

Analytics for Logical Dependency Mapping (ALDM)

Increasing pressures to reduce cost and improve resiliency are driving IT organizations to plan and implement complex infrastructure projects

- 75% of CIOs anticipate a strongly centralized infrastructure in 5 years¹
- 47% of clients have more than 6 data centers
- 71% of data centers are more than 14 years old
- 58% of clients will be expanding their data centers in next 12-24 months²

- 70-90% of manual asset inventories are inaccurate³
- 70% of every \$1 is spent to maintain and manage the existing infrastructure⁴
- 5-60% of IT workloads may be cloud-enabled⁵
- 14% of CIOs' time is spent removing costs from the technology environment⁶

- Data center consolidation and relocation
- Risk identification and remediation planning
- Middleware reclamation
- Legacy hardware and software retirement
- Server virtualization and consolidation

Sources

^{1.} IBM Global CIO study, September 2009

^{2.} IBM Global Data Center Study, January 2012

^{3.} IBM estimates, 2012

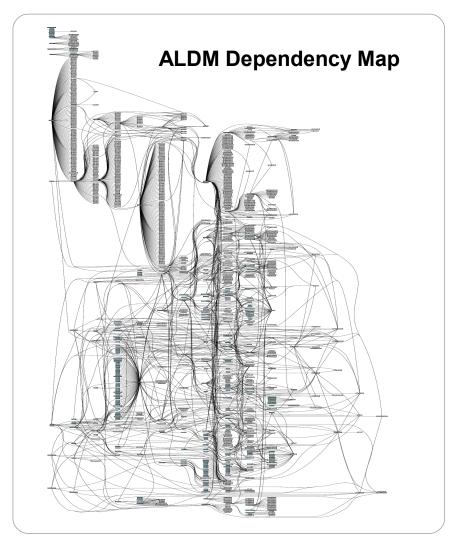
^{4.} IBM Dynamic Infrastructure client presentation, July 2009

^{5.} IBM research, September 2009

^{6.} IBM Global CIO study, September 2009

ALDM can quickly and unobtrusively discover the IT environment and produce the data and analysis required for IT project planning

Current discovery techniques are insufficient


- Current configuration and dependency data are generally less than 70% accurate and complete
- Current tools and manual methods take a long time to produce results, are expensive and generally require credentials.

Quick to deploy and produce results

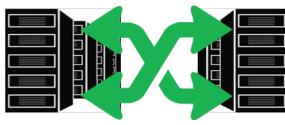
- A simple script is copied onto each server
- Script requires no credentials, agents or probes
- Script produces data files provided to IBM for post processing
 - Basic server configuration and installed middleware
 - Graphical depictions of server-to-server dependencies
 - Multilevel server dependency analysis
 - Resource utilization trending
 - Dynamic navigation and filtering with drill down to view server-level detail (via Apple iPad).

Developed by IBM Research

 Collaborative effort involved multiple teams in New York, Zurich, Almaden and Moscow.

ALDM can produce results in as little two weeks plus the time needed to implement clients' deployment and change management processes

IBM responsibilities Client responsibilities ① Email scripts to client• 2 Create deployment strategy Servers in scope Wintel / Linux · Command line instructions Script deployment tool .tar file repository Change management process (5) Run analytics and produce outputs on the IBM SCE Cloud Per server dependency pictures 3 Run scripts Multilevel dependency mapping Start date (quiet period) · Resource utilization trending Duration (e.g., 5 days) Dynamic and filtered visualization (iPad) Prepare application-to-• Interval (e.g., 15 minutes) · .csv with collected data server mapping (Dependency chain based on provided applications) Provide input to IBM Perform analysis .tar files Define ports to exclude, Application- and user-defined Application-to-server mapping limiting extraneous dependencies Excluded ports dependency information · Logical (affinity) groupings for migration · SFTP to IBM-provided account · Infrastructure risks or physical media transfer IT optimization strategies Remediation strategies


ALDM discovers server configuration information and logical dependencies using three methods*

Analysis of server log files

- Identifies historical dependencies
- Example: connection logs for web servers

Analysis of server configuration files

- Identifies hardware details and configured dependencies
- Enables ALDM to capture server dependencies that are not observed
- Example: middleware configured to access a database server

Network connections

- Identifies server-to-server activity at specified intervals
- Records observed dependencies by monitoring traffic at each port
- Captures data continuously during the ALDM scanning period, usually 5-7 days

Static data collection

Dynamic data collection

ALDM supports common operating systems and discovers many packaged middleware applications**

Supported operating systems

Windows

- 2000
- 2003
- 2008
- Windows 7

Linux

• Many, see list

VMKernel

• 3.5 and 4.0

AIX

• All

HPUX

• *

Solaris

• 8, 9, 10

Z/OS

Not supported

Supported middleware*

Database DB2 SQLServer Oracle DB Sybase Teradata Derby/Cloudscape Pointbase PostgreSQL MVSQL	Version 6, 7, 8, 9 00, 05, 08 8, 9, 10, 11 15 * 4, 5 All All
• MySQL	All

HTTP Servers

IBM HTTP Server	All
IBM Proxy Server	All
• MS IIS	5, 6, 7
Anache HTTP Server	ΑII

Application servers

Application servers	
• IBM WAS	3, 4, 5, 6, 7
 Tomcat 	*
Webl odic	8 9 10

Messaging Version • WebSphere MO *

	VVCDC	priore	IVIG	
•	WebS	phere	Message	All
	R 4:	C1 B A	_	a.

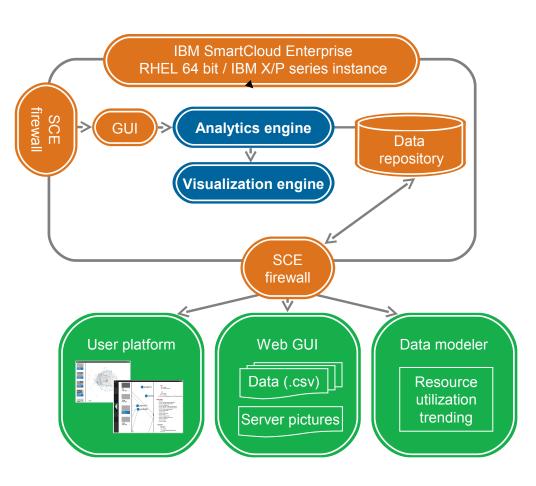
Microsoft Message Q

Infrastructure

 MS WNS Server 	*
 MS DNS Server 	*
 MS Active Directory 	*
Alt-N MDaemon	*
 Alt-N RelayFax 	*

Symantec AntiVirus

Other


•	AIX LVM	*
•	Linux LVM	*
•	HP-UX LVM	*
•	Solaris LVM	*

ALDM runs on IBM SmartCloud Enterprise (SCE) to transform large volumes of complex data into meaningful insights

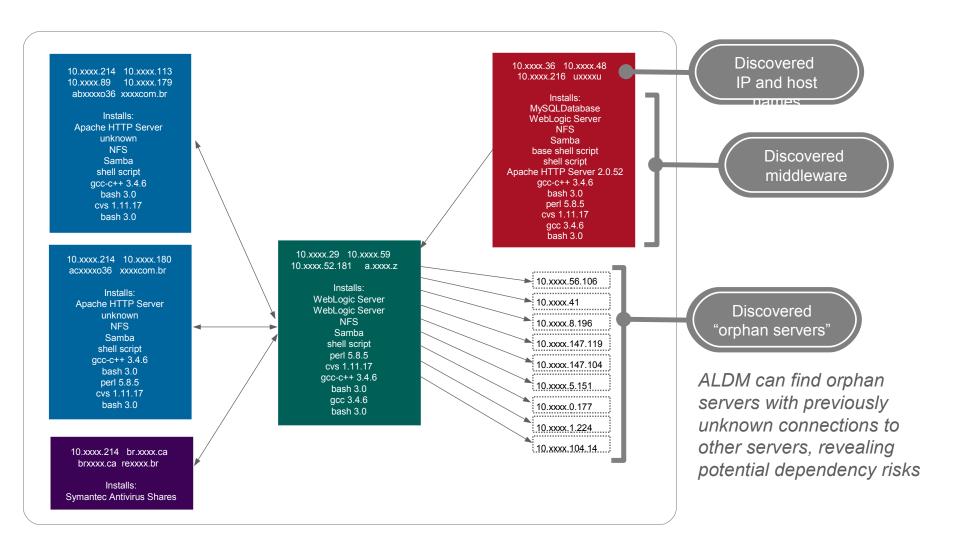
Infinitely scalable cloud computing platform makes advanced analytics possible

- Database engines for large data volumes
- Easy-to-use GUI for selection of processing options
- Minimum 20x performance improvement over prior systems
 - Processing time shortened from hours to minutes
- iPad-based visualization
 - Dynamically filter and navigate complex data sets for relevant views

The output file contains the data collected and parsed and is useful in understanding the basic environment and identifying potential risks

Top-level server view

	HOST_NAME	IP_ADDRESS	OS_NAME	OS_VERSIO	OS_DISTRIBUTION			PLATFORM	VENDOR	SERIAL
	Server_100	255.255.255.1	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	PowerEdge 2900	Dell Inc.	BVG
-	Server_101	255.255.255.2	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	ProLin		QDKR12G
Г	Server_102	255.255.255.3	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	Unsupported ope	aratina	NYUS4
	Server_103	255.255.255.4	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	· · ·	statilig	6TJRR
	Server_104	255.255.255.5	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	Pr system?		N8746FJXSJ
	Server_105	255.255.255.6	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	ProL.		CN8746FJXSH
	Server_106	255.255.255.7	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	ProLiant BL460c G1	HP	CN8746FJXSR
	Server_107	255.255.255.8	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E		ProLiant BL460c G1	HP	CN8746FJXBB
	Server_108	255.255.255.9	Windows	5.2.3790	Microsoft(P) Windows(P) Se	rver 2003. Standard E	dition	ProLimit DESOU G5	HP	CN8746FJXSA
	Server_109	255.255.255.10	Windows	5.0.2195	Microsoft Windows 2000 Ser	ver		PowerEdge 1600SC	Dell Inc.	NSDO4ASA
	Server_110	255.255.255.11	Windows	5.2.3790	Microsoft(R) vvindows(R) Se	rver 2003, Standard E	Edition	PowerEdge SC1420	Dell Inc.	9HDKSJH5
	Server_111	255.255.255.12	Linux	2.4.21-27.0.4	Red Hat Enterprise Linux rele	ease 3		IBM eServer x226-[87563AA]-	IBM	99KM061
	Server_112	255.255.255.13	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	ProLiant DL380 G5	HP	SKYLK234
	Server_113	255.255.255.14	Windows	5.2.3790	Microsoft(R) Windows(R) Se			ProLiant BL480c G1	HP	CN784700BP
	Server_114	255.255.255.15	Windows	5.2.3790	Microsoft(R) Windows(R) Se			ProLiant ML370 G4	HP	SGH857JDS
	Server_115	255.255.255.16	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E		PowerEdge 2950	Dell Inc.	GFDF44U7SD
	Server_116	255.255.255.17	Windows	5.2.3790	Microsoft(R) Windows(R) Se	,		PowerEdge 2950	Dell Inc.	SJYDG23SALK
	Server_117	255.255.255.18	Windows	5.2.3790	Microsoft(R) Windows(R) Se	rver 2003, Standard E	Edition	ProLiant DL380 G3	HP	SHGS4765

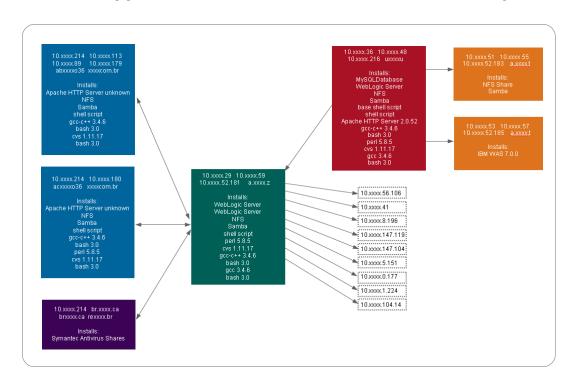

Installed middleware per server

	HOST_NAME	MW_CLASS	MW_SUBCLASS	MW_DISTRIBUTION_NAME	MW_VEND R	MW_VERSION	FYI_MW_INSTALL_PATH
	Server_101	DBMS	ORA (Oracle Database	Oracle	9.2	2 C:\oracle\ora92
	Server_101	MAIL	ALNMD	Alt-IN MDaemon Email Server	Alt-N		c:\mdaemon
	Server_101	FAX	ALNRF	Alt-N RelayFax	Alt-N		c:\relayfax
	Server_101	MON	AVSYM	Symantec Antivirus	Symantec		c:\program files\symantec antivirus
	Server_101	DBMS	ORA	Oracle Database	Oracle	10.2.0	c:\oracle\product\10.2.0\client_1
	Server_101	DBMS	MSQ	Microsoit SQL Server 2005	Microsoft	9.00.4035.00	c:\Program Files\Microsoft SQL Server\
	Server_101	DBMS	MYS	MySQL Database	Oracle	5.1	1 c:\program files\mysql\mysql server 5.1
	Server_101	WEB	IIS	Internet Information Services	Microsoft		c:\windows\system32\inetsrv\
	Server_101	MON	HPSMH	HP System Management Homepage	e HP		c:\hp\hpsmh
	Server_101	MON	AVSYM	Symantec Antivirus	Symantec		c:\program files\symantec antivirus
- (,

Redundant middleware?

ALDM's graphical server visualization shows directional dependencies and discovered middleware while helping uncover "orphan servers"

Multilevel dependency mapping helps automate the process of logically segmenting the infrastructure for data center migration

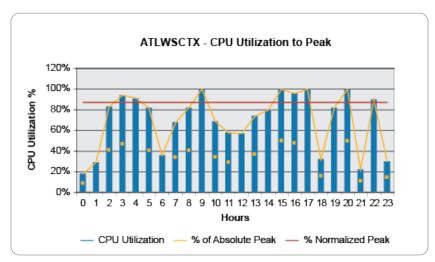

Multilevel server dependencies

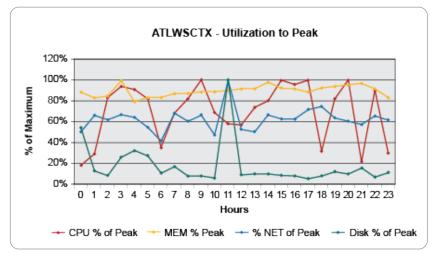
- Maps the end-to-end chain of dependencies
 - Based on user-defined criteria, usually server-to-application mapping
- Automatically creates infrastructure grouping scenarios.

Faster and more accurate than manual grouping techniques

- Simplifies mapping of large numbers of servers, which are too difficult to map manually
- Maps orphan servers, which are sometimes overlooked
- Helps to ensure all dependent infrastructure elements are migrated efficiently to support application needs.

Four levels of mapped dependencies Web → Application → Database → File Share / WebSphere

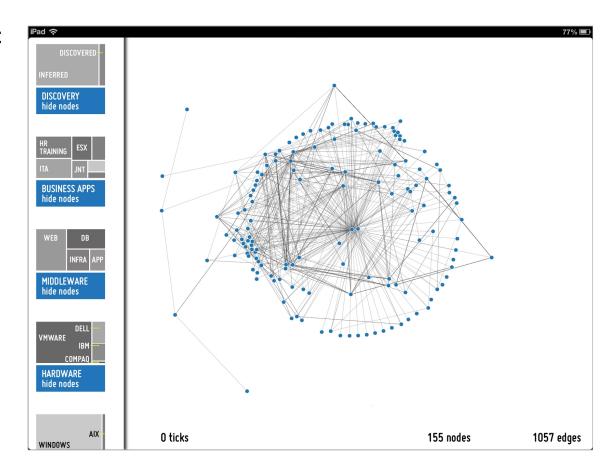

Resource utilization trending helps identify potential servers for optimization, virtualization, consolidation and retirement


Plots mean and peak utilization for each scanned server

- Shows CPU, memory, network and disk utilization
- Enables users to define desired sampling windows.

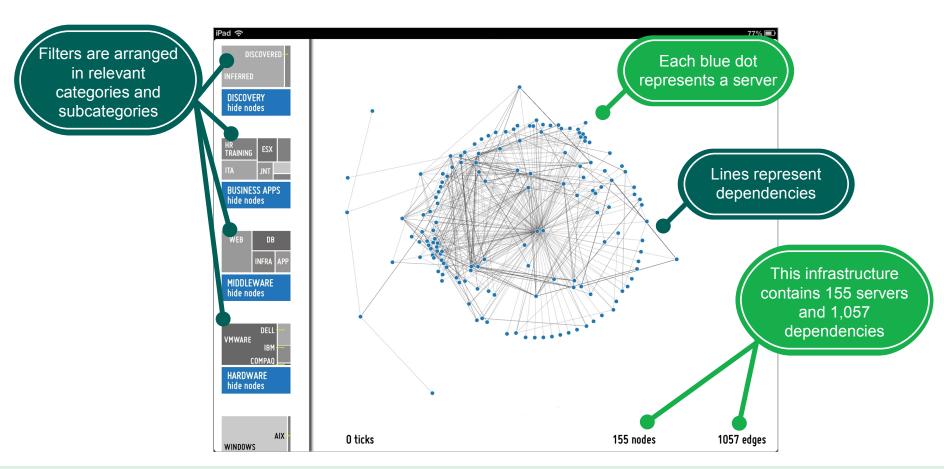
Improves resiliency and reduces capital and operating costs

- Identifies best candidates for virtualization, consolidation and retirement
 - Underutilized servers, inconsistently utilized servers, etc.
- Facilitates workload optimization for each server.


Dynamic visualization and filtering allows for quick and infinitely customized views of even the most complex infrastructures

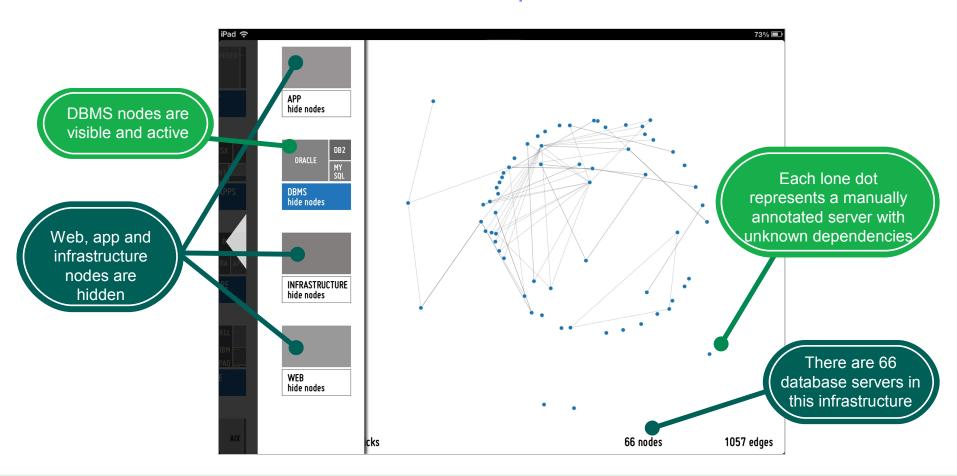
Dynamic rendering of relevant data

- At-a-glance insights into the infrastructure: number of nodes and degree of dependency
- Global port filtering to reduce extraneous information
- Infinitely customizable filters, enabling users to visualize only data relevant to a specific need
 - Customized filters can be saved for standardized views


Fast and easy navigation

- User-friendly operation on an Apple iPad, using standard iPad navigation techniques
- User-directed drill-down view of server details

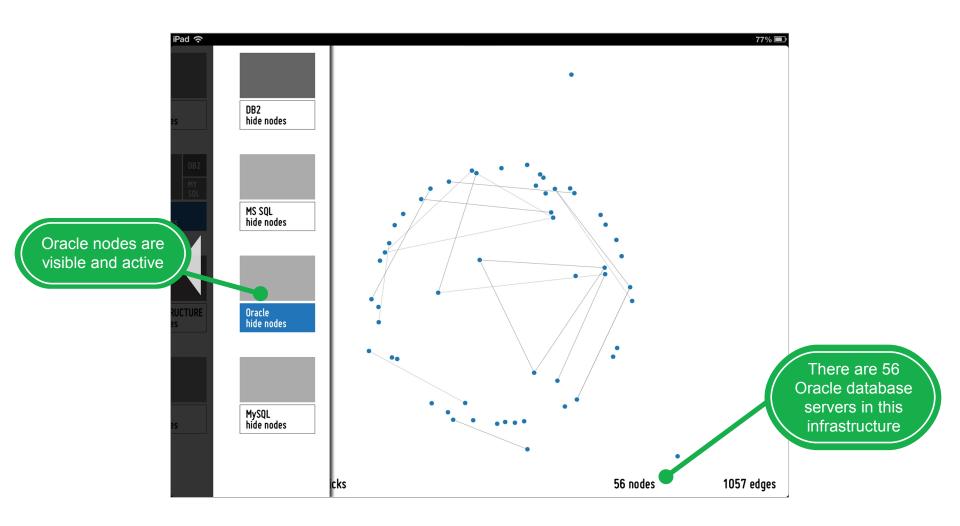
IT and migration architects use filters to customize the view, allowing them to view the entire infrastructure or hone in on desired nodes


Users tap directly on the filters to view and hide specific server nodes and related dependencies

The dependency map is redrawn as filters are applied and unapplied

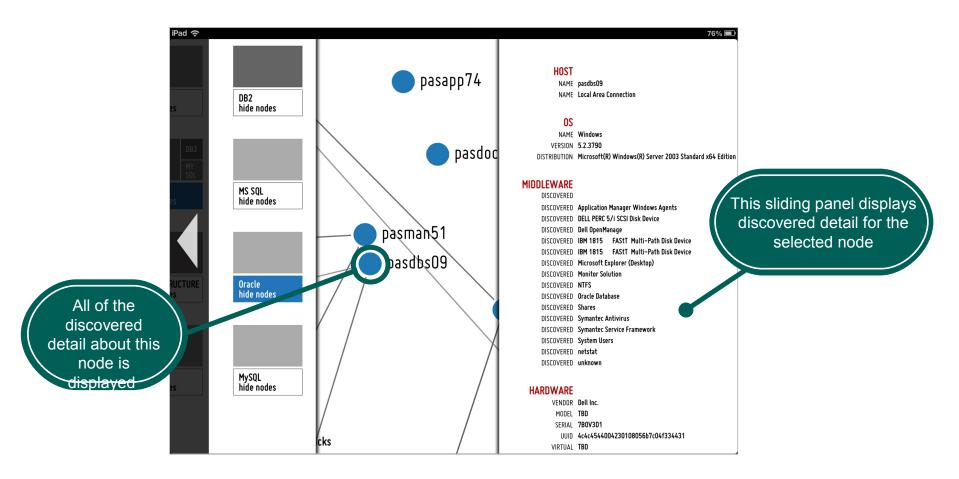
Filters can be applied to business applications when clients provide application-to-server maps

In this view only the DBMS servers and dependencies are visualized with all other nodes and dependencies hidden from view


Multiple levels of filters enable users to visualize specific areas of the infrastructure

Users drill down to the desired level of detail by tapping on the filters

14


Drilling down further, users can focus on specific database servers, visualizing only Oracle servers and dependencies, for example

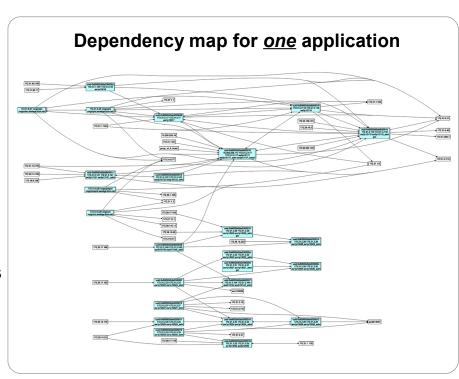
15

Display a servers discovered information by tapping on it

Enlarge the view by pinching fingers outward on the screen, as with other iPad functions

Tap on a node to display detail about it and tap again to hide the detail

Swipe the data panel to scroll up and down and see all available detail for a node


A financial services organization deployed ALDM to better understand its Wintel infrastructure prior to relocating the data center

Relocation environment

- 700 Wintel servers
- 2 IBM AIX® midrange system
- 1 IBM System z10[™] mainframe
- 400+ critical applications deployed on all platforms

ALDM (1.0) impact

- 50-70% reduction in the time needed to identify dependencies
- Quick generation of affinity grouping scenarios based on how the IT infrastructure actually operates
 - 12 affinity groups defined, one for each major application group
- Seamless transition for end users enabled by a complete view of the infrastructure
- · Risk reduction
 - Single point of failure identified and fixed
 - Identification of servers needing OS upgrades

Summary

IT discovery has been such a complex task, it is generally not implemented across the entire IT infrastructure. ALDM lowers the cost and complexity of IT discovery.

Basic IT discovery is the critical starting point for gathering the data to plan complex infrastructure projects. ALDM offers a fast and simple process for IT discovering—accelerating it by as much as 30-40 percent.

Traditional IT discovery methods fail to provide an accurate picture of the IT environment. ALDM delivers a snapshot of all selected servers and their dependencies

ALDM output helps IT leaders identify opportunities for cost reduction and resiliency improvement by helping them better understand how the infrastructure actually operates.

18

Thank you for your time today

For more information

- IBM Site and Facilities Services
- www.ibm.com/services/aldm

Contact

- Larry Thompson, Offering Executive, IBM
- Ihthomp@us.ibm.com

Trademarks and notes

© Copyright IBM Corporation 2013 IBM Global Services Route 100 Somers, NY 10589 U.S.A.

IBM, the IBM logo, AIX, System z10 and **ibm.com** are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or TM), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. Other product, company or service names may be trademarks or service marks of others. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may be changed by IBM at any time. Not all offerings are available in every country in which IBM operates.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary. It is the user's responsibility to evaluate and verify the operation of any other products or programs with IBM products and programs.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are warranted according to the terms and conditions of the agreements under which they are provided.