
Independence Day

DB2 V8 Partitioning



Agenda

› The Benefits of Partitioning

› How the Terminology Changes in V8

› Table Controlled Partitioning

› Data Partitioned Secondary Indexes

› Online Schema Evolution



Why Partition?

› Cater for large objects
– Maximum of 64GB without partitioning and EA datasets
– 16TB available with EA datasets and partitioning

• 128TB in v8 and a PAGESIZE of 32K!

› Group Data

› Recoverability

› Encourage Parallelism

› Partition Independence
– More on how V8 enhances this later



What Changes in V8?

› A shift in thinking….

› Partitioned, Partitioning and Clustering are No Longer Intertwined



Terminology



V8 Terminology Changes

› Partitioning Index
– Left most columns aligned to partitioning sequence
– V7

• Had to exist, be partitioned, and clustering and only one allowed
– V8

• Can be non-partitioned
• Can be non-clustering
• Not required or can have multiple

› Partitioned Index
– A physically partitioned index
– V7

• Only one can be defined
– V8

• Multiple partitioned indexes can be defined



A Partitioning Index



V8 Terminology Changes 2

› Clustering Index
– V7

• Was also the partitioned and partitioning index
– V8

• Can be an index unrelated to the partitioning index
• Can be non-partitioned
• Can be undefined

– DB2 chooses for you

› Non-Partitioned Secondary Index (NPSI)
– V7

• Known as an NPI
– V8

• Can be clustering



V8 Terminology Changes 3

› Data Partitioned Secondary Index (DPSI)
– V7

• Did not exist
– V8
� Index keys in partition n of the DPSI only reference data in partition n of the 

tablespace
� Can be clustering
� Cannot be unique



Table Controlled Partitioning



Data Partitioned Secondary Indexes



The Old and the New

› Index Controlled Partitioning
– The only method available prior to V8
– Limit Keys specified on the index create statement
– Still available in V8 

› Table Controlled Partitioning
– New in V8
– Likely to become the standard overtime



Implementing Table Controlled Partitioning

› Executing any of the following DDL statements:

DROP partitioning index
ALTER INDEX NOT CLUSTER (for the partitioning 
index)
ALTER TABLE ADD PARTITION
ALTER TABLE ALTER PARTITION ROTATE
ALTER TABLE ALTER PARTIITON part
CREATE INDEX PARTITIONED
CREATE INDEX ENDING AT (omitting CLUSTER 
keyword)



But the Easiest Way…

› Create a DPSI
– DEFER YES
– Automatically converts all the necessary objects
– No outage
– Drop the newly created index



Table Controlled Partitioning Syntax

› The partition boundaries and partitioning columns are now specified 
in the CREATE TABLE statement

CREATE TABLE tbname (col_1, col_2, col_3…)…

PARTITION BY (col_1, col_2)…

(PARTITION 1 ENDING AT

(col_1_boundary_1,col_2_boundary_1),

PARTITION n ENDING AT

(col_1_boundary_n, col_2_boundary_n));

› Although unlikely in the real world no index is required to accomplish 
partitioning 



Clustering and V8

› Any index can now be defined as the clustering index
– It is important to define a clustering index under V8

• If one is not defined
– The first index in the DBD is used
– This could change overtime…



Fixing Problems in the Real World

› High performance required
– Partitioned object, no free space, ever ascending key
– Very efficient inserts

• Deferred write
• Avoids GETPAGES, synchronous I/O, and locks

› But, is the partitioning key sympathetic to common data access? 
– Probably not, therefore NPI’s are required

• Loss of physical partition independence and impact on utility performance
– V8 allows partitioning on one key and clustering on another

• The clustering index can be a DPSI delivering partition independence 



Data Partitioned Secondary 
Indexes



Data Partitioned Secondary Indexes

› As many physical partitions as the tablespace

› Keys in partition n only reference data in partition n

› Cannot be a partitioning index

› Cannot be UNIQUE
– To enforce uniqueness all of the partitions would need to be scanned
– A new V8 data object (SEQUENCES) will help here



Syntax to Create a Clustering DPSI

CREATE INDEX TESTIX ON TESTTAB
(COL_X, COL_Y)
CLUSTER
PARTITIONED
(optional USING block per partition)
BUFFERPOOL BP3



No NPSI Strategy Benefits

› Improved availability

› Utilities can execute with true partition isolation
– No NPSI contention
– No BUILD2 phase
– Increased parallelism

› Data Sharing
– Affinity routing
– No P-Lock contention

› Partition Pruning
– Strongly consider a Partitioning Index



A New Way to Enforce Uniqueness

› Sequences
– Generate unique keys
– Similar to identity columns but,

• They are stand alone
• Can be used by multiple objects
• No retained locks

– A failing thread will not cause problems later

– Uniqueness can be guaranteed
• Without the need for an NPSI

– Partition independence can be maintained
– Indexes required solely for uniqueness can be dropped



An Increase in Partitions

› A maximum of 4096 partitions
– One partition per day > 11 years worth of data

› Beware of current DSSIZE settings
– 4K page and 64G DSSIZE only allows 256 partitions to be defined in V8

› Consider the number of open datasets
– One 4096 partition object with two DPSI’s = 12,288 physical datasets 

› A new dataset naming convention



The New Dataset Naming Convention

catname.DSNDBx.dbname.psname.p0001.xnnn

Where

p is I or J,

xnnn is A001-A999 for partitions 1 through 999,

xnnn is B000-B999 for partitions 1000 through 
1999,

xnnn is C000-C999 for partitions 2000 through 
2999,

xnnn is D000-D999 for partitions 3000 through 
3999, and

xnnn is E000-E096 for partitions 4000 through 4096



Useful Performance Information

› Data for the following slides was taken from IBM Redbook ‘DB2 UDB 
for z/OS Version 8 Perfromance Topics’ – SG24-6465-00

– This is an excellent source of DPSI performance information

› If testing v8 and DPSI’s ensure the following PTF is applied to 
improve SQL performance when using DPSI’s

– UQ93972



The Good



And the bad…

› Query is SELECTing a COUNT of DISTINCT indexed column values
› Note the differences in the index path

› This is an extreme example
– However, having to touch each DPSI partition still adds to overhead even when the 

index is used



Online Schema Evolution



ALTERing Objects

› Add new columns to an index
– If the UOW also contains the addition of the table column the index is 

immediately available.
– It is placed into a new V8 state Advisory Reorg Pending (AREO)

› Partitions
– Manipulated via the ALTER TABLE syntax
– A newly added partition is immediately available
– Rotated
– Rebalanced (not online)



Partition Rotation

› The last twelve months of data must always be available

› Define thirteen partitions

› Issue the following command:
› ALTER TABLE ALTER PARTITION FIRST TO LAST

– If REUSE is specified a logical reset of the partition is executed
– Bear in mind the rolled partitions data will be deleted

› Alter the partition boundary keys to receive the new months data
– Partition enters Reorg Pending state



Using REORG to Rebalance Partitions

› Not an online schema change but pertinent to today’s topic

› Automatically evenly distributes data across partitions

› If clustering key does not match partitioning key
– Reorg needs to be executed twice
– Once to move the rows – with REBALANCE
– Once to order rows – without REBALANCE

› Be aware of logical and physical partition numbering
– Partition rotation may make a rebalance impossible



And Finally…



Can You Teach An Old App. New Tricks?

› V8 introduces some subtle and radical changes to the partitioning 
methodology

– True physical partition independence via DPSI’s
• Performance benefits
• Increased parallelism
• P-lock free affinity routing

› New applications can easily take advantage of DPSI’s

› Can the inherent design of old applications make do without NPSI’s?
– Only time will tell…



Questions?

Andrew_ward@bmc.com


