
SQL Programmer's Checklist
DB2 V5

18.3.1999

The Finnish DB2 Users Group,
Performance special interest group

 Inquiries: anne.lesell@fi.ibm.com

MIS = Matching Index Scan

MIA = Multiple Index Scan

Sentence “... Matching Index Scan (MIS) access path is not possible” means that in these
cases access path will be either Table space Scan or Non Matching Index Scan.

2

SQL Programmer's Checklist 1

A.Unexpected access paths 4
1. Check that host variables and literals have the same data type and
length as the columns

4

2. Avoid scalar functions in WHERE clauses for those index columns you
want to use.

4

3. Avoid arithmetic expressions in a predicate. 5
4. Use => and =< comparison operators when comparing a host variable to two
columns.

6

5. Avoid negations (e.g. NOT BETWEEN, NOT IN) in a predicate for index
columns.

7

6. Keep in mind that the type of a subquery (correlated/non-correlated) has a
great influence on the performance of the query.

8

7. Use OPTIMIZE FOR n ROWS when a program needs only the first ‘n’ rows of
a result table.

9

8. When an OR structure cannot be converted into an IN list (for instance
WHERE col < :hv1 OR col > :hv2) the access path cannot be MIS.

10

9. When fetching one row and DB2 chooses to retrieve data from a table instead
of an index-only access, add a column function in the SELECT clause (if
possible) to make DB2 to use the index-only access.

10

10. Check that the access path of column functions MIN and MAX is one-fetch
index scan

11

11. When comparing NOT NULL column to a subquery which may get a null
value as result, use COALESCE (VALUE) function in subquery.

11

12. When using OUTER JOIN, be aware of WHERE clauses. 12
13. When joining more than 2 tables with outer join, DB2 always builds up a
work table.

14

14. Don’t check the contents of a host variable in WHERE clause. 14
B.Unnecessary sorts 15
1. Use the order of columns in an index for the columns in the ORDER BY
clause whenever possible.

15

2. Keep in mind that when a cursor requires sorting, all the result table rows are
retrieved into a work file when the cursor is opened.

15

3. Do not use DISTINCT if there is no need to exclude duplicates. 16
4. Specify a UNION with the ALL option unless eliminating of duplicate rows is
necessary.

17

5. Adding an extra column, which is not in the index, to ORDER BY clause,
causes a sort even if there is an equal predicate on that column

17

6. If columns in ORDER BY clause are from more than one table or only from
the inner table, DB2 may end up with an unnecessary sort.

17

C.CPU utilization 18
1. In mass inserts LOAD utility is more efficient than an INSERT statement. 18
2. Use FOR FETCH ONLY in a distributed environment when a SELECT
statement is used only for retrieving data.

18

3.Wild card ('%', '_') as the first character in a LIKE predicate prevents DB2 from
using MIS access path,

18

4. Declare a cursor WITH HOLD option in batch programs. 19
5. Check occurrence with cursor whenever the result table may have more than
one row

19

6. List only the columns you need in SELECT clause. 20

3

7. When updating rows, avoid listing columns whose contents don’t change in
SET clause.

20

8. Avoid executing extra SQL clauses. 20
D.Security 20
1. Update and delete rows with cursor except when unique key is known. 20
2. When using WHERE clause in creating a view, use WITH CHECK OPTION
when the view is used to update a table.

21

3.Remember to use the symbol ‘:’ preceding a host variable. It will be mandatory
in DB2 V6

21

E.Clarity and maintenance 22
1. Never use SELECT * clause. 22
2. List only the columns you need in SELECT clause. 22
3. In an INSERT statement, name the columns for which you provide insert
values.

22

4. In FOR UPDATE OF clause of the SELECT statement name only the
columns to be updated.

22

5. Write an IN list instead of many OR predicates. 23
6. Use DCLGEN structures as host variables. 23
7. Name the columns in an ORDER BY clause. 23
8. Use descriptive column names. 24
F.Locks 24
1. Rows fetched with read-only cursor must not be updated. 24
2. When batch programs are executed concurrently with online programs
consider retrying an operation after a deadlock or timeout.

25

3. Define a cursor with FOR FETCH ONLY when the cursor is read-only. 25
4. Consider using UR-option in read-only cursors. 26
G.Unpredictable results 26
1. Only Write ORDER BY clause when the result table must be in a certain
sequence.

26

2. Issuing INSERT, UPDATE and DELETE statements from the same
application process while a cursor is open can cause unpredictable results.

26

3. Be aware of wrong conclusions with MIN and MAX results. 26
4. Null value fulfills only the IS NULL predicate. 27
5. Keep in mind the execution sequence in an OUTER JOIN. 27

4

A. Unexpected access paths

1. Check that host variables and literals have the same data type
and length as the columns

 The same rule applies to join predicates as well.

 Examples of different types:

 Different data types, such as
 INTEGER and DECIMAL or
 INTEGER and SMALLINT
 Different column lengths, such as
 DECIMAL(7,2) and DECIMAL(6,2) or
 CHAR(3) and CHAR(4)
 Different precisions, such as

 DECIMAL(7,3) and DECIMAL(7,4)

 Example of join

 SELECT EMPNO, MGRNO
 FROM DSN8510.EMP, DSN8510.DEPT
 WHERE WORKDEPT = DEPTNO

 where WORKDEPT is defined as CHAR(4) and
DEPTNO is defined as CHAR(3)

 In these cases, optimizer is usually not able to use Matching

Index Scan access path.

 If column definition is the one that is longer or more precise, MIS

is possible but data conversion is needed.

 Wrong variable definitions can be avoided by always using

DCLGEN structures as host variables.

 2. Avoid scalar functions in WHERE clauses for those index

columns you want to use. E.g. substring can often be replaced
with LIKE or BETWEEN.

 Typical scalar functions are SUBSTR, concatenation and different

functions that modify data type.

 In the following example MIS is not possible:

5

 MOVE 'A' TO HV.

 SELECT DEPTNAME
 FROM DSN8510.DEPT
 WHERE SUBSTR(DEPTNO,1,1) = :HV

 Optimizer can be made to use MIS -access path if scalar functions

actions are moved outside the SQL -clause or are substituted by a more
efficient SQL -clause.

 In this example scalar function SUBSTR can be replaced by

BETWEEN or LIKE , which both are MIS.

 MOVE 'A' TO START.
 MOVE 'A99' TO STOP.

 SELECT DEPTNAME
 FROM DSN8510.DEPT
 WHERE DEPTNO BETWEEN :START AND :STOP

 or

 SELECT DEPTNAME
 FROM DSN8510.DEPT
 WHERE DEPTNO LIKE 'A%'

 With LIKE predicate, check that host variable or constant doesn't

begin with ‘%’ or ‘_’, and that there isn’t a field procedure on the
column (for example Scandinavian sort).

 3. Avoid arithmetic expressions in a predicate. Perform

calculations before the SQL statement and use the result in the
query.

 variable + 3 <- O.K. (non-column expression is indexable)
 column + 3 <- not O.K. (column expression is not indexable)

 When column expression is used in WHERE clause, optimizer is

not able to use MIS for those columns.

 It’s recommended to count values into host variables before

SQL:
 ADD 100 TO HV1.

6

 SELECT ACSTAFF
 FROM DSN8510.PROJACT
 WHERE PROJNO = :HV1
 AND ACTNO = :HV2
 AND ACSTDATE = :HV3

 Acceptable way is to count the value with variable in SQL.

In this case with index (PROJNO,ACTNO, ACSTDATE), the access
path is MIS (MC=3)

 SELECT ACSTAFF
 FROM DSN8510.PROJACT
 WHERE PROJNO = :HV1 + 100
 AND ACTNO = :HV2
 AND ACSTDATE = :HV3

 Foul and prohibited way is to count the value with column in

SQL. In this case with index (PROJNO,ACTNO, ACSTDATE), the
access path is non-matching index scan.

 SELECT ACSTAFF
 FROM DSN8510.PROJACT
 WHERE PROJNO – 100 = :HV1
 AND ACTNO = :HV2
 AND ACSTDATE = :HV3

 4. Use => and =< comparison operators when comparing a

host variable to two columns. When used as a range predicate for
one column, BETWEEN and => =< comparison operators are
usually equally efficient.

 E.g. WHERE col BETWEEN :hv1 AND :hv2.

 BETWEEN is usually an efficient range predicate. However, when

a
 variable is compared with two columns, it is better to use

comparison operators >= and <=. In the following example MIS is
possible:

 SELECT PROJNO, PROJNAME
 FROM DSN8510.PROJ

7

 WHERE :CHKDATE >= PRSTDATE
 AND :CHKDATE <= PRENDATE

 (Assuming index (PRSTDATE,PRENDATE))

 The corresponding BETWEEN structure is a Stage 2 predicate and

rules out MIS:

 ….
 WHERE :CHKDATE BETWEEN PRSTDATE
 AND PRENDATE

 When comparing a column with two variables,

BETWEEN is usually as efficient as comparison operators >= and <=.
The only difference comes with interpolators defaults. In some cases
DB2 chooses MIS easier for operators >=, <= than for the
corresponding BETWEEN statement.

 5. Avoid negations (e.g. NOT BETWEEN, NOT IN) in a

predicate for index columns.

 If negations (e.g. NOT BETWEEN, NOT IN) are used in WHERE

clause for the index columns, MIS is not possible:

 Foul and prohibited way :

 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO NOT BETWEEN '000100' AND '000350'

 Access path will be Table space Scan or Non Matching Index

Scan.

 NOT BETWEEN can be replaced with two sentences or with

UNION when result table is small:
 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO < '000100'
 UNION ALL
 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO > '000350'

8

 Both select clauses use MIS as an access path, if the result table is
small compared to the rows in the table.

 NOT IN -predicate can be replaced only with IN-predicate.

 6. Keep in mind that the type of a subquery (correlated/non-

correlated) has a great influence on the performance of the query.

 A correlated subquery refers to at least one column of the outer

query. The outer query is executed first. The subquery is evaluated for
each qualified row of the outer one.

 When a subquery includes another subquery, then each subquery is

executed for every qualifying row of outer queries.

 For example:

 SELECT EMPNO, <==outer query
 LASTNAME,
 WORKDEPT,
 EDLEVEL
 FROM DSN8510.EMP CURRENT_ROW
 WHERE EDLEVEL >
 (SELECT AVG(EDLEVEL) <==subquery
 FROM DSN8510.EMP (executes n times)
 WHERE WORKDEPT = CURRENT_ROW.WORKDEPT)

 If the subquery has already been evaluated for a given correlation

value, then the subquery might not have to be re-evaluated

 UNCORRELATED SUBQUERY is not dependent on outer query

and it executes from bottom to top. First execute the innermost
subquery and then the result table does compare to every qualifying
row of the next outer query.

 For example:

 SELECT EMPNO, <== outer query
 LASTNAME,
 WORKDEPT,

9

 EDLEVEL
 FROM DSN8510.EMP
 WHERE EDLEVEL >
 (SELECT AVG(EDLEVEL) <== inner query
 FROM DSN8510.EMP) (executes once)

 If the subquery result table has a lot of rows, the executing SQL-
clause may be heavy. The rows of subquery are stored in the assorted
result table, which is accessed via sparse index.

 7. Use OPTIMIZE FOR n ROWS when a program needs only

the first ‘n’ rows of a result table. Don’t take a shortcut by using a
'n' value other than the real number of rows. Investigate the access
paths with and without OPTIMIZE FOR options. Use OPTIMIZE
FOR n ROWS only if it has a positive influence on the access
path.

 If the result table is big and only a fraction of rows are needed ,

adding OPTIMIZE FOR n ROWS may lead to a more efficient access
path.

 For example:

 SELECT LASTNAME, EMPNO, WORKDEPT
 FROM DSN8510.EMP
 WHERE WORKDEPT LIKE 'D%'
 ORDER BY WORKDEPT

 assumption: WORKDEPT is not a clustering index

 The access path will likely be LIST PREFETCH. In OPEN

CURSOR all qualifying rows are collected and sorted to a work table
according to ORDER BY. Cost of sorting has become cheaper,
therefore sorting is more likely to happen during access.

 OPTIMIZE FOR n ROWS is made without sorting, as in the

following example. The access path will be MIS with no sorting
required.

 SELECT LASTNAME, EMPNO, WORKDEPT
 FROM DSN8510.EMP
 WHERE WORKDEPT LIKE 'D%'
 ORDER BY WORKDEPT

10

 OPTIMIZE FOR 2 ROWS

 The OPTIMIZE clause is ignored if the query causes the whole

answer table to be materialized in the OPEN phase (E.g. sorting
needed for UNION, DISTINCT or ORDER BY)

 8. When an OR structure cannot be converted into an IN list

(for instance WHERE col < :hv1 OR col > :hv2) the access path
cannot be MIS.

 The access path cannot be MIS, but is at it’s best Multiple Index

Access, or in many cases NON-MIS or Table Space Scan. Keep in
mind, that index-only access is not possible with MIA.

 For example:

 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO < '000100' OR EMPNO > '000350'

 Or can be replaced with UNION as follows:

 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO < '000100'
 UNION ALL
 SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE EMPNO > '000350'

 Access path will be Matching Index Scan, if the number of rows in

the result table is small, compared to the number of rows in table.

 9. When fetching one row and DB2 chooses to retrieve data

from a table instead of an index-only access, add a column
function in the SELECT clause (if possible) to make DB2 to use
the index-only access.

 10. Check that the access path of column functions MIN and

MAX is one-fetch index scan (I1).

 One fetch index scan is the most efficient access path. It is feasible

with MIN and MAX functions when:

11

� There is only one table in the query
� There is only one column function (either MIN or MAX)
� Either no predicate or all predicates are matching predicates
for the index
� There is no GROUP BY
� There is an ascending index column for MIN and a
descending index column for MAX

 Column functions are on :

� The first index column if there are no predicates
� The last matching column of the index if the last matching
predicate is a range type
� The next index column (after the last matching column) if
all matching predicates are an equal type

 11. When comparing NOT NULL column to a subquery which

may get a null value as result, use COALESCE (VALUE)
function in subquery.

 The function ensures that the subquery will not return a null value

as a result when it is compared to the not null -column.

 For example:

 CREATE TABLE T1
 (C1 INTEGER NOT NULL,
 C2 INTEGER);
 CREATE INDEX X1 ON T1
 C1 ASC);
 CREATE INDEX X2 ON T1
 C2 ASC);

 For column C1 DB2 will not use index X1 because the result of the

subquery may be null value

 SELECT
 FROM T1
 WHERE C1 =
 (SELECT MIN(C1)
 FROM T1
 WHERE ….);

12

 For column C2 DB2 will use index X2 because the column C2
may hold null value.

 SELECT
 FROM T1
 WHERE C2 =
 (SELECT MIN(C2)
 FROM T1
 WHERE ….);

 For column C1 DB2 will use index X1 because the result of the

subquery will never be null value

 SELECT
 FROM T1
 WHERE C1 =
 (SELECT VALUE(MIN(C2),999999)
 FROM T1
 WHERE ….);

 12. When using OUTER JOIN, be aware of WHERE clauses.

Remember that in many cases the result table is formed first and
WHERE clause is only checked afterwards. Use ON-clause
instead.

In the example the FROM clause will be executed first and WHERE
clause after that.

In the FROM clause there is an outer join between tables E1 and E2
(Note E1 and E2 are table expressions which define row sets with no
common rows - this is for demonstrating how FULL JOIN works).
The Final WHERE does not work as one would expect, because after
join E1.LASTNAME columns have null values.

 SELECT VALUE (E1.LASTNAME,'XXX') AS E1NAME,
E1.EMPNO,
VALUE (E2.LASTNAME,'XXX') AS E2NAME,
E2.EMPNO
FROM

(SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP

 WHERE LASTNAME <= 'K99') AS E1
 FULL JOIN

13

 (SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE LASTNAME > 'K99') AS E2

 ON E1.EMPNO = E2.EMPNO
 WHERE E1.LASTNAME LIKE '%S%'
 ORDER BY 1;

 Notice the strong influence of the WHERE-clause. Clause E2

mentioned before, produces no rows in result table. The reason is, that
the FROM clause is executed first, and because it includes this JOIN
predicate, which does not match, E1.LASTNAME gets a null value,
and the row is excluded in the WHERE -clause.

 Correction 1: Move the WHERE clause to the first table

expression.

 SELECT VALUE (E1.LASTNAME,'XXX') AS E1NAME,
 VALUE (E2.LASTNAME,'XXX') AS E2NAME,
 FROM (SELECT LASTNAME, EMPNO

 FROM DSN8510.EMP
 WHERE LASTNAME <= 'K99'
 AND LASTNAME LIKE '%S%') AS E1

 FULL JOIN (SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE LASTNAME > 'K99') AS E2
 ON E1.EMPNO = E2.EMPNO

 ORDER BY 1;

 2: Check null value separately

 SELECT VALUE (E1.LASTNAME,'XXX') AS E1NAME,
 E1.EMPNO,
 VALUE (E2.LASTNAME,'XXX') AS E2NAME,
E2.EMPNO

 FROM (SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP
 WHERE LASTNAME <= 'K99') AS E1

 FULL JOIN (SELECT LASTNAME, EMPNO
 FROM DSN8510.EMP

14

 WHERE LASTNAME > 'K99') AS E2
 ON E1.EMPNO = E2.EMPNO
 WHERE E1.LASTNAME LIKE '%S%'
 OR E1.LASTNAME IS NULL

 ORDER BY 1;

 13. When joining more than 2 tables with outer join, DB2

always builds up a work table.

 14. Don’t check the contents of a host variable in WHERE

clause.

 Equally, avoid useless WHERE -clauses, you don’t have to put

everything in SQL-clause.

 For example:

 ….
 WHERE :HV1 = :HV2
 AND NOT :HV1 = SPACE

 Check values of the host variables outside the SQL clause

 another one:

 .….
 WHERE COL = :HV1
 AND COL > 0

 Check the variable HV1 in program, not in SQL. Execute SQL

clause only when HV1 is greater than 0.

B. Unnecessary sorts

 1. Use the order of columns in an index for the columns in the
ORDER BY clause whenever possible.

 If DB2 decides to use the index according the ORDER BY list, the
rows are in right sequence without sorting.

 The result table of the following query will be processed in order of
(col1, col2). DB2 can utilize any of such indexes which begins with
order by -columns . Good indexes are for instance (col1, col2) or

15

 (col1, col2, col3):

 SELECT col1, col2, col3
 FROM table1
 WHERE col1 BETWEEN :hv1 AND :hv2
 ORDER BY col1, col2

 Notice that with LIST PREFETCH, ORDER BY always causes
sorting. MIA and sometimes fetching rows in other sequence than
clustering index make LIST PREFETCH as an access path.

 2. Keep in mind that when a cursor requires sorting, all the result
table rows are retrieved into a work file when the cursor is
opened. A sort is required if an index is not used for ORDER BY,
GROUP BY, DISTINCT, UNION or join.

 DB2 tends to materialize the result table one row at a time.

 If the correct order (ORDER BY, GROUP BY, DISTINCT, UNION,
JOIN) is not achievable by index, or optimizer finds access path with
sorting to be the most efficient one, all qualifying rows will be fetched
to a temporary table during the OPEN CURSOR phase. Also the
result table of non-correlated subquery is being sorted during the
OPEN CURSOR phase. When the result table is big, it will take too
long for the application to open the cursor.

 To avoid sorting, you might consider adding a new index, changing
the sort order, or limiting the size of the result table with additional
restrictive clauses. OPTIMIZE FOR n ROWS might make the
difference too.

 In Batch programs sorting is acceptable, if the program fetches all
qualifying rows. Cursor is defined by WITH HOLD -option to keep
the cursor position in COMMIT. Make sure that time between
commits will not be too long because of sorting.

 When there is no sufficient index (col1, col2...) browsing the table
goes as follows:

 DECLARE cursor1 CURSOR FOR
 SELECT col1, col2
 FROM table1
 WHERE col1 > :hv1
 ORDER BY col1, col2

16

 OPEN cursor1

 All qualifying rows are fetched to the work table and

sorted in open cursor phase, that is the result table is materialized
on OPEN phase.

 FETCH cursor1
 INTO :col1, :col2

 FETCH will get one row at a time from the work table

materialized in open phase

 3. Do not use DISTINCT if there is no need to exclude duplicates.

 If table has UNIQUE-index (col1), the next query will not cause
sorting. But when UNIQUE-index is like (col1,col2,col3), the result
table is sorted.

 SELECT DISTINCT col1, col2
 FROM table1

 When used with column function , DISTINCT will not lead to sorting
if the column is the first column of an index. The following query may
use index (col1) or index (col1,col2,col3):

 SELECT COUNT (DISTINCT col1)
 FROM table1

 4. Specify a UNION with the ALL option unless eliminating of
duplicate rows is necessary.

 UNION (without ALL) leads always to a sort for excluding duplicates,
even when result tables are exclusive and therefore duplicates don’t
exist.

 5. Adding an extra column, which is not in the index, to ORDER
BY clause, causes a sort even if there is an equal predicate on that
column

 Check the SQL-clauses generated by your code generator!

 Example:

17

 Index A, B, C, D
 and clause:
 …..
 WHERE A = :hv1
 AND B = :hv2
 AND C = :hv3
 AND D > :hv4
 AND E = :hv5
 ORDER BY A, B, C, D, E

 6. If columns in ORDER BY clause are from more than one table
or only from the inner table, DB2 may end up with an unnecessary
sort.
 Indexes:
 T1: col1, col2
 T2: col3

 SELECT A.col1, A.col2, B.col3, B.col4
 FROM T1 A, T2 B
 WHERE ….
 ORDER BY A.col1, A.col2, B.col3

C. CPU utilization

 1. In mass inserts LOAD utility is more efficient than an
INSERT statement. Remember, database is not available during
the LOAD

 Load adds the rows to the end of the table in the order of file

loaded. This is why it is recommended to sort the file in the order of
clustering index before loading. Table is loaded with LOG NO
(changes are not logged) and the imagecopy is taken. Loading saves
CPU and programming is not needed.

 When using INSERT, DB2 tends to add new rows to pages they

actually belong to. This insert mechanism takes more CPU than
LOAD. Inserted rows are logged. PCTFREE and FREEPAGE -
parameters are ignored by INSERT -clause.

18

 2. Use FOR FETCH ONLY in a distributed environment when

a SELECT statement is used only for retrieving data.

 In a distributed environment BLOCK FETCH reduces the number

of messages sent across the network and returns fetched rows
efficiently. DB2 triggers BLOCK FETCH when it can detect that the
retrieved rows can not be updated or deleted. QMF appends FOR
FETCH ONLY to SELECT statements automatically, but for dynamic
SQL in an application program or SPUFI the decision to use
block fetch is based on the cursor declaration. If a cursor is not used
for update or delete, use FOR FETCH ONLY to ensure block fetch.
This causes DB2 to send a buffer full of rows to the local DB2:

 DECLARE cur CURSOR FOR
 SELECT col1, col2
 FROM table1
 FOR FETCH ONLY

 3. Wild card ('%', '_') as the first character in a LIKE

predicate prevents DB2 from using MIS access path, but it is still
more efficient than fetching all the rows and filtering the
unnecessary ones in the application program.

 For example:

 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM DSN8510.EMP
 WHERE WORKDEPT LIKE '%1' <<--- Table space

scan

 But if the program needs all rows qualifying LIKE '%1'-predicate,

using LIKE is more efficient than fetching all rows and checking
weather the condition applies in program.

 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM DSN8510.EMP
 WHERE WORKDEPT LIKE 'A%' <<---Matching Index

Scan

 If the string includes ‘%’ or ‘_’ -signs, they can be fetched in

predicate with ESCAPE-definition.

 For example

19

 SELECT col1
 FROM table1
 WHERE col2 LIKE '10+% RAISE%'
 ESCAPE '+'

 Clause fetches all rows where col2 begins with ‘10% RAISE’

 4. Declare a cursor WITH HOLD option in batch programs.

 When a cursor is defined with WITH HOLD -option, COMMIT

doesn’t close the cursor. WITH HOLD cannot be used in CICS
pseudo conversational transactions.

 5. Check occurrence with cursor whenever the result table may

have more than one row

 Recommended method

� cursor
� EXISTS

 Not recommended method

� simple SELECT
� SELECT COUNT(*)

 6. List only the columns you need in SELECT clause. Colums,
on which you have an equal predicate, shouldn’t be listed in
SELECT clause.

 7. When updating rows, avoid listing columns whose contents

don’t change in SET clause. Watch particularly key, foreign key
and other index columns.

 8. Avoid executing extra SQL clauses.

 For example:

 SELECT CURRENT DATE
 FROM SYSIBM.SYSDUMMY1

 + updating table1

20

 Correct way:

 UPDATE table1
 SET col1 = CURRENT DATE
 ….

D. Security

 1. Update and delete rows with cursor except when unique key
is known.

 By using a cursor you assure, that updates and deletes affect only

those rows desired. Lock management speaks in favor of using cursor.

 DECLARE CURSOR cursor1 CURSOR FOR
 SELECT col1, col2, col3
 FROM table1
 WHERE col1 = :hv1
 FOR UPDATE OF col3

 UPDATE table1
 SET col3 = :hv3
 WHERE CURRENT OF cursor1

 The exception is when you update one row and the unique key of

the row is known. In this case you can update directly.

 UPDATE table1
 SET col3 = :hv3
 WHERE pkey = :hvpkey

 Using the cursor for updating is slightly heavier than direct
UPDATE-clause.

 Notice that you cannot update with read-only cursor. Cursors

including ORDER BY, UNION, UNION ALL, DISTINCT, column
functions and JOIN, are read-only.

 2. When using WHERE clause in creating a view, use WITH

CHECK OPTION when the view is used to update a table.

21

 WITH CHECK OPTION it is guaranteed that you cannot insert or

update rows which cannot be seen through the view.

 For example:

 CREATE VIEW DSN8510.VPROJ01
 (PROJNO,PROJNAME,PROJDEP,RESPEMP)
 AS SELECT
 PROJNO,PROJNAME,PROJDEP,RESPEMP
 WHERE PROJDEP LIKE 'AA%'
 WITH CHECK OPTION

 In this case WITH CHECK OPTION it ensures that rows inserted
or updated via view, are always applied by condition PROJDEP LIKE
‘AA%’.

 WITH CHECK OPTION it cannot be defined on read-only view or

if subquery is included in the view..

 3. Remember to use the symbol ‘:’ preceding a host

variable. It will be mandatory in DB2 V6

E. Clarity and maintenance

 1. Never use SELECT * clause.

 When columns needed are listed in SELECT clause, the clause is

not so much dependent on table structure. Maintenance work is much
easier.

 Additionally SELECT -clause becomes self-documentary. The

connections between columns and variables are visible in SELECT -
clause.

 Listing unused columns use more CPU and in some cases it causes

DB2 to retrieve data from the table instead of index only access.

 2. List only the columns you need in SELECT clause.
 See E1.

22

 3. In an INSERT statement, name the columns for which you

provide insert values.

Benefits:
� INSERT clause is self-documentary
� Correspondence between column and data can be checked
directly from INSERT clause
� INSERT clause is independent of table construction

 4. In FOR UPDATE OF clause of the SELECT statement

name only the columns to be updated. If you intend to delete rows,
name the columns of the primary key.

 When defining updating cursor, list only updated columns in FOR

UPDATE OF -list. In SELECT -list updated columns need not to be
mentioned. When the primary key of the table is col1 and col3 it is
updated:

 DECLARE CURSOR cursor1 CURSOR FOR
 SELECT col1, col2
 FROM table1
 WHERE col1 = :w1
 FOR UPDATE OF col3

 If you intend to delete rows, list in FOR UPDATE OF the columns

of the primary key.

 DECLARE CURSOR cursor2 CURSOR FOR
 SELECT col1, col2
 FROM table1
 WHERE col11 = :w1
 FOR UPDATE OF col1

 5. Write an IN list instead of many OR predicates.

 DB2 converts several OR -conditions automatically to an IN-list.

IN -list is still more clear.

 SELECT col1, col2
 FROM table1
 WHERE col1 IN ('A1', 'B2', 'C3')

23

 6. Use DCLGEN structures as host variables.

 DCLGEN generates the correct type and length to the variables

derived from the columns of the table. DCLGEN also provides a
program with the LABEL -definitions of the columns, which enhances
the clarity and maintainability of a program.

 7. Name the columns in an ORDER BY clause. Exceptions: A

column derived from a function or from an expression and every
column in the result table of a UNION statement must be ordered
by the column number unless renamed with AS clause.

 Naming columns adds to the clarity and safety of a program,

especially when it is necessary to make changes to it.

 There are situations where a column has no name:

� SQL-clause is UNION or UNION ALL. In this case all
columns of the resulting table have no name.
� ordering column is a constant or a clause.
� ordering column is a column function.
� Constants.

 These ‘nameless columns’ may be referenced by AS-clause. If

not the clause has to be referenced by its ordering number. AS -clause
is recommended. Using the ordering number is bad programming.

 8. Use descriptive column names. Comment and label the

columns. Give the same name to the same piece of information at
all times. (DB2 Catalog will act as a ‘poor man's data dictionary’.)

F. Locks

 1. Rows fetched with read-only cursor must not be updated.
Cursor must be defined with FOR UPDATE OF-option.
Otherwise there will be a kangaroo-cursor i.e. jumping over rows,
rereading rows and eventually looping. (see also G2).

24

 When updating or deleting rows, use SELECT FOR UPDATE -
cursor to avoid locking.

 Use updating cursor even when reading only one row, which may

be updated or deleted.

 When PLAN or PACKAGE is bound by ISOLATION CS, the

updating cursor locks the browsed page by U-lock, which prevents
other simultaneous updates. For update and delete the lock is changed
to X-lock.

 When using SELECT FOR UPDATE -cursor deletions and

updates are made a row at a time, and locks may be released in
suitable intervals by COMMIT. Doing the same without cursor may
update/delete a great number of rows and hereby keep many pages
locked for too long.

 DECLARE CURSOR cursor1 CURSOR FOR
 SELECT col1, col2
 FROM table1
 WHERE col1 = :hv1
 FOR UPDATE OF col3
 ...

 UPDATE table1
 SET col3 = :hv3
 WHERE CURRENT OF cursor1

 Observe! FOR UPDATE OF cannot be defined for read-only

cursors. Cursors including ORDER BY, UNION, UNION ALL,
DISTINCT, column functions and JOIN, are read-only.

 2. When batch programs are executed concurrently with online

programs consider retrying an operation after a deadlock or
timeout.

 In those batch programs that run concurrently with online

transactions, return code for deadlock/timeout (-911) may be
implemented to execute the interrupted LUW again a couple of times.

 In Deadlock- and timeout-situations, batch programs receive a

SQL -code of -911, and task is automatically rolled back to the
preceding COMMIT-point. (In realtime programs SQL -code may be -
913, depending of the parameters of the running system, in which case

25

the task is not rolled back to the commit point.) If execution is
continued all statements executed after the preceding COMMIT -point
must be executed again

 3. Define a cursor with FOR FETCH ONLY when the cursor is

read-only.

Use FOR FETCH ONLY -option to define a cursor if your intention is
only to read the rows. DB2 does not implement locking when
consistency is otherwise guaranteed (lock avoidance). Although lock
avoidance is used, warm pages are locked. That is why COMMIT is
also useful in reading batch-programs.

Lock avoidance needs:
� Isolation Level (CS)
� Currentdata(no)
� Non-updating cursor
� There are no current updates to the row or to the page (cold row)

In an ambiguous case FOR FETCH ONLY -option tells DB2 that
cursor is read-only.

 4. Consider using UR-option in read-only cursors. This
improves concurrency , but may provide the reading program
with a logically inconsistent data.

G. Unpredictable results

 1. Only Write ORDER BY clause when the result table must be

in a certain sequence.

 ORDER BY clause is the only way to ensure the order of the result

table.

 ORDER BY columns have to be listed on the SELECT -statement.

 Do not use ORDER BY clause unnecessarily, if the order has no

value, because sorting may prove to be a heavy operation.

26

 2. Issuing INSERT, UPDATE and DELETE statements from
the same application process while a cursor is open can cause
unpredictable results. Updates change the positions of the row,
which may result in 'kangaroo cursor' .

 See F1.

 3. Be aware of wrong conclusions with MIN and MAX results.

 You have to be careful in interpretation of the column functions

(AVG, COUNT, MAX, MIN, SUM) results.

 For example

 SELECT MIN(DEPTNO)
 FROM TABLE1
 WHERE DEPTNO > :hv

 If condition is not true, SQL code is 0 and the answer is one row

with a NULL -value.
 Here is an example of a table that has one key column and two data

columns. One data column allows a NULL -value. The table was
provided by some rows including null values and all possible queries
were made. The result, is in the table listed below. WHERE -clause
provides NULL-answers, but real NULL-values are just left out of the
calculations

Function Not found

no nulls
Not found
nulls

Found
no nulls

Found
nulls

AVG NULL NULL value value*
MAX NULL NULL value value**
MIN NULL NULL value value**
SUM NULL NULL value value***

 * = sum of real values/ quantity of real values
 ** = real max/min value
 *** = sum of real values

 4. Null value fulfills only the IS NULL predicate. All other

predicates exclude null values.

27

 5. Keep in mind the execution sequence in an OUTER JOIN.

 For example:

 Make a report by the department about the average salary of

employees hired after the year 1998. If no employees are hired for the
department after 1998 the average salary is 0.

 Example 1 (wrong results)

 SELECT DEPTNAME,
 VALUE(AVG(SALARY) , 0) AS AVGSALARY
 FROM DEPT D LEFT JOIN WORKER W
 ON D.DEPTNO = W.DEPTNO
 WHERE YEAR(HIREDATE) >= 1999
 GROUP BY DEPTNAME
 ORDER BY DEPTNAME

 Results are wrong:

 If department has no employees hired after 1998 the department is

left out of the report (LEFT JOIN does not help because it works at the
FROM level, first FROM and after that WHERE)

 Example 2 (right results)

 SELECT DEPTNAME,
 VALUE(AVG(SALARY) , 0) AS AVGSALARY
 FROM DEPT D LEFT JOIN
 (SELECT DEPTNO, SALARY
 FROM WORKER
 WHERE YEAR(HIREDATE) >= 1998) AS W
 ON D.DEPTNO = W.DEPTNO
 GROUP BY DEPTNAME
 ORDER BY DEPTNAME;

