

Xavier Chotteau

ITSM Lead Architect, IBM Global Technology Services WW

Gestion de la sécurité SOA

TENDANCES LOGICIELLES D'ÉTÉ 2008

Agenda

- Security management in SOA context
- SOA related security standards
- Tivoli-based SOA security solutions
- Recommendations to manage SOA security
- Questions & answers

Security management in SOA Context

TENDANCES LOGICIELLES D'ÉTÉ 2008

Security in a SOA context

- Business view on policies and relationships
 - Business policies about security to be factored into the lifecycle
 - Intra-enterprise or inter-enterprise have different trust relationships
 - Federation of services involves cross business (trust, technology, political) boundaries
- Architectural approach
 - Loose coupling Services invocations need to take policies into account
 - Flexibility and reuse Interoperability (standards), Integration (frameworkprovider model)
 - Architecting mediations in a gateway model facilitates efficient trust management
- Composite application development
 - Business driven application security Tool support move up the lifecycle
 - Usage of patterns and templates to simplify security policy modeling
- Management approach policy and process
 - Policy and process driven security
 - Auditing, reporting, remediation, etc that tie into business processes

TENDANCES LOGICIELLES D'ÉTÉ 2008

SOA Security Reference Model

TENDANCES LOGICIELLES D'ÉTÉ 2008

Security Encompasses all Aspects of SOA Lifecycle

TENDANCES LOGICIELLES D'ÉTÉ 2008

Security management considerations for SOA

- SOA introduces additional security concerns:
 - How do we authenticate and authorize the service requester?
 - How to we authenticate and authorize the source of the message?
 - Is the client authorized to send this message content?
 - Can we ensure message integrity & confidentiality?
 - How do we audit the access to services?
 - How do we leverage Web services security standards?
 - How do we propagate identities with trusted service providers?
- XML-based web services may **expose backend systems** in unintended ways. Applications (services) are security unaware.
- SOA security may require multiple layers of enforcement
- Traditional security devices do not secure XML/SOAP
- Security practices must be aligned with business processes.
- Security is a service managed by the infrastructure.

TENDANCES LOGICIELLES D'ÉTÉ 2008

SOA security standards

TENDANCES LOGICIELLES D'ÉTÉ 2008

Common XML threats in a SOA environment

SOA and Web Services runs on Web-based technology, so it inherits all the security risks of the Web:

• **xDoS (XML Denial of Service)**: SOAP jumbo payloads, Recursive elements, Mega-tags, Coersive parsing, Public key DoS, XML flood, Resource hijack.

• Unauthorized access to Service registry: Dictionary attack, Falsified message, XML replay attack.

• Data integrity/confidentiality through SOAP messages: Message/data tampering, Message snooping, SQL/XPath/XSLT injection, WSDL enumeration, Routing detour / Manin-the-middle, Spoofing

• System compromise through SOAP messages: Malicious include, Memory space breach, XML encapsulation, X-Virus.

TENDANCES LOGICIELLES D'ÉTÉ 2008

WS-Security Model

TENDANCES LOGICIELLES D'ÉTÉ 2008

IBM

WS-Policy

- Is an extensible syntax for identifying capabilities, requirements, and general characteristics of entities
- Is a collection of policy assertions (e.g. authentication scheme, protocols, QoS characteristics, encryption requirements, security token lifespan, security token type, etc.)
- Does NOT specify how the policies are associated with entities

WS-Federation

- Specifies how federation is implemented
- Describes how existing web services security is implemented to provide SSO, trust, and attribute management
- Is primarily concerned with relationship between federated parties
- WS-Federation Active (web services enabled)
- WS-Federation Passive (not web services enabled)
- Provides standards-based secure digital identity and trust platform for web services platforms

WS-Trust

- Is a framework for trust model interoperability
- Extends WS-Security to support issuance, exchange, and validation of security tokens
- Enables cross domain issuance and dissemination of security credentials

WS-Privacy

- Specifies how privacy language can be embedded within WS-Policy descriptions
- Is a model used by WS-Security to associate privacy claims in messages
- Enables WS-Trust to evaluate both user preferences and organizational privacy claims

TENDANCES LOGICIELLES D'ÉTÉ 2008

WS-Authorization

- Is a framework for managing authorizations
- Defines how access policies are defined and managed

WS-Secure Conversation

- Extends WS-Security and WS-Policy to provide secure communication between web services
- Focuses on message authentication
- Is a mechanism for establishing and sharing security contexts
- Describes the method for extract keys from security contexts

WS-Security Policy

- Describes how messages should be secured
- Is a set of assertions for **SOAP message security**, WS-Trust, and WS-Conversation
- Supports multiple token types and encryption methods

WS-Provisioning

- APIs and schema for interoperability between provisioning solutions
- Is based on directory concepts
- Leverages WSDL and XML schema

TENDANCES LOGICIELLES D'ÉTÉ 2008

Security Assertions Markup Language (SAML)

- Is developed by consortium of vendors, including IBM, under the direction of OASIS
- Is intended to provide standards for interoperability between vendors for SSO
- Is XML formatted assertion
- Includes user identity information
- Is vendor neutral
- Versions 1.0 and 1.1 focused on SSO
- Version 2.0 supports full user lifecycle management
- Version 2.0 influenced by Shibboleth and Liberty ID-FF 1.2

eXtensible Access Control Markup Language (XACML)

It is the common language for **communicating access control policies** and requirements and supports the following functions:

- Policy definition
- Attribute requirements for policy evaluation
- Policy evaluation
- Policy enforcement

TENDANCES LOGICIELLES D'ÉTÉ 2008

Java Authorization Contract for Containers (JACC)

- Defines new Permission classes for EJB and Web permissions in J2EE deployment descriptors
- Provides interfaces and rules allowing **authorization providers to communicate with** J2EE application containers
- Removes access decisions from the application servers
- Provides standards to allow authorization providers to interface with application servers

Service Provisioning Markup Language (SPML)

- Provides XML framework for **managing provisioning**, **identity information**, and system resources between organizations
- Version 2.0 ratified by OASIS in April, 2006
- Defines four primary elements for provisioning:
 - Requesting Authority (RA): Originator of the identity
 - Provisioning Service Provider (PSP): Accepts and processes provisioning requests from the RA (e.g. ITIM)
 - Provisioning Service Target (PST): The provisioning target (e.g. AD)
 - Provisioning Service Object (PSO): The provisioned target (e.g. AD Id)

TENDANCES LOGICIELLES D'ÉTÉ 2008

Tivoli-based SOA security solutions

TENDANCES LOGICIELLES D'ÉTÉ 2008

Information Security Framework Capability reference model

IBM Information Security Framework

Identity and access management • Identity proofing

- Background screening
- Identity establishment

Lifecycle management

- User provisioning
- Other entity provisioning
- Identity credentials
- Access management
 - Authentication services
 - Access control services
 - Single sign-on

TENDANCES LOGICIELLES D'ÉTÉ 2008

Tivoli Access Manager

- Centralized authentication, access, and auditing
- Enables SSO
- Common security model
- Foundation for identity federation
- Policy driven
- Centralized administration
- Integrates with Tivoli identity management

Web Server Example

TENDANCES LOGICIELLES D'ÉTÉ 2008

Federated Identity Management

- Definition
 - An "identity federation" is a federation in which identity management (authentication, access control, auditing, and provisioning) is distributed between the partners based on their role within the federation.
 - An Identity Federation can allow users from one federation partner to <u>seamlessly</u> access resources from another partner in a secure and <u>trustworthy</u> manner.
- Roles
 - End user
 - Identity Provider (IdP)
 - Service Provider (SP)
- Functions
 - Single Sign-On/Sign-Off (incl. "global" sign-off)
 - Provisioning/De-provisioning
 - Account Linking/De-linking

TENDANCES LOGICIELLES D'ÉTÉ 2008

Tivoli Federated Identity Manager (TFIM)

- Single sign-on (SSO)
- Identity mediation for web services
- Cross domain identity exchange format mapping
- Authorization service interface
- Integrate audit data collection and reporting
- Align with open standards and specifications including Liberty, SAML, WS-Federation, WS-Security, and WS-Trust Security Token Services (STS)
- **Improve user experience** ; Allow collaboration with a wide variety of partner organizations
- Minimize application impact
- Simplify administration of security in cross-enterprise business processes by delivering "security as services"

TENDANCES LOGICIELLES D'ÉTÉ 2008

Federated Architecture

TENDANCES LOGICIELLES D'ÉTÉ 2008

XML Security: bar the front door with Datapower!

- Legacy systems are not even aware of XML
- Schema Validation and XML security practices are resource intensive
- XML is being used to connect the most valuable resources
- XML Web Services Access Control
- Sealed network-resident device
- Optimized hardware, firmware, embedded OS
- Single signed/encrypted firmware image, Cannot install arbitrary software
- High assurance, "default off" locked-down configuration
- Security vulnerabilities minimized (few 3 party components)
- Hardware storage of encryption keys, locked audit log
- No drives/USB ports, tamper-proof case
- FIPS level 3 HSM (option)
- Under evaluation by Common Criteria EAL4
- Large financial and government customers

"The DataPower ... is the most hardened ... it looks and feels like a datacenter appliance, with no extra ports or buttons exposed and no rotating media. " - InfoWorld

DataPower: Improved Security

Use Datapower to:

- Filter, Validate, Transform, Encrypt/Decrypt XML Documents
- Sign Documents and/or Verify Signatures; Hardware storage of encryption keys
- Communicate with clients, servers and peers using SSL encryption
- Monitor and log activity, delivering log information to external managers
- Well-formedness checking
- Schema validation
- Filter based on IP criteria, SSL information, HTTP header, XPath on SOAP/XML
- Avoid XDoS

TENDANCES LOGICIELLES D'ÉTÉ 2008

SESSION SPÉCIALE GESTION DES RISQUES OPÉRATIONNELS

2) Use TFIM to allow third parties / users get information easily

1) Use TAM for secure Web SSO and XML Web services

Recommendations to manage SOA security

TENDANCES LOGICIELLES D'ÉTÉ 2008

Recommendations to manage SOA Security

- Security authorization needs to be granular at the service level; Control AAA with SSO and Federation Identity Mechanisms
- Work with the SOA application teams to understand the requirements, the trade-offs of security, performance and cost
- Understand existing **corporate security policies** (especially approval and audit process) and apply them in the SOA environment
- Choose policy-based over programmatic approaches to allow security decisions to be implemented at service invocation
- Consider XML appliances to accelerate security processing:
 - Use WS-* standards
 - Filter, Validate, Transform, Encrypt/Decrypt XML messages
 - Mask internal resources. Time stamp all messages
 - Secure logging; Sign all messages and Verify Signatures; Use hardware storage of encryption keys
 - Communicate with clients, servers and peers using SSL encryption
 - Monitor and log activity, delivering log information to external managers
 - Check well-formdness of incoming requests and Schema validation
 - Filter messages based on IP criteria, SSL information, HTTP header, XPath on SOAP/XML
 - Protect against XDoS
 - Invoke external access, identity managers and anti-X-virus

TENDANCES LOGICIELLES D'ÉTÉ 2008

Merci pour votre attention

TENDANCES LOGICIELLES D'ÉTÉ 2008

Links for More Information on Tivoli Security

- Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions
 - <u>http://www.redbooks.ibm.com/abstracts/SG246394.html?Open</u>
- Enterprise Security Architecture Using IBM Tivoli Security Solutions
 - <u>http://www.redbooks.ibm.com/abstracts/sg246014.html?Open</u>
- Service Oriented Architecture SOA
 - http://www-306.ibm.com/software/solutions/soa/