC

with

this

information

ahead

of

time,

you

eliminate

the

need

for

DB2

ODBC

to

query

the

data

source.

Elimination

of

this

query

can

significantly

reduce

network

flow

from

remote

data

sources

if

the

result

set

that

comes

back

contains

a

very

large

number

(hundreds)

of

columns.

Requirement:

You

must

provide

DB2

ODBC

with

exact

result

descriptor

information

for

all

columns;

otherwise,

an

error

occurs

when

you

fetch

the

data.

SQLSetColAttributes()

reduces

the

network

flow

best

from

queries

that

generate

result

sets

with

a

large

number

of

columns,

but

a

relatively

small

number

of

rows.

474

ODBC

Guide

and

Reference

Disabling

autocommit

Generally,

to

reduce

network

flow,

you

should

set

the

SQL_ATTR_AUTOCOMMIT

connection

attribute

to

SQL_AUTOCOMMIT_OFF.

Each

commit

request

can

generate

extra

network

flow.

Set

this

attribute

to

SQL_AUTOCOMMIT_ON

only

if

the

application

that

you

are

writing

needs

to

treat

each

statement

as

a

single,

complete

transaction.

See

“SQLSetConnectAttr()

-

Set

connection

attributes”

on

page

346

for

more

information

about

setting

this

attribute.

Important:

SQL_AUTOCOMMIT_ON

is

the

default

setting

for

this

attribute,

unless

it

is

otherwise

specified

in

the

initialization

file.

For

more

information

about

setting

this

attribute

in

the

initialization

file,

see

“AUTOCOMMIT”

on

page

52.

Using

arrays

to

send

and

retrieve

data

Sending

multiple

data

values

through

the

network

using

arrays

rather

than

individual

application

variables

reduces

network

flow.

For

optimum

results,

use

arrays

to

both

send

and

retrieve

data.

“Using

arrays

to

pass

parameter

values”

on

page

414

and

“Retrieving

a

result

set

into

an

array”

on

page

417

describe

the

methods

that

you

can

use

to

send

and

retrieve

data

with

arrays.

Use

these

methods

as

much

as

possible

in

your

application.

Manipulating

large

data

values

at

the

server

Use

LOB

data

types

and

the

functions

that

support

LOB

data

types

for

long

strings

whenever

possible.

Unlike

LONG

VARCHAR,

LONG

VARBINARY,

and

LONG

VARGRAPHIC

data

types,

LOB

data

values

can

use

LOB

locators

and

functions,

such

as

SQLGetPosition()

and

SQLGetSubString(),

to

manipulate

large

data

values

at

the

server.

Maximizing

application

portability

To

maximize

the

portability

of

your

DB2

ODBC

applications,

consider

the

following

actions:

v

Use

column

names

of

function-generated

result

sets.

v

Use

SQLDriverConnect()

instead

of

SQLConnect().

Using

column

position

in

function-generated

result

sets

The

column

names

of

result

sets

that

are

generated

by

catalog

and

get-information

functions,

such

as

SQLGetInfo(),

can

change

as

the

X/Open

and

ISO

standards

evolve.

The

position

of

these

columns,

however,

is

fixed.

To

maximize

the

portability

of

your

application,

base

all

dependencies

on

column

position

(referred

to

as

the

icol

argument

in

some

functions)

rather

than

on

the

column

name.

Using

SQLDriverConnect()

instead

of

SQLConnect()

SQLDriverConnect()

overrides

any

or

all

of

the

initialization

keyword

values

that

are

specified

in

the

DB2

ODBC

initialization

file

for

a

target

data

source.

Use

SQLDriverConnect()

instead

of

SQLConnect()

to

make

a

connection

in

your

application

behave

independently

of

the

DB2

ODBC

initialization

file.

Chapter

5.

Using

advanced

features

475

|

476

ODBC

Guide

and

Reference

Chapter

6.

Problem

diagnosis

This

chapter

provides

guidelines

for

working

with

the

DB2

ODBC

traces

and

information

about

general

diagnosis,

debugging,

and

abends.

You

can

obtain

traces

for

DB2

ODBC

applications

and

diagnostics

and

DB2

ODBC

stored

procedures.

Tracing

DB2

ODBC

provides

two

traces

that

differ

in

purpose:

v

An

application

trace

intended

for

debugging

user

applications,

described

in

“Application

trace.”

v

A

service

trace

for

problem

diagnosis,

described

in

“Diagnostic

trace”

on

page

479.

Application

trace

The

DB2

ODBC

application

trace

is

enabled

using

the

APPLTRACE

and

APPLTRACEFILENAME

keywords

in

the

DB2

ODBC

initialization

file.

The

APPLTRACE

keyword

is

intended

for

customer

application

debugging.

This

trace

records

data

information

at

the

DB2

ODBC

API

interface;

it

is

specifically

designed

to

trace

ODBC

API

calls.

The

trace

is

written

to

the

file

specified

on

the

APPLTRACEFILENAME

keyword.

Recommendation:

Use

this

trace

to

debug

your

DB2

ODBC

applications.

Specifying

the

trace

file

name

You

can

use

the

following

formats

to

specify

the

APPLTRACEFILENAME

keyword

setting:

v

JCL

data

definition

format

v

z/OS

UNIX

environment

HFS

format

The

primary

use

of

the

JCL

data

definition

statement

format

is

to

write

to

a

z/OS

preallocated

sequential

data

set.

You

can

also

specify

z/OS

UNIX

HFS

files

on

a

DD

statement.

The

z/OS

UNIX

environment

HFS

format

is

used

strictly

for

writing

to

HFS

files.

JCL

data

definition

statement

format:

The

JCL

data

definition

statement

format

is

APPLTRACEFILENAME="DD:ddname".

The

ddname

value

is

the

name

of

the

data

definition

statement

that

is

specified

in

your

job

or

TSO

logon

procedure.

Example:

Assume

the

keyword

setting

is

APPLTRACEFILENAME="DD:APPLDD".

You

can

use

the

following

JCL

data

definition

statements

in

your

job

or

TSO

logon

procedure

to

specify

the

z/OS

trace

data

set.

v

Write

to

preallocated

sequential

data

set

USER01.MYTRACE.

//APPLDD

DD

DISP=SHR,DSN=USER01.MYTRACE

v

Write

to

preallocated

UNIX

HFS

file

MYTRACE

in

directory

/usr/db2.

//APPLDD

DD

PATH=’/usr/db2/MYTRACE’

v

Allocate

UNIX

HFS

file

MYTRACE

in

directory

/usr/db2

specifying

permission

for

the

file

owner

to

read

from

(SIRUSR)

and

write

to

(SIWUSR)

the

trace

file:

//APPLDD

DD

PATH=’/usr/db2/MYTRACE’,

PATHOPTS=(ORDWR,OCREAT,OTRUNC),

PATHMODE=(SIRUSR,SIWUSR)

©

Copyright

IBM

Corp.

1997,

2004

477

z/OS

UNIX

environment

HFS

format:

The

z/OS

UNIX

HFS

file

name

format

is

APPLTRACEFILENAME=hfs_filename.

The

hfs_filename

value

specifies

the

path

and

file

name

for

the

HFS

file.

The

HFS

file

does

not

have

to

be

preallocated.

If

the

file

name

does

not

exist

in

the

specified

directory,

the

file

is

dynamically

allocated.

Example:

The

following

statements

use

the

APPLTRACEFILENAME

keyword

to

specify

a

z/OS

UNIX

environment

HFS

trace

file.

v

Create

and

write

to

HFS

file

named

APPLTRC1

in

the

fully

qualified

directory

/usr/db2.

APPLTRACEFILENAME=/usr/db2/APPLTRC1

v

Create

and

write

to

HFS

file

named

APPLTRC1

in

the

current

working

directory

of

the

application.

APPLTRACEFILENAME=./APPLTRC1

v

Create

and

write

to

HFS

file

named

APPLTRC1

in

the

parent

directory

of

the

current

working

directory.

APPLTRACEFILENAME=../APPLTRC1

Application

trace

output

Figure

61

on

page

479

contains

an

example

of

application

trace

output

that

shows

how

DB2

ODBC

follows

the

APIs

invoked,

indicates

values

used,

data

pointers,

and

so

on.

Errors

are

also

indicated.

478

ODBC

Guide

and

Reference

For

more

information

about

how

to

specify

the

APPLTRACE

and

APPLTRACEFILENAME

keywords,

see

“DB2

ODBC

initialization

file”

on

page

49.

Diagnostic

trace

The

DB2

ODBC

diagnostic

trace

captures

information

to

use

in

DB2

ODBC

problem

determination.

The

trace

is

intended

for

use

under

the

direction

of

the

IBM

Software

Support;

it

is

not

intended

to

assist

in

debugging

user

written

DB2

ODBC

applications.

You

can

view

this

trace

to

obtain

information

about

the

general

flow

of

an

application,

such

as

commit

information.

However,

this

trace

is

intended

for

IBM

service

information

only

and

is

therefore

subject

to

change.

You

can

activate

the

diagnostic

trace

by

issuing

the

DSNAOTRC

command

or

by

specifying

DIAGTRACE=1

in

the

DB2

ODBC

initialization

file.

SQLAllocHandle(

fHandleType=SQL_HANDLE_ENV,

hInput=0,

phOutput=&6b7e77c

)

SQLAllocHandle(

phOutput=1

)

--->

SQL_SUCCESS

SQLAllocHandle(

fHandleType=SQL_HANDLE_DBC,

hInput=1,

phOutput=&6b7e778

)

SQLAllocHandle(

phOutput=1

)

--->

SQL_SUCCESS

SQLConnect(

hDbc=1,

szDSN=Null

Pointer,

cbDSN=0,

szUID=Null

Pointer,

cbUID=0,

szAuthStr=Null

Pointer,

cbAuthStr=0

)

SQLConnect(

)

--->

SQL_SUCCESS

SQLAllocHandle(

fHandleType=SQL_HANDLE_STMT,

hInput=1,

phOutput=&6b7e774

)

SQLAllocHandle(

phOutput=1

)

--->

SQL_SUCCESS

SQLExecDirect(

hStmt=1,

pszSqlStr="SELECT

NAME

FROM

SYSIBM.SYSPLAN",

cbSqlStr=-3

)

SQLExecDirect(

)

--->

SQL_SUCCESS

SQLFetch(

hStmt=1

)

SQLFetch(

)

--->

SQL_SUCCESS

SQLEndTran(

fHandleType=SQL_HANDLE_DBC,

fHandle=1,

fType=SQL_COMMIT

)

SQLEndTran(

)

--->

SQL_SUCCESS

SQLFreeHandle(

fHandleType=SQL_HANDLE_STMT,

hHandle=1

)

SQLFreeHandle()

--->

SQL_SUCCESS

SQLDisconnect(

hDbc=1

)

SQLDisconnect(

)

--->

SQL_SUCCESS

SQLFreeHandle(

fHandleType=SQL_HANDLE_DBC,

hHandle=1

)

SQLFreeHandle(

)

--->

SQL_SUCCESS

SQLFreeHandle(

fHandleType=SQL_HANDLE_ENV,

hHandle=1

)

SQLFreeHandle(

)

--->

SQL_SUCCESS

Figure

61.

Example

application

trace

output

Chapter

6.

Problem

diagnosis

479

If

you

activate

the

diagnostic

trace

using

the

DIAGTRACE

keyword

in

the

initialization

file,

you

must

also

allocate

a

DSNAOTRC

data

definition

statement

in

your

job

or

TSO

logon

procedure.

You

can

use

one

of

the

following

methods

to

allocate

a

DSNAOTRC

data

definition

statement:

v

Specify

a

DSNAOTRC

data

definition

JCL

statement

in

your

job

or

TSO

logon

procedure.

v

Use

the

TSO/E

ALLOCATE

command.

v

Use

dynamic

allocation

in

your

ODBC

application.

Specifying

the

diagnostic

trace

file

The

diagnostic

trace

data

can

be

written

to

a

z/OS

sequential

data

set

or

a

z/OS

UNIX

environment

HFS

file.

A

z/OS

data

set

must

be

preallocated

with

the

following

data

set

attributes:

v

Sequential

data

set

organization

v

Fixed-block

80

record

format

When

you

execute

an

ODBC

application

in

the

z/OS

UNIX

environment

and

activate

the

diagnostic

trace

using

the

DIAGTRACE

keyword

in

the

initialization

file,

DB2

writes

the

diagnostic

data

to

a

dynamically

allocated

file,

DD:DSNAOTRC.

This

file

is

located

in

the

current

working

directory

of

the

application

if

the

DSNAOTRC

data

definition

statement

is

not

available

to

the

ODBC

application.

You

can

format

DD:DSNAOTRC

using

the

DSNAOTRC

trace

formatting

program.

Example:

The

following

JCL

examples

use

a

DSNAOTRC

data

definition

JCL

statement

to

specify

the

diagnostic

trace

file.

v

Write

to

preallocated

sequential

data

set

USER01.DIAGTRC.

//DSNAOTRC

DD

DISP=SHR,DSN=USER01.DIAGTRC

v

Write

to

the

preallocated

z/OS

UNIX

environment

HFS

file

DIAGTRC

in

the

directory

/usr/db2.

//DSNAOTRC

DD

PATH=’/usr/db2/DIAGTRC’

v

Allocate

the

z/OS

UNIX

environment

HFS

file

DIAGTRC

in

the

directory

/usr/db2

specifying

permission

for

the

file

owner

to

read

from

(SIRUSR)

and

write

to

(SIWUSR)

the

trace

file.

//DSNAOTRC

DD

PATH=’/usr/db2/DIAGTRC’,

PATHOPTS=(ORDWR,OCREAT,OTRUNC),

PATHMODE=(SIRUSR,SIWUSR)

For

more

information

about

the

DIAGTRACE

keyword,

see

“DB2

ODBC

initialization

file”

on

page

49.

Using

the

diagnostic

trace

command

DSNAOTRC

You

use

the

DSNAOTRC

command

to

perform

the

following

tracing

tasks:

v

Manually

start

or

stop

the

recording

of

memory

resident

diagnostic

trace

records.

v

Query

the

current

status

of

the

diagnostic

trace.

v

Capture

the

memory

resident

trace

table

to

a

z/OS

data

set

or

a

z/OS

UNIX

environment

HFS

file.

v

Format

the

DB2

ODBC

diagnostic

trace.

Syntax:

480

ODBC

Guide

and

Reference

|

��

DSNAOTRC

ON

-L

buffer

size

-I

buffer

size

OFF

INF

DMP

trace

data

set

spec

FMT

input

data

set

spec

output

data

set

spec

FLW

input

data

set

spec

output

data

set

spec

��

Option

descriptions:

ON

Start

the

DB2

ODBC

diagnostic

trace.

-L

buffer

size

L

=

Last.

The

trace

wraps;

it

captures

the

last,

most

current

trace

records.

buffer

size

is

the

number

of

bytes

to

allocate

for

the

trace

buffer.

This

value

is

required.

The

buffer

size

is

rounded

to

a

multiple

of

65536

(64K).

-I

buffer

size

I

=

Initial.

The

trace

does

not

wrap;

it

captures

the

initial

trace

records.

buffer

size

is

the

number

of

bytes

to

allocate

for

the

trace

buffer.

This

value

is

required.

The

buffer

size

is

rounded

to

a

multiple

of

65536

(64K).

OFF

Stop

the

DB2

ODBC

diagnostic

trace.

INF

Display

information

about

the

currently

active

DB2

ODBC

diagnostic

trace.

DMP

Dump

the

currently

active

DB2

ODBC

diagnostic

trace.

trace

data

set

spec

Specifies

the

z/OS

data

set

or

the

z/OS

UNIX

environment

HFS

file

to

which

DB2

writes

the

raw

DB2

ODBC

diagnostic

trace

data.

The

data

set

specification

can

be

either

a

z/OS

data

set

name,

a

z/OS

UNIX

environment

HFS

file

name,

or

a

currently

allocated

JCL

data

definition

statement

name.

FMT

Generate

a

formatted

detail

report

of

the

DB2

ODBC

diagnostic

trace

contents.

FLW

Generate

a

formatted

flow

report

of

the

DB2

ODBC

diagnostic

trace

contents.

input

data

set

spec

The

data

set

that

contains

the

raw

DB2

ODBC

diagnostic

trace

data

to

be

formatted.

This

is

the

data

set

that

was

generated

as

the

result

of

a

DSNAOTRC

DMP

command

or

that

is

generated

by

the

DSNAOTRC

data

definition

statement

when

the

DIAGTRACE

initialization

keyword

enables

tracing.

The

data

set

specification

can

be

either

a

z/OS

data

set

name,

a

z/OS

UNIX

environment

HFS

file

name,

or

a

currently

allocated

JCL

data

Chapter

6.

Problem

diagnosis

481

definition

statement

name.

If

this

parameter

is

not

specified,

the

DSNAOTRC

command

attempts

to

format

the

memory

resident

DSNAOTRC

that

is

currently

active.

output

data

set

spec

The

data

set

to

which

the

formatted

DB2

ODBC

diagnostic

trace

records

are

written.

The

data

set

specification

can

be

either

a

z/OS

data

set

name,

a

z/OS

UNIX

environment

HFS

file

name,

or

a

currently

allocated

JCL

data

definition

statement

name.

If

you

specify

a

z/OS

data

set

or

a

z/OS

UNIX

environment

HFS

file

that

does

not

exist,

DB2

allocates

it

dynamically.

If

this

parameter

is

not

specified,

the

output

is

written

to

standard

output

("STDOUT").

Special

considerations

for

the

z/OS

UNIX

environment:

You

can

issue

the

DSNAOTRC

or

the

DSNAOTRX

command

from

the

z/OS

UNIX

environment

command

line

to

activate

the

diagnostic

trace

prior

to

executing

an

ODBC

application.

Under

the

direction

of

IBM

support

only,

you

must

store

the

DSNAOTRC

program

load

modules

in

a

z/OS

UNIX

environment

HFS

file.

Use

the

TSO/E

command,

OPUTX,

to

store

the

DSNAOTRC

load

modules

in

an

HFS

file.

The

following

example

uses

the

OPUTX

command

to

store

load

module

DSNAOTRC

from

the

partitioned

data

set

DB2A.DSNLOAD

to

the

HFS

file

DSNAOTRC

in

the

directory

/usr/db2:

OPUTX

’DB2A.DSNLOAD(DSNAOTRC)’

/usr/db2/dsnaotrc

After

storing

the

DSNAOTRC

program

modules

in

HFS

files,

follow

these

steps

in

the

z/OS

UNIX

environment

to

activate,

dump,

and

format

the

diagnostic

trace:

1.

Enable

the

shared

address

space

environment

variable

for

the

z/OS

UNIX

shell.

Issue

the

following

export

statement

at

the

command

line

or

specify

it

in

your

$HOME/.profile

file:

export

_BPX_SHAREAS=YES

Setting

this

environment

variable

allows

the

OMVS

command

and

the

z/OS

UNIX

shell

to

run

in

the

same

TSO

address

space.

2.

Go

to

the

directory

that

contains

the

DSNAOTRC

load

modules.

3.

Verify

that

execute

permission

is

established

for

the

DSNAOTRC

load

modules.

If

execute

permission

was

not

granted,

use

the

chmod

command

to

set

execute

permission

for

each

of

the

load

modules.

4.

Issue

dsnaotrc

on.

The

options

for

activating

the

diagnostic

trace

are

optional.

5.

Execute

the

ODBC

application.

6.

Issue

dsnaotrc

dmp

"raw_trace_file".

The

raw_trace_file

value

is

the

name

of

the

output

file

to

which

DB2

writes

the

raw

diagnostic

trace

data.

7.

Issue

dsnaotrc

off

to

deactivate

the

diagnostic

trace.

8.

Issue

dsnaotrc

fmt

"raw_trace_file"

"fmt_trace_file"

to

format

the

raw

trace

data

records

from

input

file

"raw_trace_file"

to

output

file

"fmt_trace_file".

After

successfully

formatting

the

diagnostic

trace

data,

delete

the

DSNAOTRC

program

modules

from

your

z/OS

UNIX

environment

directory.

Do

not

attempt

to

maintain

a

private

copy

of

the

DSNAOTRC

program

modules

in

your

HFS

directory.

Example:

Each

of

the

following

statements

show

how

to

code

the

trace

data

set

specification.

v

Currently

allocated

JCL

data

definition

statement

name

TRACEDD

482

ODBC

Guide

and

Reference

|
|
|
|
|

|
|
|
|

|

|

|

|
|

DSNAOTRC

DMP

DD:TRACEDD

v

Sequential

data

set

USER01.DIAGTRC

DSNAOTRC

DMP

"USER01.DIAGTRC"

v

z/OS

UNIX

environment

HFS

file

that

is

named

DIAGTRC

in

directory

/usr/db2

DSNAOTRC

DMP

"/usr/db2/DIAGTRC"

Example:

Each

of

the

following

statements

show

how

to

code

the

input

data

set

specification.

v

Currently

allocated

JCL

data

definition

statement

name

INPDD.

DSNAOTRC

FLW

DD:INPDD

output-dataset-spec

v

Sequential

data

set

USER01.DIAGTRC.

DSNAOTRC

FLW

"USER01.DIAGTRC"

output-dataset-spec

v

z/OS

UNIX

environment

HFS

file

DIAGTRC

in

directory

/usr/db2.

DSNAOTRC

FLW

"/usr/db2/DIAGTRC"

output-dataset-spec

Example:

Each

of

the

following

statements

show

how

to

code

the

output

data

set

specification.

v

Currently

allocated

JCL

data

definition

statement

name

OUTPDD.

DSNAOTRC

FLW

input-dataset-spec

DD:OUTPDD

v

Sequential

data

set

USER01.TRCFLOW.

DSNAOTRC

FLW

input-dataset-spec

"USER01.TRCFLOW"

v

z/OS

UNIX

environment

HFS

file

TRCFLOW

in

directory

/usr/db2.

DSNAOTRC

FLW

input-dataset-spec

"/usr/db2/TRCFLOW"

Stored

procedure

trace

This

section

describes

the

steps

required

to

obtain

an

application

trace

or

a

diagnostic

trace

of

a

DB2

ODBC

stored

procedure.

DB2

ODBC

stored

procedures

run

in

either

a

DB2-established

stored

procedures

address

space

or

a

WLM-established

address

space.

Both

the

main

application

that

calls

the

stored

procedure

(client

application),

and

the

stored

procedure

itself,

can

be

either

a

DB2

ODBC

application

or

a

standard

DB2

precompiled

application.

If

the

client

application

and

the

stored

procedure

are

DB2

ODBC

application

programs,

you

can

trace:

v

A

client

application

only

v

A

stored

procedure

only

v

Both

the

client

application

and

stored

procedure

More

than

one

address

spaces

can

not

share

write

access

to

a

single

data

set.

Therefore,

you

must

use

the

appropriate

JCL

DD

statements

to

allocate

a

unique

trace

data

set

for

each

stored

procedures

address

space

that

uses

the

DB2

ODBC

application

trace

or

diagnostic

trace.

Tracing

a

client

application

This

section

explains

how

to

obtain

an

application

trace

and

a

diagnostic

trace

for

a

client

application.

Application

trace:

Follow

these

steps

to

obtain

an

application

trace.

1.

Set

APPLTRACE=1

and

APPLTRACEFILENAME=″DD:DDNAME″

in

the

common

section

of

the

DB2

ODBC

initialization

file

as

follows:

Chapter

6.

Problem

diagnosis

483

[COMMON]

APPLTRACE=1

APPLTRACEFILENAME="DD:APPLTRC"

DDNAME

is

the

name

of

a

data

definition

statement

specified

in

the

JCL

for

the

application

job

or

your

TSO

logon

procedure.

2.

Specify

an

APPLTRC

data

definition

statement

in

the

JCL

for

the

application

job

or

your

TSO

logon

procedure.

The

data

definition

statement

references

a

preallocated

z/OS

sequential

data

set

with

DCB

attributes

RECFM=VBA,LRECL=137,

a

z/OS

UNIX

environment

HFS

file

to

contain

the

client

application

trace,

as

shown

in

the

following

examples:

//APPLTRC

DD

DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC

DD

PATH=’/u/cli/appltrc’

Diagnostic

trace:

When

tracing

only

the

client

application,

you

can

activate

the

diagnostic

trace

by

using

the

DIAGTRACE

keyword

in

the

DB2

ODBC

initialization

file,

the

DSNAOTRC

command.

See

“Diagnostic

trace”

on

page

479

for

information

about

obtaining

a

diagnostic

trace

of

the

client

application.

Tracing

a

stored

procedure

This

section

explains

how

to

obtain

an

application

trace

and

a

diagnostic

trace

for

a

stored

procedure.

Application

trace:

Follow

these

steps

to

obtain

an

application

trace.

1.

Set

APPLTRACE=1

and

APPLTRACEFILENAME="DD:DDNAME"

in

the

common

section

of

the

DB2

ODBC

initialization

file

as

follows:

[COMMON]

APPLTRACE=1

APPLTRACEFILENAME="DD:APPLTRC"

DDNAME

is

the

name

of

a

data

definition

statement

that

is

specified

in

the

JCL

for

the

stored

procedures

address

space.

2.

Specify

an

JCL

DD

statement

in

the

JCL

for

the

stored

procedures

address

space

The

data

definition

statement

references

a

preallocated

sequential

data

set

with

DCB

attributes

RECFM=VBA,LRECL=137

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

client

application

trace,

as

shown

in

the

following

examples:

//APPLTRC

DD

DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC

DD

PATH=’/u/cli/appltrc’

Diagnostic

trace:

Follow

these

steps

to

obtain

a

diagnostic

trace.

1.

Set

DIAGTRACE=1,

DIAGTRACE_BUFFER_SIZE=nnnnnnn,

and

DIAGTRACE_NO_WRAP=0

or

1

in

the

common

section

of

the

DB2

ODBC

initialization

file.

For

example:

[COMMON]

DIAGTRACE=1

DIAGTRACE_BUFFER_SIZE=2000000

DIAGTRACE_NO_WRAP=1

nnnnnnn

is

the

number

of

bytes

to

allocate

for

the

diagnostic

trace

buffer.

2.

Specify

a

z/OS

DSNAOINI

data

definition

statement

in

the

JCL

for

the

stored

procedures

address

space.

The

data

definition

statement

references

the

DB2

ODBC

initialization

file,

as

shown

in

the

following

examples:

//DSNAOINI

DD

DISP=SHR,DSN=CLI.DSNAOINI

//DSNAOINI

DD

PATH=’/u/cli/dsnaoini’

484

ODBC

Guide

and

Reference

3.

Specify

a

DSNAOTRC

data

definition

statement

in

the

JCL

for

the

stored

procedures

space.

The

data

definition

statement

references

a

preallocated

sequential

data

set

with

DCB

attributes

RECFM=FB,LRECL=80,

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

unformatted

diagnostic

data,

as

shown

in

the

following

examples:

//DSNAOTRC

DD

DISP=SHR,DSN=CLI.DIAGTRC

//DSNAOTRC

DD

PATH=’/u/cli/diagtrc’

4.

Execute

the

client

application

that

calls

the

stored

procedure.

5.

After

the

DB2

ODBC

stored

procedure

executes,

stop

the

stored

procedures

address

space.

v

For

DB2-established

address

spaces,

use

the

DB2

command,

STOP

PROCEDURE.

v

For

WLM-established

address

spaces

operating

in

WLM

goal

mode,

use

the

z/OS

command,

"VARY

WLM,APPLENV=name,QUIESCE".

name

is

the

WLM

application

environment

name.

v

For

WLM-established

address

spaces

operating

in

WLM

compatibility

mode,

use

the

z/OS

command,

"CANCEL

address-space-name"

where

address-space-name

is

the

name

of

the

WLM-established

address

space.

6.

You

can

submit

either

the

formatted

or

unformatted

diagnostic

trace

data

to

the

IBM

Software

Support.

To

format

the

raw

trace

data

at

your

site,

run

the

DSNAOTRC

FMT

or

DSNAOTRC

FLW

commands

against

the

diagnostic

trace

data

set.

Tracing

both

a

client

application

and

a

stored

procedure

This

section

explains

how

to

obtain

an

application

trace

and

a

diagnostic

trace

for

both

a

client

application

and

a

stored

procedure.

Application

trace:

Follow

these

steps

to

obtain

an

application

trace.

1.

Set

APPLTRACE=1

and

APPLTRACEFILENAME=″DD:DDNAME″

in

the

common

section

of

the

DB2

ODBC

initialization

file

as

follows:

[COMMON]

APPLTRACE=1

APPLTRACEFILENAME="DD:APPLTRC"

DDNAME

is

the

name

of

the

data

definition

statement

specified

in

both

the

JCL

for

the

client

application

job

and

the

stored

procedures

address

space.

2.

Specify

a

APPLTRC

data

definition

statement

in

the

JCL

for

the

client

application.

The

data

definition

statement

references

a

preallocated

sequential

data

set

with

DCB

attributes

RECFM=VBA,LRECL=137,

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

client

application

trace,

as

shown

in

the

following

examples:

//APPLTRC

DD

DISP=SHR,DSN=CLI.APPLTRC.CLIENT

//APPLTRC

DD

PATH=’/u/cli/appltrc.client’

You

must

allocate

a

separate

application

trace

data

set,

or

an

HFS

file

for

the

client

application.

Do

not

attempt

to

write

to

the

same

application

trace

data

set

or

HFS

file

used

for

the

stored

procedure.

3.

Specify

a

APPLTRC

data

definition

statement

in

the

JCL

for

the

stored

procedures

address

space.

The

data

definition

statement

references

a

preallocated

sequential

data

set,

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

stored

procedure

application

trace,

as

shown

in

the

following

examples:

//APPLTRC

DD

DISP=SHR,DSN=CLI.APPLTRC.SPROC

Chapter

6.

Problem

diagnosis

485

//APPLTRC

DD

PATH=’/u/cli/appltrc.sproc’

You

must

allocate

a

separate

trace

data

set

or

HFS

file

for

the

stored

procedure.

Do

not

attempt

to

write

to

the

same

application

trace

data

set

or

HFS

file

used

for

the

client

application.

Diagnostic

trace:

Follow

these

steps

to

obtain

a

diagnostic

trace.

1.

Set

DIAGTRACE=1,

DIAGTRACE_BUFFER_SIZE=nnnnnnn,

and

DIAGTRACE_NO_WRAP=0

or

1

in

the

common

section

of

the

DB2

ODBC

initialization

file.

For

example:

[COMMON]

DIAGTRACE=1

DIAGTRACE_BUFFER_SIZE=2000000

DIAGTRACE_NO_WRAP=1

nnnnnnn

is

the

number

of

bytes

to

allocate

for

the

diagnostic

trace

buffer.

2.

Specify

a

z/OS

DSNAOINI

data

definition

statement

in

the

JCL

for

the

stored

procedures

address

space.

The

data

definition

statement

references

the

DB2

ODBC

initialization

file,

as

shown

in

the

following

examples:

//DSNAOINI

DD

DISP=SHR,DSN=CLI.DSNAOINI

//DSNAOINI

DD

PATH=’/u/cli/dsnaoini’

3.

Specify

a

DSNAOTRC

data

definition

statement

in

JCL

for

the

client

application

job.

The

data

definition

statement

references

a

preallocated

sequential

data

set

with

DCB

attributes

RECFM=FB,LRECL=80,

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

unformatted

diagnostic

data,

as

shown

in

the

following

examples:

//DSNAOTRC

DD

DISP=SHR,DSN=CLI.DIAGTRC.CLIENT

//DSNAOTRC

DD

PATH=’/u/cli/diagtrc.client’

4.

Specify

a

DSNAOTRC

data

definition

statement

in

the

JCL

for

the

stored

procedures

address

space.

The

data

definition

statement

references

a

preallocated

sequential

data

set

with

DCB

attributes

RECFM=FB,LRECL=80,

or

a

z/OS

UNIX

environment

HFS

file

to

contain

the

stored

procedure’s

unformatted

diagnostic

data,

as

shown

in

the

following

examples:

//DSNAOTRC

DD

DISP=SHR,DSN=CLI.DIAGTRC.SPROC

//DSNAOTRC

DD

PATH=’/u/cli/diagtrc.sproc’

5.

Execute

the

client

application

that

calls

the

stored

procedure.

6.

After

the

DB2

ODBC

stored

procedure

executes,

stop

the

stored

procedures

address

space.

v

For

DB2-established

address

spaces,

use

the

DB2

command,

STOP

PROCEDURE.

v

For

WLM-established

address

spaces

operating

in

WLM

goal

mode,

use

the

z/OS

command,

"VARY

WLM,APPLENV=name,QUIESCE".

name

is

the

WLM

application

environment

name.

v

For

WLM-established

address

spaces

operating

in

WLM

compatibility

mode,

use

the

z/OS

command,

"CANCEL

address-space-name".

Where

address-space-name

is

the

name

of

the

WLM-established

address

space.

7.

You

can

submit

either

the

formatted

or

unformatted

diagnostic

trace

data

to

the

IBM

Software

Support.

To

format

the

raw

trace

data

at

your

site,

run

the

DSNAOTRC

FMT

or

DSNAOTRC

FLW

command

against

the

client

application’s

diagnostic

trace

data

set

and

the

stored

procedure’s

diagnostic

trace

data

set.

486

ODBC

Guide

and

Reference

Debugging

DB2

ODBC

applications

You

can

debug

DB2

UDB

for

z/OS

ODBC

applications

debug

tool

shipped

with

your

the

C

or

C++

language

compiler.

For

detailed

instructions

on

debugging

DB2

stored

procedures,

including

DB2

ODBC

stored

procedures,

see

Part

6

of

DB2

Application

Programming

and

SQL

Guide.

Abnormal

termination

Language

Environment

reports

DB2

ODBC

abends

because

DB2

ODBC

runs

under

Language

Environment.

Typically,

Language

Environment

reports

the

type

of

abend

that

occurs

and

the

function

that

is

active

in

the

address

space

at

the

time

of

the

abend.

DB2

ODBC

has

no

facility

for

abend

recovery.

When

an

abend

occurs,

DB2

ODBC

terminates.

DBMSs

follow

the

normal

recovery

process

for

any

outstanding

DB2

unit

of

work.

″CEE″

is

the

prefix

for

all

Language

Environment

messages.

If

the

prefix

of

the

active

function

is

″CLI″,

then

DB2

ODBC

had

control

during

the

abend

which

indicates

that

this

can

be

a

DB2

ODBC,

a

DB2,

or

a

user

error.

The

following

example

shows

an

abend:

CEE3250C

The

system

or

user

abend

S04E

R=00000000

was

issued.

From

entry

point

CLI_mvsCallProcedure(CLI_CONNECTINFO*,...

+091A2376

at

address

091A2376...

In

this

message,

you

can

determine

what

caused

the

abend

as

follows:

v

″CEE″

indicates

that

Language

Environment

is

reporting

the

abend.

v

The

entry

point

shows

that

DB2

ODBC

is

the

active

module.

v

Abend

code

″S04E″

means

that

this

is

a

DB2

system

abend.

For

more

information

about

debugging,

see

z/OS

Language

Environment

Debugging

Guide.

For

more

information

about

the

DB2

recovery

process,

see

Part

4

(Volume

1)

of

DB2

Administration

Guide.

Internal

error

code

DB2

ODBC

provides

an

internal

error

code

for

ODBC

diagnosis

that

is

intended

for

use

under

the

guidance

of

IBM

Software

Support.

This

unique

error

location,

ERRLOC,

is

a

good

tool

for

APAR

searches.

The

following

example

of

a

failed

SQLAllocHandle()

(with

HandleType

set

to

SQL_HANDLE_DBC)

shows

an

error

location:

DB2

ODBC

Sample

SQLError

Information

DB2

ODBC

Sample

SQLSTATE

:

58004

DB2

ODBC

Sample

Native

Error

Code

:

-99999

DB2

ODBC

Sample

Error

message

text:

{DB2

for

z/OS}{ODBC

Driver}

SQLSTATE=58004

ERRLOC=2:170:4;

RRS

"IDENTIFY"

failed

using

DB2

system:V81A,

RC=08

and

REASON=00F30091

Chapter

6.

Problem

diagnosis

487

488

ODBC

Guide

and

Reference

Appendix

A.

DB2

ODBC

and

ODBC

This

appendix

explains

the

differences

between

DB2

ODBC

and

ODBC

in

the

following

areas:

v

“DB2

ODBC

and

ODBC

drivers”

v

“ODBC

APIs

and

data

types”

on

page

490

v

“Isolation

levels”

on

page

492

For

a

complete

list

of

functions

that

DB2

ODBC

and

ODBC

support,

see

Table

12

on

page

65.

DB2

ODBC

and

ODBC

drivers

This

section

discusses

the

support

that

is

provided

by

the

ODBC

driver,

and

how

it

differs

from

DB2

ODBC.

Figure

62

compares

DB2

ODBC

and

the

DB2

ODBC

driver.

The

left

side

of

this

figure

depicts

an

ODBC

driver

under

the

ODBC

driver

manager.

The

right

side

of

this

figure

depicts

DB2

ODBC,

a

callable

interface

that

is

designed

for

DB2-specific

applications.

ODBC driver manager
environment

DB2 UDB for z/OS
application environment

Application

ODBC driver manager

ODBC
driver

A

DBMS
B DB2 Connect

Gateway
B

CAE

DB2
ODBC
driver

DB2 UDB for z/OS
ODBC driver

Application

ODBC
driver

B

DB2 UDB
for LINUX,
UNIX and
Windows

DB2 UDB
for z/OS

subsystem

DB2 UDB for
z/OS

DB Server for
VSE & VM

DB2 UDB for
iSeries

Other DRDA
DBMS

DBMS
A

Figure

62.

DB2

ODBC

and

ODBC

©

Copyright

IBM

Corp.

1997,

2004

489

In

an

ODBC

environment,

the

driver

manager

provides

the

interface

to

the

application.

It

also

dynamically

loads

the

necessary

driver

for

the

database

server

to

which

the

application

connects.

It

is

the

driver

that

implements

the

ODBC

function

set,

with

the

exception

of

some

extended

functions

that

are

implemented

by

the

driver

manager.

The

DB2

ODBC

driver

does

not

execute

in

this

environment.

Rather,

DB2

ODBC

is

a

self-sufficient

driver

which

supports

a

subset

of

the

functions

that

the

ODBC

driver

provides.

DB2

ODBC

applications

interact

directly

with

the

ODBC

driver

which

executes

within

the

application

address

space.

Applications

do

not

interface

with

a

driver

manager.

The

capabilities

that

are

provided

to

the

application

are

a

subset

of

the

Microsoft

ODBC

Version

2

specifications.

ODBC

APIs

and

data

types

Table

231

summarizes

the

ODBC

Version

3

application

programming

interfaces,

ODBC

SQL

data

types

and

ODBC

C

data

types

and

whether

those

functions

and

data

types

are

supported

by

DB2

ODBC.

Table

12

on

page

65

provides

a

complete

list

of

functions

supported

by

DB2

ODBC

and

ODBC

3.0.

Table

231.

DB2

ODBC

support

ODBC

features

DB2

ODBC

Core

level

functions

All,

except

for:

v

SQLDrivers()

v

SQLGetDescField()

v

SQLSetDescField()

v

SQLGetDescRec()

v

SQLSetDescRec()

v

SQLCopyDesc()

v

SQLFetchScroll()

Level

1

functions

All,

except

for:

v

SQLSetPos()

v

SQLBulkOperations()

v

SQLBrowseConnect()

Level

2

functions

All

Additional

DB2

ODBC

functions

v

SQLSetConnection()

v

SQLGetEnvAttr()

v

SQLSetColAttributes()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

v

SQLGetSQLCA()

Minimum

SQL

data

types

v

SQL_CHAR

v

SQL_LONGVARCHAR

v

SQL_VARCHAR

Core

SQL

data

types

v

SQL_DECIMAL

v

SQL_NUMERIC

v

SQL_SMALLINT

v

SQL_INTEGER

v

SQL_REAL

v

SQL_FLOAT

v

SQL_DOUBLE

DB2

ODBC

and

ODBC

drivers

490

ODBC

Guide

and

Reference

|

|

|

|

Table

231.

DB2

ODBC

support

(continued)

ODBC

features

DB2

ODBC

Extended

SQL

data

types

v

SQL_BIT

v

SQL_TINYINT

v

SQL_BIGINT

(NOT

SUPPORTED)

v

SQL_BINARY

v

SQL_BLOB

v

SQL_BLOB_LOCATOR

v

SQL_CLOB

v

SQL_CLOB_LOCATOR

v

SQL_DBCLOB

v

SQL_DBCLOB_LOCATOR

v

SQL_LONGVARBINARY

v

SQL_ROWID

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

ODBC

Version

3

SQL

data

types

v

SQL_GRAPHIC

v

SQL_LONGVARGRAPHIC

v

SQL_VARGRAPHIC

Core

C

data

types

v

SQL_C_CHAR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

(SLONG,

ULONG)

v

SQL_C_SHORT

(SSHORT,

USHORT)

Extended

C

data

types

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

ODBC

Version

3

C

data

types

v

SQL_C_DBCHAR

Return

codes

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLSTATEs

Mapped

to

X/Open

SQLSTATEs

with

additional

IBM

SQLSTATEs

Multiple

connections

per

application

Supported

but

type

1

connections,

SQL_ATTR_CONNECTTYPE

=

SQL_CONCURRENT_TRANS.

Must

be

on

a

transaction

boundary

prior

to

SQLConnect()

or

SQLSetConnection().

For

more

information

about

ODBC,

see

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer's

Reference.

ODBC

APIs

and

data

types

Appendix

A.

DB2

ODBC

and

ODBC

491

Isolation

levels

The

following

table

maps

IBM

RDBMS

isolation

levels

to

ODBC

transaction

isolation

levels.

The

SQLGetInfo()

function

indicates

which

isolation

levels

are

available.

Table

232.

Isolation

levels

under

ODBC

IBM

isolation

level

ODBC

isolation

level

Cursor

stability

SQL_TXN_READ_COMMITTED

Repeatable

read

SQL_TXN_SERIALIZABLE_READ

Read

stability

SQL_TXN_REPEATABLE_READ

Uncommitted

read

SQL_TXN_READ_UNCOMMITTED

No

commit

(no

equivalent

in

ODBC)

Restriction:

SQLSetConnectAttr()

and

SQLSetStmtAttr()

return

SQL_ERROR

with

an

SQLSTATE

of

HY009

if

you

try

to

set

an

unsupported

isolation

level.

Isolation

levels

492

ODBC

Guide

and

Reference

Appendix

B.

Extended

scalar

functions

The

following

functions

are

defined

by

ODBC

using

vendor

escape

clauses.

Each

function

can

be

called

using

the

escape

clause

syntax,

or

calling

the

equivalent

DB2

function.

These

functions

are

presented

in

the

following

categories:

v

“String

functions”

v

“Date

and

time

functions”

on

page

494

v

“System

functions”

on

page

494

For

more

information

about

vendor

escape

clauses,

see

“ODBC

scalar

functions”

on

page

470.

All

errors

that

are

detected

by

the

following

functions

return

SQLSTATE

38552

when

you

are

connected

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server.

The

text

portion

of

the

message

is

of

the

form

SYSFUN:nn

where

nn

is

one

of

the

following

reason

codes:

01

Numeric

value

out

of

range

02

Division

by

zero

03

Arithmetic

overflow

or

underflow

04

Invalid

date

format

05

Invalid

time

format

06

Invalid

timestamp

format

07

Invalid

character

representation

of

a

timestamp

duration

08

Invalid

interval

type

(must

be

one

of

1,

2,

4,

8,

16,

32,

64,

128,

256)

09

String

too

long

10

Length

or

position

in

string

function

out

of

range

11

Invalid

character

representation

of

a

floating

point

number

String

functions

The

string

functions

in

this

section

are

supported

by

DB2

ODBC

and

defined

by

ODBC

using

vendor

escape

clauses.

The

following

rules

apply

to

input

strings

for

these

functions:

v

Character

string

literals

used

as

arguments

to

scalar

functions

must

be

enclosed

in

single

quotes.

v

Arguments

denoted

as

string_exp

can

be

the

name

of

a

column,

a

string

literal,

or

the

result

of

another

scalar

function,

where

the

underlying

data

type

can

be

represented

as

SQL_CHAR,

SQL_VARCHAR,

or

SQL_LONGVARCHAR.

v

Arguments

denoted

as

start,

length,

code,

or

count

can

be

a

numeric

literal

or

the

result

of

another

scalar

function,

where

the

underlying

data

type

is

integer

based

(SQL_SMALLINT,

SQL_INTEGER).

v

The

first

character

in

the

string

is

considered

to

be

at

position

1.

ASCII(

string_exp

)

Returns

the

ASCII

code

value

of

the

leftmost

character

of

string_exp

as

an

integer.

CONCAT(

string_exp1,

string_exp2

)

Returns

a

character

string

that

is

the

result

of

concatenating

string_exp2

to

string_exp1.

INSERT(

string_exp1,

start,

length,

string_exp2

)

Returns

a

character

string

where

length

number

of

characters

beginning

at

start

is

replaced

by

string_exp2

which

contains

length

characters.

©

Copyright

IBM

Corp.

1997,

2004

493

LEFT(

string_exp,

count

)

Returns

the

leftmost

count

of

characters

of

string_exp.

LENGTH(

string_exp

)

Returns

the

number

of

characters

in

string_exp,

excluding

trailing

blanks

and

the

string

termination

character.

REPEAT(

string_exp,

count

)

Returns

a

character

string

composed

of

string_exp

repeated

count

times.

RIGHT(

string_exp,

count

)

Returns

the

rightmost

count

of

characters

of

string_exp.

SUBSTRING(

string_exp,

start,

length

)

Returns

a

character

string

that

is

derived

from

string_exp

beginning

at

the

character

position

specified

by

start

for

length

characters.

Date

and

time

functions

The

date

and

time

functions

in

this

section

are

supported

by

DB2

ODBC

and

defined

by

ODBC

using

vendor

escape

clauses.

The

following

rules

apply

to

these

functions:

v

Arguments

denoted

as

timestamp_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

time,

date,

or

timestamp

literal.

v

Arguments

denoted

as

date_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

date

or

timestamp

literal,

where

the

underlying

data

type

can

be

character

based,

or

date

or

timestamp

based.

v

Arguments

denoted

as

time_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

time

or

timestamp

literal,

where

the

underlying

data

types

can

be

character

based,

or

time

or

timestamp

based.

CURDATE()

Returns

the

current

date

as

a

date

value.

CURTIME()

Returns

the

current

local

time

as

a

time

value.

DAYOFMONTH(

date_exp

)

Returns

the

day

of

the

month

in

date_exp

as

an

integer

value

in

the

range

of

1-31.

HOUR(

time_exp

)

Returns

the

hour

in

time_exp

as

an

integer

value

in

the

range

of

0-23.

MINUTE(

time_exp

)

Returns

the

minute

in

time_exp

as

integer

value

in

the

range

of

0-59.

MONTH(

date_exp

)

Returns

the

month

in

date_exp

as

an

integer

value

in

the

range

of

1-12.

NOW()

Returns

the

current

date

and

time

as

a

timestamp

value.

SECOND(

time_exp

)

Returns

the

second

in

time_exp

as

an

integer

value

in

the

range

of

0-59.

System

functions

The

system

functions

in

this

section

are

supported

by

DB2

ODBC

and

defined

by

ODBC

using

vendor

escape

clauses.

String

functions

494

ODBC

Guide

and

Reference

v

Arguments

denoted

as

exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

literal.

v

Arguments

denoted

as

value

can

be

a

literal

constant.

DATABASE()

Returns

the

name

of

the

database

corresponding

to

the

connection

handle

(hdbc).

(The

name

of

the

database

is

also

available

using

SQLGetInfo()

by

specifying

the

information

type

SQL_DATABASE_NAME.)

IFNULL(

exp,

value

)

If

exp

is

null,

value

is

returned.

If

exp

is

not

null,

exp

is

returned.

The

possible

data

types

of

value

must

be

compatible

with

the

data

type

of

exp.

USER()

Returns

the

user’s

authorization

name.

(The

user’s

authorization

name

is

also

available

using

SQLGetInfo()

by

specifying

the

information

type

SQL_USER_NAME.)

System

functions

Appendix

B.

Extended

scalar

functions

495

System

functions

496

ODBC

Guide

and

Reference

Appendix

C.

SQLSTATE

cross

reference

Table

233

is

a

cross-reference

of

all

the

SQLSTATEs

listed

in

the

'Diagnostics'

section

of

each

function

description

in

Chapter

4,

“Functions,”

on

page

63.

This

table

does

not

include

SQLSTATEs

that

were

remapped

between

ODBC

2.0

and

ODBC

3.0,

although

deprecated

functions

continue

to

return

these

values.

For

a

list

of

SQLSTATEs

that

were

changed

in

ODBC

3.0

see

“SQLSTATE

mappings”

on

page

528.

For

a

list

of

deprecated

functions

see

“Mapping

deprecated

functions”

on

page

525.

Important:

DB2

ODBC

can

also

return

SQLSTATEs

generated

by

the

server

that

are

not

listed

in

this

table.

If

the

returned

SQLSTATE

is

not

listed

here,

see

the

documentation

for

the

server

for

additional

SQLSTATE

information.

Table

233.

SQLSTATE

cross

reference

SQLSTATE

Description

Functions

01000

Warning.

v

SQLAllocHandle()

v

SQLCloseCursor()

v

SQLColAttribute()

v

SQLDescribeParam()

v

SQLEndTran()

v

SQLFreeHandle()

v

SQLGetConnectAttr()

v

SQLGetStmtAttr()

v

SQLSetConnectAttr()

v

SQLSetStmtAttr()

01002

Disconnect

error.

v

SQLDisconnect()

01004

Data

truncated.

v

SQLColAttribute()

v

SQLDataSources()

v

SQLDescribeCol()

v

SQLDriverConnect()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetConnectAttr()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetDiagRec()

v

SQLGetInfo()

v

SQLGetStmtAttr()

v

SQLGetSubString()

v

SQLNativeSql()

v

SQLPutData()

v

SQLSetColAttributes()

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

01S00

Invalid

connection

string

attribute.

v

SQLDriverConnect()

01S01

Error

in

row.

v

SQLExtendedFetch()

©

Copyright

IBM

Corp.

1997,

2004

497

|

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

01S02

Option

value

changed.

v

SQLDriverConnect()

v

SQLSetConnectAttr()

v

SQLSetStmtAttr()

07001

Wrong

number

of

parameters.

v

SQLExecDirect()

v

SQLExecute()

07002

Too

many

columns.

v

SQLExtendedFetch()

v

SQLFetch()

07005

The

statement

did

not

return

a

result

set.

v

SQLColAttribute()

v

SQLDescribeCol()

07006

Invalid

conversion.

v

SQLBindParameter()

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

08001

Unable

to

connect

to

data

source.

v

SQLConnect()

08002

Connection

in

use.

v

SQLConnect()

08003

Connection

is

closed.

v

SQLAllocHandle()

v

SQLDisconnect()

v

SQLEndTran()

v

SQLFreeHandle()

v

SQLGetConnectAttr()

v

SQLGetInfo()

v

SQLNativeSql()

v

SQLSetConnectAttr()

v

SQLSetConnection()

08004

The

application

server

rejected

establishment

of

the

connection.

v

SQLConnect()

08007

Connection

failure

during

transaction.

v

SQLEndTran()

08S01

Communication

link

failure.

v

SQLSetConnectAttr()

v

SQLSetStmtAttr()

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

21S01

Insert

value

list

does

not

match

column

list.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

21S02

Degrees

of

derived

table

does

not

match

column

list.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

22001

String

data

right

truncation.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPutData()

SQLSTATE

cross

reference

498

ODBC

Guide

and

Reference

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

22002

Invalid

output

or

indicator

buffer

specified.

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

22008

Invalid

datetime

format

or

datetime

field

overflow.

v

SQLExecDirect()

v

SQLExecute()

v

SQLParamData()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

v

SQLPutData()

22011

A

substring

error

occurred.

v

SQLGetSubString()

22012

Division

by

zero

is

invalid.

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

22018

Error

in

assignment.

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

v

SQLPutData()

23000

Integrity

constraint

violation.

v

SQLExecDirect()

v

SQLExecute()

24000

Invalid

cursor

state.

v

SQLCloseCursor()

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLForeignKeys()

v

SQLGetData()

v

SQLGetStmtAttr()

v

SQLGetTypeInfo()

v

SQLPrepare()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLSetColAttributes()

v

SQLSetStmtAttr()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTablePrivileges()

v

SQLTables()

24504

The

cursor

identified

in

the

UPDATE,

DELETE,

SET,

or

GET

statement

is

not

positioned

on

a

row.

v

SQLExecDirect()

v

SQLExecute()

25000

25501

Invalid

transaction

state.

v

SQLDisconnect()

SQLSTATE

cross

reference

Appendix

C.

SQLSTATE

cross

reference

499

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

34000

Invalid

cursor

name.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

v

SQLSetCursorName()

37xxx

Invalid

SQL

syntax.

v

SQLExecDirect()

v

SQLExecute()

v

SQLNativeSql()

v

SQLPrepare()

40001

Transaction

rollback.

v

SQLEndTran()

v

SQLExecDirect()

v

SQLExecute()

v

SQLParamData()

v

SQLPrepare()

40003

Communication

link

failure.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLCancel()

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLDescribeCol()

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLForeignKeys()

v

SQLFreeStmt()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetFunctions()

v

SQLGetInfo()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

v

SQLGetTypeInfo()

v

SQLMoreResults()

v

SQLNumParams()

v

SQLNumResultCols()

v

SQLParamData()

v

SQLParamOptions()

v

SQLPrepare()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLPutData()

v

SQLRowCount()

v

SQLSetColAttributes()

v

SQLSetCursorName()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTablePrivileges()

v

SQLTables()

SQLSTATE

cross

reference

500

ODBC

Guide

and

Reference

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

42xxx

Syntax

error

or

access

rule

violation

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42000

Invalid

SQL

syntax.

v

SQLNativeSql()

425xx

Syntax

error

or

access

rule

violation

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42601

PARMLIST

syntax

error.

v

SQLProcedureColumns()

42818

The

operands

of

an

operator

or

function

are

not

compatible.

v

SQLGetPosition()

42895

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

cannot

be

used

because

of

its

data

type

v

SQLExecDirect()

v

SQLExecute()

42S011

Database

object

already

exists.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42S02

Database

object

does

not

exist.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42S11

Index

already

exists.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42S12

Index

not

found.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42S21

Column

already

exists.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

42S22

Column

not

found.

v

SQLExecDirect()

v

SQLExecute()

v

SQLPrepare()

44000

Integrity

constraint

violation.

v

SQLExecDirect()

v

SQLExecute()

54028

The

maximum

number

of

concurrent

LOB

handles

has

been

reached.

v

SQLFetch()

SQLSTATE

cross

reference

Appendix

C.

SQLSTATE

cross

reference

501

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

58004

Unexpected

system

failure.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLConnect()

v

SQLDriverConnect()

v

SQLDataSources()

v

SQLDescribeCol()

v

SQLDisconnect()

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLFreeStmt()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetFunctions()

v

SQLGetInfo()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

v

SQLMoreResults()

v

SQLNumResultCols()

v

SQLPrepare()

v

SQLRowCount()

v

SQLSetCursorName()

HY0002

General

error.

v

SQLAllocHandle()

v

SQLCloseCursor()

v

SQLColAttribute()

v

SQLDescribeParam()

v

SQLEndTran()

v

SQLFreeHandle()

v

SQLGetConnectAttr()

v

SQLGetStmtAttr()

v

SQLSetColAttributes()

v

SQLSetConnection()

v

SQLSetStmtAttr()

HY001

Memory

allocation

failure.

All

functions.

HY002

Invalid

column

number.

v

SQLBindCol()

v

SQLColAttribute()

v

SQLDescribeCol()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

v

SQLSetColAttributes()

HY003

Program

type

out

of

range.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLGetData()

v

SQLGetLength()

v

SQLGetSubString()

HY004

Invalid

SQL

data

type.

v

SQLBindParameter()

v

SQLGetTypeInfo()

SQLSTATE

cross

reference

502

ODBC

Guide

and

Reference

|

|

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

HY009

Invalid

use

of

a

null

pointer.

v

SQLAllocHandle()

v

SQLBindParameter()

v

SQLColumnPrivileges()

v

SQLExecDirect()

v

SQLForeignKeys()

v

SQLGetData()

v

SQLGetFunctions()

v

SQLGetInfo()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLNativeSql()

v

SQLNumParams()

v

SQLNumResultCols()

v

SQLPrepare()

v

SQLPutData()

v

SQLSetCursorName()

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

SQLSTATE

cross

reference

Appendix

C.

SQLSTATE

cross

reference

503

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

HY010

Function

sequence

error.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLCloseCursor()

v

SQLColAttribute()

v

SQLColumns()

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLDisconnect()

v

SQLEndTran()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLForeignKeys()

v

SQLFreeHandle()

v

SQLFreeStmt()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetFunctions()

v

SQLGetStmtAttr()

v

SQLGetTypeInfo()

v

SQLMoreResults()

v

SQLNumParams()

v

SQLNumResultCols()

v

SQLParamData()

v

SQLParamOptions()

v

SQLPrepare()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLPutData()

v

SQLRowCount()

v

SQLSetColAttributes()

v

SQLSetConnectAttr()

v

SQLSetCursorName()

v

SQLSetStmtAttr()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTablePrivileges()

v

SQLTables()

HY011

Operation

invalid

at

this

time.

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

HY012

Invalid

transaction

code.

v

SQLEndTran()

SQLSTATE

cross

reference

504

ODBC

Guide

and

Reference

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

HY013

Unexpected

memory

handling

error.

v

SQLAllocHandle()

v

SQLBindCol()

v

SQLBindParameter()

v

SQLCancel()

v

SQLCloseCursor()

v

SQLConnect()

v

SQLDataSources()

v

SQLDescribeCol()

v

SQLDisconnect()

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLFreeHandle()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetFunctions()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetStmtAttr()

v

SQLGetSubString()

v

SQLMoreResults()

v

SQLNumParams()

v

SQLNumResultCols()

v

SQLPrepare()

v

SQLRowCount()

v

SQLSetColAttributes()

v

SQLSetCursorName()

HY014

No

more

handles.

v

SQLAllocHandle()

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLExecDirect()

v

SQLExecute()

v

SQLForeignKeys()

v

SQLPrepare()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTablePrivileges()

v

SQLTables()

HY015

No

cursor

name

available.

v

SQLGetCursorName()

HY019

Numeric

value

out

of

range.

v

SQLExecDirect()

v

SQLExecute()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLGetData()

v

SQLPutData()

SQLSTATE

cross

reference

Appendix

C.

SQLSTATE

cross

reference

505

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

HY024

Invalid

argument

value.

v

SQLConnect()

v

SQLGetSubString()

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

HY090

Invalid

string

or

buffer

length.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLColAttribute()

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLConnect()

v

SQLDataSources()

v

SQLDescribeCol()

v

SQLDriverConnect()

v

SQLExecDirect()

v

SQLParamData()

v

SQLForeignKeys()

v

SQLGetConnectAttr()

v

SQLGetCursorName()

v

SQLGetData()

v

SQLGetInfo()

v

SQLGetPosition()

v

SQLGetStmtAttr()

v

SQLGetSubString()

v

SQLNativeSql()

v

SQLPrepare()

v

SQLPrimaryKeys()

v

SQLProcedures()

v

SQLProcedureColumns()

v

SQLPutData()

v

SQLSetColAttributes()

v

SQLSetConnectAttr()

v

SQLSetCursorName()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTables()

v

SQLTablePrivileges()

HY091

Descriptor

type

out

of

range.

v

SQLColAttribute()

HY092

Option

type

out

of

range.

v

SQLAllocHandle()

v

SQLEndTran()

v

SQLFreeStmt()

v

SQLGetConnectAttr()

v

SQLGetCursorName()

v

SQLGetEnvAttr()

v

SQLGetStmtAttr()

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

SQLSTATE

cross

reference

506

ODBC

Guide

and

Reference

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

HY093

Invalid

parameter

number.

v

SQLBindParameter()

v

SQLDescribeParam()

HY096

Information

type

out

of

range.

v

SQLGetInfo()

HY097

Column

type

out

of

range.

v

SQLSpecialColumns()

HY098

Scope

type

out

of

range.

v

SQLSpecialColumns()

HY099

Nullable

type

out

of

range.

v

SQLSpecialColumns()

HY100

Uniqueness

option

type

out

of

range.

v

SQLStatistics()

HY101

Accuracy

option

type

out

of

range.

v

SQLStatistics()

HY103

Direction

option

out

of

range.

v

SQLDataSources()

HY104

Invalid

precision

or

scale

value.

v

SQLBindParameter()

v

SQLSetColAttributes()

HY105

Invalid

parameter

type.

v

SQLBindParameter()

HY106

Fetch

type

out

of

range.

v

SQLExtendedFetch()

HY107

Row

value

out

of

range.

v

SQLParamOptions()

HY109

Invalid

cursor

position.

v

SQLGetStmtAttr()

HY110

Invalid

driver

completion.

v

SQLDriverConnect()

HY501

Invalid

data

source

name.

v

SQLConnect()

HY506

Error

closing

a

file.

v

SQLFreeHandle()

HYC00

Driver

not

capable.

v

SQLBindCol()

v

SQLBindParameter()

v

SQLColAttribute()

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLExtendedFetch()

v

SQLFetch()

v

SQLForeignKeys()

v

SQLGetConnectAttr()

v

SQLGetData()

v

SQLGetInfo()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetStmtAttr()

v

SQLGetSubString()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLSetConnectAttr()

v

SQLSetEnvAttr()

v

SQLSetStmtAttr()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTables()

v

SQLTablePrivileges()

SQLSTATE

cross

reference

Appendix

C.

SQLSTATE

cross

reference

507

|

|

||

Table

233.

SQLSTATE

cross

reference

(continued)

SQLSTATE

Description

Functions

Notes:

1.

42Sxx

SQLSTATEs

replace

S00xx

SQLSTATEs.

2.

HYxxx

SQLSTATEs

replace

S1xxx

SQLSTATEs.

SQLSTATE

cross

reference

508

ODBC

Guide

and

Reference

Appendix

D.

Data

conversion

This

appendix

contains

tables

used

for

data

conversion

between

C

and

SQL

data

types.

This

includes:

v

Precision,

scale,

length,

and

display

size

of

each

data

type

v

Conversion

from

SQL

to

C

data

types

v

Conversion

from

C

to

SQL

data

types

For

a

list

of

SQL

and

C

data

types,

their

symbolic

types,

and

the

default

conversions,

see

Table

4

on

page

25

and

Table

5

on

page

27.

Supported

conversions

are

shown

in

Table

8

on

page

29

and

Table

9

on

page

32.

Identifiers

for

date,

time,

and

timestamp

data

types

changed

in

ODBC

3.0.

See

“Changes

to

datetime

data

types”

on

page

529

for

the

data

type

mappings.

SQL

data

type

attributes

This

section

presents

the

following

attributes

for

each

SQL

data

type:

v

“Precision

of

SQL

data

types”

v

“Scale

of

SQL

data

types”

on

page

510

v

“Length

of

SQL

data

types”

on

page

510

v

“Display

size

of

SQL

data

types”

on

page

511

Precision

of

SQL

data

types

The

precision

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

used

by

the

data

type

of

the

column

or

parameter.

The

precision

of

a

nonnumeric

column

or

parameter

generally

refers

to

the

maximum

length

or

the

defined

length

of

the

column

or

parameter.

Table

234

defines

the

precision

for

each

SQL

data

type.

Table

234.

Precision

of

SQL

data

types

fSqlType

Precision

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

number

of

characters

for

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length,

in

characters,

of

the

column

or

parameter.1

SQL_DECIMAL

SQL_NUMERIC

The

defined

maximum

number

of

digits.

For

example,

the

precision

of

a

column

defined

as

NUMERIC(10,3)

is

10.

SQL_SMALLINT2

5

SQL_INTEGER2

10

SQL_FLOAT2

15

SQL_REAL2

7

SQL_ROWID

40

SQL_DOUBLE2

15

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length,

in

characters,

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA,

is

10.

SQL_LONGVARBINARY

The

maximum

length,

in

characters,

of

the

column

or

parameter.

SQL_TYPE_DATE2

10

(the

number

of

characters

in

the

yyyy-mm-dd

format).

SQL_TYPE_TIME2

8

(the

number

of

characters

in

the

hh:mm:ss

format).

©

Copyright

IBM

Corp.

1997,

2004

509

Table

234.

Precision

of

SQL

data

types

(continued)

fSqlType

Precision

SQL_TYPE_TIMESTAMP

The

number

of

characters

in

the

"yyyy-mm-dd

hh:mm:ss[.fff[fff]]”

or

"yyyy-mm-dd.hh.mm.ss.fff[fff]]”

format

used

by

the

TIMESTAMP

data

type.

For

example,

if

a

timestamp

does

not

use

seconds

or

fractional

seconds,

the

precision

is

16

(the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm”

format).

If

a

timestamp

uses

thousandths

of

a

second,

the

precision

is

26

(the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm:ss.ffffff”

format).

The

maximum

for

fractional

seconds

is

6

digits.

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The

defined

length,

in

characters,

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

GRAPHIC(10)

is

10.

SQL_LONGVARGRAPHIC

The

maximum

length,

in

characters,

of

the

column

or

parameter.

Notes:

1.

When

defining

the

precision

of

a

parameter

of

this

data

type

with

SQLBindParameter(),

cbColDef

should

be

set

to

the

total

length

in

bytes

of

the

data,

not

the

precision

as

defined

in

this

table.

2.

The

cbColDef

argument

of

SQLBindParameter()

is

ignored

for

this

data

type.

Scale

of

SQL

data

types

The

scale

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

to

the

right

of

the

decimal

point.

For

approximate

floating

point

number

columns

or

parameters,

the

scale

is

undefined,

because

the

number

of

digits

to

the

right

of

the

decimal

place

is

not

fixed.

Table

235

defines

the

scale

for

each

SQL

data

type.

Table

235.

Scale

of

SQL

data

types

fSqlType

Scale

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Not

applicable.

SQL_DECIMAL

SQL_NUMERIC

The

defined

number

of

digits

to

the

right

of

the

decimal

place.

For

example,

the

scale

of

a

column

defined

as

NUMERIC(10,3)

is

3.

SQL_SMALLINT

SQL_INTEGER

0

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Not

applicable.

SQL_ROWID

Not

applicable.

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Not

applicable.

SQL_TYPE_DATE

SQL_TYPE_TIME

Not

applicable.

SQL_TYPE_TIMESTAMP

The

number

of

digits

to

the

right

of

the

decimal

point

in

the

"yyyy-mm-dd

hh:mm:ss[fff[fff]]”

format.

For

example,

if

the

TIMESTAMP

data

type

uses

the

"yyyy-mm-dd

hh:mm:ss.fff”

format,

the

scale

is

3.

The

maximum

for

fractional

seconds

is

6

digits.

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Not

applicable.

Length

of

SQL

data

types

The

length

of

a

column

is

the

maximum

number

of

bytes

returned

to

the

application

when

data

is

transferred

to

its

default

C

data

type.

For

character

data,

the

length

does

not

include

the

nul-termination

character.

Note

that

the

length

of

a

column

can

SQL

data

type

attributes

510

ODBC

Guide

and

Reference

|

|

be

different

than

the

number

of

bytes

required

to

store

the

data

on

the

data

source.

For

a

list

of

default

C

data

types,

see

the

"Default

C

Data

Types”

section.

Table

236

defines

the

length

for

each

SQL

data

type.

Table

236.

Length

of

SQL

data

types

fSqlType

Length

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

length,

in

bytes,

of

the

column.

For

example,

the

length

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length,

in

bytes,

of

the

column.

SQL_DECIMAL

SQL_NUMERIC

The

maximum

number

of

digits

plus

two

bytes.

Because

these

data

types

are

returned

as

character

strings,

characters

are

needed

for

the

digits,

a

sign,

and

a

decimal

point.

For

example,

the

length

of

a

column

defined

as

NUMERIC(10,3)

is

12.

SQL_SMALLINT

2

bytes

SQL_INTEGER

4

bytes

SQL_REAL

4

bytes

SQL_ROWID

40

bytes

SQL_FLOAT

8

bytes

SQL_DOUBLE

8

bytes

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length,

in

bytes,

of

the

column.

For

example,

the

length

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA

is

10.

SQL_LONGVARBINARY

The

maximum

length,

in

bytes,

of

the

column.

SQL_TYPE_DATE

SQL_TYPE_TIME

6

bytes

(the

size

of

the

DATE_STRUCT

or

TIME_STRUCT

structure).

SQL_TYPE_TIMESTAMP

16

bytes

(the

size

of

the

TIMESTAMP_STRUCT

structure).

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The

defined

length

of

the

column

times

2

bytes.

For

example,

the

length

of

a

column

defined

as

GRAPHIC(10)

is

20.

SQL_LONGVARGRAPHIC

The

maximum

length

of

the

column

times

2

bytes.

Display

size

of

SQL

data

types

The

display

size

of

a

column

is

the

maximum

number

of

bytes

that

are

needed

to

display

data

in

character

form.

Table

237

defines

the

display

size

for

each

SQL

data

type.

Table

237.

Display

size

of

SQL

data

types

fSqlType

Display

size

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

length,

in

bytes,

of

the

column.

For

example,

the

display

size

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length,

in

bytes,

of

the

column.

SQL_DECIMAL

SQL_NUMERIC

The

precision

of

the

column

plus

two

bytes

(a

sign,

precision

digits,

and

a

decimal

point).

For

example,

the

display

size

of

a

column

defined

as

NUMERIC(10,3)

is

12.

SQL_SMALLINT

6

bytes

(a

sign

and

5

digits).

SQL_INTEGER

11

bytes

(a

sign

and

10

digits).

SQL_REAL

13

bytes

(a

sign,

7

digits,

a

decimal

point,

the

letter

E,

a

sign,

and

2

digits).

SQL_ROWID

40

bytes

SQL_FLOAT

SQL_DOUBLE

22

bytes

(a

sign,

15

digits,

a

decimal

point,

the

letter

E,

a

sign,

and

3

digits).

SQL

data

type

attributes

Appendix

D.

Data

conversion

511

Table

237.

Display

size

of

SQL

data

types

(continued)

fSqlType

Display

size

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length

of

the

column

times

2

bytes.

(Each

binary

byte

is

represented

by

a

2

digit

hexadecimal

number.)

For

example,

the

display

size

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA

is

20.

SQL_LONGVARBINARY

The

maximum

length

of

the

column

times

2

bytes.

SQL_TYPE_DATE

10

bytes

(a

date

in

the

format

yyyy-mm-dd).

SQL_TYPE_TIME

8

bytes

(a

time

in

the

format

hh:mm:ss).

SQL_TYPE_TIMESTAMP

19

bytes

(if

the

scale

of

the

timestamp

is

0)

or

20

bytes

plus

the

scale

of

the

timestamp

(if

the

scale

is

greater

than

0).

This

is

the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm:ss[fff[fff]]”

or

"yyyy-mm-dd.hh.mm.ss.fff[fff]]”

format.

For

example,

the

display

size

of

a

column

storing

thousandths

of

a

second

is

23

bytes

(the

number

of

characters

in

"yyyy-mm-dd

hh:mm:ss.ffffff”).

The

maximum

for

fractional

seconds

is

6

digits.

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The

defined

length

of

the

column

or

parameter

times

two

bytes.

For

example,

the

display

size

of

a

column

defined

as

GRAPHIC(10)

is

20

bytes.

SQL_LONGVARGRAPHIC

The

maximum

length,

in

bytes,

of

the

column

or

parameter.

Converting

data

from

SQL

to

C

data

types

For

each

SQL

data

conversion

type

a

table

lists

conversion

information.

Each

column

in

these

tables

lists

the

following

information:

v

The

first

column

of

the

table

lists

the

legal

input

values

of

the

fCType

argument

in

SQLBindCol()

and

SQLGetData().

v

The

second

column

lists

the

outcomes

of

a

test,

often

using

the

cbValueMax

argument

specified

in

SQLBindCol()

or

SQLGetData(),

which

the

driver

performs

to

determine

if

it

can

convert

the

data.

v

The

third

and

fourth

columns

list

the

values

(for

each

outcome)

of

the

rgbValue

and

pcbValue

arguments

specified

in

the

SQLBindCol()

or

SQLGetData()

after

the

driver

has

attempted

to

convert

the

data.

v

The

last

column

lists

the

SQLSTATE

returned

for

each

outcome

by

SQLFetch(),

SQLExtendedFetch(),

or

SQLGetData().

The

tables

list

the

conversions

defined

by

ODBC

to

be

valid

for

a

given

SQL

data

type.

If

the

fCType

argument

in

SQLBindCol()

or

SQLGetData()

contains

a

value

not

shown

in

the

table

for

a

given

SQL

data

type,

SQLFetch(),

or

SQLGetData()

returns

the

SQLSTATE

07006

(restricted

data

type

attribute

violation).

If

the

fCType

argument

contains

a

value

shown

in

the

table

but

which

specifies

a

conversion

not

supported

by

the

driver,

SQLFetch(),

or

SQLGetData()

returns

SQLSTATE

HYC00

(driver

not

capable).

Though

it

is

not

shown

in

the

tables,

the

pcbValue

argument

contains

SQL_NULL_DATA

when

the

SQL

data

value

is

null.

For

an

explanation

of

the

use

of

pcbValue

when

multiple

calls

are

made

to

retrieve

data,

see

SQLGetData().

When

SQL

data

is

converted

to

character

C

data,

the

character

count

returned

in

pcbValue

does

not

include

the

nul-termination

character.

If

rgbValue

is

a

null

pointer,

SQLBindCol()

or

SQLGetData()

returns

SQLSTATE

HY009

(Invalid

argument

value).

SQL

data

type

attributes

512

ODBC

Guide

and

Reference

In

the

following

tables:

Data

length

The

total

length,

in

bytes,

of

the

data

after

it

has

been

converted

to

the

specified

C

data

type

(excluding

the

nul-termination

character

if

the

data

was

converted

to

a

string).

This

is

true

even

if

data

is

truncated

before

it

is

returned

to

the

application.

Significant

digits

The

minus

sign

(if

needed)

and

the

digits

to

the

left

of

the

decimal

point.

Display

size

The

total

number

of

bytes

needed

to

display

data

in

the

character

format.

Converting

character

SQL

data

to

C

data

The

character

SQL

data

types

are:

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Table

238

shows

information

about

converting

character

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

238.

Converting

character

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Data

length

<

cbValueMax

Data

Data

length

(in

bytes)

000001

Data

length

>=

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

SQL_C_BINARY

Data

length

<=

cbValueMax

Data

Data

length

(in

bytes)

000001

Data

length

>

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_BIT

Data

converted

without

truncation2

Data

Size

(in

bytes)

of

the

C

data

type

000001

Data

converted

with

truncation,

but

without

loss

of

significant

digits2

Data

Size

(in

bytes)

of

the

C

data

type

01004

Conversion

of

data

would

result

in

loss

of

significant

digits2

Untouched

Size

(in

bytes)

of

the

C

data

type

22003

Data

is

not

a

number2

Untouched

Size

(in

bytes)

of

the

C

data

type

22005

SQL_C_TYPE_DATE

Data

value

is

a

valid

date2

Data

63

000001

Data

value

is

not

a

valid

date2

Untouched

63

22008

SQL_C_TYPE_TIME

Data

value

is

a

valid

time2

Data

63

000001

Data

value

is

not

a

valid

time2

Untouched

63

22008

SQL

to

C

data

types

Appendix

D.

Data

conversion

513

Table

238.

Converting

character

SQL

data

to

C

data

(continued)

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_TYPE_TIMESTAMP

Data

value

is

a

valid

timestamp2

Data

163

000001

Data

value

is

not

a

valid

timestamp2

Untouched

163

22008

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

3.

This

is

the

size

of

the

corresponding

C

data

type.

Converting

graphic

SQL

data

to

C

data

The

graphic

SQL

data

types

are:

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Table

239

shows

information

about

converting

graphic

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

239.

Converting

graphic

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Number

of

double-byte

characters

*

2

<=

cbValueMax

Data

Length

of

data

(in

bytes)

000001

Number

of

double-byte

characters

*

2

<=

cbValueMax

Truncated

data,

to

the

nearest

even

byte

that

is

less

than

cbValueMax.

Length

of

data

(in

bytes)

01004

SQL_C_DBCHAR

Number

of

double-byte

characters

*

2

<

cbValueMax

Data

Length

of

data

(in

bytes)

000001

Number

of

double-byte

characters

*

2

>=

cbValueMax

Truncated

cbValueMax.

data,

to

the

nearest

even

byte

that

is

less

than

cbValueMax.

Length

of

data

(in

bytes)

01004

Note:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

numeric

SQL

data

to

C

data

The

numeric

SQL

data

types

are:

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_REAL

SQL

to

C

data

types

514

ODBC

Guide

and

Reference

SQL_FLOAT

SQL_DOUBLE

Table

240

shows

information

about

converting

numeric

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

240.

Converting

numeric

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Display

size

<

cbValueMax

Data

Data

length

(in

bytes)

000001

Number

of

significant

digits

<

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

Number

of

significant

digits

>=

cbValueMax

Untouched

Data

length

(in

bytes)

22003

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_BIT

Data

converted

without

truncation2

Data

Size

(in

bytes)

of

the

C

data

type

000001

Data

converted

with

truncation,

but

without

loss

of

significant

digits2

Truncated

data

Size

(in

bytes)

of

the

C

data

type

01004

Conversion

of

data

would

result

in

loss

of

significant

digits2

Untouched

Size

(in

bytes)

of

the

C

data

type

22003

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

Converting

binary

SQL

data

to

C

data

The

binary

SQL

data

types

are:

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Table

241

shows

information

about

converting

binary

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

241.

Converting

binary

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

(Data

length)

<

cbValueMax

Data

Data

length

(in

bytes)

N/A

(Data

length)

>=

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

SQL_C_BINARY

Data

length

<=

cbValueMax

Data

Data

length

(in

bytes)

N/A

Data

length

>

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

SQL

to

C

data

types

Appendix

D.

Data

conversion

515

Converting

date

SQL

data

to

C

data

The

date

SQL

data

type

is:

SQL_TYPE_DATE

Table

242

shows

information

about

converting

date

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

242.

Converting

date

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

cbValueMax

>=

11

Data

10

000001

cbValueMax

<

11

Untouched

10

22003

SQL_C_TYPE_DATE

None2

Data

64

000001

SQL_C_TYPE_TIMESTAMP

None2

Data3

164

000001

SQL_C_BINARY

Data

length

<=

cbValueMax

Data

Data

length

(in

bytes)

000001

Data

length

>

cbValueMax

Untouched

Untouched

22003

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

3.

The

time

fields

of

the

TIMESTAMP_STRUCT

structure

are

set

to

zero.

4.

This

is

the

size

of

the

corresponding

C

data

type.

When

the

date

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"yyyy-mm-dd”

format.

Converting

time

SQL

data

to

C

data

The

time

SQL

data

type

is:

SQL_TYPE_TIME

Table

243

shows

information

about

converting

time

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

243.

Converting

time

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

cbValueMax

>=

9

Data

8

000001

cbValueMax

<

9

Untouched

8

22003

SQL_C_TYPE_TIME

None2

Data

63

000001

SQL_C_TYPE_TIMESTAMP

None2

Data4

163

000001

SQL

to

C

data

types

516

ODBC

Guide

and

Reference

Table

243.

Converting

time

SQL

data

to

C

data

(continued)

fCType

Test

rgbValue

pcbValue

SQLSTATE

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

3.

This

is

the

size

of

the

corresponding

C

data

type.

4.

The

date

fields

of

the

TIMESTAMP_STRUCT

structure

are

set

to

the

current

system

date

of

the

machine

that

the

application

is

running,

and

the

time

fraction

is

set

to

zero.

When

the

time

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"hh:mm:ss”

format.

Converting

timestamp

SQL

data

to

C

data

The

timestamp

SQL

data

type

is:

SQL_TYPE_TIMESTAMP

Table

244

shows

information

about

converting

timestamp

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

244.

Converting

timestamp

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Display

size

<

cbValueMax

Data

Data

length

(in

bytes)

000001

19

<=

cbValueMax

<=

Display

size

Truncated

data2

Data

length

(in

bytes)

01004

cbValueMax

<

19

Untouched

Data

length

(in

bytes)

22003

SQL_C_TYPE_DATE

None

Truncated

data3

64

01004

SQL_C_TYPE_TIME

None5

Truncated

data6

64

01004

SQL_C_TYPE_TIMESTAMP

None5

Data

164

000001

Fractional

seconds

portion

of

timestamp

is

truncated.5

Data2

16

01004

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

fractional

seconds

of

the

timestamp

are

truncated.

3.

The

time

portion

of

the

timestamp

is

deleted.

4.

This

is

the

size

of

the

corresponding

C

data

type.

5.

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

6.

The

date

portion

of

the

timestamp

is

deleted.

When

the

timestamp

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"yyyy-mm-dd

hh:mm:ss[.fff[fff]]”

format

(regardless

of

the

precision

of

the

timestamp

SQL

data

type).

SQL

to

C

data

types

Appendix

D.

Data

conversion

517

Converting

row

ID

SQL

data

to

C

data

The

row

ID

SQL

data

type

is:

SQL_ROWID

Table

245

shows

information

about

converting

row

ID

SQL

data

to

C

data.

See

“Converting

data

from

SQL

to

C

data

types”

on

page

512

for

a

detailed

description

of

each

table

column.

Table

245.

Converting

row

ID

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Data

length

<

=

cbValueMax

Data

Data

length

(in

bytes)

00000

Data

length

>

cbValueMax

Truncated

data

Data

length

(in

bytes)

01004

SQL

to

C

data

conversion

examples

Table

246

shows

example

SQL

to

C

data

conversions

and

the

SQLSTATE

associated

with

these

conversions.

Table

246.

SQL

to

C

data

conversion

examples

SQL

data

type

SQL

data

value

C

data

type

cbValueMax

rgbValue

SQLSTATE

SQL_CHAR

abcdef

SQL_C_CHAR

7

abcdef\01

000002

SQL_CHAR

abcdef

SQL_C_CHAR

6

abcde\0

1

01004

SQL_DECIMAL

1234.56

SQL_C_CHAR

8

1234.56\0

1

000002

SQL_DECIMAL

1234.56

SQL_C_CHAR

5

1234\0

1

01004

SQL_DECIMAL

1234.56

SQL_C_CHAR

4

22003

SQL_DECIMAL

1234.56

SQL_C_FLOAT

Ignored

1234.56

000002

SQL_DECIMAL

1234.56

SQL_C_SHORT

Ignored

1234

01004

SQL_TYPE_DATE

1992-12-31

SQL_C_CHAR

11

1992-12-31\0

1

000002

SQL_TYPE_DATE

1992-12-31

SQL_C_CHAR

10

22003

SQL_TYPE_DATE

1992-12-31

SQL_C_TYPE_TIMESTAMP

Ignored

1992,12,31,

0,0,0,03

000002

SQL_TYPE_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

23

1992-12-31

23:45:55.12\0

1

000002

SQL_TYPE_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

22

1992-12-31

23:45:55.1\0

1

01004

SQL_TYPE_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

18

22003

Notes:

1.

″\0″

represents

a

nul-termination

character.

2.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

3.

The

numbers

in

this

list

are

the

numbers

stored

in

the

fields

of

the

TIMESTAMP_STRUCT

structure.

SQL

to

C

data

types

518

ODBC

Guide

and

Reference

Converting

data

from

C

to

SQL

data

types

For

each

C

data

conversion

type

a

table

lists

conversion

information.

Each

column

in

these

tables

lists

the

following

information:

v

The

first

column

of

the

table

lists

the

legal

input

values

of

the

fSqlType

argument

in

SQLBindParameter().

v

The

second

column

lists

the

outcomes

of

a

test,

often

using

the

length,

in

bytes,

of

the

parameter

data

as

specified

in

the

pcbValue

argument

in

SQLBindParameter(),

which

the

driver

performs

to

determine

if

it

can

convert

the

data.

v

The

third

column

lists

the

SQLSTATE

returned

for

each

outcome

by

SQLExecDirect()

or

SQLExecute().

Important:

Data

is

sent

to

the

data

source

only

if

the

SQLSTATE

is

00000

(success).

The

tables

list

the

conversions

defined

by

ODBC

to

be

valid

for

a

given

SQL

data

type.

If

the

fSqlType

argument

in

SQLBindParameter()

contains

a

value

not

shown

in

the

table

for

a

given

C

data

type,

SQLSTATE

07006

is

returned

(Restricted

data

type

attribute

violation).

If

the

fSqlType

argument

contains

a

value

shown

in

the

table

but

which

specifies

a

conversion

not

supported

by

the

driver,

SQLBindParameter()

returns

SQLSTATE

HYC00

(Driver

not

capable).

If

the

rgbValue

and

pcbValue

arguments

specified

in

SQLBindParameter()

are

both

null

pointers,

that

function

returns

SQLSTATE

HY009

(Invalid

argument

value).

Data

length

The

total

length

in

bytes

of

the

data

after

it

has

been

converted

to

the

specified

SQL

data

type

(excluding

the

nul-termination

character

if

the

data

was

converted

to

a

string).

This

is

true

even

if

data

is

truncated

before

it

is

sent

to

the

data

source.

Column

length

The

maximum

number

of

bytes

returned

to

the

application

when

data

is

transferred

to

its

default

C

data

type.

For

character

data,

the

length

does

not

include

the

nul-termination

character.

Display

size

The

maximum

number

of

bytes

needed

to

display

data

in

character

form.

Significant

digits

The

minus

sign

(if

needed)

and

the

digits

to

the

left

of

the

decimal

point.

Converting

character

C

data

to

SQL

data

The

character

C

data

type

is:

SQL_C_CHAR

Table

247

on

page

520

shows

information

about

converting

character

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

for

a

detailed

description

of

each

table

column.

C

to

SQL

data

types

Appendix

D.

Data

conversion

519

Table

247.

Converting

character

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Data

length

<=

Column

length

000001

Data

length

>

Column

length

01004

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data

converted

without

truncation

000001

Data

converted

with

truncation,

but

without

loss

of

significant

digits

01004

Conversion

of

data

would

result

in

loss

of

significant

digits

22003

Data

value

is

not

a

numeric

value

22005

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

(Data

length)

<

Column

length

N/A

(Data

length)

>=

Column

length

01004

Data

value

is

not

a

hexadecimal

value

22005

SQL_ROWID

Data

length

<=

Column

length

000001

Data

length

>

Column

length

01004

SQL_TYPE_DATE

Data

value

is

a

valid

date

000001

Data

value

is

not

a

valid

date

22008

SQL_TYPE_TIME

Data

value

is

a

valid

time

000001

Data

value

is

not

a

valid

time

22008

Data

value

is

a

valid

timestamp;

time

portion

is

nonzero

01004

SQL_TYPE_TIMESTAMP

Data

value

is

a

valid

timestamp

Data

value

is

a

valid

timestamp;

fractional

seconds

portion

is

nonzero

000001

or

01004

Data

value

is

not

a

valid

timestamp

Data

value

is

a

valid

timestamp;

fractional

seconds

portion

is

nonzero

22008

or

01004

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Data

length

/

2

<=

Column

length

000001

Data

length

/

2

<

Column

length

01004

Note:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

numeric

C

data

to

SQL

data

The

numeric

C

data

types

are:

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_BIT

Table

248

on

page

521

shows

information

about

converting

numeric

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

C

to

SQL

data

types

520

ODBC

Guide

and

Reference

Table

248.

Converting

numeric

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data

converted

without

truncation

000001

Data

converted

with

truncation,

but

without

loss

of

significant

digits

01004

Conversion

of

data

would

result

in

loss

of

significant

digits

22003

SQL_CHAR

SQL_VARCHAR

Data

converted

without

truncation.

000001

Conversion

of

data

would

result

in

loss

of

significant

digits.

22003

Note:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

binary

C

data

to

SQL

data

The

binary

C

data

type

is:

SQL_C_BINARY

Table

249

shows

information

about

converting

binary

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

Table

249.

Converting

binary

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Data

length

<=

Column

length

N/A

Data

length

>

Column

length

01004

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Data

length

<=

Column

length

N/A

Data

length

>

Column

length

01004

Converting

double-byte

character

C

data

to

SQL

data

The

double-byte

C

data

type

is:

SQL_C_DBCHAR

Table

250

shows

information

about

converting

double-byte

character

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

Table

250.

Converting

double-byte

character

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Data

length

<=

Column

length

x

2

N/A

Data

length

>

Column

length

x

2

01004

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Data

length

<=

Column

length

x

2

N/A

Data

length

>

Column

length

x

2

01004

C

to

SQL

data

types

Appendix

D.

Data

conversion

521

Converting

date

C

data

to

SQL

data

The

date

C

data

type

is:

SQL_C_TYPE_DATE

Table

251

shows

information

about

converting

date

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

Table

251.

Converting

date

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

10

000001

Column

length

<

10

22003

SQL_TYPE_DATE

Data

value

is

a

valid

date

000001

Data

value

is

not

a

valid

date

22008

SQL_TYPE_TIMESTAMP2

Data

value

is

a

valid

date

000001

Data

value

is

not

a

valid

date

22008

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

time

component

of

TIMESTAMP

is

set

to

zero.

Converting

time

C

data

to

SQL

data

The

time

C

data

type

is:

SQL_C_TYPE_TIME

Table

252

shows

information

about

converting

time

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

Table

252.

Converting

time

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

8

000001

Column

length

<

8

22003

SQL_TYPE_TIME

Data

value

is

a

valid

time

000001

Data

value

is

not

a

valid

time

22008

SQL_TYPE_TIMESTAMP2

Data

value

is

a

valid

time

000001

Data

value

is

not

a

valid

time

22008

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

date

component

of

TIMESTAMP

is

set

to

the

system

date

of

the

machine

at

which

the

application

is

running.

Converting

timestamp

C

data

to

SQL

data

The

timestamp

C

data

type

is:

SQL_C_TYPE_TIMESTAMP

C

to

SQL

data

types

522

ODBC

Guide

and

Reference

Table

253

shows

information

about

converting

timestamp

C

data

to

SQL

data.

See

“Converting

data

from

C

to

SQL

data

types”

on

page

519

for

a

detailed

description

of

each

table

column.

Table

253.

Converting

timestamp

C

data

to

SQL

data

fSqlType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

Display

size

000001

19

<=

Column

length

<

Display

size2

01004

Column

length

<

19

22003

SQL_TYPE_DATE

Data

value

is

a

valid

date3

01004

Data

value

is

not

a

valid

date

22008

SQL_TYPE_TIME

Data

value

is

a

valid

time4

01004

Data

value

is

not

a

valid

time

Fractional

seconds

fields

are

nonzero

22008

01004

SQL_TYPE_TIMESTAMP

Data

value

is

a

valid

timestamp

000001

Data

value

is

not

a

valid

timestamp

22008

Notes:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

2.

The

fractional

seconds

of

the

timestamp

are

truncated.

3.

The

time

portion

of

the

timestamp

is

deleted.

4.

The

date

portion

of

the

timestamp

is

deleted.

C

to

SQL

data

conversion

examples

Table

254

shows

example

C

to

SQL

data

conversions

and

the

SQLSTATE

associated

with

these

conversions.

Table

254.

C

to

SQL

data

conversion

examples

C

data

type

C

data

Value

SQL

data

type

Column

length

SQL

data

value

SQLSTATE

SQL_C_CHAR

abcdef\0

SQL_CHAR

6

abcdef

000001

SQL_C_CHAR

abcdef\0

SQL_CHAR

5

abcde

01004

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

6

1234.56

000001

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

5

1234.5

01004

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

3

22003

SQL_C_FLOAT

1234.56

SQL_FLOAT

Not

applicable

1234.56

000001

SQL_C_FLOAT

1234.56

SQL_INTEGER

Not

applicable

1234

01004

Note:

1.

SQLSTATE

00000

is

not

returned

by

SQLGetDiagRec(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

C

to

SQL

data

types

Appendix

D.

Data

conversion

523

C

to

SQL

data

types

524

ODBC

Guide

and

Reference

Appendix

E.

Deprecated

functions

This

appendix

explains

DB2

UDB

for

z/OS's

support

of

the

ODBC

3.0

standard.

DB2

ODBC

introduces

ODBC

3.0

support

in

Version

6.

Mapping

deprecated

functions

The

ODBC

3.0

functions

replace,

or

deprecate,

many

existing

ODBC

2.0

functions.

The

DB2

ODBC

driver

continues

to

support

all

of

the

deprecated

functions.

Recommendation:

Begin

using

ODBC

3.0

functional

replacements

to

maintain

optimum

portability.

Table

255

lists

the

ODBC

2.0

deprecated

functions

and

the

ODBC

3.0

replacement

functions.

Table

255.

ODBC

2.0

deprecated

functions

ODBC

2.0

deprecated

function

Purpose

ODBC

3.0

replacement

function

SQLAllocConnect()

Obtains

an

connection

handle.

SQLAllocHandle()

with

HandleType=SQL_HANDLE_DBC

SQLAllocEnv()

Obtains

an

environment

handle.

SQLAllocHandle()

with

HandleType=SQL_HANDLE_ENV

SQLAllocStmt()

Obtains

an

statement

handle.

SQLAllocHandle()

with

HandleType=SQL_HANDLE_STMT

SQLColAttributes()

Gets

column

attributes.

SQLColAttribute()

SQLError()

Returns

additional

diagnostic

information

(multiple

fields

of

the

diagnostic

data

structure).

SQLGetDiagRec()

SQLFreeConnect()

Frees

connection

handle.

SQLFreeHandle()

with

HandleType=SQL_HANDLE_DBC

SQLFreeEnv()

Frees

environment

handle.

SQLFreeHandle()

with

HandleType=SQL_HANDLE_ENV

SQLFreeStmt()

with

fOption=SQL_DROP

Frees

a

statement

handle.

SQLFreeHandle()

with

HandleType=

SQL_HANDLE_STMT

SQLGetConnectOption()

Returns

a

value

of

a

connection

attribute.

SQLGetConnectAttr()

SQLGetStmtOption()

Returns

a

value

of

a

statement

attribute.

SQLGetStmtAttr()

SQLSetConnectOption()

Sets

a

value

of

a

connection

attribute.

SQLSetConnectAttr()

SQLSetParam()

Binds

a

parameter

marker

to

an

application

variable.

SQLBindParameter()

SQLSetStmtOption()

Sets

a

value

of

a

statement

attribute.

SQLSetStmtAttr()

SQLTransact()

Commits

or

rolls

back

a

transaction.

SQLEndTran()

©

Copyright

IBM

Corp.

1997,

2004

525

Changes

to

SQLGetInfo()

information

types

Values

of

the

InfoType

arguments

for

SQLGetInfo()

arguments

were

renamed

in

ODBC

3.0.

Table

120

on

page

255

lists

the

ODBC

2.0

and

ODBC

3.0

argument

names.

Changes

to

SQLSetConnectAttr()

attributes

The

renamed

ODBC

3.0

attribute

values

support

all

existing

ODBC

2.0

attributes.

You

can

specify

either

the

ODBC

2.0

or

the

ODBC

3.0

attribute

value;

the

ODBC

driver

supports

both.

Table

256

matches

ODBC

2.0

and

ODBC

3.0

values.

Table

256.

SQLSetConnectAttr()

attribute

value

mapping

ODBC

2.0

attribute

ODBC

3.0

attribute

SQL_ACCESS_MODE

SQL_ATTR_ACCESS_MODE

SQL_AUTOCOMMIT

SQL_ATTR_AUTOCOMMIT

SQL_CONNECTTYPE

SQL_ATTR_CONNECTTYPE

SQL_CURRENT_SCHEMA

SQL_ATTR_CURRENT_SCHEMA

SQL_MAXCONN

SQL_ATTR_MAXCONN

SQL_PARAMOPT_ATOMIC

SQL_ATTR_PARAMOPT_ATOMIC

SQL_SYNC_POINT

SQL_ATTR_SYNC_POINT

SQL_TXN_ISOLATION

SQL_ATTR_TXN_ISOLATION

Changes

to

SQLSetEnvAttr()

attributes

Table

257

lists

the

SQLSetEnvAttr()

attribute

values

renamed

in

ODBC

3.0.

The

ODBC

3.0

attributes

support

all

of

the

existing

ODBC

2.0

attributes.

You

can

specify

either

the

ODBC

2.0

or

the

ODBC

3.0

attribute

value;

the

ODBC

driver

supports

both.

Table

257.

SQLSetEnvAttr()

attribute

value

mapping

ODBC

2.0

attribute

ODBC

3.0

attribute

SQL_CONNECTTYPE

SQL_ATTR_CONNECTTYPE

SQL_MAXCONN

SQL_ATTR_MAXCONN

SQL_OUTPUT_NTS

SQL_ATTR_OUTPUT_NTS

Changes

to

SQLSetStmtAttr()

attributes

Table

258

lists

the

SQLSetStmtAttr()

attribute

values

renamed

in

ODBC

3.0.

The

ODBC

3.0

attributes

support

all

of

the

existing

ODBC

2.0

attributes.

You

can

specify

either

the

ODBC

2.0

or

the

ODBC

3.0

attribute

value;

the

ODBC

driver

supports

both.

Table

258.

SQLSetStmtAttr()

attribute

value

mapping

ODBC

2.0

attribute

ODBC

3.0

attribute

SQL_BIND_TYPE

SQL_ATTR_BIND_TYPE

or

SQL_ATTR_ROW_BIND_TYPE

SQL_CLOSE_BEHAVIOR

SQL_ATTR_CLOSE_BEHAVIOR

SQL_CONCURRENCY

SQL_ATTR_CONCURRENCY

Changes

to

SQLGetInfo()

information

types

526

ODBC

Guide

and

Reference

Table

258.

SQLSetStmtAttr()

attribute

value

mapping

(continued)

ODBC

2.0

attribute

ODBC

3.0

attribute

SQL_CURSOR_HOLD

SQL_ATTR_CURSOR_HOLD

SQL_CURSOR_TYPE

SQL_ATTR_CURSOR_TYPE

SQL_MAX_LENGTH

SQL_ATTR_MAX_LENGTH

SQL_MAX_ROWS

SQL_ATTR_MAX_ROWS

SQL_NODESCRIBE

SQL_ATTR_NODESCRIBE

SQL_NOSCAN

SQL_ATTR_NOSCAN

SQL_RETRIEVE_DATA

SQL_ATTR_RETRIEVE_DATA

SQL_ROWSET_SIZE

SQL_ATTR_ROWSET_SIZE

or

SQL_ATTR_ROW_ARRAY_SIZE

SQL_STMTTXN_ISOLATION

or

SQL_TXN_ISOLATION

SQL_ATTR_STMTTXN_ISOLATION

or

SQL_ATTR_TXN_ISOLATION

ODBC

3.0

driver

behavior

Behavioral

changes

refer

to

functionality

that

varies

depending

on

the

version

of

ODBC

in

use.

The

ODBC

2.0

and

ODBC

3.0

drivers

behave

according

to

the

setting

of

the

SQL_ATTR_ODBC_VERSION

environment

attribute.

The

SQL_ATTR_ODBC_VERSION

environment

attribute

controls

whether

the

DB2

ODBC

3.0

driver

driver

exhibits

ODBC

2.0

or

ODBC

3.0

behavior.

This

value

is

implicitly

set

by

the

ODBC

driver

by

application

calls

to

the

ODBC

3.0

function

SQLAllocHandle()

or

the

ODBC

2.0

function

SQLAllocEnv().

The

application

can

explicitly

set

by

calls

to

SQLSetEnvAttr().

v

ODBC

3.0

applications

first

call

SQLAllocHandle()

to

get

the

environmental

handle.

The

DB2

ODBC

3.0

driver

implicitly

sets

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC3.

This

setting

ensures

that

ODBC

3.0

applications

get

ODBC

3.0

behavior.

An

ODBC

3.0

application

should

not

invoke

SQLAllocHandle()

and

then

call

SQLAllocEnv().

Doing

so

implicitly

resets

the

application

to

ODBC

2.0

behavior.

To

avoid

resetting

an

application

to

ODBC

2.0

behavior,

ODBC

3.0

applications

should

always

use

SQLAllocHandle()

to

manage

environment

handles.

v

ODBC

2.0

applications

first

call

SQLAllocEnv()

to

get

the

environmental

handle.

The

DB2

ODBC

2.0

driver

implicitly

sets

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC2.

This

setting

ensures

that

ODBC

2.0

applications

get

ODBC

2.0

behavior.

An

application

can

verify

the

ODBC

version

setting

by

calling

SQLGetEnvAttr()

for

attribute

SQL_ATTR_ODBC_VERSION.

An

application

can

explicitly

set

the

ODBC

version

setting

by

calling

SQLSetEnvAttr()

for

attribute

SQL_ATTR_ODBC_VERSION.

Forward

compatibility

does

not

affect

ODBC

2.0

applications

that

were

compiled

using

the

previous

DB2

ODBC

2.0

driver

header

files,

or

ODBC

2.0

applications

that

are

recompiled

using

the

new

ODBC

3.0

header

files.

These

applications

can

continue

executing

as

ODBC

2.0

applications

on

the

DB2

ODBC

3.0

driver.

These

ODBC

2.0

applications

need

not

call

SQLSetEnvAttr().

As

stated

above,

when

the

existing

ODBC

2.0

application

calls

SQLAllocEnv()

(ODBC

2.0

API

to

allocate

environment

handle),

the

DB2

ODBC

3.0

driver

will

implicitly

set

Changes

to

SQLSetStmtAttr()

attributes

Appendix

E.

Deprecated

functions

527

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC2.

This

will

ensure

ODBC

2.0

driver

behavior

when

using

the

DB2

ODBC

3.0

driver.

SQLSTATE

mappings

Several

SQLSTATEs

will

differ

when

you

call

SQLGetDiagRec()

or

SQLError()

under

an

ODBC

3.0

driver:

v

HYxxx

SQLSTATEs

replace

S1xxx

SQLSTATEs

v

42Sxx

SQLSTATEs

replace

S00xx

SQLSTATEs

v

Several

SQLSTATEs

are

redefined

When

an

ODBC

2.0

application

is

upgraded

to

ODBC

3.0,

the

application

must

be

changed

to

expect

the

ODBC

3.0

SQLSTATEs.

An

ODBC

3.0

application

can

set

the

environment

attribute

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC2

to

enable

the

DB2

ODBC

3.0

driver

to

return

the

ODBC

2.0

SQLSTATEs.

All

deprecated

functions

continue

to

return

ODBC

2.0

SQLSTATEs

regardless

of

which

environment

attributes

are

set.

Table

259

lists

ODBC

2.0

to

ODBC

3.0

SQLSTATE

mappings.

Table

259.

ODBC

2.0

to

ODBC

3.0

SQLSTATE

mappings

ODBC

2.0

SQLSTATE

ODBC

3.0

SQLSTATE

22003

HY019

22007

22008

22005

22018

37000

42000

S0001

42S01

S0002

42S02

S0011

42S11

S0012

42S12

S0021

42S21

S0022

42S22

S0023

42S23

S1000

HY000

S1001

HY001

S1002

HY002

S1003

HY003

S1004

HY004

S1009

HY009

or

HY024

S1009

is

mapped

to

HY009

for

invalid

use

of

null

pointers;

S1009

is

mapped

to

HY024

for

invalid

attribute

values.

S1010

HY010

S1011

HY011

S1012

HY012

S1013

HY013

S1014

HY014

ODBC

3.0

driver

behavior

528

ODBC

Guide

and

Reference

|

|
|
|

|

Table

259.

ODBC

2.0

to

ODBC

3.0

SQLSTATE

mappings

(continued)

ODBC

2.0

SQLSTATE

ODBC

3.0

SQLSTATE

S1015

HY015

S1019

HY019

S1090

HY090

S1091

HY091

S1092

HY092

S1093

HY093

S1096

HY096

S1097

HY097

S1098

HY098

S1099

HY099

S1100

HY100

S1101

HY101

S1103

HY103

S1104

HY104

S1105

HY105

S1106

HY106

S1107

HY107

S1110

HY110

S1501

HY501

S1506

HY506

S1C00

HYC00

Changes

to

datetime

data

types

In

ODBC

3.0,

the

identifiers

for

date,

time,

and

timestamp

have

changed.

The

#define

directives

in

the

include

file

sqlcli1.h

are

added

for

the

values

defined

in

Table

260

for

SQL

type

mappings

and

Table

261

on

page

530

for

C

type

mappings.

v

For

input,

either

ODBC

2.0

or

ODBC

3.0

datetime

values

can

be

used

with

the

DB2

ODBC

3.0

driver.

v

On

output,

the

DB2

ODBC

3.0

driver

determines

the

appropriate

value

to

return

based

on

the

setting

of

the

SQL_ATTR_ODBC_VERSION

environment

attribute.

–

If

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC2,

the

output

datetime

values

are

the

ODBC

2.0

values.

–

If

SQL_ATTR_ODBC_VERSION

=

SQL_OV_ODBC3,

the

output

datetime

values

are

the

ODBC

3.0

values.

Table

260.

Datetime

data

type

mappings:

SQL

type

identifiers

ODBC

2.0

ODBC

3.0

SQL_DATE(9)

SQL_TYPE_DATE(91)

SQL_TIME(10)

SQL_TYPE_TIME(92)

SQL_TIMESTAMP(11)

SQL_TYPE_TIMETAMP(93)

SQLSTATE

mappings

Appendix

E.

Deprecated

functions

529

|

Table

261.

Datetime

data

type

mappings:

C

type

identifiers

ODBC

2.0

ODBC

3.0

SQL_C_DATE(9)

SQL_C_TYPE_DATE(91)

SQL_C_TIME(10)

SQL_C_TYPE_TIME(92)

SQL_C_TIMESTAMP(11)

SQL_C_TYPE_TIMESTAMP(93)

The

datetime

data

type

changes

affect

the

following

functions:

v

SQLBindCol()

v

SQLBindParameter()

v

SQLColAttribute()

v

SQLColumns()

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLGetData()

v

SQLGetTypeInfo()

v

SQLProcedureColumns()

v

SQLStatistics()

v

SQLSpecialColumns()

Changes

to

datetime

data

types

530

ODBC

Guide

and

Reference

Appendix

F.

Example

DB2

ODBC

code

This

appendix

provides

DB2

ODBC

samples:

v

“DSN8O3VP

sample

application”

shows

the

sample

verification

program

DSN8O3VP

available

online

in

the

DSN810.SDSNSAMP

data

set.

You

can

use

this

sample

to

verify

that

your

DB2

ODBC

3.0

installation

is

correct.

See

“Application

preparation

and

execution

steps”

on

page

46

for

more

information

about

online

sample

applications.

v

In

“Client

application

calling

a

DB2

ODBC

stored

procedure”

on

page

537,

a

client

application

(APD29)

calls

a

DB2

ODBC

stored

procedure

(SPD29).

It

includes

very

fundamental

processing

of

query

result

sets

(a

query

cursor

opened

in

a

stored

procedure

and

return

to

client

for

fetching).

For

completeness,

the

CREATE

TABLE,

data

INSERTs

and

CREATE

PROCEDURE

definition

is

provided.

DSN8O3VP

sample

application

“DSN8O3VP

sample

application”

presents

the

code

that

the

sample

program

DSN810.SDSNSAMP(DSN8O3VP)

contains.

The

DSN8O3VP

program

validates

the

installation

of

DB2

ODBC.

©

Copyright

IBM

Corp.

1997,

2004

531

/***/

/*

DB2

ODBC

3.0

installation

certification

test

to

validate

*/

/*

installation.

*/

/*

*/

/*

DSNTEJ8

is

sample

JCL

to

that

can

be

used

to

run

this

*/

/*

application.

*/

/***/

/**/

/*

Include

the

’C’

include

files

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

/**/

/*

Variables

*/

/**/

#ifndef

NULL

#define

NULL

0

#endif

SQLHENV

henv

=

SQL_NULL_HENV;

SQLHDBC

hdbc

=

SQL_NULL_HDBC;

SQLHDBC

hstmt=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

id;

SQLCHAR

name[51]

SQLINTEGER

namelen,

intlen,

colcount;

struct

sqlca

sqlca;

SQLCHAR

server[18]

SQLCHAR

uid[30]

SQLCHAR

pwd[30]

SQLCHAR

sqlstmt[500]

SQLRETURN

check_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char

*);

SQLRETURN

print_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char

*);

SQLRETURN

prt_sqlca(void);

#define

CHECK_HANDLE(

htype,

hndl,

rc

)

if

(

rc

!=

SQL_SUCCESS

)

\

{check_error(htype,hndl,rc,__LINE__,__FILE__);goto

dberror;}

Figure

63.

DSN8O3VP

sample

application

(Part

1

of

6)

Example

DB2

ODBC

code

532

ODBC

Guide

and

Reference

/**/

/*

Main

Program

*/

/**/

int

main()

{

printf("DSN8O3VP

INITIALIZATION\n");

printf("DSN8O3VP

SQLAllocHandle-Environment\n");

henv=0;

rc

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv

)

;

CHECK_HANDLE(

SQL_HANDLE_ENV,

henv,

rc

);

printf("DSN8O3VP-henv=%i\n",henv);

printf("DSN8O3VP

SQLAllocHandle-Environment

successful\n");

printf("DSN8O3VP

SQLAllocHandle-Connection\n");

hdbc=0;

rc=SQLAllocHandle(

SQL_HANDLE_DBC,

henv,

&hdbc);

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

);

printf("DSN8O3VP-hdbc=%i\n",hdbc);

printf("DSN8O3VP

SQLAllocHandle-Connection

successful\n");

printf("DSN8O3VP

SQLConnect\n");

strcpy((char

*)uid,"");

strcpy((char

*)pwd,"");

strcpy((char

*)server,"ignore");

/*

sample

is

NULL

connect

to

default

datasource

*/

rc=SQLConnect(hdbc,NULL,0,NULL,0,NULL,0);

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

);

printf("DSN8O3VP

successfully

issued

a

SQLconnect\n");

printf("DSN8O3VP

SQLAllocHandle-Statement\n");

hstmt=0;

rc=SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

printf("DSN8O3VP

hstmt=%i\n",hstmt);

printf("DSN8O3VP

SQLAllocHandle-Statement

successful\n");

printf("DSN8O3VP

SQLExecDirect\n");

strcpy((char

*)sqlstmt,"SELECT

*

FROM

SYSIBM.SYSDUMMY1");

printf("DSN8O3VP

sqlstmt=%s\r",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

printf("DSN8O3VP

successfully

issued

a

SQLExecDirect\n");

/*

sample

fetch

without

looking

at

values

*/

printf("DSN8O3VP

SQLFetch\n");

rc=SQLFetch(hstmt);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

printf("DSN8O3VP

successfully

issued

a

SQLFetch\n");

printf("DSN8O3VP

SQLEndTran-Commit\n");

rc=SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

printf("DSN8O3VP

SQLEndTran-Commit

successful\n");

printf("DSN8O3VP

SQLFreeHandle-Statement\n");

rc=SQLFreeHandle(SQL_HANDLE_STMT,hstmt);

CHECK_HANDLE(

SQL_HANDLE_STMT,

hstmt,

rc

);

hstmt=0;

printf("DSN8O3VP

SQLFreeHandle-Statement

successful\n");

Figure

63.

DSN8O3VP

sample

application

(Part

2

of

6)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

533

/********

SQLDisconnect

**/

printf("DSN8O3VP

SQLDisconnect\n");

rc=SQLDisconnect(hdbc);

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

);

printf("DSN8O3VP

successfully

issued

a

SQLDisconnect\n");

/********

SQLFreeConnect

***/

printf("DSN8O3VP

SQLFreeHandle-Connection\n");

rc=SQLFreeHandle(SQL_HANDLE_DBC,hdbc);

CHECK_HANDLE(

SQL_HANDLE_DBC,

hdbc,

rc

);

hdbc=0;

printf("DSN8O3VP

SQLFreeHandle-Connection

successful\n");

/********

SQLFreeEnv

***/

printf("DSN8O3VP

SQLFreeHandle-Environment\n");

rc=SQLFreeHandle(SQL_HANDLE_ENV,henv);

CHECK_HANDLE(

SQL_HANDLE_ENV,

henv,

rc

);

henv=0;

printf("DSN8O3VP

SQLFreeHandle-Environment

successful\n");

pgmend:

printf("DSN8O3VP

pgmend:

Ending

sample\n");

if

(rc==0)

printf("DSN8O3VP

Execution

was

SUCCESSFUL\n");

else

{

printf("DSN8O3VP***************************\n");

printf("DSN8O3VP

Execution

FAILED\n");

printf("DSN8O3VP

rc

=

%i\n",

rc

);

printf("DSN8O3VP

***************************\n");

}

return(rc);

dberror:

printf("DSN8O3VP

dberror:

entry

dberror

rtn\n");

printf("DSN8O3VP

dberror:

rc=%d\n",rc);

printf("DSN8O3VP

dberror:

environment

cleanup

attempt\n");

printf("DSN8O3VP

dberror:

cleanup

SQLFreeEnv\n");

rc=SQLFreeEnv(henv);

printf("DSN8O3VP

dberror:

cleanup

SQLFreeEnv

rc

=%d\n",rc);

rc=12;

printf("DSN8O3VP

dberror:

setting

error

rc=%d\n",rc);

goto

pgmend;

}

/*END

MAIN*/

Figure

63.

DSN8O3VP

sample

application

(Part

3

of

6)

Example

DB2

ODBC

code

534

ODBC

Guide

and

Reference

/**/

/*

check_error

*/

/**/

/*

RETCODE

values

from

sqlcli.h

*/

/*#define

SQL_SUCCESS

0

*/

/*#define

SQL_SUCCESS_WITH_INFO

1

*/

/*#define

SQL_NO_DATA_FOUND

100

*/

/*#define

SQL_NEED_DATA

99

*/

/*#define

SQL_NO_DATA

SQL_NO_DATA_FOUND

*/

/*#define

SQL_STILL_EXECUTING

2

not

currently

returned

*/

/*#define

SQL_ERROR

-1

*/

/*#define

SQL_INVALID_HANDLE

-2

*/

/**/

SQLRETURN

check_error(

SQLSMALLINT

htype,

/*

A

handle

type

*/

SQLHANDLE

hndl,

/*

A

handle

*/

SQLRETURN

frc,

/*

Return

code

*/

int

line,

/*

Line

error

issued

*/

char

*

file

/*

file

error

issued

*/

)

{

SQLCHAR

cli_sqlstate[SQL_SQLSTATE_SIZE

+

1];

SQLINTEGER

cli_sqlcode;

SQLSMALLINT

length;

printf("DSN8O3VP

entry

check_error

rtn\n");

switch

(frc)

{

case

SQL_SUCCESS:

break;

case

SQL_INVALID_HANDLE:

printf("DSN8O3VP

check_error>

SQL_INVALID

HANDLE

\n");

break;

case

SQL_ERROR:

printf("DSN8O3VP

check_error>

SQL_ERROR\n");

break;

case

SQL_SUCCESS_WITH_INFO:

printf("DSN8O3VP

check_error>

SQL_SUCCESS_WITH_INFO\n");

break;

case

SQL_NO_DATA_FOUND:

printf("DSN8O3VP

check_error>

SQL_NO_DATA_FOUND\n");

break;

default:

printf("DSN8O3VP

check_error>

Received

rc

from

api

rc=%i\n",frc);

break;

}

/*end

switch*/

print_error(htype,hndl,frc,line,file);

printf("DSN8O3VP

SQLGetSQLCA\n");

rc

=

SQLGetSQLCA(henv,

hdbc,

hstmt,

&sqlca);

if(

rc

==

SQL_SUCCESS

)

prt_sqlca();

else

printf("DSN8O3VP

check_error

SQLGetSQLCA

failed

rc=%i\n",rc);

printf("DSN8O3VP

exit

check_error

rtn\n");

return

(frc);

}

/*

end

check_error

*/

Figure

63.

DSN8O3VP

sample

application

(Part

4

of

6)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

535

/**/

/*

print_error

*/

/*

calls

SQLGetDiagRec()

displays

SQLSTATE

and

message

*/

/**/

SQLRETURN

print_error(

SQLSMALLINT

htype,

/*

A

handle

type

*/

SQLHANDLE

hndl,

/*

A

handle

*/

SQLRETURN

frc,

/*

Return

code

*/

int

line,

/*

error

from

line

*/

char

*

file

/*

error

from

file

*/

)

{

SQLCHAR

buffer[SQL_MAX_MESSAGE_LENGTH

+

1]

;

SQLCHAR

sqlstate[SQL_SQLSTATE_SIZE

+

1]

;

SQLINTEGER

sqlcode

;

SQLSMALLINT

length,

i

;

SQLRETURN

prc;

printf("DSN8O3VP

entry

print_error

rtn\n");

printf("DSN8O3VP

rc=%d

reported

from

file:%s,line:%d

---\n",

frc,

file,

line

)

;

i

=

1

;

while

(

SQLGetDiagRec(

htype,

hndl,

i,

sqlstate,

&sqlcode,

buffer,

SQL_MAX_MESSAGE_LENGTH

+

1,

&length

)

==

SQL_SUCCESS

)

{

printf(

"DSN8O3VP

SQLSTATE:

%s\n",

sqlstate

)

;

printf(

"DSN8O3VP

Native

Error

Code:

%ld\n",

sqlcode

)

;

printf(

"DSN8O3VP

buffer:

%s

\n",

buffer

)

;

i++

;

}

printf(

">--\n"

)

;

printf("DSN8O3VP

exit

print_error

rtn\n");

return(

SQL_ERROR

)

;

}

/*

end

print_error

*/

Figure

63.

DSN8O3VP

sample

application

(Part

5

of

6)

Example

DB2

ODBC

code

536

ODBC

Guide

and

Reference

Client

application

calling

a

DB2

ODBC

stored

procedure

“Client

application

calling

a

DB2

ODBC

stored

procedure”

presents

a

client

application

(APD29)

that

calls

a

DB2

ODBC

stored

procedure

(SPD29)

and

processes

query

result

sets

(a

query

cursor

opened

in

a

stored

procedure

and

return

to

client

for

fetching).

The

CREATE

TABLE,

data

INSERT,

and

CREATE

PROCEDURE

statements

are

provided

to

define

the

DB2

objects

and

procedures

that

this

example

uses.

/**/

/*

prt_sqlca

*/

/**/

SQLRETURN

prt_sqlca()

{

int

i;

printf("DSN8O3VP

entry

prt_sqlca

rtn\n");

printf("\r\rDSN8O3VP***

Printing

the

SQLCA:\r");

printf("\nDSN8O3VP

SQLCAID

....

%s",sqlca.sqlcaid);

printf("\nDSN8O3VP

SQLCABC

....

%d",sqlca.sqlcabc);

printf("\nDSN8O3VP

SQLCODE

....

%d",sqlca.sqlcode);

printf("\nDSN8O3VP

SQLERRML

...

%d",sqlca.sqlerrml);

printf("\nDSN8O3VP

SQLERRMC

...

%s",sqlca.sqlerrmc);

printf("\nDSN8O3VP

SQLERRP

...

%s",sqlca.sqlerrp);

for

(i

=

0;

i

<

6;

i++)

printf("\nDSN8O3VP

SQLERRD%d

...

%d",i+1,sqlca.sqlerrd??(i??));

for

(i

=

0;

i

<

10;

i++)

printf("\nDSN8O3VP

SQLWARN%d

...

%c",i,sqlca.sqlwarn[i]);

printf("\nDSN8O3VP

SQLWARNA

...

%c",sqlca.sqlwarn[10]);

printf("\nDSN8O3VP

SQLSTATE

...

%s",sqlca.sqlstate);

printf("\nDSN8O3VP

exit

prt_sqlca

rtn\n");

return(0);

}

/*

End

of

prt_sqlca

*/

/***/

/*

END

DSN8O3VP

*/

/***/

Figure

63.

DSN8O3VP

sample

application

(Part

6

of

6)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

537

STEP

1.

Create

table

printf("\nAPDDL

SQLExecDirect

stmt=%d",__LINE__);

strcpy((char

*)sqlstmt,

"CREATE

TABLE

TABLE2A

(INT4

INTEGER,SMINT

SMALLINT,FLOAT8

FLOAT");

strcat((char

*)sqlstmt,

",DEC312

DECIMAL(31,2),CHR10

CHARACTER(10),VCHR20

VARCHAR(20)");

strcat((char

*)sqlstmt,

",LVCHR

LONG

VARCHAR,CHRSB

CHAR(10),CHRBIT

CHAR(10)

FOR

BIT

DATA");

strcat((char

*)sqlstmt,

",DDATE

DATE,TTIME

TIME,TSTMP

TIMESTAMP)");

printf("\nAPDDL

sqlstmt=%s",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

STEP

2.

Insert

101

rows

into

table

/*

insert

100

rows

into

table2a

*/

for

(jx=1;jx<=100

;jx++

)

{

printf("\nAPDIN

SQLExecDirect

stmt=%d",__LINE__);

strcpy((char

*)sqlstmt,"insert

into

table2a

values(");

sprintf((char

*)sqlstmt+strlen((char

*)sqlstmt),"%ld",jx);

strcat((char

*)sqlstmt,

",4,8.2E+30,1515151515151.51,’CHAR’,’VCHAR’,’LVCCHAR’,’SBCS’");

strcat((char

*)sqlstmt,

",’MIXED’,’01/01/1991’,’3:33

PM’,’1999-09-09-09.09.09.090909’)");

printf("\nAPDIN

sqlstmt=%s",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

}

/*

endfor

*/

STEP

3.

Define

stored

procedure

with

CREATE

PROCEDURE

SQL

statement

CREATE

PROCEDURE

SPD29

(INOUT

INTEGER)

PROGRAM

TYPE

MAIN

EXTERNAL

NAME

SPD29

COLLID

DSNAOCLI

LANGUAGE

C

RESULT

SET

2

MODIFIES

SQL

DATA

PARAMETER

STYLE

GENERAL

NO

WLM

ENVIRONMENT;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

1

of

20)

Example

DB2

ODBC

code

538

ODBC

Guide

and

Reference

STEP

4.

Stored

procedure

/*START

OF

SPD29**/

/*

PRAGMA

TO

CALL

PLI

SUBRTN

CSPSUB

TO

ISSUE

CONSOLE

MSGS

*/

#pragma

options

(rent)

#pragma

runopts(plist(os))

/**/

/*

Include

the

’C’

include

files

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

#include

<sqlca.h>

#include

<decimal.h>

#include

<wcstr.h>

/**/

/*

Variables

for

COMPARE

routines

*/

/**/

#ifndef

NULL

#define

NULL

0

#endif

SQLHENV

henv

=

SQL_NULL_HENV;

SQLHDBC

hdbc

=

SQL_NULL_HDBC;

SQLHSTMT

hstmt

=

SQL_NULL_HSTMT;

SQLHSTMT

hstmt2

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

id;

SQLCHAR

name[51];

SQLINTEGER

namelen,

intlen,

colcount;

SQLSMALLINT

scale;

struct

sqlca

sqlca;

SQLCHAR

server[18];

SQLCHAR

uid[30];

SQLCHAR

pwd[30];

SQLCHAR

sqlstmt[500];

SQLCHAR

sqlstmt2[500];

SQLSMALLINT

pcpar=0;

SQLSMALLINT

pccol=0;

SQLCHAR

cursor[19];

SQLSMALLINT

cursor_len;

SQLINTEGER

SPCODE;

struct

{

SQLSMALLINT

LEN;

SQLCHAR

DATA_200};

}

STMTSQL;

SQLSMALLINT

H1SMINT;

SQLINTEGER

H1INT4;

SQLDOUBLE

H1FLOAT8;

SQLDOUBLE

H1DEC312;

SQLCHAR

H1CHR10[11];

SQLCHAR

H1VCHR20[21];

SQLCHAR

H1LVCHR[21];

SQLCHAR

H1CHRSB[11];

SQLCHAR

H1CHRBIT[11];

SQLCHAR

H1DDATE[11];

SQLCHAR

H1TTIME[9];

SQLCHAR

H1TSTMP[27];

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

2

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

539

SQLSMALLINT

I1SMINT;

SQLSMALLINT

I1INT4;

SQLSMALLINT

I1FLOAT8;

SQLSMALLINT

I1DEC312;

SQLSMALLINT

I1CHR10;

SQLSMALLINT

I1VCHR20;

SQLSMALLINT

I1LVCHR;

SQLSMALLINT

I1CHRSB;

SQLSMALLINT

I1CHRBIT;

SQLSMALLINT

I1DDATE;

SQLSMALLINT

I1TTIME;

SQLSMALLINT

I1TSTMP;

SQLINTEGER

LEN_H1SMINT;

SQLINTEGER

LEN_H1INT4;

SQLINTEGER

LEN_H1FLOAT8;

SQLINTEGER

LEN_H1DEC312;

SQLINTEGER

LEN_H1CHR10;

SQLINTEGER

LEN_H1VCHR20;

SQLINTEGER

LEN_H1LVCHR;

SQLINTEGER

LEN_H1CHRSB;

SQLINTEGER

LEN_H1CHRBIT;

SQLINTEGER

LEN_H1DDATE;

SQLINTEGER

LEN_H1TTIME;

SQLINTEGER

LEN_H1TSTMP;

SQLSMALLINT

H2SMINT;

SQLINTEGER

H2INT4;

SQLDOUBLE

H2FLOAT8;

SQLCHAR

H2CHR10[11];

SQLCHAR

H2VCHR20[21];

SQLCHAR

H2LVCHR[21];

SQLCHAR

H2CHRSB[11];

SQLCHAR

H2CHRBIT[11];

SQLCHAR

H2DDATE[11];

SQLCHAR

H2TTIME[9];

SQLCHAR

H2TSTMP[27];

SQLSMALLINT

I2SMINT;

SQLSMALLINT

I2INT4;

SQLSMALLINT

I2FLOAT8;

SQLSMALLINT

I2CHR10;

SQLSMALLINT

I2VCHR20;

SQLSMALLINT

I2LVCHR;

SQLSMALLINT

I2CHRSB;

SQLSMALLINT

I2CHRBIT;

SQLSMALLINT

I2DDATE;

SQLSMALLINT

I2TTIME;

SQLSMALLINT

I2TSTMP;

SQLINTEGER

LEN_H2SMINT;

SQLINTEGER

LEN_H2INT4;

SQLINTEGER

LEN_H2FLOAT8;

SQLINTEGER

LEN_H2CHR10;

SQLINTEGER

LEN_H2VCHR20;

SQLINTEGER

LEN_H2LVCHR;

SQLINTEGER

LEN_H2CHRSB;

SQLINTEGER

LEN_H2CHRBIT;

SQLINTEGER

LEN_H2DDATE;

SQLINTEGER

LEN_H2TTIME;

SQLINTEGER

LEN_H2TSTMP;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

3

of

20)

Example

DB2

ODBC

code

540

ODBC

Guide

and

Reference

SQLCHAR

locsite[18]

=

"stlec1";

SQLCHAR

remsite[18]

=

"stlec1b";

SQLCHAR

spname[8];

SQLINTEGER

ix,jx,locix;

SQLINTEGER

result;

SQLCHAR

state_blank[6]

="

";

SQLRETURN

check_error(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLRETURN

frc);

SQLRETURN

prt_sqlca();

/**/

/*

Main

Program

*/

/**/

SQLINTEGER

main(SQLINTEGER

argc,

SQLCHAR

*argv[]

)

{

printf("\nSPD29

INITIALIZATION");

scale

=

0;

rc=0;

rc=0;

SPCODE=0;

/*

argv0

=

sp

module

name

*/

if

(argc

!=

2)

{

printf("SPD29

parm

number

error\n

");

printf("SPD29

EXPECTED

=%d\n",3);

printf("SPD29

received

=%d\n",argc);

goto

dberror;

}

strcpy((char

*)spname,(char

*)argv[0]);

result

=

strncmp((char

*)spname,"SPD29",5);

if

(result

!=

0)

{

printf("SPD29

argv0

sp

name

error\n

");

printf("SPD29

compare

rusult

=%i\n",result);

printf("SPD29

expected

=%s\n","SPD29");

printf("SPD29

received

spname=%s\n",spname);

printf("SPD29

received

argv0

=%s\n",argv[0]);

goto

dberror;

}

/*

get

input

spcode

value

*/

SPCODE

=

*(SQLINTEGER

*)

argv[1];

printf("\nSPD29

SQLAllocEnv

number=

1\n");

henv=0;

rc

=

SQLAllocEnv(&henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29-henv=%i",henv);

/***/

printf("\nSPD29

SQLAllocConnect

");

hdbc=0;

SQLAllocConnect(henv,

&hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29-hdbc=%i",hdbc);

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

4

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

541

/***/

/*

Make

sure

no

autocommits

after

cursors

are

allocated,

commits

*/

/*

cause

sp

failure.

AUTOCOMMIT=0

could

also

be

specified

in

the

*/

/*

INI

file.

*/

/*

Also,

sp

could

be

defined

with

COMMIT_ON_RETURN

in

the

*/

/*

DB2

catalog

table

SYSIBM.SYSPROCEDURES,

but

be

wary

that

this

*/

/*

removes

control

from

the

client

appl

to

control

commit

scope.

*/

/***/

printf("\nSPD29

SQLSetConnectOption-no

autocommits

in

stored

procs");

rc

=

SQLSetConnectOption(hdbc,SQL_AUTOCOMMIT,SQL_AUTOCOMMIT_OFF);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nSPD29

SQLConnect

NULL

connect

in

stored

proc

");

strcpy((char

*)uid,"cliuser");

strcpy((char

*)pwd,"password");

printf("\nSPD29

server=%s",NULL);

printf("\nSPD29

uid=%s",uid);

printf("\nSPD29

pwd=%s",pwd);

rc=SQLConnect(hdbc,

NULL,

0,

uid,

SQL_NTS,

pwd,

SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

Start

SQL

statements

**/

/***/

switch(SPCODE)

{

/**/

/*

CASE(SPCODE=0)

do

nothing

and

return

*****/

/**/

case

0:

break;

case

1:

/**/

/*

CASE(SPCODE=1)

*****/

/*

-sqlprepare/sqlexecute

insert

int4=200

*****/

/*

-sqlexecdirect

insert

int4=201

*****/

/*

*validated

in

client

appl

that

inserts

occur

*****/

/**/

SPCODE=0;

printf("\nSPD29

SQLAllocStmt

\n");

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29-hstmt=%i\n",hstmt);

printf("\nSPD29

SQLPrepare

\n");

strcpy((char

*)sqlstmt,

"insert

into

TABLE2A(int4)

values(?)");

printf("\nSPD29

sqlstmt=%s",sqlstmt);

rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29

SQLNumParams

\n");

rc=SQLNumParams(hstmt,&pcpar);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

if

(pcpar!=1)

{

printf("\nSPD29

incorrect

pcpar=%d",pcpar);

goto

dberror;

}

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

5

of

20)

Example

DB2

ODBC

code

542

ODBC

Guide

and

Reference

printf("\nSPD29

SQLBindParameter

int4

\n");

H1INT4=200;

LEN_H1INT4=sizeof(H1INT4);

rc=SQLBindParameter(hstmt,1,SQL_PARAM_INPUT,SQL_C_LONG,

SQL_INTEGER,0,0,&H1INT4,0,(SQLINTEGER

*)&LEN_H1INT4);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

printf("\nSPD29

SQLExecute

\n");

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS)

goto

dberror;

printf("\nSPD29

SQLFreeStmt

\n");

rc=SQLFreeStmt(hstmt,

SQL_DROP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nAPDIN

SQLAllocStmt

stmt=%d",__LINE__);

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPDIN-hstmt=%i\n",hstmt);

jx=201;

printf("\nAPDIN

SQLExecDirect

stmt=%d",__LINE__);

strcpy((char

*)sqlstmt,"insert

into

table2a

values(");

sprintf((char

*)sqlstmt+strlen((char

*)sqlstmt),"%ld",jx);

strcat((char

*)sqlstmt,

",4,8.2E+30,1515151515151.51,’CHAR’,’VCHAR’,’LVCCHAR’,’SBCS’");

strcat((char

*)sqlstmt,

",’MIXED’,’01/01/1991’,’3:33

PM’,’1999-09-09-09.09.09.090909’)");

printf("\nAPDIN

sqlstmt=%s",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

break;

/***/

case

2:

/**/

/*

CASE(SPCODE=2)

*****/

/*

-sqlprepare/sqlexecute

select

int4

from

table2a

*****/

/*

-sqlprepare/sqlexecute

select

chr10

from

table2a

*****/

/*

*qrs

cursors

should

be

allocated

and

left

open

by

CLI

*****/

/**/

SPCODE=0;

/*

generate

1st

query

result

set

*/

printf("\nSPD29

SQLAllocStmt

\n");

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29-hstmt=%i\n",hstmt);

printf("\nSPD29

SQLPrepare

\n");

strcpy((char

*)sqlstmt,

"SELECT

INT4

FROM

TABLE2A");

printf("\nSPD29

sqlstmt=%s",sqlstmt);

rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29

SQLExeccute

\n");

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

6

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

543

/*

allocate

2nd

stmt

handle

for

2nd

queryresultset

*/

/*

generate

2nd

queryresultset

*/

printf("\nSPD29

SQLAllocStmt

\n");

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt2);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29-hstmt2=%i\n",hstmt2);

printf("\nSPD29

SQLPrepare

\n");

strcpy((char

*)sqlstmt2,

"SELECT

CHR10

FROM

TABLE2A");

printf("\nSPD29

sqlstmt2=%s",sqlstmt2);

rc=SQLPrepare(hstmt2,sqlstmt2,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nSPD29

SQLExeccute

\n");

rc=SQLExecute(hstmt2);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/*leave

queryresultset

cursor

open

for

fetch

back

at

client

appl

*/

break;

/**/

default:

{

printf("SPD29

INPUT

SPCODE

INVALID\n");

printf("SPD29...EXPECTED

SPCODE=0-2\n");

printf("SPD29...RECEIVED

SPCODE=%i\n",SPCODE);

goto

dberror;

break;

}

}

/***/

/*

End

SQL

statements

**/

/***/

/*Be

sure

NOT

to

put

a

SQLTransact

with

SQL_COMMIT

in

a

DB2

or

*/

/*

z/OS

stored

procedure.

Commit

is

not

allowed

in

a

DB2

or

*/

/*

z/OS

stored

procedure.

Use

SQLTransact

with

SQL_ROLLBACK

to

*/

/*

force

a

must

rollback

condition

for

this

sp

and

calling

*/

/*

client

application.

*/

/***/

printf("\nSPD29

SQLDisconnect

number=

4\n");

rc=SQLDisconnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nSPD29

SQLFreeConnect

number=

5\n");

rc

=

SQLFreeConnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nSPD29

SQLFreeEnv

number=

6\n");

rc

=

SQLFreeEnv(henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

goto

pgmend;

dberror:

printf("\nSPD29

entry

dberror

label");

printf("\nSPD29

rc=%d",rc);

check_error(henv,hdbc,hstmt,rc);

printf("\nSPD29

SQLFreeEnv

number=

7\n");

rc

=

SQLFreeEnv(henv);

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

7

of

20)

Example

DB2

ODBC

code

544

ODBC

Guide

and

Reference

printf("\nSPD29

rc=%d",rc);

rc=12;

rc=12;

SPCODE=12;

goto

pgmend;

pgmend:

printf("\nSPD29

TERMINATION

");

if

(rc!=0)

{

printf("\nSPD29

WAS

NOT

SUCCESSFUL");

printf("\nSPD29

SPCODE

=

%i",

SPCODE

);

printf("\nSPD29

rc

=

%i",

rc

);

}

else

{

printf("\nSPD29

WAS

SUCCESSFUL");

}

/*

assign

output

spcode

value

*/

*(SQLINTEGER

*)

argv[1]

=

SPCODE;

exit;

}

/*END

MAIN*/

/***

**

check_error

-

call

print_error(),

checks

severity

of

return

code

***/

SQLRETURN

check_error(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLRETURN

frc

)

{

SQLCHAR

buffer[SQL_MAX_MESSAGE_LENGTH

+

1];

SQLCHAR

cli_sqlstate[SQL_SQLSTATE_SIZE

+

1];

SQLINTEGER

cli_sqlcode;

SQLSMALLINT

length;

printf("\nSPD29

entry

check_error

rtn");

switch

(frc)

{

case

SQL_SUCCESS:

break;

case

SQL_INVALID_HANDLE:

printf("\nSPD29

check_error>

SQL_INVALID

HANDLE

");

case

SQL_ERROR:

printf("\nSPD29

check_error>

SQL_ERROR

");

break;

case

SQL_SUCCESS_WITH_INFO:

printf("\nSPD29

check_error>

SQL_SUCCESS_WITH_INFO");

break;

case

SQL_NO_DATA_FOUND:

printf("\nSPD29

check_error>

SQL_NO_DATA_FOUND

");

break;

default:

printf("\nSPD29

check_error>

Invalid

rc

from

api

rc=%i",frc);

break;

}

/*end

switch*/

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

8

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

545

printf("\nSPD29

SQLError

");

while

((rc=SQLError(henv,

hdbc,

hstmt,

cli_sqlstate,

&cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH

+

1,

&length))

==

SQL_SUCCESS)

{

printf("

SQLSTATE:

%s",

cli_sqlstate);

printf("Native

Error

Code:

%ld",

cli_sqlcode);

printf("%s

",

buffer);

};

if

(rc!=SQL_NO_DATA_FOUND)

printf("SQLError

api

call

failed

rc=%d",rc);

printf("\nSPD29

SQLGetSQLCA

");

rc

=

SQLGetSQLCA(henv,

hdbc,

hstmt,

&sqlca);

if(

rc

==

SQL_SUCCESS

)

prt_sqlca();

else

printf("\n

SPD29-check_error

SQLGetSQLCA

failed

rc=%i",rc);

return

(frc);

}

/***/

/*

P

r

i

n

t

S

Q

L

C

A

*/

/***/

SQLRETURN

prt_sqlca()

{

SQLINTEGER

i;

printf("\nlSPD29

entry

prts_sqlca

rtn");

printf("\r\r***

Printing

the

SQLCA:\r");

printf("\nSQLCAID

....

%s",sqlca.sqlcaid);

printf("\nSQLCABC

....

%d",sqlca.sqlcabc);

printf("\nSQLCODE

....

%d",sqlca.sqlcode);

printf("\nSQLERRML

...

%d",sqlca.sqlerrml);

printf("\nSQLERRMC

...

%s",sqlca.sqlerrmc);

printf("\nSQLERRP

...

%s",sqlca.sqlerrp);

for

(i

=

0;

i

<

6;

i++)

printf("\nSQLERRD%d

...

%d",i+1,sqlca.sqlerrd??(i??));

for

(i

=

0;

i

<

10;

i++)

printf("\nSQLWARN%d

...

%c",i,sqlca.sqlwarn[i]);

printf("\nSQLWARNA

...

%c",sqlca.sqlwarn[10]);

printf("\nSQLSTATE

...

%s",sqlca.sqlstate);

return(0);

}

/*

End

of

prtsqlca

*/

/***/

/*END

OF

SPD29

***/

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

9

of

20)

Example

DB2

ODBC

code

546

ODBC

Guide

and

Reference

STEP

5.

Client

application

/**/

/*START

OF

SPD29***/

/*

SCEANRIO

PSEUDOCODE:

*/

/*

APD29(CLI

CODE

CLIENT

APPL)

*/

/*

-CALL

SPD29

(CLI

CODE

STORED

PROCEDURE

APPL)

*/

/*

-SPCODE=0

*/

/*

-PRINTF

MSGS

(CHECK

SDSF

FOR

SPAS

ADDR

TO

VERFIFY)

*/

/*

-SPCODE=1

*/

/*

-PRINTF

MSGS

(CHECK

SDSF

FOR

SPAS

ADDR

TO

VERFIFY)

*/

/*

-SQLPREPARE/EXECUTE

INSERT

INT4=200

*/

/*

-SQLEXECDIRECT

INSERT

INT4=201

*/

/*

-SPCODE=2

*/

/*

-PRINTF

MSGS

(CHECK

SDSF

FOR

SPAS

ADDR

TO

VERFIFY)

*/

/*

-SQLPREPARE/EXECUTE

SELECT

INT4

FROM

TABLE2A

*/

/*

-SQLPREPARE/EXECUTE

SELECT

CHR10

FROM

TABLE2A

*/

/*

(CLI

CURSORS

OPENED

’WITH

RETURN’)...

*/

/*

-RETURN

*/

/*

-FETCH

QRS

FROM

SP

CURSOR

*/

/*

-COMMIT

*/

/*

-VERFIFY

INSERTS

BY

SPD29

*/

/**/

/*

Include

the

’C’

include

files

*/

/**/

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h>

#include

"sqlcli1.h"

#include

<sqlca.h>

/**/

/*

Variables

for

COMPARE

routines

*/

/**/

#ifndef

NULL

#define

NULL

0

#endif

SQLHENV

henv

=

SQL_NULL_HENV;

SQLHDBC

hdbc

=

SQL_NULL_HDBC;

SQLHSTMT

hstmt

=

SQL_NULL_HSTMT;

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

id;

SQLCHAR

name[51];

SQLINTEGER

namelen,

intlen,

colcount;

SQLSMALLINT

scale;

struct

sqlca

sqlca;

SQLCHAR

server[18];

SQLCHAR

uid[30];

SQLCHAR

pwd[30];

SQLCHAR

sqlstmt[250];

SQLSMALLINT

pcpar=0;

SQLSMALLINT

pccol=0;

SQLINTEGER

SPCODE;

struct

{

SQLSMALLINT

LEN;

SQLCHAR

DATA[200];

}

STMTSQL;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

10

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

547

SQLSMALLINT

H1SMINT;

SQLINTEGER

H1INT4;

SQLDOUBLE

H1FLOAT8;

SQLDOUBLE

H1DEC312;

SQLCHAR

H1CHR10[11];

SQLCHAR

H1VCHR20[21];

SQLCHAR

H1LVCHR[21];

SQLCHAR

H1CHRSB[11];

SQLCHAR

H1CHRBIT[11];

SQLCHAR

H1DDATE[11];

SQLCHAR

H1TTIME[9];

SQLCHAR

H1TSTMP[27];

SQLSMALLINT

I1SMINT;

SQLSMALLINT

I1INT4;

SQLSMALLINT

I1FLOAT8;

SQLSMALLINT

I1DEC312;

SQLSMALLINT

I1CHR10;

SQLSMALLINT

I1VCHR20;

SQLSMALLINT

I1LVCHR;

SQLSMALLINT

I1CHRSB;

SQLSMALLINT

I1CHRBIT;

SQLSMALLINT

I1DDATE;

SQLSMALLINT

I1TTIME;

SQLSMALLINT

I1TSTMP;

SQLINTEGER

LNH1SMINT;

SQLINTEGER

LNH1INT4;

SQLINTEGER

LNH1FLOAT8;

SQLINTEGER

LNH1DEC312;

SQLINTEGER

LNH1CHR10;

SQLINTEGER

LNH1VCHR20;

SQLINTEGER

LNH1LVCHR;

SQLINTEGER

LNH1CHRSB;

SQLINTEGER

LNH1CHRBIT;

SQLINTEGER

LNH1DDATE;

SQLINTEGER

LNH1TTIME;

SQLINTEGER

LNH1TSTMP;

SQLSMALLINT

H2SMINT;

SQLINTEGER

H2INT4;

SQLDOUBLE

H2FLOAT8;

SQLCHAR

H2CHR10[11];

SQLCHAR

H2VCHR20[21];

SQLCHAR

H2LVCHR[21];

SQLCHAR

H2CHRSB[11];

SQLCHAR

H2CHRBIT[11];

SQLCHAR

H2DDATE[11];

SQLCHAR

H2TTIME[9];

SQLCHAR

H2TSTMP[27];

SQLSMALLINT

I2SMINT;

SQLSMALLINT

I2INT4;

SQLSMALLINT

I2FLOAT8;

SQLSMALLINT

I2CHR10;

SQLSMALLINT

I2VCHR20;

SQLSMALLINT

I2LVCHR;

SQLSMALLINT

I2CHRSB;

SQLSMALLINT

I2CHRBIT;

SQLSMALLINT

I2DDATE;

SQLSMALLINT

I2TTIME;

SQLSMALLINT

I2TSTMP;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

11

of

20)

Example

DB2

ODBC

code

548

ODBC

Guide

and

Reference

SQLINTEGER

LNH2SMINT;

SQLINTEGER

LNH2INT4;

SQLINTEGER

LNH2FLOAT8;

SQLINTEGER

LNH2CHR10;

SQLINTEGER

LNH2VCHR20;

SQLINTEGER

LNH2LVCHR;

SQLINTEGER

LNH2CHRSB;

SQLINTEGER

LNH2CHRBIT;

SQLINTEGER

LNH2DDATE;

SQLINTEGER

LNH2TTIME;

SQLINTEGER

LNH2TSTMP;

SQLCHAR

locsite[18]

=

"stlec1";

SQLCHAR

remsite[18]

=

"stlec1b";

SQLINTEGER

ix,jx,locix;

SQLINTEGER

result;

SQLCHAR

state_blank[6]

="

";

SQLRETURN

check_error(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLRETURN

frc);

SQLRETURN

prt_sqlca();

/**/

/*

Main

Program

*/

/**/

SQLINTEGER

main()

{

printf("\nAPD29

INITIALIZATION");

scale

=

0;

rc=0;

printf("\nAPD29

SQLAllocEnv

stmt=%d",__LINE__);

henv=0;

rc

=

SQLAllocEnv(&henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-henv=%i",henv);

for

(locix=1;locix<=2;locix++)

{

/*

Start

SQL

statements

**/

/***/

printf("\nAPD29

SQLAllocConnect

");

hdbc=0;

SQLAllocConnect(henv,

&hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-hdbc=%i",hdbc);

/***/

printf("\nAPD29

SQLConnect

");

if

(locix

==

1)

{

strcpy((char

*)server,(char

*)locsite);

}

else

{

strcpy((char

*)server,(char

*)remsite);

}

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

12

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

549

strcpy((char

*)uid,"cliuser");

strcpy((char

*)pwd,"password");

printf("\nAPD29

server=%s",server);

printf("\nAPD29

uid=%s",uid);

printf("\nAPD29

pwd=%s",pwd);

rc=SQLConnect(hdbc,

server,

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

CASE(SPCODE=0)

QRS

RETURNED=0

COL=0

ROW=0

*/

/***/

printf("\nAPD29

SQLAllocStmt

stmt=%d",__LINE__);

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-hstmt=%i\n",hstmt);

SPCODE=0;

printf("\nAPD29

call

sp

SPCODE

=%i\n",SPCODE);

printf("\nAPD29

SQLPrepare

stmt=%d",__LINE__);

strcpy((char*)sqlstmt,"CALL

SPD29(?)");

printf("\nAPD29

sqlstmt=%s",sqlstmt);

rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLBindParameter

stmt=%d",__LINE__);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

&SPCODE,

0,

NULL);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLExecute

stmt=%d",__LINE__);

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

if(

SPCODE

!=

0

)

{

printf("\nAPD29

SPCODE

not

zero,

spcode=%i\n",SPCODE);

goto

dberror;

}

printf("\nAPD29

SQLTransact

stmt=%d",__LINE__);

rc=SQLTransact(henv,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLFreeStmt

stmt=%d",__LINE__);

rc=SQLFreeStmt(hstmt,

SQL_DROP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

CASE(SPCODE=1)

QRS

RETURNED=0

COL=0

ROW=0

*/

/***/

printf("\nAPD29

SQLAllocStmt

stmt=%d",__LINE__);

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-hstmt=%i\n",hstmt);

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

13

of

20)

Example

DB2

ODBC

code

550

ODBC

Guide

and

Reference

SPCODE=1;

printf("\nAPD29

call

sp

SPCODE

=%i\n",SPCODE);

printf("\nAPD29

SQLPrepare

stmt=%d",__LINE__);

strcpy((char*)sqlstmt,"CALL

SPD29(?)");

printf("\nAPD29

sqlstmt=%s",sqlstmt);

rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLBindParameter

stmt=%d",__LINE__);

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

&SPCODE,

0,

NULL);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLExecute

stmt=%d",__LINE__);

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

if(

SPCODE

!=

0

)

{

printf("\nAPD29

SPCODE

not

zero,

spcode=%i\n",SPCODE);

goto

dberror;

}

printf("\nAPD29

SQLTransact

stmt=%d",__LINE__);

rc=SQLTransact(henv,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLFreeStmt

stmt=%d",__LINE__);

rc=SQLFreeStmt(hstmt,

SQL_DROP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

CASE(SPCODE=2)

QRS

RETURNED=2

COL=1(int4/chr10)

ROW=100+

*/

/***/

printf("\nAPD29

SQLAllocStmt

number=

18\n");

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-hstmt=%i\n",hstmt);

SPCODE=2;

printf("\nAPD29

call

sp

SPCODE

=%i\n",SPCODE);

printf("\nAPD29

SQLPrepare

number=

19\n");

strcpy((char*)sqlstmt,"CALL

SPD29(?)");

printf("\nAPD29

sqlstmt=%s",sqlstmt);

rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

14

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

551

printf("\nAPD29

SQLBindParameter

number=

20\n");

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

&SPCODE,

0,

NULL);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLExecute

number=

21\n");

rc=SQLExecute(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

if(

SPCODE

!=

0

)

{

printf("\nAPD29

spcode

incorrect");

goto

dberror;

}

printf("\nAPD29

SQLNumResultCols

number=

22\n");

rc=SQLNumResultCols(hstmt,&pccol);

if

(pccol!=1)

{

printf("APD29

col

count

wrong=%i\n",pccol);

goto

dberror;

}

printf("\nAPD29

SQLBindCol

number=

23\n");

rc=SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

&H1INT4,

(SQLINTEGER)sizeof(SQLINTEGER),

(SQLINTEGER

*)

&LNH1INT4

);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

jx=0;

printf("\nAPD29

SQLFetch

number=

24\n");

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

jx++;

printf("\nAPD29

fetch

loop

jx

=%i\n",jx);

if

(

(H1INT4<=0)

||

(H1INT4>=202)

||

(LNH1INT4!=4

&&

LNH1INT4!=-1)

)

{

/*

data

error

*/

printf("\nAPD29

H1INT4=%i\n",H1INT4);

printf("\nAPD29

LNH1INT4=%i\n",LNH1INT4);

goto

dberror;

}

printf("\nAPD29

SQLFetch

number=

24\n");

}

/*

end

while

loop

*/

if(

rc

!=

SQL_NO_DATA_FOUND

)

{

printf("\nAPD29

invalid

end

of

data\n");

goto

dberror;

}

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

15

of

20)

Example

DB2

ODBC

code

552

ODBC

Guide

and

Reference

printf("\nAPD29

SQLMoreResults

number=

25\n");

rc=SQLMoreResults(hstmt);

if(rc

!=

SQL_SUCCESS)

goto

dberror;

printf("\nAPD29

SQLNumResultCols

number=

26\n");

rc=SQLNumResultCols(hstmt,&pccol);

if

(pccol!=1)

{

printf("APD29

col

count

wrong=%i\n",pccol);

goto

dberror;

}

printf("\nAPD29

SQLBindCol

number=

27\n");

rc=SQLBindCol(hstmt,

1,

SQL_C_CHAR,

(SQLPOINTER)

H1CHR10,

(SQLINTEGER)sizeof(H1CHR10),

(SQLINTEGER

*)

&LNH1CHR10

);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

jx=0;

while

((rc

=

SQLFetch(hstmt))

==

SQL_SUCCESS)

{

jx++;

printf("\nAPD29

fetch

loop

jx

=%i\n",jx);

result=strcmp((char

*)H1CHR10,"CHAR

");

if

(

(result!=0)

||

(LNH1INT4!=4

&&

LNH1INT4!=-1)

)

{

printf("\nAPD29

H1CHR10=%s\n",H1CHR10);

printf("\nAPD29

result=%i\n",result);

printf("\nAPD29

LNH1CHR10=%i\n",LNH1CHR10);

printf("\nAPD29

strlen(H1CHR10)=%i\n",strlen((char

*)H1CHR10));

goto

dberror;

}

printf("\nAPD29

SQLFetch

number=

24\n");

}

/*

end

while

loop

*/

if(

rc

!=

SQL_NO_DATA_FOUND

)

goto

dberror;

printf("\nAPD29

SQLMoreResults

number=

29\n");

rc=SQLMoreResults(hstmt);

if(

rc

!=

SQL_NO_DATA_FOUND)

goto

dberror;

printf("\nAPD29

SQLTransact

number=

30\n");

rc=SQLTransact(henv,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29

SQLFreeStmt

number=

31\n");

rc=SQLFreeStmt(hstmt,

SQL_DROP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nAPD29

SQLDisconnect

stmt=%d",__LINE__);

rc=SQLDisconnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nSQLFreeConnect

stmt=%d",__LINE__);

rc=SQLFreeConnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

End

SQL

statements

**/

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

16

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

553

}

/*

end

for

each

site

perform

these

stmts

*/

for

(locix=1;locix<=2;locix++)

{

/***/

printf("\nAPD29

SQLAllocConnect

");

hdbc=0;

SQLAllocConnect(henv,

&hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD29-hdbc=%i",hdbc);

/***/

printf("\nAPD29

SQLConnect

");

if

(locix

==

1)

{

strcpy((char

*)server,(char

*)locsite);

}

else

{

strcpy((char

*)server,(char

*)remsite);

}

strcpy((char

*)uid,"cliuser");

strcpy((char

*)pwd,"password");

printf("\nAPD29

server=%s",server);

printf("\nAPD29

uid=%s",uid);

printf("\nAPD29

pwd=%s",pwd);

rc=SQLConnect(hdbc,

server,

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

Start

validate

SQL

statements

*********************************/

/***/

printf("\nAPD01

SQLAllocStmt

\n");

hstmt=0;

rc=SQLAllocStmt(hdbc,

&hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01-hstmt=%i\n",hstmt);

printf("\nAPD01

SQLExecDirect

\n");

strcpy((char

*)sqlstmt,

"SELECT

INT4

FROM

TABLE2A

WHERE

INT4=200");

printf("\nAPD01

sqlstmt=%s",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLBindCol

\n");

rc=SQLBindCol(hstmt,

1,

SQL_C_LONG,

(SQLPOINTER)

&H1INT4,;

(SQLINTEGER)sizeof(SQLINTEGER),

(SQLINTEGER

*)

&LNH1INT4

);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLFetch

\n");

rc=SQLFetch(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

if

((H1INT4!=200)

||

(LNH1INT4!=4))

{

printf("\nAPD01

H1INT4=%i\n",H1INT4);

printf("\nAPD01

LNH1INT4=%i\n",LNH1INT4);

goto

dberror;

}

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

17

of

20)

Example

DB2

ODBC

code

554

ODBC

Guide

and

Reference

printf("\nAPD01

SQLTransact

\n");

rc=SQLTransact(henv,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLFreeStmt

\n");

rc=SQLFreeStmt(hstmt,

SQL_CLOSE);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLExecDirect

\n");

strcpy((char

*)sqlstmt,

"SELECT

INT4

FROM

TABLE2A

WHERE

INT4=201");

printf("\nAPD01

sqlstmt=%s",sqlstmt);

rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLFetch

\n");

rc=SQLFetch(hstmt);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

if

((H1INT4!=201)

||

(LNH1INT4!=4))

{

printf("\nAPD01

H1INT4=%i\n",H1INT4);

printf("\nAPD01

LNH1INT4=%i\n",LNH1INT4);

goto

dberror;

}

printf("\nAPD01

SQLTransact

\n");

rc=SQLTransact(henv,

hdbc,

SQL_COMMIT);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

printf("\nAPD01

SQLFreeStmt

\n");

rc=SQLFreeStmt(hstmt,

SQL_DROP);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

/*

End

validate

SQL

statements

***********************************/

/***/

printf("\nAPD29

SQLDisconnect

stmt=%d",__LINE__);

rc=SQLDisconnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

printf("\nSQLFreeConnect

stmt=%d",__LINE__);

rc=SQLFreeConnect(hdbc);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

}

/*

end

for

each

site

perform

these

stmts

*/

/***/

printf("\nSQLFreeEnv

stmt=%d",__LINE__);

rc=SQLFreeEnv(henv);

if(

rc

!=

SQL_SUCCESS

)

goto

dberror;

/***/

goto

pgmend;

dberror:

printf("\nAPD29

entry

dberror

label");

printf("\nAPD29

rc=%d",rc);

check_error(henv,hdbc,hstmt,rc);

printf("\nAPDXX

SQLFreeEnv

number=

6\n");

rc=SQLFreeEnv(henv);

printf("\nAPDXX

FREEENV

rc

=%d",rc);

rc=12;

printf("\nAPDXX

DBERROR

set

rc

=%d",rc);

goto

pgmend;

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

18

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

555

pgmend:

printf("\nAPD29

TERMINATION

");

if

(rc!=0)

{

printf("\nAPD29

WAS

NOT

SUCCESSFUL");

printf("\nAPD29

SPCODE

=

%i",

SPCODE

);

printf("\nAPD29

rc

=

%i",

rc

);

}

else

printf("\nAPD29

WAS

SUCCESSFUL");

return(rc);

}

/*END

MAIN*/

/***

**

check_error

-

call

print_error(),

checks

severity

of

return

code

***/

SQLRETURN

check_error(SQLHENV

henv,

SQLHDBC

hdbc,

SQLHSTMT

hstmt,

SQLRETURN

frc

)

{

SQLCHAR

buffer_SQL_MAX_MESSAGE_LENGTH

+

1};

SQLCHAR

cli_sqlstate_SQL_SQLSTATE_SIZE

+

1};

SQLINTEGER

cli_sqlcode;

SQLSMALLINT

length;

printf("\nAPD29

entry

check_error

rtn");

switch

(frc)

{

case

SQL_SUCCESS:

break;

case

SQL_INVALID_HANDLE:

printf("\nAPD29

check_error>

SQL_INVALID

HANDLE

");

case

SQL_ERROR:

printf("\nAPD29

check_error>

SQL_ERROR

");

break;

case

SQL_SUCCESS_WITH_INFO:

printf("\nAPD29

check_error>

SQL_SUCCESS_WITH_INFO");

break;

case

SQL_NO_DATA_FOUND:

printf("\nAPD29

check_error>

SQL_NO_DATA_FOUND

");

break;

default:

printf("\nAPD29

check_error>

Invalid

rc

from

api

rc=%i",frc);

break;

}

/*end

switch*/

printf("\nAPD29

SQLError

");

while

((rc=SQLError(henv,

hdbc,

hstmt,

cli_sqlstate,

&cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH

+

1,

&length))

==

SQL_SUCCESS)

{

printf("

SQLSTATE:

%s",

cli_sqlstate);

printf("Native

Error

Code:

%ld",

cli_sqlcode);

printf("%s

",

buffer);

};

if

(rc!=SQL_NO_DATA_FOUND)

printf("SQLError

api

call

failed

rc=%d",rc);

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

19

of

20)

Example

DB2

ODBC

code

556

ODBC

Guide

and

Reference

printf("\nAPD29

SQLGetSQLCA

");

rc

=

SQLGetSQLCA(henv,

hdbc,

hstmt,

&sqlca);

if(

rc

==

SQL_SUCCESS

)

prt_sqlca();

else

printf("\n

APD29-check_error

SQLGetSQLCA

failed

rc=%i",rc);

return

(frc);

}

/***/

/*

P

r

i

n

t

S

Q

L

C

A

*/

/***/

SQLRETURN

prt_sqlca()

{

SQLINTEGER

i;

printf("\nlAPD29

entry

prts_sqlca

rtn");

printf("\r\r***

Printing

the

SQLCA:\r");

printf("\nSQLCAID

....

%s",sqlca.sqlcaid);

printf("\nSQLCABC

....

%d",sqlca.sqlcabc);

printf("\nSQLCODE

....

%d",sqlca.sqlcode);

printf("\nSQLERRML

...

%d",sqlca.sqlerrml);

printf("\nSQLERRMC

...

%s",sqlca.sqlerrmc);

printf("\nSQLERRP

...

%s",sqlca.sqlerrp);

for

(i

=

0;

i

<

6;

i++)

printf("\nSQLERRD%d

...

%d",i+1,sqlca.sqlerrd??(i??));

for

(i

=

0;

i

<

10;

i++)

printf("\nSQLWARN%d

...

%c",i,sqlca.sqlwarn[i]);

printf("\nSQLWARNA

...

%c",sqlca.sqlwarn[10]);

printf("\nSQLSTATE

...

%s",sqlca.sqlstate);

return(0);

}

/*

End

of

prtsqlca

*/

/*END

OF

APD29**/

Figure

64.

A

client

application

that

calls

a

DB2

ODBC

stored

procedure

(Part

20

of

20)

Example

DB2

ODBC

code

Appendix

F.

Example

DB2

ODBC

code

557

Example

DB2

ODBC

code

558

ODBC

Guide

and

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1997,

2004

559

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

This

book

is

intended

to

help

you

to

write

applications

that

use

DB2

ODBC

to

access

IBM

DB2

UDB

for

z/OS

servers.

This

book

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

DB2

UDB

for

z/OS.

General-use

programming

interfaces

allow

you

to

write

programs

that

obtain

the

services

of

DB2

UDB

for

z/OS.

560

ODBC

Guide

and

Reference

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

400

AD/Cycle

AIX

BookManager

CICS

CT

DataPropagator

DB2

DB2

Universal

Database

DFSMSdfp

DFSMSdss

DFSMShsm

Distributed

Relational

Database

Architecture

DRDA

Enterprise

Storage

Server

Enterprise

System/9000

ES/3090

eServer

FlashCopy

IBM

IBM

Registry

ibm.com

IMS

iSeries

Language

Environment

MVS

OpenEdition

OS/390

Parallel

Sysplex

PR/SM

QMF

RACF

RAMAC

Redbooks

SAA

SP

SP1

System/390

VTAM

z/OS

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Notices

561

562

ODBC

Guide

and

Reference

Glossary

The

following

terms

and

abbreviations

are

defined

as

they

are

used

in

the

DB2

library.

A

abend.

Abnormal

end

of

task.

abend

reason

code.

A

4-byte

hexadecimal

code

that

uniquely

identifies

a

problem

with

DB2.

A

complete

list

of

DB2

abend

reason

codes

and

their

explanations

is

contained

in

DB2

Messages

and

Codes.

abnormal

end

of

task

(abend).

Termination

of

a

task,

job,

or

subsystem

because

of

an

error

condition

that

recovery

facilities

cannot

resolve

during

execution.

access

method

services.

The

facility

that

is

used

to

define

and

reproduce

VSAM

key-sequenced

data

sets.

access

path.

The

path

that

is

used

to

locate

data

that

is

specified

in

SQL

statements.

An

access

path

can

be

indexed

or

sequential.

active

log.

The

portion

of

the

DB2

log

to

which

log

records

are

written

as

they

are

generated.

The

active

log

always

contains

the

most

recent

log

records,

whereas

the

archive

log

holds

those

records

that

are

older

and

no

longer

fit

on

the

active

log.

active

member

state.

A

state

of

a

member

of

a

data

sharing

group.

The

cross-system

coupling

facility

identifies

each

active

member

with

a

group

and

associates

the

member

with

a

particular

task,

address

space,

and

z/OS

system.

A

member

that

is

not

active

has

either

a

failed

member

state

or

a

quiesced

member

state.

address

space.

A

range

of

virtual

storage

pages

that

is

identified

by

a

number

(ASID)

and

a

collection

of

segment

and

page

tables

that

map

the

virtual

pages

to

real

pages

of

the

computer’s

memory.

address

space

connection.

The

result

of

connecting

an

allied

address

space

to

DB2.

Each

address

space

that

contains

a

task

that

is

connected

to

DB2

has

exactly

one

address

space

connection,

even

though

more

than

one

task

control

block

(TCB)

can

be

present.

See

also

allied

address

space

and

task

control

block.

address

space

identifier

(ASID).

A

unique

system-assigned

identifier

for

and

address

space.

administrative

authority.

A

set

of

related

privileges

that

DB2

defines.

When

you

grant

one

of

the

administrative

authorities

to

a

person’s

ID,

the

person

has

all

of

the

privileges

that

are

associated

with

that

administrative

authority.

after

trigger.

A

trigger

that

is

defined

with

the

trigger

activation

time

AFTER.

agent.

As

used

in

DB2,

the

structure

that

associates

all

processes

that

are

involved

in

a

DB2

unit

of

work.

An

allied

agent

is

generally

synonymous

with

an

allied

thread.

System

agents

are

units

of

work

that

process

tasks

that

are

independent

of

the

allied

agent,

such

as

prefetch

processing,

deferred

writes,

and

service

tasks.

alias.

An

alternative

name

that

can

be

used

in

SQL

statements

to

refer

to

a

table

or

view

in

the

same

or

a

remote

DB2

subsystem.

allied

address

space.

An

area

of

storage

that

is

external

to

DB2

and

that

is

connected

to

DB2.

An

allied

address

space

is

capable

of

requesting

DB2

services.

allied

thread.

A

thread

that

originates

at

the

local

DB2

subsystem

and

that

can

access

data

at

a

remote

DB2

subsystem.

allocated

cursor.

A

cursor

that

is

defined

for

stored

procedure

result

sets

by

using

the

SQL

ALLOCATE

CURSOR

statement.

already

verified.

An

LU

6.2

security

option

that

allows

DB2

to

provide

the

user’s

verified

authorization

ID

when

allocating

a

conversation.

With

this

option,

the

user

is

not

validated

by

the

partner

DB2

subsystem.

ambiguous

cursor.

A

database

cursor

that

is

in

a

plan

or

package

that

contains

either

PREPARE

or

EXECUTE

IMMEDIATE

SQL

statements,

and

for

which

the

following

statements

are

true:

the

cursor

is

not

defined

with

the

FOR

READ

ONLY

clause

or

the

FOR

UPDATE

OF

clause;

the

cursor

is

not

defined

on

a

read-only

result

table;

the

cursor

is

not

the

target

of

a

WHERE

CURRENT

clause

on

an

SQL

UPDATE

or

DELETE

statement.

American

National

Standards

Institute

(ANSI).

An

organization

consisting

of

producers,

consumers,

and

general

interest

groups,

that

establishes

the

procedures

by

which

accredited

organizations

create

and

maintain

voluntary

industry

standards

in

the

United

States.

ANSI.

American

National

Standards

Institute.

APAR.

Authorized

program

analysis

report.

APAR

fix

corrective

service.

A

temporary

correction

of

an

IBM

software

defect.

The

correction

is

temporary,

because

it

is

usually

replaced

at

a

later

date

by

a

more

permanent

correction,

such

as

a

program

temporary

fix

(PTF).

APF.

Authorized

program

facility.

API.

Application

programming

interface.

©

Copyright

IBM

Corp.

1997,

2004

563

|
|

APPL.

A

VTAM®

network

definition

statement

that

is

used

to

define

DB2

to

VTAM

as

an

application

program

that

uses

SNA

LU

6.2

protocols.

application.

A

program

or

set

of

programs

that

performs

a

task;

for

example,

a

payroll

application.

application-directed

connection.

A

connection

that

an

application

manages

using

the

SQL

CONNECT

statement.

application

plan.

The

control

structure

that

is

produced

during

the

bind

process.

DB2

uses

the

application

plan

to

process

SQL

statements

that

it

encounters

during

statement

execution.

application

process.

The

unit

to

which

resources

and

locks

are

allocated.

An

application

process

involves

the

execution

of

one

or

more

programs.

application

programming

interface

(API).

A

functional

interface

that

is

supplied

by

the

operating

system

or

by

a

separately

orderable

licensed

program

that

allows

an

application

program

that

is

written

in

a

high-level

language

to

use

specific

data

or

functions

of

the

operating

system

or

licensed

program.

application

requester.

The

component

on

a

remote

system

that

generates

DRDA

requests

for

data

on

behalf

of

an

application.

An

application

requester

accesses

a

DB2

database

server

using

the

DRDA

application-directed

protocol.

application

server.

The

target

of

a

request

from

a

remote

application.

In

the

DB2

environment,

the

application

server

function

is

provided

by

the

distributed

data

facility

and

is

used

to

access

DB2

data

from

remote

applications.

archive

log.

The

portion

of

the

DB2

log

that

contains

log

records

that

have

been

copied

from

the

active

log.

ASCII.

An

encoding

scheme

that

is

used

to

represent

strings

in

many

environments,

typically

on

PCs

and

workstations.

Contrast

with

EBCDIC

and

Unicode.

ASID.

Address

space

identifier.

attachment

facility.

An

interface

between

DB2

and

TSO,

IMS,

CICS,

or

batch

address

spaces.

An

attachment

facility

allows

application

programs

to

access

DB2.

attribute.

A

characteristic

of

an

entity.

For

example,

in

database

design,

the

phone

number

of

an

employee

is

one

of

that

employee’s

attributes.

authorization

ID.

A

string

that

can

be

verified

for

connection

to

DB2

and

to

which

a

set

of

privileges

is

allowed.

It

can

represent

an

individual,

an

organizational

group,

or

a

function,

but

DB2

does

not

determine

this

representation.

authorized

program

analysis

report

(APAR).

A

report

of

a

problem

that

is

caused

by

a

suspected

defect

in

a

current

release

of

an

IBM

supplied

program.

authorized

program

facility

(APF).

A

facility

that

permits

the

identification

of

programs

that

are

authorized

to

use

restricted

functions.

automatic

query

rewrite.

A

process

that

examines

an

SQL

statement

that

refers

to

one

or

more

base

tables,

and,

if

appropriate,

rewrites

the

query

so

that

it

performs

better.

This

process

can

also

determine

whether

to

rewrite

a

query

so

that

it

refers

to

one

or

more

materialized

query

tables

that

are

derived

from

the

source

tables.

auxiliary

index.

An

index

on

an

auxiliary

table

in

which

each

index

entry

refers

to

a

LOB.

auxiliary

table.

A

table

that

stores

columns

outside

the

table

in

which

they

are

defined.

Contrast

with

base

table.

B

backout.

The

process

of

undoing

uncommitted

changes

that

an

application

process

made.

This

might

be

necessary

in

the

event

of

a

failure

on

the

part

of

an

application

process,

or

as

a

result

of

a

deadlock

situation.

backward

log

recovery.

The

fourth

and

final

phase

of

restart

processing

during

which

DB2

scans

the

log

in

a

backward

direction

to

apply

UNDO

log

records

for

all

aborted

changes.

base

table.

(1)

A

table

that

is

created

by

the

SQL

CREATE

TABLE

statement

and

that

holds

persistent

data.

Contrast

with

result

table

and

temporary

table.

(2)

A

table

containing

a

LOB

column

definition.

The

actual

LOB

column

data

is

not

stored

with

the

base

table.

The

base

table

contains

a

row

identifier

for

each

row

and

an

indicator

column

for

each

of

its

LOB

columns.

Contrast

with

auxiliary

table.

base

table

space.

A

table

space

that

contains

base

tables.

basic

predicate.

A

predicate

that

compares

two

values.

basic

sequential

access

method

(BSAM).

An

access

method

for

storing

or

retrieving

data

blocks

in

a

continuous

sequence,

using

either

a

sequential-access

or

a

direct-access

device.

batch

message

processing

program.

In

IMS,

an

application

program

that

can

perform

batch-type

processing

online

and

can

access

the

IMS

input

and

output

message

queues.

APPL

•

batch

message

processing

program

564

ODBC

Guide

and

Reference

|

|

|

|

|

before

trigger.

A

trigger

that

is

defined

with

the

trigger

activation

time

BEFORE.

binary

integer.

A

basic

data

type

that

can

be

further

classified

as

small

integer

or

large

integer.

binary

large

object

(BLOB).

A

sequence

of

bytes

where

the

size

of

the

value

ranges

from

0

bytes

to

2

GB−1.

Such

a

string

does

not

have

an

associated

CCSID.

binary

string.

A

sequence

of

bytes

that

is

not

associated

with

a

CCSID.

For

example,

the

BLOB

data

type

is

a

binary

string.

bind.

The

process

by

which

the

output

from

the

SQL

precompiler

is

converted

to

a

usable

control

structure,

often

called

an

access

plan,

application

plan,

or

package.

During

this

process,

access

paths

to

the

data

are

selected

and

some

authorization

checking

is

performed.

The

types

of

bind

are:

automatic

bind.

(More

correctly,

automatic

rebind)

A

process

by

which

SQL

statements

are

bound

automatically

(without

a

user

issuing

a

BIND

command)

when

an

application

process

begins

execution

and

the

bound

application

plan

or

package

it

requires

is

not

valid.

dynamic

bind.

A

process

by

which

SQL

statements

are

bound

as

they

are

entered.

incremental

bind.

A

process

by

which

SQL

statements

are

bound

during

the

execution

of

an

application

process.

static

bind.

A

process

by

which

SQL

statements

are

bound

after

they

have

been

precompiled.

All

static

SQL

statements

are

prepared

for

execution

at

the

same

time.

bit

data.

Data

that

is

character

type

CHAR

or

VARCHAR

and

is

not

associated

with

a

coded

character

set.

BLOB.

Binary

large

object.

block

fetch.

A

capability

in

which

DB2

can

retrieve,

or

fetch,

a

large

set

of

rows

together.

Using

block

fetch

can

significantly

reduce

the

number

of

messages

that

are

being

sent

across

the

network.

Block

fetch

applies

only

to

cursors

that

do

not

update

data.

BMP.

Batch

Message

Processing

(IMS).

See

batch

message

processing

program.

bootstrap

data

set

(BSDS).

A

VSAM

data

set

that

contains

name

and

status

information

for

DB2,

as

well

as

RBA

range

specifications,

for

all

active

and

archive

log

data

sets.

It

also

contains

passwords

for

the

DB2

directory

and

catalog,

and

lists

of

conditional

restart

and

checkpoint

records.

BSAM.

Basic

sequential

access

method.

BSDS.

Bootstrap

data

set.

buffer

pool.

Main

storage

that

is

reserved

to

satisfy

the

buffering

requirements

for

one

or

more

table

spaces

or

indexes.

built-in

data

type.

A

data

type

that

IBM

supplies.

Among

the

built-in

data

types

for

DB2

UDB

for

z/OS

are

string,

numeric,

ROWID,

and

datetime.

Contrast

with

distinct

type.

built-in

function.

A

function

that

DB2

supplies.

Contrast

with

user-defined

function.

business

dimension.

A

category

of

data,

such

as

products

or

time

periods,

that

an

organization

might

want

to

analyze.

C

cache

structure.

A

coupling

facility

structure

that

stores

data

that

can

be

available

to

all

members

of

a

Sysplex.

A

DB2

data

sharing

group

uses

cache

structures

as

group

buffer

pools.

CAF.

Call

attachment

facility.

call

attachment

facility

(CAF).

A

DB2

attachment

facility

for

application

programs

that

run

in

TSO

or

z/OS

batch.

The

CAF

is

an

alternative

to

the

DSN

command

processor

and

provides

greater

control

over

the

execution

environment.

call-level

interface

(CLI).

A

callable

application

programming

interface

(API)

for

database

access,

which

is

an

alternative

to

using

embedded

SQL.

In

contrast

to

embedded

SQL,

DB2

ODBC

(which

is

based

on

the

CLI

architecture)

does

not

require

the

user

to

precompile

or

bind

applications,

but

instead

provides

a

standard

set

of

functions

to

process

SQL

statements

and

related

services

at

run

time.

cascade

delete.

The

way

in

which

DB2

enforces

referential

constraints

when

it

deletes

all

descendent

rows

of

a

deleted

parent

row.

CASE

expression.

An

expression

that

is

selected

based

on

the

evaluation

of

one

or

more

conditions.

cast

function.

A

function

that

is

used

to

convert

instances

of

a

(source)

data

type

into

instances

of

a

different

(target)

data

type.

In

general,

a

cast

function

has

the

name

of

the

target

data

type.

It

has

one

single

argument

whose

type

is

the

source

data

type;

its

return

type

is

the

target

data

type.

castout.

The

DB2

process

of

writing

changed

pages

from

a

group

buffer

pool

to

disk.

castout

owner.

The

DB2

member

that

is

responsible

for

casting

out

a

particular

page

set

or

partition.

catalog.

In

DB2,

a

collection

of

tables

that

contains

descriptions

of

objects

such

as

tables,

views,

and

indexes.

before

trigger

•

catalog

Glossary

565

catalog

table.

Any

table

in

the

DB2

catalog.

CCSID.

Coded

character

set

identifier.

CDB.

Communications

database.

CDRA.

Character

Data

Representation

Architecture.

CEC.

Central

electronic

complex.

See

central

processor

complex.

central

electronic

complex

(CEC).

See

central

processor

complex.

central

processor

(CP).

The

part

of

the

computer

that

contains

the

sequencing

and

processing

facilities

for

instruction

execution,

initial

program

load,

and

other

machine

operations.

central

processor

complex

(CPC).

A

physical

collection

of

hardware

(such

as

an

ES/3090™)

that

consists

of

main

storage,

one

or

more

central

processors,

timers,

and

channels.

CFRM.

Coupling

facility

resource

management.

CFRM

policy.

A

declaration

by

a

z/OS

administrator

regarding

the

allocation

rules

for

a

coupling

facility

structure.

character

conversion.

The

process

of

changing

characters

from

one

encoding

scheme

to

another.

Character

Data

Representation

Architecture

(CDRA).

An

architecture

that

is

used

to

achieve

consistent

representation,

processing,

and

interchange

of

string

data.

character

large

object

(CLOB).

A

sequence

of

bytes

representing

single-byte

characters

or

a

mixture

of

single-

and

double-byte

characters

where

the

size

of

the

value

can

be

up

to

2

GB−1.

In

general,

character

large

object

values

are

used

whenever

a

character

string

might

exceed

the

limits

of

the

VARCHAR

type.

character

set.

A

defined

set

of

characters.

character

string.

A

sequence

of

bytes

that

represent

bit

data,

single-byte

characters,

or

a

mixture

of

single-byte

and

multibyte

characters.

check

constraint.

A

user-defined

constraint

that

specifies

the

values

that

specific

columns

of

a

base

table

can

contain.

check

integrity.

The

condition

that

exists

when

each

row

in

a

table

conforms

to

the

check

constraints

that

are

defined

on

that

table.

Maintaining

check

integrity

requires

DB2

to

enforce

check

constraints

on

operations

that

add

or

change

data.

check

pending.

A

state

of

a

table

space

or

partition

that

prevents

its

use

by

some

utilities

and

by

some

SQL

statements

because

of

rows

that

violate

referential

constraints,

check

constraints,

or

both.

checkpoint.

A

point

at

which

DB2

records

internal

status

information

on

the

DB2

log;

the

recovery

process

uses

this

information

if

DB2

abnormally

terminates.

child

lock.

For

explicit

hierarchical

locking,

a

lock

that

is

held

on

either

a

table,

page,

row,

or

a

large

object

(LOB).

Each

child

lock

has

a

parent

lock.

See

also

parent

lock.

CI.

Control

interval.

CICS.

Represents

(in

this

publication):

CICS

Transaction

Server

for

z/OS:

Customer

Information

Control

System

Transaction

Server

for

z/OS.

CICS

attachment

facility.

A

DB2

subcomponent

that

uses

the

z/OS

subsystem

interface

(SSI)

and

cross-storage

linkage

to

process

requests

from

CICS

to

DB2

and

to

coordinate

resource

commitment.

CIDF.

Control

interval

definition

field.

claim.

A

notification

to

DB2

that

an

object

is

being

accessed.

Claims

prevent

drains

from

occurring

until

the

claim

is

released,

which

usually

occurs

at

a

commit

point.

Contrast

with

drain.

claim

class.

A

specific

type

of

object

access

that

can

be

one

of

the

following

isolation

levels:

Cursor

stability

(CS)

Repeatable

read

(RR)

Write

claim

count.

A

count

of

the

number

of

agents

that

are

accessing

an

object.

class

of

service.

A

VTAM

term

for

a

list

of

routes

through

a

network,

arranged

in

an

order

of

preference

for

their

use.

class

word.

A

single

word

that

indicates

the

nature

of

a

data

attribute.

For

example,

the

class

word

PROJ

indicates

that

the

attribute

identifies

a

project.

clause.

In

SQL,

a

distinct

part

of

a

statement,

such

as

a

SELECT

clause

or

a

WHERE

clause.

CLI.

Call-

level

interface.

client.

See

requester.

CLIST.

Command

list.

A

language

for

performing

TSO

tasks.

CLOB.

Character

large

object.

closed

application.

An

application

that

requires

exclusive

use

of

certain

statements

on

certain

DB2

objects,

so

that

the

objects

are

managed

solely

through

the

application’s

external

interface.

catalog

table

•

closed

application

566

ODBC

Guide

and

Reference

|

|

|

|

|

|

|

|

CLPA.

Create

link

pack

area.

clustering

index.

An

index

that

determines

how

rows

are

physically

ordered

(clustered)

in

a

table

space.

If

a

clustering

index

on

a

partitioned

table

is

not

a

partitioning

index,

the

rows

are

ordered

in

cluster

sequence

within

each

data

partition

instead

of

spanning

partitions.

Prior

to

Version

8

of

DB2

UDB

for

z/OS,

the

partitioning

index

was

required

to

be

the

clustering

index.

coded

character

set.

A

set

of

unambiguous

rules

that

establish

a

character

set

and

the

one-to-one

relationships

between

the

characters

of

the

set

and

their

coded

representations.

coded

character

set

identifier

(CCSID).

A

16-bit

number

that

uniquely

identifies

a

coded

representation

of

graphic

characters.

It

designates

an

encoding

scheme

identifier

and

one

or

more

pairs

consisting

of

a

character

set

identifier

and

an

associated

code

page

identifier.

code

page.

(1)

A

set

of

assignments

of

characters

to

code

points.

In

EBCDIC,

for

example,

the

character

'A'

is

assigned

code

point

X'C1'

(2)

,

and

character

'B'

is

assigned

code

point

X'C2'.

Within

a

code

page,

each

code

point

has

only

one

specific

meaning.

code

point.

In

CDRA,

a

unique

bit

pattern

that

represents

a

character

in

a

code

page.

coexistence.

During

migration,

the

period

of

time

in

which

two

releases

exist

in

the

same

data

sharing

group.

cold

start.

A

process

by

which

DB2

restarts

without

processing

any

log

records.

Contrast

with

warm

start.

collection.

A

group

of

packages

that

have

the

same

qualifier.

column.

The

vertical

component

of

a

table.

A

column

has

a

name

and

a

particular

data

type

(for

example,

character,

decimal,

or

integer).

column

function.

An

operation

that

derives

its

result

by

using

values

from

one

or

more

rows.

Contrast

with

scalar

function.

"come

from"

checking.

An

LU

6.2

security

option

that

defines

a

list

of

authorization

IDs

that

are

allowed

to

connect

to

DB2

from

a

partner

LU.

command.

A

DB2

operator

command

or

a

DSN

subcommand.

A

command

is

distinct

from

an

SQL

statement.

command

prefix.

A

one-

to

eight-character

command

identifier.

The

command

prefix

distinguishes

the

command

as

belonging

to

an

application

or

subsystem

rather

than

to

MVS.

command

recognition

character

(CRC).

A

character

that

permits

a

z/OS

console

operator

or

an

IMS

subsystem

user

to

route

DB2

commands

to

specific

DB2

subsystems.

command

scope.

The

scope

of

command

operation

in

a

data

sharing

group.

If

a

command

has

member

scope,

the

command

displays

information

only

from

the

one

member

or

affects

only

non-shared

resources

that

are

owned

locally

by

that

member.

If

a

command

has

group

scope,

the

command

displays

information

from

all

members,

affects

non-shared

resources

that

are

owned

locally

by

all

members,

displays

information

on

sharable

resources,

or

affects

sharable

resources.

commit.

The

operation

that

ends

a

unit

of

work

by

releasing

locks

so

that

the

database

changes

that

are

made

by

that

unit

of

work

can

be

perceived

by

other

processes.

commit

point.

A

point

in

time

when

data

is

considered

consistent.

committed

phase.

The

second

phase

of

the

multisite

update

process

that

requests

all

participants

to

commit

the

effects

of

the

logical

unit

of

work.

common

service

area

(CSA).

In

z/OS,

a

part

of

the

common

area

that

contains

data

areas

that

are

addressable

by

all

address

spaces.

communications

database

(CDB).

A

set

of

tables

in

the

DB2

catalog

that

are

used

to

establish

conversations

with

remote

database

management

systems.

comparison

operator.

A

token

(such

as

=,

>,

or

<)

that

is

used

to

specify

a

relationship

between

two

values.

composite

key.

An

ordered

set

of

key

columns

of

the

same

table.

compression

dictionary.

The

dictionary

that

controls

the

process

of

compression

and

decompression.

This

dictionary

is

created

from

the

data

in

the

table

space

or

table

space

partition.

concurrency.

The

shared

use

of

resources

by

more

than

one

application

process

at

the

same

time.

conditional

restart.

A

DB2

restart

that

is

directed

by

a

user-defined

conditional

restart

control

record

(CRCR).

connection.

In

SNA,

the

existence

of

a

communication

path

between

two

partner

LUs

that

allows

information

to

be

exchanged

(for

example,

two

DB2

subsystems

that

are

connected

and

communicating

by

way

of

a

conversation).

connection

context.

In

SQLJ,

a

Java™

object

that

represents

a

connection

to

a

data

source.

CLPA

•

connection

context

Glossary

567

connection

declaration

clause.

In

SQLJ,

a

statement

that

declares

a

connection

to

a

data

source.

connection

handle.

The

data

object

containing

information

that

is

associated

with

a

connection

that

DB2

ODBC

manages.

This

includes

general

status

information,

transaction

status,

and

diagnostic

information.

connection

ID.

An

identifier

that

is

supplied

by

the

attachment

facility

and

that

is

associated

with

a

specific

address

space

connection.

consistency

token.

A

timestamp

that

is

used

to

generate

the

version

identifier

for

an

application.

See

also

version.

constant.

A

language

element

that

specifies

an

unchanging

value.

Constants

are

classified

as

string

constants

or

numeric

constants.

Contrast

with

variable.

constraint.

A

rule

that

limits

the

values

that

can

be

inserted,

deleted,

or

updated

in

a

table.

See

referential

constraint,

check

constraint,

and

unique

constraint.

context.

The

application’s

logical

connection

to

the

data

source

and

associated

internal

DB2

ODBC

connection

information

that

allows

the

application

to

direct

its

operations

to

a

data

source.

A

DB2

ODBC

context

represents

a

DB2

thread.

contracting

conversion.

A

process

that

occurs

when

the

length

of

a

converted

string

is

smaller

than

that

of

the

source

string.

For

example,

this

process

occurs

when

an

EBCDIC

mixed-data

string

that

contains

DBCS

characters

is

converted

to

ASCII

mixed

data;

the

converted

string

is

shorter

because

of

the

removal

of

the

shift

codes.

control

interval

(CI).

A

fixed-length

area

or

disk

in

which

VSAM

stores

records

and

creates

distributed

free

space.

Also,

in

a

key-sequenced

data

set

or

file,

the

set

of

records

that

an

entry

in

the

sequence-set

index

record

points

to.

The

control

interval

is

the

unit

of

information

that

VSAM

transmits

to

or

from

disk.

A

control

interval

always

includes

an

integral

number

of

physical

records.

control

interval

definition

field

(CIDF).

In

VSAM,

a

field

that

is

located

in

the

4

bytes

at

the

end

of

each

control

interval;

it

describes

the

free

space,

if

any,

in

the

control

interval.

conversation.

Communication,

which

is

based

on

LU

6.2

or

Advanced

Program-to-Program

Communication

(APPC),

between

an

application

and

a

remote

transaction

program

over

an

SNA

logical

unit-to-logical

unit

(LU-LU)

session

that

allows

communication

while

processing

a

transaction.

coordinator.

The

system

component

that

coordinates

the

commit

or

rollback

of

a

unit

of

work

that

includes

work

that

is

done

on

one

or

more

other

systems.

copy

pool.

A

named

set

of

SMS

storage

groups

that

contains

data

that

is

to

be

copied

collectively.

A

copy

pool

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

copied

by

using

FlashCopy®

functions.

HSM

determines

which

volumes

belong

to

a

copy

pool.

copy

target.

A

named

set

of

SMS

storage

groups

that

are

to

be

used

as

containers

for

copy

pool

volume

copies.

A

copy

target

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

used

as

containers

for

volumes

that

are

copied

by

using

FlashCopy

functions.

copy

version.

A

point-in-time

FlashCopy

copy

that

is

managed

by

HSM.

Each

copy

pool

has

a

version

parameter

that

specifies

how

many

copy

versions

are

maintained

on

disk.

correlated

columns.

A

relationship

between

the

value

of

one

column

and

the

value

of

another

column.

correlated

subquery.

A

subquery

(part

of

a

WHERE

or

HAVING

clause)

that

is

applied

to

a

row

or

group

of

rows

of

a

table

or

view

that

is

named

in

an

outer

subselect

statement.

correlation

ID.

An

identifier

that

is

associated

with

a

specific

thread.

In

TSO,

it

is

either

an

authorization

ID

or

the

job

name.

correlation

name.

An

identifier

that

designates

a

table,

a

view,

or

individual

rows

of

a

table

or

view

within

a

single

SQL

statement.

It

can

be

defined

in

any

FROM

clause

or

in

the

first

clause

of

an

UPDATE

or

DELETE

statement.

cost

category.

A

category

into

which

DB2

places

cost

estimates

for

SQL

statements

at

the

time

the

statement

is

bound.

A

cost

estimate

can

be

placed

in

either

of

the

following

cost

categories:

v

A:

Indicates

that

DB2

had

enough

information

to

make

a

cost

estimate

without

using

default

values.

v

B:

Indicates

that

some

condition

exists

for

which

DB2

was

forced

to

use

default

values

for

its

estimate.

The

cost

category

is

externalized

in

the

COST_CATEGORY

column

of

the

DSN_STATEMNT_TABLE

when

a

statement

is

explained.

coupling

facility.

A

special

PR/SM™

LPAR

logical

partition

that

runs

the

coupling

facility

control

program

and

provides

high-speed

caching,

list

processing,

and

locking

functions

in

a

Parallel

Sysplex®.

coupling

facility

resource

management.

A

component

of

z/OS

that

provides

the

services

to

manage

coupling

facility

resources

in

a

Parallel

Sysplex.

This

management

includes

the

enforcement

of

CFRM

policies

to

ensure

that

the

coupling

facility

and

structure

requirements

are

satisfied.

connection

declaration

clause

•

coupling

facility

resource

management

568

ODBC

Guide

and

Reference

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

CP.

Central

processor.

CPC.

Central

processor

complex.

C++

member.

A

data

object

or

function

in

a

structure,

union,

or

class.

C++

member

function.

An

operator

or

function

that

is

declared

as

a

member

of

a

class.

A

member

function

has

access

to

the

private

and

protected

data

members

and

to

the

member

functions

of

objects

in

its

class.

Member

functions

are

also

called

methods.

C++

object.

(1)

A

region

of

storage.

An

object

is

created

when

a

variable

is

defined

or

a

new

function

is

invoked.

(2)

An

instance

of

a

class.

CRC.

Command

recognition

character.

CRCR.

Conditional

restart

control

record.

See

also

conditional

restart.

create

link

pack

area

(CLPA).

An

option

that

is

used

during

IPL

to

initialize

the

link

pack

pageable

area.

created

temporary

table.

A

table

that

holds

temporary

data

and

is

defined

with

the

SQL

statement

CREATE

GLOBAL

TEMPORARY

TABLE.

Information

about

created

temporary

tables

is

stored

in

the

DB2

catalog,

so

this

kind

of

table

is

persistent

and

can

be

shared

across

application

processes.

Contrast

with

declared

temporary

table.

See

also

temporary

table.

cross-memory

linkage.

A

method

for

invoking

a

program

in

a

different

address

space.

The

invocation

is

synchronous

with

respect

to

the

caller.

cross-system

coupling

facility

(XCF).

A

component

of

z/OS

that

provides

functions

to

support

cooperation

between

authorized

programs

that

run

within

a

Sysplex.

cross-system

extended

services

(XES).

A

set

of

z/OS

services

that

allow

multiple

instances

of

an

application

or

subsystem,

running

on

different

systems

in

a

Sysplex

environment,

to

implement

high-performance,

high-availability

data

sharing

by

using

a

coupling

facility.

CS.

Cursor

stability.

CSA.

Common

service

area.

CT.

Cursor

table.

current

data.

Data

within

a

host

structure

that

is

current

with

(identical

to)

the

data

within

the

base

table.

current

SQL

ID.

An

ID

that,

at

a

single

point

in

time,

holds

the

privileges

that

are

exercised

when

certain

dynamic

SQL

statements

run.

The

current

SQL

ID

can

be

a

primary

authorization

ID

or

a

secondary

authorization

ID.

current

status

rebuild.

The

second

phase

of

restart

processing

during

which

the

status

of

the

subsystem

is

reconstructed

from

information

on

the

log.

cursor.

A

named

control

structure

that

an

application

program

uses

to

point

to

a

single

row

or

multiple

rows

within

some

ordered

set

of

rows

of

a

result

table.

A

cursor

can

be

used

to

retrieve,

update,

or

delete

rows

from

a

result

table.

cursor

sensitivity.

The

degree

to

which

database

updates

are

visible

to

the

subsequent

FETCH

statements

in

a

cursor.

A

cursor

can

be

sensitive

to

changes

that

are

made

with

positioned

update

and

delete

statements

specifying

the

name

of

that

cursor.

A

cursor

can

also

be

sensitive

to

changes

that

are

made

with

searched

update

or

delete

statements,

or

with

cursors

other

than

this

cursor.

These

changes

can

be

made

by

this

application

process

or

by

another

application

process.

cursor

stability

(CS).

The

isolation

level

that

provides

maximum

concurrency

without

the

ability

to

read

uncommitted

data.

With

cursor

stability,

a

unit

of

work

holds

locks

only

on

its

uncommitted

changes

and

on

the

current

row

of

each

of

its

cursors.

cursor

table

(CT).

The

copy

of

the

skeleton

cursor

table

that

is

used

by

an

executing

application

process.

cycle.

A

set

of

tables

that

can

be

ordered

so

that

each

table

is

a

descendent

of

the

one

before

it,

and

the

first

table

is

a

descendent

of

the

last

table.

A

self-referencing

table

is

a

cycle

with

a

single

member.

D

DAD.

See

Document

access

definition.

disk.

A

direct-access

storage

device

that

records

data

magnetically.

database.

A

collection

of

tables,

or

a

collection

of

table

spaces

and

index

spaces.

database

access

thread.

A

thread

that

accesses

data

at

the

local

subsystem

on

behalf

of

a

remote

subsystem.

database

administrator

(DBA).

An

individual

who

is

responsible

for

designing,

developing,

operating,

safeguarding,

maintaining,

and

using

a

database.

database

alias.

The

name

of

the

target

server

if

different

from

the

location

name.

The

database

alias

name

is

used

to

provide

the

name

of

the

database

server

as

it

is

known

to

the

network.

When

a

database

alias

name

is

defined,

the

location

name

is

used

by

the

application

to

reference

the

server,

but

the

database

alias

name

is

used

to

identify

the

database

server

to

be

accessed.

Any

fully

qualified

object

names

within

any

CP

•

database

alias

Glossary

569

|

|

|

|

|

|

|

|

|

|

|

SQL

statements

are

not

modified

and

are

sent

unchanged

to

the

database

server.

database

descriptor

(DBD).

An

internal

representation

of

a

DB2

database

definition,

which

reflects

the

data

definition

that

is

in

the

DB2

catalog.

The

objects

that

are

defined

in

a

database

descriptor

are

table

spaces,

tables,

indexes,

index

spaces,

relationships,

check

constraints,

and

triggers.

A

DBD

also

contains

information

about

accessing

tables

in

the

database.

database

exception

status.

An

indication

that

something

is

wrong

with

a

database.

All

members

of

a

data

sharing

group

must

know

and

share

the

exception

status

of

databases.

database

identifier

(DBID).

An

internal

identifier

of

the

database.

database

management

system

(DBMS).

A

software

system

that

controls

the

creation,

organization,

and

modification

of

a

database

and

the

access

to

the

data

that

is

stored

within

it.

database

request

module

(DBRM).

A

data

set

member

that

is

created

by

the

DB2

precompiler

and

that

contains

information

about

SQL

statements.

DBRMs

are

used

in

the

bind

process.

database

server.

The

target

of

a

request

from

a

local

application

or

an

intermediate

database

server.

In

the

DB2

environment,

the

database

server

function

is

provided

by

the

distributed

data

facility

to

access

DB2

data

from

local

applications,

or

from

a

remote

database

server

that

acts

as

an

intermediate

database

server.

data

currency.

The

state

in

which

data

that

is

retrieved

into

a

host

variable

in

your

program

is

a

copy

of

data

in

the

base

table.

data

definition

name

(ddname).

The

name

of

a

data

definition

(DD)

statement

that

corresponds

to

a

data

control

block

containing

the

same

name.

data

dictionary.

A

repository

of

information

about

an

organization’s

application

programs,

databases,

logical

data

models,

users,

and

authorizations.

A

data

dictionary

can

be

manual

or

automated.

data-driven

business

rules.

Constraints

on

particular

data

values

that

exist

as

a

result

of

requirements

of

the

business.

Data

Language/I

(DL/I).

The

IMS

data

manipulation

language;

a

common

high-level

interface

between

a

user

application

and

IMS.

data

mart.

A

small

data

warehouse

that

applies

to

a

single

department

or

team.

See

also

data

warehouse.

data

mining.

The

process

of

collecting

critical

business

information

from

a

data

warehouse,

correlating

it,

and

uncovering

associations,

patterns,

and

trends.

data

partition.

A

VSAM

data

set

that

is

contained

within

a

partitioned

table

space.

data-partitioned

secondary

index

(DPSI).

A

secondary

index

that

is

partitioned.

The

index

is

partitioned

according

to

the

underlying

data.

data

sharing.

The

ability

of

two

or

more

DB2

subsystems

to

directly

access

and

change

a

single

set

of

data.

data

sharing

group.

A

collection

of

one

or

more

DB2

subsystems

that

directly

access

and

change

the

same

data

while

maintaining

data

integrity.

data

sharing

member.

A

DB2

subsystem

that

is

assigned

by

XCF

services

to

a

data

sharing

group.

data

source.

A

local

or

remote

relational

or

non-relational

data

manager

that

is

capable

of

supporting

data

access

via

an

ODBC

driver

that

supports

the

ODBC

APIs.

In

the

case

of

DB2

UDB

for

z/OS,

the

data

sources

are

always

relational

database

managers.

data

space.

In

releases

prior

to

DB2

UDB

for

z/OS,

Version

8,

a

range

of

up

to

2

GB

of

contiguous

virtual

storage

addresses

that

a

program

can

directly

manipulate.

Unlike

an

address

space,

a

data

space

can

hold

only

data;

it

does

not

contain

common

areas,

system

data,

or

programs.

data

type.

An

attribute

of

columns,

literals,

host

variables,

special

registers,

and

the

results

of

functions

and

expressions.

data

warehouse.

A

system

that

provides

critical

business

information

to

an

organization.

The

data

warehouse

system

cleanses

the

data

for

accuracy

and

currency,

and

then

presents

the

data

to

decision

makers

so

that

they

can

interpret

and

use

it

effectively

and

efficiently.

date.

A

three-part

value

that

designates

a

day,

month,

and

year.

date

duration.

A

decimal

integer

that

represents

a

number

of

years,

months,

and

days.

datetime

value.

A

value

of

the

data

type

DATE,

TIME,

or

TIMESTAMP.

DBA.

Database

administrator.

DBCLOB.

Double-byte

character

large

object.

DBCS.

Double-byte

character

set.

DBD.

Database

descriptor.

database

descriptor

(DBD)

•

DBD

570

ODBC

Guide

and

Reference

|
|

|
|

|

|

|

|

|

|

DBID.

Database

identifier.

DBMS.

Database

management

system.

DBRM.

Database

request

module.

DB2

catalog.

Tables

that

are

maintained

by

DB2

and

contain

descriptions

of

DB2

objects,

such

as

tables,

views,

and

indexes.

DB2

command.

An

instruction

to

the

DB2

subsystem

that

a

user

enters

to

start

or

stop

DB2,

to

display

information

on

current

users,

to

start

or

stop

databases,

to

display

information

on

the

status

of

databases,

and

so

on.

DB2

for

VSE

&

VM.

The

IBM

DB2

relational

database

management

system

for

the

VSE

and

VM

operating

systems.

DB2I.

DB2

Interactive.

DB2

Interactive

(DB2I).

The

DB2

facility

that

provides

for

the

execution

of

SQL

statements,

DB2

(operator)

commands,

programmer

commands,

and

utility

invocation.

DB2I

Kanji

Feature.

The

tape

that

contains

the

panels

and

jobs

that

allow

a

site

to

display

DB2I

panels

in

Kanji.

DB2

PM.

DB2

Performance

Monitor.

DB2

thread.

The

DB2

structure

that

describes

an

application’s

connection,

traces

its

progress,

processes

resource

functions,

and

delimits

its

accessibility

to

DB2

resources

and

services.

DCLGEN.

Declarations

generator.

DDF.

Distributed

data

facility.

ddname.

Data

definition

name.

deadlock.

Unresolvable

contention

for

the

use

of

a

resource,

such

as

a

table

or

an

index.

declarations

generator

(DCLGEN).

A

subcomponent

of

DB2

that

generates

SQL

table

declarations

and

COBOL,

C,

or

PL/I

data

structure

declarations

that

conform

to

the

table.

The

declarations

are

generated

from

DB2

system

catalog

information.

DCLGEN

is

also

a

DSN

subcommand.

declared

temporary

table.

A

table

that

holds

temporary

data

and

is

defined

with

the

SQL

statement

DECLARE

GLOBAL

TEMPORARY

TABLE.

Information

about

declared

temporary

tables

is

not

stored

in

the

DB2

catalog,

so

this

kind

of

table

is

not

persistent

and

can

be

used

only

by

the

application

process

that

issued

the

DECLARE

statement.

Contrast

with

created

temporary

table.

See

also

temporary

table.

default

value.

A

predetermined

value,

attribute,

or

option

that

is

assumed

when

no

other

is

explicitly

specified.

deferred

embedded

SQL.

SQL

statements

that

are

neither

fully

static

nor

fully

dynamic.

Like

static

statements,

they

are

embedded

within

an

application,

but

like

dynamic

statements,

they

are

prepared

during

the

execution

of

the

application.

deferred

write.

The

process

of

asynchronously

writing

changed

data

pages

to

disk.

degree

of

parallelism.

The

number

of

concurrently

executed

operations

that

are

initiated

to

process

a

query.

delete-connected.

A

table

that

is

a

dependent

of

table

P

or

a

dependent

of

a

table

to

which

delete

operations

from

table

P

cascade.

delete

hole.

The

location

on

which

a

cursor

is

positioned

when

a

row

in

a

result

table

is

refetched

and

the

row

no

longer

exists

on

the

base

table,

because

another

cursor

deleted

the

row

between

the

time

the

cursor

first

included

the

row

in

the

result

table

and

the

time

the

cursor

tried

to

refetch

it.

delete

rule.

The

rule

that

tells

DB2

what

to

do

to

a

dependent

row

when

a

parent

row

is

deleted.

For

each

relationship,

the

rule

might

be

CASCADE,

RESTRICT,

SET

NULL,

or

NO

ACTION.

delete

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

DELETE.

delimited

identifier.

A

sequence

of

characters

that

are

enclosed

within

double

quotation

marks

(").

The

sequence

must

consist

of

a

letter

followed

by

zero

or

more

characters,

each

of

which

is

a

letter,

digit,

or

the

underscore

character

(_).

delimiter

token.

A

string

constant,

a

delimited

identifier,

an

operator

symbol,

or

any

of

the

special

characters

that

are

shown

in

DB2

syntax

diagrams.

denormalization.

A

key

step

in

the

task

of

building

a

physical

relational

database

design.

Denormalization

is

the

intentional

duplication

of

columns

in

multiple

tables,

and

the

consequence

is

increased

data

redundancy.

Denormalization

is

sometimes

necessary

to

minimize

performance

problems.

Contrast

with

normalization.

dependent.

An

object

(row,

table,

or

table

space)

that

has

at

least

one

parent.

The

object

is

also

said

to

be

a

dependent

(row,

table,

or

table

space)

of

its

parent.

See

also

parent

row,

parent

table,

parent

table

space.

dependent

row.

A

row

that

contains

a

foreign

key

that

matches

the

value

of

a

primary

key

in

the

parent

row.

dependent

table.

A

table

that

is

a

dependent

in

at

least

one

referential

constraint.

DBID

•

dependent

table

Glossary

571

DES-based

authenticator.

An

authenticator

that

is

generated

using

the

DES

algorithm.

descendent.

An

object

that

is

a

dependent

of

an

object

or

is

the

dependent

of

a

descendent

of

an

object.

descendent

row.

A

row

that

is

dependent

on

another

row,

or

a

row

that

is

a

descendent

of

a

dependent

row.

descendent

table.

A

table

that

is

a

dependent

of

another

table,

or

a

table

that

is

a

descendent

of

a

dependent

table.

deterministic

function.

A

user-defined

function

whose

result

is

dependent

on

the

values

of

the

input

arguments.

That

is,

successive

invocations

with

the

same

input

values

produce

the

same

answer.

Sometimes

referred

to

as

a

not-variant

function.

Contrast

this

with

an

nondeterministic

function

(sometimes

called

a

variant

function),

which

might

not

always

produce

the

same

result

for

the

same

inputs.

DFP.

Data

Facility

Product

(in

z/OS).

DFSMS.

Data

Facility

Storage

Management

Subsystem

(in

z/OS).

Also

called

Storage

Management

Subsystem

(SMS).

DFSMSdss™.

The

data

set

services

(dss)

component

of

DFSMS

(in

z/OS).

DFSMShsm™.

The

hierarchical

storage

manager

(hsm)

component

of

DFSMS

(in

z/OS).

dimension.

A

data

category

such

as

time,

products,

or

markets.

The

elements

of

a

dimension

are

referred

to

as

members.

Dimensions

offer

a

very

concise,

intuitive

way

of

organizing

and

selecting

data

for

retrieval,

exploration,

and

analysis.

See

also

dimension

table.

dimension

table.

The

representation

of

a

dimension

in

a

star

schema.

Each

row

in

a

dimension

table

represents

all

of

the

attributes

for

a

particular

member

of

the

dimension.

See

also

dimension,

star

schema,

and

star

join.

directory.

The

DB2

system

database

that

contains

internal

objects

such

as

database

descriptors

and

skeleton

cursor

tables.

distinct

type.

A

user-defined

data

type

that

is

internally

represented

as

an

existing

type

(its

source

type),

but

is

considered

to

be

a

separate

and

incompatible

type

for

semantic

purposes.

distributed

data.

Data

that

resides

on

a

DBMS

other

than

the

local

system.

distributed

data

facility

(DDF).

A

set

of

DB2

components

through

which

DB2

communicates

with

another

relational

database

management

system.

Distributed

Relational

Database

Architecture™

(DRDA

).

A

connection

protocol

for

distributed

relational

database

processing

that

is

used

by

IBM’s

relational

database

products.

DRDA

includes

protocols

for

communication

between

an

application

and

a

remote

relational

database

management

system,

and

for

communication

between

relational

database

management

systems.

See

also

DRDA

access.

DL/I.

Data

Language/I.

DNS.

Domain

name

server.

document

access

definition

(DAD).

Used

to

define

the

indexing

scheme

for

an

XML

column

or

the

mapping

scheme

of

an

XML

collection.

It

can

be

used

to

enable

an

XML

Extender

column

of

an

XML

collection,

which

is

XML

formatted.

domain.

The

set

of

valid

values

for

an

attribute.

domain

name.

The

name

by

which

TCP/IP

applications

refer

to

a

TCP/IP

host

within

a

TCP/IP

network.

domain

name

server

(DNS).

A

special

TCP/IP

network

server

that

manages

a

distributed

directory

that

is

used

to

map

TCP/IP

host

names

to

IP

addresses.

double-byte

character

large

object

(DBCLOB).

A

sequence

of

bytes

representing

double-byte

characters

where

the

size

of

the

values

can

be

up

to

2

GB.

In

general,

DBCLOB

values

are

used

whenever

a

double-byte

character

string

might

exceed

the

limits

of

the

VARGRAPHIC

type.

double-byte

character

set

(DBCS).

A

set

of

characters,

which

are

used

by

national

languages

such

as

Japanese

and

Chinese,

that

have

more

symbols

than

can

be

represented

by

a

single

byte.

Each

character

is

2

bytes

in

length.

Contrast

with

single-byte

character

set

and

multibyte

character

set.

double-precision

floating

point

number.

A

64-bit

approximate

representation

of

a

real

number.

downstream.

The

set

of

nodes

in

the

syncpoint

tree

that

is

connected

to

the

local

DBMS

as

a

participant

in

the

execution

of

a

two-phase

commit.

DPSI.

Data-partitioned

secondary

index.

drain.

The

act

of

acquiring

a

locked

resource

by

quiescing

access

to

that

object.

drain

lock.

A

lock

on

a

claim

class

that

prevents

a

claim

from

occurring.

DRDA.

Distributed

Relational

Database

Architecture.

DRDA

access.

An

open

method

of

accessing

distributed

data

that

you

can

use

to

can

connect

to

another

database

server

to

execute

packages

that

were

previously

bound

at

the

server

location.

You

use

the

DES-based

authenticator

•

DRDA

access

572

ODBC

Guide

and

Reference

|
|

|
|

|

|

|

|

|

|

SQL

CONNECT

statement

or

an

SQL

statement

with

a

three-part

name

to

identify

the

server.

Contrast

with

private

protocol

access.

DSN.

(1)

The

default

DB2

subsystem

name.

(2)

The

name

of

the

TSO

command

processor

of

DB2.

(3)

The

first

three

characters

of

DB2

module

and

macro

names.

duration.

A

number

that

represents

an

interval

of

time.

See

also

date

duration,

labeled

duration,

and

time

duration.

dynamic

cursor.

A

named

control

structure

that

an

application

program

uses

to

change

the

size

of

the

result

table

and

the

order

of

its

rows

after

the

cursor

is

opened.

Contrast

with

static

cursor.

dynamic

dump.

A

dump

that

is

issued

during

the

execution

of

a

program,

usually

under

the

control

of

that

program.

dynamic

SQL.

SQL

statements

that

are

prepared

and

executed

within

an

application

program

while

the

program

is

executing.

In

dynamic

SQL,

the

SQL

source

is

contained

in

host

language

variables

rather

than

being

coded

into

the

application

program.

The

SQL

statement

can

change

several

times

during

the

application

program’s

execution.

dynamic

statement

cache

pool.

A

cache,

located

above

the

2-GB

storage

line,

that

holds

dynamic

statements.

E

EA-enabled

table

space.

A

table

space

or

index

space

that

is

enabled

for

extended

addressability

and

that

contains

individual

partitions

(or

pieces,

for

LOB

table

spaces)

that

are

greater

than

4

GB.

EB.

See

exabyte.

EBCDIC.

Extended

binary

coded

decimal

interchange

code.

An

encoding

scheme

that

is

used

to

represent

character

data

in

the

z/OS,

VM,

VSE,

and

iSeries™

environments.

Contrast

with

ASCII

and

Unicode.

e-business.

The

transformation

of

key

business

processes

through

the

use

of

Internet

technologies.

EDM

pool.

A

pool

of

main

storage

that

is

used

for

database

descriptors,

application

plans,

authorization

cache,

application

packages.

EID.

Event

identifier.

embedded

SQL.

SQL

statements

that

are

coded

within

an

application

program.

See

static

SQL.

enclave.

In

Language

Environment

,

an

independent

collection

of

routines,

one

of

which

is

designated

as

the

main

routine.

An

enclave

is

similar

to

a

program

or

run

unit.

encoding

scheme.

A

set

of

rules

to

represent

character

data

(ASCII,

EBCDIC,

or

Unicode).

entity.

A

significant

object

of

interest

to

an

organization.

enumerated

list.

A

set

of

DB2

objects

that

are

defined

with

a

LISTDEF

utility

control

statement

in

which

pattern-matching

characters

(*,

%,

_

or

?)

are

not

used.

environment.

A

collection

of

names

of

logical

and

physical

resources

that

are

used

to

support

the

performance

of

a

function.

environment

handle.

In

DB2

ODBC,

the

data

object

that

contains

global

information

regarding

the

state

of

the

application.

An

environment

handle

must

be

allocated

before

a

connection

handle

can

be

allocated.

Only

one

environment

handle

can

be

allocated

per

application.

EOM.

End

of

memory.

EOT.

End

of

task.

equijoin.

A

join

operation

in

which

the

join-condition

has

the

form

expression

=

expression.

error

page

range.

A

range

of

pages

that

are

considered

to

be

physically

damaged.

DB2

does

not

allow

users

to

access

any

pages

that

fall

within

this

range.

escape

character.

The

symbol

that

is

used

to

enclose

an

SQL

delimited

identifier.

The

escape

character

is

the

double

quotation

mark

("),

except

in

COBOL

applications,

where

the

user

assigns

the

symbol,

which

is

either

a

double

quotation

mark

or

an

apostrophe

(').

ESDS.

Entry

sequenced

data

set.

ESMT.

External

subsystem

module

table

(in

IMS).

EUR.

IBM

European

Standards.

exabyte.

For

processor,

real

and

virtual

storage

capacities

and

channel

volume:

1

152

921

504

606

846

976

bytes

or

260.

exception

table.

A

table

that

holds

rows

that

violate

referential

constraints

or

check

constraints

that

the

CHECK

DATA

utility

finds.

exclusive

lock.

A

lock

that

prevents

concurrently

executing

application

processes

from

reading

or

changing

data.

Contrast

with

share

lock.

executable

statement.

An

SQL

statement

that

can

be

embedded

in

an

application

program,

dynamically

prepared

and

executed,

or

issued

interactively.

execution

context.

In

SQLJ,

a

Java

object

that

can

be

used

to

control

the

execution

of

SQL

statements.

DSN

•

execution

context

Glossary

573

|
|
|
|

|
|
|

|
|
|

exit

routine.

A

user-written

(or

IBM-provided

default)

program

that

receives

control

from

DB2

to

perform

specific

functions.

Exit

routines

run

as

extensions

of

DB2.

expanding

conversion.

A

process

that

occurs

when

the

length

of

a

converted

string

is

greater

than

that

of

the

source

string.

For

example,

this

process

occurs

when

an

ASCII

mixed-data

string

that

contains

DBCS

characters

is

converted

to

an

EBCDIC

mixed-data

string;

the

converted

string

is

longer

because

of

the

addition

of

shift

codes.

explicit

hierarchical

locking.

Locking

that

is

used

to

make

the

parent-child

relationship

between

resources

known

to

IRLM.

This

kind

of

locking

avoids

global

locking

overhead

when

no

inter-DB2

interest

exists

on

a

resource.

exposed

name.

A

correlation

name

or

a

table

or

view

name

for

which

a

correlation

name

is

not

specified.

Names

that

are

specified

in

a

FROM

clause

are

exposed

or

non-exposed.

expression.

An

operand

or

a

collection

of

operators

and

operands

that

yields

a

single

value.

extended

recovery

facility

(XRF).

A

facility

that

minimizes

the

effect

of

failures

in

z/OS,

VTAM

,

the

host

processor,

or

high-availability

applications

during

sessions

between

high-availability

applications

and

designated

terminals.

This

facility

provides

an

alternative

subsystem

to

take

over

sessions

from

the

failing

subsystem.

Extensible

Markup

Language

(XML).

A

standard

metalanguage

for

defining

markup

languages

that

is

a

subset

of

Standardized

General

Markup

Language

(SGML).

The

less

complex

nature

of

XML

makes

it

easier

to

write

applications

that

handle

document

types,

to

author

and

manage

structured

information,

and

to

transmit

and

share

structured

information

across

diverse

computing

environments.

external

function.

A

function

for

which

the

body

is

written

in

a

programming

language

that

takes

scalar

argument

values

and

produces

a

scalar

result

for

each

invocation.

Contrast

with

sourced

function,

built-in

function,

and

SQL

function.

external

procedure.

A

user-written

application

program

that

can

be

invoked

with

the

SQL

CALL

statement,

which

is

written

in

a

programming

language.

Contrast

with

SQL

procedure.

external

routine.

A

user-defined

function

or

stored

procedure

that

is

based

on

code

that

is

written

in

an

external

programming

language.

external

subsystem

module

table

(ESMT).

In

IMS,

the

table

that

specifies

which

attachment

modules

must

be

loaded.

F

failed

member

state.

A

state

of

a

member

of

a

data

sharing

group.

When

a

member

fails,

the

XCF

permanently

records

the

failed

member

state.

This

state

usually

means

that

the

member’s

task,

address

space,

or

z/OS

system

terminated

before

the

state

changed

from

active

to

quiesced.

fallback.

The

process

of

returning

to

a

previous

release

of

DB2

after

attempting

or

completing

migration

to

a

current

release.

false

global

lock

contention.

A

contention

indication

from

the

coupling

facility

when

multiple

lock

names

are

hashed

to

the

same

indicator

and

when

no

real

contention

exists.

fan

set.

A

direct

physical

access

path

to

data,

which

is

provided

by

an

index,

hash,

or

link;

a

fan

set

is

the

means

by

which

the

data

manager

supports

the

ordering

of

data.

federated

database.

The

combination

of

a

DB2

Universal

Database

server

(in

Linux,

UNIX,

and

Windows

environments)

and

multiple

data

sources

to

which

the

server

sends

queries.

In

a

federated

database

system,

a

client

application

can

use

a

single

SQL

statement

to

join

data

that

is

distributed

across

multiple

database

management

systems

and

can

view

the

data

as

if

it

were

local.

fetch

orientation.

The

specification

of

the

desired

placement

of

the

cursor

as

part

of

a

FETCH

statement

(for

example,

BEFORE,

AFTER,

NEXT,

PRIOR,

CURRENT,

FIRST,

LAST,

ABSOLUTE,

and

RELATIVE).

field

procedure.

A

user-written

exit

routine

that

is

designed

to

receive

a

single

value

and

transform

(encode

or

decode)

it

in

any

way

the

user

can

specify.

filter

factor.

A

number

between

zero

and

one

that

estimates

the

proportion

of

rows

in

a

table

for

which

a

predicate

is

true.

fixed-length

string.

A

character

or

graphic

string

whose

length

is

specified

and

cannot

be

changed.

Contrast

with

varying-length

string.

FlashCopy.

A

function

on

the

IBM

Enterprise

Storage

Server®

that

can

create

a

point-in-time

copy

of

data

while

an

application

is

running.

foreign

key.

A

column

or

set

of

columns

in

a

dependent

table

of

a

constraint

relationship.

The

key

must

have

the

same

number

of

columns,

with

the

same

descriptions,

as

the

primary

key

of

the

parent

table.

Each

foreign

key

value

must

either

match

a

parent

key

value

in

the

related

parent

table

or

be

null.

forest.

An

ordered

set

of

subtrees

of

XML

nodes.

exit

routine

•

forest

574

ODBC

Guide

and

Reference

|

forget.

In

a

two-phase

commit

operation,

(1)

the

vote

that

is

sent

to

the

prepare

phase

when

the

participant

has

not

modified

any

data.

The

forget

vote

allows

a

participant

to

release

locks

and

forget

about

the

logical

unit

of

work.

This

is

also

referred

to

as

the

read-only

vote.

(2)

The

response

to

the

committed

request

in

the

second

phase

of

the

operation.

forward

log

recovery.

The

third

phase

of

restart

processing

during

which

DB2

processes

the

log

in

a

forward

direction

to

apply

all

REDO

log

records.

free

space.

The

total

amount

of

unused

space

in

a

page;

that

is,

the

space

that

is

not

used

to

store

records

or

control

information

is

free

space.

full

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

the

unmatched

rows

of

both

tables.

See

also

join.

fullselect.

A

subselect,

a

values-clause,

or

a

number

of

both

that

are

combined

by

set

operators.

Fullselect

specifies

a

result

table.

If

UNION

is

not

used,

the

result

of

the

fullselect

is

the

result

of

the

specified

subselect.

fully

escaped

mapping.

A

mapping

from

an

SQL

identifier

to

an

XML

name

when

the

SQL

identifier

is

a

column

name.

function.

A

mapping,

which

is

embodied

as

a

program

(the

function

body)

that

is

invocable

by

means

of

zero

or

more

input

values

(arguments)

to

a

single

value

(the

result).

See

also

column

function

and

scalar

function.

Functions

can

be

user-defined,

built-in,

or

generated

by

DB2.

(See

also

built-in

function,

cast

function,

external

function,

sourced

function,

SQL

function,

and

user-defined

function.)

function

definer.

The

authorization

ID

of

the

owner

of

the

schema

of

the

function

that

is

specified

in

the

CREATE

FUNCTION

statement.

function

implementer.

The

authorization

ID

of

the

owner

of

the

function

program

and

function

package.

function

package.

A

package

that

results

from

binding

the

DBRM

for

a

function

program.

function

package

owner.

The

authorization

ID

of

the

user

who

binds

the

function

program’s

DBRM

into

a

function

package.

function

resolution.

The

process,

internal

to

the

DBMS,

by

which

a

function

invocation

is

bound

to

a

particular

function

instance.

This

process

uses

the

function

name,

the

data

types

of

the

arguments,

and

a

list

of

the

applicable

schema

names

(called

the

SQL

path)

to

make

the

selection.

This

process

is

sometimes

called

function

selection.

function

selection.

See

function

resolution.

function

signature.

The

logical

concatenation

of

a

fully

qualified

function

name

with

the

data

types

of

all

of

its

parameters.

G

GB.

Gigabyte

(1

073

741

824

bytes).

GBP.

Group

buffer

pool.

GBP-dependent.

The

status

of

a

page

set

or

page

set

partition

that

is

dependent

on

the

group

buffer

pool.

Either

read/write

interest

is

active

among

DB2

subsystems

for

this

page

set,

or

the

page

set

has

changed

pages

in

the

group

buffer

pool

that

have

not

yet

been

cast

out

to

disk.

generalized

trace

facility

(GTF).

A

z/OS

service

program

that

records

significant

system

events

such

as

I/O

interrupts,

SVC

interrupts,

program

interrupts,

or

external

interrupts.

generic

resource

name.

A

name

that

VTAM

uses

to

represent

several

application

programs

that

provide

the

same

function

in

order

to

handle

session

distribution

and

balancing

in

a

Sysplex

environment.

getpage.

An

operation

in

which

DB2

accesses

a

data

page.

global

lock.

A

lock

that

provides

concurrency

control

within

and

among

DB2

subsystems.

The

scope

of

the

lock

is

across

all

DB2

subsystems

of

a

data

sharing

group.

global

lock

contention.

Conflicts

on

locking

requests

between

different

DB2

members

of

a

data

sharing

group

when

those

members

are

trying

to

serialize

shared

resources.

governor.

See

resource

limit

facility.

graphic

string.

A

sequence

of

DBCS

characters.

gross

lock.

The

shared,

update,

or

exclusive

mode

locks

on

a

table,

partition,

or

table

space.

group

buffer

pool

(GBP).

A

coupling

facility

cache

structure

that

is

used

by

a

data

sharing

group

to

cache

data

and

to

ensure

that

the

data

is

consistent

for

all

members.

group

buffer

pool

duplexing.

The

ability

to

write

data

to

two

instances

of

a

group

buffer

pool

structure:

a

primary

group

buffer

pool

and

a

secondary

group

buffer

pool.

z/OS

publications

refer

to

these

instances

as

the

"old"

(for

primary)

and

"new"

(for

secondary)

structures.

group

level.

The

release

level

of

a

data

sharing

group,

which

is

established

when

the

first

member

migrates

to

a

new

release.

forget

•

group

level

Glossary

575

|
|
|

group

name.

The

z/OS

XCF

identifier

for

a

data

sharing

group.

group

restart.

A

restart

of

at

least

one

member

of

a

data

sharing

group

after

the

loss

of

either

locks

or

the

shared

communications

area.

GTF.

Generalized

trace

facility.

H

handle.

In

DB2

ODBC,

a

variable

that

refers

to

a

data

structure

and

associated

resources.

See

also

statement

handle,

connection

handle,

and

environment

handle.

help

panel.

A

screen

of

information

that

presents

tutorial

text

to

assist

a

user

at

the

workstation

or

terminal.

heuristic

damage.

The

inconsistency

in

data

between

one

or

more

participants

that

results

when

a

heuristic

decision

to

resolve

an

indoubt

LUW

at

one

or

more

participants

differs

from

the

decision

that

is

recorded

at

the

coordinator.

heuristic

decision.

A

decision

that

forces

indoubt

resolution

at

a

participant

by

means

other

than

automatic

resynchronization

between

coordinator

and

participant.

hole.

A

row

of

the

result

table

that

cannot

be

accessed

because

of

a

delete

or

an

update

that

has

been

performed

on

the

row.

See

also

delete

hole

and

update

hole.

home

address

space.

The

area

of

storage

that

z/OS

currently

recognizes

as

dispatched.

host.

The

set

of

programs

and

resources

that

are

available

on

a

given

TCP/IP

instance.

host

expression.

A

Java

variable

or

expression

that

is

referenced

by

SQL

clauses

in

an

SQLJ

application

program.

host

identifier.

A

name

that

is

declared

in

the

host

program.

host

language.

A

programming

language

in

which

you

can

embed

SQL

statements.

host

program.

An

application

program

that

is

written

in

a

host

language

and

that

contains

embedded

SQL

statements.

host

structure.

In

an

application

program,

a

structure

that

is

referenced

by

embedded

SQL

statements.

host

variable.

In

an

application

program,

an

application

variable

that

is

referenced

by

embedded

SQL

statements.

host

variable

array.

An

array

of

elements,

each

of

which

corresponds

to

a

value

for

a

column.

The

dimension

of

the

array

determines

the

maximum

number

of

rows

for

which

the

array

can

be

used.

HSM.

Hierarchical

storage

manager.

HTML.

Hypertext

Markup

Language,

a

standard

method

for

presenting

Web

data

to

users.

HTTP.

Hypertext

Transfer

Protocol,

a

communication

protocol

that

the

Web

uses.

I

ICF.

Integrated

catalog

facility.

IDCAMS.

An

IBM

program

that

is

used

to

process

access

method

services

commands.

It

can

be

invoked

as

a

job

or

jobstep,

from

a

TSO

terminal,

or

from

within

a

user’s

application

program.

IDCAMS

LISTCAT.

A

facility

for

obtaining

information

that

is

contained

in

the

access

method

services

catalog.

identify.

A

request

that

an

attachment

service

program

in

an

address

space

that

is

separate

from

DB2

issues

thorough

the

z/OS

subsystem

interface

to

inform

DB2

of

its

existence

and

to

initiate

the

process

of

becoming

connected

to

DB2.

identity

column.

A

column

that

provides

a

way

for

DB2

to

automatically

generate

a

numeric

value

for

each

row.

The

generated

values

are

unique

if

cycling

is

not

used.

Identity

columns

are

defined

with

the

AS

IDENTITY

clause.

Uniqueness

of

values

can

be

ensured

by

defining

a

unique

index

that

contains

only

the

identity

column.

A

table

can

have

no

more

than

one

identity

column.

IFCID.

Instrumentation

facility

component

identifier.

IFI.

Instrumentation

facility

interface.

IFI

call.

An

invocation

of

the

instrumentation

facility

interface

(IFI)

by

means

of

one

of

its

defined

functions.

IFP.

IMS

Fast

Path.

image

copy.

An

exact

reproduction

of

all

or

part

of

a

table

space.

DB2

provides

utility

programs

to

make

full

image

copies

(to

copy

the

entire

table

space)

or

incremental

image

copies

(to

copy

only

those

pages

that

have

been

modified

since

the

last

image

copy).

implied

forget.

In

the

presumed-abort

protocol,

an

implied

response

of

forget

to

the

second-phase

committed

request

from

the

coordinator.

The

response

is

implied

when

the

participant

responds

to

any

subsequent

request

from

the

coordinator.

IMS.

Information

Management

System.

group

name

•

IMS

576

ODBC

Guide

and

Reference

|

|

|

|

IMS

attachment

facility.

A

DB2

subcomponent

that

uses

z/OS

subsystem

interface

(SSI)

protocols

and

cross-memory

linkage

to

process

requests

from

IMS

to

DB2

and

to

coordinate

resource

commitment.

IMS

DB.

Information

Management

System

Database.

IMS

TM.

Information

Management

System

Transaction

Manager.

in-abort.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

a

unit

of

recovery

begins

to

be

rolled

back,

but

before

the

process

is

completed,

DB2

continues

to

back

out

the

changes

during

restart.

in-commit.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

beginning

its

phase

2

commit

processing,

it

"knows,"

when

restarted,

that

changes

made

to

data

are

consistent.

Such

units

of

recovery

are

termed

in-commit.

independent.

An

object

(row,

table,

or

table

space)

that

is

neither

a

parent

nor

a

dependent

of

another

object.

index.

A

set

of

pointers

that

are

logically

ordered

by

the

values

of

a

key.

Indexes

can

provide

faster

access

to

data

and

can

enforce

uniqueness

on

the

rows

in

a

table.

index-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

specified

on

the

CREATE

INDEX

statement.

Partition

limits

are

saved

in

the

LIMITKEY

column

of

the

SYSIBM.SYSINDEXPART

catalog

table.

index

key.

The

set

of

columns

in

a

table

that

is

used

to

determine

the

order

of

index

entries.

index

partition.

A

VSAM

data

set

that

is

contained

within

a

partitioning

index

space.

index

space.

A

page

set

that

is

used

to

store

the

entries

of

one

index.

indicator

column.

A

4-byte

value

that

is

stored

in

a

base

table

in

place

of

a

LOB

column.

indicator

variable.

A

variable

that

is

used

to

represent

the

null

value

in

an

application

program.

If

the

value

for

the

selected

column

is

null,

a

negative

value

is

placed

in

the

indicator

variable.

indoubt.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

it

has

finished

its

phase

1

commit

processing

and

before

it

has

started

phase

2,

only

the

commit

coordinator

knows

if

an

individual

unit

of

recovery

is

to

be

committed

or

rolled

back.

At

emergency

restart,

if

DB2

lacks

the

information

it

needs

to

make

this

decision,

the

status

of

the

unit

of

recovery

is

indoubt

until

DB2

obtains

this

information

from

the

coordinator.

More

than

one

unit

of

recovery

can

be

indoubt

at

restart.

indoubt

resolution.

The

process

of

resolving

the

status

of

an

indoubt

logical

unit

of

work

to

either

the

committed

or

the

rollback

state.

inflight.

A

status

of

a

unit

of

recovery.

If

DB2

fails

before

its

unit

of

recovery

completes

phase

1

of

the

commit

process,

it

merely

backs

out

the

updates

of

its

unit

of

recovery

at

restart.

These

units

of

recovery

are

termed

inflight.

inheritance.

The

passing

downstream

of

class

resources

or

attributes

from

a

parent

class

in

the

class

hierarchy

to

a

child

class.

initialization

file.

For

DB2

ODBC

applications,

a

file

containing

values

that

can

be

set

to

adjust

the

performance

of

the

database

manager.

inline

copy.

A

copy

that

is

produced

by

the

LOAD

or

REORG

utility.

The

data

set

that

the

inline

copy

produces

is

logically

equivalent

to

a

full

image

copy

that

is

produced

by

running

the

COPY

utility

with

read-only

access

(SHRLEVEL

REFERENCE).

inner

join.

The

result

of

a

join

operation

that

includes

only

the

matched

rows

of

both

tables

that

are

being

joined.

See

also

join.

inoperative

package.

A

package

that

cannot

be

used

because

one

or

more

user-defined

functions

or

procedures

that

the

package

depends

on

were

dropped.

Such

a

package

must

be

explicitly

rebound.

Contrast

with

invalid

package.

insensitive

cursor.

A

cursor

that

is

not

sensitive

to

inserts,

updates,

or

deletes

that

are

made

to

the

underlying

rows

of

a

result

table

after

the

result

table

has

been

materialized.

insert

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

INSERT.

install.

The

process

of

preparing

a

DB2

subsystem

to

operate

as

a

z/OS

subsystem.

installation

verification

scenario.

A

sequence

of

operations

that

exercises

the

main

DB2

functions

and

tests

whether

DB2

was

correctly

installed.

instrumentation

facility

component

identifier

(IFCID).

A

value

that

names

and

identifies

a

trace

record

of

an

event

that

can

be

traced.

As

a

parameter

on

the

START

TRACE

and

MODIFY

TRACE

commands,

it

specifies

that

the

corresponding

event

is

to

be

traced.

instrumentation

facility

interface

(IFI).

A

programming

interface

that

enables

programs

to

obtain

online

trace

data

about

DB2,

to

submit

DB2

commands,

and

to

pass

data

to

DB2.

IMS

attachment

facility

•

instrumentation

facility

interface

(IFI)

Glossary

577

|
|
|
|
|
|

|

|

|

|

Interactive

System

Productivity

Facility

(ISPF).

An

IBM

licensed

program

that

provides

interactive

dialog

services

in

a

z/OS

environment.

inter-DB2

R/W

interest.

A

property

of

data

in

a

table

space,

index,

or

partition

that

has

been

opened

by

more

than

one

member

of

a

data

sharing

group

and

that

has

been

opened

for

writing

by

at

least

one

of

those

members.

intermediate

database

server.

The

target

of

a

request

from

a

local

application

or

a

remote

application

requester

that

is

forwarded

to

another

database

server.

In

the

DB2

environment,

the

remote

request

is

forwarded

transparently

to

another

database

server

if

the

object

that

is

referenced

by

a

three-part

name

does

not

reference

the

local

location.

internationalization.

The

support

for

an

encoding

scheme

that

is

able

to

represent

the

code

points

of

characters

from

many

different

geographies

and

languages.

To

support

all

geographies,

the

Unicode

standard

requires

more

than

1

byte

to

represent

a

single

character.

See

also

Unicode.

internal

resource

lock

manager

(IRLM).

A

z/OS

subsystem

that

DB2

uses

to

control

communication

and

database

locking.

International

Organization

for

Standardization.

An

international

body

charged

with

creating

standards

to

facilitate

the

exchange

of

goods

and

services

as

well

as

cooperation

in

intellectual,

scientific,

technological,

and

economic

activity.

invalid

package.

A

package

that

depends

on

an

object

(other

than

a

user-defined

function)

that

is

dropped.

Such

a

package

is

implicitly

rebound

on

invocation.

Contrast

with

inoperative

package.

invariant

character

set.

(1)

A

character

set,

such

as

the

syntactic

character

set,

whose

code

point

assignments

do

not

change

from

code

page

to

code

page.

(2)

A

minimum

set

of

characters

that

is

available

as

part

of

all

character

sets.

IP

address.

A

4-byte

value

that

uniquely

identifies

a

TCP/IP

host.

IRLM.

Internal

resource

lock

manager.

ISO.

International

Organization

for

Standardization.

isolation

level.

The

degree

to

which

a

unit

of

work

is

isolated

from

the

updating

operations

of

other

units

of

work.

See

also

cursor

stability,

read

stability,

repeatable

read,

and

uncommitted

read.

ISPF.

Interactive

System

Productivity

Facility.

ISPF/PDF.

Interactive

System

Productivity

Facility/Program

Development

Facility.

iterator.

In

SQLJ,

an

object

that

contains

the

result

set

of

a

query.

An

iterator

is

equivalent

to

a

cursor

in

other

host

languages.

iterator

declaration

clause.

In

SQLJ,

a

statement

that

generates

an

iterator

declaration

class.

An

iterator

is

an

object

of

an

iterator

declaration

class.

J

Japanese

Industrial

Standard.

An

encoding

scheme

that

is

used

to

process

Japanese

characters.

JAR.

Java

Archive.

Java

Archive

(JAR).

A

file

format

that

is

used

for

aggregating

many

files

into

a

single

file.

JCL.

Job

control

language.

JDBC.

A

Sun

Microsystems

database

application

programming

interface

(API)

for

Java

that

allows

programs

to

access

database

management

systems

by

using

callable

SQL.

JDBC

does

not

require

the

use

of

an

SQL

preprocessor.

In

addition,

JDBC

provides

an

architecture

that

lets

users

add

modules

called

database

drivers,

which

link

the

application

to

their

choice

of

database

management

systems

at

run

time.

JES.

Job

Entry

Subsystem.

JIS.

Japanese

Industrial

Standard.

job

control

language

(JCL).

A

control

language

that

is

used

to

identify

a

job

to

an

operating

system

and

to

describe

the

job’s

requirements.

Job

Entry

Subsystem

(JES).

An

IBM

licensed

program

that

receives

jobs

into

the

system

and

processes

all

output

data

that

is

produced

by

the

jobs.

join.

A

relational

operation

that

allows

retrieval

of

data

from

two

or

more

tables

based

on

matching

column

values.

See

also

equijoin,

full

outer

join,

inner

join,

left

outer

join,

outer

join,

and

right

outer

join.

K

KB.

Kilobyte

(1024

bytes).

Kerberos.

A

network

authentication

protocol

that

is

designed

to

provide

strong

authentication

for

client/server

applications

by

using

secret-key

cryptography.

Kerberos

ticket.

A

transparent

application

mechanism

that

transmits

the

identity

of

an

initiating

principal

to

its

target.

A

simple

ticket

contains

the

principal’s

identity,

a

session

key,

a

timestamp,

and

other

information,

which

is

sealed

using

the

target’s

secret

key.

Interactive

System

Productivity

Facility

(ISPF)

•

Kerberos

ticket

578

ODBC

Guide

and

Reference

|
|
|
|
|

|

|

|

key.

A

column

or

an

ordered

collection

of

columns

that

is

identified

in

the

description

of

a

table,

index,

or

referential

constraint.

The

same

column

can

be

part

of

more

than

one

key.

key-sequenced

data

set

(KSDS).

A

VSAM

file

or

data

set

whose

records

are

loaded

in

key

sequence

and

controlled

by

an

index.

keyword.

In

SQL,

a

name

that

identifies

an

option

that

is

used

in

an

SQL

statement.

KSDS.

Key-sequenced

data

set.

L

labeled

duration.

A

number

that

represents

a

duration

of

years,

months,

days,

hours,

minutes,

seconds,

or

microseconds.

large

object

(LOB).

A

sequence

of

bytes

representing

bit

data,

single-byte

characters,

double-byte

characters,

or

a

mixture

of

single-

and

double-byte

characters.

A

LOB

can

be

up

to

2

GB−1

byte

in

length.

See

also

BLOB,

CLOB,

and

DBCLOB.

last

agent

optimization.

An

optimized

commit

flow

for

either

presumed-nothing

or

presumed-abort

protocols

in

which

the

last

agent,

or

final

participant,

becomes

the

commit

coordinator.

This

flow

saves

at

least

one

message.

latch.

A

DB2

internal

mechanism

for

controlling

concurrent

events

or

the

use

of

system

resources.

LCID.

Log

control

interval

definition.

LDS.

Linear

data

set.

leaf

page.

A

page

that

contains

pairs

of

keys

and

RIDs

and

that

points

to

actual

data.

Contrast

with

nonleaf

page.

left

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined,

and

that

preserves

the

unmatched

rows

of

the

first

table.

See

also

join.

limit

key.

The

highest

value

of

the

index

key

for

a

partition.

linear

data

set

(LDS).

A

VSAM

data

set

that

contains

data

but

no

control

information.

A

linear

data

set

can

be

accessed

as

a

byte-addressable

string

in

virtual

storage.

linkage

editor.

A

computer

program

for

creating

load

modules

from

one

or

more

object

modules

or

load

modules

by

resolving

cross

references

among

the

modules

and,

if

necessary,

adjusting

addresses.

link-edit.

The

action

of

creating

a

loadable

computer

program

using

a

linkage

editor.

list.

A

type

of

object,

which

DB2

utilities

can

process,

that

identifies

multiple

table

spaces,

multiple

index

spaces,

or

both.

A

list

is

defined

with

the

LISTDEF

utility

control

statement.

list

structure.

A

coupling

facility

structure

that

lets

data

be

shared

and

manipulated

as

elements

of

a

queue.

LLE.

Load

list

element.

L-lock.

Logical

lock.

load

list

element.

A

z/OS

control

block

that

controls

the

loading

and

deleting

of

a

particular

load

module

based

on

entry

point

names.

load

module.

A

program

unit

that

is

suitable

for

loading

into

main

storage

for

execution.

The

output

of

a

linkage

editor.

LOB.

Large

object.

LOB

locator.

A

mechanism

that

allows

an

application

program

to

manipulate

a

large

object

value

in

the

database

system.

A

LOB

locator

is

a

fullword

integer

value

that

represents

a

single

LOB

value.

An

application

program

retrieves

a

LOB

locator

into

a

host

variable

and

can

then

apply

SQL

operations

to

the

associated

LOB

value

using

the

locator.

LOB

lock.

A

lock

on

a

LOB

value.

LOB

table

space.

A

table

space

in

an

auxiliary

table

that

contains

all

the

data

for

a

particular

LOB

column

in

the

related

base

table.

local.

A

way

of

referring

to

any

object

that

the

local

DB2

subsystem

maintains.

A

local

table,

for

example,

is

a

table

that

is

maintained

by

the

local

DB2

subsystem.

Contrast

with

remote.

locale.

The

definition

of

a

subset

of

a

user’s

environment

that

combines

a

CCSID

and

characters

that

are

defined

for

a

specific

language

and

country.

local

lock.

A

lock

that

provides

intra-DB2

concurrency

control,

but

not

inter-DB2

concurrency

control;

that

is,

its

scope

is

a

single

DB2.

local

subsystem.

The

unique

relational

DBMS

to

which

the

user

or

application

program

is

directly

connected

(in

the

case

of

DB2,

by

one

of

the

DB2

attachment

facilities).

location.

The

unique

name

of

a

database

server.

An

application

uses

the

location

name

to

access

a

DB2

database

server.

A

database

alias

can

be

used

to

override

the

location

name

when

accessing

a

remote

server.

location

alias.

Another

name

by

which

a

database

server

identifies

itself

in

the

network.

Applications

can

use

this

name

to

access

a

DB2

database

server.

key

•

location

alias

Glossary

579

|

|

|

|

|

|

|

|

|

|

|

lock.

A

means

of

controlling

concurrent

events

or

access

to

data.

DB2

locking

is

performed

by

the

IRLM.

lock

duration.

The

interval

over

which

a

DB2

lock

is

held.

lock

escalation.

The

promotion

of

a

lock

from

a

row,

page,

or

LOB

lock

to

a

table

space

lock

because

the

number

of

page

locks

that

are

concurrently

held

on

a

given

resource

exceeds

a

preset

limit.

locking.

The

process

by

which

the

integrity

of

data

is

ensured.

Locking

prevents

concurrent

users

from

accessing

inconsistent

data.

lock

mode.

A

representation

for

the

type

of

access

that

concurrently

running

programs

can

have

to

a

resource

that

a

DB2

lock

is

holding.

lock

object.

The

resource

that

is

controlled

by

a

DB2

lock.

lock

promotion.

The

process

of

changing

the

size

or

mode

of

a

DB2

lock

to

a

higher,

more

restrictive

level.

lock

size.

The

amount

of

data

that

is

controlled

by

a

DB2

lock

on

table

data;

the

value

can

be

a

row,

a

page,

a

LOB,

a

partition,

a

table,

or

a

table

space.

lock

structure.

A

coupling

facility

data

structure

that

is

composed

of

a

series

of

lock

entries

to

support

shared

and

exclusive

locking

for

logical

resources.

log.

A

collection

of

records

that

describe

the

events

that

occur

during

DB2

execution

and

that

indicate

their

sequence.

The

information

thus

recorded

is

used

for

recovery

in

the

event

of

a

failure

during

DB2

execution.

log

control

interval

definition.

A

suffix

of

the

physical

log

record

that

tells

how

record

segments

are

placed

in

the

physical

control

interval.

logical

claim.

A

claim

on

a

logical

partition

of

a

nonpartitioning

index.

logical

data

modeling.

The

process

of

documenting

the

comprehensive

business

information

requirements

in

an

accurate

and

consistent

format.

Data

modeling

is

the

first

task

of

designing

a

database.

logical

drain.

A

drain

on

a

logical

partition

of

a

nonpartitioning

index.

logical

index

partition.

The

set

of

all

keys

that

reference

the

same

data

partition.

logical

lock

(L-lock).

The

lock

type

that

transactions

use

to

control

intra-

and

inter-DB2

data

concurrency

between

transactions.

Contrast

with

physical

lock

(P-lock).

logically

complete.

A

state

in

which

the

concurrent

copy

process

is

finished

with

the

initialization

of

the

target

objects

that

are

being

copied.

The

target

objects

are

available

for

update.

logical

page

list

(LPL).

A

list

of

pages

that

are

in

error

and

that

cannot

be

referenced

by

applications

until

the

pages

are

recovered.

The

page

is

in

logical

error

because

the

actual

media

(coupling

facility

or

disk)

might

not

contain

any

errors.

Usually

a

connection

to

the

media

has

been

lost.

logical

partition.

A

set

of

key

or

RID

pairs

in

a

nonpartitioning

index

that

are

associated

with

a

particular

partition.

logical

recovery

pending

(LRECP).

The

state

in

which

the

data

and

the

index

keys

that

reference

the

data

are

inconsistent.

logical

unit

(LU).

An

access

point

through

which

an

application

program

accesses

the

SNA

network

in

order

to

communicate

with

another

application

program.

logical

unit

of

work

(LUW).

The

processing

that

a

program

performs

between

synchronization

points.

logical

unit

of

work

identifier

(LUWID).

A

name

that

uniquely

identifies

a

thread

within

a

network.

This

name

consists

of

a

fully-qualified

LU

network

name,

an

LUW

instance

number,

and

an

LUW

sequence

number.

log

initialization.

The

first

phase

of

restart

processing

during

which

DB2

attempts

to

locate

the

current

end

of

the

log.

log

record

header

(LRH).

A

prefix,

in

every

logical

record,

that

contains

control

information.

log

record

sequence

number

(LRSN).

A

unique

identifier

for

a

log

record

that

is

associated

with

a

data

sharing

member.

DB2

uses

the

LRSN

for

recovery

in

the

data

sharing

environment.

log

truncation.

A

process

by

which

an

explicit

starting

RBA

is

established.

This

RBA

is

the

point

at

which

the

next

byte

of

log

data

is

to

be

written.

LPL.

Logical

page

list.

LRECP.

Logical

recovery

pending.

LRH.

Log

record

header.

LRSN.

Log

record

sequence

number.

LU.

Logical

unit.

LU

name.

Logical

unit

name,

which

is

the

name

by

which

VTAM

refers

to

a

node

in

a

network.

Contrast

with

location

name.

LUW.

Logical

unit

of

work.

lock

•

LUW

580

ODBC

Guide

and

Reference

|
|
|

LUWID.

Logical

unit

of

work

identifier.

M

mapping

table.

A

table

that

the

REORG

utility

uses

to

map

the

associations

of

the

RIDs

of

data

records

in

the

original

copy

and

in

the

shadow

copy.

This

table

is

created

by

the

user.

mass

delete.

The

deletion

of

all

rows

of

a

table.

master

terminal.

The

IMS

logical

terminal

that

has

complete

control

of

IMS

resources

during

online

operations.

master

terminal

operator

(MTO).

See

master

terminal.

materialize.

(1)

The

process

of

putting

rows

from

a

view

or

nested

table

expression

into

a

work

file

for

additional

processing

by

a

query.

(2)

The

placement

of

a

LOB

value

into

contiguous

storage.

Because

LOB

values

can

be

very

large,

DB2

avoids

materializing

LOB

data

until

doing

so

becomes

absolutely

necessary.

materialized

query

table.

A

table

that

is

used

to

contain

information

that

is

derived

and

can

be

summarized

from

one

or

more

source

tables.

MB.

Megabyte

(1

048

576

bytes).

MBCS.

Multibyte

character

set.

UTF-8

is

an

example

of

an

MBCS.

Characters

in

UTF-8

can

range

from

1

to

4

bytes

in

DB2.

member

name.

The

z/OS

XCF

identifier

for

a

particular

DB2

subsystem

in

a

data

sharing

group.

menu.

A

displayed

list

of

available

functions

for

selection

by

the

operator.

A

menu

is

sometimes

called

a

menu

panel.

metalanguage.

A

language

that

is

used

to

create

other

specialized

languages.

migration.

The

process

of

converting

a

subsystem

with

a

previous

release

of

DB2

to

an

updated

or

current

release.

In

this

process,

you

can

acquire

the

functions

of

the

updated

or

current

release

without

losing

the

data

that

you

created

on

the

previous

release.

mixed

data

string.

A

character

string

that

can

contain

both

single-byte

and

double-byte

characters.

MLPA.

Modified

link

pack

area.

MODEENT.

A

VTAM

macro

instruction

that

associates

a

logon

mode

name

with

a

set

of

parameters

representing

session

protocols.

A

set

of

MODEENT

macro

instructions

defines

a

logon

mode

table.

modeling

database.

A

DB2

database

that

you

create

on

your

workstation

that

you

use

to

model

a

DB2

UDB

for

z/OS

subsystem,

which

can

then

be

evaluated

by

the

Index

Advisor.

mode

name.

A

VTAM

name

for

the

collection

of

physical

and

logical

characteristics

and

attributes

of

a

session.

modify

locks.

An

L-lock

or

P-lock

with

a

MODIFY

attribute.

A

list

of

these

active

locks

is

kept

at

all

times

in

the

coupling

facility

lock

structure.

If

the

requesting

DB2

subsystem

fails,

that

DB2

subsystem’s

modify

locks

are

converted

to

retained

locks.

MPP.

Message

processing

program

(in

IMS).

MTO.

Master

terminal

operator.

multibyte

character

set

(MBCS).

A

character

set

that

represents

single

characters

with

more

than

a

single

byte.

Contrast

with

single-byte

character

set

and

double-byte

character

set.

See

also

Unicode.

multidimensional

analysis.

The

process

of

assessing

and

evaluating

an

enterprise

on

more

than

one

level.

Multiple

Virtual

Storage.

An

element

of

the

z/OS

operating

system.

This

element

is

also

called

the

Base

Control

Program

(BCP).

multisite

update.

Distributed

relational

database

processing

in

which

data

is

updated

in

more

than

one

location

within

a

single

unit

of

work.

multithreading.

Multiple

TCBs

that

are

executing

one

copy

of

DB2

ODBC

code

concurrently

(sharing

a

processor)

or

in

parallel

(on

separate

central

processors).

must-complete.

A

state

during

DB2

processing

in

which

the

entire

operation

must

be

completed

to

maintain

data

integrity.

mutex.

Pthread

mutual

exclusion;

a

lock.

A

Pthread

mutex

variable

is

used

as

a

locking

mechanism

to

allow

serialization

of

critical

sections

of

code

by

temporarily

blocking

the

execution

of

all

but

one

thread.

MVS.

See

Multiple

Virtual

Storage.

N

negotiable

lock.

A

lock

whose

mode

can

be

downgraded,

by

agreement

among

contending

users,

to

be

compatible

to

all.

A

physical

lock

is

an

example

of

a

negotiable

lock.

nested

table

expression.

A

fullselect

in

a

FROM

clause

(surrounded

by

parentheses).

LUWID

•

nested

table

expression

Glossary

581

|
|
|

|

network

identifier

(NID).

The

network

ID

that

is

assigned

by

IMS

or

CICS,

or

if

the

connection

type

is

RRSAF,

the

RRS

unit

of

recovery

ID

(URID).

NID.

Network

identifier.

nonleaf

page.

A

page

that

contains

keys

and

page

numbers

of

other

pages

in

the

index

(either

leaf

or

nonleaf

pages).

Nonleaf

pages

never

point

to

actual

data.

nonpartitioned

index.

An

index

that

is

not

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

nonpartitioned.

nonscrollable

cursor.

A

cursor

that

can

be

moved

only

in

a

forward

direction.

Nonscrollable

cursors

are

sometimes

called

forward-only

cursors

or

serial

cursors.

normalization.

A

key

step

in

the

task

of

building

a

logical

relational

database

design.

Normalization

helps

you

avoid

redundancies

and

inconsistencies

in

your

data.

An

entity

is

normalized

if

it

meets

a

set

of

constraints

for

a

particular

normal

form

(first

normal

form,

second

normal

form,

and

so

on).

Contrast

with

denormalization.

nondeterministic

function.

A

user-defined

function

whose

result

is

not

solely

dependent

on

the

values

of

the

input

arguments.

That

is,

successive

invocations

with

the

same

argument

values

can

produce

a

different

answer.

this

type

of

function

is

sometimes

called

a

variant

function.

Contrast

this

with

a

deterministic

function

(sometimes

called

a

not-variant

function),

which

always

produces

the

same

result

for

the

same

inputs.

not-variant

function.

See

deterministic

function.

NPSI.

See

nonpartitioned

secondary

index.

NRE.

Network

recovery

element.

NUL.

The

null

character

(’\0’),

which

is

represented

by

the

value

X'00'.

In

C,

this

character

denotes

the

end

of

a

string.

null.

A

special

value

that

indicates

the

absence

of

information.

NULLIF.

A

scalar

function

that

evaluates

two

passed

expressions,

returning

either

NULL

if

the

arguments

are

equal

or

the

value

of

the

first

argument

if

they

are

not.

null-terminated

host

variable.

A

varying-length

host

variable

in

which

the

end

of

the

data

is

indicated

by

a

null

terminator.

null

terminator.

In

C,

the

value

that

indicates

the

end

of

a

string.

For

EBCDIC,

ASCII,

and

Unicode

UTF-8

strings,

the

null

terminator

is

a

single-byte

value

(X'00').

For

Unicode

UCS-2

(wide)

strings,

the

null

terminator

is

a

double-byte

value

(X'0000').

O

OASN

(origin

application

schedule

number).

In

IMS,

a

4-byte

number

that

is

assigned

sequentially

to

each

IMS

schedule

since

the

last

cold

start

of

IMS.

The

OASN

is

used

as

an

identifier

for

a

unit

of

work.

In

an

8-byte

format,

the

first

4

bytes

contain

the

schedule

number

and

the

last

4

bytes

contain

the

number

of

IMS

sync

points

(commit

points)

during

the

current

schedule.

The

OASN

is

part

of

the

NID

for

an

IMS

connection.

ODBC.

Open

Database

Connectivity.

ODBC

driver.

A

dynamically-linked

library

(DLL)

that

implements

ODBC

function

calls

and

interacts

with

a

data

source.

OBID.

Data

object

identifier.

Open

Database

Connectivity

(ODBC).

A

Microsoft

database

application

programming

interface

(API)

for

C

that

allows

access

to

database

management

systems

by

using

callable

SQL.

ODBC

does

not

require

the

use

of

an

SQL

preprocessor.

In

addition,

ODBC

provides

an

architecture

that

lets

users

add

modules

called

database

drivers,

which

link

the

application

to

their

choice

of

database

management

systems

at

run

time.

This

means

that

applications

no

longer

need

to

be

directly

linked

to

the

modules

of

all

the

database

management

systems

that

are

supported.

ordinary

identifier.

An

uppercase

letter

followed

by

zero

or

more

characters,

each

of

which

is

an

uppercase

letter,

a

digit,

or

the

underscore

character.

An

ordinary

identifier

must

not

be

a

reserved

word.

ordinary

token.

A

numeric

constant,

an

ordinary

identifier,

a

host

identifier,

or

a

keyword.

originating

task.

In

a

parallel

group,

the

primary

agent

that

receives

data

from

other

execution

units

(referred

to

as

parallel

tasks)

that

are

executing

portions

of

the

query

in

parallel.

OS/390.

Operating

System/390®.

OS/390

OpenEdition®

Distributed

Computing

Environment

(OS/390

OE

DCE).

A

set

of

technologies

that

are

provided

by

the

Open

Software

Foundation

to

implement

distributed

computing.

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

some

or

all

of

the

unmatched

rows

of

the

tables

that

are

being

joined.

See

also

join.

overloaded

function.

A

function

name

for

which

multiple

function

instances

exist.

network

identifier

(NID)

•

overloaded

function

582

ODBC

Guide

and

Reference

|
|
|

|

P

package.

An

object

containing

a

set

of

SQL

statements

that

have

been

statically

bound

and

that

is

available

for

processing.

A

package

is

sometimes

also

called

an

application

package.

package

list.

An

ordered

list

of

package

names

that

may

be

used

to

extend

an

application

plan.

package

name.

The

name

of

an

object

that

is

created

by

a

BIND

PACKAGE

or

REBIND

PACKAGE

command.

The

object

is

a

bound

version

of

a

database

request

module

(DBRM).

The

name

consists

of

a

location

name,

a

collection

ID,

a

package

ID,

and

a

version

ID.

page.

A

unit

of

storage

within

a

table

space

(4

KB,

8

KB,

16

KB,

or

32

KB)

or

index

space

(4

KB).

In

a

table

space,

a

page

contains

one

or

more

rows

of

a

table.

In

a

LOB

table

space,

a

LOB

value

can

span

more

than

one

page,

but

no

more

than

one

LOB

value

is

stored

on

a

page.

page

set.

Another

way

to

refer

to

a

table

space

or

index

space.

Each

page

set

consists

of

a

collection

of

VSAM

data

sets.

page

set

recovery

pending

(PSRCP).

A

restrictive

state

of

an

index

space.

In

this

case,

the

entire

page

set

must

be

recovered.

Recovery

of

a

logical

part

is

prohibited.

panel.

A

predefined

display

image

that

defines

the

locations

and

characteristics

of

display

fields

on

a

display

surface

(for

example,

a

menu

panel).

parallel

complex.

A

cluster

of

machines

that

work

together

to

handle

multiple

transactions

and

applications.

parallel

group.

A

set

of

consecutive

operations

that

execute

in

parallel

and

that

have

the

same

number

of

parallel

tasks.

parallel

I/O

processing.

A

form

of

I/O

processing

in

which

DB2

initiates

multiple

concurrent

requests

for

a

single

user

query

and

performs

I/O

processing

concurrently

(in

parallel)

on

multiple

data

partitions.

parallelism

assistant.

In

Sysplex

query

parallelism,

a

DB2

subsystem

that

helps

to

process

parts

of

a

parallel

query

that

originates

on

another

DB2

subsystem

in

the

data

sharing

group.

parallelism

coordinator.

In

Sysplex

query

parallelism,

the

DB2

subsystem

from

which

the

parallel

query

originates.

Parallel

Sysplex.

A

set

of

z/OS

systems

that

communicate

and

cooperate

with

each

other

through

certain

multisystem

hardware

components

and

software

services

to

process

customer

workloads.

parallel

task.

The

execution

unit

that

is

dynamically

created

to

process

a

query

in

parallel.

A

parallel

task

is

implemented

by

a

z/OS

service

request

block.

parameter

marker.

A

question

mark

(?)

that

appears

in

a

statement

string

of

a

dynamic

SQL

statement.

The

question

mark

can

appear

where

a

host

variable

could

appear

if

the

statement

string

were

a

static

SQL

statement.

parameter-name.

An

SQL

identifier

that

designates

a

parameter

in

an

SQL

procedure

or

an

SQL

function.

parent

key.

A

primary

key

or

unique

key

in

the

parent

table

of

a

referential

constraint.

The

values

of

a

parent

key

determine

the

valid

values

of

the

foreign

key

in

the

referential

constraint.

parent

lock.

For

explicit

hierarchical

locking,

a

lock

that

is

held

on

a

resource

that

might

have

child

locks

that

are

lower

in

the

hierarchy.

A

parent

lock

is

usually

the

table

space

lock

or

the

partition

intent

lock.

See

also

child

lock.

parent

row.

A

row

whose

primary

key

value

is

the

foreign

key

value

of

a

dependent

row.

parent

table.

A

table

whose

primary

key

is

referenced

by

the

foreign

key

of

a

dependent

table.

parent

table

space.

A

table

space

that

contains

a

parent

table.

A

table

space

containing

a

dependent

of

that

table

is

a

dependent

table

space.

participant.

An

entity

other

than

the

commit

coordinator

that

takes

part

in

the

commit

process.

The

term

participant

is

synonymous

with

agent

in

SNA.

partition.

A

portion

of

a

page

set.

Each

partition

corresponds

to

a

single,

independently

extendable

data

set.

Partitions

can

be

extended

to

a

maximum

size

of

1,

2,

or

4

GB,

depending

on

the

number

of

partitions

in

the

partitioned

page

set.

All

partitions

of

a

given

page

set

have

the

same

maximum

size.

partitioned

data

set

(PDS).

A

data

set

in

disk

storage

that

is

divided

into

partitions,

which

are

called

members.

Each

partition

can

contain

a

program,

part

of

a

program,

or

data.

The

term

partitioned

data

set

is

synonymous

with

program

library.

partitioned

index.

An

index

that

is

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

partitioned.

partitioned

page

set.

A

partitioned

table

space

or

an

index

space.

Header

pages,

space

map

pages,

data

pages,

and

index

pages

reference

data

only

within

the

scope

of

the

partition.

partitioned

table

space.

A

table

space

that

is

subdivided

into

parts

(based

on

index

key

range),

each

of

which

can

be

processed

independently

by

utilities.

package

•

partitioned

table

space

Glossary

583

|

|

|

|

|

|

|

|

partitioning

index.

An

index

in

which

the

leftmost

columns

are

the

partitioning

columns

of

the

table.

The

index

can

be

partitioned

or

nonpartitioned.

partition

pruning.

The

removal

from

consideration

of

inapplicable

partitions

through

setting

up

predicates

in

a

query

on

a

partitioned

table

to

access

only

certain

partitions

to

satisfy

the

query.

partner

logical

unit.

An

access

point

in

the

SNA

network

that

is

connected

to

the

local

DB2

subsystem

by

way

of

a

VTAM

conversation.

path.

See

SQL

path.

PCT.

Program

control

table

(in

CICS).

PDS.

Partitioned

data

set.

piece.

A

data

set

of

a

nonpartitioned

page

set.

physical

claim.

A

claim

on

an

entire

nonpartitioning

index.

physical

consistency.

The

state

of

a

page

that

is

not

in

a

partially

changed

state.

physical

drain.

A

drain

on

an

entire

nonpartitioning

index.

physical

lock

(P-lock).

A

type

of

lock

that

DB2

acquires

to

provide

consistency

of

data

that

is

cached

in

different

DB2

subsystems.

Physical

locks

are

used

only

in

data

sharing

environments.

Contrast

with

logical

lock

(L-lock).

physical

lock

contention.

Conflicting

states

of

the

requesters

for

a

physical

lock.

See

also

negotiable

lock.

physically

complete.

The

state

in

which

the

concurrent

copy

process

is

completed

and

the

output

data

set

has

been

created.

plan.

See

application

plan.

plan

allocation.

The

process

of

allocating

DB2

resources

to

a

plan

in

preparation

for

execution.

plan

member.

The

bound

copy

of

a

DBRM

that

is

identified

in

the

member

clause.

plan

name.

The

name

of

an

application

plan.

plan

segmentation.

The

dividing

of

each

plan

into

sections.

When

a

section

is

needed,

it

is

independently

brought

into

the

EDM

pool.

P-lock.

Physical

lock.

PLT.

Program

list

table

(in

CICS).

point

of

consistency.

A

time

when

all

recoverable

data

that

an

application

accesses

is

consistent

with

other

data.

The

term

point

of

consistency

is

synonymous

with

sync

point

or

commit

point.

policy.

See

CFRM

policy.

Portable

Operating

System

Interface

(POSIX).

The

IEEE

operating

system

interface

standard,

which

defines

the

Pthread

standard

of

threading.

See

also

Pthread.

POSIX.

Portable

Operating

System

Interface.

postponed

abort

UR.

A

unit

of

recovery

that

was

inflight

or

in-abort,

was

interrupted

by

system

failure

or

cancellation,

and

did

not

complete

backout

during

restart.

PPT.

(1)

Processing

program

table

(in

CICS).

(2)

Program

properties

table

(in

z/OS).

precision.

In

SQL,

the

total

number

of

digits

in

a

decimal

number

(called

the

size

in

the

C

language).

In

the

C

language,

the

number

of

digits

to

the

right

of

the

decimal

point

(called

the

scale

in

SQL).

The

DB2

library

uses

the

SQL

terms.

precompilation.

A

processing

of

application

programs

containing

SQL

statements

that

takes

place

before

compilation.

SQL

statements

are

replaced

with

statements

that

are

recognized

by

the

host

language

compiler.

Output

from

this

precompilation

includes

source

code

that

can

be

submitted

to

the

compiler

and

the

database

request

module

(DBRM)

that

is

input

to

the

bind

process.

predicate.

An

element

of

a

search

condition

that

expresses

or

implies

a

comparison

operation.

prefix.

A

code

at

the

beginning

of

a

message

or

record.

preformat.

The

process

of

preparing

a

VSAM

ESDS

for

DB2

use,

by

writing

specific

data

patterns.

prepare.

The

first

phase

of

a

two-phase

commit

process

in

which

all

participants

are

requested

to

prepare

for

commit.

prepared

SQL

statement.

A

named

object

that

is

the

executable

form

of

an

SQL

statement

that

has

been

processed

by

the

PREPARE

statement.

presumed-abort.

An

optimization

of

the

presumed-nothing

two-phase

commit

protocol

that

reduces

the

number

of

recovery

log

records,

the

duration

of

state

maintenance,

and

the

number

of

messages

between

coordinator

and

participant.

The

optimization

also

modifies

the

indoubt

resolution

responsibility.

presumed-nothing.

The

standard

two-phase

commit

protocol

that

defines

coordinator

and

participant

responsibilities,

relative

to

logical

unit

of

work

states,

recovery

logging,

and

indoubt

resolution.

primary

authorization

ID.

The

authorization

ID

that

is

used

to

identify

the

application

process

to

DB2.

partitioning

index

•

primary

authorization

ID

584

ODBC

Guide

and

Reference

|
|
|
|

primary

group

buffer

pool.

For

a

duplexed

group

buffer

pool,

the

structure

that

is

used

to

maintain

the

coherency

of

cached

data.

This

structure

is

used

for

page

registration

and

cross-invalidation.

The

z/OS

equivalent

is

old

structure.

Compare

with

secondary

group

buffer

pool.

primary

index.

An

index

that

enforces

the

uniqueness

of

a

primary

key.

primary

key.

In

a

relational

database,

a

unique,

nonnull

key

that

is

part

of

the

definition

of

a

table.

A

table

cannot

be

defined

as

a

parent

unless

it

has

a

unique

key

or

primary

key.

principal.

An

entity

that

can

communicate

securely

with

another

entity.

In

Kerberos,

principals

are

represented

as

entries

in

the

Kerberos

registry

database

and

include

users,

servers,

computers,

and

others.

principal

name.

The

name

by

which

a

principal

is

known

to

the

DCE

security

services.

private

connection.

A

communications

connection

that

is

specific

to

DB2.

private

protocol

access.

A

method

of

accessing

distributed

data

by

which

you

can

direct

a

query

to

another

DB2

system.

Contrast

with

DRDA

access.

private

protocol

connection.

A

DB2

private

connection

of

the

application

process.

See

also

private

connection.

privilege.

The

capability

of

performing

a

specific

function,

sometimes

on

a

specific

object.

The

types

of

privileges

are:

explicit

privileges,

which

have

names

and

are

held

as

the

result

of

SQL

GRANT

and

REVOKE

statements.

For

example,

the

SELECT

privilege.

implicit

privileges,

which

accompany

the

ownership

of

an

object,

such

as

the

privilege

to

drop

a

synonym

that

one

owns,

or

the

holding

of

an

authority,

such

as

the

privilege

of

SYSADM

authority

to

terminate

any

utility

job.

privilege

set.

For

the

installation

SYSADM

ID,

the

set

of

all

possible

privileges.

For

any

other

authorization

ID,

the

set

of

all

privileges

that

are

recorded

for

that

ID

in

the

DB2

catalog.

process.

In

DB2,

the

unit

to

which

DB2

allocates

resources

and

locks.

Sometimes

called

an

application

process,

a

process

involves

the

execution

of

one

or

more

programs.

The

execution

of

an

SQL

statement

is

always

associated

with

some

process.

The

means

of

initiating

and

terminating

a

process

are

dependent

on

the

environment.

program.

A

single,

compilable

collection

of

executable

statements

in

a

programming

language.

program

temporary

fix

(PTF).

A

solution

or

bypass

of

a

problem

that

is

diagnosed

as

a

result

of

a

defect

in

a

current

unaltered

release

of

a

licensed

program.

An

authorized

program

analysis

report

(APAR)

fix

is

corrective

service

for

an

existing

problem.

A

PTF

is

preventive

service

for

problems

that

might

be

encountered

by

other

users

of

the

product.

A

PTF

is

temporary,

because

a

permanent

fix

is

usually

not

incorporated

into

the

product

until

its

next

release.

protected

conversation.

A

VTAM

conversation

that

supports

two-phase

commit

flows.

PSRCP.

Page

set

recovery

pending.

PTF.

Program

temporary

fix.

Pthread.

The

POSIX

threading

standard

model

for

splitting

an

application

into

subtasks.

The

Pthread

standard

includes

functions

for

creating

threads,

terminating

threads,

synchronizing

threads

through

locking,

and

other

thread

control

facilities.

Q

QMF™.

Query

Management

Facility.

QSAM.

Queued

sequential

access

method.

query.

A

component

of

certain

SQL

statements

that

specifies

a

result

table.

query

block.

The

part

of

a

query

that

is

represented

by

one

of

the

FROM

clauses.

Each

FROM

clause

can

have

multiple

query

blocks,

depending

on

DB2’s

internal

processing

of

the

query.

query

CP

parallelism.

Parallel

execution

of

a

single

query,

which

is

accomplished

by

using

multiple

tasks.

See

also

Sysplex

query

parallelism.

query

I/O

parallelism.

Parallel

access

of

data,

which

is

accomplished

by

triggering

multiple

I/O

requests

within

a

single

query.

queued

sequential

access

method

(QSAM).

An

extended

version

of

the

basic

sequential

access

method

(BSAM).

When

this

method

is

used,

a

queue

of

data

blocks

is

formed.

Input

data

blocks

await

processing,

and

output

data

blocks

await

transfer

to

auxiliary

storage

or

to

an

output

device.

quiesce

point.

A

point

at

which

data

is

consistent

as

a

result

of

running

the

DB2

QUIESCE

utility.

quiesced

member

state.

A

state

of

a

member

of

a

data

sharing

group.

An

active

member

becomes

quiesced

when

a

STOP

DB2

command

takes

effect

without

a

failure.

If

the

member’s

task,

address

space,

or

z/OS

system

fails

before

the

command

takes

effect,

the

member

state

is

failed.

primary

group

buffer

pool

•

quiesced

member

state

Glossary

585

R

RACF.

Resource

Access

Control

Facility,

which

is

a

component

of

the

z/OS

Security

Server.

RAMAC®.

IBM

family

of

enterprise

disk

storage

system

products.

RBA.

Relative

byte

address.

RCT.

Resource

control

table

(in

CICS

attachment

facility).

RDB.

Relational

database.

RDBMS.

Relational

database

management

system.

RDBNAM.

Relational

database

name.

RDF.

Record

definition

field.

read

stability

(RS).

An

isolation

level

that

is

similar

to

repeatable

read

but

does

not

completely

isolate

an

application

process

from

all

other

concurrently

executing

application

processes.

Under

level

RS,

an

application

that

issues

the

same

query

more

than

once

might

read

additional

rows

that

were

inserted

and

committed

by

a

concurrently

executing

application

process.

rebind.

The

creation

of

a

new

application

plan

for

an

application

program

that

has

been

bound

previously.

If,

for

example,

you

have

added

an

index

for

a

table

that

your

application

accesses,

you

must

rebind

the

application

in

order

to

take

advantage

of

that

index.

rebuild.

The

process

of

reallocating

a

coupling

facility

structure.

For

the

shared

communications

area

(SCA)

and

lock

structure,

the

structure

is

repopulated;

for

the

group

buffer

pool,

changed

pages

are

usually

cast

out

to

disk,

and

the

new

structure

is

populated

only

with

changed

pages

that

were

not

successfully

cast

out.

RECFM.

Record

format.

record.

The

storage

representation

of

a

row

or

other

data.

record

identifier

(RID).

A

unique

identifier

that

DB2

uses

internally

to

identify

a

row

of

data

in

a

table.

Compare

with

row

ID.

record

identifier

(RID)

pool.

An

area

of

main

storage

that

is

used

for

sorting

record

identifiers

during

list-prefetch

processing.

record

length.

The

sum

of

the

length

of

all

the

columns

in

a

table,

which

is

the

length

of

the

data

as

it

is

physically

stored

in

the

database.

Records

can

be

fixed

length

or

varying

length,

depending

on

how

the

columns

are

defined.

If

all

columns

are

fixed-length

columns,

the

record

is

a

fixed-length

record.

If

one

or

more

columns

are

varying-length

columns,

the

record

is

a

varying-length

column.

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF).

A

DB2

subcomponent

that

uses

Resource

Recovery

Services

to

coordinate

resource

commitment

between

DB2

and

all

other

resource

managers

that

also

use

RRS

in

a

z/OS

system.

recovery.

The

process

of

rebuilding

databases

after

a

system

failure.

recovery

log.

A

collection

of

records

that

describes

the

events

that

occur

during

DB2

execution

and

indicates

their

sequence.

The

recorded

information

is

used

for

recovery

in

the

event

of

a

failure

during

DB2

execution.

recovery

manager.

(1)

A

subcomponent

that

supplies

coordination

services

that

control

the

interaction

of

DB2

resource

managers

during

commit,

abort,

checkpoint,

and

restart

processes.

The

recovery

manager

also

supports

the

recovery

mechanisms

of

other

subsystems

(for

example,

IMS)

by

acting

as

a

participant

in

the

other

subsystem’s

process

for

protecting

data

that

has

reached

a

point

of

consistency.

(2)

A

coordinator

or

a

participant

(or

both),

in

the

execution

of

a

two-phase

commit,

that

can

access

a

recovery

log

that

maintains

the

state

of

the

logical

unit

of

work

and

names

the

immediate

upstream

coordinator

and

downstream

participants.

recovery

pending

(RECP).

A

condition

that

prevents

SQL

access

to

a

table

space

that

needs

to

be

recovered.

recovery

token.

An

identifier

for

an

element

that

is

used

in

recovery

(for

example,

NID

or

URID).

RECP.

Recovery

pending.

redo.

A

state

of

a

unit

of

recovery

that

indicates

that

changes

are

to

be

reapplied

to

the

disk

media

to

ensure

data

integrity.

reentrant.

Executable

code

that

can

reside

in

storage

as

one

shared

copy

for

all

threads.

Reentrant

code

is

not

self-modifying

and

provides

separate

storage

areas

for

each

thread.

Reentrancy

is

a

compiler

and

operating

system

concept,

and

reentrancy

alone

is

not

enough

to

guarantee

logically

consistent

results

when

multithreading.

See

also

threadsafe.

referential

constraint.

The

requirement

that

nonnull

values

of

a

designated

foreign

key

are

valid

only

if

they

equal

values

of

the

primary

key

of

a

designated

table.

referential

integrity.

The

state

of

a

database

in

which

all

values

of

all

foreign

keys

are

valid.

Maintaining

referential

integrity

requires

the

enforcement

of

referential

constraints

on

all

operations

that

change

the

data

in

a

table

on

which

the

referential

constraints

are

defined.

RACF

•

referential

integrity

586

ODBC

Guide

and

Reference

|
|

referential

structure.

A

set

of

tables

and

relationships

that

includes

at

least

one

table

and,

for

every

table

in

the

set,

all

the

relationships

in

which

that

table

participates

and

all

the

tables

to

which

it

is

related.

refresh

age.

The

time

duration

between

the

current

time

and

the

time

during

which

a

materialized

query

table

was

last

refreshed.

registry.

See

registry

database.

registry

database.

A

database

of

security

information

about

principals,

groups,

organizations,

accounts,

and

security

policies.

relational

database

(RDB).

A

database

that

can

be

perceived

as

a

set

of

tables

and

manipulated

in

accordance

with

the

relational

model

of

data.

relational

database

management

system

(RDBMS).

A

collection

of

hardware

and

software

that

organizes

and

provides

access

to

a

relational

database.

relational

database

name

(RDBNAM).

A

unique

identifier

for

an

RDBMS

within

a

network.

In

DB2,

this

must

be

the

value

in

the

LOCATION

column

of

table

SYSIBM.LOCATIONS

in

the

CDB.

DB2

publications

refer

to

the

name

of

another

RDBMS

as

a

LOCATION

value

or

a

location

name.

relationship.

A

defined

connection

between

the

rows

of

a

table

or

the

rows

of

two

tables.

A

relationship

is

the

internal

representation

of

a

referential

constraint.

relative

byte

address

(RBA).

The

offset

of

a

data

record

or

control

interval

from

the

beginning

of

the

storage

space

that

is

allocated

to

the

data

set

or

file

to

which

it

belongs.

remigration.

The

process

of

returning

to

a

current

release

of

DB2

following

a

fallback

to

a

previous

release.

This

procedure

constitutes

another

migration

process.

remote.

Any

object

that

is

maintained

by

a

remote

DB2

subsystem

(that

is,

by

a

DB2

subsystem

other

than

the

local

one).

A

remote

view,

for

example,

is

a

view

that

is

maintained

by

a

remote

DB2

subsystem.

Contrast

with

local.

remote

attach

request.

A

request

by

a

remote

location

to

attach

to

the

local

DB2

subsystem.

Specifically,

the

request

that

is

sent

is

an

SNA

Function

Management

Header

5.

remote

subsystem.

Any

relational

DBMS,

except

the

local

subsystem,

with

which

the

user

or

application

can

communicate.

The

subsystem

need

not

be

remote

in

any

physical

sense,

and

might

even

operate

on

the

same

processor

under

the

same

z/OS

system.

reoptimization.

The

DB2

process

of

reconsidering

the

access

path

of

an

SQL

statement

at

run

time;

during

reoptimization,

DB2

uses

the

values

of

host

variables,

parameter

markers,

or

special

registers.

REORG

pending

(REORP).

A

condition

that

restricts

SQL

access

and

most

utility

access

to

an

object

that

must

be

reorganized.

REORP.

REORG

pending.

repeatable

read

(RR).

The

isolation

level

that

provides

maximum

protection

from

other

executing

application

programs.

When

an

application

program

executes

with

repeatable

read

protection,

rows

that

the

program

references

cannot

be

changed

by

other

programs

until

the

program

reaches

a

commit

point.

repeating

group.

A

situation

in

which

an

entity

includes

multiple

attributes

that

are

inherently

the

same.

The

presence

of

a

repeating

group

violates

the

requirement

of

first

normal

form.

In

an

entity

that

satisfies

the

requirement

of

first

normal

form,

each

attribute

is

independent

and

unique

in

its

meaning

and

its

name.

See

also

normalization.

replay

detection

mechanism.

A

method

that

allows

a

principal

to

detect

whether

a

request

is

a

valid

request

from

a

source

that

can

be

trusted

or

whether

an

untrustworthy

entity

has

captured

information

from

a

previous

exchange

and

is

replaying

the

information

exchange

to

gain

access

to

the

principal.

request

commit.

The

vote

that

is

submitted

to

the

prepare

phase

if

the

participant

has

modified

data

and

is

prepared

to

commit

or

roll

back.

requester.

The

source

of

a

request

to

access

data

at

a

remote

server.

In

the

DB2

environment,

the

requester

function

is

provided

by

the

distributed

data

facility.

resource.

The

object

of

a

lock

or

claim,

which

could

be

a

table

space,

an

index

space,

a

data

partition,

an

index

partition,

or

a

logical

partition.

resource

allocation.

The

part

of

plan

allocation

that

deals

specifically

with

the

database

resources.

resource

control

table

(RCT).

A

construct

of

the

CICS

attachment

facility,

created

by

site-provided

macro

parameters,

that

defines

authorization

and

access

attributes

for

transactions

or

transaction

groups.

resource

definition

online.

A

CICS

feature

that

you

use

to

define

CICS

resources

online

without

assembling

tables.

resource

limit

facility

(RLF).

A

portion

of

DB2

code

that

prevents

dynamic

manipulative

SQL

statements

from

exceeding

specified

time

limits.

The

resource

limit

facility

is

sometimes

called

the

governor.

resource

limit

specification

table

(RLST).

A

site-defined

table

that

specifies

the

limits

to

be

enforced

by

the

resource

limit

facility.

referential

structure

•

resource

limit

specification

table

(RLST)

Glossary

587

|
|
|

resource

manager.

(1)

A

function

that

is

responsible

for

managing

a

particular

resource

and

that

guarantees

the

consistency

of

all

updates

made

to

recoverable

resources

within

a

logical

unit

of

work.

The

resource

that

is

being

managed

can

be

physical

(for

example,

disk

or

main

storage)

or

logical

(for

example,

a

particular

type

of

system

service).

(2)

A

participant,

in

the

execution

of

a

two-phase

commit,

that

has

recoverable

resources

that

could

have

been

modified.

The

resource

manager

has

access

to

a

recovery

log

so

that

it

can

commit

or

roll

back

the

effects

of

the

logical

unit

of

work

to

the

recoverable

resources.

restart

pending

(RESTP).

A

restrictive

state

of

a

page

set

or

partition

that

indicates

that

restart

(backout)

work

needs

to

be

performed

on

the

object.

All

access

to

the

page

set

or

partition

is

denied

except

for

access

by

the:

v

RECOVER

POSTPONED

command

v

Automatic

online

backout

(which

DB2

invokes

after

restart

if

the

system

parameter

LBACKOUT=AUTO)

RESTP.

Restart

pending.

result

set.

The

set

of

rows

that

a

stored

procedure

returns

to

a

client

application.

result

set

locator.

A

4-byte

value

that

DB2

uses

to

uniquely

identify

a

query

result

set

that

a

stored

procedure

returns.

result

table.

The

set

of

rows

that

are

specified

by

a

SELECT

statement.

retained

lock.

A

MODIFY

lock

that

a

DB2

subsystem

was

holding

at

the

time

of

a

subsystem

failure.

The

lock

is

retained

in

the

coupling

facility

lock

structure

across

a

DB2

failure.

RID.

Record

identifier.

RID

pool.

Record

identifier

pool.

right

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

the

unmatched

rows

of

the

second

join

operand.

See

also

join.

RLF.

Resource

limit

facility.

RLST.

Resource

limit

specification

table.

RMID.

Resource

manager

identifier.

RO.

Read-only

access.

rollback.

The

process

of

restoring

data

that

was

changed

by

SQL

statements

to

the

state

at

its

last

commit

point.

All

locks

are

freed.

Contrast

with

commit.

root

page.

The

index

page

that

is

at

the

highest

level

(or

the

beginning

point)

in

an

index.

routine.

A

term

that

refers

to

either

a

user-defined

function

or

a

stored

procedure.

row.

The

horizontal

component

of

a

table.

A

row

consists

of

a

sequence

of

values,

one

for

each

column

of

the

table.

ROWID.

Row

identifier.

row

identifier

(ROWID).

A

value

that

uniquely

identifies

a

row.

This

value

is

stored

with

the

row

and

never

changes.

row

lock.

A

lock

on

a

single

row

of

data.

rowset.

A

set

of

rows

for

which

a

cursor

position

is

established.

rowset

cursor.

A

cursor

that

is

defined

so

that

one

or

more

rows

can

be

returned

as

a

rowset

for

a

single

FETCH

statement,

and

the

cursor

is

positioned

on

the

set

of

rows

that

is

fetched.

rowset-positioned

access.

The

ability

to

retrieve

multiple

rows

from

a

single

FETCH

statement.

row-positioned

access.

The

ability

to

retrieve

a

single

row

from

a

single

FETCH

statement.

row

trigger.

A

trigger

that

is

defined

with

the

trigger

granularity

FOR

EACH

ROW.

RRE.

Residual

recovery

entry

(in

IMS).

RRSAF.

Recoverable

Resource

Manager

Services

attachment

facility.

RS.

Read

stability.

RTT.

Resource

translation

table.

RURE.

Restart

URE.

S

savepoint.

A

named

entity

that

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

The

restoration

of

data

and

schemas

to

a

savepoint

is

usually

referred

to

as

rolling

back

to

a

savepoint.

SBCS.

Single-byte

character

set.

SCA.

Shared

communications

area.

scalar

function.

An

SQL

operation

that

produces

a

single

value

from

another

value

and

is

expressed

as

a

function

name,

followed

by

a

list

of

arguments

that

are

enclosed

in

parentheses.

Contrast

with

column

function.

scale.

In

SQL,

the

number

of

digits

to

the

right

of

the

decimal

point

(called

the

precision

in

the

C

language).

The

DB2

library

uses

the

SQL

definition.

resource

manager

•

scale

588

ODBC

Guide

and

Reference

|

|

|

|

schema.

(1)

The

organization

or

structure

of

a

database.

(2)

A

logical

grouping

for

user-defined

functions,

distinct

types,

triggers,

and

stored

procedures.

When

an

object

of

one

of

these

types

is

created,

it

is

assigned

to

one

schema,

which

is

determined

by

the

name

of

the

object.

For

example,

the

following

statement

creates

a

distinct

type

T

in

schema

C:

CREATE

DISTINCT

TYPE

C.T

...

scrollability.

The

ability

to

use

a

cursor

to

fetch

in

either

a

forward

or

backward

direction.

The

FETCH

statement

supports

multiple

fetch

orientations

to

indicate

the

new

position

of

the

cursor.

See

also

fetch

orientation.

scrollable

cursor.

A

cursor

that

can

be

moved

in

both

a

forward

and

a

backward

direction.

SDWA.

System

diagnostic

work

area.

search

condition.

A

criterion

for

selecting

rows

from

a

table.

A

search

condition

consists

of

one

or

more

predicates.

secondary

authorization

ID.

An

authorization

ID

that

has

been

associated

with

a

primary

authorization

ID

by

an

authorization

exit

routine.

secondary

group

buffer

pool.

For

a

duplexed

group

buffer

pool,

the

structure

that

is

used

to

back

up

changed

pages

that

are

written

to

the

primary

group

buffer

pool.

No

page

registration

or

cross-invalidation

occurs

using

the

secondary

group

buffer

pool.

The

z/OS

equivalent

is

new

structure.

secondary

index.

A

nonpartitioning

index

on

a

partitioned

table.

section.

The

segment

of

a

plan

or

package

that

contains

the

executable

structures

for

a

single

SQL

statement.

For

most

SQL

statements,

one

section

in

the

plan

exists

for

each

SQL

statement

in

the

source

program.

However,

for

cursor-related

statements,

the

DECLARE,

OPEN,

FETCH,

and

CLOSE

statements

reference

the

same

section

because

they

each

refer

to

the

SELECT

statement

that

is

named

in

the

DECLARE

CURSOR

statement.

SQL

statements

such

as

COMMIT,

ROLLBACK,

and

some

SET

statements

do

not

use

a

section.

segment.

A

group

of

pages

that

holds

rows

of

a

single

table.

See

also

segmented

table

space.

segmented

table

space.

A

table

space

that

is

divided

into

equal-sized

groups

of

pages

called

segments.

Segments

are

assigned

to

tables

so

that

rows

of

different

tables

are

never

stored

in

the

same

segment.

self-referencing

constraint.

A

referential

constraint

that

defines

a

relationship

in

which

a

table

is

a

dependent

of

itself.

self-referencing

table.

A

table

with

a

self-referencing

constraint.

sensitive

cursor.

A

cursor

that

is

sensitive

to

changes

that

are

made

to

the

database

after

the

result

table

has

been

materialized.

sequence.

A

user-defined

object

that

generates

a

sequence

of

numeric

values

according

to

user

specifications.

sequential

data

set.

A

non-DB2

data

set

whose

records

are

organized

on

the

basis

of

their

successive

physical

positions,

such

as

on

magnetic

tape.

Several

of

the

DB2

database

utilities

require

sequential

data

sets.

sequential

prefetch.

A

mechanism

that

triggers

consecutive

asynchronous

I/O

operations.

Pages

are

fetched

before

they

are

required,

and

several

pages

are

read

with

a

single

I/O

operation.

serial

cursor.

A

cursor

that

can

be

moved

only

in

a

forward

direction.

serialized

profile.

A

Java

object

that

contains

SQL

statements

and

descriptions

of

host

variables.

The

SQLJ

translator

produces

a

serialized

profile

for

each

connection

context.

server.

The

target

of

a

request

from

a

remote

requester.

In

the

DB2

environment,

the

server

function

is

provided

by

the

distributed

data

facility,

which

is

used

to

access

DB2

data

from

remote

applications.

server-side

programming.

A

method

for

adding

DB2

data

into

dynamic

Web

pages.

service

class.

An

eight-character

identifier

that

is

used

by

the

z/OS

Workload

Manager

to

associate

user

performance

goals

with

a

particular

DDF

thread

or

stored

procedure.

A

service

class

is

also

used

to

classify

work

on

parallelism

assistants.

service

request

block.

A

unit

of

work

that

is

scheduled

to

execute

in

another

address

space.

session.

A

link

between

two

nodes

in

a

VTAM

network.

session

protocols.

The

available

set

of

SNA

communication

requests

and

responses.

shared

communications

area

(SCA).

A

coupling

facility

list

structure

that

a

DB2

data

sharing

group

uses

for

inter-DB2

communication.

share

lock.

A

lock

that

prevents

concurrently

executing

application

processes

from

changing

data,

but

not

from

reading

data.

Contrast

with

exclusive

lock.

shift-in

character.

A

special

control

character

(X'0F')

that

is

used

in

EBCDIC

systems

to

denote

that

the

subsequent

bytes

represent

SBCS

characters.

See

also

shift-out

character.

schema

•

shift-in

character

Glossary

589

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

shift-out

character.

A

special

control

character

(X'0E')

that

is

used

in

EBCDIC

systems

to

denote

that

the

subsequent

bytes,

up

to

the

next

shift-in

control

character,

represent

DBCS

characters.

See

also

shift-in

character.

sign-on.

A

request

that

is

made

on

behalf

of

an

individual

CICS

or

IMS

application

process

by

an

attachment

facility

to

enable

DB2

to

verify

that

it

is

authorized

to

use

DB2

resources.

simple

page

set.

A

nonpartitioned

page

set.

A

simple

page

set

initially

consists

of

a

single

data

set

(page

set

piece).

If

and

when

that

data

set

is

extended

to

2

GB,

another

data

set

is

created,

and

so

on,

up

to

a

total

of

32

data

sets.

DB2

considers

the

data

sets

to

be

a

single

contiguous

linear

address

space

containing

a

maximum

of

64

GB.

Data

is

stored

in

the

next

available

location

within

this

address

space

without

regard

to

any

partitioning

scheme.

simple

table

space.

A

table

space

that

is

neither

partitioned

nor

segmented.

single-byte

character

set

(SBCS).

A

set

of

characters

in

which

each

character

is

represented

by

a

single

byte.

Contrast

with

double-byte

character

set

or

multibyte

character

set.

single-precision

floating

point

number.

A

32-bit

approximate

representation

of

a

real

number.

size.

In

the

C

language,

the

total

number

of

digits

in

a

decimal

number

(called

the

precision

in

SQL).

The

DB2

library

uses

the

SQL

term.

SMF.

System

Management

Facilities.

SMP/E.

System

Modification

Program/Extended.

SMS.

Storage

Management

Subsystem.

SNA.

Systems

Network

Architecture.

SNA

network.

The

part

of

a

network

that

conforms

to

the

formats

and

protocols

of

Systems

Network

Architecture

(SNA).

socket.

A

callable

TCP/IP

programming

interface

that

TCP/IP

network

applications

use

to

communicate

with

remote

TCP/IP

partners.

sourced

function.

A

function

that

is

implemented

by

another

built-in

or

user-defined

function

that

is

already

known

to

the

database

manager.

This

function

can

be

a

scalar

function

or

a

column

(aggregating)

function;

it

returns

a

single

value

from

a

set

of

values

(for

example,

MAX

or

AVG).

Contrast

with

built-in

function,

external

function,

and

SQL

function.

source

program.

A

set

of

host

language

statements

and

SQL

statements

that

is

processed

by

an

SQL

precompiler.

source

table.

A

table

that

can

be

a

base

table,

a

view,

a

table

expression,

or

a

user-defined

table

function.

source

type.

An

existing

type

that

DB2

uses

to

internally

represent

a

distinct

type.

space.

A

sequence

of

one

or

more

blank

characters.

special

register.

A

storage

area

that

DB2

defines

for

an

application

process

to

use

for

storing

information

that

can

be

referenced

in

SQL

statements.

Examples

of

special

registers

are

USER

and

CURRENT

DATE.

specific

function

name.

A

particular

user-defined

function

that

is

known

to

the

database

manager

by

its

specific

name.

Many

specific

user-defined

functions

can

have

the

same

function

name.

When

a

user-defined

function

is

defined

to

the

database,

every

function

is

assigned

a

specific

name

that

is

unique

within

its

schema.

Either

the

user

can

provide

this

name,

or

a

default

name

is

used.

SPUFI.

SQL

Processor

Using

File

Input.

SQL.

Structured

Query

Language.

SQL

authorization

ID

(SQL

ID).

The

authorization

ID

that

is

used

for

checking

dynamic

SQL

statements

in

some

situations.

SQLCA.

SQL

communication

area.

SQL

communication

area

(SQLCA).

A

structure

that

is

used

to

provide

an

application

program

with

information

about

the

execution

of

its

SQL

statements.

SQL

connection.

An

association

between

an

application

process

and

a

local

or

remote

application

server

or

database

server.

SQLDA.

SQL

descriptor

area.

SQL

descriptor

area

(SQLDA).

A

structure

that

describes

input

variables,

output

variables,

or

the

columns

of

a

result

table.

SQL

escape

character.

The

symbol

that

is

used

to

enclose

an

SQL

delimited

identifier.

This

symbol

is

the

double

quotation

mark

(").

See

also

escape

character.

SQL

function.

A

user-defined

function

in

which

the

CREATE

FUNCTION

statement

contains

the

source

code.

The

source

code

is

a

single

SQL

expression

that

evaluates

to

a

single

value.

The

SQL

user-defined

function

can

return

only

one

parameter.

SQL

ID.

SQL

authorization

ID.

SQLJ.

Structured

Query

Language

(SQL)

that

is

embedded

in

the

Java

programming

language.

SQL

path.

An

ordered

list

of

schema

names

that

are

used

in

the

resolution

of

unqualified

references

to

user-defined

functions,

distinct

types,

and

stored

shift-out

character

•

SQL

path

590

ODBC

Guide

and

Reference

|

|

procedures.

In

dynamic

SQL,

the

current

path

is

found

in

the

CURRENT

PATH

special

register.

In

static

SQL,

it

is

defined

in

the

PATH

bind

option.

SQL

procedure.

A

user-written

program

that

can

be

invoked

with

the

SQL

CALL

statement.

Contrast

with

external

procedure.

SQL

processing

conversation.

Any

conversation

that

requires

access

of

DB2

data,

either

through

an

application

or

by

dynamic

query

requests.

SQL

Processor

Using

File

Input

(SPUFI).

A

facility

of

the

TSO

attachment

subcomponent

that

enables

the

DB2I

user

to

execute

SQL

statements

without

embedding

them

in

an

application

program.

SQL

return

code.

Either

SQLCODE

or

SQLSTATE.

SQL

routine.

A

user-defined

function

or

stored

procedure

that

is

based

on

code

that

is

written

in

SQL.

SQL

statement

coprocessor.

An

alternative

to

the

DB2

precompiler

that

lets

the

user

process

SQL

statements

at

compile

time.

The

user

invokes

an

SQL

statement

coprocessor

by

specifying

a

compiler

option.

SQL

string

delimiter.

A

symbol

that

is

used

to

enclose

an

SQL

string

constant.

The

SQL

string

delimiter

is

the

apostrophe

('),

except

in

COBOL

applications,

where

the

user

assigns

the

symbol,

which

is

either

an

apostrophe

or

a

double

quotation

mark

(").

SRB.

Service

request

block.

SSI.

Subsystem

interface

(in

z/OS).

SSM.

Subsystem

member

(in

IMS).

stand-alone.

An

attribute

of

a

program

that

means

that

it

is

capable

of

executing

separately

from

DB2,

without

using

DB2

services.

star

join.

A

method

of

joining

a

dimension

column

of

a

fact

table

to

the

key

column

of

the

corresponding

dimension

table.

See

also

join,

dimension,

and

star

schema.

star

schema.

The

combination

of

a

fact

table

(which

contains

most

of

the

data)

and

a

number

of

dimension

tables.

See

also

star

join,

dimension,

and

dimension

table.

statement

handle.

In

DB2

ODBC,

the

data

object

that

contains

information

about

an

SQL

statement

that

is

managed

by

DB2

ODBC.

This

includes

information

such

as

dynamic

arguments,

bindings

for

dynamic

arguments

and

columns,

cursor

information,

result

values,

and

status

information.

Each

statement

handle

is

associated

with

the

connection

handle.

statement

string.

For

a

dynamic

SQL

statement,

the

character

string

form

of

the

statement.

statement

trigger.

A

trigger

that

is

defined

with

the

trigger

granularity

FOR

EACH

STATEMENT.

static

cursor.

A

named

control

structure

that

does

not

change

the

size

of

the

result

table

or

the

order

of

its

rows

after

an

application

opens

the

cursor.

Contrast

with

dynamic

cursor.

static

SQL.

SQL

statements,

embedded

within

a

program,

that

are

prepared

during

the

program

preparation

process

(before

the

program

is

executed).

After

being

prepared,

the

SQL

statement

does

not

change

(although

values

of

host

variables

that

are

specified

by

the

statement

might

change).

storage

group.

A

named

set

of

disks

on

which

DB2

data

can

be

stored.

stored

procedure.

A

user-written

application

program

that

can

be

invoked

through

the

use

of

the

SQL

CALL

statement.

string.

See

character

string

or

graphic

string.

strong

typing.

A

process

that

guarantees

that

only

user-defined

functions

and

operations

that

are

defined

on

a

distinct

type

can

be

applied

to

that

type.

For

example,

you

cannot

directly

compare

two

currency

types,

such

as

Canadian

dollars

and

U.S.

dollars.

But

you

can

provide

a

user-defined

function

to

convert

one

currency

to

the

other

and

then

do

the

comparison.

structure.

(1)

A

name

that

refers

collectively

to

different

types

of

DB2

objects,

such

as

tables,

databases,

views,

indexes,

and

table

spaces.

(2)

A

construct

that

uses

z/OS

to

map

and

manage

storage

on

a

coupling

facility.

See

also

cache

structure,

list

structure,

or

lock

structure.

Structured

Query

Language

(SQL).

A

standardized

language

for

defining

and

manipulating

data

in

a

relational

database.

structure

owner.

In

relation

to

group

buffer

pools,

the

DB2

member

that

is

responsible

for

the

following

activities:

v

Coordinating

rebuild,

checkpoint,

and

damage

assessment

processing

v

Monitoring

the

group

buffer

pool

threshold

and

notifying

castout

owners

when

the

threshold

has

been

reached

subcomponent.

A

group

of

closely

related

DB2

modules

that

work

together

to

provide

a

general

function.

subject

table.

The

table

for

which

a

trigger

is

created.

When

the

defined

triggering

event

occurs

on

this

table,

the

trigger

is

activated.

subpage.

The

unit

into

which

a

physical

index

page

can

be

divided.

SQL

procedure

•

subpage

Glossary

591

|

|

|

|

subquery.

A

SELECT

statement

within

the

WHERE

or

HAVING

clause

of

another

SQL

statement;

a

nested

SQL

statement.

subselect.

That

form

of

a

query

that

does

not

include

an

ORDER

BY

clause,

an

UPDATE

clause,

or

UNION

operators.

substitution

character.

A

unique

character

that

is

substituted

during

character

conversion

for

any

characters

in

the

source

program

that

do

not

have

a

match

in

the

target

coding

representation.

subsystem.

A

distinct

instance

of

a

relational

database

management

system

(RDBMS).

surrogate

pair.

A

coded

representation

for

a

single

character

that

consists

of

a

sequence

of

two

16-bit

code

units,

in

which

the

first

value

of

the

pair

is

a

high-surrogate

code

unit

in

the

range

U+D800

through

U+DBFF,

and

the

second

value

is

a

low-surrogate

code

unit

in

the

range

U+DC00

through

U+DFFF.

Surrogate

pairs

provide

an

extension

mechanism

for

encoding

917

476

characters

without

requiring

the

use

of

32-bit

characters.

SVC

dump.

A

dump

that

is

issued

when

a

z/OS

or

a

DB2

functional

recovery

routine

detects

an

error.

sync

point.

See

commit

point.

syncpoint

tree.

The

tree

of

recovery

managers

and

resource

managers

that

are

involved

in

a

logical

unit

of

work,

starting

with

the

recovery

manager,

that

make

the

final

commit

decision.

synonym.

In

SQL,

an

alternative

name

for

a

table

or

view.

Synonyms

can

be

used

to

refer

only

to

objects

at

the

subsystem

in

which

the

synonym

is

defined.

syntactic

character

set.

A

set

of

81

graphic

characters

that

are

registered

in

the

IBM

registry

as

character

set

00640.

This

set

was

originally

recommended

to

the

programming

language

community

to

be

used

for

syntactic

purposes

toward

maximizing

portability

and

interchangeability

across

systems

and

country

boundaries.

It

is

contained

in

most

of

the

primary

registered

character

sets,

with

a

few

exceptions.

See

also

invariant

character

set.

Sysplex.

See

Parallel

Sysplex.

Sysplex

query

parallelism.

Parallel

execution

of

a

single

query

that

is

accomplished

by

using

multiple

tasks

on

more

than

one

DB2

subsystem.

See

also

query

CP

parallelism.

system

administrator.

The

person

at

a

computer

installation

who

designs,

controls,

and

manages

the

use

of

the

computer

system.

system

agent.

A

work

request

that

DB2

creates

internally

such

as

prefetch

processing,

deferred

writes,

and

service

tasks.

system

conversation.

The

conversation

that

two

DB2

subsystems

must

establish

to

process

system

messages

before

any

distributed

processing

can

begin.

system

diagnostic

work

area

(SDWA).

The

data

that

is

recorded

in

a

SYS1.LOGREC

entry

that

describes

a

program

or

hardware

error.

system-directed

connection.

A

connection

that

a

relational

DBMS

manages

by

processing

SQL

statements

with

three-part

names.

System

Modification

Program/Extended

(SMP/E).

A

z/OS

tool

for

making

software

changes

in

programming

systems

(such

as

DB2)

and

for

controlling

those

changes.

Systems

Network

Architecture

(SNA).

The

description

of

the

logical

structure,

formats,

protocols,

and

operational

sequences

for

transmitting

information

through

and

controlling

the

configuration

and

operation

of

networks.

SYS1.DUMPxx

data

set.

A

data

set

that

contains

a

system

dump

(in

z/OS).

SYS1.LOGREC.

A

service

aid

that

contains

important

information

about

program

and

hardware

errors

(in

z/OS).

T

table.

A

named

data

object

consisting

of

a

specific

number

of

columns

and

some

number

of

unordered

rows.

See

also

base

table

or

temporary

table.

table-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

defined

in

the

CREATE

TABLE

statement.

Partition

limits

are

saved

in

the

LIMITKEY_INTERNAL

column

of

the

SYSIBM.SYSTABLEPART

catalog

table.

table

function.

A

function

that

receives

a

set

of

arguments

and

returns

a

table

to

the

SQL

statement

that

references

the

function.

A

table

function

can

be

referenced

only

in

the

FROM

clause

of

a

subselect.

table

locator.

A

mechanism

that

allows

access

to

trigger

transition

tables

in

the

FROM

clause

of

SELECT

statements,

in

the

subselect

of

INSERT

statements,

or

from

within

user-defined

functions.

A

table

locator

is

a

fullword

integer

value

that

represents

a

transition

table.

table

space.

A

page

set

that

is

used

to

store

the

records

in

one

or

more

tables.

subquery

•

table

space

592

ODBC

Guide

and

Reference

table

space

set.

A

set

of

table

spaces

and

partitions

that

should

be

recovered

together

for

one

of

these

reasons:

v

Each

of

them

contains

a

table

that

is

a

parent

or

descendent

of

a

table

in

one

of

the

others.

v

The

set

contains

a

base

table

and

associated

auxiliary

tables.

A

table

space

set

can

contain

both

types

of

relationships.

task

control

block

(TCB).

A

z/OS

control

block

that

is

used

to

communicate

information

about

tasks

within

an

address

space

that

are

connected

to

DB2.

See

also

address

space

connection.

TB.

Terabyte

(1

099

511

627

776

bytes).

TCB.

Task

control

block

(in

z/OS).

TCP/IP.

A

network

communication

protocol

that

computer

systems

use

to

exchange

information

across

telecommunication

links.

TCP/IP

port.

A

2-byte

value

that

identifies

an

end

user

or

a

TCP/IP

network

application

within

a

TCP/IP

host.

template.

A

DB2

utilities

output

data

set

descriptor

that

is

used

for

dynamic

allocation.

A

template

is

defined

by

the

TEMPLATE

utility

control

statement.

temporary

table.

A

table

that

holds

temporary

data.

Temporary

tables

are

useful

for

holding

or

sorting

intermediate

results

from

queries

that

contain

a

large

number

of

rows.

The

two

types

of

temporary

table,

which

are

created

by

different

SQL

statements,

are

the

created

temporary

table

and

the

declared

temporary

table.

Contrast

with

result

table.

See

also

created

temporary

table

and

declared

temporary

table.

Terminal

Monitor

Program

(TMP).

A

program

that

provides

an

interface

between

terminal

users

and

command

processors

and

has

access

to

many

system

services

(in

z/OS).

thread.

The

DB2

structure

that

describes

an

application’s

connection,

traces

its

progress,

processes

resource

functions,

and

delimits

its

accessibility

to

DB2

resources

and

services.

Most

DB2

functions

execute

under

a

thread

structure.

See

also

allied

thread

and

database

access

thread.

threadsafe.

A

characteristic

of

code

that

allows

multithreading

both

by

providing

private

storage

areas

for

each

thread,

and

by

properly

serializing

shared

(global)

storage

areas.

three-part

name.

The

full

name

of

a

table,

view,

or

alias.

It

consists

of

a

location

name,

authorization

ID,

and

an

object

name,

separated

by

a

period.

time.

A

three-part

value

that

designates

a

time

of

day

in

hours,

minutes,

and

seconds.

time

duration.

A

decimal

integer

that

represents

a

number

of

hours,

minutes,

and

seconds.

timeout.

Abnormal

termination

of

either

the

DB2

subsystem

or

of

an

application

because

of

the

unavailability

of

resources.

Installation

specifications

are

set

to

determine

both

the

amount

of

time

DB2

is

to

wait

for

IRLM

services

after

starting,

and

the

amount

of

time

IRLM

is

to

wait

if

a

resource

that

an

application

requests

is

unavailable.

If

either

of

these

time

specifications

is

exceeded,

a

timeout

is

declared.

Time-Sharing

Option

(TSO).

An

option

in

MVS

that

provides

interactive

time

sharing

from

remote

terminals.

timestamp.

A

seven-part

value

that

consists

of

a

date

and

time.

The

timestamp

is

expressed

in

years,

months,

days,

hours,

minutes,

seconds,

and

microseconds.

TMP.

Terminal

Monitor

Program.

to-do.

A

state

of

a

unit

of

recovery

that

indicates

that

the

unit

of

recovery’s

changes

to

recoverable

DB2

resources

are

indoubt

and

must

either

be

applied

to

the

disk

media

or

backed

out,

as

determined

by

the

commit

coordinator.

trace.

A

DB2

facility

that

provides

the

ability

to

monitor

and

collect

DB2

monitoring,

auditing,

performance,

accounting,

statistics,

and

serviceability

(global)

data.

transaction

lock.

A

lock

that

is

used

to

control

concurrent

execution

of

SQL

statements.

transaction

program

name.

In

SNA

LU

6.2

conversations,

the

name

of

the

program

at

the

remote

logical

unit

that

is

to

be

the

other

half

of

the

conversation.

transient

XML

data

type.

A

data

type

for

XML

values

that

exists

only

during

query

processing.

transition

table.

A

temporary

table

that

contains

all

the

affected

rows

of

the

subject

table

in

their

state

before

or

after

the

triggering

event

occurs.

Triggered

SQL

statements

in

the

trigger

definition

can

reference

the

table

of

changed

rows

in

the

old

state

or

the

new

state.

transition

variable.

A

variable

that

contains

a

column

value

of

the

affected

row

of

the

subject

table

in

its

state

before

or

after

the

triggering

event

occurs.

Triggered

SQL

statements

in

the

trigger

definition

can

reference

the

set

of

old

values

or

the

set

of

new

values.

tree

structure.

A

data

structure

that

represents

entities

in

nodes,

with

a

most

one

parent

node

for

each

node,

and

with

only

one

root

node.

trigger.

A

set

of

SQL

statements

that

are

stored

in

a

DB2

database

and

executed

when

a

certain

event

occurs

in

a

DB2

table.

table

space

set

•

trigger

Glossary

593

|

|

trigger

activation.

The

process

that

occurs

when

the

trigger

event

that

is

defined

in

a

trigger

definition

is

executed.

Trigger

activation

consists

of

the

evaluation

of

the

triggered

action

condition

and

conditional

execution

of

the

triggered

SQL

statements.

trigger

activation

time.

An

indication

in

the

trigger

definition

of

whether

the

trigger

should

be

activated

before

or

after

the

triggered

event.

trigger

body.

The

set

of

SQL

statements

that

is

executed

when

a

trigger

is

activated

and

its

triggered

action

condition

evaluates

to

true.

A

trigger

body

is

also

called

triggered

SQL

statements.

trigger

cascading.

The

process

that

occurs

when

the

triggered

action

of

a

trigger

causes

the

activation

of

another

trigger.

triggered

action.

The

SQL

logic

that

is

performed

when

a

trigger

is

activated.

The

triggered

action

consists

of

an

optional

triggered

action

condition

and

a

set

of

triggered

SQL

statements

that

are

executed

only

if

the

condition

evaluates

to

true.

triggered

action

condition.

An

optional

part

of

the

triggered

action.

This

Boolean

condition

appears

as

a

WHEN

clause

and

specifies

a

condition

that

DB2

evaluates

to

determine

if

the

triggered

SQL

statements

should

be

executed.

triggered

SQL

statements.

The

set

of

SQL

statements

that

is

executed

when

a

trigger

is

activated

and

its

triggered

action

condition

evaluates

to

true.

Triggered

SQL

statements

are

also

called

the

trigger

body.

trigger

granularity.

A

characteristic

of

a

trigger,

which

determines

whether

the

trigger

is

activated:

v

Only

once

for

the

triggering

SQL

statement

v

Once

for

each

row

that

the

SQL

statement

modifies

triggering

event.

The

specified

operation

in

a

trigger

definition

that

causes

the

activation

of

that

trigger.

The

triggering

event

is

comprised

of

a

triggering

operation

(INSERT,

UPDATE,

or

DELETE)

and

a

subject

table

on

which

the

operation

is

performed.

triggering

SQL

operation.

The

SQL

operation

that

causes

a

trigger

to

be

activated

when

performed

on

the

subject

table.

trigger

package.

A

package

that

is

created

when

a

CREATE

TRIGGER

statement

is

executed.

The

package

is

executed

when

the

trigger

is

activated.

TSO.

Time-Sharing

Option.

TSO

attachment

facility.

A

DB2

facility

consisting

of

the

DSN

command

processor

and

DB2I.

Applications

that

are

not

written

for

the

CICS

or

IMS

environments

can

run

under

the

TSO

attachment

facility.

typed

parameter

marker.

A

parameter

marker

that

is

specified

along

with

its

target

data

type.

It

has

the

general

form:

CAST(?

AS

data-type)

type

1

indexes.

Indexes

that

were

created

by

a

release

of

DB2

before

DB2

Version

4

or

that

are

specified

as

type

1

indexes

in

Version

4.

Contrast

with

type

2

indexes.

As

of

Version

8,

type

1

indexes

are

no

longer

supported.

type

2

indexes.

Indexes

that

are

created

on

a

release

of

DB2

after

Version

7

or

that

are

specified

as

type

2

indexes

in

Version

4

or

later.

U

UCS-2.

Universal

Character

Set,

coded

in

2

octets,

which

means

that

characters

are

represented

in

16-bits

per

character.

UDF.

User-defined

function.

UDT.

User-defined

data

type.

In

DB2

UDB

for

z/OS,

the

term

distinct

type

is

used

instead

of

user-defined

data

type.

See

distinct

type.

uncommitted

read

(UR).

The

isolation

level

that

allows

an

application

to

read

uncommitted

data.

underlying

view.

The

view

on

which

another

view

is

directly

or

indirectly

defined.

undo.

A

state

of

a

unit

of

recovery

that

indicates

that

the

changes

that

the

unit

of

recovery

made

to

recoverable

DB2

resources

must

be

backed

out.

Unicode.

A

standard

that

parallels

the

ISO-10646

standard.

Several

implementations

of

the

Unicode

standard

exist,

all

of

which

have

the

ability

to

represent

a

large

percentage

of

the

characters

that

are

contained

in

the

many

scripts

that

are

used

throughout

the

world.

uniform

resource

locator

(URL).

A

Web

address,

which

offers

a

way

of

naming

and

locating

specific

items

on

the

Web.

union.

An

SQL

operation

that

combines

the

results

of

two

SELECT

statements.

Unions

are

often

used

to

merge

lists

of

values

that

are

obtained

from

several

tables.

unique

constraint.

An

SQL

rule

that

no

two

values

in

a

primary

key,

or

in

the

key

of

a

unique

index,

can

be

the

same.

unique

index.

An

index

that

ensures

that

no

identical

key

values

are

stored

in

a

column

or

a

set

of

columns

in

a

table.

unit

of

recovery.

A

recoverable

sequence

of

operations

within

a

single

resource

manager,

such

as

an

instance

of

DB2.

Contrast

with

unit

of

work.

trigger

activation

•

unit

of

recovery

594

ODBC

Guide

and

Reference

unit

of

recovery

identifier

(URID).

The

LOGRBA

of

the

first

log

record

for

a

unit

of

recovery.

The

URID

also

appears

in

all

subsequent

log

records

for

that

unit

of

recovery.

unit

of

work.

A

recoverable

sequence

of

operations

within

an

application

process.

At

any

time,

an

application

process

is

a

single

unit

of

work,

but

the

life

of

an

application

process

can

involve

many

units

of

work

as

a

result

of

commit

or

rollback

operations.

In

a

multisite

update

operation,

a

single

unit

of

work

can

include

several

units

of

recovery.

Contrast

with

unit

of

recovery.

Universal

Unique

Identifier

(UUID).

An

identifier

that

is

immutable

and

unique

across

time

and

space

(in

z/OS).

unlock.

The

act

of

releasing

an

object

or

system

resource

that

was

previously

locked

and

returning

it

to

general

availability

within

DB2.

untyped

parameter

marker.

A

parameter

marker

that

is

specified

without

its

target

data

type.

It

has

the

form

of

a

single

question

mark

(?).

updatability.

The

ability

of

a

cursor

to

perform

positioned

updates

and

deletes.

The

updatability

of

a

cursor

can

be

influenced

by

the

SELECT

statement

and

the

cursor

sensitivity

option

that

is

specified

on

the

DECLARE

CURSOR

statement.

update

hole.

The

location

on

which

a

cursor

is

positioned

when

a

row

in

a

result

table

is

fetched

again

and

the

new

values

no

longer

satisfy

the

search

condition.

DB2

marks

a

row

in

the

result

table

as

an

update

hole

when

an

update

to

the

corresponding

row

in

the

database

causes

that

row

to

no

longer

qualify

for

the

result

table.

update

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

UPDATE.

upstream.

The

node

in

the

syncpoint

tree

that

is

responsible,

in

addition

to

other

recovery

or

resource

managers,

for

coordinating

the

execution

of

a

two-phase

commit.

UR.

Uncommitted

read.

URE.

Unit

of

recovery

element.

URID

.

Unit

of

recovery

identifier.

URL.

Uniform

resource

locator.

user-defined

data

type

(UDT).

See

distinct

type.

user-defined

function

(UDF).

A

function

that

is

defined

to

DB2

by

using

the

CREATE

FUNCTION

statement

and

that

can

be

referenced

thereafter

in

SQL

statements.

A

user-defined

function

can

be

an

external

function,

a

sourced

function,

or

an

SQL

function.

Contrast

with

built-in

function.

user

view.

In

logical

data

modeling,

a

model

or

representation

of

critical

information

that

the

business

requires.

UTF-8.

Unicode

Transformation

Format,

8-bit

encoding

form,

which

is

designed

for

ease

of

use

with

existing

ASCII-based

systems.

The

CCSID

value

for

data

in

UTF-8

format

is

1208.

DB2

UDB

for

z/OS

supports

UTF-8

in

mixed

data

fields.

UTF-16.

Unicode

Transformation

Format,

16-bit

encoding

form,

which

is

designed

to

provide

code

values

for

over

a

million

characters

and

a

superset

of

UCS-2.

The

CCSID

value

for

data

in

UTF-16

format

is

1200.

DB2

UDB

for

z/OS

supports

UTF-16

in

graphic

data

fields.

UUID.

Universal

Unique

Identifier.

V

value.

The

smallest

unit

of

data

that

is

manipulated

in

SQL.

variable.

A

data

element

that

specifies

a

value

that

can

be

changed.

A

COBOL

elementary

data

item

is

an

example

of

a

variable.

Contrast

with

constant.

variant

function.

See

nondeterministic

function.

varying-length

string.

A

character

or

graphic

string

whose

length

varies

within

set

limits.

Contrast

with

fixed-length

string.

version.

A

member

of

a

set

of

similar

programs,

DBRMs,

packages,

or

LOBs.

A

version

of

a

program

is

the

source

code

that

is

produced

by

precompiling

the

program.

The

program

version

is

identified

by

the

program

name

and

a

timestamp

(consistency

token).

A

version

of

a

DBRM

is

the

DBRM

that

is

produced

by

precompiling

a

program.

The

DBRM

version

is

identified

by

the

same

program

name

and

timestamp

as

a

corresponding

program

version.

A

version

of

a

package

is

the

result

of

binding

a

DBRM

within

a

particular

database

system.

The

package

version

is

identified

by

the

same

program

name

and

consistency

token

as

the

DBRM.

A

version

of

a

LOB

is

a

copy

of

a

LOB

value

at

a

point

in

time.

The

version

number

for

a

LOB

is

stored

in

the

auxiliary

index

entry

for

the

LOB.

view.

An

alternative

representation

of

data

from

one

or

more

tables.

A

view

can

include

all

or

some

of

the

columns

that

are

contained

in

tables

on

which

it

is

defined.

view

check

option.

An

option

that

specifies

whether

every

row

that

is

inserted

or

updated

through

a

view

must

conform

to

the

definition

of

that

view.

A

view

check

option

can

be

specified

with

the

WITH

CASCADED

unit

of

recovery

identifier

(URID)

•

view

check

option

Glossary

595

CHECK

OPTION,

WITH

CHECK

OPTION,

or

WITH

LOCAL

CHECK

OPTION

clauses

of

the

CREATE

VIEW

statement.

Virtual

Storage

Access

Method

(VSAM).

An

access

method

for

direct

or

sequential

processing

of

fixed-

and

varying-length

records

on

disk

devices.

The

records

in

a

VSAM

data

set

or

file

can

be

organized

in

logical

sequence

by

a

key

field

(key

sequence),

in

the

physical

sequence

in

which

they

are

written

on

the

data

set

or

file

(entry-sequence),

or

by

relative-record

number

(in

z/OS).

Virtual

Telecommunications

Access

Method

(VTAM).

An

IBM

licensed

program

that

controls

communication

and

the

flow

of

data

in

an

SNA

network

(in

z/OS).

volatile

table.

A

table

for

which

SQL

operations

choose

index

access

whenever

possible.

VSAM.

Virtual

Storage

Access

Method.

VTAM.

Virtual

Telecommunication

Access

Method

(in

z/OS).

W

warm

start.

The

normal

DB2

restart

process,

which

involves

reading

and

processing

log

records

so

that

data

that

is

under

the

control

of

DB2

is

consistent.

Contrast

with

cold

start.

WLM

application

environment.

A

z/OS

Workload

Manager

attribute

that

is

associated

with

one

or

more

stored

procedures.

The

WLM

application

environment

determines

the

address

space

in

which

a

given

DB2

stored

procedure

runs.

write

to

operator

(WTO).

An

optional

user-coded

service

that

allows

a

message

to

be

written

to

the

system

console

operator

informing

the

operator

of

errors

and

unusual

system

conditions

that

might

need

to

be

corrected

(in

z/OS).

WTO.

Write

to

operator.

WTOR.

Write

to

operator

(WTO)

with

reply.

X

XCF.

See

cross-system

coupling

facility.

XES.

See

cross-system

extended

services.

XML.

See

Extensible

Markup

Language.

XML

attribute.

A

name-value

pair

within

a

tagged

XML

element

that

modifies

certain

features

of

the

element.

XML

element.

A

logical

structure

in

an

XML

document

that

is

delimited

by

a

start

and

an

end

tag.

XML

node.

The

smallest

unit

of

valid,

complete

structure

in

a

document.

For

example,

a

node

can

represent

an

element,

an

attribute,

or

a

text

string.

XML

publishing

functions.

Functions

that

return

XML

values

from

SQL

values.

X/Open.

An

independent,

worldwide

open

systems

organization

that

is

supported

by

most

of

the

world’s

largest

information

systems

suppliers,

user

organizations,

and

software

companies.

X/Open's

goal

is

to

increase

the

portability

of

applications

by

combining

existing

and

emerging

standards.

XRF.

Extended

recovery

facility.

Z

z/OS.

An

operating

system

for

the

eServer™

product

line

that

supports

64-bit

real

and

virtual

storage.

z/OS

Distributed

Computing

Environment

(z/OS

DCE).

A

set

of

technologies

that

are

provided

by

the

Open

Software

Foundation

to

implement

distributed

computing.

Virtual

Storage

Access

Method

(VSAM)

•

z/OS

Distributed

Computing

Environment

(z/OS

DCE)

596

ODBC

Guide

and

Reference

|
|

|

|
|

|

|

|

|

Bibliography

DB2

Universal

Database

for

z/OS

Version

8

product

information:

The

following

information

about

Version

8

of

DB2

UDB

for

z/OS

is

available

in

both

printed

and

softcopy

formats:

v

DB2

Administration

Guide,

SC18-7413

v

DB2

Application

Programming

and

SQL

Guide,

SC18-7415

v

DB2

Application

Programming

Guide

and

Reference

for

Java,

SC18-7414

v

DB2

Command

Reference,

SC18-7416

v

DB2

Data

Sharing:

Planning

and

Administration,

SC18-7417

v

DB2

Diagnosis

Guide

and

Reference,

LY37-3201

v

DB2

Diagnostic

Quick

Reference

Card,

LY37-3202

v

DB2

Installation

Guide,

GC18-7418

v

DB2

Licensed

Program

Specifications,

GC18-7420

v

DB2

Messages

and

Codes,

GC18-7422

v

DB2

ODBC

Guide

and

Reference,

SC18-7423

v

DB2

Reference

Summary,

SX26-3853

v

DB2

Release

Planning

Guide,

SC18-7425

v

DB2

SQL

Reference,

SC18-7426

v

DB2

Utility

Guide

and

Reference,

SC18-7427

v

DB2

What's

New?,

GC18-7428

v

DB2

XML

Extender

for

z/OS

Administration

and

Programming,

SC18-7431

v

Program

Directory

for

IBM

DB2

Universal

Database

for

z/OS,

GI10-8566

The

following

information

is

provided

in

softcopy

format

only:

v

DB2

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

(Version

7

level)

v

DB2

Net

Search

Extender

Administration

and

Programming

Guide

(Version

7

level)

v

DB2

RACF

Access

Control

Module

Guide

(Version

8

level)

v

DB2

Reference

for

Remote

DRDA

Requesters

and

Servers

(Version

8

level)

v

DB2

Text

Extender

Administration

and

Programming

(Version

7

level)

You

can

find

DB2

UDB

for

z/OS

information

on

the

library

Web

page

at

www.ibm.com/db2/zos/v8books.html

The

preceding

information

is

published

by

IBM.

One

additional

book,

which

is

written

by

IBM

and

published

by

Pearson

Education,

Inc.,

is

The

Official

Introduction

to

DB2

UDB

for

z/OS,

ISBN

0-13-147750-1.

This

book

provides

an

overview

of

the

Version

8

DB2

UDB

for

z/OS

product

and

is

recommended

reading

for

people

who

are

preparing

to

take

Certification

Exam

700:

DB2

UDB

V8.1

Family

Fundamentals.

Books

and

resources

about

related

products:

APL2®

v

APL2

Programming

Guide,

SH21-1072

v

APL2

Programming:

Language

Reference,

SH21-1061

v

APL2

Programming:

Using

Structured

Query

Language

(SQL),

SH21-1057

BookManager®

READ/MVS

v

BookManager

READ/MVS

V1R3:

Installation

Planning

&

Customization,

SC38-2035

C

language:

IBM

C/C++

for

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

Character

Data

Representation

Architecture

v

Character

Data

Representation

Architecture

Overview,

GC09-2207

v

Character

Data

Representation

Architecture

Reference

and

Registry,

SC09-2190

CICS

Transaction

Server

for

z/OS

The

publication

order

numbers

below

are

for

Version

2

Release

2

and

Version

2

Release

3

(with

the

release

2

number

listed

first).

v

CICS

Transaction

Server

for

z/OS

Information

Center,

SK3T-6903

or

SK3T-6957.

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Guide,

SC34-5993

or

SC34-6231

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Reference,

SC34-5994

or

SC34-6232

v

CICS

Transaction

Server

for

z/OS

CICS-RACF

Security

Guide,

SC34-6011

or

SC34-6249

©

Copyright

IBM

Corp.

1997,

2004

597

v

CICS

Transaction

Server

for

z/OS

CICS

Supplied

Transactions,

SC34-5992

or

SC34-6230

v

CICS

Transaction

Server

for

z/OS

Customization

Guide,

SC34-5989

or

SC34-6227

v

CICS

Transaction

Server

for

z/OS

Data

Areas,

LY33-6100

or

LY33-6103

v

CICS

Transaction

Server

for

z/OS

DB2

Guide,

SC34-6014

or

SC34-6252

v

CICS

Transaction

Server

for

z/OS

External

Interfaces

Guide,

SC34-6006

or

SC34-6244

v

CICS

Transaction

Server

for

z/OS

Installation

Guide,

GC34-5985

or

GC34-6224

v

CICS

Transaction

Server

for

z/OS

Intercommunication

Guide,

SC34-6005

or

SC34-6243

v

CICS

Transaction

Server

for

z/OS

Messages

and

Codes,

GC34-6003

or

GC34-6241

v

CICS

Transaction

Server

for

z/OS

Operations

and

Utilities

Guide,

SC34-5991

or

SC34-6229

v

CICS

Transaction

Server

for

z/OS

Performance

Guide,

SC34-6009

or

SC34-6247

v

CICS

Transaction

Server

for

z/OS

Problem

Determination

Guide,

SC34-6002

or

SC34-6239

v

CICS

Transaction

Server

for

z/OS

Release

Guide,

GC34-5983

or

GC34-6218

v

CICS

Transaction

Server

for

z/OS

Resource

Definition

Guide,

SC34-5990

or

SC34-6228

v

CICS

Transaction

Server

for

z/OS

System

Definition

Guide,

SC34-5988

or

SC34–6226

v

CICS

Transaction

Server

for

z/OS

System

Programming

Reference,

SC34-5595

or

SC34–6233

CICS

Transaction

Server

for

OS/390

v

CICS

Transaction

Server

for

OS/390

Application

Programming

Guide,

SC33-1687

v

CICS

Transaction

Server

for

OS/390

DB2

Guide,

SC33-1939

v

CICS

Transaction

Server

for

OS/390

External

Interfaces

Guide,

SC33-1944

v

CICS

Transaction

Server

for

OS/390

Resource

Definition

Guide,

SC33-1684

COBOL:

IBM

COBOL

v

IBM

COBOL

Language

Reference,

SC27-1408

v

IBM

COBOL

for

MVS

&

VM

Programming

Guide,

SC27-1412

Database

Design

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

I

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-605-2

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

II

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-606-0

v

Handbook

of

Relational

Database

Design

by

C.

Fleming

and

B.

Von

Halle,

Addison

Wesley,

ISBN

0-20111-434-8

DB2

Administration

Tool

v

DB2

Administration

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Buffer

Pool

Analyzer

for

z/OS

v

DB2

Buffer

Pool

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Connect™

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition,

GC09-4833

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition,

GC09-4834

v

IBM

DB2

Connect

User's

Guide,

SC09-4835

DB2

DataPropagator™

v

DB2

Universal

Database

Replication

Guide

and

Reference,

SC27-1121

DB2

Data

Encryption

for

IMS

and

DB2

Databases

v

IBM

Data

Encryption

for

IMS

and

DB2

Databases

User's

Guide,

SC18-7336

DB2

Performance

Expert

for

z/OS,

Version

1

The

following

books

are

part

of

the

DB2

Performance

Expert

library.

Some

of

these

books

include

information

about

the

following

tools:

IBM

DB2

Performance

Expert

for

z/OS;

IBM

DB2

Performance

Monitor

for

z/OS;

and

DB2

Buffer

Pool

Analyzer

for

z/OS.

v

DB2

Performance

Expert

for

z/OS

Buffer

Pool

Analyzer

User's

Guide,

SC18-7972

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Installation

and

Customization,

SC18-7973

v

DB2

Performance

Expert

for

z/OS

Messages,

SC18-7974

v

DB2

Performance

Expert

for

z/OS

Monitoring

Performance

from

ISPF,

SC18-7975

598

ODBC

Guide

and

Reference

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Monitoring

Performance

from

the

Workstation,

SC18-7976

v

DB2

Performance

Expert

for

z/OS

Program

Directory,

GI10-8549

v

DB2

Performance

Expert

for

z/OS

Report

Command

Reference,

SC18-7977

v

DB2

Performance

Expert

for

z/OS

Report

Reference,

SC18-7978

v

DB2

Performance

Expert

for

z/OS

Reporting

User's

Guide,

SC18-7979

DB2

Query

Management

Facility

(QMF)

Version

8.1

v

DB2

Query

Management

Facility:

DB2

QMF

High

Performance

Option

User’s

Guide

for

TSO/CICS,

SC18-7450

v

DB2

Query

Management

Facility:

DB2

QMF

Messages

and

Codes,

GC18-7447

v

DB2

Query

Management

Facility:

DB2

QMF

Reference,

SC18-7446

v

DB2

Query

Management

Facility:

Developing

DB2

QMF

Applications,

SC18-7651

v

DB2

Query

Management

Facility:

Getting

Started

with

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

SC18-7449

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

TSO/CICS,

GC18-7444

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

GC18-7448

v

DB2

Query

Management

Facility:

Introducing

DB2

QMF,

GC18-7443

v

DB2

Query

Management

Facility:

Using

DB2

QMF,

SC18-7445

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Developer's

Guide,

SC18-9093

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Getting

Started

Guide,

GC18-9092

DB2

Redbooks™

For

access

to

all

IBM

Redbooks

about

DB2,

see

the

IBM

Redbooks

Web

page

at

www.ibm.com/redbooks

DB2

Server

for

VSE

&

VM

v

DB2

Server

for

VM:

DBS

Utility,

SC09-2983

DB2

Universal

Database

Cross-Platform

information

v

IBM

DB2

Universal

Database

SQL

Reference

for

Cross-Platform

Development,

available

at

www.ibm.com/software/data/developer/cpsqlref/

DB2

Universal

Database

for

iSeries

The

following

books

are

available

at

www.ibm.com/iseries/infocenter

v

DB2

Universal

Database

for

iSeries

Performance

and

Query

Optimization

v

DB2

Universal

Database

for

iSeries

Database

Programming

v

DB2

Universal

Database

for

iSeries

SQL

Programming

Concepts

v

DB2

Universal

Database

for

iSeries

SQL

Programming

with

Host

Languages

v

DB2

Universal

Database

for

iSeries

SQL

Reference

v

DB2

Universal

Database

for

iSeries

Distributed

Data

Management

v

DB2

Universal

Database

for

iSeries

Distributed

Database

Programming

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows:

v

DB2

Universal

Database

Administration

Guide:

Planning,

SC09-4822

v

DB2

Universal

Database

Administration

Guide:

Implementation,

SC09-4820

v

DB2

Universal

Database

Administration

Guide:

Performance,

SC09-4821

v

DB2

Universal

Database

Administrative

API

Reference,

SC09-4824

v

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications,

SC09-4825

v

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volumes

1

and

2,

SC09-4849

and

SC09-4850

v

DB2

Universal

Database

Command

Reference,

SC09-4828

v

DB2

Universal

Database

SQL

Reference

Volume

1,

SC09-4844

v

DB2

Universal

Database

SQL

Reference

Volume

2,

SC09-4845

Device

Support

Facilities

v

Device

Support

Facilities

User's

Guide

and

Reference,

GC35-0033

DFSMS

These

books

provide

information

about

a

variety

of

components

of

DFSMS,

including

z/OS

DFSMS,

z/OS

DFSMSdfp™,

z/OS

DFSMSdss,

z/OS

DFSMShsm,

and

z/OS

DFP.

v

z/OS

DFSMS

Access

Method

Services

for

Catalogs,

SC26-7394

v

z/OS

DFSMSdss

Storage

Administration

Guide,

SC35-0423

Bibliography

599

v

z/OS

DFSMSdss

Storage

Administration

Reference,

SC35-0424

v

z/OS

DFSMShsm

Managing

Your

Own

Data,

SC35-0420

v

z/OS

DFSMSdfp:

Using

DFSMSdfp

in

the

z/OS

Environment,

SC26-7473

v

z/OS

DFSMSdfp

Diagnosis

Reference,

GY27-7618

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC27-7407

v

z/OS

DFSMS:

Macro

Instructions

for

Data

Sets,

SC26-7408

v

z/OS

DFSMS:

Managing

Catalogs,

SC26-7409

v

z/OS

DFSMS:

Program

Management,

SA22-7643

v

z/OS

MVS

Program

Management:

Advanced

Facilities,

SA22-7644

v

z/OS

DFSMSdfp

Storage

Administration

Reference,

SC26-7402

v

z/OS

DFSMS:

Using

Data

Sets,

SC26-7410

v

DFSMS/MVS:

Using

Advanced

Services

,

SC26-7400

v

DFSMS/MVS:

Utilities,

SC26-7414

DFSORT™

v

DFSORT

Application

Programming:

Guide,

SC33-4035

v

DFSORT

Installation

and

Customization,

SC33-4034

Distributed

Relational

Database

Architecture

v

Open

Group

Technical

Standard;

the

Open

Group

presently

makes

the

following

DRDA

books

available

through

its

Web

site

at

www.opengroup.org

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

1:

Distributed

Relational

Database

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

2:

Formatted

Data

Object

Content

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

3:

Distributed

Data

Management

Architecture

Domain

Name

System

v

DNS

and

BIND,

Third

Edition,

Paul

Albitz

and

Cricket

Liu,

O’Reilly,

ISBN

0-59600-158-4

Education

v

Information

about

IBM

educational

offerings

is

available

on

the

Web

at

www.ibm.com/software/info/education/

v

A

collection

of

glossaries

of

IBM

terms

is

available

on

the

IBM

Terminology

Web

site

at

www.ibm.com/ibm/terminology/index.html

eServer

zSeries®

v

IBM

eServer

zSeries

Processor

Resource/System

Manager

Planning

Guide,

SB10-7033

Fortran:

VS

Fortran

v

VS

Fortran

Version

2:

Language

and

Library

Reference,

SC26-4221

v

VS

Fortran

Version

2:

Programming

Guide

for

CMS

and

MVS,

SC26-4222

High

Level

Assembler

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Language

Reference,

SC26-4940

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Programmer's

Guide,

SC26-4941

ICSF

v

z/OS

ICSF

Overview,

SA22-7519

v

Integrated

Cryptographic

Service

Facility

Administrator's

Guide,

SA22-7521

IMS

Version

8

IMS

product

information

is

available

on

the

IMS

Library

Web

page,

which

you

can

find

at

www.ibm.com/ims

v

IMS

Administration

Guide:

System,

SC27-1284

v

IMS

Administration

Guide:

Transaction

Manager,

SC27-1285

v

IMS

Application

Programming:

Database

Manager,

SC27-1286

v

IMS

Application

Programming:

Design

Guide,

SC27-1287

v

IMS

Application

Programming:

Transaction

Manager,

SC27-1289

v

IMS

Command

Reference,

SC27-1291

v

IMS

Customization

Guide,

SC27-1294

v

IMS

Install

Volume

1:

Installation

Verification,

GC27-1297

v

IMS

Install

Volume

2:

System

Definition

and

Tailoring,

GC27-1298

v

IMS

Messages

and

Codes

Volumes

1

and

2,

GC27-1301

and

GC27-1302

v

IMS

Utilities

Reference:

System,

SC27-1309

General

information

about

IMS

Batch

Terminal

Simulator

for

z/OS

is

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

IMS

DataPropagator

v

IMS

DataPropagator

for

z/OS

Administrator's

Guide

for

Log,

SC27-1216

v

IMS

DataPropagator:

An

Introduction,

GC27-1211

600

ODBC

Guide

and

Reference

v

IMS

DataPropagator

for

z/OS

Reference,

SC27-1210

ISPF

v

z/OS

ISPF

Dialog

Developer’s

Guide,

SC23-4821

v

z/OS

ISPF

Messages

and

Codes,

SC34-4815

v

z/OS

ISPF

Planning

and

Customizing,

GC34-4814

v

z/OS

ISPF

User’s

Guide

Volumes

1

and

2,

SC34-4822

and

SC34-4823

Java

for

z/OS

v

Persistent

Reusable

Java

Virtual

Machine

User's

Guide,

SC34-6201

Language

Environment

v

Debug

Tool

User's

Guide

and

Reference,

SC18-7171

v

Debug

Tool

for

z/OS

and

OS/390

Reference

and

Messages,

SC18-7172

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

MQSeries®

v

MQSeries

Application

Messaging

Interface,

SC34-5604

v

MQSeries

for

OS/390

Concepts

and

Planning

Guide,

GC34-5650

v

MQSeries

for

OS/390

System

Setup

Guide,

SC34-5651

National

Language

Support

v

National

Language

Design

Guide

Volume

1,

SE09-8001

v

IBM

National

Language

Support

Reference

Manual

Volume

2,

SE09-8002

NetView®

v

Tivoli

NetView

for

z/OS

Installation:

Getting

Started,

SC31-8872

v

Tivoli

NetView

for

z/OS

User's

Guide,

GC31-8849

Microsoft

ODBC

Information

about

Microsoft

ODBC

is

available

at

http://msdn.microsoft.com/library/

Parallel

Sysplex

Library

v

System/390

9672

Parallel

Transaction

Server,

9672

Parallel

Enterprise

Server,

9674

Coupling

Facility

System

Overview

For

R1/R2/R3

Based

Models,

SB10-7033

v

z/OS

Parallel

Sysplex

Application

Migration,

SA22-7662

v

z/OS

Parallel

Sysplex

Overview:

An

Introduction

to

Data

Sharing

and

Parallelism,

SA22-7661

v

z/OS

Parallel

Sysplex

Test

Report,

SA22-7663

The

Parallel

Sysplex

Configuration

Assistant

is

available

at

www.ibm.com/s390/pso/psotool

PL/I:

Enterprise

PL/I

for

z/OS

and

OS/390

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Language

Reference,

SC27-1460

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Programming

Guide,

SC27-1457

PL/I:

OS

PL/I

v

OS

PL/I

Programming

Guide,

SC26-4307

SMP/E

v

SMP/E

for

z/OS

and

OS/390

Reference,

SA22-7772

v

SMP/E

for

z/OS

and

OS/390

User's

Guide,

SA22-7773

Storage

Management

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC26-7407

v

MVS/ESA

Storage

Management

Library:

Managing

Data,

SC26-7397

v

MVS/ESA

Storage

Management

Library:

Managing

Storage

Groups,

SC35-0421

v

MVS

Storage

Management

Library:

Storage

Management

Subsystem

Migration

Planning

Guide,

GC26-7398

System

Network

Architecture

(SNA)

v

SNA

Formats,

GA27-3136

v

SNA

LU

6.2

Peer

Protocols

Reference,

SC31-6808

v

SNA

Transaction

Programmer's

Reference

Manual

for

LU

Type

6.2,

GC30-3084

v

SNA/Management

Services

Alert

Implementation

Guide,

GC31-6809

TCP/IP

v

IBM

TCP/IP

for

MVS:

Customization

&

Administration

Guide,

SC31-7134

v

IBM

TCP/IP

for

MVS:

Diagnosis

Guide,

LY43-0105

v

IBM

TCP/IP

for

MVS:

Messages

and

Codes,

SC31-7132

Bibliography

601

v

IBM

TCP/IP

for

MVS:

Planning

and

Migration

Guide,

SC31-7189

TotalStorage®

Enterprise

Storage

Server

v

RAMAC

Virtual

Array:

Implementing

Peer-to-Peer

Remote

Copy,

SG24-5680

v

Enterprise

Storage

Server

Introduction

and

Planning,

GC26-7444

v

IBM

RAMAC

Virtual

Array,

SG24-6424

Unicode

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

Information

about

Unicode,

the

Unicode

consortium,

the

Unicode

standard,

and

standards

conformance

requirements

is

available

at

www.unicode.org

VTAM

v

Planning

for

NetView,

NCP,

and

VTAM,

SC31-8063

v

VTAM

for

MVS/ESA

Diagnosis,

LY43-0078

v

VTAM

for

MVS/ESA

Messages

and

Codes,

GC31-8369

v

VTAM

for

MVS/ESA

Network

Implementation

Guide,

SC31-8370

v

VTAM

for

MVS/ESA

Operation,

SC31-8372

v

VTAM

for

MVS/ESA

Programming,

SC31-8373

v

VTAM

for

MVS/ESA

Programming

for

LU

6.2,

SC31-8374

v

VTAM

for

MVS/ESA

Resource

Definition

Reference,

SC31-8377

WebSphere®

family

v

WebSphere

MQ

Integrator

Broker:

Administration

Guide,

SC34-6171

v

WebSphere

MQ

Integrator

Broker

for

z/OS:

Customization

and

Administration

Guide,

SC34-6175

v

WebSphere

MQ

Integrator

Broker:

Introduction

and

Planning,

GC34-5599

v

WebSphere

MQ

Integrator

Broker:

Using

the

Control

Center,

SC34-6168

z/Architecture™

v

z/Architecture

Principles

of

Operation,

SA22-7832

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

v

z/OS

C/C++

User's

Guide,

SC09-4767

v

z/OS

Communications

Server:

IP

Configuration

Guide,

SC31-8875

v

z/OS

DCE

Administration

Guide,

SC24-5904

v

z/OS

DCE

Introduction,

GC24-5911

v

z/OS

DCE

Messages

and

Codes,

SC24-5912

v

z/OS

Information

Roadmap,

SA22-7500

v

z/OS

Introduction

and

Release

Guide,

GA22-7502

v

z/OS

JES2

Initialization

and

Tuning

Guide,

SA22-7532

v

z/OS

JES3

Initialization

and

Tuning

Guide,

SA22-7549

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

v

z/OS

MVS

Diagnosis:

Procedures,

GA22-7587

v

z/OS

MVS

Diagnosis:

Reference,

GA22-7588

v

z/OS

MVS

Diagnosis:

Tools

and

Service

Aids,

GA22-7589

v

z/OS

MVS

Initialization

and

Tuning

Guide,

SA22-7591

v

z/OS

MVS

Initialization

and

Tuning

Reference,

SA22-7592

v

z/OS

MVS

Installation

Exits,

SA22-7593

v

z/OS

MVS

JCL

Reference,

SA22-7597

v

z/OS

MVS

JCL

User's

Guide,

SA22-7598

v

z/OS

MVS

Planning:

Global

Resource

Serialization,

SA22-7600

v

z/OS

MVS

Planning:

Operations,

SA22-7601

v

z/OS

MVS

Planning:

Workload

Management,

SA22-7602

v

z/OS

MVS

Programming:

Assembler

Services

Guide,

SA22-7605

v

z/OS

MVS

Programming:

Assembler

Services

Reference,

Volumes

1

and

2,

SA22-7606

and

SA22-7607

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide,

SA22-7608

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

Volumes

1-4,

SA22-7609,

SA22-7610,

SA22-7611,

and

SA22-7612

v

z/OS

MVS

Programming:

Callable

Services

for

High-Level

Languages,

SA22-7613

v

z/OS

MVS

Programming:

Extended

Addressability

Guide,

SA22-7614

v

z/OS

MVS

Programming:

Sysplex

Services

Guide,

SA22-7617

v

z/OS

MVS

Programming:

Sysplex

Services

Reference,

SA22-7618

602

ODBC

Guide

and

Reference

v

z/OS

MVS

Programming:

Workload

Management

Services,

SA22-7619

v

z/OS

MVS

Recovery

and

Reconfiguration

Guide,

SA22-7623

v

z/OS

MVS

Routing

and

Descriptor

Codes,

SA22-7624

v

z/OS

MVS

Setting

Up

a

Sysplex,

SA22-7625

v

z/OS

MVS

System

Codes

SA22-7626

v

z/OS

MVS

System

Commands,

SA22-7627

v

z/OS

MVS

System

Messages

Volumes

1-10,

SA22-7631,

SA22-7632,

SA22-7633,

SA22-7634,

SA22-7635,

SA22-7636,

SA22-7637,

SA22-7638,

SA22-7639,

and

SA22-7640

v

z/OS

MVS

Using

the

Subsystem

Interface,

SA22-7642

v

z/OS

Planning

for

Multilevel

Security,

SA22-7509

v

z/OS

RMF

User's

Guide,

SC33-7990

v

z/OS

Security

Server

Network

Authentication

Server

Administration,

SC24-5926

v

z/OS

Security

Server

RACF

Auditor's

Guide,

SA22-7684

v

z/OS

Security

Server

RACF

Command

Language

Reference,

SA22-7687

v

z/OS

Security

Server

RACF

Macros

and

Interfaces,

SA22-7682

v

z/OS

Security

Server

RACF

Security

Administrator's

Guide,

SA22-7683

v

z/OS

Security

Server

RACF

System

Programmer's

Guide,

SA22-7681

v

z/OS

Security

Server

RACROUTE

Macro

Reference,

SA22-7692

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

v

z/OS

TSO/E

CLISTs,

SA22-7781

v

z/OS

TSO/E

Command

Reference,

SA22-7782

v

z/OS

TSO/E

Customization,

SA22-7783

v

z/OS

TSO/E

Messages,

SA22-7786

v

z/OS

TSO/E

Programming

Guide,

SA22-7788

v

z/OS

TSO/E

Programming

Services,

SA22-7789

v

z/OS

TSO/E

REXX

Reference,

SA22-7790

v

z/OS

TSO/E

User's

Guide,

SA22-7794

v

z/OS

UNIX

System

Services

Command

Reference,

SA22-7802

v

z/OS

UNIX

System

Services

Messages

and

Codes,

SA22-7807

v

z/OS

UNIX

System

Services

Planning,

GA22-7800

v

z/OS

UNIX

System

Services

Programming:

Assembler

Callable

Services

Reference,

SA22-7803

v

z/OS

UNIX

System

Services

User's

Guide,

SA22-7801

z/OS

mSys

for

Setup

v

z/OS

Managed

System

Infrastructure

for

Setup

DB2

Customization

Center

User's

Guide,

available

in

softcopy

format

at

www.ibm.com/db2/zos/v8books.html

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

Bibliography

603

604

ODBC

Guide

and

Reference

Index

Special

characters
_

409

%

409

A
abends

487

allocate

handles
initialization

and

termination

10

SQLAllocHandle()

72

transaction

processing

15

application
compile

46

execute

48

execution

steps

46

link-edit

47

multithreaded

433

pre-link

47

preparation

44

requirements

45

sample,

DSNTEJ8

46

tasks

9

trace

477

application

variables,

binding

17

APPLTRACE

keyword
description

51

use

of

479

APPLTRACEFILENAME

keyword

52

array

input

414

array

output

417

ASCII

scalar

function

493

ATRBEG

service

405

ATREND

service

405

ATRSENV

service

405

attributes
connection

397

environment

397

querying

and

setting

397

retrieving
SQLColAttribute()

101

SQLDescribeCol()

131

SQLGetConnectAttr()

196

SQLGetEnvAttr()

224

SQLGetStmtAttr()

272

setting
SQLSetColAttributes()

341

SQLSetConnectAttr()

346

SQLSetEnvAttr()

360

SQLSetStmtAttr()

367

statement

397

authentication

122

AUTOCOMMIT

keyword

52

B
batch

processing

304

BINARY

515

bind

functions
SQLBindCol()

78

SQLBindParameter()

85

binding
application

variables
columns

19

parameter

markers

17

DBRMs

41

options

42

plan

43

return

codes

43

sample,

DSNTIJCL

41,

43

stored

procedures

41,

43

BITDATA

keyword

52

C
caching

dynamic

SQL

statement

473

cancel

function
SQLCancel()

97

case

sensitivity

36

catalog
functions

limiting

use

of

473

overview

408

SQLColumnPrivileges()

110

SQLColumns()

115

SQLPrimaryKeys()

314

SQLProcedureColumns()

320

SQLProcedures()

331

SQLSpecialColumns()

376

SQLStatistics()

381

SQLTablePrivileges()

387

SQLTables()

391

querying

408

CHAR
conversion

to

C

513

display

size

511

length

511

precision

509

scale

510

character

strings

34,

36

CLISCHEMA

keyword
description

53

using

410

close

cursor

193

COLLECTIONID

keyword

53

column

attributes
retrieving

101

setting

341

column

functions
SQLColAttribute()

101

SQLColumnPrivileges()

110

SQLColumns()

115

SQLDescribeCol()

131

SQLForeignKeys()

178

SQLNumResultCols()

299

©

Copyright

IBM

Corp.

1997,

2004

605

column

functions

(continued)
SQLPrimaryKeys()

314

SQLSetColAttributes()

341

SQLSpecialColumns()

376

column-wise

binding

418

commit

20,

149

common

server

2

compiling

an

application

46

CONCAT

scalar

function

493

configuring

DB2

ODBC

39

connect

functions
SQLConnect()

121

SQLDriverConnect()

142

connecting

to

a

data

source

121

connection

string

397

connections
active

354

attributes
changing

397

SQLGetConnectAttr()

196

SQLSetConnectAttr()

346

handles
allocating

11

description

4

freeing

11

SQLAllocHandle()

72

SQLFreeHandle()

190

type

12

connectivity
ODBC

model

11

requirements

40

CONNECTTYPE

keyword

53

contexts
multiple

435

private

external

440

coordinated

distributed

transactions

399

coordinated

transactions,

establishing

400

core

level

functions

1

CURDATE

scalar

function

494

CURRENTAPPENSCH

keyword

53

CURRENTSERVER,

plan

bind

option

43

CURRENTSQLID

keyword

54

CURSORHOLD

keyword

55

cursors
definition

20

functions
SQLCloseCursor()

99

SQLFreeStmt()

193

SQLGetCursorName()

200

SQLSetCursorName()

357

hold

behavior

55,

472

use

in

DB2

ODBC

4

CURTIME

scalar

function

494

D
data

conversion
C

data

types

25

C

to

SQL

data

types

519

data

types

24

default

data

types

25

data

conversion

(continued)
description

28

display

size

of

SQL

data

types

511

length

of

SQL

data

types

510

overview

509

precision

of

SQL

data

types

509

scale

of

SQL

data

types

510

SQL

data

types

25

SQL

to

C

data

types

512

data

source

information,

querying

36

data

sources
general

information

234

SQLDataSources()

127

supported

data

types

280

data

structure,

SQLCA

265

data

types
C

25,

28

generic

28

ODBC

28

SQL

25

SQLGetTypeInfo()

280

data-at-execute

413

DATABASE

scalar

function

495

DataPropagator

for

DB2

411

DATE
conversion

to

C

516

display

size

511

length

511

precision

509

scale

510

DATE_STRUCT

27

DAYOFMONTH

scalar

function

494

DB2

DataPropagator

411

DB2

ODBC
advantages

of

using

6

application

requirements

44

components

44

configuring

39

diagnostic

trace

479

initialization

file

49

installing

39

migration

considerations

62

shadow

catalog

410

stored

procedures

429

DBNAME

keyword

55

DBRMs,

binding

41

debugging

487

DECIMAL
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

deferred

arguments

17

DELETE

20

deprecated

functions
SQLAllocConnect()

70

SQLAllocEnv()

71

SQLAllocStmt()

77

SQLColAttributes()

109

SQLFreeConnect()

188

606

ODBC

Guide

and

Reference

deprecated

functions

(continued)
SQLFreeEnv()

189

SQLGetConnectOption()

199

SQLGetStmtOption()

275

SQLSetConnectOption()

356

SQLSetParam()

364

SQLSetStmtOption()

375

SQLTransact()

396

diagnosis
description

22

function,

SQLGetDiagRec()

221

trace

479

DIAGTRACE

keyword
description

55

use

of

479

DIAGTRACE_BUFFER_SIZE

keyword

56

DIAGTRACE_NO_WRAP

keyword

56

DISCONNECT,

plan

bind

option

43

disconnecting

140

display

size

of

SQL

data

types

511

distinct

types

471

distributed

transactions

399

distributed

unit

of

work

399

DOUBLE
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

driver
DB2

ODBC

489

ODBC

489

driver

manager

489

DSN8O3VP,

JCL

sample

46,

531

DSN8OIVP,

JCL

sample

46

DSNAOINI

data

definition

49

DSNTEJ8,

application

sample

46

DSNTIJCL,

bind

sample

41,

43

DYNAMICRULES,

package

bind

option

42

E
embedded

SQL
comparison

to

DB2

ODBC

3

mixing

with

DB2

ODBC

354,

463

environment
attributes

description

397

SQLSetEnvAttr()

360

handle
SQLAllocHandle()

72

SQLFreeHandle()

190

handles
allocating

10

description

4

freeing

10

information,

querying

36

run-time

39

z/OS

UNIX
export

statements

49

setup

44

environment

(continued)
z/OS

UNIX

(continued)
variables

49

error

code,

internal

487

errors,

retrieving

information

about

152

escape

clauses,

vendor

465

SQLNativeSql()

294

examples
array

INSERT

416

catalog

functions

409

large

objects

425

stored

procedure

531

execute,

application

48

executing

a

statement

16

executing

an

application

46

executing

directly

16

executing

SQL
SQLExecDirect()

154

SQLExecute()

160

SQLPrepare()

306

export

statements

49

extended

fetch

163

F
FAR

pointers

63

fetching
data

in

pieces

414

SQLExtendedFetch()

163

SQLFetch()

171

FLOAT
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

foreign

key

columns,

list

178

freeing

handles

190

functions

overview

64

functions,

complete

list

65

G
get

functions
SQLGetConnectAttr()

196

SQLGetCursorName()

200

SQLGetData()

207

SQLGetDiagRec()

221

SQLGetEnvAttr()

224

SQLGetFunctions()

226

SQLGetInfo()

234

SQLGetLength()

258

SQLGetPosition()

261

SQLGetSQLCA()

265

SQLGetStmtAttr()

272

SQLGetSubString()

276

SQLGetTypeInfo()

280

global

transactions

405

glossary

563

GRAPHIC
conversion

to

C

514

Index

607

GRAPHIC

(continued)
keyword

56

H
handles

connection

4,

10

environment

4,

10

SQLAllocHandle()

72

SQLFreeHandle()

190

statement

4

HOUR

scalar

function

494

I
IFNULL

scalar

function

495

index

information,

retrieving

381

initialization
file

common

errors

51,

471

defaults,

changing

397

description

49

specifying

49

tasks

9

INSERT

20

INSERT

scalar

function

493

installation

39

INTEGER
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

internal

error

code

487

introduction

to

DB2

ODBC

1

INVALID_HANDLE

23

isolation

levels,

ODBC

492

ISOLATION,

package

bind

option

42

K
keywords,

initialization

50,

51

L
Language

Environment

threads

433

large

objects
example

425

locators
finding

the

position

of

a

string

261

retrieving

a

portion

of

a

string

276

retrieving

string

length

258

using

424

LEFT

scalar

function

494

length

of

SQL

data

types

510

LENGTH

scalar

function

494

link-edit,

application

47

LOB

locators
SQLGetLength()

258

SQLGetPosition()

261

LOB

locators

(continued)
SQLGetSubString()

276

long

data
retrieving

in

pieces

412

sending

in

pieces

412

SQLParamData()

301

SQLPutData()

335

LONGVARBINARY

515

LONGVARCHAR
conversion

to

C

513

display

size

511

length

511

precision

509

scale

510

LONGVARGRAPHIC

514

M
MAXCONN

keyword

56

metadata

characters

409

migration

considerations

62

MINUTE

scalar

function

494

mixed

applications

354

MONTH

scalar

function

494

MULTICONTEXT

keyword

57

multiple

contexts

435

multithreaded

applications

433

MVSATTACHTYPE

keyword

58

MVSDEFAULTSSID

keyword

58

N
name,

cursor

357

native

error

code

24

native

SQL

294

notices,

legal

559

NOW

scalar

function

494

nul-terminated

strings

34

null

connect

431

NUMERIC
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

O
ODBC

and

DB2

ODBC

1,

489

connectivity

11

core

level

functions

1

function

list

65

functions

overview

64

isolation

levels

492

vendor

escape

clauses

467

OPTIMIZEFORNROWS

keyword

58

608

ODBC

Guide

and

Reference

P
packages,

binding

41

parameter

markers
binding

17

introduction

4

multiple

result

sets

289

number

in

a

statement

297

passing

data

to

335

retrieving

a

description

of

138

sending

data

in

pieces

301

specifying

an

input

array

304

using

arrays

414

parameters,

stored

procedure

320

passwords

122

PATCH2

keyword

58

pattern-values

409

plan,

binding

43

PLANNAME

keyword

59

pointers,

FAR

63

portability

6

pre-link,

application

47

precision

of

SQL

data

types

509

prepare

SQL

statements

306

preparing

a

statement

16

primary

key
SQLPrimaryKeys()

314

SQLSpecialColumns()

376

private

external

contexts

440

privileges
SQLColumnPrivileges()

110

SQLTablePrivileges()

387

Q
query

statements,

processing

18

querying
catalog

information

408

data

source

information

36

environment

information

36

shadow

catalog

410

R
REAL

conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

remote

site
binding

packages

43

remote

site,

creating

packages

at

41

REPEAT

scalar

function

494

result

sets
function

generated

475

retrieving

into

array

417

returning

from

stored

procedures

431

SQLExtendedFetch()

163

SQLFetch()

171

SQLGetData()

207

result

sets

(continued)
SQLMoreResults()

289

SQLNumResultCols()

299

retrieving

multiple

rows

418

return

codes

23

RIGHT

scalar

function

494

rollback

20,

149

row

identifiers

376

row

set

163

row-wise

binding

418,

419

ROWID
conversion

to

C

518

display

size

511

length

511

precision

509

scale

510

rows,

number

changed

339

run-time

environment
setting

up

41

support

39

S
samples

DSN8O3VP

46,

531

DSN8OIVP

46

DSNTEJ8

46

DSNTIJCL

41,

43

scalar

functions

470

scale

of

SQL

data

types

510

SCHEMALIST

keyword

59

search

arguments

409

SECOND

scalar

function

494

SELECT

18

set

functions
SQLSetColAttributes()

341

SQLSetConnectAttr()

346

SQLSetConnection()

354

SQLSetCursorName()

357

SQLSetEnvAttr()

360

SQLSetStmtAttr()

367

shadow

catalog
managing

411

querying

410

SMALLINT
conversion

to

C

514

display

size

511

length

511

precision

509

scale

510

SMP/E

jobs

39

SQL
dynamically

prepared

4

parameter

markers

17

preparing

and

executing

statements

16

query

statements

18

SELECT

18

VALUES

18

SQL

Access

Group

1

SQL_ATTR_ACCESS_MODE

347

SQL_ATTR_AUTOCOMMIT

347,

475

Index

609

SQL_ATTR_BIND_TYPE

368

SQL_ATTR_CLOSE_BEHAVIOR

368

SQL_ATTR_CONCURRENCY

368

SQL_ATTR_CONNECTTYPE
distributed

unit

of

work

400

SQLGetEnvAttr()

360

SQLSetConnectAttr()

347

SQL_ATTR_CURRENT_SCHEMA

347

SQL_ATTR_CURSOR_HOLD

368,

472

SQL_ATTR_CURSOR_TYPE

368

SQL_ATTR_MAX_LENGTH

368

SQL_ATTR_MAX_ROWS

368,

471

SQL_ATTR_MAXCONN

347,

360

SQL_ATTR_NODESCRIBE

368

SQL_ATTR_NOSCAN

368,

474

SQL_ATTR_ODBC_VERSION

360

SQL_ATTR_OUTPUT_NTS

360

SQL_ATTR_PARAMOPT_ATOMIC

347

SQL_ATTR_RETRIEVE_DATA

368

SQL_ATTR_ROW_ARRAY_SIZE

368

SQL_ATTR_ROWSET_SIZE

368,

418

SQL_ATTR_STMTTXN_ISOLATION

368,

472

SQL_ATTR_SYNC_POINT

347

SQL_ATTR_TXN_ISOLATION
setting

isolation

levels

472

SQLSetConnectAttr()

347

SQLSetStmtAttr()

368

SQL_BINARY

25

SQL_BLOB

25

SQL_BLOB_LOCATOR

25

SQL_C_BINARY

25,

27,

521

SQL_C_BIT

27,

520

SQL_C_BLOB_LOCATOR

25,

27

SQL_C_CHAR

25,

27,

519

SQL_C_CLOB_LOCATOR

27

SQL_C_DBCHAR

25,

27,

521

SQL_C_DBCLOB_LOCATOR

25,

27

SQL_C_DEFAULT

25

SQL_C_DOUBLE

25,

27,

520

SQL_C_FLOAT

25,

27,

520

SQL_C_LONG

25,

27,

520

SQL_C_SHORT

25,

27,

520

SQL_C_TINYINT

27,

520

SQL_C_TYPE_DATE

25,

27,

522

SQL_C_TYPE_TIME

25,

27,

522

SQL_C_TYPE_TIMESTAMP

25,

27,

522

SQL_C_WCHAR

25,

27

SQL_CHAR

25

SQL_CLOB

25

SQL_CLOB_LOCATOR

25

SQL_CONCURRENT_TRANS

400

SQL_COORDINATED_TRANS

400

SQL_DATA_AT_EXEC

413

SQL_DBCLOB

25

SQL_DBCLOB_LOCATOR

25

SQL_DECIMAL

25

SQL_DOUBLE

25

SQL_ERROR

23

SQL_FLOAT

25

SQL_GRAPHIC

25

SQL_INTEGER

25

SQL_LONGVARBINARY

25

SQL_LONGVARCHAR

25

SQL_LONGVARGRAPHIC

25

SQL_NEED_DATA

23

SQL_NO_DATA_FOUND

23

SQL_NTS

34

SQL_NUMERIC

25

SQL_REAL

25

SQL_ROWID

25

SQL_SMALLINT

25

SQL_SUCCESS

23

SQL_SUCCESS_WITH_INFO

23

SQL_TYPE_DATE

25

SQL_TYPE_TIME

25

SQL_TYPE_TIMESTAMP

25

SQL_VARBINARY

25

SQL_VARCHAR

25

SQL_VARGRAPHIC

25

SQL,

native

294

SQLAllocConnect(),

deprecated

function

70

SQLAllocEnv(),

deprecated

function

71

SQLAllocHandle()
description

72

introduction

15

SQLAllocStmt(),

deprecated

function

77

SQLBindCol()
description

78

introduction

15

processing

query

statements

19

SQLBindParameter()
description

85

introduction

15

processing

query

statements

19

using

16

SQLCA

data

structure

265

SQLCancel()
description

97

use

in

data-at-execute

414

SQLCHAR

27

SQLCloseCursor()

99

SQLColAttribute()
description

101

introduction

15

processing

query

statements

19

SQLColAttributes(),

deprecated

function

109

SQLColumnPrivileges()

110

SQLColumns()

115

SQLConnect()

121

SQLDataSources()
description

127

introduction

15

SQLDBCHAR

27

SQLDescribeCol()
description

131

introduction

15

processing

query

statements

19

SQLDescribeParam()

138

SQLDisconnect()

140

SQLDOUBLE

27

SQLDriverConnect()
connection

string

397

610

ODBC

Guide

and

Reference

SQLDriverConnect()

(continued)
description

142

instead

of

SQLConnect()

475

SQLEndTran()
description

149

introduction

15

processing

query

statements

19

using

20

SQLERROR,

package

bind

option

42

SQLError()

152

SQLExecDirect()
description

154

introduction

15

using

16

SQLExecute()
description

160

introduction

15

using

16

SQLExtendedFetch()

163

SQLFetch()
description

171

introduction

15

processing

query

statements

19

SQLForeignKeys()

178

SQLFreeConnect(),

deprecated

function

188

SQLFreeEnv(),

deprecated

function

189

SQLFreeHandle()
description

190

introduction

15

SQLFreeStmt()

193

SQLGetConnectAttr()

196

SQLGetConnectOption(),

deprecated

function

199

SQLGetCursorName()

200

SQLGetData()
description

207

introduction

15

processing

query

statements

19

SQLGetDiagRec()

221

SQLGetEnvAttr()

224

SQLGetFunctions()

226

SQLGetInfo()

234

SQLGetLength()

258

SQLGetPosition()

261

SQLGetSQLCA()

265

SQLGetStmtAttr()

272

SQLGetStmtOption()

275

SQLGetSubString()

276

SQLGetTypeInfo()

280

SQLHDBC

28

SQLHENV

28

SQLHSTMT

28

SQLINTEGER

27

SQLMoreResults()
description

289

using

415

SQLNativeSql()

294

SQLNumParams()

297

SQLNumResultCols()
description

299

introduction

15

processing

query

statements

19

SQLParamData()
description

301

use

in

data-at-execute

414

SQLParamOptions()

304

SQLPOINTER

28

SQLPrepare()
description

306

introduction

15

using

16

SQLPrimaryKeys()

314

SQLProcedureColumns()

320

SQLProcedures()

331

SQLPutData()
description

335

use

in

data-at-execute

414

SQLREAL

27

SQLRETURN

28

SQLRowCount()
description

339

introduction

15

SQLSCHAR

27

SQLSetColAttributes()

341

SQLSetConnectAttr()

346

SQLSetConnection()

354

SQLSetConnectOption(),

deprecated

function

356

SQLSetCursorName()

357

SQLSetEnvAttr()

360

SQLSetParam(),

deprecated

function

364

SQLSetStmtAttr()

367

SQLSetStmtOption(),

deprecated

function

375

SQLSMALLINT

27

SQLSpecialColumns()

376

SQLSTATE
description

23

format

of

23

function

cross

reference

497

in

DB2

ODBC

4

SQLStatistics()

381

SQLTablePrivileges()

387

SQLTables()

391

SQLTransact(),

deprecated

function

396

SQLUINTEGER

28

SQLUSMALLINT

28

SQLWCHAR

27,

28

SRRBACK

service

405

SRRCMIT

service

405

statements
attributes

description

397

setting

367

SQLGetStmtAttr()

272

handles
allocating

16

freeing

22

introduction

4

maximum

number

of

16

SQLAllocHandle()

72

SQLFreeHandle()

190

SQLFreeStmt()

193

preparing

306

statistics,

retrieving

381

Index

611

stored

procedures
binding

41,

43

example

531

functions
SQLProcedureColumns()

320

SQLProcedures()

331

ODBC

escape

clause

469

returning

result

sets

289,

431

tracing

483

using

with

DB2

ODBC

429

string
arguments

34,

36

nul-termination

34

truncation

35

SUBSTRING

scalar

function

494

subsystem,

defining

48

SYSSCHEMA

keyword

60

T
table

information,

retrieving

391

tables,

list

of

privileges

387

TABLETYPE

keyword

60

termination

tasks

9

threads

433

THREADSAFE

keyword

61

TIME
conversion

to

C

516

display

size

511

length

511

precision

509

scale

510

TIME_STRUCT

27

TIMESTAMP
conversion

to

C

517

display

size

511

length

511

precision

509

scale

510

TIMESTAMP_STRUCT

27

trace
application

477

DB2

ODBC

diagnosis

479

keywords,

using

479

stored

procedure

483

transaction
isolation

levels,

ODBC

492

management

20

processing

9

transactions,

ending

149

truncation

35

TXNISOLATION

keyword

61

U
UNDERSCORE

keyword

61

unique

indexes

376

UNIX,

z/OS
compile

application

47

execute

application

48

pre-link

and

link-edit

47

UPDATE

20

user

IDs

122

USER

scalar

function

495

V
VALUES

18

VARBINARY

515

VARCHAR
conversion

to

C

513

display

size

511

length

511

precision

509

scale

510

VARGRAPHIC

514

vendor

escape

clauses
disabling

474

SQLNativeSql()

294

using

465

W
writing

DB2

ODBC

applications

9

X
X/Open

CAE

24

X/Open

Company

1

X/Open

SQL

CLI

1

Z
z/OS

UNIX
environment

setup

44

environmental

variable

49

export

statements

49

special

considerations

46

612

ODBC

Guide

and

Reference

Readers’

Comments

—

We’d

Like

to

Hear

from

You

DB2

Universal

Database

for

z/OS

ODBC

Guide

and

Reference

Version

8

Publication

No.

SC18-7423-00

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC18-7423-00

SC18-7423-00

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

International

Business

Machines

Corporation

H150/090

555

Bailey

Avenue

San

Jose,

CA

95141-9989

U.

S.

A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5625-DB2

Printed

in

USA

SC18-7423-00

Sp
in
e

in
fo
rm
at
io
n:

 IB
M

DB
2

Un
iv

er
sa

l D
at

ab
as

e
fo

r z
/O

S

Ve
rs

io
n

8

OD
BC

Gu
id

e

an
d

Re
fe

re
nc

e

�
�

�

	Contents
	About this book
	Who should use this book
	Terminology and citations
	Accessibility
	How to send your comments

	Summary of changes to this book
	Chapter 1. Introduction to DB2 ODBC
	DB2 ODBC background information
	Differences between DB2 ODBC and ODBC version 3.0
	ODBC features supported

	Differences between DB2 ODBC and embedded SQL
	Advantages of using DB2 ODBC
	Choosing between SQL and DB2 ODBC
	Static and dynamic SQL
	Use both interfaces
	Write a mixed application

	Additional DB2 ODBC resources

	Chapter 2. Writing a DB2 ODBC application
	Initialization and termination
	Handles
	ODBC connection model
	DB2 ODBC restrictions on the ODBC connection model

	Specifying the connection type
	Connecting to one or more data sources

	Transaction processing
	Allocating statement handles
	Preparation and execution
	Binding parameters in SQL statements

	Processing results
	Processing query (SELECT, VALUES) statements
	Processing UPDATE, DELETE and INSERT statements
	Processing other statements

	Commit or rollback
	When to call SQLEndTran()
	Effects of calling SQLEndTran()

	Freeing statement handles

	Diagnostics
	Function return codes
	SQLSTATEs
	SQLCA

	Data types and data conversion
	C and SQL data types
	Other C data types
	Data conversion

	Working with string arguments
	Length of string arguments
	Nul-termination of strings
	String truncation
	Interpretation of strings

	Querying environment and data source information

	Chapter 3. Configuring DB2 ODBC and running sample applications
	Installing DB2 ODBC
	The DB2 ODBC run-time environment
	Connectivity requirements

	Setting up the DB2 ODBC run-time environment
	Bind DBRMs to create packages
	Package bind options
	Bind return codes

	Bind packages at remote sites
	Bind stored procedures
	Bind the application plan
	Plan bind options

	Setting up the z/OS UNIX environment

	Preparing and executing a DB2 ODBC application
	DB2 ODBC application requirements
	Application preparation and execution steps
	Step 1. Compile the application
	Step 2. Pre-link and link-edit the application
	Step 3. Execute the application
	Defining a subsystem

	DB2 ODBC initialization file
	Using the initialization file
	Initialization file structure

	Initialization keywords

	DB2 ODBC migration considerations

	Chapter 4. Functions
	Function overview
	SQLAllocConnect() - Allocate a connection handle
	SQLAllocEnv() - Allocate an environment handle
	SQLAllocHandle() - Allocate a handle
	SQLAllocStmt() - Allocate a statement handle
	SQLBindCol() - Bind a column to an application variable
	SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator
	SQLCancel() - Cancel statement
	SQLCloseCursor() - Close a cursor and discard pending results
	SQLColAttribute() - Get column attributes
	SQLColAttributes() - Get column attributes
	SQLColumnPrivileges() - Get column privileges
	SQLColumns() - Get column information
	SQLConnect() - Connect to a data source
	SQLDataSources() - Get a list of data sources
	SQLDescribeCol() - Describe column attributes
	SQLDescribeParam() - Describe parameter marker
	SQLDisconnect() - Disconnect from a data source
	SQLDriverConnect() - Use a connection string to connect to a data source
	SQLEndTran() - End transaction of a connection
	SQLError() - Retrieve error information
	SQLExecDirect() - Execute a statement directly
	SQLExecute() - Execute a statement
	SQLExtendedFetch() - Fetch an array of rows
	SQLFetch() - Fetch the next row
	SQLForeignKeys() - Get a list of foreign key columns
	SQLFreeConnect() - Free a connection handle
	SQLFreeEnv() - Free an environment handle
	SQLFreeHandle() - Free a handle
	SQLFreeStmt() - Free (or reset) a statement handle
	SQLGetConnectAttr() - Get current attribute setting
	SQLGetConnectOption() - Return current setting of a connect option
	SQLGetCursorName() - Get cursor name
	SQLGetData() - Get data from a column
	SQLGetDiagRec() - Get multiple field settings of diagnostic record
	SQLGetEnvAttr() - Return current setting of an environment attribute
	SQLGetFunctions() - Get functions
	SQLGetInfo() - Get general information
	SQLGetLength() - Retrieve length of a string value
	SQLGetPosition() - Find the starting position of a string
	SQLGetSQLCA() - Get SQLCA data structure
	SQLGetStmtAttr() - Get current setting of a statement attribute
	SQLGetStmtOption() - Return current setting of a statement option
	SQLGetSubString() - Retrieve portion of a string value
	SQLGetTypeInfo() - Get data type information
	SQLMoreResults() - Check for more result sets
	SQLNativeSql() - Get native SQL text
	SQLNumParams() - Get number of parameters in a SQL statement
	SQLNumResultCols() - Get number of result columns
	SQLParamData() - Get next parameter for which a data value is needed
	SQLParamOptions() - Specify an input array for a parameter
	SQLPrepare() - Prepare a statement
	SQLPrimaryKeys() - Get primary key columns of a table
	SQLProcedureColumns() - Get procedure input/output parameter information
	SQLProcedures() - Get a list of procedure names
	SQLPutData() - Pass a data value for a parameter
	SQLRowCount() - Get row count
	SQLSetColAttributes() - Set column attributes
	SQLSetConnectAttr() - Set connection attributes
	SQLSetConnection() - Set connection handle
	SQLSetConnectOption() - Set connection option
	SQLSetCursorName() - Set cursor name
	SQLSetEnvAttr() - Set environment attribute
	SQLSetParam() - Bind a parameter marker to a buffer
	SQLSetStmtAttr() - Set statement attributes
	SQLSetStmtOption() - Set statement attribute
	SQLSpecialColumns() - Get special (row identifier) columns
	SQLStatistics() - Get index and statistics information for a base table
	SQLTablePrivileges() - Get table privileges
	SQLTables() - Get table information
	SQLTransact() - Transaction management

	Chapter 5. Using advanced features
	Setting and retrieving environment, connection, and statement attributes
	Setting and retrieving environment attributes
	Setting and retrieving connection attributes
	Setting and retrieving statement attributes

	Using a distributed unit of work
	Establishing a distributed unit of work connection
	Setting attributes that govern distributed unit-of-work semantics

	Using global transactions
	Querying catalog information
	Using the catalog query functions
	Input arguments on catalog functions
	Catalog functions example

	Directing catalog queries to the DB2 ODBC shadow catalog
	Creating and maintaining the DB2 ODBC shadow catalog
	Shadow catalog example

	Sending or retrieving long data values in pieces
	Specifying parameter values at execution time
	Fetching data in pieces

	Using arrays to pass parameter values
	Retrieving a result set into an array
	Returning array data for column-wise bound data
	Returning array data for row-wise bound data
	Column-wise and row-wise binding example

	Using large objects
	Using LOB locators
	LOB and LOB locator example

	Using distinct types
	Using stored procedures
	Advantages of using stored procedures
	Catalog table for stored procedures
	Calling stored procedures from a DB2 ODBC application
	Writing a DB2 ODBC stored procedure
	Returning result sets from stored procedures
	Programming stored procedures to return result sets
	Restrictions on stored procedures returning result sets
	Programming DB2 ODBC client applications to receive result sets
	Stored procedure example with query result set

	Writing multithreaded and multiple-context applications
	DB2 ODBC support for multiple Language Environment threads
	When to use multiple Language Environment threads
	DB2 ODBC support of multiple contexts
	Multiple contexts, one Language Environment thread
	Multiple contexts, multiple Language Environment threads

	External contexts
	Application deadlocks

	Handling application encoding schemes
	Background
	Application programming guidelines
	Choosing an API entry point
	Binding host variables to C types

	Suffix-W API function syntax
	Examples of handling the application encoding scheme
	Binding result set columns to retrieve UCS-2 data
	Binding UTF-8 data to parameter markers
	Retrieving UTF-8 data into application variables
	Using suffix-W APIs

	Mixing embedded SQL with DB2 ODBC
	Using vendor escape clauses
	Determining ODBC vendor escape clause support
	Escape clause syntax
	ODBC-defined SQL extensions
	ODBC date, time, and timestamp data
	ODBC outer join syntax
	Like predicate escape clause
	Stored procedure CALL
	ODBC scalar functions

	Programming hints and tips
	Avoiding common problems
	The DB2 ODBC initialization file
	Result sets that are too large
	Distinct types

	Improving application performance
	Setting isolation levels
	Disabling cursor hold behavior
	Retrieving data efficiently
	Limiting use of catalog functions
	Using dynamic SQL statement caching
	Turning off statement scanning

	Reducing network flow
	Using SQLSetColAttributes() to reduce network flow
	Disabling autocommit
	Using arrays to send and retrieve data
	Manipulating large data values at the server

	Maximizing application portability
	Using column position in function-generated result sets
	Using SQLDriverConnect() instead of SQLConnect()

	Chapter 6. Problem diagnosis
	Tracing
	Application trace
	Specifying the trace file name
	Application trace output

	Diagnostic trace
	Specifying the diagnostic trace file
	Using the diagnostic trace command DSNAOTRC

	Stored procedure trace
	Tracing a client application
	Tracing a stored procedure
	Tracing both a client application and a stored procedure

	Debugging DB2 ODBC applications
	Abnormal termination
	Internal error code

	Appendix A. DB2 ODBC and ODBC
	DB2 ODBC and ODBC drivers
	ODBC APIs and data types
	Isolation levels

	Appendix B. Extended scalar functions
	String functions
	Date and time functions
	System functions

	Appendix C. SQLSTATE cross reference
	Appendix D. Data conversion
	SQL data type attributes
	Precision of SQL data types
	Scale of SQL data types
	Length of SQL data types
	Display size of SQL data types

	Converting data from SQL to C data types
	Converting character SQL data to C data
	Converting graphic SQL data to C data
	Converting numeric SQL data to C data
	Converting binary SQL data to C data
	Converting date SQL data to C data
	Converting time SQL data to C data
	Converting timestamp SQL data to C data
	Converting row ID SQL data to C data
	SQL to C data conversion examples

	Converting data from C to SQL data types
	Converting character C data to SQL data
	Converting numeric C data to SQL data
	Converting binary C data to SQL data
	Converting double-byte character C data to SQL data
	Converting date C data to SQL data
	Converting time C data to SQL data
	Converting timestamp C data to SQL data
	C to SQL data conversion examples

	Appendix E. Deprecated functions
	Mapping deprecated functions
	Changes to SQLGetInfo() information types
	Changes to SQLSetConnectAttr() attributes
	Changes to SQLSetEnvAttr() attributes
	Changes to SQLSetStmtAttr() attributes
	ODBC 3.0 driver behavior
	SQLSTATE mappings
	Changes to datetime data types

	Appendix F. Example DB2 ODBC code
	DSN8O3VP sample application
	Client application calling a DB2 ODBC stored procedure

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

