
DB2® Universal Database for z/OS

Release

Planning

Guide

Version

8

SC18-7425-00

���

DB2® Universal Database for z/OS

Release

Planning

Guide

Version

8

SC18-7425-00

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

139.

First

Edition

(March

2004)

This

edition

applies

to

Version

8

of

IBM

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS),

product

number

5625-DB2,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Who

should

read

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Terminology

and

citations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

How

to

send

your

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. viii

Chapter

1.

Availability,

scalability,

and

performance

enhancements

.

.

.

. 1

Changes

to

limits

for

better

availability,

scalability,

and

performance

.

.

.

.

.

. 1

Schema

evolution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Ability

to

use

table-controlled

partitioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Ability

to

add

partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Ability

to

rotate

partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Ability

to

add

columns

to

indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Materialized

query

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Indexable

predicates

with

mismatched

data

types

.

.

.

.

.

.

.

.

.

.

.

. 9

Predicates

with

one

encoding

scheme

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Predicates

with

more

than

one

encoding

scheme

.

.

.

.

.

.

.

.

.

.

. 11

Index

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Data-partitioned

secondary

indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Backward

index

scan

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Varying-length

index

keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Longer

index

keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Distribution

statistics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Improved

application

availability

for

nonunique

indexes

.

.

.

.

.

.

.

.

. 17

Reoptimizing

the

access

path

at

run

time

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Performance

enhancements

for

star

join

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Cost-based

parallel

sorting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Visual

Explain

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

64-bit

virtual

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Example

of

2-GB

virtual

storage

constraint

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Advantages

of

64-bit

virtual

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Data

sharing

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Improved

LPL

recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Reduction

of

lock

propagation

in

the

coupling

facility

.

.

.

.

.

.

.

.

.

. 23

Reduction

of

overhead

costs

for

data

sharing

workloads

.

.

.

.

.

.

.

.

. 23

Improved

index

split

performance

for

data

sharing

.

.

.

.

.

.

.

.

.

.

. 23

Resolution

of

indoubt

units

of

recovery

in

restart

light

.

.

.

.

.

.

.

.

.

. 24

Improved

space

allocation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

New

default

primary

space

allocation

value

.

.

.

.

.

.

.

.

.

.

.

.

. 24

New

sliding

scale

for

secondary

space

allocation

.

.

.

.

.

.

.

.

.

.

. 25

More

options

for

data

security

in

TCP/IP

networks

.

.

.

.

.

.

.

.

.

.

.

. 27

More

secure

mechanism

for

verifying

a

remote

client's

port

of

entry

.

.

.

. 27

Improved

encrypted

security

mechanisms

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

System-level

point-in-time

recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Additional

parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

New

subsystem

parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Subsystem

parameters

changed

to

dynamically

updatable

.

.

.

.

.

.

.

. 31

Other

availability,

scalability,

and

performance

enhancements

.

.

.

.

.

.

.

. 32

Chapter

2.

Easier

development

and

integration

of

e-business

applications

33

Changes

to

SQL

limits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

SQL

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

SELECT

from

INSERT

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

©

Copyright

IBM

Corp.

2004

iii

Sequence

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Identity

column

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

DISTINCT

predicate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Support

for

scalar

fullselect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Multiple-row

INSERT

and

FETCH

statements

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Common

table

expressions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

GET

DIAGNOSTICS

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Dynamic

scrollable

cursors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

SQL

procedural

language

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

More

frequent

use

of

indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Longer

and

more

complex

SQL

statements

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Multiple

DISTINCT

keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Expressions

in

the

GROUP

BY

clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Fewer

restrictions

for

column

functions

(aggregate

functions)

.

.

.

.

.

.

. 51

Qualified

column

names

in

the

INSERT

statement

.

.

.

.

.

.

.

.

.

.

. 51

ORDER

BY

clause

for

the

SELECT

INTO

statement

.

.

.

.

.

.

.

.

.

. 52

Additional

input

format

for

timestamp

strings

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Explicitly

defined

ROWID

columns

no

longer

required

for

LOBs

.

.

.

.

.

. 52

Comments

for

plans

and

packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Implicit

dropping

of

declared

global

temporary

tables

at

commit

.

.

.

.

.

. 53

SQL

changes

for

multilevel

security

with

row-level

granularity

.

.

.

.

.

.

. 54

Unicode

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Support

for

Unicode

parsing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Support

for

multiple

CCSID

sets

in

a

single

SQL

statement

.

.

.

.

.

.

. 55

DB2

ODBC

support

for

native

Unicode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Multilevel

security

with

row-level

granularity

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Advantages

of

multilevel

security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Mandatory

access

control

and

dominance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Implementing

and

using

multilevel

security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

SQL

support

for

XML

functions

in

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Improvements

in

connectivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Enhanced

support

for

JDBC

and

CLI

clients

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Easier

access

to

remote

workstation

database

through

database

alias

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

More

granular

control

of

routing

requests

to

specific

members

of

a

data

sharing

group

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Improved

JDBC

and

CLI

connectivity

for

cursors

and

result

sets

.

.

.

.

.

. 63

More

flexibility

in

managing

distributed

applications

with

CURRENT

PACKAGE

PATH

special

register

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Other

e-business

enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

SQL

processing

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

RRSAF

implicit

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Changes

to

stored

procedures

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

.

.

.

.

.

.

. 67

Hardware

and

software

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Migration

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

DB2

Version

8

publications

assume

new-function

mode

.

.

.

.

.

.

.

.

. 68

DBDs

cannot

be

accessed

if

DB2

starts

in

deferred

mode

.

.

.

.

.

.

.

. 68

Type

1

indexes

are

not

supported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Global

temporary

tables

need

a

16-KB

buffer

pool

.

.

.

.

.

.

.

.

.

.

. 68

Declared

temporary

tables

need

an

8-KB

table

space

in

the

temporary

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

System-level

point-in-time

recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Enhanced

support

for

scrollable

cursors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Changes

to

space

allocations

for

DB2-managed

data

sets

.

.

.

.

.

.

.

. 69

iv

Release

Planning

Guide

Changed

default

value

for

DESCRIBE

FOR

STATIC

.

.

.

.

.

.

.

.

.

. 69

Changed

data

types

and

lengths

for

some

catalog

columns

.

.

.

.

.

.

. 69

Changed

data

types

and

lengths

for

some

special

registers

.

.

.

.

.

.

. 69

SQL

reserved

words

may

be

used

in

delimited

identifiers

for

procedure

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Encoding

schemes

of

string

parameters

for

routines

.

.

.

.

.

.

.

.

.

. 69

Modify

RUNSTATS

jobs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

More

history

statistics

are

collected

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Creating

tables

with

DBCS

and

mixed

columns

.

.

.

.

.

.

.

.

.

.

.

. 70

Consider

increasing

IDBACK

and

CTHREAD

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Support

for

DB2-established

data

space

for

cached

dynamic

statements

is

deprecated

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Consider

changing

EDM

pool

size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Customized

DB2I

defaults

can

be

migrated

.

.

.

.

.

.

.

.

.

.

.

.

. 71

LANGUAGE

COMPJAVA

no

longer

supported

for

stored

procedures

.

.

.

. 71

DSNWZP

runs

in

WLM-established

stored

procedure

address

space

.

.

.

. 71

Support

for

DB2-established

stored

procedure

address

spaces

is

deprecated

71

New

precompiler

option

for

string

host

variables

.

.

.

.

.

.

.

.

.

.

.

. 72

New

SYSIBM.SYSROUTINES

column

for

encoding

scheme

.

.

.

.

.

.

. 72

LANGUAGE

REXX

sets

PROGRAM_TYPE

column

in

SYSIBM.SYSROUTINES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

DB2

start-up

and

precompilation

require

a

user-supplied

DSNHDECP

module

72

CCSIDs

in

DSNHDECP

must

be

valid

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

New

data-only

load

module

DSNHMCID

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Plans

and

packages

bound

prior

to

DB2

Version

2

Release

3

.

.

.

.

.

.

. 72

Multiple

calls

to

the

same

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

. 73

External

stored

procedures

and

user-defined

functions

can

return

any

valid

SQLSTATE

value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Programs

called

by

a

stored

procedure

require

packages

.

.

.

.

.

.

.

. 73

Port

of

entry

name

changed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

New

name

for

type

1

inactive

threads

and

type

2

inactive

threads

.

.

.

.

. 73

Column

names

and

labels

in

SQLDA

SQLNAME

field

for

statements

involving

UNION

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

IFCID

197

is

no

longer

supported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Change

data

capture

cannot

be

enabled

on

catalog

tables

during

enabling-new-function

mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

DB2

Version

8

requires

IRLM

2.2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Detailed

tracking

of

DB2

measured

usage

is

disabled

.

.

.

.

.

.

.

.

. 74

Programming

language

support

has

changed

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Views

might

be

marked

with

view

regeneration

errors

.

.

.

.

.

.

.

.

. 74

Migrating

a

data

sharing

group

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Work

file

database

size

calculations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Preparing

for

fallback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Frozen

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Other

fallback

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Release

incompatibilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Ensure

that

Version

7

sample

objects

are

available

.

.

.

.

.

.

.

.

.

. 78

Ensure

that

no

utility

jobs

are

running

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

EBCDIC

and

ASCII

CCSID

must

be

non-zero

.

.

.

.

.

.

.

.

.

.

.

. 78

Identify

unsupported

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Adjust

application

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Release

coexistence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

IRLM

service

level

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

DISPLAY

GROUPBUFFERPOOL

output

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Distributed

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Data

sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Contents

v

Installation

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Version

8

panels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Version

8

sample

jobs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Appendix

A.

Changes

to

commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

New

commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Changed

commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Other

command

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Appendix

B.

Changes

to

utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

New

utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Changed

utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Other

utility

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Appendix

C.

Changes

to

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

New

SQL

statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Changed

SQL

statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

New

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Other

SQL

language

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Appendix

D.

Catalog

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

New

catalog

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Changed

catalog

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

New

indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

When

catalog

migration

changes

occur

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Appendix

E.

EXPLAIN

table

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Format

of

the

Version

8

PLAN_TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Descriptions

of

new

and

changed

columns

in

PLAN_TABLE

.

.

.

.

.

.

.

. 127

Changed

columns

in

DSN_STATEMNT_TABLE

.

.

.

.

.

.

.

.

.

.

.

. 130

Appendix

F.

New

and

changed

IFCIDs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

New

IFCIDs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Changed

IFCIDs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Appendix

G.

How

to

use

the

DB2

library

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Appendix

H.

How

to

obtain

DB2

information

.

.

.

.

.

.

.

.

.

.

.

. 137

DB2

on

the

Web

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

DB2

publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

DB2

Information

Center

for

z/OS

solutions

.

.

.

.

.

.

.

.

.

.

.

.

. 137

CD-ROMs

and

DVD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

PDF

format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

BookManager

format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

DB2

education

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

How

to

order

the

DB2

library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

vi

Release

Planning

Guide

About

this

book

DB2

Release

Planning

Guide

is

intended

to

help

you

plan

for

Version

8

of

the

licensed

program

DB2

Universal

Database™

for

z/OS®.

Important

In

this

version

of

DB2

UDB

for

z/OS,

the

DB2

Utilities

Suite

is

available

as

an

optional

product.

You

must

separately

order

and

purchase

a

license

to

such

utilities,

and

discussion

of

those

utility

functions

in

this

publication

is

not

intended

to

otherwise

imply

that

you

have

a

license

to

them.

See

Part

1

of

DB2

Utility

Guide

and

Reference

for

packaging

details.

Who

should

read

this

book

This

book

is

intended

for

all

users

of

DB2®,

including

application

programmers,

database

administrators,

and

system

programmers.

It

assumes

that

the

user

is

familiar

with

Version

7

of

DB2

UDB

for

z/OS

and

OS/390®.

For

more

information

about

how

to

obtain

DB2

information,

see

Appendix

H,

“How

to

obtain

DB2

information,”

on

page

137.

Terminology

and

citations

In

this

information,

DB2

Universal

Database

for

z/OS

is

referred

to

as

"DB2

UDB

for

z/OS."

In

cases

where

the

context

makes

the

meaning

clear,

DB2

UDB

for

z/OS

is

referred

to

as

"DB2."

When

this

information

refers

to

titles

of

books

in

this

library,

a

short

title

is

used.

(For

example,

"See

DB2

SQL

Reference"

is

a

citation

to

IBM®

DB2

Universal

Database

for

z/OS

SQL

Reference.)

When

referring

to

a

DB2

product

other

than

DB2

UDB

for

z/OS,

this

information

uses

the

product’s

full

name

to

avoid

ambiguity.

The

following

terms

are

used

as

indicated:

DB2

Represents

either

the

DB2

licensed

program

or

a

particular

DB2

subsystem.

DB2

PM

Refers

to

the

DB2

Performance

Monitor

tool,

which

can

be

used

on

its

own

or

as

part

of

the

DB2

Performance

Expert

for

z/OS

product.

C,

C++,

and

C

language

Represent

the

C

or

C++

programming

language.

CICS®

Represents

CICS

Transaction

Server

for

z/OS

or

CICS

Transaction

Server

for

OS/390.

IMS™

Represents

the

IMS

Database

Manager

or

IMS

Transaction

Manager.

MVS™

Represents

the

MVS

element

of

the

z/OS

operating

system,

which

is

equivalent

to

the

Base

Control

Program

(BCP)

component

of

the

z/OS

operating

system.

RACF®

Represents

the

functions

that

are

provided

by

the

RACF

component

of

the

z/OS

Security

Server.

©

Copyright

IBM

Corp.

2004

vii

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

DB2

UDB

for

z/OS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

reader

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

by

using

only

a

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Assistive

technology

products,

such

as

screen

readers,

function

with

the

DB2

UDB

for

z/OS

user

interfaces.

Consult

the

documentation

for

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Online

documentation

for

Version

8

of

DB2

UDB

for

z/OS

is

available

in

the

DB2

Information

Center,

which

is

an

accessible

format

when

used

with

assistive

technologies

such

as

screen

reader

or

screen

magnifier

software.

The

DB2

Information

Center

for

z/OS

solutions

is

available

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

How

to

send

your

comments

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

UDB

for

z/OS

documentation.

You

can

use

the

following

methods

to

provide

comments:

v

Send

your

comments

by

e-mail

to

db2pubs@vnet.ibm.com

and

include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

number

of

the

book.

If

you

are

commenting

on

specific

text,

please

list

the

location

of

the

text

(for

example,

a

chapter

and

section

title,

page

number,

or

a

help

topic

title).

v

You

can

also

send

comments

from

the

Web.

Visit

the

library

Web

site

at:

www.ibm.com/software/db2zos/library.html

This

Web

site

has

a

feedback

page

that

you

can

use

to

send

comments.

v

Print

and

fill

out

the

reader

comment

form

located

at

the

back

of

this

book.

You

can

give

the

completed

form

to

your

local

IBM

branch

office

or

IBM

representative,

or

you

can

send

it

to

the

address

printed

on

the

reader

comment

form.

viii

Release

Planning

Guide

Chapter

1.

Availability,

scalability,

and

performance

enhancements

Version

8

of

DB2

UDB

for

z/OS

provides

enhancements

to

availability,

scalability,

and

performance

through

the

following

functional

changes:

v

“Changes

to

limits

for

better

availability,

scalability,

and

performance”

v

“Schema

evolution”

on

page

2

v

“Materialized

query

tables”

on

page

7

v

“Indexable

predicates

with

mismatched

data

types”

on

page

9

v

“Index

enhancements”

on

page

12

v

“Reoptimizing

the

access

path

at

run

time”

on

page

17

v

“Performance

enhancements

for

star

join”

on

page

17

v

“Cost-based

parallel

sorting”

on

page

19

v

“Visual

Explain

enhancements”

on

page

19

v

“64-bit

virtual

storage”

on

page

20

v

“Data

sharing

enhancements”

on

page

22

v

“Improved

space

allocation”

on

page

24

v

“More

options

for

data

security

in

TCP/IP

networks”

on

page

27

v

“System-level

point-in-time

recovery”

on

page

29

v

“Additional

parameters”

on

page

30

v

“Other

availability,

scalability,

and

performance

enhancements”

on

page

32

Changes

to

limits

for

better

availability,

scalability,

and

performance

Version

8

of

DB2

UDB

for

z/OS

provides

increased

limits

for

better

availability,

scalability,

and

performance

as

highlighted

in

Table

1.

Table

1.

Changes

to

limits

in

DB2

UDB

for

z/OS,

Version

8.

This

table

lists

the

entities

that

have

changed

in

Version

8

and

their

associated

limits,

both

previous

and

new.

Entity

Previous

limit

New

limit

Virtual

storage

31-bit

64-bit

Length

of

an

index

key

255

bytes

2000

bytes

Number

of

partitions

in

a

partitioned

table

space

or

a

partitioned

index

space

254

4096

Number

of

active

logs

31

93

Number

of

archive

logs

1000

per

copy

of

the

log

2000

for

dual

logging

10

000

per

copy

of

the

log

20

000

for

dual

logging

Maximum

size

of

a

partitioned

table

with

page

size

of

8

KB1

16

TB

32

TB

Maximum

size

of

a

partitioned

table

with

page

size

of

16

KB

16

TB

64

TB

Maximum

size

of

a

partitioned

table

with

page

size

of

32

KB

16

TB

128

TB

Note:

1.

The

maximum

size

of

a

partitioned

table

with

page

size

of

4

KB

has

not

changed;

the

maximum

size

is

16

TB.

©

Copyright

IBM

Corp.

2004

1

Schema

evolution

DB2

UDB

for

z/OS

now

provides

the

ability

to

change

the

definitions

of

tables

and

indexes

without

dropping

and

re-creating

the

object.

This

capability

significantly

enhances

both

the

availability

of

your

database

and

the

performance

of

data

access.

Using

the

ALTER

TABLE

statement:

With

the

ALTER

TABLE

statement,

you

can

change

the

definition

of

a

table

or

the

partitioning

of

a

table

space

in

the

following

ways:

v

Add

a

new

partition

to

a

table

space.

v

Rotate

the

partition

with

the

lowest

limit

value

for

reuse

as

the

partition

with

the

highest

limit

value.

v

Change

the

boundary

between

partitions

or

extend

the

boundary

of

the

last

partition.

v

Change

the

data

type

of

a

column

with

the

exception

of

a

distinct

type

column,

a

LOB

column,

a

column

referenced

in

a

field

procedure,

or

a

column

in

a

materialized

query

table.

v

Change

all

of

the

attributes

of

an

identity

column

except

the

data

type.

v

Add

or

drop

a

parent

key

or

a

foreign

key.

v

Add

or

drop

a

table

check

constraint.

v

Add

a

new

column

to

a

table.

v

Add

or

drop

a

clustering

index

to

a

table.

When

you

do

not

use

the

ALTER

statement

to

change

a

table

definition,

you

must:

1.

Use

the

DROP

statement

to

remove

the

table.

2.

Use

the

COMMIT

statement

to

commit

the

removal

of

the

table.

3.

Use

the

CREATE

statement

to

re-create

the

table.

The

DROP

statement

has

a

cascading

effect;

views

that

are

dependent

on

the

dropped

table

are

also

dropped.

All

authorities

for

the

dropped

objects

disappear,

and

DB2

marks

plans

or

packages

that

reference

dropped

objects

as

invalid.

You

can

make

certain

changes

only

by

dropping

the

table

and

then

re-creating

it

with

the

new

definition.

For

example,

to

change

an

identity

column

to

a

column

with

a

different

data

type,

you

must

drop

and

re-create

the

table

with

the

new

definition

instead

of

using

the

ALTER

statement.

Using

the

ALTER

INDEX

statement:

With

the

ALTER

INDEX

statement,

you

can

change

the

definition

of

an

index

in

the

following

ways:

v

Add

a

new

column

to

an

index.

v

Change

how

varying-length

columns

are

stored

in

the

index

(as

padded

or

not

padded),

which

might

increase

the

possibility

of

DB2

choosing

index-only

access.

v

Change

the

clustering

attribute

of

an

index

to

change

the

location

of

rows

in

the

table

on

which

the

index

is

defined.

For

more

information

about

index

enhancements,

see

“Index

enhancements”

on

page

12.

Ability

to

use

table-controlled

partitioning

Before

Version

8

of

DB2,

when

you

defined

a

partitioning

index

on

a

table

in

a

partitioned

table

space,

you

specified

the

partitioning

key

and

the

limit

key

values

in

2

Release

Planning

Guide

the

PART

VALUES

clause

of

the

CREATE

INDEX

statement.

This

type

of

partitioning

is

referred

to

as

index-controlled

partitioning.

With

Version

8,

you

can

specify

the

partitioning

key

and

the

limit

key

values

for

a

table

in

a

partitioned

table

space

by

using

the

PARTITION

BY

clause

and

the

PARTITION

ENDING

AT

clause

of

the

CREATE

TABLE

statement.

This

type

of

partitioning

is

referred

to

as

table-controlled

partitioning.

If

you

drop

an

index

that

is

defined

with

the

PARTITION

ENDING

AT

(previously

PART

VALUES)

clause,

DB2

automatically

converts

the

associated

index-controlled

partitioned

table

space

to

a

table-controlled

partitioned

table

space.

However,

if

you

use

the

ALTER

statement

to

do

any

of

the

following

tasks,

DB2

automatically

converts

the

table

space

to

table-controlled

partitioning,

but

it

does

not

drop

any

indexes:

v

Add

a

partition

v

Change

a

partition

boundary

v

Rotate

a

partition

from

first

to

last

v

Create

a

data-partitioned

secondary

index

v

Specify

CLUSTER

NO

for

the

partitioning

or

clustering

index

For

information

about

using

the

ALTER

statement

to

manage

partitions,

see

“Ability

to

add

partitions”

on

page

6

and

“Ability

to

rotate

partitions”

on

page

6.

Creating

new

tables

with

table-controlled

partitioning

You

can

specify

the

partitioning

key

and

the

limit

key

values

for

a

table

in

a

partitioned

table

space

by

using

the

PARTITION

BY

clause

and

the

PARTITION

ENDING

AT

clause

of

the

CREATE

TABLE

statement.

If

you

use

this

type

of

partitioning,

you

cannot

use

the

PARTITION

ENDING

AT

clause

of

the

CREATE

INDEX

statement

when

you

create

indexes

on

the

table.

Example:

Assume

that

you

need

to

create

a

large

transaction

table

that

includes

the

date

of

the

transaction

in

a

column

named

POSTED.

You

want

to

keep

the

transactions

for

each

month

in

a

separate

partition.

To

create

the

table,

issue

the

following

statement:

CREATE

TABLE

TRANS

(ACCTID

...,

STATE

...,

POSTED

...,

...

,

...)

PARTITION

BY

(POSTED)

(PARTITION

1

ENDING

AT

(’01/31/2003’),

PARTITION

2

ENDING

AT

(’02/28/2003’),

...

PARTITION

13

ENDING

AT

(’01/31/2004’));

Separation

of

partitioning

and

clustering

In

previous

releases

of

DB2,

a

partitioned

table

space

could

have

only

one

partitioned

index,

and

the

partitioned

index

was

the

partitioning

index

as

well

as

the

clustering

index.

As

explained

in

“Schema

evolution”

on

page

2,

Version

8

of

DB2

introduces

table-controlled

partitioning,

in

which

a

table,

instead

of

an

index

on

the

table,

determines

the

partitioning

scheme.

With

table-controlled

partitioning,

the

partitioning

index

is

optional.

You

can

assign

the

clustering

attribute

to

a

secondary

index,

or

you

can

let

DB2

assign

the

clustering

attribute.

To

let

DB2

assign

the

clustering

attribute,

do

not

assign

the

clustering

attribute

to

any

index.

In

addition,

you

can

remove

the

clustering

attribute

from

one

index

and

assign

it

to

another

index.

Use

the

CLUSTER

and

NOT

CLUSTER

parameters

of

CREATE

INDEX

and

ALTER

INDEX

to

accomplish

these

tasks.

Chapter

1.

Availability,

scalability,

and

performance

enhancements

3

When

a

data-partitioned

secondary

index

is

the

clustering

index,

after

a

REORG,

the

data

rows

are

ordered

within

each

partition

to

match

the

ordering

of

the

data-partitioned

secondary

index

keys.

Example:

Running

REORG

to

reorder

data

rows:

Suppose

that

you

alter

index

SALES_IX,

which

is

shown

in

Figure

2

on

page

13,

like

this:

ALTER

INDEX

SALES_IX

CLUSTER;

After

you

run

the

REORG

utility,

the

data

looks

as

shown

in

Figure

1.

If

no

explicit

clustering

index

is

specified

for

a

table,

the

first

index

that

is

created

on

a

table

is

the

implicit

clustering

index.

If

an

index

is

altered

from

CLUSTER

to

NOT

CLUSTER,

that

index

is

still

used

as

the

implicit

clustering

index

until

a

new

explicit

clustering

index

is

specified.

When

the

clustering

index

is

changed,

INSERT

statements

place

new

rows

in

the

new

clustering

order.

However,

existing

data

rows

are

not

affected

until

a

REORG

utility

job

runs

and

places

those

rows

in

clustering

order.

Clustering

within

partitions

You

can

specify

any

index

as

the

clustering

index,

regardless

of

whether

it

is

a

partitioning

index.

Example:

suppose

that

the

TRANS

table

is

partitioned

by

the

DATE

column,

as

described

in

“Creating

new

tables

with

table-controlled

partitioning”

on

page

3.

You

want

to

cluster

the

rows

of

each

partition

by

the

values

in

the

ACCTID

column.

Issue

the

statement:

CREATE

INDEX

IX3

ON

TRANS

(ACCTID)

CLUSTER;

Figure

1.

Example

of

a

data-partitioned

secondary

index

as

a

clustering

index

4

Release

Planning

Guide

The

rows

of

the

TRANS

table

are

clustered

by

account

number.

Each

partition

contains

the

account

numbers

for

the

transactions

during

that

month,

and

those

account

numbers

are

clustered

within

each

partition.

For

more

information

about

clustering

that

is

separated

from

partitioning,

see

“Separation

of

partitioning

and

clustering”

on

page

3.

Improving

index

usage

for

partitioned

table

spaces

By

changing

the

way

indexes

are

defined

for

a

table,

you

can:

v

Change

an

existing

index-controlled

partitioned

table

space

to

a

table-controlled

partitioned

table

space.

v

Implement

a

partitioned

clustering

index

so

that

the

index

clusters

the

data

within

each

partition.

The

new

index

that

is

created

in

the

following

example

is

a

data-partitioned

secondary

index.

For

more

information

about

data-partitioned

secondary

indexes,

see

“Data-partitioned

secondary

indexes”

on

page

12.

Example:

Assume

that

you

have

a

large

transaction

table

named

TRANS

that

contains

one

row

for

each

transaction.

The

table

includes

the

following

columns:

v

ACCTID,

which

is

the

customer

account

ID

v

POSTED,

which

holds

the

date

of

the

transaction

The

table

space

that

contains

TRANS

is

divided

into

13

partitions,

each

of

which

contains

one

month

of

data.

Two

existing

indexes

are

defined

as

follows:

v

A

partitioning

index

is

defined

on

the

transaction

date

by

the

following

CREATE

INDEX

statement

with

a

PARTITION

ENDING

AT

clause:

CREATE

INDEX

IX1

ON

TRANS(POSTED)

CLUSTER

(PARTITION

1

ENDING

AT

(’01/31/2003’),

PARTITION

2

ENDING

AT

(’02/28/2003’),

...

PARTITION

13

ENDING

AT

(’01/31/2004’));

The

partitioning

index

is

the

clustering

index

by

definition,

and

the

data

rows

in

the

table

are

in

order

by

the

transaction

date.

The

partitioning

index

controls

the

partitioning

of

the

data

in

the

table

space.

v

A

nonpartitioning

index

is

defined

on

the

customer

account

ID:

CREATE

INDEX

IX2

ON

TRANS(ACCTID);

DB2

usually

accesses

the

transaction

table

through

the

customer

account

ID

by

using

the

nonpartitioning

index

IX2.

The

partitioning

index

IX1

is

not

used

for

data

access

and

is

wasting

space.

In

addition,

you

have

a

critical

requirement

for

availability

on

the

table,

and

you

want

to

be

able

to

run

an

online

REORG

job

at

the

partition

level

with

minimal

disruption

to

data

availability.

To

save

space

and

to

facilitate

reorganization

of

the

table

space,

you

can

drop

the

partitioning

index

IX1,

and

you

can

replace

the

access

index

IX2

with

a

partitioned

clustering

index

that

matches

the

13

data

partitions

in

the

table.

Issue

the

following

statements:

DROP

INDEX

IX1;

CREATE

INDEX

IX3

ON

TRANS(ACCTID)

PARTITIONED

CLUSTER;

Chapter

1.

Availability,

scalability,

and

performance

enhancements

5

COMMIT;

DROP

INDEX

IX2;

COMMIT;

When

you

drop

the

partitioning

index

IX1,

DB2

converts

the

table

space

from

index-controlled

partitioning

to

table-controlled

partitioning.

DB2

uses

the

PARTITION

limit

key

values

of

the

index-controlled

partitioning

to

determine

the

PARTITION

limit

key

values

for

the

table-controlled

partitioning.

Ability

to

add

partitions

You

can

use

the

ALTER

TABLE

statement

to

add

a

new

partition

to

an

existing

partitioned

table

space

and

to

each

partitioned

index

in

the

table

space.

When

you

add

a

partition,

DB2

uses

the

next

physical

partition

that

is

not

already

in

use

until

you

reach

the

maximum

number

of

partitions

for

the

table

space.

Example:

Assume

that

a

table

space

that

contains

a

transaction

table

is

divided

into

5

partitions,

and

each

partition

contains

one

year

of

data.

Partitioning

is

defined

on

the

transaction

date,

and

the

limit

key

value

is

the

end

of

the

year.

Table

2

shows

a

representation

of

the

table

space.

Table

2.

Initial

table

space

with

5

partitions

Partition

Limit

value

Data

set

name

for

the

partition

P001

12/31/2003

catname.DSNDBx.dbname.psname.I0001.A001

P002

12/31/2004

catname.DSNDBx.dbname.psname.I0001.A002

P003

12/31/2005

catname.DSNDBx.dbname.psname.I0001.A003

P004

12/31/2006

catname.DSNDBx.dbname.psname.I0001.A004

P005

12/31/2007

catname.DSNDBx.dbname.psname.I0001.A005

Assume

that

you

want

to

add

a

new

partition

to

handle

the

transactions

for

the

next

year.

To

add

a

partition,

issue

the

following

statement:

ALTER

TABLE

TRANS

ADD

PARTITION

ENDING

AT

(’12/31/2008’);

DB2

adds

a

new

partition

to

the

table

space

and

to

each

partitioned

index

on

the

TRANS

table.

When

the

ALTER

completes,

you

can

use

the

new

partition

immediately.

DB2

does

not

place

the

new

partition

in

REORG-pending

(REORP)

status

because

it

extends

the

high-range

values

that

were

not

previously

used.

Ability

to

rotate

partitions

Assume

that

the

partition

structure

of

the

table

space,

as

described

in

Table

2,

is

sufficient

through

the

year

2008.

When

another

partition

is

needed

for

the

year

2009,

you

determine

that

the

data

for

2003

is

no

longer

needed.

You

want

to

reuse

the

partition

for

the

year

2003

to

hold

the

transactions

for

the

year

2009.

To

rotate

the

first

partition

to

be

the

last

partition,

issue

the

following

statement:

ALTER

TABLE

TRANS

ROTATE

PARTITION

FIRST

TO

LAST

ENDING

AT

(’12/31/2009’)

RESET;

For

a

table

with

limit

values

in

ascending

order,

the

data

in

the

ENDING

AT

clause

must

be

higher

than

the

limit

value

for

previous

partitions.

DB2

chooses

the

FIRST

partition

to

be

the

partition

with

the

lowest

limit

value.

DB2

assigns

the

new

limit

value

to

P001

because

it

is

the

oldest

partition

(or

the

one

with

the

lowest

limit

6

Release

Planning

Guide

value).

This

partition

holds

all

rows

in

the

range

between

the

new

limit

value

of

12/31/2009

and

the

previous

limit

value

of

12/31/2008.

The

RESET

keyword

specifies

that

the

existing

data

in

the

oldest

partition

is

deleted.

You

can

use

the

partition

immediately

after

the

ALTER

completes.

DB2

does

not

place

the

new

partition

in

REORG-pending

(REORP)

status

because

it

extends

the

high-range

values

that

were

not

previously

used.

Table

3

shows

a

representation

of

the

table

space

after

the

first

partition

is

rotated

to

become

the

last

partition.

Table

3.

Rotating

the

low

partition

to

the

end

Partition

Limit

value

Data

set

name

for

the

partition

P002

12/31/2004

catname.DSNDBx.dbname.psname.I0001.A002

P003

12/31/2005

catname.DSNDBx.dbname.psname.I0001.A003

P004

12/31/2006

catname.DSNDBx.dbname.psname.I0001.A004

P005

12/31/2007

catname.DSNDBx.dbname.psname.I0001.A005

P006

12/31/2008

catname.DSNDBx.dbname.psname.I0001.A006

P001

12/31/2009

catname.DSNDBx.dbname.psname.I0001.A001

When

you

create

your

partitioned

table

space,

you

do

not

need

to

allocate

extra

partitions

for

expected

growth.

Instead,

use

either

ALTER

TABLE

ADD

PARTITION

to

add

partitions

as

needed,

or,

if

rotating

partitions

is

appropriate

for

your

application,

use

ALTER

TABLE

ROTATE

PARTITION

to

avoid

adding

another

partition.

Ability

to

add

columns

to

indexes

In

Version

8

of

DB2,

you

can

append

columns

to

the

end

of

an

existing

index

key

with

the

ALTER

INDEX

statement.

If

a

column

is

added

to

a

table

and

an

index

on

that

table

in

the

same

unit

of

work,

the

index

is

immediately

available

for

access.

However,

if

the

column

is

added

to

the

table

and

to

the

index

in

different

units

of

work,

DB2

puts

the

index

in

a

REBUILD-pending

(RBDP)

state,

and

you

need

to

run

the

REBUILD

INDEX

utility

to

make

the

index

available.

If

the

index

was

created

with

DEFINE

NO,

and

the

underlying

data

sets

have

not

yet

been

created,

a

restricted

state

is

not

set

after

columns

are

added

to

an

index

key.

Materialized

query

tables

DB2

UDB

for

z/OS

now

supports

materialized

query

tables,

which

can

simplify

query

processing

and

greatly

improve

the

performance

of

dynamic

SQL

queries.

Materialized

query

tables

are

particularly

effective

in

data

warehousing

applications.

A

materialized

query

table

contains

information

that

is

derived

and

summarized

from

other

tables.

Materialized

query

tables

pre-calculate

and

store

the

results

of

queries

that

require

expensive

join

and

aggregation

operations.

DB2

uses

automatic

query

rewrite

to

access

data

in

a

materialized

query

table.

If

automatic

query

rewrite

for

materialized

query

tables

is

enabled,

DB2

determines

if

a

dynamic

query

or

a

portion

of

the

query

can

be

resolved

by

using

a

materialized

query

table.

If

so,

DB2

rewrites

the

query

to

use

the

materialized

query

table

Chapter

1.

Availability,

scalability,

and

performance

enhancements

7

instead

of

the

underlying

base

tables

to

minimize

query

processing.

Be

aware

that

a

materialized

query

table

can

yield

query

results

that

are

not

current

if

the

base

tables

change

after

the

materialized

query

table

is

updated.

To

take

advantage

of

using

automatic

query

rewrite

with

materialized

query

tables,

follow

these

steps:

1.

Define

materialized

query

tables.

You

can

define

materialized

query

tables

using

the

CREATE

TABLE

or

ALTER

TABLE

statements.

The

clauses

DATA

INITIALLY

DEFERRED

and

REFRESH

DEFERRED

define

a

table

as

a

materialized

query

table.

You

can

define

materialized

query

tables

as

MAINTAINED

BY

USER

or

MAINTAINED

BY

SYSTEM,

which

is

the

default.

2.

Populate

materialized

query

tables.

Refresh

materialized

query

tables

periodically

to

maintain

data

currency

with

base

tables.

However,

realize

that

refreshing

materialized

query

tables

can

be

an

expensive

process.

3.

Enable

automatic

query

rewrite

for

materialized

query

tables,

and

exploit

its

functions

by

submitting

read-only

dynamic

queries.

You

can

enable

automatic

query

rewrite

for

materialized

query

tables

by

using

the

ENABLE

QUERY

OPTIMIZATION

clause,

which

is

the

default

in

the

CREATE

TABLE

statement.

You

can

enable

query

rewrite

for

the

dynamic

queries

by

setting

special

registers

CURRENT

REFRESH

AGE

to

ANY

and

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

to

ALL,

SYSTEM,

or

USER.

4.

Evaluate

the

effectiveness

of

the

materialized

query

tables.

Drop

under-utilized

tables,

and

create

new

tables

as

necessary.

You

can

use

EXPLAIN

to

determine

whether

a

materialized

query

table

is

used

in

a

query.

The

following

example

shows

how

DB2

can

use

a

materialized

query

table

to

improve

the

performance

of

a

simple

query.

Although

most

uses

of

materialized

query

tables

will

be

much

more

complex,

this

example

does

illustrate

some

basic

concepts.

Example:

Suppose

that

you

have

a

very

large

table

named

TRANS

that

contains

one

row

for

each

transaction

that

a

certain

company

processes.

You

want

to

tally

the

total

amount

of

transactions

by

some

time

period.

Although

the

table

contains

many

columns,

you

are

most

interested

in

these

four

columns:

v

YEAR,

MONTH,

DAY,

which

together

identify

the

date

of

a

transaction

v

AMOUNT,

which

contains

the

amount

of

the

transaction

To

total

the

amount

of

all

transactions

between

1995

and

2000,

by

year,

you

would

use

the

following

query:

SELECT

YEAR,

SUM(AMOUNT)

FROM

TRANS

WHERE

YEAR

>=

’1995’

AND

YEAR

<=

’2000’

GROUP

BY

YEAR

ORDER

BY

YEAR;

This

query

might

be

very

expensive

to

run,

particularly

if

the

TRANS

table

is

a

very

large

table

with

millions

of

rows

and

many

columns.

Now

suppose

that

you

define

a

materialized

query

table

named

STRANS

by

using

the

following

CREATE

TABLE

statement:

CREATE

TABLE

STRANS

AS

(SELECT

YEAR

AS

SYEAR,

MONTH

AS

SMONTH,

DAY

AS

SDAY,

SUM(AMOUNT)

AS

SSUM

8

Release

Planning

Guide

FROM

TRANS

GROUP

BY

YEAR,

MONTH,

DAY)

DATA

INITIALLY

DEFERRED

REFRESH

DEFERRED;

After

you

populate

STRANS

with

a

REFRESH

TABLE

statement,

the

table

contains

one

row

for

each

day

of

each

month

and

year

in

the

TRANS

table.

Using

the

automatic

query

rewrite

process,

DB2

can

rewrite

the

original

query

into

a

new

query.

The

new

query

uses

the

materialized

query

table

STRANS

instead

of

the

original

base

table

TRANS:

SELECT

SYEAR,

SUM(SSUM)

FROM

STRANS

WHERE

SYEAR

>=

’1995’

AND

SYEAR

<=

’2000’

GROUP

BY

SYEAR

ORDER

BY

SYEAR

If

you

maintain

data

currency

in

the

materialized

query

table

STRANS,

the

rewritten

query

provides

the

same

results

as

the

original

query.

The

rewritten

query

offers

better

response

time

and

requires

less

CPU

time.

Indexable

predicates

with

mismatched

data

types

In

previous

releases

of

DB2,

a

predicate

that

compared

a

column

to

an

expression

was

stage

1

and

indexable

only

if

the

column

and

the

expression

had

the

same

data

type,

and

in

many

cases,

the

same

length.

These

data

type

and

length

mismatches

could

cause

performance

problems

that

could

not

always

be

solved

by

changing

application

programs.

For

example,

the

application

programmer

cannot

control

whether

the

data

types

and

lengths

match

in

these

situations:

v

In

most

implementations

of

C

and

C++,

there

is

no

decimal

data

type,

so

host

variables

that

are

compared

to

columns

with

the

DECIMAL

data

type

must

be

defined

with

some

other

data

types,

such

as

float.

v

Java™

does

not

have

fixed-length

data

types.

REXX

does

not

have

fixed-length

string

data

types,

except

for

the

case

when

fixed-length

strings

are

passed

in

an

input

SQLDA.

For

these

languages,

any

comparisons

between

host

variables

and

CHAR

or

GRAPHIC

columns

have

a

type

mismatch.

v

The

programmer

does

not

have

access

to

the

source

code.

DB2

Version

8

makes

changes

that

lessen

the

data

type

and

length

mismatch

problem.

Many

predicates

with

mismatched

data

types

and

lengths

are

now

stage

1

or

indexable.

Those

predicates

have

the

following

general

forms:

v

column

op

expression

v

expression

op

column

v

column

BETWEEN

expression1

AND

expression2

v

column

IN

(list)

In

the

preceding

predicate

types:

v

column

is

a

column

of

a

table.

v

op

is

one

of

the

following

comparison

operators:

–

=

–

<

–

<=

–

>

–

>=

–

<>

v

expression

is

an

expression

that

contains

any

of

the

following

elements:

Chapter

1.

Availability,

scalability,

and

performance

enhancements

9

–

Constants

–

Host

variables

–

Special

registers

–

Session

variables

–

Parameter

markers

–

Columns

If

the

expression

contains

columns,

and

the

other

operands

of

the

predicate

also

contain

columns,

no

two

columns

can

be

in

the

same

table.

v

list

meets

all

of

the

following

conditions:

–

list

contains

only

elements

from

the

following

list:

-

Constants

-

Host

variables

-

Special

registers

-

Session

variables

-

Parameter

markers

–

The

predicate

that

contains

list

is

not

in

the

WHEN

clause

of

a

trigger.

–

For

every

element

in

list,

column=element

must

be

stage

1

and

indexable.

If

the

predicate

is

of

the

form

T1.column

op

T2.column,

the

join

sequence

determines

which

element

is

the

column

and

which

element

is

the

expression.

The

inner

table

in

the

join

sequence

is

considered

to

be

the

column,

and

the

outer

table

of

the

join

sequence

is

considered

to

be

the

expression.

For

plans

or

packages

that

were

created

in

a

previous

release

of

DB2,

you

need

to

rebind

the

plans

or

packages

for

static

SQL

statements

to

take

advantage

of

this

enhancement.

Predicates

with

one

encoding

scheme

Any

of

the

previously-listed

predicates

are

stage

1

and

indexable,

with

the

following

restrictions:

v

A

numeric

predicate

is

stage

1

but

not

indexable

under

the

following

conditions:

–

op

is

<>.

–

The

expression

is

REAL

or

FLOAT,

and

column

is

DECIMAL

with

precision

greater

than

15.

v

A

string

predicate

is

stage

1

but

not

indexable

under

the

following

conditions:

–

op

is

<>.

–

The

expression

is

GRAPHIC

or

VARGRAPHIC,

and

column

is

CHAR

or

VARCHAR.

An

exception

to

this

case

is

when

expression

is

CHAR

or

VARCHAR

and

Unicode

MIXED,

and

op

is

the

equal

(=)

operator.

In

this

case,

the

predicate

is

stage

1

and

indexable.

–

expression

and

column

are

CHAR

or

VARCHAR,

the

length

of

expression

is

greater

than

the

length

of

column,

and

op

is

not

the

equal

(=)

operator.

–

expression

and

column

are

GRAPHIC

or

VARGRAPHIC,

the

length

of

expression

is

greater

than

the

length

of

column,

and

op

is

not

the

equal

(=)

operator.

–

expression

is

CHAR

or

VARCHAR,

column

is

GRAPHIC

or

VARGRAPHIC,

and

op

is

not

the

equal

(=)

operator.

v

A

predicate

in

which

expression

is

DATE,

TIME,

or

TIMESTAMP,

and

column

is

CHAR,

VARCHAR,

GRAPHIC,

or

VARGRAPHIC

is

stage

2.

10

Release

Planning

Guide

Predicates

with

more

than

one

encoding

scheme

Table

4

lists

predicates

that

compare

data

in

different

encoding

schemes

and

tells

whether

those

predicates

are

indexable

or

stage

1.

The

following

terms

are

used:

v

U

is

a

table

in

the

Unicode

encoding

scheme,

A

is

a

table

in

the

ASCII

encoding

scheme,

and

E

is

a

table

in

the

EBCDIC

encoding

scheme.

v

expression

is

any

expression

that

contains

arithmetic

operators,

scalar

functions,

aggregate

functions,

concatenation

operators,

columns,

constants,

host

variables,

special

registers,

or

date

or

time

expressions.

v

C2

col

expr

is

an

expression

that

includes

any

string

column

C2,

as

well

as

any

of

the

any

of

the

following

elements:

–

Constants

–

Host

variables

–

Special

registers

–

Session

variables

–

Parameter

markers

v

op

is

any

of

the

operators

=,

<,

<=,

>,

>=,

or

<>.

v

op-not-equal

is

any

of

the

operators

<,

<=,

>,

>=,

or

<>.

Table

4.

Properties

for

string

comparison

predicates

with

more

than

one

encoding

scheme

Predicate

type

Indexable?

Stage

1?

U.C1

op

A.C2

U.C1

op

E.C2

U.C1

op

E.C2

col

expr

U.C1

op

A.C2

col

expr

Conditions

on

these

predicates:

U

is

the

inner

table.

The

length

of

U.C1

is

greater

than

or

equal

to

the

length

of

the

other

operand.

Y

Y

U.C1

=

A.C2

U.C1

=

E.C2

U.C1

=

E.C2

col

expr

U.C1

=

A.C2

col

expr

Conditions

on

these

predicates:

U

is

the

inner

table.

The

length

of

U.C1

is

less

than

the

length

of

the

other

operand.

Y

Y

U.C1

op-not-equal

A.C2

U.C2

op-not-equal

E.C2

U.C1

op-not-equal

A.C2col

expr

U.C1

op-not-equal

E.C2col

expr

Conditions

on

these

predicates:

U

is

the

inner

table.

The

length

of

U.C1

is

less

than

the

length

of

the

other

operand.

N

Y

A.C1

op

E.C2

A.C1

op

U.C2

A.C1

op

E.C2

col

expr

A.C1

op

U.C2

col

expr

Condition

on

these

predicates:

A

is

the

inner

table.

N

Y

Chapter

1.

Availability,

scalability,

and

performance

enhancements

11

Table

4.

Properties

for

string

comparison

predicates

with

more

than

one

encoding

scheme

(continued)

Predicate

type

Indexable?

Stage

1?

E.C1

op

A.C2

E.C1

op

U.C2

E.C1

op

A.C2

col

expr

E.C1

op

U.C2

col

expr

Condition

on

these

predicates:

E

is

the

inner

table.

N

Y

E.C1

op

A.C2col

expr

U.C1

op

A.C2col

expr

Condition

on

these

predicates:

A

is

the

inner

table.

N

N

A.C1

op

E.C2

col

expr

U.C1

op

E.C2

col

expr

Condition

on

these

predicates:

E

is

the

inner

table.

N

N

A.C1

op

U.C2

col

expr

E.C1

op

U.C2

col

expr

Condition

on

these

predicates:

U

is

the

inner

table.

N

N

Index

enhancements

In

Version

8,

DB2

makes

a

number

of

improvements

to

indexes:

v

“Data-partitioned

secondary

indexes”

v

“Backward

index

scan”

on

page

15

v

“Varying-length

index

keys”

on

page

16

v

“Longer

index

keys”

on

page

16

v

“Distribution

statistics”

on

page

16

v

“Improved

application

availability

for

nonunique

indexes”

on

page

17

Data-partitioned

secondary

indexes

A

data-partitioned

secondary

index

is

a

new

type

of

partitioned

index

for

Version

8

of

DB2.

For

a

data-partitioned

secondary

index,

the

number

of

index

partitions

equals

the

number

of

table

space

partitions.

Index

keys

in

partition

n

of

the

index

reference

only

data

in

partition

n

of

the

table

space.

However,

the

data-partitioned

secondary

index

is

defined

with

different

columns

from

the

columns

that

define

the

table-controlled

partitioning.

Figure

2

on

page

13

illustrates

this

concept.

12

Release

Planning

Guide

In

Figure

2,

table

TRANSACTIONS

and

index

SALES_IX

are

defined

like

this:

CREATE

TABLE

TRANSACTIONS

(TDATE

CHAR(4),

CUSTNO

VARCHAR(4),

SALES

DECIMAL(9,0))

IN

TS1

PARTITION

BY

(TDATE)

(PART

1

ENDING

AT

(’0131’),

PART

2

ENDING

AT

(’0228’),

...

PART

12

ENDING

AT

(’1231’));

CREATE

INDEX

SALES_IX

ON

TRANSACTIONS

(SALES)

PARTITIONED;

Data-partitioned

secondary

index

SALES_IX

is

defined

on

column

SALES

of

the

TRANSACTIONS

table.

However,

the

table

and

the

index

are

physically

partitioned

by

column

TDATE.

The

result

is

that

each

partition

of

table

TRANSACTIONS

has

data

for

only

one

month,

and

each

partition

of

data-partitioned

secondary

index

SALES_IX

has

keys

for

the

SALES

column

values

for

the

corresponding

data

partition

of

TRANSACTIONS.

Advantages

of

data-partitioned

secondary

indexes

for

utilities

This

section

describes

the

advantages

that

data-partitioned

secondary

indexes

can

provide

over

nonpartitioned

secondary

indexes

for

utility

processing.

Partition-level

utility

operations

can

run

on

physical

partitions:

Because

the

keys

for

a

given

data

partition

reside

in

a

single

data-partitioned

secondary

index

partition,

utilities

such

as

CHECK

DATA,

CHECK

INDEX,

COPY,

REBUILD

INDEX,

RECOVER

INDEX,

REPAIR,

and

REPORT

can

operate

on

physical

partitions,

rather

than

logical

partitions.

The

result

can

be

greater

availability.

TDATE CUSTNO SALES

0101 0100 10000
0101 0155 5000

0130 0455 2000
0131 0455 25000

0201 0400 25000
0203 0455 5000

0226 0090 4000
0228 0100 10000

1201 0525 4000
1202 0100 2000

1230 0254 5000
1231 0250 25000

..
.

..
.

..
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

..
.

..
.

2000
4000
5000

10000
25000

2000
4000
5000

10000
25000

2000
4000
5000

10000
25000

0
.
.
.
.

50000

0
.
.
.
.

50000

0
.
.
.
.

50000

Transactions

Jan

Feb

Dec

Data-partitioned
secondary index

Figure

2.

Example

of

a

data-partitioned

secondary

index

Chapter

1.

Availability,

scalability,

and

performance

enhancements

13

Data-partitioned

secondary

indexes

can

make

LOAD

PART

jobs

run

better:

Data-partitioned

secondary

indexes

can

provide

these

advantages

for

running

LOAD

PART:

v

When

you

run

several

LOAD

PART

jobs

on

different

partitions

of

a

partitioned

table

space,

and

the

associated

table

has

a

nonpartitioned

secondary

index

defined

on

it,

contention

can

occur

between

the

jobs

because

partitions

can

share

pages

of

the

index.

However,

if

a

data-partitioned

secondary

index

is

defined

on

the

table

space

instead

of

a

nonpartitioned

secondary

index,

the

partitions

do

not

share

pages

of

the

index,

so

contention

is

reduced.

v

During

parallel

LOAD

PART

execution

with

a

data-partitioned

secondary

index,

LOAD

inserts

the

data-partitioned

secondary

index

keys

into

a

separate

index

structure

for

each

partition,

in

key

order.

This

is

more

efficient

than

key

insertion

for

a

nonpartitioned

secondary

index.

Data-partitioned

secondary

indexes

can

reduce

data

sharing

overhead:

Data

sharing

users

sometimes

do

batch

processing

of

partitions

in

a

partitioned

table

space

in

parallel,

with

each

batch

job

processing

one

or

more

partitions.

This

is

done

to

isolate

work

for

data

sharing

members

to

specific

partitions

of

a

table

space

to

alleviate

contention.

This

technique

can

reduce

intersystem

read-write

interest

in

physical

partitions,

which

reduces

data

sharing

overhead.

However,

if

nonpartitioned

secondary

indexes

are

defined

on

the

table

space,

running

batch

jobs

in

parallel

is

less

effective

because

contention

occurs

on

the

indexes.

Using

data-partitioned

secondary

indexes

instead

can

alleviate

this

problem

because

different

data

sharing

members

can

operate

on

different

index

partitions,

as

well

as

different

table

space

partitions.

Data-partitioned

secondary

indexes

can

eliminate

the

BUILD2

phase

of

REORG

TABLESPACE:

The

BUILD2

phase

corrects

nonpartitioning

indexes

for

REORG

TABLESPACE

PART

SHRLEVEL

REFERENCE

or

CHANGE.

If

you

define

only

partitioned

indexes

on

a

table,

you

do

not

need

the

BUILD2

phase.

Therefore,

if

you

define

a

data-partitioned

secondary

index

on

a

table

that

serves

the

same

purpose

as

a

nonpartitioned

index

served

in

previous

releases

of

DB2,

you

can

avoid

the

BUILD2

phase.

Data-partitioned

secondary

indexes

provide

more

efficient

index

backup

and

recovery:

You

can

copy

and

recover

data-partitioned

secondary

indexes

by

partition.

In

addition,

you

can

rebuild

individual

partitions

of

a

data-partitioned

secondary

index

in

parallel

for

a

faster

rebuild

of

the

entire

index.

Advantages

of

data-partitioned

secondary

indexes

for

queries

A

data-partitioned

secondary

index

can

provide

a

performance

advantage

for

a

query

that

meets

the

following

criteria:

v

The

query

has

predicates

that

contain

columns

that

are

in

the

data-partitioned

secondary

index.

v

The

query

contains

additional

predicates

on

the

partitioning

columns

of

the

table

that

limit

the

result

table

to

a

subset

of

the

partitions

in

the

table.

Example:

Suppose

that,

in

addition

to

the

SALES_IX

data-partitioned

secondary

index,

the

TRANSACTIONS

table

also

has

the

partitioned

index

TDATE_IX,

which

is

defined

like

this:

CREATE

INDEX

TDATE_IX

ON

TRANSACTIONS

(TDATE)

PARTITIONED

CLUSTER;

The

following

query

on

the

TRANSACTIONS

table

can

use

data-partitioned

secondary

index

SALES_IX

for

better

performance:

14

Release

Planning

Guide

SELECT

CUSTNO,

SALES

FROM

TRANSACTIONS

WHERE

TDATE

BETWEEN

'0101'

AND

'0228'

AND

SALES

>=

10000;

This

query

meets

the

criteria

for

making

efficient

use

of

a

data-partitioned

secondary

index:

v

The

predicate

includes

the

SALES

column,

which

is

in

the

data-partitioned

secondary

index.

v

The

predicate

includes

the

partitioning

key

TDATE,

which

limits

the

selected

data

to

only

the

first

two

partitions

of

the

table.

Disadvantages

of

data-partitioned

secondary

indexes

for

queries

A

data-partitioned

secondary

index

is

not

always

appropriate

for

queries.

Among

the

reasons

are:

v

For

queries

that

do

not

include

the

partitioning

columns,

using

a

data-partitioned

secondary

index

means

that

DB2

must

do

an

index

scan

for

each

partition.

v

A

data-partitioned

secondary

index

cannot

be

a

unique

index,

so

it

cannot

be

used

to

enforce

uniqueness

across

partitions.

Backward

index

scan

Version

8

of

DB2

includes

the

capability

for

backward

index

scan.

Backward

index

scan

can

improve

performance

of

a

SELECT

statement

with

an

ORDER

BY

column

DESC

clause

because

it

reduces

the

need

for

DB2

to

do

sorts.

In

addition,

the

backward

index

scan

capability

can

reduce

the

need

for

descending

indexes

because

DB2

can

use

ascending

indexes

to

scan

backward.

DB2

can

use

an

index

for

a

backward

scan

if

the

following

conditions

are

true:

v

The

index

is

defined

on

the

same

columns

as

the

columns

in

the

ORDER

BY

clause,

or

the

index

is

defined

on

the

same

columns

as

the

columns

in

the

ORDER

BY

clause,

followed

by

other

columns.

v

For

each

column

that

is

in

the

ORDER

BY

clause,

the

ordering

that

is

specified

in

the

index

is

the

opposite

of

the

ordering

that

is

specified

in

the

ORDER

BY

clause.

Example:

Suppose

that

index

ACCT_STAT_IX

is

defined

like

this:

CREATE

INDEX

ACCT_STAT_IX

ON

ACCT_STAT

(ACCT_NUM

ASC,

STATUS_DATE

ASC,

STATUS_TIME

DESC);

Now

suppose

that

you

want

to

fetch

rows

using

a

cursor

that

is

declared

like

this:

DECLARE

CURSOR

C1

SENSITIVE

STATIC

SCROLL

FOR

SELECT

STATUS_DATE,

STATUS

FROM

ACCT_STAT

WHERE

ACCT_NUM

=

:HV

ORDER

BY

ACCT_NUM

DESC,

STATUS_DATE

DESC,

STATUS_TIME

ASC;

Because

ACCT_NUM

and

STATUS_DATE

are

in

ascending

order

in

ACCT_STAT_IX

and

descending

order

in

the

ORDER

BY

clause,

and

STATUS_TIME

is

in

descending

order

in

ACCT_STAT_IX

and

ascending

order

in

the

ORDER

BY

clause,

DB2

can

use

ACCT_STAT_IX

to

do

a

backward

scan

without

doing

a

sort.

Chapter

1.

Availability,

scalability,

and

performance

enhancements

15

For

plans

or

packages

that

were

created

in

a

previous

release

of

DB2,

you

need

to

rebind

the

plans

or

packages

for

static

SQL

statements

to

take

advantage

of

this

enhancement.

Varying-length

index

keys

In

previous

releases

of

DB2,

VARCHAR

and

VARGRAPHIC

columns

in

indexes

were

padded

to

the

maximum

lengths

of

the

columns.

In

Version

8

of

DB2,

index

keys

for

varying-length

columns

can

be

varying-length.

Varying-length

keys

have

the

following

advantages:

v

Varying-length

key

columns

usually

result

in

smaller

indexes

because

the

index

keys

use

less

than

the

maximum

number

of

bytes

that

are

defined

for

the

columns.

v

Varying-length

keys

can

use

index-only

access

to

the

data.

Fixed-length

keys

for

varying-length

columns

cannot

do

this.

v

Other

DB2

UDB

family

members

have

varying-length

index

keys,

so

providing

this

capability

increases

compatibility

with

the

DB2

UDB

family.

Indexes

in

which

VARCHAR

or

VARGRAPHIC

columns

are

padded

to

their

maximum

length

are

PADDED

indexes.

Indexes

that

are

not

padded

to

their

maximum

length

are

NOT

PADDED

indexes.

You

can

specify

whether

an

index

is

PADDED

or

NOT

PADDED

by

specifying

the

PADDED

or

NOT

PADDED

keyword

in

CREATE

INDEX

or

ALTER

index.

You

can

also

set

the

default

index

padding

mode

through

the

new

DEFIXPD

subsystem

parameter.

Indexes

that

were

created

in

previous

releases

of

DB2

are

PADDED.

If

you

alter

an

index

that

contains

VARCHAR

or

VARGRAPHIC

columns

from

PADDED

to

NOT

PADDED

(or

from

PADDED

to

NOT

PADDED),

DB2

places

that

index

in

a

restricted

REBUILD-pending

(RBDP)

state.

You

need

to

run

the

REBUILD

INDEX,

REORG

TABLESPACE,

or

LOAD

REPLACE

utility

to

reset

the

RBDP

state.

Longer

index

keys

Version

8

of

DB2

increases

the

maximum

length

of

an

index

key

from

255

bytes

to

2000

bytes.

The

increased

key

length

has

the

following

advantages:

v

More

compatibility

with

the

DB2

UDB

family

v

Simplified

conversion

of

vendor

applications

from

EBCDIC

or

ASCII

to

Unicode

For

example,

a

table

column

that

is

CHAR(10)

might

be

represented

as

GRAPHIC(20)

in

Unicode.

An

index

on

that

column

also

requires

twice

as

many

bytes.

In

cases

like

this,

the

previous

maximum

key

length

might

be

inadequate.

Distribution

statistics

To

run

efficiently,

data

warehousing,

data

mining,

and

ad

hoc

query

applications

need

statistics

on

columns

that

are

in

predicates,

regardless

of

whether

they

are

leading

columns

of

an

index.

In

addition,

distribution

statistics

on

non-leading

index

columns

or

non-indexed

columns

let

DB2

make

better

access

path

decisions

when

data

is

asymmetrically

distributed.

In

Version

8

of

DB2,

you

can

use

RUNSTATS

to

collect

the

following

additional

statistics:

v

Frequency

distributions

for

non-indexed

columns

or

groups

of

columns

v

Cardinality

values

for

groups

of

non-indexed

columns

16

Release

Planning

Guide

v

Least-frequently

occurring

values,

most-frequently

occurring

values,

or

both,

for

any

group

of

columns

Example:

Collecting

cardinality

statistics

for

a

column

group:

Run

RUNSTATS

with

the

COLGROUP

parameter

to

collect

cardinality

statistics

on

a

column

group

that

consists

of

columns

EDLEVEL,

JOB,

and

SALARY

of

the

employee

table.

RUNSTATS

TABLESPACE

DSN8D81A.DSN8S81E

TABLE(DSN8810.EMP)

COLGROUP(EDLEVEL,

JOB,

SALARY)

Example:

Collecting

most-frequent

and

least-frequent

value

statistics

for

a

column

group:

Run

RUNSTATS

with

the

COLGROUP

and

FREQVAL

BOTH

parameters

to

collect

cardinality

statistics

and

statistics

on

the

15

most-frequent

and

least-frequent

values

for

a

column

group

that

consists

of

columns

EDLEVEL,

JOB,

and

SALARY

of

the

employee

table.

RUNSTATS

TABLESPACE

DSN8D81A.DSN8S81E

TABLE(DSN8810.EMP)

COLGROUP(EDLEVEL,

JOB,

SALARY)

FREQVAL

COUNT

15

BOTH

Improved

application

availability

for

nonunique

indexes

For

improved

application

availability,

INSERT,

UPDATE,

and

DELETE

operations

can

occur

on

a

table

with

a

nonunique

index

that

is

in

REBUILD-pending

status.

Reoptimizing

the

access

path

at

run

time

Version

8

of

DB2

UDB

for

z/OS

introduces

the

following

bind

options

for

reoptimizing

the

access

path

at

run

time:

REOPT(ALWAYS)

DB2

determines

and

caches

the

access

path

for

any

SQL

statement

with

variable

values

each

time

the

statement

is

run.

REOPT(ALWAYS)

replaces

the

REOPT(VARS)

option

from

previous

versions

of

DB2.

REOPT(ONCE)

DB2

determines

and

caches

the

access

path

for

any

SQL

statement

with

variable

values

only

once

at

run

time,

using

the

first

set

of

input

variable

values.

If

the

statement

is

run

multiple

times,

DB2

does

not

reoptimize

each

time.

The

REOPT(ONCE)

bind

option

works

only

with

dynamic

SQL

statements,

and

it

allows

DB2

to

store

the

access

path

for

dynamic

SQL

statements

in

the

dynamic

statement

cache.

REOPT(NONE)

DB2

determines

the

access

path

at

bind

time,

and

does

not

change

the

access

path

at

run

time.

Performance

enhancements

for

star

join

The

information

under

this

heading,

up

to

“Cost-based

parallel

sorting”

on

page

19,

is

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information,

as

defined

in

“Notices”

on

page

139.

Chapter

1.

Availability,

scalability,

and

performance

enhancements

17

In

Version

8,

DB2

UDB

for

z/OS

introduces

three

performance

enhancements

for

star

joins:

sparse

indexing1,

a

dedicated

virtual

memory

pool,

and

avoidance

of

snowflake

materialization.

This

section

discusses

sparse

indexing

and

the

dedicated

virtual

memory

pool.

Sparse

indexing:

Sparse

indexing

for

star

joins

can

significantly

improve

the

performance

of

data

warehousing

applications.

Because

many

data

warehousing

applications

rely

on

the

highly

normalized

structure

of

star

schema

design,

these

applications

can

have

a

large

number

of

snowflake

work

files.

Before

Version

8,

DB2

could

not

use

indexes

for

snowflake

work

files.

Instead

of

using

indexes,

DB2

tended

to

join

snowflake

work

files

by

using

a

costly

sort-merge

join

or

nested-loop

join

with

table

space

scan

on

snowflake

workfiles.

In

Version

8,

sparse

indexes

for

star

joins

provide

DB2

with

more

efficient

access

paths.

DB2

Version

8

can

choose

a

sparse-index

access

path

if

an

equal

join

predicate

exists

between

the

fact

table

and

each

dimension

table

(snowflake

composite).

Sparse

indexing

for

star

joins

improves

performance

in

data

warehousing

applications

by

enabling

the

following

efficient

actions:

v

Avoiding

the

sort-merge

join

or

nested-loop

join

with

table

space

scan

on

snowflake

workfiles.

The

sparse-index

access

path

can

be

a

particularly

important

performance

enhancement

when

it

eliminates

single

or

multiple

large

composite

sorts.

The

sparse

index

join

method

can

also

reduce

parallelism

overhead.

v

Expediting

the

skipping

of

unqualified

keys.

The

increased

efficiency

results

in

a

significant

I/O

reduction.

The

CPU

cost

reduction

only

becomes

significant

for

a

large

sort

or

for

multiple

sorts.

v

Increasing

the

exploitation

of

parallelism.

When

DB2

chooses

the

sparse-index

access

path,

the

ACCESS_TYPE

column

in

the

PLAN_TABLE

contains

the

character

T

for

the

work

file.

Dedicated

virtual

memory

pool:

In

DB2

Version

8,

you

can

create

a

dedicated

virtual

memory

pool

for

star

join

operations.

When

the

virtual

memory

pool

is

enabled

for

star

joins,

DB2

caches

data

from

workfiles

that

are

used

by

star

join

queries.

A

virtual

memory

pool

dedicated

to

star

join

operations

has

the

following

advantages:

v

Immediate

data

availability.

During

a

star

join

operation,

workfiles

might

be

scanned

many

times.

If

the

workfile

data

is

cached

in

the

dedicated

virtual

memory

pool,

that

data

is

immediately

available

for

join

operations.

v

Reduced

buffer

pool

contention.

Because

the

dedicated

virtual

memory

pool

caches

data

separately

from

the

workfile

buffer

pool,

contention

with

the

buffer

pool

is

reduced.

Reduced

contention

improves

performance

particularly

when

sort

operations

are

performed

concurrently.

For

information

about

determining

the

size

of

your

dedicated

virtual

memory

pool

and

implementing

your

dedicated

virtual

memory

pool,

see

DB2

Administration

Guide.

1. APAR

PQ614588

adds

support

for

sparse

indexing

for

star

joins

in

Version

7

of

DB2

UDB

for

z/OS

and

OS/390.

18

Release

Planning

Guide

Cost-based

parallel

sorting

Before

Version

8

of

DB2,

the

number

of

tables

in

a

sort

determined

whether

DB2

used

a

parallel

sort.

Single-table

sorts

used

parallel

sorting;

multiple-table

sorts

did

not.

In

Version

8,

DB2

UDB

for

z/OS

introduces

cost-based

parallel

sorting.

In

Version

8,

DB2

determines

whether

to

use

a

parallel

or

non-parallel

sort

based

on

cost

considerations,

including

sort

data

size

and

parallel

degrees.

You

can

determine

whether

a

sort

is

executed

in

parallel

by

using

EXPLAIN.

Visual

Explain

enhancements

Visual

Explain

for

DB2

UDB

for

z/OS

is

a

workstation

tool

that

provides

graphical

depictions

of

the

access

plans

that

DB2

chooses

for

your

SQL

queries

and

statements.

Such

graphs

eliminate

the

need

to

manually

interpret

plan

table

output.

The

relationships

between

database

objects,

such

as

tables

and

indexes,

and

operations,

such

as

table

space

scans

and

sorts,

are

clearly

illustrated

in

the

graphs.

You

can

choose

to

have

the

attributes

for

these

objects

and

operations

displayed

next

to

the

graph.

Figure

3

shows

an

example

of

such

a

graph.

In

this

graph,

all

of

the

attributes

for

the

sort

operation

are

displayed

on

the

left,

because

the

SORT

node

is

highlighted

on

the

right.

Notice

the

navigation

tree

above

the

attribute

list.

You

can

use

this

tree

to

link

to

related

objects.

You

can

also

use

Visual

Explain

to

generate

customized

reports

on

explainable

statements,

to

view

subsystem

parameters,

and

to

view

data

from

the

plan

table,

the

statement

table,

and

the

function

table.

This

release

of

Visual

Explain

also

includes

the

following

enhancements:

v

More

context-sensitive

tuning

suggestions

are

provided.

You

can

link

to

these

suggestions

directly

from

the

graph.

Figure

3.

Example

of

an

access

plan

graph

in

Visual

Explain

Chapter

1.

Availability,

scalability,

and

performance

enhancements

19

v

You

can

link

from

the

graph

to

attributes

and

descriptions

for

each

object

or

operation

that

is

used

in

the

access

plan.

v

Each

graph

can

display

either

one

or

multiple

query

blocks,

so

that

you

can

view

the

entire

access

plan

in

one

graph.

In

previous

versions

of

Visual

Explain,

each

graph

displayed

only

one

query

block.

v

You

can

use

Visual

Explain

to

catalog

and

uncatalog

databases

on

your

local

machine.

v

You

can

use

Visual

Explain

to

run

a

query

and

view

the

formatted

results.

64-bit

virtual

storage

Version

8

of

DB2

for

z/OS,

through

deep

integration

with

the

IBM

zSeries®

800,

900,

990,

or

equivalent,

now

supports

64-bit

virtual

storage.

By

exploiting

64-bit

virtual

storage,

DB2

delivers

performance,

scalability,

and

availability

improvements.

DB2

previously

supported

31-bit

virtual

storage,

which

afforded

DB2

a

2-GB

address

space.

By

supporting

64-bit

virtual

storage,

DB2

UDB

for

z/OS

now

supports

a

16-exabyte

address

space.

The

16-exabyte

address

space

is

8

billion

times

larger

than

the

2-GB

address

space.

The

introduction

of

64-bit

virtual

storage

brings

a

reorganization

of

the

address

space,

as

shown

in

Figure

4.

The

new

virtual

storage

area,

or

user-private

area,

above

the

former

2-GB

limit

is

now

referred

to

as

″above

the

bar.″

The

virtual

storage

above

the

2-GB

bar

is

reserved

for

data

only.

Programs

continue

to

be

loaded

below

the

bar

and

run

in

the

first

2

GB

of

the

address

space.

The

space

below

the

16

MB

″line″

remains

essentially

unchanged.

With

64-bit

virtual

storage,

the

entities

that

move

above

the

bar

include:

Figure

4.

64-bit

address

space

memory

map

20

Release

Planning

Guide

v

Buffer

pools

v

DBDs

and

OBDs

for

the

EDM

pool

v

Sort

pools

v

RIDLISTs

for

the

RID

pool

v

Compression

dictionaries

v

IRLM

locks

The

following

sections

describe

the

performance

advantages

of

moving

these

entities

above

the

bar:

v

“Example

of

2-GB

virtual

storage

constraint”

v

“Advantages

of

64-bit

virtual

storage”

Example

of

2-GB

virtual

storage

constraint

To

understand

the

impact

of

moving

these

entities

above

the

bar,

consider

the

following

example.

You

are

running

Version

7

of

DB2

for

z/OS

and

OS/390,

and

DB2

performance

is

slow

because

of

virtual

storage

limitations.

You

have

allocated

1.9

GB

of

the

address

space

in

DBM1.

As

your

subsystem

grows,

you

need

to

increase

buffer

pool

size

from

600

MB

to

800

MB

to

improve

the

performance

of

some

critical

queries.

However,

you

are

near

your

virtual

storage

limit.

If

you

increase

the

buffer

pool

size

to

800

MB,

you

will

exceed

the

2-GB

limit,

and

DB2

will

abend.

To

remain

within

the

2-GB

constraint,

you

must

choose

between

one

performance

liability

or

another.

You

might

consider

the

following

choices:

v

Decrease

the

size

of

other

entities

in

the

address

space

to

create

room

for

larger

buffer

pools.

You

cannot,

however,

decrease

the

size

of

other

entities

in

the

address

space

without

adversely

affecting

performance

in

another

area.

For

example,

if

you

decrease

the

space

for

user

thread

storage,

DB2

can

process

fewer

threads

concurrently,

thus

impeding

performance.

v

Employ

data

spaces

or

hiperpools

for

virtual

constraint

relief.

Prior

to

Version

8

of

DB2

UDB

for

z/OS,

data

spaces

and

hiperpools

provided

some

additional

storage

space

when

buffer

pool

storage

space

was

limited.

However,

hiperpools

and

data

spaces

introduce

operational

overhead

and

provide

limited

virtual

constraint

relief.

v

Use

multiple

2-GB

address

spaces.

By

using

data

sharing,

you

can

incrementally

increase

virtual

storage.

However,

achieving

scalability

through

data

sharing

is

not

as

effective

as

scaling

with

a

single

large

virtual

storage

space.

Although

this

is

not

an

exhaustive

list

of

strategies,

it

shows

the

difficult

choices

that

are

associated

with

a

large

subsystem

that

runs

in

31-bit

mode.

In

contrast,

Version

8

of

DB2

UDB

for

z/OS

moves

your

buffer

pools

and

other

entities

above

the

bar.

By

using

the

large

space

above

the

bar,

DB2

eliminates

many

storage

difficulties.

Advantages

of

64-bit

virtual

storage

In

Version

8,

DB2

UDB

for

z/OS

support

for

64-bit

virtual

storage

offers

the

following

performance

advantages

over

previous

versions:

v

Improved

real

and

virtual

storage

constraint

relief:

As

shown

in

the

preceding

example,

the

2-GB

virtual

address

space

was

a

leading

performance

inhibitor.

For

large

applications,

the

amount

of

space

under

the

bar

was

not

sufficient

to

accommodate

the

competing

storage

requirements,

including

buffer

pools.

With

64-bit

addressing,

DB2

provides

a

virtual

address

space

that

should

not

be

a

performance

constraint

for

some

time.

v

Larger

buffer

pools:

Theoretically,

the

new

maximum

size

for

a

single

buffer

pool

or

for

the

sum

of

all

active

buffer

pools

is

1

TB.

However,

in

the

64-bit

virtual

Chapter

1.

Availability,

scalability,

and

performance

enhancements

21

storage

environment,

real

storage

becomes

the

effective

limit

for

buffer

pool

size.

You

should

not

allocate

more

buffer

pool

space

than

real

storage

can

support.

v

Simplified

virtual

storage

management.

You

no

longer

need

to

manage

hiperpools

and

data

spaces

because

you

no

longer

need

to

use

them.

In

fact,

hiperpools

and

data

spaces

are

no

longer

supported

in

Version

8.

Instead

of

relying

on

complex

and

overhead-intensive

hiperpools

and

data

spaces,

DB2

can

use

large

buffer

pools.

Because

64-bit

addressing

allows

you

to

increase

buffer

pool

size,

you

do

not

need

to

monitor

or

control

buffer

pool

storage

as

tightly.

v

Increased

capacity

and

throughput:

In

Version

8,

DB2

UDB

for

z/OS

supports

64-bit

addressing,

which

allows

a

larger

number

of

concurrent

users

and

concurrent

transactions.

With

64-bit

virtual

storage,

DB2

can

keep

significantly

more

data

in

its

buffer

pools.

By

increasing

the

data

capacity

of

buffer

pools,

you

can

significantly

decrease

wait

time

for

I/O

and

decrease

the

likelihood

of

queuing.

Additionally,

you

can

allocate

more

space

for

working

storage

and

increase

the

number

of

threads

that

DB2

can

process.

In

a

typical

scenario,

the

increase

in

address

space

could

provide

10

times

more

space

for

working

storage

below

the

bar.

v

Improved

scalability:

You

no

longer

need

multiple

DB2

subsystems

to

go

beyond

the

2-GB

address

space

limit.

Because

DB2

UDB

for

z/OS

offers

64-bit

virtual

storage

in

Version

8,

you

can

run

workloads

that

previously

required

multiple

subsystems

in

a

single

subsystem.

v

Increased

availability:

DB2

UDB

for

z/OS

avoids

virtual

storage

abends

in

Version

8.

Because

the

address

space

is

much

larger,

you

are

much

less

likely

to

operate

near

address

space

limits.

Therefore,

you

are

much

less

likely

to

go

over

the

limit

and

abend.

With

64-bit

virtual

storage,

you

can

run

your

current

applications

unchanged.

The

buffer

pool

names

(BP0,

BP1,

and

so

forth)

do

not

change.

The

page

size

options

remain

4

KB,

8

KB,

16

KB,

and

32

KB.

When

you

migrate

to

Version

8

of

DB2

UDB

for

z/OS,

DB2

determines

the

buffer

pool

size

based

on

the

following

equation:

VPSIZE

+

HPIZE

=

BPSIZE

Where

VPSIZE

is

the

old

virtual

pool

size,

HPSIZE

is

the

old

virtual

pool

size,

and

BPSIZE

is

the

new

buffer

pool

size.

When

you

install

DB2

UDB

for

z/OS

as

a

new

Version

8

subsystem,

you

can

specify

the

buffer

pool

sizes

during

installation.

Data

sharing

enhancements

The

following

data

sharing

enhancements

can

improve

your

performance

and

availability:

v

“Improved

LPL

recovery”

v

“Reduction

of

lock

propagation

in

the

coupling

facility”

on

page

23

v

“Reduction

of

overhead

costs

for

data

sharing

workloads”

on

page

23

v

“Improved

index

split

performance

for

data

sharing”

on

page

23

v

“Resolution

of

indoubt

units

of

recovery

in

restart

light”

on

page

24

Improved

LPL

recovery

With

Version

8

of

DB2,

only

pages

in

the

logical

page

list

(LPL)

are

locked

as

part

of

the

recovery

process,

leaving

the

remaining

pages

in

the

page

set

or

partition

accessible

to

DB2

applications

while

LPL

recovery

is

in

progress.

This

improves

system

performance

and

enhances

data

availability.

Prior

to

Version

8,

you

needed

to

manually

recover

pages

that

DB2

put

into

the

LPL.

In

Version

8,

DB2

provides

support

for

automatic

recovery

of

LPL

pages.

22

Release

Planning

Guide

When

pages

are

added

to

the

LPL,

DB2

issues

message

DSNB250E,

which

is

enhanced

to

indicate

the

reason

the

pages

are

added

to

the

LPL.

DB2

then

attempts

automatic

recovery,

except

in

the

following

situations:

v

Disk

I/O

errors

v

During

DB2

restart

or

end_restart

times

v

Group

buffer

pool

structure

failures

v

100%

loss

of

connection

to

the

group

buffer

pool

If

automatic-LPL

recovery

completes

successfully,

DB2

deletes

the

pages

from

the

LPL

and

issues

message

DSNI021I,

which

indicates

completion.

Reduction

of

lock

propagation

in

the

coupling

facility

Version

8

contains

several

locking

enhancements

that

reduce

lock

propagation

in

the

coupling

facility:

v

The

IX

and

IS

mode

parent

L-locks

of

different

members

no

longer

encounter

global

lock

contention

because

both

locks

are

now

treated

as

S-type

locks

in

XES

and

in

the

coupling

facility.

The

reduction

of

global

lock

contention

improves

performance,

especially

for

plans

and

packages

that

are

bound

with

RELEASE(COMMIT),

and

greatly

reduces

the

need

to

use

the

RELEASE(DEALLOCATE)

bind

option

in

conjunction

with

thread

reuse

to

obtain

good

performance.

v

DB2

now

uses

the

parent

P-lock

(at

the

page

set

or

partition

level)

instead

of

the

parent

L-lock

to

determine

whether

it

is

necessary

to

propagate

child

locks

to

the

coupling

facility.

Use

of

the

parent

P-lock

increases

availability

because

retained

parent

L-locks

no

longer

block

access

to

an

entire

table

space

or

partition

when

a

member

fails.

Use

of

the

parent

P-lock

also

improves

performance

because

child

lock

propagation

is

not

an

issue

as

inter-DB2

interest

changes

on

parent

L-locks.

These

enhancements

are

available

only

in

new-function

mode,

and

only

after

all

members

of

the

data

sharing

group

have

been

stopped

without

error

and

restarted.

Reduction

of

overhead

costs

for

data

sharing

workloads

Version

8

makes

use

of

two

new

batch

processes

to

reduce

the

amount

of

traffic

to

and

from

the

coupling

facility

when

you

are

running

z/OS

Version

1

Release

4

and

coupling

facility

level

12.

DB2

can

now

write

and

register

multiple

pages

to

a

group

buffer

pool

when

you

use

the

new

z/OS

Write

And

Register

Multiple

(WARM)

command.

And

when

you

use

a

single

Read

For

CastOut

Multiple

(RFCOM)

command,

DB2

can

read

multiple

pages

from

a

group

buffer

pool

for

castout

processing.

You

can

expect

the

greatest

performance

benefits

for

data

sharing

workloads

that

update

a

large

number

of

pages

belonging

to

group

buffer

pool

dependent

objects.

Improved

index

split

performance

for

data

sharing

Version

8

greatly

reduces

the

number

of

log

and

coupling

facility

operations

that

are

associated

with

an

index

page

split.

In

previous

versions

of

DB2,

index

page

splits

require

up

to

five

separate

writes

to

the

group

buffer

pool

and

emptying

of

the

DB2

log

buffers.

With

Version

8,

index

page

splits

are

optimized,

improving

performance

for

high-volume

INSERT

OLTP

workloads

and

other

operations.

Chapter

1.

Availability,

scalability,

and

performance

enhancements

23

Resolution

of

indoubt

units

of

recovery

in

restart

light

In

versions

of

DB2

before

Version

8,

starting

a

DB2

member

in

LIGHT(YES)

mode

(restart

light)

removes

retained

locks

with

minimal

disruption

in

the

event

of

a

system

failure.

Restart

light

is

improved

in

Version

8.

If

indoubt

units

of

recovery

(URs)

exist

at

the

end

of

restart

recovery,

DB2

remains

running

so

that

the

indoubt

URs

can

be

resolved.

After

all

the

indoubt

URs

are

resolved,

the

DB2

member

that

is

running

in

LIGHT(YES)

mode

shuts

down

and

can

be

restarted

normally.

Improved

space

allocation

Version

8

of

DB2

introduces

improved

default

primary

and

secondary

space

allocations

for

DB2-managed

data

sets.

Beginning

in

Version

8,

the

DB2-supplied

default

values

for

table

space

and

index

space

allocation

size

are

increased.

Default

allocations

are

in

cylinders

now,

which

can

result

in

better

performance

of

mass

inserts,

prefetch

operations,

and

the

LOAD,

REORG,

and

RECOVER

utilities.

Additionally,

by

improving

the

method

for

allocating

secondary

extents,

the

likelihood

of

out-of-extents

errors

is

decreased.

The

objectives

of

the

Version

8

space

allocation

enhancements

are:

v

To

improve

performance,

increase

data

availability,

and

limit

the

occurrence

of

outages

caused

by

lack

of

space

v

To

prevent

a

DB2-managed

data

set

from

reaching

the

VSAM

maximum

extent

limit

of

255

before

it

reaches

the

maximum

page

set

size

v

To

eliminate

the

need

to

specify

primary

and

secondary

quantity

values

for

DB2-managed

data

sets

when

creating

or

modifying

table

spaces

and

indexes

The

new

space

allocation

methods

affect

both

new

DB2-managed

data

sets

and

existing

data

sets

that

require

additional

extents.

See

“Migration

considerations”

on

page

67

for

an

understanding

of

how

space

allocation

changes

for

DB2-managed

data

sets

affect

your

site

New

default

primary

space

allocation

value

By

default,

DB2

now

uses

the

following

values

for

primary

space

allocation

of

DB2-managed

data

sets:

v

1

cylinder

(720

KB)

for

non-LOB

table

spaces

v

10

cylinders

for

LOB

table

spaces

v

1

cylinder

for

indexes

To

indicate

that

you

want

DB2

to

use

the

default

values

for

primary

space

allocation

of

table

spaces

and

indexes,

specify

a

value

of

0

for

the

following

parameters

on

installation

panel

DSNTIP7,

as

shown

in

Table

5.

Table

5.

DSNTIP7

parameter

values

for

managing

space

allocations

Installation

panel

DSNTIP7

parameter

Recommended

value

TABLE

SPACE

ALLOCATION

0

INDEX

SPACE

ALLOCATION

0

Thereafter:

v

On

CREATE

TABLESPACE

and

CREATE

INDEX

statements,

do

not

specify

a

value

for

the

PRIQTY

option.

v

On

ALTER

TABLESPACE

and

ALTER

INDEX

statements,

specify

a

value

of

-1

for

the

PRIQTY

option.

24

Release

Planning

Guide

DB2

stores

a

value

of

-1

in

the

PQTY

column

of

either

the

SYSIBM.SYSTABLEPART

or

SYSIBM.SYSINDEXPART

table

when

it

uses

the

default

value

for

primary

space

allocation.

Primary

space

allocation

quantities

do

not

exceed

DSSIZE

or

PIECESIZE

clause

values.

For

those

situations

in

which

the

default

primary

quantity

value

is

not

large

enough,

you

can

specify

a

larger

value

for

the

PRIQTY

option

when

creating

or

altering

table

spaces

and

indexes.

DB2

always

uses

a

PRIQTY

value

if

one

is

explicitly

specified.

If

you

want

to

prevent

DB2

from

using

the

default

value

for

primary

space

allocation

of

table

spaces

and

indexes,

specify

a

non-zero

value

for

the

TABLE

SPACE

ALLOCATION

and

INDEX

SPACE

ALLOCATION

parameters

on

installation

panel

DSNTIP7.

New

sliding

scale

for

secondary

space

allocation

DB2

can

now

calculate

the

amount

of

space

to

allocate

to

secondary

extents

by

using

a

sliding

scale

algorithm.

The

first

127

extents

are

allocated

in

increasing

size,

and

the

remaining

extents

are

allocated

based

on

the

initial

size

of

the

data

set:

v

For

32

GB

and

64

GB

data

sets,

each

extent

is

allocated

with

a

size

of

559

cylinders.

v

For

data

sets

that

range

in

size

from

less

than

1

GB

to

16

GB,

each

extent

is

allocated

with

a

size

of

127

cylinders.

This

approach

has

several

advantages:

v

It

minimizes

the

potential

for

wasted

space

by

increasing

the

size

of

secondary

extents

slowly

at

first.

v

It

prevents

very

large

allocations

for

the

remaining

extents,

which

would

likely

cause

fragmentation.

v

It

does

not

require

users

to

specify

SECQTY

values

when

creating

and

altering

table

spaces

and

index

spaces.

v

It

is

theoretically

possible

to

always

reach

maximum

data

set

size

without

running

out

of

secondary

extents.

DB2

stores

a

value

of

-1

in

the

SQTY

column

of

the

SYSIBM.SYSTABLEPART

or

SYSIBM.SYSINDEXPART

table

when

it

uses

the

default

value

for

secondary

space

allocation.

Maximum

allocation

is

shown

in

Table

6.

This

table

assumes

that

the

initial

extent

that

is

allocated

is

one

cylinder

in

size.

Table

6.

Maximum

allocation

of

secondary

extents

Maximum

data

set

size,

in

GB

Maximum

allocation,

in

cylinders

Extents

required

to

reach

full

size

1

127

54

2

127

75

4

127

107

8

127

154

16

127

246

32

559

172

Chapter

1.

Availability,

scalability,

and

performance

enhancements

25

Table

6.

Maximum

allocation

of

secondary

extents

(continued)

Maximum

data

set

size,

in

GB

Maximum

allocation,

in

cylinders

Extents

required

to

reach

full

size

64

559

255

DB2

uses

a

sliding

scale

for

secondary

extent

allocations

of

table

spaces

and

indexes

when:

v

You

do

not

specify

a

value

for

the

SECQTY

option

of

a

CREATE

TABLESPACE

or

CREATE

INDEX

statement.

v

You

specify

a

value

of

-1

for

the

SECQTY

option

of

an

ALTER

TABLESPACE

or

ALTER

INDEX

statement

Otherwise,

DB2

always

uses

a

SECQTY

value

for

secondary

extent

allocations,

if

one

is

explicitly

specified.

Exception:

For

those

situations

in

which

the

calculated

secondary

quantity

value

is

not

large

enough,

you

can

specify

a

larger

value

for

the

SECQTY

option

when

creating

or

altering

table

spaces

and

indexes.

However,

in

the

case

where

the

OPTIMIZE

EXTENT

SIZING

parameter

is

set

to

YES

and

you

specify

a

value

for

the

SECQTY

option,

DB2

uses

the

value

of

the

SECQTY

option

to

allocate

a

secondary

extent

only

if

the

value

of

the

option

is

larger

than

the

value

that

is

derived

from

the

sliding

scale

algorithm.

The

calculation

that

DB2

uses

to

make

this

determination

is:

Actual

secondary

extent

size

=

max

(

min

(

ss_extent,

MaxAlloc

),

SECQTY

)

In

this

calculation,

ss_extent

represents

the

value

that

is

derived

from

the

sliding

scale

algorithm,

and

MaxAlloc

is

either

127

or

559

cylinders,

depending

on

the

maximum

potential

data

set

size.

This

approach

allows

you

to

reach

the

maximum

page

set

size

faster.

Otherwise,

DB2

uses

the

value

that

is

derived

from

the

sliding

scale

algorithm.

If

you

do

not

provide

a

value

for

the

secondary

space

allocation

quantity,

DB2

calculates

a

secondary

space

allocation

value

equal

to

10%

of

the

primary

space

allocation

value

and

subject

to

the

following

conditions:

v

The

value

cannot

be

less

than

127

cylinders

for

data

sets

that

range

in

initial

size

from

less

than

1

GB

to

16

GB,

and

cannot

be

less

than

559

cylinders

for

32

GB

and

64

GB

data

sets.

v

The

value

cannot

be

more

than

the

value

that

is

derived

from

the

sliding

scale

algorithm.

The

calculation

that

DB2

uses

for

the

secondary

space

allocation

value

is:

Actual

secondary

extent

size

=

max

(

0.1

×

PRIQTY,

min

(

ss_extent,

MaxAlloc

)

)

In

this

calculation,

ss_extent

represents

the

value

that

is

derived

from

the

sliding

scale

algorithm,

and

MaxAlloc

is

either

127

or

559

cylinders,

depending

on

the

maximum

potential

data

set

size.

Secondary

space

allocation

quantities

do

not

exceed

DSSIZE

or

PIECESIZE

clause

values.

If

you

do

not

want

DB2

to

extend

a

data

set,

you

can

specify

a

value

of

0

for

the

SECQTY

option.

Specifying

0

is

a

useful

way

to

prevent

DSNDB07

work

files

from

growing

out

of

proportion.

26

Release

Planning

Guide

If

you

want

to

prevent

DB2

from

using

the

sliding

scale

for

secondary

extent

allocations

of

table

spaces

and

indexes,

specify

a

value

of

NO

for

the

OPTIMIZE

EXTENT

SIZING

parameter

on

installation

panel

DSNTIP7.

Secondary

space

allocation

quantities

do

not

exceed

DSSIZE

or

PIECESIZE

clause

values.

More

options

for

data

security

in

TCP/IP

networks

Version

8

of

DB2

introduces

two

new

TCP/IP

security

mechanisms:

v

A

more

secure

mechanism

for

verifying

a

remote

client's

port

of

entry

v

Improved

encrypted

security

mechanisms

More

secure

mechanism

for

verifying

a

remote

client's

port

of

entry

When

a

remote

TCP/IP

client

attempts

to

establish

a

connection

to

a

DB2

UDB

for

z/OS

server,

the

user

ID

that

is

associated

with

the

incoming

request

is

subjected

to

RACF

verification.

Currently,

if

the

RACF

APPCPORT

class

is

active,

RACF

also

verifies

that

the

user

ID

is

authorized

to

access

z/OS

from

the

client’s

port

of

entry.

Beginning

in

this

release,

DB2

can

provide

a

SERVAUTH

profile

name

to

RACF

when

verifying

the

port

of

entry

of

a

user

ID.

This

improved

security

mechanism

is

dependent

on

the

use

of

the

following

features

in

Version

1

Release

5

of

z/OS:

v

The

NETACCESS

statement

Use

the

NETACCESS

statement

to

configure

network

access

control

use

of

z/OS

Communications

Server.

This

allows

DB2

to

restrict

the

access

of

particular

users

from

specific

IP

networks.

See

z/OS

Communications

Server:

IP

Configuration

Guide

for

complete

information

about

using

the

NETACCESS

statement.

v

The

SERVAUTH

class

resource

Use

the

SERVAUTH

class

resource

in

RACF

to

protect

the

network

security

zones,

as

defined

by

the

NETACCESS

statement.

See

z/OS

Security

Server

RACF

Security

Administrator's

Guide

for

complete

information

about

using

the

SERVAUTH

class

resource.

In

prior

z/OS

releases,

the

port

of

entry

that

was

used

in

the

RACROUTE

VERIFY

call

was

the

literal

string

'TCPIP'.

Beginning

in

Version

1

Release

5

of

z/OS,

if

TCP/IP

network

access

control

is

configured

and

the

RACF

SERVAUTH

class

is

active,

the

port

of

entry

that

is

used

in

the

RACROUTE

VERIFY

call

is

the

security

zone

name

of

the

port

of

entry

for

the

remote

client.

See

DB2

Administration

Guide

for

detailed

instructions

on

using

the

RACF

SERVAUTH

class

and

TCP/IP

network

access

control.

Improved

encrypted

security

mechanisms

New

Distributed

Relational

Database

Architecture™

(DRDA®)

security

options

provide

the

following

data

security

improvements

in

distributed

computing

environments:

v

DB2

UDB

for

z/OS

servers

can

provide

secure,

high-speed

data

encryption

and

decryption.

v

DB2

UDB

for

z/OS

requesters

now

have

the

option

of

encrypting

user

IDs

and,

optionally,

passwords

when

they

connect

to

remote

servers.

Requesters

can

also

encrypt

security-sensitive

data

when

communicating

with

servers,

so

that

the

data

is

secure

when

traveling

over

the

network.

Chapter

1.

Availability,

scalability,

and

performance

enhancements

27

By

default,

encrypted

security

mechanisms

use

the

z/OS

integrated

cryptographic

service

facility

(ICSF).

ICSF

is

a

software

element

of

z/OS

that

works

with

a

required

hardware

cryptographic

feature

and

RACF

(or

equivalent)

to

provide

secure,

high-speed

cryptographic

services.

ICSF

supports

cryptography

by

the

IBM

Common

Cryptographic

Architecture

(CCA),

which

is

based

on

the

DES

algorithm.

See

Integrated

Cryptographic

Service

Facility

Administrator's

Guide

for

more

detailed

information

about

ICSF.

If

ICSF

is

not

available,

is

not

installed

or

configured

properly,

or

is

not

active,

DB2

uses

the

existing

BSAFE

services

for

only

those

security

mechanisms

that

are

supported

by

DB2

UDB

for

z/OS

servers

in

previous

releases.

Authentication

mechanisms

used

by

DB2

UDB

for

z/OS

as

a

server

As

a

server,

DB2

UDB

for

z/OS

can

accept

either

SNA

or

DRDA

authentication

mechanisms.

Therefore,

DB2

can

authenticate

remote

users

from

either

the

security

tokens

that

are

obtained

from

the

SNA

ATTACH

(FMH-5)

or

from

the

DRDA

security

commands

that

are

described

by

each

of

the

protocols.

If

TCP/IP

protocols

are

used,

the

following

additional

authentication

methods

are

now

supported:

v

Encrypted

user

ID

and

encrypted

security-sensitive

data

v

Encrypted

user

ID,

encrypted

password,

and

encrypted

security-sensitive

data

v

Encrypted

user

ID,

encrypted

password,

encrypted

new

password,

and

encrypted

security-sensitive

data

Prerequisite:

ICSF

must

be

installed,

configured,

and

active

before

servers

can

offer

encryption

and

decryption

services.

Authentication

mechanisms

used

by

DB2

UDB

for

z/OS

as

a

requester

As

a

requester,

DB2

UDB

for

z/OS

chooses

SNA

or

DRDA

security

mechanisms

based

on

the

network

protocol

and

the

authentication

mechanisms

you

use.

If

you

use

TCP/IP

protocols,

the

following

additional

DRDA

authentication

mechanisms

are

now

supported:

v

Encrypted

user

ID

and

encrypted

password

v

Encrypted

user

ID

and

encrypted

security-sensitive

data

v

Encrypted

user

ID,

encrypted

password,

and

encrypted

security-sensitive

data

Prerequisite:

ICSF

must

be

installed,

configured,

and

active

before

requesters

can

use

the

new

encryption

options.

For

performance

reasons,

the

entire

network

stream

is

not

encrypted.

Only

the

following

security-sensitive

types

of

data

are

encrypted:

v

SQL

statements

that

are

being

prepared,

executed,

or

bound

to

an

RDB

package.

v

SQL

statement

variable

descriptions

that

appear

in

an

SQL

statement.

v

SQL

statement

attributes

that

are

being

prepared.

v

SQL

program

variable

data

that

consists

of

input

data

to

an

SQL

statement

during

an

open

or

execute

operation.

This

also

includes

a

description

of

the

data.

v

SQL

reply

data

that

consists

of

output

data

from

the

processing

of

a

SQL

statement.

This

also

includes

a

description

of

the

data.

v

Query

answer

set

data

that

consists

of

the

answer

set

that

results

from

a

query.

v

SQL

result

set

reply

data

and

SQL

result

set

column

information

reply

data.

v

Input

or

output

LOB

data.

28

Release

Planning

Guide

v

A

description

of

the

data

that

is

returned

from

the

server

as

the

result

of

a

describe

operation.

Changes

to

the

communications

database

The

SECURITY_OUT

column

of

the

SYSIBM.IPNAMES

table

now

supports

two

new

DRDA

security

options:

D

The

option

is

″userid

and

security-sensitive

data

encryption″.

Outbound

connection

requests

contain

an

authorization

ID

and

no

password.

The

authorization

ID

used

for

an

outbound

request

is

either

the

DB2

user’s

authorization

ID

or

a

translated

ID,

depending

on

the

value

of

the

USERNAMES

column.

E

The

option

is

″userid,

password,

and

security-sensitive

data

encryption″.

Outbound

connection

requests

contain

an

authorization

ID

and

a

password.

The

password

is

obtained

from

the

SYSIBM.USERNAMES

table.

The

USERNAMES

column

must

specify

'O'.

In

addition,

the

security

option

'P'

now

supports

encryption:

P

The

option

is

″password″.

Outbound

connection

requests

contain

an

authorization

ID

and

a

password.

The

password

is

obtained

from

the

SYSIBM.USERNAMES

table.

The

USERNAMES

column

must

specify

'O'.

This

option

indicates

that

the

user

ID

and

the

password

are

to

be

encrypted,

if

the

server

supports

encryption.

Otherwise,

the

user

ID

and

the

password

are

sent

to

the

partner

in

clear

text.

System-level

point-in-time

recovery

Version

8

provides

an

enhanced

system-level

point-in-time

recovery

capability.

You

can

make

fast

volume-level

backups

of

a

DB2

subsystem

or

data-sharing

group

with

minimal

disruption

and

recover

a

subsystem

or

data-sharing

group

to

any

point

in

time,

regardless

of

whether

you

have

uncommitted

units

of

work.

The

new

BACKUP

SYSTEM

utility

takes

fast

volume-level

copies

of

DB2

databases

and

logs

with

minimal

disruption.

You

can

copy

both

the

data

and

logs

or

only

the

data.

Previously,

to

make

a

system-level

backup,

you

needed

to

issue

the

SET

LOG

SUSPEND

command,

which

stops

logging

and

thus

prevents

any

new

database

updates.

A

BACKUP

SYSTEM

job

does

not

stop

logging;

it

needs

only

to

wait

for

the

following

events

to

complete:

v

32-KB

page

writes

v

Read-only

switching

v

Data

set

extensions

The

BACKUP

SYSTEM

utility

can

operate

on

an

entire

data-sharing

group,

whereas

the

SET

LOG

SUSPEND

command

must

be

issued

for

each

data-sharing

member.

The

new

RESTORE

SYSTEM

utility

recovers

a

DB2

subsystem

to

an

arbitrary

point

in

time.

This

utility

automatically

handles

any

creates,

drops,

and

LOG

NO

events

that

might

have

occurred

between

the

time

the

backup

was

taken

and

the

recovery

point

in

time.

The

BACKUP

SYSTEM

and

RESTORE

SYSTEM

utilities

rely

on

new

DFSMShsm™

services

in

z/OS

V1R5

that

automatically

monitor

which

volumes

need

to

be

copied.

The

BACKUP

SYSTEM

and

RESTORE

SYSTEM

utilities

use

copy

pools,

which

are

new

constructs

in

z/OS

DFSMShsm

V1R5.

A

copy

pool

is

a

construct

that

contains

the

names

of

SMS-managed

storage

groups

that

can

be

backed

up

and

restored

Chapter

1.

Availability,

scalability,

and

performance

enhancements

29

with

a

single

command.

These

storage

groups

are

also

referred

to

as

the

source

storage

groups.

Each

of

these

source

storage

groups

contains

the

name

of

an

associated

copy-pool

backup

storage

group,

which

contains

eligible

volumes

for

the

backups.

Each

DB2

subsystem

can

have

up

to

two

copy

pools,

one

for

databases

and

one

for

logs.

BACKUP

SYSTEM

copies

the

volumes

that

are

associated

with

these

copy

pools

at

the

time

of

the

copy.

To

use

the

BACKUP

SYSTEM

and

RESTORE

SYSTEM

utilities,

you

must

ensure

that

the

following

conditions

are

true:

v

The

data

sets

that

you

want

to

copy

are

SMS-managed

data

sets.

v

You

are

running

z/OS

V1R5

or

above.

v

You

have

disk

control

units

that

support

ESS

FlashCopy®.

v

You

have

defined

a

copy

pool

for

your

database

data.

If

you

plan

to

also

copy

the

logs,

define

another

copy

pool

for

your

logs.

Use

the

DB2

naming

convention

for

both

of

these

copy

pools.

v

You

have

defined

an

SMS

backup

storage

group

for

each

storage

group

in

the

copy

pools.

Additional

parameters

This

section

contains

information

about

new

subsystem

parameters

and

about

subsystem

parameters

that

have

been

changed

to

be

dynamically

updatable

in

Version

8.

See

DB2

Installation

Guide

for

complete

details

about

these

parameters.

New

subsystem

parameters

Several

subsystem

parameters

have

been

added

to

installation

panels

(see

Table

7).

As

a

result,

the

values

you

choose

for

these

parameters

are

used

during

migration

to

a

new

release

of

DB2.

All

new

parameters

are

dynamically

updateable.

Table

7.

Parameters

that

have

been

added

to

installation

panels

Subsystem

parameter

Panel

Field

name

ACCUMACC

DSNTIPN

DDF/RRSAF

ACCUM

ACCUMUID

DSNTIPN

AGGREGATION

FIELDS

AEXITLIM

DSNTIPP

AUTH

EXIT

LIMIT

DSVCI

DSNTIP7

VARY

DS

CONTROL

INTERVAL

EDMDBDC

DSNTIPC

EDM

DBD

CACHE

EDMSTMTC

DSNTIPC

EDM

STATEMENT

CACHE

IXQTY

DSNTIP7

INDEX

SPACE

DEFAULT

SIZE

LRDRTHLD

DSNTIPE

LONG-RUNNING

READER

MAINTYPE

DSNTIP4

CURRENT

MAINT

TYPES

MAX_NUM_CUR

DSNTIPX

MAX

OPEN

CURSORS

MAX_ST_PROC

DSNTIPX

MAX

STORED

PROCS

MGEXTSZ

DSNTIP7

OPTIMIZE

EXTENT

SIZING

NEWFUN

DSNTIPA1

INSTALL

TYPE

PADIX

DSNTIPE

PAD

INDEXES

BY

DEFAULT

PADNTSTR

DSNTIP4

PAD

NUL-TERMINATED

REFSHAGE

DSNTIP4

CURRENT

REFRESH

AGE

SJMXPOOL

DSNTIP8

STAR

JOIN

MAX

POOL

30

Release

Planning

Guide

Table

7.

Parameters

that

have

been

added

to

installation

panels

(continued)

Subsystem

parameter

Panel

Field

name

SKIPUNCI

DSNTIP8

SKIP

UNCOMM

INSERTS

SMF89

DSNTIPN

USAGE

PRICING

STARJOIN

DSNTIP8

STAR

JOIN

QUERIES

SVOLARC

DSNTIPA

SINGLE

VOLUME

TSQTY

DSNTIP7

TABLE

SPACE

DEFAULT

SIZE

UIFCIDS

DSNTIPN

UNICODE

IFCIDS

VOLTDEVT

DSNTIPA2

TEMPORARY

UNIT

NAME

Subsystem

parameters

changed

to

dynamically

updatable

Several

subsystem

parameters

have

been

changed

to

be

dynamically

updatable

as

shown

in

Table

8.

You

can

change

these

values

by

using

the

SET

SYSPARM

command

to

load

the

new

module.

Table

8.

Subsystem

parameters

that

can

now

be

dynamically

updated

Subsystem

parameter

Panel

Field

name

CACHEDYN

DSNTIP4

CACHE

DYNAMIC

SQL

CHGDC

DSNTIPO

DPROP

SUPPORT

EDPROP

DSNTIPO

DPROP

SUPPORT

EXTRAREQ

DSNTIP5

EXTRA

BLOCKS

REQ

EXTRASRV

DSNTIP5

EXTRA

BLOCKS

SRV

IDTHTOIN

DSNTIPR

IDLE

THREAD

TIMEOUT

IMMEDWRI

DSNTIP4

IMMEDIATE

WRITE

MAXKEEPD

DSNTIPE

MAX

KEPT

DYN

STMTS

MAXTYPE1

DSNTIPR

MAX

TYPE

1

INACTIVE

PARTKEYU

DSNTIP4

UPDATE

PART

KEY

COLS

POOLINAC

DSNTIP5

POOL

THREAD

TIMEOUT

RESYNC

DSNTIPR

RESYNC

INTERVAL

SRTPOOL

DSNTIPC

SORT

POOL

SIZE

SYSADM

DSNTIPP

SYSTEM

ADMIN

1

SYSADM1

DSNTIPP

SYSTEM

ADMIN

2

SYSOPR1

DSNTIPP

SYSTEM

OPERATOR

1

SYSOPR2

DSNTIPP

SYSTEM

OPERATOR

2

TCPALVER

DSNTIP5

TCP/IP

ALREADY

VERIFIED

TCPKPALV

DSNTIP5

TCP/IP

KEEPALIVE

XLKUPDLT

DSNTIPI

X

LOCK

FOR

SEARCHED

U/D

For

most

parameters,

the

change

takes

effect

immediately.

For

the

following

parameters,

the

change

is

not

immediate:

v

PARTKEYU

v

SYSADM

and

SYSADM1

v

CACHEDYN

Chapter

1.

Availability,

scalability,

and

performance

enhancements

31

v

MAXKEEPD

v

XLKUPDLT

For

more

information

about

these

system

parameters,

see

DB2

Installation

Guide.

Other

availability,

scalability,

and

performance

enhancements

Version

8

of

DB2

introduces

the

following

additional

enhancements:

v

When

trigger

processing

occurs

for

conditional

triggers,

performance

is

improved

because

the

processing

requires

fewer

work

files

than

in

previous

versions.

v

New

messages

help

you

monitor

long-running

units

of

recovery

during

backout

processing.

v

The

ability

to

lock

partitioned

table

spaces

at

the

partition

level

improves

data

availability.

v

The

RECOVER

utility

can

restore

concurrent

copies

much

faster

when

you

specify

the

new

CURRENTCOPYONLY

option.

v

Several

data

availability

enhancements

have

been

added

to

the

CHECK

INDEX

utility

in

the

form

of

SHRLEVEL

CHANGE,

DRAIN_WAIT,

RETRY,

and

RETRY_DELAY

options.

32

Release

Planning

Guide

Chapter

2.

Easier

development

and

integration

of

e-business

applications

Version

8

of

DB2

UDB

for

z/OS

facilitates

easier

development

and

integration

of

your

e-business

applications

through

the

following

functional

enhancements:

v

“Changes

to

SQL

limits”

v

“SQL

enhancements”

v

“Unicode

enhancements”

on

page

54

v

“Multilevel

security

with

row-level

granularity”

on

page

58

v

“SQL

support

for

XML

functions

in

DB2”

on

page

60

v

“Improvements

in

connectivity”

on

page

61

v

“Other

e-business

enhancements”

on

page

64

Changes

to

SQL

limits

Many

SQL

limits

are

greatly

increased

in

Version

8.

Increases

in

some

of

these

limits

improve

availability,

scalability,

and

performance.

Increases

in

other

limits

improve

flexibility,

productivity,

portability,

and

DB2

UDB

family

consistency,

as

highlighted

in

Table

9.

Table

9.

Changes

to

SQL

limits

Entity

Previous

limit

New

limit

Maximum

length

of

an

SQL

identifier

18

bytes

128

bytes

Maximum

length

of

a

character

string

constant

255

bytes

32

704

UTF-8

bytes

Maximum

length

of

a

hexadecimal

character

constant

254

hexadecimal

digits

32

704

hexadecimal

digits

Maximum

length

of

a

graphic

string

constant

124

bytes

32

704

UTF-8

bytes

Maximum

length

of

a

table

name

18

bytes

128

bytes

Maximum

length

of

a

column

name

18

bytes

30

bytes

Maximum

length

of

an

alias

or

view

name

18

bytes

128

bytes

Maximum

length

of

an

index

key

255

bytes

2000

bytes

Maximum

length

of

an

SQL

statement

32

KB

2

MB

Maximum

length

of

a

predicate

255

bytes

32

704

bytes

Maximum

number

of

tables

in

join

15

225

Maximum

length

of

CURRENT

PACKAGESET

special

register

18

bytes

128

bytes

Maximum

length

of

CURRENT

PATH

special

register

254

bytes

2048

bytes

SQL

enhancements

DB2

Version

8

introduces

the

following

enhancements

to

SQL:

v

“SELECT

from

INSERT

statement”

on

page

34

v

“Sequence

objects”

on

page

36

v

“Identity

column

enhancements”

on

page

37

v

“DISTINCT

predicate”

on

page

38

v

“Support

for

scalar

fullselect”

on

page

39

v

“Multiple-row

INSERT

and

FETCH

statements”

on

page

41

©

Copyright

IBM

Corp.

2004

33

v

“Common

table

expressions”

on

page

45

v

“GET

DIAGNOSTICS

statement”

on

page

46

v

“Dynamic

scrollable

cursors”

on

page

47

v

“SQL

procedural

language

enhancements”

on

page

48

v

“More

frequent

use

of

indexes”

on

page

50

v

“Longer

and

more

complex

SQL

statements”

on

page

50

v

“Multiple

DISTINCT

keywords”

on

page

51

v

“Expressions

in

the

GROUP

BY

clause”

on

page

51

v

“Fewer

restrictions

for

column

functions

(aggregate

functions)”

on

page

51

v

“Qualified

column

names

in

the

INSERT

statement”

on

page

51

v

“ORDER

BY

clause

for

the

SELECT

INTO

statement”

on

page

52

v

“Additional

input

format

for

timestamp

strings”

on

page

52

v

“Explicitly

defined

ROWID

columns

no

longer

required

for

LOBs”

on

page

52

v

“Comments

for

plans

and

packages”

on

page

53

v

“Implicit

dropping

of

declared

global

temporary

tables

at

commit”

on

page

53

v

“SQL

changes

for

multilevel

security

with

row-level

granularity”

on

page

54

For

a

complete

summary

of

the

changes

to

SQL

in

Version

8,

see

Appendix

C,

“Changes

to

SQL,”

on

page

97.

The

new

enhancements

to

DB2

not

only

provide

significant

new

function

but

also

increase

SQL

consistency

across

the

DB2

UDB

family

of

relational

database

products.

If

you

are

writing

portable

applications,

see

IBM

DB2

Universal

Database

SQL

Reference

for

Cross-Platform

Development.

This

book

describes

the

SQL

that

is

common

to

the

DB2

UDB

family

of

products,

including

rules

and

limits

for

preparing

portable

applications.

SELECT

from

INSERT

statement

You

can

select

values

from

rows

that

are

being

inserted

by

specifying

the

INSERT

statement

in

the

FROM

clause

of

the

SELECT

statement.

The

rows

that

are

inserted

into

the

target

table

produce

a

result

table

whose

columns

can

be

referenced

in

the

SELECT

list

of

the

query.

When

you

insert

one

or

more

new

rows

into

a

table,

you

can

retrieve

the

following

values

from

the

result

table:

v

Any

column

values

that

are

the

result

of

an

expression

v

Any

default

values

for

columns

v

All

values

for

an

inserted

row,

without

specifying

individual

column

names

v

All

values

that

are

inserted

by

a

multiple-row

INSERT

operation

v

Values

that

are

changed

by

a

BEFORE

INSERT

trigger

v

The

value

of

an

automatically

generated

column,

such

as

a

ROWID

or

identity

column

Example:

Assume

that

an

EMPLOYEE

table

is

defined

with

the

following

statement:

CREATE

TABLE

EMPLOYEE

(EMPNO

INTEGER

GENERATED

ALWAYS

AS

IDENTITY,

NAME

CHAR(30),

SALARY

DECIMAL(10,2),

DEPTNO

SMALLINT,

LEVEL

CHAR(30),

HIRETYPE

VARCHAR(30)

NOT

NULL

WITH

DEFAULT

’New

Hire’,

HIREDATE

DATE

NOT

NULL

WITH

DEFAULT);

Assume

that

you

need

to

insert

a

row

for

a

new

employee

into

the

EMPLOYEE

table.

To

determine

the

values

for

the

generated

EMPNO,

HIRETYPE,

and

HIREDATE

columns,

use

the

following

statement,

which

demonstrates

use

of

the

INSERT

statement

within

the

SELECT

statement:

34

Release

Planning

Guide

SELECT

EMPNO,

HIRETYPE,

HIREDATE

FROM

FINAL

TABLE

(INSERT

INTO

EMPLOYEE

(NAME,

SALARY,

DEPTNO,

LEVEL)

VALUES(’Mary

Smith’,

35000.00,

11,

’Associate’));

The

SELECT

statement

returns

the

DB2-generated

identity

value

for

the

EMPNO

column,

the

default

value

’New

Hire’

for

the

HIRETYPE

column,

and

the

value

of

the

CURRENT

DATE

special

register

for

the

HIREDATE

column.

Selecting

values

when

you

insert

a

single

row

When

you

insert

a

new

row

into

a

table,

you

can

retrieve

any

column

in

the

result

table

of

the

INSERT

statement

that

is

within

the

SELECT

statement.

When

you

embed

this

statement

in

an

application,

you

retrieve

the

row

into

host

variables

by

using

the

SELECT

...

INTO

form

of

the

statement.

Example:

You

can

retrieve

all

the

values

for

a

row

that

is

inserted

into

a

structure

by

using

the

following

statement:

EXEC

SQL

SELECT

*

INTO

:empstruct

FROM

FINAL

TABLE

(INSERT

INTO

EMPLOYEE

(NAME,

SALARY,

DEPTNO,

LEVEL)

VALUES(’Mary

Smith’,

35000.00,

11,

’Associate’));

For

this

example,

:empstruct

is

a

host

variable

structure

that

is

declared

with

variables

for

each

of

the

columns

in

the

EMPLOYEE

table.

Selecting

values

when

you

insert

multiple

rows

If

you

are

writing

an

application

program

and

want

to

retrieve

values

from

the

insertion

of

multiple

rows,

you

need

to

declare

a

cursor

so

that

the

INSERT

statement

is

in

the

FROM

clause

of

the

SELECT

statement

of

the

cursor.

Example:

To

see

the

values

of

the

ROWID

columns

that

are

inserted

into

the

employee

photo

and

resume

table,

you

can

declare

a

cursor

by

using

the

following

statement:

EXEC

SQL

DECLARE

CS1

CURSOR

FOR

SELECT

EMP_ROWID

FROM

FINAL

TABLE

(INSERT

INTO

DSN8810.EMP_PHOTO_RESUME

(EMPNO)

SELECT

EMPNO

FROM

DSN8810.EMP);

Primary

keys

and

foreign

keys

By

using

the

INSERT

statement

within

the

SELECT

statement,

you

can

insert

a

row

into

a

parent

table

with

its

primary

key

defined

as

a

DB2-generated

identity

column,

and

you

can

retrieve

the

value

of

the

primary

or

parent

key.

You

can

then

use

this

generated

value

as

a

foreign

key

in

a

dependent

table.

Example:

Suppose

that

an

EMPLOYEE

table

and

a

DEPARTMENT

table

are

defined

in

the

following

way:

CREATE

TABLE

EMPLOYEE

(EMPNO

INTEGER

GENERATED

ALWAYS

AS

IDENTITY

PRIMARY

KEY

NOT

NULL,

NAME

CHAR(30)

NOT

NULL,

SALARY

DECIMAL(7,2)

NOT

NULL,

WORKDEPT

SMALLINT);

CREATE

TABLE

DEPARTMENT

(DEPTNO

SMALLINT

NOT

NULL

PRIMARY

KEY,

DEPTNAME

VARCHAR(30),

MGRNO

INTEGER

NOT

NULL,

CONSTRAINT

REF_EMPNO

FOREIGN

KEY

(MGRNO)

REFERENCES

EMPLOYEE

(EMPNO)

ON

DELETE

RESTRICT);

Chapter

2.

Easier

development

and

integration

of

e-business

applications

35

ALTER

TABLE

EMPLOYEE

ADD

CONSTRAINT

REF_DEPTNO

FOREIGN

KEY

(WORKDEPT)

REFERENCES

DEPARTMENT

(DEPTNO)

ON

DELETE

SET

NULL;

When

you

insert

a

new

employee

into

the

EMPLOYEE

table,

to

retrieve

the

value

for

the

EMPNO

column,

you

can

use

an

INSERT

statement

within

the

following

SELECT

statement:

EXEC

SQL

SELECT

EMPNO

INTO

:hv_empno

FROM

FINAL

TABLE

(INSERT

INTO

EMPLOYEE

(NAME,

SALARY,

WORKDEPT)

VALUES

(’New

Employee’,

75000.00,

11));

The

SELECT

statement

returns

the

DB2-generated

identity

value

for

the

EMPNO

column

in

the

host

variable

:hv_empno.

You

can

then

use

the

value

in

:hv_empno

to

update

the

MGRNO

column

in

the

DEPARTMENT

table

with

the

new

employee

as

the

department

manager:

EXEC

SQL

UPDATE

DEPARTMENT

SET

MGRNO

=

:hv_empno

WHERE

DEPTNO

=

11;

Sequence

objects

A

sequence

is

a

user-defined

object

that

generates

a

sequence

of

numeric

values

according

to

the

specification

with

which

the

sequence

was

created.

The

sequence

of

numeric

values

is

generated

in

a

monotonically

ascending

or

descending

order.

Sequences,

unlike

identity

columns,

are

not

associated

with

tables.

Applications

refer

to

a

sequence

object

to

get

its

current

value

or

the

next

value.

The

relationship

between

sequences

and

tables

is

controlled

by

the

application,

not

by

DB2.

Creating

a

sequence

object

You

create

a

sequence

object

with

the

CREATE

SEQUENCE

statement,

alter

it

with

the

ALTER

SEQUENCE

statement,

and

drop

it

with

the

DROP

SEQUENCE

statement.

You

grant

access

to

a

sequence

with

the

GRANT

(privilege)

ON

SEQUENCE

statement,

and

you

revoke

access

to

the

sequence

with

the

REVOKE

(privilege)

ON

SEQUENCE

statement.

The

values

that

DB2

generates

for

a

sequence

depend

on

how

the

sequence

is

created.

The

START

WITH

parameter

determines

the

first

value

that

DB2

generates.

The

values

advance

by

the

INCREMENT

BY

parameter

in

ascending

or

descending

order.

The

MINVALUE

and

MAXVALUE

parameters

define

the

minimum

and

maximum

values

that

DB2

generates.

The

CYCLE

or

NO

CYCLE

parameters

define

whether

DB2

wraps

values

when

it

generates

the

incremented

values

between

the

START

WITH

value

and

MAXVALUE

if

the

values

are

ascending,

or

between

the

START

WITH

value

and

MINVALUE

if

the

values

are

descending.

Referencing

a

sequence

object

You

reference

a

sequence

by

using

the

NEXT

VALUE

expression

or

the

PREVIOUS

VALUE

expression,

specifying

the

name

of

the

sequence:

v

A

NEXT

VALUE

expression

in

an

SQL

statement

generates

and

returns

the

next

value

for

the

specified

sequence.

If

an

SQL

statement

contains

multiple

instances

of

a

NEXT

VALUE

expression

with

the

same

sequence

name,

the

sequence

value

increments

only

once

for

that

statement.

36

Release

Planning

Guide

v

A

PREVIOUS

VALUE

expression

in

an

SQL

statement

returns

the

most

recently

generated

value

for

the

specified

sequence

from

a

prior

NEXT

VALUE

expression

(for

that

sequence)

in

a

previous

SQL

statement

within

the

current

application

process.

You

can

specify

a

NEXT

VALUE

or

PREVIOUS

VALUE

expression

in

a

SELECT

clause,

within

a

VALUES

clause

of

an

INSERT

statement,

within

the

SET

clause

of

an

UPDATE

statement

(with

certain

restrictions),

or

within

a

SET

host-variable

statement.

Keys

across

multiple

tables

You

can

use

the

same

sequence

number

as

a

key

value

in

two

separate

tables

by

first

generating

the

sequence

value

with

a

NEXT

VALUE

expression

to

insert

the

first

row

in

the

first

table.

You

can

then

reference

this

same

sequence

value

with

a

PREVIOUS

VALUE

expression

to

insert

the

other

rows

in

the

second

table.

Example:

Suppose

that

an

ORDERS

table

and

an

ORDER_ITEMS

table

are

defined

in

the

following

way:

CREATE

TABLE

ORDERS

(ORDERNO

INTEGER

NOT

NULL,

ORDER_DATE

DATE

DEFAULT,

CUSTNO

SMALLINT

PRIMARY

KEY

(ORDERNO));

CREATE

TABLE

ORDER_ITEMS

(ORDERNO

INTEGER

NOT

NULL,

PARTNO

INTEGER

NOT

NULL,

QUANTITY

SMALLINT

NOT

NULL,

PRIMARY

KEY

(ORDERNO,PARTNO),

CONSTRAINT

REF_ORDERNO

FOREIGN

KEY

(ORDERNO)

REFERENCES

ORDERS

(ORDERNO)

ON

DELETE

CASCADE);

You

create

a

sequence

named

ORDER_SEQ

to

generate

key

values

for

both

the

ORDERS

and

ORDER_ITEMS

tables:

CREATE

SEQUENCE

ORDER_SEQ

AS

INTEGER

START

WITH

1

INCREMENT

BY

1

NO

MAXVALUE

NO

CYCLE

CACHE

20;

You

can

then

use

the

same

sequence

number

as

a

primary

key

value

for

the

ORDERS

table

and

as

part

of

the

primary

key

value

for

the

ORDER_ITEMS

table:

INSERT

INTO

ORDERS

(ORDERNO,

CUSTNO)

VALUES

(NEXT

VALUE

FOR

ORDER_SEQ,

12345);

INSERT

INTO

ORDER_ITEMS

(ORDERNO,

PARTNO,

QUANTITY)

VALUES

(PREVIOUS

VALUE

FOR

ORDER_SEQ,

987654,

2);

The

NEXT

VALUE

expression

in

the

first

INSERT

statement

generates

a

sequence

number

value.

The

PREVIOUS

VALUE

expression

in

the

second

INSERT

statement

retrieves

that

same

value

because

it

was

the

sequence

number

that

was

most

recently

generated.

Identity

column

enhancements

With

Version

8,

the

identity

column

has

some

new

attributes

which

can

be

set

with

the

CREATE

TABLE

statement.

See

Table

20

on

page

98

for

details

about

the

new

attributes

that

you

can

set

with

the

CREATE

TABLE

statement.

At

some

point,

you

might

need

to

change

the

attributes

of

an

identity

column.

With

Version

8,

you

can

Chapter

2.

Easier

development

and

integration

of

e-business

applications

37

use

the

ALTER

TABLE

statement

with

the

ALTER

COLUMN

clause

to

change

all

of

the

attributes

of

an

identity

column

except

the

data

type,

as

follows:

v

Restart

the

column

values

from

the

new

value

v

Change

whether

values

for

the

column

are

always

generated

by

DB2

or

are

generated

only

by

default

v

Change

the

number

by

which

the

column

value

increments

v

Change

the

minimum

value,

or

change

to

no

minimum

value

v

Change

the

maximum

value,

or

change

to

no

maximum

value

v

Change

to

allow

the

minimum

value

to

be

less

than

or

equal

to

the

maximum

value

v

Set

the

column

value

to

cycle,

or

change

to

no

cycling

v

Change

the

CACHE

value

(the

number

of

column

values

for

DB2

to

preallocate

in

memory),

or

change

to

NO

CACHE

(no

preallocation)

v

Specify

that

the

column

values

are

generated

in

order

of

request,

or

specify

that

the

column

values

do

not

need

to

be

generated

in

order

of

request

Changing

the

data

type

of

an

identity

column

requires

that

you

drop

and

then

re-create

the

table.

For

more

information

see

“Schema

evolution”

on

page

2.

DISTINCT

predicate

You

can

use

the

DISTINCT

predicate

to

compare

null

values.

Two

forms

of

the

DISTINCT

predicate

are:

IS

DISTINCT

FROM

Creates

an

expression

where

both

values

are

not

equal

or

one

value

is

null.

IS

NOT

DISTINCT

FROM

Creates

an

expression

where

one

value

is

equal

to

another

value

or

both

values

are

null.

This

predicate

can

also

be

written

as

NOT(value

IS

DISTINCT

FROM

value)

The

DISTINCT

predicate

simplifies

the

SQL

that

you

need

to

write

when

you

need

to

find

values

that

might

be

null.

Because

one

null

value

is

not

considered

equal

to

another

null

value,

you

cannot

directly

compare

two

null

values

using

the

=

predicate.

You

also

cannot

test

for

a

null

value

by

using

a

host

variable

with

an

indicator

variable

that

is

set

to

-1.

Example:

The

following

code

selects

the

phone

numbers

of

all

employees

except

those

who

do

not

have

a

phone

number:

MOVE

-1

TO

PHONE-IND.

EXEC

SQL

SELECT

LASTNAME

INTO

:PGM-LASTNAME

FROM

DSN8810.EMP

WHERE

PHONENO

=

:PHONE-HV:PHONE-IND

END-EXEC.

You

can

use

the

IS

NULL

predicate

to

select

employees

who

have

no

phone

number,

as

in

the

following

statement:

EXEC

SQL

SELECT

LASTNAME

INTO

:PGM-LASTNAME

FROM

DSN8810.EMP

WHERE

PHONENO

IS

NULL

END-EXEC.

38

Release

Planning

Guide

This

works

well

if

you

are

only

trying

to

find

values

that

are

null.

However,

if

you

need

to

find

values

that

are

equal

to

a

specific

value

and

values

that

are

null,

the

SQL

statement

that

you

must

write

becomes

much

more

complex.

Example:

To

select

employees

whose

phone

numbers

are

equal

to

the

value

of

:PHONE-HV

and

employees

who

have

no

phone

number

(as

in

the

preceding

example),

you

would

need

to

code

two

predicates,

one

to

handle

the

non-null

values

and

another

to

handle

the

null

values,

as

in

the

following

statement:

EXEC

SQL

SELECT

LASTNAME

INTO

:PGM-LASTNAME

FROM

DSN8810.EMP

WHERE

(PHONENO

=

:PHONE-HV

AND

PHONENO

IS

NOT

NULL

AND

:PHONE-HV

IS

NOT

NULL)

OR

(PHONENO

IS

NULL

AND

:PHONE-HV:PHONE-IND

IS

NULL)

END-EXEC.

You

can

use

the

DISTINCT

predicate

to

get

the

same

results.

The

following

statement

uses

the

NOT

form

of

the

IS

DISTINCT

FROM

predicate

to

simplify

the

preceding

example:

EXEC

SQL

SELECT

LASTNAME

INTO

:PGM-LASTNAME

FROM

DSN8810.EMP

WHERE

PHONENO

IS

NOT

DISTINCT

FROM

:PHONE-HV:PHONE-IND

END-EXEC.

Support

for

scalar

fullselect

A

scalar

fullselect

is

a

fullselect,

enclosed

in

parentheses,

that

returns

a

single

row

consisting

of

a

single

column.

You

can

now

use

a

scalar

fullselect

wherever

expressions

are

allowed,

with

some

limitations.

If

the

scalar

fullselect

does

not

return

a

row,

the

result

is

the

null

value.

At

run

time,

if

the

scalar

fullselect

returns

more

than

one

row,

DB2

issues

an

error.

The

following

four

tables,

PARTS,

PRODUCTS,

PARTPRICE,

and

INVENTORY,

are

used

in

the

examples

in

this

section:

v

PARTS

PART

PROD#

SUPPLIER

========

======

=================

WIRE

10

ACWF

OIL

160

WESTERN_CHEM

MAGNETS

10

BATEMAN

PLASTIC

30

PLASTIC_CORP

BLADES

205

ACE_STEEL

v

PRODUCTS

PROD#

PRODUCT

PRICE

======

==================

=====

505

SCREWDRIVER

3.70

30

RELAY

7.55

205

SAW

18.90

10

GENERATOR

45.75

v

PARTPRICE

PART

PROD#

SUPPLIER

PRICE

=========

======

==================

=====

WIRE

10

ACWF

3.50

OIL

160

WESTERN_CHEM

1.50

MAGNETS

10

BATEMAN

59.50

PLASTIC

30

PLASTIC_CORP

2.00

BLADES

205

ACE_STEEL

8.90

Chapter

2.

Easier

development

and

integration

of

e-business

applications

39

v

INVENTORY

PART

PROD#

SUPPLIER

ONHAND#

=========

======

=================

=======

WIRE

10

ACWF

8

OIL

160

WESTERN_CHEM

25

MAGNETS

10

BATEMAN

3

PLASTIC

30

PLASTIC_CORP

5

BLADES

205

ACE_STEEL

10

Example:

Scalar

fullselects

in

a

WHERE

clause:

Find

which

products

have

prices

in

the

range

of

at

least

twice

the

lowest

price

of

all

the

products

and

at

most

half

the

price

of

all

the

products.

SELECT

PRODUCT,

PRICE

FROM

PRODUCTS

A

WHERE

PRICE

BETWEEN

2

*

(SELECT

MIN(PRICE)

FROM

PRODUCTS)

AND

0.5

*

(SELECT

MAX(PRICE)

FROM

PRODUCTS);

The

result

is:

PRODUCT

PRICE

==================

=====

RELAY

7.55

SAW

18.90

Example:

Scalar

fullselect

in

a

SELECT

list:

For

each

part,

find

its

price

and

its

inventory.

SELECT

PART,

(SELECT

PRICE

FROM

PARTPRICE

WHERE

PART

=

A.PART),

(SELECT

ONHAND#

FROM

INVENTORY

WHERE

PART

=

A.PART)

FROM

PARTS

A;

The

result

is:

PART

PRICE

ONHAND#

==============

=====

=======

WIRE

3.50

8

OIL

1.50

25

MAGNETS

59.50

3

PLASTIC

2.00

5

BLADES

8.90

10

Example:

Scalar

fullselect

in

the

SET

clause

of

an

UPDATE

statement:

Give

a

20%

discount

to

the

parts

that

have

a

large

inventory

(greater

than

20),

and

raise

the

price

by

10%

on

the

parts

that

have

a

small

inventory

(less

than

7).

CREATE

TABLE

NEW_PARTPRICE

LIKE

PARTPRICE;

INSERT

INTO

NEW_PARTPRICE

SELECT

*

FROM

PARTPRICE;

UPDATE

NEW_PARTPRICE

N

SET

PRICE

=

CASE

WHEN((SELECT

ONHAND#

FROM

INVENTORY

WHERE

PART=N.PART)

<

7)

THEN

1.1

*

PRICE

WHEN((SELECT

ONHAND#

FROM

INVENTORY

WHERE

PART=N.PART)

>

20)

THEN

.8

*

PRICE

ELSE

PRICE

END;

SELECT

*

FROM

NEW_PARTPRICE;

The

result

is:

40

Release

Planning

Guide

PART

PROD#

SUPPLIER

PRICE

=========

======

==================

=====

WIRE

10

ACWF

3.50

OIL

160

WESTERN_CHEM

1.20

MAGNETS

10

BATEMAN

65.45

PLASTIC

30

PLASTIC_CORP

2.20

BLADES

205

ACE_STEEL

8.90

Restrictions:

You

cannot

use

scalar

fullselects

in

the

following

cases:

v

In

an

expression

that

is

an

argument

of

an

aggregate

function

v

In

the

join-condition

expression

of

an

ON

clause

v

In

the

grouping

expression

in

a

GROUP

BY

clause

v

In

the

sort-key

expression

of

an

ORDER

BY

clause

v

In

the

RETURN

statement

of

a

CREATE

FUNCTION

statement

v

In

a

CHECK

condition

in

CREATE

TABLE

and

ALTER

TABLE

statements

v

In

a

CREATE

VIEW

statement

that

includes

the

WITH

CHECK

OPTION

Multiple-row

INSERT

and

FETCH

statements

You

can

enhance

the

performance

of

your

application

programs

by

using

multiple-row

INSERT

and

FETCH

statements

to

request

that

DB2

send

multiple

rows

of

data

at

one

time

to

and

from

the

database.

For

local

applications,

using

these

multiple-row

statements

results

in

fewer

accesses

of

the

database.

For

distributed

applications,

using

these

multiple-row

statements

results

in

fewer

network

operations

and

a

significant

improvement

in

performance.

This

section

provides

an

overview

of

how

you

can:

v

Insert

multiple

rows

of

data

from

host

variable

arrays

that

have

been

declared

and

populated

in

your

application

program

into

the

database;

see

“Inserting

multiple

rows.”

v

Fetch

multiple

rows

of

data

from

the

database

into

host

variable

arrays

that

have

been

declared

or

dynamically

allocated

in

your

program;

see

“Fetching

multiple

rows”

on

page

42.

To

use

a

host

variable

array

in

an

SQL

statement,

specify

a

host

variable

array

that

is

declared

according

to

host

language

rules.

You

can

specify

host

variable

arrays

in

C,

C++,

COBOL,

and

PL/I

application

programs.

You

must

declare

the

array

in

the

host

program

before

you

use

it

in

an

SQL

statement.

You

can

also

use

a

storage

area

that

you

allocate

dynamically

when

you

use

a

descriptor

to

describe

the

data

areas

that

you

want

DB2

to

use

to

insert

or

place

the

data.

You

can

specify

a

descriptor

in

assembler,

C,

C++,

COBOL,

and

PL/I

application

programs.

You

must

include

an

SQL

descriptor

area

(SQLDA)

in

the

host

program.

Inserting

multiple

rows

You

can

use

a

form

of

the

INSERT

statement

to

insert

multiple

rows

from

values

that

are

provided

in

host

variable

arrays.

Each

array

contains

values

for

a

column

of

the

target

table.

The

first

value

in

an

array

corresponds

to

the

value

for

that

column

for

the

first

inserted

row,

the

second

value

in

the

array

corresponds

to

the

value

for

the

column

in

the

second

inserted

row,

and

so

on.

DB2

determines

the

attributes

of

the

values

based

on

the

declaration

of

the

array.

Example:

You

can

insert

the

number

of

rows

that

are

specified

in

the

host

variable

NUM-ROWS

by

using

the

following

INSERT

statement:

Chapter

2.

Easier

development

and

integration

of

e-business

applications

41

EXEC

SQL

INSERT

INTO

DSN8810.ACT

(ACTNO,

ACTKWD,

ACTDESC)

VALUES

(:HVA1,

:HVA2,

:HVA3

:IVA3)

FOR

:NUM-ROWS

ROWS

END-EXEC.

Assume

that

the

host

variable

arrays

HVA1,

HVA2,

and

HVA3

have

been

declared

and

populated

with

the

values

that

are

to

be

inserted

into

the

ACTNO,

ACTKWD,

and

ACTDESC

columns.

The

NUM-ROWS

host

variable

specifies

the

number

of

rows

that

are

to

be

inserted,

which

must

be

less

than

or

equal

to

the

dimension

of

each

host

variable

array.

Assume

also

that

the

indicator

variable

array

IVA3

has

been

declared

and

populated

to

indicate

whether

null

values

are

inserted

into

the

ACTDESC

column.

Use

indicator

variable

arrays

with

host

variable

arrays

in

the

same

way

that

you

use

indicator

variables

with

host

variables.

An

indicator

variable

array

must

have

at

least

as

many

entries

as

its

host

variable

array.

You

can

use

the

multiple-row

INSERT

statement

both

statically

and

dynamically.

If

you

prepare

and

execute

the

INSERT

statement,

you

can

code

the

EXECUTE

statement

to

use

either

host

variable

arrays

or

an

SQL

descriptor

(SQLDA).

If

you

use

host

variable

arrays,

each

host

variable

array

in

the

USING

clause

of

the

EXECUTE

statement

represents

a

parameter

marker

in

the

INSERT

statement.

If

you

use

an

SQLDA,

the

host

variable

in

the

USING

clause

of

the

EXECUTE

statement

names

the

SQLDA

that

describes

the

parameter

markers

in

the

INSERT

statement.

Fetching

multiple

rows

You

can

retrieve

multiple

rows

of

data

by

using

a

row-set

positioned

cursor.

A

row-set

positioned

cursor

retrieves

zero,

one,

or

more

rows

at

a

time,

as

a

row

set,

from

the

result

table

of

the

cursor

into

host

variable

arrays.

You

can

reference

all

of

the

rows

in

the

row

set,

or

only

one

row

in

the

row

set,

when

you

use

a

positioned

DELETE

or

positioned

UPDATE

statement

after

a

FETCH

statement

that

retrieves

row

sets.

A

multiple-row

FETCH

statement

can

be

used

to

copy

a

row

set

of

column

values

into

either

of

the

following

data

areas:

v

Host

variable

arrays

that

are

declared

in

your

program

v

Dynamically

allocated

arrays

whose

storage

addresses

are

put

into

an

SQL

descriptor

area

(SQLDA),

along

with

the

attributes

of

the

columns

to

be

retrieved

Declaring

a

row-set

positioned

cursor:

You

must

first

declare

a

row-set

positioned

cursor

before

you

can

retrieve

row

sets

of

data.

To

enable

a

cursor

to

fetch

row

sets,

use

the

WITH

ROWSET

POSITIONING

clause

in

the

DECLARE

CURSOR

statement.

Example:

The

following

statement

declares

a

row

set

cursor:

EXEC

SQL

DECLARE

C1

CURSOR

WITH

ROWSET

POSITIONING

FOR

SELECT

EMPNO,

LASTNAME,

SALARY

FROM

DSN8810.EMP

END-EXEC.

42

Release

Planning

Guide

To

tell

DB2

that

you

are

ready

to

process

the

first

row

set

of

the

result

table,

execute

the

OPEN

statement

in

your

program.

DB2

then

uses

the

SELECT

statement

within

the

DECLARE

CURSOR

statement

to

identify

the

rows

in

the

result

table.

Using

a

multiple-row

FETCH

statement

with

host

variable

arrays:

When

your

program

executes

a

FETCH

statement

with

the

ROWSET

keyword,

the

cursor

is

positioned

on

a

row

set

in

the

result

table.

That

row

set

is

called

the

current

row

set.

Declare

the

dimension

of

each

of

the

host

variable

arrays

to

be

greater

than

or

equal

to

the

number

of

rows

that

are

to

be

retrieved.

Example:

The

following

FETCH

statement

retrieves

20

rows

into

host

variable

arrays

that

are

declared

in

your

program:

EXEC

SQL

FETCH

NEXT

ROWSET

FROM

C1

FOR

20

ROWS

INTO

:HVA-EMPNO,

:HVA-LASTNAME,

:HVA-SALARY

:INDA-SALARY

END-EXEC.

Using

a

multiple-row

FETCH

statement

with

a

descriptor:

Suppose

that

you

want

to

dynamically

allocate

the

necessary

storage

for

the

arrays

of

column

values

that

are

to

be

retrieved

from

the

employee

table.

You

must

do

the

following

steps:

1.

Declare

an

SQLDA

structure.

2.

Dynamically

allocate

the

SQLDA

and

the

necessary

arrays

for

the

column

values.

3.

Set

the

fields

in

the

SQLDA

for

the

column

values

that

are

to

be

retrieved.

4.

Open

the

cursor.

5.

Fetch

the

rows.

After

allocating

the

SQLDA

and

the

necessary

arrays

for

the

column

values,

you

must

set

the

fields

in

the

SQLDA.

Example:

After

the

OPEN

statement,

the

program

fetches

the

next

row

set

by

using

the

following

statement:

EXEC

SQL

FETCH

NEXT

ROWSET

FROM

C1

FOR

20

ROWS

USING

DESCRIPTOR

:outsqlda;

The

USING

clause

of

the

FETCH

statement

names

the

SQLDA

that

describes

the

columns

that

are

to

be

retrieved.

Using

row-set

positioned

UPDATE

statements:

After

your

program

executes

a

FETCH

statement

to

establish

the

current

row

set,

you

can

use

a

positioned

UPDATE

statement

with

either

of

the

following

clauses:

v

WHERE

CURRENT

OF

cursor-name

to

update:

–

a

single

row

if

the

cursor

is

on

a

single

row

–

all

the

rows

of

a

row

set

if

the

cursor

is

on

a

row

set
v

WHERE

CURRENT

OF

cursor-name

FOR

ROW

n

OF

ROWSET

to

update

only

row

n

of

the

current

row

set

Updating

all

rows

of

the

current

row

set:

The

following

positioned

UPDATE

statement

uses

the

WHERE

CURRENT

OF

clause:

Chapter

2.

Easier

development

and

integration

of

e-business

applications

43

EXEC

SQL

UPDATE

DSN8810.EMP

SET

SALARY

=

50000

WHERE

CURRENT

OF

C1

END-EXEC.

When

the

UPDATE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row

or

row

set

of

the

result

table.

If

the

cursor

is

positioned

on

a

row,

that

row

is

updated.

If

the

cursor

is

positioned

on

a

row

set,

all

of

the

rows

in

the

row

set

are

updated.

Updating

a

specific

row

of

the

current

row

set:

The

following

positioned

UPDATE

statement

uses

the

WHERE

CURRENT

OF

cursor

FOR

ROW

n

OF

ROWSET

clause:

EXEC

SQL

UPDATE

DSN8810.EMP

SET

SALARY

=

50000

WHERE

CURRENT

OF

C1

FOR

ROW

5

OF

ROWSET

END-EXEC.

When

the

UPDATE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row

set

of

the

result

table.

The

specified

row

(in

the

example,

row

5)

of

the

current

row

set

is

updated.

Using

row-set

positioned

DELETE

statements:

After

your

program

executes

a

FETCH

statement

to

establish

the

current

row

set,

you

can

use

a

positioned

DELETE

statement

with

either

of

the

following

clauses:

v

WHERE

CURRENT

OF

cursor-name

to

delete:

–

a

single

row

if

the

cursor

is

on

a

single

row

–

all

the

rows

of

a

row

set

if

the

cursor

is

on

a

row

set
v

WHERE

CURRENT

OF

cursor-name

FOR

ROW

n

OF

ROWSET

to

delete

only

row

n

of

the

current

row

set

Deleting

all

rows

of

the

current

row

set:

The

following

positioned

DELETE

statement

uses

the

WHERE

CURRENT

OF

clause:

EXEC

SQL

DELETE

FROM

DSN8810.EMP

WHERE

CURRENT

OF

C1

END-EXEC.

When

the

DELETE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row

or

row

set

of

the

result

table.

If

the

cursor

is

positioned

on

a

row,

that

row

is

deleted,

and

the

cursor

is

positioned

before

the

next

row

of

its

result

table.

If

the

cursor

is

positioned

on

a

row

set,

all

of

the

rows

in

the

row

set

are

deleted,

and

the

cursor

is

positioned

before

the

next

row

set

of

its

result

table.

Deleting

a

single

row

of

the

current

row

set:

The

following

positioned

DELETE

statement

uses

the

WHERE

CURRENT

OF

cursor

FOR

ROW

n

OF

ROWSET

clause:

EXEC

SQL

DELETE

FROM

DSN8810.EMP

WHERE

CURRENT

OF

C1

FOR

ROW

5

OF

ROWSET

END-EXEC.

When

the

DELETE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row

set

of

the

result

table.

The

specified

row

of

the

current

row

set

is

deleted,

and

the

cursor

remains

positioned

on

that

row

set.

The

deleted

row

(in

the

example,

row

5

of

the

row

set)

cannot

be

retrieved

or

updated.

44

Release

Planning

Guide

Common

table

expressions

A

common

table

expression

is

like

a

temporary

view

that

is

defined

and

used

for

the

duration

of

an

SQL

statement.

You

can

define

a

common

table

expression

for

the

SELECT,

INSERT,

and

CREATE

VIEW

statements.

Each

common

table

expression

must

have

a

unique

name

and

be

defined

only

once.

However,

you

can

reference

a

common

table

expression

many

times

in

the

same

SQL

statement.

Unlike

regular

views

or

nested

table

expressions,

which

derive

their

result

tables

for

each

reference,

all

references

to

a

common

table

expression

in

a

given

statement

share

the

same

result

table.

You

can

use

a

common

table

expression

in

the

following

situations:

v

When

you

want

to

avoid

creating

a

view

(when

general

use

of

the

view

is

not

required

and

positioned

updates

or

deletes

are

not

used)

v

When

the

desired

result

table

is

based

on

host

variables

v

When

the

same

result

table

needs

to

be

shared

in

a

fullselect

v

When

the

results

need

to

be

derived

using

recursion

Using

WITH

instead

of

CREATE

VIEW

Using

the

WITH

clause

to

create

a

common

table

expression

saves

you

the

overhead

of

needing

to

create

and

drop

a

regular

view

that

you

need

to

use

only

once.

Also,

during

statement

preparation,

DB2

does

not

need

to

access

the

catalog

for

the

view,

which

saves

you

additional

overhead.

Using

a

common

table

expression

for

a

result

table

that

is

based

on

host

variables

or

is

shared

in

a

fullselect

You

can

use

a

common

table

expression

when

you

need

to

find

information

that

is

based

on

an

intermediate

result

table

that

is

derived

from

the

values

of

host

variables.

This

results

in

a

decrease

in

the

overhead

that

is

associated

with

creating

a

temporary

table

to

hold

the

intermediate

results,

and

writing

additional

queries

to

derive

your

final

result.

This

overhead

is

also

saved

when

you

need

to

share

the

same

result

table

in

a

fullselect.

Using

recursive

SQL

You

can

use

common

table

expressions

to

create

recursive

SQL.

If

a

fullselect

of

a

common

table

expression

contains

a

reference

to

itself

in

a

FROM

clause,

the

common

table

expression

is

a

recursive

common

table

expression.

Queries

that

use

recursion

are

useful

in

applications

like

bill-of-materials

applications,

network

planning

applications,

and

reservation

systems.

Recursive

common

table

expressions

must

follow

these

rules:

v

The

first

fullselect

of

the

first

union

(the

initialization

fullselect)

must

not

include

a

reference

to

the

common

table

expression.

v

Each

fullselect

that

is

part

of

the

recursion

cycle

must:

–

Start

with

SELECT

or

SELECT

ALL.

SELECT

DISTINCT

is

not

allowed.

–

Include

only

one

reference

to

the

common

table

expression

that

is

part

of

the

recursion

cycle

in

its

FROM

clause.

–

Not

include

aggregate

functions,

a

GROUP

BY

clause,

or

a

HAVING

clause.

v

The

column

names

must

be

specified

after

the

table

name

of

the

common

table

expression.

v

The

data

types,

lengths,

and

CCSIDs

of

the

column

names

from

the

common

table

expression

that

are

referenced

in

the

iterative

fullselect

must

match.

v

The

UNION

statements

must

be

UNION

ALL.

Chapter

2.

Easier

development

and

integration

of

e-business

applications

45

v

Outer

joins

must

not

be

part

of

any

recursion

cycle.

v

Subqueries

must

not

be

part

of

any

recursion

cycle.

Introducing

an

infinite

loop

might

occur

when

you

develop

a

recursive

common

table

expression.

A

recursive

common

table

expression

is

expected

to

include

a

predicate

that

will

prevent

an

infinite

loop.

A

warning

is

issued

if

one

of

the

following

objects

is

not

found

in

the

iterative

fullselect

of

a

recursive

common

table

expression:

v

An

integer

column

that

increments

by

a

constant

v

A

predicate

in

the

WHERE

clause

in

the

form

of

counter_column

<

constant

or

counter_column

<

:host

variable

GET

DIAGNOSTICS

statement

You

can

use

the

GET

DIAGNOSTICS

statement

to

return

diagnostic

information

about

the

last

SQL

statement

that

was

executed.

You

can

request

individual

items

of

diagnostic

information

from

the

following

groups

of

items:

v

Statement

items,

which

contain

information

about

the

SQL

statement

as

a

whole

v

Condition

items,

which

contain

information

about

each

error

or

warning

that

occurred

during

the

execution

of

the

SQL

statement

v

Connection

items,

which

contain

connection

information

about

the

SQL

statement

The

GET

DIAGNOSTICS

statement

is

also

useful

for

getting

information

about

long

names,

which

do

not

fit

in

the

SQLCA.

In

addition

to

information

about

long

names,

you

can

use

the

GET

DIAGNOSTICS

statement

to

obtain

the

following

new

information:

v

An

indication

of

the

last

row

in

a

multi-row

FETCH

statement

v

The

number

of

parameter

markers

in

a

prepared

statement

v

The

actual

number

of

result

sets

that

are

returned

by

a

stored

procedure

v

The

number

of

rows

in

the

result

table

v

The

attributes

of

a

cursor

v

The

number

of

errors

and

error

information

that

is

generated

by

the

previous

statement

v

The

message

IDs

and

text

that

is

generated

by

the

previous

statement

In

addition

to

requesting

individual

items,

you

can

request

that

GET

DIAGNOSTICS

return

all

diagnostic

items

that

are

set

during

the

execution

of

the

last

SQL

statement

as

a

single

string.

Use

the

GET

DIAGNOSTICS

statement

to

handle

multiple

SQL

errors

that

might

result

from

the

execution

of

a

single

SQL

statement.

This

method

is

especially

useful

for

diagnosing

problems

that

result

from

a

multiple-row

INSERT

that

is

specified

as

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION.

Example:

Using

GET

DIAGNOSTICS

with

multiple-row

INSERT:

You

want

to

display

diagnostic

information

for

each

condition

that

might

occur

during

the

execution

of

a

multiple-row

INSERT

statement

in

your

application

program.

First,

you

must

declare

target

host

variables

with

data

types

that

are

compatible

with

the

data

types

of

the

requested

items

of

diagnostic

information.

You

specify

the

INSERT

statement

as

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION,

which

means

that

execution

continues

regardless

of

the

failure

of

any

single-row

insertion.

(DB2

does

not

insert

the

row

that

was

processed

at

the

time

of

the

error.)

In

Figure

5

on

page

47,

the

first

GET

DIAGNOSTICS

statement

returns

the

number

of

rows

that

are

inserted

and

the

number

of

conditions

that

are

returned.

The

46

Release

Planning

Guide

second

GET

DIAGNOSTICS

statement

returns

the

following

items

for

each

condition:

SQLCODE,

SQLSTATE,

and

the

number

of

the

row

(in

the

rowset

that

was

being

inserted)

for

which

the

condition

occurred.

In

the

activity

table,

the

ACTNO

column

is

defined

as

SMALLINT.

Suppose

that

you

declare

the

host

variable

array

hva1

as

an

array

with

data

type

long,

and

you

populate

the

array

so

that

the

value

for

the

fourth

element

is

32768.

If

you

check

the

SQLCA

values

after

the

INSERT

statement,

the

value

of

SQLCODE

is

-253,

and

the

value

of

SQLERRD(3)

is

9

for

the

number

of

rows

that

were

inserted.

However,

the

INSERT

statement

specified

that

10

rows

were

to

be

inserted.

The

GET

DIAGNOSTICS

statement

provides

you

with

the

information

that

you

need

to

correct

the

data

for

the

row

that

was

not

inserted.

The

printed

output

from

your

program

looks

like

this:

Number

of

rows

inserted

=

9

SQLCODE

=

-253,

SQLSTATE

=

22003,

ROW

NUMBER

=

4

You

can

also

retrieve

the

MESSAGE_TEXT

item

for

this

example,

indicating

that

the

value

32768

for

the

input

variable

is

too

large

for

the

target

column

ACTNO.

Dynamic

scrollable

cursors

When

you

declare

a

cursor

as

SENSITIVE,

you

can

declare

it

as

either

STATIC

or

DYNAMIC.

The

SENSITIVE

DYNAMIC

cursor

follows

the

dynamic

scrollable

cursor

model:

v

The

size

and

contents

of

the

result

table

can

change

with

every

fetch.

The

base

table

can

change

while

the

cursor

is

scrolling

on

it.

If

another

application

process

changes

the

data,

the

cursor

sees

the

newly

changed

data

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

row_count,

num_condns,

i;

long

ret_sqlcode,

row_num;

char

ret_sqlstate[6];

...

EXEC

SQL

END

DECLARE

SECTION;

...

EXEC

SQL

INSERT

INTO

DSN8810.ACT

(ACTNO,

ACTKWD,

ACTDESC)

VALUES

(:hva1,

:hva2,

:hva3)

FOR

10

ROWS

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION;

EXEC

SQL

GET

DIAGNOSTICS

:row_count

=

ROW_COUNT,

:num_condns

=

NUMBER;

printf("Number

of

rows

inserted

=

%d\n",

row_count);

for

(i=1;

i<=num_condns;

i++)

{

EXEC

SQL

GET

DIAGNOSTICS

CONDITION

:i

:ret_sqlcode

=

DB2_RETURNED_SQLCODE,

:ret_sqlstate

=

RETURNED_SQLSTATE,

:row_num

=

DB2_ROW_NUMBER;

printf("SQLCODE

=

%d,

SQLSTATE

=

%s,

ROW

NUMBER

=

%d\n",

ret_sqlcode,

ret_sqlstate,

row_num);

}

Figure

5.

GET

DIAGNOSTICS

statement

for

a

multi-row

INSERT

statement

Chapter

2.

Easier

development

and

integration

of

e-business

applications

47

when

it

is

committed.

If

the

application

process

of

the

cursor

changes

the

data,

the

cursor

sees

the

newly

changed

data

immediately.

v

The

order

of

the

rows

can

change

after

the

application

opens

the

cursor.

If

the

cursor

declaration

contains

an

ORDER

BY

clause,

and

columns

that

are

in

the

ORDER

BY

clause

are

updated

after

the

cursor

is

opened,

the

order

of

the

rows

in

the

result

table

changes.

Using

a

dynamic

scrollable

cursor,

you

can

fetch

newly

inserted

rows

but

you

cannot

fetch

deleted

rows.

In

contrast,

with

a

static

scrollable

cursor,

you

cannot

fetch

newly

inserted

rows,

and

rows

that

have

been

deleted

are

indicated

as

holes

in

the

result

table

of

the

cursor.

Example:

The

following

statement

shows

a

declaration

for

a

sensitive

dynamic

scrollable

cursor:

EXEC

SQL

DECLARE

C2

SENSITIVE

DYNAMIC

SCROLL

CURSOR

FOR

SELECT

DEPTNO,

DEPTNAME,

MGRNO

FROM

DSN8810.DEPT

ORDER

BY

DEPTNO

END-EXEC.

Declaring

a

cursor

as

SENSITIVE

DYNAMIC

has

the

following

effects:

v

Because

the

associated

FETCH

statement

executes

on

the

base

table,

the

cursor

needs

no

temporary

result

table.

When

you

define

a

cursor

as

SENSITIVE

DYNAMIC,

you

cannot

specify

the

INSENSITIVE

keyword

in

a

FETCH

statement

for

that

cursor.

v

If

you

specify

an

ORDER

BY

clause

for

a

SENSITIVE

DYNAMIC

cursor,

DB2

might

choose

an

index

access

path

if

the

ORDER

BY

is

fully

satisfied

by

an

existing

index.

SQL

procedural

language

enhancements

Version

8

of

DB2

UDB

for

z/OS

provides

the

following

improvements

to

the

SQL

procedural

language:

v

“Extending

the

length

of

an

SQL

procedure

statement”

v

“Handling

SQL

conditions

in

an

SQL

procedure”

v

“Debugging

an

SQL

procedure”

on

page

50

Extending

the

length

of

an

SQL

procedure

statement

With

earlier

releases

of

DB2

UDB

for

z/OS,

an

SQL

procedure

needed

to

be

completely

specified

in

a

CREATE

PROCEDURE

statement

that

was

limited

to

32

KB.

In

addition,

because

the

procedure

body

of

a

CREATE

PROCEDURE

statement

contains

the

source

statements

for

the

procedure,

each

of

those

statements

was

limited

to

32

KB.

Version

8

of

DB2

UDB

for

z/OS

extends

the

length

of

any

SQL

statement

to

2

MB,

including

a

CREATE

PROCEDURE

statement.

In

addition,

the

length

of

individual

SQL

procedural

statements,

consisting

of

SQL

control

statements

and

SQL

statements

in

the

procedure

body,

is

extended

to

2

MB.

If

you

specify

an

SQL

control

statement

as

the

procedure

body,

you

can

include

multiple

SQL

procedural

statements

within

that

control

statement,

each

of

which

is

now

extended

to

2

MB.

This

enhancement

significantly

increases

the

power

and

flexibility

of

SQL

procedures.

Handling

SQL

conditions

in

an

SQL

procedure

You

can

handle

SQL

errors

and

warnings

in

an

SQL

procedure

by

using

the

following

techniques:

48

Release

Planning

Guide

v

You

can

include

a

RETURN

statement

in

an

SQL

procedure

to

return

an

integer

status

value

to

the

caller;

see

“Using

the

RETURN

statement

for

the

procedure

status.”

v

You

can

include

a

SIGNAL

or

RESIGNAL

statement

to

raise

a

specific

SQLSTATE

and

to

define

the

message

text

for

that

SQLSTATE;

see

“Using

SIGNAL

or

RESIGNAL

to

raise

a

condition.”

v

You

can

include

handlers

to

tell

the

procedure

to

perform

some

other

action

when

an

error

occurs.

This

section

describes

how

you

can

use

the

GET

DIAGNOSTICS

statement

in

a

handler;

see

“Using

GET

DIAGNOSTICS

in

a

handler”

on

page

50.

You

can

use

the

GET

DIAGNOSTICS

statement

in

the

body

of

an

SQL

procedure

and

generally

anywhere

in

an

application

program.

For

more

information

about

using

the

GET

DIAGNOSTICS

statement,

see

“GET

DIAGNOSTICS

statement”

on

page

46.

Using

the

RETURN

statement

for

the

procedure

status:

You

can

use

the

RETURN

statement

in

an

SQL

procedure

to

return

an

integer

status

value.

If

you

include

a

RETURN

statement,

DB2

sets

the

SQLCODE

in

the

SQLCA

to

0,

and

the

caller

must

retrieve

the

return

status

of

the

procedure

in

either

of

the

following

ways:

v

By

using

the

RETURN_STATUS

item

of

GET

DIAGNOSTICS

to

retrieve

the

return

value

of

the

RETURN

statement

v

By

retrieving

the

first

SQLERRD

field

in

the

SQLCA,

which

contains

the

return

value

of

the

RETURN

statement

If

you

do

not

include

a

RETURN

statement

in

an

SQL

procedure,

by

default,

DB2

sets

the

return

status

to

0

for

an

SQLCODE

that

is

greater

than

or

equal

to

0,

and

to

-1

for

an

SQLCODE

that

is

less

than

0.

Using

SIGNAL

or

RESIGNAL

to

raise

a

condition:

You

can

use

either

a

SIGNAL

or

RESIGNAL

statement

to

raise

a

condition

with

a

specific

SQLSTATE

and

message

text

within

an

SQL

procedure.

The

SIGNAL

and

RESIGNAL

statements

differ

in

the

following

ways:

v

You

can

use

the

SIGNAL

statement

anywhere

within

an

SQL

procedure.

You

must

specify

the

SQLSTATE

value.

v

You

can

use

the

RESIGNAL

statement

only

within

a

handler

of

an

SQL

procedure.

If

you

do

not

specify

the

SQLSTATE

value,

DB2

uses

the

same

SQLSTATE

value

that

activated

the

handler.

Recommendation:

You

can

use

any

valid

SQLSTATE

value

in

a

SIGNAL

or

RESIGNAL

statement;

however,

using

the

range

of

SQLSTATE

values

that

are

reserved

for

application

programs

is

recommended.

Example:

Suppose

that

you

create

an

SQL

procedure

named

divide2

that

computes

the

result

of

the

division

of

two

integers.

You

include

SIGNAL

to

invoke

the

handler

with

an

overflow

condition

that

is

caused

by

a

zero

divisor,

and

you

include

RESIGNAL

to

set

a

different

SQLSTATE

value

for

that

overflow

condition,

as

in

the

following

example:

CREATE

PROCEDURE

divide2

(IN

numerator

INTEGER,

IN

denominator

INTEGER,

OUT

divide_result

INTEGER)

LANGUAGE

SQL

BEGIN

DECLARE

overflow

CONDITION

FOR

SQLSTATE

’22003’;

DECLARE

CONTINUE

HANDLER

FOR

overflow

RESIGNAL

SQLSTATE

’22375’;

IF

denominator

=

0

THEN

Chapter

2.

Easier

development

and

integration

of

e-business

applications

49

SIGNAL

overflow;

ELSE

SET

divide_result

=

numerator

/

denominator;

END

IF;

END

In

this

example,

the

overflow

condition

is

declared

for

SQLSTATE

22003,

and

the

handler

is

declared

for

the

overflow

condition.

The

RESIGNAL

statement

in

the

handler

sets

the

new

SQLSTATE

value

for

overflow

to

22375.

Using

GET

DIAGNOSTICS

in

a

handler:

You

can

include

a

GET

DIAGNOSTICS

statement

in

a

handler

to

retrieve

error

or

warning

information.

If

you

include

GET

DIAGNOSTICS,

it

must

be

the

first

statement

that

is

specified

in

the

handler.

For

information

about

using

the

GET

DIAGNOSTICS

statement

anywhere

in

a

DB2

application

program,

see

“GET

DIAGNOSTICS

statement”

on

page

46.

Example:

Suppose

that

you

create

an

SQL

procedure

named

divide1

that

computes

the

result

of

the

division

of

two

integers.

You

include

the

following

GET

DIAGNOSTICS

statement

to

return

the

text

of

the

division

error

message

as

an

output

parameter:

CREATE

PROCEDURE

divide1

(IN

numerator

INTEGER,

IN

denominator

INTEGER,

OUT

divide_result

INTEGER,

OUT

divide_error

VARCHAR(70))

LANGUAGE

SQL

BEGIN

DECLARE

CONTINUE

HANDLER

FOR

SQLEXCEPTION

GET

DIAGNOSTICS

CONDITION

1

:divide_error

=

MESSAGE_TEXT;

SET

divide_result

=

numerator

/

denominator;

END

Debugging

an

SQL

procedure

You

can

remotely

debug

SQL

stored

procedures

that

execute

on

DB2

UDB

for

z/OS

servers

using

the

SQL

Debugger.

The

SQL

Debugger

is

integrated

into

various

client

development

platforms

including

DB2

Development

Center.

With

the

SQL

Debugger,

you

can

observe

the

execution

of

SQL

procedure

code,

set

break

points

for

lines

and

view

or

modify

variable

values.

For

up-to-date

information

on

the

SQL

Debugger

refer

to

″DB2

Development

Center″

topics

at

the

following

Web

page:

www.ibm.com/software/data/db2/zos/spb

More

frequent

use

of

indexes

Version

8

of

DB2

introduces

the

concept

of

volatile

tables.

Volatile

tables

are

defined

with

the

keyword

VOLATILE

and

contain

clusters

of

rows

that

logically

belong

together.

Within

these

clusters,

the

rows

are

intended

to

be

accessed

in

the

same

order

every

time.

For

these

tables,

DB2

uses

index

access

whenever

possible,

regardless

of

the

impact

on

performance.

Longer

and

more

complex

SQL

statements

In

addition

to

other

limit-breaking

support

in

Version

8,

you

can

now

have

SQL

statements

that

are

up

to

2

MB

in

length.

A

number

of

the

Version

8

capabilities

required

increasing

the

previous

limit

on

the

size

of

an

SQL

statement,

which

was

32

KB.

For

example,

support

for

long

names

and

4096

partitions

requires

much

more

space.

Other

changes

in

DB2

allow

much

larger

structures

and

thus

much

larger

statements.

SQL

statements

that

are

too

large

or

too

complex

should

now

be

very

unusual.

50

Release

Planning

Guide

Multiple

DISTINCT

keywords

In

previous

releases

of

DB2,

you

could

specify

only

one

DISTINCT

keyword

on

the

SELECT

clause

or

the

HAVING

clause

of

a

query.

In

Version

8,

you

can

specify

more

than

one

DISTINCT

keyword

for

a

given

query.

This

enhancement

improves

performance.

The

ability

to

specify

multiple

DISTINCT

keywords

eliminates

the

need

to

code

multiple

queries,

especially

when

you

need

to

retrieve

distinct

values

for

multiple

columns

to

which

you

want

to

apply

aggregate

functions

such

as

AVG,

COUNT,

and

SUM.

Example:

Using

the

sample

employee

table,

suppose

that

you

want

to

determine

the

average

number

of

employees

per

department

and

the

number

of

different

jobs

that

these

employees

hold.

Instead

of

using

two

queries,

you

could

use

the

following

subselect

to

find

that

information:

SELECT

COUNT(EMPNO)/COUNT(DISTINCT(WORKDEPT)),

COUNT(DISTINCT(JOB))

FROM

DSN8810.EMP;

Expressions

in

the

GROUP

BY

clause

In

previous

releases

of

DB2,

you

could

specify

only

columns

in

the

GROUP

BY

clause

of

a

query.

In

Version

8,

you

can

use

an

expression

in

the

GROUP

BY

clause

to

specify

how

the

rows

are

to

be

grouped.

The

ability

to

use

an

expression

makes

coding

your

applications

easier

because

you

no

longer

need

to

use

a

nested

table

expression

or

view

to

provide

a

result

table

with

the

expression

as

a

column

of

the

result

and

then

specify

the

column

in

the

GROUP

BY

clause.

In

addition,

the

expressions

in

the

GROUP

BY

can

be

referenced

in

the

SELECT,

HAVING,

and

ORDER

BY

clauses

if

the

reference

specifies

only

one

value

for

each

group.

Example:

Using

the

sample

employee

table,

suppose

that

you

want

to

find

the

average

salary

for

all

employees

that

were

hired

in

the

same

year.

You

could

use

the

following

subselect

to

group

the

rows

by

the

year

of

hire:

SELECT

AVG(SALARY),

YEAR(HIREDATE)

FROM

DSN8810.EMP

GROUP

BY

SUBSTR(VARCHAR(HIREDATE),1,4);

Fewer

restrictions

for

column

functions

(aggregate

functions)

The

argument

of

a

column

function

is

a

set

of

like

values

that

is

derived

from

an

expression.

Previous

to

Version

8

of

DB2,

the

expression

for

the

argument

was

required

to

include

a

reference

to

a

column

(hence,

the

term

column

function).

In

Version

8,

you

no

longer

need

to

specify

a

column

name

in

the

expression.

Because

a

column

reference

is

no

longer

required,

column

functions

are

now

being

called

aggregate

functions.

Example:

Assume

that

a

table

exists

that

contains

one

column

(C1)

that

is

defined

as

an

integer

and

that

all

the

values

in

C1

are

5.

Invoking

an

aggregate

function

with

C1

as

the

argument

is

similar

to

invoking

the

same

function

with

a

constant

value

of

5.

For

example,

assuming

that

the

table

has

10

rows,

the

result

for

both

of

the

following

functions

should

be

50:

SUM(C1)

SUM(5)

Qualified

column

names

in

the

INSERT

statement

In

previous

releases

of

DB2,

you

could

not

qualify

the

name

of

columns

when

inserting

data

into

a

column.

In

Version

8,

you

can

use

qualified

column

names

in

an

INSERT

statement

just

like

you

can

in

an

UPDATE

statement.

Chapter

2.

Easier

development

and

integration

of

e-business

applications

51

Example:

Assume

that

MYTABLE.YEMP

is

a

copy

of

the

sample

employee

table.

You

want

to

insert

a

new

row

into

the

table.

You

might

use

the

following

INSERT

statement

to

add

information

for

a

new

employee:

INSERT

INTO

MYTABLE.EMP

(YEMP.EMPNO,

YEMP.FIRSTNME,

MIDINIT,

MYTABLE.YEMP.LASTNAME)

VALUES

(’200540’,

’SUSAN’,

’S’,

’WALKER’);

ORDER

BY

clause

for

the

SELECT

INTO

statement

The

SELECT

INTO

statement

must

produce

a

result

that

contains

a

single

row.

Previous

to

Version

8

of

DB2

UDB,

you

could

specify

the

FETCH

FIRST

1

ROW

clause

to

ensure

that

only

a

single

row

was

returned

if

the

result

set

of

the

query

could

result

in

more

than

one

row.

However,

you

could

not

specify

the

ORDER

BY

clause

to

affect

which

row

was

returned.

With

Version

8,

you

can

now

specify

ORDER

BY.

When

you

use

both

the

FETCH

FIRST

1

ROW

and

ORDER

BY

clauses,

the

result

set

is

ordered

first

and

then

the

first

row

is

returned.

Example:

Using

the

sample

employee

table,

for

all

employees

with

a

salary

of

more

than

$40000,

put

the

salary

of

the

employee

who

has

been

employed

the

longest

in

host

variable

HV1:

SELECT

SALARY

FROM

DSN8810.EMP

INTO

:HV1

WHERE

SALARY

>

40000

ORDER

BY

HIREDATE

FETCH

FIRST

ROW

ONLY;

Additional

input

format

for

timestamp

strings

In

addition

to

using

a

dash

to

separate

the

date

portion

and

the

time

portion

of

a

timestamp

string,

you

can

also

use

a

blank

as

the

separator

in

Version

8

of

DB2.

In

this

alternate

format,

a

colon

is

used

to

separate

the

hours

from

the

minutes

and

the

minutes

from

the

seconds

Therefore,

DB2

accepts

either

of

the

following

strings

as

a

valid

input

representation

of

a

timestamp

value:

’2003-03-02-08.30.00.000000’

or

’20031-03-02

08:30:00.000000’

The

ODBC

and

JDBC

string

representation

of

a

timestamp

uses

the

format

in

which

the

blank

is

the

separator.

Example:

Assume

that

you

have

a

table

named

SALES

that

has

a

TRANSDATE

column

with

a

TIMESTAMP

data

type.

You

want

to

find

all

the

transactions

that

were

made

before

the

timestamp

value

’2003-01-01

00:00:00.000000’.

SELECT

TRANSID

FROM

SALES

WHERE

TRANSDATE

<

’2003-01-01

00:00:00.000000’;

Explicitly

defined

ROWID

columns

no

longer

required

for

LOBs

In

Version

8

of

DB2,

you

no

longer

need

to

explicitly

define

a

ROWID

column

when

you

define

a

LOB

column.

If

a

ROWID

column

does

not

exist

when

you

define

a

LOB

column

with

either

the

ALTER

TABLE

or

CREATE

TABLE

statement,

DB2

implicitly

generates

a

ROWID

column.

When

DB2

generates

the

ROWID

column,

it

is

called

a

hidden

ROWID

column,

and

DB2:

v

Creates

the

column

with

a

name

of

DB2_GENERATED_ROWID_FOR_LOBSnn.

DB2

appends

nn

only

if

the

column

name

already

exists

in

the

table,

replacing

nn

with

00

and

incrementing

by

1

until

the

name

is

unique

within

the

row.

v

Defines

the

column

as

GENERATED

ALWAYS.

52

Release

Planning

Guide

v

Appends

the

column

to

the

end

of

the

row

after

all

the

other

explicitly

defined

columns.

If

you

add

a

ROWID

column

to

a

table

that

already

has

a

hidden

ROWID

column,

DB2

ensures

that

the

values

in

the

two

ROWID

columns

are

identical.

If

the

table

has

a

hidden

ROWID

column

and

the

ROWID

column

that

you

add

is

defined

as

GENERATED

BY

DEFAULT,

DB2

changes

the

hidden

ROWID

column

to

have

the

GENERATED

BY

DEFAULT

attribute.

A

hidden

ROWID

column

is

not

visible

in

SQL

statements

unless

you

refer

to

the

column

directly

by

name.

For

example,

assume

that

DB2

generated

a

hidden

ROWID

column

named

DB2_GENERATED_ROWID_FOR_LOBS

for

table

MYTABLE.

The

result

table

for

a

SELECT

*

statement

for

table

MYTABLE

would

not

contain

that

ROWID

column.

However,

the

result

table

for

SELECT

COL1,

DB2_GENERATED_ROWID_FOR_LOBS

would

include

the

hidden

ROWID

column.

Comments

for

plans

and

packages

In

Version

8

of

DB2,

you

can

provide

comments

for

plans

and

packages

in

the

DB2

catalog.

Support

for

comments

for

plans

and

packages

simplifies

documenting

and

tracking

your

objects.

It

also

increases

compatibility

within

the

DB2

UDB

family.

Example:

Provide

a

comment

for

package

MY_PACKAGE,

which

is

in

collection

COLLIDA.

COMMENT

ON

PACKAGE

COLLIDA.MY_PACKAGE

IS

’This

is

my

package’;

When

adding

comments

for

packages,

you

must

qualify

the

package

name

with

the

collection

ID.

Implicit

dropping

of

declared

global

temporary

tables

at

commit

In

Version

8

of

DB2,

you

can

specify

that

DB2

is

to

implicitly

drop

declared

global

temporary

tables

at

a

commit

operation.

When

you

specify

the

new

ON

COMMIT

DROP

TABLE

clause

of

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement,

DB2

drops

the

declared

global

temporary

table

at

commit

if

no

open

cursors

on

the

table

are

defined

as

WITH

HOLD.

This

enhancement

is

particularly

important

for

distributed

applications

and

stored

procedures

because

clean

up

can

occur

when

cursors

are

closed.

For

example,

consider

a

self-contained

stored

procedure

that

declares

several

temporary

tables

and

cursors

for

the

result

sets

that

are

defined

on

those

temporary

tables.

An

invoker

of

the

stored

procedure

can

access

the

returned

result

sets

and

then

issue

a

COMMIT

statement

that

would

result

in

DB2

automatically

dropping

the

declared

global

temporary

tables,

assuming

that

they

are

declared

with

ON

COMMIT

DROP

TABLE.

Thus,

the

invoker

of

the

stored

procedure,

who

did

not

define

the

declared

global

temporary

tables,

does

not

need

to

know

the

names

of

the

declared

global

temporary

tables

to

explicitly

drop

them.

Example:

Define

a

declared

temporary

table

with

column

definitions

for

an

employee

number,

salary,

commission,

and

bonus.

Indicate

that

the

temporary

table

is

to

be

implicitly

dropped

at

a

commit

operation

if

no

open

cursors

on

the

table

are

defined

as

WITH

HOLD.

DECLARE

GLOBAL

TEMPORARY

TABLE

SESSION.TEMP_EMP

(EMPNO

CHAR(6)

NOT

NULL,

SALARY

DECIMAL(9,

2),

Chapter

2.

Easier

development

and

integration

of

e-business

applications

53

COMM

DECIMAL(9,

2),

BONUS

DECIMAL(9,

2))

CCSID

EBCDIC

ON

COMMIT

DROP

TABLE;

SQL

changes

for

multilevel

security

with

row-level

granularity

DB2

Version

8

introduces

multilevel

security

with

row-level

granularity,

which

is

described

in

“Multilevel

security

with

row-level

granularity”

on

page

58.

When

a

table

has

multilevel

security

with

row-level

granularity,

one

column

in

the

table

contains

the

security

label

for

each

row.

When

you

execute

a

CREATE

TABLE

or

ALTER

TABLE

statement,

you

define

the

column

that

contains

the

security

label

with

the

CHAR(8)

data

type

and

with

the

AS

SECURITY

LABEL

and

NOT

NULL

WITH

DEFAULT

attributes.

Example:

To

add

a

security

label

column

to

the

sample

employee

table,

you

might

execute

this

ALTER

TABLE

statement:

ALTER

TABLE

DSN8810.EMP

ADD

EMP_SECLABEL

CHAR(8)

AS

SECURITY

LABEL

NOT

NULL

WITH

DEFAULT;

Unicode

enhancements

In

Version

8,

DB2

UDB

for

z/OS

offers

uniform

data

management

across

geographic

regions,

greater

compatibility

between

encoding

schemes,

and

an

ODBC

driver

with

full

Unicode

support.

The

Unicode

enhancements

that

provide

these

additional

functions

include

support

for

Unicode

parsing,

support

for

multiple

encoding

schemes

in

a

single

SQL

statement,

and

ODBC

support

for

native

Unicode.

Support

for

Unicode

parsing

In

DB2

Version

8,

a

Unicode

parser

replaces

the

EBCDIC

parser

that

was

used

in

Version

7.

The

new

Unicode

parsing

scheme

alleviates

problems

with

the

variant

code

set.

The

variant

code

set

is

the

set

of

code

points

that

are

not

represented

by

the

same

hexadecimal

value

on

each

EBCDIC

code

page.

This

code

set

includes

special

characters

such

as

$,

@,

#,

¬,

|,

[,

],

{,

and

}.

Because

a

Unicode

parser

replaces

the

EBCDIC

parser,

Version

8

converts

all

SQL

statements

that

are

not

currently

encoded

as

Unicode

UTF-8

to

that

format

before

parsing.

The

DB2

precompiler

and

coprocessor

convert

the

coded

character

set

identifier

(CCSID)

of

source

programs

to

CCSID

1208

(the

CCSID

for

UTF-8

data).

For

this

conversion,

you

specify

the

CCSID

of

the

source

program

(a

number

from

1

to

65533

or

65535)

in

the

new

precompiler

and

coprocessor

option

CCSID.

The

default

value

for

this

CCSID

option

is

the

system

EBCDIC

CCSID

that

was

specified

in

the

DSNTIPF

installation

panel.

If

you

connect

to

a

server

that

does

not

support

Unicode,

before

DB2

sends

data

it

converts

character

strings

to

the

EBCDIC

system

CCSID

set

of

the

non-Unicode

server.

When

you

migrate

DB2

from

Version

7

to

Version

8,

you

make

the

transition

in

three

DB2

migration

modes:

compatibility

mode,

enabling-new-function

mode,

and

new-function

mode.

These

modes

change

the

encoding

scheme,

compatibility,

and

functionality

of

your

subsystem

in

the

following

ways:

Compatibility

mode

All

catalog

and

directory

table

spaces

are

encoded

in

EBCDIC,

allowing

the

Version

8

subsystem

to

coexist

with

Version

7

subsystems.

This

mode

does

not

enable

new

Version

8

functions.

54

Release

Planning

Guide

Enabling-new-function

mode

Catalog

and

directory

table

spaces

are

in

either

EBCDIC

or

Unicode

UTF-8.

Some

table

spaces

remain

in

EBCDIC

because

they

have

not

yet

been

converted

to

Unicode.

This

mode

is

the

transitional

period

between

encoding

schemes.

A

DB2

subsystem

that

is

in

this

mode

cannot

coexist

with

nor

fall

back

to

Version

7.

This

mode

supports

only

a

limited

set

of

Version

8

functions

to

support

the

enabling

process.

New-function

mode

The

following

directory

table

spaces

remain

in

EBCDIC

in

new-function

mode:

v

SYSIBM.SYSCOPY

v

SYSIBM.SYSEBCDIC

All

other

catalog

and

directory

table

spaces

are

encoded

in

Unicode.

A

DB2

subsystem

that

is

in

this

mode

cannot

coexist

with

nor

fall

back

to

Version

7.

Additionally,

a

DB2

subsystem

that

is

in

this

mode

cannot

coexist

with

nor

return

to

Version

8

compatibility

mode.

New-function

mode

enables

all

new

Version

8

functions.

To

disable

Version

8

functionality,

you

can

toggle

between

new-function

mode

and

enabling-new-function

mode,

but

you

cannot

backout

the

processing

that

originally

occurred

in

enabling-new-function

mode.

The

precompiler

runs

outside

of

DB2,

so

it

cannot

directly

determine

the

current

DB2

migration

mode.

To

specify

whether

you

want

the

precompiler

to

enable

Version

8

syntax,

you

set

an

additional

precompiler

option

NEWFUN

to

NO

or

YES.

If

you

are

migrating

to

Version

8,

NO

is

the

default

value

for

this

option.

The

last

action

of

enabling-new-function

mode

is

to

rebuild

the

DSNHDECP

module

to

specify

YES

for

the

NEWFUN

default.

NO

Setting

NEWFUN

to

NO

tells

the

precompiler

to

disable

Version

8

functions.

The

resulting

DBRM

uses

EBCDIC

for

SQL

statements

and

is

not

marked

Version

8

dependent

under

this

option.

DB2

Version

7

can

bind

this

DBRM.

NO

is

the

default

value

for

NEWFUN

in

compatibility

mode

and

in

enabling-new-function

mode.

YES

Setting

NEWFUN

to

YES

tells

the

precompiler

to

enable

Version

8

functions.

The

resulting

DBRM

uses

Unicode

for

SQL

statements

and

is

marked

Version

8

dependent

under

this

option.

This

DBRM

is

Version

8

dependent

even

if

you

are

using

no

new

Version

8

SQL.

The

resulting

DBRM

can

only

be

bound

on

a

DB2

Version

8

server.

YES

is

the

default

value

for

NEWFUN

in

new-function

mode.

Support

for

multiple

CCSID

sets

in

a

single

SQL

statement

With

Version

8,

you

can

reference

table

objects

from

different

encoding

schemes

in

a

single

SQL

statement.

Table

objects

include

tables,

views,

global

temporary

tables,

declared

temporary

tables,

materialized

query

tables,

and

user-defined

table

functions.

DB2

supports

EBCDIC,

ASCII,

and

Unicode

encoding

schemes.

A

set

of

coded

character

set

identifiers

(CCSIDs)

defines

each

encoding

scheme.

You

can

begin

to

reference

table

objects

from

different

CCSID

sets

when

DB2

is

in

enabling-new-function

mode.

Referencing

these

table

objects

requires

no

additional

SQL

syntax,

but

the

rules

for

using

multiple

CCSIDs

might

change

the

semantics

of

certain

SQL

statements.

Multiple

CCSID

sets

can

semantically

affect

the

following

SQL

statements:

v

ALTER

TABLE

ADD

materialized-query-definition

v

ALTER

TABLE

materialized-query-alteration

v

CREATE

GLOBAL

TEMPORARY

TABLE

LIKE

view-table

Chapter

2.

Easier

development

and

integration

of

e-business

applications

55

v

CREATE

TABLE

materialized-query

definition

v

CREATE

TABLE

LIKE

view-table

v

CREATE

VIEW

v

DECLARE

GLOBAL

TEMPORARY

TABLE

AS

(fullselect)

DEFINITION

ONLY

v

DECLARE

GLOBAL

TEMPORARY

TABLE

LIKE

view-table

v

DELETE

v

INSERT

v

SELECT

v

SELECT

INTO

v

UPDATE

v

Scalar

fullselect

expressions

A

CCSID

set

identifies

an

encoding

scheme.

When

an

SQL

statement

references

multiple

CCSID

sets

for

comparison

or

to

generate

a

result

set,

DB2

must

choose

a

single

CCSID

set

to

represent

the

data.

Because

you

do

not

explicitly

define

this

CCSID

set

with

additional

SQL

syntax,

semantic

rules

define

the

CCSID

set

that

DB2

is

to

use

to

represent

or

compare

data.

A

CCSID

set

consists

of

three

different

parts:

SBCS

A

single-byte

character

set

in

which

each

character

is

represented

by

a

single

byte.

Mixed

A

mixed-byte

character

set

in

which

characters

are

represented

by

a

combination

of

single

and

multiple

bytes.

Graphic

This

part

of

the

CCSID

can

represent

one

of

the

following

data

types:

v

A

double-byte

character

set

(DBCS)

in

which

each

character

is

represented

by

a

pair

of

bytes.

v

A

Unicode

character

set

in

which

each

character

is

represented

by

two

or

more

bytes.

Unicode

graphic

strings

always

use

UTF-16

data

which

uses

a

CCSID

of

1200.

String

constants,

special

registers,

and

host

variables

for

which

no

CCSID

is

specified

in

the

SQLDA

are

associated

with

the

application

encoding

scheme.

Expressions

that

are

not

explicitly

associated

with

a

CCSID,

such

as

SUBSTR

and

VARCHAR,

produce

results

that

use

the

same

CCSID

as

the

input

string.

If

you

compare

or

combine

data

from

multiple

CCSIDs

in

an

SQL

statement,

DB2

chooses

the

CCSID

to

which

to

convert

data

in

the

following

process:

1.

DB2

determines

an

appropriate

CCSID

set

(SBCS,

mixed,

or

graphic).

2.

DB2

chooses

a

specific

CCSID

from

that

CCSID

set.

DB2

first

determines

a

CCSID

set.

Generally,

DB2

chooses

the

graphic

Unicode

CCSID

set

when

you

compare

or

combine

data

from

different

CCSID

sets.

This

rule

does

not

apply,

however,

when

an

SQL

statement

references

both

column-based

data

and

application

data

(such

as

string

constants

and

special

registers)

in

the

same

operation.

In

this

case,

DB2

converts

the

application

data

to

the

CCSID

set

of

column-based

data

(which

might

or

might

not

be

Unicode).

DB2

then

chooses

the

specific

CCSID

to

which

to

convert

data.

If

the

SQL

operation

references

column-based

data

and

application

data,

DB2

always

converts

application

data

to

the

CCSID

of

the

column-based

data.

If

the

SQL

operation

references

only

column-based

data

or

only

application

data,

DB2

performs

one

of

the

following

conversions:

56

Release

Planning

Guide

v

For

operations

that

reference

graphic

data,

DB2

converts

all

string

data

to

the

graphic

CCSID

of

the

CCSID

set

that

DB2

selected.

v

For

operations

that

reference

only

SBCS

and

mixed

data,

DB2

converts

all

data

to

the

mixed

data

CCSID

of

the

CCSID

set

that

DB2

selected.

However,

if

the

MIXED

DATA

field

in

the

DSNTIPF

installation

panel

specifies

NO

(which

is

the

default

value),

DB2

uses

the

following

conversions

for

each

CCSID

set:

–

ASCII

and

EBCDIC

mixed

data

operands

are

converted

to

SBCS.

CCSID

65534

is

used

for

both

ASCII

and

EBCDIC

mixed

data

subtypes

in

a

MIXED

DATA

=

NO

environment

as

a

placeholder.

No

conversion

occurs

to

or

from

this

CCSID.

–

Unicode

SBCS

CCSIDs

are

still

converted

to

mixed

data.

The

value

that

is

specified

for

the

MIXED

DATA

field

in

the

DSNTIPF

installation

panel

does

not

affect

Unicode

CCSIDs.

v

For

operations

that

reference

SBCS

data

only,

DB2

uses

one

of

the

following

conversions:

–

If

the

CCSID

set

is

Unicode,

the

SBCS

operands

are

converted

to

UTF-8

mixed

data.

–

If

the

CCSID

set

is

not

Unicode,

DB2

uses

the

SBCS

CCSID.

Important:

Any

time

DB2

converts

a

character

set

to

another

character

set

that

contains

fewer

or

different

characters,

you

might

lose

data.

If

DB2

uses

substitution

characters,

DB2

issues

a

warning.

If

DB2

cannot

convert

a

character

to

the

target

CCSID,

DB2

issues

an

error

message

(although

in

some

special

cases,

only

a

warning

is

issued).

The

CAST

specification

is

extended

in

Version

8

to

include

the

CCSID

integer

and

CCSID

encoding-scheme

clauses.

With

these

new

clauses,

you

can

specify

the

CCSID

or

CCSID

set

of

the

target

data

type

in

a

CAST

statement.

The

CCSID

clauses

in

the

CAST

specification

become

available

when

DB2

enters

enabling-new-function

mode.

A

new

Unicode

hexadecimal

string

constant

supports

graphic

Unicode

UTF-16

characters.

You

can

specify

UTF-16

hexadecimal

constants

in

SQL

statements

using

the

form

UX'xxxx',

where

xxxx

represents

a

group

of

four

hexadecimal

digits.

You

can

use

these

digits

in

any

multiple

of

four

up

32704

digits.

Each

group

of

four

digits

is

a

UTF-16

character.

When

you

reference

a

UX

string

constant,

a

GX

string

constant,

or

use

the

CAST

expression

with

the

CCSID

clause,

DB2

treats

your

SQL

statement

as

if

it

contains

more

than

one

CCSID.

Data

in

this

statement

is

converted

using

the

two-step

conversion

process

that

is

explained

above.

To

use

Unicode

hexadecimal

string

constants,

you

must

run

DB2

in

new-function

mode.

For

more

details

about

using

multiple

CCSID

sets,

see

DB2

SQL

Reference

and

DB2

Installation

Guide.

DB2

ODBC

support

for

native

Unicode

The

ODBC

driver

for

Version

8

fully

supports

UTF-8

and

UCS-2

Unicode

encoding

schemes.

DB2

ODBC

applications

pass

and

store

Unicode

data

directly

without

conversion.

This

support

enables

the

following

application

programming

features

in

DB2

ODBC:

Chapter

2.

Easier

development

and

integration

of

e-business

applications

57

v

Update,

insert,

delete,

and

fetch

operations

on

Unicode

data

through

ODBC

application

variables

v

Unicode

strings

within

the

ODBC

application

programming

interface

(which

allow

you

to

use

Unicode

SQL

statements

in

your

ODBC

application)

The

following

DB2

ODBC

elements

support

this

new

functionality:

v

Suffix-W

APIs

to

support

UCS-2

data.

v

New

SQL_C_WCHAR

data

type

to

support

UCS-2

data.

v

A

new

initialization

keyword,

CURRENTAPPENSCH,

which

specifies

the

current

encoding

scheme

(EBCDIC,

ASCII,

or

Unicode).

When

you

set

this

keyword

to

UNICODE,

generic

ODBC

APIs

support

UTF-8

data.

v

Additional

SQLGetInfo()

attributes

to

query

the

CCSID

settings

of

the

DB2

subsystem

in

each

encoding

scheme.

For

additional

information

about

DB2

ODBC

Unicode

support,

see

DB2

ODBC

Guide

and

Reference.

Multilevel

security

with

row-level

granularity

In

Version

8,

DB2

UDB

for

z/OS

introduces

multilevel

security

with

row-level

granularity.

Multilevel

security

allows

you

to

classify

objects

and

users

with

security

labels

that

are

based

on

hierarchical

security

levels

and

non-hierarchical

security

categories.

Multilevel

security

prevents

unauthorized

users

from

accessing

information

at

a

higher

classification

than

their

authorization,

and

prevents

users

from

declassifying

information.

Using

multilevel

security

with

row-level

granularity,

you

can

define

security

for

DB2

objects

and

perform

security

checks,

including

row-level

security

checks.

Row-level

security

checks

allow

you

to

control

which

users

have

authorization

to

view,

modify,

or

perform

other

actions

on

specific

rows

of

data.

Requirement:

You

must

have

z/OS

Version

1

Release

5

or

later

to

use

DB2

authorization

with

multilevel

security

with

row-level

granularity.

Advantages

of

multilevel

security

Multilevel

security

with

row-level

granularity

offers

the

following

advantages:

v

Multilevel

security

enforcement

is

mandatory

and

automatic.

v

Multilevel

security

can

use

methods

that

are

difficult

to

express

through

traditional

SQL

views

or

queries.

v

Multilevel

security

can

provide

performance

benefits

with

row-level

checking.

v

Multilevel

security

does

not

rely

on

special

views

or

database

variables

to

provide

row-level

security

control.

v

Multilevel

security

controls

are

consistent

and

integrated

across

the

system,

so

that

you

can

avoid

defining

users

and

authorizations

more

than

once.

Access

to

files,

databases,

printers,

terminals,

and

other

resources

can

have

a

single

security

control

point.

Mandatory

access

control

and

dominance

In

multilevel

security,

mandatory

access

control

restricts

access

to

an

object

based

on

the

dominance

relationships

between

user

security

labels

and

object

security

labels.

One

security

label

dominates

another

security

label

when

both

of

the

following

conditions

are

true:

58

Release

Planning

Guide

v

The

security

level

that

defines

the

first

security

label

is

greater

than

or

equal

to

the

security

level

that

defines

the

second

security

label.

v

The

set

of

security

categories

that

defines

one

security

label

includes

the

set

of

security

categories

that

defines

the

other

security

label.

Mandatory

access

control

evaluates

dominance

and

determines

whether

to

allow

certain

actions,

based

on

the

following

rules:

v

If

the

security

label

of

a

user

dominates

the

security

label

of

an

object,

the

user

can

read

from

the

object.

v

If

the

security

label

of

a

user

and

the

security

label

of

the

object

are

equivalent,

the

user

can

read

from

and

write

to

the

object.

v

If

the

security

label

of

the

object

dominates

the

security

label

of

the

user

or

if

the

security

labels

are

incompatible,

the

user

cannot

read

from

or

write

to

the

object.

Mandatory

access

control

prevents

users

from

declassifying

information

by

not

allowing

a

user

to

write

to

that

object

unless

the

security

label

of

the

user

and

the

security

label

of

the

object

are

equivalent.

You

can

override

this

security

feature,

known

as

write-down

control,

for

specific

users

by

granting

write-down

authority

to

those

users.

The

examples

in

the

following

section

assume

that

the

user

does

not

have

write-down

authority.

Implementing

and

using

multilevel

security

This

section

briefly

sketches

how

to

implement

multilevel

security

with

row-level

granularity

on

a

table.

For

a

complete

discussion

of

how

to

implement

multilevel

level

security

with

row-level

granularity,

see

z/OS

Planning

for

Multilevel

Security.

This

section

also

demonstrates

how

multilevel

security

affects

the

results

of

SQL

statements

and

utilities

that

LOAD,

UNLOAD,

and

REORG

DISCARD,

and

LOAD

REPLACE

rows.

Example:

Suppose

that

you

have

a

table

EMP.

Also,

suppose

that

you

need

to

implement

mandatory

and

granular

security

to

protect

the

sensitive

data

that

is

stored

in

EMP.

To

implement

multilevel

security

with

row-level

granularity

to

protect

the

data

in

EMP,

define

a

security

label

column.

Define

the

security

label

column

as

CHAR(8)

NOT

NULL

WITH

DEFAULT

and

with

the

AS

SECURITY

LABEL

clause,

as

shown

in

the

following

statement:

ALTER

TABLE

EMP

ADD

SECURITY

CHAR(8)

NOT

NULL

WITH

DEFAULT

AS

SECURITY

LABEL;

After

the

security

label

column

is

populated

with

security

labels,

DB2

enforces

security

checks

for

each

row.

These

security

checks

affect

the

results

of

SELECT,

INSERT,

UPDATE,

and

DELETE

statements,

and

utilities

that

load,

unload,

or

delete

rows.

Example:

Suppose

that

Beth

has

the

security

label

MEDIUM.

Suppose

that

the

table

EMP

contains

the

data

that

is

shown

in

Table

10

and

that

the

SECURITY

column

is

the

security

label

column.

Table

10.

Sample

data

from

EMP

EMPNO

LASTNAME

WORKDEPT

SECURITY

A00147

JONES

19

LOW

A00148

NGUYEN

19

HIGH

A00149

SANCHEZ

19

MEDIUM

Now,

suppose

that

Beth

issues

the

following

statement:

Chapter

2.

Easier

development

and

integration

of

e-business

applications

59

SELECT

LASTNAME

FROM

EMP

ORDER

BY

LASTNAME;

Because

Beth’s

security

label

MEDIUM

dominates

the

security

labels

LOW

and

MEDIUM,

she

receives

the

following

result:

JONES

SANCHEZ

Beth

does

not

see

NGUYEN

in

her

result

set

because

the

row

with

that

information

has

a

security

label

of

HIGH.

Although

Beth

does

not

receive

the

full

result

set

for

her

query,

DB2

does

not

return

an

error

code

to

Beth.

Example:

Now,

suppose

that

Beth

issues

the

following

statement

on

the

EMP

table:

UPDATE

EMP

SET

WORKDEPT=’17N’

WHERE

WORKDEPT=’19’

AND

SECURITY=GETVARIABLE(SYSIBM.SECLABEL);

Because

Beth

has

a

security

label

that

is

equivalent

to

the

security

label

of

the

row

with

MEDIUM

security,

that

row

is

examined

and

the

update

succeeds

for

that

row.

Table

11

shows

the

results

of

the

UPDATE

statement.

Table

11.

Sample

data

from

EMP

after

the

UPDATE

statement

EMPNO

LASTNAME

WORKDEPT

SECURITY

A00147

JONES

19

LOW

A00148

NGUYEN

19

HIGH

A00149

SANCHEZ

17N

MEDIUM

SQL

support

for

XML

functions

in

DB2

Version

8

of

DB2

UDB

for

z/OS

provides

a

set

of

SQL

built-in

functions

that

allow

applications

to

generate

XML

data

from

relational

data.

These

functions

reduce

application

development

efforts

for

generating

XML

data

for

data

integration,

information

exchange,

and

Web

services.

Version

8

includes

the

following

XML

functions:

v

The

XMLELEMENT

function

generates

an

XML

element

from

a

variable

number

of

arguments.

v

The

XMLATTRIBUTES

function

(the

second

argument

to

the

XMLELEMENT

function)

constructs

XML

attributes

from

the

arguments.

v

The

XMLFOREST

function

produces

a

forest

of

XML

elements

that

all

share

a

specific

pattern

from

a

list

of

columns

and

expressions.

A

forest

is

an

ordered

set

of

subtrees

of

XML

nodes;

XML

nodes

can

represent

an

element,

a

text

string,

and

so

on.

v

The

XMLCONCAT

function

concatenates

a

variable

number

of

arguments

to

generate

a

forest

of

XML

elements.

v

The

XMLAGG

function,

an

aggregate

function,

produces

a

forest

of

XML

elements

from

a

collection

of

XML

elements.

v

The

XML2CLOB

function

converts

the

transient

XML

data

type

into

a

CLOB

so

that

applications

can

access

the

XML

data.

The

transient

XML

data

type

exists

during

query

processing

only.

60

Release

Planning

Guide

If

you

plan

to

generate

large

XML

documents

by

using

the

XML

built-in

functions

(on

the

order

of

gigabytes,

for

example),

your

DB2

subsystem

can

consume

a

large

amount

of

virtual

storage

space.

In

that

case,

you

must

configure

the

system

to

avoid

performance

degradation.

Example:

Generate

an

″Emp″

element

for

each

employee.

Use

employee

name

as

its

attribute

and

two

subelements

generated

from

columns

HIRE

and

DEPT

by

using

XMLFOREST

as

its

content.

The

element

names

for

the

two

subelements

are

″HIRE″

and

″department″.

SELECT

e.id,

XML2CLOB

(

XMLELEMENT

(

NAME

"Emp",

XMLATTRIBUTES

(

e.fname

||

’

’

||

e.lname

AS

"name"

),

XMLFOREST

(

e.hire,

e.dept

AS

"department"

)

)

)

AS

"result"

FROM

employees

e;

The

result

of

the

query

would

be

similar

to

the

following

result:

ID

result

1001

<Emp

name="John

Smith">

<HIRE>2000-05-24</HIRE>

<department>Accounting</department>

</Emp>

1001

<Emp

name="Mary

Martin">

<HIRE>1996-02-01</HIRE>

<department>Shipping</department>

</Emp>

Example:

Concatenate

first

name

and

last

name

elements

by

using

“first”

and

“last”

element

names

for

each

employee.

SELECT

XML2CLOB(

XMLCONCAT

(

XMLELEMENT

(

NAME

"first",

e.fname),

XMLELEMENT

(

NAME

"last",

e.lname

)

)

)

AS

"result"

FROM

employees

e;

The

result

of

the

query

would

look

similar

to

the

following

result,

where

the

″result

column″

is

a

CLOB:

result

<first>John</first><last>Smith</last>

<first>Mary</first><last>Smith</last>

For

more

information

about

XML

publishing

functions,

see

DB2

SQL

Reference.

Improvements

in

connectivity

Version

8

of

DB2

includes

the

following

connectivity

enhancements:

v

“Enhanced

support

for

JDBC

and

CLI

clients”

on

page

62

v

“Easier

access

to

remote

workstation

database

through

database

alias

support”

on

page

63

v

“More

granular

control

of

routing

requests

to

specific

members

of

a

data

sharing

group”

on

page

63

v

“Improved

JDBC

and

CLI

connectivity

for

cursors

and

result

sets”

on

page

63

v

“More

flexibility

in

managing

distributed

applications

with

CURRENT

PACKAGE

PATH

special

register”

on

page

63

Chapter

2.

Easier

development

and

integration

of

e-business

applications

61

Enhanced

support

for

JDBC

and

CLI

clients

In

versions

of

DB2

before

Version

8,

different

connection

protocols

exist

for

access

to

a

DB2

UDB

for

Linux,

UNIX®,

and

Windows®

server

and

for

access

to

a

DB2

UDB

for

z/OS

server.

Each

server

protocol

uses

a

different

set

of

methods

to

implement

the

same

functions.

To

reduce

complexity

and

duplication,

Version

8

of

DB2

provides

access

across

the

DB2

UDB

family

by

implementing

the

DRDA

standard

that

is

published

by

The

Open

Group.

This

standard

defines

an

open,

published

architecture

for

communication

among

applications,

application

servers,

and

database

servers

on

platforms

with

the

same

or

different

hardware

and

software

architectures.

The

Open

Group

DRDA

Standard

supports

functions

that

you

can

implement

on

the

Linux,

UNIX,

and

Windows

platforms

and

the

z/OS

server.

These

standards

are

described

in

the

Open

Group

Technical

Standard

DRDA

Version

3.

For

Version

8,

DB2

support

includes

new

server

functions

for

specific

C-based

common

client

requirements,

Java-based

common

client

requirements,

and

iSeries™

requirements

that

are

not

supported

for

z/OS

applications.

It

provides

an

open

and

consistent

set

of

protocols

for

the

different

platforms

on

which

the

data

resides.

The

new

features

include:

v

Cursor

and

stored

procedure

result

set

instances:

A

DB2

UDB

for

z/OS

server

now

allows

multiple

instances

of

a

cursor,

or

multiple

stored

procedure

result

sets,

to

be

open

concurrently

under

the

same

thread.

v

Extended

describe:

A

DB2

UDB

for

z/OS

server

can

provide

extended

descriptive

information

to

support

the

JDBC

2.0

updateRow

and

deleteRow

methods.

v

SQL

cancel:

A

JDBC

or

CLI

application

can

cancel

long-running

requests

on

a

DB2

UDB

for

z/OS

server.

v

Cursor

extensions:

DB2

UDB

for

z/OS

allows

a

requester

to

identify:

–

Whether

the

server

should

release

read

locks

when

a

query

is

closed.

–

Whether

the

server

should

close

a

query

implicitly

when

no

more

rows

exist

for

a

non-scrollable

cursor,

regardless

of

whether

the

cursor

has

the

HOLD

attribute.

v

Better

utilization

of

network

capacity:

DB2

UDB

for

z/OS

provides

more

flexibility

for

requesters

such

as

DB2

Connect™

to

specify

larger

query

block

sizes.

This

helps

requesters

optimize

their

use

of

network

resources.

v

Requester

database

aliases:

A

database

administrator

can

specify

multiple

locations

for

DB2

UDB

for

Linux,

UNIX,

and

Windows

databases.

v

Distributed

transactions:

DB2

UDB

for

z/OS,

Version

8

adds

DRDA

XA

protocol

support,

which

is

needed

to

support

Java

Transaction

API

(JTA)/Java

Transaction

Service

(JTS)

distributed

transactions.

This

support

is

available

only

for

TCP/IP

connections.

v

Server

location

aliases:

DB2

UDB

for

z/OS

supports

location

aliases

that

reflect

the

location

names

used

by

applications

to

route

requests

to

all

or

a

subset

of

members

in

a

data

sharing

group.

v

Subsets:

DB2

UDB

for

z/OS

allows

you

to

define

subsets

of

data

sharing

group

members

in

TCP/IP

networks.

A

non-DB2

UDB

for

z/OS

requester

can

connect

to

a

subset

of

data

sharing

group

members

by

appending

a

port

number

to

a

location

alias.

62

Release

Planning

Guide

v

Member

routing

in

a

TCP/IP

network:

In

data

sharing

environments,

applications

can

route

requests

directly

to

one

or

more

members

of

a

data

sharing

group.

They

do

so

by

using

location

names

on

the

client

side

in

conjunction

with

location

aliases

on

the

server

side.

The

location

names

can

represent

a

specific

member,

multiple

members,

or

all

members

of

a

data

sharing

group.

v

Timeout

for

allocate

conversation

requests:

If

a

VTAM®

request

to

allocate

a

conversation

for

a

remote

SQL

statement

does

not

complete

in

three

minutes,

DDF

forces

VTAM

to

abnormally

terminate

the

remote

request

.

Easier

access

to

remote

workstation

database

through

database

alias

support

The

communications

database

allows

a

DB2

requester

to

access

multiple

DB2

UDB

for

Linux,

UNIX,

and

Windows

databases

that

are

set

up

with

the

same

database

name.

DB2

provides

the

use

of

a

database

alias

(DBALIAS)

in

SYSIBM.LOCATIONS

to

override

the

location

name

that

a

z/OS

application

uses

to

access

a

server.

More

granular

control

of

routing

requests

to

specific

members

of

a

data

sharing

group

Implementing

member

routing

in

TCP/IP

networks

requires

that

a

site

define

both

client-side

location

names

and

server-side

location

aliases.

Requesters

use

the

SYSIBM.IPLIST

table

to

define

location

names

that

represent

the

members

to

which

requests

are

to

be

routed.

A

requester

can

define

multiple

location

names,

each

of

which

represents

a

different

subset

of

the

members

of

the

data

sharing

group.

The

SYSIBM.IPLIST

table

maps

location

names

to

member-specific

domain

names.

On

the

server

side,

the

DB2

administrator

uses

the

ALIAS

option

of

the

DSNJU003

(change

log

inventory)

utility

to

update

the

bootstrap

data

set

(BSDS)

with

location

aliases.

Location

aliases

identify

location

names

that

are

used

by

requesters

to

access

members

of

the

data

sharing

group.

Improved

JDBC

and

CLI

connectivity

for

cursors

and

result

sets

Before

Version

8

of

DB2,

the

second

open

of

a

cursor

always

failed

if

the

cursor

was

already

open.

The

second

call

to

the

same

stored

procedure

always

closed

any

open

result

sets.

A

requester

can

now

open

the

same

cursor

multiple

times,

or

it

can

process

result

sets

from

different

calls

to

the

same

stored

procedure.

A

DB2

UDB

for

z/OS

server

provides

a

unique

identifier

to

the

requester

for

each

open

cursor

or

result

set.

The

requester

can

then

manage

the

multiple

instances

using

the

unique

cursor

identifier.

For

example,

before

Version

8

of

DB2,

customizing

SQLJ

applications

to

call

the

same

method

twice

was

difficult.

In

Version

8,

the

requester

can

determine

if

multiple

instances

of

the

cursor

need

to

be

generated.

This

allows

the

requester

to

manage

the

different

cursor

instances.

More

flexibility

in

managing

distributed

applications

with

CURRENT

PACKAGE

PATH

special

register

Package

collections

let

you

logically

group

packages

for

general

administration

or

housekeeping,

and

provide

a

way

to

maintain

different

versions

of

an

application.

You

can

bind

a

package

into

multiple

collections,

and

you

need

a

convenient

way

to

search

the

collections

for

a

specific

package.

The

new

CURRENT

PACKAGE

PATH

special

register

lets

you

specify

a

list

of

collections

in

which

to

search

for

a

Chapter

2.

Easier

development

and

integration

of

e-business

applications

63

package.

The

SET

CURRENT

PACKAGE

PATH

SQL

statement

is

similar

to

the

PKLIST

bind

option,

but

the

SET

CURRENT

PACKAGE

PATH

statement

is

processed

at

the

server.

In

releases

of

DB2

before

Version

8,

the

only

way

to

switch

between

packages

was

to

execute

the

SET

CURRENT

PACKAGESET

statement

every

time

you

needed

to

use

a

different

package.

With

SET

CURRENT

PACKAGE

PATH,

you

can

execute

the

statement

only

once,

to

give

the

server

a

list

of

package

collections

to

search.

CURRENT

PACKAGE

PATH

is

especially

important

for

Java

applications

that

use

SQLJ.

SQLJ

applications

are

written

in

Java,

so

you

can

run

them

on

a

variety

of

platforms.

However,

different

database

servers

support

different

sets

of

bind

options.

You

therefore

need

to

bind

the

same

program

into

several

packages,

each

with

a

different

collection

ID,

and

each

with

a

different

set

of

bind

options.

In

the

program,

you

can

execute

one

SET

CURRENT

PACKAGE

PATH

statement

to

list

the

collections

that

are

to

be

searched

at

all

database

servers.

When

the

program

connects

to

a

server,

the

server

locates

the

package

with

the

associated

collection

ID

to

run.

Other

e-business

enhancements

Version

8

of

DB2

UDB

for

z/OS

introduces

the

following

additional

e-business

enhancements:

v

SQL

processing

options

CCSID

and

NEWFUN;

see

“SQL

processing

options.”

v

Resource

Recovery

Services

attachment

facility

(RRSAF)

implicit

connections

to

DB2;

see

“RRSAF

implicit

connections.”

v

Multiple

instances

of

the

same

stored

procedure

can

be

run

concurrently.

See

“Changes

to

stored

procedures

processing”

on

page

65.

SQL

processing

options

The

SQL

processing

option

CCSID(n)

specifies

the

numeric

value

n

of

the

CCSID

in

which

the

source

program

is

written.

The

default

setting

is

the

EBCDIC

system

CCSID

as

specified

on

the

panel

DSNTIPF

during

installation.

The

SQL

processing

option

NEWFUN

indicates

whether

to

accept

the

syntax

for

DB2

Version

8

functions.

NEWFUN(YES)

causes

the

precompiler

to

accept

Version

8

syntax.

A

successful

precompilation

produces

a

DBRM

that

can

be

bound

only

with

Version

8

and

later

releases,

even

if

the

DBRM

does

not

use

any

Version

8

syntax.

NEWFUN(NO)

causes

the

precompiler

to

reject

any

syntax

that

DB2

Version

8

introduces.

A

successful

precompilation

produces

a

DBRM

that

can

be

bound

with

any

release

of

DB2,

including

Version

8.

During

migration

to

Version

8

from

Version

7,

the

NEWFUN

default

value

is

NO.

At

the

end

of

enabling-new-function

mode,

the

default

changes

from

NO

to

YES.

If

Version

8

is

a

new

installation

of

DB2,

the

default

is

YES.

RRSAF

implicit

connections

If

you

do

not

explicitly

specify

the

IDENTIFY

function

in

a

CALL

DSNRLI

statement,

RRSAF

initiates

an

implicit

connection

to

DB2

if

the

application

includes

SQL

statements

or

IFI

calls.

An

implicit

connection

causes

RRSAF

to

initiate

implicit

IDENTIFY

and

CREATE

THREAD

requests

to

DB2.

Although

RRSAF

performs

the

implicit

connection

request

by

using

default

values,

the

request

is

subject

to

the

same

DB2

return

and

reason

codes

as

are

explicit

connection

requests.

64

Release

Planning

Guide

For

an

implicit

connection

request,

your

application

should

not

specify

either

IDENTIFY

or

CREATE

THREAD.

However,

an

implicit

connection

does

not

perform

any

SIGNON

processing.

Your

application

can

execute

SIGNON

at

any

point

of

consistency

and

any

other

RRSAF

calls

after

the

implicit

connection.

To

terminate

an

implicit

connection,

you

must

use

the

proper

calls.

Your

application

program

must

successfully

connect,

either

implicitly

or

explicitly,

to

DB2

before

it

can

execute

any

SQL

calls

to

the

RRSAF

DSNHLI

entry

point.

Changes

to

stored

procedures

processing

Multiple

instances

of

a

stored

procedure,

invoked

at

either

the

same

or

different

level

of

nesting,

can

run

at

the

same

time.

When

your

application

program

issues

multiple

CALL

statements

to

the

same

stored

procedure,

each

CALL

statement

invokes

a

unique

instance

of

the

stored

procedure.

If

the

stored

procedure

returns

result

sets,

each

instance

of

the

stored

procedure

opens

its

own

set

of

cursors

that

return

result

sets.

Multiple

instances

of

a

stored

procedure

can

be

invoked

only

if

both

the

client

and

the

server

are

at

DB2

Version

8

new-function

mode

or

later.

Storage

shortages

can

occur

if

too

many

instances

of

a

stored

procedure

or

if

too

many

cursors

that

return

result

sets

are

open

at

the

same

time.

To

minimize

these

storage

shortages,

two

subsystem

parameters

control

the

maximum

number

of

stored

procedures

instances

and

the

maximum

number

of

open

cursors

for

a

thread.

MAX_ST_PROC

controls

the

maximum

number

of

stored

procedure

instances

that

can

run

concurrently.

MAX_NUM_CUR

controls

the

maximum

number

of

cursors

that

can

be

open

concurrently.

When

either

of

the

values

from

these

subsystem

parameters

is

exceeded

while

an

application

is

running,

the

CALL

statement

receives

SQLCODE

-904.

The

maximum

number

of

stored

procedure

instances

and

the

maximum

number

of

open

cursors

is

set

on

installation

panel

DSNTIPX.

See

Part

2

of

DB2

Installation

Guide

for

more

information

about

setting

the

maximum

number

of

stored

procedure

instances

and

the

maximum

number

of

open

cursors.

Chapter

2.

Easier

development

and

integration

of

e-business

applications

65

66

Release

Planning

Guide

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

This

chapter

contains

considerations

for

migration,

for

conversion

to

new-function

mode,

and

for

fallback

from

compatibility

mode

to

Version

7.

A

directory

of

new

and

revised

installation

panels

is

also

provided

in

this

chapter.

You

can

migrate

to

Version

8

compatibility

mode

only

from

Version

7.

See

DB2

Installation

Guide

for

complete,

step-by-step

instructions

for

installing,

migrating,

converting

to

new-function

mode,

or

falling

back.

Migration

to

Version

8

is

comprised

of

three

progressive

catalog

levels:

compatibility

mode,

enabling-new-function

mode,

and

new-function

mode.

Compatibility

mode

The

state

of

the

catalog

after

the

Version

8

migration

process

is

complete.

Enabling-new-function

mode

Marked

by

the

beginning

and

ending

of

catalog

conversion

job

DSNTIJNE,

which

converts

catalog

data

to

Unicode.

New-function

mode

Begins

after

a

the

successful

completion

of

job

DSNTIJNF.

This

chapter

contains

the

following

sections:

v

“Hardware

and

software

requirements”

v

“Migration

considerations”

v

“Preparing

for

fallback”

on

page

76

v

“Release

incompatibilities”

on

page

78

v

“Release

coexistence”

on

page

82

v

“Installation

changes”

on

page

83

Hardware

and

software

requirements

Detailed

information

about

hardware

and

software

requirements

for

Version

8

of

DB2

UDB

for

z/OS

can

be

found

in

the

Version

8

DB2

Program

Directory.

This

book

is

shipped

with

the

product

and

is

available

on

the

Web

at

www.ibm.com/software/db2zos/library.html.

Migration

considerations

This

section

includes

items

to

consider

before

migrating

DB2

to

Version

8

compatibility

mode

from

Version

7.

Make

sure

that

your

current

subsystem

is

at

the

proper

service

level.

Before

you

migrate

to

Version

8

compatibility

mode,

you

must

have

a

maintenance

level

on

Version

7

that

contains

the

fallback

SPE.

If

you

do

not

have

the

fallback

SPE

applied,

your

Version

8

compatibility

mode

migration

process

terminates.

See

the

Version

8

IBM

DB2

Program

Directory,

which

is

shipped

with

the

product,

for

keyword

specifications

for

preventive

service

planning

(PSP).

Check

Information/Access

or

the

ServiceLink

facility

of

IBMLink™

for

PSP

information

before

you

migrate.

Also

check

those

facilities

monthly

to

obtain

the

most

current

information

about

DB2.

You

must

migrate

to

a

z/OS

Version

1

Release

3

environment

(or

later)

before

migrating

to

Version

8

compatibility

mode.

Other

facilities,

such

as

CICS,

IMS,

and

COBOL

also

must

be

migrated

to

later

releases.

See

DB2

Installation

Guide

for

more

details.

©

Copyright

IBM

Corp.

2004

67

DB2

Version

8

publications

assume

new-function

mode

All

publications

in

the

DB2

Version

8

library

assume

that

your

DB2

subsystem

is

running

in

Version

8

new-function

mode.

Changes

to

functions,

statements,

and

limits

are

available

in

new-function

mode

unless

stated

otherwise.

DBDs

cannot

be

accessed

if

DB2

starts

in

deferred

mode

If

you

start

DB2

in

a

deferred

mode,

database

descriptors

(DBDs)

cannot

be

accessed

until

the

restart

has

completed.

If

you

attempt

to

load

a

DBD

during

DB2

start-up

in

deferred

mode,

the

DBD

is

not

loaded

and

DB2

start-up

continues.

Type

1

indexes

are

not

supported

Before

you

migrate

to

Version

8,

you

must

convert

all

type

1

indexes

to

type

2

indexes.

DB2

migration

fails

if

your

subsystem

contains

type

1

indexes.

Global

temporary

tables

need

a

16-KB

buffer

pool

Global

temporary

tables

require

a

16-KB

buffer

pool,

which

are

required

to

install

DB2.

Existing

jobs

that

create

a

table

space

in

the

temporary

database

might

also

need

to

be

modified.

Declared

temporary

tables

need

an

8-KB

table

space

in

the

temporary

database

If

you

use

declared

temporary

tables,

you

must

define

at

least

one

of

the

table

spaces

in

the

temporary

database

to

have

a

page

size

of

8

KB

or

greater.

Member

DSNTESQ

of

the

prefix.SDSNSAMP

library

contains

a

sample

query

to

check

your

temporary

databases.

System-level

point-in-time

recovery

If

you

plan

to

use

the

BACKUP

SYSTEM

online

utility

to

take

volume

copies

of

the

data

and

logs

of

your

non-data-sharing

DB2

subsystem

or

of

your

DB2

data

sharing

group,

all

of

your

DB2

data

sets

must

reside

on

volumes

that

are

managed

by

DFSMS.

The

BACKUP

SYSTEM

utility

and

its

counterpart,

the

RESTORE

SYSTEM

utility,

require:

v

z/OS

Version

1

Release

5

or

above.

v

Disk

control

units

that

support

ESS

FlashCopy®.

v

HSM

copy

pools

whose

definitions

follow

the

DB2

naming

convention.

v

SMS

copy

target

storage

pools

that

are

defined.

(The

BACKUP

SYSTEM

utility

enables

volume-level

backups

of

a

DB2

subsystem

that

uses

these

target

storage

groups.)

Exception:

If

you

use

RESTORE

SYSTEM

with

the

LOGONLY

option,

you

do

not

need

the

preceding

requirements.

You

can

perform

the

restoration

manually

by

using

your

preferred

method,

and

then

run

RESTORE

to

complete

the

recovery.

Enhanced

support

for

scrollable

cursors

Support

for

scrollable

cursors

enables

dynamic

access

to

data

in

tables.

In

Version

7,

scrollable

cursors

required

storage

space

in

the

temporary

database

and

in

segmented

table

spaces.

In

Version

8,

with

dynamic

scrollable

cursors,

this

restriction

no

longer

exists,

which

might

result

in

a

decrease

in

the

needed

storage.

68

Release

Planning

Guide

Changes

to

space

allocations

for

DB2-managed

data

sets

The

default

values

for

primary

space

allocations

have

increased.

For

non-LOB

table

spaces

and

indexes,

the

default

primary

space

allocation

is

one

cylinder.

For

LOB

table

spaces,

the

default

primary

space

allocation

is

ten

cylinders.

The

default

values

for

secondary

space

allocations

can

now

use

a

sliding

scale.

If

you

specify

a

value

of

YES

for

the

field

OPTIMIZE

EXTENT

SIZING

on

panel

DSNTIP7,

DB2

uses

a

sliding

scale

to

determine

the

secondary

allocations

for

DB2-managed

data

sets

if

you

explicitly

specify

SECQTY

(with

a

valid

value

that

is

not

-1)

in

the

CREATE

TABLESPACE

or

CREATE

INDEX

statement

or

in

any

of

the

subsequent

ALTER

TABLESPACE

or

ALTER

INDEX

statements.

Using

a

sliding

scale

for

secondary

space

allocations

might

result

in

increased

disk

space

usage.

However,

overall,

this

method

generally

results

in

better

space

utilization

and

fewer

situations

in

which

the

maximum

number

of

extents

are

reached.

Changed

default

value

for

DESCRIBE

FOR

STATIC

During

installation

of

DB2

Version

8,

the

default

for

subsystem

parameter

DESCSTAT

on

installation

panel

DSNTIP4

is

now

YES.

If

your

DB2

UDB

for

z/OS

subsystem

or

DB2

UDB

for

Linux,

UNIX,

and

Windows

systems

uses

the

new

JDBC

driver,

or

if

your

DB2

UDB

Linux,

UNIX,

and

Windows

systems

uses

the

new

CLI

driver,

you

must

set

DESCSTAT

to

YES.

Changed

data

types

and

lengths

for

some

catalog

columns

Some

catalog

columns

have

new

data

types

and

lengths.

In

Version

8,

they

are

now

VARCHAR(n),

where

n

is

8

or

greater.

If

your

application

program

uses

the

values

of

these

columns

in

comparison

statements

such

as

a

statement

that

uses

a

LIKE

predicate,

you

might

need

to

adjust

your

application

program

to

get

the

desired

results.

Changed

data

types

and

lengths

for

some

special

registers

Some

special

registers

have

new

data

types

and

lengths.

The

changed

registers

and

their

new

data

types

and

lengths

are:

v

CURRENT

OPTIMIZATION

HINT

is

now

VARCHAR(128).

v

CURRENT

PACKAGESET

is

now

VARCHAR(128).

v

CURRENT

SQLID

is

now

VARCHAR(8).

v

USER

is

now

VARCHAR(8).

v

CURRENT

PATH

is

now

VARCHAR(2048).

If

your

application

program

uses

the

values

of

these

registers

in

comparison

statements

such

as

a

LIKE

predicate,

you

might

need

to

adjust

your

application

program

to

get

the

desired

results.

SQL

reserved

words

may

be

used

in

delimited

identifiers

for

procedure

names

In

Version

8,

you

may

use

SQL

reserved

words

in

delimited

identifiers

for

procedure

names.

See

DB2

SQL

Reference

for

more

information.

Encoding

schemes

of

string

parameters

for

routines

The

new

PARAMETER

CCSID

clause

allows

you

to

define

the

encoding

scheme

of

all

string

parameters

for

user-defined

functions

and

stored

procedures

at

the

same

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

69

time.

In

previous

versions,

you

needed

to

define

a

CCSID

for

each

string

parameter

if

you

wanted

an

encoding

scheme

other

than

the

default.

Also,

EBCDIC

is

no

longer

the

default

encoding

scheme

for

system-defined

parameters.

DB2

now

uses

the

same

encoding

scheme

for

both

user-specified

and

system-generated

string

parameters.

Modify

RUNSTATS

jobs

After

you

migrate

to

Version

8,

some

existing

RUNSTATS

jobs

might

fail

if

data-partitioned

secondary

indexes

are

defined

on

the

tables

on

which

they

run.

RUNSTATS

jobs

on

data-partitioned

secondary

indexes

require

sort

operations;

if

the

sort

package

that

you

use

does

not

dynamically

allocate

sort

work

data

sets,

you

need

to

modify

these

RUNSTATS

jobs

to

allocate

the

sort

work

data

sets.

You

can

modify

the

RUNSTATS

jobs

with

the

SORTDEVT

and

SORTNUM

keywords,

or

you

can

add

STATWKnn

DD

statements

to

the

JCL.

More

history

statistics

are

collected

If

you

specify

SPACE

or

ACCESSPATH

for

the

STATISTICS

HISTORY

parameter

on

panel

DSNTIPO,

DB2

might

insert

more

statistics

into

the

catalog

statistics

history

tables.

For

example,

DB2

inserts

statistics

when

you

run

a

utility

with

the

UPDATE(ACCESSPATH)

or

UPDATE(SPACE)

parameter

but

without

the

HISTORY

parameter.

Creating

tables

with

DBCS

and

mixed

columns

You

can

no

longer

create

extended

binary-coded

decimal

interchange

code

(EBCDIC)

tables

with

GRAPHIC,

VARGRAPHIC,

or

DBCLOB

columns

when

the

setting

for

installation

option

MIXED

DATA

is

NO.

You

also

cannot

alter

EBCDIC

tables

to

add

GRAPHIC,

VARGRAPHIC,

or

DBCLOB

columns

when

MIXED

DATA

is

NO.

Consider

increasing

IDBACK

and

CTHREAD

Because

utilities

might

use

additional

threads,

you

should

consider

increasing

the

values

of

the

IDBACK

and

CTHREAD

subsystem

parameters.

Increasing

these

parameter

values

can

help

you

avoid

failure

of

some

utilities

due

to

increased

thread

usage.

An

increase

also

supports

the

additional

parallelism

that

is

associated

with

the

utilities.

Support

for

DB2-established

data

space

for

cached

dynamic

statements

is

deprecated

In

Version

8,

support

for

a

DB2-established

data

space

for

cached

dynamic

statements

is

deprecated.

You

can

no

longer

specify

the

parameters

EDMDSPAC

or

EDMDSMAX

during

installation

or

migration.

A

new

EDM

statement

cache

is

provided

for

cached

dynamic

statements.

See

DB2

Installation

Guide

for

a

description

of

the

parameters

for

the

new

EDM

statement

cache.

Consider

changing

EDM

pool

size

Cached

dynamic

statements

and

database

descriptors

are

in

a

separate

pool

in

Version

8,

which

could

result

in

decreased

storage

requirements.

You

can

change

the

EDM

pool

size

by

modifying

the

EDMPOOL

STORAGE

SIZE

field

on

installation

panel

DSNTIPC,

and

then

stopping

and

restarting

DB2.

You

can

also

modify

the

EDM

pool

size

without

stopping

and

restarting

DB2

by

using

the

SET

SYSPARM

command.

However,

using

the

SET

SYSPARM

command

might

result

in

a

pool

that

is

not

contiguous,

which

is

less

efficient.

70

Release

Planning

Guide

Customized

DB2I

defaults

can

be

migrated

You

can

migrate

a

DB2I

TSO

IPSF

profile

member

from

a

prior

release

to

the

current

release.

The

DSNEMC01

CLIST

uses

the

values

that

are

specified

on

installation

panel

DSNTIPF

and

stores

the

results

in

the

ISPF

profile

member

DSNEPROF.

You

can

migrate

any

customized

DSNEPROF

members

from

Version

7

to

Version

8.

However,

you

need

to

examine

any

new

or

changed

default

panel

values

to

ensure

that

your

customized

values

are

still

valid.

LANGUAGE

COMPJAVA

no

longer

supported

for

stored

procedures

After

migrating

to

Version

8,

you

can

no

longer

define

or

run

COMPJAVA

stored

procedures.

Convert

LANGUAGE

COMPJAVA

stored

procedures

to

LANGUAGE

JAVA

by

following

these

steps:

1.

Use

ALTER

PROCEDURE

to

change

the

LANGUAGE

and

the

WLM

ENVIRONMENT.

The

EXTERNAL

NAME

clause

must

also

be

specified.

Use

the

following

example

as

a

model:

ALTER

PROCEDURE

SYSPROC.JAVADVR

LANGUAGE

JAVA

EXTERNAL

NAME

’display.display.main’

WLM

ENVIRONMENT

WLMENVJ;

You

must

specify

a

valid

language

option

when

issuing

any

ALTER

PROCEDURE

statement

for

a

procedure

that

was

defined

with

LANGUAGE

COMPJAVA.

If

you

do

not,

DB2

issues

an

error.

2.

Ensure

that

the

WLM

environment

is

configured

and

that

the

required

JVM

is

installed.

3.

Ensure

that

the

.class

file

that

is

identified

in

the

EXTERNAL

NAME

clause

of

the

ALTER

PROCEDURE

is

present

in

one

of

the

following

places:

v

In

a

JAR

that

was

installed

to

DB2

by

an

invocation

of

the

INSTALL_JAR

stored

procedure

v

In

a

directory

in

the

CLASSPATH

ENVAR

of

the

data

set

that

is

named

on

the

JAVAENV

DD

statement

of

the

WLM

stored

procedures

address

space

JCL

DSNWZP

runs

in

WLM-established

stored

procedure

address

space

In

DB2

Version

8,

the

DB2-supplied

stored

procedure

DSNWZP

is

defined

to

run

in

a

WLM-established

stored

procedure

address

space

that

uses

external

module

DSNWZP.

If

you

ran

DSNWZP

in

a

WLM-established

stored

procedure

address

space

in

DB2

Version

7,

you

redefined

DSNWZP

to

use

external

module

DSNWZPR.

If

you

do

not

use

job

DSNTIJSG

to

define

DB2-supplied

stored

procedures

in

DB2

Version

8,

you

must

alter

stored

procedure

DSNWZP

to

use

external

module

DSNWZP.

Support

for

DB2-established

stored

procedure

address

spaces

is

deprecated

In

Version

8,

support

for

DB2-established

address

spaces

is

deprecated.

You

can

no

longer

specify

the

NO

WLM

ENVIRONMENT

option

when

you

create

or

alter

stored

procedure

definitions.

Although

existing

stored

procedures

can

still

run

in

a

DB2-established

stored

procedure

address

space,

you

should

move

your

stored

procedures

to

WLM

environments

as

soon

as

possible.

For

more

information

about

moving

stored

procedures,

see

Part

5

(Volume

2)

of

DB2

Administration

Guide.

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

71

New

precompiler

option

for

string

host

variables

In

previous

releases

of

DB2,

if

you

selected

a

value

from

a

character

column

into

a

C

or

C++

host

variable

of

the

nul-terminated

character

form,

and

the

length

of

the

host

variable

was

longer

than

the

length

of

the

value,

DB2

padded

the

string

with

blanks

and

inserted

the

nul-terminator

after

the

blanks.

In

Version

8,

the

DB2

default

behavior

is

to

not

pad

the

string

with

blanks.

If

you

want

to

produce

blank-padded

strings,

as

in

previous

releases,

specify

YES

in

field

PAD

NUL-TERMINATED

in

installation

panel

DSNTIP4,

or

precompile

your

program

with

the

PADNTSTR

option.

New

SYSIBM.SYSROUTINES

column

for

encoding

scheme

After

you

successfully

migrate

to

Version

8,

the

encoding

scheme

that

is

used

for

system-generated

parameters

for

procedures

and

functions

is

stored

in

a

new

column

in

SYSIBM.SYSROUTINES.

This

information

was

previously

stored

in

a

special

row

in

the

SYSIBM.SYSPARMS

table.

LANGUAGE

REXX

sets

PROGRAM_TYPE

column

in

SYSIBM.SYSROUTINES

If

you

specify

LANGUAGE

REXX,

DB2

sets

the

PROGRAM_TYPE

column

in

SYSIBM.SYSROUTINES

to

’M’.

You

cannot

override

this

value

by

specifying

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB.

The

procedure

will

continue

to

run

as

in

Version

7,

where

all

REXX

procedures

were

treated

as

a

main

procedure.

DB2

start-up

and

precompilation

require

a

user-supplied

DSNHDECP

module

Installation

job

DSNTIJUZ

generates

the

data-only

load

module

DSNHDECP.

It

contains

the

application

programming

defaults.

DB2

is

shipped

with

a

default

DSNHDECP

for

compatibility

with

older

applications.

You

cannot

start

DB2

or

precompile

applications

with

the

default

DSNHDECP.

During

DB2

start-up

processing

or

for

jobs

that

precompile

a

DB2

application,

a

DSNHDECP

module

that

is

customized

by

the

installation

CLIST

must

exist

in

a

library

that

is

before

the

library

that

contains

the

default

DSNHDECP

module

in

the

STEPLIB

concatenation,

the

JOBLIB

concatenation,

or

the

system

link

list.

CCSIDs

in

DSNHDECP

must

be

valid

All

CCSIDs

in

the

DSNHDECP

module

must

be

valid.

During

start-up

processing,

if

DB2

detects

invalid

CCSID

values,

DB2

issues

a

message

and

terminates.

New

data-only

load

module

DSNHMCID

The

new

data-only

load

module

DSNHMCID

contains

EBCDIC

CCSIDs

for

offline

message

conversion.

Version

8

utilities

and

applications

must

have

access

to

this

module.

You

can

provide

access

to

DSNHDECM

in

one

of

the

following

ways:

v

Permit

the

DSNHDECM

module

to

reside

in

DSNSLOAD.

v

Include

the

library

SDSNEXIT

before

SDSNLOAD

in

the

system

link

list.

v

Verify

that

all

jobs

and

tasks

that

use

DB2

utilities

or

call

DB2

application

programs

are

updated

to

STEPLIB

or

JOBLIB

to

SDSNEXIT.

Plans

and

packages

bound

prior

to

DB2

Version

2

Release

3

If

you

have

plans

and

packages

that

were

bound

prior

to

DB2

Version

2

Release

3,

DB2

will

autobind

these

packages.

Thus,

you

may

experience

an

execution

delay

72

Release

Planning

Guide

the

first

time

that

such

a

plan

is

loaded.

Also,

DB2

may

change

the

access

path

due

to

the

autobind,

potentially

resulting

in

a

more

efficient

access

path.

Multiple

calls

to

the

same

stored

procedure

In

previous

versions

of

DB2,

if

a

stored

procedure

was

called

twice

from

the

same

program

and

at

the

same

nesting

level,

DB2

closed

the

result

set

cursors

and

released

storage

for

the

first

instance

of

the

stored

procedure

before

making

the

second

call.

In

DB2

Version

8,

if

the

requester

and

the

server

are

both

DB2

Version

8

subsystems

in

new-function

mode,

when

the

second

call

is

made,

both

instances

of

the

stored

procedure

can

run

at

the

same

time.

DB2

does

not

close

the

result

sets

from

the

first

call

or

release

storage

for

the

first

instance

of

the

stored

procedure.

External

stored

procedures

and

user-defined

functions

can

return

any

valid

SQLSTATE

value

In

previous

versions

of

DB2,

an

external

stored

procedure

or

user-defined

function

could

return

only

SQLSTATE

values

of

the

form

’01Hxx’,

’38xxx’,

’00000’,

or

’02000’.

In

DB2

Version

8,

an

external

stored

procedure

or

user-defined

function

can

return

any

valid

SQLSTATE

value.

Programs

called

by

a

stored

procedure

require

packages

In

previous

versions

of

DB2,

if

a

stored

procedure

called

a

subprogram

using

a

host

language

call,

and

that

subprogram

contained

SQL

statements,

DB2

did

not

require

a

package

for

that

subprogram

at

the

location

where

the

stored

procedure

was

defined.

In

DB2

Version

8,

if

a

stored

procedure

calls

a

subprogram

that

contains

SQL

statements,

and

a

package

does

not

exist

for

that

subprogram

at

the

server

where

the

stored

procedure

is

defined,

DB2

issues

an

error

message.

Port

of

entry

name

changed

If

you

are

using

z/OS

Version

1

Release

5,

TCP/IP

Network

Access

Control,

and

the

RACF

SERVAUTH

class

is

active,

the

port

of

entry

name

that

is

passed

to

RACF

for

verification

is

the

point

of

entry

security

zone

name.

The

port

of

entry

security

zone

name

is

defined

in

the

TCP/IP

Network

Access

Control

profile.

In

previous

releases

of

DB2,

the

port

of

entry

name

that

was

passed

to

RACF

was

the

string

’TCPIP’.

New

name

for

type

1

inactive

threads

and

type

2

inactive

threads

Type

1

inactive

threads

are

now

referred

to

as

inactive

DBATs.

Type

2

inactive

threads

are

now

referred

to

as

inactive

connections.

Column

names

and

labels

in

SQLDA

SQLNAME

field

for

statements

involving

UNION

Prior

to

Version

8,

the

result

column

name

in

a

SQLNAME

field

of

the

SQLDA

for

a

statement

involving

a

UNION

reflected

the

column

name

or

label

of

the

first

sub-query

in

the

statement.

In

Version

8,

if

labels

are

used,

DB2

returns

the

label

of

the

column

in

the

first

sub-query.

If

labels

are

not

used

,

the

result

column

name

will

only

be

returned

if

the

column

name

is

the

same

across

all

sub-queries

in

the

statement.

IFCID

197

is

no

longer

supported

In

Version

8,

IFCID

197

is

no

longer

supported.

If

you

make

a

READS

call

for

IFCID

197,

DB2

issues

return

code

8

and

reason

code

00E60821.

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

73

Change

data

capture

cannot

be

enabled

on

catalog

tables

during

enabling-new-function

mode

During

enabling-new-function

mode

processing,

change

data

capture

is

disabled

on

most

catalog

tables.

You

cannot

re-enable

change

data

capture

until

your

DB2

subsystem

is

in

Version

8

new-function

mode.

DB2

Version

8

requires

IRLM

2.2

IRLM

2.2

is

delivered

with

DB2

Version

8.

You

must

use

the

DB2–supplied

IRLM

procedure.

Detailed

tracking

of

DB2

measured

usage

is

disabled

In

previous

releases

of

DB2,

DB2

automatically

used

detailed

tracking

of

measured

usage.

In

Version

8,

subsystem

parameter

SMF89

controls

whether

DB2

uses

detailed

tracking

of

measured

usage.

The

default

value

is

NO,

which

means

that

DB2

does

not

do

detailed

measured

usage

tracking.

If

the

SMF

type

89

record

is

activated,

only

high-level

tracking

is

recorded

in

the

SMF

type

89

record.

Programming

language

support

has

changed

DB2

Version

8

supports

the

following

programming

languages:

v

C/C++

for

z/OS

v

C/C++

for

OS/390

v

C/C++

for

MVS/ESA™

Version

3

Release

2

v

AD/Cycle®

C/370™

Version

1

Release

2

v

C/370

Version

2

Release

1

v

Enterprise

COBOL

for

z/OS

&

OS/390

Version

3

Release

2

v

Enterprise

COBOL

for

z/OS

&

OS/390

Version

3

Release

1

v

IBM

COBOL

for

OS/390

&

VM

Version

2

Release

2

v

VS

Fortran

v

Enterprise

PL/I

for

z/OS

Version

3

v

PL/I

for

MVS

&

VM

Version

1

Release

3

If

your

DB2

Version

7

subsystem

uses

other

languages,

you

must

migrate

to

a

supported

release

of

that

language

before

migrating

your

DB2

subsystem

to

Version

8.

Views

might

be

marked

with

view

regeneration

errors

DB2

automatically

regenerates

views

that

reference

the

DB2

catalog.

However,

as

a

result

of

changes

to

the

catalog,

some

views

may

be

marked

with

view

regeneration

errors.

Views

that

are

marked

with

view

regeneration

errors

may

be

usable,

but

will

not

be

automatically

regenerated.

You

must

manually

regenerate

these

views.

Migrating

a

data

sharing

group

Before

you

migrate

to

compatibility

mode,

ensure

that

maintenance

through

the

Version

8

fallback

SPE

is

applied

to

all

started

DB2

members.

If

the

fallback

SPE

is

not

on

all

active

group

members,

Version

8

does

not

start

but

issues

a

message.

If

you

have

quiesced

members

in

your

data

sharing

group,

you

do

not

need

to

apply

the

fallback

SPE

to

the

quiesced

member.

Start

only

one

DB2

member

for

migration

processing.

During

the

migration,

other

group

members

can

be

active.

However,

other

active

group

members

may

74

Release

Planning

Guide

experience

delays

or

timeouts

if

they

attempt

to

access

catalog

objects

that

are

locked

by

migration

or

enabling-new-function

mode

processing.

After

migration

completes

on

the

first

member,

you

can

migrate

the

other

data

sharing

group

members.

Migration

of

a

data

sharing

group

requires

careful

planning:

1.

Read

the

information

about

migration

considerations

in

this

book

and

also

in

Chapter

3

of

DB2

Data

Sharing:

Planning

and

Administration.

2.

Make

a

plan

to

minimize

the

amount

of

time

that

some

members

operate

at

the

Version

7

level

and

others

operate

at

the

Version

8

compatibility

mode

level.

3.

Apply

the

fallback

SPE

to

the

Version

7

load

library

for

each

non-quiesced

member

in

the

data

sharing

group.

For

best

availability,

you

can

apply

the

SPE

to

one

member

at

a

time.

While

your

data

sharing

group

is

in

Version

7,

you

can

have

Version

7

subsystems

with

the

SPE

running

at

the

same

time

as

subsystems

that

are

without

the

SPE.

Stop

and

restart

each

member

to

activate

the

change.

4.

Follow

the

procedure

about

migrating

the

data

sharing

group

in

Chapter

3

of

DB2

Data

Sharing:

Planning

and

Administration.

You

must

completely

migrate

the

first

member

of

the

data

sharing

group

to

Version

8

compatibility

mode

before

starting

any

other

members

at

the

Version

8

level.

5.

To

prepare

for

fallback

from

Version

8

compatibility

mode,

keep

the

subsystem

parameter

load

module

that

is

used

by

Version

7.

6.

After

all

members

have

migrated

to

Version

8

compatibility

mode,

remain

in

compatibility

mode

until

your

data

sharing

group

has

processed

a

full

range

of

typical

work.

The

period

of

time

that

a

data

sharing

group

needs

to

remain

in

Version

8

compatibility

mode

varies

depending

on

the

size

of

the

data

sharing

group

and

the

complexity

of

its

typical

work.

The

CLIST

edits

different

jobs

for

enabling

data

sharing

and

migrating

a

data

sharing

member.

See

Chapter

3

of

DB2

Data

Sharing:

Planning

and

Administration

for

the

list

of

jobs

that

are

edited

for

data

sharing

and

migration.

Work

file

database

size

calculations

The

migration

job

DSNTIJTC

creates

and

updates

indexes

on

catalog

tables.

These

indexes

are

created

and

updated

sequentially

during

migration.

The

work

file

database

is

used

for

the

sort

of

each

index;

DB2

needs

enough

work

file

storage

to

sort

the

largest

of

the

indexes

in

Table

12.

Migration

fails

if

you

do

not

have

enough

storage.

Therefore,

ensure

that

you

have

enough

space

before

you

begin.

Table

12

shows

the

indexes

that

are

new

and

changed

for

existing

catalog

tables.

Table

12.

Indexes

that

are

added

or

updated

sequentially

using

the

work

file

database

Catalog

table

name

Index

name

Column

names

SYSIBM.SYSCOLAUTH

SYSIBM.DSNACX01

CREATOR,

TNAME,

COLNAME

SYSIBM.SYSFOREIGNKEYS

SYSIBM.DSNDRH01

CREATOR,

TBNAME,

RELNAME

SYSIBM.SYSINDEXES

SYSIBM.DSNDXX04

INDEXTYPE

SYSIBM.SYSRELS

SYSIBM.DSNDLX02

CREATOR,

TBNAME

SYSIBM.SYSSEQUENCESDEP

SYSIBM.DSNSRX02

BSCHEMA,

BNAME,

DTYPE

SYSIBM.SYSTABAUTH

SYSIBM.DSNATX04

TCREATOR,

TNAME

SYSIBM.SYSTABLEPART

SYSIBM.DSNDPX03

DBNAME,

TSNAME,

LOGICAL_PART

SYSIBM.SYSTABLES

SYSIBM.DSNDTX03

TBCREATOR,

TBNAME

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

75

Table

12.

Indexes

that

are

added

or

updated

sequentially

using

the

work

file

database

(continued)

Catalog

table

name

Index

name

Column

names

SYSIBM.SYSVIEWDEP

SYSIBM.DSNGGX04

BCREATOR,

BNAME,

BTYPE,

DTYPE

Preparing

for

fallback

Falling

back

is

the

process

of

returning

DB2

to

a

Version

7

level

after

migrating

your

catalog

and

directory

to

Version

8

compatibility

mode.

You

can

fall

back

to

Version

7

only

after

successfully

migrating

the

catalog

to

Version

8

compatibility

mode

by

using

job

DSNTIJTC.

However,

you

cannot

fall

back

to

Version

7

or

return

to

Version

8

compatibility

mode

after

you

enter

enabling-new-function

or

new-function

mode.

Fall

back

if

you

have

a

severe

error

while

operating

Version

8

compatibility

mode

and

you

want

to

return

to

operation

on

Version

7.

After

fallback,

the

catalog

remains

a

Version

8

catalog.

If

you

experience

a

severe

application

or

performance

errors

in

Version

8

compatibility

mode

and

want

to

return

to

Version

7,

follow

the

detailed

step-by-step

instructions

in

DB2

Installation

Guide.

To

fall

back

to

Version

7

from

Version

8

compatibility

mode:

1.

Stop

DB2

Version

8

activity.

Note:

You

must

terminate

all

utilities

started

on

Version

8.

2.

Reactivate

Version

7.

3.

Reconnect

TSO,

IMS,

and

CICS

to

Version

7.

4.

Start

Version

7.

5.

Verify

fallback

by

running

the

DB2

sample

applications

or

your

own

applications.

If

you

fall

back

and

then

try

to

use

frozen

plans

or

packages,

the

automatic

rebind

from

the

previous

version

fails.

To

make

the

plans

and

packages

that

were

not

automatically

rebound

on

the

previous

version

available,

change

the

SQL

statements

or

remove

the

reference

to

a

frozen

object,

precompile

the

application

programs,

and

explicitly

BIND

the

plans

and

packages

on

the

previous

version.

Frozen

objects

Falling

back

does

not

undo

changes

that

are

made

to

the

catalog

during

migration

to

Version

8.

The

migrated

catalog

is

used

after

fallback.

Some

objects

in

this

catalog

that

have

been

affected

by

Version

8

function

might

become

frozen

objects

after

fallback.

Frozen

objects

are

unavailable,

and

they

are

marked

with

the

release

dependency

marker

L.

If

an

object

is

marked

with

a

release

dependency,

it

is

never

unmarked.

The

release

dependency

marker

is

listed

in

the

IBMREQD

column

of

catalog

tables.

In

general,

objects

that

depend

on

the

new

facilities

of

DB2

UDB

for

z/OS

Version

8

are

frozen

after

you

fall

back

to

Version

7

and

remain

frozen

until

you

remigrate

to

Version

8.

Table

13

on

page

77

lists

the

objects

that

are

frozen

when

falling

back

to

Version

7.

Frozen

objects

are

marked

with

the

release

dependency

markers

L.

76

Release

Planning

Guide

Table

13.

Objects

that

are

frozen

when

falling

back

to

DB2

UDB

for

z/OS

Version

7

RELEASE

DEPENDENT

MARK

=

L

v

Plans,

packages,

or

views

that

use

any

new

syntax

or

objects

v

DBRMs

produced

by

a

precompilation

in

Version

8

with

a

value

of

YES

for

the

NEWFUN

option

v

User-defined

functions

created

in

Version

8

with

the

PARAMETER

CCSID

option

v

User-defined

SQL

procedures

and

functions

created

in

Version

8

with

the

PARAMETER

CCSID

option

Plans

and

packages

become

frozen

objects

when

they

use

new

SQL

syntax,

use

new

BIND

options

and

attributes,

or

reference

frozen

objects.

When

plans

and

packages

become

frozen

objects,

the

automatic

rebind

process

is

adversely

affected.

See

DB2

Installation

Guide

for

details.

While

operating

in

Version

7,

you

can

determine

if

any

of

your

objects

are

frozen

by

issuing

the

following

SELECT

statements:

SELECT

NAME

FROM

SYSIBM.SYSPLAN

WHERE

IBMREQD

=

'L';

SELECT

LOCATION,

COLLID,

NAME,

VERSION

FROM

SYSIBM.SYSPACKAGE

WHERE

IBMREQD

=

'L';

SELECT

CREATOR,

NAME

FROM

SYSIBM.SYSVIEWS

WHERE

IBMREQD

=

'L';

SELECT

CREATOR,

NAME

FROM

SYSIBM.SYSINDEXES

WHERE

IBMREQD

=

'L';

SELECT

CREATOR,

NAME,

TYPE

FROM

SYSIBM.SYSTABLES

WHERE

IBMREQD

=

'L';

SELECT

DBNAME,

NAME

FROM

SYSIBM.SYSTABLESPACE

WHERE

IBMREQD

=

'L';

SELECT

SCHEMA,

NAME,

SPECIFICNAME,

ROUTINETYPE

FROM

SYSIBM.SYSROUTINES

WHERE

IBMREQD

=

'L';

Other

fallback

considerations

Before

you

fall

back

to

Version

7,

you

must

be

aware

of

the

following

considerations:

Buffer

pools:

DB2

Version

8

maintains

the

Version

7

virtual

buffer

pool

and

hiperpool

definitions

at

migration

so

that

they

can

be

used

if

you

fall

back.

NEWFUN

precompiler

option:

You

cannot

execute

a

plan

or

package

that

uses

a

DBRM

that

was

produced

by

precompiling

in

DB2

Version

8

with

a

value

of

YES

for

the

NEWFUN

precompiler

option.

You

cannot

BIND

a

DBRM

that

was

precompiled

with

a

value

of

YES

for

the

NEWFUN

precompiler

option

on

Version

7

or

earlier.

DISPLAY

GROUPBUFFERPOOL

output:

After

fallback,

the

DISPLAY

GROUPBUFFERPOOL

command's

output

reverts

to

the

Version

7

format

and

only

displays

the

operational

coupling

facility

level.

Utilities

COPY,

REPORT,

and

RECOVER:

You

must

use

the

Version

7

COPY

and

RECOVER

utility

jobs

for

backup

and

recovery

after

fallback.

Running

DB2-supplied

stored

procedure

DSNWZP

in

a

WLM-established

stored

procedure

address

space:

In

DB2

Version

8,

DB2-supplied

stored

procedure

DSNWZP

is

defined

to

run

in

a

WLM-established

stored

procedure

address

space

and

to

use

external

module

DSNWZP.

In

DB2

Version

7,

DSNWZP

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

77

must

use

external

module

DSNWZPR

to

run

in

a

WLM-established

stored

procedure

address

space.

You

must

alter

DSNWZP

to

use

DSNWZPR

after

fallback.

For

more

information

on

fallback

considerations,

refer

to

DB2

Installation

Guide.

Release

incompatibilities

This

section

describes

changes

that

might

affect

your

DB2

operations

after

migrating

to

Version

8

of

DB2.

Ensure

that

Version

7

sample

objects

are

available

If

you

no

longer

have

the

Version

7

sample

jobs,

you

need

to

run

the

Version

7

installation

CLIST

to

regenerate

them.

If

you

dropped

the

Version

7

sample

database

(by

running

job

DSNTEJ0),

you

need

to

run

the

Version

7

sample

jobs

before

you

start

the

migration

to

Version

8

compatibility

mode.

If

you

do

not

have

the

Version

7

jobs

available

during

migration,

you

will

not

have

a

DB2-supported

sample

to

verify

a

successful

migration

to

Version

8

compatibility

mode.

Ensure

that

no

utility

jobs

are

running

In

Version

8,

you

can

only

restart

or

terminate

a

utility

on

the

same

release

on

which

it

was

started.

Any

outstanding

utilities

prior

to

Version

8

cannot

be

restarted

or

terminated

after

you

have

migrated

from

Version

7

to

Version

8

compatibility

mode.

To

ensure

that

you

do

not

have

outstanding

utility

jobs,

issue

the

DISPLAY

UTILITY(*)

command.

EBCDIC

and

ASCII

CCSID

must

be

non-zero

You

must

specify

a

non-zero

value

for

EBCDIC

and

ASCII

CCSIDs.

Altering

of

CCSIDs

can

be

very

disruptive

to

a

system.

Converting

to

a

CCSID

that

supports

the

euro

symbol

is

potentially

less

disruptive

because

specific

pre-euro

CCSIDs

map

to

specific

CCSIDs

for

the

euro.

See

DB2

Installation

Guide

for

the

detailed

steps.

Converting

to

a

different

CCSID

for

other

reasons,

particularly

when

a

DB2

subsystem

has

been

operating

with

the

wrong

CCSID,

could

render

data

unusable

and

unrecoverable.

Recommendation:

Never

change

CCSIDs

on

an

existing

DB2

subsystem

without

specific

guidance

from

IBM

Software

Support.

Identify

unsupported

objects

Version

8

does

not

support

type

1

indexes.

If

you

do

not

remove

type

1

indexes

from

your

Version

7

catalog,

you

will

not

be

able

to

migrate

to

Version

8

compatibility

mode.

Adjust

application

programs

You

might

need

to

adjust

your

application

programs

because

of

the

release

incompatibilities

that

this

section

describes.

Adjust

trace

applications:

If

you

have

trace

applications

that

use

statement-length

fields,

you

might

need

to

change

them

to

use

4-byte

statement

length

fields.

Adjust

user-defined

function

calls

for

new

built-in

functions:

Several

new

built-in

functions

are

available.

If

you

have

user-defined

functions,

invoke

them

with

a

fully

qualified

name

to

avoid

calling

built-in

functions

that

might

have

the

same

78

Release

Planning

Guide

name.

If

the

user-defined

functions

are

not

invoked

with

a

fully

qualified

name

and

SYSIBM

is

first

in

the

SQL

path,

the

built-in

function

is

selected

instead

of

the

user-defined

function.

Changed

defaults

for

utilities:

The

default

values

for

several

utilities

options

have

changed

in

Version

8.

SORTKEYS

is

the

default

for

the

REORG,

LOAD,

and

REBUILD

utilities.

SORTDATA

is

the

default

for

the

REORG

utility.

Changed

behavior

for

DISPLAY

LOCATION

command:

If

you

specify

an

empty

parameter

for

the

DISPLAY

LOCATION

command,

such

as

DISPLAY

LOCATION(),

the

command

fails

and

DB2

issues

message

DSN9010I.

In

Version

8,

you

must

specify

a

parameter

for

this

command.

Changed

output

for

DISPLAY

GROUP

command:

In

Version

8,

the

DISPLAY

GROUP

command

displays

the

status

of

your

group

in

compatibility

mode,

enabling-new-function

mode,

and

new-function

mode.

Changed

behavior

for

TRANSLATE

function:

If

your

query

references

the

catalog,

uses

the

TRANSLATE

built-in

function,

and

specifies

a

translate

table,

you

might

need

to

change

the

translate

table.

In

some

cases,

the

TRANSLATE

functions

might

not

have

the

same

behavior

as

in

Version

7.

For

example,

some

accented

characters

which

had

a

single-byte

EBCDIC

value

in

Version

7

have

a

double-byte

Unicode

value.

If

you

perform

a

TRANSLATE

function

on

a

string

that

contains

such

a

character,

the

function

will

not

return

the

expected

results.

Changed

output

for

DISPLAY

GROUPBUFFERPOOL

command:

In

Version

8,

the

DISPLAY

GROUPBUFFERPOOL

command

displays

both

the

operational

coupling

facility

level

and

the

actual

coupling

facility

level.

In

Version

7,

only

the

operational

coupling

facility

level

is

displayed.

Changed

parameter

length

for

BLOB,

CLOB,

and

DBCLOB

functions:

The

lower

limit

for

these

functions

is

now

1

for

consistency

with

the

VARCHAR

and

VARGRAPHIC

functions.

You

cannot

invoke

these

built-in

functions

with

an

explicit

parameter

length

of

0.

If

you

specify

0,

DB2

returns

an

error.

If

the

input

string

is

empty

and

an

explicit

length

is

not

specified,

the

length

attribute

of

the

result

is

1.

Changed

input

for

GRAPHIC,

VARGRAPHIC,

and

DBCLOB:

The

input

string

for

the

GRAPHIC,

VARGRAPHIC,

and

DBCLOB

functions

cannot

be

BIT

data,

regardless

of

the

encoding

scheme

of

the

data.

If

the

input

string

is

EBCDIC

BIT

data,

DB2

returns

an

error.

Changed

rules

for

procedure

and

function

names:

In

Version

8,

DB2

enforces

the

following

rules

for

procedure

and

function

names:

v

If

your

routine

is

written

in

a

language

other

than

Java,

the

external

name

is

a

load

module

which

must

be

less

than

or

equal

to

8

bytes.

The

external

name

must

contain

characters

that

are

valid

for

a

z/OS

load

module.

v

A

procedure

name

cannot

consist

of

a

single

asterisk.

You

must

update

your

application

programs

to

reflect

these

changes.

If

you

do

not,

DB2

issues

an

error

message.

See

DB2

SQL

Reference

for

more

information

about

these

changes.

Truncation

of

CHAR

data:

Prior

to

Version

8,

DB2

issued

an

error

when

applications

invoked

the

CHAR

function

with

string

input

data

greater

than

255

bytes.

In

Version

8,

DB2

truncates

the

data

to

255

bytes

and

issues

a

warning

if

non-blank

characters

are

truncated.

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

79

SQLDA

may

contain

truncated

data:

In

Version

8,

the

length

of

many

names

has

been

extended.

However,

for

compatibility

with

prior

releases,

the

length

of

name

fields

in

the

SQLDA

is

not

changing.

Truncation

of

names

that

are

stored

in

the

SQLDA

might

occur

with

distinct

name

types.

To

avoid

truncation

of

distinct

type

names

in

the

SQLDA,

you

should

not

use

distinct

name

types

that

are

longer

than

30

bytes.

For

more

information,

refer

to

DB2

SQL

Reference.

LOCKPART

has

been

deprecated:

The

LOCKPART

clause

on

ALTER

or

CREATE

TABLESPACE

has

been

deprecated

in

Version

8,

although

it

is

still

supported

for

compatibility

purposes.

In

previous

releases,

LOCKPART

determined

whether

individual

partitions

would

be

locked.

The

previous

default

value

for

LOCKPART

locked

the

entire

table

space

with

a

lock

on

the

last

partition.

In

Version

8

new-function

mode,

individual

portions

of

partitioned

tablespaces,

including

those

created

in

Version

7

or

earlier,

will

be

locked

as

they

are

accessed.

In

a

data

sharing

environment,

all

members

must

be

in

enabling-new-function

or

new-function

mode

before

this

change

will

take

effect.

UTLRSTRT

no

longer

supported:

The

subsystem

parameter

UTLRSTRT

is

no

longer

supported.

When

possible,

DB2

attempts

to

restart

online-restartable

utilities,

regardless

of

whether

the

RESTART

keyword

is

specified.

PKGLDTOL

is

no

longer

supported:

The

subsystem

parameter

PKGLDTOL

is

no

longer

supported.

DB2

Version

8

requires

the

package

or

plan

for

applications

with

the

following

SQL

statements:

v

COMMIT

v

CONNECT

v

DESCRIBE

TABLE

v

RELEASE

v

ROLLBACK

v

SET

CONNECTION

v

SET

host-variable

=

CURRENT

SERVER

v

VALUES

CURRENT

SERVER

INTO

host-variable

You

must

bind

the

DBRM

into

a

plan

or

package.

Restriction

on

DB2

private

protocol

applications:

DB2

limits

the

SQL

statements

that

a

private

protocol

application

can

include

to

statements

that

were

added

to

DB2

before

Version

8.

SQL

reserved

words:

Version

8

has

several

new

SQL

reserved

words.

Refer

to

DB2

SQL

Reference

for

the

list,

and

adjust

your

applications

accordingly.

Changed

return

code

for

message

DSNU185:

The

return

code

for

DSNU185

has

changed

from

return

code

8

to

return

code

0,

allowing

processing

to

continue.

If

you

have

applications

that

scan

the

return

code

of

this

message,

you

might

need

to

modify

them.

Input

parameter

markers

of

a

prepared

statement

are

always

nullable:

In

previous

versions

of

DB2,

the

SQLTYPE

field

could

be

set

to

nullable

or

non-nullable.

In

Version

8,

the

SQLTYPE

field

is

always

nullable.

Savepoint

names

cannot

begin

with

'SYS':

A

savepoint

name

cannot

begin

with

SYS.

If

your

application

has

a

savepoint

with

a

name

beginning

with

SYS,

DB2

will

return

an

error.

80

Release

Planning

Guide

Changed

behavior

for

ALTER

TABLESPACE:

When

issuing

the

ALTER

TABLESPACE

statement,

partition

options

that

are

specified

after

an

ALTER

PARTITION

clause

will

affect

only

the

specified

partition.

If

you

do

not

specify

an

option

following

the

specification

of

a

partition,

an

error

is

issued.

Changed

behavior

for

ALTER

INDEX:

If

you

do

not

specify

an

option

following

the

ALTER

PARTITION

clause,

a

warning

is

issued.

EXTERNAL

clause

for

ALTER

PROCEDURE

and

ALTER

FUNCTION

requires

NAME:

In

Version

7,

the

EXTERNAL

clause

did

not

require

the

NAME

keyword

followed

by

a

value

on

the

ALTER

statement.

In

Version

8,

you

must

specify

NAME

and

a

value

if

you

specify

EXTERNAL.

Update

your

application

programs

to

include

the

NAME

keyword

and

a

value

when

you

specify

the

EXTERNAL

clause

on

an

ALTER

statement.

If

you

do

not,

DB2

issues

an

error

message.

See

DB2

SQL

Reference

for

more

information.

Invalidation

of

statements

that

reference

the

catalog:

In

Version

8,

DB2

may

invalidate

plans

and

packages

that

contain

statements

that

reference

the

catalog.

See

job

DSNTESQ

for

more

information

about

these

plans

and

packages.

SYSIBM.SYSDUMMY1

is

recreated:

During

execution

of

job

DSNTIJNE

in

Version

8

enabling-new-function

mode

processing,

DB2

drops

and

re-creates

the

SYSIBM.SYSDUMMY1

table.

If

your

plans

and

packages

reference

this

table,

they

will

be

invalidated.

DB2

automatically

rebinds

the

invalidated

plans

and

packages

when

the

plans

and

packages

are

next

references.

An

automatic

rebind

may

change

the

access

path.

Invalid

uses

of

host

variables

are

not

supported:

Validation

of

the

attributes

of

host

variables

used

in

PREPARE

statements

is

improved.

You

may

need

to

update

your

application

programs.

Example:

If

the

defined

length

of

the

host

variable

is

less

than

the

length

of

the

actual

data,

DB2

issues

an

error

message.

Update

your

application

program

to

specify

the

correct

length

of

the

host

variable.

Specify

PARAMETER

STYLE

clause

in

CREATE

PROCEDURE

statement:

In

Version

7,

you

did

not

need

to

specify

the

PARAMETER

and

STYLE

keywords

when

in

the

CREATE

PROCEDURE

statement.

In

Version

8,

you

must

specify

these

keywords.

If

you

do

not

specify

the

keywords,

DB2

issues

an

error

message.

User

IDs

must

have

SYSOPR

authority:

In

Version

7,

DB2

commands

that

were

issued

from

the

z/OS

console

or

TSO

SDSF

were

previously

associated

with

the

SYSOPR

user

ID.

In

Version

8,

these

commands

are

associated

with

the

primary

user

ID

that

issued

them.

You

must

grant

SYSOPR

authorization

to

these

user

IDs

or

public.

Update

CCSIDs

in

DBINFO:

If

you

have

defined

an

external

function

or

procedure

with

DBINFO,

you

might

need

to

update

the

CCSIDs

in

DBINFO.

In

Version

7,

CCSID

fields

in

DBINFO

were

set

to

the

CCSIDs

of

the

invoking

statement.

In

Version

8,

a

single

set

of

three

CCSIDs

might

not

reflect

the

CCSIDs

of

a

statement

that

invokes

an

external

function

or

procedure

defined

by

DBINFO.

Adjust

the

CCSIDs

in

DBINFO,

then

recompile

and

rebind

the

routine

that

references

them.

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

81

Release

coexistence

This

section

highlights

considerations

for

coexistence

between

Version

7

and

Version

8

in

a

data

sharing

environment

and

in

a

distributed

environment.

In

a

data

sharing

environment,

coexistence

is

limited

to

Version

8

compatibility

mode

with

Version

7.

IRLM

service

level

As

you

apply

IRLM

service

to

members

of

a

data

sharing

group,

some

members

run

with

the

newer

service

level,

and

some

run

with

the

older

service

level.

Although

each

member

uses

the

same

release

level

of

IRLM,

a

mix

of

service

levels

can

raise

issues

that

you

must

consider.

For

more

information

about

IRLM

coexistence,

see

DB2

Data

Sharing:

Planning

and

Administration.

DISPLAY

GROUPBUFFERPOOL

output

Because

the

DISPLAY

GROUPBUFFERPOOL

command

output

in

Version

8

returns

both

operational

and

actual

coupling

facility

levels,

the

command

output

in

a

coexistence

environment

depends

on

the

member

on

which

the

command

was

issued.

If

the

command

is

issued

from

Version

7,

only

the

operational

coupling

facility

level

is

displayed.

The

coupling

facility

batching

commands

RFCOM

and

WARM

are

not

used

in

a

coexistence

environment.

Distributed

environment

DB2

UDB

for

z/OS

communicates

in

a

distributed

data

environment

with

Version

6

and

Version

7

of

DB2,

using

either

DB2

private

protocol

access

or

DRDA

access.

However,

the

distributed

functions

that

are

introduced

in

Version

8

of

DB2

UDB

for

z/OS

can

be

used

only

when

using

DRDA

access.

Other

DRDA

partners

at

DRDA

level

4

can

also

take

advantage

of

the

functions

that

are

introduced

in

Version

8

of

DB2

UDB

for

z/OS.

Data

sharing

DB2

can

support

both

Version

7

and

Version

8

members

in

compatibility

mode

in

a

data

sharing

group.

To

support

both

releases,

you

must

first

apply

the

fallback

SPE

to

all

Version

7

members

of

the

group.

Release

coexistence

begins

when

you

migrate

the

first

data

sharing

member

to

Version

8.

You

must

successfully

migrate

the

first

data

sharing

member

to

Version

8

before

attempting

to

migrate

the

other

data

sharing

members.

For

the

best

availability,

you

can

migrate

the

members

to

Version

8

one

member

at

a

time.

When

developing

your

migration

plan,

remember

that

most

new

functions

that

are

introduced

in

Version

8

are

not

available

to

any

members

of

the

group

until

all

members

are

migrated

to

Version

8

and

until

all

members

are

in

new-function

mode.

For

detailed

information

about

data

sharing

release

coexistence

considerations,

see

DB2

Data

Sharing:

Planning

and

Administration.

TSO

and

CAF

logon

procedures:

You

can

attach

to

either

release

of

DB2

with

your

existing

TSO

or

CAF

logon

procedures,

without

changing

the

load

libraries

for

your

applications.

After

you

migrate

completely

to

the

latest

level

of

DB2,

you

must

update

those

procedures

and

jobs

to

point

to

the

latest

level

of

DB2

load

libraries.

If

82

Release

Planning

Guide

you

forget

to

update

those

procedures

and

jobs

before

migrating

to

any

release

subsequent

to

Version

8,

those

procedures

and

jobs

can

no

longer

work

in

that

subsequent

release.

For

a

detailed

list

of

considerations

for

a

data

sharing

group

with

multiple

DB2

releases,

see

Chapter

3

of

DB2

Data

Sharing:

Planning

and

Administration.

Installation

changes

This

section

shows

the

panels

that

are

used

by

the

installation

CLIST

to

customize

the

jobs

that

you

use

to

install

or

migrate

to

Version

8.

This

section

also

lists

the

changes

to

SMP/E

jobs

and

sample

jobs.

You

can

also

install

DB2

UDB

for

z/OS

from

a

Windows

workstation

using

mSys

for

Setup

DB2

Customization

Center.

Version

8

panels

Table

14

lists

the

panels

for

DB2

UDB

for

z/OS

installation

and

migration.

With

the

addition

of

the

new

functions

in

Version

8,

several

panels

have

been

modified,

and

new

fields

have

been

added.

The

new

and

modified

panels

have

a

Yes

listed

under

the

Panel

modified

column

in

Table

14.

Table

14.

Version

8

installation

and

migration

panels

Panel

ID

Panel

title

Panel

modified

DSNTIPA0

Online

Book

Data

Set

Names

DSNTIPA1

Main

Panel

Yes

DSNTIPA2

Data

Parameters

DSNTIPK(1)

Define

Group

or

Member

DSNTIPH

System

Resource

Data

Set

Names

DSNTIPT

Data

Set

Names

Panel

1

DSNTIPU

Data

Set

Names

Panel

2

Yes

DSNTIPW

Data

Set

Names

Panel

3

Yes

DSNTIPD

Sizes

Panel

1

DSNTIP7

Sizes

Panel

2

Yes

DSNTIPE

Thread

Management

Yes

DSNTIP1

Buffer

Pool

Sizes

Panel

1

Yes

DSNTIP2

Buffer

Pool

Sizes

Panel

2

Yes

DSNTIPN

Tracing

and

Checkpoint

Parameters

Yes

DSNTIPO

Operator

Functions

DSNTIPF

Application

Programming

Defaults

Panel

1

Yes

DSNTIP4

Application

Programming

Defaults

Panel

2

Yes

DSNTIP8

Application

Programming

Defaults

Panel

3

Yes

DSNTIPI

IRLM

Panel

1

Yes

DSNTIPJ

IRLM

Panel

2

Yes

DSNTIPP

Protection

Yes

DSNTIPM

MVS

PARMLIB

Updates

Chapter

3.

Planning

for

migration,

conversion,

and

fallback

83

Table

14.

Version

8

installation

and

migration

panels

(continued)

Panel

ID

Panel

title

Panel

modified

DSNTIPL

Active

Log

Data

Set

Parameters

Yes

DSNTIPA

Archive

Log

Data

Set

Parameters

Yes

DSNTIPS

Databases

and

Spaces

to

Start

Automatically

DSNTIPR

Distributed

Data

Facility

Panel

1

DSNTIP5

Distributed

Data

Facility

Panel

2

DSNTIPX

Routine

Parameters

Yes

DSNTIPZ

Data

Definition

Control

Support

DSNTIPY

Job

Editing

Yes

DSNTIPC

DB2

CLIST

Calculations

Panel

1

Yes

DSNTIPC1

DB2

CLIST

Calculations

Panel

2

DSNTIPB

Update

Selection

Menu

Yes

Notes:

1.

DSNTIPK

is

for

installing

and

migrating

in

data

sharing

mode.

Version

8

sample

jobs

With

the

addition

of

the

new

functions

in

Version

8,

several

existing

sample

jobs

have

been

modified,

and

several

new

jobs

have

been

added.

The

new

and

changed

sample

jobs

are

listed

in

Table

15.

Table

15.

New

and

modified

sample

jobs

Sample

job

New

or

modified

DSNTEJ3M

New

DSNTEJ6R

New

DSNTEJ76

New

DSNTEJ77

New

DSNTEJ78

New

DSNTEJ65

Modified

DSNTEJ1

Modified

DSNTEJ1P

Modified

DSNTEJ2A

Modified

84

Release

Planning

Guide

Appendix

A.

Changes

to

commands

This

appendix

provides

an

overview

of

the

new

and

changed

commands

in

Version

8

of

DB2

UDB

for

z/OS.

The

purpose

of

the

appendix

is

to

highlight

the

major

changes.

For

complete

information

about

all

the

changes,

such

as

the

syntax

for

new

or

changed

commands,

see

DB2

Command

Reference.

New

commands

Version

8

contains

no

new

commands.

Changed

commands

Table

16

shows

that

several

existing

commands

have

new

and

changed

options.

Table

16.

Changes

to

existing

commands

Command

Description

of

enhancements

and

notes

–ALTER

BUFFERPOOL

(DB2)

New

option:

PGFIX(NO|YES)

The

PGFIX

option

specifies

whether

the

buffer

pool

should

be

fixed

in

real

storage

when

it

is

used.

BIND

PLAN

(DSN)

BIND

PACKAGE

(DSN)

REBIND

PLAN

(DSN)

REBIND

PACKAGE

(DSN)

New

and

changed

options:

REOPT(NONE)

REOPT(ALWAYS)

REOPT(ONCE)

The

REOPT

option

specifies

whether

to

have

DB2

determine

an

access

path

at

run

time

by

using

the

values

of

host

variables,

parameter

markers,

and

special

registers.

REOPT(NONE)

does

not

determine

an

access

path

at

run

time.

You

can

use

NOREOPT(VARS)

as

a

synonym

for

REOPT(NONE).

REOPT(ALWAYS)

determines

the

access

path

at

run

time

each

time

the

statement

is

run.

You

can

use

REOPT(VARS)

as

a

synonym

for

REOPT(ALWAYS).

REOPT(ONCE)

determines

the

access

path

for

any

dynamic

statement

only

once,

at

the

first

run

time

or

at

the

first

time

the

statement

is

opened.

This

access

path

is

saved

in

the

dynamic

statement

cache

and

used

until

the

statement

is

invalidated

or

removed

from

the

cache

and

needs

to

be

prepared

again.

©

Copyright

IBM

Corp.

2004

85

Table

16.

Changes

to

existing

commands

(continued)

Command

Description

of

enhancements

and

notes

–DISPLAY

DATABASE

(DB2)

New

options:

OVERVIEW

ADVISORY(ARBDP)

ADVISORY(AREO*)

OVERVIEW

displays

each

object

in

the

database

on

its

own

line,

providing

an

easy

way

to

see

all

objects

in

the

database.

ADVISORY(ARBDP)

displays

objects

that

are

in

the

advisory

REBUILD-pending

status.

ADVISORY(AREO*)

displays

objects

that

are

in

the

advisory

REORG-pending

status.

In

Version

8,

you

can

use

the

DISPLAY

DATABASE

command

on

the

following

objects:

v

Databases

v

Table

spaces

v

Index

spaces

v

Physical

partitions

of

partitioned

table

spaces

or

index

spaces

(including

index

spaces

that

contain

data-partitioned

secondary

indexes)

v

Logical

partitions

of

nonpartitioned

secondary

indexes

–DISPLAY

GROUP

(DB2)

The

DISPLAY

GROUP

command

with

DETAIL

option

now

displays

the

catalog

mode

in

the

output

as

MODE(C|E|N)

(compatibility

mode,

enabling-new-function

mode,

or

Version

8

new-function

mode)

of

the

DB2

subsystem

or

data

sharing

group.

MODIFY

irlmproc,SET

(z/OS

IRLM)

New

and

changed

options:

DEADLOCK=nnnn

PVT=nnnn

DEADLOCK

specifies

the

number,

in

milliseconds,

of

how

often

the

local

deadlock

processing

is

scheduled.

PVT

specifies

the

upper

limit

of

private

storage

that

is

used

for

locks.

You

can

specify

this

value

in

megabytes

or

gigabytes

by

specifying

M

(for

megabytes)

or

G

(for

gigabytes)

after

the

value,

as

follows,

nnnnM

or

nnnnG.

–START

DATABASE

(DB2)

In

Version

8,

you

can

use

the

START

DATABASE

command

on

the

following

objects:

v

Databases

v

Table

spaces

v

Index

spaces

v

Physical

partitions

of

partitioned

table

spaces

or

index

spaces

(including

index

spaces

that

contain

data-partitioned

secondary

indexes)

v

Logical

partitions

of

nonpartitioned

secondary

indexes

86

Release

Planning

Guide

Table

16.

Changes

to

existing

commands

(continued)

Command

Description

of

enhancements

and

notes

START

irlmproc

(z/OS

IRLM)

New

and

changed

options:

LTE=nnnn

MAXCSA=

PC=

LTE

specifies

the

number

of

lock

table

entries

that

are

required

in

the

coupling

facility

lock

structure.

MAXCSA

is

a

required

positional

parameter

but

is

currently

unused.

PC

is

a

required

positional

parameter

but

is

currently

unused.

MAXCSA

and

PC

are

currently

unused

because

IRLM

Version

2

Release

2

places

locks

only

in

private

storage.

–STOP

DATABASE

(DB2)

In

Version

8,

you

can

use

the

STOP

DATABASE

command

on

the

following

objects:

v

Databases

v

Table

spaces

v

Index

spaces

v

Physical

partitions

of

partitioned

table

spaces

or

index

spaces

(including

index

spaces

that

contain

data–partitioned

secondary

indexes)

v

Logical

partitions

of

nonpartitioned

secondary

indexes

Other

command

changes

If

secondary

authorization

IDs

are

defined,

DB2

commands

that

are

issued

from

a

z/OS

console

or

TSO

SDSF

are

associated

with

those

IDs.

Appendix

A.

Changes

to

commands

87

88

Release

Planning

Guide

Appendix

B.

Changes

to

utilities

This

appendix

summarizes

the

changes

to

utilities

in

Version

8

of

DB2

UDB

for

z/OS:

v

“New

utilities”

v

“Changed

utilities”

v

“Other

utility

changes”

on

page

95

New

utilities

Table

17

lists

and

describes

the

new

utilities.

Table

17.

Overview

of

new

utilities

Utility

name

Description

BACKUP

SYSTEM

BACKUP

SYSTEM

takes

fast

volume-level

copies

of

DB2

databases

and

logs.

It

relies

on

new

DFSMShsm

services

in

z/OS

Version

1

Release

5

that

automatically

monitors

which

volumes

need

to

be

copied.

Using

BACKUP

SYSTEM

to

take

copies

is

less

disruptive

than

using

the

SET

LOG

SUSPEND

command,

because

a

BACKUP

SYSTEM

job

does

not

take

a

log

write

latch.

An

advantage

for

data

sharing

is

that

BACKUP

SYSTEM

operates

on

an

entire

data-sharing

group,

whereas

the

SET

LOG

SUSPEND

command

must

be

issued

for

each

data-sharing

member.

CATENFM

CATENFM

enables

a

DB2

subsystem

to

enter

DB2

Version

8

enabling-new-function

mode

and

Version

8

new-function

mode.

RESTORE

SYSTEM

RESTORE

SYSTEM

provides

a

way

to

recover

a

DB2

subsystem

to

an

arbitrary

point

in

time.

RESTORE

SYSTEM

automatically

handles

any

creates,

drops,

and

LOG

NO

events

that

might

have

occurred

between

the

backup

and

the

recovery

point

in

time.

RESTORE

SYSTEM

uses

data

that

is

copied

by

the

BACKUP

SYSTEM

utility.

DSNJCNVB

The

DSNJCNVB

stand-alone

conversion

utility

converts

the

bootstrap

data

set

(BSDS)

so

that

it

can

support

up

to

10

000

archive

log

volumes

and

93

active

log

data

sets

per

log

copy.

If

you

do

not

convert

the

BSDS,

it

can

manage

only

1000

archive

log

volumes

and

31

active

log

data

sets

per

log

copy.

Changed

utilities

Table

18

on

page

90

lists

and

describes

the

new

and

changed

options

for

many

existing

DB2

UDB

for

z/OS

utilities.

©

Copyright

IBM

Corp.

2004

89

Table

18.

New

and

changed

utility

options

Utility

name

Description

of

enhancements

and

notes

CHECK

INDEX

New

options:

SHRLEVEL

CHANGE,

SHRLEVEL

REFERENCE,

DRAIN_WAIT,

RETRY,

RETRY_DELAY

SHRLEVEL

CHANGE

enables

CHECK

INDEX

to

operate

online.

When

you

specify

this

option,

applications

can

read

from

and

write

to

data

that

is

to

be

checked.

To

prevent

applications

from

writing

to

the

data

that

is

to

be

checked,

specify

SHRLEVEL

REFERENCE.

The

DRAIN_WAIT,

RETRY,

and

RETRY_DELAY

options

govern

the

behavior

of

the

utility

when

draining

the

table

space

or

index.

The

DRAIN_WAIT

option

specifies

the

number

of

seconds

that

CHECK

INDEX

is

to

wait.

The

RETRY

option

specifies

the

number

of

retries

that

CHECK

INDEX

is

to

attempt.

The

RETRY_DELAY

option

specifies

the

minimum

duration,

in

seconds,

between

retries.

CHECK

LOB

Changed

option:

WORKDDN

The

WORKDDN

keyword,

which

provided

the

DD

names

of

the

SYSUT1

and

SORTOUT

data

sets

in

earlier

versions

of

DB2,

is

no

longer

needed

and

is

ignored.

You

do

not

need

to

modify

existing

control

statements

to

remove

WORKDDN.

COPY

New

option:

SYSTEMPAGES

The

SYSTEMPAGES

option

specifies

whether

the

COPY

utility

is

to

put

the

system

pages

at

the

beginning

of

the

image

copy

data

set.

SYSTEMPAGES

YES,

which

is

the

default,

guarantees

that

the

system

pages

are

located

at

the

beginning

of

the

image

copy.

This

placement

ensures

that

the

image

copy

contains

the

necessary

system

pages

for

subsequent

UNLOAD

utility

jobs

to

correctly

format

and

unload

all

data

rows.

You

can

now

specify

COPY

CONCURRENT

SHRLEVEL

CHANGE

for

table

spaces

with

a

page

size

that

is

greater

than

4

KB

if

the

page

size

matches

the

control

interval

for

the

associated

data

set.

(DB2

now

supports

data

sets

with

control

interval

sizes

of

8

KB,

16

KB,

and

32

KB.)

90

Release

Planning

Guide

Table

18.

New

and

changed

utility

options

(continued)

Utility

name

Description

of

enhancements

and

notes

LOAD

New

options:

BIT,

DELIMITED,

COLDEL,

CHARDEL,

DECPT,

STRIP,

TRUNCATE

Changed

options:

HISTORY,

UPDATE,

SORTKEYS

The

BIT

option

specifies

that

the

input

CHAR

or

VARCHAR

field

contains

BIT

data.

You

can

load

delimited

files

by

specifying

the

DELIMITED

option.

(This

support

for

delimited

files

improves

compatibility

with

the

DB2

family.)

You

can

use

the

COLDEL,

CHARDEL,

and

DECPT

options

to

specify

the

delimiter

characters

that

are

used

in

the

input

data

file.

These

options

have

the

following

meanings:

COLDEL

Specifies

the

column

delimiter

character.

CHARDEL

Specifies

the

character

string

delimiter

character.

DECPT

Specifies

the

decimal

point

delimiter

character.

The

STRIP

option

specifies

that

LOAD

is

to

remove

blanks

(the

default)

or

the

specified

character

from

the

beginning,

end,

or

both

ends

of

the

input

data.

The

TRUNCATE

option

specifies

that

LOAD

is

to

truncate

the

input

character

string

from

the

right

if

the

string

does

not

fit

in

the

target

column.

These

options

are

valid

only

with

the

CHAR,

VARCHAR,

GRAPHIC,

and

VARGRAPHIC

data

type

options.

If

you

specify

both

the

TRUNCATE

and

STRIP

options,

LOAD

performs

the

strip

operation

first.

The

UPDATE

and

HISTORY

options

are

now

independent

of

each

other.

The

value

that

you

specify

for

UPDATE

does

not

determine

the

value

that

you

can

specify

for

HISTORY.

The

SORTKEYS

option

is

now

forced

on

for

LOAD.

REBUILD

INDEX

New

options:

INDEXSPACE,

SCOPE

Changed

options:

HISTORY,

UPDATE,

SORTKEYS

The

INDEXSPACE

option

allows

you

to

identify

the

index

by

specifying

the

qualified

name

of

the

index

space,

which

you

can

obtain

from

the

SYSIBM.SYSINDEXES

table.

The

SCOPE

option

indicates

whether

to

rebuild

all

specified

indexes

(SCOPE

ALL)

or

to

rebuild

only

those

indexes

that

are

in

REBUILD-pending,

RECOVER-pending,

advisory

REBUILD-pending,

or

advisory

REORG-pending

status

(SCOPE

PENDING).

The

UPDATE

and

HISTORY

options

are

now

independent

of

each

other.

The

value

that

you

specify

for

UPDATE

does

not

determine

the

value

that

you

can

specify

for

HISTORY.

The

SORTKEYS

option

is

now

forced

on

for

REBUILD

INDEX.

Appendix

B.

Changes

to

utilities

91

Table

18.

New

and

changed

utility

options

(continued)

Utility

name

Description

of

enhancements

and

notes

RECOVER

New

option:

CURRENTCOPYONLY

CURRENTCOPYONLY

specifies

that

the

restore

process

is

to

use

only

the

most

recent

primary

copy

for

each

object

in

the

list.

If

restore

fails,

RECOVER

does

not

automatically

use

the

next

most

recent

copy

or

the

backup

copy,

and

the

object

fails.

Specify

CURRENTCOPYONLY

to

improve

the

performance

of

restoring

concurrent

copies

(copies

that

were

made

by

COPY

with

the

CONCURRENT

option).

Certain

catalog

and

directory

objects

can

be

grouped

together

for

recovery.

You

can

specify

them

as

a

list

of

objects

in

a

single

RECOVER

utility

statement.

When

you

specify

all

of

these

objects

in

one

statement,

these

objects

are

recovered

faster.

REORG

INDEX

New

options:

INDEXSPACE,

SORTDEVT,

SORTNUM

Changed

options:

HISTORY,

UPDATE

The

INDEXSPACE

option

allows

you

to

identify

the

index

by

specifying

the

qualified

name

of

the

index

space,

which

you

can

obtain

from

the

SYSIBM.SYSINDEXES

table.

Use

the

SORTDEVT

option

to

specify

the

device

type

for

temporary

data

sets

that

are

to

be

allocated

by

DFSORT™.

Use

the

SORTNUM

option

to

specify

the

number

of

these

data

sets.

The

UPDATE

and

HISTORY

options

are

now

independent

of

each

other.

The

value

that

you

specify

for

UPDATE

does

not

determine

the

value

that

you

can

specify

for

HISTORY.

REORG

TABLESPACE

New

options:

SCOPE,

REBALANCE

Changed

options:

HISTORY,

UPDATE,

SORTDATA,

SORTKEYS,

DISCARD

The

SCOPE

option

indicates

whether

to

reorganize

the

specified

table

space

or

partitions

(SCOPE

ALL)

or

to

reorganize

the

specified

table

space

or

partitions

only

if

they

are

in

REORG-pending

or

advisory

REORG-pending

status

(SCOPE

PENDING).

REBALANCE

specifies

that

REORG

TABLESPACE

is

to

set

new

partition

boundaries

so

that

all

rows

that

participate

in

the

reorganization

are

evenly

distributed

across

the

reorganized

partitions.

The

UPDATE

and

HISTORY

options

are

now

independent

of

each

other.

The

value

that

you

specify

for

UPDATE

does

not

determine

the

value

that

you

can

specify

for

HISTORY.

The

SORTDATA

and

SORTKEYS

options

are

forced

on

for

REORG

TABLESPACE.

You

can

now

specify

the

DISCARD

option

with

SHRLEVEL

CHANGE.

However,

if

you

specify

these

two

options

together,

data

rows

that

match

the

discard

criteria

cannot

be

modified

during

reorganization.

You

can

reorganize

catalog

table

spaces

with

links

if

you

specify

SHRELEVEL

REFERENCE.

92

Release

Planning

Guide

Table

18.

New

and

changed

utility

options

(continued)

Utility

name

Description

of

enhancements

and

notes

REPAIR

New

options:

VERSIONS,

INDEXSPACE,

NOAREOPENDSTAR

The

VERSIONS

option

updates

the

version

information

for

the

named

table

space

or

index

in

the

catalog

and

directory.

Use

this

option

when

you

are

moving

objects

from

one

system

to

another

or

as

a

part

of

version

number

management.

The

INDEXSPACE

option

allows

you

to

identify

the

index

by

specifying

the

qualified

name

of

the

index

space,

which

you

can

obtain

from

the

SYSIBM.SYSINDEXES

table.

You

can

use

the

NOAREOPENDSTAR

option

to

reset

the

advisory

REORG-pending

(AREO*)

status

of

the

specified

table

space

or

index.

RUNSTATS

New

options:

COLGROUP,

MOST,

LEAST,

BOTH,

SORTDEVT,

SORTNUM

Changed

options:

FREQVAL,

COUNT,

HISTORY,

UPDATE

The

COLGROUP

option

indicates

that

RUNSTATS

should

treat

the

specified

columns

as

a

group.

This

option

allows

RUNSTATS

to

collect

a

cardinality

value

on

the

group.

The

FREQVAL

and

COUNT

options

can

be

specified

with

COLGROUP

to

indicate

that

RUNSTATS

is

to

collect

frequency

statistics

for

the

specified

group

of

columns.

If

you

specify

FREQVAL,

you

must

specify

COUNT

and

COLGROUP.

The

COUNT

option

indicates

the

number

of

frequently

occurring

values

that

are

to

be

collected.

You

must

specify

a

value;

no

default

exists.

The

MOST,

LEAST,

and

BOTH

options

indicate

whether

RUNSTATS

is

to

collect

the

most

frequently

occurring

values

for

the

set

of

columns

(MOST),

the

least

frequently

occurring

values

for

the

set

of

columns

(LEAST),

or

both

(BOTH).

These

options

must

be

specified

with

the

FREQVAL

and

COUNT

options.

The

SORTDEVT

option

specifies

the

device

type

for

temporary

data

sets

that

are

to

be

allocated

by

DFSORT.

The

SORTNUM

option

specifies

the

number

of

these

data

sets.

The

UPDATE

and

HISTORY

options

are

now

independent

of

each

other.

The

value

that

you

specify

for

UPDATE

does

not

determine

the

value

that

you

can

specify

for

HISTORY.

Appendix

B.

Changes

to

utilities

93

Table

18.

New

and

changed

utility

options

(continued)

Utility

name

Description

of

enhancements

and

notes

UNLOAD

New

options:

DELIMITED,

COLDEL,

CHARDEL,

DECPT,

FROMSEQNO

You

can

unload

files

in

delimited

format

by

specifying

the

DELIMITED

option.

(This

support

for

delimited

files

improves

compatibility

with

the

DB2

family.)

You

can

use

the

COLDEL,

CHARDEL,

and

DECPT

options

to

specify

the

delimiter

characters

that

are

to

be

used.

These

options

have

the

following

meanings:

COLDEL

Specifies

the

column

delimiter

character.

CHARDEL

Specifies

the

character

string

delimiter

character.

DECPT

Specifies

the

decimal

point

delimiter

character.

The

FROMSEQNO

option

specifies

the

file

sequence

number

of

the

image

copy

data

set

from

which

data

is

to

be

unloaded.

This

option

enables

you

to

unload

data

from

tape

data

sets

that

are

not

cataloged.

DSNJU003

(change

log

inventory)

New

options:

ALIAS=alias-name:alias-port,

NOALIAS,

SYSPITR=log-truncation-point,

CCSIDS

Changed

option:

ENDLRSN

The

ALIAS

option

(on

the

DDF

statement)

specifies

one

to

eight

alias

names

for

the

location.

:alias-port

specifies

a

TCP/IP

port

number

for

the

alias

that

can

be

used

by

DDF

to

accept

distributed

requests.

NOALIAS

indicates

that

no

alias

names

exist

for

the

specified

location.

Any

alias

names

that

were

specified

in

a

previous

DSNJU003

utility

job

are

removed.

Before

you

run

RESTORE

SYSTEM

to

recover

system

data,

you

must

use

the

SYSPITR

option

of

DSNJU003.

The

SYSPITR

option

specifies

the

log

RBA

(non-data

sharing

system)

or

the

log

LRSN

(data

sharing

system)

that

represents

the

log

truncation

point

for

the

point

in

time

that

you

want

to

use

for

system

recovery.

The

CCSIDS

option

can

be

specified

on

the

DELETE

statement

to

delete

the

CCSID

information

in

the

BSDS.

CCSID

information

is

stored

in

the

BSDS

to

ensure

that

you

do

not

accidentally

change

the

CCSID

values.

Use

this

option

under

the

direction

of

IBM

Software

Support

when

the

CCSID

information

in

the

BSDS

is

incorrect.

After

you

run

a

DSNJU003

job

with

the

DELETE

CCSIDS

option,

the

CCISD

values

from

DSNHDECP

are

recorded

in

the

BSDS

the

next

time

DB2

is

started.

The

ENDLRSN

option

can

now

be

used

with

CRESTART

in

a

non-data

sharing

environment.

In

this

environment,

ENDLRSN

specifies

the

RBA

value

that

matches

the

start

of

the

last

log

record

that

is

to

be

used

during

restart.

Any

log

information

in

the

bootstrap

data

set,

the

active

logs,

and

the

archive

logs

with

an

RBA

that

is

greater

than

the

ENDLRSN

value

is

discarded.

If

the

ENDLRSN

RBA

value

does

not

match

the

start

of

a

log

record,

DB2

restart

fails.

DSN1COPY

New

options:

EBCDIC,

ASCII,

UNICODE

You

can

indicate

the

format

of

the

row

data

in

the

PRINT

output

by

specifying

EBCDIC,

ASCII,

or

UNICODE

with

the

PRINT

option.

94

Release

Planning

Guide

Table

18.

New

and

changed

utility

options

(continued)

Utility

name

Description

of

enhancements

and

notes

DSN1PRNT

New

options:

EBCDIC,

ASCII,

UNICODE

You

can

indicate

the

format

of

the

row

data

in

the

PRINT

output

by

specifying

EBCDIC,

ASCII,

or

UNICODE

with

the

PRINT

option.

Other

utility

changes

Other

changes

to

utilities

in

Version

8

are:

v

You

can

reset

the

advisory

REORG-pending

(AREO*)

status

by

running

the

REBUILD

INDEX

utility,

the

REORG

INDEX

utility,

the

REORG

TABLESPACE

utility,

the

REPAIR

utility,

or

the

LOAD

utility

with

the

REPLACE

option.

v

You

can

reset

the

advisory

REBUILD-pending

(ARBDP)

status

by

running

the

REBUILD

INDEX

utility,

the

REORG

TABLESPACE

utility,

the

REPAIR

utility,

or

the

LOAD

utility

with

the

REPLACE

option.

v

You

can

code

your

utility

control

statements

either

entirely

in

EBCDIC

or

entirely

in

Unicode

UTF-8;

do

not

mix

character

sets.

DB2

automatically

detects

and

processes

Unicode

UTF-8

control

statements

if

the

first

character

of

the

data

set

is

one

of

the

following

characters:

–

A

Unicode

UTF-8

blank

(X'20')

–

A

Unicode

UTF-8

dash

(X'2D')

–

A

Unicode

UTF-8

uppercase

characters

A

through

Z

(X'41'

through

X'5A')

v

The

new

stored

procedure

DSNUTILU

lets

you

invoke

utilities

from

a

local

or

remote

client

program

that

generates

Unicode

utility

control

statements.

v

You

can

restart

utility

jobs

without

specifying

the

RESTART

keyword.

If

you

resubmit

a

job

that

finished

abnormally,

DB2

recognizes

the

job

and

restarts

it

if

possible.

Appendix

B.

Changes

to

utilities

95

96

Release

Planning

Guide

Appendix

C.

Changes

to

SQL

This

appendix

provides

an

overview

of

the

new

and

changed

SQL

statements

in

Version

8

of

DB2

UDB

for

z/OS:

v

“New

SQL

statements”

v

“Changed

SQL

statements”

v

“New

functions”

on

page

110

v

“Other

SQL

language

changes”

on

page

110

For

complete

information

about

all

changes,

such

as

the

syntax

for

new

or

changed

SQL

statements,

comprehensive

descriptions

of

keywords,

and

examples

of

usage,

see

DB2

SQL

Reference.

New

SQL

statements

Table

19

shows

the

new

SQL

statements

in

Version

8.

Table

19.

New

SQL

statements

SQL

statement

Description

ALTER

SEQUENCE

Changes

the

description

of

a

sequence

object

ALTER

VIEW

Regenerates

a

view

using

an

existing

view

definition

at

the

current

server

CREATE

SEQUENCE

Defines

a

sequence

object

GRANT

(sequence

privileges)

Grants

privileges

on

a

user-defined

sequence

object

ITERATE

Causes

the

flow

of

control

within

an

SQL

procedure

to

return

to

the

beginning

of

a

labelled

loop

REFRESH

TABLE

Refreshes

the

data

in

a

materialized

query

table

RESIGNAL

Enables

a

condition

handler

within

an

SQL

procedure

to

raise

a

condition

with

a

specific

SQLSTATE

and

message

text,

or

to

return

the

same

condition

that

activated

the

handler

RETURN

Returns

status

information

from

an

SQL

procedure

REVOKE

(sequence

privileges)

Revokes

privileges

on

a

user-defined

sequence

object

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

Assigns

a

value

to

the

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

special

register

SET

CURRENT

PACKAGE

PATH

Assigns

a

value

to

the

CURRENT

PACKAGE

PATH

special

register

SET

CURRENT

REFRESH

AGE

Assigns

a

value

to

the

CURRENT

REFRESH

AGE

special

register

SET

ENCRYPTION

PASSWORD

Assigns

a

value

for

the

ENCRYPTION

PASSWORD

and,

optionally,

a

hint

for

the

password

SET

SCHEMA

Assigns

a

value

to

the

CURRENT

SCHEMA

special

register.

Changed

SQL

statements

As

shown

in

Table

20

on

page

98,

many

existing

SQL

statements

have

new

and

changed

clauses.

©

Copyright

IBM

Corp.

2004

97

Table

20.

Changes

to

existing

SQL

statements

SQL

statement

Description

of

enhancements

and

notes

ALTER

FUNCTION

(external)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

Deprecated

clauses:

LANGUAGE

COMPJAVA

The

new

clauses

let

you

specify

whether

the

function

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

You

can

no

longer

specify

LANGUAGE

COMPJAVA

because

support

for

LANGUAGE

COMPJAVA

stored

procedures

is

removed.

ALTER

INDEX

New

clauses:

PADDED

NOT

PADDED

CLUSTER

NOT

CLUSTER

ADD

COLUMN

ALTER

PARTITION

ENDING

AT

When

an

index

contains

at

least

one

varying-length

column,

PADDED

and

NOT

PADDED

specify

how

the

varying-length

columns

in

the

index

are

to

be

stored.

PADDED

indicates

that

the

varying-length

string

columns

in

the

index

are

padded

with

the

default

pad

character

to

their

maximum

length.

NOT

PADDED

indicates

that

the

varying-length

string

columns

are

not

padded

to

their

maximum

length.

The

partitioning

index

for

a

table

is

no

longer

required

to

be

the

clustering

index.

You

can

use

the

new

CLUSTER

and

NOT

CLUSTER

clauses

to

change

which

index

is

the

clustering

index

for

a

table.

The

new

ADD

COLUMN

clause

lets

you

add

a

column

to

an

existing

index.

In

previous

releases

of

DB2,

to

change

the

attributes

of

a

partition

of

a

partitioning

index,

you

used

the

PART

and

VALUES

keywords.

Although

these

keywords

are

still

supported

in

Version

8,

the

ALTER

PARTITION

and

ENDING

AT

keywords

are

the

preferred

syntax

to

use

when

changing

a

partition’s

attributes.

98

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

ALTER

PROCEDURE

(external)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

Deprecated

clauses:

LANGUAGE

COMPJAVA

NO

WLM

ENVIRONMENT

The

new

clauses

let

you

specify

whether

the

procedure

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

You

can

no

longer

specify

LANGUAGE

COMPJAVA

because

support

for

LANGUAGE

COMPJAVA

stored

procedures

is

removed.

You

can

no

longer

specify

NO

WLM

ENVIRONMENT.

Stored

procedures

that

are

created

or

altered

in

Version

8

must

run

in

a

WLM-established

address

space.

ALTER

PROCEDURE

(SQL)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

Deprecated

clauses:

NO

WLM

ENVIRONMENT

The

new

clauses

let

you

specify

whether

the

procedure

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

You

can

no

longer

specify

NO

WLM

ENVIRONMENT.

Stored

procedures

that

are

created

or

altered

in

Version

8

must

run

in

a

WLM-established

address

space.

Appendix

C.

Changes

to

SQL

99

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

ALTER

TABLE

New

clauses:

ADD

PARTITION

BY

ADD

PARTITION

ENDING

AT

ALTER

PARTITION

ENDING

AT

ROTATE

PARTITION

FIRST

TO

LAST

ADD

MATERIALIZED

QUERY

ALTER

MATERIALIZED

QUERY

DROP

MATERIALIZED

QUERY

VOLATILE

NOT

VOLATILE

AS

SECURITY

LABEL

Changed

clauses:

ALTER

column-alteration

referential-constraint

AS

IDENTITY

GENERATED

ALWAYS

GENERATED

BY

DEFAULT

In

Version

8

of

DB2,

the

data

partitions

for

a

partitioned

index

can

be

determined

either

by

the

definition

of

a

partitioning

index

(index-controlled

partitioning)

or

by

the

definition

of

table

itself

(table-controlled

partitioning).

In

support

of

table-controlled

partitioning,

the

ALTER

TABLE

statement

has

several

new

clauses:

v

When

the

partitioning

for

a

table

is

yet

to

be

established

(it

has

neither

index-

nor

table-controlled

partitioning),

you

can

use

the

ADD

PARTITION

BY

clause

to

make

the

table

partitioning

be

table-controlled.

The

clause

specifies

the

columns

that

are

used

to

partition

the

data,

the

number

of

partitions,

and

the

limit

keys

for

the

partition

boundaries.

v

For

an

existing

partitioned

table

(whether

it

has

index-

or

table-controlled

partitioning),

you

can

use

the

ADD

PARTITION

ENDING

AT

clause

to

define

a

new

partition

for

the

table,

the

ALTER

PARTITION

ENDING

AT

clause

to

change

the

limit

keys

for

the

partitions

of

the

table,

and

use

the

ROTATE

PARTITION

FIRST

TO

LAST

clause

to

rotate

the

partitions

such

that

the

first

logical

partition

becomes

the

last

logical

partition.

The

ALTER

TABLE

statement

has

several

new

clauses

to

provide

support

for

materialized

query

tables:

v

Use

ADD

MATERIALIZED

QUERY

to

change

an

existing

base

table

into

a

materialized

query

table.

This

clause

defines

the

fullselect

on

which

the

materialized

query

table

is

based.

v

Use

ALTER

MATERIALIZED

QUERY

to

modify

the

attributes

of

an

existing

materialized

query

table.

This

clause

supports

changing

the

attributes

that

are

defined

by

MAINTAINED

BY

SYSTEM

or

MAINTAINED

BY

USER

and

ENABLE

QUERY

OPTIMIZATION

or

DISABLE

QUERY

OPTIMIZATION.

v

Use

ALTER

MATERIALIZED

QUERY

to

change

a

materialized

query

table

into

a

base

table.

The

clause

causes

DB2

to

stop

treating

the

table

as

a

materialized

query

table.

The

new

VOLATILE

and

NOT

VOLATILE

clauses

control

how

DB2

tries

to

access

the

table

for

SQL

operations.

VOLATILE

specifies

that

DB2

should

use

index

access

for

the

table

whenever

possible.

When

you

add

a

column

to

a

table,

you

can

specify

the

AS

SECURITY

LABEL

clause.

A

security

label

column

indicates

that

the

table

is

defined

with

multilevel

security

with

row

level

granularity.

The

security

label

column

contains

the

security

label

values.

100

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

ALTER

TABLE

(cont)

In

previous

versions

of

DB2,

the

changes

that

you

could

make

to

an

existing

column

definition

were

limited.

You

could

increase

only

the

length

of

VARCHAR

columns.

In

Version

8,

you

can

change

the

data

type

of

many

columns,

such

as

from

SMALLINT

to

INTEGER

or

VARCHAR

to

CHAR.

You

can

also

now

change

the

attributes

of

an

existing

identity

column.

When

you

add

an

identity

column

to

a

table,

you

can

specify

new

keywords

on

the

AS

IDENTITY

clause.

ORDER

and

NO

ORDER

indicate

whether

the

identity

values

must

be

generated

in

order

of

request.

The

default

is

NO

ORDER.

You

can

also

use

the

new

keywords

NO

MAXVALUE

and

NO

MINVALUE

to

explicitly

specify

the

default

behavior

that

an

identity

column

has

no

maximum

or

minimum

value

unless

you

specify

one.

In

addition,

you

can

now

specify

0

as

the

interval

between

sequence

values

and

set

the

minimum

and

maximum

values

to

the

same

value,

which

effectively

lets

you

define

a

constant

sequence

such

that

the

same

value

is

always

returned.

Many

new

clauses

are

also

added

to

the

ALTER

TABLE

statement

that

let

you

change

any

of

the

attributes

of

an

existing

identity

column.

When

you

define

a

referential

constraint,

the

new

keywords

ENFORCED

or

NOT

ENFORCED

indicate

whether

DB2

enforces

the

constraint

or

treats

the

constraint

as

an

informational

referential

constraint.

DB2

assumes

that

the

user

enforces

the

constraint

when

it

is

defined

as

NOT

ENFORCED,

or

informational.

When

you

add

a

ROWID

column

to

a

table,

you

are

no

longer

required

have

to

explicitly

specify

GENERATED

ALWAYS

or

GENERATED

BY

DEFAULT.

The

default

is

GENERATED

ALWAYS.

A

ROWID

column

does

not

need

to

exist

when

you

add

a

LOB

column

to

a

table.

If

a

ROWID

column

does

not

exist,

DB2

implicitly

generates

one

and

appends

it

as

the

last

column

of

the

table.

An

implicitly

generated

ROWID

column

is

called

a

hidden

ROWID

column.

ALTER

TABLESPACE

New

clauses:

ALTER

PARTITION

Deprecated

clauses:

LOCKPART

When

modifying

the

attributes

of

a

partition,

you

can

specify

ALTER

PARTITION

instead

of

PART

to

identify

the

partition

to

alter.

Although

the

PART

keyword

is

still

supported

as

a

synonym,

ALTER

PARTITION

is

the

new

preferred

syntax.

In

addition,

any

options

specified

after

the

ALTER

PARTITION

clause

affect

only

the

specified

partition;

if

no

options

are

specified

for

the

specified

partition,

an

error

occurs.

In

Version

8,

DB2

treats

all

partitioned

table

spaces

as

if

they

were

defined

with

LOCKPART

YES.

You

can

still

specify

the

LOCKPART

clause,

but

it

has

no

effect.

When

all

the

conditions

for

selective

partition

locking

are

met,

DB2

locks

only

the

partitions

that

are

accessed.

When

the

conditions

for

selective

partition

locking

are

not

met,

DB2

locks

every

partition

of

the

table

space.

COMMENT

New

clauses:

PACKAGE

PLAN

SEQUENCE

If

you

have

the

appropriate

authorization,

you

can

use

the

new

PACKAGE,

PLAN,

and

SEQUENCE

clauses

to

provide

comments

for

packages,

plans,

and

sequences

in

the

DB2

catalog.

When

creating

a

comment

for

a

package,

you

can

specify

which

version

of

the

package

to

which

the

comment

applies.

Appendix

C.

Changes

to

SQL

101

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

CREATE

FUNCTION

(external

scalar)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

The

new

clauses

let

you

specify

whether

the

function

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

The

default

is

STOP

AFTER

SYSTEM

DEFAULT

FAILURES.

CREATE

FUNCTION

(external

table)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

The

new

clauses

let

you

specify

whether

the

function

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

field

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

The

default

is

STOP

AFTER

SYSTEM

DEFAULT

FAILURES.

CREATE

INDEX

New

clauses:

PADDED

NOT

PADDED

PARTITIONED

NOT

CLUSTER

PARTITION

BY

RANGE

Changed

clauses:

CLUSTER

When

an

index

contains

at

least

one

varying-length

column,

PADDED

and

NOT

PADDED

specify

how

the

varying-length

columns

in

the

index

are

to

be

stored.

PADDED

indicates

that

the

varying-length

string

columns

in

the

index

are

padded

with

the

default

pad

character

to

their

maximum

length.

NOT

PADDED

indicates

that

the

varying-length

string

columns

are

not

padded

to

their

maximum

length.

The

default

for

the

option

is

determined

by

the

value

of

field

PAD

INDEXES

BY

DEFAULT

(on

installation

panel

DSNTIPE).

For

new

installations

of

DB2,

the

default

is

for

PADDED

mode.

For

migrations

to

Version

8,

the

default

is

NOT

PADDED

mode.

When

you

create

an

index

for

a

partitioned

table,

you

can

define

the

index

as

PARTITIONED.

PARTITIONED

indicates

that

the

index

is

data

partitioned

(that

is,

the

index

is

partitioned

according

to

the

partitioning

scheme

of

the

underlying

data).

Both

partitioning

indexes,

when

the

partitioning

of

tables

is

index-controlled,

and

secondary

indexes

can

be

data

partitioned.

The

partitioning

index

for

a

table

is

no

longer

required

to

be

the

clustering

index.

You

can

use

CLUSTER

and

NOT

CLUSTER

to

specify

which

index

is

the

clustering

index.

The

default

is

NOT

CLUSTER.

In

previous

releases

of

DB2,

you

had

to

use

the

PART

keyword

to

define

a

partitioning

index.

In

Version

8,

if

you

are

using

index-controlled

partitioning

and

are

defining

a

partitioning

index,

you

can

use

the

new

PARTITION

BY

RANGE

and

PARTITION

keywords

to

specify

the

partitions.

The

PART

keyword

is

supported

for

compatibility,

but

the

new

syntax

is

preferred

for

clarity.

102

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

CREATE

PROCEDURE

(external)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

Deprecated

clauses:

LANGUAGE

COMPJAVA

NO

WLM

ENVIRONMENT

The

new

clauses

let

you

specify

whether

the

procedure

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

placed

in

a

stopped

state

after

any

failure.

The

default

is

STOP

AFTER

SYSTEM

DEFAULT

FAILURES.

You

can

no

longer

specify

LANGUAGE

COMPJAVA

because

support

for

LANGUAGE

COMPJAVA

stored

procedures

is

removed.

You

can

no

longer

specify

NO

WLM

ENVIRONMENT.

Stored

procedures

that

are

created

or

altered

in

Version

8

must

run

in

a

WLM-established

address

space.

CREATE

PROCEDURE

(SQL)

New

clauses:

STOP

AFTER

nn

FAILURES

STOP

AFTER

SYSTEM

DEFAULT

FAILURES

CONTINUE

AFTER

FAILURE

Changed

clauses:

NO

WLM

ENVIRONMENT

The

new

clauses

let

you

specify

whether

the

procedure

is

to

be

placed

in

a

stopped

state

after

some

number

of

failures.

You

can

specify

a

specific

number,

specify

that

DB2

is

to

use

the

value

of

field

MAX

ABEND

COUNT

(on

installation

panel

DSNTIPX),

or

specify

that

the

routine

is

not

to

be

placed

in

a

stopped

state

after

any

failure.

The

default

is

STOP

AFTER

SYSTEM

DEFAULT

FAILURES.

You

can

no

longer

specify

NO

WLM

ENVIRONMENT.

Stored

procedures

that

are

created

or

altered

in

Version

8

must

run

in

a

WLM-established

address

space.

In

addition

to

changes

to

the

CREATE

PROCEDURE

(SQL)

statement

itself,

you

can

specify

several

new

or

enhanced

statements

in

an

SQL

procedure.

These

statements

let

the

procedure

return

more

information

to

the

caller

of

the

procedure.

The

new

RETURN

statement

supports

returning

status

information.

GET

DIAGNOSTICS

is

extended

to

support

returning

the

status

information

from

a

RETURN

statement.

You

can

also

use

SIGNAL

and

RESIGNAL

to

return

a

condition

with

a

specific

SQLSTATE

and

message

text.

Appendix

C.

Changes

to

SQL

103

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

CREATE

TABLE

New

clauses:

partitioning-clause

materialized-query-definition

EXCLUDING

IDENTITY

COLUMN

DEFAULTS

VOLATILE

NOT

VOLATILE

AS

SECURITY

LABEL

Changed

clauses:

referential-constraint

AS

IDENTITY

GENERATED

ALWAYS

GENERATED

BY

DEFAULT

The

partitioning-clause

lets

you

define

a

partitioned

table

with

table-controlled

partitioning.

The

PARTITION

BY

keyword

specifies

the

columns

that

are

used

to

partition

the

data.

The

PARTITION

and

ENDING

AT

keywords

specify

the

number

of

partitions

and

the

limit

keys

for

the

partition

boundaries.

The

materialized-query-definition

lets

you

specify

a

fullselect

to

define

the

columns

of

the

table

and

to

indicate

whether

the

table

is

to

be

a

materialized

query

table.

If

the

table

is

not

to

be

used

as

a

materialized

query

table,

you

must

specify

WITH

NO

DATA,

and

you

can

use

keywords

to

specify

how

the

identity

column

and

column

default

attributes

are

to

be

inherited.

The

following

clauses

are

used

to

define

the

attributes

of

a

table

that

is

to

be

used

as

a

materialized

query

table:

v

DATA

INITIALLY

DEFERRED

v

REFRESH

DEFERRED

v

MAINTAINED

BY

SYSTEM

or

MAINTAINED

BY

USER

v

ENABLE

QUERY

OPTIMIZATION

or

DISABLE

QUERY

OPTIMIZATION

In

previous

releases

of

DB2,

INCLUDING

IDENTITY

COLUMN

DEFAULTS

was

introduced

as

an

optional

clause

to

be

used

with

the

LIKE

clause.

A

clause

did

not

exist

for

the

default

behavior.

You

can

now

explicitly

specify

EXCLUDING

IDENTITY

COLUMN

DEFAULT

to

indicate

the

default

behavior.

The

new

VOLATILE

and

NOT

VOLATILE

keywords

control

how

DB2

tries

to

access

the

table

for

SQL

operations.

VOLATILE

specifies

that

DB2

should

use

index

access

for

the

table

whenever

possible.

The

default

is

NOT

VOLATILE.

You

can

specify

the

AS

SECURITY

LABEL

clause

to

a

column

as

a

security

label

column.

A

security

label

column

indicates

that

the

table

is

defined

with

multilevel

security

with

row

level

granularity.

The

security

label

column

contains

the

security

label

values.

When

you

define

a

referential

constraint,

the

new

keywords

ENFORCED

or

NOT

ENFORCED

indicate

whether

DB2

enforces

the

constraint

or

treats

the

constraint

as

an

informational

referential

constraint.

The

default

is

ENFORCED.

DB2

assumes

that

the

user

enforces

the

constraint

when

it

is

defined

as

NOT

ENFORCED,

or

informational.

104

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

CREATE

TABLE

(cont)

The

AS

IDENTITY

clause

has

new

keywords,

ORDER

and

NO

ORDER,

to

indicate

whether

the

identity

values

must

be

generated

in

order

of

request.

The

default

is

NO

ORDER.

You

can

also

use

the

new

keywords

NO

MAXVALUE

and

NO

MINVALUE

to

explicitly

specify

the

default

behavior

that

an

identity

column

has

no

maximum

or

minimum

value

unless

you

specify

one.

In

addition,

you

can

now

specify

0

as

the

interval

between

sequence

values

and

set

the

minimum

and

maximum

values

to

the

same

value,

which

effectively

lets

you

define

a

constant

sequence

such

that

the

same

value

is

always

returned.

Many

new

clauses

are

also

added

to

the

ALTER

TABLE

statement

that

let

you

change

any

of

the

attributes

of

an

existing

identity

column.

When

you

create

a

table

with

a

LOB

column,

you

are

no

longer

required

to

explicitly

define

a

ROWID

column.

You

can

let

DB2

implicitly

generate

one

for

you.

An

implicitly

generated

ROWID

column

is

called

a

hidden

ROWID

column.

When

you

create

a

table

with

a

ROWID

column,

you

are

no

longer

required

to

explicitly

specify

GENERATED

ALWAYS

or

GENERATED

BY

DEFAULT.

The

default

is

GENERATED

ALWAYS.

CREATE

TABLESPACE

New

clauses:

PARTITION

Deprecated

clauses:

LOCKPART

When

defining

a

partitioned

table

space,

you

can

specify

PARTITION

instead

of

PART

to

identify

the

partitions

to

create.

Although

the

PART

keyword

is

still

supported

as

a

synonym,

PARTITION

is

the

new

preferred

syntax.

In

Version

8,

DB2

treats

all

partitioned

table

spaces

as

if

they

were

defined

with

LOCKPART

YES.

You

can

still

specify

the

LOCKPART

clause,

but

it

has

no

effect.

When

all

the

conditions

for

selective

partition

locking

are

met,

DB2

locks

only

the

partitions

that

are

accessed.

When

the

conditions

for

selective

partition

locking

are

not

met,

DB2

locks

every

partition

of

the

table

space.

CREATE

VIEW

New

clauses:

WITH

common-table-expression

You

can

use

the

WITH

clause

to

define

a

common

table

expression,

which

is

like

a

temporary

view

that

can

be

used

for

the

duration

of

the

CREATE

VIEW

statement

Appendix

C.

Changes

to

SQL

105

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

DECLARE

CURSOR

New

clauses:

ASENSITIVE

SCROLL

SENSITIVE

DYNAMIC

SCROLL

WITHOUT

ROWSET

POSITIONING

WITH

ROWSET

POSITIONING

NO

SCROLL

WITHOUT

HOLD

WITHOUT

RETURN

In

previous

releases

of

DB2,

the

sensitivity

of

a

scrollable

cursor

could

be

SENSITIVE

STATIC

or

INSENSITIVE.

In

Version

8,

you

can

also

define

a

scrollable

cursor

as

ASENSITIVE

or

SENSITIVE

DYNAMIC.

For

scrollable

cursors,

the

default

is

ASENSITIVE.

ASENSITIVE

specifies

the

default

cursor

sensitivity:

INSENSITIVE

if

the

cursor

is

read-only

and

SENSITIVE

DYNAMIC

if

it

is

not.

SENSITIVE

DYNAMIC

indicates

that

the

result

table

is

dynamic.

That

is,

the

result

table

is

not

fixed

in

size

when

the

cursor

is

opened

and

can

change

in

size.

The

new

WITHOUT

ROWSET

POSITIONING

and

WITH

ROWSET

POSITIONING

clauses

control

whether

the

cursor

can

be

used

only

with

row-positioned

or

both

row-positioned

and

rowset-positioned

FETCH

statements.

Before

Version

8,

you

could

specify

the

SCROLL,

WITH

HOLD,

and

WITH

RETURN

clauses;

however,

no

syntax

matched

the

default

behavior

that

would

occur

in

the

absence

of

specifying

any

of

these

clauses.

In

Version

8,

the

new

clauses

NO

SCROLL,

WITHOUT

HOLD,

and

WITHOUT

RETURN

are

added

to

denote

the

default

behavior.

DECLARE

GLOBAL

TEMPORARY

TABLE

New

clauses:

EXCLUDING

IDENTITY

COLUMN

DEFAULTS

EXCLUDING

COLUMN

DEFAULTS

ON

COMMIT

DROP

TABLE

WITH

NO

DATA

In

previous

releases

of

DB2,

INCLUDING

IDENTITY

COLUMN

DEFAULTS

and

INCLUDING

COLUMN

DEFAULTS

were

introduced

as

optional

clauses.

No

clauses

existed

for

the

default

behavior.

You

can

now

explicitly

use

EXCLUDING

IDENTITY

COLUMN

DEFAULTS

and

EXCLUDING

COLUMN

DEFAULTS

to

specify

the

default

behavior.

The

ON

COMMIT

DROP

TABLE

clause

indicates

that

the

declared

global

temporary

table

is

to

be

dropped

on

a

commit

if

no

open

cursors

on

the

table

are

defined

as

WITH

HOLD.

The

new

clause

WITH

NO

DATA

is

introduced

to

be

a

synonym

of

the

existing

clause

DEFINITION

ONLY.

WITH

NO

DATA

is

the

preferred

syntax.

DELETE

New

clauses:

FOR

ROW

n

OF

ROWSET

For

a

positioned

delete

in

which

the

cursor

is

positioned

on

a

rowset,

you

can

use

the

new

FOR

ROW

n

of

ROWSET

clause

to

specify

which

row

of

the

rowset

is

to

be

deleted.

If

the

cursor

is

positioned

on

a

rowset

and

you

omit

the

FOR

ROW

n

of

ROWSET

clause,

all

the

rows

of

the

current

rowset

are

deleted.

Thus,

you

can

delete

multiple

rows

with

a

single

statement.

106

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

DROP

New

clauses:

SEQUENCE

Changed

clauses:

RESTRICT

You

can

use

the

new

SEQUENCE

clause

to

drop

a

sequence.

RESTRICT

is

now

an

optional

keyword.

You

are

no

longer

required

to

explicitly

specify

RESTRICT

when

you

drop

a

distinct

type,

stored

procedure,

or

function.

EXECUTE

New

clauses:

USING

host-variable-array

or

host-variable

USING

DESCRIPTOR

descriptor-name

FOR

n

ROWS

The

new

clauses

provide

support

for

dynamic

INSERT

statements

that

are

prepared

to

insert

multiple

rows.

FOR

n

ROWS

specifies

the

number

of

rows

that

are

to

be

inserted.

The

USING

clause

can

explicitly

define

the

host

variables

or

host

variable

array

that

contain

the

values

to

be

inserted

or

reference

an

SQLDA,

which

describes

them.

EXPLAIN

New

clauses:

STMTCACHE

STMTID

id-host-variable

or

integer-constant

STMTCACHE

STMTOKEN

token-host-variable

or

string-constant

With

the

new

STMCACHE

STMTID

and

STATEMENTCACHE

STMTOKEN

clauses,

you

can

now

explain

a

statement

in

the

dynamic

statement

cache.

You

identify

the

cached

statement

to

be

explained

by

specifying

its

associated

statement

ID

or

statement

token.

You

can

also

now

populate

an

explain

table

that

you

do

not

own.

If

DB2

finds

an

alias

on

PLAN_TABLE,

DSN_STATEMMT_TABLE,

DSN_FUNCTION_TABLE

and

the

current

authorization

ID

has

sufficient

SELECT

and

INSERT

privileges,

DB2

populates

the

table

that

is

referenced

by

the

alias.

FETCH

New

clauses:

NEXT

ROWSET

PRIOR

ROWSET

FIRST

ROWSET

LAST

ROWSET

CURRENT

ROWSET

ROWSET

STARTING

AT

ABSOLUTE

n

ROWSET

STARTING

AT

ABSOLUTE

n

FOR

n

ROWS

INTO

host-variable-array,

...

(or

descriptor-name)

To

support

rowset-positioned

cursors

and

the

retrieval

of

multiple

rows

of

data

from

a

result

table

with

a

single

statement,

the

FETCH

statement

is

enhanced

with

many

new

clauses.

For

example,

you

can

specify

FIRST

ROWSET

to

position

the

cursor

on

the

first

rowset

of

the

result

table.

Specifying

NEXT

ROWSET

positions

the

cursor

on

the

next

rowset

of

the

result

table,

relative

to

the

current

cursor

position.

The

clause

FOR

n

ROWS

determines

the

maximum

number

of

rows

that

are

retrieved.

The

INTO

clause

identifies

the

host

variable

arrays

that

are

to

receive

the

data

that

is

fetched.

You

can

define

the

host

variable

arrays

in

your

program

or

describe

them

in

an

SQLDA.

Appendix

C.

Changes

to

SQL

107

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

GET

DIAGNOSTICS

New

clauses:

statement-information

condition-information

combined

information

The

GET

DIAGNOSTICS

statement

is

enhanced

to

return

more

diagnostic

information

about

the

last

SQL

statement

than

just

the

number

of

rows

that

were

associated

with

that

statement.

You

can

specify

many

more

clauses

and

get

information

about

statement

items,

condition

items,

and

connection

items.

You

no

longer

need

to

use

GET

DIAGNOSTICS

from

within

an

SQL

procedure.

INSERT

New

clauses:

WITH

common-table-expression

VALUES(expression,

host-variable-array,

...,)

FOR

n

ROWS

ATOMIC

or

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

You

can

use

the

WITH

clause

to

define

a

common

table

expression,

which

is

like

a

temporary

view

that

can

be

used

for

the

duration

of

the

INSERT

statement

The

new

FOR

n

ROWS

clause

lets

you

insert

multiple

rows

into

a

table

or

view.

In

previous

versions

of

DB2,

you

could

insert

only

one

row

with

a

single

INSERT

statement.

The

VALUES

clause

specifies

the

data

that

is

to

be

inserted.

The

values

can

be

specified

in

expressions,

in

a

host

variable

array,

as

null,

or

as

the

default

value

for

the

column.

When

you

insert

multiple

rows,

the

ATOMIC

and

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

keywords

control

whether

all

the

rows

are

inserted

as

an

atomic

operation.

ATOMIC

specifies

that

if

the

insert

for

any

row

fails,

all

changes

made

by

any

of

the

inserts,

even

successful

ones,

are

undone.

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

specifies

that

if

the

insert

of

one

row

fails,

the

changes

made

for

the

successful

inserts

of

other

rows

are

not

undone.

The

default

is

ATOMIC.

LOCK

TABLE

New

clauses:

PARTITION

When

identifying

the

partition

of

a

partitioned

table

space

to

lock,

you

can

specify

PARTITION

instead

of

PART

to

identify

the

partitions

to

create.

Although

the

PART

keyword

is

still

supported

as

a

synonym,

PARTITION

is

the

new

preferred

syntax.

108

Release

Planning

Guide

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

PREPARE

New

clauses:

ASENSITIVE

NO

SCROLL

WITHOUT

ROWSET

POSITIONING

WITH

ROWSET

POSITIONING

FOR

SINGLE

ROW

FOR

MULTIPLE

ROWS

ATOMIC

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

WITHOUT

HOLD

WITHOUT

RETURN

Changed

clauses:

SENSITIVE

In

previous

releases

of

DB2,

the

sensitivity

of

a

scrollable

cursor

could

be

SENSITIVE

STATIC

or

INSENSITIVE.

In

Version

8,

in

support

of

dynamic

scrollable

cursors,

you

can

also

define

a

cursor

as

ASENSITIVE

or

SENSITIVE

DYNAMIC.

The

default

is

ASENSITIVE.

ASENSITIVE

specifies

the

default

cursor

sensitivity:

INSENSITIVE

if

the

cursor

is

read-only

and

SENSITIVE

DYNAMIC

if

it

is

not.

SENSITIVE

DYNAMIC

indicates

that

the

size

of

the

result

table

is

not

fixed

when

the

cursor

is

opened

and

the

cursor

has

complete

visibility

to

changes.

The

new

WITHOUT

ROWSET

POSITIONING

and

WITH

ROWSET

POSITIONING

clauses

control

whether

the

cursor

can

be

used

with

only

row-positioned

or

both

row-positioned

and

rowset-positioned

FETCH

statements.

If

the

statement

that

is

being

prepared

is

a

dynamic

INSERT

statement,

you

can

specify

FOR

SINGLE

ROW

or

FOR

MULTIPLE

ROWS

clauses

to

indicate

whether

a

variable

number

of

rows

is

to

be

provided

for

the

INSERT

statement.

The

default

is

FOR

SINGLE

ROW.

The

ATOMIC

and

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

keywords

control

whether

all

the

rows

are

inserted

as

an

atomic

operation.

ATOMIC

specifies

that

if

the

insert

for

any

row

fails,

all

changes

made

by

any

of

the

inserts,

even

successful

ones,

are

undone.

NOT

ATOMIC

CONTINUE

ON

SQLEXCEPTION

specifies

that

if

the

insert

of

one

row

fails,

the

changes

made

for

the

successful

inserts

of

other

rows

are

not

undone.

The

default

is

ATOMIC.

Before

Version

8,

you

could

specify

the

SCROLL,

WITH

HOLD,

and

WITH

RETURN

clauses;

however,

no

syntax

matched

the

default

behavior

that

would

occur

in

the

absence

of

specifying

any

of

these

clauses.

In

Version

8,

the

new

clauses

NO

SCROLL,

WITHOUT

HOLD,

and

WITHOUT

RETURN

are

added

to

denote

the

default

behavior.

Support

for

the

explicit

specification

of

the

WITHOUT

clauses

enables

you

to

override

the

specification

of

any

WITH

clauses

on

a

DECLARE

CURSOR

statement.

SELECT

INTO

New

clauses:

ORDER

BY

The

ability

to

specify

the

new

ORDER

BY

clause

lets

you

affect

which

row

is

returned

when

you

use

the

FETCH

FIRST

ROW

clause.

The

FETCH

FIRST

ROW

clause

ensures

that

only

one

row

is

returned

when

the

query

can

result

in

more

than

a

single

row.

When

both

clauses

are

specified,

the

ordering

is

done

first

on

the

result

set

and

then

the

first

row

is

retrieved.

Appendix

C.

Changes

to

SQL

109

Table

20.

Changes

to

existing

SQL

statements

(continued)

SQL

statement

Description

of

enhancements

and

notes

SIGNAL

New

clauses:

condition-name

Before

Version

8

of

DB2,

the

name

of

the

SIGNAL

statement

was

SIGNAL

SQLSTATE,

and

you

could

use

the

statement

only

in

a

trigger

body.

You

can

now

also

specify

SIGNAL

condition-name

to

have

an

SQL

procedure

return

a

condition

with

a

specific

SQLSTATE

and

message

text.

UPDATE

New

clauses:

FOR

ROW

n

OF

ROWSET

For

a

positioned

update

in

which

the

cursor

is

positioned

on

a

row

set,

you

can

use

the

new

FOR

ROW

n

OF

ROWSET

clause

to

specify

which

row

of

the

row

set

is

to

be

updated.

If

the

cursor

is

positioned

on

a

row

set

and

you

omit

the

FOR

ROW

n

of

ROWSET

clause,

all

the

rows

of

the

current

row

set

are

updated.

Therefore,

you

can

update

multiple

rows

with

a

single

statement.

New

functions

Table

21

shows

the

new

built-in

functions

in

Version

8,

which

improve

the

power

of

the

SQL

language.

Table

21.

New

functions

Function

name

Description

DECRYPT_BIT,

DECRYPT_CHAR,

or

DECRYPT_DB

Returns

the

decrypted

value

of

an

encrypted

argument

ENCRYPT_TDES

Returns

the

argument

as

an

encrypted

value

GETHINT

Returns

the

embedded

password

hint

from

encrypted

data,

if

one

exists

GETVARIABLE

Returns

the

value

of

a

session

variable

XML2CLOB

Converts

a

transient

XML

data

type

into

a

CLOB

so

that

applications

can

access

the

XML

data

XMLAGG

Produces

a

forest

of

XML

elements

from

a

collection

of

XML

elements

XMLCONCAT

Concatenates

a

variable

number

of

arguments

to

generate

a

forest

of

XML

elements

XMLELEMENT

Generates

an

XML

element

from

a

variable

number

of

arguments.

Uses

XMLATTRIBUTES

to

specify

attributes

for

the

XML

element

to

be

generated.

XMLFOREST

Produces

a

forest

of

XML

elements

that

all

share

a

specific

pattern

from

a

list

of

columns

and

expressions

XMLNAMESPACES

Declares

one

or

more

XML

namespaces

Other

SQL

language

changes

In

addition

to

the

many

new

SQL

statements

and

functions,

Version

8

provides

other

enhancements

to

the

SQL

language,

as

shown

in

Table

22

on

page

111.

110

Release

Planning

Guide

Table

22.

Other

changes

to

SQL

language

Item

Description

Expressions

for

sequence

values

NEXT

VALUE

FOR

sequence-name

and

PREVIOUS

VALUE

FOR

sequence-name

are

introduced

as

new

expressions.

For

the

specified

sequence,

NEXT

VALUE

FOR

generates

and

returns

the

next

value

of

the

sequence.

PREVIOUS

VALUE

FOR

returns

the

most

recently

generated

value

for

the

sequence.

CAST

specification

When

casting

an

operand

from

one

data

type

to

another,

you

can

use

the

CCSID

clause

to

explicitly

specify

the

encoding

scheme

or

CCSID

for

the

result.

The

new

CCSID

clause

can

be

specified

when

casting

an

operand

into

one

of

the

following

data

types:

CHAR,

VARCHAR,

GRAPHIC,

VARGRAPHIC,

CLOB,

or

DBCLOB.

Special

registers

Version

8

of

DB2

introduces

several

new

special

registers.

The

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

and

CURRENT

REFRESH

AGE

special

registers

are

added

to

support

materialized

query

tables.

These

registers

control

which

materialized

query

tables

are

evaluated

for

use

when

automatic

query

rewrite

using

materialized

query

tables

is

considered.

The

new

CURRENT

PACKAGE

PATH

special

register

lets

you

specify

a

list

of

collections

to

search

for

a

package.

The

SET

CURRENT

PACKAGE

PATH

SQL

statement,

which

can

be

used

to

change

the

value

of

the

register,

is

similar

to

the

PKLIST

bind

option,

but

the

SET

CURRENT

PACKAGE

PATH

statement

is

processed

at

the

server.

In

previous

releases

of

DB2,

the

only

way

to

switch

between

packages

was

to

execute

the

SET

CURRENT

PACKAGESET

statement

every

time

you

needed

to

use

a

different

package.

With

SET

CURRENT

PACKAGE

PATH,

you

can

execute

the

statement

only

once,

to

give

the

server

a

list

of

package

collections

to

search.

The

CURRENT

SCHEMA

special

register

enables

you

to

specify

an

implicit

qualifier

for

unqualified

object

names

in

dynamic

SQL

statements.

Unlike

the

CURRENT

SQLID

special

register,

CURRENT

SCHEMA

affects

only

the

implicit

qualifier

that

is

used.

The

register

has

no

affect

on

authorization

checking

for

dynamic

SQL

statements,

and

it

is

not

used

to

determine

the

owner

of

objects

that

are

created

dynamically.

Four

new

special

registers

are

added

to

facilitate

the

exchange

of

client

information

that

is

specified

for

a

connection:

v

The

CURRENT

CLIENT_ACCTNG

special

register

contains

the

value

of

the

accounting

string.

v

The

CURRENT

CLIENT_APPLNAME

special

register

contains

the

value

of

the

application

name.

v

The

CURRENT

CLIENT_USERID

special

register

contains

the

value

of

the

client

user

ID.

v

The

CURRENT

CLIENT_WRKSTNNAME

special

register

contains

the

value

of

the

workstation

name.

The

values

of

these

registers

can

be

provided

through

a

number

of

application

programming

interfaces.

Predicates

The

IS

DISTINCT

FROM

predicate

(and

its

alternate

form

IS

NOT

DISTINCT

FROM)

is

new

in

Version

8

to

provide

enhanced

processing

for

null

data

values.

The

predicate

simplifies

what

needs

to

be

coded

to

account

for

null

values

in

search

conditions,

especially

for

checking

whether

two

expressions

are

equivalent

or

are

both

null.

Appendix

C.

Changes

to

SQL

111

Table

22.

Other

changes

to

SQL

language

(continued)

Item

Description

Session

variables

Similar

to

special

registers,

session

variables

are

another

way

to

provide

information

to

applications.

Version

8

now

supports

many

DB2-defined

session

variables

that

store

information

that

can

be

referenced

by

SQL

statements.

In

addition,

you

can

establish

up

to

10

more

session

variables

in

the

connection

and

sign-on

exit

routines.

You

can

use

the

GETVARIABLE

built-in

function

to

retrieve

the

values

of

session

variables.

The

DB2-defined

session

variables

are:

v

SYSIBM.DATA_SHARING_GROUP_NAME

v

SYSIBM.PACKAGE_NAME

v

SYSIBM.PACKAGE_SCHEMA

v

SYSIBM.PACKAGE_VERSION

v

SYSIBM.PLAN_NAME

v

SYSIBM.SECLABEL

v

SYSIBM.SYSTEM_NAME

v

SYSIBM.SYSTEM_ASCII_CCSID

v

SYSIBM.SYSTEM_EBCDIC_CCSID

v

SYSIBM.SYSTEM_UNICODE_CCSID

v

SYSIBM.VERSION

The

session

variables

that

you

establish

in

the

connection

and

signon

exit

routines

are

defined

the

SESSION

schema.

Built-in

functions

Many

of

the

built-in

functions

now

support

longer

input

arguments.

The

expression

for

the

input

argument

of

a

column

function

no

longer

is

required

to

reference

a

column.

Hence,

column

functions

are

renamed

to

aggregate

functions.

GROUP

BY

clause

DB2

is

enhanced

to

support

expressions

in

the

GROUP

BY

clause.

Previously,

you

could

only

specify

column

names.

SYSTOOLS

as

a

schema

name

In

previous

versions

of

DB2,

SYSTOOLS

was

restricted

as

a

schema

name

for

distinct

types,

user-defined

functions,

stored

procedures,

and

triggers.

The

only

schema

name

that

began

with

character

string

SYS

that

you

could

specify

for

these

objects

was

SYSADM.

Now,

you

can

also

specify

SYSTOOLS

if

you

have

the

SYSADM

or

SYSCTRL

privilege.

select-statement

or

SELECT

INTO

You

can

now

specify

an

INSERT

statement

in

the

FROM

clause

of

a

select-statement

or

a

SELECT

INTO

statement.

Specifying

an

INSERT

statement

in

the

FROM

clause

lets

you

retrieve

the

values

of

the

rows

that

are

inserted

into

a

table

(such

as

for

default

values

of

columns,

values

of

automatically

generated

columns,

values

of

columns

that

are

changed

by

a

BEFORE

trigger,

and

values

that

are

inserted

through

a

multiple-row

insert).

The

keyword

FINAL

TABLE

followed

by

the

INSERT

statement

in

parentheses

denotes

the

result

table

that

is

returned

to

the

select-statement

or

SELECT

INTO.

The

result

table

includes

all

the

rows

that

were

inserted.

When

you

specify

an

INSERT

statement

in

a

select-statement,

you

can

also

specify

INPUT

SEQUENCE

in

the

ORDER

BY

clause.

INPUT

SEQUENCE

specifies

that

the

rows

in

the

result

table

are

to

be

in

the

order

in

which

they

were

inserted.

You

can

use

the

new

WITH

clause

at

the

beginning

of

a

select-statement

to

create

a

common

table

expression

that

can

be

used

for

the

duration

of

the

statement.

Common

table

expressions

are

especially

useful

in

bill

of

material

applications.

112

Release

Planning

Guide

Table

22.

Other

changes

to

SQL

language

(continued)

Item

Description

SQL

procedures

Version

8

extends

support

for

statement

labels

to

all

statements

within

an

SQL

procedure.

In

previous

versions

of

DB2,

only

a

limited

number

of

statements,

such

as

the

assignment-statement,

compound-statement,

LOOP

statement,

and

WHILE

statement,

could

have

a

label.

Also,

two

restrictions

that

were

enforced

for

SQL

procedures

in

previous

releases

of

DB2

are

removed.

Starting

with

Version

8

of

DB2:

v

An

SQL

variable

can

have

a

LOB

data

type.

v

An

SQL

variable

and

an

SQL

parameter

for

a

procedure

can

have

the

same

name.

Appendix

C.

Changes

to

SQL

113

114

Release

Planning

Guide

Appendix

D.

Catalog

changes

This

appendix

provides

an

overview

of

the

changes

to

the

catalog,

as

it

exists

in

new-function

mode,

for

Version

8

of

DB2

UDB

for

z/OS:

v

“New

catalog

tables”

v

“Changed

catalog

tables,”

including

dropped

and

moved

objects

v

“New

indexes”

on

page

125

For

a

complete

description

of

the

columns

of

the

new

and

changed

catalog

tables,

see

DB2

SQL

Reference.

If

you

are

migrating

to

Version

8

from

Version

7,

see

“When

catalog

migration

changes

occur”

on

page

125

for

a

summary

of

when

the

catalog

changes

are

made.

New

catalog

tables

Table

23

shows

new

catalog

tables.

Table

23.

New

catalog

tables

Catalog

table

name

Description

SYSIBM.IPLIST

Allows

multiple

IP

addresses

to

be

specified

for

a

given

location

to

enable

the

definition

of

a

remote

DB2

data

sharing

group.

The

table

is

created

in

existing

table

space

DSNDB06.SYSDDF.

SYSIBM.SYSSEQUENCEAUTH

Records

the

privileges

that

users

hold

on

sequences.

The

table

is

created

in

existing

table

space

DSNDB06.SYSSEQ2.

In

addition,

SYSIBM.SYSOBDS

is

a

new

catalog

table

in

Version

8.

The

table

is

in

table

space

SYSALTER.

The

table

is

not

described

here

because

it

is

for

IBM

internal

use

only.

Changed

catalog

tables

Many

existing

catalog

tables

are

changed

in

Version

8.

Table

24

shows

a

list

of

the

new

columns

and

the

existing

columns

that

are

revised.

Revisions

to

columns

include

new

column

descriptions,

new

values

for

a

column,

changed

data

types,

changed

column

lengths,

or

both

changed

data

types

and

lengths.

Table

24.

Summary

of

new

and

revised

catalog

table

columns

Catalog

table

name

New

column

Revised

column

IPNAMES

SECURITY_OUT

LINKNAME

LOCATIONS

DBALIAS

LOCATION

LINKNAME

PORT

TPN

LULIST

LINKNAME

LUNAME

LUMODES

LUNAME

MODENAME

LUNAMES

LUNAME

SYSMODENAME

©

Copyright

IBM

Corp.

2004

115

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

MODESELECT

AUTHID

PLANNAME

LUNAME

MODENAME

SYSAUXRELS

TBOWNER

TBNAME

COLNAME

AUXTBOWNER

AUXTBNAME

SYSCHECKDEP

TBOWNER

TBNAME

COLNAME

SYSCHECKS

TBOWNER

CREATOR

TBNAME

CHECKCONDITION

SYSCHECKS2

TBOWNER

TBNAME

PATHSCHEMAS

SYSCOLAUTH

GRANTOR

GRANTEE

CREATOR

TNAME

COLNAME

LOCATION

COLLID

CONTOKEN

SYSCOLDIST

TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

SYSCOLDIST_HIST

TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

SYSCOLDISTSTATS

TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

SYSCOLSTATS

STATS_FORMAT

HIGHKEY

HIGH2KEY

LOWKEY

LOW2KEY

TBOWNER

TBNAME

NAME

116

Release

Planning

Guide

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSCOLUMNS

STATS_FORMAT

PARTKEY_COLSEQ

PARTKEY_ORDERING

ALTEREDTS

CCSID

HIDDEN

NAME

TBNAME

TBCREATOR

HIGH2KEY

LOW2KEY

REMARKS

FOREIGNKEY

LABEL

DEFAULTVALUE

TYPESCHEMA

TYPENAME

SYSCOLUMNS_HIST

STATS_FORMAT

NAME

TBNAME

TBCREATOR

HIGH2KEY

LOW2KEY

SYSCONSTDEP

BNAME

BSCHEMA

DTBNAME

DTBCREATOR

SYSCOPY

OLDEST_VERSION

LOGICAL_PART

ICTYPE

STYPE

SYSDATABASE

NAME

CREATOR

STGROUP

CREATEDBY

GROUP_MEMBER

SYSDATATYPES

SCHEMA

OWNER

NAME

CREATEDBY

SOURCESCHEMA

SOURCETYPE

REMARKS

SYSDBAUTH

GRANTOR

GRANTEE

NAME

SYSDBRM

NAME

PDSNAME

PLNAME

PLCREATOR

VERSION

SYSFIELDS

TBCREATOR

TBNAME

NAME

FLDTYPE

FLDPROC

PARMLIST

SYSFOREIGNKEYS

CREATOR

TBNAME

RELNAME

COLNAME

Appendix

D.

Catalog

changes

117

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSINDEXES

PADDED

VERSION

OLDEST_VERSION

CURRENT_VERSION

RELCREATED

AVGKEYLEN

NAME

CREATOR

TBNAME

TBCREATOR

DBNAME

INDEXSPACE

CREATEDBY

INDEXTYPE

REMARKS

SYSINDEXES_HIST

AVGKEYLEN

NAME

CREATOR

TBNAME

TBCREATOR

SYSINDEXPART

OLDEST_VERSION

CREATEDTS

AVGKEYLEN

IXNAME

IXCREATOR

PQTY

SQTY

STORNAME

VCATNAME

LIMITKEY

SYSINDEXPART_HIST

AVGKEYLEN

IXNAME

IXCREATOR

PQTY

SECQTYI

SYSINDEXSTATS

OWNER

NAME

SYSINDEXSTATS_HIST

OWNER

NAME

SYSJARCONTENTS

JARSCHEMA

JAR_ID

CLASS

SYSJAROBJECTS

JARSCHEMA

JAR_ID

OWNER

PATH

SYSJAVAOPTS

JARSCHEMA

JAR_ID

BUILDSCHEMA

BUILDNAME

BUILDOWNER

DBRMLIB

HPJCOMPILE_OPTS

BIND_OPTS

PROJECT_LIB

SYSKEYCOLUSE

TBCREATOR

TBNAME

COLNAME

SYSKEYS

IXNAME

IXCREATOR

COLNAME

SYSLOBSTATS

DBNAME

NAME

118

Release

Planning

Guide

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSLOBSTATS_HIST

DBNAME

NAME

SYSPACKAGE

REMARKS

LOCATION

COLLID

NAME

CONTOKEN

OWNER

CREATOR

QUALIFIER

VERSION

PDSNAME

GROUP_MEMBER

REOPTVAR

PATHSCHEMAS

OPTHINT

SYSPACKAUTH

GRANTOR

GRANTEE

LOCATION

COLLID

NAME

SYSPACKDEP

BNAME

BQUALIFIER

BTYPE

DLOCATION

DCOLLID

DNAME

DCONTOKEN

DOWNER

SYSPACKLIST

PLANNAME

LOCATION

COLLID

NAME

SYSPACKSTMT

LOCATION

COLLID

NAME

CONTOKEN

VERSION

STMT

ISOLATION

SYSPARMS

SCHEMA

OWNER

NAME

SPECIFICNAME

PARMNAME

ROWTYPE

ORDINAL

TYPESCHEMA

TYPENAME

CCSID

Appendix

D.

Catalog

changes

119

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSPKSYSTEM

LOCATION

COLLID

NAME

CONTOKEN

SYSTEM

CNAME

SYSPLAN

REMARKS

NAME

CREATOR

BOUNDBY

QUALIFIER

CURRENTSERVER

GROUP_MEMBER

REOPTVAR

PATHSCHEMAS

OPTHINT

SYSPLANAUTH

GRANTOR

GRANTEE

NAME

SYSPLANDEP

BNAME

BCREATOR

BTYPE

DNAME

SYSPLSYSTEM

NAME

SYSTEM

CNAME

SYSRELS

ENFORCED

CHECKEXISTINGDATA

CREATOR

TBNAME

RELNAME

REFTBNAME

REFTBCREATOR

IXOWNER

IXNAME

SYSRESAUTH

GRANTOR

GRANTEE

QUALIFIER

NAME

SYSROUTINEAUTH

GRANTOR

GRANTEE

SCHEMA

SPECIFICNAME

COLLID

CONTOKEN

120

Release

Planning

Guide

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSROUTINES

NUM_DEP_MQTS

MAX_FAILURE

PARAMETER_CCSID

SCHEMA

OWNER

NAME

CREATEDBY

SPECIFICNAME

LANGUAGE

COLLID

SOURCESCHEMA

SOURCESPECIFIC

EXTERNAL_NAME

WLM_ENVIRONMENT

RUNOPTS

REMARKS

JAVA_SIGNATURE

CLASS

JARSCHEMA

JAR_ID

SYSROUTINES_OPTS

DEBUG_MODE

SCHEMA

ROUTINENAME

BUILDSCHEMA

BUILDNAME

BUILDOWNER

PRECOMPILE_OPTS

COMPILE_OPTS

PRELINK_OPTS

BIND_OPTS

SOURCEDSN

SYSROUTINES_SRC

SCHEMA

ROUTINENAME

CREATESTMT

SYSSCHEMAAUTH

GRANTOR

GRANTEE

SCHEMANAME

SYSSEQUENCES

PRECISION

RESTARTWITH

SCHEMA

OWNER

NAME

SEQTYPE

SEQUENCEID

CREATEDBY

CYCLE

CACHE

ORDER

CREATEDTS

ALTEREDTS

REMARKS

SYSSEQUENCESDEP

DTYPE

BSCHEMA

BNAME

DSCHEMA

BSEQUENCEID

DCREATOR

DNAME

DCOLNAME

SYSSTMT

NAME

PLNAME

PLCREATOR

TEXT

ISOLATION

Appendix

D.

Catalog

changes

121

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSSTOGROUP

SPACEF

NAME

CREATOR

VCATNAME

CREATEDBY

SYSSTRINGS

TRANSPROC

SYSSYNONYMS

NAME

CREATOR

VCATNAME

TBNAME

TBCREATOR

CREATEDBY

SYSTABAUTH

GRANTOR

GRANTEE

DBNAME

SCREATOR

STNAME

TCREATOR

TTNAME

GRANTEELOCATION

LOCATION

COLLID

CONTOKEN

SYSTABCONST

TBCREATOR

TBNAME

CREATOR

IXOWNER

IXNAME

SYSTABLEPART

LOGICAL_PART

LIMITKEY_INTERNAL

OLDEST_VERSION

CREATEDTS

AVGROWLEN

TSNAME

DBNAME

IXNAME

IXCREATOR

PQTY

SQTY

STORNAME

VCATNAME

LIMITKEY

CHECKRID5B

SYSTABLEPART_HIST

AVGROWLEN

TSNAME

DBNAME

PQTY

SECQTYI

122

Release

Planning

Guide

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSTABLES

NUM_DEP_MQTS

VERSION

PARTKEYCOLNUM

SPLIT_ROWS

SECURITY_LABEL

NAME

CREATOR

TYPE

DBNAME

TSNAME

EDPROC

VALPROC

REMARKS

PARENTS

CHILDREN

KEYCOLUMNS

STATUS

LABEL

CHECKFLAG

CREATEDBY

LOCATION

TBCREATOR

TBNAME

CHECKS

CHECKRID5B

ENCODING_SCHEME

TABLESTATUS

SYSTABLES_HIST

NAME

CREATOR

DBNAME

TSNAME

SYSTABLESPACE

OLDEST_VERSION

CURRENT_VERSION

AVGROWLEN

SPACEF

NAME

CREATOR

DBNAME

CREATEDBY

SYSTABSTATS

DBNAME

TSNAME

OWNER

NAME

SYSTABSTATS_HIST

DBNAME

TSNAME

OWNER

NAME

SYSTRIGGERS

NAME

SCHEMA

OWNER

CREATEDBY

TBNAME

TBOWNER

TEXT

REMARKS

TRIGNAME

SYSUSERAUTH

GRANTOR

GRANTEE

Appendix

D.

Catalog

changes

123

Table

24.

Summary

of

new

and

revised

catalog

table

columns

(continued)

Catalog

table

name

New

column

Revised

column

SYSVIEWDEP

BNAME

BCREATOR

BTYPE

DNAME

DCREATOR

BSCHEMA

DTYPE

SYSVIEWS

REFRESH

ENABLE

MAINTENANCE

REFRESH_TIME

ISOLATION

SIGNATURE

APP_ENCODING_CCSID

NAME

CREATOR

TEXT

PATHSCHEMAS

TYPE

SYSVOLUMES

SGNAME

SGCREATOR

VOLID

USERNAMES

AUTHID

LINKNAME

NEWAUTHID

PASSWORD

Some

catalog

table

columns

that

were

used

in

previous

versions

of

DB2

are

no

longer

used

in

Version

8.

Table

25

shows

a

list

of

columns

that

are

no

longer

used.

Table

25.

Summary

of

catalog

table

columns

that

are

no

longer

used

Catalog

table

name

Columns

no

longer

used

SYSCOLAUTH

DATEGRANTED

TIMEGRANTED

SYSCOPY

ICDATE

ICTIME

SYSDATABASE

TIMESTAMP

SYSDBAUTH

DATEGRANTED

TIMEGRANTED

SYSDBRM

PRECOMPTIME

PRECOMPDATE

SYSPLAN

BINDDATE

BINDTIME

SYSPLANAUTH

DATEGRANTED

TIMEGRANTED

SYSRESAUTH

DATEGRANTED

TIMEGRANTED

SYSSTOGROUP

SPCDATE

SYSTABAUTH

DATEGRANTED

TIMEGRANTED

SYSTABLESPACE

LOCKPART

SYSUSERAUTH

DATEGRANTED

TIMEGRANTED

124

Release

Planning

Guide

In

addition

to

the

changes

described

in

Table

24

on

page

115

and

Table

25

on

page

124,

DB2

also

makes

these

catalog

table

changes:

v

Stores

information

about

field

procedures

on

columns

of

views

in

SYSIBM.SYSFIELDS.

v

Drops

catalog

tables

SYSIBM.SYSLINKS

and

SYSIBM.SYSPROCEDURES.

Dropping

these

catalog

tables

also

causes

index

DSNKCX01

on

SYSIBM.

SYSPROCEDURES

to

be

dropped

v

Moves

catalog

table

SYSIBM.SYSDUMMY1

from

table

space

SYSSTR

to

SYSEBCDC,

which

is

a

new

EBCDIC

catalog

table

space

in

Version

8.

v

Uses

the

new

PARAMETER_CCSID

column

in

SYSIBM.SYSROUTINES

to

record

the

encoding

scheme

for

string

parameters

for

user-defined

functions

and

stored

procedures

(PARAMETER

CCSID

clause).

Prior

to

Version

8

of

DB2,

this

information

was

recorded

in

a

special

row

in

SYSIBM.SYSPARMS

(row

in

which

ROWTYPE=X

and

ORDINAL=0).

New

indexes

Table

26

shows

the

new

indexes

in

Version

8.

Table

26.

New

indexes

Table

space

DSNDB06.

...

Catalog

table

SYSIBM.

...

Index

Key

column

SYSALTER

SYSOBDS

DSNDOB01

CREATOR.NAME

DSNDOB02

DBID.PSID

SYSDBASE

SYSCOLAUTH

DSNACX01

CREATOR.TNAME.COLNAME

SYSFOREIGNKEYS

DSNDRH01

CREATOR.TBNAME.RELNAME

SYSINDEXES

DSNDXX04

INDEXTYPE

SYSRELS

DSNDLX02

CREATOR.TBNAME

SYSTABAUTH

DSNATX04

TCREATOR.TTNAME

SYSTABLEPART

DSNDPX03

DBNAME.TSNAME.LOGICAL_PART

SYSTABLES

DSNDTX03

TBCREATOR.TBNAME

SYSDDF

IPLIST

DSNDUX01

LINKNAME.IPADDR

SYSSEQ2

SYSSEQUENCEAUTH

DSNWCX01

SCHEMA.NAME

DSNWCX02

GRANTOR.SCHEMA.NAME

DSNWCX03

GRANTEE.SCHEMA.NAME

SYSSEQUENCEDEP

DSNSRX02

BSCHEMA.BNAME.DTYPE

SYSVIEWS

SYSVIEWDEP

DSNGGX04

BCREATOR.BNAME.BTYPE.DTYPE

In

addition,

two

new

indexes

are

created

on

SYSIBM.SYSOBDS,

an

IBM

internal

use

only

catalog

table,

which

resides

in

table

space

SYSALTER.

When

catalog

migration

changes

occur

This

section

briefly

describes

when

the

various

catalog

changes

occur

when

you

migrate

an

existing

Version

7

DB2

subsystem.

Migrating

a

subsystem

to

Version

8

requires

the

completion

of

several

installation

jobs

that

move

the

subsystem

to

compatibility

mode,

enabling-new-function

mode,

and

finally

to

new-function

mode.

Appendix

D.

Catalog

changes

125

When

the

subsystem

is

migrated

to

compatibility

mode,

DB2

makes

the

following

updates:

v

Creates

the

new

table

spaces

and

most

of

the

new

catalog

tables

and

indexes.

v

Adds

new

columns

to

existing

catalog

tables.

v

Changes

the

description

of

existing

catalog

table

columns.

v

Revises

the

definition

of

some

existing

indexes.

For

a

complete

description

of

the

DB2

catalog

as

it

exists

in

Version

8

compatibility

mode

at

the

completion

of

phase

1,

see

DB2

Diagnosis

Guide

and

Reference.

When

the

subsystem

is

converted

from

compatibility

mode

to

new-function

mode,

DB2

makes

the

following

updates:

v

Creates

the

remaining

new

catalog

tables

and

indexes.

v

Changes

the

data

type,

length,

or

both

of

some

existing

catalog

table

columns.

v

Adds

additional

values

to

existing

catalog

table

columns.

v

Converts

the

encoding

scheme

of

the

table

spaces

that

are

converted

to

Unicode.

v

Drops

catalog

tables

SYSIBM.SYSLINKS

and

SYSIBM.SYSPROCEDURES,

which

includes

dropping

index

DSNKCX01

on

the

SYSIBM.SYSPROCEDURES

table

v

Moves

catalog

table

SYSIBM.SYSDUMMY1

to

catalog

table

space

DSNDB06.SYSEBCDC.

v

Revises

the

definition

of

indexes

that

have

VARCHAR

columns

from

PADDED

to

NOT

PADDED.

For

detailed

information

about

when

the

catalog

changes

occur

during

migration,

see

DB2

Installation

Guide.

126

Release

Planning

Guide

Appendix

E.

EXPLAIN

table

changes

The

information

in

this

appendix

is

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information,

as

defined

in

“Notices”

on

page

139.

This

appendix

includes

the

complete

definitions

for

a

DB2

PLAN_TABLE.

It

also

provides

a

description

of

the

PLAN_TABLE

columns

that

are

new

and

changed

for

Version

8

of

DB2

UDB

for

z/OS.

Before

you

can

use

EXPLAIN,

you

must

create

a

table

called

PLAN_TABLE

to

hold

the

results

of

EXPLAIN.

If

you

have

an

existing

PLAN_TABLE

from

a

subsystem

that

ran

on

a

previous

version

of

DB2,

you

can

alter

it

to

add

the

new

Version

8

columns.

Figure

6

shows

the

format

of

the

PLAN_TABLE.

Format

of

the

Version

8

PLAN_TABLE

The

Version

8

PLAN_TABLE

has

seven

new

columns,

giving

it

a

total

of

58

columns.

The

new

columns

are

TABLE_ENCODE,

TABLE_SCCSID,

TABLE_MCCSID,

TABLE_DCCSID,

ROUTINE_ID,

CTEREF,

and

STMTTOKEN.

Additionally,

many

columns

in

the

PLAN_TABLE

have

new

data

types,

as

shown

in

Figure

6.

Descriptions

of

new

and

changed

columns

in

PLAN_TABLE

Table

27

on

page

128

shows

the

content

of

each

of

the

new

or

changed

columns

for

Version

8.

QUERYNO

INTEGER

NOT

NULL

ACCESS_DEGREE

SMALLINT

QBLOCKNO

SMALLINT

NOT

NULL

ACCESS_PGROUP_ID

SMALLINT

APPLNAME

CHAR(8)

NOT

NULL

JOIN_DEGREE

SMALLINT

PROGNAME

VARCHAR(128)

NOT

NULL

JOIN_PGROUP_ID

SMALLINT

PLANNO

SMALLINT

NOT

NULL

SORTC_PGROUP_ID

SMALLINT

METHOD

SMALLINT

NOT

NULL

SORTN_PGROUP_ID

SMALLINT

CREATOR

VARCHAR(128)

NOT

NULL

PARALLELISM_MODE

CHAR(1)

TNAME

VARCHAR(128)

NOT

NULL

MERGE_JOIN_COLS

SMALLINT

TABNO

SMALLINT

NOT

NULL

CORRELATION_NAME

VARCHAR(128)

ACCESSTYPE

CHAR(2)

NOT

NULL

PAGE_RANGE

CHAR(1)

NOT

NULL

WITH

DEFAULT

MATCHCOLS

SMALLINT

NOT

NULL

JOIN_TYPE

CHAR(1)

NOT

NULL

WITH

DEFAULT

ACCESSCREATOR

VARCHAR(128)

NOT

NULL

GROUP_MEMBER

CHAR(8)

NOT

NULL

WITH

DEFAULT

ACCESSNAME

VARCHAR(128)

NOT

NULL

IBM_SERVICE_DATA

VARCHAR(254)

FOR

BIT

DATA

INDEXONLY

CHAR(1)

NOT

NULL

WHEN_OPTIMIZE

CHAR(1)

NOT

NULL

WITH

DEFAULT

SORTN_UNIQ

CHAR(1)

NOT

NULL

QBLOCK_TYPE

CHAR(6)

NOT

NULL

WITH

DEFAULT

SORTN_JOIN

CHAR(1)

NOT

NULL

BIND_TIME

TIMESTAMP

NOT

NULL

WITH

DEFAULT

SORTN_ORDERBY

CHAR(1)

NOT

NULL

OPTHINT

VARCHAR(128)

NOT

NULL

WITH

DEFAULT

SORTN_GROUPBY

CHAR(1)

NOT

NULL

HINT_USED

VARCHAR(128)

NOT

NULL

WITH

DEFAULT

SORTC_UNIQ

CHAR(1)

NOT

NULL

PRIMARY_ACCESSTYPE

CHAR(1)

NOT

NULL

WITH

DEFAULT

SORTC_JOIN

CHAR(1)

NOT

NULL

PARENT_QBLOCK

SMALLINT

NOT

NULL

WITH

DEFAULT

SORTC_ORDERBY

CHAR(1)

NOT

NULL

TABLE_TYPE

CHAR(1)

SORTC_GROUPBY

CHAR(1)

NOT

NULL

TABLE_ENCODE

CHAR(1)

NOT

NULL

WITH

DEFAULT

TSLOCKMODE

CHAR(3)

NOT

NULL

TABLE_SCCSID

SMALLINT

NOT

NULL

WITH

DEFAULT

TIMESTAMP

CHAR(16)

NOT

NULL

TABLE_MCCSID

SMALLINT

NOT

NULL

WITH

DEFAULT

REMARKS

VARCHAR(762)

NOT

NULL

TABLE_DCCSID

SMALLINT

NOT

NULL

WITH

DEFAULT

PREFETCH

CHAR(1)

NOT

NULL

WITH

DEFAULT

ROUTINE_ID

INTEGER

NOT

NULL

WITH

DEFAULT

COLUMN_FN_EVAL

CHAR(1)

NOT

NULL

WITH

DEFAULT

CTEREF

SMALLINT

NOT

NULL

WITH

DEFAULT

MIXOPSEQ

SMALLINT

NOT

NULL

WITH

DEFAULT

STMTTOKEN

VARCHAR(240)

VERSION

VARCHAR(64)

NOT

NULL

WITH

DEFAULT

------------------58

column

format----------------

COLLID

VARCHAR(128)

NOT

NULL

WITH

DEFAULT

Figure

6.

58-column

format

of

PLAN_TABLE

©

Copyright

IBM

Corp.

2004

127

Table

27.

Descriptions

of

new

and

changed

columns

in

PLAN_TABLE

Column

Name

Description

New

or

changed

QBLOCKNO

A

number

that

identifies

each

query

block

within

a

query.

The

value

of

the

numbers

are

not

in

any

particular

order,

nor

are

they

necessarily

consecutive.

Changed

TNAME

The

names

of

the

table,

materialized

query

table,

created

or

declared

temporary

table,

materialized

view,

or

materialized

table

expression.

The

value

is

blank

if

METHOD

is

3.

The

column

can

also

contain

the

name

of

a

table

in

the

form

DSNWFQB(qblockno).

DSNWFQB(qblockno)

is

used

to

repesent

the

intermediate

result

of

a

UNION

ALL

or

an

outer

join

that

is

materialized.

If

a

view

is

merged,

the

name

of

the

view

does

not

appear.

Changed

ACCESSTYPE

Indicates

the

method

of

accessing

the

new

table.

The

possible

values

are:

I

Access

by

an

index

(identified

in

ACCESSCREATOR

and

ACCESSNAME)

I1

Access

by

a

one-fetch

index

scan

M

Access

by

a

multiple

index

scan

(followed

by

MX,

MI,

or

MU)

MI

Access

by

an

intersection

of

multiple

indexes

MU

Access

by

a

union

of

multiple

indexes

MX

Access

by

an

index

scan

on

the

index

that

is

named

in

ACCESSNAME

N

Access

by

an

index

scan

when

the

matching

predicate

contains

the

IN

keyword

R

Access

by

a

table

space

scan

RW

Access

by

a

work

file

scan

of

the

result

of

a

materialized

user-defined

table

function

T

Access

by

a

sparse

index

(star

join

work

files)

V

Access

by

buffers

for

an

INSERT

statement

within

a

SELECT

blank

Not

applicable

to

the

current

row

Changed

REMARKS

A

field

into

which

you

can

insert

any

character

string

of

762

or

fewer

characters.

Changed

QBLOCK_TYPE

Indicates

the

type

of

SQL

operation

performed

for

each

query

block.

For

the

outermost

query,

this

column

identifies

the

statement

type.

The

possible

values

are:

SELECT

SELECT

statement

INSERT

INSERT

statement

UPDATE

UPDATE

statement

DELETE

DELETE

statement

SELUPD

SELECT

statement

with

FOR

UPDATE

OF

clause

DELCUR

DELETE

statement

WHERE

CURRENT

OF

CURSOR

UPDCUR

UPDATE

statement

WHERE

CURRENT

OF

CURSOR

CORSUB

Correlated

subselect

or

fullselect

NCOSUB

Noncorrelated

subselect

or

fullselect

TABLEX

Table

expression

UNION

UNION

UNIONA

UNIONALL

Changed

128

Release

Planning

Guide

Table

27.

Descriptions

of

new

and

changed

columns

in

PLAN_TABLE

(continued)

Column

Name

Description

New

or

changed

TABLE_TYPE

Indicates

the

type

of

new

table.

The

possible

values

are:

B

Buffers

for

an

INSERT

statement

within

a

SELECT.

C

Common

table

expression.

F

Table

function.

M

Materialized

query

table.

Q

Temporary

intermediate

result

table

(not

materialized).

For

the

name

of

a

view

or

nested

table

expression,

a

value

of

Q

indicates

that

the

materialization

was

virtual

and

not

actual.

Materialization

can

be

virtual

when

the

definition

of

the

view

or

nested

table

expression

contains

a

UNION

ALL

that

is

not

distributed.

R

Recursive

common

table

expression.

T

Table.

W

Work

file.

The

value

of

the

column

is

null

if

the

query

uses

GROUP

BY,

ORDER

BY,

or

DISTINCT,

which

requires

an

implicit

sort.

Changed

TABLE_ENCODE

Indicates

the

encoding

scheme

of

the

table.

If

the

table

has

a

single

CCSID,

the

possible

values

are:

A

ASCII

E

EBCDIC

U

Unicode

M

is

the

value

of

the

column

when

the

table

contains

multiple

CCSID

sets.

New

TABLE_SCCSID

The

SBCS

value

of

the

table.

If

column

TABLE_ENCODE

is

M,

the

value

is

0.

New

TABLE_MCCSID

The

mixed

value

of

the

table.

If

column

TABLE_ENCODE

is

M,

the

value

is

0.

New

TABLE_DCCSID

The

DBCS

value

of

the

table.

If

column

TABLE_ENCODE

is

M,

the

value

is

0.

New

ROUTINE_ID

The

values

for

this

column

are

for

IBM

use

only.

New

CTEREF

If

the

referenced

table

is

a

common

table

expression,

the

value

is

the

top-level

query

block

number.

New

STMTTOKEN

User-specified

statement

token.

New

Your

PLAN_TABLE

can

use

many

other

formats

with

fewer

columns.

However,

you

should

use

the

58-column

format

because

it

gives

you

the

most

information.

To

alter

an

existing

plan

table

with

fewer

than

58

columns

to

the

58-column

format,

follow

these

steps:

1.

Determine

whether

your

PLAN_TABLE

has

the

following

columns:

v

PROGNAME

v

CREATOR

v

TNAME

v

ACCESSTYPE

v

ACCESSNAME

v

REMARKS

v

COLLID

Appendix

E.

EXPLAIN

table

changes

129

v

CORRELATION_NAME

v

IBM_SERVICE_DATA

v

OPTHINT

v

HINT_USED

2.

For

any

columns

that

exist,

use

the

values

in

Figure

6

on

page

127

to

change

the

data

types

of

these

columns

to

the

appropriate

Version

8

data

types.

3.

For

any

columns

that

are

not

in

PLAN_TABLE,

add

these

columns

to

the

table,

using

the

column

definitions

in

Figure

6

on

page

127.

Changed

columns

in

DSN_STATEMNT_TABLE

In

Version

8,

DB2

UDB

for

z/OS

introduces

three

changes

to

the

statement

table.

The

column

PROGNAME

has

data

type

VARCHAR(128)

instead

of

data

type

CHAR(8).

The

column

COLLID

has

data

type

VARCHAR(128)

instead

of

CHAR(18).

The

column

STMT_ENCODE

is

a

new

column

with

data

type

CHAR(1).

STMT_ENCODE

is

described

in

Table

28.

Table

28.

Descriptions

of

new

and

changed

columns

in

DSN_STATEMNT_TABLE

Column

Name

Description

STMT_ENCODE

Indicates

the

encoding

scheme

of

the

statement.

If

the

statement

represents

a

single

CCSID,

the

possible

values

are:

A

ASCII

E

EBCDIC

U

Unicode

M

is

the

value

when

the

statement

has

multiple

CCSID

sets.

Your

statement

table

can

use

the

older

format

in

which

the

STMT_ENCODE

column

does

not

exist,

PROGNAME

has

a

data

type

of

CHAR(8),

and

COLLID

has

a

data

type

of

CHAR(18).

However,

use

the

most

current

format

because

it

gives

you

the

most

information.

You

can

alter

a

statement

table

in

the

older

format

to

a

statement

table

in

the

current

format.

130

Release

Planning

Guide

Appendix

F.

New

and

changed

IFCIDs

The

information

in

this

appendix

is

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information,

as

defined

in

“Notices”

on

page

139.

Version

8

of

DB2

contains

a

number

of

trace

enhancements,

including:

v

Additional

package

accounting

information

v

Information

about

sorts

v

Statistics

fields

for

high-water

marks

for

thread

allocations

v

Accumulated

accounting

data

for

DDF

and

RRSAF

threads,

aggregated

by

any

combination

of

end

user

user

ID,

end

user

transaction

name,

or

end

user

workstation

name.

The

combination

is

selected

through

the

subsystem

parameter

ACCUMUID.

This

appendix

briefly

describes

the

new

IFCIDs

and

the

changes

to

the

existing

IFCIDs

for

each

new

function.

The

new

IFCIDs

are

described

in

Table

29;

the

changes

to

existing

IFCIDs

are

described

in

Table

30

on

page

132.

For

a

detailed

description

of

the

fields

in

each

IFCID

record,

refer

to

the

mapping

macros

data

set

library

prefix.SDSNMACS.

New

IFCIDs

Table

29

lists

the

new

IFCIDs.

Table

29.

New

IFCIDs

IFCID

Trace

Class

Mapping

macro

Description

DRDA

data

stream

encryption

0184

GLOBAL

9

DSNDQW02

Records

information

about

encrypted

data

in

data

communication

buffers.

The

trace

data

is

in

decrypted

form.

Monitoring

of

system

checkpoints

and

log

offloads

0335

STATISTICS

3

DSNDQW04

Records

information

about

system

checkpoints

or

stalled

log

offloads.

Improved

monitoring

of

locking

0337

PERFORMANCE

6

DSNDQW04

Records

information

about

lock

escalation

occurrences.

A

record

is

written

whenever

lock

escalation

occurs.

STATISTICS

3

Work

file

database

and

TEMP

database

space

usage

0342

None

None

DSNDQW04

Records

work

file

database

or

TEMP

database

space

usage

by

agent.

Full

SQL

statement

tracing

0350

PERFORMANCE

3

DSNDQW04

Records

the

complete

text

of

an

SQL

statement.

Changed

IFCIDs

Version

8

of

DB2

introduces

Unicode

support

and

long

name

support,

which

affect

many

of

the

trace

records.

In

addition,

Version

8

of

DB2

introduces

a

number

of

changes

to

selected

trace

records.

©

Copyright

IBM

Corp.

2004

131

Unicode

support:

You

can

direct

DB2

to

generate

selected

trace

fields

in

Unicode

(UTF-8).

You

do

this

by

specifying

YES

in

the

UNICODE

IFCIDS

field

of

installation

panel

DSNTIPN.

The

fields

that

can

appear

in

Unicode

are

marked

with

%U

in

the

trace

mapping

macros

and

in

the

IFCID

flat

file.

Long

name

support:

In

Version

8,

DB2

supports

longer

names

for

many

of

the

DB2

objects.

Because

those

names

also

appear

in

trace

records,

longer

names

appear

in

the

trace

macros

and

IFCID

flat

file.

Fields

with

increased

lengths

are

a

subset

of

the

fields

that

are

marked

with

%U.

Each

field

that

can

be

longer

has

three

corresponding

new

fields:

v

A

small

integer

field

with

the

offset

to

the

longer

name

v

A

varying-length

character

value

that

consists

of:

–

A

small

integer

field

with

the

length

of

the

longer

name

–

A

character

field

that

contains

the

longer

name

If

an

original

trace

field

is

n

bytes

long,

and

a

name

is

m

bytes

long,

where

m>n,

the

original

field

contains

the

first

n

bytes

of

the

name,

the

offset

field

contains

the

offset

to

the

full

name,

and

the

varying-length

character

field

contains

m,

followed

by

the

full

name.

If

a

name

fits

in

the

original

trace

field,

the

original

field

contains

the

name,

and

the

offset

field

contains

0.

Changes

to

selected

trace

records:

Table

30

gives

an

overview

of

changes

to

specific

IFCIDs.

Changes

to

IFCID

0106,

the

system

parameters

record,

are

not

included.

Table

30.

Changed

IFCIDs

IFCID

Description

of

changes

CARDINALITY

option

for

a

user-defined

table

function

0022

For

the

access

type

field,

new

values

for

table

function

access

and

table

function

prefetch

into

a

work

file.

Coupling

facility

batching

0002,

0003

New

fields

for

the

number

of

batched

coupling

facility

write

and

castout

requests.

Distribution

statistics

on

non-indexed

columns

0023,

0024,

0025

New

field

values

for

RUNSTATS

subtasks

for

distribution

statistics

collection.

Dynamic

scrollable

cursors

0059,

0065

New

fields

for

fetch

sensitivity,

fetch

orientation,

cursor

scrollability,

cursor

sensitivity,

and

cursor

result

table

type.

Greater

than

32-KB

SQL

statements

0063,

0140,

0141,

0142,

0145,

0168,

0316,

0317

New

4-byte

length

field

to

trace

records

that

contain

SQL

statements,

to

support

SQL

statements

that

are

greater

than

32

KB.

Improved

LPL

recovery

0021,

0044,

0150,

0172,

0196

New

field

values

for

the

LPL

recovery

lock

type.

SELECT

from

INSERT

statement

0022

For

the

access

type

field,

a

new

value

for

buffers

for

SELECT

from

INSERT.

For

the

table

type

field,

a

new

value

for

buffers.

Materialized

query

tables

0022

For

the

table

type

field,

a

new

value

for

a

materialized

query

table.

132

Release

Planning

Guide

Table

30.

Changed

IFCIDs

(continued)

IFCID

Description

of

changes

0140

For

the

type

of

privilege

being

checked,

a

new

value

for

REFRESH

TABLE.

Sequences

0002,

0003,

0148

New

fields

for

the

number

of

CREATE

SEQUENCE,

ALTER

SEQUENCE,

and

DROP

SEQUENCE

statements.

0062

For

the

statement

type

field,

new

values

for

CREATE

SEQUENCE,

ALTER

SEQUENCE,

and

DROP

SEQUENCE.

For

the

object

type

field,

a

new

value

for

a

sequence.

0140

For

the

object

type

field,

a

new

value

for

a

sequence.

Multilevel

security

0142

New

field

that

contains

the

SECLABEL.

Server

support

for

common

clients

0169

Added

field

to

trace

translation

from

a

location

name

to

a

DBALIAS

name

for

outbound

requests,

and

to

trace

translation

from

a

location

alias

name

to

a

location

name

for

inbound

requests.

64-bit

virtual

support

0002,

0003,

0148,

0198,

0199,

0201,

0202

Counters

that

are

related

to

hiperpools

are

removed.

0217,

0225

New

fields

to

describe

storage

use

above

the

2-GB

bar.

System-level

point-in-time

recovery

0023,

0024,

0025

New

field

values

for

BACKUP

SYSTEM

and

RESTORE

SYSTEM.

Miscellaneous

changes

0001

New

high-water

mark

statistics

for

the

number

of

TSO

foreground

threads,

batch

threads,

and

concurrent

allied

threads.

0001,

0003,

0172,

0239

Additional

fields

for

package-level

accounting.

Plan-level

accounting

and

package-level

accounting

are

separated.

Package-level

accounting

is

removed

from

IFCID

0003.

0003

For

a

database

access

thread

that

runs

on

a

DB2

subsystem

that

is

configured

with

DDF

inactive

thread

support,

an

IFCID

0003

record

is

written

and

a

new

enclave

is

created,

even

if

the

thread

must

remain

active,

if

the

following

conditions

are

true:

v

The

associated

package

is

bound

with

KEEPDYNAMIC(YES).

v

There

are

no

held

cursors.

v

There

are

no

active

declared

temporary

tables.

v

Only

KEEPDYNAMIC(YES)

keeps

the

thread

from

becoming

inactive.

0003,

0147,

0148,

0239

Support

is

added

for

accumulated

accounting

data

for

DDF

and

RRSAF

threads.

The

data

is

accumulated

by

any

combination

of

end

user

user

ID,

end

user

transaction

name,

or

end

user

workstation

name.

0024

New

field

values

for

sort

tasks

for

CHECK

LOB.

0028

New

field

values

and

field

values

to

record

sorts

for

multiple

DISTINCT

keywords

in

SQL

statements.

0053,

0058,

0059,

0060,

0061,

0064,

0065,

0066,

0273,

0311

Add

fields

for

the

DRDA

query

command

ID

(CMDSRCID)

and

query

instance

ID

(QRYINSID).

These

fields

are

used

for

enhanced

internal

processing

of

distributed

SQL

statements.

Appendix

F.

New

and

changed

IFCIDs

133

134

Release

Planning

Guide

Appendix

G.

How

to

use

the

DB2

library

Titles

of

books

in

the

library

begin

with

DB2

Universal

Database

for

z/OS

Version

8.

However,

references

from

one

xxbook

in

the

library

to

another

are

shortened

and

do

not

include

the

product

name,

version,

and

release.

Instead,

they

point

directly

to

the

section

that

holds

the

information.

For

a

complete

list

of

books

in

the

library,

and

the

sections

in

each

book,

see

the

bibliography

at

the

back

of

this

book.

The

most

rewarding

task

associated

with

a

database

management

system

is

asking

questions

of

it

and

getting

answers,

the

task

called

end

use.

Other

tasks

are

also

necessary—defining

the

parameters

of

the

system,

putting

the

data

in

place,

and

so

on.

The

tasks

that

are

associated

with

DB2

are

grouped

into

the

following

major

categories

(but

supplemental

information

relating

to

all

of

the

following

tasks

for

new

releases

of

DB2

can

be

found

in

DB2

Release

Planning

Guide.

Installation:

If

you

are

involved

with

DB2

only

to

install

the

system,

DB2

Installation

Guide

might

be

all

you

need.

If

you

will

be

using

data

sharing

capabilities

you

also

need

DB2

Data

Sharing:

Planning

and

Administration,

which

describes

installation

considerations

for

data

sharing.

End

use:

End

users

issue

SQL

statements

to

retrieve

data.

They

can

also

insert,

update,

or

delete

data,

with

SQL

statements.

They

might

need

an

introduction

to

SQL,

detailed

instructions

for

using

SPUFI,

and

an

alphabetized

reference

to

the

types

of

SQL

statements.

This

information

is

found

in

DB2

Application

Programming

and

SQL

Guide,

and

DB2

SQL

Reference.

End

users

can

also

issue

SQL

statements

through

the

DB2

Query

Management

Facility

(QMF)

or

some

other

program,

and

the

library

for

that

licensed

program

might

provide

all

the

instruction

or

reference

material

they

need.

For

a

list

of

the

titles

in

the

DB2

QMF

library,

see

the

bibliography

at

the

end

of

this

book.

Application

programming:

Some

users

access

DB2

without

knowing

it,

using

programs

that

contain

SQL

statements.

DB2

application

programmers

write

those

programs.

Because

they

write

SQL

statements,

they

need

the

same

resources

that

end

users

do.

Application

programmers

also

need

instructions

on

many

other

topics:

v

How

to

transfer

data

between

DB2

and

a

host

program—written

in

Java,

C,

or

COBOL,

for

example

v

How

to

prepare

to

compile

a

program

that

embeds

SQL

statements

v

How

to

process

data

from

two

systems

simultaneously,

say

DB2

and

IMS

or

DB2

and

CICS

v

How

to

write

distributed

applications

across

operating

systemss

v

How

to

write

applications

that

use

Open

Database

Connectivity

(ODBC)

to

access

DB2

servers

v

How

to

write

applications

in

the

Java

programming

language

to

access

DB2

servers

The

material

needed

for

writing

a

host

program

containing

SQL

is

in

DB2

Application

Programming

and

SQL

Guide

and

in

DB2

Application

Programming

Guide

and

Reference

for

Java.

The

material

needed

for

writing

applications

that

use

©

Copyright

IBM

Corp.

2004

135

DB2

ODBC

or

ODBC

to

access

DB2

servers

is

in

DB2

ODBC

Guide

and

Reference.

For

handling

errors,

see

DB2

Messages

and

Codes.

If

you

will

be

working

in

a

distributed

environment,

you

will

need

DB2

Reference

for

Remote

DRDA

Requesters

and

Servers.

Information

about

writing

applications

across

operating

systems

can

be

found

in

IBM

DB2

Universal

Database

SQL

Reference

for

Cross-Platform

Development.

System

and

database

administration:

Administration

covers

almost

everything

else.

DB2

Administration

Guide

divides

those

tasks

among

the

following

sections:

v

Part

2

(Volume

1)

of

DB2

Administration

Guide

discusses

the

decisions

that

must

be

made

when

designing

a

database

and

tells

how

to

implement

the

design

by

creating

and

altering

DB2

objects,

loading

data,

and

adjusting

to

changes.

v

Part

3

(Volume

1)

of

DB2

Administration

Guide

describes

ways

of

controlling

access

to

the

DB2

system

and

to

data

within

DB2,

to

audit

aspects

of

DB2

usage,

and

to

answer

other

security

and

auditing

concerns.

v

Part

4

(Volume

1)

of

DB2

Administration

Guide

describes

the

steps

in

normal

day-to-day

operation

and

discusses

the

steps

one

should

take

to

prepare

for

recovery

in

the

event

of

some

failure.

v

Part

5

(Volume

2)

of

DB2

Administration

Guide

explains

how

to

monitor

the

performance

of

the

DB2

system

and

its

parts.

It

also

lists

things

that

can

be

done

to

make

some

parts

run

faster.

If

you

will

be

using

the

RACF

access

control

module

for

DB2

authorization

checking,

you

will

need

DB2

RACF

Access

Control

Module

Guide.

If

you

are

involved

with

DB2

only

to

design

the

database,

or

plan

operational

procedures,

you

need

DB2

Administration

Guide.

If

you

also

want

to

carry

out

your

own

plans

by

creating

DB2

objects,

granting

privileges,

running

utility

jobs,

and

so

on,

you

also

need:

v

DB2

SQL

Reference,

which

describes

the

SQL

statements

you

use

to

create,

alter,

and

drop

objects

and

grant

and

revoke

privileges

v

DB2

Utility

Guide

and

Reference,

which

explains

how

to

run

utilities

v

DB2

Command

Reference,

which

explains

how

to

run

commands

If

you

will

be

using

data

sharing,

you

need

DB2

Data

Sharing:

Planning

and

Administration,

which

describes

how

to

plan

for

and

implement

data

sharing.

Additional

information

about

system

and

database

administration

can

be

found

in

DB2

Messages

and

Codes,

which

lists

messages

and

codes

issued

by

DB2,

with

explanations

and

suggested

responses.

Diagnosis:

Diagnosticians

detect

and

describe

errors

in

the

DB2

program.

They

might

also

recommend

or

apply

a

remedy.

The

documentation

for

this

task

is

in

DB2

Diagnosis

Guide

and

Reference

and

DB2

Messages

and

Codes.

136

Release

Planning

Guide

Appendix

H.

How

to

obtain

DB2

information

This

section

provides

information

that

you

can

use

to

find

valuable

information

about

the

DB2

product:

v

“DB2

on

the

Web”

v

“DB2

publications”

v

“DB2

education”

on

page

138

v

“How

to

order

the

DB2

library”

on

page

138

DB2

on

the

Web

Stay

current

with

the

latest

information

about

DB2.

View

the

DB2

home

page

on

the

Web.

News

items

keep

you

informed

about

the

latest

enhancements

to

the

product.

Product

announcements,

press

releases,

fact

sheets,

and

technical

articles

help

you

plan

your

database

management

strategy.

You

can

view

and

search

DB2

publications

on

the

Web,

or

you

can

download

and

print

many

of

the

most

current

DB2

books.

Follow

links

to

other

Web

sites

with

more

information

about

DB2

family

and

z/OS

solutions.

Access

DB2

on

the

Web

at

the

following

Web

site:

www.ibm.com/software/db2zos.

DB2

publications

The

publications

for

DB2

UDB

for

z/OS

are

available

in

various

formats

and

delivery

methods.

IBM

provides

mid-version

updates

in

softcopy

on

the

Web

and

on

CD-ROM.

DB2

Information

Center

for

z/OS

solutions

DB2

UDB

for

z/OS

product

information

is

viewable

in

the

DB2

Information

Center

for

z/OS

solutions.

The

information

center,

introduced

in

Version

8

of

DB2

UDB

for

z/OS,

is

a

delivery

vehicle

for

information

about

DB2

UDB

for

z/OS,

IMS,

QMF,

and

related

tools.

This

information

center

enables

users

to

search

across

related

product

information

in

multiple

languages

for

data

management

solutions

for

the

z/OS

environment.

Product

technical

information

is

provided

in

a

format

that

offers

more

options

and

tools

for

accessing,

integrating,

and

customizing

information

resources.

The

information

center

is

based

on

Eclipse

open

source

technology.

The

DB2

Information

Center

for

z/OS

solutions

is

viewable

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

CD-ROMs

and

DVD

Books

for

Version

8

of

DB2

UDB

for

z/OS

are

available

on

a

CD-ROM

that

is

included

with

your

product

shipment:

v

DB2

UDB

for

z/OS

Version

8

Licensed

Library

Collection,

LK3T-7128,

in

English

The

CD-ROM

contains

the

collection

of

books

for

DB2

UDB

for

z/OS

in

PDF

and

BookManager

formats.

Periodically,

IBM

refreshes

the

books

on

subsequent

editions

of

this

CD-ROM.

The

books

for

Version

8

of

DB2

UDB

for

z/OS

are

also

available

on

the

following

CD-ROM

and

DVD

collection

kits,

which

contain

online

books

for

many

IBM

products:

©

Copyright

IBM

Corp.

2004

137

v

IBM

eServer

zSeries

Online

Library:

z/OS

Software

Products

Collection,

SK3T-4270,

in

English

v

IBM

eServer

zSeries

Online

Library:

z/OS

Software

Products

DVD

Collection,

SK3T–4271,

in

English

PDF

format

Many

of

the

DB2

books

are

available

in

PDF

(Portable

Document

Format)

for

viewing

or

printing

from

CD-ROM

or

the

Web.

Download

the

PDF

books

to

your

intranet

for

distribution

throughout

your

enterprise.

BookManager

format

You

can

use

online

books

on

CD-ROM

to

read,

search

across

books,

print

portions

of

the

text,

and

make

notes

in

these

BookManager

books.

Using

the

IBM

Softcopy

Reader,

appropriate

IBM

Library

Readers,

or

the

BookManager

Read

product,

you

can

view

these

books

in

the

z/OS,

Windows,

and

VM

environments.

You

can

also

view

and

search

many

of

the

DB2

BookManager

books

on

the

Web.

DB2

education

IBM

Education

and

Training

offers

a

wide

variety

of

classroom

courses

to

help

you

quickly

and

efficiently

gain

DB2

expertise.

IBM

schedules

classes

are

in

cities

all

over

the

world.

You

can

find

class

information,

by

country,

at

the

IBM

Learning

Services

Web

site:

www.ibm.com/services/learning.

IBM

also

offers

classes

at

your

location,

at

a

time

that

suits

your

needs.

IBM

can

customize

courses

to

meet

your

exact

requirements.

For

more

information,

including

the

current

local

schedule,

please

contact

your

IBM

representative.

How

to

order

the

DB2

library

You

can

order

DB2

publications

and

CD-ROMs

through

your

IBM

representative

or

the

IBM

branch

office

that

serves

your

locality.

If

your

location

is

within

the

United

States

or

Canada,

you

can

place

your

order

by

calling

one

of

the

toll-free

numbers:

v

In

the

U.S.,

call

1-800-879-2755.

v

In

Canada,

call

1-800-565-1234.

To

order

additional

copies

of

licensed

publications,

specify

the

SOFTWARE

option.

To

order

additional

publications

or

CD-ROMs,

specify

the

PUBLICATIONS

option.

Be

prepared

to

give

your

customer

number,

the

product

number,

and

either

the

feature

codes

or

order

numbers

that

you

want.

You

can

also

order

books

from

the

IBM

Publication

Center

on

the

Web:

www.elink.ibmlink.ibm.com.

From

the

IBM

Publication

Center,

you

can

go

to

the

Publication

Notification

System

(PNS).

PNS

users

receive

electronic

notifications

of

updated

publications

in

their

profiles.

You

have

the

option

of

ordering

the

updates

by

using

the

publications

direct

ordering

application

or

any

other

IBM

publication

ordering

channel.

The

PNS

application

does

not

send

automatic

shipments

of

publications.

You

will

receive

updated

publications

and

a

bill

for

them

if

you

respond

to

the

electronic

notification.

138

Release

Planning

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

139

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

This

book

is

intended

to

help

you

plan

for

Version

8

of

DB2

UDB

for

z/OS.

This

book

primarily

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS).

140

Release

Planning

Guide

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

DB2

UDB

for

z/OS.

However,

this

book

also

documents

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

this

IBM

software

product.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

might

need

to

be

changed

in

order

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

AD/Cycle

C/370

CICS

DB2

DB2

Connect

DB2

Universal

Database

DFSMSdss

DFSMShsm

DFSORT

Distributed

Relational

Database

Architecture

DRDA

Enterprise

Storage

Server

ES/3090

eServer

FlashCopy

IBM

IBMLink

IMS

iSeries

Language

Environment

MVS

MVS/ESA

OpenEdition

OS/390

Parallel

Sysplex

PR/SM

RACF

System/390

VTAM

z/OS

zSeries

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Notices

141

142

Release

Planning

Guide

Glossary

The

following

terms

and

abbreviations

are

defined

as

they

are

used

in

the

DB2

library.

A

automatic

query

rewrite.

A

process

that

examines

an

SQL

statement

that

refers

to

one

or

more

base

tables,

and,

if

appropriate,

rewrites

the

query

so

that

it

performs

better.

This

process

can

also

determine

whether

to

rewrite

a

query

so

that

it

refers

to

one

or

more

materialized

query

tables

that

are

derived

from

the

source

tables.

C

clustering

index.

An

index

that

determines

how

rows

are

physically

ordered

(clustered)

in

a

table

space.

If

a

clustering

index

on

a

partitioned

table

is

not

a

partitioning

index,

the

rows

are

ordered

in

cluster

sequence

within

each

data

partition

instead

of

spanning

partitions.

Prior

to

Version

8

of

DB2

UDB

for

z/OS,

the

partitioning

index

was

required

to

be

the

clustering

index.

copy

pool.

A

named

set

of

SMS

storage

groups

that

contains

data

that

is

to

be

copied

collectively.

A

copy

pool

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

copied

by

using

FlashCopy

functions.

HSM

determines

which

volumes

belong

to

a

copy

pool.

copy

target.

A

named

set

of

SMS

storage

groups

that

are

to

be

used

as

containers

for

copy

pool

volume

copies.

A

copy

target

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

used

as

containers

for

volumes

that

are

copied

by

using

FlashCopy

functions.

copy

version.

A

point-in-time

FlashCopy

copy

that

is

managed

by

HSM.

Each

copy

pool

has

a

version

parameter

that

specifies

how

many

copy

versions

are

maintained

on

disk.

D

DAD.

See

Document

access

definition.

data-partitioned

secondary

index

(DPSI).

A

secondary

index

that

is

partitioned.

The

index

is

partitioned

according

to

the

underlying

data.

data

space.

In

releases

prior

to

DB2

UDB

for

z/OS,

Version

8,

a

range

of

up

to

2

GB

of

contiguous

virtual

storage

addresses

that

a

program

can

directly

manipulate.

Unlike

an

address

space,

a

data

space

can

hold

only

data;

it

does

not

contain

common

areas,

system

data,

or

programs.

document

access

definition

(DAD).

Used

to

define

the

indexing

scheme

for

an

XML

column

or

the

mapping

scheme

of

an

XML

collection.

It

can

be

used

to

enable

an

XML

Extender

column

of

an

XML

collection,

which

is

XML

formatted.

DPSI.

Data-partitioned

secondary

index.

dynamic

cursor.

A

named

control

structure

that

an

application

program

uses

to

change

the

size

of

the

result

table

and

the

order

of

its

rows

after

the

cursor

is

opened.

Contrast

with

static

cursor.

dynamic

statement

cache

pool.

A

cache,

located

above

the

2-GB

storage

line,

that

holds

dynamic

statements.

E

EB.

See

exabyte.

exabyte.

For

processor,

real

and

virtual

storage

capacities

and

channel

volume:

1

152

921

504

606

846

976

bytes

or

260.

Extensible

Markup

Language

(XML).

A

standard

metalanguage

for

defining

markup

languages

that

is

a

subset

of

Standardized

General

Markup

Language

(SGML).

The

less

complex

nature

of

XML

makes

it

easier

to

write

applications

that

handle

document

types,

to

author

and

manage

structured

information,

and

to

transmit

and

share

structured

information

across

diverse

computing

environments.

F

FlashCopy.

A

function

on

the

IBM

Enterprise

Storage

Server®

that

can

create

a

point-in-time

copy

of

data

while

an

application

is

running.

forest.

An

ordered

set

of

subtrees

of

XML

nodes.

fully

escaped

mapping.

A

mapping

from

an

SQL

identifier

to

an

XML

name

when

the

SQL

identifier

is

a

column

name.

H

hiperspace.

In

releases

prior

to

DB2

UDB

for

z/OS,

Version

8,

a

range

of

up

to

2

GB

of

contiguous

virtual

storage

addresses

that

a

program

can

use

as

a

buffer.

Like

a

data

space,

a

hiperspace

can

hold

user

data;

it

does

not

contain

common

areas

or

system

data.

Unlike

an

address

space

or

a

data

space,

data

in

a

hiperspace

is

not

directly

addressable.

To

manipulate

data

in

a

hiperspace,

users

must

bring

the

data

into

the

address

space

in

4-KB

blocks.

©

Copyright

IBM

Corp.

2004

143

host

variable

array.

An

array

of

elements,

each

of

which

corresponds

to

a

value

for

a

column.

The

dimension

of

the

array

determines

the

maximum

number

of

rows

for

which

the

array

can

be

used.

I

index-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

specified

on

the

CREATE

INDEX

statement.

Partition

limits

are

saved

in

the

LIMITKEY

column

of

the

SYSIBM.SYSINDEXPART

catalog

table.

insensitive

cursor.

A

cursor

that

is

not

sensitive

to

inserts,

updates,

or

deletes

that

are

made

to

the

underlying

rows

of

a

result

table

after

the

result

table

has

been

materialized.

L

location

alias.

Another

name

by

which

a

database

server

identifies

itself

in

the

network.

Applications

can

use

this

name

to

access

a

DB2

database

server.

M

materialized

query

table.

A

table

that

is

used

to

contain

information

that

is

derived

and

can

be

summarized

from

one

or

more

source

tables.

N

nonpartitioned

index.

An

index

that

is

not

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

nonpartitioned.

nonpartitioned

secondary

index

(NPSI).

An

index

on

a

partitioned

table

space

that

is

not

the

partitioning

index

and

is

not

partitioned.

nonpartitioning

index.

See

secondary

index.

NPSI.

See

nonpartitioned

secondary

index.

P

partitioned

index.

An

index

that

is

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

partitioned.

partitioning

index.

An

index

in

which

the

leftmost

columns

are

the

partitioning

columns

of

the

table.

The

index

can

be

partitioned

or

nonpartitioned.

R

rowset.

A

set

of

rows

for

which

a

cursor

position

is

established.

rowset

cursor.

A

cursor

that

is

defined

so

that

one

or

more

rows

can

be

returned

as

a

rowset

for

a

single

FETCH

statement,

and

the

cursor

is

positioned

on

the

set

of

rows

that

is

fetched.

rowset-positioned

access.

The

ability

to

retrieve

multiple

rows

from

a

single

FETCH

statement.

row-positioned

access.

The

ability

to

retrieve

a

single

row

from

a

single

FETCH

statement.

S

schema.

(1)

The

organization

or

structure

of

a

database.

(2)

A

logical

grouping

for

user-defined

functions,

distinct

types,

triggers,

and

stored

procedures.

When

an

object

of

one

of

these

types

is

created,

it

is

assigned

to

one

schema,

which

is

determined

by

the

name

of

the

object.

For

example,

the

following

statement

creates

a

distinct

type

T

in

schema

C:

CREATE

DISTINCT

TYPE

C.T

...

secondary

index.

A

nonpartitioning

index

on

a

partitioned

table.

sensitive

cursor.

A

cursor

that

is

sensitive

to

changes

that

are

made

to

the

database

after

the

result

table

has

been

materialized.

sequence.

A

user-defined

object

that

generates

a

sequence

of

numeric

values

according

to

user

specifications.

source

table.

A

table

that

can

be

a

base

table,

a

view,

a

table

expression,

or

a

user-defined

table

function.

static

cursor.

A

named

control

structure

that

does

not

change

the

size

of

the

result

table

or

the

order

of

its

rows

after

an

application

opens

the

cursor.

Contrast

with

dynamic

cursor.

T

table-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

defined

in

the

CREATE

TABLE

statement.

Partition

limits

are

saved

in

the

LIMITKEY_INTERNAL

column

of

the

SYSIBM.SYSTABLEPART

catalog

table.

transient

XML

data

type.

A

data

type

for

XML

values

that

exists

only

during

query

processing.

tree

structure.

A

data

structure

that

represents

entities

in

nodes,

with

a

most

one

parent

node

for

each

node,

and

with

only

one

root

node.

host

variable

array

•

tree

structure

144

Release

Planning

Guide

V

volatile

table.

A

table

for

which

SQL

operations

choose

index

access

whenever

possible.

X

XML.

See

Extensible

Markup

Language.

XML

attribute.

A

name-value

pair

within

a

tagged

XML

element

that

modifies

certain

features

of

the

element.

XML

element.

A

logical

structure

in

an

XML

document

that

is

delimited

by

a

start

and

an

end

tag.

XML

node.

The

smallest

unit

of

valid,

complete

structure

in

a

document.

For

example,

a

node

can

represent

an

element,

an

attribute,

or

a

text

string.

XML

publishing

functions.

Functions

that

return

XML

values

from

SQL

values.

volatile

table

•

XML

publishing

functions

Glossary

145

146

Release

Planning

Guide

Bibliography

DB2

Universal

Database

for

z/OS

Version

8

product

information:

The

following

information

about

Version

8

of

DB2

UDB

for

z/OS

is

available

in

both

printed

and

softcopy

formats:

v

DB2

Administration

Guide,

SC18-7413

v

DB2

Application

Programming

and

SQL

Guide,

SC18-7415

v

DB2

Application

Programming

Guide

and

Reference

for

Java,

SC18-7414

v

DB2

Command

Reference,

SC18-7416

v

DB2

Data

Sharing:

Planning

and

Administration,

SC18-7417

v

DB2

Diagnosis

Guide

and

Reference,

LY37-3201

v

DB2

Diagnostic

Quick

Reference

Card,

LY37-3202

v

DB2

Installation

Guide,

GC18-7418

v

DB2

Licensed

Program

Specifications,

GC18-7420

v

DB2

Messages

and

Codes,

GC18-7422

v

DB2

ODBC

Guide

and

Reference,

SC18-7423

v

DB2

Reference

Summary,

SX26-3853

v

DB2

Release

Planning

Guide,

SC18-7425

v

DB2

SQL

Reference,

SC18-7426

v

DB2

Utility

Guide

and

Reference,

SC18-7427

v

DB2

What's

New?,

GC18-7428

v

DB2

XML

Extender

for

z/OS

Administration

and

Programming,

SC18-7431

v

Program

Directory

for

IBM

DB2

Universal

Database

for

z/OS,

GI10-8566

The

following

information

is

provided

in

softcopy

format

only:

v

DB2

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

(Version

7

level)

v

DB2

Net

Search

Extender

Administration

and

Programming

Guide

(Version

7

level)

v

DB2

RACF

Access

Control

Module

Guide

(Version

8

level)

v

DB2

Reference

for

Remote

DRDA

Requesters

and

Servers

(Version

8

level)

v

DB2

Text

Extender

Administration

and

Programming

(Version

7

level)

You

can

find

DB2

UDB

for

z/OS

information

on

the

library

Web

page

at

www.ibm.com/db2/zos/v8books.html

The

preceding

information

is

published

by

IBM.

One

additional

book,

which

is

written

by

IBM

and

published

by

Pearson

Education,

Inc.,

is

The

Official

Introduction

to

DB2

UDB

for

z/OS,

ISBN

0-13-147750-1.

This

book

provides

an

overview

of

the

Version

8

DB2

UDB

for

z/OS

product

and

is

recommended

reading

for

people

who

are

preparing

to

take

Certification

Exam

700:

DB2

UDB

V8.1

Family

Fundamentals.

Books

and

resources

about

related

products:

APL2®

v

APL2

Programming

Guide,

SH21-1072

v

APL2

Programming:

Language

Reference,

SH21-1061

v

APL2

Programming:

Using

Structured

Query

Language

(SQL),

SH21-1057

BookManager®

READ/MVS

v

BookManager

READ/MVS

V1R3:

Installation

Planning

&

Customization,

SC38-2035

C

language:

IBM

C/C++

for

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

Character

Data

Representation

Architecture

v

Character

Data

Representation

Architecture

Overview,

GC09-2207

v

Character

Data

Representation

Architecture

Reference

and

Registry,

SC09-2190

CICS

Transaction

Server

for

z/OS

The

publication

order

numbers

below

are

for

Version

2

Release

2

and

Version

2

Release

3

(with

the

release

2

number

listed

first).

v

CICS

Transaction

Server

for

z/OS

Information

Center,

SK3T-6903

or

SK3T-6957.

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Guide,

SC34-5993

or

SC34-6231

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Reference,

SC34-5994

or

SC34-6232

v

CICS

Transaction

Server

for

z/OS

CICS-RACF

Security

Guide,

SC34-6011

or

SC34-6249

©

Copyright

IBM

Corp.

2004

147

v

CICS

Transaction

Server

for

z/OS

CICS

Supplied

Transactions,

SC34-5992

or

SC34-6230

v

CICS

Transaction

Server

for

z/OS

Customization

Guide,

SC34-5989

or

SC34-6227

v

CICS

Transaction

Server

for

z/OS

Data

Areas,

LY33-6100

or

LY33-6103

v

CICS

Transaction

Server

for

z/OS

DB2

Guide,

SC34-6014

or

SC34-6252

v

CICS

Transaction

Server

for

z/OS

External

Interfaces

Guide,

SC34-6006

or

SC34-6244

v

CICS

Transaction

Server

for

z/OS

Installation

Guide,

GC34-5985

or

GC34-6224

v

CICS

Transaction

Server

for

z/OS

Intercommunication

Guide,

SC34-6005

or

SC34-6243

v

CICS

Transaction

Server

for

z/OS

Messages

and

Codes,

GC34-6003

or

GC34-6241

v

CICS

Transaction

Server

for

z/OS

Operations

and

Utilities

Guide,

SC34-5991

or

SC34-6229

v

CICS

Transaction

Server

for

z/OS

Performance

Guide,

SC34-6009

or

SC34-6247

v

CICS

Transaction

Server

for

z/OS

Problem

Determination

Guide,

SC34-6002

or

SC34-6239

v

CICS

Transaction

Server

for

z/OS

Release

Guide,

GC34-5983

or

GC34-6218

v

CICS

Transaction

Server

for

z/OS

Resource

Definition

Guide,

SC34-5990

or

SC34-6228

v

CICS

Transaction

Server

for

z/OS

System

Definition

Guide,

SC34-5988

or

SC34–6226

v

CICS

Transaction

Server

for

z/OS

System

Programming

Reference,

SC34-5595

or

SC34–6233

CICS

Transaction

Server

for

OS/390

v

CICS

Transaction

Server

for

OS/390

Application

Programming

Guide,

SC33-1687

v

CICS

Transaction

Server

for

OS/390

DB2

Guide,

SC33-1939

v

CICS

Transaction

Server

for

OS/390

External

Interfaces

Guide,

SC33-1944

v

CICS

Transaction

Server

for

OS/390

Resource

Definition

Guide,

SC33-1684

COBOL:

IBM

COBOL

v

IBM

COBOL

Language

Reference,

SC27-1408

v

IBM

COBOL

for

MVS

&

VM

Programming

Guide,

SC27-1412

Database

Design

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

I

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-605-2

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

II

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-606-0

v

Handbook

of

Relational

Database

Design

by

C.

Fleming

and

B.

Von

Halle,

Addison

Wesley,

ISBN

0-20111-434-8

DB2

Administration

Tool

v

DB2

Administration

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Buffer

Pool

Analyzer

for

z/OS

v

DB2

Buffer

Pool

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Connect

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition,

GC09-4833

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition,

GC09-4834

v

IBM

DB2

Connect

User's

Guide,

SC09-4835

DB2

DataPropagator™

v

DB2

Universal

Database

Replication

Guide

and

Reference,

SC27-1121

DB2

Data

Encryption

for

IMS

and

DB2

Databases

v

IBM

Data

Encryption

for

IMS

and

DB2

Databases

User's

Guide,

SC18-7336

DB2

Performance

Expert

for

z/OS,

Version

1

The

following

books

are

part

of

the

DB2

Performance

Expert

library.

Some

of

these

books

include

information

about

the

following

tools:

IBM

DB2

Performance

Expert

for

z/OS;

IBM

DB2

Performance

Monitor

for

z/OS;

and

DB2

Buffer

Pool

Analyzer

for

z/OS.

v

DB2

Performance

Expert

for

z/OS

Buffer

Pool

Analyzer

User's

Guide,

SC18-7972

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Installation

and

Customization,

SC18-7973

v

DB2

Performance

Expert

for

z/OS

Messages,

SC18-7974

v

DB2

Performance

Expert

for

z/OS

Monitoring

Performance

from

ISPF,

SC18-7975

148

Release

Planning

Guide

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Monitoring

Performance

from

the

Workstation,

SC18-7976

v

DB2

Performance

Expert

for

z/OS

Program

Directory,

GI10-8549

v

DB2

Performance

Expert

for

z/OS

Report

Command

Reference,

SC18-7977

v

DB2

Performance

Expert

for

z/OS

Report

Reference,

SC18-7978

v

DB2

Performance

Expert

for

z/OS

Reporting

User's

Guide,

SC18-7979

DB2

Query

Management

Facility

(QMF™)

Version

8.1

v

DB2

Query

Management

Facility:

DB2

QMF

High

Performance

Option

User’s

Guide

for

TSO/CICS,

SC18-7450

v

DB2

Query

Management

Facility:

DB2

QMF

Messages

and

Codes,

GC18-7447

v

DB2

Query

Management

Facility:

DB2

QMF

Reference,

SC18-7446

v

DB2

Query

Management

Facility:

Developing

DB2

QMF

Applications,

SC18-7651

v

DB2

Query

Management

Facility:

Getting

Started

with

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

SC18-7449

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

TSO/CICS,

GC18-7444

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

GC18-7448

v

DB2

Query

Management

Facility:

Introducing

DB2

QMF,

GC18-7443

v

DB2

Query

Management

Facility:

Using

DB2

QMF,

SC18-7445

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Developer's

Guide,

SC18-9093

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Getting

Started

Guide,

GC18-9092

DB2

Redbooks™

For

access

to

all

IBM

Redbooks

about

DB2,

see

the

IBM

Redbooks

Web

page

at

www.ibm.com/redbooks

DB2

Server

for

VSE

&

VM

v

DB2

Server

for

VM:

DBS

Utility,

SC09-2983

DB2

Universal

Database

Cross-Platform

information

v

IBM

DB2

Universal

Database

SQL

Reference

for

Cross-Platform

Development,

available

at

www.ibm.com/software/data/developer/cpsqlref/

DB2

Universal

Database

for

iSeries

The

following

books

are

available

at

www.ibm.com/iseries/infocenter

v

DB2

Universal

Database

for

iSeries

Performance

and

Query

Optimization

v

DB2

Universal

Database

for

iSeries

Database

Programming

v

DB2

Universal

Database

for

iSeries

SQL

Programming

Concepts

v

DB2

Universal

Database

for

iSeries

SQL

Programming

with

Host

Languages

v

DB2

Universal

Database

for

iSeries

SQL

Reference

v

DB2

Universal

Database

for

iSeries

Distributed

Data

Management

v

DB2

Universal

Database

for

iSeries

Distributed

Database

Programming

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows:

v

DB2

Universal

Database

Administration

Guide:

Planning,

SC09-4822

v

DB2

Universal

Database

Administration

Guide:

Implementation,

SC09-4820

v

DB2

Universal

Database

Administration

Guide:

Performance,

SC09-4821

v

DB2

Universal

Database

Administrative

API

Reference,

SC09-4824

v

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications,

SC09-4825

v

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volumes

1

and

2,

SC09-4849

and

SC09-4850

v

DB2

Universal

Database

Command

Reference,

SC09-4828

v

DB2

Universal

Database

SQL

Reference

Volume

1,

SC09-4844

v

DB2

Universal

Database

SQL

Reference

Volume

2,

SC09-4845

Device

Support

Facilities

v

Device

Support

Facilities

User's

Guide

and

Reference,

GC35-0033

DFSMS

These

books

provide

information

about

a

variety

of

components

of

DFSMS,

including

z/OS

DFSMS,

z/OS

DFSMSdfp™,

z/OS

DFSMSdss™,

z/OS

DFSMShsm,

and

z/OS

DFP.

v

z/OS

DFSMS

Access

Method

Services

for

Catalogs,

SC26-7394

v

z/OS

DFSMSdss

Storage

Administration

Guide,

SC35-0423

Bibliography

149

v

z/OS

DFSMSdss

Storage

Administration

Reference,

SC35-0424

v

z/OS

DFSMShsm

Managing

Your

Own

Data,

SC35-0420

v

z/OS

DFSMSdfp:

Using

DFSMSdfp

in

the

z/OS

Environment,

SC26-7473

v

z/OS

DFSMSdfp

Diagnosis

Reference,

GY27-7618

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC27-7407

v

z/OS

DFSMS:

Macro

Instructions

for

Data

Sets,

SC26-7408

v

z/OS

DFSMS:

Managing

Catalogs,

SC26-7409

v

z/OS

DFSMS:

Program

Management,

SA22-7643

v

z/OS

MVS

Program

Management:

Advanced

Facilities,

SA22-7644

v

z/OS

DFSMSdfp

Storage

Administration

Reference,

SC26-7402

v

z/OS

DFSMS:

Using

Data

Sets,

SC26-7410

v

DFSMS/MVS:

Using

Advanced

Services

,

SC26-7400

v

DFSMS/MVS:

Utilities,

SC26-7414

DFSORT

v

DFSORT

Application

Programming:

Guide,

SC33-4035

v

DFSORT

Installation

and

Customization,

SC33-4034

Distributed

Relational

Database

Architecture

v

Open

Group

Technical

Standard;

the

Open

Group

presently

makes

the

following

DRDA

books

available

through

its

Web

site

at

www.opengroup.org

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

1:

Distributed

Relational

Database

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

2:

Formatted

Data

Object

Content

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

3:

Distributed

Data

Management

Architecture

Domain

Name

System

v

DNS

and

BIND,

Third

Edition,

Paul

Albitz

and

Cricket

Liu,

O’Reilly,

ISBN

0-59600-158-4

Education

v

Information

about

IBM

educational

offerings

is

available

on

the

Web

at

www.ibm.com/software/info/education/

v

A

collection

of

glossaries

of

IBM

terms

is

available

on

the

IBM

Terminology

Web

site

at

www.ibm.com/ibm/terminology/index.html

eServer™

zSeries

v

IBM

eServer

zSeries

Processor

Resource/System

Manager

Planning

Guide,

SB10-7033

Fortran:

VS

Fortran

v

VS

Fortran

Version

2:

Language

and

Library

Reference,

SC26-4221

v

VS

Fortran

Version

2:

Programming

Guide

for

CMS

and

MVS,

SC26-4222

High

Level

Assembler

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Language

Reference,

SC26-4940

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Programmer's

Guide,

SC26-4941

ICSF

v

z/OS

ICSF

Overview,

SA22-7519

v

Integrated

Cryptographic

Service

Facility

Administrator's

Guide,

SA22-7521

IMS

Version

8

IMS

product

information

is

available

on

the

IMS

Library

Web

page,

which

you

can

find

at

www.ibm.com/ims

v

IMS

Administration

Guide:

System,

SC27-1284

v

IMS

Administration

Guide:

Transaction

Manager,

SC27-1285

v

IMS

Application

Programming:

Database

Manager,

SC27-1286

v

IMS

Application

Programming:

Design

Guide,

SC27-1287

v

IMS

Application

Programming:

Transaction

Manager,

SC27-1289

v

IMS

Command

Reference,

SC27-1291

v

IMS

Customization

Guide,

SC27-1294

v

IMS

Install

Volume

1:

Installation

Verification,

GC27-1297

v

IMS

Install

Volume

2:

System

Definition

and

Tailoring,

GC27-1298

v

IMS

Messages

and

Codes

Volumes

1

and

2,

GC27-1301

and

GC27-1302

v

IMS

Utilities

Reference:

System,

SC27-1309

General

information

about

IMS

Batch

Terminal

Simulator

for

z/OS

is

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

IMS

DataPropagator

v

IMS

DataPropagator

for

z/OS

Administrator's

Guide

for

Log,

SC27-1216

v

IMS

DataPropagator:

An

Introduction,

GC27-1211

150

Release

Planning

Guide

v

IMS

DataPropagator

for

z/OS

Reference,

SC27-1210

ISPF

v

z/OS

ISPF

Dialog

Developer’s

Guide,

SC23-4821

v

z/OS

ISPF

Messages

and

Codes,

SC34-4815

v

z/OS

ISPF

Planning

and

Customizing,

GC34-4814

v

z/OS

ISPF

User’s

Guide

Volumes

1

and

2,

SC34-4822

and

SC34-4823

Java

for

z/OS

v

Persistent

Reusable

Java

Virtual

Machine

User's

Guide,

SC34-6201

Language

Environment®

v

Debug

Tool

User's

Guide

and

Reference,

SC18-7171

v

Debug

Tool

for

z/OS

and

OS/390

Reference

and

Messages,

SC18-7172

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

MQSeries®

v

MQSeries

Application

Messaging

Interface,

SC34-5604

v

MQSeries

for

OS/390

Concepts

and

Planning

Guide,

GC34-5650

v

MQSeries

for

OS/390

System

Setup

Guide,

SC34-5651

National

Language

Support

v

National

Language

Design

Guide

Volume

1,

SE09-8001

v

IBM

National

Language

Support

Reference

Manual

Volume

2,

SE09-8002

NetView®

v

Tivoli

NetView

for

z/OS

Installation:

Getting

Started,

SC31-8872

v

Tivoli

NetView

for

z/OS

User's

Guide,

GC31-8849

Microsoft®

ODBC

Information

about

Microsoft

ODBC

is

available

at

http://msdn.microsoft.com/library/

Parallel

Sysplex®

Library

v

System/390

9672

Parallel

Transaction

Server,

9672

Parallel

Enterprise

Server,

9674

Coupling

Facility

System

Overview

For

R1/R2/R3

Based

Models,

SB10-7033

v

z/OS

Parallel

Sysplex

Application

Migration,

SA22-7662

v

z/OS

Parallel

Sysplex

Overview:

An

Introduction

to

Data

Sharing

and

Parallelism,

SA22-7661

v

z/OS

Parallel

Sysplex

Test

Report,

SA22-7663

The

Parallel

Sysplex

Configuration

Assistant

is

available

at

www.ibm.com/s390/pso/psotool

PL/I:

Enterprise

PL/I

for

z/OS

and

OS/390

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Language

Reference,

SC27-1460

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Programming

Guide,

SC27-1457

PL/I:

OS

PL/I

v

OS

PL/I

Programming

Guide,

SC26-4307

SMP/E

v

SMP/E

for

z/OS

and

OS/390

Reference,

SA22-7772

v

SMP/E

for

z/OS

and

OS/390

User's

Guide,

SA22-7773

Storage

Management

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC26-7407

v

MVS/ESA

Storage

Management

Library:

Managing

Data,

SC26-7397

v

MVS/ESA

Storage

Management

Library:

Managing

Storage

Groups,

SC35-0421

v

MVS

Storage

Management

Library:

Storage

Management

Subsystem

Migration

Planning

Guide,

GC26-7398

System

Network

Architecture

(SNA)

v

SNA

Formats,

GA27-3136

v

SNA

LU

6.2

Peer

Protocols

Reference,

SC31-6808

v

SNA

Transaction

Programmer's

Reference

Manual

for

LU

Type

6.2,

GC30-3084

v

SNA/Management

Services

Alert

Implementation

Guide,

GC31-6809

TCP/IP

v

IBM

TCP/IP

for

MVS:

Customization

&

Administration

Guide,

SC31-7134

v

IBM

TCP/IP

for

MVS:

Diagnosis

Guide,

LY43-0105

v

IBM

TCP/IP

for

MVS:

Messages

and

Codes,

SC31-7132

Bibliography

151

v

IBM

TCP/IP

for

MVS:

Planning

and

Migration

Guide,

SC31-7189

TotalStorage®

Enterprise

Storage

Server

v

RAMAC

Virtual

Array:

Implementing

Peer-to-Peer

Remote

Copy,

SG24-5680

v

Enterprise

Storage

Server

Introduction

and

Planning,

GC26-7444

v

IBM

RAMAC

Virtual

Array,

SG24-6424

Unicode

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

Information

about

Unicode,

the

Unicode

consortium,

the

Unicode

standard,

and

standards

conformance

requirements

is

available

at

www.unicode.org

VTAM

v

Planning

for

NetView,

NCP,

and

VTAM,

SC31-8063

v

VTAM

for

MVS/ESA

Diagnosis,

LY43-0078

v

VTAM

for

MVS/ESA

Messages

and

Codes,

GC31-8369

v

VTAM

for

MVS/ESA

Network

Implementation

Guide,

SC31-8370

v

VTAM

for

MVS/ESA

Operation,

SC31-8372

v

VTAM

for

MVS/ESA

Programming,

SC31-8373

v

VTAM

for

MVS/ESA

Programming

for

LU

6.2,

SC31-8374

v

VTAM

for

MVS/ESA

Resource

Definition

Reference,

SC31-8377

WebSphere®

family

v

WebSphere

MQ

Integrator

Broker:

Administration

Guide,

SC34-6171

v

WebSphere

MQ

Integrator

Broker

for

z/OS:

Customization

and

Administration

Guide,

SC34-6175

v

WebSphere

MQ

Integrator

Broker:

Introduction

and

Planning,

GC34-5599

v

WebSphere

MQ

Integrator

Broker:

Using

the

Control

Center,

SC34-6168

z/Architecture™

v

z/Architecture

Principles

of

Operation,

SA22-7832

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

v

z/OS

C/C++

User's

Guide,

SC09-4767

v

z/OS

Communications

Server:

IP

Configuration

Guide,

SC31-8875

v

z/OS

DCE

Administration

Guide,

SC24-5904

v

z/OS

DCE

Introduction,

GC24-5911

v

z/OS

DCE

Messages

and

Codes,

SC24-5912

v

z/OS

Information

Roadmap,

SA22-7500

v

z/OS

Introduction

and

Release

Guide,

GA22-7502

v

z/OS

JES2

Initialization

and

Tuning

Guide,

SA22-7532

v

z/OS

JES3

Initialization

and

Tuning

Guide,

SA22-7549

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

v

z/OS

MVS

Diagnosis:

Procedures,

GA22-7587

v

z/OS

MVS

Diagnosis:

Reference,

GA22-7588

v

z/OS

MVS

Diagnosis:

Tools

and

Service

Aids,

GA22-7589

v

z/OS

MVS

Initialization

and

Tuning

Guide,

SA22-7591

v

z/OS

MVS

Initialization

and

Tuning

Reference,

SA22-7592

v

z/OS

MVS

Installation

Exits,

SA22-7593

v

z/OS

MVS

JCL

Reference,

SA22-7597

v

z/OS

MVS

JCL

User's

Guide,

SA22-7598

v

z/OS

MVS

Planning:

Global

Resource

Serialization,

SA22-7600

v

z/OS

MVS

Planning:

Operations,

SA22-7601

v

z/OS

MVS

Planning:

Workload

Management,

SA22-7602

v

z/OS

MVS

Programming:

Assembler

Services

Guide,

SA22-7605

v

z/OS

MVS

Programming:

Assembler

Services

Reference,

Volumes

1

and

2,

SA22-7606

and

SA22-7607

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide,

SA22-7608

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

Volumes

1-4,

SA22-7609,

SA22-7610,

SA22-7611,

and

SA22-7612

v

z/OS

MVS

Programming:

Callable

Services

for

High-Level

Languages,

SA22-7613

v

z/OS

MVS

Programming:

Extended

Addressability

Guide,

SA22-7614

v

z/OS

MVS

Programming:

Sysplex

Services

Guide,

SA22-7617

v

z/OS

MVS

Programming:

Sysplex

Services

Reference,

SA22-7618

152

Release

Planning

Guide

v

z/OS

MVS

Programming:

Workload

Management

Services,

SA22-7619

v

z/OS

MVS

Recovery

and

Reconfiguration

Guide,

SA22-7623

v

z/OS

MVS

Routing

and

Descriptor

Codes,

SA22-7624

v

z/OS

MVS

Setting

Up

a

Sysplex,

SA22-7625

v

z/OS

MVS

System

Codes

SA22-7626

v

z/OS

MVS

System

Commands,

SA22-7627

v

z/OS

MVS

System

Messages

Volumes

1-10,

SA22-7631,

SA22-7632,

SA22-7633,

SA22-7634,

SA22-7635,

SA22-7636,

SA22-7637,

SA22-7638,

SA22-7639,

and

SA22-7640

v

z/OS

MVS

Using

the

Subsystem

Interface,

SA22-7642

v

z/OS

Planning

for

Multilevel

Security,

SA22-7509

v

z/OS

RMF

User's

Guide,

SC33-7990

v

z/OS

Security

Server

Network

Authentication

Server

Administration,

SC24-5926

v

z/OS

Security

Server

RACF

Auditor's

Guide,

SA22-7684

v

z/OS

Security

Server

RACF

Command

Language

Reference,

SA22-7687

v

z/OS

Security

Server

RACF

Macros

and

Interfaces,

SA22-7682

v

z/OS

Security

Server

RACF

Security

Administrator's

Guide,

SA22-7683

v

z/OS

Security

Server

RACF

System

Programmer's

Guide,

SA22-7681

v

z/OS

Security

Server

RACROUTE

Macro

Reference,

SA22-7692

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

v

z/OS

TSO/E

CLISTs,

SA22-7781

v

z/OS

TSO/E

Command

Reference,

SA22-7782

v

z/OS

TSO/E

Customization,

SA22-7783

v

z/OS

TSO/E

Messages,

SA22-7786

v

z/OS

TSO/E

Programming

Guide,

SA22-7788

v

z/OS

TSO/E

Programming

Services,

SA22-7789

v

z/OS

TSO/E

REXX

Reference,

SA22-7790

v

z/OS

TSO/E

User's

Guide,

SA22-7794

v

z/OS

UNIX

System

Services

Command

Reference,

SA22-7802

v

z/OS

UNIX

System

Services

Messages

and

Codes,

SA22-7807

v

z/OS

UNIX

System

Services

Planning,

GA22-7800

v

z/OS

UNIX

System

Services

Programming:

Assembler

Callable

Services

Reference,

SA22-7803

v

z/OS

UNIX

System

Services

User's

Guide,

SA22-7801

z/OS

mSys

for

Setup

v

z/OS

Managed

System

Infrastructure

for

Setup

DB2

Customization

Center

User's

Guide,

available

in

softcopy

format

at

www.ibm.com/db2/zos/v8books.html

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

Bibliography

153

154

Release

Planning

Guide

Index

Numerics
64-bit

virtual

storage
advantages

21

general

information

20

A
access

path,

reoptimizing

at

run

time

17

access

to

remote

database

63

active

logs

1

adding

partitions

6

aggregate

functions

51

alias

support

for

databases

63

ALTER

FUNCTION

statement

98

ALTER

INDEX

statement

2,

98

ALTER

PROCEDURE

statement

99

ALTER

SEQUENCE

statement

97

ALTER

TABLE

statement
adding

partitions

6

changing

identity

column

attributes

37

description

of

changes

100

rotating

partitions

6

using

2

ALTER

TABLESPACE

statement

101

ALTER

VIEW

statement

97

applications,

adjusting

for

migration

78

archive

logs

1

authentication
requester,

for

DB2

as

28

server,

for

DB2

as

28

authorization

IDs

87

availability
64-bit

virtual

storage

for

21

backout

processing,

additional

messages

32

locking,

partition-level

32

LPL

recovery,

automatic

22

RECOVER

utility

CURRENTCOPYONLY

option

32

B
backout

processing,

additional

messages

32

BACKUP

SYSTEM

utility
description

of

changes

89

requirements

68

requirements

for

30

using

29

backward

index

scan

15

BIND

PACKAGE

command

85

BIND

PLAN

command

85

built-in

functions

112

C
cached

dynamic

statements,

deprecation

of

70

CALL

statement,

multiple

65

CAST

specification

111

castout

processing

23

catalog

and

directory
encoding

schemes

54

migration

changes

125

catalog

tables
columns,

new

and

changed

115

indexes,

new

125

tables,

new

115

CATENFM

utility

89

CCSID

precompiler

options

54

CCSID

sets,

multiple

in

an

SQL

statement

55

CD-ROM,

books

on

137

change

data

capture
enabling

74

CHECK

INDEX

utility

90

DRAIN_WAIT

option

32

RETRY

option

32

RETRY_DELAY

option

32

SHRLEVEL

CHANGE

option

32

CHECK

LOB

utility

90

child

locks

23

CLI
clients,

support

for

62

cursors,

improved

connectivity

for

63

clustering

index

4

coexistence

of

DB2

releases

82

column

functions

51

columns
adding

to

indexes

7

DBCS

70

encoding

scheme,

new

72

mixed

70

qualifying

in

an

INSERT

statement

51

ROWID

not

required

for

LOBs

52

SQLDA

SQLNAME

73

commands
authorization

IDs

87

changes

in

Version

8

85

WARM

(Write

And

Register

Multiple)

23

COMMENT

statement

101

common

table

expressions

45

comparing

null

values

38

COMPJAVA,

LANGUAGE

71

conditions,

raising

in

SQL

procedural

language

49

connections,

inactive

73

connectivity
alias

support

for

databases

63

CLI

62,

63

enhancements

61

JDBC

62,

63

routing

requests,

granular

control

of

63

copy

pools

29

COPY

utility

90

cost-based

parallel

sorting

19

coupling

facility
locks

in

23

reduction

of

operations

23

traffic

reduction

23

CREATE

FUNCTION

statement

102

©

Copyright

IBM

Corp.

2004

155

CREATE

INDEX

statement

102

CREATE

PROCEDURE

statement

103

CREATE

SEQUENCE

statement

97

CREATE

TABLE

statement

104

CREATE

TABLESPACE

statement

105

CREATE

VIEW

statement

105

CTHREAD

parameter

70

CURRENT

PACKAGE

PATH

special

register

63

CURRENTCOPYONLY

option

32

cursors
decease

in

storage

requirements

68

duplicate

65

dynamic

scrollable

47

row-set

positioned

42

D
data

sharing
enhancements

22

indoubt

units

of

recovery,

resolution

24

migration

to

Version

8

74,

82

operations,

reduction

in

the

coupling

facility

23

routing

requests,

granular

control

of

63

workload

overhead

reduction

23

data

types
changes

for

catalog

columns

69

changes

for

special

registers

69

mismatched

in

predicate

9

data-partitioned

secondary

indexes
definition

12

queries,

advantages

for

14

utilities,

advantages

for

13

database
altering

definitions

of

tables

2

partitioning

of

table

spaces

2

availability

2

DB2

books

online

137

DB2

Information

Center

for

z/OS

solutions

137

DBATs

(database

access

threads)

73

DECLARE

CURSOR

statement
description

of

changes

106

WITH

ROWSET

POSITIONING

clause

42

DECLARE

GLOBAL

TEMPORARY

TABLE

statement

106

declared

temporary

tables

68

default

values
DESCRIBE

FOR

STATIC

parameter

69

migration

of

customized

71

space

allocation

changes

69

DELETE

statement
description

of

changes

106

row-set

positioned

44

DESCRIBE

FOR

STATIC

parameter

69

DISPLAY

DATABASE

command

86

DISPLAY

GROUP

command

86

DISPLAY

GROUPBUFFERPOOL

command

82

DISTINCT

keyword,

multiple

51

DISTINCT

predicate

38

distributed

applications,

managing

63

distributed

environment

82

DRAIN_WAIT

option

32

DRDA
distributed

environment

82

security

options

29

DRDA

XA

protocol

support

62

DROP

statement

107

dropping

global

temporary

tables

implicitly

53

DSN_STATEMNT_TABLE,

changed

columns

130

DSN1COPY

utility

94

DSN1PRNT

utility

95

DSNJCNVB

utility

89

DSNJU003

utility

94

DSNWZP,

changes

to

71

duplicate

CALL

statements

65

dynamic

scrollable

cursors

47

E
EDM

pool

70

encoding

schemes
catalog

and

directory

54

migration

considerations

78

new

column

for

72

parameters

for

69

Unicode

54

encryption

27

EXECUTE

statement

107

EXPLAIN

statement

107

EXPLAIN

table

changes
DSN_STATEMNT_TABLE

127

PLAN_TABLE

127

F
fallback

frozen

objects

76

preparation

76

release

incompatibilities

78

FETCH

statement
description

of

changes

107

multiple-row
general

information

41

using

with

descriptor

43

using

with

host

variable

arrays

43

frozen

objects

76

functions
aggregate

51

column

51,

110

new

in

Version

8

110

scalar

110

XML

60

G
GET

DIAGNOSTICS

statement
description

of

changes

108

handler,

using

in

50

using

46

global

temporary

tables
buffer

pool

size

requirement

68

dropping

implicitly

53

156

Release

Planning

Guide

glossary

143

GRANT

statement

97

GROUP

BY

clause
description

of

changes

112

using

51

H
hexadecimal

string

constant,

Unicode

57

history

statistics

70

host

variable

array
declaring

41

fetching

multiple

rows

43

indicator

variable

array

42

inserting

multiple

rows

41

host

variables,

string

72

I
IDBACK

parameter

70

identity

columns,

changing

attributes

37

IFCID

(instrumentation

facility

component

identifier)
changed

IFCIDs

131

new

and

changed

131

new

IFCIDs

131

IFCID

197

73

inactive

connections

73

index

keys,

varying-length

16

index

scan,

backward

15

index-controlled

partitioning
separation

from

clustering

3

using

2

indexes
adding

columns

to

7

backward

scan

15

clustering

4

data-partitioned

secondary
creating

5

definition

12

queries,

advantages

for

14

utilities,

advantages

for

13

enhancements

12

frequent

use

of

50

keys,

maximum

length

1,

16

new

on

catalog

tables

125

page

splits

23

predicates
mismatched

data

types

9

more

than

one

encoding

scheme

11

one

encoding

scheme

10

separation

of

partitioning

and

clustering

3

space

allocation

24

sparse

18

type

1

68,

78

varying-length

keys

16

INSERT

OLTP

workloads

23

INSERT

statement
column

names,

qualifying

51

description

of

changes

108

multiple-row
general

information

41

INSERT

statement

(continued)
multiple-row

(continued)
using

41

installation

panel

changes

83

integer

status

value,

returning

49

IRLM

migration

considerations

82

ITERATE

statement

97

IVP

(installation

verification

procedure)
preparing

for

78

J
JDBC

clients,

support

for

62

cursors,

improved

connectivity

for

63

L
L-locks,

parent

23

LANGUAGE

COMPJAVA

71

library
online

137

LIGHT(YES)

mode

24

limit

changes

1

LOAD

utility

91

LOBs,

ROWID

columns

not

required

52

location

aliases

62

LOCK

TABLE

statement

108

locks
child

23

coupling

facility,

in

23

L-locks

parent

23

P-locks

23

partition-level

locking

32

propagation

23

log

writes,

reducing

23

logical

page

list

(LPL),

automatic

recovery

22

M
materialized

query

tables

7

memory

pool,

dedicated

virtual

18

migration
application

programs,

adjusting

78

cached

dynamic

statements,

deprecation

of

70

calculating

work

file

size

75

catalog

and

directory

125

coexistence

of

DB2

releases

82

customized

default

values

71

data

sharing

groups

74,

82

declared

temporary

tables

68

default

values,

changes

in

69

encoding

schemes

of

parameters

69

general

considerations

67

global

temporary

tables

68

installation

panel

changes

83

IRLM

82

modifying

RUNSTATS

jobs

for

migration

70

requirements

67

sample

objects,

required

availability

78

system

level

point-in-time

recovery

68

Index

157

migration

(continued)
type

1

indexes

68,

78

mismatched

data

types,

predicates

with

9

MIXED

DATA

option

70

MODIFY

irlmproc

command

86

multilevel

security
advantages

58

general

information

58

implementing

59

introduction

54

label

dominance

58

multiple

CALL

statements

65

multiple

CCSID

sets

55

multiple-row

statements
FETCH

41

INSERT

41

N
NEWFUN,

precompiler

options

55

notices,

legal

139

null

values,

DISTINCT

predicate

comparisons

38

O
ODBC

driver

native

Unicode

support

57

online

books

137

ORDER

BY

clause

52

P
P-locks

23

packages

bound

prior

to

Version

2

Release

3

72

packages,

comments

for

53

page

splits

23

parallel

sorting,

cost-based

19

parser,

Unicode

54

partitioned

tables,

size

change

1

partitioning
index-controlled

2

separation

from

clustering

3

table-controlled

2

partitions
adding

6

index-controlled,

moving

from

5

locking

32

number

of,

limit

change

1

rotating

6

table-controlled,

moving

to

5

performance
64-bit

virtual

storage

for

21

access

path,

reoptimizing

at

run

time

17

materialized

query

tables

7

star

join

17

triggers

32

PLAN_TABLE
columns,

new

and

changed

127

format

127

planning

for

migration

67

plans

bound

prior

to

Version

2

Release

3

72

plans,

comments

for

53

port

of

entry,

name

73

port-of-entry,

verifying

27

precompiler
new

for

string

host

variables

72

options
CCSID

54

NEWFUN

55

predicates

111

DISTINCT

38

indexes
more

than

one

encoding

scheme

11

one

encoding

scheme

10

mismatched

data

types

9

PREPARE

statement

109

private

protocol

access

82

procedural

language
enhancements

48

handling

SQL

conditions

48

RETURN

statement

49

statements,

length

of

48

procedures,

SQL

113

programming

language

support

74

propagation

of

locks

23

Q
qualifying

column

names

in

an

INSERT

statement

51

queries
data-partitioned

secondary

indexes,

advantages

14

query

tables,

materialized

7

R
REBIND

PACKAGE

command

85

REBIND

PLAN

command

85

REBUILD

INDEX

utility

91

REBUILD-pending
ignored

for

nonunique

indexes

17

RECOVER

utility
CURRENTCOPYONLY

option

32

description

of

changes

92

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF)
DB2

return

codes

65

implicit

connections

64

recovery
LPL,

automatic

22

system-level

point-in-time

29

recursive

SQL

45

REFRESH

TABLE

statement

97

release

coexistence,

DB2

82

release

dependency

markers

76

release

incompatibilities

78

remote

database,

access

to

63

reoptimizing

the

access

path

at

run

time

17

REORG

INDEX

utility

92

REORG

TABLESPACE

utility

92

REPAIR

utility

93

RESIGNAL

statement

49,

97

restart

light

24

158

Release

Planning

Guide

RESTORE

SYSTEM

utility
description

89

requirements

68

requirements

for

30

using

29

RETRY

option

32

RETRY_DELAY

option

32

RETURN

statement

49,

97

REVOKE

statement

97

rotating

partitions

6

routing

requests,

granular

control

of

63

row

GROUP

BY

51

row

sets
DELETE,

row-set

positioned

44

fetching

42

UPDATE,

row-set

positioned

43

ROWID

columns

not

required

for

LOBs

52

RUNSTATS

utility
description

of

changes

93

distribution

statistics

16

modifying

jobs

for

migration

70

S
sample

jobs,

changes

84

scalar

fullselect
description

39

examples
CASE

expression

40

SELECT

list

40

WHERE

clause

40

restrictions

on

use

41

schemas
changes

to

2

SYSTOOLS

name

112

scrollable

cursors,

dynamic

47

secondary

authorization

IDs

87

secondary

indexes,

data-partitioned

5

security
authentication

requester,

for

DB2

as

28

server,

for

DB2

as

28

DRDA

security

options

29

encryption

27

multilevel
advantages

58

general

information

58

implementing

59

label

dominance

58

SQL

changes

54

options

for

TCP/IP

networks

27

port-of-entry

verification

27

SECURITY_OUT

column

of

SYSIBM.IPNAMES

29

SELECT

from

INSERT

statement
description

34

primary

and

foreign

keys

35

retrieving
all

values

for

single

row

34

BEFORE

trigger

values

34

default

values

34

generated

values

34

SELECT

from

INSERT

statement

(continued)
retrieving

(continued)
multiple

rows

34

using

cursors

35

using

SELECT

INTO

35

SELECT

INTO

statement
description

of

changes

109

ORDER

BY

clause

52

using

35

SELECT

statement,

description

of

changes

112

SENSITIVE

DYNAMIC

clause

47

sequence

objects
creating

36

referencing

36

using

value

across

multiple

tables

37

sequence

values,

expressions

for

111

session

variables

112

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

statement

97

SET

CURRENT

PACKAGE

PATH

statement

97

SET

CURRENT

REFRESH

AGE

statement

97

SET

ENCRYPTION

PASSWORD

statement

97

SET

SCHEMA

statement

97

SHRLEVEL

CHANGE

option

32

SIGNAL

statement

49,

110

softcopy

publications

137

sorting,

cost-based

parallel

19

space

allocation
general

information

24

primary

default

value

24

sliding

scale

for

25

sparse

indexing

18

special

registers
changed

data

types

and

lengths

69

CURRENT

PACKAGE

PATH,

using

63

description

of

changes

111

SQL
ALTER

FUNCTION

statement

98

ALTER

INDEX

statement

98

ALTER

PROCEDURE

statement

99

ALTER

SEQUENCE

statement

97

ALTER

TABLE

statement

100

ALTER

TABLESPACE

statement

101

ALTER

VIEW

statement

97

CALL

statement

65

COMMENT

statement

101

common

table

expressions

45

CREATE

FUNCTION

statement

102

CREATE

INDEX

statement

102

CREATE

PROCEDURE

statement

103

CREATE

SEQUENCE

statement

97

CREATE

TABLE

statement

104

CREATE

TABLESPACE

statement

105

CREATE

VIEW

statement

105

DECLARE

CURSOR

statement

106

DECLARE

GLOBAL

TEMPORARY

TABLE

statement

106

DELETE

statement
description

of

changes

106

row-set

positioned

44

DISTINCT

keyword,

multiple

51

Index

159

SQL

(continued)
DROP

statement

107

enhancements

33

EXECUTE

statement

107

EXPLAIN

statement

107

FETCH

statement
description

of

changes

107

multiple-row

41

GET

DIAGNOSTICS

statement
description

of

changes

108

handler,

using

in

50

using

46

GRANT

statement

97

GROUP

BY

clause
description

of

changes

112

using

51

INSERT

statement
description

of

changes

108

multiple-row

41

qualified

column

names

51

ITERATE

statement

97

limits,

changes

to

33

LOCK

TABLE

statement

108

longer

statements

50

multilevel

security,

changes

for

54

ORDER

BY

clause

52

overview

of

changes

in

Version

8

97

PREPARE

statement

109

procedural

language
debugging

50

enhancements

48

GET

DIAGNOSTICS,

using

in

a

handler

50

handling

SQL

conditions

48

invoking

handler

49

raising

conditions

49

RESIGNAL

statement

49

RETURN

statement

49

SIGNAL

statement

49

statements,

length

of

48

procedures

113

recursive

45

REFRESH

TABLE

statement

97

RESIGNAL

statement

97

RETURN

statement

97

REVOKE

statement

97

SELECT

INTO

statement
description

of

changes

109

ORDER

BY

clause

52

using

35

SELECT

statement,

description

of

changes

112

SENSITIVE

DYNAMIC

clause

47

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

statement

97

SET

CURRENT

PACKAGE

PATH

statement

97

SET

CURRENT

REFRESH

AGE

statement

97

SET

ENCRYPTION

PASSWORD

statement

97

SET

SCHEMA

statement

97

SIGNAL

statement

110

UPDATE

statement
description

of

changes

110

row-set

positioned

43

SQL

processing

options
CCSID

64

NEWFUN

64

SQLCODE

-904

65

SQLDA

SQLNAME

column

73

star

join

17

START

DATABASE

command

86

START

irlmproc

command

87

STATISTICS

HISTORY

parameter

70

statistics,

history

70

STOP

DATABASE

command

87

stored

procedures
running

multiple

instances

65,

73

WLM-established

address

spaces

71

strings
comparison

11,

56

host

variables

72

timestamps

52

Unicode

hexadecimal

constant

57

subsets

62

subsystem

parameters
dynamically

updatable,

changed

to

31

MAX_NUM_CUR

65

MAX_ST_PROC

65

new

30

system-level

point-in-time

recovery

29

SYSTOOLS

schema

name

112

T
table

spaces
adding

partitions

6

creating

table-controlled

partitioning

3

data-partitioned

secondary

index

5

index

usage,

improving

5

index-controlled

partitioning,

moving

from

5

rotating

partitions

6

space

allocation

24

table-controlled

partitioning
creating

3

using

2

tables
global

temporary,

dropping

implicitly

53

materialized

query

7

volatile

50

TCP/IP

networks,

security

options

27

threads,

increased

usage

70

timestamp

strings

52

trace

enhancements

131

triggers

32

type

1

inactive

threads

73

type

1

indexes

68,

78

type

2

inactive

threads

73

U
Unicode

enhancements

54

hexadecimal

string

constant

57

ODBC

driver

native

support

57

parser

54

160

Release

Planning

Guide

UNION

statement

73

UNLOAD

utility

94

UPDATE

statement
description

of

changes

110

row-set

positioned

43

utilities
automatic

restart

95

BACKUP

SYSTEM
description

of

changes

89

using

29

CATENFM

89

changes

in

Version

8

89

CHECK

INDEX

90

CHECK

LOB

90

COPY

90

data-partitioned

secondary

indexes,

advantages

13

DSN1COPY

94

DSN1PRNT

95

DSNJCNVB

89

DSNJU003

94

encoding

scheme

of

control

statement

95

LOAD

91

migration

considerations

78

REBUILD

INDEX

91

RECOVER
CURRENTCOPYONLY

option

32

description

of

changes

92

REORG

INDEX

92

REORG

TABLESPACE

92

REPAIR

93

resetting

the

status

of

95

RESTORE

SYSTEM
description

89

using

29

RUNSTATS
description

of

changes

93

distribution

statistics

16

modifying

jobs

for

migration

70

UNLOAD

94

V
varying-length

index

keys

16

virtual

memory

pool,

dedicated

18

virtual

storage
64-bit

advantages

21

general

information

20

limit

change

1

Visual

Explain

19

volatile

tables

50

W
WARM

(Write

And

Register

Multiple)

command

23

WHERE

CURRENT

OF

clause

44

WLM-established

stored

procedure

address

spaces

71

work

file,

calculating

size

of

75

X
XML

functions,

support

for

60

Index

161

162

Release

Planning

Guide

Readers’

Comments

—

We’d

Like

to

Hear

from

You

DB2

Universal

Database

for

z/OS

Release

Planning

Guide

Version

8

Publication

No.

SC18-7425-00

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC18-7425-00

SC18-7425-00

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

International

Business

Machines

Corporation

H150/090

555

Bailey

Avenue

San

Jose,

CA

95141-9989

U.

S.

A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5625-DB2

Printed

in

USA

SC18-7425-00

Sp
in
e

in
fo
rm
at
io
n:

 IB
M

DB
2

Un
iv

er
sa

l D
at

ab
as

e
fo

r z
/O

S

Ve
rs

io
n

8

Re
le

as
e

Pl
an

ni
ng

Gu
id

e

�
�

�

	Contents
	About this book
	Who should read this book
	Terminology and citations
	Accessibility
	How to send your comments

	Chapter 1. Availability, scalability, and performance enhancements
	Changes to limits for better availability, scalability, and performance
	Schema evolution
	Ability to use table-controlled partitioning
	Creating new tables with table-controlled partitioning
	Separation of partitioning and clustering
	Clustering within partitions
	Improving index usage for partitioned table spaces

	Ability to add partitions
	Ability to rotate partitions
	Ability to add columns to indexes

	Materialized query tables
	Indexable predicates with mismatched data types
	Predicates with one encoding scheme
	Predicates with more than one encoding scheme

	Index enhancements
	Data-partitioned secondary indexes
	Advantages of data-partitioned secondary indexes for utilities
	Advantages of data-partitioned secondary indexes for queries
	Disadvantages of data-partitioned secondary indexes for queries

	Backward index scan
	Varying-length index keys
	Longer index keys
	Distribution statistics
	Improved application availability for nonunique indexes

	Reoptimizing the access path at run time
	Performance enhancements for star join
	Cost-based parallel sorting
	Visual Explain enhancements
	64-bit virtual storage
	Example of 2-GB virtual storage constraint
	Advantages of 64-bit virtual storage

	Data sharing enhancements
	Improved LPL recovery
	Reduction of lock propagation in the coupling facility
	Reduction of overhead costs for data sharing workloads
	Improved index split performance for data sharing
	Resolution of indoubt units of recovery in restart light

	Improved space allocation
	New default primary space allocation value
	New sliding scale for secondary space allocation

	More options for data security in TCP/IP networks
	More secure mechanism for verifying a remote clients port of entry
	Improved encrypted security mechanisms
	Authentication mechanisms used by DB2 UDB for z/OS as a server
	Authentication mechanisms used by DB2 UDB for z/OS as a requester
	Changes to the communications database

	System-level point-in-time recovery
	Additional parameters
	New subsystem parameters
	Subsystem parameters changed to dynamically updatable

	Other availability, scalability, and performance enhancements

	Chapter 2. Easier development and integration of e-business applications
	Changes to SQL limits
	SQL enhancements
	SELECT from INSERT statement
	Selecting values when you insert a single row
	Selecting values when you insert multiple rows
	Primary keys and foreign keys

	Sequence objects
	Creating a sequence object
	Referencing a sequence object
	Keys across multiple tables

	Identity column enhancements
	DISTINCT predicate
	Support for scalar fullselect
	Multiple-row INSERT and FETCH statements
	Inserting multiple rows
	Fetching multiple rows

	Common table expressions
	Using WITH instead of CREATE VIEW
	Using a common table expression for a result table that is based on host variables or is shared in a fullselect
	Using recursive SQL

	GET DIAGNOSTICS statement
	Dynamic scrollable cursors
	SQL procedural language enhancements
	Extending the length of an SQL procedure statement
	Handling SQL conditions in an SQL procedure
	Debugging an SQL procedure

	More frequent use of indexes
	Longer and more complex SQL statements
	Multiple DISTINCT keywords
	Expressions in the GROUP BY clause
	Fewer restrictions for column functions (aggregate functions)
	Qualified column names in the INSERT statement
	ORDER BY clause for the SELECT INTO statement
	Additional input format for timestamp strings
	Explicitly defined ROWID columns no longer required for LOBs
	Comments for plans and packages
	Implicit dropping of declared global temporary tables at commit
	SQL changes for multilevel security with row-level granularity

	Unicode enhancements
	Support for Unicode parsing
	Support for multiple CCSID sets in a single SQL statement
	DB2 ODBC support for native Unicode

	Multilevel security with row-level granularity
	Advantages of multilevel security
	Mandatory access control and dominance
	Implementing and using multilevel security

	SQL support for XML functions in DB2
	Improvements in connectivity
	Enhanced support for JDBC and CLI clients
	Easier access to remote workstation database through database alias support
	More granular control of routing requests to specific members of a data sharing group
	Improved JDBC and CLI connectivity for cursors and result sets
	More flexibility in managing distributed applications with CURRENT PACKAGE PATH special register

	Other e-business enhancements
	SQL processing options
	RRSAF implicit connections
	Changes to stored procedures processing

	Chapter 3. Planning for migration, conversion, and fallback
	Hardware and software requirements
	Migration considerations
	DB2 Version 8 publications assume new-function mode
	DBDs cannot be accessed if DB2 starts in deferred mode
	Type 1 indexes are not supported
	Global temporary tables need a 16-KB buffer pool
	Declared temporary tables need an 8-KB table space in the temporary database
	System-level point-in-time recovery
	Enhanced support for scrollable cursors
	Changes to space allocations for DB2-managed data sets
	Changed default value for DESCRIBE FOR STATIC
	Changed data types and lengths for some catalog columns
	Changed data types and lengths for some special registers
	SQL reserved words may be used in delimited identifiers for procedure names
	Encoding schemes of string parameters for routines
	Modify RUNSTATS jobs
	More history statistics are collected
	Creating tables with DBCS and mixed columns
	Consider increasing IDBACK and CTHREAD
	Support for DB2-established data space for cached dynamic statements is deprecated
	Consider changing EDM pool size
	Customized DB2I defaults can be migrated
	LANGUAGE COMPJAVA no longer supported for stored procedures
	DSNWZP runs in WLM-established stored procedure address space
	Support for DB2-established stored procedure address spaces is deprecated
	New precompiler option for string host variables
	New SYSIBM.SYSROUTINES column for encoding scheme
	LANGUAGE REXX sets PROGRAM_TYPE column in SYSIBM.SYSROUTINES
	DB2 start-up and precompilation require a user-supplied DSNHDECP module
	CCSIDs in DSNHDECP must be valid
	New data-only load module DSNHMCID
	Plans and packages bound prior to DB2 Version 2 Release 3
	Multiple calls to the same stored procedure
	External stored procedures and user-defined functions can return any valid SQLSTATE value
	Programs called by a stored procedure require packages
	Port of entry name changed
	New name for type 1 inactive threads and type 2 inactive threads
	Column names and labels in SQLDA SQLNAME field for statements involving UNION
	IFCID 197 is no longer supported
	Change data capture cannot be enabled on catalog tables during enabling-new-function mode
	DB2 Version 8 requires IRLM 2.2
	Detailed tracking of DB2 measured usage is disabled
	Programming language support has changed
	Views might be marked with view regeneration errors
	Migrating a data sharing group
	Work file database size calculations

	Preparing for fallback
	Frozen objects
	Other fallback considerations

	Release incompatibilities
	Ensure that Version 7 sample objects are available
	Ensure that no utility jobs are running
	EBCDIC and ASCII CCSID must be non-zero
	Identify unsupported objects
	Adjust application programs

	Release coexistence
	IRLM service level
	DISPLAY GROUPBUFFERPOOL output
	Distributed environment
	Data sharing

	Installation changes
	Version 8 panels
	Version 8 sample jobs

	Appendix A. Changes to commands
	New commands
	Changed commands
	Other command changes

	Appendix B. Changes to utilities
	New utilities
	Changed utilities
	Other utility changes

	Appendix C. Changes to SQL
	New SQL statements
	Changed SQL statements
	New functions
	Other SQL language changes

	Appendix D. Catalog changes
	New catalog tables
	Changed catalog tables
	New indexes
	When catalog migration changes occur

	Appendix E. EXPLAIN table changes
	Format of the Version 8 PLAN_TABLE
	Descriptions of new and changed columns in PLAN_TABLE
	Changed columns in DSN_STATEMNT_TABLE

	Appendix F. New and changed IFCIDs
	New IFCIDs
	Changed IFCIDs

	Appendix G. How to use the DB2 library
	Appendix H. How to obtain DB2 information
	DB2 on the Web
	DB2 publications
	DB2 Information Center for z/OS solutions
	CD-ROMs and DVD
	PDF format
	BookManager format

	DB2 education
	How to order the DB2 library

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

