
Liitoksista
ja optimoijan
auttamisesta

Tapio Lahdenmäki
tapio.lahdenmaki@siol.net

Huhtikuu 2005

YTR 26.04.05 1

Your Optimizer Sometimes Needs Help

Does not always
see the best
 access path

Cost estimates
sometimes

way off

Rewrite SQL statement
Example:
Replace difficult predicate
by two easy predicates

Split SQL statement
Examples:
Replace OR by UNION
Several cursors instead
of one to prevent sort

Access Path Hint

More statistics

Select access path each time

Irresistible index

Type 1 Type 2

YTR 26.04.05 2

Type 1 problems can only be solved by rewriting the SQL in a more optimizer-friendly way (exception: Oracle Function
Based Indexes; you may create an index whose key is a column function, A CONCAT B, for instance)
Some optimizers rewrite many queries before access path selection. Simple DB2 example: C1 = :hv1 OR C1 = :hv2 is
rewritten as C1 IN(:hv1,:hv2). C1 may then be a matching column.
To avoid manual rewrite, all SQL programmers should know the most common optimizer pitfalls (mainly which predicates can
never be matching predicates & the concept of non-BT predicates). The pitfall list is product and release dependent.
Type 2 problems are less predictable but easier to fix
Access path hint is a good quick fix (to return to a previous access path, for instance)
Note that hints do not help with type 1 problems
Optional statistics -- such as column or column group cardinality -- may make the FF estimates good enough even when the
access path is selected once
Extensive statistics, such as histograms -- together with selecting access path each time -- are necessary for complex
queries when the optimal access path depends on input, especially when an user may generate many different predicates
Index improvement is sometimes the best solution

I've read a lot of papers on index , at each time every thing is clear in my mind , but some days
after but i am still not 100% sure with the comprehension of the concept , so just want to verify
with you

INDEX(col1,col2,col3)

select xxxx from xxx
where
col1= aa AND
col2= aa
=> Index matching , right ?

where
col1= aa AND
col3= aa
=> Index screening , right ?

where
col3= aa
=> index screening ? (in my opinion No , as not restrictive enough)

Good Question

YTR 26.04.05 3

From IDUG DB2 L

C1, C2, C3
 WHERE C1 = :C1

 AND

 C3 = :C3

M

S

M

S

Matching predicate (defines index slice)

Screening predicate (no table touch when false)

C1, C2, C3 WHERE C3 = :C3

S

These are alternatives seen by the optimizer
Full table scan (or another index) may get a lower

cost estimate

MC = 1
SC = 1

MC = 0
SC = 1

YTR 26.04.05 4

Why the confusion?
(1) Matching and screening are attributes of simple predicates (as opposed to compound predicates) in relation to a given
index: which predicates are matching or screening if that index is used with that WHERE clause
(2) When the optimizer evaluates an index candidate, it identifies matching and screening predicates with that candidate; it
then evaluates filter factors and the number of touches and chooses the access path that has the lowest cost estimate
Thus, in the last case, when the optimizer considers index (C1,C2,C3) for WHERE C3 = :C3, it sees that the predicate is a
screening predicate

Compare with predicates that are too difficult for the optimizer:

No matching (DB2 for z/OS: non-indexable)
No matching, no screening (DB2 for z/OS: Stage 2)

C1 = 'A' Matching predicate
C3 = 'B' Screening predicate
C4 = 'C' Stage 1, nonindexable predicate

SELECT COLS
FROM T1

WHERE C1 = 'A'

 AND

 C3 = 'B'

 AND

 C4 = 'C' T1

C1,C2,C3

DB2 for z/OS V8 Adm Guide

FF = 1/FIRSTKEYCARD

+ apply TOP 10

FF(M) = ?

FF(M+S) = ?

FF(ALL) = ?

FF = 1/25 (default)

FF = 1/25 (default)

YTR 26.04.05 5

'To determine the cost of accessing table T1 through index I1, DB2 performs these steps:
Estimates the matching index cost. DB2 determines the index matching filter factor by using single-column cardinality and
single-column frequency statistics because only one column can be a matching column. (TL: in this case)
Estimates the total index filtering. This includes matching and screening filtering. If statistics exist on column group (C1,C3),
DB2 uses those statistics. Otherwise DB2 uses the available single-column statistics for each of these columns. DB2 will also
use FULLKEYCARDF as a bound. Therefore, it can be critical to have column group statistics on column group (C1, C3) to
get an accurate estimate.
Estimates the table-level filtering. If statistics are available on column group (C1,C3,C4), DB2 uses them. Otherwise, DB2
uses statistics that exist on subsets of those columns.
Important: If you supply appropriate statistics at each level of filtering, DB2 is more likely to choose the most efficient access
path.
You can use RUNSTATS to collect any of the needed statistics.'

--
The arrows on the visual show the FF estimates for the simple predicates with default statistics

And by the way...FF = Filter factor = Number of passing (qualifying) rows divided by the number of source rows, 0...1 or
0...100%...a property of a predicate (simple or compound)...depends on the actual value distributions in the predicate columns

 DB2 for z/OS V8 Utility Guide

RUNSTATS

COUNT integer

| Indicates the number of frequently occurring values to be
| collected from the specified column group. For example,
| COUNT 20 means that DB2 collects 20 frequently occurring
| values from the column group. You must specify a value for
| integer; no default value is assumed.

| Be careful when specifying a high value for COUNT.
| Specifying a value of 1000 or more can increase the
| prepare time for some SQL statements.

RUNSTATS
kaikilla

mausteilla?

YTR 26.04.05 6

Cardinality of all predicate columns?
Cardinality of all possible predicate column combinations?
+ TOP 1000 and BOTTOM 1000 for all above?
Or only when a cost estimate problem found?

Each time

Static SQL, REOPT(NONE)
Optimize with variables
(default filter factors)

Dynamic SQL, REOPT(ONCE)
Optimize with variable values of
first call, reuse access path

Static SQL, REOPT(VARS)
Optimize with actual variable
values

Uncached dynamic SQL
Optimize with actual variable
values

CPU cost of access path selection
significant with cost based optimizers

Once

When To Select Access Path

YTR 26.04.05 7

Estimating the costs of the alternatives each time a query is executed leads to best estimates
However, in operational applications, access path selection should seldom occur at run time because of the high CPU
overhead
When the WHERE clause contains no variables (WHERE COL = 1), the same access path remains optimal until one of the
following takes place:
(1) Indexes are modified
(2) The number of rows increases a lot
(3) The distribution of column values changes a lot
When the WHERE clause contains variables (WHERE COL = :COL), the optimal access path may depend on the values
moved to the variables
In such cases, it may be necessary to do access path selection each time with the actual values (COL = value)
It is often possible to design indexes that make the optimal access path for a SELECT independent of variable values; then
the access path can be selected once and reused many times
The implementation of Once / Each time is product dependent

Table 94. Default filter factors for interpolation

COLCARDF Factor for Op Factor for LI KE or BETWEEN

>=100000000 1/10,000 3/100000
>=10000000 1/3,000 1/10000
>=1000000 1/1,000 3/10000
>=100000 1/300 1/1000
>=10000 1/100 3/1000
>=1000 1/30 1/100
>=100 1/10 3/100
>=2 1/3 1/10
=1 1/1 1/1
<=0 1/3 1/10

Note:
Op is one of these operators: <, <=, >, >=.

YTR 26.04.05 8

DB2 for z/OS V8 Administration Guide

Optimizer Estimates Once With Variables

MAKE,
MODEL,
YEAR

WHERE MAKE =
 AND
 MODEL =
 AND
 YEAR >=

FF = 0...10%

FF = 0...5%

FF = 0...100%

FF(ALL) = 5% = 1/20

Worst input:
Toyota Corolla YEAR >= 1900

 100,000 rows

CARD(MAKE) = 100
CARD(MODEL) = 1000
CARD(YEAR) = 40

FF(ALL)
= 1/CARD(MAKE) x 1/CARD(MODEL)
 x default FF for YEAR >= :YEAR
= 1/100 x 1/1000 x 1/3 = 1/300,000

FF(ALL)

Actual Optimizer's estimate

Max
5%

So, 1/FULLKEYCARD = 1/100,000 used

YTR 26.04.05 9

In this example, the worst input is the most common MAKE, MODEL together with a low value in YEAR
The FF values next to the WHERE clause are actual filter factors
FF(M) = FF(M+S) = FF(ALL) because all predicates are matching
TOYOTA COROLLA is the most common value combination in columns MAKE, MODEL
If the optimizer does not know that columns MAKE and MODEL are highly correlated, the FF estimate is way too low
If the optimizer knows CARD(MAKE, MODEL) = 1000, the FF estimate is better (1/3000) -- not bad for average input
FFest = 1/3000 would probably lead to index slice scan with table touches -- not good with the worst input unless the order of
table rows is the same as the order of index rows in (MAKE,MODEL,YEAR)
The cost estimates must be made each time (based on user input) or we have to design an index that per forms well
enough with any input

Optimizer Estimates Each Time

MAKE,
MODEL,
YEAR

WHERE MAKE =
 AND
 MODEL =
 AND
 YEAR >=

FF = 0...10%

FF = 0...5%

FF = 0...100%

FF (worst input)
 = 5%

Worst input:
Toyota Corolla YEAR >= 1900

 100,000 rows

FF (worst input)
= 0.05 x 1
= 5%

FF(ALL)

Actual Optimizer's estimate

Max
5%

TOP 100 for (MAKE, MODEL)
MIN and MAX for YEAR

YTR 26.04.05 10

Now the optimizer probably chooses full table scan when the input is TOYOTA COROLLA 1900 or later and index slice scan
with table touches when the input is MINI COOPER S 2003 or later
Note the two prerequisites:
(1) Statistics options tailored for this SELECT
(2) Run-time cost estimates each time: high CPU time, latch waits in some environments -- not feasible with high
transaction rates

Optimizer Estimates Once

MAKE,
MODEL,
YEAR,

PRICE,...

WHERE MAKE =
 AND
 MODEL =
 AND
 YEAR >=

FF = 0...10%

FF = 0...5%

FF = 0...100%

Actual

Max
5%

FF(ALL)

Opt est

up to 1/20 E

Irresistible index

CAR

TR = 1
TS = E x 100,000

TR = 1
TS = 100,000E = 0...1

YTR 26.04.05 11

With a fat index, an index slice scan is the best a lternative with any input
It also performs quite well enough with any input: TR = 1 and TS = 5,000 with the worst input
The cost estimates need to be made only once -- eit her before the first execution or at the first exe cution
Minimal statistics are adequate for this SELECT; the optimizer will get a lower cost estimate for index slice scan than for a full
table scan
However, at least CARD(MAKE, MODEL) and CARD(MAKE,MODEL,YEAR) are recommendable options anyway -- think
what might happen when table CAR is joined with table DEALER and the optimizer makes a bad estimate for FF(MAKE =
AND MODEL =)

Review

1. List possible reasons for the optimizer problem
 on the next visual

Wrong index chosen after statistics created for a new table and
its indexes

2. Propose possible remedies

Better than the current one (cheating the optimizer
by reducing CLUSTERRATIO of wrong index)

Assume choosing access path each time too expensive

YTR 26.04.05 12

When the new table had very few rows, the statistics were not created because the optimizer probably would have chosen a
full table scan. With the default filter factors, the optimizer chose index (C1,C5)
Later, when the table had grown, the statistics were created. Now the optimizer chose index (C1, C2, C3, C4), which is the
clustering index . The new access path was observed to be slower than the old one.

 We have a new partitioned table, say T1(C1,C2,C3,C4,C5,...),with a clustering index
(C1,C2,C3,C4) and 2 other indexes, one is (C1,C5), and the other one, you can forget it :-) And
the predicates of the problem query, is "C1=:hv and C5=:hv and C3<:hv " .

(Table growing, statistics updated with RUNSTATS)... After that, we suffered a high volume I/O
on T1 and transaction response time slow down. We checked PLAN_TABLE and found the
access path now is PI(C1,C2,C3,C4), which having only 1 matchcolumns... So index-screening
is played, right?

We RUNSTATS and REBIND it again, still can't help optimizer do a correct choice. Finally, we
cheated DB2 by tuning down the CLUSTERRATIO value of (C1,C2,C3,C4), and then (C1,C5)
was chosen back. But it is not a good idea to update CATALOG manually, so we are now
looking for a better solution. Of course, optimization hint is useful, but we didn't set this ZPARM
on. Any other advice, such as special RUNSTATS method and so on? I am still curious about
the arithmetic of filter factor on this kind of index-screening. Why the ineffective PI would be
chosen? You know there is a perfectly matched index!

C1, C2, C3, C4 C1, C5

C
MC = 1
SC = 1

MC = 2
SC = 0

YTR 26.04.05 13

RUNSTATS = Create statistics
REBIND = Optimize with current statistics
CATALOG contains the statistics used by the optimizer. The statistics can be updated manually with SQL (to make test table
look like production table, for instance)
Access path hint is disabled (a system parameter, ZPARM)
INDEX CLUSTERRATIO = 100% if the index rows in the same order as the table rows. CLUSTERRATIO affects the I/O
time of table touches (actual & optimizer estimates)
PI = Partitioning index (C1,C2,C3,C4)

Nested Loop Or Merge Scan/Hash Join?

CUST INVOICE
TR = X1

TR = X2

CUST INVOICE

TS = Y1 TS = Y2MATCH
Z1 + Z2 rows

X1 = NLR(INVOICE) if fat index on CUST

X2 = NLR(CUST) if fat index on INVOICE

YTR 26.04.05 14

The upper part of the visual shows the justification for the rule of thumb 'The outer table in nested loop should probably be
the one with a lower number of local rows''
NLR = Number of local rows (rows that satisfy all local predicates)
When both X1 and X2 are fairly high, MS/HJ may be a better join method
Note that X1 and X2 are determined by FF(ALL)
Y1 + Y2 is the number of rows in the index slices defined by the local matching predicates -- determined by FF(M)
Z1 + Z2 is the number of local rows -- NLR(CUST) + NLR(INVOICE) -- determined by FF(ALL)
TR = Number of random touches
TS = Number of sequential touches

CTYPE

CUST INVOICE

IDATE

1,000,000 rows 20,000,000 rows

MS/HJ

SELECT CNAME, CTYPE, INO, IEUR
FROM CUST, INVOICE
WHERE CUST.CTYPE = :CTYPE
 AND
 IDATE > :IDATE
 AND
 CUST.CNO = INVOICE.CNO

Merge Scan and Hash Join

Merge Scan

Hash Join

Sort local rows by CNO
if necessary
Merge to find matches

Store smaller local row set
in hashed table (by CNO)
Find the other local row set
and find matches
(hash by CNO)
Hash cost may be a few us
per hash table touch
-- large variation (CPU
cache)

Sort cost estimate
10 us per sorted row

YTR 26.04.05 15

Nested loop join sometimes leads to an excessive number of random touches, even with ideal indexes
This is why the optimizers have an alternative method that reads the qualifying rows from each table and then match them
either by merging (after sorting, if necessary) or by hashing (randomizing)
Some products provide one of these join methods (MS or HJ), some provide both
The ideal indexes for MS/HJ may be different from those derived for nested loop join: the local predicate columns should be
in front; the position of the join columns matters only if sorting can be avoided for MS

The optimizers choose MS/HJ more often than they used to, especially with fat indexes. This is because the cost gap
between random and sequential touches has widened.
The cost of matching the rows with MS can be estimated by counting the touches to the work file and the number of rows to
be sorted
The cost of matching the rows with HJ is difficult to predict because the cost of a random touch to the hash table is very
variable. It is extremely low (roughly 1 us) if the hash table remains in the CPU cache (L2). Otherwise, it can be 10 us or
more.

1,000,000 rows

PP,C

U

 Ideal Indexes for MS/HJ

IEUR DESC,
INO,
CNO

CCTRY,
CNO,

CNAME,
CTYPE

CNOINOCNO

CUST INVOICE

20,000,000 rows

F,C

U

CUBA: TR=1 TS=10 TR=1 TS=20K LRT = 0.2 s
SWEDEN: TR=1 TS=100K TR=1 TS=20K LRT = 1.2 s

PLUS
MATCH
COST

YTR 26.04.05 16

SELECT CNAME, CTYPE, INO, IEUR
FROM CUST, INVOICE
WHERE CCTRY = :CCTRY (FF up to 10%)
 AND
 IEUR > :IEUR (FF = 0.1 %)
 AND
 CUST.CNO = INVOICE.CNO
ORDER BY IEUR DESC
OPTIMIZE FOR 20 ROWS
--

SORT = Y, so perhaps the whole result should be fetched in one transaction

Merge Scan

IEUR DESC,
INO,
CNO

CCTRY,
CNO,

CNAME,
CTYPE

1

CNO,IEUR,INO

Sorted by CNO
Result rows

Result rows

Sorted by IEUR

2

3

YTR 26.04.05 17

1. Scan index slice, build temporary table 1, sort by CNO
2. Scan index slice (already in CNO sequence), merge with the rows in the temporary table 1; when a match found in step 2,

store the result row in temporary table 2
3. 3ort the result rows by IEUR (descending)

Note: This is an 1:M join, so a temporary table for qualifying CUST rows is not necessary

Hashed CNO

0000

0001

0002

9999

IEUR, INO, CNO

IEUR, INO, CNO IEUR, INO, CNO

IEUR, INO, CNO

20,000 large invoices

1230000 0720000

0390002

1759999

IEUR, INO, CNO
0329999

...................................

Hash Table

YTR 26.04.05 18

With HJ, the selected columns from large invoices are first stored in a hash table. The anchor points are hashed CNO values.
Next, the index slice containing the customers from the given country is scanned. For each of these rows, the CNO is hashed
to find if there are matching rows in the hash table (any large invoices with this CNO?)

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

WHERE ORD.insertDT BETWEEN DATEADD(d, -3, GETDATE()) AND GETDATE()

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

High Filter Factor Estimate

Loop join Hash join

1

2

FF x N seq touches

N x M seq touches
Hashing cost (build & match)

Hash join seems faster

N rows N rows

N x M rows N x M rows

FF x N random touches
FF x N x M seq touches

1

2

FF x N seq touches

YTR 26.04.05 19

Joins are often very sensitive to filter factors
This is a part of a simple five-table join, basically looking for item data for recent orders
The platform is SQL Server 2000 (Courtesy of Chris Dickey,
http://www.tunesqlserver.com/notes/CostEstimatePuzzle.1.aspx)
The SELECT was very slow because the optimizer assumed a high FF for BETWEEN (default FF); it then got a lower cost
estimate for hash join than nested loop
The indexes for tables ORD and DET are ideal for bo th loop join and hash join , so we cannot influence the optimizer by
index improvement (only ORD_id is SELECTed from table ORD, only ITEM-id from table DET; both indexes are fat)
All touches on the visual are index touches
The first random touch to start an index slice scan (index 1) is ignored
The first random touch to start a full index scan (index 2) is ignored
Note: The only local predicate on table ORD is matching; therefore FF(M) = FF(M+S) = FF(ALL)

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

WHERE ORD.insertDT BETWEEN DATEADD(d, -3, GETDATE()) AND GETDATE()

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

Low Filter Factor (FF)

Loop join Hash join

1

2

FF x N seq touches

N x M seq touches
Hashing cost (build & match)

Loop join faster when FF low enough

N rows N rows

N x M rows N x M rows

FF x N random touches
FF x N x M seq touches

1

2

FF x N seq touches

YTR 26.04.05 20

When the query was modified to enable parameter sniffing (equivalent to REOPT (ONCE)), the FF estimate for the
BETWEEN predicate was close to the actual value (which was consistently quite low)
Now the optimizer correctly estimates that loop join is faster

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

WHERE ORD.insertDT BETWEEN DATEADD(d, -3, GETDATE()) AND GETDATE()

ORD

DET

insertDT,
ORD_id

ORD_id,
ITEM_id

Low Filter Factor (FF) & ORD_id values consecutive

Loop join Hash join

1

2

FF x N seq touches FF x N seq touches
N x M seq touches
Hashing cost (build & match)

Loop join dramatically faster

N rows N rows

N x M rows N x M rows

FF x N x M seq touches

1

2

YTR 26.04.05 21

The improvement was dramatic (1:75)
When ORD_id is ever-increasing, the touches to the second index are actually sequential
This is an example of a factor that is virtually impossible for an optimizer to find out by just looking at the statistics

Two Big Questions

Does the
optimizer know

 the filter factors?
Do we know

 the filter factors?

YTR 26.04.05 22

Join Case Study 1

A step in a batch job to produce statistics
SQL generated by CoolGen
A programmer might write a subquery
Sort of result rows unavoidable (DISTINCT)

A variation of CUST/INVOICE join
Customers with given characteristics that have at l east

one invoice with given characteristics

Many predicates too difficult for the optimizer
Non-BT

COL <> literal

Design indexes
Filter factors not known at this point

A B

4,000,000 rows 6,000,000 rows

1 M

YTR 26.04.05 23

A.DC10 = :DC10JNRO-002EF

AND

A.EDTU = ' '

AND

A.ELTU IN (15 host variables)

Local Predicates on Table A

M

M

M FF(ALL,A)

YTR 26.04.05 24

FF(ALL) = is the FF of this compound predicate
M = potential matching predicate

 B.ELLA <> '8A' AND
 B.ELLA <> '8' AND
 B.TELM = 'K' AND
 B.MPET <> 'S' AND
 B.MOSA = 'TEL'

 AND

 (B.LAIT LIKE '46%' OR
 (B.LAIT = ' ' AND
 B.ELLA IN ('5','5A'))
 OR
 (B.ILMV = 'ON'))
 AND
 ((B.VOIM = 'K') OR
 (B.MYON = 'K'))

Local Predicates on Table B

FF(ALL,B)

M

Non-BT

M

YTR 26.04.05 25

M = Potential matching predicate
Index designer must know at least FF(ALL) for the two tables
Three alternatives: indexes for A-driven NL, B-driven NL or MS/HJ

FK, MOSA,
TELM,...

DC10, EDTU,
ELTU, PK,....

DC10, EDTU,
 PK, ELTU,...

TELM, MOSA,
FK,...

TELM, MOSA,
FK,...

DC10, EDTU,
PK, ELTU,...

A.ELTU IN (15 host variables)

START

START

MS

YTR 26.04.05 26

If FF(ALL,A) < FF(ALL,B) x 1.5, design indexes for A-driven nested loop
If FF(ALL,A) > FF(ALL,B) x 1.5, design indexes for B-driven nested loop
If both FF(ALL,A) and FF(ALL,B) fairly high, design indexes for merge scan (without sort) -- or no indexes (full table scans
with sorts)
Semi-fat or fat indexes? It depends on FF(M) and FF(S)
Then, if the optimizer chooses wrong access path, create optional statistics (CARD, TOP N, BOTTOM N at least for single
columns)

Join Case Study 2

A B

50,000,000 rows 400,000 rows

M M

WHERE SUBSTR(A.TUNNI,1,5) IN('OTV01','OQV01') AND
 A.ARKPV >= '01.08.2004' AND
 A.ARKPV < '01.10.2004' AND
 B.KUULLÄPV >= '01.08.2004' AND
 B.KUULLÄPV < '01.10.2004' AND
 A.HENRO = B.HENRO

HENRO,... HENRO,...

C

YTR 26.04.05 27

Standard statistics (nothing on non-indexed columns)
Local predicate columns not indexed
Default FF for SUBSTR IN = ?
Default FF for others 1/3 -- but probably only one per column (choose the most selective predicate for FFest when multiple
predicates with the same column)
FFest(ALL) for table A = ? x 1/3
FFest(ALL) for table B = 1/3
FFest means optimizer estimate
Note: Date predicates have host variables in the program, literals used in EXPLAIN (should not make a difference in this
case because no statistics on these columns)

V7: Hybrid Join, Outer Table A

A B

50,000,000 rows 400,000 rows

M M

WHERE SUBSTR(A.TUNNI,1,5) IN('OTV01','OQV01') AND
 A.ARKPV >= '01.08.2004' AND
 A.ARKPV < '01.10.2004' AND
 B.KUULLÄPV >= '01.08.2004' AND
 B.KUULLÄPV < '01.10.2004' AND
 A.HENRO = B.HENRO

HENRO,... HENRO,...

C

START

YTR 26.04.05 28

1. Looks smart
2. NL with B as the outer table would imply 1/3 x 400,000 random touches if FF(ALL) for table B is 1/3
3. The touches to table B skip sequential (with short skips if FF(ALL) for table A fairly high)

V8: Nested Loop, Outer Table B

A B

50,000,000 rows 400,000 rows

M M

WHERE SUBSTR(A.TUNNI,1,5) IN('OTV01','OQV01') AND
 A.ARKPV >= '01.08.2004' AND
 A.ARKPV < '01.10.2004' AND
 B.KUULLÄPV >= '01.08.2004' AND
 B.KUULLÄPV < '01.10.2004' AND
 A.HENRO = B.HENRO

HENRO,... HENRO,...

C

START

YTR 26.04.05 29

Very strange (and slow)
Asia huomattiin, koska eräajo alkoi V8 Compatibility Modessa kestämään ruhtinaallisesti pidempään kuin indeksipohjaisilla
saantipoluilla V7:ssa. t.Jarmo
Alkuperäinen EXPLAIN oli tuotantoympäristöstä, jossa on DB2V8 Compatibility Mode. Kokeilin samaa
systeemitestiympäristöstä, jossa on DB2V8 New Function Mode ja tulos oli se, että saantipolut olivat TS Scan <> TS Scan.
Eli ei muutosta näiden kahden moden välillä saantipolkujen valinnassa. t.Jarmo

V8 & BETWEEN: NL, Outer Table A

A B

50,000,000 rows 400,000 rows

M M

WHERE SUBSTR(A.TUNNI,1,5) IN('OTV01','OQV01') AND
 A.ARKPV >= '01.08.2004' AND
 A.ARKPV < '01.10.2004' AND
 B.KUULLÄPV BETWEEN '01.08.2004' AND '30.9.2004' AND
 A.HENRO = B.HENRO

HENRO,... HENRO,...

C

START

YTR 26.04.05 30

Essentially same as V7
FFest(ALL) for table B now 1/10, according to Admin Guide
Still a mystery -- case open
Redbook DB2 for z/OS V8 Performance Topics: Better filter factor estimation in V8: 'DB2 can estimate a better filter factor by
using statistics inference derivation . This can result in with or without the additional statistics mentioned before: Improved
query selectivity estimation...Queries which contain two or more predicates referencing a table may get better access
path...Significant performance improvement for some complex joins...Consider rebinding this type of query'
What does statistical inference mean?
http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/StatisticalInference.html
'Statistical inference concerns the problem of inferring properties of an unknown distribution from data generated by that
distribution. The most common type of inference involves approximating the unknown distribution by choosing a distribution
from a restricted family of distributions. Generally the restricted family of distributions is specified parametrically.'
Hmmm

Good DB2 for z/OS V8 News

Bottom N

REOPT(ONCE)

Improved Visual Explain

Statistics Advisor

RUNSTATS: LEAST

RUNSTATS OPTIONS

Dynamic SQL

Shows FFest per step

YTR 26.04.05 31

Today, the optimizers are black boxes with many windows

No Pain No Gain

Optimizer improvements make some queries slower
Remember list prefetch in V2R2?

Optimization hint provides quick fallback
When old access path saved

Additional statistics better solution

Or more optimizer-friendly (FF-wise) predicates

YTR 26.04.05 32

