
Online security management
White paper
December 2007

The dirty dozen: preventing common
application-level hack attacks.

Contents

The dirty dozen: preventing common
application-level hack attacks.
Page 2

2 Introduction

3 Understanding common hacks

3 Twelve common hacks

6 Bulding more hack-

resistant applications

7 How IBM can help

Introduction

As organizations have grown increasingly dependent on online software, the
risk of malicious attacks has also become far more serious. Such attacks can
bring a business to a standstill, cost a company millions of dollars in lost
transactions and potentially tarnish its brand image.

Although most organizations are able to implement effective security at the
network level using firewalls and encryption, many organizations inadvertently
place sensitive customer and corporate information at risk by failing to protect
the application layer. Consequently, by thinking like a developer and identifying
shortcuts that the developer would have created, a hacker can wreak havoc on
a vulnerable application and its surrounding infrastructure within a matter of
hours, using nothing more than a Web browser.

Fortunately, well-governed organizations can protect their Web applications by
injecting vulnerability assessments and ethical hacks into their software devel-
opment and delivery processes. By using automated tools to perform these checks
throughout the online application lifecycle, auditors, developers and quality assur-
ance (QA) professionals can help foil hackers and reduce their company’s exposure
to potential business losses. This paper describes 12 of the most common hacker
attacks and provides basic rules that you can follow to help create more hack-
resistant Web applications.

The dirty dozen: preventing common
application-level hack attacks.
Page 3

Understanding common hacks

After working with leading enterprise clients in a wide range of regulated
industries— including financial services, government and pharmaceuticals—
the IBM Rational® technical team has identified and studied the 12 most
common attacks.

Twelve common hacks

Type of hack Illicit purpose How it’s done

1. Cookie

poisoning

Identity theft/session

hijacking

Many Web applications use cookies to save

information, such as user ID or a timestamp, on the

client’s machine. But these cookies are not always

cryptographically secure, so a hacker can modify

them and fool the application into changing their

values—essentially “poisoning” the cookie. The

hacker can therefore gain access to other people’s

accounts and make fraudulent transactions such

as purchases and money transfers.

2. Hidden field

manipulation

E-shoplifting Retailers often use hidden fields to save infor-

mation about a customer’s session, eliminating

the need to maintain a complex database

on the server side. Many also use such fields

to store merchandise prices. On unprotected

sites, hackers can view source codes, find these

hidden fields and alter prices. Companies might

not detect these changes and ship the hacker

merchandise at an altered price—and perhaps

even send a rebate.

3. Parameter

tampering

Fraud Many applications fail to confirm the correctness

of common gateway interface (CGI) parameters

embedded within a hyperlink, so hackers are then

able to easily alter the parameters. This might

enable the hacker to secure a credit card with a

US$500,000 limit, skip a site login screen or gain

access to other customers’ orders and information.

IBM Rational security experts worked

with clients across several regulated

industries to identify common Web

application security vulnerabilities.

Common attacks include cookie

poisoning, hidden field manipulation

and parameter tampering.

Highlights

The dirty dozen: preventing common
application-level hack attacks.
Page 4

Type of hack Illicit purpose How it’s done

4. Buffer

overflow

Denial of service By exploiting a flaw in a Web form, hackers can

overload a server with excess information, causing

it to crash and shutting down the Web site.

5. Cross-site

scripting

Hijacking/identity

theft

Hackers can inject malicious code into a Web

site that executes as if it originated from the

targeted site. This gives attackers full access to the

retrieved document and may even send them the

page’s data.

6. Exploiting

backdoor

and debug

options

Trespassing Developers often embed debug options into the

code to test the site before it goes live. If they

forget to close these security holes, hackers can

freely access sensitive information.

7. Forceful

browsing

Breaking and

entering

Hackers can subvert the application flow and

access information and components that should

be inaccessible, such as log files, administration

facilities and application source code.

8. HTTP

response

splitting

Phishing, identity

theft and e-graffiti

Hackers can poison a Web cache both at the

site and on intermediate systems, which enables

them to change Web pages in the cache and

perform a variety of attacks against users. Plus,

this tactic gives hackers an enhanced ability to

conceal their activities.

By exploiting common security

vulnerabilities, hackers can attack

enterprise Web applications using

many approaches.

Highlights

The dirty dozen: preventing common
application-level hack attacks.
Page 5

Type of hack Illicit purpose How it’s done

9. Stealth/

Trojan horse

Malicious damage Hackers can conceal dangerous commands

via a Trojan horse that unleashes malicious or

unauthorized code and damages the site.

10. Exploiting a

third-party

misconfig-

uration

Malicious damage Hackers often visit public sites that post vulner-

abilities and patches. By exploiting these known

misconfigurations, hackers can potentially

create a new database that renders the existing

database unusable by the site.

11. Exploiting

known

vulner-

abilities

Taking control of

the site

Some Web technologies have inherent weak-

nesses that a persistent hacker can exploit. For

example, some hackers can commandeer an

entire site because they know how to access

administrator passwords via Microsoft® Active

Server Page (ASP) technology.

12. Exploiting

XML and

Web

services

vulner-

abilities

Malicious damage Certain embedded and external infrastructures

and protocols that support XML-based appli-

cations can introduce vulnerabilities into a

site’s infrastructure, protocols and content.

Moreover, some types of attacks—including

entity expansion, XPath injection, structured

query language (SQL) injection in XQuery,

and various denial-of-service attacks—exploit

XML’s flexibility and richness to inflict major

damage on all of these elements.

Some embedded infrastructures

and protocols that support XML-

based applications can introduce

vulnerabilities into a site’s

infrastructure, protocols

and content.

Highlights

The dirty dozen: preventing common
application-level hack attacks.
Page 6

Building more hack-resistant applications

With so many opportunities for hackers to exploit Web technology, what can
organizations do to protect their Web-based assets? First, think defensively.
Instead of focusing only on how to attract users to your site, assume that some
of those users will try to manipulate your applications. Help build security into
your Web applications by testing for vulnerabilities throughout the development
and delivery lifecycle. Use automated tools to help ensure that you’re testing all
your applications and detecting vulnerabilities that can slip through the cracks
with manual testing. In addition, keep the following rule in mind: never trust
data that comes from a user, and never make assumptions about the limits of a
user’s technologies.

In other words, all data from outside sources is potentially dangerous. Assume
that anything a user could theoretically manipulate will be manipulated. More-
over, just because a user is supposedly employing a specific technology, do not
assume that it will constrain his or her actions. For example, even if a browser
does not show hidden fields in a page’s HTML code, you should assume that
some users will still be able to find and manipulate those fields before sending
pages back to your server.

To protect their Web-based assets,

organizations can build security

into Web applications and test

for vulnerabilities throughout the

development and delivery lifecycle.

Highlights

The dirty dozen: preventing common
application-level hack attacks.
Page 7

How IBM can help

IBM Rational® AppScan® is a leading suite of automated Web application secu-
rity solutions that scan and test for common Web application vulnerabilities,
including the 12 identified in this paper. Unlike other solutions that inundate
users with vulnerability data, IBM Rational AppScan provides intelligent fix
recommendations as well as advanced remediation capabilities, such as com-
prehensive task lists that can help users fix vulnerabilities uncovered during the
scanning process to improve your company’s overall security posture.

For more information

To learn more about how IBM Rational automated lifecycle security tools can
help you create security-rich Web applications and prevent common hack
attacks, contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational/offerings/testing/webapplicationsecurity

IBM Rational AppScan is a leading

suite of automated Web application

security solutions that provide

intelligent fix recommendations and

advanced remediation capabilities.

Highlights

http://www.ibm.com/software/rational/offerings/testing/webapplicationsecurity

© Copyright IBM Corporation 2007

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
12-07
All Rights Reserved.

AppScan, IBM, the IBM logo and Rational are
registered trademarks of International Business
Machines Corporation in the United States, other
countries, or both.

Other company, product and service names may
be the trademarks or service marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise
related to, this documentation or any other docu-
mentation. Nothing contained in this documentation
is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and
conditions of the applicable license agreement
governing the use of IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

RAW14008-USEN-00

