IBM Software Group

DB2 V8: SQL enhancements

ON DEMAND BUSINESS’

© 2005 IBM Corporation

‘ IBM Software Group

List of Topics

Dynamic scrollable cursors
Multi-row FETCH and INSERT
GET DIAGNOSTICS statement

Common table expressions and recursive SQL

Identity column enhancements

Sequence objects

Scalar fullselect
Multiple DISTINCT clauses
INSERT within SELECT statement

Miscellaneous enhancements

e T

| IBM Software Group

Static Scrollable Cursors - V7 Review

Cursors can be scrolled

— Backwards
— Forwards

— To an absolute position
- To a position relative to the current cursor

Before/after position

Result table in TEMP database

FETCH CURSOR... ||

| IBM Software Group

Sensitive and Insensitive Cursors - V7 Review

DECLARE Cl INSENSITIVE
SCROLL. .

FETCH INSENSITIVE...

DECLARE Cl SENSITIVE
STATIC SCROLL. .

FETCH INSENSITIVE...

DECLARE Cl SENSITIVE
STATIC SCROLL. .

FETCH SENSITIVE...

-]

TEMP TABLE

BASE TABLE

» Read only cursor

» Not aware of updates or
deletes in base table

-

— -
TEMP TABLE

BASE TABLE

» Updateable cursor

» Aware of own updates or
deletes within cursor

» Other changes to base
table not visible to cursor

» Any inserts not recognized

TEMP TABLE

BASE TABLE

» Updateable cursor

» Aware of own updates and
deletes within cursor

»Sees all committed
updates and deletes

» Any inserts not recognized

| IBM Software Group

New in V8 - Dynamic Scrollable Cursors

Scrollable cursor that provides access to the base table rather than a
workfile

-- allows visibility of updates and inserts done by you or other users

DECLARE C1 SENSITIVE DYNAMIC SCROLL
CURSOR FOR
SELECT C1, C2
FROM T1;

| IBM Software Group

Declare Cursor - New Attributes

SENSITIVE DYNAMIC
o Specifies that size of result table is not fixed at OPEN cursor time
e Cursor has complete visibility to changes
- All committed inserts, updates, deletes by other application processes
- All positioned updates and deletes within cursor
- All inserts, updates, deletes by same application processes, but outside cursor

o FETCH executed against base table since no temporary result table created

ASENSITIVE
e DB2 determines sensitivity of cursor

o If read-only...
= Cursor is INSENSITIVE if SELECT statement does not allow it to be SENSITIVE
(UNION, UNION ALL, FOR FETCH ONLY, FOR READ ONLY)

— It behaves as an insensitive cursor

o If not read-only, SENSITIVE DYNAMIC is used for maximum sensitivity

e Mainly for Client applications that do not care whether or not the server supports the
sensitivity or scrollability

e T

| IBM Software Group

Implications on FETCH

INSENSITIVE not allowed with FETCH statement (SQLCODE -244) if
e The associated cursor is declared as SENSITIVE DYNAMIC SCROLL

e The cursor is declared ASENSITIVE and DB2 chooses the maximum allowable
sensitivity of SENSITIVE DYNAMIC SCROLL

There are no "holes" as there is no temporary resulit table

e Special case: If FETCH CURRENT or FETCH RELATIVE +0 requested but row
on which cursor is positioned was deleted or updated so that it no longer meets
selection criteria (SQLCODE +231)

For example, can occur with ISOLATION(CS) and CURRENTDATA(NO)

Inserts by the application itself are immediately visible -- inserts by
others are visible after commit

Order is always maintained

e If current row is updated, the cursor is positioned before the next row of the
original location and there is no current row

| IBM Software Group

Dynamic Scrollable Cursors Benefits

e Enhance usability and power of SQL

o Facilitates portability

e Performance improved by sort elimination
e Elimination of workfile (temporary table)

e Immediate visibility of commited updates, deletes,
inserts

e T

| IBM Software Group

Cursor Type Comparison

Cursor Result Visibility of | Visibility of | Updatability
Type Table Own Others’ ()
Changes Changes
Non-Scrollable | Fixed, workfile | No No No
(SQL contains
a Join or Sort,
etc)
Non-Scrollable | No workfile, Yes Yes Yes
base table
access
INSENSITIVE | Fixed, No No No
SCROLL declared
temp table
SENSITIVE Fixed, Yes Yes Yes
STATIC declared (INSERTs (Not INSERTSs)
SCROLL temp table not allowed)
SENSITIVE No declared Yes Yes Yes
DYNAMIC temp table,
SCROLL base table
access

| IBM Software Group

Multi-Row FETCH and INSERT

What is it? ..

e Multi-row FETCH:

— A single FETCH statement can retrieve multiple rows
of data from the result table of a query as a rowset

= A rowset is a group of rows of data that are grouped
together and operated on as a set

= Supports dynamic and static SQL (Fetch always static)

e Multi-row INSERT:

— A single SQL statement can insert one or more rows

into a table or view

= Multi-row INSERT can be implemented as either static or
dynamic SQL

Benefits
e Enhances usability and power of SQL

e Performance is improved by eliminating multiple trips between
application and database engine; for distributed access,
reduced network traffic

e T

| IBM Software Group

DECLARE CURSOR and FETCH Examples

Declare C1 as the cursor of a query to retrieve a rowset from table EMP

EXEC SQL
DECLARE C1 CURSOR
WITH ROWSET POSITIONING

FOR SELECT * FROM EMP;

WITH ROWSET POSITIONING specifies whether multiple rows of data
can be accessed as a rowset on a single FETCH statement

Fetch 3 rows starting with row 20 regardless of the current position of the
cursor

EXEC SQL
FETCH ROWSET STARTING AT ABSOLUTE 20
FROM C1 FOR 3 ROWS INTO...

| IBM Software Group

Rowsets

A ROWSET is a group of rows from the result table of a query,
which are returned by a single FETCH statement
(or inserted by a single (multi-row) INSERT statement)

The program controls how many rows are returned in a rowset
(it controls the size of the rowset)
e Can be specified on the FETCH ... FOR n ROWS statement (n is the rowset
size and can be up to 32767)

Each group of rows is operated on as a rowset

Ability to intertwine single row and multiple row fetches for a
multi-fetch cursor

FETCH FIRST ROWSET STARTING AT ABSOLUTE 10
FROM CURS1
FOR 6 ROWS INTO :hvatl, :hva2;

L

| IBM Software Group

Cursor Positioning: Rowset Positioned Fetches
Result table
CUST_NO [CUST_TYP [CUST_NAME
FETCH FIRSTROWSET = | » 1P lan
FOR 3 ROWS — 2|P Mark
_— 3P John
-] > 4P Karen
FETCH NEXT ROWSET — 5P Sarah
— 6| M Florence
7|M Dylan
— 8| M Bert
FETCH ROWSET STARTING , 9lMm Jo
AT ABSOLUTE 8 0lR Karon
FOR 2 ROWS s Gay
12]R Bill
Note : Cursor is positioned on 13|R Geoff
ALL rows in current rowset 14]R Julia
15]R Sally

e T

| IBM Software Group

Mixing Row and Rowset Positioning
Result table
CUST NO |CUST TYP [CUST NAME
FETCH FIRST ROWSET — 1]P lan
FOR 3 ROWS R 2|P Mark
. 3P John
FETCH NEXT ROWSET L 4P Karen
KT 5|P Sarah
/{ 6| M Florence
FETCH NEXT 7|M Dylan
8|M Bert
9| M Jo
Note : FETCH NEXT is relative 1? 2 (K;fre”
to the FIRST row in the current e Biﬁ y
rowset 13| R Geoff
14 R Julia
15| R Sally

e T

| IBM Software Group

Multi-Row INSERT

New third form of insert

» INSERT via VALUES is used for inserting a single row into the table or view using
values provided or referenced

¢ INSERT via SELECT is used for inserting one or more rows into the table or view
using values from other tables or views

e INSERT with FOR "n" ROWS is used to insert multiple rows into the table or
view using values provided in a host variable array

FOR "n" ROWS

o For static, specify FOR "n" ROWS on the INSERT statement (for dynamic
INSERT, specify FOR "n" ROWS on the EXECUTE statement)

¢ Input provided with host variable array -- each array represents cells for
multiple rows of a single column

VALUES clause allows specification of multiple rows of data
e Host variable arrays used to provide values for a column on INSERT

L

| IBM Software Group

Using Multi-Row INSERT

Single row versus multi-row INSERT

HV array

DB2 DB2

Yvyy

Application

i

Multi-row INSERT statement - special case

INSERT INTO TAB1 VALUES (’'my string’ , :hva , CURRENT DATE)

FOR 4 ROWS my string hva [03-08-2004 |
e Program contains _——

my string ‘hva 03-08-2004
e DB2 INSERTS———» | _my string 03-08-2004
my string 03-08-2004
my string 03-08-2004

L

| IBM Software Group

ATOMIC / NOT ATOMIC

ATOMIC (default)
o |f the insert for any row fails, all changes made to database by that INSERT

statement are undone

NOT ATOMIC CONTINUE ON SQLEXCEPTION
e Inserts are processed independently
o If errors occur during execution of INSERT, processing continues
» Diagnostics are available for each failed row through
GET DIAGNOSTICS
» SQLCODE indicates if:
- All failed
— All were successful
— At least one failed

e T

| IBM Software Group

GET DIAGNOSTICS

« Enables more diagnostic information to be returned than can be

contained into SQLCA
« Returns SQL error information

- For overall statement

- For each condition (when multiple errors occur)
» Supports SQL error message tokens greater than 70 bytes (SQLCA

limitation)

To handle multiple SQL errors during a NOT ATOMIC multi-row insert

INSERT INTO T1 FOR 5 ROWS VALUES(:ARRAY);

GET DIAGNOSTICS :ERR_COUNT = NUMBER,;
DO Il =1TO ERR_COUNT;
GET DIAGNOSTICS CONDITION :li
:RC = RETURNED_SQLSTATE;
END;

e T

IBM Software Group

Nested Table Expressions - Review

SELECT E.EMPNO, E.LASTNAME, E.HIREDECADE, E.SALARY,

FROM
(

SELECT EMPNO, LASTNAME A SALARY,
SUBSTR (CHAR (HIREDATE , ISO) ,1,3) CONCAT

IO - 9!
AS HIREDECADE
FROM EMPLOYEE

) AS E

INNER JOIN
(
SELECT S.HIREDECADE, MIN(S.SALARY) AS MINIMUM SALARY
FROM
(

SELECT SUBSTR (CHAR (HIREDATE,ISO),1,3)

CONCAT 'O - 9' AS HIREDECADE,
SALARY

FROM EMPLOYEE
) AS S

GROUP BY S.HIREDECADE

) AS

IBM Software Group
Common Table Expressions

WITH
E AS
(

SELECT EMPNO, LASTNAME, SALARY,

SUBSTR (CHAR (HIREDATE, ISO) ,1,3) CONCAT 'O - 9
AS HIREDECADE

FROM EMPLOYEE

),

M (HIREDECATE, MINIMUM SATLARY) AS
(

SELECT HIREDECADE, MIN (SALARY)
FROM

GROUP BY HIREDECADE
)

SELECT E.EMPNO, E.LASTNAME, E.HIREDECADE,

E.SATARY, M.MINITMUM SATARY
FROM E INNER JOIN M

ON E.HIREDECADE = M.HIREDECADE

e T

MINIMUM SALARY

IBM Software Group

Recursive SQL

WITH
RPL (PART, SUBPART, QUANTITY) AS
(

Initialization Select

SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT

UNIONWXE ROOT.PART = '01'

Iterative Select

SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

Main Select

SELECT PART, SUBPART, SUM(QUANTITY) AS QUANTITY
FROM RPL
GROUP BY PART, SUBPART

IBM Software Group

Recursive SQL- Initialization SELECT
SELECT ROOT.PART, ROOT.SUBPART,
ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01"'
PART SUBPART QUANTITY
00 01 5
00 05 3 PART SUBPART QUANTITY
01 02 2
01 03 3 01 02 2
01 04 4 01 03 3
01 06 3 01 04 4
02 05 7 01 06 3
02 06 6 RPL
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 12 8
07 14 8 PARTLIST Table

IBM Software Group

Recursive SQL - First lteration
SELECT CHILD.PART, CHILD.SUBPART,
CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART
PART SUBPART QUANTITY
00 01 5
00 05 3 PART SUBPART QUANTITY
ot 02 2 01 102] 2
ot 03 3 01 103 3
of 04 4 01 04 2
01 06 3 Rad
02 05 7 01 06 3
R cl
07 6 03 07 6
08 10
04 08 10
104] 09 11
04 09 11
05 10 10
06 12 10
05 11 10 — — —
12 10
13 10 RPL
07 12 8
07 14 8
PARTLIST Table

IBM Software Group

Recursive SQL - Second lteration

SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL. PARENT, PARTLIST CHILD

WHERE PARENT.SUBPART = CHILD.PART

PART SUBPART QUANTITY PART SUBPART QUANTITY
00 0 5 0 02 2
00 05 3 01 03 3
01 02 2 01 04 4
01 03 3 01 06 3
0 04 4 02_| o5 7
01 06 3 02_| |06 6
02 05 7 03| [07] 6
8§ 83 g No correspondence 82 = 2

in PARTU |
04 08 10 STtable 6 | mm 10
04 09 11 06 10

PARTLIST Table RPL

IBM Software Group

Recursive SQL - Main SELECT

SELECT PART, SUBPART, SUM(QUANTITY) AS

QUANTITY
FROM RPL
GROUP BY PART, SUBPART
PART SUBPART QUANTITY PART SUBPART QUANTITY

01 02 2 01 02 2
01 03 3 01 03 3
01 04 4 01 04 4
01 06 3 01 06 3
02 05 7 02 05 7
02 06 6 02 06 6
03 07 6 03 07 6
04 08 10 04 08 10
04 09 11 04 09 11
06 12 10 05 10 10

05 11 10

06 12 20

0 s 20
07 12 8
07 14 8
Final Result Table

IBM Software Group

|dentity Column Enhancements

Dynamic ALTER of ldentity column attributes

o ALTER TABLE ALTER COLUMN extended to enable modification of identity
column attributes:

— ALTER TABLE ALTER COLUMN SET GENERATED BY DEFAULT
o Only future values of column affected by change
e Cannot alter data type of identity column
e Unused cache values may be lost when column attributes are altered

New keyword support to aid porting from other vendor platforms
e NO MINVALUE
e NO MAXVALUE
o NO ORDER, ORDER

Allows:
e INCREMENT BY to be 0 (to generate constants)
o MINVALUE = MAXVALUE

| IBM Software Group

Sequence Object

Avoid the concurrency and performance problems when
applications generate their own sequence numbers (hotspots)

DB2 sequences allow multiple transactions to concurrently
increment sequence number and guarantee each number will
be unique

Sequence can be accessed and incremented by many users
without waiting

e DB2 does not wait for a transaction that has incremented a sequence to
commit before allowing the sequence to be incremented again by another
transaction

Compatibility with other DBMS

L

| IBM Software Group

Sequence Object

CREATE SEQUENCE

» Creates a sequence object

e Example:
CREATE SEQUENCE SEQTEST1 AS INTEGER
START WITH 1
INCREMENT WITH 1
MINVALUE 1
MAXVALUE 5
CYCLE
CACHE 5
NO ORDER,;

ALTER SEQUENCE

e Can be used to change INCREMENT BY, MIN VALUE, MAXVALUE, CACHE,
CYCLE and to RESTART WITH different sequence

e Only future values affected and only after COMMIT of ALTER
e Cannot alter data type of sequence
e Unused cache values may be lost

L

| IBM Software Group

Next and Previous Values
Applications can refer to the named sequence object to get its current or
next value

e NEXT VALUE FOR < sequence- name >
e PREVIOUS VALUE FOR < sequence-name >
— Returns most recently generated value for sequence for previous statement within
current session
— NEXT VALUE must have been invoked within current session

Examples:

1) Assume sequence created with START WITH 1, INCREMENT BY 1
SELECT NEXT VALUE FOR MYSEQ FROM SYSIBM.SYSDUMMY1; Generates Value of 1
SELECT NEXT VALUE FOR MYSEQ FROM SYSIBM.SYSDUMMY1; Generates Value of 2
COMMIT;

SELECT PREVIOUS VALUE FOR MYSEQ FROM SYSIBM.SYSDUMMY1;
Returns most recently generated value (2)

2) Viewing sequence while inserting
SELECT * FROM FINAL TABLE
(INSERT INTO TESTTAB (KEYVALUE, TESTSEQ)
VALUES (NEXT VALUE FOR SEQTEST1, NEXT VALUE FOR SEQTEST2

| IBM Software Group

Comparing Identity Columns and Sequences

Sequences Identity columns

Stand-alone object Tied to a table

Can use one sequence for many One to one relationship between identity
tables or many sequences in one table and tables

Retrieved via NEXT VALUE FOR/ Retrieved via IDENTITY_VAL_LOCAL
PREVIOUS VALUE FOR expressions function - within agents scope only

. Can be altered via ALTER TABLE
Can be altered via ALTER (ALTER COLUMN)

SEQUENCE Prior to V8 could not be altered

L

| IBM Software Group

Scalar Fullselect

What is it?

o A scalar fullselect is a fullselect, enclosed in parentheses, that returns a
single value

o Allows scalar fullselect where expressions were previously supported
e Example:
SELECT PRODUCT, PRICE

FROM PRODUCTS

WHERE PRICE <= 0.7 * (SELECT AVG(PRICE)
FROM PRODUCTS):

Benefits
¢ Enhances usability and power of SQL
e Facilitates portability
e Conforms with SQL standards

e T

| IBM Software Group

Multiple DISTINCT Clauses

What is it?

e Allows more than one DISTINCT keyword on the SELECT or HAVING
clause for a query

Benefits
e Enhances usability and power of SQL
e DB2 Family compatibility
¢ Previously you would get an SQLCODE -127

e T

| IBM Software Group

Multiple DISTINCT Clauses - 2

Prior to Version 8

e SELECT DISTINCT C1, C2 FROM T1; /
SELECT COUNT(DISTINCT C1) FROM T1;

SELECT C1, COUNT(DISTINCT C2) FROM T1 GROUP BY Cf;

SELECT COUNT/(DISTINCT(C1)),SUM(DISTINCT C1)FROM T1; -- same col

With Version 8
o SELECT DISTINCT COUNT(DISTINCT C1), SUM(DISTINCT C2) FROM T1;

e SELECT COUNT(DISTINCT C1), AVG(DISTINCT C2)
FROM T1 GROUP BY Cf1;

e SELECT SUM(DISTINCT C1), COUNT(DISTINCT C1), AVG(DISTINCT C2)
FROM T1 GROUP BY C1 HAVING SUM(DISTINCT C1) = 1;

Not Supported in Version 8
e SELECT COUNT(DISTINCT A1,A2) x

FROM T1 GROUP BY A2;

e SELECT COUNT(DISTINCT(A1,A2))
FROM T1 GROUP BY A2;

e T

| IBM Software Group

INSERT within SELECT Statement

What is it?

» Users can automatically retrieve column values inserted in tables by DB2
such as:

— |dentity columns, sequence values

— User-defined defaults, expressions

— Columns modified by BEFORE INSERT triggers
— ROWIDs

Benefits
¢ Enhances usability and power of SQL
* Cuts down on network cost in application programs
e Cuts down on procedural logic in stored procedures

e T

| IBM Software Group

INSERT within SELECT Examples

DECLARE CS1 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE
(INSERT INTO EMP_RESUME (EMPNO)
SELECT EMPNO FROM EMP)

SELECT PROJNAME INTO :name_hv

FROM FINAL TABLE

(INSERT INTO PROJ (PROJNO,DEPTNO,RESPEMP)
VALUES (:projno-hv,:deptno-hv,:respemp-hv))

e T

| IBM Software Group

GROUP BY Expression

EMPNO LASTNAVE WORKDEPT ~ SALARY HIREDATE

000010 |[HAAS A00 | 52750.00 | 1965-01-01
000030 | KWAN co1 38250.00 | 1975-04-05
000120 | O'CONNELL A00 | 29250.00 | 1963-12-05 | EMPLOYEE
000130 | QUINTANA co1 23800.00 | 1971-07-28
000140 | NICHOLLS 28420.00 | 1976-12-15

SELECT SUBSTR (CHAR (HI TE,ISO),1,3)
CONCAT 'O - 9' AS HIREDECADE,
MIN (SALARY) AS MINIMUM SALARY
FROM EMPLOYEE o

GROUP BY SUBSTR (CHAR (HIREDATE,ISO),1,3)CONCAT 'O - 9

HIREDECADE MINIMUM_SALARY
1960 -9 29250.00
1970 -9 23800.00

e T

| IBM Software Group

Qualified Column Names in INSERT and UPDATE

Column names can be qualified with a table name, or a schema
followed by a table name in INSERT

Column names in the SET clause of an UPDATE statement can
be qualified

These enhancements provide for more DB2 family compatibility

For example:

UPDATE T1 SET T1.C1 =C1 + 10 WHERE C1 =1

UPDATE T1 TSET T.C1 =C1 + 10 WHERE C1 =2

L

| IBM Software Group

IS NOT DISTINCT FROM

SQL uses three-valued logic where any given comparison
can return: TRUE, FALSE, or NULL

Applications can use IS NOT DISTINCT FROM to obtain a
TRUE result instead of NULL when comparing NULL values

SELECT C1 FROM T1 WHERE
C1 IS NOT DISTINCT FROM :hv;

NULL "ABC’ FALSE
NULL NULL TRUE - Returned

'ABC’ 'ABC’ TRUE ~<— by query above
"ABC’ NULL FALSE

"ABC’ 'DEF’ FALSE

L

| IBM Software Group

REOPT(ONCE)

Bind option that controls when the Optimizer builds the access path
information for dynamic SQL applications.

o By default, access path is calculated at PREPARE.
» REOPT(VARS)
» defers access path selection until OPEN

» values of host variables on OPEN are used to calculate access
path

» resulting access path is cached in the global prepare cache
- done at every execution
» REOPT (ONCE)
» same as REOPT(VARS) BUT
- access path is only calculated the first time is it executed

| IBM Software Group

Transparent ROWID

Eliminates the need to explicitly declare a ROWID column in
tables that include LOBs

DB2 generates a "hidden" ROWID column, which is not visible
on SELECT *

Simplifies porting of LOB applications from other platforms

| IBM Software Group

Acknowledgments

This presentation is based on the following 'Redbook’:

DB2 UDB for z/OS Version 8: Everything You Ever Wanted to
Know, ... and More (SG24-6079)

@
Redbooks
B FoEz- = MEE

| IBM Software Group

Other information

IBM DB2 Universal Database SQL Reference
for Cross Platform Development

z/OS 0S/390 0OS/400 AIX HP-UX Solaris Linux Windows

A new SQL Reference book for the DB2 UDB family, not just
one platform.

ftp:/ftp.software.ibm.com/ps/products/db2/info/xplatsql/pdf/en_US/cpsqlrv2.pdf

SEEEeT T RO

INSERT INTO .

- -—Pnrtame SQL

